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Abstract

Physical theories can be characterized in terms of their state spaces and their evolutive equations. The
kinematical structure and the dynamical structure of finite dimensional quantum theory are, in light of the
Choi-Jamio lkowski isomorphism, one and the same — namely the homogeneous self-dual cones of positive
semi-definite linear endomorphisms on finite dimensional complex Hilbert spaces. From the perspective of
category theory, these cones are the sets of morphisms in finite dimensional quantum theory as a dagger
compact closed category. Understanding the intricate geometry of these cones and charting the wider
landscape for their host category is imperative for foundational physics.

In Part I of this thesis, we study the shape of finite dimensional quantum theory in terms of quantum
information. We introduce novel geometric structures inscribed within quantum cones: conical t-designs.
Conical t-designs are a natural, strictly inclusive generalization of complex projective t-designs. We prove
that symmetric informationally complete measurements of arbitrary rank (sims), and full sets of mutually
unbiased measurements of arbitrary rank (mums) are conical 2-designs. sims and mums correspond to highly
symmetric polytopes within the Bloch body. The same holds for the entire class of homogeneous conical
2-designs; moreover, we establish necessary and sufficient conditions for a Bloch polytope to represent a
homogeneous conical 2-design. Furthermore, we show that infinite families of such designs exist in all
finite dimensions. It turns out that conical 2-designs are naturally adapted to a geometric description of
bipartite entanglement. We prove that a quantum measurement is a conical 2-design if and only if there
exists a (regular) entanglement monotone whose restriction to pure states is a function of the norm of
the probability vector over the outcomes of the bipartite measurement formed from its tensor products.
In that case the concurrence is such a monotone. In addition to monotones, we formulate entanglement
witnesses in terms of geometric conditions on the aforementioned conical 2-design probabilities.

In Part II of this thesis, we move beyond quantum theory within the vein of Euclidean Jordan algebras
(ejas). In light of the Koecher-Vinberg theorem, the positive cones of ejas are the only homogeneous self-
dual cones to be found in a finite dimensional setting. We consider physical theories based on ejas subject
to nonsignaling axioms regarding their compositional structure. We prove that any such Jordanic composite
is a Jordan ideal of Hanche-Olsen’s universal tensor product. Consequently, no Jordanic composite exists
having the exceptional Jordan algebra as a direct summand, nor does any such composite exist if either
factor is exceptional. So we focus on special ejas of self-adjoint matrices over the real, complex, and
quaternionic division rings. We demonstrate that these can be organized in a natural way as a symmetric
monoidal category, albeit one that is not compact closed. We then construct a related category InvQM of
embedded ejas, having fewer objects but more morphisms, that is dagger compact closed. This category
unifies finite dimensional real, complex and quaternionic quantum theories, except that the composite of
two complex quantum systems comes with an extra classical bit. Our notion of composite requires neither
tomographic locality, nor preservation of purity under monoidal products. The categories we construct
include examples in which both of these conditions fail. Our unification cannot be extended to include
any finite dimensional spin factors (save the rebit, qubit, and quabit) without destroying compact closure.
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“Indeed from our present standpoint, physics is to be regarded
not so much as the study of something a priori given, but as
the development of methods for ordering and surveying
human experience.”

—Niels Bohr
Essays 1958-1962 on

Atomic Physics and Human Knowledge

Chapter 1

Prologue

Consider a spherical cone in R4. Let us introduce a Euclidean coordinate system for the ambient space as
follows: one coordinate runs along the symmetry axis of the cone; the other three parametrize perpendicular
hyperplanes cutting out three-dimensional balls. This shape and its setting appear in fundamental physics.
Within the context of special relativity, we have a light cone in Minkowski spacetime, with exterior regions
beyond the reach of causal influence. In this case, our physical interpretation of the coordinate system
is intimately connected with our everyday sensory experience. This connection with ordinary life is so
strong that it can be difficult to resist viewing the subject matter of relativity from the perspective of
näıve realism. Within the context of quantum theory, however, there is a much different story to be told.
Here we have, for instance, the cone of unnormalized quantum states for the spin of an electron. The
unit trace hyperplane cuts out a Bloch ball parametrized by expectation values of the usual three Pauli
spin observables: a rather peculiar probabilistic setting. The normative character of quantum theory is
such that certainty regarding the outcome of one Pauli observable should come with complete ignorance
regarding the other two. Put otherwise, quantum theory imposes severe complementarity constraints on
coherent degrees of belief regarding certain aspects of physical systems. From this primitive example, from
a simple shape, we glimpse the essence of a strange statistical structure, namely quantum theory.

If we are to appreciate the full character of quantum theory, then we must consider higher-dimensional
physical systems. For instance, the Bell-Kochen-Specker theorem [5][6] applies only for physical systems
admitting three or more mutually orthonormal quantum states (we remind the reader that orthogonal
states for electron spin correspond to anti-podal points on the Bloch ball.) For such systems, the Bell-
Kochen-Specker theorem establishes that quantum theory is incompatible with a seemingly innocuous
idea: measurements reveal pre-existing facts about physical systems. This idea is quite plainly implied
by the word ‘measurement’ in ordinary language; a word that Bell argued should be banned altogether
in quantum theory [7]. The proof given by Kochen and Specker is based on the subtle geometry of pure
quantum states for a three-level system. This geometry is also the basis for the original proof of Gleason’s
theorem [8], which establishes a necessary and sufficient characterization of probability measures over
the outcomes of sharp quantum measurements. So once again, fundamental aspects of the quantum are
revealed via the analysis of a shape, albeit this time a shape much more complicated than a simple ball.
If we take a step further and consider nontrivial composite physical systems, then the story of quantum
theory becomes stranger still: we meet entanglement.
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In the words of Bell [9]: “The philosopher on the street, who has not suffered a course in quantum
mechanics, is quite unimpressed with Einstein-Podolsky-Rosen correlations.” Bell’s celebrated theorem
[10], however, establishes that the logical conjunction of quantum theory and Einstein’s principle of local
action [11] and Einstein-Podolsky-Rosen realism [12] is false. There are at least several compelling reasons
to accept Einstein’s principle of local action. First, the mutually independent existence of spatially distant
objects is an important premise for experimental science. Without it, indomitable confounding variables
would undermine conclusions drawn from observations of change coinciding with human manipulations of
laboratory conditions. In fact, Einstein went so far as to say its complete abolition would make the
formulation of empirically testable laws in the usual sense impossible [11]. Second, if one abandons
Einstein’s principle of local action, then free will begins to erode — or, as phrased more forcefully by
Fuchs [13]: “. . . if one is willing to throw away one’s belief in systems’ autonomy from each other, why
would one ever believe in one’s own autonomy?” Third, adopting the assumption of distinct physical
entities is provenly pragmatic; for example, consider the Standard Model of particle physics. Einstein’s
principle is a polarizing subject in quantum foundations. In light of the unprecedented empirical success
of quantum theory — in particular for the recent series of Bell tests [14][15][16] — one may be drawn to
seriously reconsider Einstein-Podolsky-Rosen realism. Fine [17], Fuchs-Mermin-Schack [18], Hänsch [19],
Unruh [20], and Zukowski-Brukner [21] have explicitly emphasized that quantum theory and locality are
logically consistent. On that view, Bohr’s vision of physics (as quoted in our epigraph) may be embraced.

Entanglement provides a beautiful example of the rich interplay between mathematics, theoretical physics,
experimental physics, and technological development. These areas are not part of a hierarchical structure
— insights from each inspire the others. Entanglement first emerged in a theoretical setting [12][22], later
to be confirmed by experiment [23], and then envisioned as a vital resource for quantum computing [24],
quantum cryptography [25] and quantum communication [26] prior to physical realizations of quantum
teleportation [27], quantum key distribution [28], and a compilation [29] of Shor’s algorithm [30]. From a
physical perspective, entanglement serves to motivate the general dynamical structure of quantum theory:
the cones of completely positive linear transformations on complex Hilbert spaces. In finite dimensions,
Choi [31] and Jamio lkowski [32] fully characterized these cones in the realm of pure mathematics: they are
linearly isomorphic to the cones of unnormalized quantum states describing bipartite physical systems. The
Choi-Jamio lkowski isomorphism between quantum cones provides a deep physical insight: the kinematical
structure and the dynamical structure of quantum theory are equivalent. From a critical examination of
the foundations of quantum theory, Einstein-Podolsky-Rosen thus initiated an ongoing multidisciplinary
revolution, with quantum foundations and quantum information enjoying mutualistic symbiosis.

Quantum complementarity, contextuality, and correlations emerge from the geometry of quantum cones;
thus, to study these shapes is to study the foundations for quintessential quantum physics. In Part I
of this thesis, we derive geometric insights into quantum theory in the light of novel structures: conical
designs [1]. From one perspective, conical designs are highly symmetric polytopes in quantum state space.
We fully characterize these polytopes; moreover, we establish their existence in all finite dimensions.
From another perspective, conical designs can be viewed as a natural generalization of complex projective
designs [33][34][35][36], which are vital constructs in quantum information theory. For instance, complex
projective designs find natural applications in quantum state tomography [37] and measurement-based
quantum cloning [38]. They also have important applications [39][40][41][42][43] in quantum cryptography.
We show that conical designs are naturally adapted to the description of entanglement [2]. In particular, we
demonstrate a fundamental connection between conical designs and the theory of entanglement monotones
[44]. In general, the first part of this thesis is devoted to these special quantum shapes and their connections
with quantum information.

2



It is natural to wonder what lies beyond quantum theory; to ask: what comes next? Feynman reminds us
[45]: “In fact, everything we know is only some kind of approximation, because we know that we do not
know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely,
to be corrected.” These words appear on the first page of Feynman’s famous lectures delivered at the
California Institute of Technology during 1961-1963. Over a half century later, they continue to describe
the situation in contemporary physics. A glaring case in point is the incomplete reconciliation of quantum
theory with general relativity. This problem, perhaps, may be resolved from a deeper understanding of
quantum theory. Indeed, the kinematical and dynamical structure of quantum theory is that of quantum
cones; consequently, it is imperative to consider their essential characteristics.

In addition to the quantum channel-state duality established via the Choi-Jamio lkowski isomorphism,
there exists another important unifying feature of quantum theory, namely self-duality [46]. In quantum
theory, the outcomes of physical measurements are associated with elements of the cone of positive semi-
definite linear functionals on unnormalized quantum states. These elements are called effects. In arbitrary
finite Hilbert dimension, the cones of unnormalized quantum states and unnormalized quantum effects are
identical — they are self-dual. From a general information-theoretic perspective, Müller and Ududec proved
that self-duality follows from the structure of reversible computation [47]. From a pure mathematical point
of view, self-dual cones can be further classified in terms of the structure of their automorphism groups. In
particular, quantum cones enjoy homogeneity [48]: the linear automorphism group of a quantum cone acts
transitively on its interior. In this respect, one says that quantum cones are homogeneous. Operationally,
homogeneity implies that any nonsingular quantum state can be mapped to any other via a reversible
process. Homogeneity and self-duality are thus fundamental aspects of quantum information theory;
moreover, they are essential characteristics of quantum theory in general.

If one is to look beyond quantum theory for new physics, then a logical and conservative approach is
to consider physical theories sharing some of its essential characteristics. Within the vast landscape of
general probabilistic theories [49], homogeneity and self-duality do not uniquely specify quantum theory.
These crucial features do, however, appreciably narrow the field: in finite dimensions, we arrive in the
closed neighbourhood of Jordan-algebraic probabilistic theories. Our arrival therein is a consequence of
the Koecher-Vinberg theorem [50][51], which is a very deep result in the theory of operator algebras. In
finite dimensions, Koecher and Vinberg independently proved that the only homogeneous self-dual cones
are the positive cones of finite dimensional formally real Jordan algebras. By definition, these algebras are
equipped with a nice self-dualizing inner product, hence their shorter name: Euclidean Jordan algebras.
From the Jordan-von Neumann-Wigner classification theorem [52] one has that any Euclidean Jordan
algebra is isomorphic to a direct sum of algebras from the following list: self-adjoint matrices over the real,
complex, and quaternionic division rings, spin factors, and the exceptional Jordan algebra of 3 × 3 self-
adjoint octonionic matrices. Physical theories built thereupon (including the case of classical probability
theory built from direct sums of the trivial algebra) are quantum theory’s ‘closest cousins’ [53].

Starting from arbitrary general (operational) probabilistic theories, Barnum-Müller-Ududec have recently
derived homogeneity and self-duality from three compelling physical postulates [54]. Their fourth and
final postulate yields quantum cones exactly. The Barnum-Müller-Ududec postulates are phrased solely
in terms of single systems, which markedly distinguishes their derivation from those of Hardy [55][56],
Dakić-Brukner [57], Chiribella-D’Ariano-Perinotti [58], and Masanes-Müller [59]. Barnum-Müller-Ududec
leave open a very delicate question: is it possible to formulate reasonable composites of physical models
based on Euclidean Jordan algebras? In Part II of this thesis, we answer that question in the affirmative:
we construct dagger compact closed Jordanic categories [3][4].
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Category theory was introduced by Eilenberg and Mac Lane in [60], wherein they announced: “In a meta-
mathematical sense our theory provides general concepts applicable to all branches of mathematics, and so
contributes to the current trend towards uniform treatment of different mathematical disciplines.” From
its initial roots in algebraic topology [61] and homological algebra [62], category theory grew to span the
realm of pure mathematics; moreover, the very foundations of mathematics can be understood categorically
[63], which is an interesting alternative to the familiar Zermelo-Fraenkel set-theoretic framework. Category
theory is formulated at a very high level of abstraction. From that perspective, instead of studying the
structure of one particular group, one considers the category of all groups and group homomorphisms:
Grp. Likewise, rather than examining a specific vector space over a field K, one treats the category of
all such vector spaces and linear transformations: K-Vect. Moving one level higher, one considers the
category of all categories: Cat. Abstract thinking is very powerful. From the general conception of a class,
one captures the essence of all particular instantiations. This is especially true in physics. Thus category
theory and its level of abstraction naturally interface with the study of quantum foundations.

Abramsky and Coecke launched categorical quantum mechanics in [64], setting in motion a paradigm
shift for quantum foundations and quantum information science. In addition to reformulating the usual
pure variant1 of finite dimensional quantum theory in terms of compact closed categories with biproducts,
Abramsky and Coecke explicitly demonstrated how quantum teleportation, logic-gate teleportation, and
entanglement swapping protocols were captured at this abstract level. The relevant category for their work
was FdHilb. Soon thereafter, Peter Selinger introduced the CPM construction in [65]. Selinger proved, in
particular, that CPM(FdHilb) is a dagger compact closed category of finite dimensional complex Hilbert
spaces with completely positive linear transformations thereupon, i.e. the general variant of quantum
theory familiar to quantum information theorists. In short, quantum theory is a dagger compact closed
category. The Choi-Jamio lkowski isomorphism, for instance, is a concrete form of dagger compact closure.
These lines of thought motivate our construction of dagger compact closed Jordanic categories in Part II of
this thesis. Our construction of Jordanic physical theories as dagger compact closed categories is based on
an axiomatic derivation of all possible compositional structures on Euclidean Jordan algebras. We prove
that any such Jordanic composite is a Jordan ideal in Hanche-Olsen’s universal tensor product [66]. The
categories we construct describe physics beyond the realm of quantum theory.

In quantum theory, local measurements on bipartite systems suffice to determine a unique global state: this
property is known as tomographic locality. The aforementioned axiomatizations of quantum theory due
to Hardy [56], Dakić-Brukner [57], and Masanes-Müller [59] explicitly invoke tomographic locality, while
Chiribella-D’Ariano-Perinotti [58] and Hardy’s earlier work [55] invoke equivalent conditions. We do not
demand tomographic locality from our composites; moreover, we prove that quantum theory is the only
subcategory of our construction wherein tomographic locality holds. Another important feature of quantum
theory is preservation of purity : the composite of two pure morphisms yields a pure morphism, where
‘morphism’ can be taken as either ‘state’ or ‘transformation.’ In fact, preservation of purity is asserted as
an axiom by Chiribella and Scandolo [67] to prove a general version of the Lo-Popescu theorem [68] within
the context of such purity preserving general probabilistic theories. We do not demand preservation
of purity, and we construct composites violating this principle — specifically, quaternionic composites.
Therefore, our Jordanic theories depart from quantum theory in at least two significant ways concerning
composite physical systems. On the other hand, our theories all enjoy homogeneity, self-duality, and a
generalized version of the Choi-Jamio lkowski isomorphism. On that view, we remain within the general
neighbourhood of quantum theory.

1By the pure variant of quantum theory, one refers to the usual textbook description in terms of state vectors, unitary
evolution, and self-adjoint observables.
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We outline the balance of this thesis in the following section.

1.1 Outline

We partition the main body of this thesis into two parts. Following Part I, we pause for an interlude
in Chapter 6, which leads us into Part II. We close with an epilogue in Chapter 11. Some particularly
technical details required to render this thesis self-contained are relegated to Appendix A and Appendix B.
In this thesis, we cite two hundred eighty references.

Part I: Conical Designs

Chapter 2 is introductory and divided into three sections. In Section 2.1, we review elements of quantum
theory and set our notation. In Section 2.2, we recall prerequisite group theory for the sequel, setting
additional notation. Our primary main aim therein is to detail the canonical product representation of the
complex unitary group of degree d. The well known irreducible components of this unitary representation,
namely the symmetric and antisymmetric subspaces, feature prominently in the balance of Part I. In
Section 2.3, we review complex projective t-designs, with a strong emphasis on the case t = 2. We prove
a novel result, Corollary 2.3.4, which characterizes the extreme points of quantum state space in terms of
simple conditions on probabilities for the outcomes of quantum measurements formed from an arbitrary
complex projective 2-design. We also recall facts concerning sics (see Definition 2.3.6) and mubs (see
Definition 2.3.8).

Chapter 3 is based on [1] and divided into five sections. In Section 3.1, we review the generalized Bloch
representation of quantum state spaces. In Section 3.2, we review sims (see Definition 3.2.1) and mums
(see Definition 3.2.2) and provide a unified geometric proof for their existence in all finite dimensions. sims
and mums are arbitrary rank generalizations of sics and mubs, respectively. In Section 3.3, we introduce
conical 2-designs. We establish five equivalent characterizations thereof via Theorem 3.3.1, and we detail
their essential properties. We also prove that sims and mums are conical 2-designs. In Section 3.4, we
focus the subclass of homogeneous conical 2-designs (see (3.4.1)). We characterize homogeneous conical
2-designs via Theorem 3.4.2, and we prove all varieties homogeneous conical 2-designs exist in all finite
dimensions via Theorem 3.4.4. In Section 3.5, we outline a program to seek out new varieties of complex
projective 2-designs. We also lift the problem of constructing a homogeneous conical 2-designs to the
problem of constructing a 1-design on a higher dimensional real vector space via Theorem 3.5.1.

Chapter 4 is based on [2] and divided into four sections. In Section 4.1, we first review entanglement
monotones. We then define a novel concept: regular entanglement monotones (see Definition 4.1.7).
We prove that the concurrence is regular via Lemma 4.1.8. In Section 4.2, we prove Theorem 4.2.1,
which establishes a fundamental and elementary connection between the theory of regular entanglement
monotones and the theory of conical 2-designs. Our proof of Theorem 4.2.1 is founded on our novel
Lemma 4.2.3. In Section 4.3, we develop and generalize previous work relating entanglement witnesses
and certain conical 2-designs. In Section 4.4, we explore a connection linking conical 2-designs with
Werner states and isotropic states. The former are invariant under the action of the canonical product
representation of the complex unitary group of the degree d, the latter are invariant under the action
of U ⊗ U , where henceforth overline denotes complex conjugation with respect to a fixed basis for the
underlying finite dimensional complex Hilbert space.

Chapter 5 is our conclusion for Part I.
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Part II: Categorical Jordan Algebraic Post-Quantum Theories

Chapter 7 is introductory and divided into three sections. We do not assume any prior knowledge of
the material presented in this chapter. In Section 7.1, we review elements of category theory. We first
recall definitions of categories, functors, and natural transformations. We then build up to the definition
of a dagger compact closed category (see Definition 7.1.11.) In Section 7.2, we review Jordan algebraic
prerequisites. In particular, we focus on Euclidean Jordan algebras (see Definition 7.2.5), which are the
ambient spaces for states and effects in the Jordan algebraic post-quantum theories considered in the
chapters that follow. We define standard representations for all reversible Euclidean Jordan algebras.
These representations are in terms of Jordan subalgebras of the self-adjoint parts of C∗-algebras. In
Section 7.3, we recall universal representations of Euclidean Jordan algebras from the literature, and
present some elementary calculations. The standard and universal representations facilitate the sequel.

Chapter 8 is based on portions of [3] and [4] pertaining to composites of Euclidean Jordan algebras.
We divide this chapter into three sections. In Section 8.1, we review the framework of general probabilistic
theories. Along the way, we specialize to our case of interest: Jordan algebraic general probabilistic theories.
We introduce a general definition for composites of models for physical systems in general probabilistic
theories, Definition 8.1.4. The axioms in our definition reflect the physical principle of nonsignaling. In
Section 8.2, we consider the structure of composites in general probabilistic theories based on Euclidean
Jordan algebras. We prove Theorem 8.2.5, which establishes that the composite of two nontrivial simple
Euclidean Jordan algebras always admits a representation within the self-adjoint part of a C∗-algebra. An
immediate Corollary 8.2.6 is that composites involving the exceptional Jordan algebra do not exist. We then
prove that any composite is a Jordan ideal of Hanche-Olsen’s universal tensor product (Theorem 8.2.7).
We then define a canonical tensor product for Euclidean Jordan algebras (see Definition 8.2.9) and prove
that canonical tensor products yield composites (Theorem 8.2.10). In Section 8.3, we explicitly compute
all canonical tensor products involving reversible Euclidean Jordan algebras.

Chapter 9 is based on portions of [3] and [4] pertaining to categorical Jordan algebraic post-quantum
theories. We divide this chapter into two sections. In Section 9.1, we prove that the canonical tensor
product is associative (Proposition 9.1.4). We then consider the behaviour of the canonical tensor product
over direct sums. This sets the stage for the sequel. In Section 9.2, we construct our Jordanic categories. We
introduce Definition 9.2.1 for completely positive Jordan-preserving maps, which is a natural extension of
the notion of complete positivity within our Jordanic physical theories. We then prove Proposition 9.2.2,
which rules out the inclusion of ‘higher’ spin factors in our Jordanic categories. Therefore we restrict
our attention to the unification of real, complex, and quaternionic quantum theory. Our main result is
Theorem 9.2.19, establishing that our categorical unification of these theories is dagger compact closed.

Chapter 10 is our conclusion for Part II.

6



Part I

Conical Designs
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“But however the development proceeds in detail, the path so
far traced by the quantum theory indicates that an
understanding of those still unclarified features of atomic
physics can only be acquired by foregoing visualization and
objectification to an extent greater than that customary
hitherto.”

—Werner Heisenberg
1933 Nobel Lecture:

The Development of Quantum Mechanics

Chapter 2

Setting the Stage (Part I)

Let Hd denote a finite d-dimensional complex Hilbert space. In Hd, the intersection of any 1-dimensional
subspace with the unit sphere S(Hd) is isomorphic to a circle in 2-dimensional Euclidean space, and the
quotient space formed from S(Hd) modulo this U(1) symmetry is [69] the complex projective space CPd−1:
the manifold of pure quantum states. The geometry of pure quantum states is extremely intricate, except
for the case of CP1, which is isomorphic to a sphere in 3-dimensional Euclidean space. Remarkably, in
arbitrary finite Hilbert dimension, there exist [70] instances from a class of highly symmetric substructures
defined on the manifold of pure quantum states, namely complex projective t-designs [33][34][35][36]. In this
introductory chapter, we recall elements of quantum theory in Section 2.1 and group theory in Section 2.2.
In Section 2.3, we meet complex projective t-designs and discuss the geometry of quantum state space
in their light. The purpose of this chapter is to set the stage with preliminary physical notions and
prerequisite mathematical apparatus for the sequel. Before proceeding with technical matters, we shall
now outline a physical interpretation along the lines suggested by Heisenberg in the epigraph above.

For emphasis, we recall once again from Heisenberg’s 1933 Nobel Lecture [71]: “The very fact that the
formalism of quantum mechanics cannot be interpreted as visual description of a phenomenon occurring in
space and time shows that quantum mechanics is in no way concerned with the objective determination of
space-time phenomena.” Indeed, any objectification, or reification [72] of quantum states and other formal
elements of quantum theory is subject to severe conceptual difficulties; for instance, consider the infamous
parables of Wigner’s friend [73] and Schrödinger’s cat1 [74]. On the contrary, the zeitgeist of the present
and third quantum foundations revolution [75] revolves around the conception of quantum theory as a
theory of information. The structure of this information processing framework is highly subtle. Calling
back to the epigraph in our prologue, one may adopt the view wherein the structure of this Bohrian [76]
method for ‘ordering and surveying human experience’ is the physics of our natural world. Why is our
world this way? This is obviously one of the very deepest questions of all. In the present part of this
thesis, we undertake the much more modest goal of illuminating the information-geometric structure of
finite dimensional quantum theory. The conical designs introduced in Chapter 3, which include complex
projective t-designs as a special case, shed new light on this subject. We thus gain novel insight into the
mathematical form of quantum information regarding physical systems; hence the contents of Part I of
this thesis are to held within the spirit of the third quantum foundations revolution.

1Remember, [74]: “Man kann auch ganz burleske Flle konstruiere. [One can also construct very burlesque cases.]”
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2.1 Elements of Quantum Theory

Henceforth, for brevity, quantum theory refers to finite dimensional quantum theory formulated over finite
d-dimensional complex Hilbert spaces in the usual manner to be reviewed presently (or any equivalent
formulation.) Most readers will be intimately familiar with quantum theory. The primary purpose of this
section is to introduce our notation and to provide some important definitions. For modern comprehensive
treatments of this subject, we point to, for instance, the excellent textbook of Nielsen and Chuang [77]
and the more advanced lecture notes of John Watrous [78]. We shall begin in Hilbert space.

Let Hd denote a finite d-dimensional complex Hilbert space with 〈·|·〉 : Hd ×Hd −→ C its inner product.
By definition [79], Hd is complete with respect to the induced norm ‖ · ‖ : Hd −→ R≥0 :: ψ 7−→

√
〈ψ|ψ〉

(as is any finite dimensional inner product space over C [80]) in the sense that every Cauchy sequence
in Hd converges with respect to this norm to an element of Hd. We denote and define the unit sphere
in Hd via S(Hd) ≡ {ψ ∈ Hd | ‖ψ‖ = 1}. Next, let H?

d denote the dual Hilbert space of all continuous
linear functionals on Hd. In light of the Riesz representation theorem [81], ∀f ∈ H?

d ∃!φ ∈ Hd such
that ∀ψ ∈ Hd f(ψ) = 〈φ|ψ〉; moreover H?

d
∼= Hd as Hilbert spaces. We shall frequently adopt the Dirac

notation |ψ〉 and 〈φ| for elements of Hd and H?
d, respectively. Furthermore, we will usually denote C-scalar

multiplication on the right, e.g. by |ψ〉λ for λ ∈ C.

Let L(Hd) denote the C∗-algebra2 [82] of all linear functions A : Hd −→ Hd :: ψ 7−→ Aψ, where, in
particular, the algebraic product is functional composition denoted by juxtaposition, i.e. AB ≡ A ◦ B,
and the relevant C-antilinear involution ∗ : L(Hd) −→ L(Hd) is realized at the level of matrices via the
composition of transposition and complex conjugation (both with respect to some fixed orthonormal basis
for Hd.) Forgetting its algebraic structure, L(Hd) is itself a finite d2-dimensional complex Hilbert space
with respect to the Hilbert-Schmidt inner product 〈〈·|·〉〉 : L(Hd) × L(Hd) −→ C :: (A,B) 7−→ Tr(A∗B),
where of course ‘Tr’ denotes the usual trace functional. As such, we shall sometimes, but only when
convenient, adopt the double Dirac notation |A〉〉 and 〈〈B| for elements of L(Hd) and its dual Hilbert space
L(Hd)

?, respectively. We will be primarily interested in the subset of self-adjoint elements in L(Hd), which
we denote as define via Lsa(Hd) = {A ∈ L(Hd) | A = A∗}, which is a d2-dimensional vector space over R.

Let spanKX denote the K-linear span of a subset X of a vector space over a field K.

Definition 2.1.1 [83] Let X be a finite dimensional vector space over R. A convex set is a subset C ⊆ X

such that x1, x2 ∈ C and λ ∈ [0, 1] =⇒ x1(1 − λ) + x2λ ∈ C. A cone in X is a subset K ⊆ X such that
k ∈ K and λ ∈ R>0 =⇒ kλ ∈ K. A pointed cone is a cone such that K ∩ −K = {0}. A generating cone
is a cone such that spanRK = X. A convex cone is a cone that is also a convex set.

In quantum theory, we take X = Lsa(Hd) and consider for each3 d ∈ N the generating pointed convex cone
of all positive semi-definite elements within, which we denote and define as follows

Lsa(Hd)+ ≡
{
A ∈ Lsa(Hd) | ∀ψ ∈ Hd 〈ψ|Aψ〉 ≥ 0

}
. (2.1)

That Lsa(Hd)+ is a convex cone follows immediately from R-linearity of the inner product 〈·|·〉. Trivially,
it is pointed. Furthermore, any self-adjoint linear function can be decomposed as the difference of two
positive semi-definite linear functions, so Lsa(Hd)+ is generating.

Definition 2.1.2 A quantum cone is Lsa(Hd)+ for some d ∈ N.

2We shall return to C∗-algebras in Part II; see Definition 7.2.11
3For later convenience, we include the trivial case d = 1; R will be our monoidal unit in Part II.
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Definition 2.1.3 Let Lsa,1(Hd) ≡ {A ∈ Lsa(Hd) | TrA = 1} be the unit trace hyperplane in Lsa(Hd).
The set of quantum states, denoted Q(Hd), is the intersection of this hyperplane with the quantum cone,
i.e. Q(Hd) ≡ Lsa(Hd)+ ∩ Lsa,1(Hd) = {ρ ∈ Lsa(Hd)+ | Trρ = 1}.

It is obvious from the foregoing definition is that Q(Hd) is a convex set. It is also easy to see that Q(Hd)
is topologically compact [84] in Lsa(Hd) taken as a metric space [85] with respect to the distance induced
by the norm inherited from L(Hd). Indeed, Q(Hd) is bounded, for it is contained in the unit ball. Next,
let f : Lsa(Hd) −→ R :: A 7−→ infψ∈S(Hd)〈ψ|Aψ〉, which is a linear and hence continuous function between
finite dimensional metric spaces. Therefore Q(Hd) is closed, for it is precisely the intersection of the f -
preimage of [0,∞) and the Tr-preimage of {1}. So, by the Heine-Borel theorem [86] Q(Hd) is compact. It
follows from the Krein-Milman theorem [87] that Q(Hd) is precisely the convex hull of its extreme points.

Definition 2.1.4 [83] Let C ⊆ X be a convex set. An extreme point of C is an element x ∈ C such
that, for λ ∈ (0, 1) and x1, x2 ∈ C, x = x1(1 − λ) + x2λ ⇐⇒ x = x1 = x2. A convex combination of
x1, . . . , xn ∈ X is x1λ1 + · · ·+ xnλn with λ1, . . . , λn ∈ R≥0 such that λ1 + · · ·+ λn = 1. Let subset Y ⊆ X.
The convex hull of Y, denoted convY, is the set of all convex combinations of elements from Y.

Recall that a unit rank projector is π ∈ Lsa(Hd) such that π2 = π and Trπ = 1, in which case we can write
π = |ψ〉〈ψ| for some |ψ〉 ∈ S(Hd). It is well known [69] that ρ ∈ Q(Hd) is an extreme point if and only
if ρ is a unit rank projector. A pure quantum state is precisely an extreme point of Q(Hd). We denote
the set of all pure states by PurQ(Hd). In accordance with our preceding observations, any quantum
state can therefore be decomposed as a convex combination of pure quantum states. A common physical
interpretation of this fact is that any quantum state can be viewed as a probabilistic mixture of pure
states; hence, a quantum state that is not pure is called mixed. Lastly, note that the unit rank projectors
corresponding to |ψ〉eiθ are identical for all angles θ, hence our earlier discussion regarding CPd−1.

Definition 2.1.5 Let 1d denote the identity function on Hd, i.e. 1d : Hd −→ Hd :: ψ 7−→ ψ. The set of
quantum effects, denoted E(Hd), is the set of all Lsa(Hd)+ 3 E ≤ 1d with respect to the Löwner ordering,
i.e. E(Hd) ≡ {E ∈ Lsa(Hd)+ | E − 1d ∈ Lsa(Hd)+}.

In quantum theory, one is primarily interested in certain subsets of effects that model physical measurement
devices. Strictly speaking, a positive operator valued measure is [88] a Borel measure [89] µ on the Borel
σ-algebra of some set S into the quantum cone, such that µ(S ) = 1d. In quantum information theory, the
set comprised of the images of the singletons of S under µ is commonly called (the acronym for) a positive
operator valued measure. This is mostly harmless of course; however, we shall remove any ambiguity by
formally introducing ‘povm’ as follows, wherein we further restrict to our specific case of interest: finite
discrete positive operator valued measures.

Definition 2.1.6 A povm is a subset {E1, . . . , En} ⊂ E(Hd) such that
∑n
j=1Ej = 1d.

Consider the following physical situation. A physical system is input to a measurement device, which
outputs4 one classical outcome j ∈ {1, . . . , n}. In quantum theory, one models this situation as follows.
A quantum state ρ ∈ Q(Hd) is associated with the input system. A quantum effect Ej is associated with
each classical outcome such that {Ej} is a povm. With these associations, based on the physics of the
particular situation, the probability of observing measurement outcome j is computed via the Born rule:

pj = Tr(Ejρ). (2.2)

4If nondestructive, this device outputs a physical system with an associated state computed via the Lüders Rule [90].
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It is via the Born rule that one derives the probabilities for arbitrary measurement outcomes encoded in
a given quantum state. A quantum state can thus be viewed as a compendium of information regarding
the physical system with which it is associated; moreover, the Born rule links these abstract compendia
of probabilities with physical experience. On that view, quantum states are something like probability
distributions, colloquially speaking. In fact, this statement can be made mathematically precise. Indeed,
informationally complete [91][92] povms exist [93] for all cases of finite Hilbert dimension, so one can
outright identify quantum states with probability distributions.

Definition 2.1.7 An informationally complete povm is a povm {Ej} ⊂ E(Hd) such that spanR{Ej} =
Lsa(Hd). A minimal informationally complete povm is an informationally complete povm such that
card{Ej} = d2, where cardS denotes the cardinality of a set S .

If {Ej} is an informationally complete povm, then the corresponding probabilities pj computed via the
Born rule from an arbitrary ρ ∈ Q(Hd) uniquely determine ρ within the convex set of quantum states.
Of course, this follows immediately from the fact that {Ej} span the ambient real vector space of self-
adjoint linear functions; moreover, one can [94] explicitly form an expansion for any quantum state in
terms of pj . In the general case of an arbitrary informationally complete povm, such an expansion may be
horrendous; hence, while it may physically appealing to replace the Hilbert space formalism with an explicit
probability calculus, what remains may be rather complicated. On this point Wootters emphasizes [95]: “It
is obviously possible to devise a formulation of quantum mechanics without probability amplitudes. One
is never forced to use any quantities in one’s theory other than the raw results of measurements. However,
there is no reason to expect such a formulation to be anything other than extremely ugly.” Nevertheless,
in [95], Wootters makes key advances towards a mathematically beautiful formulation of quantum theory
without Hilbert space. Wootters employs a specific variety of complex projective 2-design (mubs see
Definition 2.3.8) as the primary tool for his construction. Incidentally, any complex projective 2-design
facilitates a clean expansion (Eq. (2.20)) for ρ in terms of certain pj . We shall see this in Section 2.3.

Definition 2.1.3 and Definition 2.1.5 respectively define quantum states and quantum effects in a general
way; however, quantum theory is equipped to handle the explicit treatment of systems and measurement
devices consisting of separate parts. For instance, a physical system may be viewed as the composite of
two or more subsystems, and a joint measurement may be carried out by two or more spacelike separated
parties. The mathematical construction underlying a quantum theoretic model of such cases is the tensor
product of finite dimensional complex vector spaces. Before moving forward with a precise definition, note
that a subset W ⊆ Z of a complex vector space Z is said to generate Z if the closure of W under the
ambient vector space operations is equal to Z.

Definition 2.1.8 [96] Let V,W be finite dimensional vector spaces over C. A tensor product of V with
W is a pair (Z0,⊗), with Z0 a finite dimensional vector space over C and ⊗ : V×W −→ Z0 a C-bilinear
function such that ⊗(V ×W) generates Z0, and such that for any C-bilinear function f : V ×W −→ Z,
with Z a finite dimensional vector space over C, ∃! C-bilinear function f0 : Z0 −→ Z satisfying f = f0 ◦⊗.

A tensor product of V with W always exists and is in fact unique up to vector space isomorphism [96]. By
standard abuse of notation and terminology, we shall write Z0 = V⊗W and ⊗(v, w) = v⊗w, and refer to
V⊗W as the tensor product of V with W. Concerning dimensionality, note dimCV⊗W = dimCVdimCW.
One refers to elements of the form v ⊗w ∈ V⊗W as pure tensors. The tensor product of linear functions
f : V −→ V ′ and g : W −→ W ′, denoted f ⊗ g, is defined via the linear extension of its action on pure
tensors, i.e. f ⊗ g : V⊗W −→ V′⊗W′ :: v⊗w 7−→ f(v)⊗ g(w). Lastly, one notes that the tensor product
construction is associative. We are now ready to consider physical composites and quantum channels.
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In physics, as in ordinary life, the assumption of distinct physical systems, of separate pieces of the world,
is a common practice. In an attempt to refine the primitive word ‘system’ with further details, one could
do little more than replace it with a synonymous word like ‘thing,’ ‘object,’ ‘entity,’ and so on. In quantum
theory, one often speaks of physical ‘systems and subsystems’, though the prefix sub does not necessarily
imply some formally aggregate structure, rather these terms only indicate that one is considering a system
that is (at least) two systems: a composite. As we have mentioned, in quantum theory one associates a
quantum state with a physical system. Implicit in such an association is also the association of a Hilbert
space. If one considers two systems, with associated finite dimensional complex Hilbert spaces HdA and
HdB , respectively, then HdA⊗HdB is the arena for quantum theory of the composite system. In particular,
a quantum state for the composite is any ρ ∈ Q(HdA⊗HdB). Such states are either separable or entangled.

Definition 2.1.9 A separable quantum state is any ρ ∈ Q(HdA ⊗HdB) such that ρ =
∑
i σi⊗ τipi, where

0 ≤ pi ≤ 1 sum to unity and σi ∈ Q(HdA) and τi ∈ Q(HdB). We denote the set of all separable states by
SepQ(HdA ⊗HdB). An entangled quantum state is any ρ ∈ Q(HdA ⊗HdB) \ SepQ(HdA ⊗HdB).

In Chapter 4, we consider entanglement in the light conical designs. For the sake of continuity, we shall
defer preliminaries regarding entanglement monotones [44] and entanglement witnesses [97] until then.
Having just formally met Definition 2.1.9, however, a few general, technical remarks are in order. The
geometry of entangled quantum states is very rich, and only partially understood [98]. For instance,
in the language of computational complexity theory [99], the problem of deciding whether an arbitrary
quantum state is separable is NP-hard [100][101]. Nevertheless, in the simplest cases dA = dB = 2 and
{dA, dB} = {2, 3}, and only in these cases, a closed necessary and sufficient condition for separability has
been discovered: the Peres-Horodecki criterion [102][103]. For a precise statement of this criterion, we shall
need to introduce the partial transpose. Let Id : L(Hd) −→ L(Hd) :: A 7−→ A denote the identity function
on L(Hd). Next, relative to some fixed orthonormal basis for Hd, let Td : L(Hd) −→ L(Hd) :: A 7−→ AT

denote the usual matrix transpose. The partial transpose is then denoted and defined via the linear
extension of IdA ⊗ TdB : L(HdA ⊗HdB) −→ L(HdA ⊗HdB) :: A⊗ B 7−→ A⊗ BT. In the aforementioned
simplest cases, the Peres-Horodecki criterion establishes that ρ ∈ Q(HdA ⊗HdB) is separable if and only if
IdA ⊗TdB(ρ) ∈ Q(HdA ⊗HdB). Immediately, then, one sees that the transpose is not completely positive.

Definition 2.1.10 A positive map is a linear function Λ : L(HdA) −→ L(HdB) :: Lsa(HdA)+ 7−→
L(HdB)+. A completely positive (CP) map is a positive map Λ such that ∀dC ∈ N Λ ⊗ IdC is a positive
map. We denote the sets of all positive and CP maps by Pos(dA, dB) and CP(dA, dB), respectively.

It turns out [103] that ρ ∈ Q(HdA ⊗HdB) is separable if and only if IdA ⊗ Λ(ρ) ∈ Lsa(HdA ⊗HdC)+ for
every positive map Λ : L(HdB) 7−→ L(HdC). The key to the proof of the Peres-Horodecki criterion is
that when dA = 2 and dB ∈ {2, 3} every positive map Λ : L(HdA) 7−→ L(HdB) is [104][105] decomposable,
i.e. Λ = Λ1 + Λ2 ◦ TdB with Λ1,Λ2 CP maps. What complicates the situation in higher dimensions is
that not every CP map is decomposable; moreover, in such dimensions, there exist [106] infinite families
of CP maps that are not decomposable. Thus, the structure of positive and CP maps is itself quite
subtle. One can study the geometry of these maps by considering the ambient finite d2

Ad
2
B-dimensional

complex Hilbert space of all C-linear functions Θ : L(HdA) −→ L(HdB), which we shall denote Lin(dA, dB).
Here, the double Dirac notation for |A〉〉 ∈ L(Hd) becomes especially useful, for one can express any
Θ ∈ Lin(dA, dB) as Θ =

∑
j,k |Aj〉〉φj,k〈〈Bk| in terms of arbitrary orthonormal bases {|Aj〉〉} and {|Bk〉〉}

for L(HdA) and L(HdB), respectively. With overline denoting complex conjugation, the adjoint is then
Θ∗ ≡

∑
j,k |Bk〉〉φj,k〈〈Aj |, and the Hilbert-Schmidt inner product is 〈〈〈〈Θ|Ξ〉〉〉〉 ≡ Tr(Θ∗Ξ), where we have

introduced quadruple Dirac notation for elements of Lin(dA, dB). Naturally, one can allow only real scalars
and consider Lin(dA, dB) as a vector space over R, with quantum channels forming convex subset thereof.
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Definition 2.1.11 A trace preserving (TP) map is any Θ ∈ Lin(dA, dB) such that TrΘ(A) = TrA for all
A ∈ L(HdA). A quantum channel is a completely positive trace preserving map. We respectively denote
the sets of all TP maps and quantum channels by TP(dA, dB) and CPTP(dA, dB).

Quantum information regarding physical systems can change, for instance, in light of measurements,
or the destruction of subsystems, or when the physical system in question is influenced by an external
force field, and so on. Quantum channels exact these changes on quantum states; moreover they are the
general dynamical structure of quantum theory. Geometrically, the convex set of quantum channels is
the intersection of the convex cone CP(dA, dB) with the hyperplane TP(dA, dB) in Lin(dA, dB) considered
as a vector space over R. It is not a coincidence that one has in mind the exact same geometric picture
for quantum states: a convex cone sliced by a hyperplane perpendicular to the symmetry axis of the
cone. Indeed, in light of the Choi-Jamio lkowski isomorphism [31][32], the convex sets of quantum states
and quantum channels admit isomorphic geometries. Henceforth, let L(HdA ,HdA) denote finite dAdB-
dimensional complex Hilbert space of set of C-linear functions X : HdA −→ HdB equipped with the usual
Hilbert-Schmidt inner product, and where X∗ : HdB −→ HdA denotes the usual adjoint function.

Theorem 2.1.12 (Choi-Jamio lkowski [31][32]) Let {|e1〉, . . . , |edA〉} be an arbitrary orthonormal basis
for a finite dA-dimensional complex Hilbert space HdA . Define J : Lin(dA, dB) −→ L(HdA ⊗ HdB) via

dAJ(Λ) =
∑dA
j,k=1 Λ

(
|ej〉〈ek|

)
⊗ |ej〉〈ek|. Then Λ ∈ CPTP(dA, dB) if and only if J(Λ) ∈ Q(HdA ⊗HdB). In

that case, ∃{Xi} ⊂ L(HdA ,HdA) such that Λ :: A 7−→
∑
iXiAX

∗
i , where

∑
iX
∗
i Xi = 1dA .

The Xi appearing in the statement of Theorem 2.1.12 are referred to as Kraus operators. Of course,
Lin(dA, dB) and L(HdA ⊗HdB) admit identical Hilbert dimension d2

Ad
2
B and are therefore isomorphic as

finite dimensional complex Hilbert spaces. The beauty of the Theorem 2.1.12, for which we refer the reader
to the original references [31][32] for proof, is that the image of the restriction of the linear bijection J to
the set of quantum channels CPTP(dA, dB) is exactly the set of quantum states Q(HdA ⊗HdB). Thus, to
study the shape of quantum states is to study the shape of quantum channels, and vice versa. Naturally,
then, just as one has the notion of a separable state, one also has the notion of a separable channel [107].

Definition 2.1.13 A separable quantum channel is any completely positive trace preserving map Θ :
L(HdA) ⊗ L(HdB) −→ L(HdC) ⊗ L(HdD) such that Θ(A) =

∑
iXiAX

†
i where all of the Kraus operators

are of the form Xi = Yi ⊗ Zi for some Yi ∈ L(HdA ,HdC) and Zi ∈ L(HdB ,HdD). We denote the set of
all separable quantum channels by SepCPTP(dA; dB, dC; dD).

With a little work [78], one can see that J : SepCPTP(dA; dB, dC; dD) −→ SepQ(HdA ;HdB ,HdC ;HdD),
where the image is defined via the obvious generalization of Definition 2.1.9. We shall call on the foregoing
definition in Chapter 4. We shall also call on the following definition.

Definition 2.1.14 A product povm is any povm {Ej} ⊂ E(HdA ⊗HdA) where all of the effects are of
the form Ej = Fj ⊗Gj for some Fj ∈ E(HdA) and Fj ∈ E(HdB). We denote the set of all product povms
by ProdE(HdA ⊗HdA). A joint povm is any povm {Eα} ∈ E(HdA ⊗HdA) \ ProdE(HdA ⊗HdA).

There are a lot of additional, interesting things that one can say about quantum theory; however, we have
now met most of essential material on quantum theory that is required to understand the chapters to
follow. In closing this section, we note that the partial trace is denoted and defined via the linear extension
of its action on pure tensors according to TrHdA

: L(HdA ⊗HdB) −→ L(HdB) :: A ⊗ B 7−→ BTrA, with
TrHdB

defined analogously. We now proceed with Section 2.2, which contains some necessary prerequisite
group theory.
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2.2 Group Theoretic Prerequisites

Group theory is a deep subject. There exist a host of textbooks on the subject, including [108][109][110].
In this section, we collect important prerequisites for Part I of this thesis.

Let G,H be groups. A group homomorphism is a function σ : G −→ H :: g 7−→ σg such that ∀g, g′ ∈ G one
has that σgσg′ = σgg′ , where juxtaposition denotes the relevant group operations, interpreted from context.
Let V,W be vector spaces. A linear homomorphism is a linear function T : V −→ W :: v 7−→ T (v). The
terms monomorphism, epimorphism, and isomorphism are reserved for injective, surjective, and bijective
functions, respectively. The term endomorphism is reserved for functions whose domain and codomain
coincide. The term automorphism is reserved for endomorphic isomorphisms. Group homomorphisms and
linear homomorphisms are instances of a general categorical notion introduced in Part II.

A group representation of G is a pair (σ,V) where σ : G −→ GL(V) is a group homomorphism and GL(V) is
the group of invertible linear endomorphisms on V. A unitary representation of G is a pair (σ,H) where H

is a complex Hilbert space [79] and σ : G −→ U(H), with U(H) the group of unitary linear endomorphisms
on H. Now, suppose X ⊆ V is a vector subspace of V and T is a linear endomorphism on V. If ∀x ∈ X one
has that T (x) ∈ X, then X is said to be an invariant subspace of T . In this case, the restriction of T to
X is the unique linear endomorphism T|X : X −→ X :: x 7−→ T (x). Invariant X is said to be proper when
X /∈ {{0},V}. Next, let (σ,H) be a unitary representation of G. If there exists a Hilbert subspace X ⊆ H

such that ∀g ∈ G and ∀x ∈ X one has that σg(x) ∈ X, then X is said to be invariant, i.e. X is an invariant
subspace of σg for all g ∈ G. If X is not proper, then the representation is said to be irreducible; otherwise,
it is said to be reducible. The restriction of π to X is defined via σ|X : G −→ GL(X) :: g 7−→ σg|X .

A matrix group is a subgroup G ⊆ GL(Hd) ⊂Md(C) where Md(C) is the complex Hilbert space of d× d
complex matrices equipped with the usual Hilbert-Schmidt inner product. A matrix Lie group is a matrix
group such that if a sequence gi ∈ G converges entrywise to x ∈ Md(C), then either x ∈ G else x is not
invertible. A compact matrix Lie group is a matrix Lie group which is a closed, bounded subset of Md(C).
In particular, U(Hd) is a compact matrix Lie group. If σ : G −→ GL(Hd) and σ′ : G −→ GL(Hd′) are
representations of a matrix Lie group G, then the direct sum of (σ,Hd) and (σ′,Hd′) is the representation
(σ ⊕ σ′,Hd ⊕Hd′) defined via σ ⊕ σ′ : G −→ Hd ⊕Hd′ :: g 7−→ σg ⊕ σg. This direct sum construction is
associative. Any finite dimensional unitary representation (σ,Hd) of a compact matrix Lie group G is such
that (σ,Hd) decomposes as the direct sum of irreducible representations, called irreducible components.

The t-fold tensor product of Hd is the complex Hilbert space Hdt ≡ H⊗
t

d . Let St be the group of
permutations p on {1, 2, . . . , t}, and consider its standard unitary representation (σt,Hdt) defined via

σt : St −→ U(Hdt) :: p 7−→ Up ::: Up

(
|er1〉 ⊗ · · · ⊗ |ert〉

)
= |erp(1)〉 ⊗ · · · ⊗ |erp(t)〉, (2.3)

where r, rj ∈ {1, . . . , d} and |er〉 ∈ Hd constitute an orthonormal basis for Hd and Up is extended linearly.
The t-fold product representation of U(Hd) is the unitary representation (σ(t),Hdt) defined via

σ(t) : U(Hd) −→ U(Hdt) :: U 7−→ U⊗
t

. (2.4)

In light of Schur-Weyl duality [111], there is a bijection between the irreducible components of σt and σ(t).
The relevant irreducible component for Definition 2.3.1 is the restriction of σ(t) to the invariant irreducible
totally symmetric subspace of Hdt , which is defined [112] along with its orthogonal projector thereonto via

H(t)
sym = spanC

{
|Ψ〉 ∈ Hdt

∣∣∣ ∀p ∈ Sn Up|Ψ〉 = |Ψ〉
}

Π(t)
sym =

1

t!

∑
p∈St

Up. (2.5)
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In Part I of this thesis, we will be primarily interested in complex projective 2-designs and their arbitrary
rank arbitrary trace generalization to be introduced in Chapter 3. For those purposes, the relevant group
representation is the 2-fold product representation of U(Hd), which we will call the product representation
for short. Furthermore, for notational convenience we henceforth let H ≡ Hd ⊗Hd and σ(2) ≡ σ so that
the product representation is written as

σ : U(Hd) −→ U(H) :: U 7−→ U ⊗ U . (2.6)

The product representation is vital for the sections and chapters to follow. Happily, in this case, one can
easily understand the irreducible components via basic linear algebra. Indeed, let us introduce an arbitrary
orthonormal basis with elements |er〉 ∈ Hd and recall the usual swap operator W : H −→ H defined

W =

d∑
r=1

d∑
s=1

|es〉〈er| ⊗ |er〉〈es|. (2.7)

Observe that ∀|ψ〉, |φ〉 ∈ Hd one has W(|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉, hence the operator’s name. Also note that
W is a self-adjoint unitary linear endomorphism with degenerate eigenvalues {+1,−1}. The corresponding
eigenspaces are the symmetric and antisymmetric subspaces, which are denoted and defined as follows

Hsym = spanC

{
|f+
r,s〉 ≡

|er〉 ⊗ |es〉+ |es〉 ⊗ |er〉√
2

: s > r ∈ {1, . . . , d}

}

⊕ spanC

{
|f+
r,r〉 ≡ |er〉 ⊗ |er〉 : r ∈ {1, . . . , d}

}
, (2.8)

Hasym = spanC

{
|f−r,s〉 ≡

|er〉 ⊗ |es〉 − |es〉 ⊗ |er〉√
2

: s > r ∈ {1, . . . , d}

}
, (2.9)

The union of the two sets appearing in Eq. (2.8) is an orthonormal basis for Hsym. The set appearing in
Eq. (2.9) is an orthonormal basis for Hasym. The corresponding orthogonal projectors (with respect to the
Hilbert-Schmidt inner product) onto the orthogonal symmetric and antisymmetric subspaces are given by

Πsym =
1

2

(
1d2 + W

)
Πasym =

1

2

(
1d2 −W

)
, (2.10)

Evidently, from the traces of Πsym and Πasym, one has that

dimCHsym =
d(d+ 1)

2
(2.11)

dimCHasym =
d(d− 1)

2
. (2.12)

In light of the foregoing analysis we see that H = Hsym ⊕Hasym. Furthermore, it is readily apparent that

∀U ∈ U(Hd) ∀|ψ+〉 ∈ Hsym (U ⊗ U)|ψ+〉 ∈ Hsym (2.13)

∀U ∈ U(Hd) ∀|ψ−〉 ∈ Hasym (U ⊗ U)|ψ−〉 ∈ Hasym. (2.14)

Put otherwise, Hsym and Hasym are invariant subspaces of the product representation. Further still, the
restrictions of the product representation to the symmetric and antisymmetric subspaces are irreducible.
This is a well known fact, which follows immediately from Schur-Weyl duality. Let us elevate this fact to
a lemma, which we shall call on later. We provide an an elementary proof in Appendix A.1.
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Lemma 2.2.1 The restrictions of the product representation of U(Hd) to Hsym and Hasym are irreducible.

We will call on Lemma 2.2.1 at several key moments in the sections and chapter to follow. We will also
call on Schur’s lemma [113], which is a very important result for group representation theory. There are
many variants of Schur’s lemma. We shall recall from [110] one particular variant that suits our purposes.

Lemma 2.2.2 (Schur’s Lemma) Let σ : G −→ GL(H) :: g 7−→ σg be an irreducible representation. Let
T : Hd −→ Hd be a linear endomorphism such that g ∈ G =⇒ [σg, T ] = 0, where [· , ·] denotes the usual
commutator. Then T = 1dλ with λ ∈ C.

Corollary 2.2.3 Let T : H −→ H such that Hsym and Hasym are invariant subspaces of T . If ∀U ∈ U(Hd)
one has that [U ⊗ U, T ] = 0, then T = Πsymλsym + Πasymλasym for some λsym, λasym ∈ C.

Proof. Immediate consequence of Lemma 2.2.1 and Lemma 2.2.2.

2.3 Complex Projective Designs

The notion of a spherical t-design in dimension d — that is, a finite set of points on the unit hypersphere in
Rd such that the average value of any real polynomial f of degree t or less on the set is equal to the average
value of f over the entire sphere — was first introduced by Delsarte, Goethals and Seidel in [114]. In [33],
Neumaier extended this notion to general metric spaces. Shortly thereafter, in [34], Hoggar considered
the notion of t-designs in projective spaces over the classical division algebras R, C, H, and O. Such
designs were studied further by Hoggar [115][116][117], and later by Levenshtein [118]. In this section,
we are specifically interested in an extension of the notion of a spherical t-design into the arena of finite
dimensional complex projective spaces. Formally, given a finite d-dimensional complex Hilbert space Hd,
the complex projective space CPd−1 is represented by the set of all unit rank projectors in Q(Hd), that is

CPd−1 ∼= {πα ≡ |ψα〉〈ψα| | ψα ∈ S(Hd)} . (2.15)

The unique unitarily invariant probability measure µH on CPd−1 is induced by the Haar measure [119] on
U(Hd) and admits ∀U ∈ U(Hd) and ∀πα ∈ CPd−1

µH(UπαU
∗) = µH(πα) . (2.16)

In analogy with the case of spherical t-designs, a complex projective t-design can be regarded as a set of
points on the unit sphere in Hd such that the average value of any real polynomial of degree t or less
over that set coincides with the average over the entire sphere. There are, however, many equivalent [120]
definitions of complex projective t-designs. We shall adopt the general definition given by Scott [36].

Definition 2.3.1 [36] Let t ∈ N. Let D = {πα} be a set of unit rank projectors onto rays in Hd endowed
with a probability measure ω : B(D) −→ [0, 1], where B(S) is the Borel σ-algebra of S. One says that
(D, ω) is a complex projective t-design when under Lebesgue-Stieltjes integration∫

dω(πα)π⊗
t

α =
t!(d− 1)!

(d+ t− 1)!
Π(t)

sym. (2.17)
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Complex projective t-designs [33][34][35][36] are highly symmetric structures on the (2d− 2)-dimensional
manifolds of pure quantum states in quantum theory with vital applications [121][122][123][124][125][126]
[39][42][127][128][129][130][131][132][133] (with references given being representative only) in quantum in-
formation science. In Hilbert dimension d = 2, the manifold of pure quantum states is equivalent to
the Bloch sphere in R3; although, when d > 2 the geometry of pure quantum states is much more sub-
tle. The construction of complex projective t-designs is therefore nontrivial. Remarkably, Seymour and
Zaslavsky [70] proved that complex projective t-designs exist for any independent choices of t and d.
In [134], Hayashi-Hashimoto-Horibe provide explicit constructions based on Gauss-Legendre quadratures
[135]; however, the cardinality of their constructions scales exponentially in d. The construction of more
efficient5 complex projective t-designs remains an open problem. In quantum information theory, the vast
majority of literature on the subject concerns the case of finite S, uniform ω, and t = 2. Indeed, all of the
aforementioned references to applications concern instances from this case, which we shall call projective
2-designs for short to avoid carrying the term ‘finite uniform complex projective 2-designs.’

Definition 2.3.2 A projective 2-design is a finite uniform complex projective 2-design, i.e.

n∑
α=1

πα ⊗ πα =
2n

d(d+ 1)
Πsym, n ≡ cardD. (2.18)

It is well known that any projective 2-design defines a povm via uniform subnormalization, that is, if
{πα} ⊂ Q(Hd) is a projective 2-design, then { dnπα} ⊂ E(Hd) is a povm. For the proof, simply note from
Eq. (2.10) that the partial trace of Eq. (2.18) with respect to either factor in Hd ⊗Hd yields

n∑
α=1

πα =
2n

d(d+ 1)

(
d

2
1+

1

2

d∑
r=1

d∑
s=1

|es〉δr,s〈er|

)
=

n

d
1d. (2.19)

We call such a povm a projective 2-design povm. It is also easy to see that any projective 2-design povm
is informationally complete (this follows from our more general Theorem 3.3.1 and Proposition 3.3.3.)
Explicitly, any ρ ∈ Q(Hd) can [36] be expanded in terms of pα ≡ dTr(ρπα)/n and πα as follows

ρ =

n∑
α=1

(
(d+ 1)pα −

d

n

)
πα. (2.20)

For completeness, we note that Eq. (2.20) follows from Eq. (2.19), for in light Eq. (2.10) and Eq. (2.18)

n∑
α=1

παρ⊗ πα =
n

d(d+ 1)

d∑
r=1

d∑
s=1

((
|er〉〈er|ρ⊗ |es〉〈es|

)
+
(
|es〉〈er|ρ⊗ |er〉〈es|

))
. (2.21)

5In [136], Ambainis and Emerson introduce the notion of approximate complex projective t-designs, and provide explicit
constructions whose cardinality scales linearly with d.
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Tracing Eq. (2.21) over the first tensor factor in Hd ⊗Hd yields

n∑
α=1

pαπα =
1

(d+ 1)

d∑
r=1

d∑
s=1

(
|es〉〈er|ρer〉〈es|+ |er〉〈er|ρes〉〈es|

)
=

1

(d+ 1)

d∑
s=1

(
|es〉Tr(ρ)〈es|+ 1dρ|es〉〈es|

)
=

1

(d+ 1)

(
1d + ρ

)
, (2.22)

Following through the foregoing equations with ρ replaced by an arbitrary self-adjoint linear endomorphism,
pα may no longer be such that 0 ≤ pα ≤ 1, however one finds that ∀A ∈ Lsa(Hd)

A =

n∑
α=1

(
(d+ 1)pα −

d

n
Tr(A)

)
πα, pα ≡

dTr
(
Aπα

)
n

. (2.23)

Any projective 2-design povm formed from a projective 2-design D thus facilitates an injection

iD : Lsa(Hd) −→ Rn :: A 7−→ ~p ≡ (p1, . . . , pn). (2.24)

It is not hard to prove that iD is an injection. We shall follow a general technique pointed out by
Watrous [78]. Indeed, npα/d is precisely the Hilbert-Schmidt inner product 〈〈πα|A〉〉; moreover, in light of
Theorem 3.3.1, spanR{πα} = Lsa(Hd). Thus, if ∀α ∈ {1, . . . , n} one has that 〈〈πα|A〉〉 = 〈〈πα|B〉〉 for some
A,B ∈ Lsa(Hd), then ∀Z ∈ Lsa(Hd) it follows that 〈〈Z|A− B〉〉 = 0, so A = B. Therefore iD is injective;
moreover, it is a linear monomorphism in light of linearity of the trace functional.

With D any projective 2-design, the linear monomorphism iD : Lsa −→ Rn defined in Eq. (2.24) injects
quantum state space into the n-probability simplex ∆n ≡ {~p ∈ Rn≥0 |

∑
α pα = 1}, i.e. iD :: Q(Hd) 7−→ ∆n.

In light of the linearity of iD, the image of the quantum state space is clearly a convex set. Furthermore,
again from linearity, ~p ∈ iD

(
Q(Hd)

)
is an extreme point if and only if there exists a unit rank projector

π ∈ PurQ(Hd) (i.e. a pure quantum state) such that ~p = iD(π). Further still from linearity, iD
(
Q(Hd)

)
is precisely the convex hull of its extreme points. It is to be observed, however, that the restriction of
iD to quantum state space does not cover the entire n-probability simplex. Put otherwise, not every
probability vector corresponds to a quantum state. Indeed, appealing to linearity of the trace and the fact
Tr(A⊗B) = TrATrB, we see that iD

(
Q(Hd)

)
is bounded by a sphere of radius 2d/(n(d+ 1)), specifically

n∑
α=1

p2
α =

d2

n2

n∑
α=1

(
Tr(ρπα)

)2

=
d2

n2

n∑
α=1

Tr
(
ρπα ⊗ ρπα

)
=

2d

n(d+ 1)
Tr
((
ρ⊗ ρ

)
Πsym

)
=

d

n(d+ 1)

(
1 +

d∑
r=1

d∑
s=1

〈es|ρ|er〉〈er|ρ|es〉

)

=
d

n(d+ 1)

(
1 + Trρ2

)
. (2.25)
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Incidentally, from Eq. (2.25), one gleans that projective 2-design povm probabilities are never certain, for
‖~p‖ < 1 =⇒ max{pα} < 1. Also, Eq. (2.25) establishes simple linear relationship between the usual
Euclidean norm on Rn and the Hilbert-Schmidt norm on Lsa(Hd). Indeed, each pure state, which thus
satisifies Trρ2 = 1, is a point on a sphere in Rn of the aforementioned radius. We are about to see, however,
that not every point on the sphere corresponds to a pure state. Indeed, when d > 2, the intersection of this
sphere with the simplex contains points outside of iD

(
Q(Hd)

)
. First, we shall need to recall the following

lemma, which provides necessary and sufficient conditions for a self-adjoint linear endomorphism on Hd

to be an extreme point of the convex set of quantum states Q(Hd).

Lemma 2.3.3 (Flammia-Jones-Linden [137][138]) Let A ∈ Lsa(Hd). Then A is a unit rank projector (i.e.
pure quantum state) if and only if Tr(A2) = Tr(A3) = 1.

We refer the reader to [138] for the proof of Lemma 2.3.3 (with [137] being unpublished.) It is worth
pointing out that when d = 2, and only in this case, the conditions Tr(A) = Tr(A2) = 1 are necessary
and sufficient conditions for A to be a pure quantum state. Indeed, with λ1, λ2 the eigenvalues of A,
these conditions imply, respectively, that λ1 + λ2 = 1 and λ2

1 + λ2
2 = 1. Therefore, when d = 2, ~p ∈ ∆n

corresponds to a pure quantum state if and only if ‖~p‖ = 4/3n. When d > 2, the cubic condition in
Lemma 2.3.3 identifies the subset of points on sphere ‖~p‖ = 2d/(n(d+ 1)) corresponding to pure quantum
states. Remarkably, the conditions in Lemma 2.3.3 lead to a very simple characterization of the extreme
points of the quantum state space in terms of projective 2-design povm probabilities, specifically the
characterization we provide in Corollary 2.3.4. Fuchs and Schack [139] derived this characterization in
the special case where the underlying projective 2-design is a sic (see Definition 2.3.6.) The fact that our
characterization holds for an arbitrary projective 2-design is therefore of some independent interest.

Corollary 2.3.4 Let {Eα ≡ dπα/n} ⊂ E(Hd) be a projective 2-design povm, i.e. {π1, . . . , πn} ⊂ Q(Hd)
is a projective 2-design. Let ρ ∈ Q(Hd) and pα ≡ Tr(ρEα). Then ρ is pure if and only if

n∑
α=1

p2
α =

2d

n(d+ 1)
, (2.26)

n∑
α=1

n∑
β=1

n∑
γ=1

pαpβpγTr(παπβπγ) =
d+ 7

(d+ 1)3
. (2.27)

Proof. Eq. (2.26) is an immediate consequence of Eq. (2.25) and Lemma 2.3.3. It remains to establish
that the cubic condition Eq. (2.27) holds. Let arbitrary ρ ∈ Q(Hd). Then, via Eq. (2.20), we observe that

Tr
(
ρ3
)

= (d+ 1)3
n∑
α=1

n∑
β=1

n∑
γ=1

pαpβpγTr(παπβπγ)− 3(d+ 1)2
n∑
α=1

n∑
β=1

pαpβTr(παπβ) + 2d+ 3. (2.28)

Now from Eq. (2.22), together with linearity of the trace, we find that

n∑
α=1

n∑
β=1

pαpβTr(παπβ) =

n∑
β=1

pβTr

(( n∑
α=1

pαπα

)
πβ

)
=

1

(d+ 1)

1 +
n

d

n∑
β=1

p2
β

 . (2.29)

Hence,
n∑
α=1

n∑
β=1

n∑
γ=1

pαpβpγTr(παπβπγ) =
Tr
(
ρ3
)
− 2d− 3

(d+ 1)3
+

3

(d+ 1)2

1 +
n

d

n∑
β=1

p2
β

 . (2.30)
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Therefore in light of Eq. (2.25) we see that

n∑
α=1

n∑
β=1

n∑
γ=1

pαpβpγTr(παπβπγ) =
Tr
(
ρ3
)

+ 3Tr
(
ρ2
)

+ 3 + d

(d+ 1)3
. (2.31)

In the case where ρ is pure, and only in this case, Eq. (2.31) immediately simplifies to Eq. (2.27).

With Corollary 2.3.4, we have established necessary and sufficient conditions for a probability distribution
~p to be an extreme point of the image of the quantum state space, i.e. the convex set iD

(
Q(Hd)

)
. It is

worth emphasizing that the quadratic and cubic conditions, Eq. (2.26) and Eq. (2.27), respectively, apply
quite generally: they hold for any projective 2-design povm. Furthermore, it is only in the quadratic
condition that any information regarding the particular design factors in, namely the cardinality n. It
is natural to expect that more progress can be made by selecting particularly nice varieties of projective
2-design. We are about to meet the two canonical candidates. First, it will be convenient for us to recall
the following lemma, which appears in [140]. In light of the fact that any projective 2-design povm is
informationally complete, we have improved the statement of this result as it is found in [140] so that
n ≥ d2, instead of n ≥ d as it appears in [140] (this is inconsequential for the proof given therein.)

Lemma 2.3.5 (Renes et al. [140]) A set of unit rank projectors {π1, . . . , πn} ⊂ Q(Hd) with n ≥ d2 is a
projective 2-design if and only if

n∑
α=1

n∑
β=1

(
Tr(παπβ)

)2

=
2n2

d(d+ 1)
. (2.32)

We refer the reader to [140] for a proof of Lemma 2.3.5 (see also Levenshtein [118] and König [120].)
Equipped with Lemma 2.3.5, one now has a necessary and sufficient condition that can be used to verify
whether a set of unit rank projectors constitutes a projective 2-design. For example, suppose there exists
a set of unit rank projectors {π1, . . . , πd2} ⊂ Q(Hd) such that ∀α, β ∈ {1, . . . , d2} one has that

Tr
(
παπβ

)
=
δα,βd+ 1

d+ 1
. (2.33)

Then

d2∑
α=1

d2∑
β=1

(
Tr(παπβ)

)2

=

d2∑
α=1

d2∑
β=1

(
δα,βd+ 1

(d+ 1)

)2

=

∑n
α=1

∑n
β=1 d

2δα,β + 2dδα,β + 1

(d+ 1)2
=

2d3

(d+ 1)
, (2.34)

so the putative {π1, . . . , πd2} constitute a projective 2-design in light of Lemma 2.3.5; moreover, one of
minimal cardinality, i.e. d2. In [36], Scott proves that any projective 2-design of minimal cardinality must
be symmetric in the sense of Eq. (2.33). It follows that sics, which are formally defined below, are the
unique projective 2-designs of minimal cardinality.

Definition 2.3.6 A sic is a set of d2 unit rank projectors (i.e. pure states) {π1, . . . , πd2} ⊂ Q(Hd) such
that ∀α, β ∈ {1, . . . , d2} Tr(παπβ) = (δα,βd+ 1)/(d+ 1). A sic povm is a set of d2 effects {Eα ≡ πα/d} ⊂
E(Hd) such that {πα} is a sic.
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The sic existence problem — that is, the question whether sics exist for all d ∈ N — remains tantalizingly
open, notwithstanding significant attention, particularly from within the quantum information community
[35][140][41][141][142][143][144][145][146][147][148][149][150][123][151][152][153][154][155][156][157][158] (a
representative list of references.) The sic existence problem, in the words and original emphasis of Appleby,
Dang, and Fuchs [155]: “seems the sort of thing one might find as an exercise in a linear-algebra textbook.”
For instance, given that a sic is defined by unit rank projectors, the question of whether or not a sic exists in
Q(Hd) is equivalent to the question of whether or not d2 equiangular lines [159][34] exist in Hd; a seemingly
simple geometric question. Consider, however, the following equivalent geometric characterization: a sic
is exactly defined by the vertices of a regular d2-vertex simplex within the null trace subspace

Lsa,0(Hd) ≡ {B ∈ Lsa(Hd) | TrB = 0}, (2.35)

where the vertices correspond to pure quantum states via the usual identification B = dρ− 1d. We shall
return to a full analysis of quantum state spaces in terms traceless generators (what we call the Bloch
body) in Section 3.1. Presently, we need only observe that it is, of course, trivial to inscribe such a simplex
into the unit ball of the ambient real vector subspace Lsa,0(Hd); however, it is very far from obvious that
one can rotate this simplex such that its vertices lie on the measure zero (2d−2)-dimensional submanifold
corresponding to pure quantum states. This picture provides one with a sense for why the sic existence
problem is so hard. It is therefore remarkable, and perhaps even shocking, that sics do exist in many
cases, particularly for most finite Hilbert dimensions naturally accessible by quantum computers [160].

Exact sics are known to exist for d ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 24, 28, 35, 48} (see in
particular6 [35][141][142][143][148][150][153]) and numerical solutions have been constructed for all d ≤ 121
[140][148][161]. In 1999, Zauner [35] conjectured that for all d there exists a fiducial unit rank projector
whose orbit under the action of the generalized Weyl-Heisenberg group [143] forms a sic. Almost all known
sics have been constructed in this manner (if d is prime, they must be as such [162].)

There are many reasons for why one might be interested in the sic existence problem. For instance,
from a practical perspective, sic povms are [36] the optimal quantum measurements for the purposes of
nonadaptive sequential linear quantum state tomography [37] and measurement-based quantum cloning
[38]. They also have important applications [39][40][41][42][43] in quantum cryptography [125]. From
a purely mathematical point of view, sics have interesting connections with Lie algebras [149], Jordan
algebras [156], Galois field theory [151][158]. In the context of quantum foundations, sics are a cornerstone
for QBism [13][139]. sics also have applications in classical signal processing [163]. In Chapter 4, we shall
see that sics are intimately connected with the theory of quantum entanglement.

Mutually unbiased bases are another class of symmetric structures in Hilbert space.

Definition 2.3.7 ([164][165][166][167]) Mutually unbiased bases are sets of orthonormal bases Bb =
{e1,b, . . . , ed,b} ⊂ Hd, where b ∈ {1, . . . , N} and N ∈ N, such that |〈eα,b|eα′,b′〉|2 = 1/d for all α, α′ ∈
{1, . . . , d} and for all b 6= b′.

If N = d+ 1, then the corresponding unit rank projectors πα,b ≡ |eα,b〉〈eα,b| define a mub as follows.

Definition 2.3.8 A mub is a set of d(d + 1) unit rank projectors (i.e. pure quantum states) Q(Hd) ⊃
{πα,b | α ∈ {1, . . . , d}, b ∈ {1, . . . , d+ 1}} such that ∀α, α′ ∈ {1, . . . , d} and ∀b, b′ ∈ {1, . . . , d+ 1}

Tr
(
πα,bπα′,b′

)
=

{
δα,α′ b = b′

1
d b 6= b′

. (2.36)

6For concrete numerical solutions, we especially recommend [148].
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A mub povm is a set of d(d+ 1) effects {Eα,b ≡ πα,b/(d+ 1)} ⊂ E(Hd) such that {πα,b} is a mub.

It turns out that d+1 is [166] the maximum possible number of mutually unbiased bases that might be found
in a finite d-dimensional complex Hilbert space, hence sets of d+ 1 mutually unbiased bases are said to be
full. In fact, the unit rank projectors corresponding to mutually unbiased basis elements form a projective
2-design if and only if N = d+ 1. For the proof7, one simply notes that N(N − 1) +Nd = 2N2d/(d+ 1)
if and only if N = d+ 1, calls to Lemma 2.3.5, and computes

d∑
α=1

d∑
α′=1

N∑
b=1

N∑
b′=1

(
Tr(πα,bπα′,b′)

)2

=
1

d2

d∑
α=1

d∑
α′=1

N∑
b=1

N∑
b′=1

(
1+δb,b′

(
d2δα,α′−1

))
= N(N−1)+Nd. (2.37)

We point the reader to the excellent review article [167] for many interesting mathematical connections
and physical applications related to mubs. Geometrically, mubs correspond to d + 1 orthogonal regular
d-vertex simplices in Lsa,0(Hd). When d is a prime power, mubs exist [166]. No mubs have been found in
any other cases; moreover, there is a growing body of numerical evidence [141][169][170][171] supporting
Zauner’s conjecture [35] that mubs do not exist when d = 6.

A terminological digression is in order. The name ‘symmetric informationally complete positive operator
valued measures’ was introduced in [140] for what we have just called a sic povm. Indeed, sic povms
are by definition symmetric in the sense of (2.33), and informationally complete (as is any projective
2-design povm.) There exists [172], however, a more general (i.e. arbitrary rank) variety of minimal
informationally complete povms that are also symmetric in the sense of admitting constant mutual Hilbert-
Schmidt inner products, what Appleby and the author have dubbed sims for ‘symmetric informationally
complete measurements’ in [1] (see Definition 3.2.1). In this language, a sic povm is by definition a sim of
unit rank. We shall have the occasion to consider the general case of sims in detail in Chapter 3. mubs, like
sics, have arbitrary rank counterparts — mutually unbiased measurements (mums, see Definition 3.2.2) —
that do [173] exist for all d ∈ N. Incidentally, sims and sics and mums and mubs are examples of conical
2-designs. The stage is set.

7Barnum was the first to prove [168] that mubs are projective 2-designs.
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“. . . deep beneath the rolling waves,
in labyrinths of coral caves. . . ”

—Pink Floyd
Echoes (1971)

Chapter 3

Enter Conical Designs

In [1], the author and D. M. Appleby introduced conical t-designs. This chapter centres on that publication.

Definition 3.0.1 Let d, n, t ∈ N. A conical t-design is a set of elements of a quantum cone, denoted
{A1, . . . , An} ⊂ Lsa(Hd)+, such that

spanR{A1, . . . , An} = Lsa(Hd), (3.1)

and ∀U ∈ U(Hd)  n∑
j=1

A⊗
t

j , U⊗
t

 = 0, (3.2)

where ∀A,B ∈ L(Hd) [A,B] ≡ AB −BA and A⊗
1

= A, A⊗
2

= A⊗A, A⊗
3

= A⊗A⊗A, and so on.

The demand in Eq. (3.1) that a conical t-design span the ambient space for the relevant quantum cone is
inspired by our detailed consideration of conical 2-designs, in particular their five equivalent characteriza-
tions in our upcoming Theorem 3.3.1. If one restricts to the case ∀j ∈ {1, . . . , n} rankAj = 1, then, up to
scaling, one recovers the definition of a complex projective t-design; moreover, in this case, the spanning
condition becomes redundant for t > 1. For a proof of the later statement, one notes that (i) any complex
projective t-design is [36] also a complex projective t′-design for all N 3 t′ ≤ t, and (ii), as we have shown
in Section 2.3, every complex projective 2-design povm is informationally complete. A proof of (i) follows
from Schur-Weyl duality, as discussed in Section 2.2, and Lemma 1 in [36].

For the remainder of this thesis, as in [1] and [2], we shall focus our attention entirely on the case t = 2,
deferring a consideration of higher conical t-designs to later work. The Bloch body will be central to our
analysis. Accordingly, we summarize its structure in Section 3.1. We provide a unified geometric picture of
sims and mums in Section 3.2. We formally introduce conical 2-designs in Section 3.3 and derive their basic
properties. The class of conical 2-designs is large. In Section 3.4, we focus on a particular subclass that we
call homogeneous conical designs, which includes arbitrarily weighted complex projective 2-designs, as well
as sims and mums. We fully characterize homogeneous conical 2-designs in Theorem 3.4.2, and we prove
they exist in Theorem 3.4.4. Conical 2-designs shed new light on the problem of finding new varieties of
complex projective 2-designs. We outline a program to seek out such varieties in Section 3.5.
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3.1 The Bloch Body

The generalized Bloch representation [174][175][176][177][178][179][180][172] of finite dimensional quantum
state spaces provides a particularly intuitive way of thinking about designs, both projective and conical. In
this thesis, we shall adopt the coordinate free point of view, wherein traceless self-adjoint endormorphisms
themselves are the vectors corresponding to quantum states. One may always appeal to, however a concrete
represenation. For instance, the generalized Gell-Mann matrices1 [181] can be chosen as a basis for all
self-adjoint traceless matrices. Indeed, when d = 2, this latter point of view yields the familiar Bloch
vector representation for qubits in terms of the vector of projections onto the Pauli matrices. In our case,
the key is to observe that any quantum state ρ ∈ Q(Hd) can be expressed as ρ = (B+1d)/d, with traceless
B ∈ Lsa,0(Hd); hence the following definition.

Definition 3.1.1 Let d ∈ N≥2. The Bloch body, denoted B(Hd), consists of those traceless self-adjoint
linear endomorphisms B ∈ Lsa,0(Hd) such that (B + 1d)/d is a quantum state, i.e.

B(Hd) ≡
{
B ∈ Lsa,0(Hd)

∣∣∣1
d

(
B + 1d

)
∈ Q(Hd)

}
. (3.3)

We shall now render Lsa,0(Hd) a (d2 − 1)-dimensional normed inner product space over R. Of course, the
traceless subspace is as such if one allows it to inherit the ambient structure from Lsa(Hd); however, it will
be convenient to instead equip Lsa,0(Hd) with the following scaled inner product and its induced norm

〈〈·|·〉〉B : Lsa,0(Hd)× Lsa,0(Hd) −→ R :: (B1, B2) 7−→ 1

d(d− 1)
〈〈B1|B2〉〉 =

1

d(d− 1)
Tr
(
B1B2

)
, (3.4)

‖ · ‖B : Lsa,0(Hd) −→ R≥0 :: B 7−→ 1√
d(d− 1)

‖B‖ =
1√

d(d− 1)
Tr
(
B2
)
. (3.5)

For our purposes, it will be important to single out two balls centred on the origin of Lsa,0(Hd). Define
the inball and the outball, respectively, via

B(Hd)in ≡
{
B ∈ Lsa,0(Hd)

∣∣∣ ‖B‖B ≤ 1

d− 1

}
, (3.6)

B(Hd)out ≡
{
B ∈ Lsa,0(Hd)

∣∣∣ ‖B‖B ≤ 1
}

. (3.7)

The following inclusions, for which we refer the reader to [172] for proof, hold for any d ∈ N

B(Hd)in ⊆ B(Hd) ⊆ B(Hd)out. (3.8)

Furthermore, the inball is the largest ball centred on the origin contained in the Bloch body, and the
outball is the smallest ball centred on the origin containing the Bloch body [172]. We denote and define the
insphere S(Hd)in and the outsphere S(Hd)out to be the surfaces of the inball and the outball, respectively.
The manifold of pure quantum states is [172] isomorphic to the intersection of the Bloch body and the
outsphere:

B(Hd) ∩ S(Hd)out =

{
B ∈ Lsa,0(Hd)

∣∣∣ 1

d

(
B + 1d

)
is a unit rank projector

}
. (3.9)

1Incidentally, the generalized Gell-Mann matrices appear in some of our proofs given later in Part II; accordingly, we
provide an elementary review in Appendix B.2.
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Evidently, if d = 2,
B(H2)in = B(H2) = B(H2)out (3.10)

and one recovers the familiar Bloch ball of quantum states for qubits. If d > 2, then the Bloch body
is much more intricate than a simple ball [182], however conical designs shed new light on its structure.
In closing this section, we introduce a final definition that will be used in the sequel: let I : L(Hd) −→
L(Hd) :: A 7−→ A be the identity superoperator and define the Bloch projector via

ΠB ≡ I− |1d〉〉
1

d
〈〈1d|. (3.11)

3.2 SIMs and MUMs

In this section, we recall the arbitrary rank generalizations of sic povms and mub povms introduced by
Appleby [172] and Kalev and Gour [173], respectively. We will require the following elementary proposition.

Definition 3.2.1 (Appleby [172]) A sim is a povm {E1, . . . , Ed2} ⊂ E(Hd) such that ∀α, β ∈ {1, . . . , d2}

Tr
(
EαEβ

)
=
d2κ2δα,β + d+ 1− κ2

d3(d+ 1)
, (3.12)

where κ ∈ (0, 1] is the sim contraction parameter.

Definition 3.2.2 (Kalev and Gour [173]) A mum is a povm
{
Eα,b | α ∈ {1, . . . , d}∧b ∈ {1, . . . , d+1}

}
⊂

E(Hd) such that

Tr
(
Eα,bEα′,b′

)
=

{
dη2δα,α′+1−η2

d(d+1)2 b = b′

1
d(d+1)2 b 6= b′

, (3.13)

where η ∈ (0, 1] is the mum contraction parameter.

We remind the reader of our discussion closing Chapter 2, where we pointed out that sim reads as ‘sym-
metric informationally complete measurement’ and mum reads as ‘mutually unbiased measurement.’ We
will now establish the existence of sims and mums for all finite dimensinal quantum state spaces. We use
simple geometric arguments. Appleby follows a similiar route to prove the existence of sims in [172]. Kalev
and Gour expound a more complicated algebraic argument to prove the existence of mums in [173]. Since
the Bloch body will be central to our discussion in the sequel, we present a unified geometric picture of
sims and mums herein. We begin with the following elementary geometric proposition.

Proposition 3.2.3 Let N 3 m > 1. Let · : Rm×Rm −→ R :: (v, w) 7−→ v ·w be an inner product on Rm.
Then ∀κ ∈ R>0 and ∀n ∈ N with 2 ≤ n ≤ m+1 there exists {v1, . . . , vn} ⊂ Rm such that ∀α, β ∈ {1, . . . , n}

vα · vβ = κ2 δα,βn− 1

n− 1
, (3.14)

n∑
α=1

vα = 0, (3.15)

dimR
(
spanR{v1, . . . , vn}

)
= n− 1. (3.16)
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Proof. We proceed by induction on m. Let m = 2. If n = 2, then choose {v1, v2} to be the endpoints of a
line segment of length 2κ centred on the origin. If n = 3, then choose {v1, v2, v3} to be the vertices of an
equilateral triangle with side length

√
3κ centred on the origin. In both of these cases, the statements in

Eq. (3.15) and Eq. (3.16) follow trivially. Now, suppose the desired result holds for some fixed m ∈ N. Let
m̃ = m+ 1. In light of the obvious inclusion of Rm as a subspace of Rm̃, it remains only to show that the
desired result holds for n = m̃ + 1. It follows from our supposition that there exists {v1, . . . , vm̃} ⊂ Rm̃
such that Eq. (3.14), Eq. (3.15), and Eq. (3.16) hold, in particular for some fixed κ ∈ R>0. Therefore
∀κ̃ ∈ R>0 there exists v ∈ Rm̃ such that v · v = κ̃2 and ∀α ∈ {1, . . . , m̃} v · vα = 0. Define ∀α ∈ {1, . . . , m̃}

ṽα = vα
κ̃

κ

√
m̃2 − 1

m̃2
− v 1

m̃
=⇒ ∀α, β ∈ {1, . . . ,m+ 1} ṽα · ṽβ = κ̃2 δα,β(m̃+ 1)− 1

m̃
. (3.17)

Then {ṽ1, . . . , ṽm̃} ∪ {v} satisfies the desired properties: in particular, Eq. (3.14) and Eq. (3.15) follow
immediately by the construction in Eq. (3.17), and Eq. (3.16) follows from the fact that v was chosen to
be in the orthogonal complement of the span of {v1, . . . , vm+1}.

Our proof of Proposition 3.2.3 establishes the existence of regular simplices in Rm. Of course, these shapes
have been studied extensively [183]. Indeed, in R3 with n = 4 we find, for instance, examples dating much
farther back in the Egyptian pyramids. We give a special name to such simplices when considering the
particular (d2− 1)-dimensional inner product spaces over R of traceless self-adjoint linear endomorphisms
on Hd.

Definition 3.2.4 Let κ ∈ R>0. Let 2 ≤ d ∈ N. Let n ∈ N. An (n, κ)-regular simplex in Lsa,0(Hd) is
{B1, . . . , Bn} ⊂ Lsa,0(Hd) such that the following three properties hold:

∀α, β ∈ {1, . . . , n} 〈〈Bα|Bβ〉〉B = κ2 δα,βn− 1

n− 1
, (3.18)

n∑
α=1

Bα = 0, (3.19)

dimR
(
spanR{B1, . . . , Bn}

)
= n− 1. (3.20)

Corollary 3.2.5 Let κ ∈ R>0. Let 2 ≤ d ∈ N. Then ∀n ∈ N with 2 ≤ n ≤ d2 there exists an (n, κ)-regular
simplex in Lsa,0(Hd).

Proof. Immediate consequence of Proposition 3.2.3 and dimRLsa,0(Hd) = d2 − 1.

In light of Corollary 3.2.5 and the inclusion Bin ⊆ B, the existence of sims and mums is trivial. In order
to see why, we require some preliminary oberservations.

A sim is by Definition 3.2.1 a povm, and thus from linearity of the trace we see ∀α ∈ {1, . . . , d2} that

TrEα = Tr

Eα d2∑
β=1

Eβ

 (3.21)

=
d2κ2 + d+ 1− κ2

d3(d+ 1)
+

(d2 − 1)(d+ 1− κ2)

d3(d+ 1)
(3.22)

=
1

d
. (3.23)
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Therefore, for any sim with elements Eα, there exist corresponding traceless Bα ∈ Lsa,0(Hd) such that

Eα =
(Bα + 1d)

d2
. (3.24)

The value of the inner products in Eq. (3.12) may at first seem obscure; however, in terms of the Bloch
body picture we see from Eq. (3.24) that Eq. (3.12) translates ∀α, β ∈ {1, . . . , d2} to

〈〈Bα|Bβ〉〉B =
1

d(d− 1)
Tr
((
d2Eα − 1d

)(
d2Eβ − 1d

))
(3.25)

=
1

d(d− 1)

(
d4 d

2κ2δα,β + d+ 1− κ2

d3(d+ 1)
− 2d+ d

)
(3.26)

=
κ2
(
d2δα,β − 1

)
d2 − 1

, (3.27)

hence, a sim is exactly a (d2, κ)-regular simplex within the Bloch body. Incidentally, it now follows from
Corollary 3.2.5 that any sim is informationally complete. Indeed, the Bloch vectors for a sim necessarily
span the null trace subspace, and a sim is a povm so the sum of the sim elements spans the remaining
1-dimensional subspace of the full ambient space of self-adjoint linear endomorphisms on Hd. Therefore
sims are symmetric — in the sense of Eq. (3.12) — informationally complete quantum measurements;
hence their name. Furthermore, a sim is a sic povm if and only if κ = 1. As previously mentioned, in light
of Eq. (3.8) and Corollary 3.2.5, it is of course a trivial fact that sims exist in all cases of finite Hilbert
dimension, for one can choose any

κ ≤ 1/(d− 1). (3.28)

We have proved the following propositions.

Proposition 3.2.6 sims exist for all quantum cones.

Proposition 3.2.7 Every sim is informationally complete.

For completeness, we now follow a similiar approach for mums. A mum is by Definition 3.2.2 a povm, and
thus from linearity of the trace we see ∀α ∈ {1, . . . , d} and ∀b ∈ {1, . . . , d+ 1} that

TrEα,b = Tr

(
Eα,b

d∑
α′=1

d+1∑
b′=1

Eα′,b

)
(3.29)

=
dη2 + 1− η2

d(d+ 1)2
+

(d− 1)(1− η2)

d(d+ 1)2
+

d2

d(d+ 1)2
(3.30)

=
1

d+ 1
(3.31)

Therefore, for any mum with elements Eα,b, there exist corresponding traceless Bα,b ∈ Lsa,0(Hd) such that

Eα =
(Bα,b + 1d)

d(d+ 1)
. (3.32)
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We see from Eq. (3.32) for ∀α, α′ ∈ {1, . . . , d} and ∀b, b′ ∈ {1, . . . , d+ 1} that Eq. (3.13) translates to

〈〈Bα,b|Bα′,b′〉〉B =
1

d(d− 1)
Tr
((
d(d+ 1)Eα,b − 1d

)(
d(d+ 1)Eα′,b′ − 1d

))
(3.33)

=


1

d(d−1)

(
d2(d+1)2(dη2δα,α′+1−η2)

d(d+1)2 − 2d(d+1)
d+1 + d

)
b = b′

1
d(d−1)

(
d2(d+1)2

d(d+1)2 −
2d(d+1)
d+1 + d

)
b 6= b′

(3.34)

=

{
η2(dδα,α′−1)

d−1 b = b′

0 b 6= b′
, (3.35)

hence a mum is the union of (d + 1) mutually orthogonal (d, η)-regular simplices within the Bloch body.
Incidentally, it now follows from Corollary 3.2.5 that any mum is informationally complete; moreover,
∀b ∈ {1, . . . , d+ 1} that each set

{
Eα,b(d+ 1) | α ∈ {1 . . . , d}

}
is a povm. A proof of the latter statement

follows directly from that fact that the simplex vertices sum to zero. A proof of the former statement runs
as follows: each simplex spans a (d− 1)-dimensional subspace of the null trace subspace, there are (d+ 1)
mutually orthogonal such simplices, and the remaining 1-dimensional subspace of the full ambient space
of self-adjoint linear endomorphisms on Hd is spanned by the sum of the mum elements. Therefore mums
are mutually unbiased — in the sense of Eq. (3.13) — informationally complete quantum measurements;
hence their name. Furthermore, a mum is a mub povm if and only if η = 1. Once again, it is trivial that
mums exist in all cases of finite Hilbert dimension, for one can choose any

η ≤ 1/(d− 1). (3.36)

We have proved the following propositions.

Proposition 3.2.8 mums exist for all quantum cones.

Proposition 3.2.9 Every mum is informationally complete.

In [172], Appleby constructs sims with a nontrivial contraction parameter

κAppleby = 1/
√
d+ 1 (3.37)

for all odd dimensions; moreover, Appleby was the first to point out that sims exist ∀d ∈ N in light
of the foregoing Bloch-geometric picture. In [184], Gour and Kalev prove that sims exist using a more
complicated algebraic argument; moreover, Gour and Kalev construct sims with nontrivial contraction
parameters that, when d is even, improve Appleby’s constructions.

In [173], were mums were first introduced, Kalev and Gour construct nontrivial mums with2

ηKalev-Gour =
√

2/d(d− 1). (3.38)

In the following section, we consider a distinguished class of geometric substructures of quantum cones; a
class wherein sims and mums arise as special cases. We thus provide an affirmative answer to the question
posed by Dall’Arno [185], whether sims and mums are particular instances of a more general class of
objects.

2Kalev and Gour adopt a different convention for the mum contraction parameter; we have translated their result.
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3.3 Conical 2-Designs

A projective 2-design is a finite set of unit rank projectors {π1, . . . , πn} ⊂ Q(Hd) such that the sum over the
second tensor powers of the design elements commutes with the action of the product representation of the
complex unitary group of degree d. It is natural to ask what can be said for a finite set of arbitrary elements
of the quantum cone with this property. Theorem 3.3.1 answers that question. It will be convenient to
introduce some notation. Let {e1, . . . , ed} ⊂ Hd be a fixed orthonormal basis, relative to which we denote
and define transposition and complex conjugation on L(Hd), together with a chosen maximally entangled
ket, respectively, via

T : L(Hd) −→ L(Hd) :: A 7−→ AT ≡
d∑
r=1

d∑
s=1

|er〉〈es|Aer〉〈es|, (3.39)

C : L(Hd) −→ L(Hd) :: A 7−→ A ≡
d∑
r=1

d∑
s=1

|er〉〈er|Aes〉〈es|, (3.40)

Hd ⊗Hd 3 |Φ+〉 =
1√
d

d∑
r=1

|er〉 ⊗ |er〉. (3.41)

Theorem 3.3.1 Let n ∈ N. Let {A1, . . . , An} ⊂ Lsa(Hd)+. Then the following statements are equivalent.

(i) ∀U ∈ U(Hd) U ⊗ U, n∑
j=1

Aj ⊗Aj

 = 0. (3.42)

(ii) ∃ks ≥ ka ≥ 0 such that
n∑
j=1

Aj ⊗Aj = Πsymks + Πasymka. (3.43)

(iii) ∃k+ ≥ k− ≥ 0 such that
n∑
j=1

Aj ⊗Aj = 1d ⊗ 1dk+ + |Φ+〉dk−〈Φ+|. (3.44)

(iv) ∃k+ ≥ k− ≥ 0 such that
n∑
j=1

|Aj〉〉〈〈Aj | = |1d〉〉k+〈〈1d|+ Tk−. (3.45)

(v) ∃k+ ≥ k− ≥ 0 such that
n∑
j=1

|Aj〉〉〈〈Aj | = |1d〉〉k+〈〈1d|+ Ik−. (3.46)

If these equivalent conditions are satisfied, then the quantities k+ and k− appearing in conditions (iii)-(v)
take the same values, and are related to the quantities ks and ka in condition (ii) by

k± = (ks ± ka)/2. (3.47)

Furthermore, spanR{A1, . . . , An} = Lsa(Hd) if and only if ks > ka, equivalently, k− > 0.
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Proof. We will first establish that (ii)⇐⇒ (iii). Observe that Eq. (3.43) can be written as

n∑
j=1

Aj ⊗Aj =
(
1d ⊗ 1d

)ks + ka
2

+ W
ks − ka

2
, (3.48)

where W is the swap operator defined in Eq. (2.7). Taking the partial transpose of Eq. (3.48) with respect
to {e1, . . . , ed} over the second tensor factor in L(Hd)⊗ L(Hd) we obtain

n∑
j=1

Aj ⊗Aj =
(
1d ⊗ 1T

d

)ks + ka
2

+

(
d∑
r=1

d∑
s=1

|es〉〈er| ⊗ (|er〉〈es|)T

)
ks − ka

2
(3.49)

=
(
1d ⊗ 1d

)ks + ka
2

+

(
d∑
s=1

|es〉 ⊗ |es〉

)
ks − ka

2

(
d∑
r=1

〈er| ⊗ 〈er|

)
(3.50)

=
(
1d ⊗ 1d

)ks + ka
2

+ |Φ+〉〉
d(ks − ka)

2
〈〈Φ+|. (3.51)

where we have used the fact that AT = A for every A ∈ Lsa(Hd) ⊃ Lsa(Hd)+. With k± ≡ (ks ± ka)/2 we
see from Eq. (3.41) (ii) ⇐⇒ (iii). Next, recall the Choi-Jamio lkowski Theorem 2.1.12, and observe that
the linear bijection defined therein can be written in terms of L(Hd) 3 |Er,s〉〉 ≡ |er〉〈es| as

J : Lin(d, d) −→ L(Hd ⊗Hd) :: Λ 7−→ 1

d

d∑
r=1

d∑
s=1

Λ
(
|Er,s〉〉

)
⊗ |Er,s〉〉. (3.52)

The inverse of J is then defined via the linear extension of its action on pure tensors in L(Hd ⊗Hd)

J−1 : L(Hd ⊗Hd) −→ Lin(d, d) :: |A〉〉 ⊗ |B〉〉 7−→ |A〉〉d〈〈BT |. (3.53)

Incidentally, this is an example of where double Dirac notation is especially useful; indeed one has that

J
(
J−1

(
|A〉〉 ⊗ |B〉〉

))
= J

(
|A〉〉d〈〈BT|

)
(3.54)

=

d∑
r=1

d∑
s=1

|A〉〉〈〈BT|Er,s〉〉 ⊗ |Er,s〉〉 (3.55)

=

d∑
r=1

d∑
s=1

|A〉〉 ⊗ |Er,s〉〉〈〈BT|Er,s〉〉 (3.56)

= |A〉〉 ⊗

(
d∑
r=1

d∑
s=1

|er〉Tr
(
BT |er〉〈es|

)
〈es|

)
(3.57)

= |A〉〉 ⊗

(
d∑
r=1

d∑
s=1

|er〉〈er|Bes〉〈es|

)
(3.58)

= |A〉〉 ⊗ |B〉〉. (3.59)
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From Eq. (2.7) and Eq. (3.53) we have

J−1
(
W
)

=

d∑
r=1

d∑
s=1

|Es,r〉〉d〈〈Es,r| (3.60)

=⇒ ∀X ∈ L(Hd)
(
J−1

(
W
))

(X) =

d∑
r=1

d∑
s=1

|Es,r〉〉d〈〈Es,r|X〉〉

=

d∑
r=1

d∑
s=1

|Es,r〉〉dTr
(
|es〉〈er|X

)
=

d∑
r=1

d∑
s=1

|es〉〈er|Xes〉d〈er|

= XTd. (3.61)

From Eq. (3.41) and Eq. (3.53) we have

J−1
(
|Φ+〉〈Φ+|

)
=

d∑
r=1

d∑
s=1

|Es,r〉〉d〈〈Er,s| (3.62)

=⇒ ∀X ∈ L(Hd)
(
J−1

(
|Φ+〉〈Φ+|

))
(X) =

d∑
r=1

d∑
s=1

|Es,r〉〉〈〈Er,s|X〉〉

=

d∑
r=1

d∑
s=1

|Es,r〉〉Tr
(
|er〉〈es|X

)
=

d∑
r=1

d∑
s=1

|es〉〈es|Xer〉〈er|

= X. (3.63)

Therefore, Eq. (3.53), Eq. (3.61), and Eq. (3.63) respectively yield

J−1
(
1d ⊗ 1d

)
= |1d〉〉d〈〈1d|, (3.64)

J−1
(
W
)

= Td, (3.65)

J−1
(
|Φ+〉〈Φ+|

)
= I. (3.66)

Consequently, applying J−1 to both sides of Eq. (3.44) yields Eq. (3.46), and applying J−1 to both sides
of Eq. (3.48) yields Eq. (3.45). The implication (ii) =⇒ (i) is immediate from Lemma 2.2.1, and the
implication (ii) =⇒ (i) follows from Schur’s Lemma 2.2.2; hence, (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv)⇐⇒ (v).

To see that ks ≥ ka ≥ 0, let |Ψ〉 be an arbitrary normalized element of the antisymmetric subspace of
Hd ⊗Hd and observe that {A1, . . . , An} ∈ Lsa(Hd)+ implies that

ka =

n∑
j=1

〈Ψ|Aj ⊗AjΨ〉 ≥ 0; (3.67)

moreover, partially transposing and applying J−1 to Eq. (3.43) yields Eq. (3.46) with k± = (ks ± ka)/2.
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Let B ∈ Lsa,0(Hd), so 〈〈1d|B〉〉 = TrB = 0, be normalized, i.e. ‖B‖ =
√
〈〈B|B〉〉 = 1. Then from Eq. (3.46)

n∑
j=1

|Aj〉〉〈〈Aj |B〉〉〈〈B| = |1d〉〉k+〈〈1d|B〉〉〈〈B|+ I
(
|B〉〉〈〈B|

)
(3.68)

=⇒ 0 ≤
n∑
j=1

|〈〈Aj |B〉〉|2 = k− (3.69)

where the implication follows from tracing Eq. (3.68); hence, ks ≥ ka.

Lastly, we recall the fact that spanR{A1, . . . , An} = Lsa(Hd) if and only if ∀A ∈ Lsa(Hd) such that A 6= 0
one has

n∑
j=1

〈〈A|Aj〉〉〈〈Aj |A〉〉 > 0. (3.70)

That Eq. (3.70) holds under the assumption that spanR{A1, . . . , An} = Lsa(Hd) is immediate. Conversely,
Eq. (3.70) implies that the orthogonal complement to spanR{A1, . . . , An} is null. If k− = 0, then any
B ∈ Lsa,0(Hd) is in the null space by Eq. (3.69). Therefore, if ks = ka, then {A1, . . . , An} is not a
spanning set. If ks > ka, then Eq. (3.70) holds in light of Eq. (3.46) from the observation that A 6= 0 =⇒∑n
j=1 |〈〈Aj |A〉〉|2 ≥ k−‖A‖2 > 0, which follows from taking 〈〈A| · |A〉〉 on Eq. (3.46).

Theorem 3.3.1 prompts the following definition.

Definition 3.3.2 A conical 2-design is a finite set {A1, . . . , An} ⊂ Lsa(Hd)+ satisfying the five equivalent
conditions in Theorem 3.3.1 with ks > ka and such that ∀j ∈ {1, . . . , n} Aj 6= 0.

The requirement that Aj be nonzero is not essential, and is made for convenience only. We demand
ks > ka so that spanR{A1, . . . , An} = Lsa(Hd); hence for any conical 2-design n ≥ d2. Any L ∈ Lsa(Hd)
is therefore a linear combination of the Aj , explicitly

L =
1

k−

n∑
j=1

(
Tr
(
AjL

)
−
k+Tr

(
Aj
)
Tr
(
L
)

dk+ + k−

)
Aj . (3.71)

For a proof of Eq. (3.71), we simply note that the action of Eq. (3.46) on 1d and L respectively implies

n∑
j=1

|Aj〉〉Tr
(
Aj
)

= |1d〉〉dk+ + |1d〉〉k−, (3.72)

n∑
j=1

|Aj〉〉Tr
(
AjL

)
= |1d〉〉Tr

(
L
)
k+ + |L〉〉k−. (3.73)

Of course, the expansion in Eq. (3.71) is unique if n = d2; otherwise not.

The requirement that a conical 2-design be a finite subset of a quantum cone is somewhat restrictive;
however, in this thesis, we shall only consider such designs. Recently, Brandsen-Dall’Arno-Szymusiak [186]
have explored a definition of conical designs that lifts the restriction of finite cardinality imposed by the
author and Appleby in [1]. Incidentally, the Brandsen-Dall’Arno-Szymusiak definition restricts, in the
finite case, to a subclass of the homogeneous conical 2-designs introduced in [1] and discussed at length in
Section 3.4.
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Obviously, any finite complex projective 2-design (not necessarily uniformly weighted) is a conical 2-design.
In fact, we have the following proposition. Note that we denote the rank of A ∈ L(Hd) via rankA.

Proposition 3.3.3 Let d ∈ N. Let {A1, . . . , An} ⊂ Lsa(Hd)+ be a conical 2-design. Then ∀j ∈ {1, . . . , n}
rankAj = 1 if and only if ka = 0.

Proof. From the inclusion Lsa(Hd)+ ⊂ Lsa(Hd) one has for any Aj ∈ Lsa(Hd)+ that Tr
(
A2
j

)
=
(
TrAj

)2
if

and only if rankAj = 1, in which case both quantities are the square of the sole nonzero eigenvalue of Aj .
Tracing Eq. (3.43) and Eq. (3.46) we have respectively that

n∑
j=1

(
TrAj

)2
= ksd(d+ 1)/2 + kad(d− 1)/2, (3.74)

n∑
j=1

Tr
(
A2
j

)
= (ks + ka)d/2 + (ks − ka)d2/2, (3.75)

=⇒
n∑
j=1

((
TrAj

)2 − Tr
(
A2
j

))
= d(d− 1)ka, (3.76)

So ka = 0 if and only if ∀j ∈ {1, . . . , n} rankAj = 1.

Recalling Definition 2.3.1, we see from Proposition 3.3.3 that a conical 2-design is a finite complex projective
2-design (up to an appropriate scaling) if and only if ka = 0, equivalently if and only if k+ = k−. As we
will now show, sims and mums are also examples of conical 2-designs.

Proposition 3.3.4 Let e ≡ {E1, . . . , Ed2} ⊂ E(Hd) ⊂ Lsa(Hd)+ be a sim as in Definition 3.2.1. Then e
is a conical 2-design.

Proof. Define M =
∑d2

α=1 |Eα〉〉〈〈Eα|. Then ∀β ∈ {1, . . . , d2} it follows from Eq. (3.12) that

M|Eβ〉〉 =

d2∑
α=1

|Eα〉〉〈〈Eα|Eβ〉〉

=

d2∑
α=1

|Eα〉〉
(
d+ 1− κ2 + δα,βκ

2d2

d3(d+ 1)

)
= |1d〉〉

d+ 1− κ2

d2(d+ 1)
+ |Eβ〉〉

κ2

d(d+ 1)
, (3.77)

where the second equality follows from the fact that
∑n
α=1Eα = 1d. Recall that a sim is informationally

complete, i.e. spanR{E1, . . . , Ed2} = Lsa(Hd). The action of our M ∈ L
(
L(Hd)

)
is thus completely

determined by its action on {E1, . . . , Ed2}. Therefore from Eq. (3.77) we deduce

d2∑
α=1

|Eα〉〉〈〈Eα| = |1d〉〉
d+ 1− κ2

d(d+ 1)
〈〈1d|+ I

κ2

d(d+ 1)
. (3.78)

Recalling κ ∈ (0, 1] we complete the proof in light of Definition 3.2.1 and Theorem 3.3.1, in particular from
Eq. (3.46).
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Proposition 3.3.5 Let f ≡
{
Eα,b | α ∈ {1, . . . , d} ∧ b ∈ {1, . . . , d+ 1}

}
⊂ E(Hd) ⊂ Lsa(Hd)+ be a mum

as in Definition 3.2.2. Then f is a conical 2-design.

Proof. Define N =
∑d
α=1

∑d+1
b=1 |Eα,b〉〉〈〈Eα,b|. Then ∀α′ ∈ {1, . . . , d} and ∀b′ ∈ {1, . . . , d + 1} it follows

from Eq. (3.13) that

N|Eα′,b′〉〉 =

d∑
α=1

d+1∑
b=1

|Eα,b〉〉〈〈Eα,b|Eα′,b′〉〉

=

d∑
α=1

|Eα,b′〉〉
(
dη2δα,α′ + 1− η2

d(d+ 1)2

)
+

d∑
α=1

∑
b 6=b′
|Eα,b〉〉

(
1

d(d+ 1)2

)

= |1d〉〉
d+ 1− η2

d(d+ 1)3
+ |Eα′,b′〉〉

η2

(d+ 1)2
(3.79)

where the second equality follows from the fact that
∑n
α=1Eα,b(d + 1) = 1d. Recall that a mum is

informationally complete, i.e. spanRf = Lsa(Hd). The action of our N ∈ L
(
L(Hd)

)
is thus completely

determined by its action on {Eα,b}. Therefore from Eq. (3.79) we deduce

d∑
α=1

d+1∑
b=1

|Eα〉〉〈〈Eα| = |1d〉〉
d+ 1− η2

d(d+ 1)2
〈〈1d|+ I

η2

(d+ 1)2
. (3.80)

Recalling η ∈ (0, 1] we complete the proof in light Definition 3.2.2 of Theorem 3.3.1, in particular from
Eq. (3.46).

Projective 2-design povms are obviously conical 2-designs in light of Proposition 3.3.3. Our proofs of
Proposition 3.3.4 and Proposition 3.3.5 establish that sims and mums are also examples of povms that are
conical 2-designs. We call a povm that is also a conical 2-design a conical 2-design povm. In fact, sims
are the unique conical 2-design povms of the minimum possible cardinality; they are minimal.

Theorem 3.3.6 Let e ≡ {E1, . . . , Ed2} ⊂ E(Hd) ⊂ Lsa(Hd)+ be a povm of cardinality d2. Then e is a
conical 2-design if and only if e is a sim.

Proof. Our proof of Proposition 3.3.4 establishes sufficiency. We now prove necessity. Let e be as in the
statement of the theorem, that is e ≡ {E1, . . . , Ed2} ⊂ E(Hd) ⊂ Lsa is a conical 2-design povm. Then the
partial trace of Eq. (3.46) over either factor yields

d∑
α=1

EαTr(Eα) = 1d(dk+ + k−) =

d∑
α=1

Eα(dk+ + k−), (3.81)

where the second equality follows from the fact that e is a povm. Since carde = dimRLsa(Hd), conical
2-design e is in fact a basis for Lsa(Hd). Eq. (3.81) thus implies ∀α ∈ {1, . . . , d2} that

TrEα = dk+ + k−; (3.82)

moreover, since e is a povm, this constant value must be

TrEα =
1

d
. (3.83)
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With Eq. (3.82) and Eq. (3.83) we see that d2k+ + dk− = 1. Now, taking into account the inequalities
k+ ≥ k− > 0, we must have 0 < k−/k+ ≤ 1; hence, for some κ ∈ (0, 1] we deduce

k+ =
d+ 1− κ2

d2(d+ 1)
(3.84)

k− =
κ2

d(d+ 1)
. (3.85)

By another application of Eq. (3.46) we see ∀β ∈ {1, . . . , d2} that

d2∑
α=1

|Eα〉〉Tr
(
EαEβ

)
= |1d〉〉

k+

d
+ |Eβ〉〉k− =

d2∑
α=1

|Eα〉〉
(
k+

d
+ δα,βk−

)
, (3.86)

where the second equality follows again from that fact that e is a povm. Once again, since e is a basis for
Lsa(Hd), we conclude from Eq. (3.86) that ∀α, β ∈ {1, . . . , d2}

Tr
(
EαEβ

)
=
d2κ2δα,β + d+ 1− κ2

d3(d+ 1)
, (3.87)

and so recalling Definition 3.2.1 we have established that e is a sim.

It is not possible to prove an equally strong statement for mums, i.e. one cannot improve Proposition 3.3.5
to state that a conical 2-design povm f is a mum if and only if cardf = d(d+ 1). Indeed, if {E1, . . . , Ed2}
is a sim, then the d(d+ 1) following effects obviously constitute a conical 2-design povm

E(Hd) 3 |Fα〉〉 =

{
|Eα〉〉 12 1 ≤ α ≤ d2

|1d〉〉 1
2d d2 + 1 ≤ α ≤ d(d+ 1)

, (3.88)

which is not mutually unbiased and therefore not a mum.

At this stage it will be useful to introduce some additional notation. Let {A1, . . . , An} ⊂ Lsa(Hd) be an
arbitrary conical 2-design, and ∀j ∈ {1, . . . , n} define

tj ≡ TrAj . (3.89)

Thus, ∀j ∈ {1, . . . , n} there exists Bj ∈ B so that Aj has the Bloch representation

Aj =
(
1d +Bj

) tj
d

. (3.90)

Next, ∀j ∈ {1, . . . , n} define
κj ≡ ‖Bj‖B. (3.91)

Define the rms trace, t, and weighted rms Bloch norm, κ, via

t ≡

√√√√ 1

n

n∑
j=1

t2j , (3.92)

κ ≡

√√√√ 1

nt2

n∑
j=1

t2jκ
2
j . (3.93)
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As with the particular cases of sims and mums, we refer to κ as the contraction parameter. It is easy to
see that 0 ≤ κ ≤ 1. Indeed, the foregoing equations yield the following inequalities in light of Eq. (3.7)

0 ≤ minj{κj} =

√√√√minj{κ2
j}

nt2

n∑
j=1

t2j ≤

√√√√ 1

nt2

n∑
j=1

t2jκ
2
j = κ (3.94)

and

κ ≤

√√√√maxj{κ2
j}

nt2

n∑
j=1

t2j = maxj{κj} ≤ 1. (3.95)

Furthermore, in light of Eq. (3.9), we see that κ = 1 if and only if ∀j ∈ {1, . . . , n} rankAj = 1.

Now, the traces of Eq. (3.43) and Eq. (3.46) read respectively as

1

2
d(d+ 1)ks +

1

2
d(d− 1)ka =

n∑
j=1

(
TrAj

)2
, (3.96)

1

2
d(d+ 1)ks −

1

2
d(d− 1)ka =

n∑
j=1

Tr
(
A2
j

)
, (3.97)

so from Eq. (3.92) and Eq. (3.93) we then see

ks =
nt2

d2

(
1 +

(d− 1)κ2

d+ 1

)
(3.98)

ka =
nt2(1− κ2)

d2
. (3.99)

The partial trace of Eq. (3.43) over either factor thus reads as

n∑
j=1

Ajtj = 1d
nt2

d
. (3.100)

Therefore, for any conical 2-design {A1, . . . , Aj} ⊂ Lsa(Hd)+, the effects

E(Hd) 3 Ej ≡ Aj
dtj
nt2

(3.101)

constitute a povm. In the case wherein ∀j, k ∈ {1, . . . , n} TrAj = TrAk, the effects defined in Eq. (3.101)
are also a conical 2-design. In light of Eq. (3.100), we see that Bloch vectors defined in Eq. (3.90) satisfy

n∑
j=1

Bjt
2
j =

n∑
j=1

(
Ajdtj − 1dt2j

)
= 0. (3.102)

36



Furthermore, from Eq. (3.46), together with Eq. (3.98) and Eq. (3.99), we find that

n∑
j=1

|Bj〉〉t2j 〈〈Bj | =

n∑
j=1

(|Aj〉〉d− |1d〉〉tj) (d〈〈Aj | − tj〈〈1d|)

=

n∑
j=1

|Aj〉〉d2〈〈Aj | −
n∑
j=1

(
|1d〉〉dtj〈〈Aj |+ |Aj〉〉dtj〈〈1d| − |1d〉〉t2j 〈〈1d|

)
= |1d〉〉〈〈1d|

d2(ks + ka)

2
+ I

d2(ks − ka)

2
− |1d〉〉nt2〈〈1d|

= ΠB

ndt2κ2

d+ 1
, (3.103)

where ΠB is the Bloch projector defined in Eq. (3.11). We now depart from the general case.

3.4 Homogeneous Conical 2-Designs

The class of all conical 2-designs is large. In order to make further progress, we shall in this section consider
the special case of conical 2-designs {A1, . . . , An} ⊂ Lsa(Hd)+ that are homogeneous following sense.

Definition 3.4.1 A homogeneous conical 2-design is a conical 2-design {A1, . . . , An} ⊂ Lsa(Hd)+ for
which ∃t ∈ R>0 and ∃κ ∈ (0, 1] such that ∀j ∈ {1, . . . , n} TrAj = t and ‖Bj‖B = κ, where Bj are the
corresponding Bloch vectors defined in Eq. (3.90).

The fact that ‖Bj‖B is constant implies that Tr(A2
j ) is constant. Finite complex projective 2-designs

are specifically those homogeneous conical 2-designs with t = κ = 1, or equivalently from Eq. (3.98)
and Eq. (3.99), ks = 2n/(d(d + 1)) and ka = 0. Furthermore, our proofs of Proposition 3.3.4 and
Proposition 3.3.5 establish that sims and mums are homogeneous conical 2-designs. We have shown in
the foregoing section that sims and mums correspond to highly symmetric polytopes within the Bloch
body: a single regular simplex in the former case, the convex hull of (d+ 1) orthogonal regular simplices
in the latter. What is the shape of the Bloch polytope corresponding to an arbitrary homogeneous conical
2-design? Theorem 3.4.2 answers that question. Indeed, these shapes are fully specified by the angles
formed by the Bloch vectors. Therefore, we study the Gram matrix G with entries

Gj,k = 〈〈Bj |Bk〉〉 (3.104)

relative to some arbitrary orthonormal basis for Rn.

Theorem 3.4.2 Let n, d ∈ N. Let {B1, . . . , Bn} ⊂ B(Hd). Then the following statements are equivalent.

(i) ∀t ∈ R>0

{
Aj ≡ (1d+Bj)t

d

∣∣∣ j ∈ {1, . . . , n}} is a homogeneous conical 2-design.

(ii) The Gram matrix G of {B1, . . . , Bn} is of the form G = Pλ where λ ∈ R>0 and P is a real rank
d2 − 1 projector with all diagonal entries equal and such that ∀j ∈ {1, . . . , n}

∑n
k=1 Pj,k = 0.
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If these equivalent conditions are satisfied, then λ ≤ nd/(d+ 1) and ∀j, k ∈ {1, . . . , n} Pj,k ≤ (d2 − 1)/n,
with equality when j = k. The associated homogeneous conical 2-designs have contraction parameter

κ =

√
λ(d+ 1)

nd
. (3.105)

Proof. We first prove that (i) =⇒ (ii). Let {A1, . . . , An} ⊂ Lsa(Hd)+ be a homogeneous conical 2-design
as in statement (i), with contraction parameter κ ∈ (0, 1]. Then it follows from Eq. (3.103) that with
λ ≡ (ndκ2)/(d+ 1) one has that

n∑
j=1

|Bj〉〉〈〈Bj | = ΠBλ; (3.106)

hence ∀j, k ∈ {1, . . . , n}

G2
j,k =

n∑
l=1

〈〈Bj |Bl〉〉〈〈Bl|Bk〉〉 = Gj,kλ. (3.107)

Therefore P ≡ G/λ is a real projector; moreover we see that rankP = d2− 1 from the trace of Eq. (3.106)

TrP =

n∑
j=1

Gj,j
1

λ
= Tr

(
ΠB

)
= d2 − 1. (3.108)

Thus ∀j ∈ {1, . . . , n}

Pj,j = 〈〈Bj |Bj〉〉
1

λ
=
d2 − 1

n
, (3.109)

i.e. the diagonal entries of P are equal. Finally, it follows from Eq. (3.102) that

n∑
j=1

Bj = 0, (3.110)

which implies ∀j ∈ {1, . . . , n} that
n∑
k=1

Pj,k = 0, (3.111)

where we have used the fact that Pj,k = Gj,kλ = Tr(BjBk)λ. So (i) =⇒ (ii).

We now prove that (ii) =⇒ (i). Let the Gram matrix of {B1, . . . , Bn} ∈ B(Hd) be as in statement (ii).
It then follows from rankG = d2 − 1 = dimRLsa,0(Hd) that spanR{B1, . . . , Bn} = Lsa,0(Hd). Define
N =

∑n
j=1 |Bj〉〉〈〈Bj |. Then ∀j, k ∈ {1, . . . , n}

〈〈Bj |NBk〉〉 =

n∑
l=1

〈〈Bj |Bl〉〉〈〈Bl|Bk〉〉 =

n∑
l=1

Pj,lPl,kλ
2 = Pj,kλ

2 = Gj,kλ = 〈〈Bj |Bk〉〉λ. (3.112)

Since spanR{B1, . . . , Bn} = Lsa,0(Hd), and N|1d〉〉 = 0, Eq. (3.112) implies

n∑
j=1

|Bj〉〉〈〈Bj | = ΠBλ. (3.113)
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The fact that ∀j ∈ {1, . . . , n}
∑n
k=1 Pj,k = 0 implies that

∑n
k=1Bk = 0, so if we define Aj = (1d +Bj)t/d

for an arbitrary fixed t ∈ R>0, then from Eq. (3.113) and the definition of the Bloch projector in Eq. (3.11)
we see that these Aj satisfy

n∑
j=1

|Aj〉〉〈〈Aj | =
t2(nd− λ)

d3
|1d〉〉〈〈1d|+ I

t2λ

d2
. (3.114)

Thus, if we can show that λ ≤ nd(d + 1), then it will follows from Theorem 3.3.1 that {A1, . . . , An} is a
conical 2-design. To see that this is the case, observe the that fact that the rank d2 − 1 projector P is
constant on the diagonal implies that ∀j ∈ {1, . . . , n} nPj,j = TrP = d2 − 1. Consequently,

1 ≥ ‖Bj‖2B =
Pj,jλ

d(d− 1)
=

(d+ 1)λ

nd
(3.115)

and the claim follows; moreover, the conical 2-design is homogeneous with contraction parameter

κ =

√
λ(d+ 1)

nd
. (3.116)

We complete the proof by noting from Eq. (3.115) that the Cauchy-Schwarz inequality yields

|Pj,k| = |〈〈Bj |Bk〉〉|
1

λ
≤ ‖Bj‖‖Bk‖

1

λ
=
d2 − 1

n
, (3.117)

Theorem 3.4.2 does not specify whether every projector satisfying the conditions stated therein is propo-
tional to the Gram matrix of a homogeneous conical 2-design. We call projectors for which this is the
case homogeneous conical 2-design projectors. The candidates are those satisfying the following, where
Mn(R)sa is the set of n× n real symmetric matrices.

Definition 3.4.3 . Let N 3 n, d ≥ d2. A candidate homogeneous conical 2-design projector is an n× n
rank d2 − 1 projector P ∈Mn(R)sa such that ∀j, k ∈ {1, . . . , n}

∑n
l=1 Pj,k = 0 and Pj,k ≤ (d2 − 1)/n with

equality when j = k.

We now seek to to prove that all candidate homogeneous conical 2-design projectors are associated with
homogeneous conical 2-designs via condition (ii) in Theorem 3.4.2. For each fixed Hilbert dimension d
and each fixed natural number n ≥ d2 we denote the set of all candidate homogeneous conical 2-design
projectors by P(n, d). For each P ∈ P(n, d) we denote the set of all n-tuples of Bloch vectors that can be
associated with P by S(P ), i.e.

B(Hd)
×n 3 ~B ≡ {B1, . . . , Bn} ∈ S(P ) ⇐⇒ ∃λ ∈ R>0 ∀j, k ∈ {1, . . . , n} 〈〈Bj |Bk〉〉 = Pj,kλ. (3.118)

For each ~B ∈ S(P ) we define
κ ~B ≡ ‖B1‖B = · · · = ‖Bn‖B, (3.119)

and
k(P ) = {κ ~B | ~B ∈ S(P )}. (3.120)
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The convexity of the Bloch body implies that if ~B ∈ S(P ) then ∀η ∈ (0, 1] ~Bη ∈ S(P ), so S(P ) is either
empty or infinite. It follows that κ ∈ k(P ) =⇒ (0, κ] ⊆ k(P ). Therefore, defining

cP =

{
supk(P ) k(P ) 6= ∅
0 k(P ) = ∅

, (3.121)

we see that (0, cP ) ⊆ k(P ) ⊆ (0, cP ]. In fact, k(P ) = (0, cP ]. For the proof, note that the case cP = 0 is

trivial, so we proceed with an analysis of the nontrivial case cP > 0. Choose a sequence ~Ba ∈ S(P ) such
that {κ ~Ba} is a monotone nondecreasing sequence converging to cp. Since the Bloch body is compact, we
can choose a convergent subsequence such that

lim
a→∞

~Ba = ~B ∈ B(Hd)
×n . (3.122)

We then have

〈〈Bj |Bk〉〉 = lim
a→∞

ndκ2
~Ba

d+ 1
Pj,k =

ndc2p
d+ 1

Pj,k. (3.123)

So ~B ∈ S(P ) and cp = κ ~B ∈ k(P ).

We are now in a position to prove the following.

Theorem 3.4.4 Let d, n ∈ N≥2 such that n ≥ d2. Let P ∈ P(n, d). Then

cp ≥
1

d− 1
(3.124)

In particular S(P ) 6= ∅.

Proof. As in the statement of the theorem, let arbitrary P ∈ P(n, d). Then it follows from Theorem 3.4.2
that P is a real n×n matrix such that P 2 = P and TrP = d2− 1. Therefore there are d2− 1 orthonormal
vectors {~u1, . . . , ~ud2−1} ⊂ Rn. Denoting the jth component of vector ~ua by ~ua,j , we have

Pj,k =

d2−1∑
a=1

~ua,j~ua,j . (3.125)

Let {D1, . . . , Dd2−1} ⊂ Lsa,0(Hd) be an orthonormal basis and define ~B = (B1, . . . , Bn) ∈ Lsa,0(Hd)
×n by

|Bj〉〉 =

d2−1∑
a=1

|Da〉〉~ua,j

√
nd

(d+ 1)(d− 1)2
. (3.126)

Then in light of Eq. (3.125) we see that

〈〈Bj |Bk〉〉 =

d2−1∑
a=1

d2−1∑
b=1

√
nd

(d+ 1)(d− 1)2
~ub,j〈〈Db|Da〉〉~ua,k

√
nd

(d+ 1)(d− 1)2

=
nd

(d+ 1)(d− 1)2
Pj,k (3.127)
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In particular, from Theorem 3.4.2 it follows that

‖Bj‖B =

√
〈〈Bj |Bk〉〉
d(d− 1)

=
1

d− 1
, (3.128)

so Bj ∈ B(Hd)in. Therefore ~B ∈ S(P ) and 1/(d− 1) = κ ~B ≤ cP .

Theorem 3.4.4 can be regarded as a generalization of the sim and mum existence proofs. Indeed, our
Theorem 3.4.2 provides the necessary and sufficient conditions for a subset of the Bloch body to define a
homogeneous conical 2-design via a complete characterization of candidate homogeneous conical 2-design
projectors, and our proof Theorem 3.4.4 establishes that a corresponding homogeneous conical 2-design ex-
ists for every candidate homogeneous conical 2-design projector; moreover, given the convexity of the Bloch
body and Eq. (3.124), infinite families of such designs exist. Furthermore, given an arbitrary candidate
homogeneous conical 2-design projector, Eq. (3.126) provides an explicit construction of the corresponding
homogeneous conical 2-design. It should be pointed out, of course, that the designs constructed through
Eq. (3.126) are ‘trivial’ in the sense that the each Bj resides within the inball, and all of the points within
the inball correspond to quantum states! We emphasize, however, that in light of Proposition 3.3.3 and the
Seymour-Zaslavsky Theorem [70], nontrivial homogeneous conical 2-designs, for which 1 ≥ κ > 1/(d− 1),
exist for all cases of finite Hilbert dimension. In the following section, we outline a program for finding
new varieties of projective 2-designs, that is homogeneous conical 2-designs with κ = 1.

3.5 In Search of . . . New Designs

Our characterization of homogeneous conical 2-designs in Theorem 3.4.2 sheds new light on the structure
of complex projective 2-designs. In terms of the generalized Bloch representation, and in light of Propo-
sition 3.3.3, we see that complex projective 2-designs are precisely those Bloch polytopes described by
P ∈ P(n, d) with cP = 1. To remind the reader, this follows from the fact that cp = 1 is equivalent to
κ = 1, and by Eq. (3.99), ka = 0 is equivalent to κ = 1. This suggests the following two-step program:
(1) Classify the polytopes described by the projectors in P(n, d); (2) Identify those polytopes for which
cP = 1. This program is, of course, extremely ambitious, for its completion would carry with it, as a
minor corollary, solutions to the sic and mum existence problems. Some partial results may, however,
be useful. It might, for instance, be useful if one could exclude some of the projectors in P(n, d) as defi-
nitely not having cP = 1. One obvious way to do this is to exploit the fact [179] that each vertex of the
polytope corresponding to a projective design must be diametrically opposite a face which is tangential
to the insphere. Having narrowed down the set of candidates, one might then investigate the remaining
polytopes numerically, to see if any of them correspond to projective designs in low dimension. Based on
these putative numerical insights, one might be able to make the jump to analytical arguments.

We conclude this chapter with a result that establishes that the problem of constructing a homogeneous
conical 2-design is equivalent to the problem of constructing a 1-design on a higher dimensional vector
space over R.
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Theorem 3.5.1 Let n, d ∈ N. Let {B1, . . . , Bn} ⊂ B(Hd). Then the following statements are equivalent.

(i) ∃t ∈ R>0 such that
{
Aj ≡ (1d+Bj)t

d

∣∣∣ j ∈ {1, . . . , n}} is a homogeneous conical 2-design.

(ii) ∀j ∈ {1, . . . , n} ‖Bj‖ = κ and ∃λ ∈ R>0 such that
∑n
j=1 |Bj〉〉〈〈Bj | = ΠBλ and

∑n
j=1Bj = 0.

Proof. The implication (i) =⇒ (ii) is established by Eq. (3.102) and Eq. (3.103). To prove the converse,
let {B1, . . . , Bn} be as in the statement of condition (ii) and define P ∈ Mn(R)sa with entries defined
∀j, k ∈ {1, . . . , n} via

Pj,k = 〈〈Bj |Bk〉〉
1

λ
. (3.129)

Then

P 2
j,k =

n∑
l=1

Pj,lPl,k =

n∑
l=1

〈〈Bj |Bl〉〉〈〈Bl|Bk〉〉
1

λ2
= 〈〈Bj |ΠBBk〉〉

1

λ
= Pj,k, (3.130)

TrP =

n∑
j=1

〈〈Bj |Bl〉〉
1

λ
=

n∑
j=1

Tr
(
|Bj〉〉〈〈Bj |

) 1

λ
= Tr

(
ΠB

)
= d2 − 1, (3.131)

so P is a real rank d2 − 1 projector. The fact that ∀j ∈ {1, . . . , n} ‖Bj‖ = κ implies that P is constant
on the diagonal; moreover the fact that

∑n
j=1Bj = 0 implies that ∀j ∈ {1, . . . , n}

∑n
k=1 Pj,k = 0. The

implication (ii) =⇒ (i) thus follows from Theorem 3.4.2.

42



“. . . here’s Tom with the weather.”

—Bill Hicks

Chapter 4

Entanglement and Designs

In [2], the author and D. M. Appleby consider the structure of entanglement in the light of conical 2-designs.
This chapter centres on that publication.

The conical 2-designs that we introduced in Chapter 3 (see Definition 3.3.2) are naturally adapted to a
information-geometric description of bipartite quantum entanglement. In this chapter, we will prove that
the outcome probabilities computed from an arbitrary bipartite quantum state for a quantum measure-
ment formed from the tensor product of local conical 2-design povms capture important entanglement
properties of the state in question. Specifically, we will show that conical 2-designs are intimately linked
with physical theory concerning the quantification of entanglement. The notion of entanglement as a
resource for quantum communication and quantum computation was pinpointed by Wootters in [187].
It is thus desirable to quantify the amount entanglement manifest in a given quantum state. In [188],
Bennett-DiVincenzo-Smolin-Wootters proposed the monotonicity axiom: a measure of entanglement does
not increase under Local Operations and Classical Communication (locc) [189]. Shortly thereafter [190],
Vedral-Plenio-Rippin-Knight introduced an axiomatic framework for entanglement measures, which in
addition to monotonicity under locc, includes additional desiderata. For instance, Vedral-Plenio-Rippin-
Knight proposed that any measure of entanglement ought to vanish on separable states. Adopting a
stronger version of the monotonicity axiom, Vidal introduced an important class of functions, namely
entanglement monotones [44], and derived their essential properties. The main result of the present chap-
ter, Theorem 4.2.1, establishes conical 2-designs are both necessary and sufficient for casting (regular)
entanglement monotones from the length of product measurement probability vectors.

We discussed entanglement in Chapter 1 and Section 2.1. In order to understand the main results presented
in this chapter, we shall require reminders of some additional well known definitions and facts concerning
the theory of entanglement. We shall recall these preliminary notions in Section 4.1. Specifically, therein,
we shall discuss entanglement monotones [44]. Furthermore, we shall define (see Definition 4.1.7) a novel
concept: regular entanglement monotones. We conclude Section 4.1 with a proof that the concurrence
[191][192][193] is regular. Section 4.2 is devoted to Theorem 4.2.1 and its proof. In Section 4.3, we develop
and generalize recent work [194][130][195][132][196][197][198] relating entanglement witnesses and designs.
We conclude with Section 4.4 by exploring the obvious connection between conical 2-designs and Werner
states [199].
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4.1 Entanglement Montones

In this section, we first collect prerequisites regarding entanglement monotones. We then introduce the
notion of a regular entanglement monotone, and we prove that the concurrence [191][192][193] is regular.

An entanglement monotone is, very crudely speaking, a function defined on quantum states, whose value
on a particular state is indicative of the degree of entanglement manifest therein. Naturally, one desires
that such a function enjoys properties pertaining to physical notions. For instance, the function (denoted
E) ought to evaluate to a constant on all separable states, say zero, for interpretational clarity. One might
also be tempted to say, furthermore, that the function ought to vanish only on separable states. Phrased
more precisely, wherein and henceforth we restrict our attention to bipartite entanglement,

E(ρ) = 0 ⇐⇒ ρ ∈ SepQ
(
HdA ⊗HdB

)
. (4.1)

In addition to Eq. (4.1), one might require that E be invariant under local unitary transformations, i.e.
∀U ∈ U(HdA) and ∀V ∈ U(HdB) and ∀ρ ∈ Q(HdA ⊗HdB)

E(ρ) = E
(

(U ⊗ V )ρ(U∗ ⊗ V ∗)
)

, (4.2)

which is in fact1 a necessary and sufficient condition for E to remain constant on all separable pure states.
Physically, Eq. (4.2) encapsulates the intuition that any measure of entanglement ought to be invariant
under independent free evolutions of the subsystems in question. More generally, it is natural to ask
that E not increase under quantum channels associated with local operations and classical communication:
those processes resulting from the sequential composition of physical operations performed locally on the
subsystems in question, which may depend on intermediate classical communication between the local
parties performing those operations. Mathematically, the definition of the set of all such locc channels
is rather complicated [189]. For our purposes it will suffice to leave the definition implicit, and to note
that the separable quantum channels defined in Definition 2.1.13 form [78] a strict superset of all locc
channels. The aforementioned natural demand on E is thus stated as follows: for all locc channels Θ

E(ρ) ≥ E
(
Θ(ρ)

)
. (4.3)

Eqs. (4.1), (4.2), and (4.3) are precisely the conditions expounded by Vedral-Plenio-Rippin-Knight [190] in
their seminal work on axiomatic formulations of entanglement measures. The condition given by Eq. (4.3)
is now known as the monotonicity axiom. Historically, the monotonicity axiom was in fact suggested
slightly earlier (although not in an axiomatic context) by Bennett-DiVincenzo-Smolin-Wootters in [188].
One could instead demand the stronger condition that E not increase on average under locc, i.e. for any
locc channel with Kraus operators Aj and with pj ≡ Tr

(
AjρA

∗
j

)
and ρj ≡ (AjρA

∗
j )/pj one demands that

E(ρ) ≥
∑
j

E(ρj)pj . (4.4)

Eq. (4.4) was proposed by Vidal [44] and is now known as the strong monotonicity axiom. Vidal’s definition
of entanglement monotone asks for the strong monotonicity axiom together with convexity, that is for any
convex decomposition ρ =

∑
k ρkqk convexity is the demand that

E(ρ) ≤
∑
k

E(ρk)qk. (4.5)

1This fact follows from the transitivity of U(Hd) on S(Hd) and the Schmidt decomposition introduced in Theorem 4.1.3.
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Eq. (4.5) ensures, for instance, that E is monotonic under information loss concerning the results of local
operators; moreover, convexity turns out to be a very powerful tool for the proofs given by Vidal in [44]
and for the facts that we are about to recall. First, let us promote Vidal’s entanglement monotones to the
status of a formal definition, wherein we continue to restrict our treatment of this subject to the bipartite
case.

Definition 4.1.1 (Vidal [44]) An entanglement monotone is a function E, with domain bipartite quantum
states and range R≥0, which obeys the strong monotonicity axiom (Eq. (4.4)) and convexity (Eq. (4.5)).

It is a matter of convention that we take the range of an entanglement monotone to be R+. Indeed, Vidal
proved that any entanglement monotone is constant on separable states, so any function obeying strong
monotonicity and convexity can easily be scaled to satisfy the aforementioned range condition. Of course,
any entanglement monotone enjoys the weaker form of monotonicity expressed in Eq. (4.3)

E
(
Θ(ρ)

)
= E

∑
j

ρjpj

 ≤∑
k

E(ρj)qj ≤ E(ρ), (4.6)

where the first inequality comes from convexity and the second from strong monotonicity. Additionally,
Vidal proved that any entanglement monotone enjoys local unitary invariance, i.e. Eq. (4.2). It is not
the case that any entanglement monotone vanishes only on separable states [98] ; however, the particular
monotone that we will consider later does have this property.

Before proceeding further, we now make the simplifying assumption that dA = dB ≡ d. If dA 6= dB, then
one can view the quantum state space corresponding to min{dA, dB} as a restricted subset of the larger,
and most of what follows can be easily generalized along these lines. It will be, however, very convenient to
adopt this formal restriction for the purposes of notation, and more importantly for consistency with the
statements of results that we shall recall from the literature. On this restriction, with dA = dB = d, we shall
write Tr1 for the partial trace TrHdA

and Tr2 for the partial trace TrHdB
over L(HdA⊗HdB) = L(Hd⊗Hd).

Theorem 4.1.2 (Vidal [44])The restriction of any entanglement monotone to pure states PurQ(Hd⊗Hd)
is given by a local unitarily invariant concave function of the partial trace Tr2

(
|Ψ〉〈Ψ|

)
∈ Q(Hd).

We refer the reader to [44] for a proof of Theorem 4.1.2, and we remind the reader that a concave function
is a function f : X −→ R, with X a subset of a vector space over R, such that ∀x, y ∈ X and ∀λ ∈ [0, 1]
f(xλ+ y(1− λ)) ≥ f(x)λ+ f(y)(1− λ). A key ingredient for Vidal’s proof is the Schmidt decomposition,
which we shall recall presently, and which will feature prominently in some of our later proofs herein.

Theorem 4.1.3 [77] ∀Ψ ∈ S
(
Hd⊗Hd

)
∃λ1, . . . , λd ∈ [0, 1] together with orthonormal bases {e1, . . . , ed} ⊂

Hd and {f1, . . . , fd} ⊂ Hd such that Ψ = (e1 ⊗ f1)λ1 + · · ·+ (ed ⊗ fd)λd; moreover, λ2
1 + · · ·+ λ2

d = 1.

As a matter of terminology, one refers to {ej} and {fj} as Schmidt bases, and to λj as Schmidt coefficients.
From Theorem 4.1.3 it is easy to see that the partial trace of |Ψ〉〈Ψ| over either local Hilbert space is
diagonal, with entries given by the squares of the Schmidt coefficients. Consequently, it is but a matter of
convention that one traces over HdB in the statement of Theorem 4.1.2; moreover, from this observation
we see that the restriction of any entanglement monotone to pure states is given by a concave function of
the squares of the Schmidt coefficients, which are invariant under local unitary transformations.

In addition to fully characterizing the restrictions of entanglement monotones to pure states, Vidal proved
that any local unitarily invariant concave function defined on the partial traces of pure states can be
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extended to an entanglement monotone via the convex roof construction [200], which we shall detail
presently.

Let
e : S

(
Hd ⊗Hd) −→ R :: Ψ 7−→ f

(
Tr2(|Ψ〉〈Ψ|)

)
, (4.7)

where f : Q(Hd) −→ R is unitarily invariant and concave. Next, ∀ρ ∈ Q(Hd ⊗Hd) define

Υρ ≡
{

(Ψj , pj) ∈ S(HdA ⊗HdB)× [0, 1] | ρ =
∑
j

|Ψj〉pj〈Ψj |
}

, (4.8)

which is to say, colloquially, that Υρ is the set of all convex decompositions of ρ. Now, extend e to

E : Q(Hd ⊗Hd) −→ R :: ρ 7−→ inf
Υρ

∑
j

e
(
Ψj

)
pj . (4.9)

Vidal proved [44] that any such E constructed in this way is an entanglement monotone. In particular, we
will be interested in the concurrence [191][192][193], which is defined as follows.

Definition 4.1.4 Let

c : S
(
Hd ⊗Hd) −→ R :: Ψ 7−→

√
2− 2Tr

((
Tr2|Ψ〉〈Ψ|

)2)
. (4.10)

The concurrence is
C : Q(Hd ⊗Hd) −→ R≥0 :: ρ 7−→ inf

Υρ

∑
j

c
(
Ψj

)
pj . (4.11)

In light of the foregoing discussion and the following lemma, the concurrence is an entanglement monotone.

Lemma 4.1.5 The function c defined in Eq. (4.10) enjoys unitary invariance and concavity.

We relegate a simple proof of Lemma 4.1.5 to Appendix A.2. The concurrence is simply related to the
entanglement of formation [188], and has some useful properties. Computing entanglement monotones for
an arbitrary mixed state can be a difficult problem. The concurrence has the useful feature that it has
easily computable lower and upper bounds [201][202]. In the case of a pair of qubits there is an explicit
formula for the concurrence itself [191]. Another useful property is the fact that it vanishes if and only if
the state is separable. As an aside, we note that the concurrence illuminates the monogamous character
of entanglement [203]. Finally, the concurrence of a pure bipartite state |Ψ〉〈Ψ| is simply related to its
Schmidt coefficients as follows

C
(
|Ψ〉〈Ψ|

)
=

√√√√2− 2

d∑
j=1

λ4
j , (4.12)

since

Tr
((

Tr2|Ψ〉〈Ψ|
)2)

=

d∑
j=1

d∑
k=1

Tr

((
Tr2

(
|ej〉λj〈ek| ⊗ |fj〉λk〈fk|

))2
)

=

d∑
j=1

Tr

((
|ej〉λ2

j 〈ej |
)2
)

=

d∑
j=1

λ4
j . (4.13)
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In light of Eq. (4.13) and convexity of the concurrence, we see that ∀ρ ∈ Q(Hd ⊗Hd)

0 ≤ C(ρ) ≤
√

2(d− 1)

d
≡ xmax. (4.14)

Eq. (4.13) also reveals an important topological property of the concurrence, to be introduced presently.
First, recall that the interior of a subset X of the unit sphere in Hd is all of those points in X for which an
epsilon ball strictly contained in X can be centred thereupon. Formally, we have the following.

Definition 4.1.6 Let subset X ⊆ S(Hd ⊗ Hd). The interior of X is denoted and defined as follows:
intX ≡ {Ψ ∈ X | ∃ε > 0 s.t. Bε(Ψ) ⊆ X},where Bε(Ψ) ≡ {Φ ∈ S(Hd ⊗Hd) | ‖Ψ− Φ‖ < ε}.

Any entanglement monotone assigns a value to each pure state. When these values are such that the set
of pure states that yield a given value corresponds to a set with empty interior in S(Hd) via |Ψ〉〈Ψ| ↔ Ψ,
we give the monotone a special name.

Definition 4.1.7 A regular entanglement monotone is an entanglement monotone E : Q(Hd ⊗Hd) −→
R≥0 such that ∀x ∈ R≥0 the interior of Ex ≡ {Ψ ∈ S(Hd ⊗Hd) | E(|Ψ〉〈Ψ|) = x} is empty.

The author and D. M. Appleby introduced Definition 4.1.7 in [2]. Colloquially speaking, regularity means
that an entanglement monotone is maximally sensitive to changes in pure state entanglement. Phrased
more precisely, a regular entanglement monotone partitions the unit sphere S(Hd ⊗ Hd) into disjoint
sets, each of which coincides with its own boundary. Each such set corresponds to a distinct degree
of entanglement. Incidentally, this establishes that a constant function is not a regular entanglement
monotone, so every regular entanglement monotone enjoys nontrivial local unitary invariance as in the
upcoming Definition 4.2.2. We now prove that the concurrence is regular.

Lemma 4.1.8 The concurrence is a regular entanglement monotone.

Proof. It is very well known that the concurrence is an entanglement monotone. Theorem 2 in [44] and
Lemma 4.1.5 cements the proof. It remains to establish regularity. We will consider two mutually exclusive
and exhaustive cases: separable pure states with C = 0 and entangled pure states with 0 < C ≤ xmax,
where xmax is as defined in Eq. (4.14). We will abuse notation and write C(Ψ) for the concurrence of a
pure state |Ψ〉〈Ψ|. We first concern ourselves with the case of separable pure states and consider

C0 = {Ψ ∈ S(Hd ⊗Hd) | C(Ψ) = 0}. (4.15)

Any Ψ ∈ C0 is of the form ψ⊗φ for some ψ, φ ∈ S(Hd). We will now prove that intC0 is empty via reductio
ad absurdum. Suppose ∃Ψ ∈ intC0. Then ∃ε > 0 such that Bε(Ψ) ⊆ C0. By definition Bε(Ψ) ⊂ S(Hd⊗Hd),
so ε ≤ 2. We will construct a S(Hd ⊗Hd) 3 Φ ∈ Bε(Ψ) with C(Φ) > 0. Let ψ⊥, φ⊥ ∈ S(Hd) be such that
〈ψ|ψ⊥〉 = 0 and 〈φ|φ⊥〉 = 0. Next, let R>0 3 λ1 = 1 − ε2/32 and R>0 3 λ2 =

√
ε2/16− ε4/1024. Now,

construct Φ = (ψ ⊗ φ)λ1 + (ψ⊥ ⊗ φ⊥)λ2. Clearly Φ ∈ S(Hd ⊗Hd). One also has that Φ ∈ Bε(Ψ), for

‖Ψ− Φ‖ =
√
〈Ψ|Ψ〉+ 〈Φ|Φ〉 − 〈Ψ|Φ〉 − 〈Φ|Ψ〉

=
√

2(1− λ1)

= ε/4

< ε. (4.16)

However, (ψ⊗φ)λ1 + (ψ⊥⊗φ⊥)λ2 is a Schmidt decomposition, thus we see C(Φ) =
√

2
√

1− λ4
1 − λ4

2 > 0.
We have reached a contradiction. Therefore our supposition, namely that ∅ 6= intC0, is false. We conclude
that the interior of C0 is empty.
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We now concern ourselves with the case of entangled pure states and consider

Cx = {Ψ ∈ S(Hd ⊗Hd) | C(Ψ) = x}, (4.17)

for some arbitrary nonzero x ∈ R. If Cx is empty we are done. So we proceed with an analysis of the
subcase where Cx is nonempty, in which case x is bounded from above according to Eq. (4.14). Again, we
will prove that intCx is empty via reductio ad absurdum. Suppose ∃Ψ ∈ intCx. Then ∃ε > 0 such that
Bε(Ψ) ⊆ Cx. Once more, note by definition Bε(Ψ) ⊂ S(Hd ⊗ Hd), so ε ≤ 2. We will now construct a
S(Hd ⊗Hd) 3 Φ ∈ Bε(Ψ) with C(Φ) 6= x. To begin, note that Ψ ∈ intCx implies that there exist at least
two nonzero Schmidt coefficients in its Schmidt decomposition, which without the loss of generality we
take to be λ1, λ2 ∈ R>0

Ψ = (e1 ⊗ f1)λ1 + (e2 ⊗ f2)λ2 +

d∑
r>2

(er ⊗ fr)λr. (4.18)

For Ψ as such, introduce the constant R2 ≡ λ2
1 +λ2

2. Note that 0 < R ≤ 1. It follows that λ1 = R cos θ and
λ2 = R sin θ for some θ in the open interval (0, π/2). Let τ ∈ (0, π/2) be such that τ = arccos(1− ε2/32).
Next, introduce R 3 µ1 = R cos(θ − τ) and R 3 µ2 = R sin(θ − τ). Now, construct

Φ = (e1 ⊗ f1)µ1 + (e2 ⊗ f2)µ2 +

d∑
r>2

(er ⊗ fr)λr. (4.19)

Clearly Φ ∈ S(Hd ⊗Hd). Also, notice that

〈Ψ|Φ〉 = R2 cos θ cos(θ − τ) +R2 sin θ sin(θ − τ) +

d∑
r>2

λ2
r

= R2 cos θ cos(θ − τ) +R2 sin θ sin(θ − τ) + 1−R2

= 〈Φ|Ψ〉. (4.20)

Recalling the trigonometric identity cos θ cos(θ− τ) + sin θ sin(θ− τ) = cos(τ), we see that Φ ∈ Bε(Ψ), for
with R ≤ 1 we have

‖Ψ− Φ‖ =
√
〈Ψ|Ψ〉+ 〈Φ|Φ〉 − 〈Ψ|Φ〉 − 〈Φ|Ψ〉

=
√

2
(
1−R2 cos θ cos(θ − τ)−R2 sin θ sin(θ − τ)− 1 +R2

)
=

√
2R2

(
1− cos θ cos(θ − τ)− sin θ sin(θ − τ)

)
=

√
2R2

(
1− cos τ

)
=

√
2R2

(
1− 1 + ε2/32

)
= Rε/4

≤ ε/4

< ε. (4.21)
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We now seek to establish the contradiction C(Φ) 6= x. With τ thus far only restricted such that τ ∈
(0, π/2) with τ = arccos(1 − ε2/32), it is very important to point out that Eq. (4.19) is not necessarily
a Schmidt decomposition, because it is possible that one, or both of µ1 and µ2 are negative. Let us
therefore introduce the following orthonormal basis {f̃1 ≡ f1sign(µ1), f̃2 ≡ f2sign(µ2), f3, . . . , fd}, so that

(e1 ⊗ f̃1)|µ1| + (e2 ⊗ f̃2)|µ2| +
∑d
r>2(er ⊗ fr)λr is a Schmidt decomposition. With this observation, and

from the trigonometric identities 8| cos(θ − τ)|4 = 8 cos4(θ − τ) = 3 + 4 cos(2θ − 2τ) + cos(4θ − 4τ) and
8| sin(θ − τ)|4 = 8 sin4(θ − τ) = 3− 4 cos(2θ − 2τ) + cos(4θ − 4τ), we see that

C(Φ) =

√√√√2

(
1− |µ1|4 − |µ2|4 −

d∑
r>2

λ4
r

)
=

√√√√2

(
1− 3R4

4
− R4 cos(4θ − 4τ)

4
−

d∑
r>2

λ4
r

)
, (4.22)

whereas

x = C(Ψ) =

√√√√2

(
1− 3R4

4
− R4 cos(4θ)

4
−

d∑
r>2

λ4
r

)
(4.23)

Our supposition implies that cos(4θ) = cos(4θ − 4τ). Therefore τ = nπ/2 for some n ∈ Z. This, however,
is impossible because τ = arccos(1 − ε2/32) and 0 < ε ≤ 2. We have reached a contradiction. Therefore
our supposition, namely that ∅ 6= intCx, is false. We conclude that the interior of Cx is empty. All cases
have been examined.

We are now ready for the sequel.

4.2 Monotones and Designs

In this section, we first state Theorem 4.2.1. Our proof of Theorem 4.2.1 is founded on Lemma 4.2.3. The
proof of Lemma 4.2.3 is intense, hence, for motivational purposes, we first state Theorem 4.2.1, then state
Lemma 4.2.3, then prove Theorem 4.2.1, and then prove Lemma 4.2.3.

Theorem 4.2.1 Let {E1, . . . , En} ⊂ E(Hd) be a povm. Let Ψ ∈ S(Hd ⊗Hd). Define ∀α, β ∈ {1, . . . , n}
the probabilities

pα,β ≡ 〈Ψ|Eα ⊗ Eβ |Ψ〉, (4.24)

and let ‖~p‖ denote the Euclidean norm of the corresponding probability vector, i.e.

‖~p‖ =

√√√√ n∑
α=1

n∑
β=1

p2
α,β. (4.25)

Then {E1, . . . , En} is a conical 2-design if and only if there exists a regular entanglement monotone whose
restriction to pure states PurQ(Hd⊗Hd) is a function of ‖~p‖. In particular, the latter condition is satisfied
if and only if the restriction of the concurrence is a function of ‖~p‖. Specifically

C
(
|Ψ〉〈Ψ|

)
= 2

√
k2
s − ‖~p‖2
k2
s − k2

a

, (4.26)

where ks > ka ≥ 0 are as in Theorem 3.3.1.
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We now build the following definition.

Definition 4.2.2 A nontrivial local unitary invariant is a function f : S
(
Hd ⊗Hd

)
−→ R such that :

(i) ∃Ψ ∈ S
(
Hd ⊗Hd

)
and ∃Φ ∈ S

(
Hd ⊗Hd

)
such that f(Ψ) 6= f(Φ).

(ii) ∀Ψ ∈ S
(
Hd ⊗Hd

)
and ∀U, V ∈ U

(
Hd

)
it holds that f

(
(U ⊗ V )Ψ

)
= f(Ψ).

Condition (ii) in Definition 4.2.2 simply expresses that f is invariant under the action of local unitary
transformations, while condition (i) demands such invariance is nontrivial, ruling out constant functions.
We are now ready to state the following lemma.

Lemma 4.2.3 Let {E1, . . . , En} ⊂ E(Hd) be a povm. Let Ψ ∈ S(Hd ⊗Hd). Define ∀α, β ∈ {1, . . . , n}
the probabilities

pα,β ≡ 〈Ψ|Eα ⊗ Eβ |Ψ〉, (4.27)

and let ‖~p‖ denote the Euclidean norm of the corresponding probability vector, i.e.

‖~p‖ =

√√√√ n∑
α=1

n∑
β=1

p2
α,β. (4.28)

Let f denote the function
f : S(Hd ⊗Hd) −→ R+ :: Ψ 7−→ ‖~p‖. (4.29)

Then f is a nontrivial local unitary invariant if and only if {E1, . . . , En} is a conical 2-design.

Proof of Theorem 4.2.1. Our proof of sufficiency in Lemma 4.2.3 establishes necessity in this case; in
particular, it follows immediately from Eq. (4.39) and from Definition 4.1.4 and Eq. (4.13) that

C(|Ψ〉〈Ψ) = 2

√
k2
s − ‖~p‖2
k2
s − k2

a

, (4.30)

with the concurrence C being a regular entanglement monotone in light of Lemma 4.1.8.

We now prove sufficiency. Suppose E is a regular entanglement monotone such that E = g(‖~p‖) on
PurQ(Hd ⊗Hd), for some function g. We first show that ‖~p‖ must be a nontrivial local unitary invariant.
From Lemma 4.2.3, to show that {E1, . . . , En} is a conical 2-design, it suffices to show that ‖~p‖ is a
nontrivial local unitary invariant. Our proof is by contradiction. Suppose either ‖~p‖ is trivial or else
not a local unitary invariant. The first possibility would imply that E was constant on PurQ(Hd ⊗Hd),
contradicting the fact that E is assumed regular. The second possibility would imply that, for a fixed
Ψ ∈ S(Hd ⊗Hd), the map (U, V ) ∈ U(Hd) × U(Hd) 7−→

√
〈Ψ| ⊗ 〈Ψ|W23(NU ⊗NV )W23 |Ψ〉 ⊗ |Ψ〉 ∈ R

took at least two distinct values, say a < b, where W2,3 is the unitary that swaps the second and third
tensor factors of Hd⊗Hd⊗Hd⊗Hd, and where for all U ∈ U(Hd) we define NU =

∑n
α=1 U

∗EαU⊗U∗EαU
so that one simply has ‖~p‖2 = 〈Ψ|⊗〈Ψ|W2,3(NU ⊗NV )W2,3|Ψ〉⊗|Ψ〉. The continuity of the map together
with the connectedness of the group U(Hd) × U(Hd) would then imply that it took every value in the
interval [a, b]. On the other hand, the restriction of E to PurQ(Hd ⊗Hd) is a local unitary invariant in
light of Theorem 4.1.2. So g would have to take the same constant value, call it x, for every element of
[a, b]. This would mean that the set {Ψ ∈ S(Hd ⊗Hd) : E(|Ψ〉〈Ψ|) = x}) contained the non-empty open
set {Ψ ∈ S(Hd ⊗Hd) | a < ‖~p‖ < b}, again contradicting the fact that E is assumed regular.
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Theorem 4.2.1 establishes that a povm is a conical 2-design if and only if there exists what we call a regular
entanglement monotone whose restriction to the pure states is a function of the norm of the probability
vector. Furthermore, given that C(|Ψ〉〈Ψ|)2 is necessarily quadratic in the probabilities, it seems fair to
say that Eq. (4.26) is about the simplest expression conceivable. A simple description of entanglement
in terms of probabilities is important in those theoretical approaches which seek to formulate quantum
mechanics in purely probabilistic language, for instance the approaches in QBism [13][139] and GPTs (see
for example [49].) The simplicity of our result—the fact that conical 2-designs are naturally adapted to
the description of entanglement—means that it is likely to be important for other reasons also. It may be
possible to strengthen theorem Theorem 4.2.1, so that it states that {E1, . . . , En} ⊂ E(Hd) is a conical
2-design if and only if there is any entanglement monotone at all (i.e. not necessarily a regular one) whose
restriction to pure states is a function of ‖~p‖. However, we have not been able to prove it.

Some preparatory work is required Lemma 4.2.3. We begin with the following proposition, which will
be central in the proof of Lemma 4.2.3. Henceforth, C0([0, 2π]d) denotes the complex vector space of
continuous C-valued functions on the Cartesian product [0, 2π]d. Furthermore, we shall denote vectors in
the spaces Zd ⊂ Rd ⊃ [0, 2π]d using bold font.

Proposition 4.2.4 Let n1, . . . ,nm ∈ Zd be distinct. Then the set of C-valued functions {einj ·θ} are
linearly independent in C0([0, 2π]d).

Proof. Define the following square integrable functions in L2([0, 2π]d) with n ∈ Zd

fn(θ) =
1

(2πd/2)
ein·θ (4.31)

We have

〈fn′ , fn〉 =
1

2πd

∫ 2π

0

· · ·
∫ 2π

0

ei(n1−n′1)θ1 · · · ei(nd−n
′
d)θddθ1 · · · dθd (4.32)

Set ñj = nj − n′j ∈ Z. Thus,∫ 2π

0

ei(nj−n
′
j)θjdθj =

∫ 2π

0

eiñjθjdθj =

∫ 2π

0

(
cos(ñjθj) + isin(ñjθj)

)
dθj = 2πδnj ,n′j (4.33)

Consequently,
〈fn′ , fn〉 = δn,n′ (4.34)

So fnj are an orthonormal set in the complex inner product space L2([0, 2π]d). Thus, any finite subset
with elements fn1 , . . . , fnm (with n1, . . . ,nm distinct in Zd) is a linearly independent subset in L2([0, 2π]d).
Turning our attention to the complex vector space C0([0, 2π]d), suppose that a1, . . . , am ∈ C are such that

∀θ ∈ [0, 2π]d : a1fn1(θ) + · · ·+ amfnm(θ) = 0 (4.35)

Then a1, . . . , am are such that
a1fn1 + · · ·+ amfnm = 0 (4.36)

as an element in L2([0, 2π]d). By the contrapositive, linear independence in L2([0, 2π]d) implies the desired
result.
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We are now ready for our proof Lemma 4.2.3, which runs for the next eight pages.

Proof of Lemma 4.2.3. We first prove sufficiency. Consider arbitrary Ψ ∈ Hd, with Schmidt decomposition

Ψ =

d∑
r=1

(
er ⊗ fr

)
λr. (4.37)

as in Theorem 4.1.3. Let {E1, . . . , En} be a conical 2-design as in Definition 3.3.2. Then

n∑
α,β=1

p2
α,β =

n∑
α,β=1

(
Tr
((
Eα ⊗ Eβ

) d∑
r,s=1

(
|er〉〈es| ⊗ |fr〉〈fs|

)
λrλs

))2

=

n∑
α,β=1

d∑
r,s,t,v=1

λrλsλtλv〈es|Eα|er〉〈ev|Eα|et〉〈fs|Eβ |fr〉〈fv|Eβ |ft〉

=

n∑
α,β=1

d∑
r,s,t,v=1

((
〈es| ⊗ 〈ev|

)(
Eα ⊗ Eα

)(
|er〉 ⊗ |et〉

))((
〈fs| ⊗ 〈fv|

)(
Eβ ⊗ Eβ

)(
|fr〉 ⊗ |ft〉

))

=

d∑
r,s,t,v=1

λrλsλtλv

((
ks + ka

2

)
δrsδtv +

(
ks − ka

2

)
δrvδst

)2

=
1

2

(
k2
s + k2

a

)
+

1

2

(
k2
s − k2

a

) d∑
r=1

λ4
r. (4.38)

Thus

‖~p‖ ≡ f(Ψ) =

√√√√1

2
(k2
s + k2

a) +
1

2
(k2
s − k2

a)

d∑
r=1

λ4
r. (4.39)

Invariance of the Schmidt coefficients under local unitary transformations and the fact that ks > ka implies
a nontrivial dependence on the Schmidt coefficients, which completes our proof of sufficiency.

We now prove necessity. Let f be a nontrivial local unitary invariant as in Definition 4.2.2. Let us choose
|Ψ〉 ∈ S(Hd ⊗Hd) where the Schmidt bases for each tensor factor are identical to one another, i.e.

Ψ =

d∑
r=1

(
er ⊗ er

)
λr (4.40)
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Then

‖~pΨ‖2 ≡
n∑
α=1

n∑
β=1

〈Ψ|Eα ⊗ Eβ |Ψ〉2

= 〈Ψ| ⊗ 〈Ψ|

 n∑
α=1

n∑
β=1

(Eα ⊗ Eβ)⊗ (Eα ⊗ Eβ)

 |Ψ〉 ⊗ |Ψ〉
=

d∑
r,s,u,v=1

n∑
α=1

n∑
β=1

λrλsλuλv〈er|Eα|eu〉〈er|Eβ |eu〉〈es|Eα|ev〉〈es|Eα|ev〉

=

d∑
r,s,u,v=1

λrλsλuλv

(
〈er| ⊗ 〈es|

(
d∑

α=1

Eα ⊗ Eα

)
|eu〉 ⊗ |ev〉

)2

(4.41)

Let U, V ∈ U(Hd). Let |Φ〉 = (U ⊗ V )|Ψ〉. We compute

‖~pΦ‖2 ≡
n∑
α=1

n∑
β=1

〈Φ|Eα ⊗ Eβ |Φ〉2

=

n∑
α=1

n∑
β=1

〈Ψ| ⊗ 〈Ψ| ((U∗EαU ⊗ V ∗EβV )⊗ (U∗EαU ⊗ V ∗EβV )) |Ψ〉 ⊗ |Ψ〉

=

d∑
r,s,u,v=1

λrλsλuλv

n∑
α=1

n∑
β=1

〈er|U∗EαU |eu〉〈er|V ∗EβV |eu〉〈es|U∗EαU |ev〉〈es|V ∗EβV |ev〉

=

d∑
r,s,u,v=1

λrλsλuλv

(
〈er| ⊗ 〈es|

(
d∑

α=1

U∗EαU ⊗ U∗EαU

)
|eu〉 ⊗ |ev〉

)

×

〈er| ⊗ 〈es|
 d∑
β=1

V ∗EβV ⊗ V ∗EβV

 |eu〉 ⊗ |ev〉
 (4.42)

Denote positive semi-definite

X ≡
n∑
α=1

Eα ⊗ Eα ∈ L(Hd ⊗Hd)+ (4.43)

Define ∀U ∈ U(Hd)

XU
rs,uv = 〈er| ⊗ 〈es|

(
d∑

α=1

U∗EαU ⊗ U∗EαU

)
|eu〉 ⊗ |ev〉 (4.44)

= 〈er|U∗ ⊗ 〈es|U∗
(

d∑
α=1

Eα ⊗ Eα

)
U |eu〉 ⊗ U |ev〉. (4.45)

Then, by our standing assumption:
‖~pΨ‖ = ‖~pΦ‖; (4.46)
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hence we have ∀~λ ∈ Rd+ with ‖~λ‖ = 1 and for ∀U, V ∈ U(Hd) that

d∑
r,s,u,v=1

λrλsλuλvX
1
rs,uvX

1
rs,uv =

d∑
r,s,u,v=1

λrλsλuλvX
U
rs,uvX

V
rs,uv. (4.47)

Let P ∈ U(Hd) : |er〉 7−→ eiθr |er〉 for θr ∈ [0, 2π]. Then V P is another unitary and we have

d∑
r,s,u,v=1

λrλsλuλvX
1
rs,uvX

1
rs,uv =

d∑
r,s,u,v=1

λrλsλuλve
i(θu+θv−θr−θs)XU

rs,uvX
V
rs,uv (4.48)

Consider a fixed ordered set {r; s;u; v} ⊂ {1, . . . , d}4. Let {r; s;u; v} 7−→ {rp; sp;up; vp} represent the
action of a permutation p on the fixed ordered set {r; s;u; v}2. The monomials λrλsλuλv constitute a
basis for the complex vector space of homogeneous polynomials of degree four. Therefore, for each fixed
ordered set {r; s;u; v}, summing over all unique permutations we have for all arbitrary θ ∈ [0, 2π]d∑

p

X1
rpsp,upvpX

1
rpsp,upvp =

∑
p

ei(θup+θvp−θrp−θsp )XU
rpsp,upvpX

V
rpsp,upvp (4.49)

We seek to prove
n∑
α=1

Eα ⊗ Eα = ksΠsym + kaΠasym with ks > ka ≥ 0. (4.50)

Our proof will be via case-by-case analysis.

There are five mutually exclusive and exhaustive cases of existence for the multiset {r, s, u, v} ⊂ {1, . . . , d}4

Case 1: {r, s, u, v} = {r, r, r, r} for some r ∈ {1, . . . , d}

Case 2: {r, s, u, v} = {r, r, r, s} for some distinct r, s ∈ {1, . . . , d}

Case 3: {r, s, u, v} = {r, r, s, s} for some distinct r, s ∈ {1, . . . , d}

Case 4: {r, s, u, v} = {r, r, s, u} for some distinct r, s, u ∈ {1, . . . , d}

Case 5: {r, s, u, v} = {r, s, u, v} for some distinct r, s, u, v ∈ {1, . . . , d}

Prior to our case-by-case analysis, we note two mutually exclusive and exhaustive possibilities.

♣ Possibility 1 There is not a permutation p such that {r, s} = {u, v} as multisets.

This possibility covers Case 2, Case 4, and Case 5. Let S ∈ U(Hd) : |er〉 7−→ (−1)δrs |er〉. Then VS is
another unitary and we have from Eq. (4.49)

0 =
∑
p

ei(θup+θvp−θrp−θsp )XU
rpsp,upvpX

V
rpsp,upvp (4.51)

♣ Possibility 2 There is a permutation p such that {r, s} = {u, v} as multisets.

2See Appendix A.3 for further explanation on our permutation notation.
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This possibility covers Case 1 and Case 3. Eq. (4.49) reads explicitly as

0 = ei2(θs−θr)XU
rr,ssX

V
rr,ss + ei2(θr−θs)XU

ss,rrX
V
ss,rr

+
(
XU
rs,rsX

V
rs,rs +XU

sr,srX
V
sr,sr +XU

rs,srX
V
rs,sr +XU

sr,rsX
V
sr,rs

)
−

(
X1
rr,ssX

1
rr,ss +X1

ss,rrX
1
ss,rr +X1

rs,rsX
1
rs,rs +X1

sr,srX
1
sr,sr +X1

rs,srX
1
rs,sr +X1

sr,rsX
1
sr,rs

)
(4.52)

We now proceed with case-by-case analysis.

♠ Case 1 {r, s, u, v} = {r, r, r, r} for some r ∈ {1, . . . , d}

In this case Eq. (4.52) collapses to
XU
rr,rrX

V
rr,rr = X1

rr,rrX
1
rr,rr (4.53)

X is a positive semi-definite. Therefore ∀U ∈ U(Hd) : XU
rr,rr ≥ 0. Select U = V in Eq. (4.53):(

XU
rr,rr

)2
=
(
X1
rr,rr

)2
=⇒ ∀U ∈ U(Hd) : XU

rr,rr = γr (4.54)

for some constant γr ∈ R+. However, we can permute the basis by taking U to UWr,s; so γr is independent
of r. Thus, we will write simply γ.

♠ Case 2 {r, s, u, v} = {r, r, r, s} for some distinct r, s ∈ {1, . . . , d}

In this case Eq. (4.51) reads explicitly as

0 = ei(θs−θr)XU
rr,rsX

V
rr,rs + ei(θs−θr)XU

rr,srX
V
rr,sr + ei(θr−θs)XU

rs,rrX
V
rs,rr + ei(θr−θs)XU

sr,rrX
V
sr,rr(4.55)

= ei(θs−θr)
(
XU
rr,rsX

V
rr,rs +XU

rr,srX
V
rr,sr

)
+ ei(θr−θs)

(
XU
rs,rrX

v
rs,rr +XU

sr,rrX
V
sr,rr

)
(4.56)

Therefore from Lemma 1.23

0 = XU
rr,rsX

V
rr,rs +XU

rr,srX
V
rr,sr (4.57)

0 = XU
rs,rrX

V
rs,rr +XU

sr,rrX
V
sr,rr (4.58)

Select U = V in Eq. (4.57) and Eq. (4.58)

0 =
(
XU
rr,rs

)2
+
(
XU
rr,sr

)2
(4.59)

0 =
(
XU
rs,rr

)2
+
(
XU
sr,rr

)2
(4.60)

By construction

XU
rr,rs =

n∑
α=1

〈er|U∗EαU |er〉〈er|U∗EαU |es〉 =

n∑
α=1

〈er|U∗EαU |es〉〈er|U∗EαU |er〉 = XU
rr,sr (4.61)

XU
rs,rr =

n∑
α=1

〈er|U∗EαU |er〉〈es|U∗EαU |er〉 =

n∑
α=1

〈es|U∗EαU |er〉〈er|U∗EαU |er〉 = XU
sr,rr (4.62)

3See Appendix A.4for further details on applying Proposition 4.2.4.
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Thus Eq. (4.59) and Eq. (4.60) yield

∀U ∈ U(Hd) : XU
rr,rs = XU

rr,sr = XU
rs,rr = XU

sr,rr = 0 (4.63)

♠ Case 3 {r, s, u, v} = {r, r, s, s} for some distinct r, s ∈ {1, . . . , d}

In this case Eq. (4.52) in conjunction with Lemma 1.2 yields

0 = XU
rr,ssX

V
rr,ss (4.64)

0 = XU
ss,rrX

V
ss,rr (4.65)

and

XU
rs,rsX

V
rs,rs +XU

sr,srX
V
sr,sr +XU

rs,srX
V
rs,sr +XU

sr,rsX
V
sr,rs

= X1
rr,ssX

1
rr,ss +X1

ss,rrX
1
ss,rr +X1

rs,rsX
1
rs,rs +X1

sr,srX
1
sr,sr +X1

rs,srX
1
rs,sr +X1

sr,rsX
1
sr,rs (4.66)

Select U = V in Eq. (4.64) and Eq. (4.65) to obtain

∀U ∈ U(Hd) : XU
rr,ss = XU

ss,rr = 0 (4.67)

In particular, X1
rr,ss = X1

ss,rr = 0. By construction

XU
rs,rs =

n∑
α=1

〈er|U∗EαU |er〉〈es|U∗EαU |es〉 =

n∑
α=1

〈es|U∗EαU |es〉〈er|U∗EαU |er〉 = XU
sr,sr (4.68)

XU
rs,sr =

n∑
α=1

〈er|U∗EαU |es〉〈es|U∗EαU |er〉 =

n∑
α=1

〈es|U∗EαU |er〉〈er|U∗EαU |es〉 = XU
sr,rs (4.69)

Thus Eq. (4.66) reads

XU
rs,rsX

V
rs,rs +XU

rs,srX
V
rs,sr = X1

rs,rsX
1
rs,rs +X1

rs,srX
1
rs,sr (4.70)

Also4 by construction with EUα = U∗EαU = (EUα )∗ for arbitrary U ∈ U(Hd) and (·) complex conjugation

XU
sr,rs = 〈es| ⊗ 〈er|

(
n∑
α=1

EUα ⊗ EUα

)
|er〉 ⊗ |es〉 =

n∑
α=1

〈es|EUα |er〉〈er|EUα |es〉 =
n∑
α=1

〈EUα er|es〉〈EUα es|er〉

=

n∑
α=1

〈er|EUα es〉〈es|EUα er〉 =

n∑
α=1

〈es|EUα er〉〈er|EUα es〉 = 〈es| ⊗ 〈er|

(
n∑
α=1

EUα ⊗ EUα

)
|er〉 ⊗ |es〉(4.71)

= XU
sr,rs (4.72)

Introduce ~u,~v ∈ R2 with

~u =

(
XU
rs,rs

XU
rs,sr

)
~v =

(
XV
rs,rs

XV
rs,sr

)
(4.73)

4Skip this in the paper; jump straight to the real vectors
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Then from Eq. (4.70)
‖~u‖2 = ‖~v‖2 = ~u · ~v (4.74)

So ‖~u‖ = ‖~v‖ and the familiar equality ~u ·~v = ‖~u‖‖~v‖cosθ yields for appropriate constants crs,rs and krs,sr

∀U ∈ U(Hd) : XU
rs,rs = crs,rs (4.75)

∀U ∈ U(Hd) : XU
rs,sr = krs,sr (4.76)

Moreover, permuting the bases (this is necessary and well defined if d > 2) via U 7−→ UWr,u with

Wr,u|ea〉 =


|eu〉 a = r

|er〉 a = u

|ea〉 otherwise

(4.77)

we see that crs,rs and krs,sr are independent of r. A similar argument concludes that crs,rs and krs,sr are
independent of s. Thus we denote these constants simply by c and k. Hence

∀U ∈ U(Hd) : XU
rs,rs = XU

sr,sr = c ∈ R+ (4.78)

∀U ∈ U(Hd) : XU
rs,sr = XU

sr,rs = k ∈ R (4.79)

♠ Case 4 {r, s, u, v} = {r, r, s, u} for some distinct r, s, u ∈ {1, . . . , d}

In this case Eq. (4.51) reads explicitly as

0 = ei(θs+θu−2θr)
(
XU
rr,suX

V
rr,su +XU

rr,usX
V
rr,us

)
+ ei(2θr−θs−θu)

(
XU
su,rrX

V
su,rr +XU

us,rrX
V
us,rr

)
(4.80)

+ ei(θu−θs)
(
XU
rs,ruX

V
rs,ru +XU

sr,urX
V
sr,ur +XU

sr,ruX
V
sr,ru +XU

rs,urX
V
rs,ur) (4.81)

+ ei(θs−θu)
(
XU
ru,rsX

V
ru,rs +XU

ur,srX
V
ur,sr +XU

ur,rsX
V
ur,rs +XU

ru,srX
V
ru,sr

)
(4.82)

(4.83)

Therefore from Lemma 1.2

0 = XU
rr,suX

V
rr,su +XU

rr,usX
V
rr,us (4.84)

0 = XU
su,rrX

V
su,rr +XU

us,rrX
V
us,rr (4.85)

0 = XU
rs,ruX

V
rs,ru +XU

sr,urX
V
sr,ur +XU

sr,ruX
V
sr,ru +XU

rs,urX
V
rs,ur (4.86)

0 = XU
ru,rsX

V
ru,rs +XU

ur,srX
V
ur,sr +XU

ur,rsX
V
ur,rs +XU

ru,srX
V
ru,sr (4.87)

By construction XU
rr,su = XU

rr,us and XU
su,rr = XU

us,rr thus from Eq. (4.84) and Eq. (4.85) with U = V we
have

∀U ∈ U(Hd) : XU
rr,su = XU

rr,us = XU
su,rr = XU

us,rr = 0 (4.88)

By construction

XU
rs,ru = XU

sr,ur and XU
rs,ur = XU

sr,ru (4.89)

XU
ru,rs = XU

ur,sr and XU
ru,sr = XU

ur,rs (4.90)
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Thus from Eq. (4.86) and Eq. (4.87)

0 = XU
rs,ruX

V
rs,ru +XU

rs,urX
V
rs,ur (4.91)

0 = XU
ru,rsX

V
ru,rs +XU

ru,srX
V
ru,sr (4.92)

Observe XU
rs,ru = XU

ru,rs. Also, observe Xrs,ur = Xur,rs = Xru,sr. Replace V with UWs,u in Eq. (4.91) to
obtain the first two implications; the final implication following from the foregoing observations

0 = |XU
rs,ru|2 + |XU

rs,ur|2 =⇒ XU
rs,ru = 0 and XU

rs,ur = 0 =⇒ XU
ru,rs = 0 and XU

ru,sr = 0 (4.93)

Therefore

∀U ∈ U(Hd) : XU
rs,ru = XU

sr,ur = XU
sr,ru = XU

rs,ur = 0 (4.94)

∀U ∈ U(Hd) : XU
ru,rs = XU

ur,sr = XU
ur,rs = XU

ru,sr = 0 (4.95)

♠ Case 5 {r, s, u, v} = {r, s, u, v} for some distinct r, s, u, v ∈ {1, . . . , d}

In Case 5, Eq. (4.51) reads explicitly as

0 = ei(θu+θv−θr−θs)
(
XU
rs,uvX

V
rs,uv +XU

rs,vuX
V
rs,vu +XU

sr,uvX
V
sr,uv +XU

sr,vuX
V
sr,vu

)
(4.96)

+ ei(θs+θv−θr−θu)
(
XU
ru,svX

V
ru,sv +XU

ru,vsX
V
ru,vs +XU

ur,svX
V
ur,sv +XU

ur,vsX
V
ur,vs

)
(4.97)

+ ei(θs+θu−θr−θv)
(
XU
rv,suX

V
rv,su +XU

rv,usX
V
rv,us +XU

vr,suX
V
vr,su +XU

vr,usX
V
vr,us

)
(4.98)

+ ei(θr+θv−θs−θu)
(
XU
su,rvX

V
su,rv +XU

su,vrX
V
su,vr +XU

us,rvX
V
us,rv +XU

us,vrX
V
us,vr

)
(4.99)

+ ei(θr+θu−θs−θv)
(
XU
sv,ruX

V
sv,ru +XU

sv,urX
V
sv,ur +XU

vs,ruX
V
vs,ru +XU

vs,urX
V
vs,ur

)
(4.100)

+ ei(θr+θs−θu−θv)
(
XU
uv,rsX

V
uv,rs +XU

uv,srX
V
uv,sr +XU

vu,rsX
V
vu,rs +XU

vu,srX
V
vu,sr

)
(4.101)

Therefore from Lemma 1.2

0 = XU
rs,uvX

V
rs,uv +XU

rs,vuX
V
rs,vu +XU

sr,uvX
V
sr,uv +XU

sr,vuX
V
sr,vu (4.102)

0 = XU
ru,svX

V
ru,sv +XU

ru,vsX
V
ru,vs +XU

ur,svX
V
ur,sv +XU

ur,vsX
V
ur,vs (4.103)

0 = XU
rv,suX

V
rv,su +XU

rv,usX
V
rv,us +XU

vr,suX
V
vr,su +XU

vr,usX
V
vr,us (4.104)

0 = XU
su,rvX

V
su,rv +XU

su,vrX
V
su,vr +XU

us,rvX
V
us,rv +XU

us,vrX
V
us,vr (4.105)

0 = XU
sv,ruX

V
sv,ru +XU

sv,urX
V
sv,ur +XU

vs,ruX
V
vs,ru +XU

vs,urX
V
vs,ur (4.106)

0 = XU
uv,rsX

V
uv,rs +XU

uv,srX
V
uv,sr +XU

vu,rsX
V
vu,rs +XU

vu,srX
V
vu,sr (4.107)

By construction

XU
rs,uv = XU

sr,vu and XU
rs,vu = XU

sr,uv (4.108)

XU
ru,sv = XU

ur,vs and XU
ru,vs = XU

ur,sv (4.109)

XU
rv,su = XU

vr,us and XU
rv,us = XU

vr,su (4.110)

XU
su,rv = XU

us,vr and XU
su,vr = XU

us,rv (4.111)

XU
sv,ru = XU

vs,ur and XU
sv,ur = XU

vs,ru (4.112)

XU
uv,rs = XU

vu,sr and XU
uv,sr = XU

vu,rs (4.113)
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Therefore Eq. (4.102) through Eq. (4.107) read

0 = XU
rs,uvX

V
rs,uv +XU

rs,vuX
V
rs,vu (4.114)

0 = XU
ru,svX

V
ru,sv +XU

ru,vsX
V
ru,vs (4.115)

0 = XU
rv,suX

V
rv,su +XU

rv,usX
V
rv,us (4.116)

0 = XU
su,rvX

V
su,rv +XU

su,vrX
V
su,vr (4.117)

0 = XU
sv,ruX

V
sv,ru +XU

sv,urX
V
sv,ur (4.118)

0 = XU
uv,rsX

V
uv,rs +XU

uv,srX
V
uv,sr (4.119)

Set V = Wu,vU in Eq. (4.114) to obtain

0 = XU
rs,uvX

U
rs,vu (4.120)

Thus XU
rs,uv [logical or] XU

rs,vu = 0. The logical or may be improved to an and by noting that XU
rs,uv = 0

for all U ∈ U(Hd) implies that XU
rs,vu = 0 as well by taking U 7−→ Wv,uU , and visa versa. All cases can

be handled in this way and we conclude for all permutations p of the fixed ordered set {r, s, u, v}

∀U ∈ U(Hd) : Xrpsp,upvp = 0. (4.121)

This concludes our case analysis. We now relate the constant γ in Eq. (4.54) to the constants c and k
in Eqs. (4.78) and (4.79). Fix arbitrary U ∈ U(Hd). Select V ∈ U(Hd) such that V = UW+12 where
W+12|e1〉 = (|e1〉+ |e2〉)/

√
2. Then

γ = XV
11,11 = 〈e1|W ∗+12 ⊗ 〈e1|W ∗+12

(
n∑
α=1

EUα ⊗ EUα

)
W+12|e1〉 ⊗W+12|e1〉 (4.122)

=
1

4

2∑
r,s,u,v=1

XU
rs,uv (4.123)

=
1

4

(
XU

11,11 +XU
11,12 +XU

11,21 +XU
11,22 +XU

12,11 +XU
12,12 +XU

12,21 +XU
12,22

)
+

1

4

(
XU

21,11 +XU
21,12 +XU

21,21 +XU
21,22 +XU

22,11 +XU
22,12 +XU

22,21 +XU
22,22

)
(4.124)

=
1

2

(
γ + c+ k

)
(4.125)

Therefore γ = c+ k and we conclude

∀U ∈ U(Hd) : XU
rs,uv = cδruδsv + kδrvδsu. (4.126)

In particular we select U = 1 and to conclude
n∑
α=1

Eα ⊗ Eα = ksΠsym + kaΠasym (4.127)

with c = (ks + ka)/2 and k = (ks − ka)/2. Demanding nontrivial local unitary invariance, our proof of
sufficiency then implies that ks > ka ≥ 0.
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Our proof of Lemma 4.2.3 completes the proof of Theorem 4.2.1.

Recently, some rather different and interesting connections have been found between projective 2-designs
and entanglement [194][130][195][198], as well as between sims and mums and entanglement [132][196][197].
Having established our Theorem 4.2.1, we shall now move to the following section and compare it with
the results in the [130][195][132][196][197]. Although the authors do not present it this way what is done
in these papers is, in effect, to show that there is a natural way to construct entanglement witnesses out
of mums and sims (as noted in [204]). We will generalize and develop this previous work presently.

4.3 Witnesses and Designs

We begin by reminding the reader of the following definition, and point to the related review papers [204]
and [205].

Definition 4.3.1 [97]An entanglement witness is a self-adjoint linear endomorphism A ∈ Lsa(Hd ⊗Hd)
such that for all separable quantum states ρs ∈ SepQ(Hd ⊗ Hd) one has that Tr(Aρs) ≥ 0, while there
exists an entangled quantum state ρe such that Tr(Aρe) < 0 .

In order to compress our notation, let S ≡ S
(
Hd ⊗ Hd

)
denote the unit sphere in Hd ⊗ Hd and let Ss

denote the subset of product state vectors ψ⊗φ; hence the subscript ‘s’ is for separable. Given an arbitrary
self-adjoint linear endomorphism A ∈ Lsa

(
H ⊗H

)
define

s−A = inf
|Ψ〉∈Ss

{
〈Ψ|A|Ψ〉

}
(4.128)

s+
A = sup

|Ψ〉∈Ss

{
〈Ψ|A|Ψ〉

}
(4.129)

e−A = inf
|Ψ〉∈S

{
〈Ψ|A|Ψ〉

}
(4.130)

e+
A = sup

|Ψ〉∈S

{
〈Ψ|A|Ψ〉

}
(4.131)

Then s+
AI − A is an entanglement witness if and only if e+

A > s+
A, in which case we will say A detects

entanglement from above. Furthermore, A − s−AI is an entanglement witness if and only if e−A < s−A,
in which case we will say A detects entanglement from below. If, on the other hand, s±A = e±A, then a
measurement of A cannot detect entanglement. In [130][195][132] the authors only consider detection from
above, although detection from below is also possible, as we will see.

Let {E1, . . . , En} be an arbitrary conical 2-design and let |ej〉 be some fixed orthonormal basis in Hd.
Define

N =
∑
α

Eα ⊗ Eα, (4.132)

NPT =
∑
α

Eα ⊗ ET
α . (4.133)

where NPT (respectively ET
α ) is the partial transpose (respectively transpose) of N (respectively Eα)

relative to the basis |ej〉. It follows from the definition of a conical 2-design (Definition 3.3.2) and Eq. (3.48)
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that

N = k+1d ⊗ 1d + k−W, NPT = k+1d ⊗ 1d + dk−|Φ+〉〈Φ+|, (4.134)

where k± = (ks±ka)/2, W is the unitary which swaps the two factors in H⊗H, and |Φ+〉 is the maximally
entangled ket (1/

√
d)
∑
j |ej〉 ⊗ |ej〉. One easily sees

s−N = k+, s+
N = k+ + k−, (4.135)

e−N = k+ − k−, e+
N = k+ + k−, (4.136)

where we have used ks > ka ≥ 0. So N can detect entanglement from below, but not from above. On the
other hand

s−
NPT = k+, s+

NPT = k+ + k−, (4.137)

e−
NPT = k+, e+

NPT = k+ + dk−. (4.138)

So NPT can detect entanglement from above, but not from below.

Let us note that in [130][195][132][196] the authors calculate s+
N for mums and sims, but not e+

N . Conse-
quently, they do not draw the conclusion that N cannot detect entanglement from above.

In [130][195][132][196], the authors also consider operators of the more general form

Ngen =
∑
α

Eα ⊗ Fα (4.139)

where Eα, Fα are distinct mums or sims. Calculating s±Ngen
and e±Ngen

for arbitrary pairs of conical designs

is beyond our present scope. In this connection let us note that the authors of [130][195][132][196] do not
calculate them either (although [130][195][132] do calculate a bound for s+

Ngen
) valid for pairs of mums or

sims having the same contraction parameter, extended in [196] to pairs of mums having different contraction
parameters).

Liu et al. [196] consider the application of mums to multipartite entanglement. However, they do not
show that their bound is violated for any non-separable states.

Shen et al. [197] consider detection criteria which are nonlinear in the density matrix: specifically, they are
quadratic in the design probabilities. It is easily seen that their criteria generalize to the statements that,
for any conical 2-design, and any separable density matrix ρ, the following quantities are both bounded
above by the same constant∣∣∣Tr

(
N(ρ− ρ1 ⊗ ρ2)

)∣∣∣ ≤ k−√(1− Tr(ρ2
1)
)(

1− Tr(ρ2
2)
)

(4.140)∣∣∣Tr
(
NPT(ρ− ρ1 ⊗ ρ2)

)∣∣∣ ≤ k−√(1− Tr(ρ2
1)
)(

1− Tr(ρ2
2)
)
, (4.141)

with ρj is the reduced density matrix for the jth subsystem. It is easily verified that every entangled state
detected by the linear criterion

Tr(ρNPT) > s+
NPT (4.142)
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is also detected by the corresponding quadratic criterion expressed in Eq. (4.140). On the other hand there
exist states which are detected by the linear criterion

Tr(ρN) < s−N (4.143)

but which are not detected by the corresponding quadratic criterion expressed in Eq. (4.141). Consider,
for instance, the entangled Werner state [199]

ρW =
2(1− p)
d(d+ 1)

Πsym +
2p

d(d− 1)
Πasym,

1
2 < p ≤ 1 (4.144)

The linear criterion involving N in Eq. (4.142) detects the entanglement for all values of p whereas the
quadratic criterion only detects it for p > (d − 1)/d. This does not conflict with Shen et al.’s analysis
because they do not consider the possibility of detection from below.

The witnesses corresponding to N and NPT in Eq. (4.134) are

N − s−N1d ⊗ 1d = k−W (4.145)

s+
NPT1d ⊗ 1d −NPT = k−

(
I − d|Φ+〉〈Φ+|

)
(4.146)

The fact that these are witnesses is, of course, well known (see, e.g., Example 3.1 in [204]; Eq. (28) in
[205]). The novelty of [130][195][132][196] is that they show that the witnesses have simple expressions in
terms of the probabilities obtained from local measurements. The simplicity of the expressions means that
they have an obvious theoretical interest. They also have obvious experimental interest. Indeed, obtaining
the probabilities empirically amounts to performing full-state tomography5; however, with expressions for
well known entanglement monotones in given in terms of probabilities for measurement outcomes, one can
calculate these witnesses directly from emperical data, and thus avoid errors introduced by the additional
processing entailed in finding the best-fit quantum states.

To summarize, we have shown in the previous section that a well known entanglement monotone has a
simple expression in terms of design probabilities while [130][195][132][196] have done the same for two
well-known entanglement witnesses. The crucial difference is that Theorem 4.2.1 gives a condition which
is both necessary and sufficient for a given povm to be a conical 2-design, whereas continuity means that
the inequalities s−N > e−N , s+

NPT < e+
NPT will remain valid even after the {E1, . . . , En} have been signifi-

cantly and randomly perturbed. Consequently, the inequalities proved in [130][195][132][196] can detect
entanglement for a wide variety of povms which are not conical 2-designs. In that sense the connection
we exhibit, between designs and entanglement, is tighter than the one exhibited in [130][195][132][196].

4.4 Invariant States and Designs

It is to be observed that, up to normalization, the right-hand sides of Eq. (3.43) and Eq. (3.44) are, respec-
tively, separable Werner states [199], and separable isotropic states [206]. This merits a little discussion.

A Werner state is one of the form
ρW = Πsymks + Πasymka (4.147)

5It is to be observed, however, that one may be able to truncate the design and still have an entanglement witness (as is
shown in Appendix A of Spengler et al. [130] for mubs). As Spengler et al. note this may be experimentally useful, especially
when d is large.
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with

ks =
2(1− p)
d(d+ 1)

, (4.148)

ka =
2p

d(d− 1)
, (4.149)

for some p ∈ [0, 1]. The state is entangled if and only if p ∈ (1/2, 1]. The entangled states are the ones of
most interest since, in addition to Werner’s original motivation, it can be shown [206] that the existence of
bound-entangled npt states is equivalent to the existence of bound-entangled Werner states. The existence
of the latter is still an open question, but there are indications [207][208] that the entanglement becomes
bound as one approaches the cross-over point at p = 1/2. As we remarked in the introduction conical
designs can be used to provide simple decompositions of all Werner states, both separable and entangled
(although it remains to be seen how interesting they are). However, we will here confine ourselves to the
point, which is already apparent from the definition, that they provide simple convex decompositions of
some of the separable states. In this connection let us observe that, although less interesting, the problem
of decomposing a separable Werner state is not straightforward, and has attracted some notice in the
literature [209][210][211]. Conical 2-designs cast additional light on the problem.

Let us define a symmetric convex decomposition of a separable Werner state to be one of the form

ρW =

m∑
j=1

(ρj ⊗ ρj)λj (4.150)

where ρj ∈ Q(Hd), λj ∈ (0, 1] and
∑
j λj = 1. We will say that the decomposition is homogeneous if

λj = 1/m for all j, and that it is pure if the ρj are all pure. It follows from Theorem 3.3.1 that ρW does not
have a symmetric convex decomposition if ks < ka or, equivalently, if p > (d− 1)/(2d). If p = (d− 1)/(2d)
then ρW is the maximally mixed state, so the existence of a symmetric convex decomposition is trivial.
If p < (d − 1)/(2d) then Eq. (4.150) is equivalent to the statement that the operators Aj = ρj

√
λj are a

conical 2-design.

Theorem 3.4.4 establishes that homogeneous conical 2-designs exist for all d and all κ ∈ (0, 1]. We conclude
that a separable Werner state has a symmetric convex decomposition if and only if 0 ≤ p ≤ (d− 1)/(2d).
Furthermore, if p is in this interval the decomposition can always be chosen to be homogeneous. Finally,
Proposition 3.3.3 that a conical design is rank 1 if and only if ka = 0 (in which case it is essentially the
same thing as complex 2-projective design.) So ρW has a pure symmetric convex decomposition if and
only if p = 0.

We have thus shown that the interval 0 ≤ p ≤ 1/2 splits into two sub-intervals separated by the maximally
mixed state at p = (d− 1)/2d. States in the sub-interval 0 ≤ p ≤ (d− 1)/(2d) do have symmetric convex
decompositions; states in the subinterval (d − 1)/(2d) < p ≤ 1/2 do not. One motivation for studying
separable Werner states is the hope that, by looking at the states immediately below the cross-over at
p = 1/2, one may get some insight into the bound-entangled states conjectured to exist just above it.
From this point of view the most interesting feature of our discussion is the negative statement, that states
immediately below the cross-over cannot be put into the simple form of Eq. (4.150).

In the case p < (d − 1)/(2d) we define an ideal convex decomposition to be one which is symmetric,
homogeneous and such that m achieves its minimum value of d2. A homogeneous conical 2-design is a

63



povm up to rescaling, so we can use Theorem 3.3.6 to conclude that an ideal convex decomposition must
be of the form

ρW =

d2∑
j=1

Ej ⊗ Ej (4.151)

where the Ej constitute a sim. In view of our discussion in Section 3.4 this gives us the following refor-
mulation of the sic-existence problem: A sic exists in dimension d if and only if every Werner state with
0 ≤ p < (d− 1)/2d has an ideal convex decomposition.

Conical 2-designs can also be used to give simple decompositions of a subset of the isotropic states intro-
duced in [206]. An isotropic state is one of the form

ρI =
1− F
d2 − 1

I +
d2F − 1

d2 − 1
|Φ+〉〈Φ+| (4.152)

with F ∈ [0, 1] and |Φ+〉 the maximally entangled state defined in Eq. (3.41). They are separable for
F ∈ [0, 1/d] and entangled for F ∈ (1/d, 1] (they are not, however, bound-entangled for any value of F ).
We define a symmetric convex decomposition of an isotropic state to be one of the form

ρI =

m∑
j=1

(ρj ⊗ ρj)λj (4.153)

where ρj ∈ Q(Hd), λj ∈ (0, 1], and
∑
j λj = 1. Symmetric convex decompositions of isotropic states are

in bijective correspondence with symmetric convex decompositions of Werner states. In fact, let

Πsymks + Πasymka =
∑
j

(ρj ⊗ ρj)λj (4.154)

be a symmetric convex decomposition of a Werner state with p in the interval [0, (d− 1)/(2d)]. Taking the
partial transpose on both sides gives

k+I + dk−|Φ+〉〈Φ+| =
∑
j

(ρj ⊗ ρj)λj (4.155)

where k± = (ks ± ka)/2. The fact that 0 ≤ p ≤ (d − 1)/(2d) means 1/(d(d + 1)) ≤ k+ ≤ 1/d2. So
we obtain in this way a symmetric convex decomposition of every isotropic state with 1/d2 ≤ F ≤ 1/d.
Reversing the argument it can be seen that, if one had a symmetric convex decomposition of an isotropic
state with 0 ≤ F < 1/d2, then taking the partial transpose would give a symmetric convex decomposition
of a Werner state with (d− 1)/(2d) < p ≤ 1/2—which we have shown to be impossible.

Similarly to the Werner case, we see that the interval 0 ≤ F ≤ 1/d corresponding to the separable states
splits into two sub-intervals, situated either side of the maximally mixed state at F = 1/d2. States in
the sub-interval 1/d2 ≤ F ≤ 1/d do have symmetric convex decompositions; states in the sub-interval
0 ≤ F < 1/d2 do not. The difference with the Werner case is that it is now the states with a symmetric
convex decomposition which lie next to the set of entangled states.
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“You gotta stop and think about it, to really get the pleasure
about the complexity — the inconceivable nature of nature.”

—Richard P. Feynman
BBC, “Fun to Imagine” (1983)

Chapter 5

Conclusion (Part I)

Quantum state space is almost inconceivably vast. When the underlying Hilbert space dimension d is
larger than two, the compact convex set of quantum states Q(Hd) is a highly intricate geometric body
within the ambient real vector space of self-adjoint linear endomorphisms Lsa(Hd). The family of all
such shapes {Q(Hd) |d ∈ N≥2} encapsulates the essence of quantum theory in its entirety. Indeed,
quantum effects constitute those regions below unit trace hyperplanes in the homogeneous self-dual cones
Lsa(Hd)+ generated by quantum state spaces; moreover, when d is a composite number, Q(Hd) can itself
be viewed as a set of quantum channels via the Choi-Jamio lkowski isomorphism. The case of composite
d is also especially interesting in light of entanglement. If we are to fully grasp quantum theory, we must
therefore understand these shapes. In all cases, Q(Hd) is d2 − 1-dimensional. This quadratic scaling with
the Hilbert space dimension means that the shape of quantum state space is well beyond the scope of
everyday intuition, even in the simplest nontrivial case d = 3. In Part I of this thesis, we have developed
a deeper understanding of these mysterious bodies. A novel variety of symmetric subshapes has emerged.

In Chapter 3 we introduced a new class of geometric structures in quantum theory, conical designs, which
are natural generalizations of projective designs. We showed that symmetric informationally complete
quantum measurements (sims) and mutually unbiased quantum measurements (mums) are special cases,
as are weighted projective designs (up to rescaling). We began by establishing the basic properties of
conical 2-designs. In particular we gave five equivalent conditions for a subset of a quantum cone to
be a conical 2-design (Theorem 3.3.1). We then turned to the special case of homogeneous conical 2-
designs, and analyzed their Bloch geometry. In the Bloch body picture sims and full sets of mums form
simple, highly symmetric polytopes (a single regular simplex in the case of sims; the convex hull of a set
of orthogonal regular simplices in the case of mums). We showed that the same is true of an arbitrary
homogeneous conical design. Moreover, we derived necessary and sufficient conditions for a given polytope
to be such a design (Theorem 3.4.2 and Theorem 3.4.4). We also showed how the problem of constructing
a homogeneous two-design in a complex vector space reduces to the problem of constructing a spherical
one-design in a higher dimensional real vector space (Theorem 3.5.1).

In Chapter 4 we showed that conical designs are deeply implicated in the description of entanglement. We
showed that a povm is a conical 2-design if and only if there is a regular entanglement monotone which
is a function of ‖~p‖. We went on to extend the results in [130][195][132][196][197], and to compare them
with our Theorem 4.2.1. In particular we showed that there is a natural way to construct entanglement
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witnesses out of an arbitrary conical design. However, the connection between witnesses and designs is less
tight than the one between monotones and designs, in the sense explained in the last section. Our work
naturally suggests the question, whether there are similar connections between multipartite entanglement
and conical t-designs with t > 2.

There are other questions which might be interesting to investigate. Firstly, there is our suggestion in
Section 3.5, that the results there proved could be used to search systematically for new projective designs.
Secondly, all known examples of sics and full sets of mubs have important group covariance properties
[158]. One would like to know how far this holds true in the more general setting of homogeneous conical
designs. Thirdly, one would like to extend the analysis to conical t-designs with t > 2 via Schur-Weyl
duality. Fourthly, it is to be observed that the full class of conical 2-designs is itself a convex set. It
might be interesting to explore the geometry of that set. For instance, one might try to characterize the
extreme points. Finally, it would be interesting to investigate conical designs in the larger context of
general probabilistic theories [49].
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“Beyond the horizon of the place we lived when we were young
In a world of magnets and miracles
Our thoughts strayed constantly and without boundary
The ringing of the division bell had begun.”

—Pink Floyd
High Hopes (1994)

Chapter 6

Interlude

On the third day of December 1919, an article with the headline “Einstein Expounds His New Theory” was
published in the New York Times [212]. Of the aforementioned article’s subheadlines, one was particularly
apt: “Improves on Newton.” Indeed, history provides a rich library of cases wherein firmly established
scientific notions were revolutionized by deep new insights into nature. In some cases, the status quo
has been abandoned altogether: consider, for instance, the death toll of the Michelson-Morley experiment
[213] for the luminiferous Ether, or the fall of geocentrism during the Copernican revolution [214]. In other
cases, pre-existing physics was enveloped within a more general framework for understanding nature; the
old became a special case of the new. In fact, Newton’s law of universal gravitation falls out of Einstein’s
general relativity in the limit of small gravitational potentials [215], and classical probability theory can
be viewed as a subset of quantum theory by considering diagonal states and effects. These stark examples
point to the fluidity of physics, which is subject to the flux of novel ideas and new observations.

Remarkably, and some might even say shockingly, a century of careful experiments has yet to produce
a single observation standing in significant conflict with quantum theory — we stand with no analogue
to the ultraviolet catastrophe, nor the perihelion of Mercury. Could it be that we have reached the end
of physics? The absurdity of this question is easily established. Obviously, to borrow Feynman’s words
recalled in Chapter 1 [45] “. . . we know that we do not know all the laws as yet”; hence, the enterprise of
quantum gravity programs seeking to reconcile quantum theory and general relativity. Furthermore, the
history of physics alone suggests that we ought to remain alert and prepared for an experiment that will
shake quantum theory to its core. At the very least, it is virtually inconceivable that quantum theory shall
escape the same fate of past physical theories that were enveloped by more general frameworks. A serious
question, then, concerns exactly where and how nature will force us to depart from quantum theory.

Quantum theory is situated within a vast landscape of general probabilistic theories, which are also known
as foil theories [216]. Present experiments do not point us in any particular direction as we seek to depart
from the comfort of quantum theory. We are thus left with the power of thought, at least for now. A most
beautiful example of the power of thought is given by Einstein’s prediction [217] for Sir Arthur Eddington’s
famous observation [218] of the deflection of light by the Sun. Einstein’s revolutionary prediction was of
course born from a revolutionary physical theory. Why has general relativity been so successful? A partial
answer is that Einstein founded his theory of general relativity on deep physical principles. Recently,
there has been much interest in singling out deep physical principles for the foundation of quantum theory.
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The information-theoretic axiomatizations in [55][56][57][58][59] that we pointed out in Chapter 1 are
representative of this program seeking to pinpoint quantum theory within the ‘forest of foil theories,’
as it were. Relaxing various axioms in such derivations of quantum theory is a natural way to identify
foil theories with a solid conceptional basis. In particular, relaxing axioms regarding composite physical
systems in [55][56][57][58][59] naturally suggests the foil theory known as real quantum theory. Simply put,
real quantum theory is the restriction of quantum theory wherein scalars are taken from the field R of
real numbers, instead of the complex field C. Real quantum theory does not enjoy tomographic locality,
which to remind the reader means that local measurements on components of a composite system do not
suffice to determine a unique global state in real quantum theory. Instead, real quantum theory is bilocally
tomographic [219]: joint measurements on bipartite subsystems of a composite system suffice to determine
a unique global state. A related fact is that, in real quantum theory, entanglement is not monogamous
[220]. Real quantum theory does, however, retain some important features of quantum theory, such as the
superposition principle, the existence of maximally entangled states, and the absence of Sorkin’s third-
order interference [221]. Furthermore, the lattices of unit rank projectors in real quantum theory are as in
quantum theory, i.e. nondistributive and orthomodular [222].

The real field R and the complex field C have a well known cousin: the quaternions H. Strictly speaking,
the quaternions form a ring, because quaternionic multiplication is not commutative. Any quaternion
h ∈ H can be written in terms of its constituents a0, a1, a2, a3 ∈ R and the quaternionic basis elements
{1, i, j, k} as h = 1a0 + ia1 + ja2 + ka3 where

i2 = j2 = k2 = ijk = −1. (6.1)

Naturally, one can imagine a foil theory formulated by allowing scalars from the complex field C in quantum
theory to be replaced by quaternions. One has to be careful. There are severe problems if one näıvely allows
for quaternionic scalars whilst retaining the balance of the formalism of quantum theory. For instance,
even at the level of single systems, the usual Born rule breaks down in this näıve formulation [223]. At
the level of composite systems, one runs into serious trouble as well, because the Kronecker product of
two self-adjoint quaternionic matrices need not be self-adjoint [224]. The former issue, that of the Born
rule, can be completely rectified. The solution given by the author in [223] rests on the observation that
self-adjoint quaternionic matrices form a Jordan algebra (see Definition 7.2.3); furthermore, within this
context, the author’s MSc thesis [224] details quaternionic quantum theory at the level of single systems.

The framework of Jordan algebras is central in recent derivations of quantum theory given by Barnum-
Müller-Ududec [54] and Wilce [225][226][227]. Relaxing the fourth postulate expounded by Barnum-Müller-
Ududec yields, in particular, quaternionic quantum theory at the level of single systems. The derivations
given by Wilce also yield, in particular, quaternionic quantum theory at the level of single systems. As with
real quantum theory, we thus have solid conceptual principles pointing to quaternionic quantum theory
within the forest of foil theories. Unlike real quantum theory, however, an explicit description of composite
physical systems in quaternionic quantum theory has remained unknown. One major contribution of Part II
is a complete resolution [3][4] of this so-called ‘tensor product problem.’ In fact, we accomplish more: we
unite all three quantum theories (real, complex, and quaternionic) within a common framework. This
naturally opens a novel avenue of research pertaining to the characteristics of composites in quaternionic
quantum theory in particular, as well as all ‘hybrid’ composites. From one perspective, we view these
particular results as providing a testbed for new physics founded on solid conceptual principles. For
instance, perhaps one could render the vague idea of a ‘tomographic locality witness’ precise, and propose
an experimental test. From another perspective, we view these results as providing a rigorous foil theory
to improve our understanding of quantum theory itself.
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The Spekkens toy theory introduced by Spekkens in [228] is a foil theory that has played a central role
in understanding the foundations of quantum theory in the light of quantum information [229]. Many1

features of quantum theory are found to have analogues within the Spekkens toy theory, which is defined
by an epistemic restriction: given a maximal state of knowledge concerning a physical system, there are
an equal number of questions about the physical system in question that are answered and unanswered.
The long list of features common to quantum theory and the Spekkens toy theory supports an epistemic
interpretation of the quantum state. This particular way of thinking about quantum states is not new
per se; although, it has certainly been a cornerstone for quantum foundations in the past decade, wherein
remarkable progress has been made towards understanding quantum theory as a theory of information.
The Spekkens toy theory does not reproduce violations of Bell inequalities, nor the existence of a Kochen-
Specker theorem. Consequently, this particular foil theory is not a suitable candidate to build on quantum
theory to predict new physics. Of course, Spekkens never claimed such a purpose. What is important
to observe is that the existence of his foil theory has shed tremendous light on quantum theory. Our foil
theories based on Jordan algebras hope to serve a purpose along these lines as well.

We drew the reader’s attention to category theory in Chapter 1. Within the framework of category theory
(to be formally introduced in Section 7.1), Coecke and Edwards showed the Spekkens toy theory can
be viewed as a category: Spek [230]. Furthermore, Coecke and Edwards proved that Spek is a proper
subcategory of FRel. The precise definition of these categories is not necessary for us to recall. What is
crucial to point out, however, is that FRel and its subcategory Spek are dagger compact closed categories
(see Definition 7.1.11), just like quantum theory aka the category CPM(FdHilb). Once again, we have
therefore met foil theories, i.e. FRel and Spek, that share features with quantum theory. Specifically
these theories admit the same abstract compositional structure of quantum theory, i.e. that of a dagger
compact closed category. It has remained an open question as to whether there exist additional foil theories
structured as dagger compact closed categories. A major result in Part II is our construction of the dagger
compact closed category InvQM aka our unification of real, complex, and quaternionic quantum theories.

We now draw the reader’s attention to the following fact. In any dagger compact closed category, there
exists an isomorphism between the sets of morphisms aka physical process between objects aka physical
systems A and B and bipartite states on the composite system AB. A formal proof of this fact, accom-
panied by all of the mathematical definitions can be found in the PhD thesis of Duncan [231] (specifically
see Duncan’s Lemma 2.21.) This isomorphism is manifest in quantum theory as the Choi-Jamio lkowski
isomorphism. Therefore, in light of our Theorem 9.2.19, InvQM enjoys such an isomorphism. We thus
establish that the usual Choi-Jamio lkowski isomorphism in quantum theory carries over to our unified
framework for real, complex, quaternionic quantum theories. Put otherwise, our unified theory enjoys
channel-state duality. In [58], Chiribella-D’Ariano-Perinotti prove that channel-state duality is in fact
a consequence of their purification postulate for general probabilistic theories. In this sense, the dagger
compact closed structure of InvQM is motivated by a single physical principle. Additionally, in [232],
Bartlett-Rudolph-Spekkens show that Gaussian quantum mechanics (wherein channel-state duality holds)
follows from Liouville mechanics with an epistemic restriction. Channel-state duality in general, therefore,
is a feature pointed to by physical principles.

We now move to Part II. The end result is Theorem 9.2.19. Along the way we shall meet various aspects
of Jordan algebras and discover the behaviour of composite systems in our R-C-H post-quantum theory.

1For instance [228]: “. . . the noncommutativity of measurements, interference, the multiplicity of convex decompositions
of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the
distinction between bi-partite and tri-partite entanglement, the monogamy of pure entanglement, no cloning, no broadcasting,
remote steering, teleportation, dense coding, mutually unbiased bases . . . ”
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Part II

Categorical Jordan Algebraic
Post-Quantum Theories
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“The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve.”

—Eugene Wigner
The Unreasonable Effectiveness of

Mathematics in the Natural Sciences (1960)

Chapter 7

Setting the Stage (Part II)

Einstein’s principles for special relativity can be phrased in ordinary language, in an incredibly simple
way: the speed of light is constant, and physics is too. Naturally, those who wish to seriously study
the subject of special relativity must then be introduced to mathematical notions such as the Minkowski
metric, the Lorentz transformations, the Poincaré group, and so on. Of course, mathematics plays an
absolutely crucial role in rigorous formulations of theoretical physics. This is not to say, however, that the
two are synonymous. Mathematics and theoretical physics instead enjoy a rich interplay: revolutionary
physical postulates prompt the development of new mathematics, and the development of new mathematics
furnishes frameworks for novel physical theories. For instance, category theory initially arose within the
context of pure mathematics [60], only to much later become a complete framework for the formulation of
quantum theoretic information processing protocols [64]. Reciprocally, Abramsky and Coecke’s full theory
of categorical quantum mechanics [233] returned the novel notion of a dagger compact closed category1

to pure mathematics. Transparently, our technical work in Chapter 8 and Chapter 9 provides a concrete
example of new mathematics inspired by quantum physical theory as formulated by Abramsky and Coecke.
Accordingly, in this introductory chapter, we review prerequisite elements of category theory in Section 7.1.
The composites and categories constructed in the sequels are based on Euclidean Jordan algebras, hence
our review of Jordanic preliminaries in Section 7.2. We close this chapter by recalling technical tools from
the theory of universal representations of Euclidean Jordan algebras in Section 7.3.

Ultimately, for motivation of our technical work, we return to physics. The net result of our mathematics is
a novel physical theory uniting quantum theory and post-quantum theories over the real number field R and
quaternionic division ring H. At the level of single systems, such theories were recently pinpointed by the
information-theoretic axioms expounded by Barnum-Müller-Ududec in [54]. For quaternionic quantum
theories, however, the formulation of a theory involving physical composites has remained elusive ever
since the first formulation by Finkelstein et al. [234]. Our novel Jordanic categories resolve this issue. Our
motivations run deeper than simply completing the R-C-H program. Indeed, the twin pillars of modern
physics may arise from a deeper, common level of physical principles. Holding nonsignaling sacrosanct, our
categorical Jordan algebraic post-quantum theories expand the perimeter encompassing quantum theory
within the vast landscape of all general probabilistic theories [49], establishing a new realm for the discovery
of novel physical ideas. We now proceed with our technical program, holding these thoughts in mind.

1In [233], Abramsky and Coecke use term strongly compact closed categories. We follow Selinger’s convention [65].
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7.1 Elements of Category Theory

Category theory provides a rich foundation for modern mathematical science. The standard reference text
is Mac Lane’s Categories for the Working Mathematician [63]. Coecke and Paquette’s Categories for the
Practising Physicist [235] presents a thorough review of category theory in the context of quantum physics.
There also exist very deep PhD theses in quantum information with extensive introductions to category
theory, in particular [231][236][237][238]. In this section, we collect categorical prerequisites for the sequel.

Definition 7.1.1 A metagraph C consists of two classes: ob
(
C
)
3 A,B,C, . . ., and hom

(
C
)
3 f, g, h, . . .;

together with two functions dom : hom
(
C
)
−→ ob

(
C
)

and cod : hom
(
C
)
−→ ob

(
C
)
.

We remind the reader that the notion of a class is [239] more general than the notion of a set (for instance,
the collection of all sets is not itself a set.) The elements of ob(C ) are referred to as objects, and the elements
of hom(C ) are referred to as morphisms. One writes hom(A,B) for the collection of all morphisms from
A to B. The framework of metagraphs provides a graphical calculus, wherein one depicts a morphism f
with objects A = dom(f) and B = cod(f) as follows

A
f−→ B (7.1)

Definition 7.1.2 A category consists of a metagraph C together with a function

id : ob
(
C
)
−→ hom

(
C
)

:: A 7−→ 1A where 1A : A −→ A, (7.2)

and a function named composition, denoted ◦ and defined via

◦ :
{

(f, g) ∈ hom
(
C
)
× hom

(
C
)
| dom(g) = cod(f)

}
−→ hom

(
C
)
, (7.3)

where ◦(f, g) is written g ◦ f : dom(f) −→ cod(g) and such that the following diagrams commute2:

A
f
//

f
��

B

1B
��

g

��

B
g
// C

(7.4)

A
f
//

g◦f
��

B

g

��

C

(7.5)

A
h◦(g◦f)=(h◦g)◦f

//

f

��
g◦f ((

D

B
g

//

h◦g 66

C

h

OO (7.6)

The commutative diagrams in Eq. (7.4), Eq. (7.5), and Eq. (7.6) impose, respectively: left-right neutrality
of the identity morphisms; compositional stucture; and associativity. For example, Set, the category with
objects all sets and morphisms all suitably defined functions thereof, enjoys these properties.

2A diagram is said to commute when all directed paths from object A to object B yield equivalent action via composition.
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A functor is, crudely speaking, a morphism of categories. Formally, one has the following.

Definition 7.1.3 Let C ,D be categories. A covariant functor F : C −→ D is defined by two functions,
both denoted F for notational simplicity, such that ∀A ∈ ob(C ) and ∀f, g ∈ hom(C )

F : hom
(
C
)
−→ hom

(
D
)

:: f 7−→ F(f) where F(f) :: F
(
dom(f)

)
7−→ F

(
cod(f)

)
, (7.7)

F : ob
(
C
)
−→ ob

(
D
)

:: A 7−→ F(A), (7.8)

such that

F(1A) = 1F(A), (7.9)

F(g ◦ f) = F(g) ◦ F(f). (7.10)

A contravariant functor G : C −→ D is defined by two functions, both denoted G for notational simplicity,
such that ∀C ∈ obC and ∀h, l ∈ homC

G : hom
(
C
)
−→ hom

(
D
)

:: h 7−→ G(h) where G(h) :: G
(
cod(h)

)
7−→ G

(
dom(h)

)
, (7.11)

G : ob
(
C
)
−→ ob

(
D
)

:: C 7−→ G(C), (7.12)

such that

G(1C) = 1G(C), (7.13)

G(h ◦ l) = G(l) ◦ G(h). (7.14)

Phrased more informally, a functor maps commutative diagrams in C to commutative diagrams in D , with
covariant ones preserving the directionality of arrows and contravariant ones reversing them. We shall be
particularly interested in functors of product categories, which are defined as follows.

Definition 7.1.4 Let C1,C2 be categories. The product category C1 × C2 is the category with

ob
(
C1 × C2

)
≡ ob

(
C1

)
× ob

(
C2

)
(7.15)

hom
(
C1 × C2

)
≡ hom

(
C1

)
× hom

(
C2

)
, (7.16)

wherein for all suitably composable morphisms

(f1, f2) ◦ (g1, g2) ≡ (f1 ◦ g1, f2 ◦ g2), (7.17)

and wherein ∀A1 ∈ obC1 and ∀A2 ∈ obC2

1(A1,A2) ≡ (1A1
, 1A2

). (7.18)

Definition 7.1.5 A bifunctor is a functor with domain a product category.

For example, the category FdHilb — with objects all finite dimensional complex Hilbert spaces and
morphisms all linear functions thereof — is the range of the usual tensor product bifunctor, that is ⊗ :
FdHilb×FdHilb −→ FdHilb, where the definition of⊗ is as given in Definition 2.1.8. The tensor product
bifunctor enjoys many nice properties, which can be described in terms of morphisms on iterations of the
functor itself. We shall require the notion of natural transformations to render such a discussion precise.
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A natural transformation is, crudely speaking, a morphism of functors. Formally, one has the following.

Definition 7.1.6 Let F,G : C −→ D be covariant functors. A natural transformation τ : F −→ G is

τ : ob
(
C
)
−→ hom

(
D
)

:: A 7−→ τA ::: F(A) −→ G(A) (7.19)

such that the following diagram commutes for all suitable dom(f) = A
f−→ B = cod(f) in C

F(A)
F(f)

//

τA

��

F(B)

τB

��

G(A)
G(f)

// G(B)

. (7.20)

The functions τA and τB are called components. A natural isomorphism is a natural transformation such
that

∃τ−1 : G −→ F :: τA ◦ τ−1
A = 1F(A) and τ−1

A ◦ τA = 1G(A). (7.21)

The formal notions of category, functor, and natural transformation can be eloquently summarized in the
following informal diagram due to Baez and Dolan [240]:

♦

{{

��

♦

..

00

��

D

τ

��

♦

��

F
00

♦

{{
♦

..

00

C

♦

G
00

♦

{{
♦

..

00

D

♦

(7.22)

Categories admit a natural physical interpretation, wherein objects correspond to physical systems and
morphisms correspond to physical processes. This line of thinking has been explored extensively within the
field of categorical quantum mechanics [64][233]. One revolutionary insight derived in this vein is that the
compositional structure of quantum theory is precisely that of a symmetric monoidal category [241][242];
moreover one that is dagger compact closed [65]. We shall now formally define these notions.

Definition 7.1.7 A dagger category is a category C equipped with a contravariant strictly involutive
identity-on-objects endofunctor † : C −→ C :: f 7−→ f†, that is ∀A ∈ ob(C ) and ∀f ∈ hom(C )

†(A) = A, (7.23)

†
(
† (f)

)
= f. (7.24)

A unitary morphism is f ∈ homC such that

† (f) ◦ f = 1dom(f) = f ◦ †(f). (7.25)

A self-adjoint morphism is f ∈ homC such that

† (f) = f . (7.26)
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One way to meet the following definition is to think of � as a “tensor product” and overlay a mental ‘⊗’.

Definition 7.1.8 A symmetric monoidal category is a septuple, (C , I,�, α, λ, ρ, σ) where C is a category
as in Definition 7.1.2; I ∈ ob

(
C
)

is a distinguished monoidal unit; � : C × C → C is a bifunctor as in
Definition 7.1.5; and α, λ, ρ, σ are natural isomorphisms as in Definition 7.1.6 with components

αA,B,C : �
(
A,�(B,C)

)
−→ �

(
�(A,B), C

)
(7.27)

λA : A −→ �(I, A) (7.28)

ρA : A −→ �(A, I) (7.29)

σA,B : �(A,B) −→ �(B,A) (7.30)

such that the following diagrams commute

�
(
�
(
A,B

)
,�
(
C,D

))
α
A,B,�

(
C,D

)
))

�
(
�
(
�(A,B), C

)
, D
)

α
�

(
A,B

)
,C,D

55

�
(
αA,B,C ,1D

)
��

�
(
A,�

(
B, (�(C,D)

))

�
(
�
(
A,�(B,C)

)
, D
) αA,�(B,C),D

// �
(
A,�

(
�(B,C), D

))�
(

1A,αB,C,D

) OO

(7.31)

(
�
(
A, I
)
, B
)

αA,I,B
// �
(
A,�

(
I, B

))
�
(

1A,λ
−1
B

)
xx

�
(
A,B

)�
(
ρA,1B

)ff

(7.32)

�
(
A,�(B,C)

) αA,B,C
//

αA,B,C

��

�
(
�(A,B), C

) σ�(A,B),C
// �
(
C,�(A,B)

)
αC,A,B

��

�
(
A,�(C,B)

)
α−1(A,C,B)

// �
(
�(A,C), B

)
�
(
σA,C ,1C

)// �(�(C,A), B
)

(7.33)

�(A,B)
1�(A,B)

%%

σAB

����

�(B,A)
σBA
// �(A,B)

(7.34)

A

ρA

��

λA

yy

�(I, A) �(A, I)
σA,I
oo

(7.35)
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Eqs. (7.31),(7.32),(7.33),(7.34), and (7.35) are the coherence conditions for a symmetric monoidal category.
The natural isomorphisms α and σ are given special names: the associator and the symmetor, respectively
(the latter is not conventional.) The bifunctor � also receives a special name: the monoidal product. A
very deep result in category theory is that the coherence conditions guarantee that any diagram, with edges
permuted instances of the monoidal product and edges permuted expansions of instances of the associator
and the symmetor, commutes. This is the content of Mac Lane’s celebrated coherence theorem [243].

The category FdHilb equipped with the usual tensor product ⊗ is a symmetric monoidal category with
monoidal unit C and the obvious natural isomorphisms. Moving one level higher in quantum abstrac-
tion, the category CPM(FdHilb) with objects again finite dimensional complex Hilbert spaces and mor-
phisms completely positive linear homomorphisms thereupon is a symmetric monoidal category, where the
monoidal product and monoidal unit are inherited from FdHilb, and where the natural isomorphisms are
again obvious in light of the underlying Hilbert space isomorphisms. On this view, quantum theory is,
in a certain sense, a symmetric monoidal category. This precise mathematical statement expounds the
compositional structure of quantum theory. The usual adjoint provides CPM(FdHilb) with the structure
of a dagger symmetric monoidal category, whose definition we now promote to formal status.

Definition 7.1.9 A dagger symmetric monoidal category is an octuple (C , I,�, †, α, λ, ρ, σ), where the
septuple (C , I,�, α, λ, ρ, σ) is a symmetric monoidal category as in Definition 7.1.8, with the natural iso-
morphisms α, λ, ρ, σ unitary, and where the couple (C , †) is a dagger category as in Definition 7.1.7.

We now push forward with a categorical notion introduced by Kelly and Laplaza [244].

Definition 7.1.10 A compact closed category is a symmetric monoidal category (C , I,�, α, λ, ρ, σ) as
in Definition 7.1.8 where ∀A ∈ ob(C ) ∃A? ∈ ob(C ), ∃ηA, εA ∈ hom(C ) with ηA : I −→ �(A?, A) and
εA : �(A,A?) −→ I such that the following diagrams commute

A

1A

��

ρA // �(A, I)
�(1A,ηA)

// �
(
A,�(A?, A)

)
αA,A?,A

��

A �(I, A)
λ−1
A

oo �
(
�(A,A?), A

)
�(εA,1A)

oo

(7.36)

A?

1A?

��

ρA? // �(A?, I)
�(1A? ,ηA? )

// �
(
A?,�(A,A?)

)
αA?,A,A?

��

A? �(I, A?)
λ−1
A?

oo �
(
�(A?, A), A?

)
�(εA? ,1A? )

oo

(7.37)

Definition 7.1.11 A dagger compact closed category is a compact closed category as in Definition 7.1.10
equipped with the structure of a dagger category as in Definition 7.1.7 such that ∀A ∈ ob(C ) ηA =
σA,A? ◦ †(εA)

We will recall the dagger compact closed structure of quantum theory in Section 9.2. It will in fact be
useful for us to accomplish this task within a more general framework connected to the algebras to be
discussed in the following section.
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7.2 Jordan Algebraic Prerequisites

The notion of a Jordan algebra originated in the seminal paper of Pascual Jordan [245] (see also Pascual
Jordan, John von Neumann, and Eugene Wigner [52].) Jordan Operator Algebras by Hanche-Olsen and
Størmer [246] is an indispensable resource for Jordanic theory. McCrimmon’s A Taste of Jordan Algebras
[247] is also very good, and provides a particularly beautiful review of the history of the subject. We also
point the reader to Alfsen and Shultz [248] and to an earlier monograph by Topping [249] for additional
enlightening perspectives. In this section, we collect elements of Jordanic theory required for the balance
of this thesis.

Definition 7.2.1 Let A be a set. Let F be a field. A vector space is a quadruple
(
A,F,+, ·

)
where A is

regarded as an abelian group with respect to addition + : A×A −→ A :: (a, b) 7−→ a+ b and a monoid with
respect to F-scalar multiplication · : A×F −→ A : (a, α) 7−→ aα. The addition and F-scalar multiplication
operations are required to satisfy the distributivity axioms: ·(a+b, α) = aα+bα and +(aα, aβ) = a(α+β).
Additionally, multiplication in F and F-scalar multiplication are required to commute: ·(aα, β) = a(αβ).
One says that

(
A,F,+, ·

)
is a vector space over F.

Definition 7.2.2 Let (A,F,+, ·) be a vector space. An algebra is a quintuple (A,F,+, ·,·) where A is
regarded to be equipped with multiplication · : A×A −→ A :: (a, b) 7−→ a·b. Multiplication is required to
obey the distributivity axioms: ·(a+b, c) = a·c+b·c and ·(a, b+c) = a·b+a·c and ·(aλ, bµ) = ·(a, b)λµ,
where λ, µ ∈ F. An algebra is said to be unital if there exists u ∈ A : ∀a ∈ A : ·(u, a) = a. An algebra is
said to be commutative if ∀a, b ∈ A : ·(a, b) = ·(b, a). One says that (A,F,+, ·,·) is an algebra over F,
or an F-algebra.

From now on, we abuse notation and write A for an F-algebra (A,F,+, ·,·).
Definition 7.2.3 A Jordan algebra is a commutative unital R-algebra A wherein ∀a, b ∈ A

(a·a)·(a·b) = a·((a·a)·b). (7.38)

Eq. (7.38) is the Jordan identity, in light of which we write a2 for a·a and similarly for higher exponentials.
For Jordan algebras, we shall refer to · as the Jordan product. Except for trivial cases: Jordan algebras
are not associative! The canonical example of a Jordan algebra is the set of n×n self-adjoint matrices with
entries from C, denoted Mn(C)sa, equipped with Jordan product a·b = (ab+ ba)/2, where juxtaposition
denotes usual matrix multiplication. The Jordan algebra Mn(C)sa is simply the ambient space for quantum
cones wherein one represents self-adjoint linear endomorphisms as matices. It is easy to see that Mn(C)sa

is of the following type.

Definition 7.2.4 A formally real Jordan algebra is a Jordan algebra A such that ∀a1, . . . , an ∈ A

a2
1 + a2

2 + · · ·+ a2
n = 0 ⇐⇒ a1 = a2 = · · · = an = 0. (7.39)

In this thesis, we will be exclusively concerned with finite dimensional Jordan algebras, that is Jordan
algebras A such that as a vector space dimRA is finite. In this case, formally real Jordan algebras are the
same as Euclidean Jordan algebras. We define the latter presently, and then proceed with a proof.

Definition 7.2.5 A Euclidean Jordan algebra (eja) is a finite dimensional Jordan algebra equipped with
an inner product 〈·|·〉 : A×A −→ R such that ∀a, b, c ∈ A

〈a·b|c〉 = 〈a|b·c〉. (7.40)
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Let A be an eja. Suppose there exists aj in A such that
∑
j a

2
j = 0. By virtue of being Euclidean, A

is endowed with an inner product 〈·|·〉, which in particular enjoys linearity so, 〈0|a〉 = 〈c0|a〉 = c〈0|a〉 for
any real number c and any a in A, so 〈0|a〉 = 0 for any a in A, in particular 〈0|1〉 = 0, with 1 the unit.
It follows that 〈

∑
j a

2
j |1〉 = 0. Now, by virtue of the Euclidean property expressed in Eq. (7.40), we have

that 〈a2
j |1〉 = 〈aj |aj〉, so to conclude we have that

∑
j〈aj |aj〉 = 0, implying each aj = 0, so A is formally

real. The converse is easy to show in light of the Jordan-von Neumann-Wigner Classification Theorem,
which we recall below as Theorem 7.2.6.

Prior to the statement of Theorem 7.2.6, it will be helpful to introduce some preliminary notions. By the
direct sum of two Jordan algebras A and B one means the Jordan algebra A ⊕ B spanned by aj ⊕ bj ,
with aj and bj basis elements for their respective Jordan algebras, equipped with component-wise Jordan
multiplication. By the words ‘Jordan isomorphic’ one means that there exists a vector space isomorphism
preserving the relevant Jordan products. More generally, a Jordan homomorphism is a linear map f :
A −→ B such that ∀a1, a2 ∈ A : f

(
a1·a2

)
= f(a1)·f(a2); furthermore f must map the algebraic unit of

A to the algebraic unit of B. The terms Jordan isomorphism, Jordan epimorphism, Jordan monomorphism,
Jordan endomorphism, and Jordan automorphism are used respectively for bijective, surjective, injective,
endomorphic, and automorphic Jordan homomorphisms.

Theorem 7.2.6 (Jordan-von Neumann-Wigner [52]) Let n ∈ N. Let k ∈ N>1. Let · : Rn × Rn −→ R
be the usual inner product on Rn. Let A be a finite dimensional formally real Jordan algebra. Then A is
Jordan isomorphic to a direct sum of Jordan algebras from the following list:

• Mn(R)sa with a·b = (ab+ ba)/2.

• Mn(C)sa with a·b = (ab+ ba)/2.

• Mn(H)sa with a·b = (ab+ ba)/2.

• Vk ∼= R⊕ Rk with (λ0 ⊕ ~λ)·(µ0 ⊕ ~µ) = (λ0µ0 + ~λ · ~µ)⊕ (~λµ0 + ~µλ0).

• M3(O)sa with a·b = (ab+ ba)/2.

where R,C,H,O are the reals, complexes, quaternions, and octonions, respectively, and wherein Mn(D)sa

denotes the Jordan algebra of n× n self-adjoint matrices over D ∈ {R,C,H,O}.

The algebras Mn(R)sa and Mn(C)sa are ubiquitous, and one should point out that by a self-adjoint real
matrix one means the same thing as a real symmetric matrix. A review of the algebras Mn(H)sa can be
found in the author’s MSc thesis [224]. As a matter of terminology, one refers to Mn(R)sa, Mn(C)sa, and
Mn(H)sa as the Jordan matrix algebras. The Jordan matrix algebras are easily rendered Euclidean by
virtue of the natural inner product (a, b) 7−→ 〈a|b〉 ≡ Tr(a·b), with Tr the matrix trace. The exceptional
Jordan algebra of 3× 3 self-adjoint matrices with octonionic entries can also be rendered Euclidean in this
way. Baez provides an accessible and comprehensive review of the octonions in [250]. The remaining items,
Vk, on the list in Theorem 7.2.6 are called spin factors, which for the reader’s convenience we discuss further
in Appendix B.1. The usual Euclidean inner product on the direct sum Rk ⊕ R renders Vk Euclidean.
Therefore, we shall now use the term Euclidean Jordan Algebra (eja) for the finite dimensional formally
real Jordan algebras equipped with the aforementioned inner products. The ejas listed in Theorem 7.2.6
are [251] simple in the following sense; moreover by Theorem 7.2.6 they are the only simple ejas.
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Definition 7.2.7 Let A be a Jordan algebra. A Jordan ideal is a Jordan subalgebra I ⊆ A such that
b ∈ I and a ∈ A implies that b·a ∈ I. A trivial Jordan ideal is I ⊆ A such that I ∈ {∅,A}; otherwise I is
nontrivial. A simple Jordan algebra is a Jordan algebra admitting no nontrivial Jordan ideals.

A projection in an eja A is an element a ∈ A with a2 = a. If p, q are projections with p·q = 0, then one
says that p and q are orthogonal. In this case, p+ q is another projection. A projection not representable
as a sum of other projections is said to be primitive. A Jordan frame is a set E ⊆ A of pairwise orthogonal
primitive projections that sum to the algebraic unit. The spectral theorem for ejas [252] asserts that
for every element a ∈ A there exists a Jordan frame {xj} and real numbers αj ∈ R such that a can
be expanded as the linear combination a =

∑
j xjαj . The group of Jordan automorphisms on A acts

transitively on the set of Jordan frames [252]. Hence all Jordan frames for a given eja A have the same
number of elements. This number is called the dimension of A, and is denoted dimRA. Simple counting
arguments yield

dimRMn(R)sa = n(n+ 1)/2, (7.41)

dimRMn(C)sa = n2, (7.42)

dimRMn(H)sa = n(2n− 1), (7.43)

dimRVk = k + 1, (7.44)

dimRM3(O)sa = 27, (7.45)

(7.46)

and so by Theorem 7.2.6, together with our forthcoming Eqs. (7.58),(7.59), and (7.60), it follows that

V2
∼= M2(R)sa, (7.47)

V3
∼= M2(C)sa, (7.48)

V5
∼= M2(H)sa, (7.49)

which with the trivial isomorphisms R ∼= M1(R,C,H)sa constitute the only redundancies in Theorem 7.2.6.
In order to discuss ejas in more detail, we shall require a brief foray into ordered vector spaces [253].

Let A be a vector space over R. Let K ⊆ A be a generating pointed convex cone as in Definition 2.1.1. In
this case, K induces a partial ordering of A, given by a ≤ b iff b− a ∈ K; this is translation invariant, i.e.
a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ A, and homogeneous, i.e. a ≤ b implies aα ≤ bα for all α ∈ R≥0.
Conversely, such an ordering determines a cone, namely K = {a |a ≥ 0}. Accordingly, an ordered vector
space is a vector space A over R equipped with a designated cone A+ of positive elements. If A and B

are ordered vector spaces, a linear function f : A −→ B is positive if and only if f(A+) ⊆ B+. If f is
bijective and f(A+) = B+, then f−1(B+) = A+, so thatf−1 is also positive. In this case, we say that f
is an order isomorphism. An order automorphism of A is an order isomorphism from A to itself; these
form the corresponding order automorphism group where the group operation is composition. Denoting
the dual space of A by A?, the dual cone, denoted A?+, is the set of positive linear functionals on A.

Definition 7.2.8 Let A be an ordered vector space over R. The cone A+ is self-dual when there exists
an inner product 〈·|·〉 : A×A −→ R such that the internal dual cone, A∗int

+ ≡ {a ∈ A | ∀b ∈ A+〈a|b〉 ≥ 0},
satisfies A∗int

+ = A+.

Definition 7.2.9 Let A be an ordered vector space over R. The cone A+ is homogeneous when its order
automorphism group acts transitively on its interior.
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We now recall a truly remarkable result proved independently by Koecher [50] and Vinberg [51].

Theorem 7.2.10 (Koecher [50] and Vinberg [51]) The only finite dimensional homogeneous self-dual
cones are the positive cones of the Euclidean Jordan algebras.

A very simple characterization of the positive cone of an eja A can [246] be given as follows: A+ is
precisely the set of squares of elements in A, which is to say that A+ = {a2 | a ∈ A}. One of our goals
is to construct composites in physical theories based on ejas. In order to accomplish this goal, we will
appeal to aspects of the well known tensor product structure of C∗-algebras; hence our Chapter 8 rests
heavily on the theory of representations of Jordan algebras, to be reviewed presently.

We begin by recalling that a Banach space is a complete normed vector space over F with respect to a
norm ‖·‖. Let A be an associative algebra such that, as a vector space, A is Banach. One says that A is
a Banach algebra if ∀x, y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖. Furthermore, one says that A is a Banach ∗-algebra when
A comes equipped with an isometric involution taking x 7−→ x∗ — i.e. ∀x, y ∈ A and ∀λ, µ ∈ F one has
that (λx+ µy)∗ = λx∗ + µy∗, (xy)∗ = y∗x∗, and ‖x∗‖ = ‖x‖.

Definition 7.2.11 A C∗-algebra is a Banach ∗-algebra B over C such that ∀x ∈ B

‖x∗x‖ = ‖x‖2. (7.50)

In this thesis, we are interested the finite-dimensional C∗-algebras Mn

(
C
)
, and their self-adjoint Jordan

subalgebras3 Mn(C)sa. These furnish representations of all special ejas, which are defined as follows.

Definition 7.2.12 Let A be a Euclidean Jordan algebra as in Definition 7.2.5. A representation of A is
a Jordan monomorphism π : A −→Mn(C)sa for some n ∈ N. A special eja is a Euclidean Jordan algebra
for which there exists such a representation.

With the sole exception of M3(O)sa, all simple ejas are special; hence, M3(O)sa is called exceptional.
Indeed, one has the following standard representations (where i2 = j2 = k2 = ijk = −1, and where we
write an arbitrary element of Mn(H)sa as a = Γ1 + Γ2j with Γ1 = Γ∗1 ∈Mn(C)sa and Γ2 = −ΓT

2 ∈Mn(C))

πR : R −→ C∗s (R) ≡ C :: a 7−→ a (7.51)

πMn(R)sa : Mn(R)sa −→ C∗s (Mn(R)sa) ≡Mn(C) :: a 7−→ a (7.52)

πMn(C)sa : Mn(C)sa −→ C∗s (Mn(C)sa) ≡Mn(C) :: a 7−→ a (7.53)

πMn(H)sa : Mn(H)sa −→ C∗s (Mn(H)sa) ≡M2n(C) :: Γ1 + Γ2j 7−→
(

Γ1 Γ2

−Γ2 Γ1

)
(7.54)

For any4 special eja A, we call C∗s (A) its standard C∗-algebra, with πA denoting the standard representation
thereon. The Jordan homomorphisms in Eq. (7.51), Eq. (7.52), and Eq. (7.53) are just inclusion. The
quaternionic embedding in Eq. (7.54) is the symplectic one described in detail in the author’s MSc thesis
[224], which merits a little discussion. Define

Φ : M2n(C) −→M2n(C) :: x 7−→ −(JxJ)T (7.55)

3By a Jordan subalgebra of the self-adjoint part Bsa of a C∗-algebra B one means a subset A ⊆ Bsa that is a Jordan
algebra with respect to the Jordan product a·b ≡ (ab+ ba)/2, where juxtaposition denotes the associative product in B.

4The standard representation of a direct sum is defined as the direct sum of the summands’ standard representations.
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with (·)T the transpose and

J ≡
(

0n 1n
−1n 0n

)
. (7.56)

where 0n and 1n are the n × n zero and identity matrices, respectively. The symplectic representation
of Mn(H)sa is defined by the Jordan monomorphism in Eq. (7.54), and one can prove, with M2n(C)Φ

sa

denoting the self-adjoint fixed points of Φ, the Jordan isomorphism M2n(C)Φ
sa
∼= Mn(H)sa.

The standard representation of Vk (recall k ∈ N>1) introduced by Barnum-Graydon-Wilce in [46], is
involved. To begin, recall the complex Pauli matrices

σo =

(
1 0
0 1

)
σz =

(
1 0
0 −1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
. (7.57)

∀p ∈ N with 1 ≤ p ≤ k, and with b·c and d·e the usual floor and ceiling functions, define

tp =



σ⊗
d p2 e−1

y ⊗ σz ⊗ σ⊗
b k2 c−d p2 e

o p odd

σ⊗
d p2 e−1

y ⊗ σx ⊗ σ⊗
b k2 c−d p2 e

o p even
k even

σ⊗
d p2 e−1

y ⊗ σz ⊗ σ⊗
d k2 e−d p2 e

o p odd

σ⊗
d p2 e−1

y ⊗ σx ⊗ σ⊗
d k2 e−d p2 e

o p even
k odd

(7.58)

where our notation is such that x⊗
0

= 1 ∈ R, x⊗ 1 = x = x⊗
1

, x⊗
2

= x⊗ x, and so on.

One can easily check that for each k > 1, {t1, . . . , tk} generates a spin factor of dimension 1 + k with
tp·tq = (tptq + tqtp)/2. Next, we define vp = tp when k is even, and when k is odd, we define ∀1 ≤ p < k

vp =

σ⊗
d p2 e−1

y ⊗ σz ⊗ σ⊗
b k2 c−d p2 e

o p odd

σ⊗
d p2 e−1

y ⊗ σx ⊗ σ⊗
b k2 c−d p2 e

o p even
(7.59)

vk = σ⊗
bn2 c

y (7.60)

and we embed Vk into its standard C∗-algebra via the following Jordan monomorphism

πk : Vk −→M2(C)⊗
b k2 c

sa :: sp 7−→ vp. (7.61)

where sp are the abstract generators from Definition B.1.1. One has the following examples of such concrete
generators (i.e. vp) for the ambient spaces associated with real, complex, and quaternionic quantum “bits.”

Rebit Example (k = 2)

v1 = σz (7.62)

v2 = σx (7.63)

Qubit Example (k = 3)

v1 = σz (7.64)

v2 = σx (7.65)

v3 = σy (7.66)
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Quabit Example5 (k = 5)

v1 = σz ⊗ σo (7.67)

v2 = σx ⊗ σo (7.68)

v3 = σy ⊗ σz (7.69)

v4 = σy ⊗ σx (7.70)

v5 = σy ⊗ σy (7.71)

V2, V3, and V5 are [66] the only spin factors enjoying reversibility, a property to be defined presently.

Definition 7.2.13 A reversible eja is a Euclidean Jordan algebra A as in Definition 7.2.5 such that
there exists a representation π : A −→Mn(C)sa as in Definition 7.2.12 such that6 ∀a1, . . . , am ∈ A

π(a1)π(a2) · · ·π(am) + π(am)π(am−1) · · ·π(a1) ∈ π
(
A). (7.72)

One says that π as such is a reversible representation. A universally reversible eja is a Euclidean Jordan
algebra A for which all of its representations are reversible.

In fact, one has the following theorem.

Theorem 7.2.14 [66] A spin factor Vk is reversible if and only if k ∈ {2, 3, 5}, and universally reversible
if and only if k ∈ {2, 3}.

A proof of Theorem 7.2.14 can be found in [66]. Following Hanche-Olsen, we detail explicit proofs for
Proposition B.1.5, Proposition B.1.6, Proposition B.1.7, and Proposition B.1.8 (relegated to Appendix B.1)
to establish Theorem 7.2.14.

The Jordan matrix algebras, Mn(R)sa, Mn(C)sa, and Mn(H)sa, are also reversible. In order to see this,
it will be helpful to introduce the following notions. Let B,C be C∗-algebras. A ∗-homomorphism is a
C-linear function f : B −→ C such that ∀x, y ∈ B one has f(xy) = f(x)f(y) and f(x∗) = f(x)∗. A
∗-antihomomorphism is a linear function f : B −→ C such that ∀x, y ∈ B one has f(xy) = f(y)f(x)
and f(x∗) = f(x)∗. The terms∗-isomorphism, ∗-epimorphism, ∗-monomorphism, ∗-endomorphism, and
∗-automorphism are used respectively for bijective, surjective, injective, endomorphic, and automorphic
∗-homomorphisms, with the antihomomorphic varieties termed in a similar manner. An involutory ∗-
homomorphism or ∗-antihomomorphism is a suitably defined function of period two, i.e. f(f(x)) = x. For
example, the usual transpose on Mn(C)sa is an involutory ∗-antiautomorphism, but the usual adjoint is
not, because the adjoint is not C-linear. Note that in some texts the word ‘involution’ is reserved for
antilinear functions. We make no use of antilinear functions in this thesis; however, with the adjoint we do
see that Mn(C)sa in its canonical representation is reversible, because the adjoint does reverse the order
of associative multiplication. Similarly, we see that Mn(R)sa in its standard representation in Mn(C)sa is
reversible: the transpose is a ∗-antiautomorphism, so Eq. (7.72) is trivially valid. The case of Mn(H)sa is
also easy to prove in light of the fact that Φ as defined in Eq. (7.55) is an involutory ∗-antiautomorphism.
Regarding the universal reversibility of the Jordan matrix algebras, one has the following.

Theorem 7.2.15 Let n ∈ N≥3. Let D ∈ {R,C,H}. Then Mn(D)sa is universally reversible.

5The present representation differs from the symplectic one only in complex phases; the two are projectively equivalent.
6Notice that for m = 2 this is just closure under the Jordan product.
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A proof of Theorem 7.2.15 can be found in [66]. We also point out that by Theorem 7.2.14 and Eq. (7.47)
and Eq. (7.48), one has that M2(R)sa and M2(C)sa are universally reversible. We now consider universal
representations.

7.3 Universal Representations

In this section, we recall the universal C∗-algebras enveloping Euclidean Jordan algebras. These universal
representations are vital for the balance of this thesis. All of the material found in this section is collected
from Hanche-Olsen and Størmer [246] and from Hanche-Olsen [66]. Furthermore, [66] and [246] actually
deal with the case of infinite dimensional Jordan algebras. The infinite dimensional case is very interesting;
however, in this thesis, we are concerned only with the finite dimensional case. Therefore, to avoid
introducing presently unnecessary mathematical overhead, we translate the relevant results from [246] and
[66] into our finite dimensional setting. We shall not repeat proofs from the literature. We shall, however,
provide some elementary proofs of propositions stated without proof in the literature.

Definition 7.3.1 Let A be a Jordan algebra as in Definition 7.2.3. Let subset X ⊆ A. The Jordan
algebraic closure of X is denoted j(X) and defined to be the smallest Jordan subalgebra of A containing X.

Definition 7.3.2 Let B be a C∗-algebra as in Definition 7.2.11. Let subset Y ⊆ B. The C∗-algebraic
closure of Y is denoted c(Y) and defined to be the smallest C∗-subalgebra of B containing Y.

One says that j(X) is the Jordan algebra generated by X in A. Concretely, one computes j(X) by finding
the Jordan algebra produced from R-linear combinations and Jordan products of elements of X. Similarly,
one says that c(Y) is the C∗-algebra generated by Y in B. Again, concretely, one computes c(Y) by finding
the C∗-algebra produced from C-linear combinations and associative products of elements of B.

Definition 7.3.3 Let A be a Euclidean Jordan algebra. A universal representation of A is a pair(
C∗u(A), ψA

)
where ψA : A −→ C∗u(A) is a representation as in Definition 7.2.12 and with

(
C∗u(A), ψA

)
universal that is, as in the following Theorem 7.3.4.

Theorem 7.3.4 [246] Let A be a special eja. Then there exists up to *-isomorphism a unique universal
C∗-algebra C∗u

(
A
)

and a Jordan monomorphism ψA : A→ C∗u
(
A
)
sa

such that:

(i) c
(
ψA(A)

)
= C∗u

(
A
)
.

(ii) If B is a C∗-algebra and π : A −→ Bsa is a Jordan homomorphism, then there exists a ∗-
homomorphism π̂ : C∗u

(
A
)
−→ B such that π = π̂ ◦ ψA.

(iii) There exists7 an involutive ∗-antiautomorphism ΦA of C∗u
(
A
)

such that ΦA

(
ψA(a)

)
= ψA(a) ∀a ∈ A.

Theorem 7.3.4 is nicely captured by the following commutative diagram:

A
ψA //

π
''

C∗u(A)sa
inc // C∗u(A)

π̂

��

Bsa
inc

// B

(7.73)

7ΦA is unique (see [254] Corollary 5.2).
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An intense proof for Theorem 7.3.4 is found in [246]. The statement of Theorem 7.3.4 therein is actually
much more general, covering, in particular, the infinite dimensional case.

As matters of terminology, one says that C∗u(A) is the universal C∗-algebra (enveloping) A, and one says
that ψA is the canonical embedding. One says that involutive ∗-antiautomorphism ΦA is the canonical
involution on the universal C∗-algebra enveloping A.

We now come to Hanche-Olsen’s Theorem 4.4 from [66], which provides a beautiful way to compute
universal C∗-algebras enveloping universally reversible ejas. In general, by BΦ

sa one denotes the self-adjoint
fixed points of a *-antiautomorphism Φ on a C∗-algebra B.

Theorem 7.3.5 [66] With the notation above A is universally reversible if and only if A ∼= C∗u(A)ΦA
sa .

More generally, let A be a universally reversible eja. Let B be a C∗-algebra. Let θ : A −→ Bsa be an
injective Jordan homomorphism such that c

(
θ(A)

)
= B. If B admits a *-antiautomorphism ϕ such that

ϕ ◦ θ = θ, then θ lifts to a ∗-isomorphism of C∗u(A) onto B as follows:

C∗u(A)
θ̂ // B

ϕ
// B

A

ψA

OO

θ
// Bsa

inc

OO

inc

:: (7.74)

which is to say that the ∗-isomorphism θ̂ is such that ψA(A) ∼= Bϕ
sa.

Concretely, Theorem 7.3.5 says that if a universally reversible Jordan algebra A represented within Bsa

generates B as a C∗-algebra and if there exists a ∗-antiautomorphism ϕ on B such that A as represented
therein is precisely the set of its self-adjoint fixed points, i.e. Bϕ

sa, then B is the universal C∗-algebra
enveloping A, that is, up to Jordan isomorphism. The fruits of this theorem are plentiful. In particular,
we will call on Theorem 7.3.5 to prove our main result in the following chapter. At the moment, we have:

Proposition 7.3.6
C∗u
(
Mn(R)sa

)
= Mn(C). (7.75)

Proof. Mn(R)sa is universally reversible by Theorem 7.2.15. Let |er〉 denote the standard basis vectors so

spanC
{
|er〉〈es| : r, s ∈ {1, . . . , n}

}
= Mn(C). (7.76)

Observe the C∗-algebraic product of the following real symmetric matrices(
|er〉〈er|

)(
|er〉〈es|+ |es〉〈er|

)
= |er〉〈es|+ δrs|er〉〈er|. (7.77)

Obviously the inclusion of Mn(R)sa into Mn(C) is injective. Eq. (7.77) shows that Mn(R)sa generates
Mn(C). There exists a *-antiautomorphism on Mn(C) whose self-adjoint fixed points are exactly the real
symmetric matrices, namely the transpose! So with ϕ the transpose we complete the proof in light of
Theorem 7.3.5.

Proposition 7.3.7
C∗u
(
Mn(C)sa

)
= Mn(C)⊕Mn(C). (7.78)
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Proof. Define ψ : Mn(C)sa → Mn(C) ⊕Mn(C) for all a ∈ Mn(C)sa via ψ(a) = a ⊕ at. Let B be the
C∗−algebra generated by ψ(Mn(C)sa). Note that B ⊆ Mn(C) ⊕Mn(C). There exists an orthonormal
basis B for Mn(C) such that B ⊂ Mn(C)sa — for instance, the generalized Gell-Mann matrices. Thus
{a ⊕ at : a ∈ Mn(C)} ⊂ B. Choose a, b ∈ Mn(C) such that x ≡ ab − ba admits a multiplicative inverse.
Indeed, such a and b exist in all dimensions — for example, choose a to be the generalized Pauli X operator
and b to be the generalized Pauli Z operator, so that ab− ba = (1− ω)XZ, where ω = exp[ 2πi

n ]. Observe
the following:

(a⊕ at)(b⊕ bt)− ba⊕ atbt = ab− ba⊕ 0 = x⊕ 0 ∈ B, (7.79)

(at ⊕ a)(bt ⊕ b)− atbt ⊕ ba = 0⊕ ab− ba = 0⊕ x ∈ B. (7.80)

Note that yx−1, (x−1)tyt ∈Mn(C) for all y ∈Mn(C). Therefore B = Mn(C)⊕Mn(C).

Define Φ : (Mn(C)⊕Mn(C))→Mn(C)⊕Mn(C) for all a⊕ b via Φ(a⊕ b) = bt⊕at. The proof now follows
from Theorem 7.2.15 and Theorem 7.3.4 and Theorem 7.3.5.

We now come to the case of quaternionic Jordan matrix algebras.

Proposition 7.3.8
C∗u
(
Mn≥3(H)sa

)
= M2n(C). (7.81)

A proof of Proposition 7.3.8 using Theorem 7.3.5 can be found in the author’s MSc thesis [224].

The case of M2(H)sa is much more difficult because M2(H)sa
∼= V5, and the spin factor V5 is not universally

reversible. Let us consider V5 in some detail. Let {1, i, j, k} ⊂ H be the usual quaternionic basis, with
i2 = j2 = k2 = ijk = −1. The quaternionic Pauli matrices are:

q0 =

(
1 0
0 1

)
, q1 =

(
1 0
0 −1

)
, q2 =

(
0 1
1 0

)
, q3 =

(
0 −i
i 0

)
, q4 =

(
0 −j
j 0

)
, q5 =

(
0 −k
k 0

)
.

(7.82)
Note M2(H)sa = spanR{q0, . . . , q5}; moreover the quaternionic Pauli matrices are R-linearly indepen-
dent. Thus dimRM2(H)sa = 6. Furthermore, one notes that the quaternionic Pauli matrices (excluding
q0) are a spin system of cardinality 5, which is to say that ∀t, v ∈ {1, . . . , 5} : qt·qv = q0δt,v, where
∀a1, a2 ∈ M2(H)sa we define a1·a2 = (a1a2 + a2a1)/2, with juxtaposition denoting the usual associative
product in the real associative ∗-algebra M2(H). For completeness, we note that the composition of matrix
transposition a 7−→ aT with quaternionic conjugation (done entry-wise) a 7−→ a defines the ∗-operation
on M2(H); moreover that M2(H)sa = {a ∈ M2(H) : a = a∗}. The quaternionic Pauli matrices generate
M2(H)sa as a Jordan algebra. Equipping M2(H)sa with the inner product 〈a1, a2〉 = Tr(a1·a2), we see
that the quaternionic Pauli matrices are in fact an orthogonal basis for M2(H)sa; further, that M2(H)sa is
a Euclidean Jordan algebra. We are now ready for the following.

Proposition 7.3.9
C∗u
(
M2(H)sa

)
= M4(C)⊕M4(C). (7.83)

Proof. Recall the usual complex Pauli matrices in M2(C)sa:

uM2(C)sa = σo =

(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (7.84)
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Our complex ∗-algebra tensor product convention is such that Mn(C)⊗Mm(C) = Mm

(
Mn(C)

)
. As such

we have

s0 = σo ⊗ σo ⊗ σo ∈M4(C)sa ⊕M4(C)sa,

s1 = σz ⊗ σo ⊗ σo ∈M4(C)sa ⊕M4(C)sa,

s2 = σx ⊗ σo ⊗ σo ∈M4(C)sa ⊕M4(C)sa,

s3 = σy ⊗ σz ⊗ σo ∈M4(C)sa ⊕M4(C)sa,

s4 = σy ⊗ σx ⊗ σo ∈M4(C)sa ⊕M4(C)sa,

s5 = σy ⊗ σy ⊗ σz ∈M4(C)sa ⊕M4(C)sa. (7.85)

Define and extend R-linearly on its domain the following map, where t ∈ {0, . . . , 5}:

ψ : M2(H)sa −→M4(C)sa ⊕M4(C)sa :: qt 7−→ st. (7.86)

Noting that {s1, . . . , s5} is a spin system in M4(C)sa ⊕M4(C)sa, we see that ψ is an injective Jordan
homomorphism. One can easily check that {s1, . . . , s5} generates M4(C)⊕M4(C) as a C∗-algebra, simply
by computing their 11 + 10 + 5 + 1 = 27 projectively distinct, pairwise C-linearly independent double,
triple, quadruple, and quintuple associative products, respectively. Now, let ψu be the canonical injection
of M2(H)sa into its universal C∗-algebra. Then ψu(M2(H)sa) generates C∗u(M2(H)sa) as a C∗-algebra. So
dimCC

∗
u(M2(H)sa) ≤ 32, because C∗u(M2(H)sa) is generated by the images of 5 anticommuting symmetries

under Jordan monomorphism. However, by Theorem 7.3.4 there exists a ∗-homomorphism ψ̂ such that
the following diagram commutes

C∗u
(
M2(H)sa

) ψ̂
// M4(C)⊕M4(C)

M2(H)sa
ψ

//

ψu

OO

M4(C)sa ⊕M4(C)sa

inc

OO
(7.87)

Therefore ψ̂ must be a ∗-isomorphism, because with inc ◦ ψ = ψ̂ ◦ ψu, there must exist 32 linearly
independent elements in C∗u(A) corresponding to the images of the quaternionic Pauli matrices and their
aforementioned 27 C-linearly independent associative products under ψ in M4(C)⊕M4(C).

The universal C∗-algebras enveloping the spin factors will not play a direct role in the sequel. We thus
include the following proposition (whose proof can be found in [246]) only for completeness.

Proposition 7.3.10

C∗u(Vk) =

{
M2n(C) k = 2n

M2n(C)⊕M2n(C) k = 2n+ 1
(7.88)

In closing this chapter, we present the following lemma, to be called upon later at key junctures.

Lemma 7.3.11 Let A and B be Euclidean Jordan algebras. Then

C∗u(A⊕B) = C∗u(A)⊕ C∗u(A). (7.89)

We relegate a proof of Lemma 7.3.11 to Appendix B.5.
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“The beauty of a living thing is not the atoms that go into it,
but the way those atoms are put together.”

—Carl Sagan
Cosmos: A Personal Voyage (1990)

Chapter 8

Jordanic Composites

In [3] and [4], the author and H. Barnum and A. Wilce consider Jordan algebraic physical theories. This
chapter centres on the compositional aspects of those publications.

In quantum theory, the usual tensor product ⊗ of finite dimensional vector spaces over C, as defined
in Definition 2.1.8, is a mathematical apparatus for the formulation of quantum physics pertaining to
composite systems. Specifically, given two physical systems with associated quantum cones Lsa(HdA)+ and
Lsa(HdB)+, the cone of unnormalized states and effects for the composite system is Lsa(HdA⊗HdB)+, with
bipartite quantum channels thereupon corresponding to convex sets of completely positive trace preserving
maps. In a general probabilistic theory, however, one must impose a particular compositional structure.
There is no canonical choice. Physical principles, however, can single out compositional structures.

We postulate that a general probabilistic theory ought to peacefully coexist with special relativity. Of
course, an arbitrary general probabilistic theory need not be as such; however, a primary motivation for
the study of post-quantum theories is to expand the perimeter encompassing quantum theory so as to merge
with general relativistic notions, and so our postulate is natural from this point of view. Furthermore,
Einstein’s postulates for special relativity are so compelling, and his theory so empirically successful,
that a sacrifice of the causal structure imposed by special relativity seems premature, at least at present.
We therefore posit that a general probabilistic theory ought to be nonsignaling: local operations carried
out by Alice on her component of a bipartite physical system can not be used to transmit superluminal
signals to Bob. Indeed, quantum theory enjoys nonsignaling, which is implied by the commutation of local
operations [255]. The notion of nonsignaling post-quantum theories arose in the seminal work of Popescu
and Rohrlich [256]. In this chapter, we consider a restricted class of post-quantum theories: those for which
unnormalized state and effect cones are the positive cones of Euclidean Jordan algebras. These cones have
recently been derived for physical systems via information-theoretic principles [257][258][225][226][227]. All
of these derivations leave the formulation of composites as an open problem. We impose a nonsignaling
compositional structure for these cones: the canonical tensor product �, introduced in Definition 8.2.9.

We structure the balance of this chapter as follows. In Section 8.1, we review general probabilistic theories
and define composites thereof. In Section 8.2, we specialize to our case of interest: Jordanic composites.
We prove, in particular, that the canonical tensor product is always an ideal of Hanche-Olsen’s universal
tensor product [66]. In Section 8.3, we compute all canonical tensor products involving reversible ejas.
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8.1 General and Jordan Algebraic Probabilistic Theories

In this section we review the usual framework for general probabilistic theories, which are built up on
ordered vector spaces. We point the reader to Alfsen and Shultz [253] for a general introduction to ordered
vector spaces. The use of ordered vector spaces with order units for general probabilistic theories dates
back to at least the work of Ludwig [259][260], and additionally the work of Davies and Lewis [261],
Edwards [262], and Holevo [263]. For a more recent survey, we refer the reader to [264]. Along the way,
we specialize to our case of interest: Jordan algebraic general probabilistic theories.

Recall from our discussion immediately prior to Definition 7.2.8 that an ordered vector space is a vector
space A over R equipped with a designated cone A+ of positive elements. An order unit in an ordered
vector space A is an element u ∈ A+ such that, for all a ∈ A, a ≤ tu for some t ∈ R≥0. In finite
dimensions, this is equivalent to u belonging to the convex interior of A+ [265]. An order unit space is
a pair (A, u) where A is an ordered vector space and u is a designated order unit. An order unit space
provides the machinery to discuss probabilistic concepts. A state on (A, u) is a positive linear functional
α ∈ A? with α(u) = 1. An effect is an element a ∈ A+ with a ≤ u. If α is a state and a is an effect, we
have 0 ≤ α(a) ≤ 1: we interpret this as the probability of the given effect on the given state. A discrete
observable on A with values λ ∈ Λ is represented by an indexed family {aλ|λ ∈ Λ} of effects summing to
u, the effect aλ associated with the event of obtaining value λ in a measurement of the observable. Thus,
if α is a state, λ 7→ α(aλ) gives a probability weight on Λ. One can extend this discussion to include more
general observables by considering effect-valued measures [262], but we will not. We denote the set of all
states of A by Ω; the set of all effects — the interval between 0 and u — is denoted [0, u]. In our present
finite-dimensional setting, both are compact convex sets. Extreme points of Ω are called pure states.

One may wish to privilege certain states and/or certain effects of a probabilistic model as being “physically
possible”. One way of doing so is to consider ordered subspaces E of A, with uA ∈ E, and V of A?: this
picks out the set of states α ∈ V ∩ A?+ and the set of effects a ∈ E ∩ A+, a ≤ u. The pair (E,V) then
serves as a probabilistic model for a system having these allowed states and effects. However, in quantum
theory, and in those theories that concern us in the rest of this thesis, it is always possible to regard all
states in A?, and all effects in A, as allowed. Henceforth, then, when we speak of a probabilistic model —
or, more briefly, a model — we simply mean an order unit space (A, u). It will be convenient to adopt the
shorthand A for such a pair, writing uA for the order unit where necessary.

By a process affecting a system associated with a probabilistic model A, we mean a positive linear mapping
φ : A −→ A, subject to the condition that φ(uA) ≤ uA. The probability of observing an effect a after
the system has been prepared in a state α and then subjected to a process φ is α(φ(a)). One can regard
α(φ(u)) as the probability that the system is not destroyed by the process. We can, of course, replace
φ : A −→ A with the adjoint mapping φ∗ : A? −→ A? given by φ∗(α) = α◦φ, so as to think of a process as
a mapping from states to possibly subnormalized states. Thus, we can view processes either as acting on
effects (the “Heisenberg picture”), or on states (the “Schrödinger picture”). Any nonzero positive linear
mapping φ : A −→ A is a nonnegative scalar multiple of a process in the aforementioned sense: since the
set of states Ω(A) is compact, {α(φ(u))|α ∈ Ω(A)} is a compact set of real numbers, not all zero, and
so, has a maximum value m(φ) > 0; m(φ)−1φ is then a process. For this reason, we make little further
distinction here between processes and positive mappings. In particular, if φ is an order automorphism
of A, then both φ and φ−1 are scalar multiples of processes in the above sense: each of these processes
“undoes” the other, up to normalization, that is with nonzero probability. A process that can be reversed
with probability one (a symmetry of A) is associated with an order-automorphism φ such that φ(uA) = uA.
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We denote the group of all order-automorphisms of A by Aut(A). This is a Lie group [266], with its
connected identity component (consisting of those processes that can be obtained by continuously deform-
ing the identity map) is denoted Aut0(A). A possible (probabilistically) reversible dynamics for a system
modelled by A is a homomorphism t 7→ φt from (R,+) to Aut(A), that is a one-parameter subgroup
of Aut(A). The set of symmetries forms a compact subgroup, Sym(A) of Aut(A). One might wish to
privilege certain processes as reflecting physically possible motions or evolutions of the system. In that
case, one might add to the basic data (A, u) a preferred subgroup G(A) of order automorphisms. We refer
to such a structure as a dynamical probabilistic model, since the choice of G(A) constrains the permitted
probabilistically reversible dynamics of the model.

An inner product 〈 | 〉 on an ordered vector space A is positive if and only if the associated mapping
A → A?, a 7→ 〈a|, is positive, that is if 〈a|b〉 ≥ 0 for all a, b ∈ A+. We say that 〈 | 〉 is self-dualizing if
a 7→ 〈a| maps A+ onto A?+, so that a ∈ A+ if and only if 〈a|b〉 ≥ 0 for all b ∈ B. We say that A (or
its positive cone) is self-dual if A admits a self-dualizing inner product. If A is an order unit space, we
ordinarily normalize such an inner product so that 〈uA|uA〉 = 1. In this case, we can represent states
of A internally: if α ∈ A∗+ with α(u) = 1, there is a unique a ∈ A+ with 〈a|b〉 = α(b) for all b ∈ A+.
Conversely, if a ∈ A+ with 〈a|u〉 = 1, then 〈a| is a state. If A and B are both self-dual and φ : A −→ B is
a positive linear mapping, we can use self-dualizing inner products on A and B to represent the mapping
φ∗ : B? −→ A? as a positive linear mapping φ† : B −→ A, setting 〈a|φ†(b)〉 = 〈φ(a)|b〉 for all a ∈ A and
b ∈ B. If φ : A→ A is an order-automorphism, then so is φ†.

We now turn our attention to our specific case of interest: probabilistic models based on the Euclidean
Jordan algebras (ejas) reviewed in Section 7.2. Let A be an eja. By the spectral theorem, a = b2 for
some b ∈ A if and only if a has a spectral decomposition a =

∑
i λixi in which all the coefficients λi are

non-negative. The Jordan unit u is also an order unit; thus, any eja A can serve as a probabilistic model:
physical states correspond to normalized positive linear functionals on A, while measurement-outcomes
are associated with effects, i.e. elements a ∈ A+ with 0 ≤ a ≤ u, and (discrete) observables, by sets {ei}
of events with

∑
i ei = u.

Indeed, the inner product on A allows us to represent states internally, i.e. for every state α there exists
a unique a ∈ A+ with α(x) = 〈a|x〉 for all x ∈ A; conversely, every vector a ∈ A+ with 〈a|u〉 = 1 defines a
state in this way. Now, if a is a projection, i.e., a2 = a, let â = ‖a‖−2a: then

〈â|u〉 =
1

‖a‖2
〈a|u〉 =

1

‖a‖2
〈a2|u〉 =

1

‖a‖2
〈a|a〉 = 1. (8.1)

Thus, â represents a state. A similar computation shows that 〈â|a〉 = 1. Thus, every projection, regarded
as an effect, has probability 1 in some state.

Let A be an eja. A symmetry of A is an order-automorphism preserving the unit uA. By [267] Theorem
2.80, any symmetry of A is a Jordan automorphism. Another class of order automorphisms is given by the
quadratic representations of certain elements of A. The quadratic representation of a ∈ A is the mapping
Ua : A −→ A given by

Ua = 2L2
a − La2 , (8.2)

where La : A −→ A :: b 7−→ a·b is left-multiplication by a ∈ A, i.e.

Ua(x) = 2a·(a·x)− a2·x. (8.3)

These mappings have direct physical interpretations as filters in the sense of [227]. We collect the following
nontrivial as a proposition
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Proposition 8.1.1 Let a ∈ A. Then

(a) Ua is a positive mapping;

(b) If a lies in the interior of A+, then Ua is invertible, with inverse given by Ua−1 ;

(c) eLa = Uea/2

For proof of (a), see Theorem 1.25 of [267]; for (b), [267] Lemma 1.23 or [252], Proposition II.3.1. Part
(c) is Proposition II.3.4 in [252]. Combining (a) and (b), Ua is an order automorphism for every a in
the interior of A+. Regarding (c), note that eLa is the ordinary operator exponential; in other words,
φt := etLa = U t

2a
is a one-parameter group of order-automorphisms in G(A) with φ′(0) = La.

Since Ua(uA) = 2a2 − a2 = a2, it follows that the group of order-automorphisms of A act transitively on
the interior of A+. Abstractly, an ordered vector space having this property is said to be homogeneous.
It follows that if φ is any order-automorphism with φ(uA) = a2 ∈ A+, then U−1

a ◦ φ is a symmetry of A.
Hence, every order-automorphism of A decomposes as φ = Ua ◦ g where g is a symmetry. In fact, one can
show that a can be chosen to belong to the interior of A+, and that, with this choice, the decomposition
is unique ([252], III.5.1).

We now return to the general case and consider composites of probabilistic models.

If A and B are probabilistic models of two physical systems, one may want to construct a model of the
pair of systems considered together. This model is denoted AB. In the framework of general probabilistic
theories, there is no canonical choice for a model of a composite system. However, one can at least say
what one means by a composite of two probabilistic models: at a minimum, one should be able to perform
measurements on the two systems separately, and compare the results. More formally, there should be
a mapping π : A × B −→ AB taking each pair of effects (a, b) ∈ A × B to an effect π(a, b) ∈ AB. One
would like this to be nonsignaling, meaning that the probability of obtaining a particular effect on one
of the component systems in a state ω ∈ Ω(AB) should be independent of what observable is measured
on the other system. One can show that this is equivalent to π’s being bilinear, with π(uA, uB) = uAB

[264]. Finally, one would like to be able to prepare A and B separately in arbitrary states. Therefore, in
summary one has the following definition.

Definition 8.1.2 A composite of two probabilistic models A and B is a pair (AB, π) where AB is a
probabilistic model and π : A×B −→ AB is a bilinear mapping such that

(a) π(a, b) ∈ (AB)+ for all a ∈ A+ and b ∈ B+

(b) π(uA, uB) = uAB

(c) For all states α ∈ Ω(A) and β ∈ Ω(B) there exists a state γ ∈ Ω(AB) such that γ(π(a, b)) = α(a)β(b).

Since π is bilinear, it extends uniquely to a linear mapping A ⊗ B −→ AB, which we continue to denote
by π (so that π(a⊗ b) = π(a, b) for a ∈ A, b ∈ B), and where A⊗B is the usual tensor product of vector
spaces over R.

Lemma 8.1.3 π is injective.
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Proof. If π(T ) = 0 for some T ∈ A⊗B, then for all states α, β on A and B we have a state γ on AB with
(α⊗ β)(T ) = γ(π(T )) = 0. But then T = 0.

Lemma 8.1.3 warrants our treating A ⊗ B as a subspace of AB and writing a ⊗ b for π(a, b). Note that
if ω is a state on AB, then π∗(ω) := ω ◦ π defines a joint probability assignment on effects of A and B:
π∗(ω)(a, b) = ω(a⊗ b). This gives us marginal states ωA = ω(uA⊗ · ) and ωB = ω( · ⊗uB). Where these
are nonzero, we can also define conditional states ω1|b(a) ≡ ω(a⊗ b)/ωB(b) and ω2|a(b) ≡ ω(a⊗ b)/ωA(a).

If the mapping π : A⊗B −→ AB is surjective, then we can identify AB with A⊗B. The joint probability
assigment π∗(ω) then completely determines ω, so that states on AB are such joint probability assignments.
In this case, we say that AB is locally tomographic, since states of AB can be determined by the joint
statistics of local measurements. In finite dimensions, both classical and quantum composites have this
feature, while composites of real quantum systems are not locally tomographic [268][219].

When dealing with dynamical probabilistic models, one needs to supplement conditions (a), (b) and (c)
with the further condition that it should be possible for A and B to evolve independently within the
composite AB; hence the following definition (recall that G(A) denotes an arbitrary preferred subgroup
of order automorphisms of A.)

Definition 8.1.4 A composite of dynamical probabilistic models A and B is a composite AB in the sense
of Definition 8.1.2, plus a mapping ⊗ : G(A)×G(B) −→ G(AB) selecting for each g ∈ G(A) and h ∈ G(B)
an element g ⊗ h ∈ G(AB) such that

(a) (g ⊗ h)(a⊗ b) = ga⊗ hb for all g ∈ G(A), h ∈ G(B), a ∈ A and b ∈ B

(b) for g1, g2 ∈ G(A) and h1, h2 ∈ G(B), (g1 ◦ g2)⊗ (h1 ◦ h2) = (g1 ⊗ h1) ◦ (g2 ⊗ h2).

With regard to Definition 8.1.4, one notes that since AB may be larger than the algebraic tensor product
A⊗B, the order automorphism (g ⊗ h) need not be uniquely determined by condition (a).

A generalized probabilistic theory is more than a collection of models. At a minimum, one also needs the
means to describe interactions between physical systems. A natural way of accomplishing this is to treat
physical theories as categories, in which objects are associated with physical systems, and morphisms with
processes. In the setting of this thesis, then, it’s natural to regard a probabilistic theory as a category
C in which objects are probabilistic models, that is order unit spaces, and in which morphisms give rise
to positive linear mappings between these. The reason for this phrasing — morphisms giving rise to,
as opposed to simply being, positive linear mappings — is to allow for the possibility that two abstract
processes that behave the same way on effects of their source system, may differ in other ways—even in
detectable ways, such as their effect on composite systems of which the source and target systems are
components. Notice that invertible morphisms A −→ A that preserve the order unit then induce processes
in the sense given above, so that every model A ∈ C carries a distinguished group of reversible processes:
models in C, in other words, are automatically dynamical models.

In order to allow for the formation of composite systems, it is natural to ask that C be a symmetric monoidal
category, in particular to accommodate nonsignaling. Of course, we want to take I = R. Moreover, for
objects A,B ∈ C, we want A ⊗ B to be a composite in the sense of Definitions 8.1.2 and 8.1.4 above. In
fact, though, every part of those definitions simply follows from the monoidality of C, except for part (b)
of 8.1.2; we must add “by hand” the requirement that uA ⊗ uB = uA⊗B. The category will also pick out,
for each object A, a preferred group G(A), namely, the group of invertible morphisms in hom(A,A). The
monoidal structure then picks out, for g ∈ G(A) and h ∈ G(B), a preferred g ⊗ h ∈ G(AB).
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8.2 Composites of Euclidean Jordan Algebras

In this section, we first formalize the notion of composites within general probabilistic theories based on
ejas. We then move to derive the structure of Jordan algebraic composites.

Let A be a Euclidean Jordan algebra. Henceforth, we shall take G(A) to be the connected component of
the identity in the group Aut(A) of order-automorphisms of A. Note that if φ ∈ G(A), then φ† ∈ G(A) as
well. Henceforth, we shall treat Jordan models as dynamical models, using G(A) as the dynamical group.
This is a reasonable choice. First, elements of G(A) are exactly those automorphisms of A+ that figure
in the system’s possible dynamics, as elements of one-parameter groups of automorphisms. This suggests
that the physical dynamical group of a dynamical model based on A should at least be a subgroup of
G(A), so that the latter is the least constrained choice. This suggests, then, the following definition.

Definition 8.2.1 A composite of ejas A and B is an eja AB plus bilinear π : A⊗B −→ AB such that

(a) π renders (AB, G(AB)) a dynamical composite of (A, G(A)) and (B, G(B)) as in Definition 8.1.4.

(b) (φ⊗ ψ)† = φ† ⊗ ψ† for all φ ∈ G(A) and ψ ∈ G(B).

(c) AB is generated as a Jordan algebra by the images of pure tensors.

In light of Lemma 8.1.3 the π : A⊗ B −→ AB is injective; hence, we can, and shall, identify A⊗ B with
its image under π in AB, writing π(a, b) as a⊗ b. Condition (b) is rather strong, but natural if we keep in
mind that our ultimate aim is to construct dagger compact closed categories of ejas. Regarding condition
(c), suppose π : A×B −→ AB satisfied only (a) and (b): letting A�B denote the Jordan subalgebra of AB

generated by π(A⊗B), one can show that the corestriction of π to A�B (i.e. πco : A⊗B −→ A�B) also
satisfies (a) and (b); thus, any composite in the weaker sense defined by (a) and (b) contains a composite
satisfying all three conditions.

The universal representation (see Definition 7.3.3) allows one to define a natural tensor product of special
EJAs, which was first studied by H. Hanche-Olsen [269].

Definition 8.2.2 (Hanche-Olsen [269]) The universal tensor product of two special ejas A and B is
denoted A⊗̃B and defined as the Jordan subalgebra of the C∗-algebraic tensor product C∗u(A) ⊗ C∗u(B)
generated by ψA(A)⊗R ψB(B) ≡ spanR{ψA(a)⊗ ψB(b) | a ∈ A, b ∈ B}, i.e. A⊗̃B ≡ j(ψA(A)⊗R ψB(B)).

Important facts about the universal tensor product are collected from [269] in the following proposition.

Proposition 8.2.3 Let A and B and C denote ejas.

(i) If φ : A −→ C, ψ : B −→ C are unital Jordan homomorphisms with operator commuting ranges1,
then ∃ a unique Jordan homomorphism A⊗̃B −→ C :: ψA(a)⊗ ψB(b) 7−→ φ(a)·ψ(b) ∀a ∈ A, b ∈ B.

(ii) C∗u(A⊗̃B) = C∗u(A)⊗C∗u(B) and ΦA⊗̃B = ΦA ⊗ΦB, where ΦA⊗̃B and ΦA and ΦB are the relevant
canonical involutions.

(iii) A⊗̃B is universally reversible unless one of the factors has a one-dimensional summand and the other
has a representation onto a spin factor Vn with n = 4 or n ≥ 6.

1i.e. ∀a ∈ A and ∀b ∈ B and ∀c ∈ C one has that φ(a)·(ψ(b)·c) = ψ(b)·(φ(a)·c).
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(iv) If A is universally reversible, then A⊗̃Mn(C)sa = (C∗u(A)⊗Mn(C))sa.

(v) uA⊗̃B = uA ⊗ uB = uC∗u(A⊗̃B).

Our next goal is to show that any composite of simple nontrivial ejas is a special universally reversible
eja — i.e. Theorem 8.2.5. We shall first require a brief foray into the theory of projections in ejas.
Let A be an eja as in Definition 7.2.5. The centre of A is the set of elements of A that operator
commute with all of the elements of A. Denoting the centre of A by C(A), we then have by definition
C(A) = {a ∈ A | ∀b ∈ A La ◦ Lb = Lb ◦ La}. Let projection p ∈ A, i.e. p·p = p. The central cover of p is
denoted by c(p) and defined to be the smallest projection in the centre of A larger than or equal to p, i.e.
p ≤ c(p) with respect to the partial order of the projection lattice of A. For further details regarding the
projection lattice, we refer the reader to Chapter 5 [246].

We now recall two results from [267]: (1) for any projection p in any eja A, the central cover of p exists
(Lemma 2.37 [267]); (2) a subspace M of an eja A is a Jordan ideal of A if and only if M = c·A ≡
{c·a | a ∈ A} for a (necessarily unique) projection c ∈ C(A) (Proposition 2.39 [267]). Furthermore c is
the unit in M, i.e. c·m = m for all m ∈M. Thus, with A an eja and p ∈ A a projection, c(p) ≥ p exists,
and M ≡ c(p)·A is a Jordan ideal of A with unit c(p). Now suppose that M is a simple Jordan ideal,
which is to say that the only Jordan ideals of M are the empty set and M itself. Therefore in light of (2),
the only central projections in C(M) are 0 and c(p). Therefore, in light of (1), the nonzero projections in
M share the same central cover, namely c(p). Actually, one can say something more general.

Proposition 8.2.4 Let A be an eja. Let projections p, q ∈ A such that c(p) = c(q). Let Mα = cα·A be
a simple Jordan ideal of A, where cα is a central projection. Let p̃ = c·p and let q̃ = c·q. Then p̃ 6= 0 if
and only if q̃ 6= 0.

Proof. From Lemma 4.3.5 in [246] we have that c(cα·p) = cα·c(p). So c(p̃) = cα·c(p). Likewise,
c(q̃) = cα·c(q). By assumption c(p) = c(q). Therefore c(p̃) = c(q̃). Suppose p̃ 6= 0. Then c(p̃) 6= 0, so
q̃ 6= 0 because c(p̃) = c(q̃).

We now come to address the exchange of projections by symmetries. Let A be an eja. A symmetry
in A (note, this is different than a symemtry of A) is s ∈ A such that s2 = u. Let a ∈ A. Let
projections p, q ∈ A. One says that p and q are exchanged by a symmetry when there exists a symmetry
s ∈ A such that Us(p) = q. If there exists a sequence of symmetries of s1, s2, . . . , sn ∈ A such that
(Us1 ◦ Us2 ◦ · · · ◦ Usn)(p) = q, then p and q are said to be equivalent. Equivalent projections have the
same central cover (Lemma B.5.7.) Furthermore, if p1, . . . , pn ∈ A and q1, . . . , qm ∈ B are projections,
then the projections pi ⊗ qj in AB are equivalent (Lemma B.5.23) The fact that pi ⊗ qj are projections
is Lemma B.5.17. Finally, one notes from Theorem 5.1.5 and Theorem 5.3.5 in [246] that any eja A

decomposes into the direct sum of simple ideals. We are now ready for Theorem 8.2.5.

Theorem 8.2.5 Let AB be a composite of simple, nontrivial ejas A and B. Then AB is a special,
universally reversible EJA.

Proof. We shall show that every irreducible direct summand of AB has rank ≥ 4, from which the result
follows. The result will indeed follow, because of the Jordan-von Neumann-Wigner Classification Theo-
rem (Theorem 7.2.6) and the fact that the Jordan matrix algebras Mn>3(D)sa are universally reversible
(Theorem 7.2.15.)
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Decompose AB as a direct sum of simple ideals, say AB =
⊕

αMα. Again, we can do this in light of
Theorem 5.1.5 and Theorem 5.3.5 in [246].

Let πα : AB −→Mα be the corresponding projections, and let uα ≡ πα(uAB) be the unit in Mα. Suppose
now that {p1, ..., pn} is a Jordan frame in A and {q1, ..., qm} is a Jordan frame in B. This means, in
particular, that p1 + · · ·+ pn = uA and q1 + · · ·+ qm = uB.

By Lemma 3.19 in [267], there are symmetries in A exchanging the pi, and there are symmetries in B

exchanging the qj . By Lemma B.5.23 therefore, the projections pi⊗qj are pairwise equivalent. By Lemma
3.9 in [267], therefore, these projections have the same central cover c. This means that for each α, the
projection πα : AB −→Mα takes none of the projections pi ⊗ qj to the zero projection in Mα, or it takes
all of them to zero, that is, in light of Proposition 8.2.4.

If Mα is of the first type, {πα(pi ⊗ qj)|i = 1, ..., n, j = 1, ...,m} consists of nm distinct orthogonal
projections in Mα, summing to the unit πα(uAB) = uα. Indeed, here, one notes that πα is linear,
πα(x) = c·x for some central projection c; hence

∑
i,j πα(pi ⊗ qj) = πα(uA ⊗ uB) = πα(uAB), where the

last equality follows by our definition of composites, specifically uAB = uA ⊗ uB. One also notes that
πα((pi ⊗ qj)·(pk ⊗ ql)) = δikδjlπα(pi ⊗ qj).

Hence, the rank of Mα is at least nm. The rank of Mα could exceed nm because πα(pi ⊗ qj) may not be
primitive projections. In particular, since A and B are nontrivial, n,m ≥ 2, whence, Mα has rank at least
4, and hence, is special.

Now let p, q be arbitrary projections in A and B, respectively: extending each to a Jordan frame, as above,
we see that for all α, if πα(p ⊗ q) 6= 0, then Mα is special. Hence, p ⊗ q belongs to the direct sum of
the special summands of AB. Since projections p ⊗ q generate AB, the latter is special. Indeed, AB is
by definition generated as the Jordan hull of pure tensors, which coincides with the Jordan hull of pure
tensors of minimal projections, since the minimal projections of the components are spanning and the
closure under the Jordan hull is closure under linear combinations and Jordan products.

The argument also shows that each simple direct summand Mα, in addition to being special, is not a spin
factor (because the rank of any spin factor is 2), and hence, is universally reversible. It follows from this,
plus the fact that direct sums of universally reversible EJAs are again universally reversible, that AB must
be universally reversible.

Corollary 8.2.6 If A is simple and B is exceptional, there exists no composite satisfying Definition 8.2.1.

Proof. The mapping B −→ AB given by b 7−→ uA ⊗ b is a Jordan monomorphism, by Proposition B.5.21.
But there exists no Jordan monomorphism from B into a special Euclidean Jordan algebra.

Theorem 8.2.7 Let A and B be simple, nontrivial ejas. Then AB is an ideal in A⊗̃B.

Proof. By Corollary B.5.22, we have Jordan homomorphisms A,B −→ AB with operator-commuting
ranges. Since AB is special, elements of AB operator-commute if and only if their images in C∗u(AB)
operator commute ([269], Lemma 5.1). Thus, we have Jordan homomorphisms A,B −→ C∗u(AB) with
operator-commuting ranges. The universal property of A⊗̃B yields a Jordan homomorphism φ : A⊗̃B −→
C∗u(AB) taking (the image of) a ⊗ b in A⊗̃B to (the image of) a ⊗ b in C∗u(AB). Since both A⊗̃B and
AB are generated by pure tensors, φ takes A⊗̃B onto AB. Letting K denote the kernel of φ, an ideal of
A⊗̃B, we have A⊗̃B = K ′ ⊕K, where K ′ is the complementary ideal; the mapping φ factors through the
projection A⊗̃B→ K ′ to give an isomorphism K ′ ' AB.
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Theorem 8.2.7 sharply restricts the possibilities for composites of simple ejas. In particular, it follows that
if A⊗̃B is itself simple, then AB ' A⊗̃B. In other words, in this case the universal tensor product is the
only “reasonable” tensor product (to the extent that we think the conditions of Definition 8.2.1 constitute
reasonableness, in this context). If A = B = Mn(C)sa, so that2 A⊗̃B = Mn2(C)sa ⊕Mn2(C)sa, we have
another candidate, i.e. the ideal Mn2(C)sa — the usual composite in quantum theory. If A = B = M2(H)sa

(that is, if A and B are two quabits), then we have3 A⊗̃B = M16(R)sa⊕M16(R)sa⊕M16(R)sa⊕M16(R)sa,
giving us four possibilities for AB. These exhaust the possibilities for real, complex and quaternionic
quantum composites!

In view of Theorem 8.2.5 and Corollary 8.2.6, we now restrict our attention to special ejas. A JC-algebra
is variously defined as a norm-closed Jordan subalgebra of bounded linear operators on a real or complex
Hilbert space, or as a Jordan algebra that is Jordan-isomorphic to such an algebra. In finite dimensions,
any JC-algebra is Euclidean, and any special Euclidean Jordan algebra is JC (on the second definition).
Here, we consider ejas that are embedded, not necessarily in L(H) for a specific Hilbert space, but in
some definite complex ∗-algebra.

Definition 8.2.8 An embedded Euclidean JC-algebra is a pair (A,MA) where MA is a finite-dimensional
complex ∗-algebra and A is a unital Jordan subalgebra of (MA)sa.

For aesthetic reasons, we abbreviate the phrase “embedded Euclidean JC” by EJC (rather than EEJC),
letting the initial E stand simultaneously for embedded and Euclidean. We now develop a canonical tensor
product for EJC algebras, and use this to construct several symmetric monoidal categories of EJC-algebras.
In one case, we obtain a category of reversible EJAs, with a monoidal product extending that of ordinary
complex matrix algebras; in another, which we call InvQM, we restrict attention to EJAs that arise as
fixed-point algebras of involutions on complex ∗-algebras (a class that includes all universally reversible
EJCs, but also includes the quaternionic bit, M2(H)sa, as symplectically embedded in M4(C). Here, the
monoidal structure agrees with the Hanche-Olsen tensor product in the cases in which the factors are
universally reversible. In what follows, recall the definition of the Jordan algebraic closure operation j
given in Definition 7.3.1

Definition 8.2.9 The canonical tensor product of (A,MA) and (B,MB) is (A�B,MA ⊗MB), where
A�B ≡ j(A⊗B) ⊆MA ⊗MB, the Jordan subalgebra of (MA ⊗MB)sa generated by A⊗B.

Note that this makes it a matter of definition that MA�B = MA ⊗MB. In particular, if A and B are
universally embedded, so that MA = C∗u(A) and MB = C∗u(B), then A � B = A⊗̃B, so that MA⊗̃B =

C∗u(A)⊗C∗u(B) by definition; but the fact that this last is C∗u(A⊗̃B) (whence, A�B is universally reversible)
is a theorem (i.e. Proposition 8.2.3 (ii).) Let us call an EJC (A,MA) reversible iff A is reversible in MA,
i.e. with respect to the inclusion map A ↪→ (MA)sa. Note that if A is a simple EJC standardly embedded
in MA, then A is reversible iff A = Mn(D)sa for some D ∈ {R,C,H} and for some n.

Theorem 8.2.10 If (A,MA) and (B,MB) are reversible EJC-algebras then their canonical tensor product
A�B is a composite in the sense of Definition 8.2.1.

Proof. We must show that A�B is a dynamical composite, in the sense of Definition 8.1.4. In particular,
it must be a composite of probabilistic models in the sense of Definition 8.1.2. Conditions (a)-(c) of that

2This calculation is involved and relegated to Appendix B.3.
3This calculation is involved and relegated to Appendix B.4.
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definition are easily verified: The condition uAB = uA ⊗ uB follows from the unitality of the embeddings
A 7−→MA, B 7−→MB and AB 7−→MAB. For all a, x ∈ (MA)sa and b, y ∈ (MB)sa, we have

〈a⊗ b|x⊗ y〉 = Tr(ax⊗ by) = Tr(ax)Tr(by) = 〈a|x〉〈b|y〉

Thus, for any states α = 〈a| and β = 〈b|, where a ∈ A+ and b ∈ B+, we have a state γ = 〈a ⊗ b| on AB

with γ(x⊗ y) = α(x)β(y) for all x ∈ A+, y ∈ B+.

That A � B satisfies the additional conditions required to be a dynamical composite in the sense of
Definition 8.1.4 is not trivial. However, using a result of Upmeier on the extension of derivations on
reversible JC-algebras [270], one can show that any φ ∈ G(A) extends to an element φ̂ ∈ G((MA)sa) that

preserves A, and that φ̂⊗1MB
is an order-automorphism of (MA⊗MB)sa preserving A�B. It follows that

φ̂⊗ ψ̂ = (φ̂⊗1MB
)◦ (1MA

⊗ ψ̂) preserves A�B as well. It is not difficult to verify that (φ̂⊗ ψ̂)† = φ̂†⊗ ψ̂†.
The details are presented in Appendix B.5. Thus A�B satisfies conditions (a) and (b) of Definition 8.2.1.
Condition (c) is immediate from the definition of A�B.

Combining Theorem 8.2.10 with Theorem 8.2.5, we see that if A and B are simple reversible EJCs for
which A⊗̃B is also simple, then the canonical and universal tensor products of A and B coincide. This
covers all cases except those involving two factors of the form Mn(C)sa and Mk(C)sa, and those involving
M2(H)sa as a factor. In fact, many of the latter are covered by the following.

Corollary 8.2.11 Let (A,MA) and (B,MB) be reversible EJCs with A generating MA and B generating
MB as ∗-algebras. Suppose MA and MB carry involutions Φ and Ψ, respectively, with Φ fixing points of
A and Ψ fixing points of B (i.e. A ⊆ MΦ

A and B ⊆ MΨ
B). Then A � B = (MA ⊗MB)Φ⊗Ψ

sa , the set of
self-adjoint fixed points of Φ⊗Ψ.

Proof. By Theorem 8.2.10, A�B is a dynamical composite of A and B; hence, by Theorem 8.2.5, A�B

is universally reversible. Since Φ⊗Ψ fixes points of A⊗B, it also fixes points of the Jordan algebra this
generates in MA ⊗MB, i.e. of A�B. But then, by Proposition Theorem 7.3.5, A�B is exactly the set
of fixed points of Φ⊗Ψ.

It follows from Theorem 8.2.10, together with Theorem 8.2.7 that the canonical and universal tensor
products coincide for simple, reversible EJCs whose universal tensor products are simple. This covers all
cases except for those in which one factor is M2(H)sa (the quaternionic bit), and those in which both
factors have the form Mn(C)sa for some n. In the following section we prove the lemmas that directly
yield the following theorem.

Theorem 8.2.12 The canonical tensor products of the Jordan matrix algebras with respect to their stan-
dard embeddings are as follows:

� R Mn(R)sa Mn(C)sa Mn(H)sa

R R Mn(R)sa Mn(C)sa Mn(H)sa

Mm(R)sa Mnm(R)sa Mnm(C)sa Mnm(H)sa

Mm(C)sa Mnm(C)sa M2nm(C)sa

Mm(H)sa M4nm(R)sa
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8.3 Explicit Computations

In this section, we provide explicit proofs of the lemmas which yield our proof of Theorem 8.2.12

We will require the following propositions, wherein to remind the reader c(X) denotes the C∗-subalgebra
of Mn(C) generated4 (as a C∗-algebra) by X ⊆ Mn(C)sa, and X ⊗R Y ≡ spanR

{
x ⊗ y : x ∈ X and y ∈

Y
}
⊆ Mn(C)sa ⊗Mm(C)sa = Mnm(C)sa. Furthermore, we denote the C∗-algebraic unit of Mn(C) by 1n,

which of course coincides with the R-algebraic unit of Mn(C)sa.

Proposition 8.3.1 Let 1n ∈ X ⊆ Mn(C)sa and 1m ∈ Y ⊆ Mm(C)sa such that c(X) = Mn(C) and
c(Y ) = Mm(C). Then

c(X ⊗R Y ) = Mnm(C). (8.4)

Proof. Note that c
(
X ⊗R {1m}

)
= Mn(C)⊗1m =

{
x⊗1m : x ∈Mn(C)

}
. Likewise c

(
{1n}⊗R Y

)
= 1n⊗

Mm(C). Thus Mn(C)⊗Mm(C) ⊆ c
(
X⊗RY

)
. Moreover, by construction c

(
X⊗RY

)
⊆Mn(C)⊗Mm(C).

For the next proposition, let AΦA+ (respectively, AΦA−) denote the +1 (respectively, −1) eigenspace of a
real orthogonal transformation ΦA with ΦA ◦ΦA = idA : A −→ A :: a 7−→ a on a real vector space A (so
A = AΦA+ ⊕AΦA−).

Proposition 8.3.2 Let A,B be vector spaces over R equipped with inner products 〈·, ·〉A and 〈·, ·〉B.
Let ΦA : A −→ A and ΦB : B −→ B be real orthogonal transformations5 with ΦA ◦ ΦA = idA and
ΦB ◦ ΦB = idB. Then

dimR

((
A⊗R B

)(ΦA⊗ΦB)+
)

= dimR

(
AΦA+

)
dimR

(
BΦB+

)
+ dimR

(
AΦA−

)
dimR

(
BΦB−

)
(8.5)

Proof. The eigenvalues of ΦA ⊗ ΦB are the R-multiplicative products of the eigenvalues of ΦA and ΦB.
Any R-linearly independent subsets {a1, . . . , an} ⊂ A and {b1, . . . , bm} ⊂ B are such that

{
ak ⊗ bl : k ∈

{1, . . . , n}∧ l ∈ {1, . . . ,m}
}

is an R-linearly independent subset of A⊗RB. Finally, note dimR
(
A⊗RB

)
=

dimRAdimRB.

We shall also require the following elementary propostions concerning generation, the first being trivial.

Proposition 8.3.3 c
(
πR
(
R
))

= C.

Proposition 8.3.4 c
(
πMn(R)sa

(
Mn(R)sa

))
= Mn(C).

Proof. Immediate from our proof of Proposition 7.3.6.

Proposition 8.3.5 c
(
πMn(C)sa

(
Mn(C)sa

))
= Mn(C).

Proof. ∀X ∈ Mn(C) one has X = A + B with A = (X + X∗)/2 ∈ Mn(C)sa and B = (X −X∗)/2. The
problem thus reduces to proving that all skew-self-adjoint matrices can be generated by the self-adjoint
matrices as a C∗-algebra. Let B be any skew-self-adjoint matrix. Then iB is self-adjoint. So we can
generate the matrix B just be multiplying iB by the complex scalar −i. �

4i.e. the C∗-algebraic closure
5i.e. ∀a1, a2 ∈ A one has 〈a1, a2〉A =

〈
ΦA(a1),ΦA(a2)

〉
A

and ∀b1, b2 ∈ B one has 〈b1, b2〉B =
〈
ΦB(b1),ΦB(b2)

〉
B

.
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Proposition 8.3.6 c
(
πMn(H)sa

(
Mn(H)sa

))
= M2n(C).

A proof of Proposition 8.3.6 is found in the authors MSc thesis [224]. We are now ready for our main
lemmas.

Lemma 8.3.7
R�Mn(R)sa

∼= Mn(R)sa (8.6)

Proof. By definition πR
(
R
)
⊗R πMn(R)sa

(
Mn(R)sa

) ∼= Mn(R)sa: a closed Jordan algebra!.

Lemma 8.3.8
Mm(R)sa �Mn(R)sa

∼= Mnm(R)sa (8.7)

Proof. We will begin by proving that

C∗u

(
Mm(R)sa �Mn(R)sa

)
∼= Mnm(C). (8.8)

By Proposition 8.3.2 and Proposition 8.3.4 πMm(R)sa

(
Mm(R)sa

)
⊗R πMn(R)sa

(
Mn(R)sa

)
⊂ Mm(R)sa �

Mn(R)sa ⊂ Mnm(C)sa in fact generates Mnm(C) as a C∗-algebra. Furthermore, there exists an antiau-
tomorphism of Mnm(C) that fixes the inclusion of Mm(R)sa �Mn(R)sa — namely the transpose! Note
that Mm(R)sa �Mn(R)sa is not a spin factor because it has rank at least 4. Therefore by Hanche-Olsen’s
Theorem Eq. (8.8) holds. Our knowledge of the universal C∗-algebras of all items in the Jordan-von
Neumann-Wigner Classification Theorem now already implies that Mm(R)sa �Mn(R)sa must be Jordan
isomorphic to a simple real or quaternionic matrix algebra. It is real. For the proof, we simply apply
Proposition 8.3.2 with A ∼= Mm(C)sa and B ∼= Mn(C)sa, with ΦA and ΦB the local transposes, and count
dimensions:

dimR

(
Mm(R)sa �Mn(R)sa

)
=

m(m+ 1)

2

n(n+ 1)

2
+
m(m− 1)

2

n(n− 1)

2
(8.9)

=
nm

4
(nm+m+ n+ 1 + nm−m− n+ 1) (8.10)

=
nm(nm+ 1)

2
(8.11)

= dimRMnm(R)sa. (8.12)

The proof is complete because we know that the self-adjoint fixed points of the canonical antiautomorphism
of the universal C∗-algebra of a universally reversible eja are precisely the images of the eja under canonical
injection.

Lemma 8.3.9
Mm(R)sa �Mn(H)sa

∼= Mnm(H)sa (8.13)

Proof. The proof is entirely similar to the previous case; however let us keep a full record. First, we will
show that

C∗u

(
Mm(R)sa �Mn(H)sa

)
∼= M2nm(C). (8.14)
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By Proposition 8.3.1 together with Proposition 8.3.4 and Proposition 8.3.6,

πMm(R)sa

(
Mm(R)sa

)
⊗R πMn(H)sa

(
Mn(H)sa

)
⊂Mm(R)sa �Mn(H)sa ⊂M2nm(C)sa (8.15)

in fact generates M2nm(C) as a C∗-algebra. Recall M2n(C) admits the *-antiautomorphism J :: x 7−→
−JxTJ with J2 = −12n the usual symplectic matrix; moreover, the set of self-adjoint fixed points of J

is precisely the image of Mn(H)sa in standard representation. Recall also that Mm(C) enjoys the usual
transpose antiautomorphism, say T, whose set of self-adjoint fixed points is precisely the real symmetric
matrices. Therefore Mm(R)sa �Mn(H)sa ⊂ M2nm(C)sa is pointwise fixed by the antiautomorphism T ⊗
J (again, recalling our general arguments in the notes mentioned in the previous proof.) Noting that
Mm(R)sa �Mn(H)sa has rank at least 4, we conclude that Eq. (8.14) holds in light of Hanche-Olsen’s
Theorem. Once again, our knowledge of the universal C∗-algebras of all items in the Jordan-von Neumann-
Wigner Classification [52] now already implies that Mm(R)sa � Mn(H)sa must be Jordan isomorphic
to a simple real or quaternionic matrix algebra. It is quaternionic. For the proof, we simply apply
Proposition 8.3.2 with A ∼= Mm(C)sa and B ∼= M2n(C)sa, with ΦA = T and ΦB = J the local involutions
and count dimensions:

dimR

(
Mm(R)sa �Mn(H)sa

)
=

m(m+ 1)

2
n(2n− 1) +

m(m− 1)

2
(4n2 − 2n2 + n) (8.16)

=
nm

2

(
(m+ 1)(2n− 1) + (m− 1)(2n+ 1)

)
(8.17)

=
nm

2
(2nm+ 2n−m− 1 + 2nm− 2n+m− 1) (8.18)

= nm(2nm− 1) (8.19)

= dimRMnm(H)sa. (8.20)

Lemma 8.3.10
Mm(H)sa �Mn(H)sa

∼= M4nm(R)sa. (8.21)

Proof. The proof is entirely similar to the proofs of Lemma 8.3.8 and Lemma 8.3.9. In particular,

C∗u

(
Mm(H)sa �Mn(H)sa

)
∼= M4nm(C). (8.22)

And

dimR

(
Mm(H)sa �Mn(H)sa

)
= m(2m− 1)n(2n− 1) +

(
4m2 − 2m2 +m

)(
4n2 − 2n2 + n

)
(8.23)

= nm(4nm− 2m− 2n+ 1) + nm(2m+ 1)(2n+ 1) (8.24)

= nm(4nm− 2m− 2n+ 1 + 4nm+ 2m+ 2n+ 1) (8.25)

= nm(8nm+ 2) (8.26)

=
4nm(4nm+ 1)

2
(8.27)

= dimRM4nm(R)sa. (8.28)
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Next, we consider nontrivial canonical tensor products with respect to the standard embeddings where
at least one factor is complex. Our technique used for the proofs of Lemma 8.3.8, Lemma 8.3.9, and
Lemma 8.3.10 can not be applied in this case, because there is no *-antiautomorphism on Mn(C) whose
fixed points are exactly the self-adjoint matrices (note that the usual adjoint is not an antiautomorphism
because it is not C-linear.) Instead, our proofs of the following lemmas rely on the structure of the
Generalized Gell-Mann matrices reviewed in Appendix B.2.

Lemma 8.3.11 Mm(R)sa �Mn(C)sa = Mnm(C)sa.

Proof. By definition Mm(R)sa �Mn(C)sa is the Jordan algebraic closure of

Mm(R)sa ⊗R Mn(C)sa = spanR
{
a⊗ b : a ∈Mm(R)sa and b ∈Mm(C)sa

}
⊆Mnm(C)sa. (8.29)

Our method of proof will be to obtain the following inclusion by Jordan-algebraic generation

Mnm(C)sa ⊆Mm(R)sa �Mn(C)sa. (8.30)

For reference, recall the Generalized Gell-Mann Matrices for r, s ∈ {1, . . . ,m}:

Gr,s =


1√
2

(
Er,s + Es,r

)
∈Mm(R)sa ⊂Mm(C)sa r < s

i√
2

(
Er,s − Es,r

)
∈Mm(C)sa s < r

1√
r(r+1)

(
− rEr+1,r+1 +

∑r
k=1Ek,k

)
∈Mm(R)sa ⊂Mm(C)sa s = r 6= n

(8.31)

For convenience introduce for j, k ∈ {1, . . . , n}:

Hr,s =


1√
2

(
Fj,k + Fk,j

)
∈Mn(C)sa j < k

i√
2

(
Fj,k − Fk,j

)
∈Mn(C)sa k < j

1√
j(j+1)

(
− jFj+1,j+1 +

∑j
l=1 Fk,k

)
∈Mn(C)sa j = k 6= n

(8.32)

where Fj,k are defined just like Er,s (a symbolic distinction that we introduce to signal a possibly different
underlying dimensionality.)

We will now generate i
(
Er,s−Es,r

)
/
√

2 to appear in the left factor. Observe that for any r < s ∈ {1, . . . ,m}
and for any j < k ∈ {1, . . . , n}

Zr,s = Er,r − Es,s ∈Mm(R)sa (8.33)

Wj,k = Fj,j − Fk,k ∈Mn(C)sa (8.34)

and one therefore has Zr,s ⊗Wj,k ∈ Mm(R)sa �Mn(C)sa. One also has for any r < s ∈ {1, . . . ,m} and
for any j < k ∈ {1, . . . , n} that Gr,s ⊗ Hj,k ∈ Mm(R)sa �Mn(C)sa. Their Jordan algebraic product is
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contained in the canonical tensor product as well, explicitly(
Zr,s ⊗Wj,k

)·(Gr,s ⊗Hj,k

)
=

(
Zr,sGr,s ⊗Wj,kHj,k +Gr,sZr,s ⊗Hj,kWj,k

)
/2

=
((
Er,r − Es,s

)(
Er,s + Es,r

)
⊗
(
Fj,j − Fk,k

)(
Fj,k + Fk,j

))
/4

+
((
Er,s + Es,r

)(
Er,r − Es,s

)
⊗
(
Fj,k + Fk,j

)(
Fj,j − Fk,k

))
/4

=
((
Er,s − Es,r

)
⊗
(
Fj,k − Fk,j

))
/4

+
((
− Er,s + Es,r

)
⊗
(
− Fj,k + Fk,j

))
/4

=
((
Er,s − Es,r

)
⊗
(
Fj,k − Fk,j

))
/2 ∈Mm(R)sa �Mn(C)sa (8.35)

So
(
Er,s −Es,r

)
⊗
(
Fj,k − Fk,j

)
∈Mm(R)sa �Mn(C)sa. Also, 1m ⊗ i

(
Fj,k − Fk,j

)
∈Mm(R)sa �Mn(C)sa.

Observe ((
Er,s − Es,r

)
⊗
(
Fj,k − Fk,j

))·(1m ⊗ i(Fj,k − Fk,j))
= i

(
Er,s − Es,r

)
⊗
(
(Fj,k − Fk,j)(Fj,k − Fk,j)

)
= i

(
Er,s − Es,r

)
⊗
(
Fj,j − Fk,k

)
∈Mm(R)sa �Mn(C)sa (8.36)

Of course, 1m ⊗ Fk,k ∈Mm(R)sa �Mn(C)sa. So,

i
(
Er,s − Es,r

)
⊗
(
Fj,j − Fk,k

)·(1m ⊗ Fj,j) = i
(
Er,s − Es,r

)
⊗ Fj,j ∈Mm(R)sa �Mn(C)sa. (8.37)

Note
∑n
j=1 Fj,j = 1n. Thus, by R-linear generation:

i√
2

(
Er,s − Es,r

)
⊗ 1n ∈Mm(R)sa �Mn(C)sa. (8.38)

Therefore, for any r, s ∈ {1, . . . ,m}, and any j, k ∈ {1, . . . , n}, one has that {Gr,s} ⊗ 1n and 1m ⊗ {Hj,k}
are both in the canonical tensor product. Of course, so too is 1m ⊗ 1n.

Lemma 8.3.12 Mm(C)sa �Mn(C)sa = Mnm(C)sa.

Proof. Trivial, by definition Mm(C)sa ⊗R Mn(C)sa
∼= Mnm(C)sa.

Lemma 8.3.13 Mm(H)sa �Mn(C)sa = M2nm(C)sa.

Proof. We begin with a quaternionic generalization of the Generalized Gell-Mann Matrices, which we will
call the quaternionic Gell-Mann matrices. Let r, s ∈ {1, . . . ,m}. Define

Qor,s = 1√
2

(
Er,s + Es,r

)
for r < s (8.39)

Qir,s = i√
2

(
Er,s − Es,r

)
for s < r (8.40)

Qjr,s = j√
2

(
Er,s − Es,r

)
for s < r (8.41)

Qkr,s = k√
2

(
Er,s − Es,r

)
for s < r (8.42)

Qlr,r = 1√
r(r+1)

(
− rEr+1,r+1 +

∑r
k=1Ek,k

)
for r = s 6= m (8.43)
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We have defined 4m(m − 1)/2 + (m − 1) = 2m2 −m − 1 = m(2m − 1) − 1 traceless R-linearly indepen-
dent self-adjoint m × m quaternionic matrices. Thus the cardinality of the R-linearly independent set
{Qor,s , Qir,s , Qjr,s , Qkr,s , Qlr,r ,1m} is m(2m− 1), which is equal to the dimension of Mm(H)sa. Exclama-
tion point! Let us now consider the symplectic (i.e. standard) embedding of the quaternionic Gell-Mann
matrices. Let π be the symplectic embedding. Recall [224]:

π : Mm(H)sa −→M2m(C)sa :: Γ1 + Γ2j 7−→
(

Γ1 Γ2

−Γ2 Γ1

)
. (8.44)

Let Fp,q = |fp〉〈fq| ∈ M2m(C) where
{
|fp〉 : j ∈ {1, . . . , 2m}

}
is the standard orthonormal basis for C2m.

Then

Qor,s
π7−→ 1√

2

(
Fr,s + Fs,r + Fr+m,s+m + Fs+m,r+m

)
(8.45)

Qir,s
π7−→ i√

2

(
Fr,s − Fs,r − Fr+m,s+m + Fs+m,r+m

)
(8.46)

Qjr,s
π7−→ 1√

2

(
Fr,s+m − Fs,r+m − Fr+m,s + Fs+m,r

)
(8.47)

Qkr,s
π7−→ i√

2

(
Fr,s+m − Fs,r+m + Fr+m,s − Fs+m,r

)
(8.48)

Qlr,r
π7−→ 1√

r(r+1)

(
− rFr+1,r+1 +

∑r
k=1 Fk,k − rFr+1+m,r+1+m +

∑r
k=1 Fk+m,k+m

)
(8.49)

Let Gp,q be the Generalized Gell-Mann Matrices for M2m(C); with p, q ∈ {1, . . . , 2m}:

Gp,q =


1√
2

(
Fp,q + Fq,p

)
p < q

i√
2

(
Fp,q − Fq,p

)
q < p

1√
p(p+1)

(
− pEp+1,p+1 +

∑p
k=1Ek,k

)
p = q 6= 2m

(8.50)

Let Lt,v = |gt〉〈gv| ∈ Mn(C) where
{
|gt〉 : t ∈ {1, . . . , n}

}
is the standard orthonormal basis for Cn. Let

Ht,v be the Generalized Gell-Mann Matrices for Mn(C); with t, v ∈ {1, . . . , n}:

Ht,v =


1√
2

(
Lt,v + Lv,t

)
t < v

i√
2

(
Lt,v − Lv,t

)
v < t

1√
t(t+1)

(
− tLt+1,t+1 +

∑t
k=1 Lk,k

)
t = v 6= n

(8.51)

Now, by definition Mm(H)sa �Mn(C)sa ⊆ M2nm(C)sa. We will establish the reverse inclusion, explicitly
put: M2nm(C)sa ⊆ Mm(H)sa � Mn(C)sa, by proving that one can generate {Gp,q} ⊗ 1n — obviously
12m⊗{Ht,v} is in the canonical tensor product; indeed the real vector space tensor product to begin with.
So the task becomes generating the Gp,q from the images of the m×m self-adjoint quaternionic matrices
under π. This will be tedious.
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To start, we compute

−8
(
π
(
Qor,s

)
⊗Ht<v,v

)·(π(Qir,s)⊗Ht>v,v

)
=

(
− Fr,r + Fs,s + Fr+m,r+m − Fs+m,s+m

)
⊗
(
− Lt,t + Lv,v

)
+

(
Fr,r − Fs,s − Fr+m,r+m + Fs+m,r+m

)
⊗
(
Lt,t − Lv,v

)
=

(
− Fr,r + Fs,s + Fr+m,r+m − Fs+m,s+m

)
⊗
(
− Lt,t + Lv,v

)
+ (−1)2

(
− Fr,r + Fs,s + Fr+m,r+m − Fs+m,s+m

)
⊗
(
− Lt,t + Lv,v

)
= 2

(
− Fr,r + Fs,s + Fr+m,r+m − Fs+m,s+m

)
⊗
(
− Lt,t + Lv,v

)
≡ A ∈Mm(H)sa �Mn(C)sa (8.52)

Then, using
∑n
v=1 Lv,v = 1n, we compute

1
4

∑n
v=1A·(12m⊗Lv,v

)
=
(
−Fr,r+Fs,s+Fr+m,r+m−Fs+m,s+m

)
⊗1n ≡ B ∈Mm(H)sa�Mn(C)sa. (8.53)

We will need the following image: Er,r
π7−→ Fr,r + Fr+m,r+m. With this, we compute

B·((Fr,r + Fr+m,r+m
)
⊗ 1n

)
=
(
− Fr,r + Fr+m,r+m

)
⊗ 1n ≡ C ∈Mm(H)sa �Mn(C)sa (8.54)

Thus

1
2

(
C + π

(
Er,r

)
⊗ 1n

)
= Fr+m,r+m ⊗ 1n ∈Mm(H)sa �Mn(C)sa (8.55)

− 1
2

(
C − π

(
Er,r

)
⊗ 1n

)
= Fr,r ⊗ 1 ∈Mm(H)sa �Mn(C)sa. (8.56)

So

2
(
π
(
Qor,s

)
⊗ 1n

)·(Fr,r ⊗ 1n) = 1√
2

(
Fr,s + Fs,r

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa (8.57)

2
(
π
(
Qor,s

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n) = 1√
2

(
Fr+m,s+m + Fs+m,r+m

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa(8.58)

2
(
π
(
Qir,s

)
⊗ 1n

)·(Fr,r ⊗ 1n) = i√
2

(
Fr,s − Fs,r

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa (8.59)

−2
(
π
(
Qir,s

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n) = i√
2

(
Fr+m,s+m − Fs+m,r+m

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa(8.60)

Next, we compute

−8
(
π
(
Qor,s

)
⊗Ht<v,v

)·(π(Qkr,s)⊗Ht>v,v

)
=

(
− Fr,r+m + Fs,s+m − Fr+m,r + Fs+m,s

)
⊗
(
− Lt,t + Lv,v

)
+

(
Fr,r+m − Fs,s+m + Fr+m,r − Fs+m,s

)
⊗
(
Lt,t − Lv,v

)
=

(
− Fr,r+m + Fs,s+m − Fr+m,r + Fs+m,s

)
⊗
(
− Lt,t + Lv,v

)
+ (−1)2

(
− Fr,r+m + Fs,s+m − Fr+m,r + Fs+m,s

)
⊗
(
− Lt,t + Lv,v

)
= 2

(
− Fr,r+m + Fs,s+m − Fr+m,r + Fs+m,s

)
⊗
(
− Lt,t + Lv,v

)
≡ A′ ∈Mm(H)sa �Mn(C)sa. (8.61)
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Again, using
∑n
v=1 Lv,v = 1n, we compute

1
4

∑n
v=1A

′·(12m⊗Lv,v
)

=
(
−Fr,r+m+Fs,s+m−Fr+m,r+Fs+m,s

)
⊗1n ≡ B′ ∈Mm(H)sa�Mn(C)sa. (8.62)

From Eqs. (8.57) and (8.56) we then compute using Eq. (8.62)

4
(
B′· 1√

2

(
Fr,s + Fs,r

)
⊗ 1n

)·(Fr,r ⊗ 1n)
= 2

(
1√
2

(
− Fr+m,s + Fs+m,r + Fr,s+m − Fs,r+m

)
⊗ 1n

)·(Fr,r ⊗ 1n)
= 1√

2

(
Fr,s+m + Fs+m,r

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa. (8.63)

From Eqs. (8.58) and (8.55) we then compute using Eq. (8.62)

4
(
B′· 1√

2

(
Fr+m,s+m + Fs+m,r+m

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n)
= 2

(
1√
2

(
− Fr,s+m + Fs,r+m + Fr+m,s − Fs+m,r

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n)
= 1√

2

(
Fr+m,s + Fs,r+m

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa. (8.64)

From Eqs. (8.59) and (8.56) we then compute using Eq. (8.62)

4
(
B′· i√2

(
Fr,s − Fs,r

)
⊗ 1n

)·(Fr,r ⊗ 1n)
= 2

(
i√
2

(
− Fr+m,s − Fs+m,r + Fr,s+m + Fs,r+m

)
⊗ 1n

)·(Fr,r ⊗ 1n)
= i√

2

(
Fr,s+m − Fs+m,r

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa. (8.65)

From Eqs. (8.60) and (8.55) we then compute using Eq. (8.62)

4
(
B′· i√2

(
Fr+m,s+m − Fs+m,r+m

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n)
= 2

(
i√
2

(
− Fr,s+m − Fs,r+m + Fr+m,s + Fs+m,r

)
⊗ 1n

)·(Fr+m,r+m ⊗ 1n)
= i√

2

(
Fr+m,s − Fs,r+m

)
⊗ 1n ∈Mm(H)sa �Mn(C)sa. (8.66)

Recalling that r, s ∈ {1, . . . ,m}, Eqs. (8.57)(8.58)(8.59)(8.60)(8.63)(8.64)(8.65)(8.66) establish that for any
p 6= q ∈ {1, . . . , 2m} one has that {Gp,q ⊗ 1n

}
∈ Mm(H)sa �Mn(C)sa. Exclamation point! And with

Eqs. (8.55) and (8.56), we see that {Gp,p ⊗ 1n} is also in the canonical product. Indeed, this follows
simply from R-linear generation, because Fr,r ⊗ 1n and Fr+m,r+m ⊗ 1n are all in the canonical tensor
product. So

{
{Gp,q} ⊗ 1n

}
⊂Mm(H)sa �Mn(C)sa. Just to record our earlier remark:

{
12m ⊗ {Ht,v}

}
⊂

Mm(H)sa �Mn(C)sa. So too, of course, is 12m ⊗ 1n.

With the proofs of the foregoing lemmas, our Theorem 8.2.12 follows immediately.
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“Outside in the distance a wildcat did growl
Two riders were approaching, the wind began to howl”

—Bob Dylan
All Along The Watchtower (1968)

Chapter 9

Jordanic Categories

In [3] and [4], the author and H. Barnum and A. Wilce consider Jordan algebraic physical theories. This
chapter centres on the categorical aspects of those publications.

Real quantum theory and quaternionic quantum theory date back to the work of Stueckelberg [271] and
Finkelstein-Jauch-Speiser [272], respectively. In fact, much earlier, in [222], Birkhoff and von Neumann
showed that the lattice of orthogonal projections onto Hilbert modules over R, C, and H could be taken as a
models for experimental propositions. The formulation of a unified R-C theory is mathematically obvious in
light of the usual tensor product defined in Definition 2.1.8, restricted to real subspaces when required. Our
canonical tensor product (see Definition 8.2.9) provides a mathematical apparatus to construct arbitrary
composites for real, complex, and quaternionic systems. In this chapter, we prove that the resulting
theory admits the structure of a dagger compact closed category. We call this category InvQM because it
involves involutions. Within InvQM, the structure of complex composites is slightly different than in usual
quantum theory: one obtains a direct sum of two copies of the usual tensor product. Of course, it is well
known that quantum theory admits the structure of a dagger compact closed category [233][65]. Our work,
therefore, provides a concrete example of a general probabilistic theory distinct from quantum theory with
identical categorical structure to that of quantum theory. As we declared in Chapter 1, quantum theory
is, however, the only subtheory wherein tomographic locality holds; moreover, preservation of purity fails
outside of the real-complex subtheory. In light of dagger compact closure of InvQM, tomographic locality
and preservation of purity are evidently not required for sound categorical compositional structures.

Beyond R-C-H quantum theories within a Jordan algebraic framework, we are left with the spin factors Vk
and the exceptional Jordan algebra M3(O)sa. Our Corollary 8.2.6 rules out the inclusion of the exceptional
Jordan algebra in Jordanic theories enjoying our notion of composition given by Definition 8.2.1. In this
chapter, we shall see that the spin factors (save for the rebit M2(R)sa

∼= V2, the qubit M2(C)sa
∼= V3, and

the quabit M2(H)sa
∼= V5) are ruled out on categorical grounds, specifically by Proposition 9.2.2. InvQM

is, therefore, the largest possible categorical unification of Jordan algebraic physical theories respecting
our notion of composition whilst retaining dagger compact closure.

We structure the balance of this chapter as follows. In Section 9.1, we establish that the canonical tensor
product is associative, and we describe the canonical tensor product of direct sums. In Section 9.2, within
the framework of EJC-algebras, we first generalize the usual notion of complete positivity. We then
construct various categories of EJC-algebras.
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9.1 Associativity and Direct Sums

In this section, we first prove that the canonical tensor product � defined in Definition 8.2.9 is associative,
setting the stage for the construction of symmetric monoidal categories of EJC-algebras in the sequel. We
then describe the canonical tensor product of direct sums. Recall that an EJC -algebra is a pair (A,MA)
where MA is a finite dimensional complex *-algebra and A is a unital Jordan subalgebra of the self-adjoint
part of MA. For any subset X ⊆ Msa of the self-adjoint part of a finite dimensional complex *-algebra
M, recall that we write j(X) for Jordan subalgebra of Msa generated by X. Put otherwise, j(X) is the
smallest Jordan subalgebra of Msa containing the subset X. We denote associative multiplication in M
via juxtaposition, and we denote Jordan multiplication in Msa via ·, i.e. x1·x2 = (x1x2 + x2x1)/2. If X
and Y are subsets of the self-adjoint parts of finite dimensional complex *-algebras M and N, respectively,
recall that then we define

X⊗ Y ≡ spanR

{
x⊗ y | x ∈ X and y ∈ Y

}
⊆
(
M⊗N

)
sa

. (9.1)

Proposition 9.1.1 Let M be a finite dimensional complex *-algebra. Let subset A ⊆Msa. Let u be the
Jordan algebraic unit of j(A), i.e. u·x = x for all x ∈ j(A). Then for all x ∈ j(A) the ambient associative
products ux = x = xu.

Proof. Let x ∈ j(A). Then according the premise of the proposition

x = u·x = (ux+ xu)/2. (9.2)

Notice that u·u = u so u = uu. Carrying out left associative multiplication by u on Eq. (9.2) thus yields

ux = uux+ uxu/2 = (ux+ uxu)/2 =⇒ ux = uxu. (9.3)

Carrying out right associative multiplication by u on Eq. (9.2) yields

xu = uxu+ xuu/2 = (uxu+ xu)/2 =⇒ xu = uxu. (9.4)

In light of Eq. (9.3) and Eq. (9.4) we have that xu = ux. Therefore x = u·x = (ux + xu)/2 = ux and
similarly x = xu.

Proposition 9.1.2 Let M be a finite dimensional complex *-algebra. Let subset A ⊆ Msa. Let eA ∈ A

be such that the ambient associative products eAa = a = aeA for all a ∈ A. Then for all x ∈ j(A) the
associative products eAx = x = xeA.

Proof. Let x, y ∈ A. Let λ ∈ R. Then

eA(x·y) = eA(xy + yx)/2 =
(
(eAx)y + (eAy)x

)
/2 = (xy + yx)/2. (9.5)

eA(x+ y) = eAx+ eAy = x+ y. (9.6)

eA(xλ) = (eAx)λ = xλ. (9.7)

In light of Eq. (9.5) and Eq. (9.6) and Eq. (9.7) we see that left associative multiplication by eA commutes
with the Jordan product, vector space addition, and scalar multiplication operations on A. Similarly, right
associative multiplication commutes. Recalling that these are precisely the operations used to generate
j(A) from A, we complete the proof.
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Lemma 9.1.3 Let M and N be finite dimensional complex *-algebras, and let A and B be subsets of
Msa and Nsa, respectively. Suppose ∃eA ∈ A such that eAa = a = aeA ∀a ∈ A . Suppose ∃eB ∈ B such
that eBb = b = beB ∀b ∈ B. Then j(A⊗ j(B)) = j(A⊗B)=j(j(A)⊗B).

Proof. 1 We first show that j(A⊗B) ⊆ j(A⊗j(B)). By definition we have B ⊆ j(B); hence A⊗B ⊆ A⊗j(B).
Observe that if X ⊆ Y ⊆ Osa are subsets of the self-adjoint part of a finite dimensional complex *-algebra
O, then j(X) ⊆ j(Y), because then by definition j(X) = j{y ∈ Y | y ∈ X} ⊆ j{y ∈ Osa | y ∈ Y} = j(Y).
Therefore j(A⊗B) ⊆ j(A⊗ j(B)).

We now show that j(A ⊗ j(B)) ⊆ j(A ⊗ B). In light of our observation in the first part of this proof, it
suffices to show that A⊗ j(B) ⊆ j(A⊗B), because j(A⊗B) is closed, i.e. j(j(A⊗B)) = j(A⊗B). Notice
that

eA ⊗ j(B) =
{
eA ⊗ y ∈ (M⊗N)sa | y ∈ j(B)

}
⊆ j(A⊗B) (9.8)

follows from bilinearity of ⊗ since (eA⊗b1)·(eA⊗b2) = (eA⊗b1b2 +eA⊗b2b1)/2 = eA⊗ (b1b2 +b2b1)/2 =
eA ⊗ (b1·b2). Now, by definition,

A⊗ eB =
{
a⊗ eB ∈ (M⊗N)sa | a ∈ A

}
⊆ A⊗B ⊆ j(A⊗B). (9.9)

j(A ⊗ B) is by definition a Jordan algebra. In particular, the Jordan product of any two elements in
j(A⊗B) is again in j(A⊗B). Now let a ∈ A and y ∈ j(B). Then

(a⊗ eB)·(eA ⊗ y) = (aeA ⊗ eBy + eAa⊗ yeB)/2 = a⊗ y ∈ j(A⊗B) (9.10)

follows from Proposition 9.1.2; moreover j(A⊗B) is by definition closed under the real linear span of such
elements. We have shown that

A⊗ j(B) = spanR
{
a⊗ y ∈ (M⊗N)sa | a ∈ A and y ∈ j(B)

}
⊆ j(A⊗B). (9.11)

We therefore conclude
j(A⊗B) = j

(
A⊗ j(B)

)
. (9.12)

A proof that j(A⊗B) = j(j(A)⊗B) follows mutatis mutandis.

Proposition 9.1.4 Let (A,MA), (B,MB), and (C,MC) be EJC algebras. Then the associator mapping
of the symmetric monoidal category of finite dimensional complex *-algebras α : MA ⊗ (MB ⊗MC) −→
(MA ⊗MB)⊗MC carries A� (B� C) isomorphically onto (A�B)� C.

Proof. Let (A,MA), (B,MB) and (C,MC) be EJC algebras. We need to show that the associator mapping
α : MA ⊗ (MB ⊗MC) −→ (MA ⊗MB) ⊗MC carries A � (B � C) onto (A � B) � C. A is a EJC
algebra. Therefore ∃eA ∈ A such that eA·a = a for all a ∈ A, namely the Jordan algebraic unit! By
Proposition 9.1.1 we have the associative products eAa = a = aeA for all a ∈ A. B and C are also EJC
algebras, with units that we shall denote by eB and eC respectively. Define eBC = eB ⊗ eC ∈ B⊗ C. Then
eBCY = Y = Y eBC for all Y ∈ B ⊗ C. Similarly, by defining eAB = eA ⊗ eB ∈ A ⊗ B we have the
associative products eABX = X = XeAB for all X ∈ A⊗B. We may therefore apply Lemma 9.1.3 as we
deduce

A� (B� C) = j(A⊗ j(B⊗ C)) = j(A⊗ (B⊗ C)) (9.13)

1Note that ‘⊆’ means “is a subset of.”
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and
(A�B)� C = j(j(A⊗B)⊗ C) = j((A⊗B)⊗ C). (9.14)

The associator mapping is a ∗-isomorphism, and carries A⊗ (B⊗C) to (A⊗B)⊗C. Hence, it also carries
j(A⊗ (B⊗ C)) onto j((A⊗B)⊗ C).

Prior to contructing our categories in the following section, we note that if (A,MA) and (B,MB) are two
EJC-algebras, we define

(A,MA)⊕ (B,MB)) = (A⊕B,MA ⊕MB), (9.15)

where the embedding of A⊕B in MA⊕MB is the obvious one. One can easily check that for sets X ⊆MA

and Y ⊆ MB, j(X ⊕ Y ) = j(X) ⊕ j(Y ). Using this, and the distributivity of tensor products over direct
sums in the contexts of vector spaces and ∗-algebras, we have

A� (B⊕ C) = j(A⊗ (B⊕ C)) = j((A⊗B)⊕ (A⊗ C))

= j(A⊗B)⊕ j(A⊗ C)

= (A�B)⊕ (A� C)

(where j refers variously to generated Jordan subalgebras of MA⊗(MB⊕MC), (MA⊗MB)⊕(MA⊗MC),
MA ⊗MB, and MA ⊗MC.)

9.2 Categories of EJC-algebras

In this section we construct various categories of EJC-algebras (see Definition 8.2.8). An obvious candidate
for a category in which objects are such algebras is the following.

Definition 9.2.1 Let (A,MA) and (B,MB) be EJC-algebras. A Jordan preserving map is a linear
function φ : MA −→MB such that φ(A) ⊆ B. The category EJC has, as objects, EJC-algebras, and, as
morphisms, completely positive Jordan-preserving maps.

In view the associativity of � (Proposition 9.1.4), one might guess that EJC is symmetric-monoidal under
�. There is certainly a natural choice for the monoidal unit, namely the EJC-algebra I = (R,C). However,
the following propositions show that tensor products of EJC morphisms are generally not morphisms.

Proposition 9.2.2 There exist simple, nontrivial, universally embedded EJC-algebras (A, C∗u(A)) and
(B, C∗u(B)) such that α⊗ idB is not Jordan-preserving for any state α : C∗u(A) −→ C.

Proof. Suppose that B is not universally reversible. Suppose, further, that A⊗̃B is irreducible. For
instance, let B = V4 and A = Mn(R)sa [273]. Let B̂ be the set of fixed points of the canonical involution
ΦB. Then by Theorem 8.2.7, A�B = A⊗̃B, the set self-adjoint of fixed points of ΦA⊗ΦB. In particular,
uA ⊗ B̂ is contained in A � B. Now let α be a state on C∗u(A): this is completely positive, and trivially
Jordan-preserving, and so, a morphism in EJC. But

(α⊗ idB)(uA ⊗ B̂) = α(uA)B̂ = B̂,

which by Theorem 7.3.5 is larger than B because B is not universally reversible. So α ⊗ idB is not
Jordan-preserving.
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Another proof of Proposition 9.2.2 runs as follows. Consider the standard embeddings of Mn(C)sa and
Mk(R)sa, i.e. consider the EJC-algebras (Mn(C)sa,Mn(C)) and (Mk(R)sa,Mk(C)). Then we have

(Mn(C)sa,Mn(C))� (Mk(R)sa,Mk(C)) = (Mnk(C)sa,Mnk(C))

where the embedding of Mnk(C)sa in Mnk(C) is the standard one. Now let α be a state on Mn(C), and
let b be any self-adjoint matrix in Mnk(C)sa. Then 1n ⊗ b is self-adjoint in Mn(C) ⊗Mk(C) = Mnk(C),
and (α⊗ id)(1n⊗ b) = b. Since b needn’t belong to Mk(R)sa, the mapping α⊗ id is not Jordan-preserving.

Proposition 9.2.2 suggests the following adaptation of the notion of complete positivity to our setting.

Definition 9.2.3 A completely Jordan preserving map is a linear function φ : (A,MA) −→ (B,MB)
such that for any EJC-algebra (C,MC) the function φ⊗ idMC

is positive and takes A� C into B� C.

We note that Definition 9.2.3 implies that a completely Jordan preserving map φ is both Jordan-preserving
(take C = R) and completely positive (take C = Mn(C)sa for any n.)

Lemma 9.2.4 If φ : MA −→ MB is completely Jordan preserving, then for any (C,MC), φ ⊗ idMC
is

again completely Jordan preserving.

Proof. If (D,MD) is another EJC-algebra, then consider (C�D,MC⊗MD). The associativity of � yields

(φ⊗ idMC
)⊗ idMD

= φ⊗ (idMC⊗MD
).

Since φ is completely Jordan preserving, the latter carries A � (C � D) into B � (C � D). Since � is
associative, this tells us that (φ⊗ idC)⊗ idD carries (A� C)�D into (B� C)�D.

While all completely Jordan preserving morphisms are completely positive, our proofs for Proposition 9.2.2
show that the converse is false. On the other hand, the class of completely Jordan preserving morphisms
is still quite large.

Proposition 9.2.5 Let φ : MA → MB be a ∗-homomorphism taking A to B. Then φ is completely
Jordan preserving.

Proof. For the proof, note that φ ⊗ idMC
is again a ∗-homomorphism, and hence, takes the Jordan sub-

algebra generated by A ⊗ C to that generated by B ⊗ C, i.e. sends A � C into B � C. So φ is completely
Jordan preserving.

Proposition 9.2.6 Let (A,MA) be an EJC-algebra, and let a ∈ A. The mapping Ua : MA →MA given
by Ua(b) = aba is completely Jordan preserving.

Proof. For the proof, note that Ua is completely positive, and can be expressed in terms of the Jordan
product on MA as

Ua(b) = 2a·(a·b)− (a2)·b, (9.16)

that is Ua = 2L2
a − La2 , where La is the operator of left Jordan multiplication. Since A is a Jordan

subalgebra of (MA)sa, Ua(b) ∈ A for all a, b ∈ A. Thus, Ua is a morphism. Now if (C,MC) is another
EJC-algebra, we have

Ua ⊗ Uc = Ua⊗c (9.17)

109



for all c ∈MC; in particular,
Ua ⊗ idMC

= Ua ⊗ U1 = Ua⊗1. (9.18)

Since a⊗ 1 ∈ A� C, it follows that Ua is completely Jordan preserving.

Proposition 9.2.7 Let (A,MA), (A′,MA′), (B,MB), (B′,MB′) and and (C,MC) be EJC-algebras.
Then

(i) If φ : MA −→MB and ψ : MB −→MC are completely Jordan preserving, then so is ψ ◦ φ;

(ii) If φ : MA −→ MB and ψ : MA′ −→ MB′ are completely Jordan preserving then so is φ ⊗ ψ :
MA�A′ = MA ⊗MA′ −→MB ⊗MB′ = MB�B′ .

Proof. (i) is obvious, and (ii) follows from (i) and Lemma 9.2.4 by noting that

φ⊗ ψ = (φ⊗ idMB′ ) ◦ (idMA
⊗ ψ) (9.19)

In light of the foregoing propositions, EJC-algebras and completely Jordan preserving maps form a sym-
metric monoidal category, which we will call CJP, with tensor unit I = (R,C). The category CJP,
however, has an undesirable feature: any positive mapping f : MA −→ R is automatically Jordan preserv-
ing, yet, as Proposition 9.2.2 illustrates, for a non-universally reversible B, f ⊗ idB need not be. In other
words, there need be no completely Jordan preserving morphisms A −→ I. In particular, states of A need
not be completely Jordan preserving morphisms. In some cases, we can remedy this difficulty by relativis-
ing the definition of completely Jordan preserving mappings to a particular class C of EJC-algebras. In
what follows, assume that C is closed under � and contains the tensor unit I = (R,C).

Definition 9.2.8 Let (A,MA) and (B,MB) belong to C . A positive linear mapping φ : MA −→MB is
relatively completely Jordan preserving with respect to C if, for all (C,MC) ∈ C , the mapping φ ⊗ idMC

is positive and maps A� C into B� C. We denote the set of all such maps by CJPC (A,B).

If φ is relatively completely Jordan preserving with respect to C , this does not imply that φ is com-
pletely positive, unless C contains Mn(C)sa for every n ∈ N. Nevertheless, exactly as in the proof
of Proposition 9.2.7, we see that if A,B,C ∈ C and φ ∈ CJPC (A,B) and ψ ∈ CJPC (B,C), then
ψ ◦ φ ∈ CJPC (A,C), and also that if A,B,C,D ∈ C and φ ∈ CJPC (A,B) and ψ ∈ CJPC (C,D), then
φ⊗ψ ∈ CJPC (A⊗ C,B⊗D). In other words, CJPC becomes2 a symmetric monoidal category with rel-
atively completely Jordan preserving mappings with respect to C as morphisms. We denote this category
by CJPC . Here are three important ones.

Definition 9.2.9 Let C be the class of hermitian parts of complex ∗-algebras with standard embeddings.
Then φ belongs to CJPC iff φ is completely positive. Evidently, the category CJPC for this choice of C

is essentially orthodox, mixed-state quantum mechanics with superselection rules. From now on, we shall
call this category CQM.

Definition 9.2.10 Let C ′ be the class of reversible EJCs with standard embeddings. We denote the
category CJPC ′ by RSE.

2We prove this explicitly in Appendix B.7.
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By Theorem 8.2.12, plus the distributivity of � over direct sums, RSE is closed under �. The category
RSE represents a kind of unification of finite-dimensional real, complex and quaternionic quantum me-
chanics, in so far as its objects are the Jordan algebras associated with real, complex and quaternionic
quantum systems, and direct sums of these. Moreover, as restricted to complex (or real) systems, its
compositional structure is the standard one. However, our discussion following Proposition 9.2.2 shows
that not every quantum-mechanical process — in particular, not even processes that prepare states — will
count as a morphism in RSE, so this unification comes at a high cost.

Definition 9.2.11 Let C ′′ be the class of universally reversible EJCs with universal embeddings. We
denote the category CJPC ′′ by URUE.

URUE is closer to being a legitimate “unified” quantum theory, although it omits the quaternionic bit
(which is reversible, but not universally so). Even as restricted to complex quantum systems, however, it
differs from orthodox quantum theory in two interesting ways. First, and most conspicuously, the tensor
product is not the usual one: Mn(C)sa⊗̃Mk(C)sa = Mnk(C)sa⊕Mnk(C)sa, rather than Mnk(C)sa. Secondly,
it allows some processes that orthodox QM does not. Any completely positive mapping φ : C∗u(A)→ C∗u(B)
intertwining the involutions ΦA and ΦB (that is, ΦB◦φ = φ◦ΦA) is relatively completely Jordan preserving,
i.e., a morphism in URUE. In particular, the mapping on C∗u(Mn(C)sa) = Mn(C) ⊕Mn(C) that swaps
the two summands is a morphism. Since the image of Mn(C)sa in C∗u(Mn(C)sa) consists of pairs (a, aT ),
this mapping effects the transpose automorphism on Mn(C)sa. This is not permitted in orthodox quantum
theory, as the transpose is not a completely positive mapping on Mn(C). In spite of its divergences from
orthodoxy, URUE is in many respects a well behaved probabilistic theory. We shall now improve on it, by
considering a category of EJC-algebras having a slightly larger class of objects (in particular, it includes
M2(H)sa), but a slightly more restricted set of morphisms.

Recall that we write MΦ for the set of fixed-points of an involution Φ on a complex ∗-algebra M. One
can show that the involution Φ on Mn(C) with Mn(R)sa = Mn(C)Φ

sa (the transpose) and on M2n(C) with
Mn(H)sa = M2n(C)Φ

sa, namely Φ(a) = −JaTJ where J is the unitary in Eq. (7.56), are both unitary
with respect to the trace inner product 〈a, b〉 := Tr(a∗b). The canonical involution on C∗u(Mn(C)sa) =
Mn(C)⊕Mn(C), namely, the mapping (a, b) 7−→ (bT , aT ), is likewise unitary. We relegate explicit proofs
of these statements to Appendix B.6. Presently, let us introduce the following definitions, and we remind
the reader of Theorem 7.3.4.

Definition 9.2.12 An involutive EJC-algebra is a triple (A,MA,Φ) where (A,MA) is an EJC-algebra,
and where Φ is a unitary involution on MA with A = (MA)Φ

sa.

Definition 9.2.13 InvQM is the category where the objects are involutive EJC-algebras, and where the
morphisms φ : A −→ B completely positive mappings from MA to MB intertwining ΦA and ΦB, i.e,
ΦB ◦ φ = φ ◦ ΦA.

As we pointed out earlier, the condition that A be the set of self-adjoint fixed points of an involution
makes A reversible in MA. Thus, the class of involutive EJC-algebras contains no “higher” (n = 4 or
n > 5) spin factors. In fact, it contains exactly direct sums of the universally embedded universally
reversible EJCs (A, C∗u(A)) where A = Mn(R)sa or Mn(C)sa, with n arbitrary, or Mn(H)sa with n > 2,
together with the standardly embedded quabit, i.e. (M2(H)sa,M4(C)), with M2(H)sa the self-adjoint fixed
points of the involution Φ(a) = −JaTJ , where J is as in Eq. (7.56). In other words, InvQM includes
exclusively systems over the three division rings R,C and H, albeit with the complex systems represented
in their universal embeddings. Note that (R,M1(R)sa) counts as an involutive EJC: since M1(R)sa = R is
commutative, the identity map provides the necessary involution.
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It is easy to see that completely positive mappings MA →MB intertwining ΦA and ΦB are automatically
relatively completely Jordan preserving for the class of involutive EJCs. Indeed, by Corollary 8.2.11 the
canonical tensor product of involutive EJCs is again involutive, as

A�B = (MA ⊗MB)ΦA⊗ΦB
sa (9.20)

for all A,B ∈ InvQM, so one has the following.

Proposition 9.2.14 InvQM morphisms are relatively completely Jordan preserving with respect to the
class of objects ob(InvQM).

Proof. Let hom(InvQM) 3 φ : A −→ B. By Definition 9.2.13 φ is a completely positive linear map from
MA into MB, so φ is of course then positive. Now, let (C,MC,ΦC) be any involutive EJC-algebra. Then
from our previous observation φ⊗ idMC

is again positive. Furthermore, with arbitary X ∈ A� C one has

ΦB ⊗ ΦC

(
φ⊗ idMC

(X)
)

=
(
ΦB ◦ φ

)
⊗
(
ΦC ◦ idMC

)
(X)

=
(
φ ◦ ΦA

)
⊗
(
idMC

◦ ΦC

)
(X)

= φ⊗ idMC

(
ΦA ⊗ ΦC(X)

)
= φ⊗ idMC

(X) (9.21)

where the final equality comes from Equation (9.20). So, again from Equation (9.20), Eq. (9.21) shows
that φ⊗ idMC

:: A� C −→ B� C.

Since invoutive EJCs are reversible, Theorem 8.2.10 implies that A � B is a dynamical composite of A

and B. Composites and tensor products of intertwining completely positive maps are also such (as are
associators, unit-introductions and the swap mapping), so InvQM is a symmetric monoidal category
— indeed, a monoidal subcategory of the category of involutive EJC-algebras and relatively completely
Jordan preserving maps.

In the special case in which A and B are universally embedded complex qantum systems, say A = Mn(C)sa

and B = Mk(C)sa, we have MA = C∗u(Mn(C)sa) = Mn(C)⊕Mn(C) and similarly MB = Mk(C)⊕Mk(C).
The involutions ΦA are given by ΦA(a, b) = (bT , aT ), and similarly for ΦB. In this case, the interwining
completely positive-maps are sums of mappings of the two forms: (a, b) 7−→ (φ(a), φT (b)) and (a, b) 7−→
(φT (b), φ(a)), where φ is a completely positive mapping Mn(C) −→ Mk(C) and φT is determined by the
condition φT (xT ) = (φ(x))T , i.e. φT := T ◦ φ ◦ T .

Two special cases of InvQM-morphisms are worth emphasising on physical grounds.

Corollary 9.2.15 Let (A,MA,ΦA) belong to InvQM. Then

(a) for every a ∈ A, the corresponding linear mapping a : R −→ MA determined by a(1) = a, belongs
to InvQM(I,A);

(b) every positive linear functional (in particular, every state) on MA of the form |a〉, a ∈ A+, belongs
to InvQM(A, I)
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Proof. Part (a) is immediate from the fact that a is fixed by ΦA; part (b) also follows from this, plus the
unitarity of ΦA.

The category InvQM provides a unification of finite-dimensional real, complex and quaternionic quantum
mechanics, but with the same important caveats that apply to URUE: the representation of orthodox,
complex quantum systems Mn(C)sa in InvQM is through the universal embedding

ψ : Mn(C)sa −→ C∗u(Mn(C)sa) = Mn(C)⊕Mn(C) :: a 7−→ (a, aT ). (9.22)

As a consequence, the composite of two complex quantum systems in InvQM is a direct sum of two
copies of their standard composite — equivalently, is the standard composite, combined with a classical
bit. Moreover, the mapping that swaps the direct summands of C∗u(Mn(C)sa), a perfectly good morphism
in InvQM, acts as the transpose on ψ(a) = (a, aT ). We now move to compact closure.

In [274], it is shown that a large number of information-processing protocols, including in particular
conclusive teleportation and entanglement-swapping, hold in any compact closed symmetric monoidal
category, if we interpret objects as systems and morphisms as physically allowed processes. We shall now
see that our category InvQM is compact closed. More exactly, we shall show that it inherits a compact
structure from the natural compact structure on the category ∗-Alg of finite-dimensional complex ∗-
algebras, which we now review.

Recall Definition 7.1.10. A compact structure on a symmetric monoidal category C is a choice, for every
object A ∈ C, of a dual object: a triple (A′, ηA, εA) consisting of an object A′ ∈ C, a co-unit ηA : A⊗A′ → I
and a unit εA : I→ A′ ⊗A obeying the commutative diagrams expressed in Definition 7.1.10.3

If M is a finite-dimensional complex ∗-algebra, let Tr denote the canonical trace on M, regarded as acting
on itself by left multiplication (so that Tr(a) = tr(La), La : M→M being La(b) = ab for all b ∈M). This
induces an inner product on M, given by 〈a, b〉M = Tr(ab∗)4. Note that this inner product is self-dualizing,
i.e. a ∈M+ if and only if 〈a, b〉 ≥ 0 for all b ∈M+.

Now let M be the conjugate algebra, writing a for a ∈ M when regarded as belonging to M (so that
ca = c a for scalars c ∈ C and ab = ab for a, b ∈M). Note that 〈a, b〉 = 〈b, a〉. Now define

εM =
∑
e∈E

e⊗ e ∈M⊗M (9.23)

where E is any orthonormal basis for M with respect to 〈 | 〉M. Then straightforward computations show
that εM ∈ (M⊗M)+, and that, for all a, b ∈M,

〈a⊗ b, εM〉 = 〈a, b〉 = Tr(ab∗), (9.24)

where the inner product on the left is the trace inner product on M⊗M∗. Now define ηM : M⊗M→ C
by ηM = |εM〉, noting that this functional is positive (so, up to normalization, a state) since εM is positive
in M⊗M.

3Our usage is slightly perverse. The usual convention is to denote the unit by ηA and the co-unit by εA. Our choice is
motivated in part by the desire to represent states as morphisms A −→ I and effects as morphisms I −→ A, rather than the
reverse, together with the convention that takes the unit to correspond to the maximally entangled state.

4We are now following the convention that complex inner products are linear in the first argument.
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A final computation shows that, for any states α and α on M and M, respectively, and any a ∈M, a ∈M,
we have

(ηM ⊗ α)(a⊗ εM) = α(a) (9.25)

(α⊗ ηM)(εM ⊗ a) = α(a). (9.26)

Thus, ηM and εM define a compact structure on ∗-Alg, for which the dual object of M is given by M.

Definition 9.2.16 The conjugate of a EJC-algebra (A,MA,ΦA) is (A,MA,Φ), where A = {a|a ∈ A}.
We write ηA for ηMA

and εA for εMA
.

Any linear mapping φ : M −→ N between ∗-algebras M and N gives rise to a linear mapping

φ : M −→ N :: a 7−→ φ(a), (9.27)

for a ∈ M. It is straightforward to show that if Φ is a unitary involution on MA with A = MA
Φ
sa, then

Φ : M −→M is also a unitary involution with

MA
Φ

sa = A. (9.28)

Thus, the class of involutive EJCs is closed under the formation of conjugates.

Lemma 9.2.17 Let (A,MA,Φ) belong to InvQM. Then εA ∈ A�A.

Proof. By assumption, there is a unitary involution Φ on MA such that A = (MA)Φ
sa; by Corollary 8.2.11,

A�A is then the set of self-adjoint fixed points of Φ⊗Φ. Since Φ is unitary, if E is an orthonormal basis
for MA, then so is {Φ(e)|e ∈ E}; hence, as εA is independent of the choice of orthonormal basis, εA is

invariant under Φ⊗ Φ. Since εA is also self-adjoint, it belongs to (MA ⊗MA)Φ⊗Φ
sa , i.e. to A�A.

It follows now from part (b) of Corollary 9.2.15 that the functional

ηA = |εA〉 : MA ⊗MA −→ R (9.29)

is an InvQM morphism. Hence, InvQM inherits the compact structure from ∗-Alg, as promised. This
gives us our main theorem.

Theorem 9.2.18 InvQM is compact closed.

In fact, we can do a bit better. Recall Definition 7.1.11. It is not difficult to show that ∗-Alg is dagger
compact closed category, where, if M and N are finite-dimensional ∗-algebras and φ : M→ N is a linear
mapping, φ† is the hermitian adjoint of φ with respect to the natural trace inner products on M and N.
If (A,MA) and (B,MB) are involutive EJC-algebras with given unitary involutions ΦA and ΦB, then for
any intertwiner φ : MA −→MB, φ† also intertwines ΦA and ΦB. Hence, we have

Theorem 9.2.19 InvQM is dagger compact closed category.
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“Our imagination is stretched to the utmost, not, as in fiction,
to imagine things which are not really there, but just to
comprehend those things which are there.”

—Richard P. Feynman
The Character of Physical Law (1965)

Chapter 10

Conclusion (Part II)

We have found two categories of probabilistic models —the categories RSE and InvQM—that, in different
ways, unify finite-dimensional real, complex and quaternionic quantum mechanics. In each case, there is a
price to be paid for this unification. For RSE, this price is steep: RSE is a symmetric monoidal category,
but one in which states (for instance) on complex systems don’t count as physical processes. In particular,
RSE is very far from being compact closed.

In contrast, InvQM is clearly a well-behaved — indeed, dagger compact closed — probabilistic theory, in
which the states, as well as the effects, of real, complex, and quaternionic Euclidean Jordan algebras appear
as morphisms. On the other hand, InvQM admits the transpose automorphism on the complex Hermitian
Jordan algebra, and requires complex quantum systems to compose in a nonstandard way. Nevertheless, by
virtue of being dagger compact, InvQM continues to enjoy many of the information-processing properties
of standard complex QM, for example the existence of conclusive teleportation and entanglement-swapping
protocols [274]. Also, composites in InvQM satisfy the Cirel’son bound on correlations owing to the way
that, by construction, these composites are embedded within a tensor product of complex matrix algebras.

All of this is in spite of the fact that composites in InvQM are not locally tomographic: the canonical
composite A � B is larger than the vector space tensor product A ⊗ B. Local tomography is well known
to separate complex QM from its real and quaternionic variants, so its failure in URUE and RSE is
hardly surprising, but it is noteworthy that we are able to construct (non-locally tomographic) composites
in URUE in all of the non-real cases, and certain composites involving quaternions even in RSE. Even
more interesting is the fact that, for quaternionic systems A and B, the information capacity — the
number of sharply distinguishable states — of A�B is larger than the product of the capacities of A and
B. A related point is that, for quaternionic quantum systems A and B, the product of a pure state of A
and a pure state of B will generally be a mixed state in A � B. This is simply because the symplectic
representation embeds pure quaternionic quantum states as rank-2 complex quantum projectors (for details
see the author’s MSc thesis [224]).

The category InvQM contains interesting compact closed subcategories. In particular, real and quater-
nionic quantum systems, taken together, form a (full) monoidal sub-category of InvQM closed under
composition. We conjecture that this is exactly what one gets by applying Selinger’s CPM construction
[65] to Baez’ (implicit) category of pairs (H, J), H a finite dimensional complex Hilbert space and J an
anti-unitary with J2 = ±1 [275].
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Another compact closed subcategory of InvQM, which we will shall call InvCQM, consists of universally
embedded complex quantum systems Mn(C)sa. It is interesting to note that, in a hypothetical universe
described by InvQM, the subcategory InvCQM acts as a kind of “ideal”, in that if A ∈ InvQM and
B ∈ InvCQM, then A � B ∈ InvCQM as well. Summoning the spirit of the physical interpretation of
quantum theory described at the onset of Chapter 2, the canonical tensor product is of course, at bottom,
an epistemological construct. Adopting that view, if one associates, say, Mn(H)sa with system A, and, say,
Mm(C)sa with system B — presumably for physical reasons beyond the scope of the present analysis — then
via those associations one constructs the arena for staking degrees of belief regarding local evolutions and
local measurements on the local systems in question via post-quantum state assignments, possible effects,
and so forth (all epistemic devices.) Furthermore, working in the category InvQM, one has that the arena
for staking beliefs regarding the composite AB is just the ambient space Mn(H)sa�Mm(C)sa = M2nm(C)sa,
with the equality following from Proposition 8.2.3 iv and a small calculation. Put otherwise, global states,
effects, and transformations regarding the composite system are exactly from usual complex quantum
theory. Therefore, if one restricts one’s attention to AB, then that universe looks complex-quantum.
Furthermore, it is only when one explicitly considers the components that one sees a departure from usual
quantum theory; either via the compositional structure of AB — which is not locally tomographic since
n(2n − 1)m2 < 4n2m2 — or by, in this case, the local state space for A itself, which is quaternionic.
Furthermore, even if one considers a composite of two complex systems in InvQM, then the global states,
effects, and transformations remain complex-quantum; however, the composite structure differs in that
one has two copies of the usual tensor product: the direct summands differ by a transpose, which might
best be interpreted as time running forwards in the first direct summand, and backwards in the second.
This final thought warrants the attention of further investigation, and may provide a physical justification
for allowing the transpose automorphism to factor through the universal C∗-algebra enveloping Mn(C)sa.

It worth emphasizing that the most marked physical distinctions between quantum theory and InvQM
are manifest in the structure of composites. Indeed, the following informal diagram sketches how quantum
theories over the Jordan matrix algebras simulate each other locally, or put otherwise: at the level of single
systems. The ‘inc’ arrows represent the inclusion of one theory of single systems within another via a simple
superselection rule. The ‘MMG’ arrow refers to the simulation constructed by McKaugue-Mosca-Gisin in
[276]. The ‘q’ arrow refers to the simulation constructed by the author in [223]. The arrow ‘MMG◦q’
refers to the composition of these simulations. Furthermore, in light the standard representation of spin
factors expounded by Barnum-Graydon-Wilce in [4] and detailed in Section 7.2, theories of single spins
over Vk are readily embedded into the framework of usual complex quantum theory. The reader will notice
the absence of the exceptional Jordan algebra M3(O)sa, which admits no faithful representation inside the
self-adjoint part of any C∗-algebra.

Vk

inc

��

CQT

MMG

��

CQT

inc

��

RQT

inc

OO

inc //
HQT

q

OO

MMG◦q
oo

(10.1)
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Although it is not compact closed, the category RSE of reversible, standardly embedded ejcs remains
of interest. This is still a monoidal category, and contains, in addition to real and quaternionic quantum
systems, orthodox complex quantum systems in their standard embedding (and composing in the normal
way). Indeed, these form a monoidal subcategory, CQM, which, again, functions as an “ideal”.

It is worth noting that the set of quaternionic quantum systems does not form a monoidal subcategory
of either RSE or InvQM, as the composite of two quaternionic systems is real. Efforts to construct a
free-standing quaternionic quantum theory have had to contend with the absence of a suitable quaternionic
composite of quaternionic systems. For instance, as pointed out by Araki [268], the obvious candidate for
the composite of A = Mn(H)sa and B = Mm(H)sa, Mnm(H)sa, does not have a large enough dimension
to accommodate the real vector space tensor product A⊗R B, causing difficulty for the representation of
product effects.1 In our approach, the issue simply doe not arise. It seems that quaternionic quantum
mechanics is best seen as an inextricable part of a larger theory. Essentially the same point has also been
made by Baez [275].

The category InvQM is somewhat mysterious. It encompasses real and quaternionic QM in a completely
natural way; however, while it also contains complex quantum systems, these compose in an exotic way: as
pointed out above, the composite of two complex quantum systems in InvQM comes with an extra classical
bit — equivalently, {0, 1}-valued superselection rule. This functions to make the transpose automorphism
of Mn(C)sa count as a morphism. The extra classical bit is flipped by the Jordan transpose (swap of
C∗ summands) on either factor of such a composite, but unaffected if both parties implement the Jordan
transpose (which does, of course, effect a Jordan transpose on the composite). The precise physical
significance of this is a subject for further study.

As Proposition 9.2.2 shows, there is no way to enlarge InvQM so as to include higher spin factors,
without either sacrificing compact closure (and even rendering the set C(A, I), which might naturally
be thought to represent states, trivial) or venturing outside the ambient category of ejc-algebras, to
make use of morphisms that are not (relatively) completely Jordan-preserving maps. Our second proof of
Proposition 9.2.2 shows, more strikingly, that there is no way to construct a category of the form CJPC

that contains standardly embedded complex quantum systems and real systems, without, again, sacrificing
compact closure (indeed, the representation of states by morphisms).

1Attempts to interpret the quaternionic Hilbert module Hmn as a tensor product of Hm and Hn raise at least the possibility
of signaling via the noncommutativity of scalar multiplication. This noncommutativity underlies the the argument in [277]
that stronger-than-quantum correlations are achievable in such a model.
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“Dreamers, they never learn.”

—Radiohead
Daydreaming (2016)

Chapter 11

Epilogue

The zeitgeist of the current quantum foundations revolution revolves around the conception of quantum
theory as a theory of information. This spirit of thought underpins a mutualistic symbiosis enjoyed by the
fields of quantum information and quantum foundations. Transcending philosophy, quantum theory has
in fact recently been derived from information-theoretic principles [58][59][56][57] (references given being
representative only.) These derivations exemplify the immense power of deep, yet simple physical ideas;
ideas akin to Einstein’s more compelling postulates for relativity. There is no a priori reason to expect
that Einstein’s relativity and quantum theory can be reconciled within a unified framework for spacetime
and quantum physics. One cannot, however, resist speculating that relativity and quantum theory rise
from a deeper level of physical notions. Embracing an information-theoretic perspective of physics as a
whole, one ultimately seeks to uncover such common ground for all varieties of physical experience.

An obvious approach to the formulation of new fundamental physics is to first develop a deeper under-
standing of quantum theory itself. Indeed, while the derivations cited above exactly yield the full abstract
mathematical structure of quantum theory, there remain many important unresolved aspects pertaining
to the character of this probability calculus. In particular, the geometry of quantum state space is far
from fully understood. In Part I of this thesis, we introduced novel shapes of high symmetry inscribed
within quantum cones of arbitrary dimension, namely conical designs [1]. These shapes shed new light on
the structure of quantum information; moreover, they are naturally adapted to an information-theoretic
description entanglement [2].

A tautologically obvious route towards new physics is the explicit formulation of novel physical theories.
The vast landscape of general probabilistic theories provides a rich foundation; however, it is certainly
not obvious where and how to depart from the twin pillars. Indeed, relativity and quantum theory are
remarkably, nay, shockingly successful from an empirical point of view. Therefore, a conservative and
logical approach is to consider physical theories sharing some essential characteristics with our current
conceptions of nature. At a minimum, one feels that the notion of nonsignaling ought to be preserved,
for as Einstein emphasized, the notion of (quasi-)closed systems is necessary for the establishment of
empirically testable physics [11]. Together with nonsignaling, additional desiderata narrow the field of
general probabilistic theories encompassing quantum theory. In Part II of this thesis, we constructed
dagger compact closed symmetric monoidal categories for Jordan-algebraic physics [3][4].
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Eugene Wigner famously described the unreasonable effectiveness of mathematics in the natural sciences
[278]. Prima facie, abstract thinking is very powerful: from the general conception of a class, one can
capture the essence of all particular instantiations. This has been especially true in physics, which is
truly remarkable. Abstract mathematics alone, however, could never hope to provide a solid conceptual
foundation for physics. Rather, one requires deep physical principles concerning the nature of nature. It
is our hope that the present thesis draws one closer towards dem Geheimnis des Alten.
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Appendix A

Appendices of Part I

A.1 Proof of Lemma 2.2.1

In this appendix, we recall the statement of the Lemma 2.2.1 for convenience, and provide a full proof.

Lemma A.1.1 The restrictions of the product representation of U(Hd) to Hsym and Hasym are irreducible.

Proof. Let subspaces X ⊆ Hsym and Y ⊆ Hasym be invariant under the product representation of U(Hd).
We must prove that X ∈ {{0},Hsym} and Y ∈ {{0},Hasym}. The zero cases are trivial. Before proceeding
with the nontrivial cases, it will be useful to make some preparatory observations. Let t ∈ {1, . . . , d} and
|et〉 be the orthonormal basis for Hd arbitrarily chosen to define the orthonormal basis elements |f+

r,s〉, |f+
r,r〉

and |f−r,s〉 for Hsym and Hasym in Eqs. (2.8) and (2.9), respectively. Introduce the following families of
unitary linear endomorphisms on Hd defined for arbitrary fixed p < q ∈ {1, . . . , d} 3 l via

Al|et〉 = |et〉(1− 2δt,l), Bp,q|et〉 = |et〉(1− 2δt,p − 2δt,q), (A.1)

where δt,l is the usual Kronecker delta function. The action of Al⊗Al for l ∈ {p, q : p < q} and Bp,q⊗Bp,q
on |f±r,s〉 is to selectively introduce a phase of −1. This action is summarized in the following table organized
by mutually exclusive and exhaustive cases of the indices r and s. We also include a trivial column, for
reasons that will become clear.

1d ⊗ 1d|f±r,s〉 Ap ⊗Ap|f±r,s〉(−1) Aq ⊗Aq|f±r,s〉(−1) Bp,q ⊗Bp,q|f±r,s〉
r < p ∧ s /∈ {p, q} + − − +

r < p ∧ s = q + − + −
r < p ∧ s = p + + − −
r = p ∧ s = q + + + +

r = p ∧ s 6= q + + − −
r = q ∧ s 6= q + − + −

q 6= r > p ∧ s = q + − + −
q 6= r > p ∧ s 6= q + − − +
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Next, introduce a third family Cp,q ∈ U(Hd) in Eq. (A.2), and observe the consequent Eq. (A.3)

Cp,q|et〉
√

2 =
{
|et〉
√

2 if t /∈ {p, q}; |ep〉+ |eq〉 if t = p; |ep〉 − |eq〉 if t = q
}

, (A.2)

=⇒
(
Cp,q ⊗ Cp,q

)
|f+
p,p〉
√

2−
(
|f+
p,p〉+ |f+

q,q〉
)
2−1/2 = |f+

p,q〉. (A.3)

This concludes our preparatory work. Our method of proof will now be to demonstrate that from arbitrary
nonzero elements |x〉 ∈ X ⊆ Hsym and |y〉 ∈ Y ⊆ Hasym, one can generate all of the basis elements in
Eqs. (2.8) and (2.9), respectively, via vector space operations and unitary linear endomorphisms of the
form U ⊗ U . Indeed, X and Y are by assumption subspaces invariant under the product representation,
and therefore closed under such operations and endomorphisms. We start with such a |y〉 and find

|y〉 = |f−p,q〉λp,q +

d∑
r=1

∑
s>r

|f−r,s〉λr,s(1− δr,pδs,q) with 0 6= λp,q ∈ C (A.4)

=⇒ Y 3 |f−p,q〉 =
1

4λp,q

(
1d ⊗ 1d −Ap ⊗Ap −Aq ⊗Aq +Bp,q ⊗Bp,q

)
|y〉. (A.5)

The remaining basis elements for Hasym can then be generated under the action of Up ⊗ Up for suitably
chosen permutations in p ∈ Sd. Thus Y = Hasym. Now, for such an |x〉, the situation is more involved:
either ∃p < q ∈ {1, . . . , d} with 0 6= µp,q ∈ C or ∃v ∈ {1, . . . , d} with 0 6= νv ∈ C, or both, in

|x〉 = |f+
p,q〉µp,q +

d∑
r=1

∑
s>r

|f+
r,s〉µr,s(1− δr,pδs,q) + |f+

v,v〉νv +

d∑
r=1

|f+
r,r〉νr(1− δr,v). (A.6)

There are now three mutually exclusive and exhaustive subcases to consider.

Subcase 1: if !∃νv 6= 0, then our analysis of the antisymmetric case with |f−r,s〉 now replaced by |f+
r,s〉 yields

X = Hsym.

Subcase 2: if !∃µr,s 6= 0, then introduce then Dv ∈ U(Hd) as follows and observe that

Dv|el〉 = |el〉iδl,v where i2 = −1 =⇒ X 3 |f+
v,v〉 = 1

2νv

(
1d ⊗ 1d −Dv ⊗Dv

)
|x〉. (A.7)

All of the remaining remaining |f+
r,r〉 can then be generated from |f+

v,v〉 via Up ⊗ Up with permutations
p ∈ Sd suitably chosen, and from |f+

r,r〉, one can generate |f+
r,s〉 via Eq. (A.3). Thus X = Hsym.

Subcase 3: if ∃νv 6= 0 and µr,s 6= 0, then one can proceed as follows

X 3 |x′〉 ≡ 1

4µp,q

(
1d ⊗ 1d −Ap ⊗Ap −Aq ⊗Aq +Bp,q ⊗Bp,q

)
|x〉 (A.8)

= |f+
p,q〉+ |f+

v,v〉
νv

4µp,q
+

1

4µp,q

d∑
r=1

|f+
r,r〉νr(1− δr,v) (A.9)

=⇒ X 3 |x′′〉 ≡
(
1d ⊗ 1d +Aq ⊗Aq

)
|x′〉 (A.10)

= |f+
v,v〉

νv
2µp,q

+
1

2µp,q

d∑
r=1

|f+
r,r〉νr(1− δr,v) (A.11)

With |x′′〉 we return to our analysis of Subcase 2 to conclude once again that X = Hsym.
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A.2 Proof of Lemma 4.1.5

In this appendix, we state Lemma 4.1.5 in equivalent terms, and provide a full proof.

Lemma A.2.1 Define1

f : Q
(
Hd

)
→ R+ :: σ 7→ f(σ) =

√
1− Tr

(
σ2
)

(A.12)

It follows that

i. ∀U ∈ U(Hd) : f
(
UσU∗

)
= f(σ). (A.13)

ii. ∀λ ∈ [0, 1]∀σ1, σ2 ∈ Q
(
Hd

)
: f
(
σ1λ+ σ2(1− λ)

)
≥ f(σ1)λ+ f(σ2)(1− λ). (A.14)

Proof. That property i. holds follows directly from cyclicity of the trace:

f
(
UσU†

)
=

√
1− Tr

((
UσU∗

)2)
=

√
1− Tr

(
UσU†UσU∗

)
=

√
1− Tr

(
U∗Uσ2

)
=

√
1− Tr

(
σ2
)

= f(σ). (A.15)

Regarding property ii., we first compute the square of the lhs of (A.14)

L ≡
(
f
(
σ1λ+ σ2(1− λ)

))2

= 1− Tr
((
σ1λ+ σ2(1− λ)

)2)
= 1− λ2Tr

(
σ2

1

)
− (1− λ)2Tr

(
σ2

2

)
− 2λ(1− λ)Tr

(
σ1σ2

)
. (A.16)

and the square of the rhs of (A.14),

R ≡
(
λf(σ1) + (1− λ)f(σ2)

)2

= λ2
(
f(σ1)

)2
+ (1− λ)2

(
f(σ2)

)2
+ 2λ(1− λ)f(σ1)f(σ2)

= λ2
(

1− Tr
(
σ2

1

))
+ (1− λ)2

(
1− Tr

(
σ2

2

))
+ 2λ(1− λ)

√
1− Tr

(
σ2

1

)√
1− Tr

(
σ2

2

)
. (A.17)

Noting that
1 = λ+ (1− λ) =⇒ λ2 + (1− λ)2 = 1− 2λ(1− λ), (A.18)

1Recall that ∀σ ∈ Q
(
Hd

)
: 1
d
≤ Tr

(
σ2
)
≤ 1, so f is inherently nonnegative.
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we then have

L−R = 1− λ2 − (1− λ)2 − 2λ(1− λ)
(

Tr
(
σ1σ2

)
+
√

1− Tr
(
σ2

1

)√
1− Tr

(
σ2

2

))
= 2λ(1− λ)

(
1−X

)
, (A.19)

with

X ≡ Tr
(
σ1σ2

)
+
√

1− Tr
(
σ2

1

)√
1− Tr

(
σ2

2

)
. (A.20)

We seek to show that X ≤ 1. Without the loss of generality, assume that Tr
(
σ2

1

)
≤ Tr

(
σ2

2

)
. On that

innocuous assumption, it follows that

X ≤ Tr
(
σ1σ2

)
+ 1− Tr

(
σ2

1

)
= 1 + Y , (A.21)

with
Y ≡ Tr

(
σ1σ2

)
− Tr

(
σ2

1

)
(A.22)

Now, from the Cauchy-Schwarz inequality:

Tr
(
σ1σ2

)
≤
√

Tr
(
σ2

1

)
Tr
(
σ2

2

)
≤ Tr

(
σ2

1

)
. (A.23)

We conclude that
Y ≤ 0 =⇒ X ≤ 1 =⇒ R ≤ L =⇒ ii. holds. (A.24)
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A.3 Permutation Notation for Lemma 4.2.4

Let S = {r; s;u; v} be a fixed ordered set with r, s, u, v ∈ {1, . . . , d}. Let Perm(S) be the set of all unique
ordered permutations of S. We denote that cardinality of Perm(S) by |Perm(S)|. We label the elements of
Perm(S) by p with p ∈ {1, . . . , |Perm(S)|}. Introduce the notation p(a) for the ath element of the ordered
set labeled by p. With this notation, we hope to make our standing assumption in Eq. (4.49) crystal clear.
Recall that we wrote Eq. (4.49) as∑

p

X1
rpsp,upvpX

1
rpsp,upvp =

∑
p

ei(θup+θvp−θrp−θsp )XU
rpsp,upvpX

V
rpsp,upvp (A.25)

In the notation mentioned just above, this is equivalent to∑
p∈Perm

(
{r;s;u;v}

)X1
p(1)p(2),p(3)p(4)X

1
p(1)p(2),p(3)p(4) (A.26)

=
∑

p∈Perm
(
{r;s;u;v}

) ei(θp(3)+θp(4)−θp(1)−θp(2))XU
p(1)p(2),p(3)p(4)X

V
p(1)p(2),p(3)p(4) (A.27)

For example, let S = {r; r; s; s}. Then

Perm(S) =
{
{r; r; s; s}, {s; s; r; r}, {r; s; r; s}, {s; r; s; r}, {r; s; s; r}, {s; r; r; s}

}
, (A.28)

so |Perm(S)| = 6, and Eq. (A.27) reads

X1
rr,ssX

1
rr,ss +X1

ss,rrX
1
ss,rr +X1

rs,rsX
1
rs,rs +X1

sr,srX
1
sr,sr +X1

rs,srX
1
rs,sr +X1

sr,rsX
1
sr,rs

= e2i(θs−θr)XU
rr,ssX

V
rr,ss + e2i(θr−θs)XU

ss,rrX
V
ss,rr

+ XU
rs,rsX

V
rs,rs +XU

sr,srX
V
sr,sr +XU

rs,srX
V
rs,sr +XU

sr,rsX
V
sr,rs (A.29)
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A.4 Applying Proposition 4.2.2

Let θ ∈ [0, 2π]d. Write θ = (θ1, θ2, . . . , θi, . . . , θd). Let nk ∈ Zd. Write nk = (nk1 , nk2 , . . . , nkj , . . . , nkd).
Lemma 1.2 states that if n1, . . . ,nm are distinct, then the functions eink·θ are linearly independent in
C0([0, 2π]d). For example let r 6= s ∈ {1, . . . , d}. Then the following are distinct elements of Zd

n1 = (0, . . . , 0, 1︸︷︷︸
sth position

, 0, . . . , 0, −1︸︷︷︸
rth position

, 0, . . . , 0) (A.30)

n2 = (0, . . . , 0, −1︸︷︷︸
sth position

, 0, . . . , 0, 1︸︷︷︸
rth position

, 0, . . . , 0) (A.31)

Then

n1 · θ = θs − θr (A.32)

n2 · θ = θr − θs (A.33)

and

ein1·θ = ei(θs−θr) (A.34)

ein2·θ = ei(θr−θs) (A.35)

are linearly independent functions. This example is for Case 2 considered in the main body of this note.

Let us consider another example. Let r, s, u be distinct elements of {1, . . . , d}. Then the following are
distinct elements of Zd

n1 = (0, . . . , 0, 1︸︷︷︸
sth position

, 0, . . . , 0, 1︸︷︷︸
uth position

, 0, . . . , 0, −2︸︷︷︸
rth position

, 0, . . . , 0) (A.36)

n2 = (0, . . . , 0, −1︸︷︷︸
sth position

, 0, . . . , 0, −1︸︷︷︸
uth position

, 0, . . . , 0, 2︸︷︷︸
rth position

, 0, . . . , 0) (A.37)

n3 = (0, . . . , 0, −1︸︷︷︸
sth position

, 0, . . . , 0, 1︸︷︷︸
uth position

, 0, . . . , 0, 0︸︷︷︸
rth position

, 0, . . . , 0) (A.38)

n4 = (0, . . . , 0, 1︸︷︷︸
sth position

, 0, . . . , 0, −1︸︷︷︸
uth position

, 0, . . . , 0, 0︸︷︷︸
rth position

, 0, . . . , 0) (A.39)

and eink·θ are linearly independent function by Lemma 1.2. This example is for Case 4. Case 5 is handled
similarly.

143



Appendix B

Appendices of Part II

B.1 Review of Spin Factors

In this appendix we detail the spin factors.

Definition B.1.1 Let A be a Jordan algebra as in Definition 7.2.3. Let k ∈ N such that k ≥ 2. Let
Pk = {s1, s2, . . . , sk} ⊂ A such that ∀a, b ∈ {1, . . . , k} : sa·sb = δa,b1 and sa 6= ±1. One says that Pk is a
spin system of cardinality k.

Consider the set Vk generated (via Jordan multiplication and vector space operations in A) by Pk. One
writes Vk = j(Pk). It follows that

∀v ∈ Vk ∃λ0, λ1, . . . , λk ∈ R : v = 1λ0 + s1λ1 + . . . skλk. (B.1)

On that view, we regard Vk = R ⊕ Rk and write we v = λ0 ⊕ ~λ. Let 〈·|·〉 be the usual inner product on
Rk. Equipping Vk with mutltiplication · : Vk × Vk −→ Vk defined

∀v1, v2 ∈ Vk, v1·v2 =
(
λ01

λ02
+ 〈~λ1|~λ2〉

)
⊕
(
~λ2λ01

+ ~λ1λ02

)
(B.2)

we render Vk a Jordan algebra. For the proof, see Proposition B.1.3. One says that Vk is a spin factor (of
cardinality k). Hence the following.

Definition B.1.2 A spin factor of cardinality k, denoted Vk, is the Jordan algebraic closure of a spin
system Pk as in Definition B.1.1, equipped with the Jordan product in Eq. (B.2).

We note here that dimRVk = k + 1. For the sake of notational convienience, let us also introduce the
notation ∀v = λ0 ⊕ ~λ ∈ Vk:

R(v) = λ0 (B.3)

I(v) = ~λ (B.4)
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Proposition B.1.3 Vk is a Jordan algebra.

Proof. Let us bserve from direct calculation

v1·v1 =
(
λ2

01
+ 〈~λ1|~λ1〉

)
⊕ ~λ12λ01 (B.5)

Therefore

R
(
v2

1·(v1·v2)
)

=
(
λ2

01
+ 〈~λ1|~λ1〉

)(
λ01

λ02
+ 〈~λ1|~λ2〉

)
+
〈
~λ12λ01

|
(
~λ2λ01

+ ~λ1λ02

)〉
= λ3

01
λ02 + λ2

01
〈~λ1|~λ2〉+ 〈~λ1|~λ1〉λ01λ02

+ 〈~λ1|~λ1〉〈~λ1|~λ2〉+ 〈~λ1|~λ2〉2λ2
01

+ 〈~λ1|~λ1〉2λ01
λ02

(B.6)

I
(
v2

1·(v1·v2)
)

=

(
~λ12λ01

(
λ01

λ02
+ 〈~λ1|~λ2〉

)
+
(
~λ2λ01

+ ~λ1λ02

)(
λ2

0 + 〈~λ1|~λ1〉
))

= ~λ1

(
3λ2

01
λ02 + 〈~λ1|~λ2〉2λ01

+ 〈~λ1|~λ1〉λ02

)
+ ~λ2

(
λ3

01
+ 〈~λ1|~λ1〉λ01

)
(B.7)

R
(
v2

1·v2

)
=

(
λ2

01
+ 〈~λ1|~λ1〉

)
λ02 + 〈~λ12λ01 |~λ2〉 (B.8)

I
(
v2

1·v2

)
= ~λ2

(
λ2

01
+ 〈~λ1|~λ1〉

)
+ ~λ12λ01

λ02
(B.9)

R
(
v1·(v2

1·v2)
)

= λ01

((
λ2

01
+ 〈~λ1|~λ1〉

)
λ02

+ 〈~λ12λ01
|~λ2〉

)
+

〈
~λ1

∣∣∣∣(~λ2

(
λ2

01
+ 〈~λ1|~λ1〉

)
+ ~λ12λ01

λ02

)〉
= λ3

01
λ02

+ 〈~λ1|~λ1〉λ01
λ02

+ 〈~λ1|~λ2〉2λ2
01

+ 〈~λ1|~λ2〉λ2
01

+ 〈~λ1|~λ2〉〈~λ1|~λ1〉+ 〈~λ1|~λ1〉2λ01
λ02

(B.10)

I
(
v1·(v2

1·v2)
)

=
(
~λ2

(
λ2

01
+ 〈~λ1|~λ1〉

)
+ ~λ12λ01

λ02

)
λ01

+ ~λ1

((
λ2

01
+ 〈~λ1|~λ1〉

)
λ02

+ 〈~λ12λ01
|~λ2〉

)
= ~λ2

(
λ3

01
+ 〈~λ1|~λ1〉λ01

)
+ ~λ1

(
2λ2

01
λ02

+ λ2
01
λ02

+ 〈~λ1|~λ1〉λ02
+ 〈~λ1|~λ2〉2λ01

)
(B.11)

The Jordan identity therefore holds. Symmetry of the usual inner product on Rk establishes that multi-
plication is commutative; moreover multiplication distributes with vector space operations and commutes
with R-multiplication:

v1·(v2 + v3

)
=

(
λ01(λ02 + λ03) +

〈
~λ1|(~λ2 + ~λ3)

〉)
⊕
(

(~λ2 + ~λ3)λ01 + ~λ1(λ02 + λ03)

)
= (v1·v2) + (v1·v3) (B.12)

v1α1·v2α2 =
(
λ01

λ02
α1α2 + 〈~λ1α1|~λ2α2〉

)
⊕
(
~λ2α2λ01

α1 + ~λ1α1λ02
α2

)
= (v1·v2)α1α2 (B.13)

where we have included Eq. (B.12) and Eq. (B.13) for the sake of completeness.

Proposition B.1.4 Let Vk and Wk be spin factors of finite cardinality k. There exists a jordan iso-
mophism from Vk −→Wk.
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Proof. By definition, there exist Jordan algebras A and B such that Pk = {s1, . . . , sk} ⊂ A and Rk =
{t1, . . . , tk} ⊂ B generate Vk and Wk, respectively. In Eq. (B.1) we stated that

∀v ∈ Vk ∃λ0, . . . , λk ∈ R : v = 1λ0 +

k∑
r=1

skλk. (B.14)

It is actually easy to see that (B.14) holds. Let us do so now. The anticommuting symmetries are linearly
independent — for the proof, let Z∗k\i = {1, . . . , k}\{i} and suppose ∃~r ∈ (Z∗k\i)

×k−1 with ~r 6= 0 such that

si =
∑
j∈Z∗

k\i

sjrj =⇒ ∀l ∈ Z∗k\i : sl·si = 1rl =⇒ ∀l ∈ Z∗k\i : rl = 0 E (B.15)

— so the linear hull of Pk admits a basis {s1, . . . , sk}. The jordan hull of the linear hull admits a basis
{1, s1, . . . , sk}, which is evident from the anticommutativity of the symmetries sj and that fact that

1 =

k∑
j=1

sjrj =⇒ ∀l ∈ {1, . . . , k} : 1·sl = sl = 1rl =⇒ 1 = 1r2
l =⇒ rl = ±1 E (B.16)

the contradiction coming by the construction of sl, which are defined to be distinct from ±1. The linear
hull of the jordan hull of the linear hull is again a Jordan algebra with basis {1, s1, . . . , sk}, etcetera.
Therefore one has that

Vk = linR {1A, s1, s2, . . . , sk} . (B.17)

Wk = linR {1B, t1, t2, . . . , tk} . (B.18)

Define f : Vk −→ Wk :: sj 7−→ tj and f(1A) = 1B. Then ∀v1, v2 ∈ Vk with v1 = λ0 ⊕ ~λ and v2 = µ0 ⊕ ~µ
one computes

f(v1·v2) = f
((
〈~λ|~µ〉+ λ0µ0

)
⊕
(
~λµ0 + ~µλ0

))
= 1B

(
〈~λ|~µ〉+ λ0µ0

)
+

k∑
j=1

tj(λjµ0 + µjλ0)

= f(v1)·f(v2) (B.19)

Thus f is a jordan homomorphism. Further, by construction, f is a bijection. Therefore the spin factor of
cardinality k is unique (up to a jordan isomorphism).

Proposition B.1.5 V2 and V3 are universally reversible.

Proof. We will prove the result for V3, the case of V2 following in a similar manner. Let H be a complex
Hilbert space and let π : V3 −→ B(H)sa :: v 7−→ u be a jordan monomorphism. Recall that we demand our
homomorphisms to be unital: π(1V3) = 1B(H)sa . For notational reasons, let s0 := 1V3 and t0 := 1B(H)sa .
Define ta = π(sa) for all a ∈ {1, 2, 3}. One has then (tatb + tbta)/2 = π(sa·sb) = π(δa,b1) = δa,b1 — so ta
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anticommute. Furthermore t2a = π(s2
a) = π(1) = 1. Now, let v1, v2, . . . , vn ∈ V3 with vj = λ0j + ~λj . Let

Z3 = {0, 1, 2, 3}. Then, by linearity,

u1 · · ·un + un · · ·u1 =

n∏
j=1

3∑
a=0

taλaj +

n∏
j=1

3∑
a=0

taλan+1−j

=
∑

~p∈(Z3)×n

(
tp1tp2 · · · tpn + tpntpn−1

· · · tp1
)
λp11λp22 · · ·λpnn (B.20)

Thus, by linearity of π, it suffices to prove that ∀~p ∈ (Z3)×n ∃v ∈ V3:

π(v) = tp1tp2 · · · tpn + tpntpn−1
· · · tp1 . (B.21)

Incidentally, notice that for n = 2 one has (tp1tp2 + tp2tp1)/2 = π(sp1·sp2). Next, consider the case n = 3.
Should it arise that at least one pj = 0, then we reduce to the case of n = 2; hence the desired v exists. If
it is not the case that at least one pj = 0, then by anticommutativity one has that tp1tp2tp3 + tp3tp2tp2 = 0.
Finally, consider the case n ≥ 4. In this case, one has that at most three pj are distinct elements of {1, 2, 3}.
Furthermore, by anticommutivity, for those j, j′ ∈ {1, . . . , n} such that pj = pj′ , one anticommutes the
correspoding tj through an equal number of steps to meet tj′ in both tp1 · · · tpn and tpn · · · tp1 . Hence V3

is universally reversible (and so is V2).

Proposition B.1.6 V4 is not reversible.

Proof. We follow Hanche-Olsen [66]. Let π : V4 −→ B(H)sa : v 7−→ u be a jordan monomorphism. The
question is not, of course, whether such monomorphims exist (they do, and all such monomorphisms take
sr to anticommuting tr); rather, one is about to prove that π(V4) is never such that π(s1)π(s2)π(s3)π(s4)+
π(s4)π(s3)π(s2)π(s1) = π(v) for some v ∈ V4. Indeed, suppose such a v ∈ V4 exists. By anticommutativity:
(t1t2t3t4 + t4t3t2t1)/2 = t1t2t3t4. Thus π(v)2 = t1t2t3t4t1t2t3t4 = −t1t2t3t1t2t3 = −t1t2t1t2 = 1 =⇒ v 6=
0. However, one also has ∀j ∈ {1, 2, 3, 4} that π(v·sj) = t1t2t3t4tj + tjt4t3t2t1 = 0. Therefore v 6= 1α for
α ∈ R. Thus dimRV4 > 5 E.

Proposition B.1.7 V5 is reversible, but not universally so.

Proof. Define π : V5 −→M4

(
C
)
sa

:: sr 7−→ tr in terms of the complex Pauli matrices as follows:

t0 = σo ⊗ σo t1 = σz ⊗ σo t2 = σx ⊗ σo t3 = σy ⊗ σx t4 = σy ⊗ σz t5 = σy ⊗ σy (B.22)

By a similiar argument to one given in our proof of Proposition B.1.5, it suffices to observe that (t1t2t3t4t5+
t5t4t3t2t1)/2 = t1t2t3t4t5 = t0 = π(1) and (t1t2t3t4 + t4t3t2t1)/2 = t5 = π(s5). Hence V5 is reversible.
Next, a la Hanche-Olsen, define the jordan monomorphism ψ : V4 −→ M4

(
C
)
sa
⊕M4

(
C
)
sa

via ∀j ∈
1, 2, 3, 4 : ψ(sj) = tj ⊕ tj and ψ(s5) = tj ⊕ −tj . One then has ψ(s1)ψ(s2)ψ(s3)ψ(s4) = t5 ⊕ t5. Suppose
there exists v ∈ V5 such that ψ(v) = t5 ⊕ t5. Thus ψ(v)2 = 1 =⇒ v 6= 0. However, for all j ∈ {1, 2, 3, 4}
one has that and π(v·sj) = 0; thus v = 1α+s5β for some α, β ∈ R simply from the vector space structure
of V5. In fact, from ψ(v)2 = 1 we are left with two mutually exclusive cases: v = 1α or v = s5α, both of
which are impossible in light of the foregoing observations.

Proposition B.1.8 Let k ≥ 6. Then Vk is not reversible.
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Proof. We follow Hanche-Olsen [66]. Let π : Vk −→ B(H)sa :: sr 7−→ tr. Define t5 = t1t2t3t4 =
(t1t2t3t4 + t4t3t2t1)/2. Observe that t25 = 1 and ∀j ∈ {1, 2, 3, 4} t5·tj = 0. Suppose t5 ∈ π(V5). Then

π−1(t5) = 0 ⊕ ~λ5 with unit vector ~λ5 orthogonal to ~λj for ∀j ∈ {1, 2, 3, 4}. Consider s6 = 0 ⊕ ~λ6 ∈ Vk

with 〈~λ6|~λ5〉 = 0. Dimensional grounds permit such consideration. Then s6·s5 = 0, which implies
t5t6 = −t6t5. However, t5t6 = t1t2t3t4t6 = t6t1t2t3t4 = t6t5 Thus t5t6 = 0, which is impossible in light of
t5t6t5t6 = t5t6t1t2t3t4t6 = t5t1t2t3t4t

2
6 = t25 = 1.
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B.2 Review of the Generalized Gell-Mann Matrices

This appendix reviews the Generalized Gell-Mann matrices. Our primary reference is [173]. The details
collected herein are elementary, though extremely important for our proofs in Section 8.3.

We consider the real vector space Mn(C)sa. Let Er,s = |er〉〈es| where {|er〉} is the standard orthonormal
basis for Cn — i.e. with no complex entries, just zeros with a single entry of unity; thus also the standard
orthonormal basis for Rn should one wish to regard it as such. Just for illustration, with n = 3 one has

E1,2 =

0 1 0
0 0 0
0 0 0

 (B.23)

The set
{
Er,s : r, s ∈ {1, . . . , n}

}
⊂ Mn(C) is clearly a basis for the complex vector space Mn(C);

dimCMn(C) = n2. We are looking for a basis for the real vector space of self-adjoint n × n complex
matrices. The Generalized Gell-Mann Matrices are very nice! Following [173], let r, s ∈ {1, . . . , n} and
define the following d2 − 1 matrices

Gr,s =


1√
2

(
Er,s + Es,r

)
r < s

i√
2

(
Er,s − Es,r

)
s < r

1√
r(r+1)

(
− rEr+1,r+1 +

∑r
k=1Ek,k

)
s = r 6= n

(B.24)

Proposition B.2.1 Gr,s ∈Mn(C)sa.

Proof. Trivial by inspection (note Gr,r is real diagonal.)

Proposition B.2.2 ∀r, s ∈ {1, . . . , n} (if r = s then r = s 6= n):

Tr
(
Gr,s

)
= 0. (B.25)

Proof. Let r < s. Then
Tr
(
Gr,s

)
= 1√

2
(〈es|er〉+ 〈er|es〉) = 0. (B.26)

Let s < r. Then
Tr
(
Gr,s

)
= i√

2
(〈es|er〉 − 〈er|es〉) = 0. (B.27)

Finally, for arbitrary r ∈ {1, . . . , n− 1}:

Tr
(
Gr,r

)
= Tr

(
1√

r(r+1)

(
− rEr+1,r+1 +

∑r
k=1Ek,k

))
= 1√

r(r+1)
(r − r) = 0. (B.28)

This concludes analysis of all cases.

Proposition B.2.3 ∀r, s ∈ {1, . . . , n} (if r = s then r = s 6= n):

Tr
(
G2
r,s

)
= 1. (B.29)
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Proof. Let r < s. Then

Tr
(
G2
r,s

)
= Tr

(
1
2 (Er,s + Es,r)(Er,s + Es,r)

)
= 1

2Tr
(
Er,sEr,s + Er,sEs,r + Es,rEr,s + Es,rEs,r

)
= 1

2 (0 + 1 + 1 + 0)

= 1. (B.30)

Now let s < r. Then

Tr
(
G2
r,s

)
= Tr

(
− 1

2 (Er,s − Es,r)(Er,s − Es,r)
)

= 1
2Tr
(
Er,sEr,s − Er,sEs,r − Es,rEr,s + Es,rEs,r

)
= − 1

2 (0− 1− 1 + 0)

= 1. (B.31)

Finally let r = s 6= n. Then

Tr
(
G2
r,r

)
= 1

r(r+1)Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
− rEr+1,r+1 +

∑r
k=1Ek,k

))
= 1

r(r+1)Tr
(
r2Er+1,r+1 − r

∑r
k=1

(
Er+1,r+1Ek,k + Ek,kEr+1,r+1

)
+
∑r
k=1

∑r
j=1Ek,kEj,j

)
= 1

r(r+1) (r2 + 0 + 0 + r)

= 1. (B.32)

This concludes analysis of all cases.

Proposition B.2.4 ∀r, s, t, v ∈ {1, . . . , n} (if r = s then r = s 6= n and if t = v then t = v 6= n) with
(r, s) 6= (t, v):

Tr
(
Gr,sGt,v

)
= 0. (B.33)

Proof. We will perform a mutually exclusive and exhaustive case analysis.

Case A: r=t:

♣ Subcase A.1: r < s and r = t < v. Then

Tr
(
Gr,sGr,v

)
= 1

2Tr
((
Er,s + Es,r

)(
Et,v + Ev,t

))
= 1

2

(
〈ev|er〉〈es|et〉+ 〈et|er〉〈es|ev〉+ 〈et|es〉〈er|ev〉+ 〈ev|es〉〈er|et〉

)
= 0. (B.34)

The first and third terms are zero because r < v, the second and fourth because s 6= v by assumption since
r = t.

♣ Subcase A.2: r > s and r = t < v. Then

Tr
(
Gr,sGr,v

)
= i

2Tr
((
Er,s − Es,r

)(
Et,v + Ev,t

))
= i

2

(
〈ev|er〉〈es|et〉+ 〈et|er〉〈es|ev〉 − 〈et|es〉〈er|ev〉 − 〈ev|es〉〈er|et〉

)
= 0. (B.35)
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The reasoning for the zeros is exactly as in Subcase A.1.

♣ Subcase A.3: r = s and r = t < v. Then

Tr
(
Gr,rGr,v

)
= 1√

2r(r+1)
Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
Et,v + Ev,t

))
= 1√

2r(r+1)

(
− r〈ev|er+1〉〈er+1|et〉 − r〈et|er+1〉〈er+1|ev〉

)
+ 1√

2r(r+1)

(∑r
k=1(〈ev|ek〉〈ek|et〉+ 〈ev|ek〉〈ek|et)〉

)
= 0. (B.36)

The first and second terms are zero because r = t, the third because r < v.

♣ Subcase A.4: r < s and r = t > v. Then

Tr
(
Gr,sGr,v

)
= i

2Tr
((
Er,s + Es,r

)(
Et,v − Ev,t

))
= i

2

(
〈ev|er〉〈es|et〉 − 〈et|er〉〈es|ev〉+ 〈et|es〉〈er|ev〉 − 〈ev|es〉〈er|et〉

)
= 0. (B.37)

The first and third terms are zero because r > v, the second and fourth because s 6= v by assumption since
r = t.

♣ Subcase A.5: r > s and r = t > v. Then

Tr
(
Gr,sGr,v

)
= − 1

2Tr
((
Er,s − Es,r

)(
Et,v − Ev,t

))
= − 1

2

(
〈ev|er〉〈es|et〉 − 〈et|er〉〈es|ev〉 − 〈et|es〉〈er|ev〉+ 〈ev|es〉〈er|et〉

)
= 0 (B.38)

The reasoning for the zeros is exactly as in Subcase A.4.

♣ Subcase A.6: r = s and r = t > v. Then

Tr
(
Gr,rGr,v

)
= i√

2r(r+1)
Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
Et,v − Ev,t

))
= i√

2r(r+1)

(
− r〈ev|er+1〉〈er+1|et〉+ r〈et|er+1〉〈er+1|ev〉

)
+ i√

2r(r+1)

(∑r
k=1(〈ev|ek〉〈ek|et〉 − 〈ev|ek〉〈ek|et)〉

)
= 0. (B.39)

Since r = t > v the first two terms are zero. The sum is zero by the commutativity of multiplication in C
(i.e. the summand itself is zero.)

♣ Subcase A.7: r < s and r = t = v. Then

Tr
(
Gr,sGr,r

)
= 1√

2r(r+1)
Tr
((
Er,s + Es,r

)(
− rEr+1,r+1 +

∑r
k=1Ek,k

))
= 1√

2r(r+1)

(
− r〈er+1|er〉〈es|er+1〉+

∑r
k=1〈ek|er〉〈es|ek〉

)
+ 1√

2r(r+1)

(
− r〈er+1|es〉〈er|er+1〉+

∑r
k=1〈ek|es〉〈er|ek〉〉

)
= 0. (B.40)
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The first and third terms are zero because r < r + 1, the second and fourth because s > r.

♣ Subcase A.8: r > s and r = t = v. Then

Tr
(
Gr,sGr,r

)
= 1=i√

2r(r+1)
Tr
((
Er,s − Es,r

)(
− rEr+1,r+1 +

∑r
k=1Ek,k

))
= 1√

2r(r+1)

(
− r〈er+1|er〉〈es|er+1〉+

∑r
k=1〈ek|er〉〈es|ek〉

)
+ 1√

2r(r+1)

(
r〈er+1|es〉〈er|er+1〉 −

∑r
k=1〈ek|es〉〈er|ek〉〉

)
= 0. (B.41)

The first and third terms are zero because r < r + 1, the second and fourth because s < r. This exhausts
all possible cases when r = t — remember, we are considering (r, s) 6= (t, v).

Case B: r 6= t:

♣ Subcase B.1: r < s and t < v. Then

Tr
(
Gr,sGt,v

)
= 1

2Tr
((
Er,s + Es,r

)(
Et,v + Ev,t

))
= 1

2

(
〈ev|er〉〈es|et〉+ 〈et|er〉〈es|ev〉+ 〈ev|es〉〈er|et〉+ 〈et|es〉〈er|ev〉

)
= 0. (B.42)

The second and third terms vanish because r 6= t. We will prove that the first term vanishes by contradic-
tion. Suppose 〈ev|er〉〈es|et〉 6= 0. Then v = r and s = t. Thus from r < s we get v < s: a contradiction;
thus the first term vanishes. The same argument holds for the fourth term.

♣ Subcase B.2: r > s and t < v. Then

Tr
(
Gr,sGt,v

)
= i

2Tr
((
Er,s − Es,r

)(
Et,v + Ev,t

))
= 1

2

(
〈ev|er〉〈es|et〉+ 〈et|er〉〈es|ev〉 − 〈ev|es〉〈er|et〉 − 〈et|es〉〈er|ev〉

)
= 0. (B.43)

The second and third terms vanish because r 6= t. The first and fourth terms cancel because 〈ej |ek〉 ∈ R.

♣ Subcase B.3: r = s and t < v. Then

Tr
(
Gr,rGt,v

)
= 1√

2r(r+1)
Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
Et,v + Ev,t

))
= 1√

2r(r+1)

(
− r〈ev|er+1〉〈er+1|et〉 − r〈et|er+1〉〈er+1|ev〉

)
+ 1√

2r(r+1)

(∑r
k=1(〈ev|ek〉〈ek|et〉+ 〈ev|ek〉〈ek|et〉)

)
= 0. (B.44)

All terms vanish because t < v.

♣ Subcase B.4: r < s and t > v. Then

Tr
(
Gr,sGt,v

)
= i

2Tr
((
Er,s + Es,r

)(
Et,v − Ev,t

))
= i

2

(
〈ev|er〉〈es|et〉 − 〈et|er〉〈es|ev〉+ 〈ev|es〉〈er|et〉 − 〈et|es〉〈er|ev〉

)
= 0. (B.45)
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The reasoning for the zeros is exactly as in Subcase B.2.

♣ Subcase B.5: r > s and t > v. Then

Tr
(
Gr,sGt,v

)
= − 1

2Tr
((
Er,s − Es,r

)(
Et,v − Ev,t

))
= − 1

2

(
〈ev|er〉〈es|et〉 − 〈et|er〉〈es|ev〉 − 〈ev|es〉〈er|et〉+ 〈et|es〉〈er|ev〉

)
= 0. (B.46)

The reasoning for the zeros is exactly as in Subcase B.1.

♣ Subcase B.6: r = s and t > v. Then

Tr
(
Gr,rGt,v

)
= i√

2r(r+1)
Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
Et,v − Ev,t

))
= i√

2r(r+1)

(
− r〈ev|er+1〉〈er+1|et〉+ r〈et|er+1〉〈er+1|ev〉

)
+ i√

2r(r+1)

∑r
k=1(〈ev|ek〉〈ek|et〉 − 〈et|ek〉〈ek|ev)〉

)
= 0. (B.47)

All terms vanish because t > v. ♣ Subcase B.7: r < s and t = v. Then

Tr
(
Gr,sGt,t

)
= 1√

2r(r+1)
Tr
((
Er,s + Es,r

)(
− tEt+1,t+1 +

∑t
k=1Ek,k

))
= 1√

2r(r+1)

(
− t〈et+1|er〉〈es|et+1〉 − t〈et+1|es〉〈er|et+1〉

)
+ 1√

2r(r+1)

(∑r
k=1(〈ek|er〉〈es|ek〉+ 〈ek|es〉〈er|ek)〉

)
= 0. (B.48)

All terms vanish because r < s.

♣ Subcase B.8: r > s and t = v. Then

Tr
(
Gr,sGt,t

)
= i√

2r(r+1)
Tr
((
Er,s − Es,r

)(
− tEt+1,t+1 +

∑t
k=1Ek,k

))
= 1√

2r(r+1)

(
− t〈et+1|er〉〈es|et+1〉+ t〈et+1|es〉〈er|et+1〉

)
+ 1√

2r(r+1)

(∑r
k=1(〈ek|er〉〈es|ek〉 − 〈ek|es〉〈er|ek)〉

)
= 0. (B.49)

All terms vanish because r > s.

♣ Subcase B.9: r = s and t = v. Our considerations are such that, then: s = r 6= t = v. So,

Tr
(
Gr,rGt,t

)
= 1√

rt(r+1)(t+1)
Tr
((
− rEr+1,r+1 +

∑r
k=1Ek,k

)(
− tEt+1,t+1 +

∑t
j=1Ej,j

))
= 1√

rt(r+1)(t+1)

(
rt〈et+1|er+1〉〈er+1|et+1〉 − r

∑t
j=1〈ej |er+1〉〈er+1|ej〉

)
+ 1√

rt(r+1)(t+1)

(
− t
∑r
k=1〈et+1|ek〉〈ek|et+1〉+

∑r
k=1

∑t
j=1〈ej |ek〉〈ek|ej〉

)
= 0. (B.50)
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The first term vanishes because we must have r 6= t. To show that the other three terms vanish, we will
need to consider some sub-subcases.

First, consider the sub-subcase r < t. Then r + 1 is at most t, and the second term contributes a factor
of −r; the third zero, and the fourth a factor of +r. Let us prove that the fourth term indeed contributes
a factor of +r. Let Πt be the rank-t projector onto the subspace spanned by

{
|ej〉 : j ∈ {1, . . . , t}

}
.

Similarly, let Πr be the rank-r projector onto the subspace spanned by
{
|ek〉 : k ∈ {1, . . . , r}

}
. Then we

can write the forth term (ignoring the overall multiplicative constant 1√
rt(r+1)(t+1)

) as

r∑
k=1

t∑
j=1

〈ej |ek〉〈ek|ej〉 =

t∑
j=1

〈ej |Πr||ej〉 = Tr
(
ΠtΠr

)
= dimC

(
spanC

{
|ek〉 : k ∈ {1, . . . , r}

})
= r. (B.51)

The second sub-subcase (r > t) can be handled in an entirely similar manner. This concludes our analysis,
and, incidentally, the proof.

Proposition B.2.5 {Gr,s} constitute an orthonormal basis for the real vector space of traceless self-adjoint
n× n complex matrices.

Proof. Immediate from Proposition B.2.1, Proposition B.2.2, Proposition B.2.3, and Proposition B.2.4.

Proposition B.2.6 {1n, Gr,s} constitute an orthonormal basis for the real vector space Mn(C)sa.

Proof. Immediate consequence of Proposition B.2.5 and Tr(1nGr,s) = Tr(Gr,s) = 0 from Proposition B.2.2.
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B.3 Universal Tensor Product of Two Qudits

In this appendix, we explicitly compute the following universal tensor product

Mn(C)sa⊗̃Mm(C)sa
∼= Mnm(C)sa ⊕Mnm(C)sa (B.52)

To begin, we compress our notation so that A = Mn(C)sa and B = Mm(C)sa. Let C be the eja a generated
by ψA(A) ⊗ ψB(B). One notes that C is isomorphic to a Jordan subalgebra of Mnm

(
C
)
sa
⊕ Mnm

(
C
)
sa

generated by elements of the form (a ⊗ b) ⊕ (a ⊗ bt), where a ∈ A and b ∈ B. There exist orthonormal
bases for A and B— for instance, the sets of respective generalized Gell-Mann matrices — whose tensor
products form an orthonormal basis for Mnm(C)sa. Thus, {x ⊕ x1⊗t : x ∈ Mnm(C)sa} ⊂ C. Now, let
{|er〉 ∈ Cn | ∀r, s ∈ {0, . . . , n− 1} : 〈er|es〉 = δrs} and {|fu〉 ∈ Cm | ∀u, v ∈ {0, . . . ,m− 1} : 〈fu|fv〉 = δuv}
be orthonormal bases Cn and Cm, respectively. Without the loss of generality, assume that n ≥ m. Let
r, s ∈ {0, . . . ,m− 1} such that r 6= s. Let

|Φ+
r,s〉 =

1√
2

(
|er〉 ⊗ |fr〉+ |es〉 ⊗ |fs〉

)
. (B.53)

Let

|Ψ+
r,s〉 =

1√
2

(
|er〉 ⊗ |fs〉+ |es〉 ⊗ |fr〉

)
. (B.54)

Define

xΦ+
r,s
≡ |Φ+

r,s〉〈Φ+
r,s|

=
1

2

(
|er〉〈er| ⊗ |fr〉〈fr|+ |es〉〈es| ⊗ |fs〉〈fs|+ |es〉〈er| ⊗ |fs〉〈fr|+ |er〉〈es| ⊗ |fr〉〈fs|

)
(B.55)

Define

xΨ+
r,s
≡ |Ψ+

r,s〉〈Ψ+
r,s|

=
1

2

(
|er〉〈er| ⊗ |fs〉〈fs|+ |es〉〈es| ⊗ |fr〉〈fr|+ |er〉〈es| ⊗ |fs〉〈fr|+ |es〉〈er| ⊗ |fr〉〈fs|

)
(B.56)

By virtue of the orthogonality of |Φ+
r,s〉 and |Ψ+

r,s〉, one has that xΦ+
r,s·xΨ+

r,s
= 0. Therefore{

0⊕
(
x1⊗t

Φ+
r,s·x1⊗t

Ψ+
r,s

)
,
(
x1⊗t

Φ+
r,s·x1⊗t

Ψ+
r,s

)
⊕ 0
}
⊂ C. (B.57)

Next, observe that

x1⊗t
Φ+
r,s

=
1

2

(
|er〉〈er| ⊗ |fr〉〈fr|+ |es〉〈es| ⊗ |fs〉〈fs|+ |es〉〈er| ⊗ |fr〉〈fs|+ |er〉〈es| ⊗ |fs〉〈fr|

)
. (B.58)

Observe that

x1⊗t
Ψ+
r,s

=
1

2

(
|er〉〈er| ⊗ |fs〉〈fs|+ |es〉〈es| ⊗ |fr〉〈fr|+ |er〉〈es| ⊗ |fr〉〈fs|+ |es〉〈er| ⊗ |fs〉〈fr|

)
. (B.59)

We now calculate

x1⊗t
Φ+
r,s
x1⊗t

Ψ+
r,s

=
1

4

(
|er〉〈es| ⊗ |fr〉〈fs|+ |es〉〈er| ⊗ |fs〉〈fr|+ |es〉〈er| ⊗ |fr〉〈fs|+ |er〉〈es| ⊗ |fs〉〈fr|

)
. (B.60)
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Notice that
(
x1⊗t

Φ+
r,s
x1⊗t

Ψ+
r,s

)∗
= x1⊗t

Φ+
r,s
x1⊗t

Ψ+
r,s

. Thus, given that (x1⊗t
Φ+
r,s

)∗ = x1⊗t
Φ+
r,s

and (x1⊗t
Ψ+
r,s

)∗ = x1⊗t
Ψ+
r,s

, one has

that

x1⊗t
Φ+
r,s·x1⊗t

Ψ+
r,s

=
1

4

(
|er〉〈es| ⊗ |fr〉〈fs|+ |es〉〈er| ⊗ |fs〉〈fr|+ |es〉〈er| ⊗ |fr〉〈fs|+ |er〉〈es| ⊗ |fs〉〈fr|

)
. (B.61)

Next, we calculate(
x1⊗t

Φ+
r,s·x1⊗t

Ψ+
r,s

)·(x1⊗t
Φ+
r,s·x1⊗t

Ψ+
r,s

)
=

1

16

(
|er〉〈er| ⊗ |fr〉〈fr|+ |es〉〈es| ⊗ |fs〉〈fs|+ |es〉〈es| ⊗ |fr〉〈fr|+ |er〉〈er| ⊗ |fs〉〈fs|

)
. (B.62)

Define

y

≡ 16

m−1∑
r=0

m−1∑
s=r+1

(
x1⊗t

Φ+
r,s·x1⊗t

Ψ+
r,s

)·(x1⊗t
Φ+
r,s·x1⊗t

Ψ+
r,s

)
(B.63)

=

m−1∑
r=0

m−1∑
s=r+1

(
|er〉〈er| ⊗ |fr〉〈fr|+ |es〉〈es| ⊗ |fs〉〈fs|+ |es〉〈es| ⊗ |fr〉〈fr|+ |er〉〈er| ⊗ |fs〉〈fs|

)
(B.64)

Observe that

m−1∑
r=0

m−1∑
s=r+1

(
|er〉〈er| ⊗ |fr〉〈fr|

)
=

m−1∑
r=0

(
|er〉〈er| ⊗ |fr〉〈fr|

)
(m− 1− r), (B.65)

and

m−1∑
r=0

m−1∑
s=r+1

(
|es〉〈es| ⊗ |fs〉〈fs|

)
=

m−1∑
s=1

(
|es〉〈es| ⊗ |fs〉〈fs|

)
s =

m−1∑
r=0

(
|er〉〈er| ⊗ |fr〉〈fr|

)
r. (B.66)

Furthermore, observe that

m−1∑
r=0

m−1∑
s=r+1

(
|es〉〈es| ⊗ |fr〉〈fr|+ |er〉〈er| ⊗ |fs〉〈fs|

)
=

m−1∑
r=0

m−1∑
s=0

(
|es〉〈es| ⊗ |fr〉〈fr|

)
(1− δrs). (B.67)

Therefore,

y =

m−1∑
r=0

(
|er〉〈er| ⊗ |fr〉〈fr|

)
(m− 1) +

m−1∑
r=0

m−1∑
s=0

(
|es〉〈es| ⊗ |fr〉〈|fr|

)
(1− δrs). (B.68)

By linearity of the generation of C, one has that

{0⊕ y, y ⊕ 0} ⊂ C. (B.69)

Now, ∀r ∈ {0, . . . ,m− 1}, define z∗r = zr = z1⊗t
r ≡ (|er〉〈er| ⊗ |fr〉〈fr|). Observe that

z ≡ y − m− 2

m− 1

m−1∑
r=0

zr·y =

m−1∑
r=0

m−1∑
s=0

(
|er〉〈er| ⊗ |fs〉〈fs|

)
. (B.70)
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Thus
{0⊕ z, z ⊕ 0} ⊂ C. (B.71)

In the case m = n, note that z = 1Cn2 .

Now, suppose that n > m. In this case, ∀r ∈ {m, . . . , n− 1} and ∀s ∈ {0, . . . ,m− 1}, define

w∗r,s = wr,s = w1⊗t
r,s ≡

((
|er〉〈e0|+ |e0〉〈er|

)
⊗ |fs〉〈fs|

)
. (B.72)

We calculate

wr,s·z =
1

2
wr,s, (B.73)

and

wr,s·wr,s =
1

2

(
|er〉〈er| ⊗ |fs〉〈fs|+ |e0〉〈e0| ⊗ |fs〉〈fs|

)
. (B.74)

Note that (
|e0〉〈e0| ⊗ |fs〉〈fs|

)·z =
(
|e0〉〈e0| ⊗ |fs〉〈fs|

)
. (B.75)

Thus,

z + 8

n−1∑
r=m

m−1∑
s=0

(
wr,s·z)·(wr,s·z)− m−1∑

s=0

((
|e0〉〈e0| ⊗ |fs〉〈fs|

)·z) = 1Cnm . (B.76)

Therefore,
{0⊕ 1Cnm ,1Cnm ⊕ 0} ⊂ C. (B.77)

Recalling that {x⊕ x1⊗t : x ∈Mnm(C)sa} ⊂ C, we complete the proof.

�
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B.4 Univesal Tensor Product of Two Quabits

In this appendix, we explictly show that

M2(H)sa⊗̃M2(H)sa
∼= M16(R)sa ⊕M16(R)sa ⊕M16(R)sa ⊕M16(R)sa (B.78)

To begin, let x = Mn(C) and y ∈Mm(C). We shall adopt the following conventions (with 0n,m the m×n
zero matrix):

x⊕ y =

(
x 0n,m

0m,n y

)
∈Mn+m(C), x⊗ y =

 y1,1x . . . y1,mx
...

. . .
...

ym,1x . . . ym,mx

 ∈Mm

(
Mn(C)

)
, (B.79)

The following is a well known. We provide a proof for completeness.

Proposition B.4.1 As complex *-algebras, with n1, n2,m1,m2 ∈ N,(
Mn1

(C)⊕Mm1
(C)
)
⊗
(
Mn2

(C)⊕Mm2
(C)
)

∼=
(
Mn1

(C)⊗Mn2
(C)
)
⊕
(
Mn1

(C)⊗Mm2
(C)
)
⊕
(
Mm1

(C)⊗Mn2
(C)
)
⊕
(
Mm1

(C)⊗Mm2
(C)
)

.(B.80)

Proof. Let {e1, . . . , en1+m1
} ⊂ Cn1+m1 be the orthonormal basis (e∗kej = δj,k) underlying Mn1

(C) ⊕
Mm1(C); hence

Mn1(C)⊕Mm1(C) 3 x⊕ y =

n1∑
j=1

n1∑
k=1

ejxj,ke
∗
k +

n1+m1∑
t=n1+1

n1+m1∑
v=n1+1

etyt−n1,v−n1e
∗
v, (B.81)

with x ⊕ y arbitrary. Let {f1, . . . , fn2+m2
} ⊂ Cn2+m2 be the orthonormal basis underlying Mn2

(C) ⊕
Mm2

(C); hence

Mn2
(C)⊕Mm2

(C) 3 w ⊕ z =

n2∑
p=1

n2∑
q=1

fpwp,qf
∗
q +

n2+m2∑
r=n2+1

n2+m2∑
s=n2+1

frzr−n2,s−n2
f∗s . (B.82)

with w ⊕ z arbitrary. Then X ≡ (x ⊕ y) ⊗ (w ⊕ z) ∈ M(n1+m1)(n2+m2)=n1n2+n1m2+m1n2+m1m2
(C) is as
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follows

X =

n1∑
j=1

n1∑
k=1

n2∑
p=1

n2∑
q=1

(eje
∗
k ⊗ fpf∗q )xj,kwp,q +

n1+m1∑
t=n1+1

n1+m1∑
v=n1+1

n2∑
p=1

n2∑
q=1

(ete
∗
v ⊗ fpf∗q )yt−n1,v−n1

wp,q

+

n1∑
j=1

n1∑
k=1

n2+m2∑
p=n2+1

n2+m2∑
q=n2+1

(eje
∗
k ⊗ fpf∗q )xj,kzp−n2,q−n2

+

n1+m1∑
t=n1+1

n1+m1∑
v=n1+1

n2+m2∑
n2+1

n2+m2∑
q=n2+1

(ete
∗
v ⊗ fpf∗q )yt−n1,v−n1zp−n2,q−n2

=

n1∑
j=1

n1∑
k=1

ejxj,ke
∗
k ⊗

(
n2∑
p=1

n2∑
q=1

fpwp,qf
∗
q +

n2+m2∑
r=n2+1

n2+m2∑
q=n2+1

frzr−n2,s−n2f
∗
s

)

+

n1+m1∑
t=n1+1

n1+m1∑
v=n1+1

etyt−n1,v−n1
e∗v ⊗

(
n2∑
p=1

n2∑
q=1

fpwp,qf
∗
q +

n2+m2∑
r=n2+1

n2+m2∑
q=n2+1

frzr−n2,s−n2
f∗s

)
(B.83)

Where we have appealed to the bilinearity of

⊗ :: Mn1+m1(C)×Mn2+m2(C) −→Mn1n2+n1m2+m1n2+m2n2(C). (B.84)

Obviously{
ej ⊗ fp | j ∈ {1, . . . , n1 +m1} ∧ | p ∈ {1, . . . , n2 +m2}

}
⊂ Cn1n2+n1m2+m1n2+m1m2 (B.85)

is an orthonormal basis. We shall introduce another. Define gα with α ∈ {1, . . . , n1n2 + n1m2 + m1n2 +
m1m2} via

gα =


ej ⊗ fp with 1 ≤ j ≤ n1 ∧ 1 ≤ p ≤ n2 and α ≡ (p− 1)n1 + j

ej ⊗ fn2+p with 1 ≤ j ≤ n1 ∧ 1 ≤ p ≤ m2 and α ≡ n1n2 + (p− 1)n1 + j

en1+j ⊗ fp with 1 ≤ j ≤ m1 ∧ 1 ≤ p ≤ n2 and α ≡ n1n2 + n1m2 + (p− 1)m1 + j

en1+j ⊗ fn2+p with 1 ≤ j ≤ m1 ∧ 1 ≤ p ≤ m2 and α ≡ n1n2 + n1m2 +m1n2 + (p− 1)m1 + j

(B.86)
Any two orthonormal bases are related via a unitary transformation. Let U :: {ej ⊗ fp} 7−→ {gl}. Then
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from Eq. (B.83),

UXU∗ =

n1n2∑
α=1

n1n2∑
β=1

gαXαβg
∗
β︸ ︷︷ ︸

≡A

+

n1n2+n1m2∑
α=n1n2+1

n1n2+n1m2∑
β=n1n2+1

gαXαβg
∗
β︸ ︷︷ ︸

≡B

+

n1n2+n1m2+m1n2∑
α=n1n2+n1m2+1

n1n2+n1m2+m1n2∑
β=n1n2+n1m2+1

gαXαβg
∗
β︸ ︷︷ ︸

≡C

+

n1n2+n1m2+m1n2+m1m2∑
α=n1n2+n1m2+m1n2+1

n1n2+n1m2+m1n2+m1m2∑
α=n1n2+n1m2+m1n2+1

gαXαβg
∗
β︸ ︷︷ ︸

≡D

= A⊕B ⊕ C ⊕D, (B.87)

Notice from Eq. (B.86) that α and β are uniquely determined from (p, q) according to our tensor product
convention, specifically α = 1 ⇐⇒ (p, q) = (1, 1), α = 2 ⇐⇒ (p, q) = (1, 2),. . . , α = n2 ⇐⇒ (p, q) =
(1, n2), and so. Explicitly, then, we have from Eq. (B.83)

1 ≤ α, β ≤ n1n2 =⇒
(
1 ≤ j, k ≤ n1 ∧ 1 ≤ p, q ≤ n2

)
=⇒ Xα,β = xj,kwp,q (B.88)

n1n2 + 1 ≤ α, β ≤ n1n2 + n1m2 =⇒
(
1 ≤ j, k ≤ n1 ∧ 1 ≤ p, q ≤ m2

)
=⇒ Xα,β = xj,kzp,q (B.89)

n1n2 + n1m2 + 1 ≤ α, β ≤ n1n2 + n1m2 +m1n2 =⇒
(
1 ≤ j, k ≤ m1 ∧ 1 ≤ p, q ≤ n2

)
=⇒ Xα,β = yj,kwp,q (B.90)

n1n2 + n1m2 +m1n2 ≤ α, β ≤ n1n2 + n1m2 +m1n2 +m1m2 =⇒
(
1 ≤ j, k ≤ m1 ∧ 1 ≤ p, q ≤ m2

)
=⇒ Xα,β = yj,kwp,q (B.91)

Therefore, with respect to {gl},

UXU∗ =


x⊗ w 0n1m2

0m1n2
0m1m2

0n1n2
x⊗ z 0m1n2

0m1m2

0n1n2
0n1m2

y ⊗ w 0m1m2

0n1n2 0n1m2 0m1n2 y ⊗ z

 (B.92)

= (x⊗ w)⊕ (x⊗ z)⊕ (y ⊗ w)⊕ (y ⊗ z). (B.93)
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It remains only to note that

U : Mn1n2+n1m2+m1n2+m1m2
(C) −→Mn1n2+n1m2+m1n2+m1m2

(C) :: X 7−→ UXU∗ (B.94)

is clearly a complex *-algebra automorphism — in detail, ∀X,Y one has U(X) = U(Y ) =⇒ X = Y , and
∀Z ∃W such that U(W ) = Z, namely W = U∗ZU ; furthermore U(X)U(Y ) = UXU∗UY U∗ = UXY U∗ =
U(XU), and U(X)∗ = (UXU∗)∗ = UX∗U∗ = U(X∗) — and from all of the foregoing we have shown that

U ::
(
Mn1

(C)⊕Mm1
(C)
)
⊗
(
Mn2

(C)⊕Mm2
(C)
)

7−→
(
Mn1

(C)⊗Mn2
(C)
)
⊕
(
Mn1

(C)⊗Mm2
(C)
)
⊕
(
Mm1

(C)⊗Mn2
(C)
)
⊕
(
Mm1

(C)⊗Mm2
(C)
)

(B.95)

Corollary B.4.2
(
M4(C)⊕M4(C)

)
⊗
(
M4(C)⊕M4(C)

)
∼= M16(C)⊕M16(C)⊕M16(C)⊕M16(C).

Proof. Immediate consequence of Proposition 1.1.

We shall need the following.

Proposition B.4.3 Let A ⊆Mn(C)sa. Let U : Mn(C) 7−→Mn(C) be a complex *-algebra automorphism.
Let J(A) denote the Jordan closure of A in Mn(C)sa under the Jordan product a·b = (ab+ ba)/2. Then,
as Jordan algebras,

J
(
U(A)

)
∼= J(A). (B.96)

Proof. U is a linear bijection, hence it suffices to observe that

U(X)·U(Y ) =
(
U(X)U(Y ) + U(Y )U(X)

)
/2 =

(
U(XY ) + U(Y X)

)
/2 = U

(
(XY + Y X)/2

)
= U(X·Y ).

(B.97)

For reference, recall the complex Pauli matrices in M2(C)sa ⊂M2(C), these are

σo =

(
1 0
0 1

)
= 12, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (B.98)
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Define and observe the following (where 0n is the n× n zero matrix)

s0 ≡ σo ⊗ σo ⊗ σo =

(
σo ⊗ σo 04

04 σ0 ⊗ σ0

)
= (σo ⊗ σo)⊕ (σo ⊗ σo) ≡ t0 ⊕ t′0 (B.99)

s1 ≡ σz ⊗ σo ⊗ σo =

(
σz ⊗ σo 04

04 σz ⊗ σo

)
= (σz ⊗ σo)⊕ (σz ⊗ σo) ≡ t1 ⊕ t′1 (B.100)

s2 ≡ σx ⊗ σo ⊗ σo =

(
σx ⊗ σo 04

04 σx ⊗ σo

)
= (σx ⊗ σo)⊕ (σx ⊗ σo) ≡ t2 ⊕ t′2 (B.101)

s3 ≡ σy ⊗ σz ⊗ σo =

(
σy ⊗ σz 04

04 σy ⊗ σz

)
= (σy ⊗ σz)⊕ (σy ⊗ σz) ≡ t3 ⊕ t′3 (B.102)

s4 ≡ σy ⊗ σx ⊗ σo =

(
σy ⊗ σx 04

04 σy ⊗ σx

)
= (σy ⊗ σx)⊕ (σy ⊗ σx) ≡ t4 ⊕ t′4 (B.103)

s5 ≡ σy ⊗ σy ⊗ σz =

(
σy ⊗ σy 04

04 −σy ⊗ σy

)
= (σy ⊗ σy)⊕

(
− (σy ⊗ σy)

)
≡ t5 ⊕ t′5, (B.104)

with t0 = t′0, t1 = t′1, t2 = t′2, t3 = t′3, t4 = t′4 and t5 = −t′5. Recall that ψ5 : V5 −→ C∗u(V5) :: vr 7−→ sr is
the canonical embedding of V5 into its universal C∗-algebra. Recall also that, by definition (noting linear
hull ⊆ Jordan hull),

V5⊗̃V5 = J
(
ψV5(V5)} ψV5(V5)

)
, (B.105)

where ψV5
(V5) } ψV5

(V5) is just the set of pure tensors. Also, recall from CCEJA Appendix B (wherein
our tensor product convention is different), our Corollary B.5:

J
(
{tr ⊗ ts}

)
= Q2 � Q2 = M16(R)sa. (B.106)

We are now ready for the main result of this section.

Proposition B.4.4 V5⊗̃V5
∼= M16(R)sa ⊕M16(R)sa ⊕M16(R)sa ⊕M16(R)sa.

Proof. By definition,

V5⊗̃V5 = J
(
ψ5(V5)} ψ5(V5)

)
. (B.107)

Let U : M64(C) −→M64(C) be the complex *-algebra automorphism defined in Eq. (B.95). By Corollary
1.2, we have

V5⊗̃V5
∼= J

(
U
(
ψ5(V5)} ψ5(V5)

))
(B.108)

Then, with tp, t
′
p defined for p ∈ {0, . . . , 5} according to Eqs. (B.99)(B.100)(B.101)(B.102)(B.103)(B.104),

V5⊗̃V5
∼= J

{(
tp ⊗ tq

)
⊕
(
tp ⊗ t′q

)
⊕
(
t′p ⊗ tq

)
⊕
(
t′p ⊗ t′q

) ∣∣ p, q ∈ {1, . . . , 5}} ≡ A, (B.109)

where

t0 = σo ⊗ σo, t1 = σz ⊗ σo, t2 = σx ⊗ σo, t3 = σy ⊗ σz, t4 = σy ⊗ σx, t5 = σy ⊗ σy. (B.110)
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Immediately from Eq. (B.106), one has that

A is a Jordan subalgebra of M16(R)sa ⊕M16(R)sa ⊕M16(R)sa ⊕M16(R)sa ≡ B. (B.111)

We will prove that A ∼= B. Again in light of (B.106), with (B.111) and (B.109) we see that it suffices to
prove that

{116⊕016⊕016⊕016, 016⊕116⊕016⊕016, 016⊕016⊕116⊕016, 016⊕016⊕016⊕116} ⊂ A. (B.112)

We shall require the following observations.

(t4 ⊗ t2)·(t5 ⊗ t3) =
(

(t4t5 ⊗ t2t3) + (t5t4 ⊗ t3t2)
)
/2

=
(

(σo ⊗ iσz ⊗ iσz ⊗ σz) + (σo ⊗−iσz ⊗−iσz ⊗ σz)
)
/2

= −σo ⊗ σz ⊗ σz ⊗ σz. (B.113)

(t2 ⊗ t4)·(t3 ⊗ t5) =
(

(t2t3 ⊗ t4t5) + (t3t2 ⊗ t5t4)
)
/2

=
(

(iσz ⊗ σz ⊗ σo ⊗ iσz) + (−iσz ⊗ σz ⊗ σo ⊗−iσz)
)
/2

= −σz ⊗ σz ⊗ σo ⊗ σz. (B.114)

t0 ⊗ t1·(σo ⊗ σz ⊗ σz ⊗ σz) = σo ⊗ σz ⊗ σo ⊗ σz. (B.115)

t1 ⊗ t0·(σz ⊗ σz ⊗ σo ⊗ σz) = σo ⊗ σz ⊗ σo ⊗ σz. (B.116)

(t4 ⊗ t4)·(σo ⊗ σz ⊗ σo ⊗ σz) =
(
σy ⊗ σx ⊗ σy ⊗ σx

)·(σo ⊗ σz ⊗ σo ⊗ σz)
=

((
σy ⊗−iσy ⊗ σy ⊗−iσy

)
+
(
σy ⊗ iσy ⊗ σy ⊗ iσy

))
/2

= −t5 ⊗ t5. (B.117)

Thus

A 3
(
t4 ⊗ t4

)⊕4·
((

t0 ⊗ t1
)⊕4·((t4 ⊗ t2)⊕4·((t5 ⊗ t3)⊕ (t5 ⊗ t3)⊕ (−t5 ⊗ t3)⊕ (−t5 ⊗ t3)

)))
=

(
t5 ⊗ t5

)
⊕
(
t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
(B.118)

A 3
(
t4 ⊗ t4

)⊕4·
((

t1 ⊗ t0
)⊕4·((t2 ⊗ t4)⊕4·((t3 ⊗ t5)⊕ (−t3 ⊗ t5)⊕ (t3 ⊗ t5)⊕ (−t3 ⊗ t5)

)))
=

(
t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
⊕
(
t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
(B.119)
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Directly from Eq. (B.109) with p = q = 5 we also have that

A 3
(
t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
⊕
(
− t5 ⊗ t5

)
⊕
(
t5 ⊗ t5

)
(B.120)

We will now show that A 3 (t5⊗t5)⊕
4

. Noting that t1, t2, t3, t4 mutually anticommute in M4(C)sa, observe
the following. ((

t1 ⊗ t1
)·(t2 ⊗ t2))·((t3 ⊗ t3)·(t4 ⊗ t4)) =

(
t1t2 ⊗ t1t2

)·(t3t4 ⊗ t3t4)
= t1t2t3t4 ⊗ t1t2t3t4
= t5 ⊗ t5. (B.121)

Therefore

A 3
((
t1 ⊗ t1

)⊕4·(t2 ⊗ t2)⊕4)·((t3 ⊗ t3)⊕4·(t4 ⊗ t4)⊕4)
= (t5 ⊗ t5)⊕ (t5 ⊗ t5)⊕ (t5 ⊗ t5)⊕ (t5 ⊗ t5). (B.122)

Notice that
(
(B.118)+(B.119)+(B.120)+(B.122)

)
/4 yeilds

A 3 t5 ⊗ t5 ⊕ 016 ⊕ 016 ⊕ 016 =⇒ A 3 116 ⊕ 016 ⊕ 016 ⊕ 016, (B.123)

where the implication follows from t25 = 14. Next, notice that
(
(B.118)+(B.119)

)
/2 yields

A 3 (t5⊗ t5)⊕016⊕016⊕ (−t5⊗ t5) =⇒ A 3 116⊕016⊕016⊕116 =⇒ 016⊕016⊕016⊕116, (B.124)

where the final implication follows from Eq. (B.123), i.e. A 3
(
116⊕016⊕016⊕116

)
−
(
116⊕016⊕016⊕016

)
.

Furthermore, notice that
(
(B.119)-(B.120)

)
/2 yields

A 3 016⊕016⊕(t5⊗t5)⊕(−t5⊗t5) =⇒ A 3 016⊕016⊕116⊕116 =⇒ A 3 016⊕016⊕116⊕016, (B.125)

where the final implication follows from Eq (B.124), i.e. A 3
(
016⊕016⊕116⊕116

)
−
(
016⊕016⊕016⊕116

)
.

Finally, notice that
(
(B.122)+(B.118)

)
/2 yields

A 3 (t5⊗ t5)⊕(t5⊗ t5)⊕016⊕016 =⇒ A 3 116⊕116⊕016⊕016 =⇒ A 3 016⊕116⊕016⊕016, (B.126)

where the final implication follows from Eq. (B.123), i.e. A 3
(
116⊕116⊕016⊕016

)
−
(
116⊕016⊕016⊕016

)
.

Taking stock, (B.112) is true.
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B.5 Supporting Details for Chapter 8

This appendix collects technical details supporting our proofs in Chapter 8.

Let A be an EJC-algebra, that is, A a Jordan subagebra of Msa for a finite-dimensional complex ∗-
algebra M = MA. Recall that G(A) is the connected component of the identity in the group of order-
automorphisms of A.

Lemma B.5.1 Let A be reversible. Then any one-parameter group of order automorphisms of A extends
to a one-parameter group of order-automorphisms of M.

Proof. If {φ(t)}t∈R is a one-parameter group of order-automorphisms of A, then φ(t)(a) = etXa where
X = φ′(0) is a linear operator on A. By definition, X is an order-derivation of A. Now, order-derivations
come in two basic types: those having the form X = La for some a ∈ A, and those having the property
Xu = 0 (which turns out to be the same thing as being a Jordan derivation). The former are self-adjoint
with respect to the canonical inner product on A, by the definition of a Euclidean Jordan algebra, while
the latter are skew-adjoint . Moreover, every order-derivation has the form δ = La + δ′ where δ′ is skew
([267], Proposition 1.60).

Now, La obviously extends from A to M, simply because a ∈ M and the Jordan product on A is the
restriction of that on M. By ([270], Theorem 2.5), if A is reversible in M, δ′ also extends to a Jordan

derivation δ′′ on M. Thus, we have an extension δ̂ = La + δ′′ on M. In particular, δ′′(A) ⊆ A.

It follows that we have an order-automorphism φ̂(t) = etδ̂ of M+. Note that this preserves A, since

φ̂(t)x =

∞∑
k=1

tk

k!
δ̂kx

and δ̂x = (La + δ′′)x = aẋ+ δ′′(x), which belongs to A if x does.

Corollary B.5.2 If A is reversible, every element of G(A) extends to an element of G((MA)sa).

Now let B also be a reversible EJC-algebra.

Lemma B.5.3 Let δ be any ∗-derivation of MA fixing A. Then δ ⊗ 1 is a ∗-derivation of MA ⊗MA

fixing A�B.

Proof. Let M and N be ∗-algebras, and let a, b ∈M and x, y ∈ N. Then

(a⊗ x)·(b⊗ y) =
1

2
(ab⊗ xy + ba⊗ yx).

If δ is a ∗-derivation of M, then it is straighforward to check that δ ⊗ 1 is a ∗-derivation of M ⊗N, and
that for all a, b ∈M and x, y ∈ N,

(δ ⊗ 1)((a⊗ x)·(b⊗ y)) = (a⊗ x)·(δ(b)⊗ y) + (δ(a)⊗ x)·(b⊗ y).
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In particular, if A ⊆M and δ(A) ⊆ A, it follows that (δ⊗ 1)(A⊗A) ⊆ (A⊗A)·(A⊗A) for any B ⊆ N.
It follows easily that, where A and B are EJCs and M = MA and N = MB, δ⊗ 1 preserves A�B. 1

Proposition B.5.4 If φ and ψ are order-automorphisms of A and B, respectively, then φ⊗ψ extends to
an order-automorphism of A�B.

Proof. By Corollary B.5.2, we can assume that φ is an order-automorphism of Msa fixing A. Then φ = eδ

for an order-derivation δ of M, which (taking derivatives) must also fix A. It follows that

φ⊗ 1 = etδ ⊗ 1 =

∞∑
n=0

tn

n!
δn ⊗ 1 =

∞∑
n=0

tn

n!
(δ ⊗ 1)n = et(δ⊗1).

By Lemma B.5.3, δ ⊗ 1 fixes A � B; thus, so does the series at right, whence, so does φ ⊗ 1. It follows
that if φ is an order-automorphism of MA fixing A, then φ⊗ 1 is an order-automorphism of A⊗B fixing
j(A⊗B) = A�B. Hence, if φ and ψ are order-automorphisms of MA and MB, respectively fixing A and
B, then φ⊗ ψ = (φ⊗ 1) ◦ (1⊗ ψ) fixes A�B.

We now collect some basic facts about direct sums of ejas. We shall omit calligraphic mathematical fonts.

Definition B.5.5 The direct sum of EJAs A and B is A ⊕ B := A × B, equipped with the slotwise
operations, so that the canonical projections π1 : A × B → A and π2 : A × B → B are unital Jordan
homomorphisms.

Identifying A and B with A× {0} and {0} × B, respectively, we write a + b for (a, 0) + (0, b). Note that
A and B are then ideals in A ⊕ B, and that B = A⊥ := {z ∈ A ⊕ B|〈a, z〉 = 0 ∀a ∈ A}. Conversely, it’s
easy to check that if E is an EJA and A is an ideal in A, then A⊥ is also an ideal, and ab = 0 for all
a ∈ A, b ∈ A⊥; hence, E ' A⊕A⊥.

Suppose E is an EJA and A ≤ E is an ideal: let B = A⊥. Then for all z ∈ E,

〈a, zb〉 = 〈az, b〉 = 0

since az ∈ A. Thus, B is also an ideal, and E = A⊕B as a vector space. Finally, if a ∈ A and b ∈ B, then
ab ∈ A∩B = {0}. Hence, if a, x ∈ A and b, y ∈ B then (a+ b)(x+ y) = ax+ by, i.e., in the representation
of A⊕B as A×B, operations are slotwise. What is not entirely obvious is that A contains a unit element.

Lemma B.5.6 Let A be an ideal in an EJA E. Then there exists a projection p ∈ E such that pa = a
for every a ∈ A. Thus, A = pA, and E = pA⊕ p′A, where p′ = 1− p.

For a proof in the more general setting of JBW algebras, see [267], Propositions 2.7, 2.39 and 2.41.

The center of an EJA E is the set of elements operator-commuting with all other elements. Denote this
by C(E) If E = A ⊕ B, and p is the unit of A, so that A = pA, then it’s easy to check that p ∈ C(E).
Conversely, if p is a central projection, then pA is an ideal, with unit element p. If p is a minimal central

1The details: let δ be a ∗-derivation on a ∗-algebra M, and let X ⊆Msa with δ(X) ⊆ X. Let Y = {a ∈ j(X)|δ(a) ∈ j(X)}.
Evidently X ⊆ Y . Now if a, b ∈ Y and t ∈ R, then δ(ta + b) = tδ(a) + δ(b) ∈ j(X), so j(X) is a subspace of M . If a, b ∈ Y
then δ(aḃ) = aδ̇(b) + δ(a)ḃ ∈ j(X). Thus, Y is a Jordan subalgebra of Msa, containing X, and contained in j(X). Ergo,
Y = j(X), and δ(j(X)) ⊆ j(X).
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projection, then pA is a minimal direct summand of E. If E is simple, then its only central projections
are 0 and 1, and conversely.

One can show that for every projection e in an EJA E, there exists a unique miniml projection c(e) ∈ C(E),
the central cover of p, such that e ≤ c(e). Then A := c(p)E is an ideal of E, in which c(p) is the unit. If A
is a minimal ideal, then elements of A are exactly those with central cover c(p). [[267], 2.37, 2.39]. More
generally, two elements of E having the same central cover have nonzero components in exactly the same
ideals of E.

Recall that a symmetry of A is an element s ∈ A with s2 = u. Projections e, f in A are exchanged by a
symmetry s iff Us(e) = f . If there exists a sequence of symmetries s1, ..., sn with Usn ◦ · · · ◦ Us1(e) = f ,
then e and f are equivalent. The following is Lemma 3.9 from [267].

Lemma B.5.7 Equivalent projections have the same central cover.

Recall that a sequence of vector spaces and linear maps, or of Jordan algebras and Jordan homomorphisms,
or of C∗ algebras and ∗-homomorphisms

A
α−→ B

β−→ C

is said to be exact at B iff the image of α is the kernel of β. A short exact sequence is one of the form

0 −→ A
α−→ B

β−→ C −→ 0

that is exact at A, B and C (with the maps on the ends being the only possible ones). This means that
α is injective (its kernel is 0), while β is surjective (its image is the kernel of the zero map, i.e., all of C).

Let EJA and Cstar be the categories of EJAs and Jordan homomorphisms, and of C∗-algebras and
∗-homomorphisms, respectively.

Theorem B.5.8 A 7→ C∗u(A) is an exact functor from EJA to Cstar. In other words, if A
α−→ B

β−→ C

is an exact sequence in EJA, then C∗u(A)
C∗u(α)−→ B

C∗u(β)−→ C∗u(C) is an exact sequence in Cstar.

We are going to use this to show that C∗u(A ⊕ B) = C∗u(A) ⊕ C∗u(B). We need some preliminaries. The
following is standard:

Lemma B.5.9 Let

0 −→ A
α−→ C

β−→ B −→ 0

be a short exact sequence of vector spaces. Then the following are equivalent:

(a) There is an isomorphism φ : A ⊕ B ' C such that α and β are respectively the canonical injection
and surjection given by

α(a) = φ(a, 0) and β(φ(a, b)) = b

(b) The sequence is split at B: there exists a linear mapping γ : B → C such that β ◦ γ = idB .

The idea is that, given φ, we can define γ by γ(b) = φ(0, b) and, given γ, we can define φ by φ(a, b) =
α(a) + γ(b).

If A, B and C are Jordan algebras or C∗ algebras, the implication from (a) to (b) is obviously valid, but
the converse requires additional assumptions.
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Lemma B.5.10 Let

0 −→ A
α−→ C

β−→ B −→ 0.

be a short exact sequence of ∗-algebras and ∗-homomorphisms, split by a ∗-homomorphism γ : B → C
with β ◦ γ = idB . Let φ : A ⊕ B → C be as defined above, i.e, φ(a, b) = α(a) + γ(b) for a ∈ A, b ∈ B.
Then the following are equivalent:

(a) γ(B) is a (2-sided) ∗-ideal in C;

(b) φ is multiplicative, and thus a ∗-isomorphism;

(c) There exists a ∗-homomorphism δ : C → A with

0←− A δ←− C γ←− B ←− 0

exact.

Proof. (a) ⇒ (b). It is easy to see that a C∗-algebra C is the direct sum of two ∗-ideals A,B ≤ C iff
A + B = C and A ∩ C = {0}, i.e., iff C is the vector-space direct sum of A and B. We already know
that α(A) + β(B) = C (since φ is a linear isomorphism). It therefore suffices to show that α(A) and
γ(B) are ∗-ideals with zero intersection. We are assuming that γ(B) is a ∗ ideal. As it’s the kernel of
a ∗-homomorphism, α(A) is automatically a ∗-ideal. To see that α(A) ∩ γ(C) = {0}, let c ∈ C with
c = α(a) = γ(b) for some a ∈ A and b ∈ B. Then we have

b = β(γ(b)) = β(α(a)) = 0

whence, c = γ(0) = 0.

(b) ⇒ (c). If φ is a ∗-isomorphism, then let δ = πA ◦ φ−1 where πA : A ⊕ B → A is the projection
πA(a, b) = a. Note that δ is the composition of two ∗-homomorphisms, and thus, a ∗-homomorphism. To
verify exactness, note that as φ(a, b) = α(a) + γ(b), we have φ(0, b) = γ(b), whence, φ−1(γ(b)) = (0, b).
Thus, δ(γ(b))= πA(0, b) = 0.

(c) ⇒ (a). By exactness, γ(C) is the kernel of the ∗-homomorphism δ, and hence, a ∗-ideal.

Now let E = A⊕B. Then we have a short exact sequence

0 −→ A
j−→ A⊕B p−→ B −→ 0.

where j(a) = (a, 0) and p(a, b) = b. This is split by the homomorphism k : A → A ⊕ B given by
k(b) = (0, b). Hanche-Olsen’s exactness theorem (2.1) gives us a short exact sequence

0 −→ C∗u(A)
C∗(j)−→ C∗u(A⊕B)

C∗(p)−→ C∗u(B) −→ 0.

By functoriality, C∗u(p)◦C∗u(j) = idC∗u(B), so this is again split. Thus, regarded as a vector space, C∗u(A⊕B)
is canonically isomorphic to C∗u(A)⊕ C∗u(B). On the other hand, we also have an exact sequence

0←− A q←− A⊕B k←− B ←− 0
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where q(a, b) = a. By the same argument, then, we have a short exact sequence

0←− C∗u(A)
C∗u(q)←− C∗u(A⊕B)

C∗u(k)←− C∗u(B)←− 0.

Applying the preceding Lemma, we have

Proposition B.5.11 If A and B are EJAs, then C∗u(A⊕B) ' C∗u(A)⊕ C∗u(B).

Notice that if ΦA and ΦB are, respectively, the canonical involutions on C∗u(A) and C∗u(B) fixing points
of A and B, then ΦA ⊕ ΦB is a ∗-involution on C∗u(A)⊕ C∗u(B) fixing points of A⊕B. But there is only
one such ∗-involution on C∗u(A ⊕ B), the canonical one. In other words, in identifying C∗u(A ⊕ B) with
C∗u(A)⊕ C∗u(B), we also identify ΦA⊕B with ΦA ⊕ ΦB .

Recalling now the fact ([269], Lemma 4.2) that an EJA A is universally reversible (UR) iff A coincides
with the set of self-adjoint fixed points in C∗u(A) of the canonical ∗-involution ΦA, we have the

Corollary B.5.12 If A and B are UR, then so is A⊕B.

Proof. Let Φ = ΦA ⊕ ΦB be the canonical involution on C∗u(A ⊕ B) = C∗u(A) ⊕ C∗u(B). For (a, b) ∈
C∗u(A) ⊕ C∗u(B), we have Φ(a, b) = (ΦA(a),ΦB(b)) = (a, b) iff ΦA(a) = a and ΦB(b) = b. Since A and B
are UR, this holds iff a ∈ A and b ∈ B, i.e., iff (a, b) ∈ A⊕B. Thus, A⊕B is exactly the set of fixed-points
of Φ, and so, is UR.

In 8.2.10, we show that A⊗̃B is a composite in the sense of Definition 8.2.1. We will show that any such
composite AB is a direct summand of A⊗̃B. We rely heavily on the fact (Lemma B.5.17) that p⊗ q is a
projection in AB when p and q are projections in A and B, respectively. In order to prove Lemma B.5.17,
we shall require some significant preparatory work. To centre ourselves, recall that, by definition, any eja
A is equipped with a self-dualizing inner product 〈·|·〉 : A×A −→ R such that ∀a, b, c ∈ A we have that

〈a|b·c〉 = 〈a·b|c〉. (B.127)

Recall that a Jordan frame in A is a set {x1, . . . , xn} of primitive orthogonal projections with x1 + x2 +
· · · + xn = uA. All Jordan frames have the same size, namely n, which is the rank of A. We shall now
recall the spectral theorem from [252].

Theorem B.5.13 [Theorem III.1.2 [252]] Let A be an eja of rank n. Let a ∈ A. Then there exists unique
real numbers λ1, . . . , λn and a Jordan frame {x1, . . . , xn} such that

a = x1λ1 + x2λ2 + · · ·+ xnλn. (B.128)

The real numbers λj are referred to as the eigenvalues of a, and the rhs of Eq. (B.128) is called a spectral
resolution of a. The spectral radius of a is denoted ρ(a) and defined via ρ(a) = max{|λ1|, . . . , |λn|}.

It will be useful for us to record some easy consequences of the spectral theorem.

Proposition B.5.14 Let A be an eja. Let a ∈ A+. Then the eigenvalues of a are nonnegative.
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Proof. Let
a = x1λ1 + x2λ2 + · · ·+ xnλn (B.129)

be a spectral resolution of a. A+ is self-dual, so ∀j ∈ {1, . . . , n} we have 〈xj |a〉 ≥ 0. Therefore

0 ≤ 〈xj |a〉 =

n∑
k=1

λk〈xj |xk〉 =

n∑
k=1

λk〈uA·xj |xk〉 =

n∑
k=1

λk〈uA|xj·xk〉 =

n∑
k=1

λk〈xk|xk〉δj,k = λj〈xj |xj〉.

(B.130)
Now, 〈·|·〉 is an inner product, and therefore positive definite, so from Eq. (B.130) we have that λj ≥ 0.

Proposition B.5.15 Let A be an eja. Let a·a = a ∈ A. Then the eigenvalues of a are zero or unity.

Proof. Let a = x1λ1 + · · ·+ xnλn be a spectral decomposition of a. Then a·a = a means

n∑
j=1

xjλj =

n∑
j=1

xjλ
2
j , (B.131)

because ∀j, k ∈ {1, . . . , n} the Jordan products of the Jordan frame elements are xj·xk = δj,kxj . In fact,
on that observation left Jordan multiply each side of Eq. (B.131) by xk for arbitrary k to get xkλk = xkλ

2
k.

So λk ∈ {0, 1}.

Proposition B.5.16 Let A be an eja. Let a ∈ A+ such that 〈uA|a〉 = 〈uA|a·a〉 and ρ(a) ≤ 1. Then
a·a = a.

Proof. Apply Theorem B.5.13 to write a in terms of a Jordan frame {x1, . . . , xn} ⊂ A+ and {λ1, . . . , λn} ⊂
Rn≥0,

a =

n∑
j=1

xjλj . (B.132)

{x1, . . . , xn} is a Jordan frame, so x1 + . . . xn = uA. Therefore (including intermediate steps just to be
careful)

〈uA|a〉 =

〈
n∑
k=1

xk

∣∣∣∣∣
n∑
j=1

xjλj

〉
=

n∑
k=1

n∑
j=1

λj〈xk|xj〉 =

n∑
k=1

n∑
j=1

λj〈xj |xj〉δk,j =

n∑
j=1

λj〈xj |xj〉. (B.133)

Now, A is an eja, so 〈uA|a·a〉 = 〈uA·a|a〉 = 〈a|a〉, and so we compute

〈uA|a·a〉 = 〈a|a〉 =

〈
n∑
k=1

xkλk

∣∣∣∣∣
n∑
j=1

xjλj

〉
=

n∑
k=1

n∑
j=1

λkλj〈xk|xj〉 =

n∑
k=1

n∑
j=1

λkλj〈xj |xj〉δk,j =

n∑
j=1

λ2
j 〈xj |xj〉.

(B.134)
The assumption 〈uA|a〉 = 〈uA|a·a〉 in the statement of the proposition therefore yields

n∑
j=1

λj〈xj |xj〉 =

n∑
j=1

λ2
j 〈xj |xj〉. (B.135)
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We can rewrite Eq. (B.135) as follows:

n∑
j=1

λj(1− λj)〈xj |xj〉 = 0. (B.136)

Let us consider an arbitrary j ∈ {1, . . . , n}. We now see that the assumption ρ(a) ≤ 1 in the statement of
the proposition means λj(1−λj)〈xj |xj〉 ≥ 0, since 〈·|·〉 is an inner product and therefore positive definite,
and since a ∈ A+ implies λj ≥ 0 by Proposition B.5.14. Eq. (B.135) therefore yields λj ∈ {0, 1}, which is
to say that a is a projection in light of Proposition B.5.15.

We are now ready for the following lemma.

Lemma B.5.17 Let p ∈ A and q ∈ B be projections. Then p⊗ q is a projection in AB, for any composite
AB of A and B.

Proof. We first show that 〈uA ⊗ uB|p ⊗ q〉 = 〈uA ⊗ uB|(p ⊗ q)·(p ⊗ q)〉. By assumption p·p = p and
q·q = q, so

〈uA ⊗ uB|p⊗ q〉 = 〈uA ⊗ uB|p·p⊗ q〉 (B.137)

= 〈uA ⊗ uB|(p⊗ uB)·(p⊗ q)〉 (B.138)

= 〈(uA ⊗ uB)·(p⊗ uB)|p⊗ q〉 (B.139)

= 〈p⊗ uB|p⊗ q〉 (B.140)

= 〈p⊗ uB|p⊗ q·q〉 (B.141)

= 〈p⊗ uB|(uA ⊗ q)·(p⊗ q)〉 (B.142)

= 〈(p⊗ uB)·(uA ⊗ q)|p⊗ q〉 (B.143)

= 〈p⊗ q|p⊗ q〉 (B.144)

= 〈(uA ⊗ uB)·(p⊗ q)|p⊗ q〉 (B.145)

= 〈uA ⊗ uB|(p⊗ q〉)·(p⊗ q)〉, (B.146)

where Eqs. (B.138), (B.142), and (B.144) follow immediately from Proposition B.5.21; where Eqs. (B.139),
(B.143), and (B.146) follow from Definition 8.2.1 (i.e. AB is an eja, so 〈a|b·c〉 = 〈a·b|c〉 for all a, b, c ∈
AB); and where Eq. (B.140) and Eq. (B.145) also follow from Definition 8.2.1 (i.e. uA ⊗ uB is the unit in
AB). We record this last fact

uAB = uA ⊗ uB. (B.147)

So,
〈uAB|p⊗ q〉 = 〈uAB|(p⊗ q)·(p⊗ q)〉. (B.148)

We will now prove that the spectral radius ρ(p ⊗ q) ≤ 1, from which the desired result will follow from
Proposition B.5.16.

A state on AB is by definition a positive linear functional γ : AB+ −→ R≥0 such that γ(uAB) = 1. Now,
AB is an eja; hence AB+ is self-dual. So, for any state γ there exists Y ∈ AB+ such that ∀X ∈ AB+ we
have that γ(X) = 〈Y |X〉. Let arbitrary γ and Y be as such, which means in particular that

〈Y |uAB〉 = 1. (B.149)
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Now, as in our previous note, choose projection p̃ ∈ A+ such that p+ p̃ = uA. Likewise, choose projection
q̃ ∈ B+ such that q + q̃ = uB. Recalling (B.147) we then have from Eq. (B.149) that

1 = 〈Y |uA ⊗ uB〉 (B.150)

= 〈Y |(p+ p̃)⊗ (q + q̃)〉 (B.151)

= 〈Y |p⊗ q〉+ 〈Y |p⊗ q̃〉+ 〈Y |p̃⊗ q〉+ 〈Y |p̃⊗ q̃〉, (B.152)

where we have appealed to bilinearity of ⊗ and 〈·|·〉. Now, from Definition 8.2.1 we have that AB is,
in particular, a composite in the sense of Definition 8.1.2. So, from Definition 8.1.2 (a) we have that
p⊗ q, p⊗ q̃, p̃⊗ q, p̃⊗ q̃ ∈ AB+. Each term on the rhs of Eq. (B.152) is therefore nonnegative. Therefore,
for any state γ represented internally by Y we have that

1 ≥ 〈Y |p⊗ q〉. (B.153)

Let us now apply the spectral theorem to write

p⊗ q =

n∑
j=1

xjλj , (B.154)

where {x1, . . . , xn} is a Jordan frame for AB and ∀j we have that λj ≥ 0 from p⊗q ∈ AB+ and Proposition
1. Choose2 Y = xk

〈xk|xk〉 to get

1 ≥

〈
xk

〈xk|xk〉

∣∣∣∣∣
n∑
j=1

xjλj

〉
=

n∑
j=1

λj
〈xk|xk〉

〈xk|xj〉 =

n∑
j=1

λj
〈xk|xk〉

〈uAB·xk|xj〉 =

n∑
j=1

λj
〈xk|xk〉

〈uAB|xk·xj〉 = λk.

(B.155)
Proposition B.5.16 now completes the proof.

Lemma B.5.17 has an important consequence regarding the inner product on AB:

Proposition B.5.18 Let AB be a composite of EJAs A and B. Then for all a, x ∈ A and all b, y ∈ B,

〈a� x|b� y〉 = 〈a|x〉〈b|y〉. (B.156)

Proof. We begin with the case in which a and b are minimal projections. Since a � b is then also a
projection, we know that that

â� b = ‖a� b‖−2(a� b)
defines a state. Now define a positive bilinear form ω : A×B → R by setting

ω(x, y) = 〈â� b|x� y〉 = 〈a� b|x� y〉

for all x ∈ A, y ∈ B. Note that ω is normalized, i.e., a state in the maximal tensor product A⊗ B. Now
evaluate the first marginal of ω at a:

ω1(a) = ω(a⊗ uB) = 〈â� b|a⊗ uB〉
= 〈â� b|a� b+ a� b′〉
= (〈â� b|a� b〉+ 〈â� b|a� b′〉.

2Indeed, xk
〈xk|xk〉

is a state for any projection xk, since
〈

xk
〈xk|xk〉

∣∣∣u〉 = 〈xk·xk|u〉 1
〈xk|xk〉

= 〈xk|xk〉 1
〈xk|xk〉

= 1.
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Since 〈â� b|a � b〉 = 1, the secondond summand at the end is 0, and we have ω1(a) = 1. Since a is
minimal, there is only one such state: ω1(a) = 〈â|. Moreover, this is a pure state. The same argument

shows that ω2(b) = 1, so that ω2 = 〈̂b|. As is well known, if a non-signaling state has pure marginals, then

it’s the product of these marginals [279]. Thus, ω = 〈â| ⊗ 〈̂b|. This gives us

〈a� b|x� y〉 = c〈a|x〉〈b|y〉.

where c := ‖a�b‖2
‖a‖2‖b‖2 .

We want to show that c = 1. As a first step, note that c is independent of the choice of minimal projections
a and b (Argue by symmetry: since A and B are simple, there are symmetries φ and ψ taking any given pair
a, b to any other such pair a′, b′; hence, there’s a symmetry taking a� b to a′ � b′ B.5.23. This is the only
use we make of condition (c) above.) Extend a and b to orthogonal decompositions of uA and uB as sums
of projections: uA =

∑
ai
ai with a = a1, and uB =

∑
j bj with b = b1 Then we have uAB =

∑
i,j ai � bj ,

so ∑
i,j,k,l

〈ai � bj |ak � bl〉 = 〈uAB |uAB〉 = 1

but also, noting that all ai and bj here are minimal projections, so that the constant c above is the same
for all choices of ai � bj , ∑

i,j,k,l

〈ai � bj |ai � bl〉 =
∑
i,j,k,l

c〈ai � bj |ak � bl〉 = c.

Hence, c = 1.

Now suppose a and b are arbitrary elements of A and B, respectively. Spectrally decomposing a and b as

a =
∑
i

tiai and b =
∑
j

sjbj

where ai and bj are pairwise orthogonal families of minimal projections, we have

〈a� b| = 〈
∑
i,j

tisjai � bj | =
∑
i,j

tisj〈ai � bj |.

Hence, for all x, y,

〈a� b|x� y〉 =
∑
i,j

tisj〈ai � bj |x� y〉

=
∑
i,j

tisj〈ai|x〉〈bj |y〉

= 〈a|x〉〈b|y〉

as advertised.

It now follows that, for a, a′ ∈ A and b, b′ ∈ B, 〈a⊗ b, a′ ⊗ b′〉 = 0 iff either 〈a, a′〉 = 0 or 〈b, b′〉 = 0.

Proposition B.5.19 For all a ∈ A, b ∈ B, a⊗ uB and uA ⊗ b operator-commute in AB.
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Proof. Suppose p ∈ A and q ∈ B are projections, and let p′ = uA − p and q′ = uB − q. Then we have

uAB = uA ⊗ uB = (p+ p′)⊗ (q + q′) = p⊗ q + p′ ⊗ q + p⊗ q′ + p′ ⊗ q′.

The four projections appearing on the right are mutually orthogonal, by B.5.18, and sum to the unit in
AB. Hence, p ⊗ uB = p ⊗ q + p ⊗ q′ and uA ⊗ q = p ⊗ q + p′ ⊗ q operator commute by [267], Lemma
1.48. Now let a ∈ A and b ∈ B be arbitrary: by spectral theory, we have a =

∑
i tipi and b =

∑
j sjqj

for pairwise orthogonal projections pi and qj . Since pi ⊗ uB and uA ⊗ qj operator commute for all i, j, it
follows that

a⊗ uB =
∑
i

tipi ⊗ uB and uA ⊗ b =
∑
j

sjuA ⊗ qj

also operator commute.

To this point, we have limited information—mainly Proposition B.5.19—about how the Jordan structure
of a composite AB interacts with the Jordan structures of A and B. Our goal is to now establish, for any
a ∈ A and any x, y ∈ B, the identity (a⊗ u)·(x⊗ y) = (a·x)⊗ y — in other words, that La⊗uB acts on
A⊗B ≤ AB as La ⊗ 1B , where 1B is the identity operator on B. This is non-trivial, since AB need not
be spanned by A⊗B.

It will be helpful first to recall some basic facts about operator exponentials, or, equivalently, one-parameter
groups of linear operators on finite-dimensional spaces (see, e.g., [280]). Let V be a finite-dimensional real
vector space, and X, a linear operator on V . Recall that φ(t) := etX is the unique function R → L(V)
satisfying the initial-value problem

φ′(t) = Xφ(t); φ(0) = 1

(where 1 is the identity operator on V ). In particular, φ′(0) = X. The function φ satisfies φ(t + s) =
φ(t)φ(s) and hence, φ(t)φ(−t) = φ(0) = 1, hence, as φ(0) = 1, φ(t) is invertible, with φ(t)−1 = φ(−t).
In other words, φ is a one-parameter group of linear operators on V . Conversely, if φ : R → L(V ) is any
continuous one-parameter group of linear operators on V , then φ is differentiable, and φ(t) = etX where
X = φ′(0). Notice, also, that in such a case we have

Xa =
d

dt
φ(t)a|t=0

for any vector a ∈ V .

For later reference, the following lemma collects some standard facts:

Lemma B.5.20 Let X,Y be linear operators on a finite-dimensional inner product space V . Then

(a) X commutes with etX for all t;

(b) If etX commutes with esY for all t, s, then X commutes with Y ;

(c) (etX)† = etX
†
.

Note that, by (c), if φ(t) is a one-parameter group with φ′(0) = X self-adjoint, then φ(t) is self-adjoint for
all t.
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Now let A be an EJA. For a ∈ A, define

φa(t) := etLa = eLta ,

i.e., φa is the solution to the initial-value problem d
dtφa = Laφa, φa(0) = 1. By part (c) of Proposition

8.1.1, part (c), φa(t) = Ueta/2 ; by part (b) of the same Proposition, this last is a positive mapping. Since
etLa is invertible with inverse e−tLa = eL−ta , φa(t) is an order-automorphism belonging to G(A). It
follows that La ∈ gA, the Lie group of the identity component G(A) of A. Note that 〈Lax, y〉 = 〈ax, y〉 =
〈x, ay〉 = 〈x, Lay〉 for all x, y ∈ A; that is, La is self-adjoint. One can show that, conversely, a self-adjoint
element of gA has the form La for a unique a ∈ A. (See [252], pp. 6 and 49, for the details.)

We are now ready for the main result of this appendix.

Proposition B.5.21 Let AB be a composite (in the sense of Definition 8.2.1) of Jordan algebras A and
B. For all a, x ∈ A and b, y ∈ B,

(a⊗ uB)·(x⊗ y) = a·x⊗ y and (uA ⊗ b)·(x⊗ y) = x⊗ b·y
Proof. We prove the first identity; the second is handled similarly. Let φ(t) be a one-parameter group on
A with φ′(0) = La. Then ψ(t) := φ(t)⊗1 is a one-parameter group of automorphisms, by condition (c) of
8.1.4. Let Y = ψ′(0)∈ gAB ; then, for all x ∈ A and y ∈ B,

Y (x⊗ y) =

[
d

dt
ψ(t)

]
t=0

(x⊗ y)

=

[
d

dt
(ψ(t)(x⊗ y))

]
t=0

=

[
d

dt
(φ(t)x⊗ y)

]
t=0

=

([
d

dt
φ(t)

]
t=0

x

)
⊗ y = Lax⊗ y = ax⊗ y.

Subject to condition (c) of Definition 8.2.1, we have

(φa(t)⊗ 1)† = φa(t)† ⊗ 1 = φa(t)⊗ 1.

Hence, Y is self-adjoint. As discussed above, it follows that there exists some v ∈ AB with Y = Lv on
A⊗B. Thus,

v(x⊗ y) = Lv(x⊗ y) = Y (x⊗ y) = ax⊗ y.

Setting x = uA and y = uB , we have v = vuAB = v(uA ⊗ uB) = auA ⊗ uB = a ⊗ uB , which gives the
advertised result.

Recall that, for a ∈ A, the mapping Ua : A→ A is defined by Ua = 2L2
a − La2 .

Corollary B.5.22 In any composite AB of EJAs A and B, and for any a ∈ A, b ∈ B, Ua⊗uB and UuA⊗A
act on A⊗B as Ua ⊗ idB and idA ⊗ Ub, respectively.
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We now show that if A and B are non-trivial simple EJAs — that is, if neither has any non-trivial
direct summands — then any composite AB must be special, universally reversible, and an ideal (a direct
summand) of the maximal tensor product A⊗̃B. The rough idea is that, since A and B have rank
at least two, the fact that products of distinguishable effects are distinguishable will yield at least four
distinguishable effects in AB. If the latter were simple, this would be the end of the story; but we know
from the case of universal tensor products (which we will ultimately show are dynamical composites in our
sense) that composites can have non-trivial direct summands. Thus, need to work a bit harder, and show
that every irreducible direct summand of AB has rank at least 4.

An element s ∈ A is called a symmetry iff s2 = u.3 In this case Us is a Jordan automorphism of A,
with U2

s = id ([267], Prop. 2.34). Also note that p := 1
2 (s + u) is a projection, and, conversely, if p is a

projection, then s := 2p− u is a symmetry.

Two projections p, q ∈ A are exchanged by a symmetry s ∈ A iff Us(p) = q (in which case, p = Us(q)).
More generally, p and q are equivalent iff there exists a finite sequence of symmetries s1, ...s` with q =
(Us` ◦ · · · ◦ Us1)(p).

Now let AB be a composite in the sense of Definition 8.2.1.

Lemma B.5.23 Let s ∈ A be a symmetry exchanging projections p1, p2 ∈ A, and let t ∈ B be a
symmetry exchanging projections q1, q2 ∈ B. Then s ⊗ uB and uA ⊗ t are symmetries in AB, and
UuA⊗tUs⊗uB (p1 ⊗ q1) = p2 ⊗ q2. In particular, the projections p1 ⊗ q1 and p2 ⊗ q2 are equivalent.

Proof. (s ⊗ uB)2 = s2 ⊗ uB = uA ⊗ uB = uAB by Proposition B.5.21. Similarly for uA ⊗ t. Now by
Corollary B.5.22, we have

UuA⊗tUs⊗uB (p1 ⊗ q1) = UuA⊗t(Us(p1)⊗ q1) = Us(p1)⊗ Ut(q1) = p2 ⊗ q2.

3Not to be confused with a symmetry qua order-automorphism.
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B.6 Canonical Involutions

In this appendix, we prove that the canonical involutions of the Jordan matrix algebras are self-adjoint
and unitary. For the reader’s convienience, let us collect the relevant material from Part II in the form of
the following proposition.

Proposition B.6.1 Let A be a simple universally reversible Euclidean Jordan algebra. Let a ∈ A, and
let X ∈ C∗u(A). Let ψA and ΦA be as defined in Theorem 7.3.4. Let

J ≡
(

0n 1n
−1n 0n

)
. (B.157)

Then one has the following table4:

A C∗u(A) ψA ΦA

Mn

(
R
)
s

Mn

(
C
)

ψA(a) = a ΦA(X) = XT

Mn

(
C
)
sa

Mn

(
C
)
⊕Mn

(
C
)

ψA(a) = a⊕ aT ΦA(X = Y ⊕ Z) = ZT ⊕ Y T

Mn>2

(
H
)
sa

M2n

(
C
)

ψA

(
a = Γ1 + Γ2j

)
=

(
Γ1 Γ2

−Γ2 Γ1

)
ΦA(X) = JXTJT

Definition B.6.2 Let X be a finite dimensional C∗-algebra of dimension n. We identify X with Mn

(
C
)
.

The Hilbert-Schmidt inner product on X is denoted and defined for all X,Y ∈ X via 〈X,Y 〉 = Tr
(
X†Y

)
,

where † denotes the usual composition of the usual transpose and complex conjugation operations.

Definition B.6.3 Let X be a finite dimensional C∗-algebra of dimension n. We say that a linear operator
Φ : X→ X is unitary if 〈Φ(X),Φ(Y )〉 = 〈X,Y 〉 for all X,Y ∈ X

Lemma B.6.4 The involutive *-antiautomorphisms tabulated in Proposition B.6.1 are unitary.

Proof. For the case of A = Mn

(
R
)
s
, note that

〈ΦA(X),ΦA(Y )〉 = Tr
(

ΦA(X)†ΦA(Y )
)

= Tr
((
XT
)†
Y T
)

= Tr
((
X†
)T
Y T
)

= Tr
((
Y X†

)T)
= Tr

(
Y X†

)
= Tr

(
X†Y

)
= 〈X,Y 〉. (B.158)

4Note that case of M2(H)sa is similiar to Mn>2(H)sa, although in this case we consider the standard embedding in our
constuction of InvQM.
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For the case of A = Mn

(
C
)
sa

, note that

〈ΦA(Y ⊕ Z),ΦA(Ỹ ⊕ Z̃)〉 = Tr
(

ΦA(Y ⊕ Z)†ΦA(Ỹ ⊕ Z̃)
)

= Tr
((
ZT ⊕ Y T

)†(
Z̃T ⊕ Ỹ T

))
= Tr

((
Z† ⊕ Y †

)T (
Z̃ ⊕ Ỹ

)T)
= Tr

(((
Z̃ ⊕ Ỹ

)(
Z† ⊕ Y †

))T)
= Tr

((
Z̃ ⊕ Ỹ

)(
Z† ⊕ Y †

))
= Tr

((
Z† ⊕ Y †

)(
Z̃ ⊕ Ỹ

))
= Tr

((
Y † ⊕ Z†

)(
Ỹ ⊕ Z̃

))
= Tr

((
Y ⊕ Z

))†(
Ỹ ⊕ Z̃

))
= 〈Y ⊕ Z, Ỹ ⊕ Z̃〉. (B.159)

For the case of A = Mn>2

(
H
)
sa

, note that

〈ΦA(X),ΦA(Y )〉 = Tr
(

ΦA(X)†ΦA(Y )
)

= Tr
((
JXTJT

)†(
JY TJT

))
= Tr

(
J(XT )†JTJY TJT

)
= Tr

(
(X†)TY T

)
= Tr

((
Y (X†

)T)
= Tr

(
X†Y

)
= 〈X,Y 〉. (B.160)

Definition B.6.5 Let X be a finite dimensional C∗-algebra of dimension n. For every bounded lin-
ear operator Φ : X → X one defines the corresponding adjoint linear operator — denoted by Φ† — via
〈X,Φ(Y )〉 = 〈Φ†(X), Y 〉 for all X,Y ∈ X. If Φ = Φ†, then one says that Φ is self-adjoint.

Lemma B.6.6 The involutive *-antiautomorphisms tabulated in Proposition B.6.1 are self-adjoint.

Proof. Let us first recall the elementary fact that ∀X,Y ∈ X: Tr(XY T ) = Tr(XTY ). Let us also note
that JXJT = JTXJ ∀X ∈M2n

(
C
)
. We now proceed with the proof by cases.
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For the case of A = Mn>2

(
R
)
s
, note that

〈Φ†A(X), Y 〉 = 〈X,ΦA(Y )〉

= Tr
(
X†Y T

)
= Tr

((
X†
)T
Y
)

= Tr
((
XT
)†
Y
)

= 〈ΦA(X), Y 〉. (B.161)

For the case of A = Mn>2

(
C
)
sa

, note that

〈Φ†A(Y ⊕ Z), Ỹ ⊕ Z̃〉 = 〈Y ⊕ Z,ΦA(Ỹ ⊕ Z̃)〉

= Tr
((
Y ⊕ Z

)†(
Z̃T ⊕ Ỹ T

))
= Tr

(
Y †Z̃T

)
+ Tr

(
Z†Ỹ T

)
= Tr

((
Y †
)T
Z̃
)

+ Tr
((
Z†
)T
Ỹ
)

= Tr
((
Y T
)†
Z̃
)

+ Tr
((
ZT
)†
Ỹ
)

= Tr
((
ZT ⊕ Y T

)†(
Ỹ ⊕ Z̃

))
= 〈ΦA(Y ⊕ Z), Ỹ ⊕ Z̃〉. (B.162)

For the case of A = Mn>2

(
H
)
sa

, note that

〈Φ†A(X), Y 〉 = 〈X,ΦA(Y )〉

= Tr
(
X†
(
JY TJT

))
= Tr

((
JTX†J

)
Y T
)

= Tr
((
JTX†J

)T
Y
)

= Tr
((
JTXTJ

)†
Y
)

= Tr
((
JXTJT

)†
Y
)

= 〈ΦA(X), Y 〉. (B.163)
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B.7 The Category CJPC

In this appendix, we explicitly show that CJPC is a symmetric monoidal category. First, recall our
definition of CJPC from Chapter 9.

Definition B.7.1 Let CJPC be the category with objects ejc-algebras (A,MA) from a class C closed
under � and containing I ≡ (R,C), and morphisms5 φ ∈ hom(A,B) positive maps φ : MA −→MB such
that ∀C ∈ C φ⊗ idMC

is positive and maps A�C into B�C, i.e. φ⊗ idMC
:: A�C 7−→ B�C, where ⊗ is

the usual monoidal product in the symmetric monoidal category of finite dimensional complex *-algebras.

Lemma B.7.2 CJPC is a category.

Proof. We detail the required properties. We shall write x, y, z, . . . for elements of finite dimensional
complex *-algebras and a, b, c, . . . for elements of EJC-algebras (i.e. Jordan subalgebras of the self-adjoint
parts of finite dimensional complex *-algebras.) The obvious identity morphisms are

1A = idMA
: MA −→MA :: x 7−→ x. (B.164)

Indeed, with φ ∈ hom(A,B) we then have that 1B◦φ = φ = φ◦1A. The composition of morphisms in CJPC

is simply inherited from the composition of morphisms in ∗-Alg6, and by the proof of Proposition 9.2.7
(i) we have that the composition of CJPC morphisms are indeed Jordan preserving with respect to C .
Associativity of composition is also inherited from ∗-Alg, indeed, simply from the composition of linear
functions.

Lemma B.7.3 � : CJPC ×CJPC −→ CJPC is a bifunctor.

Proof. First, note that by definition C is closed under �; in category notation, ∀(A,B) ∈ ob
(
CJPC ×

CJPC

)
one has �(A,B

)
∈ ob

(
CJPC

)
. Next, let (f1, f2) ∈ hom

(
CJPC ×CJPC

)
. Then

� (f1, f2) ≡ f1 ⊗ f2 : Mdom(f1) ⊗Mdom(f2) −→Mcod(f1) ⊗Mcod(f2) (B.165)

is again a morphism in CJPC in light of our proof of Proposition 9.2.7 (ii), where one notes that Mdom(f1)⊗
Mdom(f2) is by definition Mdom(f1)�dom(f2) and similarly for the codomain.
One also notes that

� (1A×B
)

= �
(
1A × 1B

)
= idMA

⊗ idMB
= 1�(A,B). (B.166)

Finally, let (f1, f2) : A1 × A2 −→ B1 × B2 and (g1, g2) : B1 × B2 −→ C1 × C2 be composable morphisms
in CJPC ×CJPC . Then

�
(
(g1, g2) ◦ (f1, f2)

)
= �

(
(g1 ◦ f1), (g2 ◦ f2)

)
(B.167)

because Lemma B.7.2 ensures that CJPC ×CJPC is a category. Then by definition

�
(
(g1 ◦ f1), (g2 ◦ f2)

)
= (g1 ◦ f1)⊗ (g2 ◦ f2) =

(
g1 ⊗ g2

)
◦
(
f1 ⊗ f2

)
, (B.168)

5When clear from context, we overload the symbol A to stand for the object (A,MA).
6Henceforth, we write ∗-Alg for the category of complex *-algebras, i.e. the category with objects finite dimensional

complex *-algebras, morphisms linear functions thereof, with composition given by usual functional composition, and with
α, λ, ρ, σ the usual natural isomorphisms (the associator, left and right unit — i.e. C — introductions, respectively, and
symmetor) which render ∗-Alg a symmetric monoidal category with respect to the usual monoidal (i.e. tensor) product ⊗.
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the last equality following from the fact that ⊗ : ∗-Alg × ∗-Alg −→ ∗-Alg is a bifunctor. But(
g1 ⊗ g2

)
◦
(
f1 ⊗ f2

)
= �(g1, g2) ◦ �(f1, f2), (B.169)

which completes the proof.

Theorem B.7.4 CJPC is a symmetric monoidal category with unit I ≡ (R,C) and monoidal functor �.

Proof. We will introduce the appropriate natural transformations and check the required conditions. Let
1 : CJPC −→ CJPC be the usual identity endofunctor on CJPC . Introduce the following functor
morphism

λ : 1 −→ � (B.170)

so that
λ : ob(CJPC ) −→ hom(CJPC ) :: A −→ λA, (B.171)

where the components are
λA : 1(A) 7−→ �(R,A). (B.172)

The components λA are positive and furthermore Jordan preserving since �(R,A) = A for any A ∈ C .
Now, let f ∈ hom

(
A,B

)
. We have ∀A ∈ ob(CJPC ) that �(R,A) = A. Thus the following diagram

commutes

A

f

**
1(A)

1(f)
//

λA

��

1(B)

λB

��

B

A

f

44�(R,A)
�(1R,f)

// �(R,B) B

(B.173)

So λ is a natural transformation. Moreover ∃λ−1 : � → 1 such that λA ◦ λ−1
A = 11(A) and λ−1

A ◦ λA =
1�(R,A). So λ is a natural isomorphism. Reproducing the above mutatis mutandis one also has the following
natural isomorphism

ρ : ob(CJPC ) −→ hom(CJPC ) :: A −→ ρA, (B.174)

where the components are
ρA ::: 1(A) 7−→ �(A,R). (B.175)

Next, introduce the following functor morphism σ : � −→ � with

σ : ob(CJPC ×CJPC ) −→ hom(CJPC ) :: (A,B) −→ σA,B (B.176)

with components
σA,B : �(A,B) 7−→ �(B,A) (B.177)
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σA,B is of course Jordan preserving relative to C , because the swap operation is a positive linear function,
and since M⊗N ∼= N⊗M as complex *-algebras with M,N ∈ ob(∗-Alg). The former observation renders
σ a natural isomorphism. So the following diagrams commute

�(A,B)

σA,B

��

1�(A,B)

%%

�(B,A)
σB,A

// �(A,B)

A

ρA

��

λA

xx

�(R,A) �(A,R)
σA,R
oo

(B.178)

We now come to associativity.
Let �12,3 : CJPC ×CJPC ×CJPC −→ CJPC be the following functor:

∀(A,B,C) ∈ ob(CJPC ×CJPC ×CJPC ) define �12,3(A,B,C) = �
(
� (A,B),C

)
. (B.179)

∀(f, g, h) ∈ hom(CJPC ×CJPC ×CJPC ) define �12,3(f, g, h) = �
(
� (f, g), h

)
. (B.180)

Let �1,23 : CJPC ×CJPC ×CJPC −→ CJPC be the following functor:

∀(A,B,C) ∈ ob(CJPC ×CJPC ×CJPC ) define �1,23(A,B,C) = �
(
A,�(B,C)

)
(B.181)

∀(f, g, h) ∈ hom(CJPC ×CJPC ×CJPC ) define �1,23(f, g, h) = �
(
f,�(g, h)

)
(B.182)

Introduce the following functor morphism α : �12,3 −→ �1,23 so that

α : ob(CJPC ×CJPC ×CJPC ) −→ hom(CJPC ) :: (A,B,C) −→ αA,B,C, (B.183)

where the components are

αA,B,C : �
(
� (A,B),C

)
7−→ �

(
A,�(B,C)

)
. (B.184)

The components are again positive, and furthermore Jordan preserving, in light of the fact that ⊗ is a
monoidal functor, and so it is associative. Now, we are going to prove that α is a natural transformation.
First, let us verify that�12,3 and�1,23 are indeed functors. We will verify the case of�12,3, with verification
of the other case following in an entirely similar manner. First, it is to be observed that ob(CJPC ) is by
definition closed under the canonical tensor product. Moreover, hom(CJPC ) is closed under the canonical
tensor product in light of Lemma B.7.3. Next, in light of Eq. (B.180)

1(A,B,C)

�12,3
// �
(

1�(A,B), 1C

)
1
�
(
�(A,B),C

) 1�12,3(A,B,C) (B.185)

with the first equality following from the proof of Lemma B.7.3 and the second by the definition in
Eq. (B.179). Next, let f = (f1, f2, f3) and g = (g1, g2, g3) be composable in hom(CJPC ×CJPC ×CJPC ).
Then one has from Eq. (B.180)

g ◦ f (g1 ◦ f1, g2 ◦ f2, g3 ◦ f3)
�12,3

// �
(
� (g1 ◦ f1, g2 ◦ f2), g3 ◦ f3

)
(B.186)
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with the first equality coming from the definition of the product category CJPC × CJPC × CJPC , the
second by the definition in Eq. (B.180). Now by Lemma B.7.3 we have �(g1 ◦ f1, g2 ◦ f2) = �(g1, g2) ◦
�(f1, f2) ≡ G ◦F ∈ hom(CJPC ). And again by Lemma B.7.3 we have have �(G ◦F, g3 ◦ f3) = �(G, g3) ◦
�(F, f3). But in light of the definition in Eq. (B.180), and the foregoing observations, we may now continue
the diagram in Eq. (B.186) as follows

�
(
� (g1 ◦ f1, g2 ◦ f2), g3 ◦ f3

)
= �

(
� (g1, g2), g3

)
◦�
(
� (f1, f2), f3

)
= �12,3(g1, g2, g3) ◦�12,3(f1, f2, f3)

(B.187)
So �12,3 really is a functor. So too is �1,23, with the proof following in an entirely similar manner as
noted above. We now come to recall an important result from Chapter 9, namely Proposition 9.1.4: the
canonical tensor product is associative! Thus the following diagram commutes ∀(A1,A2,A3) ∈ ob(CJPC×
CJPC × CJPC ) and ∀(f1, f2, f3) ∈ hom(CJPC × CJPC × CJPC ) with cod(f1) = B1 ∈ ob(CJPC ),
cod(f2) = B2 ∈ ob(CJPC ), and cod(f3) = B3 ∈ ob(CJPC )

�12,3(A1,A2,A3)
�12,3(f1,f2,f3)

//

αA1,A2,A3

��

�12,3(B1,B2,B3)

αB1,B2,B3

��

�1,23(A1,A2,A3)
�1,23(f1,f2,f3)

// �1,23(B1,B2,B3)

(B.188)

One should note in light of the associativity of ⊗ that

�12,3(f1, f2, f3) ≡ �
(
� (f1, f2), f3

)
=
(
f1 ⊗ f2

)
⊗ f3 = f1 ⊗

(
f2 ⊗ f3

)
= �1,23(f1, f2, f3) (B.189)

One should also note in light of the associativity of � on objects that

M(
�
(
�(A1,A2),A3

)) ∼= M(
�
(
A1,�(A2,A3)

)) (B.190)

So α really is a natural transformation; moreover a natural isomorphism with α−1 : �1,23 −→ �1,23 defined
such that

α−1 : ob(CJPC ×CJPC ×CJPC ) −→ hom(CJPC ) :: (A,B,C) −→ α−1
A,B,C, (B.191)

where
α−1
A,B,C ::: �

(
A,�(B,C)

)
7−→ �

(
� (A,B),C

)
. (B.192)

The remaining coherence conditions for an smc hold in light of our proof of Proposition 9.2.7. In partic-
ular, the following diagram commutes ∀A,B,C,D ∈ ob(CJPC ) since �

(
αA,B,C, 1D

)
∈ hom(CJPC ) and
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�(1A, αB,C,D

)
∈ hom(CJPC )

�
(
�
(
A,B

)
,�
(
C,D

))
αA,B,�(C,D)

))

�

(
�
(
�
(
A,B

)
,C
)
,D

)

�
(
αA,B,C,1D

)
��

α�(A,B),C,D

55

�

(
A,�

(
B,�

(
C,D

)))

�

(
�
(
A,�

(
B,C

))
,D

)
αA,�(B,C),D

// �

(
A,�

(
�
(
B,C

)
,D
))

�(1A,αB,C,D

)OO

(B.193)
Furthermore, in light of all foregoing observations the following diagrams commute

�
(
�
(
A,R

)
,B
)

αA,R,B
// �
(
A,�

(
R,B

))
�(1A,λ

−1
B

)

ww

�(A,B)

�(ρA,1B)

hh

(B.194)

�
(
�
(
A,B

)
,C
)

αA,B,C
//

�(σA,B,1C)

��

�
(
A,�

(
B,C

)) σA,�(B,C)
// �
(
�
(
B,C

)
,A
)

αB,C,A

��

�
(
�
(
B,A

)
,C
)

αB,A,C

// �
(
B,�

(
A,C

))
�(1B,σA,C)

// �
(
B,�

(
C,A

))

(B.195)

So CJPC is a symmetric monoidal category; whereby we abuse notation: the seven-tuple(
CJPC ,R,�, α, λ, ρ, σ

)
(B.196)

is the structure to which we refer.
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