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Abstract 

Decision makers responsible for managing the performance of a process commonly base their 

decisions on an estimate of present performance, a comparison of estimates across multiple 

streams, and the trend in performance estimates over time. Their decisions are well-informed when 

the risk-adjusted estimates of the performance measure (or parameter) are accurate and precise. 

The work is motivated by three applications to estimate a parameter at the present time from a 

stream of data where the parameter drifts slowly in an unpredictable way over time. It is common 

practice to estimate its value using either present time data only or using present and historical 

data. When sample sizes by time period are small, an estimate based on present time data is 

imprecise and can lead to uninformative or misleading conclusions. We can choose to estimate the 

parameter using an aggregate of historical and present time data but this choice trades more bias 

for less variability when the parameter is drifting over time. We propose to regulate the 

bias/variance trade-off using estimating equations that down-weight past data. We derive 

approximations for the variance of the estimator and the distribution of a hypothesis test statistic 

involving the estimator through known asymptotic properties of the estimating functions. We 

study the proposed approach relative to current practices with real or realistic data from each 

application. We offer simulations and analytic examples to generalize the comparisons and 

validate the approximations. We explore considerations related to implementing the proposed 

approach. We suggest future work to extend the applicability of this work. 
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Chapter 1: Motivation and Introduction  

Decision makers responsible for managing the performance of a process commonly base their 

decisions on an estimate of a process parameter such as the mean or a rate over time. Their 

decisions are well-informed when the current estimate of the parameter is accurate and precise. 

Specifically, a decision to focus re-engineering efforts to improve the performance of a product or 

service requires an efficient estimate of the present mean outcome. Validation of previous efforts 

requires that estimates be tracked and compared over time. Estimating the parameter can be 

particularly challenging when we observe the outcome from a small number of process subjects 

and performance changes over time in an unpredictable way. 

Commonly there is one or more subject-level covariates that have an effect on the subject-level 

outcome that is observed. We may want to divide the subjects into multiple subgroups of interest 

which we refer to as streams. Considering that we observe a stream of outcome and possibly 

covariate data over time, we consider the objectives as follows,  

 Monitor an estimate of the performance parameter that is risk-adjusted for a changing 

subject population over time. For example, Spiegelhalter et al. (2012) describe the 

importance of healthcare surveillance for rapid detection of emerging problems. Healthcare 

regulators need a measure of each healthcare provider’s performance to assess against a 

relevant target or threshold. We may observe a small number of subjects in the current time 

period and the performance of a particular healthcare provider may drift over time in an 

unpredictable way.  

 Monitor a comparison of parameter estimates across multiple streams. For example, Liu, 

MacKay, and Steiner (2008) describe the problem to monitor six wheel alignment 

characteristics in a truck assembly process where one of four possible gauges is used to 

measure the alignment characteristics on a particular truck. In order to maintain consistent 

testing, it is important that any differences among the mean outcome of the four gauges are 

detected. There may be a small number of trucks tested at one of the various gauges and 

the performance of a particular gauge may drift over time in an unpredictable way.  

Such monitoring activities are used to identify problems, motivate the need for improvement, 

and quantify the extent to which improvement initiatives have been successful. These are different 

problems than usual statistical process monitoring applications where a mean measure or a 
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hypothesis test statistic is monitored relative to an in-control period determined by prior data 

(Montgomery, 2013). In the problem of study, decisions are based on an updated estimate of a 

parameter rather than a comparison to control limits.  

There are two naïve approaches in common use to estimate the present value of a parameter 

based on a stream of data collected over time. The parameter estimate may be based on data 

observed at the present time only. This estimate is imprecise when the current sample size is small. 

The parameter estimate may be based on an aggregate of historical data without regard to the time 

period of the data. This estimate is biased when the true value of the parameter changes over time. 

We look for an approach to combine present and historical data that regulates the bias/variance 

trade-off for a more efficient estimate of the present parameter than either of the two naïve 

approaches. We consider the case where the parameter changes slowly over time.  

This research is motivated by three applications having one or both of the stated objectives. 

Efficient estimates of a present time process parameter based on a stream of data are important for 

decision makers in all three applications. In each application, the common practice for analysis is 

one of the two naïve approaches previously discussed. In Section 1.1, we summarize the 

motivation, data, and objectives of these applications. More detail is provided in Chapters 4, 5, 

and 6.  

1.1. Motivating applications  

1.1.1. Customer loyalty measure 

Compelling evidence (Reichheld and Markey, 2011) shows that a customer’s response to the 

loyalty question coined the “ultimate question” is a good indicator of the likelihood of retaining 

that customer in the future. The ultimate question, ‘How likely is it that you would recommend 

this company or product to a friend or colleague?’, solicits a response on a scale from 0 to 10. The 

customer’s response classifies them into one of the three categories 

 detractors who respond six or below 

 passives who respond seven or eight 

 promoters who respond nine or ten. 

Reichheld and Markey (2011) state that customers in these categories exhibit distinct loyalty 

behaviours. The actions that the company needs to take to encourage them to repurchase and 

promote the product are distinct. The difference between the proportions of customers who are 

promoters and detractors is a measure known as the Net Promoter Score (𝑁𝑃𝑆). Increasing the 
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proportion of promoters, decreasing the proportion of detractors, or doing both simultaneously 

increases the value of 𝑁𝑃𝑆.  

The 𝑁𝑃𝑆 measure for customer loyalty is adopted in many industries selling consumer and 

enterprise products and services (“NPS Benchmarks”, n.d.). Decision makers track 𝑁𝑃𝑆 to plan 

efforts to improve customer loyalty and assess previous efforts. For these activities, representative 

population estimates of 𝑁𝑃𝑆 are updated at frequent, regular intervals (Reichheld and Markey, 

2011). We consider a real example for a smartphone vendor. In this application, a manager 

monitors the 𝑁𝑃𝑆 estimates to plan loyalty-building efforts such as expanding the customer base 

in product lines or subpopulations where promoters are more numerous than detractors. For 

example, a decision could be made to adjust price or marketing campaigns to increase sales of a 

product line with a high 𝑁𝑃𝑆. The common practice is estimation using either data from the most 

recent time period or an aggregate of data across multiple time periods. Commonly, too little 

attention is paid to the uncertainty and bias in estimates by these practices and resulting estimates 

may be uninformative and misleading. We want to regulate a bias/variance trade-off in the estimate 

of 𝑁𝑃𝑆. Because there are many factors that impact customer loyalty and these change over time, 

we expect that true customer loyalty of the population drifts slowly over time in an unpredictable 

way. 

Data 

Consider responses to a survey asking the ultimate question from samples of customers over 

time. 

 There are 19,981 customers who responded to the customer loyalty survey over a 42-week 

period.  

 The customers providing the responses are not the same over time and are not identified. 

 Each response on an 11-point scale is categorized into one of the three loyalty groups: 

detractor, passive, or promoter. 

 The data are realistic. 

 Responses are summarized in weekly subgroups. 

 The number of responses by week varies and is small in some weeks. 

 There are two covariates to describe the customer’s smartphone:  

 product variant, an identifier having possible values {1,2,3,4} 
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 tenure, lower bound of time in months that the smartphone has been in service 

having possible values {0,2,6,12,18,24} 

 We assume there is no interaction among covariate effects and covariate effects do not 

change over time. 

Objectives 

Based on the stream of data, we want to: 

1. estimate a mean 𝑁𝑃𝑆 for the latest week 

2. track trends in 𝑁𝑃𝑆 over time 

3. compare 𝑁𝑃𝑆 for two product variants 

Challenges 

 There are varying numbers of customers observed weekly and in some weeks the sample 

size is small. As a result, the estimate of 𝑁𝑃𝑆 may be imprecise for the latest week and 

differences in 𝑁𝑃𝑆 over time may be difficult to detect. 

 The true 𝑁𝑃𝑆 changes slowly over time due to the effects of unobserved factors. As a 

result, estimates based on data from past time periods are biased estimates of 𝑁𝑃𝑆 for the 

latest week. 

1.1.2. Lab positive abnormal rate  

In both Canada and the United States, a regulatory body oversees the proficiency of laboratories 

conducting medical diagnostic testing. Data from regular operation of the labs performing a 

particular test is monitored relative to international standards and compared among peers. Non-

compliance and unfavourable performance measures have important implications for licensing 

continuance and for attracting patients. In the case of a test having two possible outcomes, the 

binomial distribution is a standard model to estimate positive abnormal rate from observations of 

either a positive or negative abnormal test outcome. Hypothesis tests based on the estimates of the 

positive abnormal rates and their uncertainties can compare labs to each other or to a standard. 

Test data are collected at regular intervals (for example, monthly) and so a periodic stream of test 

outcome data is available across multiple labs. We consider a real application where regulators 

monitor labs that perform a fecal occult blood test in Ontario. Here, the decision makers monitor 

the estimates of positive abnormal rate based on the data observed in the latest month by lab. We 

note that there are sizable differences in monthly sample size between the labs and some samples 
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sizes are small. Since sample size has an important impact on the probability that a lab is classified 

as non-conforming or different than the others, a better approach is sought. We want to reduce the 

uncertainty in the estimates and improve the power of the tests to detect differences across levels 

by leveraging historical data. We expect that true lab performance drifts slowly over time in an 

unpredictable way.  

Data 

Consider outcome data from the set of labs conducting the same fecal occult blood test (FOBT) 

in Ontario over time. 

 There are 863,898 FOBT tests performed at one of seven labs in Ontario between January 

2014 and June 2015.  

 The data are observed by patient, by lab, and by month.  

 The patients under test are not the same over time and are not identified. 

 The data are real and were provided by Cancer Care Ontario. 

 The number of patients by lab by month varies and is small for some labs in some months. 

 There are two possible outcomes for each patient: positive or negative abnormal. 

 There are no available covariate data describing labs or patients. 

Objectives 

Based on the stream of data, we want to: 

1. estimate the mean positive abnormal rate (“positive rate”) by lab for the latest month 

2. compare the positive rates across all labs for the latest month 

3. detect those labs which have a higher positive rate than their peers 

Challenges 

 There are varying numbers of patients tested by lab and by month and some are small. As 

a result, the estimates of positive rate by lab for the latest month may be imprecise and 

hypothesis tests may not detect important differences between labs.  

 The true positive rate by lab changes slowly over time due to the effects of unobserved 

factors. As a result, estimates based on data from multiple time periods are biased estimates 

of positive rate for the latest month. 
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1.1.3. Hospital performance measure 

Statistical models for predicting hospital performance are increasingly of interest to health 

planners, regulators, and patients (Clark, Hannan, and Wu, 2010, COPPS-CMS White Paper 

Committee, 2012). In the United States, the Centers for Medicare and Medicaid Services (CMS) 

has a congressional mandate to evaluate hospital performance using risk-adjusted mortality rates. 

Additionally, the New York State (NYS) Department of Health (DOH) publishes annual reports 

stating performance estimates for each of their hospitals performing percutaneous coronary 

intervention on patients with coronary artery disease (New York State Department of Health, 

2015). For both applications, the performance estimates must reflect the quality of surgical care 

by adjusting for differences in patient health at admission across different hospitals but not adjust 

away differences related to the quality of the hospital. An additional requirement is that the 

reported performance measure should be affected as little as possible by the variability resulting 

from small numbers of patients treated at some hospitals.  

The two applications use different approaches to estimate hospital performance. The NYSDOH 

estimates the hospital-specific performance measure through a risk-adjusted, naïve estimate of the 

observed mortality rate for a particular hospital. There is a high degree of instability and 

uncertainty in the NYSDOH estimate of performance for a low volume hospital in particular. The 

CMS uses an approach recommended by the COPPS-CMS White Paper Committee (2012) that 

estimates hospital-specific performance through risk-adjusted prediction of the mortality rate for 

a particular hospital. The predicted mortality rate is based on a hierarchical, random effects model 

that stabilizes the estimate of the hospital-specific performance measure. Criticism of the CMS 

approach points out that estimates for small, low volume hospitals have little value as they are 

close to the national mean (COPPS-CMS White Paper Committee 2012, pg. 24). Both approaches 

pool data over a three-year time period in order to improve estimates for low volume hospitals. 

We note that though pooling data reduces uncertainty, this approach increases bias in an estimate 

of the present time performance when performance changes over time. Considerable uncertainty 

may remain. We seek an alternative approach to improve estimates based on small samples 

utilizing the stream of test outcome data. We expect that hospital performance may drift slowly 

over time in an unpredictable way. 

Data 

Consider outcome data of coronary artery disease patients following percutaneous coronary 

intervention (PCI) over time.  
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 There are 467,401 patients who underwent PCI at one of 60 hospitals in NYS between 

2004 and 2012.  

 The PCI patients are not the same over time and are not identified. 

 There are two possible patient outcomes: death or survival during the same hospital stay in 

which the patient underwent PCI or after hospital discharge but within 30 days of surgery. 

 The observations of death or survival are available by patient, by hospital, by year. 

 The data are realistic – they were derived to have the same characteristics as data in the 

annual NYS DOH reports over this period (New York State Department of Health, 2015). 

 There are eight patient-level covariates to describe the risk of death for the patient at time 

of admission (not to include any attributes related to hospital performance): 

 patient age; an integer value in years greater than 55 

 hemodynamic state ∈ {'stable', 'unstable'} 

 ventricular ejection fraction ∈ {≥ 40%,< 20%, 20 − 29%, 30 − 39%} 

 pre-procedural myocardial infarction  

∈ {'none within 14 days', < 6 hrs, 6 −  11 hrs, 12 − 23 hrs, 1 − 14 days}  

 congestive heart failure ∈ {'no', 'current within 2 weeks'} 

 chronic lung disease ∈ {'no', 'yes'} 

 renal failure creatinine level  

∈  {≤  1.5, 1.6 −  2.0 mg/dl, >2.0 mg/dl, ‘requires dialysis’}  

 malignant ventricular arrhythmia ∈ {'no', ‘yes’} 

 We assume that the patient-level covariate effects are the same for all hospitals. 

Objective 

Based on the stream of data, we want to: 

 estimate a mean mortality rate by hospital for the latest year 

 track trends in mortality rate by hospitals over time 

 detect those hospitals which have a higher mortality rate than their peers 

Challenges 

 The number of patients who undergo PCI by year varies and may be small. There may be 

few or no observations for patients in a particular hospital in some years. As a result, the 
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estimates of mortality rate by hospital for the latest year may be imprecise and differences 

in mortality rate by hospital over time may be difficult to detect. 

 The mortality rate changes slowly over time due to the effects of unobserved factors. As a 

result, estimates based on data from multiple time periods are biased estimates of mortality 

rate for the latest year. 

1.2. General problem 

We introduce the general problem and notation that applies to the three motivating examples 

which is used throughout this thesis. 

Data and model 

We consider the following data and model. At each time period 𝑡, we observe data 𝑑𝑡 from a 

sample of 𝑛𝑡 subjects. Note these are not panel data so the subject identifiers do not contain any 

information. Refer to subject 𝑗 at time period 𝑡 with 𝑗 = 1,… , 𝑛𝑡 , 𝑡 = 1,… , 𝑇 where 𝑛𝑡 is the 

number of subjects observed at time 𝑡 and 𝑡 = 𝑇 is the present time period. There may be a subject-

specific characteristic of interest that divides the subjects into multiple streams. We identify the 

stream by subscript 𝑚 ∈ {1,… ,𝑀} and refer to subject 𝑗 in stream 𝑚 at time 𝑡 with 𝑗 =  1,… , 𝑛𝑚𝑡 ,

𝑚 = 1,… ,𝑀, ∑ 𝑛𝑚𝑡
𝑀
𝑚=1 = 𝑛𝑡 , and 𝑡 = 1,… , 𝑇. 

The data 𝑑𝑡 includes an outcome response from each of the 𝑛𝑡 subjects at time 𝑡 which we refer 

to as 𝑦𝑡 = {𝑦𝑗𝑡; 𝑗 = 1,… , 𝑛𝑡} or 𝑦𝑡 = {𝑦𝑗𝑚𝑡; 𝑗 = 1, … , 𝑛𝑚𝑡, 𝑚 = 1,… ,𝑀}. The 𝑑𝑡 may also include 

observed values of subject-specific covariates which we refer to as 𝑥𝑡 =  {𝑥𝑗𝑡; 𝑗 =  1,… , 𝑛𝑡} or 

𝑥𝑡 =  {𝑥𝑗𝑚𝑡; 𝑗 = 1,… , 𝑛𝑚𝑡 , 𝑚 = 1, … ,𝑀}. We refer to a (𝑠 × 1) vector of covariate values for 

subject 𝑗 at time 𝑡 as 𝑥𝑗𝑡 = (𝑥1,𝑗𝑡, … , 𝑥𝑠,𝑗𝑡)
𝑇
 or for subject 𝑗 in stream 𝑚 at time 𝑡 as 

𝑥𝑗𝑚𝑡 =  (𝑥1,𝑗𝑚𝑡, … , 𝑥𝑠,𝑗𝑚𝑡)
𝑇
. The covariate variables may be discrete or continuous. 

There is a single random variable 𝑌𝑗𝑚𝑡 to describe the response 𝑦𝑗𝑚𝑡 for subject 𝑗 in stream 𝑚 

at time 𝑡 (or 𝑌𝑗𝑡 in the case of a single stream). The random variable may be continuous, 𝑌𝑗𝑚𝑡 ∈  ℛ, 

or categorical/ordinal, 𝑌𝑗𝑚𝑡 ∈ {𝑘 = 1,… , 𝐾} with 𝐾 possible levels. In the motivating applications 

to estimate rates in two or three groups, we consider the cases where 𝐾 = 2 or 𝐾 = 3. We assume 

that random variables {𝑌𝑗𝑚𝑡 , 𝑗 =  1,… , 𝑛𝑚𝑡 , 𝑚 =  1,… ,𝑀, 𝑡 = 1,… , 𝑇} are independent for all 𝑗,𝑚, 

and 𝑡, conditional on the values of covariates, {𝑥𝑗𝑚𝑡 , 𝑗 =  1,… , 𝑛𝑚𝑡 , 𝑚 =  1,… ,𝑀, 𝑡 =  1,… , 𝑇} . 

We assume that the response 𝑌𝑗𝑚𝑡 can be described by a generalized linear model (GLM) as a 
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function of the covariate vector 𝑥𝑗𝑚𝑡 and a 𝑝-dimensional model parameter, 𝜃𝑡. The elements of 

the parameter vector 𝜃𝑡 include 𝛼𝑡 and may include either or both of 𝛿𝑡, 𝛽𝑡, all of which may be 

vectors. In this thesis, 𝛼𝑡 relates to the mean performance for a subject with a baseline level of the 

covariates at a baseline stream and 𝛿𝑡 relates to the effects of the various streams and 𝛽𝑡 to the 

effects of the covariates on the performance mean.  

According to usual practice (McCullagh and Nelder, 1989), denote the GLM by 

 𝑓𝑌(𝑦), the distribution function for the response with mean 𝐸(𝑌𝑗𝑚𝑡) = 𝜋𝑗𝑚𝑡 . Note that since 

the motivating applications involve rates, then we use the common notation 𝜋 for a rate. 

Similarly, the common notation 𝜇 for the mean could be used. 

 𝜂𝑗𝑚𝑡 = ℎ(𝑥𝑗𝑚𝑡 , 𝑚, 𝜃𝑡), a linear predictor, and 𝜃𝑡 and 𝑔(𝜋𝑗𝑚𝑡) = 𝜂𝑗𝑚𝑡 , a link function 

relating the parameter 𝜋𝑗𝑚𝑡 to the linear predictor. 

The selections of 𝑓, 𝑔, and ℎ are based on the nature of the data and we assume that they do not 

change over time.  

Objectives 

Based on the data, we want an accurate and precise estimate of the current (at time 𝑇) parameter, 

𝜃 = 𝜃𝑇. Depending on the application of study, we might want to 

 compare the estimate of the parameter to a target or benchmark value 

 compare the risk-adjusted mean for stream 𝑚 to a target or benchmark value 

 compare risk-adjusted mean estimates across streams 

 compare mean estimates for stream 𝑚 across groups of subjects 

 monitor estimates of the parameter over time 

 monitor estimates of the risk-adjusted mean for stream 𝑚 over time 

 test hypotheses on elements of the parameter 

 test hypotheses on the risk-adjusted mean for stream 𝑚 

These objectives require the estimates 𝜃 of 𝜃 = 𝜃𝑇, the model parameter at the present time 𝑇, and 

𝜋̂𝑚 of 𝜋𝑚, the risk-adjusted mean performance for stream 𝑚 at the present time 𝑇. As well, we 

require estimates of 𝑣𝑎𝑟(𝜃), 𝑣𝑎𝑟(𝜋̂𝑚), and hypotheses test statistics involving 𝜃. Estimates may 

be required over multiple time periods, over various groups of subjects, or subject to a null 

hypothesis. We specify the estimates required for each of these objectives in Chapter 3. 
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Approach 

 Our objectives involve mean values that are adjusted for different distributions of the 

covariates among the samples in various streams or in various time periods. We estimate 

the risk-adjusted mean 𝜋𝑚 for a single population known as the standard population which 

is a fixed set of values of the covariates representing subjects in a population of importance. 

Denote the subjects in the standard populations as 𝑗∗ = 1,… , 𝐽∗ and select their covariate 

values {𝑥𝑗∗ = (𝑥1,𝑗∗ , … , 𝑥𝑠,𝑗∗)
𝑇
 for 𝑗∗ = 1,… , 𝐽∗}. Further discussion on the standard 

population is given in Section 1.3. 

 Fit the GLM to the observed data {𝑦𝑗𝑚𝑡} and {𝑥𝑗𝑚𝑡} for 𝑗 =  1,… , 𝑛𝑚𝑡 , 𝑚 = 1,… ,𝑀, and 

𝑡 = 1,… , 𝑇 assuming that the associated random variables are independent, conditional on 

the values of the covariates. There are possibilities for which data to include, assumptions 

relating the various 𝜃𝑡, 𝑡 = 1,… , 𝑇 and methods to combine {𝜃𝑡} as discussed in Chapters 

2 and 3. The objective is an estimate for 𝜃 = 𝜃𝑇 which we refer to as 𝜃. 

 Estimate 𝜋𝑚, the mean for subjects in the fixed standard population {𝑥𝑗∗ , 𝑗
∗ = 1,… , 𝐽∗} in 

stream 𝑚. We refer to 𝜋̂𝑚 as a risk-adjusted estimate.  

 Calculate a hypothesis test statistic 𝑆̂ involving 𝜃 and estimates of some or all elements 

of 𝜃 under a null hypothesis versus a specified alternative hypothesis. 

Challenges 

 There are varying sample sizes by time period and 𝑛𝑇 or some 𝑛𝑚𝑇 , 𝑚 = 1,… ,𝑀 may be 

small. As a result, the estimates of 𝜃 and 𝜋𝑚 based on {𝑦𝑗𝑚𝑇 , 𝑗 = 1,… , 𝑛𝑚𝑇} may be 

imprecise making inference difficult. 

  Some elements of parameter 𝜃𝑡 may change slowly over time 𝑡 = 1,… , 𝑇 in an 

unpredictable way due to the effects of unobserved factors, so the true value of 𝜋𝑚 changes 

slowly over time. We need to be careful in the selection of what data to include and how 

to combine estimates across time periods to control bias in 𝜃 and 𝜋̂𝑚 based on 

{𝑑𝑡, 𝑡 = 1,… , 𝑇}. We do not want to assume a stochastic or deterministic model to describe 

the change in 𝜃𝑡 since the change may be hard to predict and we want our approach to be 

flexible.  

 Some response or covariate data may be missing. 
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Out of scope 

We recognize that the following conditions may impact the results but are not considered here. 

Consideration of these conditions is future work. 

 changes in the true value of the parameter may not be small and may be predictable in some 

way 

 the observations may be serially correlated 

 there may be non-response bias and other types of sampling bias 

 there may a time lag to gather or prepare the data for analysis  

 measurements of the response may have error 

 there may be outliers in the data 

 important covariates describing subject-to-subject variation may be missing 

1.3. Standard population 

The first step in the approach to the general problem is to define a standard population which 

is a fixed set of values of the subject-level covariates representing subjects in a population of 

importance. The estimates of the mean response are made for subjects in the standard population. 

The use of a standard population is a risk-adjustment technique to adjust for differences among 

covariate levels observed in samples over time and to reliably compare estimates across time. It is 

important that the same standard population be used for each estimate over time.  

The definition of the standard population is subjective but should reflect some population of 

importance. Some possible examples include the field population of subjects if this is known, an 

important segment of the population, or a typical subject. For appropriate interpretation, the 

definition of the standard population should be communicated with the estimates of the mean 

response for that population. It is possible to define more than one standard population and provide 

estimates of the mean response for each as long as the definitions of the standard populations are 

clearly communicated. The number of subjects in the standard population, 𝐽∗, depends on the 

definition of the standard population. In the previous examples, 𝐽∗ may be the size of the field 

population or the segment of interest or 𝐽∗ = 1 if there is a single subject of interest. Sample 

definitions of the standard population for the motivating applications follow. 

Customer loyalty measure 

 known field population of 10,000 customers at week 42 (𝐽∗ = 10,000) 
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 the most common customer segment: product variant 3 and tenure 6 months (𝐽∗ = 1) 

Lab positive abnormal rate 

 there is no standard population as there are no subject-specific covariates 

Hospital performance measure 

 population of patients who underwent PCI in 2012 across all NYS hospitals (𝐽∗ = 47,045) 

 high risk patient segment (𝐽∗ = 5):  

 age ∈ {71 − 75} 

 hemodynamic state = ′unstable′ 

 ventricular ejection fraction < 20% 

 pre-procedural myocardial infarction < 6 hrs 

 congestive heart failure = 'current within 2 weeks' 

 chronic lung disease = ′yes′ 

 renal failure creatinine level is = ′requires dialysis′ 

 malignant ventricular arrhythmia  = ′yes′ 

1.4. Models for motivating applications  

In Table 1-1, we apply the general notation to models for the three motivating applications. 
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Table 1-1. Models for motivating applications  

 Customer loyalty 

measure 

Lab positive 

abnormal rate 

Hospital performance 

measure 

Data, 𝑑𝑡 

𝑡 = 1,… , 𝑇 

𝑦𝑗𝑡: categorized response 

to ultimate question  

𝑥𝑗𝑡 = (𝑥1,𝑗𝑡, … , 𝑥4,𝑗𝑡)
𝑇

:  

3 indicator values 

representing product 

variant and interval value 

of tenure 

𝑦𝑗𝑚𝑡: positive or 

negative abnormal test 

result 

𝑦𝑗𝑚𝑡: death or survival at 30 

days post-surgery 

𝑥𝑗𝑚𝑡 = (𝑥1,𝑗𝑚𝑡, … , 𝑥15,𝑗𝑚𝑡)
𝑇
: 

1 integer value and 14 

indicator values 

representing 8 patient risk 

factors at admission  

 𝑗: customer ∈ {1,… , 𝑛𝑡} 
𝑡: week ∈ {1,… ,42} 

𝑗: subject ∈ {1,… , 𝑛𝑚𝑡} 
𝑚: lab ∈ {1,… ,7} 
𝑡: month ∈ {1,… ,18} 

𝑗: patient ∈ {1,… , 𝑛𝑚𝑡} 
𝑚: hospital ∈ {1,… ,60} 
𝑡: year ∈ {1,… ,9} 

Parameters 

of interest   

𝜋1, 𝜋3: proportions of 

customers who are 

detractors, promoters at 

time 𝑇  

𝜋𝑚: positive abnormal 

rate in lab 𝑚 at time 𝑇  

𝜋𝑚: mortality rate following 

surgery in hospital 𝑚 at time 

𝑇  

Distribution 

of 𝒟𝑡   

 

𝑌𝑗𝑡~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋1,𝑗𝑡,   

1 − 𝜋1,𝑗𝑡 − 𝜋3,𝑗𝑡, 𝜋3,𝑗𝑡) 

 

𝑌𝑗𝑚𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑚𝑡) 
 

𝑌𝑗𝑚𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑗𝑚𝑡)  

Linear 

predictor 

 

𝜂1,𝑗𝑡 = 𝛼1,𝑡 + 𝛽𝑡
𝑇𝑥𝑗𝑡  

𝜂2,𝑗𝑡 = 𝛼2,𝑡 + 𝛽𝑡
𝑇𝑥𝑗𝑡  

 

𝜂𝑚𝑡 = 𝛼𝑡 + 𝛿𝑡𝐼𝑚  

elements of 𝐼𝑚 ∈ {0,1} 
depending on 𝑚 

 

𝜂𝑗𝑚𝑡 = 𝛼𝑡 + 𝛿𝑡𝐼𝑚 + 𝛽𝑡
𝑇𝑥𝑗𝑚𝑡  

elements of 𝐼𝑚 ∈ {0,1} 
depending on 𝑚 

Link function 

 

𝜂1,𝑗𝑡 = log {
𝜋1,𝑗𝑡

1−𝜋1,𝑗𝑡
}  

𝜂2,𝑗𝑡 = log {
1−𝜋3,𝑗𝑡

𝜋3,𝑗𝑡
}  

 

𝜂𝑚𝑡 = log {
𝜋𝑚𝑡

1 − 𝜋𝑚𝑡
} 

 

𝜂𝑗𝑚𝑡 = log {
𝜋𝑗𝑚𝑡

1−𝜋𝑗𝑚𝑡
}  

Model 

parameters  

𝜃𝑡 = (𝛼𝑡
𝑇 , 𝛽𝑡

𝑇)𝑇 

𝑝 = 6  

𝜃𝑡 = (𝛼𝑡 , 𝛿𝑡
𝑇)𝑇  

𝑝 = 7  

𝜃𝑡 = (𝛼𝑡 , 𝛿𝑡
𝑇 , 𝛽𝑡

𝑇)𝑇  

𝑝 = 75  

Objectives 

1. Estimate 𝜃 = 𝜃𝑇 

2. Estimate 𝜋1, 𝜋3, 𝑁𝑃𝑆 

for a standard 

population {𝑥𝑗∗} 

3. Track estimates of 𝑁𝑃𝑆 

over time 

4. Test 𝐻0: 𝛽2 = 𝛽3 

1. Estimate 𝜃 = 𝜃𝑇 

2. Estimate 𝜋𝑚 for  

𝑚 ∈ {1,… ,7}  

3. Test 𝐻0: 𝛿 = 𝛿0 for 

some fixed value 𝛿0 

1. Estimate 𝜃 = 𝜃𝑇 

2. Estimate 𝜋𝑚, 𝑣𝑎𝑟(𝜋𝑚) for 

a standard population {𝑥𝑗∗} 

and 𝑚 ∈  
{1,… ,60} 

3. Track estimates of 𝜋𝑚 over 

time 

Assumptions 

Over 𝑡 = 1,… , 𝑇: 

𝛼𝑡 changing slowly  

𝛽𝑡 fixed  

Over 𝑡 = 1,… , 𝑇: 

𝛼𝑡 , 𝛿𝑡 changing slowly  

Over 𝑡 = 1,… , 𝑇: 

𝛼𝑡 , 𝛿𝑡 changing slowly  

𝛽𝑡 fixed  
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Notes on data and parameters 

Customer loyalty measure 

 There is a single stream. 

 The customer-specific survey response for customer 𝑗 in week 𝑡 is 𝑦𝑗𝑡 where 

 𝑦𝑗𝑡 = 1 if the customer response is ∈ {0,1,2,3,4,5,6}, 

 𝑦𝑗𝑡 = 2 if the customer response is ∈ {7,8}, 

 𝑦𝑗𝑡 = 3 if the customer response is ∈ {9,10}. 

 The customer-specific covariate values for customer 𝑗 in week 𝑡 is 𝑥𝑗𝑡 =  (𝑥1,𝑗𝑡, … , 𝑥4,𝑗𝑡)
𝑇
 

where 

  𝑥1,𝑗𝑡 = 1 if product variant is 2,  𝑥1,𝑗𝑡 = 0 otherwise, 

  𝑥2,𝑗𝑡 = 1 if product variant is 3,  𝑥2,𝑗𝑡 = 0 otherwise, 

  𝑥3,𝑗𝑡 = 1 if product variant is 4,  𝑥3,𝑗𝑡 = 0 otherwise, 

 𝑥4,𝑗𝑡 ∈  {0,2,6,12,18,24}, an interval variable designating the lower bound of 

tenure in months. 

 The standard population specifies the levels of the 𝑥𝑗∗ for each customer 𝑗∗ = 1,… , 𝐽∗. 

 The baseline level of the covariates (𝑥 = (0,0,0,0)𝑇) is product variant = 1 and 

tenure =  0. 

 The elements of parameter 𝛼𝑡 = (𝛼1,𝑡, 𝛼2,𝑡)
𝑇
 relate to the probabilities that a customer with 

baseline level of the covariates is a detractor or a promoter, respectively. 

 The elements of parameter 𝛽𝑡 = (𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡, 𝛽4,𝑡)
𝑇
 relate to the effects of product 

variants 2, 3, and 4, and tenure, respectively, relative to the two baseline probabilities. 

Lab positive abnormal rate 

 The test result for subject 𝑗 at lab 𝑚 in month 𝑡 is 𝑦𝑗𝑚𝑡 where 

 𝑦𝑗𝑚𝑡 = 1 if the test result is ‘positive abnormal’ and 𝑦𝑗𝑚𝑡 = 0 otherwise. 

 There are no subject-level covariates.  

 There are multiple streams relating to the seven labs where the FOBT test is conducted in 

Ontario.  
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 The parameter 𝛼𝑡 relates to the positive abnormal rate (“positive rate”) at the baseline lab 

1.  

 The elements of parameter 𝛿𝑡 = (𝛿1,𝑡, 𝛿2,𝑡, 𝛿3,𝑡, 𝛿4,𝑡, 𝛿5,𝑡, 𝛿6,𝑡)
𝑇
 relate to positive rates of 

labs 2 through 7, respectively, relative to the positive rate at the baseline lab. 

Hospital performance measure 

 The result for patient 𝑗 at hospital 𝑚 in year 𝑡 is 𝑦𝑗𝑚𝑡 where 

 𝑦𝑗𝑚𝑡 = 1 if the patient is deceased during the same hospital stay in which he/she 

underwent PCI or after hospital discharge but within 30 days of surgery and 

𝑦𝑗𝑚𝑡 =  0 otherwise. 

 There are multiple streams relating to the 60 hospitals performing PCI in New York State.  

 The patient-level covariate values for patient 𝑗 in hospital 𝑚 in year 𝑡 

are 𝑥𝑗𝑚𝑡 =  (𝑥1,𝑗𝑚𝑡, … , 𝑥15,𝑗𝑚𝑡)
𝑇
 where 

 𝑥1,𝑗𝑚𝑡 = patient age; an integer value in years greater than 55 

 𝑥2,𝑗𝑚𝑡 = 1 if hemodynamic state is ‘unstable’, 𝑥2,𝑗𝑚𝑡 = 0  otherwise 

 𝑥3,𝑗𝑚𝑡 = 1 if ventricular ejection fraction is < 20%, 𝑥3,𝑗𝑚𝑡 = 0  otherwise 

 𝑥4,𝑗𝑚𝑡 = 1 if ventricular ejection fraction is 20 − 29%, 𝑥4,𝑗𝑚𝑡 = 0  otherwise 

 𝑥5,𝑗𝑚𝑡 = 1 if ventricular ejection fraction is 30 − 39%, 𝑥5,𝑗𝑚𝑡 = 0  otherwise 

 𝑥6,𝑗𝑚𝑡 = 1 if pre-procedural myocardial infarction is < 6 hrs, 𝑥6,𝑗𝑚𝑡 = 0  otherwise 

 𝑥7,𝑗𝑚𝑡 = 1 if pre-procedural myocardial infarction is 6 − 11 hrs, 𝑥7,𝑗𝑚𝑡 = 0  

otherwise 

 𝑥8,𝑗𝑚𝑡 = 1 if pre-procedural myocardial infarction is 12 − 23 hrs, 𝑥8,𝑗𝑚𝑡 = 0  

otherwise 

 𝑥9,𝑗𝑚𝑡 = 1 if pre-procedural myocardial infarction is 1 − 14 days, 𝑥9,𝑗𝑚𝑡 = 0  

otherwise 

 𝑥10,𝑗𝑚𝑡 = 1 if congestive heart failure is ‘current within 2 wks’, 𝑥10,𝑗𝑚𝑡 = 0  

otherwise 

 𝑥11,𝑗𝑚𝑡 = 1 if chronic lung disease is ‘yes’, 𝑥11,𝑗𝑚𝑡 = 0  otherwise 

 𝑥12,𝑗𝑚𝑡 = 1 if renal failure creatinine level is 1.6 - 2.0 mg/dl, 𝑥12,𝑗𝑚𝑡 = 0  otherwise 

 𝑥13,𝑗𝑚𝑡 = 1 if renal failure creatinine level is > 2.0 mg/dl, 𝑥13,𝑗𝑚𝑡 = 0  otherwise 
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 𝑥14,𝑗𝑚𝑡 = 1 if renal failure creatinine level is ‘requires dialysis’, 𝑥14,𝑗𝑚𝑡 = 0  

otherwise 

 𝑥15,𝑗𝑚𝑡 = 1 if malignant ventricular arrhythmia is ‘yes’, 𝑥15,𝑗𝑚𝑡 = 0  otherwise 

 The standard population specifies the levels of the 𝑥𝑗∗ for each patient 𝑗∗ = 1,… , 𝐽∗. 

 The baseline level of the covariates (𝑥 = (0,0, … ,0)𝑇) is patient age = 55, hemodynamic 

state is ‘stable’, ventricular ejection fraction is ≥ 40%, pre-procedural myocardial 

infarction is ‘none within 14 days’, congestive heart failure is ‘no’, chronic lung disease is 

‘no’, renal failure creatinine level is ≤ 1.5, malignant ventricular arrhythmia is ‘no’. The 

baseline hospital is 1. 

 The parameter 𝛼𝑡 relates to the 30-day post-surgery mortality rate (“mortality rate”) for a 

patient with baseline levels of the covariates at the baseline hospital. 

 The parameter 𝛿𝑡 = (𝛿1,𝑡, 𝛿2,𝑡, … , 𝛿60,𝑡)
𝑇
 relates to the mortality rates of patients at 

hospitals 2 through 60, respectively, relative to the rate at the baseline hospital. 

 The parameter 𝛽𝑡 = (𝛽1,𝑡, 𝛽2,𝑡, … , 𝛽15,𝑡)
𝑇
 relates to the mortality rates of patients at the 

various covariate levels relative to the baseline mortality rate. 

1.5. Bias/variance trade-off 

In the analysis of data collected over time, uncertainty in a parameter estimate based on data 

from the most recent time period is related to the number of observed responses. In the three 

motivating applications, the numbers of responses observed at the present time period relies on 

factors that cannot be controlled, such as response rates to a survey. Small sample sizes occur at 

some time periods and estimates based on these samples have large uncertainty and may negatively 

impact management decisions. We want to draw on data from multiple time periods to reduce 

uncertainty.  

One alternative that improves precision in estimates from data collected at regular time intervals 

is to combine data across time periods. In the common situation where a parameter is drifting over 

time, a present time estimate that uses present and historical data is biased. Including historical 

data to reduce uncertainty due to small sample size trades bias for precision. To assess the trade-

off, we consider the efficiency measure root mean squared error (MSE) =  

√bias
2 + variance

2
 

and prefer an estimator that has the smallest MSE among alternative estimators. Too much change 

in the parameter over time results in a large amount of bias and this trade-off is not viable. We 
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restrict our focus to problems where we expect that the true value of the parameter changes slowly 

over time. 

1.6. Weighted estimating equations 

We introduce the concept of weighted estimating equations to regulate the bias/variance trade-

off that is the basis for this research.  

Setup 

 data 𝑑𝑡, 𝑡 = 1,… , 𝑇 from a sample of 𝑛𝑡 = ∑ 𝑛𝑚𝑡
𝑀
𝑚=1  subjects according to the general 

problem described in Section 1.2 

 unknown parameter 𝜃𝑡 of dimension 𝑝 at time 𝑡 = 1,… , 𝑇 

 likelihood function ℒ𝑡(𝑑𝑡; 𝜃𝑡) describing the probability of 𝑑𝑡 given 𝜃𝑡 

 score function 𝜓𝑡(𝜃𝑡; 𝑑𝑡) =
𝜕𝑙𝑡(𝜃𝑡;𝑑𝑡)

𝜕𝜃𝑡
 of dimension 𝑝 where 𝑙𝑡(𝜃𝑡; 𝑑𝑡) = log ℒ𝑡(𝜃𝑡; 𝑑𝑡) 

The elements of the parameter vector 𝜃𝑡 include a parameter that relates to the mean performance 

for a subject having baseline levels of the covariates as well as the effects of covariates and/or 

multiple streams. We assume that the elements of the unknown parameter vector 𝜃𝑡 describe the 

same attributes of the process across time periods 𝑡 = 1,… , 𝑇 and the unknown true value of one 

or more of the 𝑝 elements may be drifting slowly in an unpredictable way. 

Estimating functions 

We may estimate 𝜃 using only the data 𝑑𝑇 observed in the most recent time period.  

 𝑄1(𝜃; 𝑑𝑇) = 𝜓𝑇(𝜃; 𝑑𝑇) (1) 

We may use all of the data 𝑑 = {𝑑𝑡; 𝑡 = 1, … , 𝑇} assuming 𝜃 = 𝜃𝑡 for all 𝑡. 

 𝑄2(𝜃; 𝑑) = ∑ 𝜓𝑡(𝜃; 𝑑𝑡)
T
t=1  (2) 

Steiner and MacKay (2014) propose weighted estimating functions as a means to use all 

historical data and down-weight the influence of historical data,  

 𝑄3(𝜃; 𝑑, 𝑤) = ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
T
t=1  (3) 

for a selection of weights 𝑤 =  {𝑤𝑡, 𝑡 = 1,… , 𝑇}. Steiner and MacKay (2014) suggest selecting 

weights that decline exponentially from 𝑇 to 𝑇 − 1 and so on. The related weighted estimating 

equations (WEE) are 𝑄3(𝜃; 𝑑, 𝑤) = [0](𝑝×1) and solving these equations gives the estimate 𝜃. The 
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motivation for using (3) over (1) or (2) is to regulate the bias/variance trade-off between estimates 

based on present time data only or based on aggregate of historical data.  

1.7. Contribution and outline of this thesis  

In this thesis, we extend the weighted estimating equations (WEE) approach originally 

proposed by Steiner and MacKay (2014) to three new application areas. These applications extend 

previous applications of this approach to deal with multiple covariates, multinomial outcomes, and 

tests of hypotheses. We show that this approach can have an important improvement in managing 

performance in these applications relative to current industry practices and other alternative 

approaches. We offer theoretical derivations of approximations for the measure of uncertainty of 

the WEE estimator and the distribution of the WEE likelihood ratio test statistic. We discuss 

various implementation considerations and improvements that are possible under previous 

knowledge or assumptions of the parameter of interest. 

The thesis is organized as follows. Chapter 2 introduces existing approaches for the general 

problem of this research and highlights methodologies that are similar in some way to the weighted 

estimating equations formulation. Chapter 3 outlines the algorithm to estimate a risk-adjusted 

mean by the WEE approach and derives the approximations for an estimate of variance and the 

distribution of a test statistic based on WEE estimates. We give an analytic example to observe 

properties of these approximations in a simple case. Chapter 4 applies the WEE approach to 

estimate the customer loyalty measure based on a realistic dataset as well as on simulated data. 

This chapter assesses the approximation for the variance of the WEE estimate and compares the 

WEE approach to the exponentially weighted moving average approach. Chapter 5 applies the 

WEE approach to estimate the lab positive abnormal rate based on a real dataset as well as on 

simulated data. This chapter assesses the approximation for the distribution of the hypothesis test 

statistic and discusses implementation considerations including the selection of a historical time 

window and considerations for some large sample sizes. Chapter 6 applies the WEE approach to 

estimate the hospital performance measure based on realistic data. This chapter discusses 

implementation considerations including the selection of time subgroups and the weight 

parameter, alternatives for estimating covariate effects, and missing data and sampling zeros. 

Chapters 4, 5, and 6 discuss the current industry practice for each application and compare the 

WEE estimates to estimates through current practice as well as other naïve alternatives. Chapter 7 

summarizes the results of this research, discusses limitations, and offers extensions as future work. 
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The theoretical derivations and analytic example in Chapter 3 and the WEE approach applied 

to the realistic customer loyalty dataset in Chapter 4 are the basis of a paper entitled “Bias/Variance 

Trade-off in Estimates of a Process Parameter based on Temporal Data” that has been submitted 

for publication (Cooper Barfoot, Steiner, and MacKay, 2016). Two rounds of reviewer feedback 

have suggested useful modifications that have been incorporated into this research. Additionally, 

we plan to reach the marketing and healthcare communities through applied papers which 

demonstrate the importance of considering the WEE approach for estimation in these applications. 
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Chapter 2: Literature Review and Related Methods 

Under the framework of the general problem introduced in Section 1.2, we look at existing 

methods for estimating the risk-adjusted parameter of interest and its uncertainty based on a stream 

of data. Additionally, we review the similarities of weighted estimating equations to generalized 

estimating equations and relevance weighted likelihood. We also review methods to select weights 

pertinent to the problem.  

2.1. Risk-adjustment 

In Section 1.3, we introduce the first step in the approach to the general problem as the selection 

of a standard population. The use of a standard population is particularly important so that 

comparisons of estimates across time and across streams are reliable. The field of epidemiology 

uses the standard population concept in order to study patterns, causes, and effects of health and 

disease adjusted for risk factors of the people in the study population. The World Health 

Organization (WHO) states that most rates, such as incidence, prevalence, and mortality, are 

strongly age-dependent with risks rising or declining with age (Ahmad et al., 2001). The WHO 

publishes a current international population distribution by age group for practitioners to use as 

their standard population by age. They recommend direct standardization which is a weighted 

average of the age-specific rates for each of the populations to be compared. As in the motivating 

applications of this research, the choice of a standard population in epidemiology studies can affect 

the results and conclusions decisions based on the data and must be pertinent to the application.  

Steiner (2014) gives a comprehensive discussion of the need for risk-adjusted monitoring of 

health care outcomes. The author highlights various risk-adjusted methods for monitoring and 

issues that need to be explored, one being the effect of estimation error and model specification 

error on the performance of a risk adjustment model used in conjunction with a monitoring chart. 

As in Steiner and MacKay (2014), the weighted estimating approach holds promise as an 

alternative to specifying and estimating parameters in a risk-adjustment model. 

2.2. Non-parametric vs. parametric estimates 

In Section 1.2, we introduce the problem to estimate 𝜋𝑚 which is the mean of the random 

variable 𝑌𝑚𝑡 at current time 𝑡 = 𝑇 for a standard population of subjects in stream 𝑚. The estimate 

of 𝜋𝑚 relies on an estimate of {𝜋𝑗∗𝑚, 𝑗
∗ = 1,… , 𝐽∗} which is the present expected value of the 
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proportion or rate across subjects in the standard population. The standard population 

{𝑥𝑗∗ = (𝑥1,𝑗∗ , … , 𝑥𝑠,𝑗∗)
𝑇
 for 𝑗∗ = 1,… , 𝐽∗} assigns values to the covariates as discussed in 

Section  1.3. The approach to estimate each 𝜋𝑗∗𝑚 introduced in Section 1.2 uses observed outcomes, 

associated values of the covariates, and parameter 𝜃 = 𝜃𝑇 in a generalized linear model (GLM). 

Non-parametric estimates of the parameter of interest 𝜋𝑗∗𝑚 are also possible through the use of 

appropriate sample averages. We discuss advantages and limitations of non-parametric and 

parametric estimates. 

Non-parametric estimates 

A non-parametric estimate of 𝜋𝑗∗𝑚 can be made through sample averages of observations 

among subjects in stream 𝑚 having the same covariate vector as subject 𝑗∗ in the standard 

population. For a continuous covariate, a subject’s observation is included in the average if its 

value of the covariate is within a specified close proximity to the covariate value for subject 𝑗∗. 

These estimates are generally simple to implement, well-understood, and estimates of their 

standard errors are straightforward to compute. One significant drawback to this non-parametric 

estimate is that the sample average is undefined when there are no observations among subjects 

having the same covariate vector (or a vector in close proximity) as subject 𝑗∗. Since the general 

problem under study exhibits small sample sizes at some time periods, then this is an important 

limitation to the non-parametric approach. Further, if there is more than one covariate, responses 

from subjects that have some, but not all, values of the covariates which are the same as 𝑗∗ are not 

used to estimate 𝜋𝑗∗𝑚. Notwithstanding these limitations, it is the author’s experience that the 

simplicity of the non-parametric estimate and related standard error estimates make this a 

commonly used approach in practice. 

Parametric estimates 

Parametric methods of estimation require more assumptions than non-parametric methods. If 

those extra assumptions are valid, then the estimate is generally more accurate and precise. A 

parametric method requires a model to describe the mean as a function of a parameter 𝜃 = 𝜃𝑇 and 

covariate values. A selection from the class of classical linear models or the wider class of GLMs 

is common and requires assumptions on the error structure of the fitted model. Agresti (2007) 

gives a thorough review of models for categorical data. McCullagh and Nelder (1989) is an 

important resource for GLMs.  
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Estimation of the parameter vector 𝜃 follows through maximum likelihood estimation (MLE) 

and the estimate 𝜃 possesses desirable large sample properties:  

 𝜃 is an unbiased minimum variance estimator as sample size increases 

 𝜃 has an approximate normal distribution and its variance can be estimated 

 likelihood ratios can be used to test hypotheses about models and parameters 

With a MLE estimate of 𝜃, an estimate of 𝜋𝑗∗𝑚 follows from the specified model and a specified 

standard population of covariate values. By the invariance property of MLEs (Casella and Berger 

2002, p. 350), the estimate 𝜋̂𝑗∗𝑚 is itself a maximum likelihood estimate. By extension, 𝜋̂𝑗∗𝑚 

possesses the same desirable large sample properties as 𝜃.  

There are additional advantages over estimation through a non-parametric approach. One 

advantage is that the estimate 𝜃 contains important information about the covariate effects. The 

parameter 𝜃 is estimated with all of the data and so, unlike an estimate of 𝜋𝑗∗𝑚 by sample averages, 

an estimate by the parametric model uses more information than just observations from subjects 

with the same covariate vector (or a vector in close proximity) and the same stream. The parametric 

model estimates parameters to describe the covariate effects and through model restrictions, 

covariate effects can be allowed to vary or be held fixed over time. Another important advantage 

of the parametric model is that the estimate 𝜋̂𝑗∗𝑚 may be defined even if subjects having the same 

covariate vector as 𝑗∗ in stream 𝑚 are not present in the sample. Estimates of all elements of 𝜃 are 

possible as long as every level of each categorical covariate and each stream are present in the 

sample. For continuous covariates, then a minimum of two levels of each covariate must be present 

to estimate a linear effect and the covariates must not be collinear.   

In general, the limitations of a parametric model include the assumptions on the model and the 

required solution of non-linear equations to estimate the parameter. With the vast availability of 

classical linear models, GLMs, and software for estimating MLEs, there is much flexibility in 

model selection and estimation.  

2.3. Use of historical data for a present time estimate 

Section 2.2 outlines non-parametric and GLM-based estimates as well as alternatives for 

estimation with small samples without considering any time ordering of the data. To address the 

general problem of Section 1.2, we can estimate 𝜋𝑗∗𝑚, the mean response for subject 𝑗∗ in stream 

𝑚 at current time 𝑡 = 𝑇, using present time data or involving the historical data collected over 

time. Table 2-1 gives the mathematical formulations of the alternatives discussed in this section. 



Chapter 2: Literature Review and Related Methods 

 

23 

Use present time data only 

We can estimate the present value of the parameter 𝜃 = 𝜃𝑇 using data 𝑑𝑇 observed from the 

present time only, either through non-parametric estimates or parametric estimates as in 

Section  2.2. The non-parametric and parametric estimates for 𝜋𝑗∗𝑚 are given in the first row of 

Table 2-1. In the general problem where the present sample size may be small and the parameter 

is changing slowly over time, the estimates have no bias and high variance. The limitation that the 

non-parametric estimate is undefined when there are no observations in the present time sample 

having the same covariate vector as subject 𝑗∗ (or a vector in close proximity in the continuous 

covariate case) has an important detrimental effect when the present sample size is small. 

A further limitation specific to the general problem outlined in Section 1.2 is the properties of 

an MLE estimate under small samples. The MLE approach relies on the assumption that the sample 

data are representative of the population and the relationship between the inputs and outputs is 

adequately represented. The amount of information in the sample data directly impacts the 

parameter estimates. It is well known that the MLE may be biased when the sample size or total 

Fisher information is small (Shenton and Bowman, 1977). Hence, an MLE estimate of parameter 

𝜃 using data from the present time only may be biased when the sample size is small and increasing 

the sample size through the inclusion of historical data is desirable.  

Use historical data weighted equally 

Another option to estimate 𝜃 = 𝜃𝑇 is to use data 𝑑 = {𝑑𝑡} across all time periods 𝑡 =  1,… , 𝑇 

without regard for the time period of the data. We assume that the associated random variables 

𝒟 =  {𝒟𝑡} over 𝑡 = 1,… , 𝑇 are independent, conditional on the values of the covariates. We 

assume that the models of the various 𝒟𝑡 , 𝑡 = 1,… , 𝑇 are described by the common parameter 𝜃. 

Then, non-parametric and parametric estimates for 𝜋𝑗∗𝑚 based on all historical data are given in 

the second row of Table 2-1. All historical data are given equal weight in the estimate of the 

parameter and the time period of the data does not impact the estimate. Since more data are used 

for estimation, then the variance of the estimate is lower than when only present data are used. 

Further, since sample sizes are larger, then there are fewer cases where the non-parametric estimate 

is undefined. However, in our problem where the model parameter 𝜃𝑡 is changing slowly over 

time, the assumption of a single 𝜃 to describe all 𝒟𝑡 over 𝑡 = 1,… , 𝑇 is erroneous. The impact is 

a biased estimate of the parameter.  



Chapter 2: Literature Review and Related Methods 

 

24 

Exponentially weighted moving average 

A compromise between using present time data only and using all historical data weighted 

equally is to use a weighted average of the estimates across time. We extend the concept of the 

exponentially weighted moving average (EWMA) from statistical process control literature since 

the EWMA chart is very effective in detecting small sustained shifts in a process (Montgomery, 

2013). Weights are chosen to regulate the relative influence of present and historical data on the 

present time parameter estimate. We select weights {𝑤𝑡, 𝑡 = 1,… , 𝑇} to have the largest value at 

the current time period 𝑇 and decline exponentially across time periods in the further past. 

Selecting weights is discussed further in Section 2.8 and Section 3.1.   

We can calculate an EWMA estimate of 𝜋𝑗∗𝑚 based on either non-parametric or GLM-based 

estimates of 𝜋𝑗∗𝑚𝑡 at each time period 𝑡 = 1,… , 𝑇. Table 2-1 shows the estimate of 𝜋𝑗∗𝑚 as 

weighted combinations of 𝜋̂𝑗∗𝑚𝑡, 𝑡 = 1,… , 𝑇, with weights {𝑤𝑡}. The standard EWMA estimate 

for 𝜋𝑗∗𝑚 requires that estimates 𝜋̂𝑗∗𝑚𝑡 be defined for all 𝑡 = 1,… , 𝑇. As discussed in Section 2.2, 

the non-parametric estimate is undefined when there are no observations among subjects in 𝑑𝑡 

having the same covariate vector as subject 𝑗∗ but the parametric estimate may still be possible 

depending on the observations in the entire dataset 𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑇}. When one of the 

𝜋̂𝑗∗𝑚𝑡 over 𝑡 = 1, … , 𝑇 is undefined, we have to make an adjustment to the standard EWMA 

approach such as adjusting the weight 𝑤𝑡 to have value 0 and rescaling the remaining weights.  

The weighted estimating equations approach introduced in Section 1.6 is also included in Table 

2-1. Here, 𝐼[𝑥𝑗𝑚𝑡 = 𝑥𝑗∗] is an indicator variable that takes the value of 1 when 𝑥𝑗𝑚𝑡 = 𝑥𝑗∗ (or the 

two are in close proximity in the case of a continuous covariate) and 0 otherwise. 
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Table 2-1. Approaches to estimate present time mean 𝜋𝑗∗𝑚 for subject j* 

 Non-parametric approaches GLM-based approaches 

Use present time 

data only N
a
ïv

e
 

𝜋̂𝑗∗𝑚 =
∑ 𝑦𝑗𝑚𝑇 𝐼[𝑥𝑗𝑚𝑇 = 𝑥𝑗∗]
𝑛𝑚𝑇
𝑗=1

∑ 𝐼[𝑥𝑗𝑚𝑇 = 𝑥𝑗∗] 
𝑛𝑚𝑇
𝑗=1

 
 Solve 𝑄1(𝜃; 𝑑𝑇) = 0 from (1) for 𝜃  

 𝜋̂𝑗∗𝑚 = 𝑔
−1(ℎ(𝑥𝑗∗ ,𝑚, 𝜃)) 

Use all historical 

data 

N
a
ïv

e
 

𝜋̂𝑗∗𝑚

=
∑ ∑ 𝑦𝑗𝑚𝑡  𝐼[𝑥𝑗𝑚𝑡 = 𝑥𝑗∗]

𝑛𝑚𝑡
𝑗=1

𝑇
𝑡=1

∑ ∑ 𝐼[𝑥𝑗𝑚𝑡 = 𝑥𝑗∗] 
𝑛𝑚𝑡
𝑗=1

𝑇
𝑡=1

 

 Solve 𝑄2(𝜃; 𝑑) = 0 from (2) for 𝜃 

 𝜋̂𝑗∗𝑚 = 𝑔
−1(ℎ(𝑥𝑗∗ ,𝑚, 𝜃)) 

E
W

M
A

 

Select 𝑤𝑡 , 𝑡 = 1,… , 𝑇 to be exponentially declining for 𝑇, 𝑇 − 1,… ,1 

For each 𝑡 = 1,… , 𝑇,  

 𝜋̂𝑗∗𝑚𝑡 =
∑ 𝑦𝑗𝑚𝑡  𝐼[𝑥𝑗𝑚𝑡=𝑥𝑗∗]
𝑛𝑚𝑡
𝑗=1

∑ 𝐼[𝑥𝑗𝑚𝑡=𝑥𝑗∗] 
𝑛𝑚𝑡
𝑗=1

  

 𝜋̂𝑗∗𝑚 =
1

∑ 𝑤𝑡
𝑇
𝑡=1

∑ 𝑤𝑡 𝜋̂𝑗∗𝑚𝑡
𝑇
𝑡=1  

For each 𝑡 = 1,… , 𝑇,  

 solve 𝑄1(𝜃𝑡; 𝑑𝑡) = 0 for 𝜃𝑡 

 𝜋̂𝑗∗𝑚𝑡 = 𝑔
−1(ℎ(𝑥𝑗∗ , 𝑚, 𝜃𝑡)) 

 𝜋̂𝑗∗𝑚 =
1

∑ 𝑤𝑡
𝑇
𝑡=1

∑ 𝑤𝑡 𝜋̂𝑗∗𝑚𝑡
𝑇
𝑡=1  

W
E

E
 

Not applicable 
 Solve 𝑄3(𝜃̂; 𝑑,𝑤) = 0 from (3) for 𝜃 

 𝜋̂𝑗∗𝑚 = 𝑔
−1(ℎ(𝑥𝑗∗ ,𝑚, 𝜃)) 

 {𝑥𝑗∗ = (𝑥1,𝑗∗ , … , 𝑥𝑠,𝑗∗)
𝑇
, 𝑗∗ = 1,… , 𝐽∗}: covariate vectors for the standard population 

 𝜋̂𝑚 =
1

𝐽∗
∑ 𝜋̂𝑗∗𝑚
𝐽∗

𝑗∗=1 : estimate of mean for the standard population 

Among the approaches discussed in Section 2.3, the EWMA GLM-based approach is the only 

one that describes the covariate effects using parameter estimates and controls the relative 

influence of past and present data for estimating the present value of a parameter. One important 

limitation of this approach is that the covariate effects are re-estimated at each time period using 

data observed at that time period only, even though we assume that covariate effects do not change 

over time. Uncertainties in the estimates at each time period add to the uncertainty of the present 

time estimate and so a small sample size at any time period has a detrimental effect on the precision 

of the present time estimate.  

Like the EWMA approach, the weighted estimating equations approach regulates the trade-off 

between bias and variance with exponentially declining weights. However, the WEE approach 

addresses the EWMA shortcomings discussed. In Chapter 4, we pursue the favourability of the 

two approaches relative to the size of the change in the parameter over time, observed sample 

sizes, and the choice of weights. 
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2.4. Kalman Filter 

The exponentially weighted moving average is a simplified state space approach since it 

combines an estimate from present data 𝑑𝑇 with another estimate based on previous data 

{𝑑1, … , 𝑑𝑇−1}. State space models are based on the Markov property, which implies the 

independence of the present state of a process from its past, given the previous state. In such a 

system, the previous state of the process summarizes all the information from the past. A flexible 

state space model is the Kalman Filter (KF) which estimates the present state of a dynamic system 

(Grewal and Andrews, 2008). The KF comprises a system dynamic model which describes the 

evolution of the state vector and a measurement model which describes the generation of the 

observations from a given state vector. State estimate and covariance extrapolation and updating 

equations are solved recursively based on assumed initial conditions.  Clearly, the KF is a flexible 

approach and it has been widely applied for the control of complex dynamic systems such as 

continuous manufacturing processes and spacecraft. In these applications, the system dynamic 

model and measurement model are built using subject matter expertise and observation of the 

process over long periods of time. At the other extreme where the system dynamic model involves 

no serial correlation, as in the random walk plus noise model, then Muth (1960) first pointed out 

that the steady-state solution of the Kalman Filter equations reduces to the EWMA estimator 

discussed in Section 2.3. In Section 7.1, we provide a qualitative comparison of the Kalman Filter 

and WEE approaches for the general problem of this work. 

2.5. Estimates of uncertainty 

In addition to the risk-adjusted estimate of the mean in stream 𝑚, an estimate of its uncertainty 

is important for statistical inference. We estimate the variance of the mean for the standard 

population, 𝑣𝑎𝑟̂(𝜋̂𝑚), through  

 𝑣𝑎𝑟̂(𝜋̂𝑚) =
1

𝐽∗2
∑ 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚)
𝐽∗

𝑗∗=1   (4) 

under the assumption that the random variables 𝑌𝑗∗𝑚𝑡 across 𝑗∗ =  1,… , 𝐽∗ are independent, 

conditional on the value of the covariates. We require estimates of 𝑣𝑎𝑟(𝜋̂𝑗∗𝑚), the variance for the 

estimate of the mean for subject 𝑗∗ in the standard population in stream 𝑚 at the current time 𝑇. 

The estimates of uncertainty for the non-parametric estimates of a continuous response variable 

and a binary response variable for a single stream problem (𝜋𝑗∗𝑚 becomes 𝜋𝑗∗) are given in Table 

2-2. Extension to the multiple stream problem is straightforward. The extension to 
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categorical/ordinal response variables is also straightforward and is demonstrated through the 

customer loyalty measure in Chapter 4. 

Table 2-2. Estimates of variance for non-parametric estimates of 𝜋𝑗∗ (single stream problem) 

 Continuous response Binary response 

Use present time 

data only N
a
ïv

e
 

𝑣𝑎𝑟̂(𝜋̂𝑗∗) =

𝑣𝑎𝑟̂
{𝑗|𝑥𝑗𝑇=𝑥𝑗∗}

(𝑦𝑗𝑇)    
[1]

∑ 𝐼[𝑥𝑗𝑇 = 𝑥𝑗∗] 
𝑛𝑇
𝑗=1

 𝑣𝑎𝑟̂(𝜋̂𝑗∗) =
𝜋̂𝑗∗(1 − 𝜋̂𝑗∗)

∑ 𝐼[𝑥𝑗𝑇 = 𝑥𝑗∗] 
𝑛𝑇
𝑗=1

 

Use all historical 

data 

N
a
ïv

e
 

𝑣𝑎𝑟̂(𝜋̂𝑗∗) =

∑ 𝑣𝑎𝑟̂
{𝑗|𝑥𝑗𝑡=𝑥𝑗∗}

(𝑦𝑗𝑡)
𝑇
𝑡=1    [1]

∑ ∑ 𝐼[𝑥𝑗𝑡 = 𝑥𝑗∗] 
𝑛𝑡
𝑗=1

𝑇
𝑡=1

 𝑣𝑎𝑟̂(𝜋̂𝑗∗) =
𝜋̂𝑗∗(1 − 𝜋̂𝑗∗)

∑ ∑ 𝐼[𝑥𝑗𝑡 = 𝑥𝑗∗] 
𝑛𝑡
𝑗=1

𝑇
𝑡=1

 

E
W

M
A

 𝑣𝑎𝑟̂(𝜋̂𝑗∗) =
1

(∑ 𝑤𝑡
𝑇
𝑡=1 )2

 

× ∑ 𝑤𝑡
2

𝑣𝑎𝑟̂
{𝑗|𝑥𝑗𝑡=𝑥𝑗∗}

(𝑦𝑗𝑡)   
[1]

∑ 𝐼[𝑥𝑗𝑡=𝑥𝑗∗] 
𝑛𝑡
𝑗=1

𝑇
𝑡=1   

𝑣𝑎𝑟̂(𝜋̂𝑗∗) =
1

(∑ 𝑤𝑡
𝑇
𝑡=1 )2

 

× ∑ 𝑤𝑡
2
𝜋̂𝑗∗𝑡(1−𝜋̂𝑗∗𝑡)

∑ 𝐼[𝑥𝑗𝑡=𝑥𝑗∗] 
𝑛𝑡
𝑗=1

𝑇
𝑡=1   

[1]: 𝑣𝑎𝑟̂(∙) refers to the sample variance of responses from subjects having specified covariate vector 

When estimating the mean 𝜋𝑚 with a GLM-based approach, the estimate 𝑣𝑎𝑟̂(𝜋̂𝑚) combines 

the estimates 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚) across 𝑗∗ = 1,… , 𝐽∗. The estimate 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚) follows from the 

multivariate delta method (Casella and Berger, 2002) as  

 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚) = ∑ ∑ 𝑣𝑎𝑟̂(𝜃)
(𝑝1,𝑝2)

𝑝
𝑝2=1

𝑝
𝑝1=1

[
𝜕𝑔−1(ℎ(𝑥𝑗∗ ,𝑚,𝜃𝑡 ))

𝜕𝜃𝑡,𝑝1

𝜕𝑔−1(ℎ(𝑥𝑗∗ ,𝑚,𝜃𝑡)))

𝜕𝜃𝑡,𝑝2
]
𝜃𝑡=𝜃̂

 (5) 

where 𝜃 and 𝑣𝑎𝑟̂(𝜃) are the GLM estimates of the model parameter 𝜃 = 𝜃𝑇 and its uncertainty 

and the functions ℎ(𝑥𝑗𝑚𝑡 , 𝑚, 𝜃𝑡) and 𝑔(𝜋𝑗𝑚𝑡) and are the GLM linear predictor and link functions, 

respectively. Where parameter 𝜃𝑡 has dimension 𝑝, 𝜃𝑡,𝑝1 refers to the 𝑝1 entry of 𝜃𝑡, and 

𝑣𝑎𝑟̂(𝜃)
(𝑝1,𝑝2)

 refers to the (𝑝1, 𝑝2) entry of 𝑣𝑎𝑟̂(𝜃) for 𝑝1, 𝑝2 ∈ {1,… , 𝑝}. The matrix 𝑣𝑎𝑟(𝜃) is 

estimated by usual MLE methods for the GLM. 

The calculation in (5) applies to the GLM-based estimates for 𝜋𝑗∗𝑚 based on either present time 

data only or the aggregate of all historical data. For the EWMA GLM-based estimate, the 

calculation in (5) must be made for each estimate by time period, 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚𝑡), and combined 

through (6) for the estimate of 𝑣𝑎𝑟(𝜋̂𝑗∗𝑚), 
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 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚) =
1

(∑ 𝑤𝑡
𝑇
𝑡=1 )

2∑ 𝑤𝑡
2𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚𝑡)

𝑇
𝑡=1  (6) 

which is valid under the assumption that estimates by time period are independent, conditional on 

the values of the covariates. 

Sandwich estimate of variance 

When estimating parameter 𝜃 = 𝜃𝑇 through the weighted estimating equations approach, 

Steiner and MacKay (2014) use the estimate of 𝑣𝑎𝑟(𝜃) for the asymptotic variance of the MLE 

for a misspecified model introduced by White (1982). The so-called sandwich estimate of variance 

for 𝜃 is  

 𝑣𝑎𝑟̂𝑆(𝜃)  = 𝑉̂
−1(𝜃)𝐵̂(𝜃̂)𝑉̂−1(𝜃̂) (7) 

where 𝜃 is the solution of a 𝑝-dimensional estimating function vector 𝜓(𝜃; 𝑑) based on data 𝑑. 

The derivation based on a misspecified model is found in Geyer (2013). Here 

𝑉̂(𝜃) =  −𝐸 [
𝜕𝜓(𝜃;𝑑)

𝜕𝜃
]
𝜃=𝜃̂

 is the expected Hessian matrix and 𝐵̂(𝜃) =  𝑣𝑎𝑟[𝜓(𝜃; 𝑑)]𝜃=𝜃̂ is the 

variance of the estimating function vector. Both are evaluated at the estimate of the parameter. 

Note that when we estimate the parameter based on either present time data only or all historical 

data weighted equally, then −𝐸 [
𝜕𝜓(𝜃;𝑑)

𝜕𝜃
] = 𝑣𝑎𝑟[𝜓(𝜃; 𝑑)] and (8) simplifies to the usual estimate 

of variance. When we estimate the parameter by the WEE approach with non-trivial weights, then 

𝑉̂(𝜃) ≠ 𝐵̂(𝜃). Since the sandwich estimate of variance combines the variance estimate for the 

specified data distribution with a variance matrix constructed from the data, then the variance 

estimate is sometimes called the empirical variance estimate. With estimate 𝑣𝑎𝑟̂𝑆(𝜃) for WEE 

estimate 𝜃, then estimates of uncertainty for 𝜋̂𝑗∗𝑚 and 𝜋̂𝑚 follow as in (5) and (4). 

The sandwich estimate of variance in (7) applies generally to a vector of unbiased estimation 

equations (Hardin and Hilbe, 2013). The estimating equations may be generalized estimating 

equations (GEE) which extend a GLM for longitudinal or batch correlated data. These estimating 

equations are derived without specifying the joint distribution of a subject’s observations but with 

model components for the mean and covariance of the marginal distributions of the subject’s 

observations. The parameter estimates and sandwich estimates of parameter variances are 

consistent and robust to misspecification of the covariance structure under regularity conditions 

(Liang and Zeger, 1986). Since the general problem outlined in Section 1.2 is to estimate the 

present value of a parameter that may change over time, the sandwich estimate of variance may 
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be a biased estimate of its variance. We study this estimate in relation to the WEE approach in 

Section 3.3. 

2.6. Generalized estimating equations 

We look to theory on weighted generalized estimating equations (GEE) pertinent to the 

weighted estimating equation approach. We begin with the general GEE formulation (Godambe 

and Kale, 1991).  

Setup 

 𝑌𝑖𝑡: a random variable describing the response for subject 𝑖 at time 𝑡; unlike the setup in 

Section 1.2, reference 𝑖 refers to the same subject with repeated measures over time periods 

𝑡 = 1,… , 𝑇 

 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑡, … , 𝑦𝑖𝑇)
𝑇: a (𝑇 × 1) column vector of data from random variables 𝑌𝑖𝑡 

 𝑥𝑖𝑡 = (𝑥1,𝑖𝑡, … , 𝑥𝑠,𝑖𝑡)
𝑇
: a (𝑠 × 1) column vector of the 𝑠 covariates associated with 𝑦𝑖𝑡 and 

𝑥𝑖 = (𝑥𝑖1 𝑥𝑖2…𝑥𝑖𝑇)(𝑠×𝑇)  

 𝜇𝑖𝑡 = 𝐸[𝑌𝑖𝑡|𝑥𝑖], 𝜇𝑖 = (𝜇𝑖1 𝜇𝑖2…  𝜇𝑖𝑇)
𝑇: a (𝑇 × 1) column vector of mean values for 

subject 𝑖 by time period 𝑡 

 𝑣𝑖𝑡 = 𝑣𝑎𝑟(𝑌𝑖𝑡|𝑥𝑖) and 𝑉𝑖 = 𝑐𝑜𝑣(𝑌𝑖|𝑥𝑖): a (𝑇 × 𝑇) matrix having 𝑣𝑖𝑡 as diagonal elements, 

known as the working covariance matrix for the response 𝑌𝑖 

 user-specified regression model of 𝜇 and 𝑣 based on 𝑥 and 𝑠-dimensional parameter 𝜃: 

𝜇𝑖𝑡 = ℎ
−1(𝑥𝑖𝑡

𝑇𝜃) and 𝑣𝑖𝑡 = 𝑘
−1(𝜇𝑖𝑡) = 𝑘

−1 (ℎ−1(𝑥𝑖𝑡
𝑇𝜃)) 

Formulation 

Subject to regularity conditions and the definition of optimality (Godambe and Kale, 1991, p. 

12), then an optimal estimating function for 𝜃 is 𝑈(𝜃) = ∑ (
𝜕𝜇𝑖

𝑇

𝜕𝜃
)𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖)
𝑛
𝑖=1 = 0. The 

equation 𝑈(𝜃) = 0 is called the generalized estimating equation (GEE). Solve 𝑈(𝜃) = 0 for 𝜃 

which is called the GEE estimate of 𝜃. Note that 𝐸[𝑈(𝜃)] = 0 when 𝐸(𝑌𝑖|𝑥𝑖) = 𝜇𝑖 under the 

implicit assumptions that 𝐸(𝑌𝑖𝑡|𝑥𝑖) =  𝐸(𝑌𝑖𝑡|𝑥𝑖𝑡) and 𝐸(𝑌𝑖𝑡|𝑥𝑖) does not depend on 𝑉𝑖. In practice, 

𝑉𝑖 is often replaced by a working covariance matrix. Lipsitz, Kim, and Zhao (1994) extend the 

GEE formulation for multinomial data.  
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Weighted generalized estimating equations 

Chen, Yi, and Cook (2010) and Robins, Rotnitzky, and Zhao (1995) propose a weighted GEE 

approach for handling incomplete response and covariate data. For this problem, the authors 

recommend inverse probability weighted generalized estimating equations (IPWGEE) that adjust 

the usual GEE formulation with weights inversely related to the conditional probability of 

complete data given the response vector and covariates. They refer to the matrix containing 

subject-specific weights by time period as Δ𝑖(𝛼) where 𝛼 is a set of regression parameters 

modeling the missing-data process. In practice, the parameters 𝛼 of the missing-data model are 

unknown and must be estimated. Then, the IPWGEE formulation is 

𝑈∗(𝜃, 𝛼) =  ∑ (
𝜕𝜇𝑖

𝑇

𝜕𝜃
)𝑉𝑖

−1Δ𝑖(𝛼)(𝑌𝑖 − 𝜇𝑖)
𝑛
𝑖=1 = 0. The authors show that IPWGEE estimators are 

consistent subject to correct specification of the missing-data process and simulations show 

negligible bias in finite samples. Further, they give asymptotic calculations for expected bias with 

different types of missing data model misspecification. 

The estimating equations and weighted estimation equations given by (1), (2), and (3) in 

Section  1.6 to address the general problem of this research can be derived from the formulations 

of GEE and IPWGEE stated here. The data of the general problem is not longitudinal or batch 

correlated data, so the 𝑉𝑖 matrix is a diagonal matrix. The general problem assumes a distribution 

for the response which then defines the diagonal entries of 𝑉𝑖 by time period. The marginal mean 

of the subject-specific response is defined by the GLM in terms of the parameters of the model. 

We replace subject subscript 𝑖 by subscript 𝑗 to remind the reader of the difference that subject 𝑖 

has repeated measures over time but subject 𝑗 measures across time are independent, conditional 

on the values of the covariates. In (1), the vectors and matrices defined by the GEE formulation 

have single entries since there are data from one time period only. Formulation (2) follows from 

the GEE formulation with sizes of vectors and matrices related to the number of time periods in 

the data. (Let 𝑛 in the GEE formulation be max
𝑡=1,…,𝑇

𝑛𝑡 from Section 1.2 and set GEE components to 

0 whenever 𝑗 > 𝑛𝑡). The WEE formulation (3) follows from the IPWGEE formulation with the 

weight matrix defined as Δ𝑗(𝛼) =  𝑑𝑖𝑎𝑔(𝑤𝑡, 1 ≤ 𝑡 ≤ 𝑇) for all 𝑗 = 1,… , 𝑛. Since some parameters 

may be changing slowly over time in the general problem, then the assumption 

𝐸(𝑌𝑖𝑡|𝑥𝑖) =  𝐸(𝑌𝑖𝑡|𝑥𝑖𝑡) may not hold. As expected, we may have a biased estimating equation in 

this case.   
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Properties of generalized estimating equations 

Liang and Zeger (1986) look at asymptotic properties of the GEE estimate under the assumption 

that the number of independent subjects goes to infinity and the cluster sizes are finite with an 

upper bound. Xie and Yang (2003) present asymptotic results when either the number of 

independent subjects or the cluster sizes or both go to infinity. Qu, Yi, Song, and Wang (2011) 

propose a test to examine the unbiasedness of the weighted estimating functions assuming that the 

mean structure is correctly specified. Unbiasedness of the weighted estimating functions indicates 

that the conditional probabilities of complete data are consistently estimated. These properties of 

GEEs may become useful as we study the properties of the WEE formulation in further research. 

2.7. Relevance weighted likelihood 

We consider the similarity of the weighted estimating equations approach to relevance weighted 

likelihood methods (Hu and Zidek 2002, Hu and Rosenberger 2000) where contributions to the 

likelihood from similar populations are weighted by a relevance measure. Consider 𝑇 independent 

populations labelled 𝑡 = 1,… , 𝑇. Suppose that for each 𝑡, 𝑌𝑡 represents a measurable attribute or 

vector of attributes and 𝑌𝑡 are assumed to be independently distributed. The unknown population 

distribution of 𝑌𝑡 has probability density function 𝑓𝑡. The probability distributions for 𝑌𝑡 are not 

necessarily identical across 𝑡 = 1,… , 𝑇, but we assume that they each resemble the others to some 

extent. Let 𝑌 = (𝑌1, … , 𝑌𝑇) be the vector or matrix of measurable attributes across 𝑇 populations. 

From each population 𝑡, 𝑛𝑡 ≥ 0 items are randomly and independently sampled so we have 

𝑌𝑡 =  {𝑌𝑗𝑡 , 𝑗 = 1,… , 𝑛𝑡} and each of the 𝑌𝑗𝑡 are independent and identically distributed with 𝑓𝑡. The 

development of the relevance weighted likelihood formulation follows. 

Akaike (1978) formulates statistical inference as the problem of determining the probability 

distribution 𝑓(𝑦) of an observation 𝑦. He suggests the entropy measure 

𝐵(𝑓, 𝑔) =  −  ∫
𝑓(𝑦)

𝑔(𝑦)
log (

𝑓(𝑦)

𝑔(𝑦)
) 𝑔(𝑦)𝑑𝑦 for density function 𝑔(𝑦) as an estimate of the true 

distribution 𝑓(𝑦). The inference problem is finding 𝑔(𝑦) to maximize entropy. Equivalently, the 

entropy measure can be written as 𝐵(𝑓, 𝑔) = ∫𝑓(𝑦) log(𝑔(𝑦))𝑑𝑦 − ∫𝑓(𝑦) log(𝑓(𝑦))𝑑𝑦. Since 

the second term is a constant, then maximizing the first term maximizes 𝐵(𝑓, 𝑔). That is, we want 

to maximize 𝐸𝑓[log 𝑔(𝑦)] = ∫𝑓(𝑦) log(𝑔(𝑦))𝑑𝑦. 

Hu and Zidek (2002) specify 𝑔(𝑦) as 𝑓𝑌(𝑦), the predictive density for 𝑌 based on observations 

𝑦1, … , 𝑦𝑇. Since the 𝑇 populations are sampled independently, then we require 𝑓𝑌 to be a product 
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of predictive densities for the individual populations, 𝑓𝑌 = 𝑓1 × …× 𝑓𝑇. It then follows that we 

may find the optimum 𝑓𝑌 by finding the optimum 𝑓𝑡 for each 𝑡 = 1,… , 𝑇. We restrict possibilities 

for 𝑓𝑡 to the class of densities 𝑓𝑡(𝑦|𝜃𝑡) where 𝑓𝑡 are specified functions so that only 𝜃𝑡 need to be 

estimated. Under this formulation, the degree to which the distribution of a population 𝑡 resembles 

that of 𝑡′ can be represented by  

 ∫𝑓𝑡′(𝑦) log(𝑓𝑡(𝑦|𝜃𝑡)) 𝑑𝑦 ≥ 𝑐𝑡𝑡′, 𝑡 ≠ 𝑡
′  (8) 

where 𝑡′ = {1,… , 𝑡 − 1, 𝑡 + 1, … , 𝑇} for some constants 𝑐𝑡𝑡′ representing similarity. Considering 

that each 𝜃𝑡 must be estimated to maximize the similarity measure to all other populations, the 

problem becomes finding 𝜃𝑡 = 𝜃𝑡 that maximizes ∑ 𝑤𝑡𝑡′ ∫ 𝑓𝑡′(𝑦) log(𝑓𝑡(𝑦|𝜃𝑡)) 𝑑𝑦
𝑇
𝑡′=1  among all 

possible 𝜃𝑡 where {𝑤𝑡𝑡′ , 𝑡
′ = 1,… , 𝑇} are constants to ensure that (8) holds. Since 𝑓𝑡′(𝑦) are 

unknown, then we must estimate them. Under the conditions that 𝑌𝑡 are discrete and 

∫𝑓𝑡′(𝑦) log(𝑓𝑡(𝑦|𝜃𝑡)) 𝑑𝑦 , 𝑡 ≠ 𝑡
′, is continuously differentiable on 𝜃𝑡 and using Lagrange’s 

method, the objective function to maximize is 

 

∑ 𝑤𝑡𝑡′ ∫𝑓𝑡′(𝑦) log(𝑓𝑡(𝑦|𝜃𝑡)) 𝑑𝑦
𝑇
𝑡′=1 = ∑ 𝑤𝑡𝑡′ ∫ log(𝑓𝑡(𝑦|𝜃𝑡)) 𝑑𝐹𝑡′

𝑒𝑚𝑝(𝑦)𝑇
𝑡′=1

= ∑ 𝑤𝑡𝑡′
∑ log𝑓𝑡(𝑦𝑗𝑡′ |𝜃𝑡)
𝑛
𝑡′

𝑗=1

𝑛𝑡′
 𝑇

𝑡′=1

= ∑ ∑ log 𝑓𝑡
𝑤
𝑡𝑡′
/𝑛
𝑡′(𝑦𝑗𝑡′|𝜃𝑡)

𝑛
𝑡′

𝑗=1
 𝑇

𝑡′=1

 for 𝑡 = 1,… , 𝑇 

subject to ∫𝑓𝑡(𝑦|𝜃𝑡)𝑑𝑦 = 1. Applying the exponential function and combining over 𝑡 = 1, … , 𝑇 

gives the joint all-population relevance weighted likelihood objective function to maximize as 

∏ ∏ ∏ 𝑓𝑡
𝑤
𝑡𝑡′
/𝑛
𝑡′(𝑦𝑗𝑡′|𝜃𝑡)

𝑛
𝑡′

𝑗=1
𝑇
𝑡′=1

𝑇
𝑡=1 . When 𝑛𝑡′ = 0, let 

𝑤
𝑡𝑡′

𝑛𝑡′
= 0. The relevance weighted 

likelihood function relative to one population only is ∏ ∏ 𝑓𝑇
𝑤𝑡(𝑦𝑗𝑡|𝜃𝑇)

𝑛𝑡
𝑗=1

𝑇
𝑡=1 . Note 𝑡′ is replaced 

by 𝑡 and 𝑤𝑇𝑡/𝑛𝑡 is replaced by 𝑤𝑡. The maximum weighted likelihood estimate (MWLE) is the 

vector of parameters (𝜃1, … , 𝜃𝑇)
𝑇
 or 𝜃𝑇 that maximizes the appropriate objective function.  

The MWLE 𝜃𝑇 that maximizes the relevance weighted likelihood function relative to a single 

population only is equivalent to the solution of 𝑄3(𝜃; 𝑑, 𝑤) = 0 in (3) for 𝜃 as an estimate for 

=  𝜃𝑇. The WEE formulation is equivalent to relevance weighted likelihood where the single 

population of interest is the current time period and the related populations are previous time 

periods. Samples within and across time periods are assumed to be drawn independently from a 

distribution 𝑓𝑡 by time period. As in relevance weighted likelihood, 𝑄3(𝜃; 𝑑, 𝑤) requires constants 

{𝑤𝑡} that represent the relevance of distribution 𝑓𝑡 to 𝑓𝑇 which are discussed in Section 2.8. 
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Properties of maximum weighted likelihood estimators 

The works Hu (1997) and Wang, van Eeden, and Zidek (2002) extend the classical large sample 

theory for the MLE to the MWLE under two asymptotic paradigms. Hu (1997) increases the 

number of populations in close proximity to 𝜃 and Wang et al. (2002) increases the number of 

observations from each population with the number of populations remaining fixed. The Hu (1997) 

work is less relevant to the problem of this research since weights assigned to estimating functions 

involving data in the further distant past decline exponentially, and so the present time estimate 

effectively depends on data from a finite number of populations. Alternatively, the asymptotic 

paradigm of Wang et al. (2002) is relevant to the problem of interest in the situation where sample 

sizes from the present time period as well as historical time periods are increasingly large. We 

study the properties of the WEE estimate under this asymptotic paradigm in Sections 3.3 and 3.4. 

Wang et al. (2002) show that the sequence of maximum weighted likelihood estimators are 

consistent and asymptotically normal as the number of observations from the populations increase 

under appropriate conditions. The authors give the conditions for consistency and asymptotic 

normality including the following assumption governing the selection of weights (adapted from 

Wang et al., 2002, p. 14). 

 𝑤(𝑛𝑇) = (𝑤1
(𝑛𝑇), … , 𝑤𝑇

(𝑛𝑇))
𝑇

 satisfies 𝑤(𝑛𝑇) → (𝑣1, … , 𝑣𝑇)
𝑇 ≜ (0,… . ,0,1)𝑇 while 

max
1≤𝑡′≤𝑇

𝑛𝑡′
2 max
1≤𝑡≤𝑇

|𝑣𝑡 − 𝑤𝑡
(𝑛𝑇)|

2

≤  𝒪(𝑛𝑇
1−𝛿) as 𝑛𝑇 → ∞ for some 𝛿 > 0 

Here, the superscript (𝑛𝑇) indicates that the select weights {𝑤𝑡, 𝑡 = 1, … , 𝑇} are fixed for a 

particular value of 𝑛𝑇 but different weights are selected as 𝑛𝑇 → ∞. The assumption requires that 

𝑤𝑡
(𝑛𝑇) ≤ 𝐾 

𝑛𝑇
1/2−𝛿

𝑛𝑡
 for some constants 𝐾 and 𝛿 > 0 and 𝑡 =  1,… , 𝑇 −  1. Consider the case where 

relative sample size defined by 𝑐𝑡 =  
𝑛𝑡

𝑁
 remains constant for each 𝑡 so that 𝑛𝑇 → ∞ and 𝑛𝑡 →  ∞ 

at the same rate and 𝑛𝑡 = 𝒪(𝑛𝑇). Then, the assumption requires that 𝑤𝑡
(𝑛𝑇) ≤ 𝐾𝑛𝑇

−1/2−𝛿
. Under 

this requirement, the upper bound on 𝑤𝑡
(𝑛𝑇) gets smaller as 𝑛𝑇 → ∞. As sample sizes from each 

population increase, weights given to the terms for the related populations must decrease in order 

that consistency and asymptotical normality holds. This requirement supports the bias/variance 

trade-off provided by the WEE approach whereby in the case of a larger sample size at the present 

time period, we prefer to reduce the weight given to historical data in the estimating function. We 

consider the selection of weights in Section 3.1. 
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Wang et al. (2002) compares the performance of the MLE and MWLE for several examples. 

Since the true values of the parameters are unknown, then the authors replace the unknown 

quantity by the MLE. In the given disease mapping problem with data from each of seven years, 

the MWLE reduces the average mean squared error (MSE) by about 25%. In general, the impact 

of the MWLE depends on the values of the weights and the differences across populations and the 

authors state that the MWLE does not always reduce MSE when weights are selected 

independently from the data.   

Since the WEE formulation in Section 1.6 is equivalent to the relevance weighted likelihood 

formulation of Hu and Zidek (2002), then the previous results can be applied to the WEE estimator. 

The WEE estimate is consistent and asymptotically normal under the conditions in Wang et al. 

(2002) including the condition stated above. An additional condition is that the random variables 

{𝑌𝑗𝑡, 𝑗 = 1,… , 𝑛𝑡} are independent and identically distributed for each =  1,… , 𝑇. Since the 

problem at hand expects that the parameter may change slowly over time, then this condition is 

not satisfied. The effect on the asymptotic results can be studied through the authors’ proof.  

There is an important conceptual distinction between the WEE formulation and relevance 

weighted likelihood. The motivation for the WEE formulation stems from the problem to estimate 

a parameter that changes slowly over time. At each new time period, there is a new contribution 

to the estimating function. The estimating function contributions from the past time periods have 

increasing bias to the present time parameter and so it makes sense to further down-weight their 

contributions to the present time estimating function. Conceptually, under the WEE approach, the 

time order defines the relevance of past data.  

2.8. Selecting weights 

Further to the discussion in Section 2.7, we consider methods for selecting weights pertinent to 

the problem at hand. The moving average estimate is common in analysis of data collected at 

regular time intervals, where points within a defined window of the current observation are given 

equal weight and points outside that window are given zero weight.  A moving average serves to 

smooth out short-term variability and dampen out unwanted periodic fluctuations. Additionally, 

weights related to an uncertainty measure such as known or observed variance or sample size are 

used in some applications to improve precision of the estimate or to correct for under-dispersion 

or over-dispersion in observed data. Survey data may be weighted relative to non-response by 

subgroups. Two other common approaches to weighting, exponentially declining weights and 

adaptive weights, are discussed here in more detail. 
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Exponentially declining weights 

Exponentially weighted moving average (EWMA) control charts are an effective alternative to 

Shewhart control charts in detecting various types of process changes, including small sustained 

shifts in the process (Montgomery, 2013). Study has shown that the EWMA and suitable 

modifications have optimal properties for monitoring or estimating a process mean for a wide class 

of applications (Box, Jenkins, and MacGregor, 1974, Lucas and Saccucci, 1990). Let 𝑋1, 𝑋2, …𝑋𝑇 

be a sequence of observations collected at fixed intervals of time. The EWMA statistics are 

𝑄𝑡 =  𝜆𝑋𝑡 + (1 − 𝜆)𝑄𝑡−1, 𝑡 = 1,2, …  where 𝜆 is a smoothing constant, 𝜆 ∈ (0,1] and 𝑄0 is the 

initial value. More generally, 

  
𝑄𝑇 = ∑ 𝜆(1 − 𝜆)𝑇−𝑡𝑋𝑡

𝑇
𝑡=1

= ∑ 𝑤𝑡𝑋𝑡
𝑇
𝑡=1

  (9) 

where 𝑤𝑡 = 𝜆(1 − 𝜆)
𝑇−𝑡. In all applications, a value for the constant 𝜆 must be selected. In quality 

monitoring applications, typical values for the parameter 𝜆 are between 0.05 and 0.25, and larger 

values may be used in forecasting and control applications (Steiner, 1999). Lucas and Saccucci 

(1990) give suggestions for 𝜆 that result in a desired minimum average run length under a specified 

shift in the process. The authors show that the optimal value of 𝜆 increases as the shift in the 

process increases. 

Adaptive weights 

Weights that adapt to properties of the data offer a mechanism for the data to self-weight 

according to some relevance measure and criteria. An application of MWLE studied in Wang et 

al. (2002) estimates a Poisson rate parameter for incidences of a disease in one location, based on 

a time series of event data from that location and other locations close in geographical proximity. 

The authors derive a model describing mean squared error of the parameter estimates as a function 

of the values of the weights, quantities describing the relevance of the locations to each other, 

assumed variances of data by location, and observed correlations. Then, the optimal values of the 

weights are estimated to minimize the mean squared error of the parameter estimates. The authors 

shows that these estimated weights are optimal in minimizing mean squared error of the parameter 

estimates.    

An adaptive exponentially weighted estimation scheme was suggested by Yashchin (1995) to 

improve the estimation of a current process mean subject to abrupt changes. The estimate relies 

on the sequence of observations 𝑋1, … , 𝑋𝑇 and {𝑤𝑡} as in (9) with {𝑤𝑡} dependent on the data. 

Yaschin recommends a scheme for setting {𝑤𝑡} that involves an estimate of 𝑟𝑇, the number of 
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observations preceding the observation at 𝑇, that are stationary relative to some threshold criteria. 

With 𝑟̂𝑇 and smoothing parameter 𝜆 ∈ (0,1], the current estimate of the process mean only 

involves those observations since the last point of change. 

For the general problem of this research, observations are collected at regular time intervals and 

since we assume that parameters describing the outcome change slowly with time, then 

exponentially declining weights seem to be the most appropriate among the alternatives. We may 

be able to improve the mean squared error of estimates through a method of adaptive weights, but 

the need to estimate the weights is undesirable and the impact on the estimate of variance is not 

clear. Instead, the research focuses on the impact of the smoothing parameter and guidelines for 

its selection. 

This literature review outlines some methodologies that have pertinence to the weighted 

estimating equations formulation for the general problem of this research. These methodologies 

support or provide alternatives or generalizations of the WEE approach. The rich foundation of 

literature provides opportunities to explore and expand the theoretical and applied aspects of the 

WEE approach. We discuss the fundamental aspects of the WEE approach for the motivating 

applications in Chapter 3. 
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Chapter 3: Weighted Estimating Equations Approach 

The motivating problem of this research is to regulate a bias/variance trade-off in the estimate 

of the present value of a performance measure based on a stream of data collected over time. We 

expect that there may be a small number of subjects observed in the present time period and the 

model parameter may change slowly over time. We describe the data, objectives, and general 

approach to the problem in Section 1.2.  

In the motivating applications of this research, changes to the model parameter over time may 

occur due to many complex factors. For example, customer loyalty may change due to continuous 

improvement in the product or process, new competitive products in the market, and changing 

media views of the product. We do not want to assume a stochastic or deterministic model to 

describe the change in the parameter since the change may be hard to predict and we want our 

approach to be flexible. Instead, we prefer to estimate the present value of the parameter assuming 

that the changes in the parameter over time are slow and so past data have relevance related to the 

proximity of the time period when they were observed to the current time period. For data 𝑑𝑡 from 

each time period 𝑡 up to the current time period 𝑇, we combine score contributions by time into an 

estimating equation that down-weights the contributions of historical data and estimates a single 

parameter 𝜃. We call 𝜃 the weighted estimating equation (WEE) estimate. We know that the WEE 

estimate 𝜃 is a biased estimate of 𝜃𝑇 assuming that 𝜃𝑇 ≠  𝜃𝑡 for 𝑡 =  1,… , 𝑇 −  1, but 𝜃𝑇 has less 

uncertainty than if we estimate it based on 𝑑𝑇 alone. Since the sample size in the current time 

period is small, reducing uncertainty by incorporating historical data becomes important. This is 

the bias/variance trade-off which is the motivation for using the weighted estimating equations 

approach.  

We remind the reader of the weighted estimating function (3) as well as the two naïve 

alternatives (1) and (2).  

 The weighted estimating function down-weights the influence of historical data in the 

estimate of the present time parameter 𝜃 = 𝜃𝑇 (Steiner and MacKay, 2014): 

 𝑄3(𝜃; 𝑑, 𝑤) = ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
T
t=1  (3) 

for a selection of weights 𝑤 =  {𝑤𝑡, 𝑡 = 1, … , 𝑇} that decline over time periods 

𝑇, 𝑇 −  1, … ,1. The weighted estimating equation is ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
T
t=1 = 0 and we denote 

the solution as the WEE estimate, 𝜃. 
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 A naïve alternative is an estimating function based only on the data 𝑑𝑇 observed in the 

most recent time period: 

 𝑄1(𝜃; 𝑑𝑇) = 𝜓𝑇(𝜃; 𝑑𝑇) (1) 

 A naïve alternative is an estimating function based on all of the data 𝑑 =  {𝑑𝑡; 𝑡 = 1, … , 𝑇} 

weighted equally: 

 𝑄2(𝜃; 𝑑) = ∑ 𝜓𝑡(𝜃; 𝑑𝑡)
T
t=1  (2) 

The WEE approach to obtain a risk-adjusted estimate of the parameter and related inference 

follows. 

Select standard population, model, and weights  

 Select a standard population of 𝐽∗ subjects that is important for inference in the application 

at hand. The objective is to estimate a risk-adjusted mean value of performance for this 

standard population to reliably compare estimates across time or across streams. Assign 

the value of the covariates for subjects in the standard population, 

{𝑥𝑗∗ =  (𝑥1,𝑗∗ , … , 𝑥𝑠,𝑗∗)
𝑇
, 𝑗∗ =  1,… , 𝐽∗}. 

 Select a model for the random variable 𝑌𝑗𝑚𝑡 in terms of a 𝑠-dimensional covariate vector 

𝑥𝑗𝑚𝑡, stream 𝑚, and a 𝑝-dimensional model parameter, 𝜃𝑡. 

 Select weights 𝑤 = {𝑤𝑡, 𝑡 = 1,… , 𝑇} where 𝑤𝑡 ≥ 𝑤𝑡−1 for all 𝑡. 

Define weighted estimating functions 

 Define 𝑄(𝜃; 𝑑, 𝑤) as in (3) which is a 𝑝-dimensional weighted estimating function for 

𝜃 =  𝜃𝑇 involving weighted score terms based on weights 𝑤 and data 𝑑 = {𝑑𝑗𝑚𝑡} observed 

on subjects 𝑗 =  1,… , 𝑛𝑚𝑡, in streams 𝑚 = 1,… ,𝑀, at time periods 𝑡 = 1,… , 𝑇. 

Solve and calculate estimates 

 Solve 𝑄(𝜃; 𝑑, 𝑤)  = 0 for the WEE estimate 𝜃 of 𝜃 = 𝜃𝑇. 

 Estimate the expected value of the response for each of the standard population subjects in 

stream 𝑚, 𝜋̂𝑗∗𝑚, 𝑗
∗ = 1,… , 𝐽∗, using 𝜃 and 𝑥𝑗∗  (see Table 2-1). 

 Estimate the mean for the standard population in stream 𝑚, 𝜋̂𝑚, using {𝜋̂𝑗∗𝑚, 𝑗
∗ =  1,… , 𝐽∗} 

(see Table 2-1). 

 Estimate the variance of 𝜃. The sandwich estimate in (7) is one possibility. 

 Estimate the variances of 𝜋̂𝑗∗𝑚 from (5) and 𝜋̂𝑚 from (4). 
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Inference 

According to the general objectives as stated in Section 1.2, we might want to 

 Compare the estimate of the parameter to a target or benchmark value: use 𝜃, 𝑣𝑎𝑟̂(𝜃) 

 Compare the risk-adjusted mean in stream 𝑚 to a target or benchmark value: use 

𝜋̂𝑚, 𝑣𝑎𝑟̂(𝜋̂𝑚) 

 Compare risk-adjusted mean estimates across streams: use 𝜋̂𝑚𝑖 , 𝑣𝑎𝑟̂(𝜋̂𝑚𝑖) vs. 𝜋̂𝑚𝑗, 

𝑣𝑎𝑟̂ (𝜋̂𝑚𝑗) for 𝑚𝑖 ≠  𝑚𝑗 . 

 Compare mean estimates in stream 𝑚 across groups of subjects: use 𝜋̂𝑚1, 𝑣𝑎𝑟̂(𝜋̂𝑚1) vs. 

𝜋̂𝑚2, 𝑣𝑎𝑟̂(𝜋̂𝑚2) based on two standard populations {𝑥𝑗1∗  for 𝑗∗ = 1,… , 𝐽1
∗} and 

{𝑥𝑗2∗  for 𝑗∗ =  1,… , 𝐽2
∗}. 

 Monitor estimates of the parameter over time: use 𝜃, 𝑣𝑎𝑟̂(𝜃) and historical 𝜃, 𝑣𝑎𝑟̂(𝜃). 

 Monitor estimates of the risk-adjusted mean in stream 𝑚 over time: use 𝜋̂𝑚, 𝑣𝑎𝑟̂(𝜋̂𝑚) and 

historical 𝜋̂𝑚, 𝑣𝑎𝑟̂(𝜋̂𝑚). Note that  𝜋̂𝑚 at each time period must be estimated for the same 

standard population. Recalculating 𝜋̂𝑚 with the estimates 𝜃 in previous time periods is 

possible if the standard population of interest changes. 

 Test hypotheses on elements of the parameter: use 𝜃, 𝑣𝑎𝑟̂(𝜃) and 𝜃0, 𝑣𝑎𝑟̂(𝜃0) which are 

estimates under the null hypothesis. 

 Test hypotheses on the risk-adjusted mean in stream 𝑚: use 𝜋̂𝑚, 𝑣𝑎𝑟̂(𝜋̂𝑚) and 

𝜋̂𝑚0 , 𝑣𝑎𝑟̂(𝜋̂𝑚0) which are based on estimates 𝜃0, 𝑣𝑎𝑟̂(𝜃0). 

In Chapter 3, we discuss various aspects of this approach including weights selection, effective 

sample size, approximations for the variance of 𝜃 and the distribution of a hypothesis test statistic 

involving 𝜃, and implementing the WEE approach through SAS software. Some aspects of these 

results are explored through an analytic example in Section 3.6. The approach is demonstrated 

through the customer loyalty measure in Chapter 4, the lab positive abnormal rate in Chapter 5, 

and the hospital performance measure in Chapter 6. Considerations to implement this approach 

are also discussed in Chapter 6. 

3.1. Selecting weights 

Relative values of the weights 𝑤 = {𝑤𝑡, 𝑡 = 1,… , 𝑇} control the trade-off between bias and 

variance so 𝑤 needs to be selected appropriately. In the general problem of this research, the score 
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functions by time period have a natural ordering and we expect that one or more of the 𝑝 elements 

of parameter 𝜃𝑡 may drift slowly with time. Accordingly, we use weights that decrease 

(exponentially) for time periods further in the past. In particular, we propose to use a weight 

parameter, 𝜆, having possible values 0 <  𝜆 < 1 and to define the weights as in  

  𝑤𝑡 =
𝜆(1−𝜆)𝑇−t

∑ 𝜆(1−𝜆)𝑇−t𝑇
𝑡=1

 (10) 

for each 𝑡 = 1,… , 𝑇. These are exponentially declining weights as we discuss in Section 2.8. We 

select these since the exponentially weighted moving average control chart has desirable properties 

when there are small shifts in a process (see discussion in Section 2.3). Other definitions of 

decreasing weights are possible. With (10), the weight for the most recent time period is 

proportional to 𝜆, the time period before that has weight proportional to 𝜆(1 − 𝜆), the time period 

before that 𝜆(1 − 𝜆)2, and so on. For convenience, we divide each weight by the same constant 

∑ 𝜆(1 − 𝜆)𝑇−t𝑇
𝑡=1  so that ∑ 𝑤𝑡

𝑇
𝑡=1 = 1. Note that this rescaling does not change the estimate of 𝜃 

or its properties. Under (10), increasing the value of 𝜆 increases the relative weight of present data 

which reduces bias and increases variance of the estimator (assuming the parameter is changing 

over time). There is subjectivity in the selection of 𝜆. Based on the guidelines for 𝜆 for 

exponentially declining weights as discussed in Section 2.8, the value 𝜆 = 0.1 is reasonable when 

the parameter drifts slowly over time.  

Note that the two naïve approaches involving either present time data as in (1) or the aggregate 

of historical data weighted equally as in (2) are particular cases of (3) at the two limiting values of 

the weight parameter 𝜆.  

 As 𝜆 approaches 1, 𝑤𝑇 approaches 1 and 𝑤𝑡, 𝑡 < 𝑇 approaches 0. The estimating function 

involves the present time data 𝑑𝑇 only. 

 As 𝜆 approaches 0, 𝑤𝑡 approaches 
1

𝑇
 for all 𝑡 = 1, … , 𝑇. The estimating function involves 

the aggregate of data {𝑑1, 𝑑2, … , 𝑑𝑇} weighted equally.  

3.2. Effective sample size 

We consider the notion of effective sample size to compare the various approaches for the 

general problem of interest. We refer to effective sample size of an estimator as 𝑁𝑒𝑓𝑓. Consider 

the value 𝑁𝑒𝑓𝑓 to be the number of independent observations that gives an estimate by the 

unweighted estimating function in (2) that has the same precision as the estimator involving 𝑁 

samples. For the WEE estimator, as 𝜆 → 1 we give more weight to fewer observations and the 
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estimate has less precision. At the extreme (𝜆~1), 𝑁𝑒𝑓𝑓 = 𝑛𝑇 for the naïve estimator involving 𝑑𝑇 

only. Conversely, as 𝜆 → 0, we increase the weight across more of the observations and the 

estimate has more precision. At the extreme (𝜆~0), 𝑁𝑒𝑓𝑓 = 𝑁 = ∑ 𝑛𝑡
𝑇
𝑡=1  for the naïve estimator 

involving {𝑑𝑗𝑡 , 𝑗 = 1,… , 𝑛𝑡, 𝑡 = 1,… , 𝑇} weighted equally. The WEE estimate based on a 

selection of 𝜆 between the two extremes has 𝑛𝑇 < 𝑁𝑒𝑓𝑓 < 𝑁.  

We compare the effective sample size of the WEE estimator to that of the EWMA approach. 

Consider a simple example where random variables 𝑌𝑗𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜃𝑡) are independent over 

𝑗 = 1,… , 𝑛𝑡 and 𝑡 = 1,… , 𝑇. We observe data {𝑦𝑗𝑡} on subjects 𝑗 = 1,… , 𝑛𝑡 over 𝑡 = 1,… , 𝑇. 

There are no covariates and so the estimate of 𝜃 = 𝜃𝑇 by the EWMA approach is  

𝜃𝐸𝑊𝑀𝐴 = 𝑤1𝑦̅1 + 𝑤2𝑦̅2 +⋯+𝑤𝑇𝑦̅𝑇 

where  𝜃𝑡 = 𝑦̅𝑡 =
∑ 𝑦𝑗𝑡
𝑛𝑡
𝑗=1

𝑛𝑡
 and ∑ 𝑤𝑡

𝑇
𝑡=1 = 1. The variance of the estimator is 

𝑎𝑟(𝜃𝐸𝑊𝑀𝐴) =  ∑
𝑤𝑡
2𝜃𝑡(1−𝜃𝑡)

𝑛𝑡

𝑇
𝑡=1 . The estimate of 𝜃 = 𝜃𝑇 based on (2) where the 𝑁 observations are 

weighted equally is  

𝜃(2) =
∑ ∑ 𝑦𝑗𝑡

𝑛𝑡
𝑗=1

𝑇
𝑡=1

𝑁
 

and the variance of the estimator is 𝑣𝑎𝑟(𝜃(2)) =  

∑ 𝑛𝑡𝜃𝑡(1−𝜃𝑡)
𝑇
𝑡=1

𝑁2
 and so 𝑁𝑒𝑓𝑓 = (∑

𝑤𝑡
2

𝑛𝑡

𝑇
𝑡=1 )

−1

 for the 

EWMA estimator under the assumption that 𝜃𝑡 = 𝜃𝑇 for all 𝑡 = 1, … , 𝑇. In comparison, we can 

show that the parameter estimate by the WEE approach is   

𝜃𝑊𝐸𝐸 =
𝑤1𝑛1

∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

𝑦̅1 +
𝑤2𝑛2

∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

𝑦̅2 +⋯+
𝑤𝑇𝑛𝑇

∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

𝑦̅𝑇 

and 𝑣𝑎𝑟(𝜃) =
∑ 𝑤𝑡

2𝑛𝑡
𝑇
𝑡=1 𝜃𝑡(1−𝜃𝑡)

(∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1 )

2 . For the WEE estimator, 𝑁𝑒𝑓𝑓 =
(∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1 )

2

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

 under the assumption 

that 𝜃𝑡 = 𝜃𝑇 for all 𝑡 = 1,… , 𝑇. By this simple example, we see that the WEE estimate can be 

rewritten as an EWMA estimate where the total weight given to the statistic based on 𝑑𝑡 is 

proportional to 𝑤𝑡𝑛𝑡. The WEE estimate weights a time period statistic proportional to the sample 

size in that time period and declining for the further past. Under the EWMA approach, the sample 

size by time period does not affect the weight given to the statistic at that time period. Here, we 

see by the expression for 𝑁𝑒𝑓𝑓 that a small sample size at any time period greatly decreases the 

𝑁𝑒𝑓𝑓 of the EWMA estimator, illustrating the shortcoming of the EWMA approach discussed in 
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Section 2.3. In the limit, as the sample size in one time period approaches zero, 𝑁𝑒𝑓𝑓 approaches 

zero. We see by this simple example that this is not a problem for the WEE estimator. In general, 

the two estimators give the same estimates when sample sizes are the same across all time periods; 

however, when there are small sample sizes in some time periods, as in the general problem of this 

research, the comparison of effective sample sizes favours the WEE estimator over the EWMA 

estimator.   

3.3. Estimate of variance 

Inference based on the WEE estimate 𝜃 requires an estimate of its uncertainty. For example, a 

manager may want to assess whether the mean performance estimate based on 𝜃 is significantly 

different than the competitive benchmark. We derive approximations for the variance of 𝜃 using 

the usual asymptotic properties of the information and score functions in the model based on data 

by time period. We assume that the model parameter 𝜃𝑡 does not change over time 𝑡 = 1,… , 𝑇. So 

there are two sources of error in the approximations; first, the usual error due to the asymptotics 

and a second error due to the fact that the parameter may have drifted. 

We assume that the model ℒ𝑡(𝜃̃; 𝒟𝑡) holds for each 𝑡 =  1, … , 𝑇 and that the random variables 

𝒟𝑡 are independent over 𝑡. In the case where the model depends on covariates, then we assume 

that 𝒟𝑡 are independent over 𝑡, conditional on the values of the covariates. Note that we do not 

model changes in the covariates. For 𝜃, the unknown model parameter, 

𝐼𝑡(𝜃) =  −  𝐸 (
𝜕2 logℒ𝑡(𝜃;𝒟𝑡) 

𝜕𝜃2
) is the matrix of expected information about 𝜃 at time 𝑡, 

𝑖𝑡(𝜃) =  −  𝑙𝑡
′′(𝜃; 𝑑𝑡) is the observed information matrix, and the two are related by 

𝐸(𝑖𝑡(𝜃)) =  𝐼𝑡(𝜃) (Small, 2010). Since the weighted estimating functions combine the usual score 

functions by time period, then we consider an estimate of 𝑣𝑎𝑟(𝜃̃) through the known asymptotic 

properties of the corresponding information and score functions.  

We consider the asymptotic properties of the information and score functions in the case where 

the total sample size 𝑁 =  ∑ 𝑛𝑡
𝑇
𝑡=1  approaches infinity and the number of time periods 𝑇 remains 

fixed. In order to preserve the usual asymptotic properties of these functions by time period as 

→  ∞, we need to preserve some uniformity in the relative distributions of 𝐼𝑡(𝜃) by time period 

𝑡 = 1,… , 𝑇. We require that the relative sample size defined by 𝑐𝑡 =
𝑛𝑡

𝑁
 remains constant for each 

𝑡 so that 𝑛𝑡 → ∞ as →  ∞. In the case where the model does not depend on covariates, then each 

individual unit has the same expected information and so, for fixed 𝑐𝑡, the relative distributions of 
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𝐼𝑡(𝜃), 𝑡 = 1,… , 𝑇, stay the same as 𝑁 → ∞. In the more general problem where the model depends 

on covariates, then some uniformity in the distribution of samples across the covariate space must 

be maintained as each 𝑛𝑡 → ∞ so that 
𝐼𝑡(𝜃)

𝑛𝑡
→ 𝑔𝑡(𝜃) for some constant matrix 𝑔𝑡(𝜃). We derive 

an approximation for 𝑣𝑎𝑟(𝜃̃) under this asymptotic paradigm. 

First, we sketch a proof to show that 𝜃̃ is a consistent estimator of the true value 𝜃 = 𝜃𝑇 under 

usual regularity conditions and under the condition that 𝜃𝑡 does not change over time =  1,… , 𝑇. 

A rigorous proof of consistency of the WEE estimator would follow the method in Wald (1949) 

for a MLE estimator. We denote 𝜃0 as the true value of 𝜃 = 𝜃𝑡 for 𝑡 = 1,… , 𝑇. 

Lemma: For any 𝜃 ≠ 𝜃0 we have 𝐸(𝑙𝑡(𝑋, 𝜃)) < 𝐸(𝑙𝑡(𝑋, 𝜃0)) where 𝑋 is a random variable having 

distribution 𝑓(𝑥, 𝜃0) and 𝑙𝑡(𝑥1, … , 𝑥𝑛𝑡 , 𝜃) = ∑ 𝑙𝑜𝑔 𝑓(𝑥𝑗 , 𝜃)
𝑛𝑡
𝑗=1 . See Wald (1949) for proof. 

Theorem: Under usual regularity conditions on the family of distributions, the WEE estimate 𝜃 is 

consistent; that is, 𝜃
  𝑝  
→ 𝜃0 as 𝑁 → ∞. 

Sketch of proof: We have the following facts: 

 𝜃 is a maximizer of ∑ 𝑤𝑡𝑙𝑡(𝑥, 𝜃)
𝑇
𝑡=1  by definition 

 𝜃0 is the maximizer of 𝐸(𝑙𝑡(𝑋, 𝜃)) by the Lemma. It follows that 𝜃0 is also the maximizer 

of 𝐸(∑ 𝑤𝑡𝑙𝑡(𝑋, 𝜃)
𝑇
𝑡=1 ). 

By the Law of Large Numbers, ∑ 𝑤𝑡𝑙𝑡(𝑥, 𝜃)
𝑇
𝑡=1

  𝑝  
→  𝐸(∑ 𝑤𝑡𝑙𝑡(𝑋, 𝜃)

𝑇
𝑡=1 ) for all 𝜃 as 𝑁 → ∞. Since 

two functions are getting closer, then the points of maximum should also get closer which means 

that 𝜃
  𝑝  
→ 𝜃0 as 𝑁 → ∞.  

Next, we derive the estimate of the variance of 𝜃̃ for a model that does not depend on covariates. 

For 𝐼(𝜃), the expected information from a single sample, and 𝐼𝑡(𝜃) = 𝑛𝑡𝐼(𝜃), the expected 

information from all samples at 𝑡,  

 𝑣𝑎𝑟(𝜓𝑡(𝜃;𝒟𝑡)) = 𝐼𝑡(𝜃) = 𝑛𝑡𝐼(𝜃) = 𝑁𝑐𝑡𝐼(𝜃)  

since 𝑐𝑡 =
𝑛𝑡

𝑁
 for all 𝑡. Then, by the Central Limit Theorem,  

 
𝜓𝑡(𝜃;𝒟𝑡)

√𝑛𝑡

  𝐷  
→ 𝑁𝑝(0, 𝐼(𝜃))   

since 𝜓𝑡 is the sum of 𝑛𝑡 terms each with mean vector 0𝑝 and covariance matrix 𝐼(𝜃) for each 𝑡 

as 𝑛𝑡 →  ∞. Since 𝒟𝑡 are assumed to be independent across time 𝑡 = 1,… , 𝑇 and 𝑤𝑡 and 𝑐𝑡 are 

constants, then 
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1

√𝑁
∑ 𝑤𝑡𝜓𝑡(𝜃;𝒟𝑡)
𝑇
𝑡=1

  𝐷  
→ 𝑁𝑝(0,∑ 𝑤𝑡

2𝑐𝑡𝐼(𝜃)
𝑇
𝑡=1 ) 

We consider the first order Taylor Series approximation of 𝜓(𝜃) for 𝜃 near 𝜃, 

 (𝜃 − 𝜃) ≈ [−𝜓′(𝜃)]−1𝜓(𝜃)  

since 𝜓(𝜃) = 0. We extend this to an approximation for the corresponding random variable 

(𝜃̃ − 𝜃) with observed information at time 𝑡, 𝑖𝑡(𝜃) = −𝜓𝑡
′(𝜃), so  

 √𝑁(𝜃̃ − 𝜃) ≈ (
1

𝑁
∑ 𝑤𝑡𝑖𝑡(𝜃)
𝑇
𝑡=1 )

−1 1

√𝑁
∑ 𝑤𝑡𝜓𝑡(𝜃)
𝑇
𝑡=1   

since 𝜃̃ is consistent. Then, by Slutsky’s Theorem, 

 √𝑁(𝜃̃ − 𝜃)
  𝐷  
→  (∑ 𝑤𝑡𝑐𝑡𝐼(𝜃)

𝑇
𝑡=1 )−1𝑍   

as 𝑁 → ∞, since 𝐸[𝑖𝑡(𝜃)] = 𝐼𝑡(𝜃) = 𝑁𝑐𝑡𝐼(𝜃) and 𝑍 is the asymptotic distribution of 

1

√𝑁
∑ 𝑤𝑡𝜓𝑡(𝜃;𝒟𝑡)
𝑇
𝑡=1 . Then, with the previous result for 𝑍, 

 √𝑁(𝜃̃ − 𝜃)
  𝐷  
→  𝑁𝑝(0, (∑ 𝑤𝑡𝑐𝑡𝐼(𝜃)

𝑇
𝑡=1 )−1∑ 𝑤𝑡

2𝑐𝑡𝐼(𝜃)
𝑇
𝑡=1 (∑ 𝑤𝑡𝑐𝑡𝐼(𝜃)

𝑇
𝑡=1 )−1) 

Then, an estimate for the asymptotic variance of 𝜃̃ is  

 𝑣𝑎𝑟̂𝑊𝐼(𝜃̃; 𝜃) = (𝑁∑ 𝑤𝑡𝑐𝑡𝐼(𝜃)
𝑇
𝑡=1 )

−1
𝑁∑ 𝑤𝑡

2𝑐𝑡𝐼(𝜃)
𝑇
𝑡=1 (𝑁∑ 𝑤𝑡𝑐𝑡𝐼(𝜃)

𝑇
𝑡=1 )

−1
  

More generally in the case where the model depends on the covariates and 
𝐼𝑡(𝜃)

𝑛𝑡
→ 𝑔𝑡(𝜃) as 

𝑛𝑡 →  ∞ for 𝑔𝑡(𝜃) a matrix of constants, we extend this estimate as  

 𝑣𝑎𝑟̂𝑊𝐼(𝜃̃; 𝜃) = (∑ 𝑤𝑡𝐼𝑡(𝜃)
𝑇
𝑡=1 )

−1
∑ 𝑤𝑡

2𝐼𝑡(𝜃)
𝑇
𝑡=1 (∑ 𝑤𝑡𝐼𝑡(𝜃)

𝑇
𝑡=1 )

−1
  (11) 

given weights {𝑤𝑡} and expected information matrices evaluated at the WEE estimate, 

{𝐼𝑡(𝜃), 𝑡 =  1,… , 𝑇}. We refer to (11) as the weighted information (WI) estimate of variance. We 

use this approximation for the variance of the random variable 𝜃̃ to estimate the variance of the 

WEE estimate 𝜃. Note that the approximation for the variance of 𝜃̃ in (11) does not change if we 

scale each 𝑤𝑡 by the same constant. 

Note that result (11) at the two special cases of weight values described previously gives the 

usual estimates of variance. In the case where 𝑤𝑇 = 1 and 𝑤𝑡 = 0 for all 𝑡 < 𝑇, then   

𝑣𝑎𝑟̂𝑊𝐼(𝜃) = 𝐼𝑇
−1(𝜃) 𝐼𝑇(𝜃) 𝐼𝑇

−1(𝜃) 

= 𝐼𝑇
−1(𝜃) 

 



Chapter 3: Weighted Estimating Equations Approach 

 

45 

In the case where 𝑤𝑡 =
1

𝑇
 for all 𝑡, then  

  
𝑣𝑎𝑟̂𝑊𝐼(𝜃) = (∑

𝐼𝑡(𝜃̂)

𝑇
𝑇
𝑡=1 )

−1

∑
𝐼𝑡(𝜃̂)

𝑇2
𝑇
𝑡=1  (∑

𝐼𝑡(𝜃̂)

𝑇
𝑇
𝑡=1 )

−1

= (∑ 𝐼𝑡(𝜃)
𝑇
𝑡=1 )

−1
 

We compare the weighted information estimate of variance to the sandwich estimate of variance 

in (7). Based on the definitions of the components of (7), we can show that 𝑉̂(𝜃) =  ∑ 𝑤𝑡𝐼𝑡(𝜃)
𝑇
𝑡=1  

and 𝐵̂(𝜃) = ∑ 𝑤𝑡
2𝐼𝑡(𝜃)

𝑇
𝑡=1  and so 𝑣𝑎𝑟̂𝑆(𝜃) = 𝑣𝑎𝑟̂𝑊𝐼(𝜃̂). The sandwich estimate of variance was 

proposed for maximum likelihood estimates of a misspecified model or under missing covariate 

data (White, 1982). Through this work we justify its use as an estimate of the variance of the WEE 

estimator relative to the specified asymptotic paradigm. 

3.4. Distribution of hypothesis test statistic 

A specific application of interest may require a test of hypothesis involving the WEE estimate 

at the current time 𝑇. For example, a process quality manager responsible for checking the 

consistency of multiple parallel gauges may want to monitor a test statistic for the hypothesis that 

the parameters of the model describing the gauge effects are the same. This activity requires an 

approximation for the distribution of a test statistic involving the WEE estimate under a null 

hypothesis versus a specified alternative hypothesis. We assume that the model parameter 𝜃𝑡 does 

not change over time 𝑡 = 1,… , 𝑇. 

Here, we consider a test statistic based on a likelihood ratio (LR), though a Wald or score test 

statistic could also be constructed (Lehmann and Romano, 2005). Consider a partition of the 

parameter vector 𝜃 = 𝜃𝑇 into 𝜃 = (𝛿𝑇 , 𝛼𝑇)𝑇 where 𝛿 is the vector of parameters of interest for 

testing and 𝛼 is the vector of unrestricted parameters. Let the number of independent restrictions 

on parameters in 𝛿 be 𝑟. For example, when monitoring the consistency of 𝑀 binary gauges, 

suppose the parameter 𝛼 represents the pass rate for a baseline gauge and parameter 

𝛿 =  (𝛿1, … , 𝛿𝑀−1)
𝑇 represents the pass rate of the other gauges relative to the baseline. We test 

for consistency across the 𝑀 gauges through a test of the null hypothesis 𝐻0: 𝛿1 =  … = 𝛿𝑀−1 = 0 

versus the alternative 𝐻𝐴: at least one 𝛿1, … , 𝛿𝑀−1 ≠ 0. 

The general null hypothesis of interest is 𝐻0: 𝛿 = 𝛿0. To construct a LR test statistic, we 

estimate 𝜃 = (𝛿𝑇, 𝛼𝑇)𝑇 under the unrestricted model and 𝛼0 when 𝛿 is restricted to 𝛿0. The 

weighted estimating function (3) gives WEE estimates 𝜃 and 𝛼̂0. The WEE approach extends the 
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usual LR test statistic by comparing the weighted log-likelihood contributions by time under the 

unrestricted and restricted models. The WEE LR test statistic is 

 𝑆̂ = 2(∑ 𝑤𝑡𝑙𝑡(𝜃; 𝑑𝑡)
𝑇
𝑡=1 − ∑ 𝑤𝑡𝑙𝑡(𝛿0, 𝛼̂0; 𝑑𝑡)

𝑇
𝑡=1 ) (12) 

at WEE estimates 𝜃 and 𝛼̂0. We consider the distribution of the corresponding random variable 𝑆̃ 

under the null hypothesis and the asymptotic paradigm discussed in Section 3.3. First, we derive 

an approximate distribution for 𝑆̃ when dim(𝜃) = 1, that is in a model with no covariates and a 

single parameter. Later, we show that the result holds when the model has covariates and 

𝐼𝑡(𝜃)

𝑛𝑡
→  𝑔(𝜃); that is, the average expected information in the limit is the same for all 𝑡. 

The likelihood ratio test of the simple null hypothesis 𝐻0: 𝜃 = 𝜃0 against the alternative 

hypothesis 𝐻𝐴: 𝜃 ≠ 𝜃0 is based on the likelihood ratio random variable 

 𝑆̃ = 2(∑ 𝑤𝑡𝑙𝑡(𝜃̃)
𝑇
𝑡=1 − ∑ 𝑤𝑡𝑙𝑡(𝜃0)

𝑇
𝑡=1 )  

Consider the second degree Taylor Series approximation of ∑ 𝑤𝑡𝑙𝑡(𝜃0)
𝑇
𝑡=1  for 𝜃0 near 𝜃,  

 ∑ 𝑤𝑡𝑙𝑡(𝜃0)
𝑇
𝑡=1 ≈ ∑ 𝑤𝑡𝑙𝑡(𝜃̂)

𝑇
𝑡=1 + (𝜃0 − 𝜃)

𝑇
∑ 𝑤𝑡𝑙𝑡

′(𝜃̂)𝑇
𝑡=1 +

1

2
(𝜃0 − 𝜃)

𝑇
∑ 𝑤𝑡𝑙𝑡

′′(𝜃̂)𝑇
𝑡=1 (𝜃0 − 𝜃) 

Since ∑ 𝑤𝑡𝑙𝑡
′(𝜃)𝑇

𝑡=1 = 0 and observed information matrix 𝑖𝑡(𝜃) = −𝑙𝑡
′′(𝜃), then 

 𝑆̂ = 2(∑ 𝑤𝑡𝑙𝑡(𝜃)
𝑇
𝑡=1 − ∑ 𝑤𝑡𝑙𝑡(𝜃0)

𝑇
𝑡=1 ) ≈ √𝑁(𝜃 − 𝜃0)

𝑇 1

𝑁
∑ 𝑤𝑡𝑖𝑡(𝜃)
𝑇
𝑡=1 √𝑁(𝜃 − 𝜃0) 

We extend this result for 𝑆̂ to the random variable 𝑆̃. We consider the case where the model does 

not depend on covariates. Then, 𝑆̃ has the same asymptotic distribution as  

 √𝑁(𝜃̃ − 𝜃0)
𝑇
∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)
𝑇
𝑡=1 √𝑁(𝜃̃ − 𝜃0)   

since 𝐸[𝑖𝑡(𝜃)] = 𝑁𝑐𝑡𝐼(𝜃). In Section 3.3, we show that under regularity conditions and 

consistency,  

 √𝑁(𝜃̃ − 𝜃0)
  𝐷  
→ 𝑁𝑝 (0, (∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)

𝑇
𝑡=1 )

−1
∑ 𝑤𝑡

2𝑐𝑡𝐼(𝜃̃)
𝑇
𝑡=1 (∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)

𝑇
𝑡=1 )

−1
)  as 𝑁 → ∞.  

It follows that   

 √𝑁(𝜃̃ − 𝜃0)
𝑇
(∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)

𝑇
𝑡=1 )(∑ 𝑤𝑡

2𝑐𝑡𝐼(𝜃̃)
𝑇
𝑡=1 )

−1
(∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)

𝑇
𝑡=1 )√𝑁(𝜃̃ − 𝜃0)

  𝐷  
→ 𝜒𝑝

2  

as 𝑁 → ∞. With this asymptotic result, we state an approximation for the distribution of   

𝑆̃~√𝑁(𝜃̃ −  𝜃0)
𝑇
∑ 𝑤𝑡𝑐𝑡𝐼(𝜃̃)
𝑇
𝑡=1 √𝑁(𝜃̃ − 𝜃0) in the case that dim(𝜃) = 1. Since 𝐼(𝜃) is a scalar, 

then 
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 (∑ 𝑤𝑡
2𝑐𝑡

𝑇
𝑡=1 )−1(∑ 𝑤𝑡𝑐𝑡

𝑇
𝑡=1 ) 𝑆̃

  𝐷  
→ 𝜒1

2   as 𝑁 → ∞ 

under the null hypothesis.  

More generally where the model depends on the covariates, we consider the case where the 

average expected information in the limit is the same for all 𝑡 so that 
𝐼𝑡(𝜃)

𝑛𝑡
→ 𝑔(𝜃). In the limit as 

𝑛𝑡 and 𝑁 get large, then  

 𝐼𝑡(𝜃) ≈  𝑛𝑡𝑔(𝜃) ≈ 𝑁𝑐𝑡𝑔(𝜃) 

for each 𝑡 = 1,… , 𝑇. The previous results in Section 3.3 involving 𝐼(𝜃) extend to results involving 

𝑔(𝜃). Then, in the case where 𝑔(𝜃) is a scalar, it follows that 

 (∑ 𝑤𝑡
2𝑐𝑡

𝑇
𝑡=1 )−1(∑ 𝑤𝑡𝑐𝑡

𝑇
𝑡=1 ) 𝑆̃

  𝐷  
→ 𝜒1

2   as 𝑁 → ∞ 

under the null hypothesis. These results extend to the more general case where dim(𝜃) =  𝑝 ≥  1,  

 (∑ 𝑤𝑡
2𝑐𝑡

𝑇
𝑡=1 )−1(∑ 𝑤𝑡𝑐𝑡

𝑇
𝑡=1 ) 𝑆̃

  𝐷  
→ 𝜒𝑝

2   as 𝑁 → ∞ 

under the simple null hypothesis. For testing 𝑟 < 𝑝 restrictions on 𝜃, then we can show by a similar 

argument that  

 (∑ 𝑤𝑡
2𝑇

𝑡=1 𝑐𝑡)
−1(∑ 𝑤𝑡𝑐𝑡

𝑇
𝑡=1 ) 𝑆̃

  𝐷  
→ 𝜒𝑟

2   as 𝑁 → ∞ 

under the null hypothesis. In practice, we replace 𝑐𝑡 by 
𝑛𝑡

𝑁
 and use these results to approximate the 

distribution of the weight-adjusted test statistic 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
𝑆̂. With this asymptotic result, we 

approximate the distribution of the weighted random variable 𝑆̃,  

 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̃ 
approx

~  𝜒𝑝
2   

under a simple null hypothesis. For testing 𝑟 < 𝑝 restrictions on 𝜃, then   

 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̃ 
approx

~  𝜒𝑟
2  (13) 

under the null hypothesis. Note that at the two special cases of weight values described previously, 

(13) gives the usual results using present time data only or all data weighted equally. The extension 

of (13) to the most general case where dim(𝜃) ≥ 1 and the average expected information in the 

limit is not the same for all time periods is not straightforward. This remains as future work. Note 
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that the distribution of the weight-adjusted test statistic in (13) does not change if we scale each 

𝑤𝑡 by the same constant.  

The argument for consistency and the derivations of the approximate results (11) and (13) 

assume that the true value of parameter 𝜃𝑡 is the same across the 𝑡 = 1, … , 𝑇 time periods. The 

general problem of this research expects that the parameter may drift over time and so these results 

are approximations. Since we restrict our focus to slow changes in the parameter over time, then 

we expect that these results are reasonable approximations. In Section 3.6, we show an example 

where the parameter changes slowly over time. Here, the WEE approach with an appropriate 

weight parameter gives an estimate with lower mean squared error than a naïve approach where 

no weights are used. This property holds for a wide variety of problems. 

3.5 Criteria for comparing WEE to alternative approaches 

We consider a criterion for comparing the WEE estimator to the naïve and EWMA estimators 

in this research. Since the objective is to set up a bias/variance trade-off in the estimate of a 

parameter, then we consider the efficiency measure 

  root mean squared error(𝜃̃) = √bias(𝜃̃)
2
+ variance(𝜃̃) 

We refer to root mean squared error as MSE and we prefer the estimator having the minimum 

value of MSE(𝜃̃) over the alternatives. This efficiency measure is widely used in statistical 

learning problems and is closely related to expected prediction error (Hastie, Tibshirani, and 

Friedman, 2009). In Section 4.2 and Section 5.2, the comparison of the efficiency measure across 

estimates from various alternatives is based on simulated data where the true value is known and 

so bias can be computed. We compare WEE to alternative methods based on the sensitivity of 

MSE to the selection of weight values, sample sizes, and the speed of change in the true value of 

the parameter. For the lab positive abnormal rate where we want a test of hypothesis, we compare 

power of test and Type II error among test statistics from various alternatives. 

3.6 Analytic example 

We look at an example of a simple process with multiple streams to look at properties of the 

WEE parameter estimate, the WI estimate of variance, and the WEE LR test statistic. The simple 

process generates binary observations from units in two streams over time. The observations are 

the quantities of passed units 𝑦1𝑡, 𝑦2𝑡 among 𝑛1𝑡, 𝑛2𝑡 units tested at time 𝑡 arising from two gauges 
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performing the same test. The objective is to monitor the difference in the pass rates from the 

gauges over time. The simplicity of the example is convenient for demonstration purposes. Similar 

demonstrations can be made over a wide class of models. 

We consider random variables 𝑌𝑚𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑚𝑡, 𝜋𝑚𝑡) for 𝑚 = 1,2 that we assume are each 

independent over 𝑡 = 1,… , 𝑇. For 𝜋 = 𝜋2 − 𝜋1, the difference of the mean pass rates at the two 

streams at the present time, we want to test the null hypothesis 𝐻0: 𝜋 = 0 versus the alternative 

𝐻𝐴: 𝜋 ≠ 0. We expect that one or both of the true values of the elements of 𝜃𝑡 =  (𝜋1𝑡, 𝜋2𝑡) may 

change slowly over time. 

Assuming that 𝜋𝑚𝑡 = 𝜋𝑚, 𝑚 = 1,2 for each 𝑡, a closed-form solution for the WEE estimate 𝜃 

is possible for this simple example,  

 𝜋̂1 =
∑ 𝑤𝑡𝑦1𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛1𝑡
𝑇
𝑡=1

, 𝜋̂2 =
∑ 𝑤𝑡𝑦2𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛2𝑡
𝑇
𝑡=1

 

The expected information matrix is 𝐼𝑡(𝜃) = [

𝑛1,𝑡

𝜋1(1−𝜋1)
0

0
𝑛2,𝑡

𝜋2(1−𝜋2)

] and so the estimate of variance 

of 𝜃̃ by (11) is  

 𝑣𝑎𝑟̂(𝜋̂𝑚) =
∑ 𝑤𝑡

2𝑛𝑚𝑡 𝜋̂𝑚(1−𝜋̂𝑚)
𝑇
𝑡=1

(∑ 𝑤𝑡𝑛𝑚𝑡 
𝑇
𝑡=1 )

2 , 𝑚 = 1,2 

The parameter of interest to compare the pass rates between the two streams is 𝜋 =  𝜋2 −  𝜋1. Based 

on the preceding estimates,  

  𝜋̂ =
∑ 𝑤𝑡𝑦2𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛2𝑡
𝑇
𝑡=1

−
∑ 𝑤𝑡𝑦1𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛1𝑡
𝑇
𝑡=1

 ,    𝑣𝑎𝑟̂(𝜋̂) = ∑
𝜋̂𝑚(1−𝜋̂𝑚)∑ 𝑤𝑡

2𝑛𝑚𝑡
𝑇
𝑡=1

(∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1 )

2
2
𝑚=1   

To test the hypothesis 𝐻0: 𝜋 = 0, the WEE LR test statistic (12) is  

 
 𝑆̂ = 2∑ (𝑙𝑜𝑔 𝜋̂𝑚 ∑ 𝑤𝑡𝑦𝑚𝑡

𝑇
𝑡=1 + 𝑙𝑜𝑔(1 − 𝜋̂𝑚)∑ 𝑤𝑡(𝑛𝑚𝑡 − 𝑦𝑚𝑡)

𝑇
𝑡=1 )2

𝑚=1

−2 𝑙𝑜𝑔 𝜋̂0∑ ∑ 𝑤𝑡𝑦𝑚𝑡
𝑇
𝑡=1

2
𝑚=1 − 2 𝑙𝑜𝑔(1 − 𝜋̂0)∑ ∑ 𝑤𝑡(𝑛𝑚𝑡 − 𝑦𝑚𝑡)

𝑇
𝑡=1

2
𝑚=1

  

for 𝜋̂1 and 𝜋̂2 as previously stated and 𝜋̂0 =
∑ ∑ 𝑤𝑡𝑦𝑚𝑡

𝑇
𝑡=1

2
𝑚=1

∑ ∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1

2
𝑚=1

 under the null hypothesis. The usual 

MLE estimates involving the historical observations are special cases of these estimates with 

𝑤𝑡 =  1 (or 𝑤𝑡 =
1

𝑇
) for all 𝑡. Based on the parameter and test statistic estimates for this simple 

problem, we consider four properties as follows. 
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i.  the estimate of 𝑣𝑎𝑟(𝜃̃) in (11) is appropriate 

Given the simple model, we estimate 𝑣𝑎𝑟(𝜋̃) directly by the distributions of the random 

variables {𝑌1,𝑡, 𝑌2,𝑡, 𝑡 = 1,… , 𝑇}. The WI estimate of variance by (11) is the same as the closed-

form expression of variance derived directly from the distributions of the random variables. Since 

no asymptotic assumptions are required for the latter formulation, then the weighted information 

estimate of variance is a suitable estimate even when there are small samples for this simple 

example.  

ii.  small sample sizes have less impact on the estimate of 𝑣𝑎𝑟(𝜃̃) based on the WEE approach 

than based EWMA approach  

The estimates of 𝜋 and 𝑣𝑎𝑟(𝜋̃) by the EWMA and WEE approaches are given in Table 3-1.  

Table 3-1. Estimates of 𝜋 and 𝑣𝑎𝑟(𝜋̃) by EWMA and WEE Approaches 

 Estimate of 𝝅 Estimate of variance of 𝝅̃ 

EWMA 𝜋̂𝐸𝑊𝑀𝐴 = ∑ 𝑤𝑡 (
𝑦2𝑡

𝑛2𝑡
−
𝑦1𝑡

𝑛1𝑡
)𝑇

𝑡=1   𝑣𝑎𝑟̂𝐸𝑊𝑀𝐴 = ∑ 𝜋̂𝑚(1 − 𝜋̂𝑚)∑
𝑤𝑡
2

𝑛𝑚𝑡

𝑇
𝑡=1

2
𝑚=1   

WEE 𝜋̂𝑊𝐸𝐸 =
∑ 𝑤𝑡𝑦2𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛2𝑡
𝑇
𝑡=1

−
∑ 𝑤𝑡𝑦1𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛1𝑡
𝑇
𝑡=1

  𝑣𝑎𝑟̂𝑊𝐼 = ∑
𝜋̂𝑚(1−𝜋̂𝑚)∑ 𝑤𝑡

2𝑛𝑚𝑡
𝑇
𝑡=1

(∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1 )

2
2
𝑚=1   

We compare the impact of small samples on these estimates. If there are constant sample sizes 

across time periods, 𝑛1𝑡 = 𝑛1 and 𝑛2𝑡 = 𝑛2 for all 𝑡, then 𝜋̂𝐸𝑊𝑀𝐴 =  𝜋̂𝑊𝐸𝐸 and 𝑣𝑎𝑟̂𝐸𝑊𝑀𝐴 =  𝑣𝑎𝑟̂𝑊𝐼. 

We discussed this property of equal variance estimates in the comparison of effective sample sizes 

in Section 3.2. The two approaches are equivalent when the sample sizes are the same across all 

time periods. 

Consider the case where one sample size by time period is different. Specifically, let the sample 

size at the current time period 𝑇 be one tenth as large as the rest so 𝑛1𝑡 = 𝑛1 and 𝑛2𝑡 =  𝑛2 for 

𝑡 =  1, … , 𝑇 −  1 and 𝑛1𝑇 = 0.1𝑛1 and 𝑛2𝑇 = 0.1𝑛2. The estimates for 𝜋 are different in this case,  

 𝜋̂𝐸𝑊𝑀𝐴 = ∑ 𝑤𝑡 (
𝑦2𝑡

𝑛2
−
𝑦1𝑡

𝑛1
)𝑇−1

𝑡=1 + 10𝑤𝑇 (
𝑦2𝑇

𝑛2
−
𝑦1𝑇

𝑛1
)  

 𝜋̂𝑊𝐸𝐸 =
∑ 𝑤𝑡𝑦2𝑡
𝑇
𝑡=1

𝑛2(∑ 𝑤𝑡
𝑇−1
𝑡=1 +0.1𝑤𝑇)

−
∑ 𝑤𝑡𝑦1𝑡
𝑇
𝑡=1

𝑛1(∑ 𝑤𝑡
𝑇−1
𝑡=1 +0.1𝑤𝑇)

 

The estimates of variance of 𝜋̃ by the two approaches are 
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 𝑣𝑎𝑟̂𝐸𝑊𝑀𝐴 = ∑
𝜋̂𝑚(1−𝜋̂𝑚)

𝑛𝑚

2
𝑚=1 (∑ 𝑤𝑡

2𝑇−1
𝑡=1 + 10𝑤𝑇

2)  

  𝑣𝑎𝑟̂𝑊𝐼 = ∑
𝜋̂𝑚(1−𝜋̂𝑚)

𝑛𝑚

2
𝑚=1

∑ 𝑤𝑡
2𝑇−1

𝑡=1 +0.1𝑤𝑇
2

(∑ 𝑤𝑡 
𝑇−1
𝑡=1 +0.1𝑤𝑇)

2 

Note that for 𝑤𝑇 = 1 and 𝑤𝑡 = 0 for 𝑡 < 𝑇, then 𝑣𝑎𝑟̂𝐸𝑊𝑀𝐴 = 𝑣𝑎𝑟̂𝑊𝐼. Otherwise, for 0 < 𝑤𝑡 < 1 

for all 𝑡, then 𝑣𝑎𝑟̂𝐸𝑊𝑀𝐴 > 𝑣𝑎𝑟̂𝑊𝐼. Except in the naïve approach using present time data only, the 

estimate of variance of the EWMA estimator is larger than the estimate of variance of the WEE 

estimator. By extension, with a small sample size at any time period, there is less precision in the 

EWMA estimate of 𝜃 than in the estimate by the WEE approach. 

iii.  the WEE estimate and WI estimate of 𝑣𝑎𝑟(𝜃̃) is suitable with small changes in 𝜃𝑡 over time 

periods 𝑡 = 1,… , 𝑇 

We study the effect of a change in true value 𝜋 on the 𝑏𝑖𝑎𝑠(𝜋̃) = 𝐸(𝜋̃) − 𝜋 and 𝑣𝑎𝑟̂(𝜋̃). For 

this study, we choose arbitrary values: 

 𝑇 = 10 time periods of data observed 

 sample sizes 𝑛1𝑡 = 𝑛1 = 100 and 𝑛2𝑡 = 𝑛2 = 60 for all 𝑡 = 1,… , 𝑇 

 stream 2 experiences a positive step change in rate 𝜋2𝑡 of size Δ at time 𝑡 = 6 

Streams 1 and 2 have the same initial pass rates, so 𝜋1,1 = 𝜋2,1. We vary initial values 𝜋1,1 =  𝜋2,1 

and size of change Δ = 𝜋2,6 − 𝜋2,5 to compare the properties of the WEE estimator over various 

profiles. Note that under a change in pass rate at stream 2, the true value of 𝜋2,𝑡 is 𝜋2,1 for 𝑡 < 6 

and 𝜋2,1 + Δ for 𝑡 ≥ 6. Then, the quantity 𝐸(𝑌2𝑡) in 𝐸(𝜋̃) and 𝐼𝑡(𝜋̃) depends on 𝑡 and the size of 

the change Δ for 𝑡 ≥ 6. At the present time 𝑇 =  10, the expected value of estimator 𝜋̃ is 

𝐸(𝜋̃; Δ) =  𝐸 (
∑ 𝑤𝑡𝑌2𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛2𝑡
𝑇
𝑡=1

−  

∑ 𝑤𝑡𝑌1𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛1𝑡
𝑇
𝑡=1

) = 𝜋2,1 + Δ∑ 𝑤𝑡
10
𝑡=6 − 𝜋1,1 and its true value is 

𝜋 =  𝜋2,1 +  Δ − 𝜋1,1. The bias in estimator 𝜋̃ at time 𝑇 is 

 𝑏𝑖𝑎𝑠(𝜋̃; Δ) = Δ(∑ 𝑤𝑡
10
𝑡=6 − 1)  

The weighted information estimate of variance of 𝜋̃ based on (11) is  

  𝑣𝑎𝑟̂𝑊𝐼(𝜋̃; Δ) =
𝜋̂1,1(1−𝜋̂1,1)∑ 𝑤𝑡

210
𝑡=1

𝑛1
+

1

𝜋̂2,1(1−𝜋̂2,1)
∑ 𝑤𝑡

25
𝑡=1 +

1

(𝜋̂2,1+Δ)(1−𝜋̂2,1−Δ)
∑ 𝑤𝑡

210
𝑡=6

𝑛2(
1

𝜋̂2,1(1−𝜋̂2,1)
∑ 𝑤𝑡
5
𝑡=1 +

1

(𝜋̂2,1+Δ)(1−𝜋̂2,1−Δ)
∑ 𝑤𝑡
10
𝑡=6 )

2  

We study the bias and variance of the WEE estimator through root mean squared error for various 

sizes of change, Δ. We calculate MSE(𝜋̃, Δ) for values of 𝜋1,1 = 𝜋2,1 in the range of 0.02 to 0.20 
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and values of Δ in the range of 25% to 100% of each of the starting values 𝜋1,1 =  𝜋2,1. Figure 3-1 

gives contour plots of the relatives values of MSE for the values of 𝜋1,1 =  𝜋2,1 and Δ. The relative 

values compare MSE for the WEE estimator with weight parameter 𝜆 = 0.1 to that of each of the 

two naïve estimators having limiting values of the weight parameters. 

(a)  

(b)  

Figure 3-1. Contour plots of relative 𝑀𝑆𝐸 vs. pass rates 𝜋1,1 = 𝜋2,1 and size of step change: 

(a)  relative 𝑀𝑆𝐸 = 𝑀𝑆𝐸WEE / 𝑀𝑆𝐸naïve, λ→1, (b) relative 𝑀𝑆𝐸 = 𝑀𝑆𝐸WEE / 𝑀𝑆𝐸naïve, 𝜆→0 

Figure 3-1 shows that the WEE estimator has lower MSE than either of the naïve estimators for 

most of the values of 𝜋1,1 = 𝜋2,1 and Δ. The advantage of the WEE estimator over the estimator 

based on present time data only is more important when the change in the parameter is small and 

present time sample size is small. The advantage of the WEE estimator over the estimator based 

on all historical data weighted equally is more pronounced for larger changes in the parameter. We 

see that the WEE estimator provides a trade-off between bias and variance relative to the two naïve 

approaches for this simple example. 

0.4                    0.6                     0.8  

0.8

  

1.0

  

0.9
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For this simple example, we also calculate variance by the distributions of the random variables 

{𝑌1𝑡, 𝑌2𝑡, 𝑡 = 1,… , 𝑇}. At the present time 𝑇 = 10, the variance of estimator 𝜋̃ is  

 

 𝑣𝑎𝑟𝑑𝑖𝑠𝑡(𝜋̃; 𝛥) = 𝑣𝑎𝑟 (
∑ 𝑤𝑡𝑌2𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛2𝑡
𝑇
𝑡=1

−
∑ 𝑤𝑡𝑌1𝑡
𝑇
𝑡=1

∑ 𝑤𝑡𝑛1𝑡
𝑇
𝑡=1

)

=
∑ 𝑤𝑡

2𝜋1,1(1−𝜋1,1)
𝑇
𝑡=1

𝑛1
+
∑ 𝑤𝑡

2𝜋2,1(1−𝜋2,1)
5
𝑡=1 +∑ 𝑤𝑡

2(𝜋2,1+𝛥)(1−𝜋2,1−𝛥)
10
𝑡=6

𝑛2

  

We compare the two variances by the ratio of standard deviations which we denote as 

𝑒(𝜋̃, Δ) =  

√𝑣𝑎𝑟̂𝑊𝐼(𝜋̃;Δ)

√𝑣𝑎𝑟𝑑𝑖𝑠𝑡(𝜋̃;Δ)
. Figure 3-2 gives a contour plot of the values of 𝑒(𝜋̃, Δ) for the WEE 

estimator with weight parameter 𝜆 = 0.1. 

 

Figure 3-2. Contour plot of 𝑒(𝜋̃, 𝛥) by 𝜋1,1 = 𝜋2,1 and  

Figure 3-2 shows that 𝑣𝑎𝑟̂𝑊𝐼(𝜋̃; Δ) and the variance based on the distributions of 

{𝑌1𝑡, 𝑌2𝑡, 𝑡 =  1, … , 𝑇} are close for these values of 𝜋1,1 = 𝜋2,1 and Δ. We see that the weighted 

information variance using WEE estimates is a good estimate of variance for this simple example, 

especially when there is a small change in the parameter.  

iv.  the distribution of the weight-adjusted random variable, 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̃, is approximately 𝜒𝑟
2 

At time 𝑡, consider a test of null hypothesis 𝐻0: 𝜋 = 0 versus the alternative hypothesis 

𝐻𝐴: 𝜋 ≠  0. We show by properties of the random variables that 𝐸 (
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̃) = 1 under the null 

hypothesis which agrees with the first moment of the distribution in (13). We validate the second 

and third moments and 95th percentile of the distribution in (13) through comparison to 

approximate distributions based on simulated data. Table 3-2 confirms that the approximate 

0.92   

     

 

0.94  

 

 

0.96 

   

  0.98 
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distribution 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̃ 
approx

~ 𝜒1
2 is suitable when 𝑁 is very large (𝑁 = 1 × 107) and a useful 

approximation when 𝑁 is small (𝑁 = 100). The details that follow in this section may be skipped 

by the reader.  

We approximate a distribution for 𝑆̃ in order to test a hypothesis based on test statistic 𝑆̂. The 

random variable 𝑆̃ in terms of random variables 𝑌𝑚𝑡, sample sizes 𝑛𝑚𝑡, and weights 𝑤𝑡, 

𝑡 =  1, … , 𝑇,𝑚 = 1,2 is 

𝑆̃ = 2∑ ∑ 𝑤𝑡 (𝑌𝑚𝑡 𝑙𝑜𝑔
𝜋̃𝑚

𝜋̃𝑛𝑢𝑙𝑙
+ (𝑛𝑚𝑡 − 𝑌𝑚𝑡) 𝑙𝑜𝑔 (

1−𝜋̃𝑚

1−𝜋̃𝑛𝑢𝑙𝑙
))𝑇

𝑡=1
2
𝑚=1   

We approximate 𝑆̃ through second order Taylor Series approximations for those terms involving 

logarithms of the random variables: 

 log (𝑥) for ∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1  around ∑ 𝑤𝑡𝜋𝑚𝑛𝑚𝑡

𝑇
𝑡=1  for 𝑚 = 1,2 

 log (𝑥) for ∑ ∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1

2
𝑚=1  around (

𝜋1+𝜋2

2
)∑ ∑ 𝑤𝑡𝑛𝑚𝑡

𝑇
𝑡=1

2
𝑚=1  

𝑆̃ ≈ 2∑ (
(∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1 )

2

𝜋𝑚∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1

− (1 − 𝑙𝑜𝑔 𝜋𝑚)∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1 −

∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1 (∑ 𝑤𝑡(𝜋𝑚𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1 )

2

2𝜋𝑚
2 (∑ 𝑤𝑡𝑛𝑚𝑡

𝑇
𝑡=1 )

2 )2
𝑚=1

−2∑ (
∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1 ∑ 𝑤𝑡(𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1

(1−𝜋𝑚)∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1

+ (
𝜋𝑚

1−𝜋𝑚
+ 𝑙𝑜𝑔(1 − 𝜋𝑚))∑ 𝑤𝑡(𝑛𝑚𝑡 − 𝑌𝑚𝑡)

𝑇
𝑡=1 )2

𝑚=1

−2∑
∑ 𝑤𝑡(𝑛𝑚𝑡−𝑌𝑚𝑡)
𝑇
𝑡=1 (∑ 𝑤𝑡(𝜋𝑚𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1 )

2

2(1−𝜋𝑚)2(∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1 )

2
2
𝑚=1 + 2

(∑ ∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1

2
𝑚=1 )

2

∑
𝜋𝑚
2

2
𝑚=1 ∑ ∑ 𝑤𝑡𝑛𝑚𝑡

𝑇
𝑡=1

2
𝑚=1

−2(1 − 𝑙𝑜𝑔 (∑
𝜋𝑚

2
2
𝑚=1 ))∑ ∑ 𝑤𝑡𝑌𝑚𝑡

𝑇
𝑡=1

2
𝑚=1 − 2

∑ ∑ 𝑤𝑡𝑌𝑚𝑡
𝑇
𝑡=1

2
𝑚=1 ∑ ∑ 𝑤𝑡(𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1

2
𝑚=1

(∑
1−𝜋𝑚
2

2
𝑚=1 )∑ ∑ 𝑤𝑡𝑛𝑚𝑡

𝑇
𝑡=1

2
𝑚=1

+2(
∑ 𝜋𝑚
2
𝑚=1

∑ 1−𝜋𝑚
2
𝑚=1

+ 𝑙𝑜𝑔 (∑
1−𝜋𝑚

2
2
𝑚=1 ))∑ ∑ 𝑤𝑡(𝑛𝑚𝑡 − 𝑌𝑚𝑡)

𝑇
𝑡=1

2
𝑚=1

−2(
∑ ∑ 𝑤𝑡(𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1

2
𝑚=1

2(∑
1−𝜋𝑚
2

2
𝑚=1 )

2 +
∑ ∑ 𝑤𝑡𝑌𝑚𝑡

𝑇
𝑡=1

2
𝑚=1

2(∑
𝜋𝑚
2

2
𝑚=1 )

2 )
(∑ ∑ 𝑤𝑡((∑

𝜋𝑚
2

2
𝑚=1 )𝑛𝑚𝑡−𝑌𝑚𝑡)

𝑇
𝑡=1

2
𝑚=1 )

2

(∑ ∑ 𝑤𝑡𝑛𝑚𝑡
𝑇
𝑡=1

2
𝑚=1 )

2

  

We find the expected value of the approximation for 𝑆̃ based on the assumptions 

𝑌1𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛1𝑡, 𝜋1), 𝑌2𝑡~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛2𝑡, 𝜋2), and 𝑌1𝑡, 𝑌2𝑡 independent for each 𝑡. Under the 

null hypothesis with 𝜋 =  𝜋1 −  𝜋2 =  0, then 𝐸[𝑆̃] ≈
∑ 𝑤𝑡

2𝑇
𝑡=1 𝑛𝑡

∑ 𝑤𝑡
𝑇
𝑡=1 𝑛𝑡

  and 𝐸 [
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
𝑆̃] ≈ 1.  

We validate higher moments of the distribution of 𝑆̃ through simulation. We consider the 

empirical distribution of 𝑆̂ for 100,000 datasets that are generated with 𝑇 = 10, 𝜋1 = 𝜋2 = 0.04, 

𝜆 = 0.1, and 𝑛1𝑡 = 𝑛1, 𝑛2𝑡 = 𝑛2 for all 𝑡. We repeat the simulation study for large 𝑁 = 1 × 107 

and small 𝑁 = 100. Table 3-2 gives the empirical moments of the distributions of 𝑆̂. 
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Table 3-2. Moments of approximate distributions of weight-adjusted hypothesis test statistic 

Approximate 

Distribution 
Mean Variance Skew 95th percentile 

∑ 𝒘𝒕
𝑻
𝒕=𝟏 𝒏𝒕

∑ 𝒘𝒕
𝟐𝑻

𝒕=𝟏 𝒏𝒕
𝑺̃~𝝌𝟏

𝟐 1 2 2.828 3.841 

simulated distribution 

with 𝑵 = 𝟏 × 𝟏𝟎𝟕 
1.000 2.008 2.852 3.860 

simulated distribution 

with 𝑵 = 𝟏𝟎𝟎 
1.019 2.086 2.869 3.914 

Table 3-2 shows that the empirical distributions based on simulations are close to the 

approximation distribution given in (13) for this simple example under the select simulation 

conditions. This simple example is convenient for demonstrating the properties of the WEE 

estimator and the approximations for the variance and hypothesis test statistic estimates. Similar 

demonstrations can be made over a wide class of models.   

3.7 SAS routines 

The weighted estimating equations corresponding to the estimating functions in (3) can be 

solved in most regression programs that allow for weights. In SAS, the weighted estimating 

equations can be solved using PROC GENMOD. Details on this procedure and other resources to 

use SAS are available at “Resources to help you learn and use SAS” (n.d.). Consider an example 

dataset called SAMPLE_DATA with one row for each subject that is observed. The dataset 

contains fields for an index ‘case’, covariate values ‘𝑥1, 𝑥2’, {𝑤𝑡} ‘weights’, outcome ‘𝑦’. The 

parameter to estimate includes elements for the mean outcome for a baseline subject and two 

covariates effects, 𝜃𝑇 = (𝛼𝑇 , 𝛽1,𝑇 , 𝛽2,𝑇). The SAS statements to estimate 𝜃 = 𝜃𝑇 by the WEE 

approach assuming a binomial GLM with a logit link function for SAMPLE_DATA are given in 

Figure 3-3. This SAS PROC GENMOD routine also provides the weighted information estimate 

of the variance of 𝜃 given in (7). 

 



Chapter 3: Weighted Estimating Equations Approach 

 

56 

 

Figure 3-3. SAS code for WEE analysis of an example dataset 

The SAS GENMOD procedure is used in other applications to solve modifications of a GLM, such 

as a weighted response reflecting prior knowledge of varying dispersion among the data.  

The SAS PROC GENMOD procedure also computes the WEE likelihood ratio test statistic for 

the null hypothesis 𝐻0: 𝛿1 = 𝛿2 = ⋯ = 𝛿6 = 0 versus the alternative 𝐻𝐴: at least one element of 

𝛿𝑇 ≠ 0. The dataset contains fields for indicator variables 𝑚1,… ,𝑚6 to indicate the stream 𝑚 

where an observation is made. The SAS code to estimate the WEE LR test statistic in (12) 

assuming a binomial model of the response for dataset SAMPLE_DATA is given in Figure 3-4. 

 

Figure 3-4. SAS code for WEE estimate of test statistic for 𝐻0 vs. 𝐻𝐴  

The convenience of the existing software functionality for solving the weighted estimating 

equations and calculating the hypothesis test statistic makes it convenient to implement the WEE 

approach and update the estimates over time. 

The discussion of the WEE approach in Chapter 3 give all of the aspects that are necessary for 

applying the approach to the motivating applications of this research. In Chapters 4, 5, and 6 we 

apply this approach to real, realistic, and simulated datasets in order to explore the impact that the 

WEE approach can have over current industry practices.   

PROC GENMOD data=SAMPLE_DATA order=internal descending; 

class case; 

weight weights; 

MODEL y = x1 x2 / expected dist=binomial; 

repeated subject=case / type=ind ecovb; 

 ods output GEEEmpPEst=theta_est GEERCov=covmatrix_est; 

RUN; 

PROC GENMOD data=SAMPLE_DATA descending; 

 weight weights; 

 freq freq; 

 MODEL y = Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 / dist=binomial; 

 contrast 'LR' Lab1 1, Lab2 1, Lab3 1, Lab4 1, Lab5 1, Lab6 1;  

RUN;  
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Chapter 4: Customer Loyalty Measure 

One popular business management philosophy prioritizes actions for driving growth around 

improving customer loyalty (Reichheld and Markey, 2011). The measure known as Net Promoter 

Score (𝑁𝑃𝑆) is commonly used to focus process and product improvements to drive customer 

loyalty and achieve business success. The estimate of this measure is based on customer responses 

to a survey asking the ultimate question, “On a scale of 0-10, how likely is it that you would 

recommend this company or product to a friend or colleague?” The customer’s response classifies 

them into one of the three categories 

i. detractors who respond six or below 

ii. passives who respond seven or eight 

iii. promoters who respond nine or ten 

The quantity 𝑁𝑃𝑆 is defined as the difference between the proportions of customers who are 

promoters and detractors. Increasing the proportion of customers who are promoters, decreasing 

the proportion of detractors, or doing both simultaneously increases the value of 𝑁𝑃𝑆. Publicly 

available information such as NPS Benchmarks (2014) shows that many diverse companies report 

𝑁𝑃𝑆 quantities as a measure of business performance. Efficient estimation of 𝑁𝑃𝑆 is thus a topic 

of importance.  

The management consulting firms, Bain & Company and Satmetrix, provide insights into best 

practises for shaping a business through driving observed 𝑁𝑃𝑆 values to targets; however, little is 

written on analysis considerations. Markey, Reichheld, and Dullweber (2013) recommend, “You 

can analyse 𝑁𝑃𝑆 by business, region, or any other subcategory, and you can track it from week to 

week to see how your loyalty-building efforts are working.” Done this way, 𝑁𝑃𝑆 estimates are 

based on observed proportions of promoters and detractors among respondents in various streams 

(e.g. region) by week. The current industry practice is a naïve estimate for 𝑁𝑃𝑆 based on sample 

proportions among the most recent sample (Markey et al., 2013) Estimates by time period are then 

compared to benchmarks and targets and tracked in a trend chart over time as seen in the example 

for a telecommunications application in Figure 4-1 (Nowinski, 2009). 
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Figure 4-1. Net Promoter Score analysis for a telecommunications application  

In a typical presentation such as Figure 4-1, little or no attention is paid to the impact of sample 

size, covariate effects, and changing populations over time. Depending on the survey design and 

fluctuations in response rates, small samples are likely in some time periods. We draw on data 

from multiple time periods to reduce uncertainty. In the common situation where performance 

drifts over time, a present time estimate that uses present and historical data is biased. We illustrate 

the application of the WEE approach to set up a bias/variance trade-off in the present time estimate 

of 𝑁𝑃𝑆 with a smartphone customer loyalty example drawn from the author’s experience. Further, 

we study a simulated dataset in order to compare the WEE approach to competing alternatives. 

We follow the notation and model for this application given in Table 1-1.  

4.1. Smartphone Net Promoter Score  

We study the estimates from the weighted estimating equations approach with a realistic 

customer loyalty dataset from weekly surveys by a smartphone vendor. We expect that overall 

customer loyalty drifts slowly from week to week in an unpredictable way due to the effect of 

improvement efforts and other factors not included in our dataset. As well, data are observed from 

different individuals among a changing customer population. In order to reliably compare 

estimates across time, we adjust the present time estimate of the parameter for the different 

covariate distributions among the samples. Further, we illustrate a test to compare estimates across 

levels of a covariate of interest.  
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Data 

The data arising from customers’ responses to the survey asking the ultimate question are 

described in Section 1.1. The dataset contains sample responses from 19,981 customers over 42 

weeks. The number of customers responding by week over this period, 𝑛𝑡, 𝑡 = 1,… ,42, is given 

in Figure 4-2. 

 

Figure 4-2. Smartphone customer loyalty dataset: sample size by week 

Figure 4-2 shows that the number of customer responses by week varies considerably. There are 

as few as 4 customer responses and as many as 2000 responses in one week. There are 175 

customer responses in the current week. For each sample, we observe the categorized customer 

response to the ultimate question taking a value from 

𝑦 =  
{1 (detractor), 2 (passive), 3 (promoter)}. In addition to the response, we also observe two 

covariate values for each customer: their product variant and the amount of time since their 

purchase of the product (tenure). The indicator variables 𝑥1, 𝑥2, 𝑥3 describe the product variant and 

the interval variable 𝑥4 describes the tenure. The levels of these variables and the baseline level of 

the covariates are described in Section 1.4.  

Estimation by weighted estimating equations  

We use the WEE approach since some sample sizes are small and we expect that the mean 

proportions of detractors and promoters among customers having some fixed values of the 

covariates may drift over time in an unpredictable way. In Section 1.3, we list two possible 

standard populations of interest for this application. The field population refers to the actual values 

of the covariates among all current customers. These are known for a smartphone vendor with 
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access to sales and service records. For the example under study having 10,000 present customers, 

the distribution of their covariate values is given in Table 4-1.  

Table 4-1. Field population distribution for 10,000 customers 

 

 

Tenure [months] 

[0-2] [2-6] [6-12] [12-18] [18-24] [24+] 

Product 

variant 

1 5 21 95 92 289 1071 

2 20 67 353 490 557 743 

3 64 228 1188 931 522 227 

4 524 1379 1133 1 0 0 

With the quantities in Table 4-1 we define the standard population {𝑥𝑗∗ = (𝑥1,𝑗∗ , … , 𝑥4,𝑗∗)
𝑇
 for 

𝑗∗ = 1,… ,10,000}.  

Table 1-1 introduces the GLM that is selected for this problem based on 𝜋1 and 𝜋3 as the 

multinomial proportions of responses 1 (detractor) and 3 (promoter), respectively. We assume that 

the random variables are independent across 𝑡 = 1,… , 𝑇, conditional on the values of the 

covariates. The mean level of the two proportions at the baseline level of the covariates are 

modelled by 𝛼1 and 𝛼2, respectively. The effects of the three product variants relative to the 

baseline value are modelled by 𝛽1, 𝛽2, 𝛽3 and tenure is modelled by 𝛽4. For customer 𝑗 observed 

at time 𝑡 having covariate value 𝑥𝑗𝑡 , the multinomial proportions relate to the model parameter 

𝜃𝑡 =  (𝛼1,𝑡, 𝛼2,𝑡, 𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡, 𝛽4,𝑡)
𝑇
 through the inverse link functions 

 

𝜋1,𝑗𝑡(𝜃𝑡; 𝑑𝑡) =
exp(𝛼1,𝑡+𝛽1,𝑡𝑥1,𝑗𝑡+𝛽2,𝑡𝑥2,𝑗𝑡+𝛽3,𝑡𝑥3,𝑗𝑡+𝛽4,𝑡𝑥4,𝑗𝑡)

1+exp(𝛼1,𝑡+𝛽1,𝑡𝑥1,𝑗𝑡+𝛽2,𝑡𝑥2,𝑗𝑡+𝛽3,𝑡𝑥3,𝑗𝑡+𝛽4,𝑡𝑥4,𝑗𝑡)

𝜋3,𝑗𝑡(𝜃𝑡; 𝑑𝑡) =
1

1+exp(𝛼2,𝑡+𝛽1,𝑡𝑥1,𝑗𝑡+𝛽2,𝑡𝑥2,𝑗𝑡+𝛽3,𝑡𝑥3,𝑗𝑡+𝛽4,𝑡𝑥4,𝑗𝑡)

 (14) 

The proportional odds property assumes that the effect of the covariates is identical for the two 

logits. In this example, we assume that the covariate effects 𝛽𝑡 = (𝛽1,𝑡, 𝛽2,𝑡, 𝛽3,𝑡, 𝛽4,𝑡)
𝑇
  are fixed 

over time, but one or both elements of 𝛼𝑡 = (𝛼1,𝑡, 𝛼2,𝑡)
𝑇
  may change slowly due to the influence 

of other factors affecting customer loyalty over time. The log-likelihood function describing the 

probability of data 𝑑𝑡 =  {(𝑥𝑗𝑡 , 𝑦𝑗𝑡), 𝑗 =  1,… , 𝑛𝑡} including all observations at time period 𝑡 is  

𝑙𝑡(𝜃𝑡; 𝑑𝑡) = ∑ 𝐼[𝑦𝑗𝑡 = 1] log 𝜋1,𝑗𝑡 + 𝐼[𝑦𝑗𝑡 = 2] log(1 − 𝜋1,𝑗𝑡 − 𝜋3,𝑗𝑡) + 𝐼[𝑦𝑗𝑡 = 3] log 𝜋3,𝑗𝑡
𝑛𝑡
𝑗=1   

   (15) 
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for indicator variables 𝐼[𝑦𝑗𝑡 = 1], 𝐼[𝑦𝑗𝑡 = 2], and 𝐼[𝑦𝑗𝑡 = 3].  

We select weights {𝑤𝑡, 𝑡 = 1,… , 𝑇} by (10) with weight parameter value 𝜆 = 0.1. The WEE 

estimates are compared to the estimates of the naïve approach using the two special cases of the 

weights described in Section 3.1. 

Under (3), the weighted estimating function vector of length 6 is  

 

𝑄(𝜃; 𝑑, 𝑤) = ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
𝑇
𝑡=1

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∑ 𝑤𝑡∑ 𝐼 [𝑦

𝑗𝑡
= 1] (1 − 𝜋3,𝑗𝑡) +

𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)−𝜋1,𝑗𝑡(1−𝜋1,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 − 𝜋1,𝑗𝑡)

𝑛𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡∑ 𝑥1,𝑗𝑡 (𝐼 [𝑦𝑗𝑡 = 1] (1 − 𝜋3,𝑗𝑡) +
𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)−𝜋1,𝑗𝑡(1−𝜋1,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 − 𝜋1,𝑗𝑡))

𝑛𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡∑ 𝑥2,𝑗𝑡 (𝐼 [𝑦𝑗𝑡 = 1] (1 − 𝜋3,𝑗𝑡) +
𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)−𝜋1,𝑗𝑡(1−𝜋1,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 − 𝜋1,𝑗𝑡))

𝑛𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡∑ 𝑥3,𝑗𝑡 (𝐼 [𝑦𝑗𝑡 = 1] (1 − 𝜋3,𝑗𝑡) +
𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)−𝜋1,𝑗𝑡(1−𝜋1,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 − 𝜋1,𝑗𝑡))

𝑛𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡∑ 𝑥4,𝑗𝑡 (𝐼 [𝑦𝑗𝑡 = 1] (1 − 𝜋3,𝑗𝑡) +
𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)−𝜋1,𝑗𝑡(1−𝜋1,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 − 𝜋1,𝑗𝑡))

𝑛𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡∑ (1 − 𝐼 [𝑦
𝑗𝑡
= 1])  

𝜋3,𝑗𝑡(1−𝜋3,𝑗𝑡)

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
− 𝐼 [𝑦

𝑗𝑡
= 3] (1 +

𝜋1,𝑗𝑡𝜋3,𝑗𝑡

1−𝜋1,𝑗𝑡−𝜋3,𝑗𝑡
)

𝑛𝑡
𝑗=1

𝑇
𝑡=1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

     

   (16) 

given the present time value of the parameter, 𝜃 = 𝜃𝑇 = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3, 𝛽4)
𝑇, data 

𝑑 =  {𝑑𝑡, 𝑡 =  1,… , 𝑇}, weights 𝑤 = {𝑤𝑡, 𝑡 = 1,… , 𝑇}, and inverse link functions 𝜋1(𝜃𝑡; 𝑑𝑡) and 

𝜋3(𝜃𝑡; 𝑑𝑡).  

The WEE estimate 𝜃 is the solution of 𝑄(𝜃; 𝑑, 𝑤) = 0. Through (11), we estimate the weighted 

information estimate of variance, 𝑣𝑎𝑟̂(𝜃̃; 𝜃), involving 𝐼𝑡(𝜃) which is the expected information 

function at each time period evaluated at the WEE estimate. With estimate 𝜃, we use Table 2-1 to 

compute the proportions estimates 𝜋̂1,𝑗∗  and 𝜋̂3,𝑗∗ for each of the standard population customers 

𝑗∗ =  {1, … ,10,000} given {𝑥𝑗∗} and to compute the estimates 𝜋̂1 and 𝜋̂3 for the entire standard 

population. Then, the estimate of 𝑁𝑃𝑆 for the standard population at time 𝑇 is 𝑁𝑃𝑆̂ = 𝜋̂3 − 𝜋̂1. 

Similarly, with estimate 𝑣𝑎𝑟̂(𝜃), we compute estimates 𝑣𝑎𝑟̂(𝜋̂1,𝑗∗) and 𝑣𝑎𝑟̂(𝜋̂3,𝑗∗) through (5) 

and estimates 𝑣𝑎𝑟̂(𝜋̂1) and 𝑣𝑎𝑟̂(𝜋̂3) through (4). Additionally, we require 𝑐𝑜𝑣𝑎𝑟̂(𝜋̂1,𝑗∗ , 𝜋̂3,𝑗∗) 

which we compute through the multivariate delta method (Casella and Berger, 2002) in order to 

get estimates 𝑐𝑜𝑣𝑎𝑟̂(𝜋̂1, 𝜋̂3) and 𝑣𝑎𝑟̂(𝑁𝑃𝑆̂). 
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Results 

We compare the WEE estimate for 𝑁𝑃𝑆 to those by the naïve and the EWMA approaches. For 

the two naïve approaches, estimates 𝜋̂1,𝑗∗  and 𝜋̂3,𝑗∗ and estimates of their variances are calculated 

through the WEE approach with one of the limiting values of the weight parameter. For the EWMA 

approach, estimates 𝜋̂1,𝑗∗𝑡 and 𝜋̂3,𝑗∗𝑡  are MLE estimates based on data at each time period and 

combined across time with weights. Estimates of the variances of 𝜋̂1,𝑗∗ and 𝜋̂3,𝑗∗ are calculated 

from the estimates of the variances of each 𝜋̂1,𝑗∗𝑡 and 𝜋̂3,𝑗∗𝑡 , 𝑡 = 1, … , 𝑇. 

The naïve approach commonly used in practice (Markey et al., 2013) estimates 𝑁𝑃𝑆 based on 

present time data only without attention to the values of the covariates among customers in the 

sample. Here, estimates 𝜋̂1 and 𝜋̂3 are sample proportions. Clearly, these estimates do not account 

for a changing customer population. Since covariate levels are discrete in this application, then a 

better non-parametric approach involving the standard population is to estimate 𝜋1,𝑗∗  and 𝜋3,𝑗∗ 

based on observations among customers having the same covariate values as standard population 

subject 𝑗∗. Variances of the sample proportion estimates are estimated by usual methods. The 

estimate of variance is large when there are few observations having covariate value 𝑥𝑗∗  and the 

approach is infeasible when no similar customers are observed. The other naïve approach involves 

sample proportions estimates 𝜋̂1,𝑗∗ and 𝜋̂3.𝑗∗ based on the aggregate of historical data weighted 

equally. Here, the number of observations having covariate value 𝑥𝑗∗ is larger. The non-parametric 

EWMA approach involves sample proportion estimates 𝜋1,𝑗∗𝑡 and 𝜋3,𝑗∗𝑡 across time periods. The 

various approaches are summarized in Table 2-1.   

With estimates 𝜋̂1,𝑗∗ and 𝜋̂3.𝑗∗  by a non-parametric or a GLM-based approach, an estimate of 

𝑁𝑃𝑆 is possible for any standard population. We study estimates for the field population of 10,000 

customers at week 42 defined in Table 4-1. Figure 4-3 shows estimates 𝑁𝑃𝑆̂ and the corresponding 

95% confidence interval based on 𝑣𝑎𝑟̂(𝑁𝑃𝑆̂) assuming normality.  
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Figure 4-3. Estimates of field population 𝑁𝑃𝑆 by various approaches 

Figure 4-3 shows that the estimate by the recommended WEE approach (𝜆 = 0.1) has less 

uncertainty than those estimates using present time data only. Its uncertainty is comparable to those 

of the other two estimates by the WEE formulation that use all historical data. There are some 

differences between the estimates by the various approaches, but we are unable to assess bias since 

the true value is unknown. The advantage of the recommended WEE approach over the other 

approaches depends on the sample sizes and the change in the parameter over time. In Section 4.2, 

we study the bias and variance of the GLM-based estimates through simulation.  

Decision makers track the 𝑁𝑃𝑆 esimates over time to regularly assess and plan improvement 

activities. The author has seen an 𝑁𝑃𝑆 business intelligence dashboard designed with filters to 

allow decision makers to subdivide and summarize the data by their selection of time period. 

Changing populations, changing overall customer loyalty over time, and small samples sizes have 

a detrimental effect on data viewed in this way. To demonstrate, in Figure 4-4 we compare the 

trends in the field population estimates between the common naïve approach involving sample 

proportions based on present time data only and the WEE approach. Note that there is a difference 

in the scales of the two vertical axes. 
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Figure 4-4. Trends in field population 𝑁𝑃𝑆 estimates: (a) sample proportion estimates using 

present data only, (b) WEE approach, 𝜆 = 0.1 

Figure 4-4 shows a vast difference in the trend of 𝑁𝑃𝑆 estimates by the two approaches over time. 

The population-adjusted estimates by the WEE approach are much more precise and show a trend 

that is not apparent on the other graph. The WEE approach can have an important impact on the 

decisions taken by decision makers to drive loyalty and growth though a trade-off in bias and 

variability in population-adjusted 𝑁𝑃𝑆 estimates and reliable comparisons across time. 

In this application, a decision maker may want to compare 𝑁𝑃𝑆 estimates across subgroups of 

the customer population. For example, superior results for a particular product variant may 

encourage decision makers to target sales of this variant or focus efforts to bring the 𝑁𝑃𝑆 of other 

product variants to comparable levels. We consider the test of the hypothesis that 𝑁𝑃𝑆 for 

customers with product variant 4 is the same as 𝑁𝑃𝑆 for customers with product variant 3. In terms 

of the parameters, we test the null hypothesis 𝐻0: 𝛽3 − 𝛽2 = 0 versus the alternative 

𝐻𝐴: 𝛽3 −  𝛽2 ≠  0. The WEE estimate and relevant quantities to test 𝐻0 versus 𝐻𝐴 are given in Table 

4-2. 

(a) (b) 



Chapter 4: Customer Loyalty Measure 

 

65 

Table 4-2. WEE hypothesis test quantities for 𝐻0: 𝛽3 − 𝛽2 = 0 vs. 𝐻𝐴: 𝛽3 − 𝛽2 ≠ 0 

Unconstrained 

model 

WEE estimate of 

𝜽 
𝜃 = (-0.695, 0.380, -0.0928, -0.147, -0.414, -5.84 E-6)𝑇  

Weighted log 

likelihood 
∑ 𝑤𝑡𝑙𝑡(𝜃; 𝑑𝑡)
𝑇
𝑡=1 = -486.218  

Constrained 

model 

WEE estimate of 

𝜽 
𝜃0 = (-0.899, 0.173, -0.0514, -0.144, -0.144, 0.0100)

𝑇  

Weighted log 

likelihood 
∑ 𝑤𝑡𝑙𝑡(𝜃0; 𝑑𝑡)
𝑇
𝑡=1 = -486.754  

WEE LR test statistic (12) 𝑆̂ = 1.072  

Weight-adjusted test statistic 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
𝑆̂ = 17.2  

p-value for 𝑯𝟎 under (13) Pr (𝜒1
2 >

∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
 𝑆̂) < 0.01  

Table 4-2 gives evidence to reject the null hypothesis 𝐻0: 𝛽3 −  𝛽2 =  0 in favour of 

𝐻𝐴: 𝛽3 −  𝛽2 ≠  0 for a size 0.05 test. The estimates of the proportions are 𝜋̂1,variant=3 =  0.301, 

𝜋̂3,variant=3 =  0.442, 𝜋̂1,variant=4 = 0.248, and 𝜋̂3,variant=4 = 0.509. Then, the estimates of 𝑁𝑃𝑆 for 

customers at the baseline level of tenure (𝑥4 = 0) with the two model variants are 

𝑁𝑃𝑆̂variant=3 =  0.14 and 𝑁𝑃𝑆̂variant=4 = 0.26. Decision makers have evidence that 𝑁𝑃𝑆 of product 

variant 4 is superior to that of product variant 3.  

A decision maker may track the estimate of the difference between 𝑁𝑃𝑆 values of the two 

product variants over time in order to monitor the similarity of the two streams. The graph of 

𝑁𝑃𝑆̂variant=4 − 𝑁𝑃𝑆̂variant=3 based on data over the range 𝑇 = 10,… ,42 is shown in Figure 4-5. The 

95% confidence interval of each estimate 𝑁𝑃𝑆̂variant=4 − 𝑁𝑃𝑆̂variant=3  is based on the WI estimate 

of variance for 𝜃 at that point in time assuming normality. The dotted line shows the p-value for 

𝐻0 under (13) at each point in time. 
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Figure 4-5. WEE estimates of difference in 𝑁𝑃𝑆 for product variants 3 and 4 

Figure 4-5 shows that the estimate of 𝑁𝑃𝑆 for product variant 4 is consistently larger than that of 

product variant 3 and there is evidence to reject the size 0.05 test of no difference between the two 

at all points in time except 𝑇 = 15. The earliest customers using product variant 4 are observed in 

week 10 and so the uncertainty of 𝑁𝑃𝑆̂variant=4 − 𝑁𝑃𝑆̂variant=3 decreases after week 10 as more data 

on this variant are observed. There is a decrease in the estimate of the difference in 𝑁𝑃𝑆 of the 

two product variants from week 10 to week 14. The difference between the two product variants 

is stable from week 15 to week 42. Alternatively, we could monitor the similarity between the 

mean performance at the two covariate levels through a graph of the weighted WEE LR test 

statistic over time.  

4.2. Simulation study 

We simulate data that is similar to the customer loyalty dataset to study the bias and variance 

of 𝑁𝑃𝑆 estimates by the various approaches. We simulate data from four profiles of change in 

field population 𝑁𝑃𝑆 over the 42 time periods. For each profile, the design value of the population 

𝑁𝑃𝑆 at time t, referred to as 𝑁𝑃𝑆𝑡, starts at 𝑁𝑃𝑆1 = −0.05882 and either stays constant or 

changes linearly over the time span. The rate of change and design values of field population 𝑁𝑃𝑆 

for the four profiles are given in Table 4-3. 
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Table 4-3. Field population 𝑁𝑃𝑆 design values, 4 profiles 

Design profile 𝑵𝑷𝑺𝒕+𝟏 −𝑵𝑷𝑺𝒕 𝑵𝑷𝑺𝟒𝟐 𝑵𝑷𝑺𝟒𝟐 −𝑵𝑷𝑺𝟏 

I -2.439E-3 -0.1588 -0.1 

II 0 -0.05882 0 

III 2.439E-3 0.04118 0.1 

IV 4.478E-3 0.1412 0.2 

We fix the values of the five parameters, 

(𝛼2,𝑡, 𝛽1,t, 𝛽2,t, 𝛽3,t, 𝛽4,t) =  (0.6, 0.0195,  -0.0355, -0.269, 0.0149) over 𝑡 = 1,… ,42. The design 

values for 𝑁𝑃𝑆1 and (𝛼2,𝑡, 𝛽1,t, 𝛽2,t, 𝛽3,t, 𝛽4,t) are quite precise but have no particular significance. 

We calculate the design value for the {𝛼1,𝑡, 𝑡 = 1,… ,42} using these values, calculations of 𝜋1,𝑡 

and 𝜋3,𝑡 in (14), and the field population distribution in Table 4-1.  

For each simulated dataset, sample sizes by time period {𝑛𝑡} remain fixed at the values in Figure 

4-2. The covariate vector 𝑥𝑗𝑡 for each sample is allocated by a multinomial distribution having the 

same proportions in each covariate group as the field population distribution at 𝑡. As in the example 

dataset, product variant 4 is introduced into the field population at time period 𝑡 =  10. The 

response to the ultimate question, 𝑦𝑗𝑡, is simulated for each sample by the multinomial distribution 

with the design probabilities (𝜋1,𝑗𝑡, 1 − 𝜋1,𝑗𝑡 − 𝜋3,𝑗𝑡, 𝜋3,𝑗𝑡). For each of the four 𝑁𝑃𝑆 design 

profiles, we simulate 5000 datasets of 𝑑𝑡 across 42 time periods.  

We estimate 𝑁𝑃𝑆 from {𝑑𝑡, 𝑡 = 1, … ,42} by the GLM-based approaches in Table 2-1 since we 

want to model covariate effects and expect sparse data. We add analysis by the sample proportions 

approach using only present time data to highlight the advantages of a GLM-based approach. We 

refer to the five approaches as follows:  

 estimates by sample proportions using 𝑑𝑇 only, “Prop t=T” 

 estimates by GLM using 𝑑𝑇  only, “GLM t=T” 

 estimates by GLM using all historical data with no weighting, “GLM t≤T” 

 estimates by EWMA of weekly GLM estimates, “GLM EWMA” 

 estimates by weighted estimating equations using all historical data, “WEE” 

The weights required for the GLM EWMA and WEE methods are selected as outlined in 

Section 3.1 with weight parameter 𝜆 = 0.1. Following estimation of 𝜃 = 𝜃42 for each dataset by 

each approach, we compute the estimate of 𝑁𝑃𝑆42 for the present field population. In Figure 4-6, 

we give boxplots for the 5000 estimates of 𝑁𝑃𝑆42 and confidence interval estimates assuming 
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normality for each approach and design profile. The horizontal dotted lines show the design value 

of 𝑁𝑃𝑆 at 𝑇 = 42. The difference between the estimate and design values of 𝑁𝑃𝑆 is a measure of 

bias. 

 

Figure 4-6. Estimates of 𝑁𝑃𝑆 at T=42 by design profile and various approaches 

Figure 4-6 shows that the approaches that depend only on the data at the present time, Prop t=T 

and GLM t=T, give estimates with the least amount of bias and these biases fluctuate very little 

with the size of the 𝑁𝑃𝑆 change. The approaches that use all historical data, GLM t≤T, GLM 

EWMA, and WEE, add bias when the performance is changing over time relative to the size of 

the change. The difference between bias from the GLM t≤T and WEE approaches shows that 

down-weighting the estimating equation contributions of data from the further past reduces bias 

over using the historical data without weights. Further, the uncertainty in the estimates differs 

between those based on present time data and those based on all historical data. The variations in 

the WEE and GLM t≤T estimates are similar for each design profile and noticeably smaller than 

variations of the estimates using present time data only. Uncertainties of the GLM-based EWMA 

estimates are more than twice as large as those based on the other two approaches that use all 

historical data. 

Figure 4-7 combines the bias and standard deviation of the 5000 estimates of 𝑁𝑃𝑆 into the root 

mean squared error (MSE) for each design profile and analysis approach. 
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Figure 4-7. Root mean squared error of estimates over design profiles by approach 

Figure 4-7 shows that the estimates from the WEE approach have the smallest MSE when 𝜃𝑡 (and 

hence 𝑁𝑃𝑆) changes over time. If 𝜃𝑡 is not changing over time, then the best approach is to fit a 

GLM to all the data without weights. The approaches that use data from all time periods are more 

efficient than approaches that use present time data only with the exception of the GLM t≤T 

approach for the largest design change. Because it regulates bias, the WEE approach has added 

efficiency over the GLM t≤T approach as the size of the performance change increases. 

Approaches based on present time data only suffer due to lack of precision in the estimates and 

their MSE values show that the reduced bias does not make up for the lack of precision relative to 

the other approaches. Significantly more uncertainty results from using present time data only or 

from using EWMA with all historical data, but there is only a modest increase in uncertainty when 

using the WEE approach. In summary, the WEE is the most efficient approach for estimates of the 

parameter when the parameter changes slowly over time. 

The MSE values in Figure 4-7 use the standard deviation of each group of 5000 estimates as 

the estimate of standard error for an 𝑁𝑃𝑆 estimate for each simulated dataset by approach. The 

weighted information (WI) estimate of variance in (11) can be used to estimate the standard error 

of the 𝑁𝑃𝑆 estimate. We study the suitability of the WI estimate of variance by comparing this 

estimate to the standard deviation of each simulated group of 5000 estimates. The plot in Figure 

4-8 gives the distribution of WI estimates of the standard deviation of 𝑁𝑃𝑆 by the WEE approach 

relative to the observed standard deviation of the group of 5000 𝑁𝑃𝑆 estimates for each design 

profile. The dotted lines represent the observed standard deviation of the 5000 𝑁𝑃𝑆 estimates 

based on the WEE approach and the box and whiskers show the distribution of the 5000 estimates 

of the standard deviation based on the WI estimate of variance of the parameters. 
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Figure 4-8. Distribution of weighted information estimates of standard deviation relative to 

observed values 

Figure 4-8 shows that the weighted information estimate is a biased estimate of the standard 

deviation of the 𝑁𝑃𝑆 estimate. The size of the bias is less than 2% of the true 𝑁𝑃𝑆 value at week 

42. In this simulation study, the weighted information estimate of variance is a reasonable 

approximation to the true variance of the estimate of 𝑁𝑃𝑆. 

4.3. Summary and discussion 

In a Harvard Business Review article, Frank Reichheld claims that 𝑁𝑃𝑆 is the “one number you 

need to grow” (Riechheld, 2003 p.54) for business success. Since that time, surveys asking the 

ultimate question are commonplace and “as academics debate the details, managers are putting the 

[Net Promoter] scores into practice” (McGregor, 2006 p. 94). The only documented approach to 

estimate the 𝑁𝑃𝑆 measure from a periodic stream of customer data collected over time is a naïve 

estimate based on sample proportions. Little or no attention is paid to sample size, covariate 

effects, and changing populations over time.  

We analyse a realistic set of customer responses to the ultimate question from a smartphone 

vendor. We use the weighted estimating equations approach since we expect that mean 𝑁𝑃𝑆 for a 

set of customers with fixed values of the covariates may drift slowly over time in an unpredictable 

way and some sample sizes may be small. We compare the WEE estimate of 𝑁𝑃𝑆 to estimates by 

naïve approaches based on present time data only and all historical data weighted equally and the 

EWMA approach. The various approaches produce 𝑁𝑃𝑆 estimates that vary considerably from 

one another. The WEE estimate has similar precision to the estimate by the GLM based on all 

historical data weighted equally and to the estimate by the EWMA of the weekly MLE estimates. 
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There is a vast difference in the trend of population-adjusted 𝑁𝑃𝑆 estimates over time from the 

WEE approach compared to current industry practice.  

We explore the bias and variance of estimates by the various approaches through simulated data 

designed with varying changes in the model parameter over time. The approaches that use all 

historical data add bias when 𝜃𝑡 (and 𝑁𝑃𝑆) changes over time relative to the size of the change. 

We see that down-weighting the estimating equation contributions of data from the further past 

through the WEE approach reduces bias over using the historical data without weights. The 

estimates by the WEE approach have the lowest mean squared error among the approaches under 

consideration when 𝑁𝑃𝑆 changes slowly over time. We validate the usefulness of the weighted 

information estimate of variance through the simulated data. The work of this chapter indicates 

that the WEE approach could have an important effect on a manager’s ability to drive business 

growth based on estimates of the 𝑁𝑃𝑆 customer loyalty measure. 

Selecting covariates 

As in regression analysis, the selection of covariates to include in the analysis is important for 

the estimates and interpretation of results. Best practices on variable selection for model 

parsimony, numerical stability, and generalizability of the results from regression analysis (Bursac 

et al. 2008) should be followed. The analysis of the customer loyalty example data indicates that 

business decisions to increase the relative size of the customer base towards product variant 4 are 

expected to improve future performance. Not all covariates (e.g., tenure) can be influenced among 

the customer population but should be included if they explain significant variation in sample 

responses. 

Comparison of the WEE and EWMA approaches 

In general, the argument in favour of the WEE approach over a naïve or EWMA approach is 

not uniformly conclusive. Comparing the performance of the various approaches through a 

simulation study is not conclusive since there are many parameter values, covariate values, sample 

sizes, and ways that the parameter might change over time. We suspect that the mean squared error 

of the estimate is not uniformly lower for one approach relative to the other.  

We consider a qualitative comparison of the WEE and EWMA approaches. The key difference 

between the two approaches is the order of the weighting and estimating operations. Estimates by 

an EWMA approach are based on data at each time period separately and combined with weights, 

whereas the WEE approach weights contributions to the estimating functions and estimates 

parameters involving data across all time periods. Under an EWMA approach, covariate effects 
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are re-estimated at each time period even though these effects may not change or change slowly 

over time. Uncertainties in the estimates by time period add to the uncertainty of the present time 

estimate and so, as we have seen in Sections 3.2 and 3.6, a small sample size at any time period 

has a negative effect on the precision of the present time estimate. Parameter estimates by time 

period are not sufficient statistics and so information may be lost in a present time estimate that 

combines estimates by time period as under the EWMA approach. Under the WEE approach, 

covariate effects estimates are based on all observations and so uncertainties in these estimates are 

smaller. The score functions that contribute to the weighted estimating function are each sufficient 

statistics summarizing data by time period and so the present time estimate uses all the information 

in the data. Both EWMA and WEE approaches require the solution of estimating equations with 

𝑝 unknowns in the present time period. For the customer loyalty application involving discrete-

valued covariates, there needs to be an instance of each level of the covariates in the sample in 

order to estimate the related covariate effect. In the realistic dataset under consideration, there are 

insufficient data to estimate all of the covariate effects in roughly half of the time periods if we 

base estimates on data from each time period separately. Here, a standard implementation of the 

EWMA approach is not possible.   

Based on the quantitative comparison under the particular conditions of this application and the 

preceding qualitative comparison, we prefer the WEE approach over the EWMA approach for 

down-weighting the influence of historical data in an estimate of present performance. The 

remainder of the thesis focuses on the important comparison of the WEE approach to the naïve 

approaches that are common in industry which combine data across time periods without weights 

or use present time data only.  
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Chapter 5: Lab Positive Abnormal Rate 

In the United States, the Centers for Medicare and Medicaid Services regulate all laboratory 

testing performed on humans through the Clinical Laboratory Improvement Amendments (CLIA). 

In Ontario, the Institute for Quality Management in Healthcare (IQMH) is an independent agency 

with a provincial mandate to assess the ability of laboratories to perform medical testing. To equip 

medical professionals with quality data for decisions impacting patient health, the mission of the 

regulatory agencies is to provide rigorous, objective, third-party evaluation of the medical 

diagnostic testing systems according to international standards. Various laboratories may be 

performing the same test; however, differences between test methodologies, instrumentation, and 

operations can contribute to measurable differences between observed responses across the various 

labs. Proficiency testing is the term used by the CLIA relating to regular assessment of a 

laboratory’s ability to provide an acceptable standard of service by comparison with peers. For a 

non-destructive test, one approach to proficiency testing may compare test results conducted on a 

single reference population at various laboratories. Here, a single set of subjects is selected and 

tested at each of the laboratories and the test measurements or discrete test outcomes are compared 

directly across peers. Challenges with this approach to proficiency testing include how to select 

the single set of subjects and the cost and logistics to circulate the samples across labs without 

degrading or destroying the samples. Additionally, for a test that has a binary outcome, a large 

sample is required to detect small but important differences between populations, adding cost and 

logistical difficulty. An alternative approach is to base proficiency tests on data observed from 

regular operation of the labs. Using data from regular operation of the labs avoids the challenge of 

selecting a single sample as well as the cost and logistics to transport samples among labs; 

however, having adequate sample size for the analysis is still a concern. Further, the number of 

patients tested at various labs may vary widely and so varying precision in the results by lab needs 

to be considered. 

5.1. Fecal occult blood test positive abnormal rate 

The application under study relates to proficiency testing of laboratories testing for indications 

of colorectal cancer. In Ontario, the Colon Cancer Check program was initiated in 2008 as the first 

population-based, province-wide, organized screening program designed to raise screening rates 

and reduce deaths from colorectal cancer. Those individuals who are deemed to be at risk for 
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developing colorectal cancer are encouraged to have a fetal occult blood test (FOBT) every two 

years. A kit is provided to the patient who draws the FOBT sample at home and sends their sample 

to a lab for testing. At the lab, a technician tests the sample and assigns a positive or negative 

abnormal result which informs the medical professional whether or not to conduct further testing. 

Studies show that screening with a FOBT every two years reduced death from colorectal cancer 

by 16 per cent over a decade (Cancer Care Ontario, 2008). There are seven licensed community 

medical laboratories providing FOBT testing services in Ontario. Unlike most other diagnostic 

tests, oversight of the proficiency testing of the seven labs testing FOBT samples is assigned to a 

committee comprised exclusively of laboratory representatives. 

This research highlights shortcomings with the approach to proficiency testing of the labs 

carried out by the committee responsible for overseeing the laboratories testing FOBT samples in 

Ontario and suggests a more effective approach. The approach used by the committee as of May 

2014 which we refer to as the “Ontario FOBT proficiency test” is as follows. Monthly, each of the 

seven labs report their positive abnormal rate which is calculated as the number of samples tested 

with a positive abnormal result relative to the total number of samples tested. The monthly positive 

abnormal rate for each lab is compared to an acceptance interval and a rate outside this interval 

indicates that the lab is in potential non-compliance. Three consecutive months of this status 

prompts a letter of concern from the committee and can escalate to requests for re-training, peer 

visits, or a recommendation to the Ministry of Health that the non-compliant lab cease performing 

tests. The acceptance interval is determined by three standard deviations above and below the 12-

month moving average of results across all seven labs. As the positive abnormal rate for each lab 

is compared to the acceptance interval, no consideration is given to the uncertainty of the rate 

resulting from sample size. This research shows that under this approach, differences in monthly 

sample sizes by lab have an important impact on the probabilities of classifying a lab in error and 

need to be considered. We suggest the weighted estimating equations (WEE) approach to regulate 

the bias/variance trade-off in estimates of the positive abnormal test rate since we expect that the 

true rate drifts slowly in an unpredictable way over time and sample sizes at any single time period 

may be small. We want to increase the power of a hypothesis test comparing positive abnormal 

rates by lab by increasing sample size and down-weighting the influence of historical data. 

Data 

The data arising from the seven labs conducting the FOBT in Ontario are described in 

Section  1.1. The dataset contains observed test outcomes from 863,898 patients who were tested 

at FOBT labs in Ontario over the 18-month period from January 2014 to June 2015. Figure 5-1 
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gives the number of patients by month, the observed positive abnormal rate (“positive rate”) over 

time across all labs, and the linear trend line in positive rate. 

 

Figure 5-1. Observed positive rate and sample size of FOBT labs in Ontario 

Figure 5-1 shows that the positive rate across all labs drifts slowly over time in an unpredictable 

way. A physician recommending a FOBT usually refers their patient to a particular lab for testing. 

In Ontario, a lab may service patients from as few as 100 or as many as several thousand referring 

physicians. As such, the number of samples tested by month varies considerably from lab to lab. 

The sample size and observed positive rate of each FOBT lab in the latest month (June 2015) are 

given in Figure 5-2. 

 

Figure 5-2. Observed positive rate and sample size of FOBT labs in Ontario in June 2015 

Figure 5-2 shows that there are large differences in the numbers of patients who are tested across 

the various labs. In general, the number of FOBT samples tested varies from approximately 600 
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per month to approximately 20,000 per month. The varying number of monthly samples tested by 

lab impacts the power of the Ontario FOBT proficiency test to correctly classify a lab as acceptable 

or non-compliant based on the acceptance interval approach. We demonstrate this impact through 

an example of three groups having the same true rate but varying sample sizes. In May 2014, the 

estimate of the overall positive rate based on the moving average was 0.042 and the acceptance 

interval reported by Cancer Care Ontario was (0.037, 0.047). If we consider the true rate to be 

0.045, the binomial distributions of the observed rates among groups having sizes 600, 5000, and 

20,000 are given in Figure 5-3. 

 

Figure 5-3. Distribution of observed positive rates by sample size for true rate = 0.045 

Figure 5-3 shows that the true rate of each sample, 0.045, lies within the Cancer Care Ontario 

acceptance interval; however, we notice that we may observe a rate outside of this interval due to 

variation related to sample size. There is a 0.55 probability that a lab that tests 600 samples per 

month observes a rate outside the acceptance interval. The probability that the observed positive 

rate is outside this acceptance interval for a lab that tests 7000 samples per month is 0.11 and for 

a lab that tests 20,000 per month is 0.019. Clearly, the probability that the Ontario FOBT 

proficiency test incorrectly classifies a lab as non-compliant depends on the sample size. There is 

relatively high probability that a small lab will be classified as non-compliant in error. 

The previous example points out that when one or more of the labs test few samples relative to 

other labs, the probability that the Ontario FOBT proficiency test incorrectly classifies the lab as 

acceptable or non-compliant may be large. Further, the acceptance interval is known to be 

calculated based on an average of results across all labs. Depending on how it is calculated, the 

data observed at a larger lab could have larger influence on the acceptance interval than a small 

lab. Changes in performance at a larger lab could move the acceptance interval over time and a 
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smaller lab that experiences no change may become non-compliant relative to the latest acceptance 

interval. Due to the wide disparity in sample sizes between the seven labs testing FOBT in Ontario, 

the power of the Ontario FOBT proficiency test to correctly classify small labs as acceptable or 

non-compliant is a concern.  

We consider a more rigorous alternative to the Ontario FOBT proficiency test to compare 

positive rates at seven labs performing the FOBT through tests of hypotheses. We consider the test 

with null hypothesis 𝐻0: all labs have same positive rate for the latest month versus the alternative 

𝐻𝐴: at least one of the labs has a different positive rate than the others. If 𝐻0 is rejected, then there 

is statistically significant evidence that there are differences between test results across the labs. 

The committee can review estimates from each of the labs and carry out follow-up analysis to 

identify the nature of the differences across labs. Three characteristics of the hypothesis test are 

considered:  

 size, 𝛼: upper bound on the probability that the test is rejected for values of the parameter 

in the region where the null hypothesis is true 

 power, 𝛽(𝜃): the probability that the test is rejected at a particular value of the parameter, 

𝜃 

 unbiasedness: the condition that the power for values of the parameter in the region where 

the null hypothesis is false is at least as large as the size of the test 

For tests with a select value of size 𝛼, we want the power of the test to be as large as possible 

on alternative values of the parameter 𝜃 among all unbiased tests. The power of a test is limited 

by the number of observations and so we look for an approach with the highest power of the test 

for 𝐻0 versus 𝐻𝐴 given some relatively small sample sizes by lab. Since increasing sample size 

increases the power of a hypothesis test (Lehmann and Romano, 2005), then a possibility to 

improve the power of a test is to combine data across time periods. However, including data 

observed in time periods before a change occurs reduces the power of the test aimed at detecting 

the change. The decision whether to use present time data only or to include some or all observed 

historical data depends on the sample size of the lab experiencing the change and the size of the 

change which are both unknown. We consider the WEE approach to combine present and historical 

data that increases power of the test over either naïve approach. In the application under 

consideration, there are no patient-level covariate data and so risk-adjustment is not needed.  
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Estimation by weighted estimating equations  

Table 1-1 introduces the GLM that is selected for this problem based on 𝜋𝑚, the binomial 

positive rate at lab 𝑚 for 𝑚 = 1,… ,7. We assume that the random variables are independent across 

𝑡 = 1,… , 𝑇. The mean positive rate at the baseline lab (lab 1) is modelled by 𝛼. The positive rates 

of the other labs relative to the baseline lab are modelled by 𝛿1, 𝛿2, … , 𝛿6. For patient 𝑗 tested at 

hospital 𝑚 at time 𝑡, the binomial positive rate 𝜋𝑚𝑡 relates to the model parameter 

𝜃𝑡 =  (𝛼𝑡, 𝛿1,𝑡, 𝛿2,𝑡, … , 𝛿6,𝑡)
𝑇
 through the inverse link function 

 𝜋𝑚𝑡(𝜃𝑡; 𝑑𝑡) =
exp(𝛼𝑡+𝛿1,𝑡𝐼𝑚[1]+𝛿2,𝑡𝐼𝑚[2]+⋯,𝛿6,𝑡𝐼𝑚[6])

1+exp(𝛼𝑡+𝛿1,𝑡𝐼𝑚[1]+𝛿2,𝑡𝐼𝑚[2]+⋯,𝛿6,𝑡𝐼𝑚[6])
 (17) 

where 𝐼𝑚 is a size 6 vector with elements that are either 0 or 1 depending on the lab that the patient 

attended and 𝐼𝑚[𝑖] is the 𝑖𝑡ℎ element of 𝐼𝑚. We expect that levels 𝛼𝑡 and 𝛿𝑡 = (𝛿1,𝑡, 𝛿2,𝑡, … , 𝛿6,𝑡)
𝑇
 

may change slowly over 𝑡 = 1,… , 𝑇 due to the influence of factors that are not included in the 

analysis. The observed test result for subject 𝑗 at lab 𝑚 at time 𝑡 is recorded as 𝑦𝑗𝑚𝑡 = 1 if the 

result is positive and 𝑦𝑗𝑚𝑡 =  0 otherwise. The log-likelihood function describing the probability 

of data 𝑑𝑡 =  {𝑦𝑗𝑚𝑡 , 𝑗 =  1,… , 𝑛𝑚𝑡 , 𝑚 = 1, … ,7} is  

 𝑙𝑡(𝜃𝑡; 𝑑𝑡) = ∑ ∑ 𝐼[𝑦𝑗𝑚𝑡 = 1] log𝜋𝑚𝑡 + 𝐼[𝑦𝑗𝑚𝑡 = 0] log(1 − 𝜋𝑚𝑡)
𝑛𝑚𝑡
𝑗=1

7
𝑚=1    (18) 

for indicator variables 𝐼[𝑦𝑗𝑚𝑡 = 0] and 𝐼[𝑦𝑗𝑚𝑡 = 1].  

We select weights {𝑤𝑡, 𝑡 = 1,… , 𝑇} by (10) with weight parameter value 𝜆 = 0.1. The WEE 

estimates will be compared to the estimates by the two naïve approaches using the two special 

cases of the weights described in Section 3.1. 

Under (3), the weighted estimating function vector of length 7 is  

 𝑄(𝜃; 𝑑, 𝑤) = ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
𝑇
𝑡=1 =

[
 
 
 
 
 
 
 
 
 
∑ 𝑤𝑡 ∑ ∑ 𝐼[𝑦𝑗𝑚𝑡 = 1] − 𝜋𝑚𝑡

𝑛𝑚𝑡
𝑗=1

7
𝑚=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗2𝑡 = 1] − 𝜋2t
𝑛2𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗3𝑡 = 1] − 𝜋3t
𝑛3𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗4𝑡 = 1] − 𝜋4t
𝑛4𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗5𝑡 = 1] − 𝜋5t
𝑛5𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗6𝑡 = 1] − 𝜋6t
𝑛6𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗7𝑡 = 1] − 𝜋7t
𝑛7𝑡
𝑗=1

𝑇
𝑡=1 ]

 
 
 
 
 
 
 
 
 

 (19) 

given the present time value of the parameter, 𝜃 = 𝜃𝑇 =  (𝛼, 𝛿1, 𝛿2, … , 𝛿6)
𝑇, data 

𝑑 =  {𝑑𝑡, 𝑡 =  1,… , 𝑇}, weights 𝑤 = {𝑤𝑡, 𝑡 = 1,… , 𝑇}, and inverse link function 𝜋𝑚𝑡(𝜃𝑡; 𝑑𝑡).  
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The WEE estimate 𝜃 is the solution of 𝑄(𝜃; 𝑑, 𝑤) = 0. Through (11), we estimate the weighted 

information estimate of variance, 𝑣𝑎𝑟̂(𝜃) involving 𝐼𝑡(𝜃), the expected information function at 

each time period evaluated at the WEE estimate. With estimate 𝜃, we use Table 2-1 to compute an 

estimate 𝜋̂𝑚 for each lab 𝑚 = 1,… ,7. Similarly, with estimate 𝑣𝑎𝑟̂(𝜃), we compute estimate 

𝑣𝑎𝑟̂(𝜋̂𝑚) for 𝑚 = 1,… ,7 through (5). 

The null hypothesis 𝐻0: all labs have the same positive rate for the current month in terms of 

parameter 𝜃 is 𝐻0: 𝛿1 = 𝛿2 = 𝛿3 = 𝛿4 = 𝛿5 = 𝛿6 = 0. We write this as 𝐻0: 𝛿 = 𝛿0 with 

𝛿0 =  (0,0,0,0,0,0)𝑇. The alternative hypothesis that allows for a different positive rate at one or 

more of the labs is 𝐻𝐴: at least one element of 𝛿 ≠ 0. There are 𝑟 = 6 parameters of interest for 

testing and one remaining parameter, 𝛼. 

Through (19) we calculate the unrestricted WEE estimate 𝜃 as the solution of 𝑄(𝜃; 𝑑, 𝑤) = 0. 

To calculate a likelihood ratio (LR) test statistic as specified in Section 3.4, we additionally 

estimate 𝛼 = 𝛼0 when 𝛿 is restricted to 𝛿0. The weighted estimating function gives the restricted 

WEE estimate 𝛼̂0. The WEE LR test statistic is given by (12) and involves the log-likelihood 

function in (18) and WEE estimates 𝜃 and 𝛼̂0. An approximation for the distribution of the WEE 

LR test statistic under the null hypothesis that restricts six parameters is given by (13).  

Results 

We compare the WEE estimates for 𝜋𝑚, 𝑚 = 1,… ,7  to those by the two naïve approaches 

discussed in Section 2.2. For the naïve approaches, estimates 𝜋̂𝑚 and estimates of their variances 

are calculated through the WEE approach with one of the limiting values of the weight parameter. 

Figure 5-4 gives the estimates 𝜋̂𝑚, 𝑚 = 1,… ,7 based on the WEE approach and the two naïve 

approaches and the corresponding 95% confidence intervals assuming normality.  
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Figure 5-4. Estimates of positive rate for FOBT labs in June 2015 by various approaches 

Figure 5-4 shows that estimates by the recommended WEE approach (𝜆 = 0.1) have less 

uncertainty than estimates using present data only across all labs. The uncertainties of the WEE 

estimates are comparable to those of the naïve estimates that use all historical data. The WEE 

estimates of positive rates agree closely to those of the naïve approach with all historical data and 

these are significantly different than those of the naïve approach with present data only for labs 1, 

2, 3, and 4. This is an indication that there has been some significant change in actual positive rates 

at these labs over the 18-month period. A WEE analysis with a larger selection of 𝜆 may be 

considered in this example in order to better balance the trade-off between bias and variance. 

Guidelines to select 𝜆 relative to the expected change in the true value of the parameter over time 

are discussed further in Section 6.2. 

The WEE estimates and relevant quantities to test 𝐻0: 𝛿 = 𝛿0 versus 𝐻𝐴: 𝛿 ≠ 𝛿0 for the FOBT 

dataset are given in Table 5-1. 
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Table 5-1. WEE hypothesis test quantities for 𝐻0: 𝛿 = 𝛿0 vs. 𝐻𝐴: 𝛿 ≠ 𝛿0 

Unconstrained 

model 

WEE estimate of 𝜽 
𝜃 =
(-3.126, 0.0528, -0.0187, 7.85E-3, 0.0315, 0.230, 6.41E-3)𝑇  

Weighted log 

likelihood 
∑ 𝑤𝑡𝑙𝑡(𝜃̂; 𝑑𝑡)
𝑇
𝑡=1 = -151,234.5420  

Constrained 

model 

WEE estimate of 𝜽 𝜃0 = (-3.120)
𝑇  

Weighted log 

likelihood 
∑ 𝑤𝑡𝑙𝑡(𝜃̂0; 𝑑𝑡)
𝑇
𝑡=1 = -151,269.1618   

WEE LR test statistic (12) 𝑆̂ = 69.24  

Weight-adjusted test statistic 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
𝑆̂ = 53.81  

𝒑-value for 𝑯𝟎 under (13) Pr (𝜒6
2 >

∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑇

𝑡=1 𝑛𝑡
 𝑆̂) < 0.01  

Table 5-1 shows evidence to reject the null hypothesis 𝐻0: 𝛿 = 𝛿0 in favour of the alternative 

𝐻𝐴: 𝛿 ≠ 𝛿0 for a size 0.05 test. The 𝑝-values for the same hypothesis test by the naïve approach 

with all historical data weighted equally is 𝑝 < 0.01 and by the naïve approach based on present 

time data only is 𝑝 = 0.35. An approach based on the latest monthly data is less sensitive at 

detecting differences among labs for this dataset. This is the current industry practice among the 

committee that oversees FOBT labs in Ontario.  

A follow-up test of hypothesis is directed at detecting differences at a specific lab. Such a test 

is relevant to the management of a particular lab or the committee responsible for overseeing all 

laboratories. The null hypothesis remains as 𝐻0: 𝛿1 =   𝛿2 =  … =  𝛿6 = 0 and the alternative 

hypothesis becomes 𝐻𝑘: {
𝛿𝑘 ≠ 0                                      
𝛿𝑖 = 0 for 𝑖 = 1, … ,6, 𝑖 ≠ 𝑘

 for 𝑘 = 1,… ,6. The WEE likelihood ratio 

statistic corresponding to lab 𝑘 is  

 𝑆̂𝑘 = 2(∑ 𝑤𝑡𝑙𝑡(𝛿𝑖, 𝛼̂𝑘, 𝛿𝑘; 𝑑𝑡)
𝑇
𝑡=1 − ∑ 𝑤𝑡𝑙𝑡(𝛿0, 𝛼̂0; 𝑑𝑡)

𝑇
𝑡=1 )  (20) 

where 𝛼̂0 is the WEE estimate under the null hypothesis and 𝛼̂𝑘 and 𝛿𝑘 are the WEE estimates 

under the specified alternative 𝐻𝑘. The approximate distribution for 𝑆̂𝑘 under the null hypothesis 

follows from (13) with 𝑟 = 1. The test statistics, 𝑆̂𝑘, for the test of the null hypothesis against the 

lab-specific alternatives, 𝐻𝑘, for this dataset are given in Table 5-2. 
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Table 5-2. WEE hypothesis test quantities for 𝐻0: 𝛿 = 𝛿0 vs. 𝐻𝑘: 𝛿𝑘 ≠ 0 

k related lab 

WEE LR test 

statistic (20) 

𝑺̂𝒌 

Weight-

adjusted test 

statistic 

p-value for 

𝑯𝟎 under (13) 

1 2 1.42 1.11 0.29 

2 3 9.61 7.46 <0.01 

3 4 0.07 0.0514 0.82 

4 5 0.45 0.353 0.55 

5 6 62.5 48.5 <0.01 

6 7 0.00 3.11E-4 0.99 

Table 5-2 shows evidence to reject the null hypothesis in favour of alternative 𝐻2 or 𝐻5 for a size 

0.05 test. There is evidence that positive rates are significantly different at lab 3 and lab 6 relative 

to lab 1. There is evidence to reject the null hypothesis in favour of the same two alternative 

hypotheses by the naïve approach with all historical data weighted equally. By the naïve approach 

based on present time data only, there is no evidence to reject the null hypothesis in favour of any 

of the alternative hypotheses. Once again, we see for this dataset that an approach based only on 

the latest monthly data is less sensitive at detecting differences among labs.   

In addition to comparing the WEE LRT statistic to a critical value, it is useful to track the trend 

of the weighted WEE LR test statistic for the test of 𝐻0 versus 𝐻𝐴 over time. The trend in the 

weighted test statistic 
∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

𝑆̂ at successive months from for the Ontario FOBT dataset is given 

in Figure 5-5. 

 

Figure 5-5. Weighted WEE LR test statistic 𝐻0 vs. 𝐻𝐴 by month for Ontario FOBT dataset 
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Figure 5-5 shows evidence to reject null hypothesis 𝐻0 in favour of alternative 𝐻𝐴 from April 2014 

to June 2015 for a size 0.05 test. There are significant differences in the positive rate at one or 

more of the labs over this period. Note that this graph does not point to a particular lab and so there 

may be different outlier lab(s) from period to period. The graph points to a change at one of the 

labs that began around March 2014. Further, there is a downward trend that starts around 

September 2014. The downward trend from September 2014 to June 2015 may indicate that 

positive rates across the labs are becoming more consistent with one another. A distinctive trend 

in the weighted WEE LR test statistic should be investigated with the follow-up analysis discussed 

previously. 

Formal process monitoring could be used to provide quicker detection of small sustained shifts 

and control the misclassification rate at a desired level. Liu et al. (2008) propose a control chart 

statistic based on the likelihood ratio test for monitoring multiple stream processes to detect a 

change in both the overall process mean and changes in the individual stream means. The authors 

show that this test does not require a phase 1 sample which saves cost. This work could be extended 

to develop a control chart for the WEE LR test statistic to improve time to detection and 

misclassification rate. 

5.2. Simulation study 

We simulate data that resembles the fecal occult blood test in Ontario dataset to study the power 

and unbiasedness of the size 𝛼 tests of hypotheses by the various approaches. We compare the 

WEE approach to the two naïve approaches. We discuss the limitations of the results and the 

impact of certain characteristics of the data.  

We simulate datasets with sample sizes similar to the Ontario FOBT lab problem where the 

number of samples per month ranges from 600 to 35,000 across the seven labs and the total sample 

size is 60,000 observations per month. Figure 5-6 gives the sample sizes 𝑛𝑚𝑡 for labs 𝑚 = 1,… ,7 

which are the same for each month 𝑡 = 1,… , 𝑇. 
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Figure 5-6. Sample size by lab per month 

Each simulated dataset contains observations by lab per month over a period of 18 months. As 

stated, the objective of the analysis is to regularly assess a laboratory’s ability to provide an 

acceptable standard of service by comparison with peers and so parallel changes at all labs 

simultaneously are not of interest in this problem. Each dataset is designed with positive rate at 

the first time period equal to 𝜋𝑚,1 = 0.042 for each lab 𝑚 = 1,… ,7. Following the first time 

period, a change is introduced into a single lab and positive rates at the remaining labs are 

unchanged. We simulate a change at either the largest lab or the smallest lab in order to study the 

power and unbiasedness of the hypothesis test at the extremities of lab sample sizes. Many changes 

are possible; we simulate a step or linear change that increases or decreases the positive rate over 

an 18-month period. We add a profile for the base case where the positive rate stays constant at all 

labs over time. Under these conditions, there are nine profiles of change in positive rates over time 

as summarized in Table 5-3. The profile lettering refers to the design values for the positive rates 

given in Figure 5-7. 
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Table 5-3. Lab positive rate design profiles, 9 profiles 

Design 

profile 

Size of the lab 

undergoing the 

change 

Type of 

change 

Direction of 

change 

Positive rate for lab 𝒎 at month 

𝒕, 𝝅𝒎𝒕 

I none none none profile 𝑎 for all 𝑚 

II small lab step change increase 
profile 𝑎 for 𝑚 = {1,… ,6} 

profile 𝑏 for 𝑚 = 7 

III small lab step change decrease 
profile 𝑎 for 𝑚 = {1,… ,6} 

profile 𝑐 for 𝑚 = 7 

IV small lab linear change increase 
profile 𝑎 for 𝑚 = {1,… ,6} 

profile 𝑑 for 𝑚 = 7 

V small lab linear change decrease 
profile 𝑎 for 𝑚 = {1,… ,6} 

profile 𝑒 for 𝑚 = 7 

VI large lab step change increase 
profile 𝑎 for 𝑚 = {1,2,3,5,6,7} 

profile 𝑏 for 𝑚 = 4 

VII large lab step change decrease 
profile 𝑎 for 𝑚 = {1,2,3,5,6,7} 

profile 𝑐 for 𝑚 = 4 

VIII large lab linear change increase 
profile 𝑎 for 𝑚 = {1,2,3,5,6,7} 

profile 𝑑 for 𝑚 = 4 

IX large lab linear change decrease 
profile 𝑎 for 𝑚 = {1,2,3,5,6,7} 

profile 𝑒 for 𝑚 = 4 

  

Figure 5-7. Positive rate design profiles a-e 

A positive or negative test response 𝑦𝑗𝑚𝑡 is simulated for each sample 𝑗 at lab 𝑚 at time 𝑡 by 

the binomial distribution with the appropriate positive rate design value. For each of the nine 

design profiles, we simulate 5000 datasets of 𝑑𝑆 = {𝑦𝑗𝑚𝑡 , 𝑗 = 1,… , 𝑛𝑚𝑡 , 𝑚 = 1, … ,7, 𝑡 =  1,… ,18} 
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based on the sample size by lab, 𝑛𝑚𝑡 , given in Figure 5-6 and the positive rate design profile over 

time by lab, 𝜋𝑚𝑡, given in Table 5-3 and Figure 5-7.  

For each of the 5000 simulations of 𝑑𝑆 for each of the nine design profiles, we calculate the 

WEE LR test statistic and reject or do not reject 𝐻0 versus 𝐻𝐴 based on the asymptotic 

approximation for its distribution under the null hypothesis in (13). We do this for every value of 

𝑇 = 1, … ,18 and for each of the naïve and WEE approaches to study the power and unbiasedness 

of the tests statistics by the various approaches over successive time periods. With these simulation 

results, we evaluate the size for the design profile where the null hypothesis is known to be true 

and the power and unbiasedness for design profiles where the null hypothesis is known to be false. 

Figure 5-8 gives the percentage of LR test statistics by the WEE and naïve approaches where the 

null hypothesis is rejected at 𝛼 = 0.05 for data simulated by Profile I where the null hypothesis is 

known to be true.  

 

Figure 5-8. Percentage of tests of 𝐻0 rejected for profile I (no change) 

Figure 5-8 shows that the percentage of tests rejected over time is similar for the WEE and naïve 

approaches. The LR test statistic by the WEE approach rejects the null hypothesis for 4.8% of 

datasets, and those by the naïve approach with all historical data and only present time data reject 

for 4.7% and 5.0% of datasets, respectively. The closeness of the observed sizes of the tests 

compared to the design value for the size of test (5%) is expected and indicates that the 

approximations for the critical values of the test statistics are reasonable. The observed differences 

in actual sizes of the tests among the three approaches do not have an important impact on the 

interpretation of the power of the tests to follow. 

Figure 5-9 gives the percentage of LR test statistics by the WEE and naïve approaches where 

the null hypothesis 𝐻0 is rejected in favour of the alternative 𝐻𝐴 based on data simulated with each 
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of the eight design profiles where the null hypothesis is known to be false. The graphs are 

interpreted as the observed power of the various test statistics to reject the null hypothesis with 

sizes of the test close to 0.05. We expect the observed power to increase according to the known 

change in positive rate. Note that there are differences in the scales of the vertical axes.  
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Figure 5-9. Percentage of tests of 𝐻0 rejected for profiles II-IX 

Figure 5-9 shows that the power usually increases with more time periods since the step change 

and as the linear change gets larger. The exception is under the naïve approach based only on 

current time data where power does not increase with more time periods following a step change 

(naïve t=T for Profiles II, III, VI, VII). In general, the WEE approach has higher power to detect 

a change after a given number of time periods and requires fewer time periods to achieve a 

particular level of power.  

We investigate how the power to detect a change increases as the size of the change increases 

in a follow-up simulation study. In this study, we simulate data where the true value of the positive 

rate does not change for time periods 𝑡 = 1, … ,9 and then either a linear or step change of various 

sizes occurs at the small lab 7. Figure 5-10 gives the observed power to detect the linear or step 

change of various sizes at three time periods following the change (𝑇 = 12) by test statistics from 

the various approaches. 

  

Figure 5-10. Power of test to detect change at a small lab after three months: (a) following a step 

change, (b) following a linear change 

Figure 5-10(a) shows that the power of the WEE approach to detect a step change of 0.024 in the 

positive rate (from 0.042 to 0.066) at lab 7 at three months since the change is favourable at 72.8%. 

(a)                                                                        (b) 
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As the size of the step change increases over the range from 0.003 to 0.024, the WEE approach 

has increasingly more power to detect the change than either naïve approach. Figure 5-10(b) shows 

that the power of the WEE approach to detect a linear change of 0.01 per month (from 0.042 to 

0.072 after three months) at lab 7 at three months is 55.4%. The naïve approach using current time 

data only has slightly more power than the WEE approach for this example since the change is 

relatively large and the total amount of data since the change is relatively small compared to that 

from before the change. As more time passes since the start of the change, we expect that the 

power of the WEE approach to detect a change will surpass the power of the naïve t=T approach. 

The nine time periods of data observed before the change considerably reduce the power of the 

naïve approach using all historical data weighted equally compared to the other approaches.  This 

study shows that there is favourable power of the WEE approach for detecting a change at a small 

lab within a short time frame depending on the size of the change. 

5.3. Summary and discussion 

The proficiency test to assess the ability of laboratories to perform fecal occult blood tests 

(FOBT) in Ontario compares the observed positive abnormal rate from various labs to an 

acceptance interval based on data across all labs. When one or more of the labs test few samples 

relative to the other labs, the probability that the Ontario FOBT proficient test incorrectly classifies 

the lab acceptable or non-compliant may be large. There is wide disparity in sample sizes between 

the seven labs testing FOBT in Ontario. The power of the Ontario FOBT proficient test to correctly 

classify small labs is a concern.  

We analyse real Ontario FOBT outcome data from seven labs over a period of 18 months. We 

use the weighted estimating equations approach since we expect that test performance may drift 

slowly over time in an unpredictable way and some sample sizes may be small. We compare the 

WEE estimate of the positive rate to estimates by naïve approaches based on present time data 

only and all historical data weighted equally. The various approaches produce positive rate 

estimates that vary considerably from one another. The WEE estimate has similar precision to the 

estimate based on all historical data weighted equally. Based on the WEE approach and the naïve 

approach based on all historical data weighted equally, we reject a test of the null hypothesis that 

all labs have the same positive rate in favour of an alternative hypothesis that not all labs have the 

same positive rate. We do not reject this null hypothesis based on the analysis of present data only. 

Similarly, two of the tests against lab-specific alternative hypotheses are rejected based on the 

WEE approach and the naïve approach using all historical data, but not rejected based on the 
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analysis of present data only. There are important differences in the results based on the WEE 

approach compared with those in line with current industry practice.  

We explore the power of the hypothesis test to detect difference between labs by the various 

approaches through simulated data designed with varying changes in positive rate over time. The 

conditions for the simulation study reflect those of the Ontario FOBT proficiency test at May 2014 

as a prototype example, including the number of labs, sample sizes by lab, and initial positive 

abnormal rates. In general, the WEE approach has higher power to detect a change after a given 

number of time periods and requires fewer time periods to achieve a particular level of power. As 

the size of a step change increases, the WEE approach has increasingly more power to detect the 

change than either naïve approach under the particular simulation conditions. Under a linear 

change, initially the approach based on present time data only has higher power, but the power of 

the WEE approach surpasses the power of the naïve approach within a short time frame depending 

on the size of the change. The work of this chapter indicates that a more reliable Ontario FOBT 

proficiency test can be constructed based on the WEE approach that has suitable power to detect 

changes at a lab of any size and reduces the risk of classifying a lab as non-compliant in error. 

Multiple testing 

In the lab positive rate application, the tests of 𝐻0 versus 𝐻𝐴 and 𝐻0 versus 𝐻𝑘 are multiple 

testing problems since we test the significance of multiple stream effects simultaneously. An 

alternative is to test separate hypotheses for each stream effect; for example, 𝐻0: 𝛿1 = 0 versus 

𝐻𝐴: 𝛿1 ≠ 0. Lehmann and Romano (2008, p.349) point out that the probability of a false rejection 

rises rapidly with the number of tests, here − 1. When the number of true hypotheses is large, we 

are nearly certain to reject some of them. Lehmann and Romano (2008) discuss strategies such as 

the Bonferroni procedure and the Holm procedure for controlling the probability of one or more 

false rejections for multiple testing problems. In some applications, there may be thousands of 

treatments under test in which case an adjustment for multiplicity is important. In the lab positive 

rate problem, the number of hypotheses is fairly small at 𝑀 = 7. We proceed without an 

adjustment for multiplicity. 

Selecting historical time window 

In an analysis involving historical data, we must select a time window for the data to include in 

the analysis. In the case where we expect that the true value of the parameter has had a significant, 

sustained change, we want to restrict our analysis to data following the change. In the case where 

we expect that the parameter changes slowly, the effect of the time window is related to sample 
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sizes and the values of the weights over time. In Section 3.2, we discuss that precision of an 

estimate is related to effective sample size and show for a binomial model without covariates that 

𝑁𝑒𝑓𝑓 =  

(∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1 )

2

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

 for weights {𝑤𝑡, 𝑡 =  1, … , 𝑇} and sample sizes {𝑛𝑡 , 𝑡 = 1,… , 𝑇}. Under the 

WEE approach with exponentially declining weights, the increase in 𝑁𝑒𝑓𝑓 declines as we widen 

the size of the time window and effectively approaches an upper bound. In Figure 5-11, we explore 

the values of 𝑁𝑒𝑓𝑓 for various sizes of the historical time window based on the number of FOBT 

patients observed over time as given in Figure 5-1 and {𝑤𝑡, 𝑡 = 1,… , 𝑇} with weight parameter 

𝜆 = 0.1. 

 

Figure 5-11. Effective sample size vs. size of historical time window for FOBT dataset 

Figure 5-11 shows that the effective sample size increases as we expand the size of the historical 

time window over this range. The curve will level off as data from more historical time periods 

become available, at which time widening the historical time window will have little effect on the 

estimates. In contrast, under the naïve approach involving all historical data weighted equally, 

there is no effective upper bound on the effective sample size. Here it is more important to select 

the time window with care in order to reduce the possibility for added bias since the historical data 

have equal weight. We can make an arbitrary selection of the desired effective sample size, 

𝑁𝑒𝑓𝑓 =  
∑ 𝑛𝑡
𝑇
𝑡=1 . Since the WEE approach down-weights historical data with exponentially 

declining weights, then the selection of a time window has less impact on the estimates compared 

to the naïve approach with all historical data weighted equally. 
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Considerations for some large sample sizes 

The WEE approach is motivated by the need for a bias/variance trade-off when the parameter 

changes slowly over time and sample size in the present time period is small. In the data on FOBT 

labs in Ontario, Figure 5-2 shows that three of the seven labs have few samples (< 1000) relative 

to three large labs (> 15,000 samples) in the present time period. The simulation results show that 

the WEE approach has higher power to detect a change at the small lab relative to either of the 

naïve approaches. The same observation holds for a change at the large lab, though the power 

values are higher for all approaches. For testing a hypothesis related to a large lab, suitable power 

can be achieved when using present data only. We prefer to use present data in the case where the 

present sample size is sufficient so that we minimize the potential for adding bias when the 

parameter may change over time. We consider two alternatives to the standard WEE approach 

where there are sufficient data in the present time period for at least one lab and small sample sizes 

at other labs.  

One alternative to the standard WEE approach is to exclude the historical data 

{𝑑𝑚′,1, 𝑑𝑚′,2, … , 𝑑𝑚′,𝑇−1} observed at a large lab 𝑚′ from the analysis. The mean of the particular 

lab is estimated through the present data 𝑑𝑚′,𝑇 only. The formulations of the WEE approach in 

Chapter 3 apply directly in this case. This alternative has the effect of reducing the relative weight 

given to data from that particular lab in the estimation of covariate effects (within a model that 

includes covariates). The covariate effect estimates are less precise since less data are used for 

estimation. In the case where there are no covariates in the model, then this is the best alternative. 

Further consideration of the approximations of the estimate of the variance of 𝜃 and the 

distribution of the hypothesis test statistic involving 𝜃 under this alternative is required. 

A second alternative that maintains the precision of the covariate effect estimates is to separate 

the estimation of covariate effects from the estimation of the lab effects in a two-stage approach. 

In stage 1, the estimation of covariate effects is based on all present and historical data from all 

labs. In stage 2, the covariate effects estimates are used as fixed values in the estimation of lab 

effects. Under this alternative, stage 2 estimation of the effect for a large lab 𝑚′ involves its present 

data 𝑑𝑚′,𝑇 only. Since the covariate effects are fixed in stage 2, then the estimation of the various 

lab effects can be separated. Usual MLE results for the estimate of uncertainty and distribution of 

the hypothesis test statistic apply to the estimates based on present time data only and WEE results 

apply to the estimates based on weighted estimating equations as before. The two-stage approach 

is discussed further as future work in Section 7.2. 
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Chapter 6: Hospital Performance Measure  

Complications of surgical care are a major cause of death and disability worldwide (World 

Health Organization, 2009). Confronted with this problem, the World Health Assembly adopted a 

resolution urging countries to strengthen the safety of health care and monitoring systems in 2002. 

In the United States, the Centers for Medicare and Medicaid Services (CMS) have a congressional 

mandate to evaluate hospital performance using risk-adjusted mortality rates. The CMS began 

publicly reporting hospital 30-day mortality rates for patients with acute myocardial infarction and 

heart failure in June 2007 and for pneumonia in 2008. In Canada, the Canadian Institute for Health 

Information (CIHI) provides information on Canada’s health system under the mandate to 

accelerate improvements in health system performance. One of their goals is to expand their 

analytical tools to support measurement of health systems (Canadian Institute for Health 

Information, 2016). Clearly, statistical methods for assessing patient outcomes following surgery 

is an issue of substantial public importance.  

In the context of surgical performance, the patient outcome following surgery is an important 

indicator of quality at the hospital where the patient is treated. Patient outcomes vary across 

hospitals due to individual patient health at admission (patient risk factors) as well as the quality 

of the surgical process and post-surgical care. A performance measure for surgical performance at 

a particular hospital must adjust for the risk factors of the patients it has treated but not adjust for 

differences related to its surgical process and post-surgical care quality. With an appropriate 

performance measure, Spiegelhalter et al. (2012) discuss three primary functions of this measure. 

Specifically, a regulator or stakeholder may want to 

 compare performance to target  

 screen performance to decide which hospitals to inspect 

 monitor performance for arising problems 

Of particular importance is the ability of these functions to inform stakeholders who can accelerate 

improvements in patient outcomes. Uncertainty in the performance measure is also important for 

stakeholders to consider and will be affected by the number of cases seen at the various hospitals 

and other factors.  

The New York State (NYS) Department of Health (DOH) has studied the effects of patient and 

treatment characteristics on outcomes for patients with heart disease for over 20 years. A common 

procedure performed on patients with coronary artery disease is percutaneous coronary 
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intervention (PCI). Annually, the NYS Department of Health publishes a report based on 

information collected on patients over a three-year period who underwent PCI in NYS hospitals 

(New York State Department of Health, 2015). Their hospital-specific performance measure 

adjusts for its patients’ health at admission through an estimate of risk-adjusted mortality rate for 

a mix of patients identical to the statewide mix. The current practice to estimate the measure for a 

particular hospital involves estimates of its observed mortality rate, expected mortality rate for its 

observed patient mix, and the observed statewide mortality rate. The mathematical formulation is 

given in more detail in Section 6.1. The estimate of its observed morality rate is a naïve estimate 

based on the observed patient outcomes for a particular hospital. As such, there is a high degree of 

instability and uncertainty in the NYSDOH estimates of performance for a low volume hospital in 

particular. This instability and uncertainty limit the usefulness of the performance measure. For 

example, when a hospital treats two patients in a time period, then its estimate of observed 

mortality rate can take one of the three possible values 0, 50%, or 100% and binomial uncertainty 

interval estimates for these quantities are extremely large. A risk-adjusted measure involving this 

estimate of the observed mortality rate is not able to serve the necessary functions. The NYSDOH 

pools data over a three-year time window to increase the number of cases observed by hospital. 

We point out that though pooling data reduces uncertainty, this approach increases bias in an 

estimate of the present time performance when performance changes over time. Further, this 

approach reduces the sensitivity to identify changes over time which is one important function of 

this measure. Considerable uncertainty may remain.  

The Centers for Medicare and Medicaid Services (CMS) uses an approach recommended by 

the COPPS-CMS White Paper Committee (2012) that similarly pools data over a three-year time 

period. The estimate of the performance measure by the CMS approach involves a risk-adjusted 

prediction of the mortality rate for a particular hospital. The key difference to the NYSDOH 

approach is that the CMS approach stabilizes the estimate of the hospital-specific performance 

measure through a hierarchical, random effects model. The random effects model estimates fixed 

covariate effects and predicts hospital-specific effects. The model is fit with data observed at all 

hospitals in the country that perform the particular surgery and so the fixed covariate effect 

estimates borrow strength across hospitals. The predicted mortality rate estimates through the 

random effects model are closer to the overall mortality rate across all hospitals and have lower 

standard error than the naïve observed mortality rate estimates (COPPS-CMS White Paper 

Committee, 2012). Thus, this model is referred to as a shrinkage model. The mathematical 

formulation is given in more detail in Section 6.1. 
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Another alternative is to estimate the observed mortality rate with a fixed effects model. On 

average, the stabilized predicted mortality rate estimates by the shrinkage model are closer to the 

overall mortality rate and have lower mean squared error (MSE) than estimates based on fixed 

effects. Kalbfleisch and Wolfe (2013) point out that the MSE advantage of the shrinkage model is 

achieved by smaller error among the large number of hospitals near the centre of the distribution 

at the expense of larger error among hospitals with exceptional outcomes. They state that if the 

goal is to have high power for identifying hospitals with exceptional outcomes and to estimate the 

difference from the expected outcome for such exceptional hospitals, then fixed effects methods 

are better than random effects methods. Another criticism of this approach is that shrinkage has 

the effect of producing estimates for low volume hospitals that are close to the overall mean. Some 

stakeholders argue in favour of different shrinkage models depending on the volume of the hospital 

and others argue for no shrinkage at all (COPPS-CMS White Paper Committee, 2012). Further, 

the shrinkage model may be hard for hospital performance stakeholders to understand. 

There is an opportunity to improve the bias and uncertainty in estimates of present performance 

beyond the approaches of pooling data and borrowing strength across hospitals and as an 

alternative to the shrinkage model. The weighted estimating equations approach borrows 

information from the past in order to manage a bias/variance trade-off in an estimate of present 

performance when surgical performance may drift slowly over time in an unpredictable way and 

some sample sizes may be small. Where stakeholders pay regular attention to hospital performance 

issues, we expect that surgical quality changes slowly over time. The WEE approach increases the 

statistical information for estimation by involving past data through the weighted estimating 

functions. Then, estimates of present performance have less bias than pooling data without weights 

and less uncertainty than using present data only. Similar to the CMS approach, the WEE approach 

also borrows strength across hospitals for estimates of covariate effects. The WEE approach has 

intuitive properties that can be understood by the hospital performance measure stakeholders. 

This chapter compares the WEE approach with the NYSDOH and CMS current practices to 

estimate a present surgical performance measure from a stream of patient outcome data across 

hospitals with various surgical process and post-surgical care quality and patient risk factors. The 

objective is to reduce uncertainty in the estimates when some sample sizes are small and manage 

the added bias caused by slowly changing surgical quality over time. In Section 6.1, we introduce 

a realistic dataset that has similar properties to the PCI patient outcomes in NYS over the period 

from 2004 to 2012 and give the mathematical formulations of the CMS, NYSDOH, and WEE 

approaches. In Section 6.2, we look at results for the performance measure estimates across 
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hospitals by the various approaches based on the dataset. In Section 6.3, we discuss considerations 

for implementing the WEE approach in practice.  

6.1. Mortality rate following percutaneous coronary intervention in New York 

State 

Data 

The realistic data arising from the patients undergoing percutaneous coronary intervention 

(PCI) at New York State hospitals are described in Section 1.1. The actual NYSDOH data are 

inaccessible to the public and so a realistic dataset is created with similar properties to the actual 

data that are available. In particular, the sample sizes, mix of patient covariate levels, observed 

mortality rates, and logistic regression estimates of the covariate effects match closely to those in 

the NYSDOH reports (e.g., New York State Department of Health, 2015). The dataset contains 

realistic test outcomes for 467,401 patients at 60 hospitals over the nine-year period from 2004 to 

2012. Figure 6-1 gives the number of patients who underwent PCI by year, the observed mortality 

rate over time, and the linear trend line in mortality rate.  

 

Figure 6-1. Observed mortality rate and sample size of PCI patients over time  

Figure 6-1 shows that mortality rate increases slowly over time. This naïve analysis based on 

sample proportions in individual time periods is not a useful indicator of surgical performance 

over time since the distribution of risk factors for the patient population changes over time. An 

increase in the relative risk of patients at admission or an increase in the relative number of patients 

at a poorer performing hospital would result in an increase in the observed mortality rate over time, 

often even in the case where general surgical performance is improving. Note that the number of 
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patients who underwent PCI varies over time and the number of patients treated in the latest time 

period is smaller than almost all of the previous time periods. When we restrict our attention to the 

latest year’s data (2012), then the similar graph by hospital is given in Figure 6-2. 

 

Figure 6-2. Observed mortality rate and sample size of PCI patients in 2012 by hospital 

Figure 6-2 shows that there are large differences between the numbers of patients who underwent 

PCI across the various hospitals. Hospitals 4 and 25 treated 58 and 80 patients, respectively, 

whereas other hospitals treated as many as 4708 patients. Note that five hospitals reported no 

deaths among their patients. 

NYSDOH risk-adjusted mortality rate 

The risk-adjusted mortality rate approach in use by the New York State Department of Health 

(NYSDOH) estimates the hospital’s mortality rate among PCI patients for a mix of patients at that 

hospital identical to the statewide mix. To get the hospital-specific, risk-adjusted mortality rate, 

the observed mortality rate at a particular hospital is first divided by the hospital-specific expected 

mortality rate. The ratio is then multiplied by the statewide (NYS) observed mortality rate. The 

hospital-specific expected mortality rate based on a fixed effects regression model is an estimate 

of the hospital’s mortality rate given that the hospital’s performance is the same as the average 

performance of all hospitals statewide. The likelihood function for the fixed effects regression 

model is based on a generalized linear model with linear predictor 𝜂𝑗𝑚 =  𝛼 +  𝛽𝑇𝑥𝑗𝑚, response 

distribution 𝑌𝑗𝑚  ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑗𝑚), and link function 𝜂𝑗𝑚 = log [
𝜋𝑗𝑚

1−𝜋𝑗𝑚
] for 𝑗 = 1,… , 𝑛𝑚 where 

𝑛𝑚 is the number of patients who undergo PCI surgery at hospital 𝑚 over the three-year period. 

The definitions of the parameters are the same as in Table 1-1. Estimation of 𝛼 and 𝛽 is based on 
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data from all patient outcomes observed in NYS in the latest three-year time period. With estimates 

𝛼̂ and 𝛽̂, we estimate the probability of mortality for patient 𝑗 at hospital 𝑚 = 1,… ,𝑀 having 

covariate vector 𝑥𝑗𝑚 as  

 𝜋̂𝑗𝑚 =
exp(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

1+exp(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)
 

The estimates 𝜋̂𝑗𝑚 are combined for all patients 𝑗 = 1,… , 𝑛𝑚 at a particular hospital 𝑚 to estimate 

its expected mortality rate. Then, the NYSDOH risk-adjusted, hospital-specific mortality rate 

estimate is 

 𝜋̂𝑚 =
𝑂𝑀𝑅𝑚

1

𝑛𝑚
∑ 𝜋̂𝑗𝑚
𝑛𝑚
𝑗=1

× 𝑂𝑀𝑅𝑁𝑌𝑆  (21) 

where 𝑂𝑀𝑅𝑚 =
∑ 𝑦𝑗𝑚
𝑛𝑚
𝑗=1

𝑛𝑚
 and 𝑂𝑀𝑅𝑁𝑌𝑆 =

∑ ∑ 𝑦𝑗𝑚
𝑛𝑚
𝑗=1

𝑀
𝑚=1

∑ 𝑛𝑚
𝑀
𝑚=1

 are the naïve estimates of observed 

mortality rates observed at hospital 𝑚 and across NYS, respectively. The annual reports do not 

specify the methodology for estimating the uncertainty of 𝜋̂𝑚. The stated confidence intervals are 

close to the 95% Agresti-Coull binomial confidence intervals for 𝑂𝑀𝑅𝑚 

(𝐿𝐶𝐿(𝑂𝑀𝑅𝑚) and 𝑈𝐶𝐿(𝑂𝑀𝑅𝑚)) and fixed values for 𝜋̂𝑚 and 𝑂𝑀𝑅𝑁𝑌𝑆 so 

 𝐿𝐶𝐿(𝜋̂𝑚) =
𝐿𝐶𝐿(𝑂𝑀𝑅𝑚)
1

𝑛𝑚
∑ 𝜋̂𝑗𝑚
𝑛𝑚
𝑗=1

× 𝑂𝑀𝑅𝑁𝑌𝑆  

 𝑈𝐶𝐿(𝜋̂𝑚) =
𝑈𝐶𝐿(𝑂𝑀𝑅𝑚)
1

𝑛𝑚
∑ 𝜋̂𝑗𝑚
𝑛𝑚
𝑗=1

× 𝑂𝑀𝑅𝑁𝑌𝑆 

The NYSDOH mortality rate estimate in (21) adjusts for the population of patients treated at 

each particular hospital. The hospital-specific ratio 
𝑂𝑀𝑅𝑚

1

𝑛𝑚
∑ 𝜋̂𝑗𝑚
𝑛𝑚
𝑗=1

 represents the performance of the 

particular hospital relative to the performance of the state as a whole. If the resulting ratio is larger 

(smaller) than one, the hospital has a higher (lower) mortality rate than expected on the basis of its 

patient mix. The hospital-specific ratio is converted to a mortality rate by multiplying the ratio by 

the observed mortality rate across all NYS PCI patients.  

CMS hierarchical random effects model 

The current practice used by the Center for Medicare and Medicaid Services (CMS) to address 

the challenge of estimation with small samples is a hierarchical random effects model which 

accounts for patient-level risk factors and hospital-level variation (COPPS-CMS White Paper 

Committee, 2012). The prediction of the hospital-specific mortality rate through the hierarchical 
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random effects model takes the place of the observed mortality rate in the NYSDOH approach. 

The likelihood function for the problem under consideration is based on a generalized linear mixed 

model (GLMM) with linear predictor 𝜂𝑗𝑚 = 𝛼 + 𝛿𝑚 + 𝛽
𝑇𝑥𝑗𝑚, response conditional distribution 

𝑌𝑗𝑚| 𝛿𝑚 ~
𝑖𝑛𝑑
𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑗𝑚), hospital-specific effects distribution 𝛿𝑚 ~

𝑖𝑖𝑑
𝑁(0, 𝜏2), and link 

function 𝜂𝑗𝑚 = log [
𝜋𝑗𝑚

1−𝜋𝑗𝑚
]. The definitions of the parameters are the same in Table 1-1 except 

that 𝛿 =  (𝛿1, 𝛿2, … , 𝛿𝑀)
𝑇 is the random effect of hospitals 𝑚 = 1,… ,𝑀 on the mean. Estimation 

of 𝛼, 𝛽, and 𝜏2 follow usual procedures for maximizing the likelihood within a GLMM. The effect 

𝛿 is predicted through the estimate of the between–hospital variation, 𝜏2, and observed hospital 

level means. With estimates 𝛼̂ and 𝛽̂ and prediction 𝛿, we predict the mortality rate for patient 𝑗 

having covariate vector 𝑥𝑗 at hospital 𝑚 = 1,… ,𝑀 as  

 𝜋̂𝑗𝑚(𝜃) =
exp(𝛼̂+𝛿̂𝑚+𝛽̂

𝑇𝑥𝑗𝑚)

1+exp(𝛼̂+𝛿̂𝑚+𝛽̂𝑇𝑥𝑗𝑚)
 

for 𝑗 = 1,… , 𝑛𝑚. The hospital-specific estimate of risk-adjusted mortality rate is 

  𝜋̂𝑚(𝜃) =
∑  𝜋̂𝑗𝑚(𝜃̂)
𝑛𝑚
𝑗=1

∑  
𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

1+𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

𝑛𝑚
𝑗=1

× 𝑂𝑀𝑅𝑁𝑌𝑆 (22) 

where 𝑂𝑀𝑅𝑁𝑌𝑆 =
∑ ∑ 𝑦𝑗𝑚

𝑛𝑚
𝑗=1

𝑀
𝑚=1

∑ 𝑛𝑚
𝑀
𝑚=1

 is the naïve estimate of observed mortality rate observed at NYS. 

In order to estimate the uncertainty of 𝜋̂𝑚, the current CMS approach determines a hospital-

specific estimate 𝜋̂𝑚 and 95% confidence intervals (LCL and UCL) of this estimate through the 

following bootstrap algorithm (COPPS-CMS White Paper Committee, 2012).   

1. Sample 𝑀 hospitals with replacement. 

2. Fit the GLMM with all cases among the 𝑀 sample hospitals. Estimate 𝛼, 𝛽, and 𝜏2 and 

predict 𝛿. 

3. Predict a hospital random effect 𝛿𝑚
𝑏 , 𝑚 = 1, … ,𝑀 by sampling from the distribution of the 

hospital-specific distribution 𝛿𝑚
𝑏~𝑁(𝛿𝑚, 𝜏̂

2) for the unique set of 𝑀 hospitals. If a hospital 

is sampled more than once, randomly select one random effect prediction. 

4. Estimate adjusted mortality rate by hospital for bootstrap sample 𝑏, 

𝜋̂𝑚
𝑏 =

∑  
𝑒𝑥𝑝(𝛼̂+𝛿̂𝑚

𝑏 +𝛽̂𝑇𝑥𝑗𝑚)

1+𝑒𝑥𝑝(𝛼̂+𝛿̂𝑚
𝑏 +𝛽̂𝑇𝑥𝑗𝑚)

𝑛𝑚
𝑗=1

∑  
𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

1+𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

𝑛𝑚
𝑗=1

× 𝑂𝑀𝑅𝑎𝑙𝑙  for 𝑚 = 1,… ,𝑀 
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5. Iterate steps 1-4 for 𝐵 bootstrap samples. Estimate adjusted mortality rate by hospital, 

𝜋̂𝑚 =
∑ 𝜋̂𝑚

𝑏𝑛𝑚
𝑏

𝑏=1

𝐵
, 𝐿𝐶𝐿(𝜋̂𝑚) = 𝜋̂𝑚

𝑏
(0.025×𝑛𝑚

𝑏 )
, 𝑈𝐶𝐿(𝜋̂𝑚) = 𝜋̂𝑚

𝑏
(0.975×𝑛𝑚

𝑏 )
 

where 𝑛𝑚
𝑏  is the number of bootstrap samples that are generated for hospital 𝑚.  

We run this bootstrap algorithm with 𝑀 = 60 and 𝐵 = 810. The value of 𝐵 is selected so that we 

observe 𝑛𝑚
𝑏 ≥  500 for each hospital 𝑚 = 1,… ,𝑀. 

Like the NYSDOH performance measure, the CMS mortality rate estimate in (22) adjusts for 

the population of patients treated at each particular hospital. The numerator of the performance 

measure is the predicted total number of events for the particular hospital and is determined 

through estimates of the risk coefficients (stage 1), prediction of the hospital-specific intercept 

(stage 2), and the hospital-specific patient covariate values. The denominator of the performance 

measure reflects the expected total number of events for the particular hospital given its actual 

patient mix as in the numerator but without any hospital-specific intercept. The hospital-specific 

ratio 
∑  𝜋̂𝑗𝑚(𝜃̂)
𝑛𝑚
𝑗=1

∑  
𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

1+𝑒𝑥𝑝(𝛼̂+𝛽̂𝑇𝑥𝑗𝑚)

𝑛𝑚
𝑗=1

 represents the performance of the particular hospital relative to the 

performance of the state as a whole and is interpreted in the same fashion as the ratio 
𝑂𝑀𝑅𝑚

1

𝑛𝑚
∑ 𝜋̂𝑗𝑚
𝑛𝑚
𝑗=1

 

in (21). Through the prediction of the hospital-specific random effect, the hospital-specific ratio 

in (22) is closer to one and has lower standard error than the hospital-specific ratio in (21) for each 

𝑚 = 1,… ,𝑀. The difference is greater for low volume hospitals compared to high volume 

hospitals. 

Kalbfleisch and Wolfe (2013) suggest a modification to the CMS approach whereby the 

standardized mortality rate is based on stage 1 estimates of the hospital-specific estimate rather 

than the stage 2 prediction of 𝛿𝑚. To date, this work has been done for linear models only and so 

is not applicable for the problem at hand. 

Estimation by weighted estimating equations  

We use the WEE approach since some sample sizes by hospital are small and we expect that 

the mean mortality rates by hospital drift over time in an unpredictable way. In Section 1.3, we list 

two possible standard populations of interest for this application. The population of patients across 

all hospitals at the present time is relevant for comparing estimates across hospitals. In 2012, there 

are 47,045 patients across the 60 hospitals with the number of patients by hospital given in Figure 
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6-2. Because of the number of covariates, it is not practical to display all of their covariate values 

here. Figure 6-3 gives the distribution of the age of the patients in this standard population. 

 

Figure 6-3. Age distribution of PCI patients in 2012 

Given the covariate values of the PCI patients in 2012, we define the standard population 

{𝑥𝑗∗ = (𝑥1,𝑗∗ , … , 𝑥15,𝑗∗)
𝑇
 for 𝑗∗ = 1,… ,47,045}.  

Table 1-1 introduces the GLM that is selected for this problem based on 𝜋𝑚, the binomial 

mortality rate following surgery in hospital 𝑚 for 𝑚 = 1,… ,60. We assume that the random 

variables are independent across 𝑡 = 1,… , 𝑇, conditional on the values of the covariates. The mean 

mortality rate at the baseline hospital (hospital 1) for a patient with the baseline level of the 

covariates (see Section 1.4) is modelled by 𝛼. The mortality rates of the other hospitals relative to 

the baseline hospital are modelled by 𝛿1, 𝛿2, … , 𝛿59. The effects of the values of the covariates 

relative to the baseline values are modelled by 𝛽1, 𝛽2, … , 𝛽15. For patient 𝑗 tested at hospital 𝑚 at 

time 𝑡, the binomial mortality rate relates to the model parameter 

𝜃𝑡 =  (𝛼𝑡, 𝛿1,𝑡, 𝛿2,𝑡, … , 𝛿59,𝑡, 𝛽1,𝑡, 𝛽2,𝑡, … , 𝛽15,𝑡)
𝑇
 through the inverse link function 

 𝜋𝑗𝑚𝑡(𝜃𝑡; 𝑑𝑡) =
exp(𝛼𝑡+𝛿1,𝑡𝐼𝑚[1]+𝛿2,𝑡𝐼𝑚[2]+⋯,𝛿60,𝑡𝐼𝑚[59]+β

T𝑥𝑗𝑚𝑡)

1+exp(𝛼𝑡+𝛿1,𝑡𝐼𝑚[1]+𝛿2,𝑡𝐼𝑚[2]+⋯,𝛿60,𝑡𝐼𝑚[59]+βT𝑥𝑗𝑚𝑡)
 (23) 

where 𝐼𝑚 is a 59-dimensional vector with elements that are either 0 or 1 depending on the hospital 

that the patient attended and 𝐼𝑚[𝑖] is the 𝑖𝑡ℎ element of 𝐼𝑚. We expect that levels 𝛼𝑡 and 𝛿𝑡 may 

change slowly over 𝑡 = 1,… , 𝑇 since there may be a drift in surgical quality at the hospitals. The 

observed outcome for patient 𝑗 at hospital 𝑚 at time 𝑡 is 𝑦𝑗𝑚𝑡 = 1 if the patient experiences death 

during the same hospital stay in which he/she underwent PCI or after hospital discharge but within 
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30 days of surgery and 𝑦𝑗𝑚𝑡 = 0 otherwise. The log-likelihood function describing the probability 

of data 𝑑𝑡 =  {𝑦𝑗𝑚𝑡 , 𝑗 =  1,… , 𝑛𝑚𝑡 , 𝑚 = 1, … ,60} including all observations at time period 𝑡 is  

 𝑙𝑡(𝜃𝑡; 𝑑𝑡) = ∑ ∑ (𝐼[𝑦𝑗𝑚𝑡 = 1] log𝜋𝑗𝑚𝑡 + 𝐼[𝑦𝑗𝑚𝑡 = 0] log(1 − 𝜋𝑗𝑚𝑡))
𝑛𝑚𝑡
𝑗=1

60
𝑚=1    (24) 

for indicator variables 𝐼[𝑦𝑗𝑚𝑡 = 0] and 𝐼[𝑦𝑗𝑚𝑡 = 1].  

We select weights {𝑤𝑡, 𝑡 = 1,… , 𝑇} by (10) with the value of the weight parameter 𝜆 = 0.5. 

We choose a higher value of 𝜆 for this application since the exploratory analysis in Figure 6-1 

shows that there is some noticeable change in the observed mortality rate over the yearly time 

intervals. The effect of alternatives for 𝜆 is discussed in Section 6.2. The WEE estimates will be 

compared to the estimates of the naïve approach using the two special cases of the weights 

described in Section 3.1.  

Under (3), the weighted estimating function vector of length 75 is  

 𝑄(𝜃; 𝑑, 𝑤) = ∑ 𝑤𝑡𝜓𝑡(𝜃; 𝑑𝑡)
𝑇
𝑡=1 =

[
 
 
 
 
 
 
 
 

∑ 𝑤𝑡 ∑ ∑ 𝐼[𝑦𝑗𝑚𝑡 = 1] − 𝜋𝑗𝑚𝑡
𝑛𝑚𝑡
𝑗=1

60
𝑚=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗2𝑡 = 1] − 𝜋j2t
𝑛2𝑡
𝑗=1

𝑇
𝑡=1

⋮
∑ 𝑤𝑡 ∑ 𝐼[𝑦𝑗,60,𝑡 = 1] − 𝜋j,60,t

𝑛60,𝑡
𝑗=1

𝑇
𝑡=1

∑ 𝑤𝑡 ∑ ∑ 𝑥1,𝑗𝑚𝑡(𝐼[𝑦𝑗𝑚𝑡 = 1] − 𝜋𝑗𝑚𝑡)
𝑛𝑚𝑡
𝑗=1

61
𝑚=1

𝑇
𝑡=1

⋮
∑ 𝑤𝑡 ∑ ∑ 𝑥15,𝑗𝑚𝑡(𝐼[𝑦𝑗𝑚𝑡 = 1] − 𝜋𝑗𝑚𝑡)

𝑛𝑚𝑡
𝑗=1

61
𝑚=1

𝑇
𝑡=1 ]

 
 
 
 
 
 
 
 

  

  (25) 

given the present time value of the parameter, 𝜃 = 𝜃𝑇 =  (𝛼, 𝛿1, … , 𝛿59, 𝛽1, … , 𝛽15)
𝑇, data 

𝑑 =  {𝑑𝑡, 𝑡 =  1,… , 𝑇}, weights 𝑤 = {𝑤𝑡, 𝑡 = 1,… , 𝑇}, and inverse link function 𝜋𝑗𝑚𝑡(𝜃𝑡; 𝑑𝑡).  

The WEE estimate 𝜃 is the solution of 𝑄(𝜃; 𝑑, 𝑤) = 0. Through (11), we estimate the weighted 

information estimate of variance, 𝑣𝑎𝑟̂(𝜃) involving 𝐼𝑡(𝜃), the expected information function at 

each time period evaluated at the WEE estimate. With estimate 𝜃, we compute the estimate of the 

mortality rate 𝜋̂𝑗∗𝑚 for each of the standard population patients 𝑗∗ =  {1, … ,47,045}, given {𝑥𝑗∗}, 

at each of the hospitals 𝑚 = 1,… ,60 as in Table 2-1. Similarly, with estimate 𝑣𝑎𝑟̂(𝜃), we compute 

estimate 𝑣𝑎𝑟̂(𝜋̂𝑗∗𝑚) through (5) and estimate 𝑣𝑎𝑟̂(𝜋̂𝑚) through (4).  

Results 

The exploratory analysis in Figure 6-1 shows that PCI patient mortality rates change over time 

and sample size in the latest time period is smaller than most other time periods. There are 
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differences in the mortality rates across hospitals since their patients have different risk factors and 

the surgical quality varies across hospitals. The objective is to estimate the present time mortality 

rate by hospital for a standard population of patients with a bias/variance trade-off so that 

stakeholders can use the measure for the functions described in Section 6.1.  

Figure 6-4, Figure 6-5, and Figure 6-6 give the estimates of mortality rate by hospital and 95% 

confidence intervals of these estimates based on the WEE approach assuming normality and the 

two industry practices discussed previously. Note that the estimates in Figure 6-4 are based on 

data {𝑑𝑡, 𝑡 =  2004,… ,2012} over a nine-year period and the estimates in Figure 6-5 and Figure 

6-6 are based on data {𝑑𝑡, 𝑡 =  2010, … , 2012} over a three-year period as per industry practices. 

The format of the graphs is like those in the NYSDOH annual reports which show the estimates 

and 95% confidence intervals assuming normality. The horizontal line on each graph is the overall 

observed mortality rate for all patients in NYS over the time period of the data. 

 

Figure 6-4. WEE estimates of 2012 mortality rates by hospital (𝜆=0.5) 

 

Figure 6-5. NYSDOH estimates of 2012 mortality rates by hospital  
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Figure 6-6. CMS estimates of 2012 mortality rates by hospital  

Figure 6-4, Figure 6-5, and Figure 6-6 show some important differences between the estimates by 

the various approaches. We compare the precision, bias, and the suitability of these estimates to 

serve their intended functions. 

Comparison of precision 

We compare the widths of the confidence intervals in Figure 6-4, Figure 6-5, and Figure 6-6 by 

hospital. For 32 of the 60 hospitals, the widths of the confidence intervals based on the WEE 

approach are narrower than those based on the NYSDOH approach. For 54 of the 60 hospitals, the 

widths of the confidence intervals based on the WEE approach are narrower than those based on 

the CMS approach. In particular, note the differences in the widths of the confidence intervals for 

those hospitals with exceptional performance. For each hospital with no deaths in 2012 (ref. 7, 9, 

12, 21, 25), the width of the confidence interval of the estimate by the NYSDOH or CMS 

approaches is around 38% larger than that by the WEE approach. For the three hospitals having 

the highest mortality rates based on the WEE approach (ref. 1, 18, 56), the widths of the confidence 

intervals for these hospitals in Figure 6-6 support the Kalbfleisch and Wolfe (2013) claim that 

CMS estimates of exceptional performance have poor precision. The effect of borrowing strength 

from the historical data through the WEE approach when there is little statistical information in 

the present time period data is a more precise estimate of present performance.  

Comparison of bias 

The trade-off for improved precision in WEE estimates is added bias when performance 

changes over time. We are unable to quantify bias in this analysis since we do not know the true 
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value of the parameter, but we presume that the WEE estimate based on present time data only is 

the closest WEE estimate to the present true value. The WEE weight parameter 𝜆 = 0.5 is used in 

this application and so the data from the most recent time period provides roughly 50% of the 

weight within the estimating function. The influence of data from previous time periods reduces 

quickly for time periods further in the past. We look at the mortality rate estimate for hospital 1. 

The naïve estimate of mortality rate at this hospital using present data only (WEE with 𝜆 → 1) is 

𝜋̂1(𝑡=𝑇) = 0.042 (LCL=0.028, UCL=0.056) and using all data from 2004 to 2012 weighted equally 

(WEE with 𝜆 → 0) is 𝜋̂1(𝑡≤𝑇) = 0.012 (LCL=0.0095, UCL=0.014). The WEE estimate with 

𝜆 =  0.5 is 𝜋̂1(𝑊𝐸𝐸) =  0.025 (LCL=0.018, UCL=0.031). Under the presumption stated previously, 

𝜋̂1(𝑊𝐸𝐸) has less bias than 𝜋̂1(𝑡≤𝑇) since it is closer to 𝜋̂1(𝑡=𝑇). The influence of past data results in 

a significantly lower WEE estimate of mortality rate compared to the naïve estimate using present 

data only since mortality rate at hospital 1 increases over time. Note from Figure 6-5 and Figure 

6-6 that there are significant differences between the estimates by the NYSDOH and CMS 

approaches for this hospital and the WEE estimate is between the other two. For slower changes 

over time, the differences between the estimates by the various approaches will be smaller. In 

Section 6.2, we discuss the impact of the choice of the weight parameter on the trade-off between 

bias and variance. 

Comparison by performance measure function 

When the mortality rate estimate is used to compare performance to target and to decide which 

hospitals to inspect, the differences in precision and bias of the estimates by the various approaches 

affect the outcomes. We see in Figure 6-4, Figure 6-5, and Figure 6-6 that the WEE approach 

identifies four hospitals with significantly worse performance than the overall mean that are not 

identified by the CMS approach (ref. 3, 15, 28, 36). The CMS approach is the least sensitive 

approach for identifying outlying hospitals because of the shrunken hospital effect predictions.  

We consider the suitability of the estimates by the various approaches to monitor performance 

over time. Figure 6-7 gives the estimates and 95% confidence intervals of mortality rate made each 

year by the three approaches for a particular hospital (ref. 3). The WEE estimates over time are 

mean mortality rate estimates for the same standard population which is the population of patients 

in 2012.  
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Figure 6-7. Estimates of mortality rate for hospital 3 by various approaches over time 

Figure 6-7 shows that there is an increasing trend in mortality rate estimates over the period from 

2006 to 2012 at hospital 3. Around this trend, the estimates by the NYSDOH approach fluctuate 

the least across time periods. The estimates by the CMS and WEE approaches highlight a 

significantly lower mortality rate in 2012 compared to 2011 that is not detected by the NYSDOH 

approach. Based on this example, we see that the WEE is a more sensitive approach than the 

NYSDOH approach at detecting changes over time.  

Considering precision and bias of the estimates, the ability to identify hospitals with exceptional 

performance, and sensitivity to changes over time, the WEE approach has advantages over the 

CMS and NYSDOH approaches for the realistic PCI in NYS dataset. The adoption of the WEE 

approach could have an important impact on the functions of the hospital surgical quality 

performance stakeholders. 

6.2. Implementation of the WEE approach 

Through a realistic dataset, we demonstrate that the WEE approach to estimate the present 

surgical quality performance measure has advantages over the two current industry practices. The 

WEE approach offers a trade-off between estimation using present time data only or all historical 

data weighted equally in the analysis of temporal data. This trade-off is especially important when 

sample sizes at some time periods may be small and a parameter describing the mean outcome 

changes slowly over time. There are numerous other applications where the WEE approach should 

be considered for improving estimates. In so doing, deliberate thought is required on certain 



Chapter 6: Hospital Performance Measure 

 

107 

aspects of this approach where characteristics of the particular dataset and available knowledge 

are important. Three aspects are discussed: selecting time subgroups and the weight parameter, 

estimating covariate effects, and handling missing data and sampling zeros.   

Selecting time subgroups and weight parameter 

In Section 1.2, we present the data 𝑑 = {𝑑𝑡} as observations over 𝑡 = 1,… , 𝑇 time periods. 

Depending on the application, the data may arise in an ongoing manner or in collections of 

observations at distinct time intervals. For example, a company that studies data from a customer 

survey may receive on-line customer responses on a daily basis. Choosing an appropriate time 

interval to define the subgroups is important; for example, responses may be grouped by day, 

week, or month. Principles of rational subgrouping from statistical quality control literature 

(Montgomery, 2013) intend to minimize within subgroup variation and maximize between 

subgroup variation. Similar objectives should be considered when subgrouping the data for 

implementing the WEE approach so that the true value of the parameter to be estimated changes 

slowly across the defined time periods. Naturally, sample sizes by time period depend on the 

choice of the time interval for subgroups and in general, we expect that small samples in some 

time periods may occur. 

In (10), we present a formula to calculate exponentially declining weights as a function of a 

weight parameter 𝜆 taking a value between 0 and 1. A larger 𝜆 value increases the weight given 

to the most recent data in the weighted estimating functions. The choice of 𝜆 regulates the bias-

variance trade-off. In general, a larger 𝜆 reduces bias and a smaller 𝜆 reduces uncertainty. The 

appropriate selections of time subgroups and weight parameter 𝜆 are related. For example, we may 

be able to subgroup a set of data by week or by month. The sample sizes in subgroups by week are 

smaller and so uncertainty in the estimate is more of a concern. We should select a smaller 𝜆 to 

reduce uncertainty. By contrast, if we subgroup the data monthly rather than weekly, then 

uncertainty is less of a concern and we can increase the value of 𝜆 somewhat.  

We demonstrate the relationship between the selections of time intervals and 𝜆 and their effect 

on the WEE estimates through the realistic PCI dataset. In Section 6.1, we present the results for 

the data in yearly subgroups. Next, we consider the situation where the month of the surgery is 

also available and it is possible to update the analyses at monthly intervals. To illustrate the impact 

of this alternative, since we don’t have the actual data, we assign months randomly for each patient 

within the year that his/her surgery took place. Figure 6-8 gives the number of patients who 

underwent PCI in each of the latest 15 months, the observed mortality rate over this time period, 

and the linear trend line in mortality rate.  
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Figure 6-8. Observed mortality rate of PCI patients over latest 15 months 

Comparing Figure 6-8 to Figure 6-1 we see that the average rate of change by time period in 

observed mortality rate based on data in monthly subgroups is slower than that based on data in 

yearly subgroups. A smaller value of 𝜆 is appropriate when implementing the WEE approach based 

on monthly data since the uncertainty resulting from a small sample in the latest time period is 

more of a concern than the bias resulting from combining data across time periods. In Section 3.2, 

we discuss the notion of effective sample size and show for a binomial model without covariates 

that 𝑁𝑒𝑓𝑓 =
(∑ 𝑤𝑡𝑛𝑡
𝑇
𝑡=1 )

2

∑ 𝑤𝑡
2𝑛𝑡

𝑇
𝑡=1

 for the WEE estimator. Figure 6-9 gives 𝑁𝑒𝑓𝑓 versus the value of 𝜆 for the 

monthly and yearly sample sizes in the realistic PCI dataset. 

 

Figure 6-9. Effective sample size depending on  and data subgrouping for the PCI dataset 
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Figure 6-9 shows that the maximum value of 𝑁𝑒𝑓𝑓 is 467,401 which is the total number of 

observations in the dataset and occurs when 𝜆 → 0 for data in both monthly and yearly subgroups. 

At the other extreme, when 𝜆 → 1, 𝑁𝑒𝑓𝑓 = 47,045 for the data in yearly subgroups which is the 

sample size in the latest year (2012) and 𝑁𝑒𝑓𝑓 = 3931 for the data in monthly subgroups which is 

the sample size in the latest month (December 2012). The marker on the yearly 𝑁𝑒𝑓𝑓 curve is the 

value at 𝜆 = 0.5 as selected in Section 6.1. The marker on the monthly 𝑁𝑒𝑓𝑓 curve has a similar 

value of 𝑁𝑒𝑓𝑓 which occurs when 𝜆 = 0.06. We select a value of 𝜆 =  0.06 for WEE analysis of 

the data in monthly subgroups which is considerably smaller than 𝜆 = 0.5 that is used in the WEE 

analysis of the data in yearly subgroups. Since the two analyses have similar values of 𝑁𝑒𝑓𝑓, then 

we expect the uncertainties of the resulting estimates to be similar. Figure 6-10 gives the WEE 

estimates of mortality rate by hospital and 95% confidence intervals of these estimates assuming 

normality based on the analysis of data in monthly subgroups. 

 

Figure 6-10. WEE estimates of 2012 mortality rate by hospital based on monthly data (𝜆 = 0.06) 

Figure 6-10 shows that the WEE estimates and confidence intervals based on the data in monthly 

subgroups are comparable to those based on the data in yearly time intervals in Figure 6-4. In a 

monitoring problem, we could make a graph such as Figure 6-7 based on WEE estimates updated 

monthly. Updating the WEE estimates more frequently should detect performance changes sooner. 

As discussed, the weight parameter 𝜆 regulates the bias-variance trade-off in the WEE estimate 

of the performance measure. We demonstrate this trade-off through a particular hospital (ref. 1) 

where mortality rate changes are relatively fast over time compared to that of the hospitals on 

average. Figure 6-11 gives the number of patients and observed mortality rates at hospital 1 over 

time based on yearly data.  
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Figure 6-11. Sample sizes and observed mortality rates of PCI patients at hospital 1 over time 

Figure 6-11 shows that a large change occurred at this hospital in the most recent time period. Note 

also that there were the fewest number of patients at this hospital in 2012. Figure 6-12 gives the 

WEE estimates and 95% confidence intervals based on this data with various values of weight 

parameter 𝜆. 

 

Figure 6-12. WEE estimates of 2012 mortality rate for hospital 1 with various 𝜆 

Figure 6-12 shows that the bias-variance trade-off in the WEE estimate of 2012 mortality rate at 

hospital 1 relates to the weight parameter. As 𝜆 increases, there is more uncertainty in the WEE 

estimate but we presume that the estimate is closer to the true present performance. For a particular 

problem of interest, similar analyses across various selections of 𝜆 provide an understanding of 

the bias/variance trade-off. Where WEE estimates are similar for various selections of 𝜆, as they 

are when performance changes slowly over time, then a relatively small value of 𝜆 should be 
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chosen to minimize uncertainty. We have found the value of 𝜆 = 0.1 to be appropriate under this 

condition. 

6.3. Summary and discussion 

Estimation of a surgical performance measure is important for healthcare monitoring and 

regulation. Current industry practices pool patient outcome data over three years to reduce 

uncertainty since the sample size in the current year may be small. They adjust for observed 

incoming patient health characteristics since various hospitals treat patients with different surgical 

risks. The estimates involve a generalized linear binomial model with fixed or random covariate 

and hospital effects. We propose the WEE approach as an alternative that similarly incorporates 

past data, adjusts for patient risk, and involves a binomial model. The key advantage of the WEE 

approach is that similar data from time periods further in the past are used to improve performance 

estimates while managing the added bias when performance changes slowly over time. When the 

precision and bias in the estimates of the performance measure are improved, we can compare 

performance to target, screen performance to decide which hospitals to inspect, and monitor 

performance for arising problems with more sensitivity and reliability.  

We discuss considerations relative to the implementation of the WEE approach for the hospital 

performance measure. The ability to specify a weight parameter within the WEE approach allows 

a choice to be made in selecting the time span of the data subgroups. If the data are available 

monthly, estimation through data in monthly intervals is practical through the WEE approach so 

that changes in performance are detected much quicker than through analyses based on a pooled 

three-year set of observations. Further, estimates of covariate effects are more precise since they 

are based on a larger set of data. In the WEE approach, covariate effects need not be updated at 

every time period which can simplify the analyses. With any approach, considerations need to be 

made for missing data and sampling zeros, but their impact will have less effect on estimates by 

the WEE approach than the other approaches discussed. 

Estimating covariate effects 

In this work, we assume that the true value of parameter vector 𝜃𝑡 may change slowly over 

time; however, it is possible that the covariate effects may either be known or assumed to be fixed 

over time. In the case where elements of 𝜃𝑡 are known, we can substitute the known values and 

reduce the number of estimating functions appropriately. In the case where elements of 𝜃𝑡 are 

assumed to be fixed over time (“fixed parameters”), then the lowest uncertainty estimates of these 
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elements are based on data across all time periods weighted equally. It is reasonable in this case to 

separate the estimation of the fixed parameters from the estimation of the remaining parameters 

that change slowly over time through a two-stage approach to estimation. In Section 7.2, we 

discuss the two-stage approach and two other alternatives to the WEE formulation when there are 

fixed parameters which we intend to explore as future work. Under the two-stage approach, the 

estimation of the fixed parameters may happen less frequently than the estimation of the remaining 

parameters since we expect that changes in the fixed parameter estimates are small. For example, 

in the monthly update of WEE estimates, the estimates of the fixed parameters may be updated 

annually.  

Missing data and sampling zeros 

Minimum levels of quality and completeness of the data are important in order that the estimates 

of hospital performance are useful. At the NYSDOH, data are verified through review of unusual 

reporting frequencies, cross-matching of data with other Department of Health databases, and a 

review of medical records for a selected sample of cases. These activities are extremely important 

to ensure consistent interpretation of data elements across hospitals and across time periods. There 

are various reasons that some patient cases may be excluded from analysis; for example, patients 

that reside outside of NYS and those who are determined to be at extremely high-risk for death 

preceding surgery are removed from the PCI in NYS analysis. A further requirement is that 

covariate and outcome data are reported consistently over time. In the NYSDOH analysis, a change 

was made in 2004 to include deaths that occurred outside of the hospital and within a 30-day period 

from the date of surgery in addition to in-hospital deaths. Further, a patient’s pre-procedural 

myocardial infarction was reported as one of five possible levels in 2007, whereas in 2012 there 

were eight possible levels and only two of these also had appeared in 2007. Adjustments need to 

be made so that there are consistent definitions of the outcome and the covariates within the dataset 

used to estimate present mortality by any of the three approaches discussed in this paper. These 

are important practical considerations. 

In any particular application, there may be missing data or sampling zeros that should be 

considered. Relative to the hospital performance problem, we discuss implementation of the WEE 

approach under the following conditions: 

 a new hospital is added or removed from the dataset during the time period of the data 

 some patient level covariate data are missing 

 outcome is not reported for some patients 
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 there are zero patient deaths observed at a particular level of the categorical covariates 

In the PCI in NYS dataset, 13 new hospitals began performing PCI and one hospital closed 

during the study period from 2004 to 2012. Data on patients from these hospitals do not appear for 

one or more of the time intervals either at the beginning or the end the study period. The statistical 

literature refers to this type of data as monotone missing data (Little and Rubin, 2002). We consider 

the simpler case where there are no covariates to be estimated in the model. When there are no 

data on patients at a particular hospital past time 𝑡0, as in the case where a hospital closes or ceases 

the surgery of interest, the WEE estimate of the particular hospital effect does not change for any 

𝑇 ≥ 𝑡0. This observation holds under exponentially declining weights and assuming that the 

beginning time period of the data remains fixed. Similarly, when there are no data on patients at a 

particular hospital before time 𝑡0, as in the case where a new hospital is added, the WEE estimate 

of that particular hospital effect based on the dataset {𝑑𝑡; 𝑡 ∈ [𝑡𝑜 , 𝑇]} is the same as that based on 

any of the larger datasets {𝑑𝑡; 𝑡 ∈ [𝑡
′, 𝑇], 𝑡′ < 𝑡0}. The same properties hold in the case where there 

are covariates but only one hospital effect to estimate. In the more general case where more than 

one hospital effect and covariate effects are estimated, the WEE estimate for a hospital effect 

differs depending on the number of time periods where there are no data from that hospital. This 

occurs because the estimates for the covariates and their uncertainties change as we include more 

time periods and the hospital effects are estimated simultaneously with covariate effects. The WEE 

estimates for a particular hospital change as the amount of monotone missing data for that hospital 

increases, but are better estimates since the estimates of the covariate effects under the fixed effects 

assumption are based on more data. In the case where a hospital no longer performs the particular 

surgery, then the data from this hospital may be included in the analysis in order to improve the 

estimates of the covariate effects; however, since the WEE approach intends to provide an estimate 

of present performance, then estimates of this hospital effect are no longer relevant. 

Another type of missing data occurs when some data are missing on patient-level values of the 

covariates or patient-level outcomes. Typically this occurs if the data collection processes are 

inconsistent across hospitals or over time. In SAS and other analysis procedures, the default 

approach to deal with this missing data is to delete the incomplete cases from the analysis. There 

is a large body of literature on missing data mechanisms and strategies for dealing with datasets 

collected over time having missing values (Little and Rubin, 2002; Colosimo, Fausto, Freitas, and 

Pinto, 2012; Jansen, Beunckens, Molengerghs, Verbeke, and Mallinckrodt, 2006). At the onset of 

an analysis, it is important to investigate missing-data patterns and mechanisms that lead to 

missing data. In the context of the hospital problem, it is important to investigate whether 



Chapter 6: Hospital Performance Measure 

 

114 

missingness is related to the performance of the hospital where the patient attended and apply the 

appropriate classification: missingness at random (MAR), completely at random (MCAR), or not 

at random (NMAR). The classification guides the selection of a procedure to deal with the 

missingness which are broadly grouped into imputation-based methods, model-based methods, 

and weighting procedures. In the case of MAR data, then an imputation-based method is 

recommended within the WEE approach since the imputation procedure occurs separately from 

the parameter estimation procedure. Imputation is preferred over ignoring incomplete cases. Yuan 

(2000) presents SAS procedures for creating multiple imputations for incomplete multivariate 

data. Under the MCAR assumption, the missing data values are a simple random sample of all 

data values. Here, analysing only the complete cases is an acceptable approach. Further work is 

needed to recommend a procedure for handling NMAR data within the WEE approach.  

As in broader categorical data analysis, there are difficulties when there are sampling zeros in 

the observed data (Agresti, 2007). A sampling zero occurs when all patients having a particular 

level of a categorical covariate are observed to have the same outcome. Infinite WEE estimates 

occur for that covariate level. In the hospital application, this occurs when there are no deaths 

among patients at any hospital at one particular level of the categorical covariate across time. Some 

software programs (such as PROC GENMOD in SAS) provide warnings that the fitting process 

fails when infinite estimates occur. Agresti (2007) asserts that grouping the data into bins by 

categorical covariate levels and by time and adding a small constant (such as 10−8) to the sampling 

zero cell count may be adequate for ensuring convergence. One can then estimate parameters for 

which the true estimates are finite and are not affected by the sampling zeros. Sensitivity analysis 

is recommended to investigate the impact of this change to the data. Another approach is to 

combine levels of the covariate to obtain non-zero counts by outcome value. This is tenable when 

the covariate data are ordinal or if there is another natural way to combine levels. In the PCI in 

NYS dataset, the categorical covariates having more than two levels are ordinal. It would be natural 

to collapse levels of ventricular ejection fraction, pre-procedural myocardial infarction, or renal 

failure creatinine if necessary. Note that information is lost in defining the variable more crudely 

but is less detrimental than removing the parameter representing the covariate level effect from the 

model completely.  

The concerns related to missing patient-level covariate or outcome data and sampling zeros 

exist among all three approaches to the hospital performance problem including the current 

industry practices. It is important to note however, that the WEE approach involves a larger dataset 

than the other two approaches and so the instances of sampling zeros are reduced. Further, the 
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imputation methods for MAR data are more reliable when based on a larger dataset. The WEE 

approach is less impacted by missing data and sampling zeros than the current industry practices. 

Future work  

The observations of this chapter are based on a realistic example dataset created to have similar 

properties as actual outcomes among patients undergoing percutaneous coronary intervention in 

New York State during the period 2004 to 2012. The limitation of this work is that the observations 

are based solely on one dataset. Further work is recommended to apply the WEE approach to other 

health care performance datasets and compare the estimates to current industry practices. We 

discuss one particular opportunity. The U.S. Scientific Registry of Transplant Recipients (SRTR) 

provides data on transplant patient outcomes (Scientific Registry of Transplant Recipients Home 

Page, n.d.). Stakeholders may want to compare risk-adjusted outcomes across transplant centers 

or donation service areas, across groups of patients with different risk factors, or across time. We 

expect that transplant outcomes change slowly over time due to factors that are not observed and 

the number of patients treated in some transplant centers, donation service areas, time periods, or 

patient risk groups may be small. The current industry practice (Scientific Registry of Transplant 

Recipients, 2016a) is estimation based on a Cox proportional hazards model of the time to an event 

such as removal from the waiting list, post-listing death, graft failure, and post-transplant death. 

The model adjusts for patient, donor, and transplant characteristics. The observed number of events 

at a particular center is compared to an expected number of events among similar patients based 

on the model fit to all data available nationally. The analysis is based on data from the most recent 

year only. The SRTR states that “estimates become unstable as fewer patients are being followed” 

(Scientific Registry of Transplant Recipients, 2016b) but in their annual reports they offer no 

statement of uncertainties or discussion of sample size (U.S. Department of Health and Human 

Services, 2014). Through its inclusion of historical data, the WEE approach could have an 

important impact on the estimates and the ability to detect differences among groups and changes 

in outcomes over time. In general, the WEE approach for measuring health care performance 

deserves further attention. 
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Chapter 7: Summary, Discussion, and Future Work  

This research is motivated by three problems requiring present time estimates of performance. 

The problems span marketing, diagnostic testing, and healthcare applications. We have a stream 

of data from different subjects collected over time. In the particular problems under study, there 

are two or three possible outcomes and we may have data on many covariates in multiple streams. 

We may want to monitor an estimate of a performance parameter of interest over time or compare 

the estimates across streams. We expect that the parameter may drift slowly over time in an 

unpredictable way. Additionally, some sample sizes may be small. Through study of real and 

simulated datasets, we extend the weighted estimating equations (WEE) approach originally 

proposed by Steiner and MacKay (2014) to these new application areas and show its benefit for 

regulating the bias/variance trade-off in the present time estimate of a parameter relative to current 

industry practices and other alternative approaches.  

To meet the objectives of the motivating applications, we require estimates of uncertainty of 

the WEE estimate and the distribution of a hypothesis test statistic based on the WEE estimate. 

We derive approximations for these quantities based on asymptotic properties of the score and 

information functions. Through the motivating applications and a simple analytic example we 

demonstrate that these approximations are useful under various conditions. We provide SAS code 

that is convenient for computing the WEE estimate, the estimate of uncertainty, and the hypothesis 

test statistic.  

Within the context of the various applications, we discuss implementation considerations such 

as selecting the time subgroups, the time window of historical data, and the covariates and 

considerations for some large sample sizes. We discuss a more precise WEE estimate of the 

parameter when some covariate effects are known or assumed to be fixed over time. We consider 

the impact of missing data and sampling zeros and give an argument that the instances of sampling 

zeros are reduced and imputation methods for missing data are more reliable for the WEE approach 

relative to current industry practices and other alternative approaches. 

 We compare estimates based on the WEE approach to current industry practice within each 

motivating application as well as naïve and EWMA approaches. We suspect that mean squared 

error of the estimate is not uniformly lower for one approach relative to another, but the 

quantitative results show that are certainly circumstances where the WEE approach provides better 

estimates. Through simulation, we show that the WEE estimates have less bias than the naïve 
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estimate based on all of the historical data and are more precise than the naïve estimate using 

present time data only. Qualitatively, we highlight that EWMA estimates have more uncertainty, 

do not use all the information in the data, and are not possible in cases where instances of some 

covariate levels are not present in some data by time period. We give evidence to show that the 

WEE can have a substantial impact on the stakeholder’s abilities to use the estimates to meet their 

objectives relative to current industry practices.  

7.1. Alternative approaches 

Other methods of analyses are possible. Specifically, we could add a temporal component to 

model the changing nature of the parameter over time. This is a feasible alternative when the 

change in the parameter follows a regular pattern over time. However, in the applications that 

motivate this work, the slow drift in the parameter may arise due to changes in many contributing 

factors and a fixed form of a model to capture its temporal behaviour limits its applicability.  

Two reviewers of our work have suggested that the Kalman Filter introduced in Section 2.4 is 

an alternative to the WEE approach. We consider a qualitative comparison of the two. Both 

approaches seek to produce an estimate of 𝜃 = 𝜃𝑇 with greater precision by using both current and 

past data. Each sacrifices unbiasedness for additional precision if the parameter changes over time.  

The system dynamic model of the KF describes the evolution of the state vector (here the 

parameter) that can be used to estimate the parameter at current time 𝑇, given 𝜃𝑇−1. In the three 

motivating applications, we have no such model so it is logical to use the most recent estimate 

𝜃𝑇−1 to estimate the parameter at time 𝑇. We take the weighted average of the two estimates 𝜃𝑇−1 

and 𝜃𝑇 based on 𝑑𝑇 with dynamic weights based on their precision. If the parameter changes over 

time, then there is a bias in 𝜃𝑇−1. If there is a small sample size at time 𝑇, then there is large 

uncertainty in 𝜃𝑇. 

Unlike the KF, the WEE approach does not combine the current and past estimates. Instead, it 

creates an estimating function through the weighted average of the likelihood-based score 

functions across time with weights that are fixed. Note that the score functions based on 𝑑𝑡, 

𝑡 =  1, … , 𝑇 are sufficient statistics for the data at each time period and hence contain all of the 

available information about the parameter. For most models including the nonlinear model used 

in our example, the KF estimates 𝜃1, … , 𝜃𝑇−1 are not sufficient statistics and hence information is 

lost by using 𝜃𝑇−1 to summarize the historic data.  
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In terms of computation for the non-linear models considered in this work, both methods require 

the solution of estimating equations with 𝑝 unknowns (presuming the KF uses the maximum 

likelihood estimate at time 𝑇) and similar calculations to find the standard errors. The WEE 

approach is motivated by applications with small samples in the latest time period. If there are 

insufficient data at current time 𝑇 to estimate all the parameter components, then a standard 

implementation of the KF is not applicable. The standard KF implementation could be adapted but 

it is not obvious how to proceed. With small amounts of data and no system dynamic model, 

present data has less impact on the KF estimate as time goes by and so bias in 𝜃𝑇−1 is important 

to consider. In the real customer loyalty dataset used in Chapter 4, there are insufficient data to 

estimate all of the parameter components in 20 of the 42 time periods where data are observed and 

no obvious system dynamic model. As a result, a standard implementation of the KF is not reliable 

for updating the customer loyalty measure estimates over time. 

It is not easy to quantitatively compare the performance of the two approaches through a 

simulation study since there are many possible parameter and covariate values and ways that the 

parameter might change over time. We suspect that one approach is not uniformly better than the 

alternatives; however, the qualitative comparison points at WEE as the more flexible approach for 

the estimation problem at hand. Additionally, to implement a change to the current industry 

practices, decision makers need to be made aware of the reason for the change and the basic 

premise of the new approach. The WEE approach is an intuitive solution to the bias/variance trade-

off problem. 

7.2. Future work 

In Section 6.3, we discuss the opportunity to apply the WEE approach to the U.S. Scientific 

Registry of Transplant Recipients (SRTR) data on transplant patient outcomes. The current 

industry practice estimates the time to an event such as post-transplant death based on data from 

the present year only and states that sample sizes may be small and thus estimates may be unstable. 

Future work will apply the WEE approach to real SRTR data in order to compute more stable 

estimates. This will extend the present application of the WEE approach to a time to event 

likelihood model involving censoring. Further, we will look for applications that involve a 

continuous outcome measure in order to extend the application of the WEE approach to a broader 

class of problems.  
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Weighted estimating equation alternative formulations 

Through solving the weighted estimating equations relating to the weighted estimating 

functions in (3) we obtain estimate 𝜃 for model parameter 𝜃 = 𝜃𝑇 under a model where 𝜃𝑡 does 

not change over time 𝑡 = 1,… , 𝑇. The general problem of this research considers that there may 

be a slow change in the parameter over time and so we know that 𝜃 is a biased estimate which we 

tolerate in order to regulate a bias/variance trade-off. It may be the case that we expect some 

elements of 𝜃 drift over time (“time-varying parameters”), but others remain fixed (“fixed 

parameters”). In the hospital performance application, we may expect that the mean mortality, 𝛼, 

and hospital effects, 𝛿, are time-varying parameters and a covariate effect such as the effect of age 

on mortality, 𝛽1, is a fixed parameter. In the future, we intend to evaluate various alternatives to 

the standard WEE formulation that reduce the bias of estimates of the time-varying parameters 

when there is one or more fixed parameters. We outline three intuitive alternatives when some (but 

not all) elements of 𝜃𝑡, 𝑡 = 1,… , 𝑇, are fixed parameters. We consider a GLM involving a mean 

level parameter, 𝛼, and two parameters describing covariate effects, say 𝛽1 and 𝛽2. We assume 

that 𝛼 and 𝛽1 may change slowly and 𝛽2 is fixed over time. 

The first alternative to the vector of weighted estimating functions in (3) is to remove the 

weights from the estimating function(s) related to the fixed parameter(s). In the example under 

consideration, there are three elements in the estimating function vector which we refer to by the 

parameter that is involved through the partial derivative.  We remove the weights from the 

estimating function related to 𝛽2 and assign exponentially declining weight values as in (3) for 

those estimating functions related to 𝛼 and 𝛽1. The estimating function vector is then 

 𝑄(𝜃; 𝑑, 𝑤) =  

[
 
 
 
 𝑤1

𝜕𝑙1(𝜃;𝑑1)

𝜕𝛼
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛼
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛼

𝑤1
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽1
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽1
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽1
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽2
+
𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽2
+⋯+

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽2 ]
 
 
 
 

  

where {𝑤𝑡} are exponentially declining weights. We solve the estimating equation for 

𝜃 =  (𝛼̂, 𝛽̂1, 𝛽̂2)
𝑇
as usual. 

A second alternative to the standard WEE formulation when we assume that 𝛽2 is a fixed 

parameter is to use the history of estimates of the time-varying parameters 𝛼 and 𝛽1. As in the 

previous alternative, we remove the weights from the estimating function related to 𝛽2 but here 

we substitute the previous estimates 𝛼̂𝑡 and 𝛽̂1,𝑡 from time periods 𝑡 = 1,… , 𝑇 − 1. The estimating 
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functions related to 𝛼 and 𝛽1 use exponentially declining weight values as in (3). Then, the vector 

of weighted estimating functions is 

 𝑄(𝜃|𝑑, 𝑤, 𝛼̂1, … , 𝛼̂𝑇−1, 𝛽̂1,1, … , 𝛽̂1,𝑇−1) =

[
 
 
 
 
 𝑤1

𝜕𝑙1(𝜃;𝑑1)

𝜕𝛼
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛼
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛼

𝑤1
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽1
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽1
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽1
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽2
| 𝛼=𝛼̂1
𝛽1=𝛽̂1,1

+
𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽2
| 𝛼=𝛼̂2
𝛽1=𝛽̂1,2

+⋯+
𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽2
]
 
 
 
 
 

  

where {𝑤𝑡} are exponentially declining weights. We solve the estimating equation for 

𝜃 =  (𝛼̂, 𝛽̂1, 𝛽̂2)
𝑇
 as usual. 

A third alternative to the standard WEE formulation when we assume that 𝛽2 is a fixed 

parameter is a two-stage approach to estimation. In stage 1, we estimate 𝛽2 with an unweighted 

estimating function and in stage 2, we estimate 𝛼 and 𝛽1 with a weighted estimating function using 

the estimates from stage 1 as known quantities. In stage 1, we need initial values of the time-

varying parameters 𝛼 and 𝛽1. The previous time period estimates of these parameters are good 

choices. Then, the estimating functions for the two stages are 

i. Fix 𝛼 and 𝛽1 and solve the unweighted estimating function 

 𝑄1(𝛽2|𝑑, 𝛼, 𝛽1) =
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽2
+  

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽2
+  …+

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽2
  for 𝛽̂2. 

ii. Fix 𝛽2 = 𝛽̂2 and solve the weighted estimating function 

 𝑄2(𝛼, 𝛽1|𝑑, 𝑤, 𝛽̂2) = [
𝑤1

𝜕𝑙1(𝜃;𝑑1)

𝜕𝛼
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛼
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛼

𝑤1
𝜕𝑙1(𝜃;𝑑1)

𝜕𝛽1
+ 𝑤2

𝜕𝑙2(𝜃;𝑑2)

𝜕𝛽1
+⋯+𝑤𝑇

𝜕𝑙𝑇(𝜃;𝑑𝑇)

𝜕𝛽1

]

𝛽2=𝛽̂2

 for 𝛼̂ and 𝛽̂1. 

Note that we can update estimates in the two stages with different frequencies. Since we expect 

that changes in the fixed parameter estimates are small, then stage 1 may occur less frequently 

than the estimation of the time-varying parameters in stage 2. For example, in the monthly update 

of WEE estimates, the estimates of the covariate effects that are assumed to be fixed may be 

updated annually. 

Some early investigation of these alternatives for simulated data from the customer loyalty 

application shows that the estimates from the various alternatives have less bias than the standard 

WEE estimates but they are unstable. Further consideration of the approximations for the estimate 
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of the variance of 𝜃 and the distribution of the hypothesis test statistic involving 𝜃 under these 

alternatives is required.
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