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Abstract 

The evaluation of the aerobic response to a new energetic demand provides valuable information 

regarding the functional capabilities of the aerobic system. Abnormal, or impaired aerobic 

responses may occur before the clinical detection of degenerative disease states, demonstrating a 

need for the development of tools for the continuous assessment of aerobic system dynamics in 

real-life scenarios. Current wearable technologies are commonly used to quantify physical activity 

levels; however, the big data streamed from these devices offer the unique possibility to predict 

the oxygen uptake (𝑉̇𝑂2) dynamics during unsupervised activities of daily living (𝐴𝐷𝐿) when 

calorimetry techniques are not accessible. The evaluation of 𝑉̇𝑂2 dynamics has been associated 

with physical fitness and might provide insight into changes in health status. The main objective 

of this thesis was to predict and evaluate the temporal dynamics of the aerobic response during 

realistic activities. To accomplish this, a series of seven studies that began with observations of 

𝑉̇𝑂2  dynamics under standard laboratory conditions, progressed to specified patterns of over-

ground walking, and concluded with unsupervised 𝐴𝐷𝐿  facilitated the development of novel 

techniques for aerobic system analysis during walking and 𝐴𝐷𝐿 based on wearable sensors. The 

variables derived from the wearable sensors were used to create a 𝑉̇𝑂2 predictor based on different 

machine learning approaches. Predicted 𝑉̇𝑂2was individually validated by Bland-Altman plot and 

Pearson’s linear correlation coefficient ( 𝑟 ). The 𝑉̇𝑂2  dynamic analysis included Fourier 

transformations, exponential data modeling, and a novel approach derived from the mean 

normalized gain amplitude (𝑀𝑁𝐺 in %). This new indicator of 𝑉̇𝑂2 dynamics correlated strongly 

with the standard method obtained, in the same subjects, from a step change in work rate on the 

cycle ergometer, and with the classical indicator of fitness, maximal 𝑉̇𝑂2. The results showed the 

strong ability of the proposed algorithms to predict 𝑉̇𝑂2 during 𝐴𝐷𝐿 based on wearable sensors 
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allowing for not only overall assessment of metabolic rate but also for successful prediction of 

𝑉̇𝑂2  dynamics. Thus, the proposed 𝑉̇𝑂2  predictor in conjunction with 𝑀𝑁𝐺  can be used to 

investigate aerobic fitness during 𝐴𝐷𝐿 with direct applicability for the general population. This 

new technology provides a significant advance in ambulatory and continuous assessment of 

aerobic fitness with potential for future applications such as the early detection of deterioration in 

physical health.  
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𝒔𝒎𝑽̇𝑶𝟐 Simulated muscle oxygen uptake 𝑽̇𝑬 Ventilation minute 

𝑻𝑫 Time delay 𝑽̇𝑶𝟐 Oxygen uptake 

𝒕𝑯𝒃 Total hemoglobin 𝑽̇𝑶𝟐
̂ Predicted oxygen uptake 

𝝉𝒐𝒏 On-transient time constant 𝑽̇𝑶𝟐−𝒑𝒆𝒂𝒌 Oxygen uptake peak 

𝑻𝒓𝒆𝒆𝑻 Regression trees 𝑾̇ Work rate 

𝝉𝒔 Time constant of simulated data 𝒘𝒍 Window length 

𝑻𝑺𝑰 Tissue saturation index Σ Module addition feedback 

𝝉 Time constant 𝝁𝑴 Micromole 

𝝉𝟐 Fundamental phase time constant  Wavelength 

%𝑺𝑬 Relative standard error   
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Chapter 1: General Introductions 

It is estimated that by the year 2020, 73% of all deaths will be related to chronic, non-

communicable, degenerative diseases (Guilbert, 2003). Many of these diseases are commonly 

associated with a low physical activity (𝑃𝐴) profile related to modern lifestyle. A correlation 

between physical fitness and mortality has been reported (Sui et al., 2007) and a recent study has 

shown that lower 𝑃𝐴 levels may result in a mortality risk two times higher than elevated body 

mass index alone (Ekelund et al., 2015). Furthermore, many risk factors for non-communicable 

diseases are largely preventable and modifiable, which attracts great public health interest. Factors 

such as elevated cholesterol levels, high blood pressure, and excessive body mass, all linked to 

low 𝑃𝐴 levels (Kim & Jung, 2014; Mora, Lee, Buring, & Ridker, 2006), have been associated with 

80% of heart disease and 40% of all cancer cases (Guilbert, 2003). Hence, efforts to optimize 𝑃𝐴 

level assessment and engagement are relevant for improving health-related clinical outcomes (A. 

E. Bauman, 2004; Sui et al., 2007). However, methods of acquiring the correct measurement of 

𝑃𝐴 level and physical fitness during a realistic scenario remain a challenge (Sallis & Saelens, 

2000) and, therefore, new technologies and data processing approaches are necessary. 

 

1.1 Evaluation of Physical Activity 

Daily 𝑃𝐴 levels can be objectively estimated by calculating body energy expenditure (𝐸𝐸) that is 

proportional to the total body heat generated for a given energetic demand. Additionally, the total 

amount of heat generated is proportional to oxygen uptake (𝑉̇𝑂2) by the active muscle. Based on 

the association between 𝑉̇𝑂2  and 𝐸𝐸 , steady state pulmonary 𝑉̇𝑂2  ( 𝑝𝑉̇𝑂2 ) measurements 

represent an indirect calorimetry method for the assessment of 𝐸𝐸. However, activities of daily 
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living (𝐴𝐷𝐿 ) are generally not steady state in nature increasing the complexity of daily 𝑃𝐴 

assessment.  

During work rate (𝑊̇) transitions, there is a momentary uncoupling between the delayed 

𝑝𝑉̇𝑂2 response and the energy demand (Selinger & Donelan, 2014). However, it is during 𝑃𝐴 

transitions that the physiological systems demonstrate their integrity for the interactions with the 

environment (i.e., period of higher homeostatic perturbation) which ultimately influence the 

individual’s tolerance to 𝐴𝐷𝐿. It was previously reported that the 𝑝𝑉̇𝑂2 data analysis during 𝑃𝐴 

transitions can provide valuable information about aerobic system power (Chilibeck, Paterson, 

Petrella, & Cunningham, 1995; Hagberg, Hickson, Ehsani, & Holloszy, 1980; Hughson, 2009; 

Powers, Dodd, & Beadle, 1985). Therefore, attempts to predict 𝑝𝑉̇𝑂2 during 𝑃𝐴 transitions may 

have more clinical relevance beyond 𝐸𝐸 estimation. 

Methods that individually characterize the energetic demand for a given 𝑃𝐴 pattern may 

offer an effective and objective way to measure 𝑃𝐴 levels during 𝐴𝐷𝐿. However, the complexity 

of the energy requirements during 𝐴𝐷𝐿 presents additional challenge. The lack of 𝑃𝐴 evaluation 

during transitions exclude the possibility to predict 𝑝𝑉̇𝑂2  within realistic 𝐴𝐷𝐿  scenarios. It is 

common to have 𝑃𝐴  short enough to be entirely composed by 𝑝𝑉̇𝑂2  transitions, which 

complicates PA predictions by algorithms calibrated to steady state responses. In general, 

traditional predictive algorithms generated for 𝐸𝐸  estimation are not applicable for 𝑝𝑉̇𝑂2 

estimation during high frequency changes in stimulus as expected during 𝐴𝐷𝐿 (Orendurff, Schoen, 

Bernatz, Segal, & Klute, 2008). Therefore, new algorithms are required to accurately predict 𝑝𝑉̇𝑂2 

during the high frequency transitions commonly experienced in 𝐴𝐷𝐿. 
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1.2 Oxygen uptake During Transition 

At the beginning of an activity, there is a step increase in the energetic demand needed for the 

working skeletal muscle tissue (Barstow, Buchthal, Zanconato, & Cooper, 1994). However, during 

this transition, the aerobic supply of energy is delayed requiring the input of other energy systems 

to meet the demand (Figure 1). Interestingly, the velocity of the aerobic system adaptation during 

transitions seems to have clinical relevance. 

 

 

Figure 1.Energy supply systems 

Illustration modified from Hughson et. al. (Hughson, Tschakovsky, & Houston, 2001). Interaction of the 

energetic supply systems during exercise transition. The adenosine triphosphate (𝐴𝑇𝑃) required from new 

energetic demand is supplied by three major integrated systems: phosphocreatine (𝑃𝐶𝑟 ), anaerobic 

glycolysis and oxidative phosphorylation. Initially, the 𝑃𝐶𝑟 system supplies the most 𝐴𝑇𝑃 demand, but this 

system becomes less prominent as the oxidative phosphorylation (and consequently the pulmonary oxygen 

consumption) increases following an exponential pattern. Between these two systems, the anaerobic 

glycolysis contribution depends on the 𝑂2 provision-utilization balance. 
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Although 𝑝𝑉̇𝑂2 is the resultant of the 𝑂2 exchange from the entire body during sustained 

dynamic exercise, 𝑝𝑉̇𝑂2 is mainly maintained by muscle aerobic metabolism (Barstow, Lamarra, 

& Whipp, 1990). Therefore, the majority of delayed 𝑝𝑉̇𝑂2  response to an increased energy 

demand seems to originate from the muscular 𝑉̇𝑂2  (𝑚𝑉̇𝑂2 ) that also increases following an 

exponential-like function (Grassi et al., 1996; Hughson et al., 1996). The gas exchanges occurring 

at muscle site must be somehow connected with the lungs, where the atmospheric gas exchanges 

occur. Since these two compartments, lung and peripheral tissue, are coupled by the cardiovascular 

system, the 𝑚𝑉̇𝑂2 behaviour is reflected at the pulmonary site (𝑝𝑉̇𝑂2) after a given transit time 

(Casaburi, Weissman, Huntsman, Whipp, & Wasserman, 1979; Grassi et al., 1996). Therefore, 

distortions that might occur in the cardiovascular system will influence the degree of similarities 

between 𝑝𝑉̇𝑂2 and 𝑚𝑉̇𝑂2 dynamics (Hoffmann, Drescher, Benson, Rossiter, & Essfeld, 2013).  

During exercise transition, the moment when the 𝑝𝑉̇𝑂2 seems to reflect 𝑚𝑉̇𝑂2 time course 

(Grassi et al., 1996) is known as the fundamental phase. However, during the first 15-20 seconds 

of dynamic exercise, the 𝑝𝑉̇𝑂2  presents a faster component as a consequence of an abrupt 

elevation of pulmonary blood flow (Whipp & Ward, 1982). Such initial excess of pulmonary 

circulation is caused mainly by the muscle pump at the onset of exercise which increases venous 

return (Tschakovsky, Saunders, Webb, & O’donnell, 2006) and consequently the cardiac output 

(𝑄̇) (Yoshida, Yamamoto, & Udo, 1993). Since blood flow at the alveolar capillaries is elevated, 

more blood with low 𝑂2 content reaches the lungs causing a higher atmospheric 𝑂2 extraction. 

This phenomenon results in higher 𝑝𝑉̇𝑂2 and is referred to as the cardio-dynamic phase (Barstow 

et al., 1990; Whipp, Ward, Lamarra, Davis, & Wasserman, 1982). 

The 𝑝𝑉̇𝑂2  is a product of systemic 𝑂2  delivery estimated by 𝑄̇  and total 𝑂2  extraction 

estimated by total arteriovenous 𝑂2  difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 ). This principle was originally 
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described by Adolf Eugen Fick (1870) as a method for 𝑄̇ estimation and it is still widely used for 

a variety of physiological discussions regarding 𝑝𝑉̇𝑂2 dynamics (Jones & Poole, 2005). Not just 

the steady state 𝑝𝑉̇𝑂2, but the 𝑝𝑉̇𝑂2 dynamics during transitions are also governed by the Fick 

principle (Hughson, 2009). During transitions, if the systemic oxygen delivery (𝑄̇) is slower, the 

𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 will be proportionally faster. This behaviour is evident during exercise performed 

by patients with impaired 𝑂2 delivery (Chiappa et al., 2008). On the other hand, an optimized 

systemic 𝑂2  delivery (i.e., faster 𝑄̇ ) should cause slower 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓  dynamics during 

transitions. 

With an increase in exercise intensity, the new energy demand disturbs the cellular 

homeostasis promoting an elevation in metabolic rate by the activation of 𝐴𝑇𝑃𝑎𝑠𝑒  enzymes whose 

catalytic function increases the concentration of intracellular 𝐴𝐷𝑃 and 𝑃𝑖. These products are the 

main mitochondrial 𝐴𝑇𝑃  turnover rate regulators (Tschakovsky & Hughson, 1999). The 𝑂2 

molecule is coupled with this process since it acts as the final electron acceptor on the electron 

transport chain in the mitochondrial matrix. Therefore, changes in the intracellular 𝑂2 pressure 

will, by definition, alter the metabolic pathway chain (Tschakovsky & Hughson, 1999). However, 

ongoing research describes possible explanations regarding the origin for the 𝑝𝑉̇𝑂2 rate-limiting 

factor(s) (Brittain, Rossiter, Kowalchuk, & Whipp, 2001; Hughson, 2009; Hughson & Morrissey, 

1983; Murias, Spencer, & Paterson, 2014; Robergs, 2014). The discussion surrounding this topic 

often involves the Fick principle, and it is still unclear if delayed 𝑝𝑉̇𝑂2 response is caused by 

limitations on O2 delivery and/or on O2 utilization (Murias et al., 2014; Tschakovsky, 2014). 

The delay in the aerobic 𝐴𝑇𝑃 supply system is particularly important during 𝐴𝐷𝐿 where 

there is great variability in the duration of each 𝐴𝐷𝐿. For a given 𝑝𝑉̇𝑂2 dynamic response and 

activity 𝑂2  cost (i.e., energetic demand), the 𝐴𝐷𝐿  duration will determine the 𝑝𝑉̇𝑂2  value. As 



 

6 
 

depicted in Figure 2, 𝑝𝑉̇𝑂2 during 𝐴𝐷𝐿 is related to the duration of 𝐴𝐷𝐿, 𝑂2 demand, and aerobic 

fitness of the individual. As an example, for a short 𝐴𝐷𝐿 with a high 𝑂2 demand an aerobically fit 

individual may rapidly increase 𝑝𝑉̇𝑂2  to meet the 𝑂2  demand within the course of the 𝐴𝐷𝐿 

whereas an individual with poor aerobic fitness may not meet the 𝑂2 demand during the 𝐴𝐷𝐿 time 

frame. Also of note, short 𝐴𝐷𝐿  with low 𝑂2  cost may not increase the 𝑝𝑉̇𝑂2  enough to be 

differentiated from resting 𝑝𝑉̇𝑂2 oscillation (even for a fast 𝑝𝑉̇𝑂2 dynamic). 
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Figure 2. Pulmonary oxygen uptake as a function of aerobic fitness 

Projection of the pulmonary oxygen uptake (𝑝V̇O2) during exercise transition as a function of changes in 

aerobic fitness (or the perception of effort) and the physical activity duration. At a given physical activity 

duration, a faster 𝑝V̇O2  dynamic (well-fit person, for example) will present a higher 𝑝V̇O2  value in 

comparison with an impaired aerobic fitness person. Individuals with lower aerobic fitness will take more 

time to achieve the same 𝑝V̇O2 of a highly fit individual. After the transition phase, the 𝑝V̇O2 steady state 

may be similar between individuals with different aerobic fitness if the O2 cost is equal. The activity type 

could shift this plane up (A) or down (B) according to a higher or a lower O2 cost, respectively. 
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  The differences in 𝑝𝑉̇𝑂2 dynamics between subjects during 𝐴𝐷𝐿 depend on the interaction 

between the cardiovascular and muscular systems to supply and utilize 𝑂2, respectively (Hughson, 

2009). This interaction modulates how fast (i.e., the temporal dynamics) the 𝑝𝑉̇𝑂2 increases after 

the beginning of 𝐴𝐷𝐿 which suggests association with aerobic fitness (Norris & Petersen, 1998; 

Powers et al., 1985), severity of some diseases (Borghi-Silva et al., 2012; Pessoa et al., 2013; 

Regensteiner et al., 1998) and functional mobility (Alexander, Dengel, Olson, & Krajewski, 2003). 

In order to characterize the aerobic system dynamics between different conditions or populations, 

mathematical methods were developed to extract information regarding the aerobic system 

dynamics based on 𝑝𝑉̇𝑂2 data (Hughson, Winter, Patla, Swanson, & Cuervo, 1990; Whipp et al., 

1982). 

 

1.2.1 Oxygen Uptake Kinetics Analysis 

The assessment of aerobic system temporal dynamics during laboratory-based exercise protocols 

is commonly performed based on time domain 𝑝𝑉̇𝑂2 data analysis (Whipp et al., 1982). Initially, 

when the exponential nature of 𝑝𝑉̇𝑂2 response was just a speculation (Hill & Long, 1925), several 

authors (Henry, 1951; Margaria, Manglli, Cuttica, & Cerretelli, 1965) investigated many different 

equations to describe, in physiological terms, the 𝑝𝑉̇𝑂2  response during exercise transitions. 

Currently, there is a consensus on the exponential nature of the 𝑝𝑉̇𝑂2 response to changes in 

exercise intensity (Hughson, 2009) and the fundamental fitting equation for moderate exercise has 

been established as: 
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Equation 1 𝑝𝑉̇𝑂2(𝑡) = 𝑎0 + 𝑎1 (1 − 𝑒
−(
𝑡−𝑇𝐷1

𝜏1⁄ )
) + 𝑎2 (1 − 𝑒

−(
𝑡−𝑇𝐷2

𝜏2⁄ )
); 

where “𝑡” is time, “𝑎0” is the baseline during resting, “𝑎1” and “𝑎2” are the steady state amplitudes 

for each phase (cardio-dynamic and fundamental, respectively), “𝜏1” and “𝜏2” are time constants 

(related to system temporal dynamics) for each phase, and “𝑇𝐷1” and “𝑇𝐷2” are time delays for 

each phase. To illustrate the 𝑝𝑉̇𝑂2 dynamic and the time-domain data modeling parameters during 

moderate exercise transition, a computer simulation was performed with results depicted in Figure 

3. This response was generated with a random noise of 3% and fitted by the same equation 1. The 

physiological meaning and how these parameters can be influenced are described in Table 1. 
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Figure 3. Simulated pulmonary oxygen uptake 

Simulation of pulmonary oxygen uptake (𝑝𝑉̇𝑂2) dynamic during moderate exercise transition. The cardio-

dynamic phase (first response component) is originated from the elevation of pulmonary blood flow due to 

muscle pump activation at the onset of exercise. After ~20 s, the 𝑝𝑉̇𝑂2 dynamic apparently reflects the 

muscle oxygen uptake. A bi-exponential model was used to simulate these data with 3% of random error. 

The same equation used to generate the data was used to fit the data (─). See text for further details about 

the equation and fitting parameters.  
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Table 1. Description of equation parameters used to fit the pulmonary oxygen uptake (𝑝𝑉̇𝑂2) data 

in time domain during exercise transitions. 

Parameter Meaning Origin 

Physiological 

importance level 

Could be changed by 

𝒂𝟎 

Baseline metabolic rate 

amplitude 

Resting 

metabolic rate 

Medium 

Warm-up intensity and 

resting metabolic rate 

𝒂𝟏 

Cardio-dynamic phase steady 

state amplitude 

Muscle pump Medium 

Muscle recruitment 

and warm-up 

𝒂𝟐 

Fundamental phase steady state 

amplitude 

𝑂2 cost High 

Work rate intensity 

and muscle fiber types 

𝝉𝟏 

Temporal dynamics of cardio-

dynamic phase adaptation 

Muscle and 

cardiovascular 

Low N/A 

𝝉𝟐 

Temporal dynamics of 

fundamental phase adaptation 

related to muscle metabolism 

Muscle and 

cardiovascular 

High 

Aerobic fitness or 

disease 

𝑻𝑫𝟏 

Short delay of the cardio-

dynamic phase onset due 

muscle pump 

Muscle pump Low 

Distance between 

active muscle and 

lungs 

𝑻𝑫𝟐 

Delay of the fundamental phase 

onset due to muscle-to-lungs 

low O2 content time delay 

Muscle and 

cardiovascular 

Medium 

Distance between 

active muscle and 

lungs 

 

The utilization of multi-parameter equations for 𝑝𝑉̇𝑂2 time domain analysis can be used 

to characterize the aerobic system dynamics (Whipp & Ward, 1990). However, equations with too 

many parameters have issues related to high degrees of freedom and lack of physiological 

meanings (Table 1). The best data fitting approach is a combination of balanced fitting quality and 
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meaningful physiological model (Hughson, 2009; Hughson & Morrissey, 1983; Hughson, Sherrill, 

& Swanson, 1988; Swanson, 1990). Unfortunately, the usual duration of 𝐴𝐷𝐿 is not sufficient to 

allow the aerobic system analysis by time domain modelling. Therefore, 𝑝𝑉̇𝑂2 analysis in the 

frequency domain seems to be more capable of assessing aerobic system dynamics with 𝐴𝐷𝐿. 

Characterization of 𝑝𝑉̇𝑂2  dynamics in the frequency domain uses fast Fourier 

transformations (𝐹𝐹𝑇) to convert the 𝑝𝑉̇𝑂2 time series response into frequency space. The 𝐹𝐹𝑇 

has a comprehensive applicability in a wide spectrum of study disciplines (Kerlin, 1974). In 

exercise physiology, 𝐹𝐹𝑇  is commonly used to compute amplitudes of the exercise stimulus 

(input) along with the physiological responses (outputs) for a selected range of frequencies or 

harmonics (ℎ) (Casaburi, Whipp, Wasserman, Beaver, & Koyal, 1977; Eßfeld, Hoffmann, & 

Stegemann, 1987; Hughson et al., 1990). To obtain the total amplitude (𝐴𝑚𝑝) for each ℎ, 𝐹𝐹𝑇 

estimates the sinusoidal function by calculating sine and cosine curves per the fundamental 

equation: 

 

Equation 2  𝑝𝑉̇𝑂2(𝑡) = 𝑎0 + 2 ∗ ∑ (𝐴ℎ ∗ 𝑐𝑜𝑠(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡) + 𝐵ℎ ∗ 𝑠𝑖𝑛(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡))
ℎ
ℎ=1 ; 

 

where “𝑎0”is the 𝑝𝑉̇𝑂2 baseline value, “ℎ” is the harmonic number, defined as the integer numbers 

that multiply “𝑓1”, the fundamental frequency calculated as the inverse of the protocol length. As 

depicted in Figure 4, the 𝑓1 can be defined as the lowest frequency evaluated and the subsequent 

frequencies were defined by the product between 𝑓1 and the harmonics (ℎ). Harmonics are integer 

numbers that define in how many complete sinusoidal cycles the time series signal was 

decomposed. The “𝐴ℎ” and “𝐵ℎ” are the cosine and sine amplitudes, respectively. From “𝐴ℎ” and 

“𝐵ℎ”, 𝐴𝑚𝑝 values can be obtained for each ℎ by: 
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Equation 3 𝐴𝑚𝑝ℎ = √𝐴ℎ
2 + 𝐵ℎ

2. 
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Figure 4. Fast Fourier transformation 

A: Illustration of how pulmonary oxygen uptake (𝑝𝑉̇𝑂2) response in time-domain (A) can be transformed 

into the frequency-domain (B) for an exercise protocol involving pseudorandom variations in work rate 

(see Figure 17 for pattern of work rate variation). Fourier transformations (please see text) decomposed the 

𝑝𝑉̇𝑂2 time series response (A) into amplitudes of sinusoidal functions at specific frequencies. In this 

example, only the first two harmonics are shown for clarity in A; further analysis incorporated up to 4 

harmonics to yield an amplitude spectrum as shown in Figure 17.  

 

As opposed to constant workload protocols used for time domain analysis, the 𝑝𝑉̇𝑂2 

dynamics characterized in frequency domain requires a more dynamic exercise protocol. 

Pseudorandom sequence protocols offer optimized stimulus to study the physiological responses 

in frequency domain for a wide frequency range simultaneously (Hoffmann, Eßfeld, Wunderlich, 

& Stegemann, 1992). 

 The aerobic system dynamics evaluated by the 𝑝𝑉̇𝑂2  responses in frequency-domain 

(amplitudes in Figure 4B) can be influenced by differences in the relationship between metabolic 

demand and 𝑝𝑉̇𝑂2 steady-state (investigated in time-domain by 𝑎 in equation 1) or by variations 

in the speed of 𝑝𝑉̇𝑂2 adaptation during transition (investigated in time-domain by 𝜏 in equation 

1). Since the speed of the 𝑝𝑉̇𝑂2 dynamics was previously associated with aerobic fitness (Powers 



 

12 
 

et al., 1985), further methods need to isolate the speed component of the 𝑝𝑉̇𝑂2  response in 

frequency domain from the inter-subjects’ 𝑝𝑉̇𝑂2 steady-state variability. Chapter 2 describes the 

development of a novel method to extract the speed of the aerobic response based on frequency-

domain responses as a new parameter designated mean normalized gain (𝑀𝑁𝐺). 

 

1.3 Pseudorandom Sequence Protocols 

For a complete random protocol, the occurrence of low energy stimulus may increase extremely 

fast during higher frequencies; therefore, the observed 𝑝𝑉̇𝑂2 response cannot be differentiated 

from non-exercise related 𝑝𝑉̇𝑂2 oscillation caused mainly by interbreath noise (Lamarra, Whipp, 

Ward, & Wasserman, 1987). Therefore, the optimized protocols for frequency domain analysis are 

composed of pseudorandom sequence protocols that switch the exercise intensity between two 

levels, also known as pseudorandom binary sequence (PRBS), or between three levels, known as 

pseudorandom ternary sequence (PRTS).  

The PRBS and PRTS protocols are generated by n-stage digital shift register as previously 

reported (Hughson et al., 1990; Peterka, 2002). The PRBS protocol will be further explained in 

Chapter 2, 3 and 5 and the PRTS protocol will be further described in Chapter 5. These protocols 

are composed by 𝑛 units of different work rate levels, each of 30s of duration. For PRBS and 

PRTS, an extra sequence was added at the onset of the protocol as warm-up 

Examples of a PRBS and PRTS are depicted in Figure 5 for both the time and frequency 

domain. In general, these protocols are useful for studying 𝑝𝑉̇𝑂2 dynamics at multiple frequencies 

of stimulus simultaneously (Hoffmann et al., 1992). In addition, these protocols also vary the 

stimulus applied to aerobic system stimulus following a pattern that might better reflect what 
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occurs during 𝐴𝐷𝐿. Figure 6 illustrates how the parameters of the equation 1 can hypothetically 

influence the 𝑝𝑉̇𝑂2 dynamics during the PRBS protocol. 

 

 

Figure 5. Pseudorandom binary and ternary sequence protocols 

Example of 30s unit pseudorandom binary sequence (PRBS, A) and pseudorandom ternary sequence 

(PRTS, B) protocols in time domain. Fourier transformations were used to compute the stimulus energy 

amplitudes (C) for these protocols for frequencies from 0 to 0.1 Hz. In frequency domain, both protocols 

present similar behaviour throughout the frequencies, however, the PRTS decreases the energy close to 

zero during even harmonics (Kerlin, 1974). The frequency correspondent to the first harmonic (fundamental 

frequency or 𝑓1) is calculated from dividing 1 by the protocol duration. 
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Figure 6. Simulations of the pulmonary oxygen uptake 

Simulations of the pulmonary oxygen uptake (𝑉̇𝑂2) dynamics during a pseudorandom binary sequence 

protocol. A: different adaptation speeds (varying time constant 𝜏2 values) for a given constant 𝑂2 cost of 

800 ml·min-1 (constant 𝑎2). Notice that faster kinetic responses are observed at lower 𝜏 values. B: constant 

adaptation speed of 25 s (constant 𝜏2 value) for different 𝑂2 cost (varying 𝑎2 values). See text for details 

about the parameters. 

 

The assessment of the rate at which 𝑉̇𝑂2 adapts to randomly varying exercise intensities, 

as in PRBS and PRTS protocols, might be indicative of aerobic fitness (Eßfeld et al., 1987).  

Thus, the 𝑝𝑉̇𝑂2  prediction during random exercise stimulus with an adequate time 

resolution may provide an opportunity to evaluate the aerobic system in addition to 𝐸𝐸. However, 

the correct 𝑝𝑉̇𝑂2 prediction during randomly varying realistic stimulus is a challenge (Sallis & 

Saelens, 2000) and new data analysis and wearable technologies are necessary. 

 

1.4 Wearable Sensors and Machine Learning 

Estimating energy expenditure from measurement of physical activity levels during realistic 

scenarios remains a challenge (Sallis & Saelens, 2000) requiring introduction of new wearable 

technologies and new approaches to data processing. The associations between 𝑝𝑉̇𝑂2, heart rate 



 

15 
 

(𝐻𝑅), and data from wearable sensors such as accelerometers during different 𝑃𝐴 have a solid 

theoretical foundation (MacKey et al., 2011; Schmitz et al., 2005). However, studying these 

associations in practice is still very limited due to the complexity in varying levels of 𝐴𝐷𝐿 as well 

as the health status of participants (Chen, Acra, Donahue, Sun, & Buchowski, 2004; Jacobi et al., 

2007; Schrack et al., 2014; Tan, Batterham, & Tapsell, 2011). For example, there was a high linear 

correlation between the activity counts calculated from the summation of all acceleration signals 

during walking activities and the 𝑝𝑉̇𝑂2 steady-state response (Whitcher & Papadopoulos, 2014). 

However, this same linear model could not be applied for 𝑝𝑉̇𝑂2  data prediction during the 

beginning of walking due to the uncoupling between the energetic demand and 𝑝𝑉̇𝑂2  during 

transition (Selinger & Donelan, 2014). 

In controlled conditions, some anthropometric characteristics and accelerometer output 

signals are applied to estimate 𝐸𝐸 based on 𝑝𝑉̇𝑂2 measurements (Puyau, Adolph, Vohra, Zakeri, 

& Butte, 2004). However, this approach may not always work for 𝑝𝑉̇𝑂2  estimation in 

unsupervised scenarios. To contextualize, consider two individuals with the same weight, height 

and age who perform a light self-paced walking exercise (a common 𝐴𝐷𝐿). The first individual is 

healthy, whereas the second is a cigarette smoker with very mild, but un-diagnosed chronic 

pulmonary obstruction. The 𝑝𝑉̇𝑂2 steady state value and consequently the 𝐸𝐸 for this specific 𝑃𝐴 

is likely similar between these two individuals, because both individuals have the same weight, 

height, age and movement patterns (Nery et al., 1982). However, the way in which the 

cardiorespiratory system responds to the walking stimulus is vastly different between these 

individuals due to differences in aerobic fitness (Borghi-Silva et al., 2012). 

For a precise prediction of 𝑝𝑉̇𝑂2 during transitions and consequently 𝐴𝐷𝐿, it is necessary 

to have at least one variable that is physiologically linked to the 𝑝𝑉̇𝑂2 response. Often times, 𝐻𝑅 
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is the variable of choice (Altini, Penders, & Amft, 2016; Keytel et al., 2005). In addition to 𝐻𝑅, 

the ideal way to estimate 𝑝𝑉̇𝑂2 in a realistic scenario is to employ devices that do not cause 

discomfort to the subject, and at the same time, record all body movements and physiological 

variables with optimal sample rate and consistency. To estimate 𝐸𝐸, accelerometers are one of the 

most common devices used due to their low cost, small size, energy efficiency, and good data 

quality and resolution (Bouten, Koekkoek, Verduin, Kodde, & Janssen, 1997). In addition, 

accelerometers are now present in smartphones, wearable devices and may become implantable in 

the near future (Theodor et al., 2014). 

Accelerometers are compact and they can capture almost all expected 𝐴𝐷𝐿 movements 

(Bouten et al., 1997). In addition, accelerometers can provide valuable information about the 

energy required from the aerobic system (i.e., 𝑂2 cost) that is useful for 𝑝𝑉̇𝑂2 predictions (Altini 

et al., 2016; Puyau et al., 2004). However, accelerometers do not provide information about 𝑝𝑉̇𝑂2 

during transitions since they are only related to the external work applied to the aerobic response. 

Recently, more wearable sensors were combined into integrated system to obtain variables with 

more physiological significance. The Hexoskin® smart vest (Montréal, Canada) integrates the 

monitoring of heart electric activity, respiration and hip acceleration. This device was previously 

validated (Villar, Beltrame, & Hughson, 2015) for the acquisition of 𝐻𝑅, ventilation minute (𝑉̇𝐸), 

breathing frequency (𝐵𝐹) and total hip acceleration (𝐴𝐶𝐶𝐻𝐼𝑃). The data are recorded in a local data 

logger or smartphone that can be remotely accessed by the user, physician or trainer, which 

provides a promising way to deal with sensor fusion data during unsupervised 𝐴𝐷𝐿. The data 

collected by Hexoskin® sensors (Figure 7) integrates 𝐴𝐶𝐶𝐻𝐼𝑃 data with physiological variables 

such as 𝐻𝑅, 𝑉̇𝐸 and 𝐵𝐹 with the potential to be incorporated into predictors of 𝑝𝑉̇𝑂2 data during 

𝐴𝐷𝐿.  
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Figure 7. Illustration of the Hexoskin® device 

Top images, the locations of the sensors are shown in blue. In the bottom, cellphone application provides 

real time data visualization. User can access raw or processed physiological data. Figure adapted from 

www.hexoskin.com. 

 

Based on data from wearable sensors, the 𝐸𝐸 estimated during 𝐴𝐷𝐿 is usually obtained 

from measuring movement patterns, number of steps and/or body acceleration. However, more 

important than quantifying the mechanical input to the physiological systems is understanding how 

the aerobic system is handling this stimulus during transitions. This form of analysis may be more 

valuable when characterizing the actual impact of 𝑃𝐴 levels on health status. 

The 𝑝𝑉̇𝑂2 and 𝐸𝐸 prediction by wearable sensors is generally based on relatively small 

quantities of simulated laboratory activities (Ali, Messina, & Bisiani, 2013; Altini et al., 2016; 

Pober, Staudenmayer, Raphael, & Freedson, 2006), which decreases the applicability of the 

findings in realistic scenarios. Studies that have used multiple linear regressions introduced an 

elevated number of models specific for each 𝑃𝐴  type, thereby complicating the comparison 
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between studies and the definition of a ultimate prediction algorithm (Hendelman, Miller, Baggett, 

Debold, & Freedson, 2000; Swartz et al., 2000). Additionally, linear methods ignore the intrinsic 

complexity of the input-output relationships, possibly explaining the growth of the use of machine 

learning (𝑀𝐿) approaches that can generate more complex algorithms based on practical examples.  

In parallel with the advances in wearable device hardware making them smaller, more 

accessible, and more accurate, 𝑀𝐿 techniques are becoming more frequently used to handle the 

elevated amount of data generated by these sensors. Some classical data analysis approaches for 

pattern discovery have become inadequate due to the incredible amount of data collected and 

shared by new devices with higher sampling rates. At the same time of hardware improvements, 

the increased data processing capacity of today’s personal computers allow more complex 

calculations to be performed in a shorter period of time, thereby improving pattern recognition in 

big datasets through 𝑀𝐿 algorithms that are widely accessible(Witten & Frank, 2005). 

In order to mine a huge amount of data, 𝑀𝐿 algorithms provide the technical basis to better 

identify non-trivial patterns due to their ability to learn even with relatively small numbers of 

examples (Witten & Frank, 2005). The learning process of 𝑀𝐿 is often based on labelled training 

data that explicitly maps the relationship between known inputs and outputs (supervised approach). 

The algorithm builds a prediction process by searching for general structures in the input-output 

relationship in the training data. Once the machine is “smart” enough, the output can be removed 

and then predicted by the input. The use of 𝑀𝐿 to estimate 𝑝𝑉̇𝑂2 is a groundbreaking approach to 

build a 𝑝𝑉̇𝑂2 predictor that can compose integrated wearable systems in the future. 
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1.5 General Objective, Hypothesis, and Impact 

The main objective of this thesis was to develop novel tools for data prediction and analysis for 

the evaluation of the aerobic response during 𝐴𝐷𝐿 by wearable sensors. We hypothesized that it is 

possible to extract information regarding the aerobic system dynamics based on wearable sensors 

during unsupervised activities of daily living. To accomplish this, seven studies were conducted. 

Initially, studies were developed based on controlled laboratory conditions on a cycle ergometer 

followed by exercise protocols performed using a treadmill, over-ground walking, and simulated 

activities of daily living. Finally, the last study evaluated data during unsupervised activities of 

daily living. The results presented in this thesis demonstrate that it is possible to obtain information 

with more relevance regarding the aerobic system dynamics during activities of daily living. 

As discussed before and further tested in this thesis, the aerobic system response is a 

consequence of stimulus patterns and different physiological events related to the 𝑂2 delivery and 

utilization. In addition, the aerobic system dynamics can be characterized by the examination of 

𝑝𝑉̇𝑂2 data. Therefore, methods that can predict 𝑝𝑉̇𝑂2 data can be used to study the aerobic system 

dynamics without the need to measure 𝑝𝑉̇𝑂2. From a practical point of view, the 𝑝𝑉̇𝑂2 prediction 

by wearable sensors has even more applicability due to the possibility to obtain 𝑝𝑉̇𝑂2 data beyond 

the laboratory confinements. The impacts of this thesis are: 

1. Develop cutting edge technologies to assess data streamed from wearable sensors for the 

prediction of health-related outcomes. 

2. Understanding of aerobic system dynamics during stimulus similar to activities of daily 

living.  

3. Development of methods for a daily basis characterization of fitness status. 
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4. Precise prediction of oxygen uptake and energy expenditure through wearable sensors 

during activities of daily living. 

5. Create a technology for the ambulatory identification of periods that might precede 

unhealthy state. 

 

1.6 Chapter Overview 

The studies were based on multi-level investigations (Seals, 2013), progressing from controlled 

laboratory investigation to real life assessments. Chapter 2, “Linear and Nonlinear 

Contributions to Oxygen Transport and Utilization During Moderate Random Exercise in 

Humans”, investigates the linearity of the aerobic system and how the 𝑂2 delivery-utilization 

balance behaves during random exercise in humans. In addition, this Chapter introduces some of 

the methodological basis for further studies and describes the algorithm used to generate computer 

simulations. The study of aerobic system dynamics during controlled environments was essential 

to test some physiological assumptions used for the subsequent studies. Based on these concepts, 

Chapter 3, “Mean Normalized Gain: A New Method for the Assessment of the Aerobic System 

Temporal Dynamics During Randomly Varying Exercise in Humans”, proposes and tests a 

new method able to extract the temporal dynamics of the aerobic system during pseudorandom 

protocols.  

Cycling experiments, used in Chapters 2 and 3, allow precise control over the aerobic 

system stimulus beneficial for testing precise physiological hypotheses regarding 𝑝𝑉̇𝑂2 dynamics. 

However, cycling is not a common 𝐴𝐷𝐿 and it is not widely used between different populations 

and cultures. Walking is a unique physical activity that is performed by the general population 

almost in all ages and conditions. In addition to its high prevalence, walking is considered an 𝐴𝐷𝐿 
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that requires a higher 𝑂2 cost (and therefore, greatest increase in 𝑝𝑉̇𝑂2) due to the large degree of 

muscle activation that enables the differentiation of the 𝑝𝑉̇𝑂2 response from the resting metabolic 

rate. Therefore, 𝑝𝑉̇𝑂2 dynamics were studied during treadmill walking activities in Chapter 4, 

“Estimating Oxygen Uptake and Energy Expenditure During Treadmill Walking by Neural 

Network Analysis of Easy-to-obtain Inputs”. This chapter introduces the use of ML techniques 

to estimate 𝑝𝑉̇𝑂2 during treadmill walking activities. 

Although treadmill walking is a sufficient method to study and predict the aerobic system 

dynamics during walking at a precisely controlled speed and grade, it is not a completely realistic 

scenario. Chapter 5, “Aerobic System Analysis Based on Oxygen Uptake and Hip Acceleration 

During Random Over-ground Walking Activities” outlines the development of a new over-

ground walking protocol that could be used to evaluate the aerobic system dynamics during 

pseudorandom stimulus that mimics what occurs during 𝐴𝐷𝐿. This protocol is then applied in 

Chapter 6, “Prediction of Oxygen Uptake Dynamics by Machine Learning Analysis of 

Wearable Sensors During Activities of Daily Living”, where 𝑀𝐿 methods are used to predict 

the 𝑝𝑉̇𝑂2  during the over-ground walking and during simulated 𝐴𝐷𝐿 . Finally, Chapter 7, 

“Longitudinal Aerobic System Analysis During Unsupervised Activities of Daily Living 

Based on Wearable Sensors” uses the algorithm generated in Chapter 6 to investigate the 

longitudinal 𝑝𝑉̇𝑂2 response during four days of unsupervised 𝐴𝐷𝐿. 

In addition, we found that the 𝑝𝑉̇𝑂2 dynamics during treadmill walking differed between 

women and men. Therefore, in Appendix A, the study titled “Sex Differences in the Oxygen 

Delivery, Extraction and Uptake During Moderate Walking Exercise Transition” will 

address the sex influences on the integrated aerobic responses (peripheral vs. central) during 
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walking activity on treadmill. This study will focus on time domain kinetics analysis of peripheral 

and central physiological variables and how they seemed to be different between women and men. 

In addition to study details within each Chapter, further information related to the 

population studied, physical examination and the questionnaires applied are in Appendix B.  
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Chapter 2: Linear and Nonlinear Contributions to Oxygen Transport and 

Utilization During Moderate Random Exercise in Humans 

This chapter was submitted as: 

Beltrame T., Hughson R. L. Linear and nonlinear contributions to oxygen transport and utilization 

during moderate random exercise in humans. Submitted to Exp Physiol on October 28, 2016 .  
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2.1 Overview 

The assumption of the aerobic system linearity implies that the pulmonary oxygen uptake (𝑝𝑉̇𝑂2) 

dynamic during exercise transitions present a first-order characteristic. The main objective of this 

study was test the linearity of the oxygen delivery-utilization balance during random moderate 

exercise. In addition, the aerobic system linearity was tested by comparing experimentally-

obtained 𝑝𝑉̇𝑂2 response to in silico oxygen uptake data (𝑠𝑚𝑉̇𝑂2). The cardiac output (𝑄̇) and 

deoxygenated hemoglobin (𝐻𝐻𝑏 ) were measured to infer about the central and local 𝑂2 

availability, respectively. Thirteen healthy men enrolled in this study. Participants performed two 

consecutive pseudorandom binary sequence cycling exercises followed by a incremental protocol. 

The system input and the outputs 𝑝𝑉̇𝑂2, 𝑠𝑚𝑉̇𝑂2, 𝐻𝐻𝑏 and 𝑄̇ were submitted to frequency domain 

analysis that decomposed the signals into target frequency gains of each variable. The linearity of 

the responses was tested by computing the ability of the normalized system gain at a specific 

frequency to predict the normalized system gain at another frequency. The predictability levels 

were assessed by coefficient of determination. In a first-order system, a participant who presents 

faster dynamics at a specific frequency should also present faster dynamics at any other frequency. 

All experimentally-obtained variables (𝑝𝑉̇𝑂2, 𝐻𝐻𝑏 and 𝑄̇) presented a certainly degree of non-

linearity. In conclusion, the oxygen delivery-utilization balance behaved as a nonlinear 

phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is 

governed by a complex multiple-order interaction between the oxygen delivery and utilization 

systems.  
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2.2 New Findings 

What is the central question of this study? 

The pulmonary oxygen uptake (𝑝𝑉̇𝑂2) data used to study the muscle aerobic system dynamics 

during moderate exercise transitions is classically described as a mono-exponential function 

controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated 

complexity complicates to obtain relevant information regarding aerobic system dynamics based 

on 𝑝𝑉̇𝑂2 data during complex exercise stimulus. 

 

What is the main finding and its importance? 

The elevated complexity of pulmonary oxygen uptake (𝑝𝑉̇𝑂2) dynamics is a consequence of a 

multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings 

challenge the use of first-order function to study the influences of the oxygen delivery-utilization 

balance over the 𝑝𝑉̇𝑂2 dynamics.  

 

2.3 Introduction 

The linear first-order relationship between steady-state pulmonary oxygen uptake (𝑝𝑉̇𝑂2) and 

work rate (𝑊̇) amplitude during moderate exercise is one of the constants of exercise physiology 

that enable the system output (i.e., steady-state 𝑝𝑉̇𝑂2) to be predicted from the input (i.e., 𝑊̇) 

yielding an estimate of energy expenditure (Åstrand, 2003; Pescatello, 2014). The linear 

characteristic follows the superposition law such that any further input increment should lead to a 

proportional first-order output response (linear static gain) (Hughson et al., 1990; Whipp & 

Wasserman, 1972). In addition, in a purely linear system the rate at which the 𝑝𝑉̇𝑂2 increases 

during moderate exercise transitions (usually characterized by the time constant “ 𝜏 ”) is 



 

26 
 

independent of the 𝑊̇ amplitude, denoted as linear dynamic gain (Hansen, Casaburi, Cooper, & 

Wasserman, 1988; Hughson, 2009; Ozyener, Rossiter, Ward, & Whipp, 2001). However, previous 

studies (Brittain et al., 2001; Faisal, Beavers, & Hughson, 2010; Hughson & Morrissey, 1982; 

Wilcox, Broxterman, & Barstow, 2016) have challenged the dynamic gain linearity, even in the 

moderate intensity domain, by varying the baseline 𝑊̇ that precedes exercise transitions. Previous 

studies (Hughson & Morrissey, 1983; Keir, Robertson, Benson, Rossiter, & Kowalchuk, 2016; 

Wilcox et al., 2016) have shown that the apparent first-order 𝑝𝑉̇𝑂2 dynamics to a 𝑊̇ increase can 

be the resultant of the complex interaction between the static and dynamic aerobic system gains 

that are directly influenced by the 𝑂2 delivery-utilization balance 

The analysis of 𝑝𝑉̇𝑂2 kinetics in the frequency domain using a pseudo random binary 

sequence (PRBS) protocol (Eßfeld, Hoffmann, & Stegemann, 1991; Hoffmann et al., 2013; 

Hughson et al., 1988, 1990) might provide an alternative way to assess 𝑝𝑉̇𝑂2 dynamic distortions. 

The PRBS protocol switches the system input between two moderate levels following a very 

specific order and, as opposed to constant 𝑊̇ protocols (Bowen et al., 2011; Brittain et al., 2001; 

DiMenna, Bailey, Vanhatalo, Chidnok, & Jones, 2010), offers a unique possibility to 

simultaneously test 𝑝𝑉̇𝑂2 dynamics distortions across a wide range of stimulus frequencies and 

metabolic rates (Hughson, 1990). For the sake of comparison between time- and frequency-domain 

responses, the study of the 𝑝𝑉̇𝑂2  gain at a specific 𝑊̇  frequency can be interpreted as the 

investigation of the aerobic system kinetics at a specific portion of the transient response in the 

time domain (Hoffmann, Eßfeld, Leyk, Wunderlich, & Stegemann, 1994). Higher frequencies 

refer to the beginning of the transient phase response whereas lower frequencies refer to the 

responses closer to steady state (Hoffmann et al., 1994). A linear aerobic system with constant 

static and dynamic system gains should follow a single-order function where the system output at 
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any 𝑊̇ frequency is fully predictable by the system analysis at any other frequency (Hoffmann et 

al., 1994).  

To further explore the aerobic system linearity and how the 𝑂2 delivery-utilization balance 

behaves in random exercise, the present study aimed to compare experimental and in silico 𝑉̇𝑂2 

data obtained during the PRBS protocol along with cardiac output ( 𝑄̇ ) and deoxygenated 

hemoglobin (𝐻𝐻𝑏) measures as indications of central and local 𝑂2 availability respectively. It was 

hypothesized that the apparent high complexity of the 𝑝𝑉̇𝑂2 rate of increase to a 𝑊̇ stimulus is a 

consequence of the complex interaction between the 𝑂2  delivery and utilization systems. In 

addition, a new method, based on the mean normalized gain amplitude (𝑀𝑁𝐺) in the frequency 

domain, will be introduced for the characterization of the 𝑝𝑉̇𝑂2 response and its contributing 

components during random exercise stimulus. 

 

2.4 Methods  

2.4.1 Study Design 

Thirteen active, not athletically trained, healthy male adults (27 ± 7 years old, 174 ± 7 cm and 78 

± 14 kg) enrolled in this study. The Office of Research Ethics at the University of Waterloo 

reviewed and approved the research procedures that were consistent with the Declaration of 

Helsinki. Written, informed consent was obtained from all participants. The PRBS exercise 

protocol was repeated two times in a row followed by a symptom-limited incremental protocol (25 

watts·min-1 ramp) for the determination of the gas exchange threshold (Beaver, Wasserman, & 

Whipp, 1986) and peak 𝑝𝑉̇𝑂2. All participants had previous experience with cycle ergometer 

exercise and performed an additional familiarization protocol (1-minute at 25 and 100 watts) 

before each test. The exercise testing was performed on an electrically braked cycle ergometer 
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controlled by an external, pre-programmed module (Lode Excalibur Sport, Lode B.V., Groningen, 

Netherlands) that reaches the desired 𝑊̇ to be achieved in less than 1.5 s.  

A digital shift register with an adder module feedback (Figure 8A) was used to generate 

the PRBS protocol (Figure 8B) (Bennett, Reischl, Grodins, Yamashiro, & Fordyce, 1981; Hughson 

et al., 1990; Kerlin, 1974). Each of the two consecutive PRBS protocols comprised 45 units (25 or 

100 watts) of 30 s duration (15 min total). The target cadence was controlled by visual feedback 

and maintained between 60-65 rpm. In addition, 200s of extra PRBS segment was added at the 

beginning of the protocol (denoted as “warm-up” in Figure 8B) in order to minimize the influences 

of the rest-to-exercise transition (Eßfeld et al., 1987; Hughson et al., 1990). The selected higher 

𝑊̇ (100 watts) provided a reasonable stimulus that excludes, in this population, the influences of 

the slow component on the overall 𝑝𝑉̇𝑂2 gain but still delivers sufficient input signal energy to 

identify 𝑝𝑉̇𝑂2 responses for a good range of frequencies (Eßfeld et al., 1987; Hoffmann et al., 

2013).
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Figure 8. Pseudorandom binary sequence protocol generation. 

A: structure of the 4-stage shift register used to generate the pseudorandom binary sequence protocol. The 

module addition feedback (Σ) sum the first and fourth stage values and test the “if” statement. This new bit 

is inserted into the first stage and the entire system shifts to the right. Each unit value is repeated “∆𝑡” times 

to create the PRBS protocol in the time domain (B). An extra of 200s of PRBS segment was added at the 

beginning of the protocol as a warm-up to minimize the rest-to-exercise influences. 

 

2.4.2 Data Acquisition 

The 𝑝𝑉̇𝑂2 and the carbon dioxide output were measured breath-by-breath by a portable metabolic 

system (𝐾4𝑏2, COSMED, Italy). Before each visit, the gas concentrations and air volume/flow 

were calibrated following manufacturer’s specifications. 

A multi-distance continuous-wave near infrared spectroscopy device (PortaMon, Artinis, 

The Netherlands) was used to evaluate the dynamic changes in vastus lateralis deoxy-hemoglobin 

concentration ([𝐻𝐻𝑏] in 𝜇𝑀) (Boushel et al., 2001). The light emitting probe was composed of 

three light-emitting diodes operating at two wavelengths (1=845 and 2=759 nm) resulting in six 

different light sources with different light in/out distances (≈ 35 mm). All cautions regarding the 

differential path length factor (set at 5.8) were taken based on previous literature (Kowalchuk, 

Rossiter, Ward, & Whipp, 2002). The probe was placed in the target area and the device was 

warmed-up for at least 30 min before the data collection. In order to avoid any motion artifact and 
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ambient light influences, the probe was fixed by tape and then a dark cloth was gently wrapped 

around the thigh. The sample rate was 10 Hz. To ensure that the near infrared light was penetrating 

into the muscle layer, a caliper was used to measure the skinfold thickness under the probe. The 

average thickness was 5.6 ± 3.4 mm, ≈ 32% lower than the half of the light in/out distance, which 

indicates a good light penetration and a good muscle-to-skin blood flow signal proportion. The 

[𝐻𝐻𝑏] data were normalized by the steady-state signal obtained during a 3-min free-wheel cycling 

prior to the PRBS protocol; therefore, the [𝐻𝐻𝑏] unit was expressed as ∆𝜇𝑀. 

The 𝑄̇ was estimated beat-by-beat (Finometer, Finapres Medical System, Arnhem, The 

Netherlands) by the analysis of the third finger pulse-wave pressure (Wesseling, Jansen, Settels, 

& Schreuder, 1993). Linearity between this estimate and rebreathing 𝑄̇  has previously been 

demonstrated in exercise (Faisal, Beavers, Robertson, & Hughson, 2009). 

 

2.4.3 Time-domain Analysis  

In addition to the frequency-domain analysis described below, time domain analysis of the 𝑝𝑉̇𝑂2 

data was performed on a data segment of the PRBS protocol. Data from the two consecutive PRBS 

were filtered by 5-breath moving average, time aligned and ensemble-averaged (Keir, Murias, 

Paterson, & Kowalchuk, 2014) to obtain a single response per participant. The total data window 

length for this analysis was 130s which included 10s of baseline (25 watts) followed by 120s at 

100 watts. The 120th second of the PRBS protocol was set as the time zero. This specific data 

window corresponding to the longest period without 𝑊̇ variation was the best PRBS protocol 

window for time-domain analysis. The following equation was used to fit the 𝑝𝑉̇𝑂2 data (Hughson 

& Morrissey, 1982; Whipp et al., 1982): 𝑝𝑉̇𝑂2(𝑡) = 𝑎0 + 𝑎 (1 − 𝑒
−(𝑡−𝑇𝐷 𝜏⁄ )); where 𝑡 is time; 𝑎0 

is the baseline at 25 watts; 𝑎 is the steady state increment at 100 W; 𝜏 is time constant and 𝑇𝐷 is 
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the time delay of the exponential function. The initial data associated to the cardio-dynamic 

component (≈ 22 s) were excluded by detection of the change in total arteriovenous 𝑂2 difference 

(𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 ) obtained by the ratio 𝑝𝑉̇𝑂2 /𝑄̇  (Barstow et al., 1990). According to previous 

literature (Macdonald, Pedersen, & Hughson, 1997), the mean response time (𝑀𝑅𝑇 ) was 

calculated by adding 𝜏 and 𝑇𝐷. The quality of the fitting was assured by the analysis of residuals, 

degree of linear correlation between experimental data and fitted function (𝑟), 95% confidence 

interval band (𝐶𝐼95) (Fawkner, Armstrong, Potter, & Welsman, 2002; Keir et al., 2016), absolute 

and relative standard error (𝑆𝐸 and %𝑆𝐸, respectively) and the statistical significance level (𝑝) of 

the estimated parameters.  

 

2.4.4 In Silico Aerobic Response 

To test the aerobic system linearity, in silico simulations were conducted to create a purely linear 

aerobic response for comparison with the experimentally-obtained variables. This comparison 

allowed us to investigate the aerobic system complexity during random stimuli. The simulated 

linear muscular aerobic system signal (𝑠𝑚𝑉̇𝑂2) (Hoffmann et al., 2013; Ozyener et al., 2001) was 

based on each participant’s own time-domain 𝑝𝑉̇𝑂2 kinetics parameters (𝑎0, 𝑎 and 𝑀𝑅𝑇). These 

simulations (thirteen in total) considered the first-order delayed exponential nature of the on and 

off muscular 𝑉̇𝑂2 kinetics (Henry, 1951; Hughson, 2009). The single time constant was obtained 

by incorporating 𝑇𝐷 into the 𝑀𝑅𝑇 as performed for PRBS by Hoffmann et al. (Hoffmann et al., 

2013). Simulations were based on a constant muscle compartment(s) activation/deactivation 

(Barstow et al., 1990; Keir et al., 2016) between the monotonic exercise transitions (25↔100 

watts), with identical system dynamics between on- and off-transitions (Hoffmann et al., 2013); 

thus: ((𝑎0 + 𝑎) ∗ 𝑡𝑓) − (∑ 𝑎0 + 𝑎 ∗ (1 − 𝑒
−𝑡 𝑀𝑅𝑇⁄ )) = (𝑝𝑉̇𝑂2(𝑡𝑓)) − (𝑝𝑉̇𝑂2(𝑡𝑓) − 𝑎0) ∗ (1 −

𝑡𝑓
𝑡=0
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𝑒−
𝑡
𝑀𝑅𝑇⁄ ); where 𝑡𝑓  is the length of the PRBS unit. Therefore, based on these physiological 

assumptions and individual time-domain parameters, the following algorithm was programmed to 

generate the 𝑠𝑚𝑉̇𝑂2 time-series signal in response to PRBS input: 

𝑠𝑚𝑉̇𝑂2(𝑡,𝑀𝑅𝑇,𝑎0,𝑎1)
=

{
 
 

 
 
𝑦1 + 𝑎0
𝑦2 + 𝑎0

.

.

.
𝑦𝑛 + 𝑎0

; 

𝑖𝑓 =

{
  
 

  
 
0 ≤ 𝑡 < 30; 𝑠𝑚𝑉̇𝑂2(𝑡,𝑀𝑅𝑇,𝑎0,𝑎1) = 𝑦1    

30 ≤ 𝑡 < 90; 𝑠𝑚𝑉̇𝑂2(𝑡,𝑀𝑅𝑇,𝑎0,𝑎2) = 𝑦2
.
.
.

𝑢𝑏 ≤ 𝑡 < 𝑢𝑒;  𝑠𝑚𝑉̇𝑂2(𝑡,𝑀𝑅𝑇,𝑎0,𝑎𝑛) = 𝑦𝑛

; 𝑤ℎ𝑒𝑟𝑒 

=

{
 
 
 
 

 
 
 
 𝑦1 = 𝑎1 (1 − e

− 
t

MRT)                                                                       

𝑦2 = 𝑎2 − 𝑎2 (1 − e
− 
(t−30)
MRT ) ; 𝑎2 = 𝑠𝑚V̇O2(t,MRT,a2)             

.

.

.

𝑦n = 𝑎n − 𝑎n (1 − e
− 
(t−𝑢b)
MRT ) ; 𝑎n = 𝑠𝑚V̇O2(t,MRT,an)              

 

where 𝑦 is the 𝑠𝑚𝑉̇𝑂2 value at a given PRBS time 𝑛, and 𝑢 is the PRBS time at the beginning 𝑏 

and at the end 𝑒 of the protocol unit. 

 

2.4.5 Frequency-domain Analysis 

The raw data from the input (𝑊̇) and outputs (𝑠𝑚𝑉̇𝑂2, 𝑝𝑉̇𝑂2, 𝑄̇ and [𝐻𝐻𝑏]) were submitted to 

frequency-domain analysis. The target frequencies from 0.002 to 0.013 Hz (i.e., from the 

fundamental to the 6th harmonic) were selected according to previous literature (Hoffmann et al., 

2013, 1992; Hughson et al., 1990). The following trigonometric form of the Fourier series was 
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solved for each harmonic ℎ : 𝑦(𝑡) = 𝑎𝐷𝐶 + 2 ∗ ∑ (𝐴ℎ ∗ cos(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡) + 𝐵ℎ ∗ sin(2𝜋 ∗
6
𝑛=1

ℎ ∗ 𝑓1 ∗ 𝑡)); where 𝑦  is the signal to be fitted, 𝑡  is the time, 𝑎𝐷𝐶  is average response (system 

𝐷𝐶𝑜𝑓𝑓𝑠𝑒𝑡), 𝑓1 is the fundamental frequency (1/450 s or 0.002 Hz in this case), 𝐴ℎ and 𝐵ℎ are the 

cosine and sine amplitudes for a given harmonic ℎ , respectively. From 𝐴ℎ  and 𝐵ℎ , the total 

amplitude can be calculated for each harmonic ℎ by: 𝐴𝑚𝑝ℎ = √𝐴ℎ
2 + 𝐵ℎ

2. Secondary variables 

were obtained from these parameters. As a proxy of local 𝑂2 delivery, the 𝐴𝑚𝑝ℎ of the capillary 

blood flow (𝐶̇𝑎𝑝𝐵𝐹) was obtained by the ratio 𝑝𝑉̇𝑂2-𝐴𝑚𝑝ℎ/[𝐻𝐻𝑏]-𝐴𝑚𝑝ℎ at each ℎ (Buchheit, 

Laursen, & Ahmaidi, 2009; Ferreira, Townsend, Lutjemeier, & Barstow, 2005). Similarly, the 

𝐴𝑚𝑝ℎ of the 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 was obtained by the ratio 𝑝𝑉̇𝑂2-𝐴𝑚𝑝ℎ/𝑄̇-𝐴𝑚𝑝ℎ at each ℎ (Barstow et 

al., 1990). 

 

2.4.6 Normalized Frequency-domain Responses 

To allow the comparison between variables and to eliminate the influence of the static gain intra-

subject variability (Hoffmann et al., 1994, 1992), the system normalized gain (𝐴̂𝑚𝑝ℎ) was obtained 

from dividing the output by the input 𝐴𝑚𝑝ℎ  (system gain) for each harmonic ℎ  and then 

normalizing as a percentage of the 𝐴𝑚𝑝 gain at the fundamental frequency (i.e, 𝐴𝑚𝑝1 gain). A 

new index to characterize system dynamics in the frequency domain, the mean normalized gain 

amplitude (𝑀𝑁𝐺 in %), was calculated based on the average of the normalized gain from 𝐴̂𝑚𝑝2 

to 𝐴̂𝑚𝑝6. In a purely linear system (like the in silico response), the 𝑀𝑁𝐺 can be used as an overall 

kinetics description, hypothetically similar to the 𝑀𝑅𝑇 obtained from time domain-analysis. In 

this case, 𝑀𝑁𝐺 isolates speed components of the dynamics from variable system static gain and 

𝐷𝐶𝑜𝑓𝑓𝑠𝑒𝑡 (Shmilovitz, 2005). Therefore, in a purely linear first-order exponential response, higher 
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𝑀𝑁𝐺 means, by definition, faster system adjustment. However, 𝑀𝑁𝐺 can also be used to assess 

system complexity (i.e., order) by identifying distortions over the dynamic gain across the 

frequencies. Accordingly, in a multiple-order system, higher 𝑀𝑁𝐺  values could mean either 

higher system complexity or faster system adjustment. Therefore, the possibility to use 𝑀𝑁𝐺 as 

an index to exclusively asses the aerobic system temporal dynamics depends on the linearity (i.e., 

order) of the signal. Both kinetics analyses and data simulations were performed by a certified 

(#100-314-4110) LabVIEW associated developer (National Instruments, Austin, TX, US). 

 

2.4.7 Statistical Analysis and System Linearity Assessment 

The one way repeated measures analysis of variance (ANOVA) was chosen for statistical analysis. 

The 𝐴̂𝑚𝑝ℎ obtained from the in silico data (𝑠𝑚𝑉̇𝑂2) and from the primary variables (𝑝𝑉̇𝑂2, 𝑄̇ and 

[𝐻𝐻𝑏]) was compared between variables within the same harmonic ℎ (i.e., each tested frequency). 

Similarly, secondary variables derived from the primary variables 𝐴̂𝑚𝑝ℎ (i.e., 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓- and 

𝐶̇𝑎𝑝𝐵𝐹-𝐴̂𝑚𝑝ℎ) were compared between them and also with 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝ℎ. These comparisons 

assessed the dynamic responses between variables at specific input frequencies. Higher 𝐴̂𝑚𝑝ℎ 

values indicate a faster rate of increase at a given ℎ  or frequency. The 𝑀𝑁𝐺  was compared 

following the same variables split (primary and secondary) where higher 𝑀𝑁𝐺 values indicate a 

faster dynamics of the overall response (the entire pool of frequencies). Student-Newman-Keuls 

method was used as post hoc test when significant differences were found. Significance level was 

set at 𝑝 < 0.05. The agreement level between 𝑀𝑅𝑇 and 𝑀𝑁𝐺 was verified by Pearson product-

moment correlation coefficient (𝑟) and the significance level (𝑝 value). 

In a linear first-order system, the temporal dynamics between frequencies (i.e., the 𝐴̂𝑚𝑝ℎ 

for the different ℎ’s) have to be commutable, allowing the prediction of the output dynamics at 
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any frequency by analyzing the output dynamics at any other frequency. In contrast, multiple-order 

systems do not present a predictable linear pattern between the different 𝐴̂𝑚𝑝ℎ. For example, in a 

first-order system, a participant who presents faster dynamics at 𝐴̂𝑚𝑝2 should also present faster 

dynamics at 𝐴̂𝑚𝑝6  thus 𝐴̂𝑚𝑝2  is, at a certain degree, predictable by 𝐴̂𝑚𝑝6 , and vice-versa. 

Therefore, the linearity was tested for each variable for all possible combinations of 𝐴̂𝑚𝑝 between 

the different ℎ’s (ten in total for each variable). The coefficients of determination (𝑟2) and the 𝑝 

values were used to measure the linearity level of the 𝐴̂𝑚𝑝 between ℎ’s. When the 𝑝 values were 

higher than 0.05, the null hypothesis of linearity was rejected indicating the presence of non-

linearities. In addition, the ability of a given 𝐴̂𝑚𝑝ℎ to predict the overall response (i.e., 𝑀𝑁𝐺) was 

also assessed. For these assessments, 𝑀𝑁𝐺 was calculated excluding the 𝐴̂𝑚𝑝ℎ being tested. 

 

2.5 Results 

2.5.1 Time-domain Fitting 

Figure 9 displays the mean 𝑝𝑉̇𝑂2 response in time domain fitted by a mono-exponential function 

as well as the fitting residuals. These data were used to derive the fitting parameters used for the 

𝑠𝑚𝑉̇𝑂2 in silico data in response to the PRBS input. Also, the calculated 𝑀𝑅𝑇 for each individual 

will be compared to a kinetics estimate from the frequency-domain analysis (i.e., 𝑀𝑁𝐺). 
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Figure 9. Fitted experimental pulmonary oxygen uptake data and the residuals 

Mean ± SD (vertical gray bars) of the 13 subjects for pulmonary oxygen uptake (○, 𝑝𝑉̇𝑂2) and the residuals 

(---) between the individual fitted function and experimental data. For the sake of data modeling 

representation, the mean 𝑝𝑉̇𝑂2response was fitted by a mono-exponential function (•••). 

 

 The 𝑝 values for the exponential parameters and the data fitting quality indexes were 

lower than 0.001 for all estimated parameters (Table 2). The 𝐶𝐼95 band was equivalent to 2.3, 5.59, 

21.62 and 17.6 % of the average 𝑎0, 𝑎, 𝜏 and 𝑇𝐷, respectively. The 𝐶𝐼95 band in association with 

a high 𝑟 and 𝑟2 and the evenly distributed residuals across the transition indicate that the time-

domain data fitting procedure can be considered reliable. The chosen 𝑊̇ (100 watts) did not elevate 

the 𝑝𝑉̇𝑂2 total gain (𝑎0+𝑎1) beyond each participant’s gas exchange threshold.  
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Table 2. Parameters obtained during time-domain pulmonary oxygen uptake kinetics analysis 

and the quality of the data fitting 

 Value SE %SE +𝑪𝑰𝟗𝟓 −𝑪𝑰𝟗𝟓 𝒑 value 

𝒂𝟎 973±114 11±4 1.23±0.47 996±114 949±114 <0.0001±0.00 

𝒂 751±149 21±12 2.76±1.46 793±164 709±137 <0.0001±0.00 

𝝉 25.53±13.43 2.78±2.32 10.14±3.67 31.05±17.71 20.01±9.45 <0.0001±0.00 

𝑻𝑫 17.01±9.08 1.47±0.71 13.79±14.17 19.93±9.01 14.08±9.36 <0.0001±0.00 

𝑴𝑹𝑻 42.54±11.07 

N/A 

r 0.98±0.01 

Abbreviation: 𝑎0 is the baseline from the final 30s at 25 watts; 𝑎 is the steady state amplitude at 100 watts; 

𝜏 is time constant and 𝑇𝐷 is the time delay of the exponential function onset; 𝑀𝑅𝑇 is the mean response 

time, 𝑟 is the Pearson product moment coefficient; 𝑆𝐸: absolute standard error; %𝑆𝐸: relative standard 

error, 𝐶𝐼95: confidence interval and 𝑝: significance level. 

 

 Figure 10 displays the mean time-domain response averaged across all participants (𝑛=13) 

for the variables measured during the PRBS protocol. 

  

 

Figure 10. Time domain response during pseudorandom binary sequence exercise.  

Group mean time domain responses of the pulmonary oxygen uptake (A, 𝑝𝑉̇𝑂2), cardiac output (B,𝑄̇) and 

deoxy-hemoglobin (C, [𝐻𝐻𝑏]) The power output ( ) of the pseudorandom binary sequence protocol is 

displayed in each graph. 
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2.5.2 Speed of the System Output Responses  

The data related to the variables displayed in Figure 10 were submitted to frequency-domain 

analysis and the results were used to estimate the 𝐴𝑚𝑝𝑛 of secondary variables. Figure 11 shows 

the system normalized gain ( 𝐴̂𝑚𝑝ℎ ) for the primary variables at each tested frequency (or 

harmonic ℎ) expressed as a percentage of the gain at 0.002 Hz (𝐴𝑚𝑝1). The purpose of these 

comparisons was to verify the differences of the adaptation speed between variables at different 

frequencies, or ℎ. Higher 𝐴̂𝑚𝑝ℎ values indicate faster temporal dynamics of the response. 

The 𝑄̇-𝐴̂𝑚𝑝, as a proxy of central 𝑂2 provision dynamics, presented the same speed of 

adaptation in comparison to the 𝑖𝑛 𝑠𝑖𝑙𝑖𝑐𝑜 data with no statistical differences found in comparison 

to 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝 at any frequency (Figure 11). Likewise, the 𝑝𝑉̇𝑂2-𝐴̂𝑚𝑝 was not statistically (𝑝 > 

0.05) different to 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝 at any tested frequency, indicating a similar speed of adaptation at 

all tested frequencies. 

As a proxy of the 𝑂2 extraction at the muscle site, the [𝐻𝐻𝑏] dynamics for frequencies all 

tested frequencies were faster than the central 𝑂2 provision dynamics (𝑄̇-𝐴̂𝑚𝑝) and the 𝑝𝑉̇𝑂2 

(Figure 11). In comparison to the in silico response, the [𝐻𝐻𝑏]-𝐴̂𝑚𝑝 was also statistically (𝑝 < 

0.05) elevated at all frequencies. 
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Figure 11. Normalized system amplitude gain of primary variables 

Mean ± SD of the normalized system amplitude gain ( 𝐴̂𝑚𝑝 ) of simulated muscular oxygen uptake 

(𝑠𝑚𝑉̇𝑂2), pulmonary oxygen uptake (𝑝𝑉̇𝑂2), cardiac output (𝑄̇), and deoxy-hemoglobin concentration 

([𝐻𝐻𝑏]) at the frequencies 0.004 (A), 0.006 (B), 0.008 (C), 0.011 (D) and 0.013 (E) Hz. * mean statistically 

(𝑝 < 0.05) lower than [𝐻𝐻𝑏]. 
 

The dynamics of the 𝑂2 extraction across the lung (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓-𝐴̂𝑚𝑝ℎ) and the local 𝑂2 

delivery (𝐶̇𝑎𝑝𝐵𝐹-𝐴̂𝑚𝑝ℎ) were compared between variables and to 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝ℎ at each ℎ. The 

𝐶̇𝑎𝑝𝐵𝐹 was statistically (𝑝 < 0.05) slower (i.e., lower 𝐴̂𝑚𝑝) than 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 at the first three 

harmonics (0.004, 0.006 and .008 Hz, Figure 12). The in silico system (𝑠𝑚𝑉̇𝑂2) was statistically 

(𝑝 < 0.05) slower (i.e., lower 𝐴̂𝑚𝑝) than 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 in all tested frequencies and also slower 

than 𝐶̇𝑎𝑝𝐵𝐹 at 0.011 and 0.013 Hz.  
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Figure 12. Normalized system amplitude gain of secondary variables 

Mean ± SD of the normalized system amplitude gain (𝐴̂𝑚𝑝) of capillary blood flow (𝐶̇𝑎𝑝𝐵𝐹) and total 

arteriovenous O2 difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓) at the frequencies 0.004 (A), 0.006 (B), 0.008 (C), 0.011 (D) 

and 0.013 (E) Hz. Abbreviations: *, statistically (𝑝 < 0.05) lower than 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 and $, statistically (𝑝 

< 0.05) lower than 𝐶̇𝑎𝑝𝐵𝐹. 

 

 Like 𝑀𝑅𝑇  obtained by time-domain analysis, the 𝑀𝑁𝐺  can be used in the frequency-

domain to describe the overall characteristics of the dynamics response. The local 𝑂2 extraction 

dynamics investigated by the [𝐻𝐻𝑏]-𝑀𝑁𝐺 was faster (i.e., higher 𝑀𝑁𝐺) than the 𝑠𝑚𝑉̇𝑂2, 𝑝𝑉̇𝑂2 

and 𝑄̇ (Figure 13A). As described in Figure 7B, the 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓-𝑀𝑁𝐺  was statistically (𝑝 < 

0.05) faster (i.e., higher) than the 𝑠𝑚𝑉̇𝑂2 and 𝐶̇𝑎𝑝𝐵𝐹-𝑀𝑁𝐺. In addition, the 𝐶̇𝑎𝑝𝐵𝐹-𝑀𝑁𝐺 was 

statistically (𝑝 < 0.05) faster than the 𝑖𝑛 𝑠𝑖𝑙𝑖𝑐𝑜 response (𝑠𝑚𝑉̇𝑂2). 
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Figure 13. Mean normalized gain obtained by frequency-domain analysis. 

A: mean ± SD of the mean normalized gain (𝑀𝑁𝐺) obtained by frequency-domain analysis and used as an 

index of the overall dynamics behaviour of the simulated muscular oxygen uptake (𝑠𝑚𝑉̇𝑂2), pulmonary 

oxygen uptake (𝑝𝑉̇𝑂2), cardiac output (𝑄̇) and deoxy-hemoglobin concentration ([𝐻𝐻𝑏]). B: mean ± SD 

of the 𝑀𝑁𝐺 of the 𝑠𝑚𝑉̇𝑂2, capillary blood flow (𝐶̇𝑎𝑝𝐵𝐹) and arteriovenous O2 difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓). 

Abbreviations: *, statistically (𝑝 < 0.05) lower than [𝐻𝐻𝑏]; #, statistically (𝑝 < 0.05) lower than 𝑎 −
𝑣𝑂2𝑑𝑖𝑓𝑓 and $, statistically (𝑝 < 0.05) lower than 𝐶̇𝑎𝑝𝐵𝐹. 

 

The agreement level between the 𝑝𝑉̇𝑂2 -𝑀𝑅𝑇  and 𝑝𝑉̇𝑂2 -𝑀𝑁𝐺  was also verified. As 

demonstrated by a strong negative linear correlation (𝑟 = -0.84) in Figure 14, subjects with a faster 

overall system dynamic (indicated by lower 𝑝𝑉̇𝑂2 -𝑀𝑅𝑇  values in time-domain analysis) 

maintained an elevated gain across the frequency spectra (assessed by the 𝑝𝑉̇𝑂2 -𝑀𝑁𝐺  in 

frequency-domain analysis). 
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Figure 14. Mean response time and mean normalized gain 

Correlation between the mean response time (𝑀𝑅𝑇) obtained by time-domain and the mean normalized 

gain (𝑀𝑁𝐺) obtained by frequency-domain analysis of the pulmonary oxygen uptake response of each 

individual subject (𝑛 = 13). 

 

2.5.3 Linearity of the System Output Responses 

Figure 15 displays the ability to predict another 𝐴̂𝑚𝑝ℎ based on a given value of 𝐴̂𝑚𝑝ℎ obtained 

at a different ℎ (frequency) assessed by the 𝑟2  and 𝑝 values. For a better visualization, the 𝑟2 

values were transformed into a black color spectrum where lower values are lighter and higher 

values darker. White cells mean that the agreement level did not reach statistical significance (𝑝 > 

0.05). As expected from the algorithm used to generate the in silico data, the 𝑠𝑚𝑉̇𝑂2 -𝐴̂𝑚𝑝 

response at a given frequency can be obtained from the analysis of the 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝 response at 

any other frequency. On the other hand, all variables (primary and secondary) seemed to behave 

as a multiple-order system with possible multiple controllers that define the overall dynamic of the 

system in response to a stimulus with different levels of 𝑟2 across the harmonics (Figure 15). The 
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𝐶̇𝑎𝑝𝐵𝐹 response presented the most irregular behaviour and from ten possible combinations, the 

𝐴̂𝑚𝑝ℎ did not predict the 𝐴̂𝑚𝑝ℎ at another frequency eight times. The 𝑝𝑉̇𝑂2 and 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 

dynamics were irregular (i.e., not predictable by another frequency) in six comparisons. The 𝑄̇ and 

𝐻𝐻𝑏 showed elevated complexity at five and four comparisons, respectively. 
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Figure 15. Linearity assessment by coefficient of determination. 

Graphs of the coefficient of determination (𝑟2) between the normalized system gain obtained at different 

frequencies (0.004, 0.006, 0.008, 0.011 and 0.013 Hz). The 𝑟2 and the p-values indicate the ability of a 

given normalized system gain to predict another normalized system gain at a different frequency. These 

comparisons were performed to evaluate the linearity of the dynamics of the simulated muscular oxygen 

uptake (A, 𝑠𝑚𝑉̇𝑂2), pulmonary oxygen uptake (B, 𝑝𝑉̇𝑂2), cardiac output (C, 𝑄̇) and deoxy-hemoglobin 

concentration (D, [𝐻𝐻𝑏]), capillary blood flow (E, 𝐶̇𝑎𝑝𝐵𝐹) and total arteriovenous O2 difference (F, 𝑎 −
𝑣𝑂2𝑑𝑖𝑓𝑓). In a first-order linear system, participants who present faster dynamics at a specific frequency 

should also present faster dynamics at any other frequency. For a better visualization, the 𝑟2 values were 

transformed into a black color spectrum where lower values are lighter and higher values darker. White 

cells mean that the agreement level did not reach statistical significance (𝑝 > 0.05).  
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 Figure 16 displays the ability of a given 𝐴̂𝑚𝑝ℎ to predict the overall response (i.e., 𝑀𝑁𝐺 

calculated excluding the 𝐴̂𝑚𝑝ℎ  being tested). Like Figure 15, the predictability levels were 

assessed by the 𝑟2 and 𝑝 values. As expected, the 𝑠𝑚𝑉̇𝑂2-𝐴̂𝑚𝑝 response at any frequency can 

predict the dynamics of the rest of the response (characterized by the 𝑀𝑁𝐺). The 𝑝𝑉̇𝑂2-𝐴̂𝑚𝑝ℎ at 

frequency 0.011 Hz was not able to predict the 𝑀𝑁𝐺 estimated from the others frequencies. The 

𝑄̇ - and 𝐻𝐻𝑏-𝐴̂𝑚𝑝ℎ  were not able to predict the 𝑀𝑁𝐺  at the last and first frequency tested, 

respectively. The 𝐶̇𝑎𝑝𝐵𝐹  presented the most irregular behaviour. Only the 𝐶̇𝑎𝑝𝐵𝐹 - 𝐴̂𝑚𝑝ℎ 

obtained at 0.006 and 0.013 Hz were able to predict the dynamics of the rest of the response (i.e., 

𝑀𝑁𝐺). The 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓-𝐴̂𝑚𝑝ℎ at frequency 0.011 Hz was not able to predict the 𝑀𝑁𝐺. 

 



 

45 
 

MNG MNG

0.004 0.004

0.006 0.006

0.008 0.008

0.011 0.011

0.013 0.013

0.1

MNG MNG 0.2

0.004 0.004 0.3

0.006 0.006 0.4

0.008 0.008 0.5

0.011 0.011 0.6

0.013 0.013 0.7

0.8

0.9

MNG MNG 1

0.004 0.004

0.006 0.006

0.008 0.008

0.011 0.011

0.013 0.013

CapBF a-vO
2
diff

smVO
2

pVO
2

Q HHb

. .

.

A B

C D

E F

r
2
:

.

p > 0.05

F
re

q
u
en

c
y
 (

H
z)

F
re

q
u
en

c
y
 (

H
z)

F
re

q
u
en

c
y
 (

H
z)

F
re

q
u
en

c
y
 (

H
z)

F
re

q
u
en

c
y
 (

H
z)

F
re

q
u
en

c
y
 (

H
z)

 

Figure 16. Linearity and mean normalized gain. 

Graphs of the coefficient of determination (𝑟2) between the normalized system gain obtained at different 

frequencies (0.004, 0.006, 0.008, 0.011 and 0.013 Hz) and the mean normalized gain (𝑀𝑁𝐺) calculated as 

the mean of the normalized system gain of all frequencies except the frequency to be tested. The 𝑟2 was 

used to assess the ability of a given normalized system gain at a specific frequency to predict the 𝑀𝑁𝐺. 

These comparisons were performed to evaluate the dynamics of the simulated muscular oxygen uptake (A, 

𝑠𝑚𝑉̇𝑂2), pulmonary oxygen uptake (B, 𝑝𝑉̇𝑂2), cardiac output (C, 𝑄̇) and deoxy-hemoglobin concentration 

(D, [𝐻𝐻𝑏]), capillary blood flow (E, 𝐶̇𝑎𝑝𝐵𝐹) and total arteriovenous O2 difference (F, 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓). In a 

first-order linear system, participants who present faster dynamics at a specific frequency should also 

present faster dynamics of the rest of the response (characterized by the 𝑀𝑁𝐺). For a better visualization, 

the 𝑟2 values were transformed into a black color spectrum where lower values are lighter and higher values 

darker. White cells mean that the agreement level did not reach statistical significance (𝑝 > 0.05).  
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2.6 Discussion 

In agreement with our primary hypothesis, the 𝑂2 delivery-utilization balance in response to a 

dynamic exercise stimulus was not linear across the tested frequencies. As the 𝑀𝑁𝐺 is composed 

by multiple-order responses, we experimentally demonstrated that the time constant estimated 

from time domain analysis (such as 𝑀𝑅𝑇) is in fact a simple abstraction of responses with variable 

temporal dynamics. The peripheral and central 𝑂2 extraction dynamics (𝐻𝐻𝑏 and 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓, 

respectively) were systematically faster than the peripheral and central 𝑂2 delivery (𝐶̇𝑎𝑝𝐵𝐹 and 

𝑄̇, respectively). 

The current study employed novel analyses in the frequency domain referenced to in silico 

data (𝑠𝑚𝑉̇𝑂2) to reinforce the elevated complexity of the aerobic system response to exercise. We 

demonstrated that the overall 𝑝𝑉̇𝑂2 kinetics, can be decomposed to multiple-order kinetics (Figure 

9 and 10). The frequency range (0.002 to 0.013 Hz) used in this study represented a realistic 

exercise stimulus which corresponded to a sinusoidal function with a period range of 77 to 450s. 

 

2.6.1 Speed of the System Output Responses 

The speed of the output responses for a given stimulus at a given frequency was investigated by 

comparing the 𝐴̂𝑚𝑝ℎ between variables. As a normalized index, the 𝐴̂𝑚𝑝ℎ separates the temporal 

dynamics of the system from the static system gain (Hoffmann et al., 1992). Therefore, faster 

responses will present higher 𝐴̂𝑚𝑝ℎ values independently of the static system gain. 

The 𝑂2  extraction dynamics at both, peripheral (𝐻𝐻𝑏 ) and central ( 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 ) 

compartments, were faster than the in silico data across all tested frequencies (Figures 11 and 12). 

The speed of the aerobic system dynamics was not statistically different (𝑝 > 0.05) from the central 

𝑂2 delivery at all tested frequencies (Figure 11). The 𝑄̇ responses, that represent the central 𝑂2 
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delivery, were slower than the peripheral 𝑂2 extraction, evaluated by the [𝐻𝐻𝑏] dynamics, at all 

tested frequencies. In addition, the 𝐶̇𝑎𝑝𝐵𝐹 responses, that represent the peripheral 𝑂2 delivery, 

were slower than the alveolar 𝑂2 extraction, represented by the 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 dynamics, at lower 

frequencies. These data together suggest that 𝑂2 extraction kinetics were in general faster than the 

aerobic adjustment, suggesting a lack of 𝑂2 provision which would be consistent with observations 

in the time domain (DeLorey, Kowalchuk, & Paterson, 2003). In agreement with our findings 

within each frequency, the overall temporal dynamics evaluated by the 𝑀𝑁𝐺 (Figure 13) showed 

systematically faster kinetics for the 𝑂2 extraction in comparison to the 𝑂2 delivery and uptake. In 

addition, like the 𝑀𝑅𝑇 obtained in time-domain analysis, the use of the 𝑀𝑁𝐺 to characterize the 

temporal dynamics of the aerobic response based on 𝑝𝑉̇𝑂2 signal can be used to describe the 

overall system temporal dynamics analysis (Figure 9). 

 

2.6.2 Linearity of the System Output Responses 

The linearity of the output responses was tested by estimating the ability of a given 𝐴̂𝑚𝑝ℎ  to 

predict another 𝐴̂𝑚𝑝ℎ  at different frequencies as a method to assess the commutability of the 

dynamics measure at different frequencies. In addition, we tested the ability of a given 𝐴̂𝑚𝑝ℎ to 

predict the 𝑀𝑁𝐺. The 𝑟2 and 𝑝 value of a linear regression model were used for this evaluation.  

In agreement with Koga et al. (Koga, Rossiter, Heinonen, Musch, & Poole, 2014), the local 

𝑂2 delivery presented the lowest degree of linearity (Figures 15 and 16). This might indicate that 

attempts to fit the 𝐶̇𝑎𝑝𝐵𝐹 response into first-order models (Ferreira et al., 2005; Harper, Ferreira, 

Lutjemeier, Townsend, & Barstow, 2006), that refer to the “fundamental phase” of the 𝑝𝑉̇𝑂2 

response, may fail to characterize “physiological” events but rather represent an aggregate of 

multiple-order responses that are treated as the local 𝑂2  delivery dynamics. This observation 
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indicates some advantages of the frequency-domain approach in the sense of offering a more 

detailed description of the system dynamics resulting from the provision of optimal energy to study 

multiple-frequencies simultaneously with the PRBS protocol. 

Non-linearities were also identified in all other variables (Figure 15). As indicated in Figure 

16, in at least one frequency the output temporal dynamics, characterized by the 𝐴̂𝑚𝑝ℎ, failed to 

predict the dynamic of the rest of the response (𝑀𝑁𝐺). However, the presence of non-linearities 

in a physiological response does not mean that the overall system temporal dynamics (aggregated 

of multiple-order responses) cannot be used to investigate health-related outcomes. For example, 

it is well described in literature (Chilibeck et al., 1995; Eßfeld et al., 1987; Powers et al., 1985; 

Yoshida, Abe, Fukuoka, & Hughson, 2008) that the overall dynamics of the 𝑝𝑉̇𝑂2 response varies 

according to fitness status and it was previously associated with clinical outcomes (Borghi-Silva 

et al., 2012) and functional mobility performance (Alexander et al., 2003). 

The presence of non-linearities points to the question of whether there is a single controller 

that limits the aerobic adjustment during different stimulus frequencies or within the same exercise 

transitions (Hughson, 2009). Classically, the discussion of the mechanisms that limit the aerobic 

adjustment are based on the “𝑂2 delivery vs. 𝑂2 utilization” issue (Tschakovsky & Hughson, 1999) 

with part of the literature supporting one or another factor. However, it is becoming clearer 

(Hughson, 2009; Keir et al., 2016) that models that consider the complex interaction between 𝑂2 

delivery and utilization are more appropriate to study aerobic system dynamics. In fact, we showed 

that the overall 𝑝𝑉̇𝑂2  dynamic is composed of a complex interaction between multiple-order 

systems and it seems illusory to believe that there is a single controller that defines the rate at 

which the aerobic system will supply the energetic demand. 
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Despite different 𝐻𝐻𝑏  data modeling approaches, our findings are in agreement with 

previous studies (Bowen et al., 2013; Dumanoir, Delorey, Kowalchuk, & Paterson, 2010; Harper 

et al., 2006) that reported a 𝐻𝐻𝑏 overshooting during exercise transition, highlighting an increased 

data complexity. To solve this, some methods were developed to select the best [𝐻𝐻𝑏] data 

window related to the muscular 𝑉̇𝑂2, where the data apparently fit a first-order exponential-like 

function within the transition phase (Murias, Spencer, Kowalchuk, & Paterson, 2011b). However, 

instead of taking the same approach of searching for the best data window for all non-linear 

variables, the system analysis in the frequency domain in association with the PRBS protocol of 

the current study provides an alternative to achieve greater information. If a detailed response is 

needed, the 𝐴̂𝑚𝑝ℎ at each individual frequency can be analyzed, otherwise, the overall system 

temporal dynamics can be obtained from the 𝑀𝑁𝐺 calculation.  

An important advantage of the frequency-domain analysis is that no model assumptions 

are taken before data fitting. This approach allows the data to express the inherent degree of 

complexity across the different frequency gain amplitudes. In contrast, the time-domain approach 

has to assume the system transfer function characteristics and order beforehand (Motulsky & 

Ransnas, 1987). Theoretically, time-domain forcing functions can incorporate multiple 

components to increase model complexity (Bell, Paterson, Kowalchuk, Padilla, & Cunningham, 

2001). However, the elevated model degree of freedom associated to a limited signal-to-noise ratio 

usually precludes this approach. 

Data simulations have been used to test hypotheses regarding 𝑝𝑉̇𝑂2 control (Barstow et 

al., 1990; Bowen et al., 2011; Cochrane & Hughson, 1992; Eßfeld et al., 1991; Hoffmann et al., 

2013). The current study utilized the 𝑝𝑉̇𝑂2 response to a low frequency square input (longest step 

inside the PRBS) of each participant to generate, for him, purely linear responses to the PRBS 
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exercise. The in silico output dynamics of 𝑠𝑚𝑉̇𝑂2 are predictable at any frequency by the input 

through a single exponential transfer function with single temporal system dynamics (Figures 15A 

and 16A). In contrast to this “predictable” system, all variables presented a certain degree of non-

linearity, especially the 𝐶̇𝑎𝑝𝐵𝐹 . As hypothesized by Hughson (Hughson, 2009), these 

observations imply that the time course at a specific portion of the response is not similar and 

possibly not controlled by the same underlying regulatory factor(s) that establish the time course 

at another phase of the adaptive response. 

 

2.7 Limitations 

As a characteristic of PRBS protocol that evaluates multiple frequencies simultaneously, the 

system input (𝑊̇) also occurs at elevated metabolic rates (as depicted in Figure 10A). As previously 

reported (Brittain et al., 2001; Hughson & Morrissey, 1982; Keir et al., 2016), the 𝑝𝑉̇𝑂2 kinetics 

are delayed by a higher initial metabolic rate. However, the 𝑝𝑉̇𝑂2 temporal dynamics were similar 

to the in silico data that were dynamically invariant across the 𝑊̇  transitions. In addition, a 

previous study (Hoffmann et al., 1992) demonstrated that the multi-frequency PRBS protocol was 

virtually similar to a sinusoidal exercise protocol initiated from a constant metabolic rate. In 

addition, evident nonlinearities caused by an elevated metabolic rate might be present at higher 

frequencies not considered in the current study (i.e., periods shorter than 77s). 

The Modelflow algorithm, used to estimate the 𝑄̇ (and consequently 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓), might 

present bias in comparison to 𝑄̇ estimated from other methods (Dyson, Shoemaker, Arbeille, & 

Hughson, 2010) when changes in the total peripheral resistance is expected as during exercise. 

However, previous studies validated the use of Modelflow 𝑄̇ during dynamic exercise (Faisal et 

al., 2009; Sugawara et al., 2003). In addition, the current study used relative 𝑄̇ values (normalized 
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response in frequency domain) thus linear bias should not influence the temporal dynamic of the 

𝑄̇ response. 

The 𝐻𝐻𝑏  response has been extensively used to investigate the local 𝑂2  extraction 

dynamics (Dumanoir et al., 2010; Keir et al., 2016; Murias et al., 2011b) and when evaluated 

together with 𝑝𝑉̇𝑂2 data, can be used to infer the local 𝐶̇𝑎𝑝𝐵𝐹 (Buchheit et al., 2009; Ferreira et 

al., 2005). As a characteristic of the NIRS device used in this study, the interpretation of the 𝐻𝐻𝑏 

was constrained to its relative changes from a given baseline. However, as with 𝑄̇, the 𝐻𝐻𝑏 data 

were normalized when submitted to the proposed frequency-domain analysis. Therefore, since the 

focus of this study was the dynamic response of the variables, the temporal dynamics of the NIRS 

signals were reliable.  

 

2.8 Conclusion 

In agreement with our hypothesis, the aerobic response behaved as a nonlinear phenomenon 

possibly governed the complex multiple-order interactions between the 𝑂2 delivery and utilization 

systems. To the best of our knowledge, this is the first study that evaluated 𝑄̇ and [𝐻𝐻𝑏] responses 

during random exercise stimulus in humans, thereby incorporating measurements of central and 

peripheral cardiovascular responses into an investigation of the 𝑝𝑉̇𝑂2  linearity. This study 

demonstrated the potential of the 𝑀𝑁𝐺  to characterize the overall temporal dynamics of the 

aerobic system based on random 𝑝𝑉̇𝑂2 data which have clinical relevance. However, indexes such 

as 𝑀𝑁𝐺  and 𝑀𝑅𝑇  ignore the system nonlinearity since the 𝑝𝑉̇𝑂2  dynamics during exercise 

transitions are composed of amalgamated responses of multiple-order systems related to the 𝑂2 

delivery and utilization systems acting simultaneously to supply the energy demand that often 

cannot be isolated when applying pre-conceived models (Hughson, 2009). In the current study, 
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characterization of system dynamics across the frequency spectrum by investigating the 

relationships between the 𝐴̂𝑚𝑝ℎ revealed these nonlinearities. Therefore, indices such as 𝜏, 𝑀𝑅𝑇 

and 𝑀𝑁𝐺 cannot be used as a detailed system dynamics index but as an overall description of the 

system temporal dynamics.  
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Chapter 3: Mean Normalized Gain: A New Method for the Assessment of the 

Aerobic System Temporal Dynamics During Randomly Varying Exercise in 

Humans 

This chapter was under review as: 

Beltrame T, Hughson RL. Mean normalized gain: a new method for the assessment of the 

aerobic system temporal dynamics during randomly varying exercise in humans. Under review at 

J Appl Physiol since September 6, 2016  
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3.1 Overview 

The temporal dynamics of the oxygen uptake (𝑉̇𝑂2) during moderate exercise has classically been 

related to physical fitness and a slower 𝑉̇𝑂2  dynamics was associated with deterioration of 

physical health. However, methods that better characterize the aerobic system temporal dynamics 

data remain challenging. The purpose of this study was to develop a new method to systematically 

characterize the 𝑉̇𝑂2 temporal dynamics. Nine healthy, young adults (23 ± 2 years old, 171 ± 5 cm 

and 75 ± 14 kg) participated in this study. They performed multiple pseudorandom binary sequence 

cycling protocols on different days and time of the day. This new index (named mean normalized 

gain amplitude, 𝑀𝑁𝐺) was based on the normalized amplitude of the 𝑉̇𝑂2 signal in frequency-

domain. The 𝑀𝑁𝐺  was validated considering the time constant 𝜏  obtained from time-domain 

analysis as reference. The intra-subject consistency of the 𝑀𝑁𝐺 was checked by testing the same 

participant on different days and times of the day. The 𝑀𝑁𝐺  and 𝜏  were strongly negative 

correlated (𝑟=-0.75 and 𝑝=0.019). The 𝑀𝑁𝐺 measured on different days and periods of the day 

were similar between conditions. Calculations for the 𝑀𝑁𝐺 have inherent filtering characteristics 

enhancing reliability for the evaluation of the aerobic system temporal dynamics. In conclusion, 

the present study successfully validated the use of the 𝑀𝑁𝐺 for a precise aerobic system analysis 

and as a potential tool to assess changes in physical fitness. 

 

3.2 New & Noteworthy 

The temporal characteristics of the oxygen uptake (𝑉̇𝑂2) dynamic during moderate exercise have 

previously been related to maximal aerobic power and a faster 𝑉̇𝑂2 response was associated with 

a better aerobic fitness, functional mobility and disease prognosis. This study introduced and 
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validated a new method to assess 𝑉̇𝑂2 dynamics in random exercises more typical of daily life 

with potential importance to rehabilitation programs, exercise prescription and fitness evaluation. 

 

3.3 Introduction 

The study of the oxygen uptake (𝑉̇𝑂2) kinetics deals with the ability of data modeling to describe, 

in mathematical terms, the temporal characteristics of the aerobic response to the challenge of a 

step increase in work rate (𝑊̇ ) (Hughson, 2009). Time-domain kinetic analysis has several 

limitations including the need for explicit complex modeling techniques (Bell et al., 2001; 

Markovitz, Sayre, Storer, & Cooper, 2004). Moreover, the white Gaussian noise associated with 

breath-by-breath fluctuation (Lamarra et al., 1987) adds uncertainty to time-domain index 

predictions estimated from a single test dataset. To increase signal-to-noise ratio, studies 

commonly repeat similar tests multiple times within the same session (Christensen et al., 2016; 

Ozyener et al., 2001) or on different days (Keir, Nederveen, Paterson, & Kowalchuk, 2014; Whipp 

et al., 1982) and average repetition-like transitions before time-domain data modeling. 

An attractive alternative for evaluating the kinetic behavior of the aerobic energy supply 

system is the pseudo-random binary sequence (PRBS) in which 𝑊̇  varies between two levels 

which are normally constrained to the light to moderate intensity exercise domains (Eßfeld et al., 

1987; Hughson et al., 1990). The 𝑉̇𝑂2 response to PRBS protocols is evaluated in the frequency-

domain filtering out non-periodic signals associated with noise, improving the extraction of 

parameters related to the aerobic system dynamics. The attractiveness of the PRBS approach 

results from the potential to gain a quantitative index of kinetics from fewer exercise testing 

sessions in comparison to time-domain approaches (Edwards, Challis, Chapman, Claxton, & Fysh, 

2001; Hughson, Xing, Borkhoff, & Butler, 1991; Yoshida et al., 2008). 
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To date, there are few studies of the variability of the methodology and the requirements 

for precision in estimation from PRBS testing (Edwards et al., 2001; Edwards, Claxton, & Fysh, 

2003). The purpose of this study was to systematically characterize the 𝑉̇𝑂2 kinetics by a new 

index (named mean normalized gain amplitude, 𝑀𝑁𝐺) obtained from frequency domain analysis. 

The 𝑀𝑁𝐺  will be validated against the time-domain approach, and checked for intra-subject 

consistency by applying multiple PRBS protocols on different days and times of the day. In 

addition, the 𝑀𝑁𝐺 was also evaluated considering different number of repeated tests averaged 

together before data modeling and different filtering levels. 

The hypothesis of this study was that the 𝑉̇𝑂2 dynamics characterized by 𝑀𝑁𝐺  during 

random exercise would be similar to the dynamics indices obtained by time-domain analysis, even 

with fewer exercise repetitions. In addition, we hypothesized that 𝑀𝑁𝐺 was independent of the 

testing day and the time of the day, demonstrating therefore that it can be used to evaluate the 

individual aerobic response during random exercise in humans. These results could set the stage 

for advancing frequency domain analyses outside the confines of the research laboratory to assess 

kinetics, and therefore an index of physical fitness, in activities common to daily living or athletic 

training. 

 

3.4 Methods 

3.4.1 Study Design 

Nine healthy, young adults (23 ± 2 years old, 171 ± 5 cm and 75 ± 14 kg), who were not athletically 

trained, participated in this study. All participants visited the laboratory four separate times to 

complete submaximal exercise protocols. The study was approved by the Office of Human 

Research of the University of Waterloo and was in agreement with Declaration of Helsinki. 
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On each visit, three successive PRBS sequences were completed in a single, continuous 

session. The signal related to the first PRBS in each visit was excluded a priori as a warm-up 

(Hughson et al., 1990) and the remaining PRBS (1 to 8) were considered under separate conditions 

defined by their time of day (morning and afternoon, separated by six hours) and by their different 

days (1 and 2, separated by one week). The tests were subsequently analyzed by condition and by 

the method of pre-processing including moving average and multiple tests averaging (see Table 

3). 
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Table 3. Description of the pseudorandom binary sequence (PRBS) protocols used to test the 

influence of some conditions and data pre-processing. 

   PRBS evaluated Repetitions 

Condition 

Time of the day 

Morning Average of 1+2+5+6 4 

Afternoon Average of 3+4+7+8 4 

Day 

1 Average of 1+2+3+4 4 

2 Average of 5+6+7+8 4 

Pre-processing 

 

Moving average 

3 1 1 

5 1 1 

7 1 1 

 

 

 

Repetitions 

1 1 1 

2 Average of 1+2 2 

3 Average of 1+2+3 3 

4 Average of 1+2+3+4 4 

5 Average of 1+2+3+4+5 5 

6 Average of 1+2+3+4+5+6 6 

7 Average of 1+2+3+4+5+6+7 7 

8 Average of 1+2+3+4+5+6+7+8 8 

 

3.4.2 Pseudorandom Binary Sequence Exercise Test (PRBS) 

All exercise tests were performed on an electrically braked cycle ergometer controlled by an 

external, pre-programmed module (Lode Excalibur Sport, Lode B.V., Groningen, Netherlands). 

The PRBS protocol (Figure 17B) was generated by a digital shift register with an adder module 

feedback (Bennett et al., 1981) (Figure 17A). The target 𝑊̇ (reached after <1.5 s of transition 
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following a modification of the ergometer controller) was 25 or 100 W, and the cadence was 

maintained at ~1 Hz. As described in Figure 17, the PRBS protocol comprised 15 units (25 or 100 

W) for 30 s (total of 450 s for each PRBS). 

 

 

Figure 17. Pseudorandom binary sequence protocol. 

A: illustration of the 4-stage shift register used to generate the pseudorandom binary sequence protocol 

(PRBS). The module addition feedback (Σ) sums the first and fourth stage values and tests the “if” 

statement. The value is then inserted into the first stage and the entire system shifts to the right, and the 

sequence repeats after 15 values. Each unit is maintained for 30s to create the PRBS protocol in the time 

domain (B). The system input stimulates the oxygen uptake (𝑉̇𝑂2) response (─), here represented by the 

mean signal of all participants (𝑛=9) during the first visit. C: Fourier transformations were used to convert 

the time-domain responses (B) into amplitudes at specific range of frequencies. 
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3.4.3 Data Acquisition and Analysis 

The 𝑉̇𝑂2 data were measured breath-by-breath by the Vmax system (CareFusion, San Diego, CA, 

US) that estimates the air volume through a low resistance mass flow sensor (accuracy of > 97%), 

the O2 pressure by an electro-chemical cell (accuracy of > 99%), and the 𝐶𝑂2 pressure by an 

infrared light with a thermopile (accuracy of > 99%). For one participant, the breath-by-breath 

𝑉̇𝑂2 data were measured by a portable metabolic system (K4b2, COSMED, Italy). The COSMED 

system gas analysis is based on a chemical galvanic 𝑂2  sensors (accuracy of > 99%) and an 

infrared absorption 𝐶𝑂2 sensor (accuracy of > 99%). Air volumes was also measured by a low 

resistance turbine (accuracy of > 98%). The gas concentrations and air volume/flow were 

calibrated following manufacturer’s specifications before each test. 

 

3.4.4 Frequency Domain Analysis 

The 𝑀𝑁𝐺 was calculated based on the frequency-domain data transformation. Firstly, data from 

the input (𝑊̇) and output (𝑉̇𝑂2) were inputted to frequency-domain analysis using a Discrete 

Fourier Transformation algorithm. The following sinusoidal function was solved for each 

harmonic 𝑛 (integer number): 

 

Equation 4 𝑉̇𝑂2(𝑡) = 𝑎𝐷𝐶 + 2 ∗ ∑ (𝐴ℎ ∗ 𝑐𝑜𝑠(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡) + 𝐵ℎ ∗ 𝑠𝑖𝑛(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡))
4
ℎ=1 ; 

 

where 𝑡  is the time, 𝑎𝐷𝐶  is the system DC offset amplitude (i.e., average response), 𝑓1  is the 

fundamental frequency (1/450 or 0.002 Hz in this case), 𝐴ℎ  and 𝐵ℎ  are the cosine and sine 

amplitudes for a given harmonic ℎ, respectively. From 𝐴ℎ and 𝐵ℎ, the total amplitude (𝐴𝑚𝑝) was 

computed for each ℎ by: 



 

61 
 

 

Equation 5 𝐴𝑚𝑝𝑛 = √𝐴ℎ
2 + 𝐵ℎ

2. 

 

The system gains for each 𝑛 (𝑔𝐴𝑚𝑝ℎ) were obtained by the ratio: 

 

Equation 6 𝑉̇𝑂2𝐴𝑚𝑝ℎ 𝑊̇𝐴𝑚𝑝ℎ⁄ . 

 

3.4.5 Isolating Temporal Dynamics From the Frequency Domain Responses 

The system gains were normalized as a percentage of the 𝐴𝑚𝑝 gain at the fundamental frequency 

(i.e, 𝑔𝐴𝑚𝑝1) (Hoffmann et al., 1994, 1992). Normalization isolates the temporal dynamics of the 

system by removing the influences of the total gain (i.e., steady-state gain) across the harmonic 

amplitudes. Therefore, based on the concept of the total harmonic distortion (Shmilovitz, 2005), 

the new index of system dynamics called mean normalized system gain (𝑀𝑁𝐺, expressed in %) 

was obtained by: 

 

Equation 7 𝑀𝑁𝐺 = (∑ 𝑔𝐴𝑚𝑝ℎ
4
2 3⁄ ∗ 100)/𝑔𝐴𝑚𝑝1; 

 

where the mean of the system gain amplitudes (𝑔𝐴𝑚𝑝ℎ) of the harmonics 2, 3 and 4 (ℎ=2, 3 and 

4) is normalized by the system gain of the fundamental harmonic (𝑔𝐴𝑚𝑝1). 

 

3.4.6 Time Domain Analysis 

The time domain analysis of the 𝑉̇𝑂2  data was conducted on a segment of the PRBS for 

comparison to the 𝑀𝑁𝐺  obtained by frequency domain analysis. To reduce the uncorrelated 
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interbreath noise (Keir, Murias, et al., 2014; Lamarra et al., 1987), the 𝑉̇𝑂2 signals were time 

aligned and ensemble-averaged to obtain a single response per participant from the eight PRBS 

(last condition described in Table 1). The data window length for time domain analysis included 

the final 10s of a 90s period of 25 W followed by 120s at 100 W (starting at the 120th second of 

the PRBS protocol). This exercise window corresponded to the longest period without input 

variation, thus the best window for time domain analysis within the PRBS protocol. The following 

equation was used to fit the 𝑉̇𝑂2 data (Hughson & Morrissey, 1982; Whipp et al., 1982): 

 

Equation 8 𝑉̇𝑂2(𝑡) = 𝑎0 + 𝑎 (1 − 𝑒
−(𝑡−𝑇𝐷 𝜏⁄ )); 

 

where 𝑡 is time; 𝑎0 is the baseline at 25 W; 𝑎 is the steady state amplitude at 100 W; 𝜏 is time 

constant (i.e., the “speed” of the system) and 𝑇𝐷 is the time delay of the exponential function 

onset. The initial data associated to the cardio-dynamic component were excluded prior to data 

fitting. The mean response time (𝑀𝑅𝑇) was calculated by adding 𝜏 and 𝑇𝐷 (Macdonald et al., 

1997). The quality of the fitting was assured by the analysis of squared error, coefficient of 

determination (𝑟2), 95% confidence interval band (𝐶𝐼95) (Fawkner et al., 2002; Keir et al., 2016) 

and the significance level (𝑝 value) of the estimated parameters. 

 

3.4.7 𝑴𝑵𝑮 vs. Time Constant 

Simulations of the 𝑉̇𝑂2 response stimulated by PRBS input were performed in order to determine 

the relationship between the time constant (for the simulations denoted 𝜏𝑠) and 𝑀𝑁𝐺, derived from 

time- and frequency-domain analysis, respectively. Similarly to 𝜏𝑠 , 𝑀𝑁𝐺  should extract 

information regarding the 𝑉̇𝑂2 system adaptation speed from random exercise stimulus which 
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ultimately is associated with aerobic fitness (Chilibeck et al., 1995; Hagberg et al., 1980; Hughson, 

2009; Powers et al., 1985). 

As previously described elsewhere (Hoffmann et al., 2013), an algorithm was created to 

simulate the 𝑉̇𝑂2 response to PRBS considering the function described above in the Time domain 

analysis section. This algorithm assumed a linear static and dynamic 𝑉̇𝑂2 gain (Eßfeld et al., 1991; 

Hoffmann et al., 1992) with no time delay, as expected in muscular 𝑉̇𝑂2 response (Hoffmann et 

al., 2013). Firstly, ten simulations were generated by arbitrarily selecting different combinations 

between 𝑎0 (250<𝑎0<650 ml·min-1), 𝑎1 (125<𝑎1<400 ml·min-1) and 𝜏𝑠 (15<𝜏𝑠<52 s) as described 

in Table 4. The average 𝐴𝑚𝑝  gain between the analysed frequencies and the 𝑀𝑁𝐺  are also 

described in Table 4. For further discussion, the physiological range of 𝜏 and 𝜏𝑠 was defined as 

10<𝜏 and 𝜏𝑠<100 s.  
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Table 4. Description of the parameter used for the computer simulations and the parameters 

obtained by frequency-domain analysis. 

Simulation 1 2 3 4 5 6 7 8 9 10 

𝒂𝟎 (ml·min-1) 300 400 350 250 200 150 125 350 250 330 

𝒂𝟏 (ml·min-1) 700 800 750 900 750 600 800 600 750 650 

𝝉𝒔 (s) 15 45 25 21 39 52 42 35 48 19 

Average 𝒈𝑨𝒎𝒑 (ml.min-1·𝑾̇-1) 7.9 5.2 7.0 9.0 5.4 3.5 5.5 4.6 4.6 6.8 

𝑴𝑵𝑮 (%) 86 58 74 79 61 54 59 64 56 81 

Abbreviations: 𝑎0: baseline; 𝑎1: steady state amplitude, 𝜏𝑠: exponential time constant of the simulations, 

𝑔𝐴𝑚𝑝: gain amplitude and 𝑀𝑁𝐺: mean normalized gain amplitude. 

 

The apparent system gains (Figure 18A) are dependent in the simulations on the values of 

𝑎0 and 𝑎1 as well as 𝜏𝑠. Thus, as shown in Figure 18B, the simple average of the absolute gains 

across the tested frequencies was not able to perfectly predict 𝜏𝑠 ; however, the normalization 

method used to obtain the 𝑀𝑁𝐺 was able to better isolate 𝜏𝑠 from the different system gains and 

baselines (Figure 18C). In addition to the simulations that used a physiological range of the 

parameters, more simulations were performed to further investigate the expected behaviour of the 

relationship between 𝑀𝑁𝐺 and 𝜏𝑠. These simulations (𝑛=10) used a constant 𝑎0 and 𝑎1 but varied 

𝜏𝑠 to extreme values (0.001, 0.1, 1, 5, 15, 35, 80, 200, 500 and 1500 s). Different combinations of 

harmonics (i.e., ℎ’s) to calculate 𝑀𝑁𝐺 (derived from equation 7) were also tested. Specifically, 

the following combinations between 𝑛 were tested for the 𝑀𝑁𝐺 calculation: 2 ≤ ℎ ≤ 3, 2 ≤ ℎ ≤ 4, 

2 ≤ ℎ ≤ 5 and 2 ≤ ℎ ≤ 10. The relationship between 𝑀𝑁𝐺 and 𝜏𝑠 (Figure 18C and Figure 19) was 

described by a sigmoid function. The x-axis scale in figure 19 was converted to 𝑙𝑜𝑔10 for a better 

visualization of this relationship. 
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Figure 18. Simulated response in frequency domain. 

A: mean ± SD of ten simulations of the system gain (𝑔𝐴𝑚𝑝) calculated in the frequency domain from data 

generated using different values of system time constants (𝜏𝑠), amplitudes and baselines (see Table 4). B: 

linear (─ ─) relationship between 𝜏𝑠  and the average absolute oxygen uptake gain between all tested 

harmonics (ℎ) for each of the ten simulations. C: mean ± SD of data displayed in A normalized by the 

𝑔𝐴𝑚𝑝 at ℎ1. The mean normalized gain (𝑀𝑁𝐺) was calculated as the mean of the 𝑔𝐴𝑚𝑝 between ℎ2, 

ℎ3and ℎ4 (please see text and equation 7). D: relationship between 𝜏𝑠 and 𝑀𝑁𝐺. This relationship was 

fitted by a linear (─ ─) and sigmoid (──) function. Notice in D that the normalization procedure isolated 

the relationship between amplitude and 𝜏𝑠 from other sources of system distortion such as system gain and 

baseline. The correlation coefficient “𝑟” was used to indicate the degree of correlation between 𝜏𝑠 and 

𝑀𝑁𝐺. Please see text for further details regarding the sigmoid function. 
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Figure 19. Computer simulations were performed to generate different oxygen uptake responses. 

Simulations considered different values of time constant (𝜏𝑠) that defines the speed of the oxygen uptake 

(𝑉̇𝑂2) adjustment to random exercise. The 𝑉̇𝑂2 data were transformed to frequency domain and the mean 

normalized gain amplitude (𝑀𝑁𝐺) was obtained considering the normalized system gain obtained from 

different frequency ranges. The equations describe how the 𝑀𝑁𝐺 was obtained from the 𝑉̇𝑂2 data. The x-

axis scale was converted to 𝑙𝑜𝑔10  for a better visualization of the sigmoidal characteristics of the 

relationship between 𝑀𝑁𝐺 and 𝜏𝑠. The symbols “●” represent the simulated data from Figure 18C. Please 

see equation 8 and text for further details regarding the equation parameters and procedures. Notice that the 

linear portion of the sigmoid function is always located at the physiological portion of tau values (i.e., from 

10 to 100 s). 

 

If more normalized gains from the simulated linear systems are considered into 𝑀𝑁𝐺 

calculation (equations in Figure 19), the sigmoid is shifted to left and the plateau for longer 𝜏𝑠 

became smaller. However, the physiological range (arrow in Figure 19) of 𝜏𝑠 was always located 

at the approximately-linear portion of the sigmoid, independently of the number of harmonics used 

to calculate 𝑀𝑁𝐺. The improvements (measured by the 𝑟 value) from the sigmoidal to the linear 

fitting was minimal (or 0.9 % as displayed in Figure 18C). Therefore, considering the model degree 

of freedom, the physiological range in 𝜏, and the error associated to the 𝜏 estimation from real data, 
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the relationship between 𝑀𝑁𝐺 and 𝜏 was simplified to a linear relationship (─ ─, in Figure 18B 

and C). The system analysis of the current study was limited to the fourth harmonic (Figure 18A, 

ℎ=4 or 0.008 Hz) because the 𝑉̇𝑂2 data, and presumably the aerobic system response, can be 

analyzed as a first order linear system (Hoffmann et al., 1992). Kinetics analyses and data 

simulations were performed by a certified (#100-314-4110) LabVIEW associated developer 

(National Instruments, Austin, TX, US). 

 

3.4.8 Statistical Analysis 

According to Shapiro-Wilk test, most of the data were normally distributed. The 𝑀𝑁𝐺  was 

compared between the different conditions (time of day, or different days) by paired t-test. One-

way repeated measures analysis of variance (ANOVA) was used to compare the 𝑀𝑁𝐺 obtained 

from different multiple test averaging repetitions and between different filtering levels. Student-

Newman-Keuls method was selected for post hoc analysis. Paired t-test was used to compared the 

the individual 𝐶𝐼95 and the squared error between different linear regrssions. 

To compare the 𝑀𝑁𝐺  obtained from different quantities of similar PRBS averaged 

together before data analysis, the eight-repetition signal was used as the “gold standard” since it 

was the dataset with the highest signal-to-noise ratio. The impact of the moving average filtering 

(Table 4) was assessed by comparing the different filtering levels applied over the first PRBS 

protocol signal with the raw signal from this same protocol. When appropriate, sample size was 

calculated using Student t-test or paired t-test as the test reference and considering the SD of the 

𝑀𝑁𝐺 with the power set at 0.8. The linear correlation was measured by Pearson product-moment 

correlation coefficient (𝑟) and the agreement level was assessed by Bland-Altman plot and the 

𝐶𝐼95 (Altman & Bland, 1983). For all statistical tests, the null hypothesis was rejected at p ≤ 0.05. 
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Statistical analysis was conducted in SigmaPlot 12.5 software (Systat Software, San Jose, CA, 

US). 

 

3.5 Results 

3.5.1 𝑴𝑵𝑮 vs. 𝝉 

The values and the representation of the parameters obtained by the time-domain kinetics analysis 

are displayed in Figure 20. As a reference, the mean 𝑉̇𝑂2 response (𝑛=9) in Figure 20 was fitted 

by an exponential function in the time-domain. The function 𝑇𝐷 was 16.66 ± 4.45 s. 

 

 

Figure 20. Oxygen uptake during transition. 

Mean ± SD (vertical gray bars) of the oxygen uptake (𝑉̇𝑂2) response between all participants (n=9). In 

addition to the reference lines (•••), the mean response was fitted by a mono-exponential function (─) to 

demonstrate the parameters baseline (𝑎0), steady state response (𝑎1), time to reach 63% of the steady state 

(𝜏) after a given time delay (𝑇𝐷) and the mean response time (𝑀𝑅𝑇 or 𝑇𝐷 + 𝜏). 
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 Figure 21 shows the correlation between 𝜏 and 𝑀𝑁𝐺 obtained by time- and frequency-

domain analysis, respectively. Both parameters were obtained based on eight-repetition dataset. 

For visual comparison, the simulated data displayed in Figure 18C are also plotted in Figure 21. 

The 𝑀𝑁𝐺  of the experimental data were consistently less for all participants than the values 

obtained with the simulated data for any value of 𝜏. 
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Figure 21. Time constant and mean normalized gain. 

Relationship between time constant (τ) and mean normalized gain (𝑀𝑁𝐺). The 𝑀𝑁𝐺 and 𝜏 were obtained 

from eight repetitions of the pseudorandom binary sequence test is shown in comparison to the simulated 

data (solid line for 𝑀𝑁𝐺 vs. 𝜏𝑠 as in Figure 18C). Correlation coefficient (𝑟) = -0.754, 𝑝 = 0.019 (𝑛=9). 

 

3.5.2 Influence of Time of Day and Between Days 

The 𝑀𝑁𝐺 was statistically similar between time of day (𝑝=0.117) and between days (𝑝=0.104). 

Figure 22 shows the relationship and the agreement level of the 𝑀𝑁𝐺 obtained during the morning 

and afternoon (Figure 22A and C) and in different days (Figure 22B and D). The 𝑀𝑁𝐺  was 
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strongly correlated between the time of day (morning vs. afternoon) and between days (day 1 vs. 

day 2). The bias of the 𝑀𝑁𝐺 calculation represented 5.43 and 6.26 % of the total 𝑀𝑁𝐺 variation 

during the different time of the day and between days, respectively. The 𝐶𝐼95 were equivalent to 

16.43 and 19.85 % of the total 𝑀𝑁𝐺 variation of the sample for the different time of the day and 

between days, respectively. 
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Figure 22. Mean normalized gain amplitude consistency. 

Correlation between the mean normalized gain amplitude (𝑀𝑁𝐺) estimated under the influence of different 

time of the day (A, Morning vs. Afternoon) and different day of testing (B, Day 1 vs. Day 2). The agreement 

level between the factors plotted in A and B are displayed in C and D, respectively. Abbreviation: 𝑟: 

Pearson’s correlation level, 𝑝: statistical significance level and 𝑛: sample size. 
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3.5.3 Influence of the Averaging Level and Number of Repetitions 

The different moving average filtering levels (3, 5 or 7) have not impacted the 𝑀𝑁𝐺 estimation 

during the first PRBS protocol. The correlation coefficient 𝑟 was 0.99 for all levels in comparison 

to the raw signal without filtering. In addition, the bias and the 𝐶𝐼95 between all filtering levels 

and the raw signal was minimal (< ~1 %). 

 Figure 23A displays the correlation level between the 𝑀𝑁𝐺 calculated based on the 𝑉̇𝑂2 

signal obtained from different number of exercise repetitions with the eight repetitions as 

reference. The correlation coefficient r stabilized at ~ 0.95 after three exercise repetitions. The 

average of more than two datasets seemed to be enough to reach statistical significance (Figure 

22B) in comparison to eight repetitions. The bias (Figure 23C) of using a single dataset in 

comparison to eight repetitions was -3.7 % and became steady at ~ 0.9 % when more than two 

repetitions are considered. The 𝐶𝐼95  (grey area in Figure 23C) progressively decreased as the 

number of repetitions increased but it stabilized after three repetitions. 
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Figure 23. Mean normalized gain and exercise repetition. 

Correlation coefficient (𝑟) level (A), 𝑝 value (B), bias and the limits of agreement (𝐶𝐼95, C) of the mean 

normalized gain amplitude (𝑀𝑁𝐺) estimated from different combination of exercise repetitions (1 to 7) 

with eight ensemble-averaged repetitions. 

 

 Figure 24 illustrates the sample size needed to find statistical significance for a given 

effect size (changes in 𝑀𝑁𝐺 ) by Student t-test (Figure 24A) or Paired t-test (Figure 24B) 

considering different number of repetitions averaged together before data analysis. The 

relationship between sample size and the effect size suggested an exponential-decay-like function. 
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The sample size was independent from the number of repetitions, except for the single repetition 

that apparently needs a higher effect size to be detected by statistical analysis. In addition, the 

sample size seemed to stabilize at ~10 participants after an effect size higher than ~8 %, 

independently of the number of repetitions. 
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Figure 24. Effect size and mean normalized gain. 

Relationship between the expected differences (effect size) in the mean normalized gain amplitude (𝑀𝑁𝐺) 

and the sample size needed to find statistical significance by A: student t-test or B: paired t-test considering 

different number of exercise repetitions (symbols). The desired power and the significance level considered 

for the sample size calculations were 0.8 and 0.05, respectively. 

 

3.6 Discussion 

In agreement with our initial hypothesis, the calculation of mean normalized gain (𝑀𝑁𝐺) was able 

to characterize the temporal dynamics of 𝑉̇𝑂2 to random exercise input being strongly correlated 

with the time domain indicator, 𝜏, obtained in the same persons. The 𝑀𝑁𝐺 eliminates the expected 

differences in static gain between individuals by expressing the dynamic response as a percentage 

of the fundamental harmonic value. The comparison of 𝑀𝑁𝐺 against the time-domain 𝑉̇𝑂2 kinetics 

analysis was shown to be independent of the period of the day, the day of the test and the filtering 
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technique used. The detection of differences in 𝑀𝑁𝐺 was independent of the number of exercise 

repetitions for differences higher than ≈ 8 % which correspond to a 𝜏 variation of ≈ 15 s. Further, 

these data are important for the experimental design of further studies by informing the number of 

repetitions necessary according to an expected effect size (Figure 24). 

The breath-by-breath fluctuation (Lamarra et al., 1987) during exercise transitions adds 

uncertainty to time-domain parameters prediction, mainly from a single test dataset. The 

confidence interval of the estimated 𝜏, and therefore the “sensitivity” to identify aerobic fitness 

differences, depends on the 𝑉̇𝑂2 signal-to-noise ratio (Keir, Murias, et al., 2014; Lamarra et al., 

1987), the model complexity (i.e, the degree of freedom) (Motulsky & Ransnas, 1987) and the 

selected data window (Bell et al., 2001; Murias, Spencer, Kowalchuk, & Paterson, 2011a). To 

increase signal-to-noise ratio, studies commonly repeat similar tests multiple times within the same 

session (Christensen et al., 2016; Ozyener et al., 2001) or on different days (Keir, Nederveen, et 

al., 2014; Whipp et al., 1982) and average repetition-like transitions before time-domain data 

modeling. 

The frequency-domain analysis has some advantages over the time domain approach. 

Firstly, no explicit data modeling with a degree of arbitrariness is necessary (Eßfeld et al., 1987) 

since the 𝑉̇𝑂2 time series can be decomposed, and therefore rebuilt from the infinite sum of its 

harmonic components (Hughson et al., 1990). Second, the random noise associated with 𝑉̇𝑂2 

measured at the mouth (Lamarra et al., 1987) is filtered when transferred into frequency space, 

diminishing the impact of the inter-breath oscillations over the 𝑉̇𝑂2 dynamics characterization. 

The early studies from Efeld et.al (Eßfeld et al., 1991) and Hoffmann et. al. (Hoffmann 

et al., 1992) were the first to normalize the system gain amplitudes by the amplitude at the 

fundamental harmonic (i.e., 𝑔𝐴𝑚𝑝1 in equation 7). They successfully showed that a faster 𝑉̇𝑂2 
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kinetics maintained a higher normalized gain across the frequency spectrum. However, since the 

focus of their experiments was to investigate possible aerobic system controllers, no further 

comparisons were carried out to explore the applicability of this normalization for the 𝑉̇𝑂2 

temporal dynamics assessment. Other studies used the absolute system gain to infer about 𝑉̇𝑂2 

dynamics (Eßfeld et al., 1987; Hughson et al., 1990, 1991). In fact, the use of absolute gains may 

be sufficient for intra-subject comparisons since the system static gain seems to remain constant 

as the aerobic system “speeds up” after training (Christensen et al., 2016). However, for the 

comparison between subjects by an absolute index such as 𝜏, the gain has to be normalized. 

We demonstrated by computer simulations (Table 2, Figure 18) that 𝑀𝑁𝐺 was able to 

characterize the temporal characteristics of the aerobic system by comparing 𝑀𝑁𝐺 with 𝜏𝑠. The 

𝑀𝑁𝐺 refined the ability of the Fourier transformation to separate the system dynamic gain from 

the static gain, isolating therefore the rate at which the aerobic system supplies the energy demand 

(i.e., power) from the capacity of the aerobic system to supply the demand at steady state. The 

latter is susceptible to inter-individual variability which confounds the interpretation of the 

temporal dynamics based on the system absolute gains (as demonstrated in Figure 18B). 

In the experimental data (Figure 21), we demonstrated that the 𝑀𝑁𝐺  was significantly 

correlated to 𝜏 (used as reference). The 𝜏 calculated from eight repetitions has an intrinsic non-

physiological variability that could be associated with the low signal-to-noise ratio as a consequence 

of noise, short data window and/or elevated modeling degrees of freedom. The 𝐶𝐼95  of the 𝜏 

estimation between all participants (𝑛=9) was 6.76 ± 3.89s which represented ~20 % of the average 

𝜏 value. In contrast, the 𝑀𝑁𝐺 presented a lower variability in comparison to 𝜏 due to the inherent 

noise reduction and the lower degrees of freedom of the proposed method.  
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As demonstrated in Figure 21, the relationship between 𝜏 and 𝑀𝑁𝐺  was systematically 

below the simulated data (𝑀𝑁𝐺 vs. 𝜏𝑠, Figure 21 and 18C). There are two possible explanations for 

this. Firstly, following Hoffmann et. al. (Hoffmann et al., 2013) and as expected to occur in the 

muscle, the simulations were generated based on a non-delayed exponential response (single time 

constant 𝜏𝑠, no 𝑇𝐷). However, the 𝑉̇𝑂2 response at the mouth is classically described as a delayed 

exponential response (single time constant 𝜏 with a 𝑇𝐷). The addition of the 𝑇𝐷 term to the fitting 

model is a mathematical way to account for the “latency” period when the muscle responses have 

not started to be expressed at the mouth level due to circulatory transient time. Like the phase shift 

obtained from frequency-domain analysis (Eßfeld et al., 1987), the parameter 𝑇𝐷 has an elevated 

variability between subjects without main physiological relevance. Therefore, comparing the 

exponential characteristics (i.e., 𝜏) of the 𝑉̇𝑂2  response at the mouth to the simulated data 𝜏𝑠 

appears to show an incorrect gain amplitude generated at the muscle in higher frequencies 

effectively “slowing down” the response in frequency domain (i.e., lower 𝑀𝑁𝐺 values). A possible 

way to account for this issue is to consider the sum of 𝜏 and 𝑇𝐷, or the mean response time (𝑀𝑅𝑇), 

as the “effective” muscular 𝑉̇𝑂2 time constant measured at the mouth level (Linnarsson, 1974; 

Whipp & Ward, 1990). In comparison to Figure 21 and as depicted in Figure 25, the addition of 𝑇𝐷 

term brings the relationship between 𝑀𝑅𝑇 and 𝑀𝑁𝐺 in line with the simulated data. Despite the 

apparent differences in 𝑟 and 𝑝 values for the 𝑀𝑁𝐺 vs. 𝑀𝑅𝑇 compared to the 𝑀𝑁𝐺 vs. 𝜏 (𝑟 = -

0.682, 𝑝 = 0.043 and 𝑟 = -0.754, 𝑝 = 0.019 respectively for 8 repetitions), the 𝐶𝐼95 and the squared 

error were statistically similar (𝑝 > 0.05 by paired t-test) considering the individual responses. 

Therefore, the inclusion of the 𝑇𝐷 did not alter the relationship between 𝑀𝑁𝐺 and the time-domain 

dynamics indicators (𝜏 or 𝑀𝑅𝑇). 
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Figure 25. Mean response time and mean normalized gain. 

Relationship between mean response time (𝑀𝑅𝑇) and mean normalized gain (𝑀𝑁𝐺), each obtained from 

8 repetitions of the pseudorandom binary sequence test is shown in comparison to the simulated data (solid 

line for 𝑀𝑁𝐺 vs. 𝜏𝑠 as in Figures 18C). Correlation coefficient (𝑟) = -0.682, 𝑝 = 0.043 (𝑛=9). 

 

An alternative explanation of why the 𝑀𝑁𝐺 based on the experimental data is below the 

simulated data (Figure 21) is based on the 𝑉̇𝑂2 system linearity. The 𝑉̇𝑂2 measured at the mouth 

presented a certain degree of energy dispersion across the spectrum due to circulatory distortions 

and/or all the assumptions that are necessary to obtain an estimate of 𝑉̇𝑂2 from ventilatory and gas 

concentration signals. In contrast, the data simulation was based on a purely linear system that did 

not present any source of distortion beyond the one related to the exercise stimulus. In the 

simulations, all energy applied to the system was perfectly converted into the same-order output 

response by the superposition law, maintaining a higher gain across the frequencies. The possibility 

exists that even in the range of input stimulation frequencies assumed to result in linear output 
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(𝑉̇𝑂2) (Hoffmann et al., 1992) that nonlinearities exist effectively lowering the system response at 

the higher frequencies. 

 

3.7 Limitations 

The intrinsic degree of uncertainly associated with 𝜏 estimated from the exponential modeling 

precludes the use of 𝜏 as a “gold standard” method to validate the use of 𝑀𝑁𝐺 to assess the system 

temporal dynamics. The 𝐶𝐼95  of the relationship between 𝜏  (and 𝑀𝑅𝑇 ) with 𝑀𝑁𝐺  might be 

influenced by the elevated 𝐶𝐼95 of 𝜏 estimation (and 𝑇𝐷 for 𝑀𝑅𝑇). Therefore, there is an expected 

source of error also in the reference method (time domain) which complicates the validation 

method. Our data showed that a faster 𝑉̇𝑂2 response will be translated to a higher 𝑀𝑁𝐺 or a lower 

𝜏 and 𝑀𝑅𝑇; however, the ability of the 𝑀𝑁𝐺 to extract this information from 𝑉̇𝑂2 data seemed 

optimized and more sensitive to detect differences in the system temporal dynamics due to its 

inherent filtering characteristics and the lower degrees of freedom.  

As a Fourier transformation criterion, the proposed method assumes a symmetrical 𝑉̇𝑂2 

dynamic between the exercise onset and recovery transitions. However, the 𝑉̇𝑂2 signal may be 

composed of asymmetries between these two phases during exercise intensities higher than 

moderate (Markovitz et al., 2004; Ozyener et al., 2001). The highest intensity used in the current 

study (100 watts) was restricted to moderate intensity (Bennett et al., 1981; Eßfeld et al., 1987; 

Hughson et al., 1988); therefore, the 𝑀𝑁𝐺  can be compared to the 𝜏  obtained from the 𝑉̇𝑂2 

response during the onset exercise transition. 

Although the frequency range selected in the current study limits the 𝑉̇𝑂2 response to a 

range where the system linearity is reportedly preserved (Hoffmann et al., 1992) the 𝑀𝑁𝐺 might 

still be susceptible to system non-linearities originating from circulatory distortions or some sort 
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of periodic noise can be present at higher frequencies. Further studies might explore the application 

of specific filtering techniques (Eßfeld et al., 1987; Hoffmann et al., 1992) to remove 

noises/responses uncorrelated to exercise in order to increase even more the precision of the 

proposed index to characterize the temporal dynamics of the 𝑉̇𝑂2 response. However, consistent 

with the purpose of this index, we successfully showed that a faster aerobic response can be 

characterized by a higher 𝑀𝑁𝐺 since that the majority of the evaluated harmonics were probably 

linear. 

 

3.8 Conclusion 

Characterization of physical fitness has classically been conducted by measurement of maximal 

𝑉̇𝑂2 (Astrand & Saltin, 1961; Drake, Jones, Brown, & Shephard, 1968). Varying levels of physical 

fitness and the effects of training programs are also associated with differing kinetics of adaptation 

of 𝑉̇𝑂2, expressed by 𝜏, to the challenge of a step increase in 𝑊̇ (Phillips, Green, MacDonald, & 

Hughson, 1995). 

The 𝑀𝑁𝐺 has the potential to identify changes in the temporal aerobic system dynamics. 

The applicability of our findings may extend beyond controlled exercise protocols. Indeed, 𝑀𝑁𝐺 

has the potential to be used in the future for the evaluation of the temporal dynamics of the aerobic 

response during completely random activities, such as activities of daily living. The inherent 

filtering characteristics, the need for no model assumption and the low variability between days 

and time of the day seems to make 𝑀𝑁𝐺 reliable for the evaluation of the aerobic system temporal 

dynamics. Additionally, because 𝑀𝑁𝐺 is expressed as a % of the fundamental harmonic, it can be 

applied to comparisons of system dynamics across the variables contributing to the delivery and 

utilization of oxygen independent of their formal units. In conclusion, the present study 
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successfully validated the use of the 𝑀𝑁𝐺 for a precise aerobic system analysis based on random 

exercise stimulus.  
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Chapter 4: Estimating Oxygen Uptake and Energy Expenditure During 

Treadmill Walking by Neural Network Analysis of Easy-to-Obtain Inputs 

This chapter is published as: 

Beltrame, T., Amelard, R., Villar, R., Shafiee, M. J., Wong, A., & Hughson, R. L. (2016). 

Estimating oxygen uptake and energy expenditure during treadmill walking by neural network 

analysis of easy-to-obtain inputs. Journal of Applied Physiology, 121, 1226–1233.   
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4.1 Overview 

The study of oxygen uptake (𝑉̇𝑂2) dynamics during walking exercise transitions adds valuable 

information regarding fitness. However, direct 𝑉̇𝑂2 measurements are not practical for the general 

population under realistic settings. Devices to measure 𝑉̇𝑂2 are associated with elevated cost, 

uncomfortable use of a mask, need of trained technicians and impossibility of long-term data 

collection. The objective of this study was to predict the 𝑉̇𝑂2 dynamics from heart rate and inputs 

from the treadmill ergometer by a novel artificial neural network approach. To accomplish this, 

ten healthy young participants performed one incremental and three moderate constant work rate 

treadmill walking exercises. The speed and grade used for the moderate intensity protocol was 

related to 80 % of the 𝑉̇𝑂2 response at the gas exchange threshold estimated during the incremental 

exercise. The measured 𝑉̇𝑂2 was used to train an artificial neural network to create an algorithm 

able to predict the 𝑉̇𝑂2 based on easy-to-obtain inputs. The dynamics of the 𝑉̇𝑂2 response during 

exercise transition were evaluated by exponential modelling. Within each participant, the predicted 

𝑉̇𝑂2 was strongly correlated to the measured 𝑉̇𝑂2 (𝑟 = 0.97 ± 0.0) and presented a low bias (~ 0.2 

%), enabling the characterization of the 𝑉̇𝑂2 dynamics during treadmill walking exercise. The 

proposed algorithm could be incorporated into smart devices and fitness equipment, making them 

suitable for tracking changes in aerobic fitness and physical health beyond the infrequent 

monitoring of patients during clinical interventions and rehabilitation programs. 

 

4.2 New & Noteworthy 

New technologies for the continuous assessment of aerobic fitness based on oxygen uptake data 

have the potential to be used for the early detection of deterioration of physical health. However, 
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direct oxygen uptake is costly, cumbersome and not applicable for the general population. An 

artificial neural network was trained to predict the oxygen uptake signal from easy-to-obtain 

inputs, possibly allowing future investigations of changes in aerobic fitness with higher 

applicability for general population. 

 

4.3 Introduction 

Walking is a common activity of daily living having strong association with good health and 

quality of life (Collins et al., 2011). During treadmill walking, speed, grade, and body mass are 

key variables affecting energy demand (Pescatello, 2014), and these variables are treated as 

physiological system inputs into models to predict output responses, such as, oxygen uptake (𝑉̇𝑂2). 

However, equations based on these variables are valid only in steady state and do not have 

applicability for walking transitions due to the delayed 𝑉̇𝑂2 response. The 𝑉̇𝑂2 dynamics during 

an exercise transition are related to the ability of the aerobic system to supply the energetic demand 

as fast as possible which is ultimately associated with aerobic fitness (Chilibeck et al., 1995; 

Powers et al., 1985). Nevertheless, direct measurements of 𝑉̇𝑂2 are not feasible for the general 

population in realistic, natural settings. Devices to directly measure 𝑉̇𝑂2 have a high cost, require 

an uncomfortable mask, need trained technicians and are not capable of long-term data collection. 

An alternative approach might be to consider inputs from simple physical and physiological 

responses that can be processed with machine learning algorithms (Staudenmayer, Pober, Crouter, 

Bassett, & Freedson, 2009) to obtain more generalizable system output of the 𝑉̇𝑂2 with low bias 

and variance error to the point at which the prediction can be also applied to the dynamic phases 

of treadmill walking.  
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The study of 𝑉̇𝑂2  dynamics during exercise transitions adds valuable information 

regarding aerobic fitness level (Buchheit et al., 2009; Carter et al., 2000; Hagberg et al., 1980; 

Hickson, Bomze, & Hollozy, 1978), severity of some diseases (Borghi-Silva et al., 2012; Pessoa 

et al., 2013), functional mobility (Alexander et al., 2003) and mortality rates (Brunner-La Rocca 

et al., 1999; Schalcher et al., 2003). The potential to predict 𝑉̇𝑂2 based on easy-to-obtain inputs is 

of great interest for the development of tools for fitness and activity level evaluation on a daily 

basis. Such tools might be used to easily track changes in aerobic responses across the lifespan 

allowing monitoring of patients during clinical interventions and rehabilitation programs, and in 

natural settings. 

The main objective of this study was to use input variables (treadmill speed and grade, 

participant body mass and sex, exercise/recovery time and heart rate (𝐻𝑅)) along with novel 

processing techniques to build a 𝑉̇𝑂2 dynamics predictor. Precise predictions will allow not only 

the investigation of energy expenditure (𝐸𝐸) but the assessment of the 𝑉̇𝑂2 dynamics during on-

transitions that could have more relevance to activity patterns of daily living. It was hypothesized 

that 𝑉̇𝑂2 and consequently EE could be predicted for an individual during the dynamic and steady-

state phases of treadmill walking from system characteristics derived from a larger population. 

The predicted 𝑉̇𝑂2 might be used in the future to assess the aerobic system dynamics from easy-

to-obtain variables under conditions of normal daily living. 

 

4.4 Materials and Methods 

4.4.1 Participants 

Five healthy young men (age 29.8 ± 7.6 years, height 178.4 ± 11.2 cm, body mass 75 ± 11.3 kg) 

and five healthy young women (age 22.8 ± 0.7 years, height 165.2 ± 7.5 cm, body mass 62.1 ± 5.8 
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kg) participated in this study. They were evaluated during walking activities on a previously 

calibrated treadmill (error lower than 1·10-4% for speeds between 0.5 to 8 km.h-1) (Bodyguard, St-

Georges, QC, Canada). No volunteers reported any cardiovascular or orthopedic complications 

that impeded them from performing the tests. A University of Waterloo Research Ethics 

Committee reviewed and approved the research procedures, being in agreement with Declaration 

of Helsinki. Participants provided written informed consent after receiving complete written and 

detailed overview of the experimental procedures with potential risks involved and their right to 

withdraw from the study at any time without prejudice. Volunteers were instructed to refrain from 

consuming a large meal within 2 h of testing as well as alcohol, caffeinated beverages, and high 

intensity exercise for 24 h before testing. 

 

4.4.2 Experimental Design 

Prior to performing the experimental protocols, each participant’s height and body mass were 

measured and 3-lead electrocardiogram (ECG) electrodes were applied over the skin. Each 

individual was familiarized with the protocols and trained to step on the treadmill in motion 

according to speed and grade requirements to achieve a step transition in work rate. 

Data were collected in two separate visits; the first visit consisted of absolute walking 

speeds (1, 3 and 4.5 km·h-1) with at least 20 min rest between each bout; an incremental test 

followed the final stage. The second visit consisted of three moderate intensity walking tests. With 

the exception of the incremental protocol, the constant work rate protocols were comprised of 1 

min of baseline standing at the treadmill edge followed by 6 min walking at selected speeds and 

grades followed by a resting period of 6 min standing. 

The incremental walking protocol consisted of 1 min baseline, 6 min warm-up at  



 

86 
 

4.5 km·h-1, followed by a new increment in speed to individual maximum walking speed as 

previously determined by a treadmill walking test (~3.6 ± 0.3 km·h-1) and then progressive 

increments in grade (1%·min-1). The test was terminated when participants reached 80% of their 

predicted maximal heart rate. The incremental exercise protocol was performed to establish the 

gas exchange threshold (Beaver et al., 1986).  

During the second visit, participants performed three moderate walking bouts at the speed 

(3.9 ± 0.1 km·h-1 for men and 3.4 ± 0.1 km·h-1 for women) and grade (5.9 ± 2 % for men and 7.6 

± 0.4 % for women) corresponding to 80% of their 𝑉̇𝑂2 at the previously defined gas exchange 

threshold (Ozyener et al., 2001). The rest periods between all walking bouts lasted at least 20 min 

in the same day and 48 h between days of testing in order to minimize any carry over effect between 

protocols and/or day. To avoid anticipatory responses, the treadmill operated in the target speed 

and grade for at least 5 min prior to testing. A computer screen in front of the participant at eye 

level height displayed a message to indicate when they should start and stop walking on the 

treadmill.  

 

4.4.3 Data Acquisition 

The pulmonary 𝑉̇𝑂2  and carbon dioxide output (𝑉̇𝐶𝑂2) were measured breath-by-breath. The 

inhale/exhale air volumes and flows were measured by a low dead space bidirectional low 

resistance turbine (UVM-1725, Vacumed, Ventura, California, US) attached to an air cushion 

mask (Vacumed, Ventura, California, US). The total dead space of the system was 170 mL. The 

turbine was calibrated prior to each test using a 3 L syringe using different flow rates (0.5 to 2 L·s-

1). Air samples inside the mask were sent to a mass spectrometer (Amis 2000, Innovision, Odense, 

Denmark) by a short sample line (~1.5 m). Gas concentrations were calibrated using precise 
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medical gas tanks with known O2, CO2, N2, and Ar concentrations (Praxair Canada Inc., 

Mississauga, ON, Canada). The signals from the turbine and mass spectrometer were synchronized 

and then used to estimate 𝑉̇𝑂2 and 𝑉̇𝐶𝑂2 signals using the First Breath software (Waterloo, ON, 

Canada).  

The beat-by-beat 𝐻𝑅 was derived from the electrocardiogram signal (Pilot 9200, Colin 

Medical Instruments, San Antonio, TX, US) by a specific routine on software LabChart 7.3.7 

(ADInstruments, Colorado Springs, CO, US) that identifies the “R” peaks in the ECG signal.  

 

4.4.4 Machine Learning and Data Analysis 

4.4.4.1 Oxygen Uptake Predictor 

Data containing inputs (treadmill speed and grade, participant body mass and sex, 

exercise/recovery time and 𝐻𝑅) and the output (𝑉̇𝑂2) were time synced and 2 Hz re-sampled by 

linear interpolation, resulting in ~1·105 samples for each variable. Data mining was performed in 

the KnowledgeFlow environment in WEKA (version 3.7, University of Waikato, Hamilton, New 

Zealand) (Hall et al., 2009). 

To ensure generalizability, all tested algorithms were validated by 10-fold leave-one-out 

cross-validation (Witten & Frank, 2005). As illustrated in Figure 26, the predictor was created 

based on the training dataset from nine participants and the remaining participant data were used 

to test the algorithm accuracy (testing dataset). The mined input-output relationships from nine 

participants were used to generate the algorithm to translate the inputs from the remaining 

participant into 𝑉̇𝑂2 signal (output). The accuracy of the predictor was computed and then, the 

order of the data folds changed nine more times (Figure 26). The training and testing datasets did 
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not contain any overlapping participants to avoid erroneously high accuracy of the predictor 

(Witten & Frank, 2005). 

 

 

Figure 26. Flowchart of the machine learning algorithm validation.  

Data were split according to the 10-fold leave-one-out cross-validation method where nine participants 

(training dataset) were used to create a predictor that was validated over the remaining participant (testing 

dataset). In total, 10 folds were generated. The input-output relationship in the training dataset was used to 

generate an algorithm that predicts the output based on input signals. Some machine learning (ML) 

parameters can be optimized in order to improve their predictions. 

 

The overall algorithm performance was measured by the average of the Pearson’s 

correlation coefficient ( 𝑟 ) to verify the degree of linear correlation between predicted and 

measured signal (Mukaka, 2012) of all folds from the validation process.  
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Subsequently to the definition of the validation process, the machine learning algorithms 

for numerical attributes were tested one-by-one using WEKA’s software optimized default 

parameters. The best predictions were generated by the artificial neural network (ANN) schemes. 

These algorithms are based on the propagation of the electrical impulses of biological neurons and 

how these cells interact and learn with the external environment. Like biological nervous tissues, 

ANN has to experience the cause/effect (examples) of a given problem before being able to predict 

it. The cause (i.e., inputs) should travel throughout the ANN to be compared with an effect (i.e., 

outputs). In this way, individual weights and thresholds are learned based on the importance of 

each artificial neuron in the final output prediction. Following a stimulus, the signal back-

propagates through the neuron layers in order to tune the influence of each neuron on the signal 

prediction.  

Between all tested ANN schemes, the multi-layer perceptron regressor (𝑀𝐿𝑃𝑅𝐴𝑁𝑁 ) 

presented the best results. 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  is a single-hidden-layer ANN which generates simpler 

algorithms (Carter et al., 2000) with more applicability for embedded systems. The signal 

propagation across each neuron inside 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  was optimized by a built-in function in the 

WEKA algorithm that minimizes the squared error additionally to a quadratic penalty using 

Broyden-Fletcher-Goldfarb-Shanno algorithm (Luenberger & Ye, 2015). Changing the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 

parameters arbitrarily (such as pool size, ridge, number of neurons and learning tolerance), the 

only factor that was consistently influencing the prediction quality was the number of artificial 

neurons. Therefore, the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 optimization focused on the best number of neurons distributed 

across the single hidden layer. The optimization process started with a single neuron and then one 

neuron was cyclically added into the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁. The prediction precision based on the number of 



 

90 
 

neurons indicated that the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 composed by eleven neurons presented the highest r (Figure 

27).  
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Figure 27. Number of artificial neurons and correlation coefficient. 

Influence of the number of neurons on the pulmonary oxygen uptake (𝑉̇𝑂2) prediction by an artificial neural 

network generated by multi-layer perceptron regressor. The heteroscedasticity of the mean correlation level 

(𝑟) between all tested datasets increases for networks with more than fourteen artificial neurons probably 

due to data overfitting. The network composed by eleven neurons (●) presented the highest 𝑟. 

 

The selected 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 was comprised of seven inputs (sex, body mass, time of exercise 

(time on), time of recovery (time off), grade, speed and 𝐻𝑅), eleven hidden neurons and a single 

output neuron for the prediction of the 𝑉̇𝑂2 (Figure 28). 
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Figure 28. Artificial neural network for the prediction of oxygen uptake.  

Selected artificial neural network (𝐴𝑁𝑁) for the prediction of oxygen uptake (𝑉̇𝑂2) during treadmill 

walking exercise. The inputs were sex, body mass, time of exercise (time on), time of recovery (time off), 

grade, speed and heart rate (𝐻𝑅). This network is composed by seven input, eleven hidden and a single 

output neuron. 

 

The influence of the sample size was also tested. Randomly removing participant’s datasets 

from the data pool, the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 precision followed a positive linear relationship with the sample 

size, but for sample sizes higher than eight participants, 𝑟 was virtually steady representing an 

upper bound for 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  predictions. When a participant’s own data were incorporated for 

training and testing the algorithm, the upper bound precision was 𝑟 = 0.98, or 0.01% higher than 

findings without that participant’s data included. Therefore, once our sample size is producing 

predictions close to the upper bound values, more participants should produce similar results. 
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4.4.4.2 Energy Expenditure Estimation 

In order to compare the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 EE estimation with the most common method proposed by the 

American College of Sports Medicine (ACSM) (Humphrey, 2006; Pescatello, 2014), another 

simpler 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 was trained using the same approach previously described. The validation and 

parameters optimization methods were also the same as previously described, but only grade, 

speed and body mass were considered as inputs, matching ACSM method, and the steady state 

𝑉̇𝑂2 as output. The output for the EE prediction was obtained from the average of the 𝑉̇𝑂2 data 

during the last min of each absolute (day 1) and moderate (day 2) constant work rate protocol). A 

single-neuron 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 was found to be the most appropriate for EE estimation. The EE predictor 

was composed by the inputs weighting and a single nonlinear neuron transfer function defined by 

the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  method. For the sake of comparison, the steady state 𝑉̇𝑂2 was converted to EE 

(cal.min-1) by dividing the final value by 200 according to ACSM (Pescatello, 2014).  

 

4.4.4.3 Oxygen Uptake Dynamics Characterization 

The 𝑉̇𝑂2 kinetic analysis was used to characterize the aerobic system dynamics during moderate 

walking exercise transition. The 𝑉̇𝑂2 signal experimentally obtained and the predicted values by 

the proposed algorithm were used in this investigation. Data from the average of the three 

repetitions of the transition for each participant were 5 s bin averaged, time aligned (time zero 

being the rest-to-exercise transition), and then submitted to kinetics analysis. 

The first 20s of data were excluded in order to isolate the muscular component of the 𝑉̇𝑂2 

response during exercise transition (Bell et al., 2001; Hughson, 2009; Whipp & Ward, 1982). The 

remaining 𝑉̇𝑂2 signal was modelled by a mono-exponential function. The fundamental equation 

used to fit the transitions signal was: 
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Equation 9 𝑉𝑂2(𝑡) = 𝑎0 + 𝑎 ∗ (1 − 𝑒𝑥𝑝
−(
(𝑡−𝑇𝐷)

𝜏𝑜𝑛
⁄ )); 

 

where: 𝑡 is time (independent variable); 𝑎0 is the mean 𝑉̇𝑂2 during baseline; 𝑎 is the amplitude of 

the 𝑉̇𝑂2 steady-state; 𝜏𝑜𝑛 is the time constant (speed of the 𝑉̇𝑂2 adaptation) and 𝑇𝐷 is the time 

delay before the exponential response. From the 30 individual on-transition datasets, the 𝐻𝑅 was 

drifting up for 2 transitions after ~200 s for one of the participants. Therefore, a single exercise 

transition (first) was considered for the kinetics analysis for this participant. In addition, another 

participant presented an atypical overshoot and multiple components in the 𝐻𝑅 response during 

all transitions. The data related to these transitions were excluded from 𝜏𝑜𝑛  validation. It is 

noteworthy that these transitions were still kept for the machine learning method since the steady-

state and incremental responses (which compose ~50% of the total data) were comparable to the 

rest of the participants. 

 The peak 𝑉̇𝑂2 (𝑉̇𝑂2−𝑝𝑒𝑎𝑘) was calculated by the average of the last 30 s of 𝑉̇𝑂2 data before 

exercise interruption during the incremental protocol. 

The kinetic analysis parameters were calculated by a computer program created in 

LabVIEW (National Instruments, Austin, TX, US). The fitting quality was assessed by the analysis 

of residuals, 𝑟 and the 95% confidence interval band (𝐶𝐼95) (Fawkner et al., 2002; Keir et al., 

2016).  

 



 

94 
 

4.4.4.4 Statistical Analysis 

Data were expressed as mean ± SD. In addition to 𝑟, Bland-Altman plot was used to assess the 

level of agreement between measured and predicted data. The Student t-test was used to compare 

the estimated and measured EE and 𝜏𝑜𝑛 and to compare the prediction bias with the equality line 

(i.e, bias=0). The sample size was calculated a posteriori using Student t-test as reference and 

considering the observed 𝜏𝑜𝑛 SD calculated based on the predicted 𝑉̇𝑂2 data. The chosen power 

was 80% and the significance level (𝑝) was set at 5%. 

 

4.5 Results 

4.5.1 Oxygen Uptake Predictor 

The measured and predicted 𝑉̇𝑂2 obtained for all participants during the experiments are depicted 

in Figure 29. Data related to the single incremental protocols are depicted in Figure 29A. Data 

related to all six constant work rate protocols are depicted in Figure 29B. The quality of the 

prediction was indicated by the significant strong positive 𝑟 value within each participant in both 

exercise protocols.  
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Figure 29. Measured and predicted oxygen uptake signal. 

Linear correlation between measured and predicted oxygen uptake signal (𝑉̇𝑂2) during a single incremental 

(A) and six constant work rate (B) treadmill walking protocols. These data were acquired from ten subjects. 

The prediction was accomplished by an artificial neural network generated by the multi-layer perceptron 

regressor (𝑀𝐿𝑃𝑅𝐴𝑁𝑁) algorithm. Data were down-sampled to 0.2 Hz for a better visualization. 

 

The Bland-Altman plot for the measured and predicted 𝑉̇𝑂2 (Figure 30) indicated that there 

were small deviations of the differences from zero for both protocols, incremental (Figure 30A) 

and constant work rate (Figure 30B). The prediction bias was not statistically different (𝑝 > 0.05) 

from the equality line in any of the exercise protocols. 
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Figure 30. Bland-Altman plot of the measured and predicted oxygen uptake. 

Bland-Altman plot of the measured and predicted oxygen uptake (𝑉̇𝑂2) during a single incremental (A) and 

six constant work rate (B) treadmill walking protocols. These data were acquired from ten subjects. The 

prediction was accomplished by an artificial neural network generated by multi-layer perceptron regressor 

(𝑀𝐿𝑃𝑅𝐴𝑁𝑁 ) algorithm. Solid horizontal black line shows the bias of the prediction and dotted black 

horizontal lines represent the limit of agreement. Data were down-sampled to 0.2 Hz for a better 

visualization. 

 

4.5.2 Energy Expenditure Estimation 

The measured EE during each of the three absolute work rate (day 1) and three relative moderate 

work rate (day 2) were compared to the predicted EE by the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁. As described in Figure 31, 

the bias (0.05±0.62 cal·min-1) of the EE estimated by the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 (single layer) was statistically 

(𝑝 = 0.002) lower compared to the EE bias of the ACSM estimation (0.83±0.70 cal·min-1). In 

addition, the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  bias was statistically similar ( 𝑝  > 0.05) and the ACSM bias was 

statistically (𝑝 < 0.001) higher in comparison to the equality line. The 95% limit of agreement was 

statistically similar between both predictions. The EE estimated by the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 was strongly 

correlated (𝑟 = 0.99 ± 0.00) to the measured EE and statistically similar to ACSM (𝑟 = 0.99 ± 

0.00). 
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Figure 31. Comparison of different methods of energy expenditure estimation. 

Comparison of different methods of energy expenditure (EE) estimation during treadmill walking. The EE 

was estimated according to the American College of Sport Medicine (ACSM) and by artificial neural 

network generated by multi-layer perceptron regressor (𝑀𝐿𝑃𝑅𝐴𝑁𝑁). Both algorithms used body mass, speed 

and grade as inputs. A: bias of the EE estimated by ACSM and 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 between all participants (𝑛 = 

10). The bias of the EE predicted by the ACSM was statistically (*, 𝑝 = 0.002) higher than the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 

bias and statistically (#, 𝑝 < 0.001) higher than the equality line (i.e., bias=0). The 95% confidence interval 

(𝐶𝐼) of the EE estimation by ACSM and 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 is displayed in B. Abbreviation: 𝑝, significance level. 

 

4.5.3 Oxygen Uptake Dynamics Characterization 

The comparison of the mean 𝜏𝑜𝑛 value computed from the 𝑉̇𝑂2 signal obtained from the predictor 

or from the metabolic cart is displayed in Table 5. The 𝜏𝑜𝑛 obtained from the predictor (predicted 

𝑉̇𝑂2 on-kinetics) was not significantly different (𝑝 > 0.05) from 𝜏𝑜𝑛 calculated from the measured 

𝑉̇𝑂2 . The 𝐶𝐼95  of the 𝜏𝑜𝑛  calculation was smaller considering the 𝑉̇𝑂2  from the predictor 

(predicted 𝑉̇𝑂2 on-kinetics) in comparison to the experimentally obtained 𝑉̇𝑂2 (𝑝 < 0.001).  
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Table 5. Parameters obtained from a mono-exponential fitting of the measured and predicted 

oxygen uptake (𝑉̇𝑂2) during transitions of treadmill walking. 

 𝜏𝑜𝑛 (s) 𝜏𝑜𝑛 𝐶𝐼95 (s) 

Measured 𝑉̇𝑂2 
32.3 

±7.9 

1.6 

±0.4* 

Predicted 𝑉̇𝑂2 
37.4 

±6.0 

0.5 

±0.1 

Values are means ± SD. 𝜏𝑜𝑛: time constant (speed of the response); 𝐶𝐼95: 95% confidence interval band 

and 𝑉̇𝑂2 : oxygen uptake. *: statistical difference between the parameter obtained from measured and 

predicted 𝑉̇𝑂2 signal. 

  

 The linear correlation between 𝜏𝑜𝑛  obtained from the 𝑉̇𝑂2 predictor (predicted 𝑉̇𝑂2 on-

kinetics) and from the measured 𝑉̇𝑂2 is displayed in Figure 32. The 𝜏𝑜𝑛 based on the predicted 

𝑉̇𝑂2 was statistically correlated (𝑟 = 0.88, 𝑝 = 0.001) to the 𝜏𝑜𝑛 obtained from the measured 𝑉̇𝑂2 

data fitting (Figure 32A). The bias of the estimated 𝜏𝑜𝑛 (-5.11 s) was statistically (𝑝 > 0.05) lower 

than the equality line. The 95% agreement level was ~7 s as indicated by the Bland-Altman plot 

analysis (Figure 32B). 

The 𝑉̇𝑂2−𝑝𝑒𝑎𝑘 obtained from the predicted 𝑉̇𝑂2 data was strongly correlated (𝑟 = 0.91, 𝑝 

< 0.001) to the 𝑉̇𝑂2−𝑝𝑒𝑎𝑘  obtained from measured 𝑉̇𝑂2 data. In addition, the 𝑉̇𝑂2−𝑝𝑒𝑎𝑘 bias (5 

ml·min-1) was not statistically (𝑝 = 0.937) different from the equality line. 
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Figure 32. Measured and predicted oxygen uptake dynamics during treadmill walking. 

A: group mean response of the measured and predicted oxygen uptake (𝑉̇𝑂2) data obtained during the 

exercise transition. The SD of the measured 𝑉̇𝑂2 (upper vertical bars) and the predicted 𝑉̇𝑂2 (lower vertical 

bars) were presented in 10s intervals. The error (measured minus predicted) and the equality line (error = 

0) were also plotted. The SD of the error (vertical bars) were presented in 5s intervals. B: comparison 

between measured and predicted time constant (𝜏𝑜𝑛 based on measured and predicted (𝑉̇𝑂2) data. The 

Bland Altman plot of this relationship is displayed in C. 

 

 Figure 33 displays the relationship between an expected difference in the 𝜏𝑜𝑛 predicted 

by the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 and the sample size needed to find statistical significance by Student t-test if 

there was a statistical difference. The 𝜏𝑜𝑛 SD considered into the sample size calculation was based 

on the predicted 𝑉̇𝑂2 data. The grey area in the graph indicates the necessary combination of the 

expected effect size (i.e, differences in 𝜏𝑜𝑛 between groups) and the sample size to find statistical 

differences. In addition, the findings from Lambrick et al. (Lambrick, Faulkner, Westrupp, & 
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McNarry, 2013) and Barker et al. (Barker, Green, Green, & Walker, 2004) related to the sample 

size and the differences in 𝜏𝑜𝑛 between groups were added to exemplify the applicability of our 

algorithm. 

 

 

Figure 33. Detection sensitivity of changes in the time constant 

Charts of the detection sensitivity of changes in the time constant (𝜏𝑜𝑛) calculated based on predicted 

oxygen uptake (𝑉̇𝑂2) data during exercise transition. The black area indicates the necessary combination 

of the expected effect size (i.e, differences in 𝜏𝑜𝑛 between groups) and the sample size to find statistical 

differences by t-test (if there is statistical difference). The findings reported by Lambrick et al. (Lambrick 

et al., 2013) and Barker et al. (Barker et al., 2004) related to the sample size and the differences in 𝜏𝑜𝑛 

between groups were added to the figure to exemplify the applicability of our algorithm. These previous 

studies revealed the potential of the proposed algorithm to identify a significant difference for 𝜏𝑜𝑛 between 

groups from the predicted 𝑉̇𝑂2. 

 

4.6 Discussion 

The main finding of this study, in support of the hypothesis, was that it is possible to predict the 

𝑉̇𝑂2 signal during steady-state and exercise transition based on easy-to-obtain inputs. Specifically, 
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the algorithm generated by the artificial neural network multilayer perceptron regressor predicted 

the 𝑉̇𝑂2 signal during constant and incremental treadmill walking. The accuracy of the predictions 

was indicated by high linear correlation and low bias. In addition, a simpler artificial neural 

network was successfully created to estimate energy expenditure based on 𝑉̇𝑂2  steady-state 

prediction by body mass and treadmill speed and grade. Consequently, the two algorithms might 

be incorporated into embedded treadmill systems as new approaches to monitor energy 

expenditure and changes in physical fitness. 

With the advancements of wearable sensors built into devices like smart watches, garments 

(smart shirts) and phones, biological signals, such as 𝐻𝑅, are becoming easier to obtain (Villar et 

al., 2015). These devices present new possibilities for ambulatory, unsupervised data collection. 

In association with hardware advancements, data processing has made considerable progress with 

the popularization of machine learning techniques that have offered smarter solutions for pattern 

recognition in large biological datasets. Combined, these technological trends open great 

possibilities to gather relevant information from the recorded data, having potential for practical 

applications in health science.  

We found the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  algorithm model to exhibit the best accuracy between ANN 

schemes. The comparison of the measured 𝑉̇𝑂2 signal and the 𝑉̇𝑂2 predicted by the proposed 

algorithm was associated with low bias and high 𝑟  values (as shown in Figures 29 and 30), 

indicating accurate predictions. Our results are in line with previous findings (Montgomery et al., 

2009; Smolander et al., 2008), although not every study reports the prediction bias.  

The EE estimated by the simpler 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 algorithm based on speed, grade and body 

mass was similar to the measured EE based on the 𝑉̇𝑂2 steady-state response. The lower bias and 

similarity to the equality line (Figure 31A) indicated that the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 algorithm provided better 
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accuracy than the calculations proposed by the ACSM guidelines (Humphrey, 2006; Pescatello, 

2014). As a simpler predictor, this EE algorithm has a greater potential to contribute to treadmill 

embedded systems in the future. The better ability of the proposed algorithm to predict EE based 

on simple-to-obtain inputs might be related to the non-linear model programmed inside the 

artificial neuron which contrasts with the linear algorithm of the ACSM model. 

A unique aspect of the current study was to extend the prediction of 𝑉̇𝑂2 beyond simple 

steady-state measurements to the assessment of 𝑉̇𝑂2  dynamics during exercise transitions by 

application of the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁  to information obtained during transients. From these data, we 

investigated the validity of estimations of the 𝜏𝑜𝑛. The correlation between predicted and measured 

𝜏𝑜𝑛 was satisfactory (𝑟 = 0.88 and 𝑝 = 0.001), the predicted 𝜏𝑜𝑛 bias was statistically similar to the 

equality line and the 95% limits of agreement between measured and predicted 𝜏𝑜𝑛 was ~7 s. These 

findings related to the ability of the current algorithm in evaluate 𝑉̇𝑂2 dynamics based on 𝜏𝑜𝑛 

values should be taken with precaution; however, the proposed algorithm was still able to identify 

𝜏𝑜𝑛  variations ( 𝑝  = 0.001) within the sample used in this study. Further, the data permit 

extrapolation of our findings to a real scenario where the current study provided the basis for using 

our algorithm for future assessments of aerobic fitness in different populations or to evaluate the 

consequences of an intervention with guidance to sample size and effect size as displayed in Figure 

33. In addition, even with a bias of ~5 s, the current algorithm might be more sensitive at 

identifying (by paired t-test) changes in 𝜏𝑜𝑛 as a consequence of an intervention since 𝜏𝑜𝑛 can be 

obtained from the same participant multiple times. As described in Figure 33, our algorithm would 

be able to identify differences in 𝜏𝑜𝑛  considering the sample size and effect size of previous 

longitudinal studies (Barker et al., 2004; Lambrick et al., 2013) revealing the potential to detect 

changes in aerobic fitness levels. 
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Another interesting finding was that the predicted 𝑉̇𝑂2 had less variability in comparison 

with the measured data across the entire experiment. The average SD of the local 5-s mean was 9 

and 28 ml.min-1 for the predicted and measured 𝑉̇𝑂2 signal, respectively. It is well recognized that 

breath-by-breath measurement of 𝑉̇𝑂2 has high variability, and that multiple repetitions of test 

protocols are required to enhance confidence in data fitting during dynamic transitions (Lamarra 

et al., 1987). In the Bland-Altman analysis of the current study, the relatively greater variability of 

the measured data might inflate the 𝐶𝐼95  when comparing the predicted 𝑉̇𝑂2  to the standard 

(Figure 30). That is, the elevated 𝐶𝐼95 in this case might not be a consequence of predictions but 

rather, a higher “non-physiological” variability of the reference method. In addition, the 𝐶𝐼95 of 

the 𝜏𝑜𝑛 calculated from the predicted data was statistically lower in comparison to that of 𝜏𝑜𝑛 

estimated from the experimental 𝑉̇𝑂2 signal (Table 1). This low variability might be occurring 

because the inputs used for the predictions were not susceptible to the inter-breath oscillations 

associated to metabolic carts (Hughson, 2009). When the expected non-exercise-related Gaussian-

like noise (Lamarra et al., 1987) is randomly present in the 𝑉̇𝑂2 training dataset, the 𝑀𝐿𝑃𝑅𝐴𝑁𝑁 

learning process did not “learn” these patterns, smoothing the output signal. This observation 

might suggest the future possibility to use machine learning techniques for system identification 

(Pillonetto, Dinuzzo, Chen, De Nicolao, & Ljung, 2014) and data filtering during exercise testing. 

 

4.7 Study Limitations 

Factors affecting walking economy, such as height (Ludlow & Weyand, 2016) or changes in 

mechanical efficiency (Zarrugh, 1981), can influence the prediction of EE. Future research should 

consider a wider range of participants to determine key factors that can further improve the 

predictions. However, these factors would not influence estimates of 𝜏𝑜𝑛.  



 

104 
 

In addition, atypical 𝐻𝑅 responses to moderate exercise that do not follow the expected 

exponential response need to be further addressed. The initial vagal withdrawal followed by the 

progressive sympathetic activation throughout the exercise transition commonly produce 

exponential-like functions (Hughson & Morrissey, 1982). However, the autonomic control over 

the heart rate may vary and users that present atypical responses (as observed in two participants 

in our study) will not benefit from the proposed algorithm. Further refinements could be added to 

the proposed algorithm in the future (Rodríguez, Goñi, & Illarramendi, 2005) for the detection of 

abnormal 𝐻𝑅 responses.  

 

4.8 Conclusions and Future Perspectives 

To the best of our knowledge, this was the first time that the dynamic responses of 𝑉̇𝑂2 (i.e., 𝜏𝑜𝑛 

values) were derived by a machine learning algorithm from easy-to-obtain inputs during treadmill 

walking. This permitted the evaluation of the quality of the predictions during exercise transitions 

through exponential modeling of 𝑉̇𝑂2 dynamics.  

In conclusion, the proposed algorithm provided by the artificial neural network multilayer 

perceptron regressor presented good time resolution and high precision to predict the dynamics of 

the 𝑉̇𝑂2 signals. This novel processing model allowed the building of a 𝑉̇𝑂2 predictor using easy-

to-obtain input variables permitting the investigation of 𝑉̇𝑂2 signal during dynamic and steady-

state phases. In the dynamic phase, extraction of the 𝜏𝑜𝑛 from simple inputs can provide insight 

concerning aerobic adaptations to the demands of transitions from rest to exercise, or variations in 

walking speed. In the steady-state, a modified, simpler algorithm provided estimates of EE that 

were statistically superior to the estimates from the standard ACSM algorithm. Further studies are 

necessary to test if the dynamic conditions algorithm can successfully assess aerobic fitness during 
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walking exercise transitions in populations with different aerobic fitness levels (such as athletes 

vs. sedentary, young vs. elderly), or if it can be used to follow changes in aerobic fitness (such as 

with physical training or detraining, and in healthy vs. disease state). Also, new studies are 

necessary to address the ability of the current algorithm to evaluate exercise capacity by maximum 

𝑉̇𝑂2 prediction. 

Implementations of the algorithms developed in the current study could be utilized as 

physiological signal predictors incorporated into smart devices and fitness equipment, making 

them suitable for tracking changes in aerobic fitness and physical health beyond the infrequent 

monitoring of patients during clinical interventions and rehabilitation programs.  
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Chapter 5: Aerobic System Analysis Based on Oxygen Uptake and Hip 

Acceleration During Random Over-Ground Walking Activities 

This chapter was accepted as: 

Beltrame T., Hughson R. L. Aerobic system analysis based on oxygen uptake and hip acceleration 

during random over-ground walking activities. Accepted on American Journal of Physiology - 

Regulatory, Integrative and Comparative Physiology in November 16, 2016.   
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5.1 Overview 

Deteriorated aerobic response to moderate exercise might precede the manifestation of clinical 

symptoms of non-communicable diseases. The purpose of the current study was to verify that the 

use of current wearable technologies for analysis of pulmonary oxygen uptake (𝑉̇𝑂2) dynamics 

during a pseudorandom ternary sequence (PRTS) over-ground walking protocol is a suitable 

procedure for the investigation of the aerobic response in more realistic settings. A wearable 

accelerometer located at the hip assessed the magnitude of the input changes delivered to the 

aerobic system. Eight adults (23.5 ± 3.7 years old, 174 ± 7 cm and 71.4 ± 7.4 kg) performed two 

identical PRTS over-ground walking protocols. In addition, they performed on the cycle ergometer 

two identical pseudo-random binary sequence (PRBS) protocols and one incremental protocol for 

maximal 𝑉̇𝑂2 determination. In the frequency domain, mean normalized gain amplitude (𝑀𝑁𝐺 in 

%) quantified 𝑉̇𝑂2 dynamics. The 𝑀𝑁𝐺 during PRTS was correlated (r=-0.80, p=0.01) with the 

𝑉̇𝑂2 time constant 𝜏 obtain during cycling. The 𝑀𝑁𝐺 estimated during PRBS was similar to the 

𝑀𝑁𝐺  estimated during PRTS (𝑟=0.80, 𝑝=0.01). The maximal 𝑉̇𝑂2  correlated with the 𝑀𝑁𝐺 

obtained during the PRBS (𝑟=0.79, 𝑝=0.01) and PRTS (𝑟=0.78, 𝑝=0.02) protocols. In conclusion, 

PRTS over-ground walking protocol can be used to evaluate the aerobic system dynamics by the 

simultaneous measurement of 𝑉̇𝑂2  and hip acceleration. In addition, the aerobic response 

dynamics from PRBS and PRTS were correlated to maximal 𝑉̇𝑂2. This study has shown that 

wearable technologies in combination with assessment of MNG, a novel indicator of system 

dynamics, open new possibilities to monitor cardiorespiratory health under conditions that better 

simulate activities of daily living than cardiopulmonary exercise testing performed in a medical 

environment. 
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5.2 Introduction 

The evaluation of the aerobic response to exercise stimulus provides valuable information 

regarding the aerobic system integrity (Hughson, 2009; Whipp & Ward, 1992). Abnormal aerobic 

responses during exercise might occur before the clinical detection of non-communicable diseases 

(Guazzi et al., 2012), arousing interest in the development of tools for the aerobic system dynamics 

assessment in real life scenarios. 

The mathematical characterization of the pulmonary oxygen uptake (𝑉̇𝑂2) in response to 

work rate changes can produce parameters in the time and frequency-domains related to aerobic 

system dynamics (Eßfeld et al., 1987; Hughson, 2009; Whipp et al., 1982). The time-domain 

analysis typically utilizes a single, or multiple repetitions of step work rate change protocol and 

the 𝑉̇𝑂2 response is fitted with exponential functions. The time course of the 𝑉̇𝑂2 response is 

reported by time constants. Time-domain approaches require specific laboratory conditions and 

classically deal with issues related to the reliability of the estimated parameters (Hughson, 2009) 

due to low signal-to-noise ratio associated with 𝑉̇𝑂2 measured at the mouth (Lamarra et al., 1987) 

as well as high degree of freedom of the models chosen (Bell et al., 2001; Motulsky & Ransnas, 

1987). 

A faster aerobic system dynamics characterized by a faster 𝑉̇𝑂2 adjustment is classically 

associated with a better aerobic fitness (Norris & Petersen, 1998; Phillips et al., 1995; Powers et 

al., 1985) and disease prognosis (Borghi-Silva et al., 2012; Pessoa et al., 2013; Regensteiner et al., 

1998). On the other hand, slower aerobic responses are related to a higher lactate production 

(Koskolou, Calbet, Rådegran, & Roach, 1997) and seem to impact functional mobility (Alexander 

et al., 2003). As a marker for primary prevention of non-communicable diseases (Guazzi et al., 
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2012), the early identification of the slowing of aerobic system adjustment has considerable 

potential in the future of health care. 

The frequency-domain analysis of 𝑉̇𝑂2  dynamics, while also constrained to date to 

laboratory conditions, has some advantages over the time domain approach in that there are no 

assumptions regarding the model used to fit data (Eßfeld et al., 1987). Instead of a single process 

that requires the signal to fit into a pre-defined complex model, the frequency-domain method fits 

the dataset into multiple sinusoidal functions. This process allows the investigation of the 𝑉̇𝑂2 

dynamics at different stimulus frequencies, thereby enabling a more detailed understanding of the 

aerobic system control during dynamic exercise transitions (Hoffmann et al., 1992; Hughson et 

al., 1990). In addition, the system dynamics parameters obtained through frequency-domain 

analysis are less susceptible to non-periodic signals, such as the intra-breath noise and can be used 

to fit signals obtained from random exercise stimuli. As opposed to constant work rate protocols 

used for time-domain analysis, the optimal 𝑉̇𝑂2  dynamics investigation by frequency domain 

requires more variation in the exercise protocols (Hughson et al., 1990). 

Cycle ergometer experiments allow the precise control of the work rate, and therefore a 

better control over the external stimulus (defined as system input). However, cycling is not a 

common activity of daily living and it is not widely used between different populations and 

cultures. On the other hand, walking is a universal physical activity that is performed in almost all 

age groups and health conditions thus the aerobic response investigation during walking is more 

applicable for the general population. Although treadmill walking can be a sufficient method to 

study the physiology of walking with precise control of speed and grade, it is not a completely 

realistic approach to represent over-ground walking. 
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The purpose of this study was to analyze the aerobic system dynamics during 

pseudorandom ternary sequence (PRTS) over-ground walking protocol to better simulate what 

occurs during activities of daily living than exercise testing performed in a medical environment. 

An accelerometer (𝐴𝐶𝐶) located at the hip was used to assess the magnitude of the input changes 

delivered to the aerobic system. The aerobic system dynamics obtained during the proposed over-

ground walking protocol were compared to a controlled cycling protocol and related to maximal 

𝑉̇𝑂2 . The hypothesis of this study was that the aerobic system dynamics determined from 

frequency-domain analysis during a novel over-ground walking protocol would correlate with 

kinetics parameters from cycle ergometry testing. The results of this study based on 𝑉̇𝑂2 response 

to changes in 𝐴𝐶𝐶 could set the stage for future assessment of the 𝑉̇𝑂2 dynamics based on random 

physical activities typically encountered in daily living.  

 

5.3 Methods  

5.3.1 Study Design 

Eight healthy active non-athlete young men (23.5 ± 3.7 years old, 174 ± 7 cm and 71.4 ± 7.4 kg) 

participated in the study. This study was approved by the Office of Human Research of the 

University of Waterloo and was in agreement with Declaration of Helsinki. 

For the first visit, exercise was performed on the cycle ergometer (Lode Excalibur Sport, 

Lode B.V., Groningen, Netherlands). After warm-up, participants completed two consecutive 

pseudorandom binary sequence (PRBS) protocols (Eßfeld et al., 1987; Hughson et al., 1990; 

Yoshida et al., 2008) followed by an incremental protocol (25 W·min-1). From the incremental 

protocol responses, the individual maximal 𝑉̇𝑂2 (40.7 ± 6.6 ml·min-1·Kg-1) and gas exchange 

threshold (𝐺𝐸𝑇, 28.2 ± 7.2 ml·min-1·Kg-1) were identified. The moving seven-breath average 𝑉̇𝑂2 
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and carbon dioxide output signals were used to identify the maximal 𝑉̇𝑂2  and the 𝐺𝐸𝑇 . The 

maximal 𝑉̇𝑂2 was considered as the average of the last 15 s before recovery following the criteria: 

1-) respiratory exchange ratio higher than 1.1 and 2-) identification of 𝑉̇𝑂2 plateau with an increase 

in work rate (Howley, Bassett, & Welch, 1995). The 𝐺𝐸𝑇 was obtained for each participant by a 

standard method (Beaver et al., 1986). One participant was excluded from the 𝐺𝐸𝑇 analysis due 

to signal lost in the middle of the incremental test. The 𝑉̇𝑂2 at 𝐺𝐸𝑇 corresponded to 70.7 ± 9.3 % 

of the maximal 𝑉̇𝑂2. 

After a minimum of one week, participants performed two PRTS over-ground walking 

protocols separated by a 30-min resting period. Before the first PRTS, participant’s walking speed 

was determined from a timed 15m segment while they walked at three selected cadences: 75, 105 

and 135 steps·min-1. This procedure was repeated three to four times for a better reliability. 

 

5.3.2 Pseudorandom Binary Sequence Protocol (PRBS) 

A four-stage digital shift register was used to generate the PRBS protocol as previously reported 

(Hughson et al., 1990). The PRBS was composed by 15 units, each of 30s of duration, totaling 

450s of protocol length. The work rate varied between 25 or 100 watts. The cycling cadence was 

maintained between 60-65 rpm. An extra 200s of the sequence was added at the onset of the PRBS 

protocol as warm-up and excluded a priori, then two identical sequences were completed. 

 

5.3.3 Pseudorandom Ternary Sequence Protocol (PRTS) 

The PRTS protocol included a variation of three walking cadences (75, 105 or 135 steps·min-1). 

The choice to select a protocol with three levels of exercise was based on the frequent change in 
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speed of walking during real life scenarios. These walking cadences were chosen based on the 

variation of ±~30 % of the normal average cadence (Tudor-Locke & Rowe, 2012). The PRTS 

protocol generation was based on the approach proposed by Peterka (Peterka, 2002). The number 

of the shift register units was set at 3 in order to obtain a 13-min protocol (or 780s) with a unit 

length of 30s (Figure 34A), thereby allowing for two repetitions of the protocol in the same visit. 

An additional 300 s of PRTS was added to the beginning of the protocol as a warm-up and excluded 

a priori; therefore, each PRTS total length was 18 min (or 1080s). Due to the PRTS protocol 

length, a resting period of 20 min was performed between both PRTS protocols. 
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Figure 34. Pseudorandom ternary sequence over-ground walking protocol. 

A: selected structure of the shift register used to generate the pseudorandom ternary sequence protocol. The 

module addition feedback (Σ) sums the negative value of the third stage with the second stage and tests the 

“if” statement. This new signal is inserted into the first stage and shifts the entire system to the right. The 

unit value is held for “t” s. The unit values (0, 1 or 2) were transformed in the selected walking cadences 

(0=105, 1=135 and 2=75). The six unit values shown in A correspond to the first six stages in B. The 

protocol in the time domain (▬ in B) was transformed into frequency domain by Fourier Transformation 

and the amplitudes for each corresponding sinusoidal function was computed across the frequencies (as 

displayed in C). Also in C, as a characteristic of PRTS protocols, the stimulus energy decreases to zero at 

even harmonics (Kerlin, 1974). 
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The shift register outputs (0, 1 or 2) were converted into target cadences (Figure 34A). A 

PRTS metronome audio file was created in Audacity 2.0.5 software (Carnegie Mellon University, 

Pittsburgh, PA, US) and listened to through ear buds to set the walking pace. The actual walking 

cadence performed by the participant was verified by a post hoc examination of walking cadence.  

 

5.3.4 Data Acquisition 

The 𝑉̇𝑂2 was measured with a portable metabolic system (K4b2, COSMED, Italy). The chemical 

galvanic O2 sensor, infrared absorption 𝐶𝑂2 sensor and the low-resistance turbine rotor flowmeter 

were calibrated following manufacturer’s specifications before every data collection. When 

appropriate, the metabolic equivalents (𝑀𝐸𝑇𝑆) was calculated by: 𝑉̇𝑂2. 𝐾𝑔
−1. 3.5−1. 

The 3-axis hip 𝐴𝐶𝐶 data were obtained from an previously validated (Villar et al., 2015) 

smart shirt (Hexoskin®, Carré Technologies Inc., Montréal, Canada). The 𝐴𝐶𝐶 sample rate (64 

Hz) and resolution (0.004g) were sufficient to capture all expected movements during the proposed 

walking protocol and activities of daily living (Bouten et al., 1997). 

 

5.3.5 Data Analysis 

The step cadence was converted into speed for each participant using the individual linear 

regression between the cadence and walking speed (Tanawongsuwan & Bobick, 2003). The 𝐴𝐶𝐶 

raw data were converted to the total vector magnitude (Cleland et al., 2013) by: 𝐴𝐶𝐶 =

√𝑥2 + 𝑦2 + 𝑧2; where 𝑥, 𝑦 and 𝑧 are the vertical, longitudinal and lateral 𝐴𝐶𝐶 axis, respectively. 

The system inputs (walking speed and 𝐴𝐶𝐶 for PRTS and watts for PRBS) and output 

(𝑉̇𝑂2) collected during each two PRBS and two PRTS were linearly interpolated on a second-by-
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second basis, time aligned and ensemble averaged to obtain a single response per participant for 

each protocol. The Discrete Fourier Transformation (DFT) was used to convert the finite time 

series response into frequency space. To adhere to the linearity principle (Hoffmann et al., 1992), 

the highest frequency analyzed was restricted at the maximum of 8.88 and 8.97 mHz for the PRBS 

and PRTS protocol, respectively. The DFT algorithm fitted the data into sinusoidal functions by 

calculating the sine and cosine coefficients by the following equation: 𝑦(𝑡) = 𝑎𝐷𝐶 + 2 ∗

∑ (𝐴ℎ ∗ cos(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡) + 𝐵ℎ ∗ sin(2𝜋 ∗ ℎ ∗ 𝑓1 ∗ 𝑡))
7
ℎ=1 ; where 𝑦 is the time-series signal to 

be fitted, 𝑡  is the time, 𝑎𝐷𝐶  is average response (i.e., system 𝐷𝐶𝑜𝑓𝑓𝑠𝑒𝑡  or zero-frequency 

component), 𝑓1  is the fundamental frequency (2.22 and 1.28 mHz for PRBS and PRTS, 

respectively), 𝐴ℎ  and 𝐵ℎ  are the cosine and sine amplitude coefficients, respectively. The 

parameter ℎ is the harmonic number (continuous and even integer numbers for PRBS and PRTS, 

respectively). From 𝐴ℎ  and 𝐵ℎ , the total amplitude was calculated for each harmonic ℎ  by: 

𝐴𝑚𝑝ℎ = √𝐴ℎ
2 + 𝐵ℎ

2 . Because 𝑓1  was different between protocols the input and output 𝐴𝑚𝑝 

responses were linearly interpolated for each protocol at a common frequency range of 2.5 to 8.5 

mHz, with a resolution of 0.5 mHz. This resulted in thirteen paired-between-protocol frequencies. 

To eliminate the influence of the intra-subject variability of the system static gain (Hoffmann et 

al., 1994, 1992), the system gain (𝐴𝑚𝑝𝑜𝑢𝑡𝑝𝑢𝑡. 𝐴𝑚𝑝𝑖𝑛𝑝𝑢𝑡
−1

) was normalized as a percentage of the 

𝐴𝑚𝑝 gain at the lowest common frequency (i.e., 2.5 mHz) (Hoffmann et al., 1992). Finally, the 

mean normalized gain (𝑀𝑁𝐺) that describes the overall temporal system dynamics was obtained 

for both protocols by the average of the interpolated normalized gains between the same common 

frequencies (2.5 to 8.5 mHz).  

To test the ability of the novel indicator 𝑀𝑁𝐺 to extract the same dynamic characteristics 

of the 𝑉̇𝑂2  response as observed in time domain analysis from the time constant, the 𝑉̇𝑂2 
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ensemble-averaged data during the PRBS protocol were submitted to time domain analysis. The 

time scale was shifted to align time zero with the onset of the second 100-watts step at 120s of the 

PRBS protocol. The data window was composed of 15s of baseline (at 25 watts) followed by 120s 

of constant work rate at 100 watts. This dataset was the longest period without work rate variation 

within the PRBS protocol thus the best data window for time domain analysis. The first 20s of data 

related to the cardio-dynamic component (Barstow et al., 1990) were excluded from the analysis. 

For one participant, only 91 s after baseline was considered due to an unexpected 𝑉̇𝑂2 overshoot. 

The remaining data were fitted by a mono-exponential model following a standard method 

(Hughson & Morrissey, 1982; Whipp et al., 1982) to obtain the time constant 𝜏 and the steady-

state 𝑉̇𝑂2. As displayed in Figure 35, the 𝑀𝑁𝐺 was negatively correlated with 𝜏 considering 𝐴𝐶𝐶 

(𝑟 = -0.75, 𝑝 = 0.03 and 𝑛 = 8) or walking speed (𝑟 = -0.80, 𝑝 = 0.01 and 𝑛 = 8) as system input. 

Thus, higher 𝑀𝑁𝐺 values are associated with faster 𝑉̇𝑂2 dynamics (i.e., faster 𝜏). Data analysis 

was performed by a certified (#100-314-4110) LabVIEW associated developer (National 

Instruments, Austin, TX, US). 
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Figure 35. Time constant and mean normalized gain during pseudorandom sequences. 

Relationship between the oxygen uptake time constant τ obtained during cycling and the mean normalized 

gain amplitude (𝑀𝑁𝐺) obtained during pseudorandom ternary sequence (PRTS) over-ground exercise 

protocol. The 𝑀𝑁𝐺 was estimated based on hip acceleration (○) or walking speed (●) as system inputs 

during PRTS. This relationship followed a linear pattern. 𝑟: Pearson’s correlation coefficient, 𝑝: statistical 

significant level and 𝑛: sample size.  

 

5.3.6 Statistical Analysis 

Friedman repeated measures ANOVA was used to compare the interpolated normalized gain 𝐴𝑚𝑝 

between the different tested frequencies. Student-Newman-Keuls was used as post hoc test. The 

𝑀𝑁𝐺  obtained from PRBS and PRTS protocols were compared by Student t-test. Linear 

correlation was measured by Pearson product-moment correlation coefficient (𝑟 ). Statistical 

significance was set at a level α=0.05. Statistical analysis was performed in SigmaPlot 12.5 

software (Systat Software, San Jose, CA, US). 
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5.4 Results 

Figure 36 illustrates the linear relationship between walking speed and hip acceleration during the 

PRTS protocol (780 samples per participant, 6240 in total). The hip acceleration presented a strong 

positive correlation (𝑟 = 0.94 and 𝑝 < 0.001) with the walking speed. The 𝐴𝐶𝐶 data can be used in 

place of directly measured walking speed. 
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Figure 36. Accelerometer and walking speed. 

Linear correlation between walking speed and hip acceleration.𝑟: Pearson’s correlation coefficient, 𝑝: 

statistical significant level and 𝑛: sample size taken as 13 minutes of data collection from each of 8 

participants.  

 



 

119 
 

5.4.1 Time-series 

The time-series mean 𝑉̇𝑂2 response of all tested participants (𝑛 = 8) is displayed in Figure 37A 

and 37B for the PRBS and PRTS protocols, respectively. The work rate (watts) was used as the 

system input during cycling (PRBS) and the hip acceleration was displayed as a system input 

during over-ground walking (PRTS). As described in Figure 37C, the distribution of the metabolic 

equivalent varied between 3 and 8 𝑀𝐸𝑇𝑆 during both protocols and this range was similar to the 

metabolic demand of moderate activities of daily living (Hendelman et al., 2000). The higher 

relative incidence of 𝑀𝐸𝑇𝑆 (≈ 30% of the samples) was ≈ 5.5 and ≈ 3.8 𝑀𝐸𝑇𝑆 for PRBS and 

PRTS, respectively. The 𝑀𝐸𝑇𝑆 were consistently lower during PRTS in comparison to PRBS 

indicating that the metabolic demand during PRTS was also restricted to moderate intensity 

exercise. In addition, the average of the steady-state 𝑉̇𝑂2 estimated from the mono-exponential 

data modeling during PRBS (23.9 ± 2.9 mL·kg-1·min-1, 85.6 ± 10.4 % of the 𝑉̇𝑂2 at 𝐺𝐸𝑇 and 59.8 

± 8.4 % of the maximal 𝑉̇𝑂2) indicated that the 100 watts work rate correspond to moderate 

intensity exercise. Therefore, considering similar dynamics between PRBS and PRTS (further 

demonstrated), PRTS protocol was also constrain to moderate exercise intensity.  
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Figure 37. Oxygen uptake response during pseudorandom protocols. 

Mean (─) ± SD (vertical bars at 10s intervals) of the oxygen uptake response (𝑉̇𝑂2) of all participants (𝑛 = 

8) during pseudorandom binary sequence (A, PRBS) cycling protocol and pseudorandom ternary sequence 

(B, PRTS) over-ground walking protocol. The upper portion of each panel describe the work rate and hip 

acceleration of a representative participant during PRBS and PRTS protocols, respectively. C: distribution 

of the metabolic equivalents (𝑀𝐸𝑇𝑆) during PRBS and PRTS. 

 

5.4.2 Frequency-domain 

The system dynamics characterization by frequency-domain analysis was based on the study of 

the input-output relationship (gain) across different frequencies. Figure 38 shows the comparison 

of the interpolated normalized gain 𝐴𝑚𝑝 obtained from PRBS and PRTS protocols across the 

range of 13 selected frequencies. The influence of the stimulus frequency over the aerobic system 

response was similar between protocols, indicating similar 𝑉̇𝑂2  dynamics between these two 

exercise modalities (cycling vs. walking). As expected, the system gains in both protocols 

statistically (𝑝 < 0.001) decreased as the frequency increased. The strong linear correlation (𝑟 > 
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0.9 and 𝑝 < 0.001) between PRBS and PRTS was not different whether the PRTS protocol used 

walking speed (Figure 38A) or 𝐴𝐶𝐶 (Figure 38B) signal as system input.  
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Figure 38. Normalized system gains during walking and cycling. 

Correlation of the effect of the input frequency increment (arrow) over the normalized system gain between 

pseudorandom binary sequence (PRBS) and pseudorandom ternary sequence (PRTS) protocols. Graphs 

display the mean ± SD response of all participants (𝑛 = 8) at each frequency (𝑛 = 13) and the raw data for 

all participants and frequencies (𝑛  = 104). The Pearson correlation coefficient (𝑟 ) and the statistical 

significance level (𝑝) were calculated based on the raw data from all participants and frequencies. The 

aerobic system gain during PRTS was estimated using walking speed (A) or hip accelerometer (𝐴𝐶𝐶) (B) 

as system input. 

 

5.4.3 Mean Normalized Gain (MNG) 

The 𝑀𝑁𝐺 , as an index for the aerobic system dynamics evaluation, was estimated for each 

participant based on the average of the normalized gains. The 𝑀𝑁𝐺 was statistically (𝑝 > 0.05) 

similar between PRBS and PRTS. During the PRTS protocol, the 𝑀𝑁𝐺 estimated using walking 

speed as system input was strongly positively correlated (𝑟 = 0.99 and 𝑝 < 0.001) with the 𝑀𝑁𝐺 

estimated from 𝐴𝐶𝐶 (Figure 39A). The 𝑀𝑁𝐺 during PRTS, from either walking speed or 𝐴𝐶𝐶, 

was statistically similar and strongly positively correlated to the 𝑀𝑁𝐺 obtained from the PRBS 

protocol (Figure 39B). 



 

122 
 

 

MNG from PRBS (%)

60 65 70 75 80

M
N

G
 f

ro
m

 P
R

T
S
 (

%
)

50

60

70

80

90

MNG from speed during PRTS (%)

40 50 60 70 80 90

M
N

G
 f

ro
m

 A
C

C
 d

u
ri

n
g
 P

R
T

S
 (

%
)

40

50

60

70

80

90 A B
r = 0.99
p < 0.001
n = 8

   ,        :
r = 0.80
p = 0.01
n = 8

   ,        :
r = 0.83
p = 0.01
n = 8

 

Figure 39. Mean normalized gain during pseudorandom ternary and binary sequences. 

Mean normalized gain (MNG) obtained from the oxygen uptake response during pseudorandom ternary 

sequence (PRTS) and pseudorandom binary sequence (PRBS) protocols. A: Correlation between the 𝑀𝑁𝐺 

estimated based on hip acceleration (𝐴𝐶𝐶, ○) and walking speed (●) as system inputs during PRTS. B: 

correlation between 𝑀𝑁𝐺 estimated during PRBS and PRTS protocols. The 𝑀𝑁𝐺 was estimated using 

𝐴𝐶𝐶  or walking speed as system inputs during PRTS. 𝑟 : Pearson’s correlation level, 𝑝 : statistical 

significance level and n: sample size.  

 

Figure 40 displays the correlation between the 𝑀𝑁𝐺 estimated from PRBS (Figure 40A) 

and PRTS (Figure 40B) protocols with the maximal 𝑉̇𝑂2 obtained during incremental cycling 

protocol. The 𝑀𝑁𝐺 during PRBS protocol was strongly positive correlated (𝑟 = 0.79 and 𝑝 = 0.01) 

with maximal 𝑉̇𝑂2. The 𝑀𝑁𝐺 and maximal 𝑉̇𝑂2 were strongly positive correlated during PRTS 

when walking speed or 𝐴𝐶𝐶 signals were used as system inputs.  
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Figure 40. Maximal oxygen uptake and mean normalized gain. 

A: correlation between maximal oxygen uptake (𝑉̇𝑂2) and mean normalized gain (𝑀𝑁𝐺) obtained from the 

oxygen uptake response during pseudorandom binary sequence (PRBS). B: correlation between maximal 

𝑉̇𝑂2 and 𝑀𝑁𝐺 obtained from the oxygen uptake response during pseudorandom ternary sequence (PRTS). 

The 𝑀𝑁𝐺 was estimated using hip acceleration (𝐴𝐶𝐶, ○) or walking speed (●) as system inputs during 

PRTS. 𝑟: Pearson’s correlation level, 𝑝: statistical significance level and 𝑛: sample size. 

 

5.5 Discussion 

In alignment with our initial hypothesis, the aerobic system dynamics in response to a novel over-

ground walking protocol correlated with the aerobic dynamics during cycle ergometry testing. The 

oxygen uptake kinetics assessed by the mean normalized gain during the pseudorandom ternary 

sequence walking test correlated with the traditionally determined time constant measured during 

cycling exercise. The current study has added to the understanding of 𝑉̇𝑂2 kinetics during dynamic 

transitions in exercise and provided a foundation upon which 𝑉̇𝑂2 kinetics could be studied during 

variations in the speed of over-ground walking such as might occur during normal activities of 

daily living. To our knowledge, this was the first time that a PRTS protocol was used to study 𝑉̇𝑂2 

kinetics. Our results showed that hip accelerometers can be used as a proxy of work rate during 

random activities and therefore as a system input for aerobic system dynamics investigation. In 
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addition, the 𝑉̇𝑂2 dynamics, assessed by the 𝑀𝑁𝐺, were similar between PRTS and PRBS, and 

correlated with maximal 𝑉̇𝑂2. 

The advancements of low-cost and comfortable wearable sensors allowed the acquisition 

of intensive longitudinal biological data during unsupervised activities of daily living (Nakamura, 

Kiyono, Wendt, Abry, & Yamamoto, 2016; Walls & Schafer, 2012). Accelerometers are one of 

the most common wearable sensors used to infer the external work originating from spontaneous 

physical activity (Whitcher & Papadopoulos, 2014). Therefore, this sensor has the potential to be 

used as a system input for the study of the aerobic system dynamics during realistic activities, 

which might expand physical fitness evaluation far beyond the laboratory constraints. In this study, 

the hip accelerometer signals were successfully validated in comparison to walking speed data 

(Figure 36) that is correlated to metabolic demand (Holt, Hamill, & Andres, 1991; Tudor-Locke 

& Rowe, 2012). However, the detection algorithm used to estimate walking cadence, and therefore 

the walking speed, may fail to identify steps during complex body movements as expected during 

activities of daily living (Marschollek et al., 2008). Therefore, the metabolic cost and system input 

during activities of daily living might be better characterized by the hip accelerometer in 

comparison to walking speed or cadence since it is not necessary to detect cyclic events (steps). In 

addition, the accelerometer was located closer to the body center of mass (i.e., hip) with a higher 

correlation to the metabolic demand during physical activity (Chen et al., 2003).  

Walking is considered a common activity of daily living that requires a high 𝑂2 demand 

(and therefore, greatest increase in 𝑉̇𝑂2 ) due to the high degree of muscle activation. This 

characteristic enables the clear differentiation of the 𝑉̇𝑂2 response from the resting metabolic rate. 

During activities of daily living, the evaluation of the 𝑉̇𝑂2 data during walking periods has the 

potential to be used to assess the aerobic system dynamics. To test this potential, the proposed 
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PRTS protocol was used to simulate the step cadence changes that are expected to occur during 

realistic activities of daily living, although not with the same pattern. The 𝑉̇𝑂2  dynamics in 

response to the PRTS protocol was similar to the well-established PRBS protocol (Eßfeld et al., 

1987; Hughson et al., 1990). However, the proposed PRTS protocol has more applicability for the 

general population since the work rate was delivered by over-ground walking.  

Like PRBS, the 𝑉̇𝑂2 adjustment during the PRTS protocol depends on the ability of the 

cardiorespiratory and muscular systems to provide and utilize 𝑂2, respectively (Hughson, 2009). 

This ability modulates the rate in which the 𝑉̇𝑂2 increases after the exercise stimulus and faster 

dynamics responses are associated with better aerobic fitness (Hagberg et al., 1980; Powers et al., 

1985). Therefore, a better coupling between 𝑂2 delivery and its utilization will directly influence 

the 𝑉̇𝑂2  response during PRTS, allowing the identification of different aerobic responses in 

submaximal exercise (Hughson et al., 1990; Yoshida et al., 2008). 

Despite the strong linear correlation between 𝑀𝑁𝐺 and maximal 𝑉̇𝑂2 (𝑟 = 0.80), the 𝑀𝑁𝐺 

was not able to account for all variation in maximal 𝑉̇𝑂2  between participants. However, the 

maximal 𝑉̇𝑂2 estimation, used as the gold standard method, also has an expected source of error 

(Howley et al., 1995). Nevertheless, a faster 𝑉̇𝑂2 response (i.e., higher 𝑀𝑁𝐺) was observed in 

participants with higher maximal 𝑉̇𝑂2  which indicates that 𝑀𝑁𝐺  can be used, at least, as a 

complementary marker of the aerobic system integrity in association to maximal 𝑉̇𝑂2. 

Unlike a completely random protocol, PRTS protocols offer stimulus patterns optimized 

to study the physiological responses during exercise for a detectable and wide frequency range that 

is necessary for the precise 𝑉̇𝑂2 kinetics analysis. The unit length for each PRTS stimulus was 30 

s rather than 5 s (Figure 34B). In addition to be more reliable for walking and to maintain 

consistency between studies, the choice to use this work rate unit duration was based on previous 
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findings (Eßfeld et al., 1987; Hughson et al., 1990). These researchers studied the 𝑉̇𝑂2 response 

during 30 s- and 5 s-unit PRBS protocols and found that the aerobic dynamics assessed through 

the 𝑉̇𝑂2 data measured at the mouth level was less susceptible to hemodynamics confusing factors 

if a 30 s-unit was used rather 5 s-unit. 

As demonstrated in Figure 35, the 𝑀𝑁𝐺 index has the characteristic to isolate temporal 

dynamics of a linear system from variable static gains between participants and exercise 

modalities. The strong correlation between the 𝑀𝑁𝐺 obtained from the 𝑉̇𝑂2 response to cycling 

PRBS and walking PRTS protocols (Figure 39B) might suggest that the temporal characteristics 

of the aerobic system are controlled by the same fundamental mechanism(s) in these different 

exercises (Cerretelli, Pendergast, Paganelli, & Rennie, 1979). Participants who presented a faster 

𝑉̇𝑂2 adjustment (i.e., higher 𝑀𝑁𝐺 values) during cycling also presented faster dynamics during 

walking, even with the expected difference in muscle contraction regimen and fiber recruitment 

between these exercise modalities. However, the metabolic demand between both protocols was 

alike (Figure 37C), differing only ~1.5 𝑀𝐸𝑇𝑆, indicating that further studies are necessary to 

evaluate how different absolute metabolic demands required by different exercise modalities might 

influence the 𝑉̇𝑂2 dynamics in random physical activities.  

 

5.6 Limitations 

Some important limitations have to be considered from the evidence presented in this study. The 

range of maximal 𝑉̇𝑂2 evaluated (29 to 49 mL·min-1·Kg-1) was smaller in comparison to previous 

literature (Eßfeld et al., 1987). Therefore, new studies are necessary to verify the association 

between the 𝑉̇𝑂2  dynamics during submaximal dynamics exercise across a wider range of 

maximal aerobic power assessed by maximal 𝑉̇𝑂2 (in athletes or disease state for example).  
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The frequency-domain 𝑉̇𝑂2  kinetics analysis based on PRBS/PRTS stimuli might be 

“contaminated” by asymmetries between the temporal dynamics of the on- and off-transient phases 

(Paterson & Whipp, 1991). The 𝑀𝑁𝐺 obtained from the Fourier transformation has the potential 

to identify different system dynamics based on random exercise protocols if the exercise is 

constrained to the moderate intensity domain, where the 𝑉̇𝑂2 on- and off-kinetics are symmetrical 

(Ozyener et al., 2001) and the dynamic system linearity is preserved for the evaluated frequencies 

(Eßfeld et al., 1991; Hoffmann et al., 1992). Fortunately, the metabolic rate of the majority of 

activities of daily living fits into this range (Hendelman et al., 2000), so the current study was 

intentionally limited to light and moderate exercise (Figure 36C). 

 

5.7 Conclusion, Applications, and Future Perspectives 

In conclusion, our data suggest that pseudorandom ternary sequence protocols can be used to 

evaluate the aerobic system dynamics. As an over-ground walking protocol, the proposed 

methodology is more applicable for testing the aerobic response in the general population. In 

addition, the aerobic response dynamics from PRBS and PRTS were correlated to maximal 𝑉̇𝑂2 

(Figure 40), indicating a significant outcome of this study. Unlike cycling incremental protocols 

used to obtain maximal 𝑉̇𝑂2, the proposed PRTS protocol is more functional, can be more broadly 

applied to normally sedentary or less healthy individuals, and reduces the risks associated with 

maximal exertion. 

As a consequence of a slower energy supply by the aerobic system, a slower 𝑉̇𝑂2 

dynamics was previously associated with functional mobility impairments in older adults 

(Alexander et al., 2003). The early detection of subclinical aerobic response depletion might be an 

indication of a decreased physiological reserve, which contributes to frailty (Newman et al., 2001). 
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Therefore, indexes that describe “how fast” the energy demand is supplied by the aerobic system 

(such as the 𝑀𝑁𝐺) have the potential to be considered into models for the early detection of disease 

states. Additionally, wearable technologies (such as accelerometers and heart rate) are becoming 

more popular and less costly, allowing routine daily monitoring. The combination between 

wearables and new data processing techniques has direct applicability for disease prevention and 

for the evaluation of treatment progression. In addition, the 𝑀𝑁𝐺 was obtained from an optimized 

exercise stimulus for frequency domain analysis. Further studies need to evaluate the consistency 

of the 𝑀𝑁𝐺 to assess the aerobic system dynamics during completely random activities, such as 

unsupervised activities of daily living.  
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Chapter 6: Prediction of Oxygen Uptake Dynamics by Machine Learning 

Analysis of Wearable Sensors During Activities of Daily Living 

This chapter was submitted as: 

Beltrame T., Hughson R. L. Prediction of oxygen uptake dynamics by machine learning analysis 

of wearable sensors during activities of daily living. Submitted to Scientific Reports on September 

27, 2016.  
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6.1 Overview 

Currently, oxygen uptake (𝑉̇𝑂2) is the most precise means of investigating aerobic fitness and level 

of physical activity; however, 𝑉̇𝑂2 can only be directly measured in supervised conditions. With 

the advancement of new wearable sensor technologies and data processing approaches, it is 

possible to accurately infer work rate and predict 𝑉̇𝑂2 during activities of daily living (𝐴𝐷𝐿). The 

main objective of this study was to develop and verify the methods required to predict and 

investigate the 𝑉̇𝑂2 dynamics during 𝐴𝐷𝐿. The variables derived from the wearable sensors were 

used to create a 𝑉̇𝑂2 predictor based on a random forest ensemble regression method. The 𝑉̇𝑂2 

temporal dynamics were assessed by the mean normalized gain amplitude (𝑀𝑁𝐺) obtained from 

frequency domain analysis. The 𝑀𝑁𝐺 provides a means to assess aerobic fitness. The predicted 

𝑉̇𝑂2  during 𝐴𝐷𝐿  was strongly correlated (𝑟=0.87, 𝑃<0.001) with the measured 𝑉̇𝑂2  and the 

prediction bias was 0.2 ml·min-1·kg-1. The 𝑀𝑁𝐺 calculated based on predicted 𝑉̇𝑂2 was strongly 

correlated (𝑟=0.71, 𝑃<0.001) with 𝑀𝑁𝐺  calculated based on measured 𝑉̇𝑂2  data. This new 

technology provides an important advance in ambulatory and continuous assessment of aerobic 

fitness with potential for future applications such as the early detection of deterioration of physical 

health.  
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6.2 Introduction 

The measurement of oxygen uptake (𝑉̇𝑂2) responses in steady-state condition is commonly used 

to precisely estimate the individual energy expenditure of a given physical activity (Meijer, 

Westerterp, Koper, & Ten Hoor, 1989). Besides energy expenditure estimation, the evaluation of 

the temporal dynamics of the 𝑉̇𝑂2  during physical activity transitions can provide valuable 

information about the aerobic system integrity (Borghi-Silva et al., 2012; Whipp & Ward, 1992). 

From a practical perspective, abnormal aerobic responses to exercise may precede the clinical 

detection of non-communicable diseases (Guazzi et al., 2012). Therefore, wearable technologies 

that continuously evaluate the aerobic response during non-supervised activities of daily living 

(𝐴𝐷𝐿) have the potential to identify not only changes in physical fitness, but also disease states 

before the manifestation of clinical symptoms (Nakamura et al., 2016; Rudner, McDougall, 

Sailam, Smith, & Sacchetti, 2016). 

In parallel with the advances in wearable devices, machine learning (𝑀𝐿) techniques are 

becoming popular to analyze the large quantities of longitudinal data streamed from these devices 

(Mannini & Sabatini, 2010). The 𝑀𝐿 algorithms may provide the technical basis to better identify 

non-trivial and complex patterns in long-term continuous biological signals (Witten & Frank, 

2005). The data mining process by 𝑀𝐿 is often based on the relationship between known inputs 

and outputs (supervised learning) (Altini et al., 2016). The initial crude algorithms are feed with 

input and known output data (examples), and evolve according to the general structures that 

describe the input-output relationships. When the algorithm reaches a satisfactory generalization 

capacity, the output can be estimated by the inputs through a set of rules nested within the 

algorithm.  
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In this study 𝑀𝐿  will be used to build a 𝑉̇𝑂2  predictor based on inputs provided by 

wearable sensors. The main objective of this study was to predict and evaluate the temporal 

dynamics of the aerobic response during realistic activities. Specifically, data acquired from 

wearable sensors fusion will be processed by 𝑀𝐿  algorithms to predict the 𝑉̇𝑂2  data with 

subsequent aerobic system analysis. The hypothesis of this study is that the signals collected by 

wearable sensors contain latent features that allow the characterization of the aerobic system 

response to exercise. 

 

6.3 Methods 

6.3.1 Study Design 

Sixteen healthy, active male adults enrolled in this study (27 ± 7 years old, 174 ± 7 cm and 78 ± 

14 kg). A written, informed consent was obtained from all participants. The Office of Research 

Ethics at the University of Waterloo reviewed and approved the research procedures that were 

consistent with the Declaration of Helsinki. 

As opposed to previous studies (Altini et al., 2016; Su et al., 2009; Su, Wang, Celler, & 

Savkin, 2007) that used treadmill ergometers, participants performed two pseudorandom ternary 

sequence (PRTS) over-ground walking protocols separated by simulated 𝐴𝐷𝐿. Considering a step 

duration of 30 s, the PRTS was generated according to previous literature (Kerlin, 1974; Peterka, 

2002). The PRTS was composed by a warm-up period of 300 s of extra sequence followed by 13 

min of protocol. The walking cadences alternated between three levels (75, 105 or 135 steps·min-

1). These levels corresponded to ≈ ±30% of the normal walking cadence (Tudor-Locke & Rowe, 

2012). The simulated 𝐴𝐷𝐿 protocol (≈ 20 min) was composed by sitting, organizing the shelf, 

carrying objects (≈ 4.5 Kg), stairs (four up and four down flights of stairs), self-paced walking and 
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sitting using the computer. Figure 41 exemplifies the behaviour of the hip acceleration (further 

explained) during these protocols. 
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Figure 41. Hip acceleration during physical activity. 

Representative hip acceleration response during pseudorandom ternary sequence (PRTS) walking protocol 

and simulated activities of daily living (𝐴𝐷𝐿). The arrows point to each specific 𝐴𝐷𝐿 (labels). 

 

6.3.2 Data Acquisition 

Throughout the PRTS and simulated ADL, the 𝑉̇𝑂2 data were measured breath-by-breath by a 

portable metabolic system (K4b2, COSMED, Italy). The gas concentrations and air volume/flow 

were calibrated following manufacturer’s specifications before each visit. The wearable sensors 

hip accelerometer, ECG and respiration band were integrated into a smart shirt (Hexoskin®). The 

raw sensor signals were used to obtain heart rate (𝐻𝑅 ), minute ventilation ( 𝑉̇𝐸 ), breathing 

frequency (𝐵𝐹), total hip acceleration (𝐻𝑎𝑐𝑐), and walking cadence (𝐶𝐴𝐷) through previously 

validated proprietary algorithms (Villar et al., 2015). From the 𝐻𝑅  data, a new variable was 

derived. The ∆𝐻𝑅 was composed by the difference between the current 𝐻𝑅 value and the previous 

value by a 1 s lag operator, capturing dynamic changes in cardiac activity. The combination of the 

accelerometer sample rate (64 Hz), resolution (0.004 g) and range (16 g’s) was sufficient to capture 
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all expected 𝐴𝐷𝐿 movements (Bouten et al., 1997). The data from the wearable sensors and the 

𝑉̇𝑂2 signal were synchronized, linearly interpolated and re-sampled at 1 Hz. 

  

6.3.3 Machine Learning 

As demonstrated in Figure 42, the 𝑉̇𝑂2 predictor was based on a random forest machine learning 

method (Breiman, 2001). The re-sampled 1 Hz data for 𝐻𝑅, ∆𝐻𝑅 𝑉̇𝐸, 𝐵𝐹, 𝐻𝑎𝑐𝑐, 𝐶𝐴𝐷 and 𝑉̇𝑂2 

were low-pass filtered at 0.01 Hz. Frequencies higher than 0.01 Hz were filtered out to diminish 

the influences of non-linearities over the machine learning. Data mining was performed in Matlab 

R2016a (MathWorks, Natick, MS, US). 
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Figure 42. From wearable sensor signals into oxygen uptake. 

Illustration of the transformation of wearable sensor signals into oxygen uptake (𝑉̇𝑂2) by a random forest 

regression model. This algorithm was created based on a machine learning approach (see text for details). 

The heart rate (HR) was estimated based on the ECG signal. The ∆𝐻𝑅 variable consisted of the difference 

between the current 𝐻𝑅  value with the previous value. The ventilation minute ( 𝑉̇𝐸 ) and breathing 

frequency (𝐵𝐹 ) were estimated based on two respiratory bands (abdominal and thoracic). The hip 

acceleration (𝐻𝑎𝑐𝑐 ) and walking cadence (𝐶𝐴𝐷 ) were estimated based on tri-axis (x, y and z axis) 

accelerometer located at the hip. These variables were considered as inputs to a random forest algorithm 

consisting of a ruleset (regression trees, 𝑇𝑟𝑒𝑒𝑇) composed by thresholds that split the signal into two tree 

branches (light grey circles). The numerical output (𝑉̇𝑂2) was the average of all final selected tree leaves 

(open circles). 

 

The tested algorithms were validated by leave-one-participant-out cross-validation (Ross 

et al., 2009). This validation was chosen to avoid data overlapping between training and testing 

datasets which might mislead the prediction accuracy evaluation (Witten & Frank, 2005). The 

mined algorithm accuracy was evaluated by the average of the Pearson’s linear correlation 

coefficient (𝑟) of all folds from the validation process. The time series data and the ability of the 

predictor to estimate the system temporal dynamics (further explained) were considered into this 

validation.  

Ensemble models (i.e., “super” machine learning models that combine the output of 

individual models within) have gained popularity for outperforming singular models with large 
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complex data (Dietterich, 2000). The random forest model is a popular ensemble model that does 

not make any inherent assumptions about data distribution. It treats the feature space as clustered 

disjoint sets of target (𝑉̇𝑂2) values, which is helpful for aggregating many data points that may be 

similar but vary due to measurement noise. When building individual trees, the method actively 

seeks data that improve the fit. Finally, prediction is fast, only requiring fast tree traversals. These 

properties make it a good candidate for real-time 𝑉̇𝑂2 prediction for future implementations in 

embedded systems. 

The random forest model was implemented as an ensemble of bootstrap aggregate 

regression trees. Specifically, each tree is made up of nodes with up to two children nodes, starting 

with the root node and traversing down to the end. A node contains a splitting criterion (e.g., 𝐻𝑅 

> 50 bpm). For each time point, the feature values were evaluated by traversing the nodes to the 

bottom of the tree based on their decision values. Each bottom node, the “leaf node”, contains the 

tree’s estimated output for the given feature values. Each regression tree was grown individually 

with a randomly sampled subset of the training data. The final estimated 𝑉̇𝑂2 value for a given 

time point was computed as the average prediction across all the tree’s leaves. 

Mathematically, let 𝑋 = [x1, … , x𝑛] be a set of 𝑛 feature vectors, and 𝑦 be the (known) 

𝑉̇𝑂2  value corresponding to each feature set. The goal was to develop a random forest of 𝑇 

individual regression trees. Each individual regression tree was trained on a random data sample 

(in-bag selection) for generalizability. Each tree was grown node-by-node as follows. For each 

node, a random 1/3 subset of the features was selected as candidate splitting features. An optimal 

node split (into left and right subtrees) was sought such that it minimized the sum of squared 

residuals in the two prospective subsets:  
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Equation 10 𝜖𝑖 = 𝑚𝑖𝑛
𝑠
{∑ (𝑦𝑖 − 𝑐𝑙̅)

2
𝑖:𝑥𝑖≤𝑠⏟          
𝑙𝑒𝑓𝑡 𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛

+ ∑ (𝑦𝑖 − 𝑐𝑟̅)
2

𝑖:𝑥𝑖>𝑠⏟          
𝑟𝑖𝑔ℎ𝑡 𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛

}; 

 

where 𝑠  is the splitting value, 𝑥𝑖  is the candidate splitting feature, 𝑦𝑖 , and 𝑐𝑙̅, 𝑐𝑟̅  are the mean 

responses from the prospective left and right subregion respectively. The feature that exhibited the 

smallest 𝜖𝑗 was chosen as this node’s splitting criterion: 

 

Equation 11 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗
{𝜖𝑗}. 

 

This process was repeated recursively for each node, until a full tree was grown. Thus, 

given a new feature vector x, each tree predicted the 𝑉̇𝑂2 value 𝑦̂𝑡 by following the binary splits 

according to the given feature vector and outputting the leaf node’s prediction value where a leaf 

node (dark grey circles in Figure 42) is a node in the tree that doesn't have any split (light grey 

circles in Figure 42). The final predicted 𝑉̇𝑂2 value was computed by the bag’s weighted average 

of the individual tree predictions: 

 

Equation 12 𝑉̇𝑂2
̂ =

1

𝑇
∑ 𝑦̂𝑡
𝑇
𝑡=1 . 

 

6.3.4 Oxygen Uptake Dynamics Evaluation 

The data corresponding to the PRTS protocol, optimized for system identification (Kerlin, 1974), 

was used for the evaluation of the aerobic system dynamics. The 𝐻𝑎𝑐𝑐 data were considered as 

system inputs and the measured and predicted 𝑉̇𝑂2 as outputs. To increase the signal-to-noise 



 

138 
 

ratio, input and output responses during each of the two PRTS were time aligned and averaged to 

obtain a single PRTS response per participant. Fast Fourier Transformations were used to convert 

the data from time to frequency domain. The frequency range was limited to 0.008 Hz to avoid the 

influence of system non-linearities (Hoffmann et al., 1992). As a characteristic of the PRTS 

protocol (Kerlin, 1974), the amplitudes for the even harmonics were excluded a priori due to the 

absence of system stimulus. As previously proposed (Eßfeld et al., 1991; Hoffmann et al., 1992), 

the system gains at the different frequencies (output/input ratio) were normalized by the gain at 

the first harmonic. This procedure eliminates the influence of the system static gain over the 

temporal characteristics of the system which ultimately are related to aerobic power (Chilibeck et 

al., 1995; Hagberg et al., 1980; Hughson, 2009; Powers et al., 1985). Finally, the mean of the 

normalized gains (𝑀𝑁𝐺) was used as an index of the system temporal dynamics. Higher 𝑀𝑁𝐺 

values mean faster aerobic responses. Data analysis was performed by a certified (#100-314-4110) 

LabVIEW associated developer (National Instruments, Austin, TX, US). 

 

6.3.5 Statistical Analysis 

For each participant and considering the entire group response, the predicted 𝑉̇𝑂2  data were 

validated during the PRBS and 𝐴𝐷𝐿 using the raw measured 𝑉̇𝑂2 data as reference (without 0.01 

Hz high pass filtering). The 𝑀𝑁𝐺 estimated from the predicted 𝑉̇𝑂2 was also validated using the 

𝑀𝑁𝐺  estimated from the measured 𝑉̇𝑂2  as reference. The 𝑟  coefficient, Bland-Altman plot, 

confidence interval (𝐶𝐼95) and Student t-test were used for data validation. The prediction bias 

(measured minus predicted) was also compared with the equality line (bias = 0) by Student t-test. 

To further explore the predictions during 𝐴𝐷𝐿, the sample was also clustered into three groups 

according to the metabolic equivalent (𝑀𝐸𝑇𝑆 ) estimated from the measured 𝑉̇𝑂2  (𝑀𝐸𝑇𝑆 =
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𝑉̇𝑂2/3.5). The first cluster was composed by the resting metabolic rate (𝑅𝑀𝑅) estimated from the 

60 s average of the 𝑉̇𝑂2 response during resting. Since the exercise protocol designed for this study 

was focused on realistic 𝐴𝐷𝐿  that is in majority composed by light and moderate intensity 

(Hendelman et al., 2000), less than 2% of the experimental data were composed by 𝑀𝐸𝑇𝑆 higher 

than 6.0. Therefore, the average of the samples within the intervals 2-3.9 (505 ± 137 samples per 

participant) and 4.0-5.9 (422 ± 67 samples per participant) were grouped as light and moderate 

activities, respectively (Jetté, Sidney, & Blümchen, 1990). 

 

6.4 Results 

Figure 43 displays the comparison of the measured and predicted 𝑉̇𝑂2. The data obtained during 

𝐴𝐷𝐿 are displayed in Figure 43A, 3B and 3C and the data obtained during the PRTS protocol are 

displayed in Figure 43D, 43E and 43F. As demonstrated in Figure 43A, the quality of the 

prediction was verified by a strong and significant positive correlation (𝑟 = 0.87, 𝑃 < 0.001 and 𝑛 

= 20,868) with the measured data during 𝐴𝐷𝐿. By individually analyzing the correlation level, all 

participants presented a strong and significant positive correlation (𝑟 = 0.88±0.05, 𝑃 < 0.001±0.00 

and 𝑛 = ≈1200 per participant) between predicted and measured data with a bias of 0.331 ± 1.187 

ml·min-1·kg-1. The Bland-Altman plot for the measured and predicted 𝑉̇𝑂2 during 𝐴𝐷𝐿 is shown 

in Figure 43B. Considering the entire sample for 𝐴𝐷𝐿, the bias (0.294 ml·min-1·kg-1, ≈ 2.2 % of 

the average response) was statistically (𝑃 < 0.05) higher than the equality line. The 𝐶𝐼95 was 6.166 

ml·min-1·kg-1 around the bias. The relative distribution of the error is plotted in Figure 43C. The 

error distribution followed a Gaussian-like function with the majority of the error located close to 

the equality line (bias = 0). 
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 Considering all data points from all participants during PRTS (Figure 43D), the 

correlation coefficient was strongly positively correlated (𝑟 = 0.69, 𝑃 < 0.001 and 𝑛 = 12,480). By 

individually analyzing the correlation level, all participants presented a strong and significant 

positive correlation ( 𝑟  = 0.77±0.09, 𝑃  < 0.001±0.00 and 𝑛  = 780 per participant) between 

predicted and measured data. The Bland-Altman plot for the measured and predicted 𝑉̇𝑂2 during 

PRTS is shown in Figure 43E. The bias of the prediction, -0.259 ml·min-1·Kg-1 was lower (𝑃 < 

0.001) than the equality line representing only ≈ 1.7 % of the average response during the PRTS 

protocol. The 𝐶𝐼95 was 4.250 ml·min-1·kg-1. The relative distribution of the error is plotted in 

Figure 43F. This distribution also followed a Gaussian-like function with the majority of the error 

located close to the equality line (bias=0). 
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Figure 43. Predicted and measured oxygen uptake. 

Data were down sampled to 0.1 Hz for a better data visualization. Graphs A, B and C are related to data 

obtained during activities of daily living (~1200 samples per participant) and graphs D, E and F are related 

to data obtained during pseudorandom walking protocol (1560 samples per participant). A and D: linear 

correlation of the measured and predicted oxygen uptake (𝑉̇𝑂2) between all participants. B and E: Bland-

Altman plot of the predicted and measured 𝑉̇𝑂2 data. C and F: distribution of the prediction error. 

 

6.4.1 Metabolic Equivalent 

The ability of the random forest algorithm in estimate different levels of metabolic equivalent at 

rest (resting metabolic rate, 𝑅𝑀𝑅) and during light and moderate 𝐴𝐷𝐿 is depicted in Figure 44. 

These data were based on the same data displayed in Figure 43A but clustered into groups 

according to the metabolic demand during 𝐴𝐷𝐿  (Jetté et al., 1990). Less than 2% of the 

experimental data were composed by intense activities (> 6 𝑀𝐸𝑇𝑆), therefore these data were 

excluded a priori. The proximity of the estimated 𝑀𝐸𝑇𝑆 to the equality line demonstrates that the 
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random forest was able to dissociate between different metabolic demands. The proposed 

algorithm can be used to classify activity levels between light and moderate 𝐴𝐷𝐿. 
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Figure 44. Predicted and measured metabolic equivalent. 

Relationship between the measured and predicted metabolic equivalent (𝑀𝐸𝑇𝑠) during resting (defined as 

the resting metabolic rate, 𝑅𝑀𝑅, < 2 𝑀𝐸𝑇𝑆) and during light (2.0 – 3.9 𝑀𝐸𝑇𝑆) and moderate (4.0 – 5.9 

𝑀𝐸𝑇𝑆) activities of daily living (𝐴𝐷𝐿).  

 

6.4.2 Aerobic System Temporal Dynamics 

The group mean response for the second-by-second average 𝑉̇𝑂2 during the PRTS protocol was 

computed and depicted in Figure 45. 
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Figure 45. Measured and predicted oxygen uptake during pseudorandom ternary sequence. 

Second-by-second mean (lines, n =16 per point) of the measured and predicted oxygen uptake (𝑉̇𝑂2) during 

pseudorandom ternary sequence over-ground walking protocol. The SD (upward vertical bars for measured 

values, downward for predicted) are plotted at 10s intervals. 

 

The comparison of the aerobic system temporal dynamics assessed by the 𝑀𝑁𝐺 calculated 

from measured and predicted 𝑉̇𝑂2  data during the PRTS protocol (Figure 45) is displayed in 

Figure 46. The 𝑀𝑁𝐺 calculated from predicted 𝑉̇𝑂2 data was statistically similar (𝑃 = 0.136) and 

strongly, positively correlated to the 𝑀𝑁𝐺  calculated from measured 𝑉̇𝑂2  data. The 𝑀𝑁𝐺 

calculated from predicted 𝑉̇𝑂2 data presented a bias of -6.19 % which corresponds to 10% of the 

average 𝑀𝑁𝐺 response. The bias was statistically (𝑃 = 0.012) lower than the equality line (bias = 

0). The 𝐶𝐼95 was 17.63 % around the bias (or 29% of the mean 𝑀𝑁𝐺 response). 
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Figure 46. Measured and predicted mean normalized gain. 

A: linear correlation between the mean normalized gain (𝑀𝑁𝐺) calculated from predicted and measured 

oxygen uptake data. B: Bland-Altman plot of the data displayed in A. 

 

6.5 Discussion 

In agreement to the initial hypothesis, the signals obtained from the wearable sensors allowed the 

prediction of oxygen uptake during activities of daily living and random paced walking. Aerobic 

system temporal dynamics assessed by the 𝑀𝑁𝐺 from the predicted oxygen uptake were similar 

to those of oxygen uptake measured by a portable metabolic device. In addition, the random forest 

algorithm was able to identify physical activity levels and the resting metabolic demand. 

Estimating the correct measurement of physical activity level during realistic scenarios 

remains a challenge (Sallis & Saelens, 2000) and hence, new wearable technologies and data 

processing approaches are necessary. The quantification of the physical activity level usually 

involves the estimation of energy expenditure by indirect calorimetry. Indirect calorimetry has also 

been is used to calibrate wearable sensors for a wide range of activities during steady-state, 

allowing the energy expenditure estimation (i.e., steady-state 𝑉̇𝑂2 ) without the need for the 

original calorimetry measurement (Staudenmayer et al., 2009). However, the complexity and 

diversity of 𝐴𝐷𝐿 represent a challenge for the precise physical activity estimation in a realistic 
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scenario (Altini et al., 2016; Chen et al., 2004; Jacobi et al., 2007; Schrack et al., 2014; Tan et al., 

2011).  

During randomly varying exercise intensities, assessment of the rate at which 𝑉̇𝑂2 adapts 

to the metabolic demands is indicative of aerobic fitness (Hagberg et al., 1980; Phillips et al., 1995; 

Powers et al., 1985). Thus, the ability to predict 𝑉̇𝑂2 with an adequate time resolution provides an 

opportunity to obtain valuable information about cardiovascular health in addition to standard 

estimates of energy expenditure. Previous approaches to this problem have been restricted to 

studies conducted under controlled laboratory conditions (Su et al., 2009, 2007). In the present 

study, we investigated a simulated 𝐴𝐷𝐿  protocol as well as an over-ground walking protocol 

(PRTS) that mimicked the dynamic changes in walking cadences expected during daily activities. 

The PRTS protocol offered an optimized stimulus for the aerobic system analysis through the study 

of the 𝑉̇𝑂2 temporal dynamics and its prediction by a random forest machine learning regression 

model. 

Recently, Altini et. al (Altini et al., 2016) used a novel approach for estimating 𝑉̇𝑂2 during 

nonsteady-state phases. Their algorithm combined an activity classification method with a 

numerical prediction approach that predicted 𝑉̇𝑂2  during dynamic phases of moderate 𝐴𝐷𝐿 . 

However, the ability of the algorithm to correctly identify the 𝑉̇𝑂2 dynamics was reported only as 

a lower error of the estimation during exercise transitions. No further validation of the modelling 

parameters was carried out to explore the characterization of the aerobic adjustment dynamics with 

eventual health-related outcome. 

In addition to 𝐻𝑅 and accelerometer (Altini et al., 2016; Su et al., 2007), the acquisition of 

more biological data such as 𝑉̇𝐸  and 𝐵𝐹  improved the 𝑉̇𝑂2  estimation during transitions and 

steady-state. When the 𝑀𝑁𝐺 was calculated based on the predicted 𝑉̇𝑂2 without considering 𝑉̇𝐸 
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and 𝐵𝐹  as inputs, the 𝑀𝑁𝐺  accuracy decreased by 55 % (based on 𝑟  value). Therefore, the 

integration of respiratory measurements for 𝑉̇𝑂2  prediction seems to be indicated, evidencing 

some advantages of the smart-shirts over simpler wearable devices. As with the majority of the 

biological processes, 𝑉̇𝐸 and 𝐵𝐹 signals are also delayed during transitions and despite not having 

exactly the same dynamics as the 𝑉̇𝑂2 , they have predictable relationships (Xing, Cochrane, 

Yamamoto, & Hughson, 1991) which would contribute to a better understanding of the biological 

variability during transitions.  

Studies that optimize the 𝑉̇𝑂2 prediction during exercise transition with the intention to 

better estimate energy expenditure might be controversial. The 𝑂2 deficit at the on-transition phase 

is counter-balanced by the excess of 𝑂2 consumption during recovery (Ozyener et al., 2001) thus 

the calorie counts based on different predicted 𝑉̇𝑂2 temporal dynamics should be almost similar. 

The energy expenditure estimation is independent on the 𝑉̇𝑂2  temporal dynamics, being 

determined only by the correct system static gain estimation. Therefore, in terms of calories (i.e., 

energy expenditure) calculated after a period of time, algorithms that successfully predict steady-

state 𝑉̇𝑂2 might be enough to estimate energy expenditure and no further methods are necessary 

for the 𝑉̇𝑂2  prediction during nonsteady-state phases. The justification for the correct 𝑉̇𝑂2 

estimation during exercise transition has to have a reason beyond a “better” physical activity level 

estimation as considered next. 

The 𝑉̇𝑂2  responses during transitions have been used to assess aerobic fitness in 

constrained settings (Eßfeld et al., 1987; Powers et al., 1985) and the expansion of these 

approaches outside of the laboratory environment represents the possibility to track changes in 

aerobic fitness and physical health on a daily basis. The assessment of aerobic fitness by wearable 

sensors during unsupervised daily living routine seems very promising. As demonstrated in Figure 
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46, our algorithm was able to characterize the temporal dynamics (𝑀𝑁𝐺) of the aerobic system 

based on the predicted 𝑉̇𝑂2 data. Therefore, the proposed algorithm can be used in the future for 

aerobic fitness assessment based on predicted 𝑉̇𝑂2 data obtained from wearable sensors during 

transitions encountered during 𝐴𝐷𝐿  for ordinary people or patient populations, or during 

prescribed variations in work rate, such as athletic training. 

 

6.6 Study Limitations 

The purpose of the current study was to predict 𝑉̇𝑂2 during the most common 𝐴𝐷𝐿. Thus, the 

exercise protocols were limited to light and moderate activities with intensities lower than ~6 

𝑀𝐸𝑇𝑠, and any attempt to extend this range should include extensive testing for reliability. Any 

studies that investigate the algorithm proposed in the current study for high intensity activities 

must recognize that 𝑉̇𝑂2  dynamics become more complex under these conditions with the 

potential for nonlinear contributions. The 𝑉̇𝑂2 predictor developed in this study can be applied to 

evaluate the aerobic system dynamics during 𝐴𝐷𝐿 where intense activities are unlikely to occur 

(Hendelman et al., 2000). 

The population tested in the current study (healthy men) had narrow weight and age ranges 

which might also restrict the use of the proposed algorithm. Further studies are necessary to verify 

the reliability of the 𝑉̇𝑂2 predictions in different populations. It is recommended that any future 

study incorporate dynamic protocols (such as the PRTS) to evaluate the ability of the proposed 

algorithms to predict the 𝑉̇𝑂2 dynamics during exercise transitions.  
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6.7 Conclusion 

In conclusion, oxygen consumption dynamics can be predicted from the fusion of data from non-

intrusive wearable sensors and machine learning prediction algorithms. Longitudinal predictions 

of oxygen uptake can be obtained from wearables based on the validation completed in the current 

study for activities of daily living and random over-ground walking. The proposed random forest 

ensemble predictor in conjunction with 𝑀𝑁𝐺 can be used to investigate aerobic response during 

realistic activities with direct applicability for the general population. Developing the 

aforementioned predictive model will provide a unique opportunity for continued lifelong 𝑉̇𝑂2 

collections in unsupervised environments. This new technology provides a significant advance in 

ambulatory and continuous assessment of energy expenditure and aerobic fitness with potential 

for future applications such as the early detection of deterioration of physical health.  
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Chapter 7: Longitudinal Aerobic System Analysis During Unsupervised 

Activities of Daily Living Based on Wearable Sensors  
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7.1 Overview 

Physical activity levels are related to the energetic demand throughout the day with no information 

regarding the integrity of the multiple physiological systems involved in the energetic supply. The 

longitudinal analysis of the oxygen uptake (𝑉̇𝑂2) data by wearable devices in realistic settings may 

permit development of a practical tool for the study of the aerobic system dynamics. The objective 

of this study was to evaluate the aerobic system dynamics based on predicted 𝑉̇𝑂2 data obtained 

from wearable sensors during unsupervised activities of daily living (𝑢𝐴𝐷𝐿). Thirteen healthy men 

(26 ± 5.6 years old, 179 ± 9 cm and 79 ± 13 kg) performed a laboratory controlled protocol and 

were monitored for ≈6 hrs per day, during four days (𝑢𝐴𝐷𝐿  data). Variables derived from 

accelerometer, heart rate monitor and respiratory bands during 𝑢𝐴𝐷𝐿 were processed by a machine 

learning algorithm that predicted 𝑉̇𝑂2 data. This algorithm was successfully validated (𝑟 = 0.86, 

𝑝 <0.001, 𝑛 = 63,571) during the laboratory protocol by measuring the 𝑉̇𝑂2 simultaneously by a 

metabolic analyzer. The predicted 𝑉̇𝑂2 dynamics were evaluated by frequency domain analysis 

and compared with the measured 𝑉̇𝑂2 during the laboratory visit. The temporal dynamics of the 

aerobic system based on predicted 𝑉̇𝑂2  during 𝑢𝐴𝐷𝐿  was correlated to the aerobic system 

dynamics based on measured 𝑉̇𝑂2 during laboratory controlled protocol (𝑟 = 0.82, 𝑝 <0.001, 𝑛 = 

13). In conclusion, aerobic system dynamics can be investigated during unsupervised activities of 

daily living by wearable sensors. These algorithms have the potential to be incorporated into 

wearable systems for early detection of non-communicable diseases in realistic environments.  
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7.2 Introduction 

The study of the oxygen uptake (𝑉̇𝑂2) dynamics during unsupervised activities of daily living 

(𝑢𝐴𝐷𝐿) has never been attempted. Recent algorithms have used various strategies to predict 𝑉̇𝑂2 

or to assess cardiorespiratory fitness in the laboratory and during free-living conditions. One 

approach incorporated nonlinear multivariable modeling and achieved good prediction of 𝑉̇𝑂2 

during randomly varying treadmill walking (Su et al., 2009) but did not quantify dynamic 

responses, and did not apply the model to 𝑢𝐴𝐷𝐿. Another approach relied on context-specific 

categorization of 𝑉̇𝑂2  responses during simulated 𝐴𝐷𝐿  (Altini et al., 2016). These previous 

models enabled the precise evaluation of physical activity (𝑃𝐴) levels through prediction of 𝑉̇𝑂2 

(𝑉̇𝑂2
̂ ) data (Altini et al., 2016; Su et al., 2009). However, 𝑃𝐴 levels were related to the energetic 

demand throughout the day with no information regarding the integrity of the multiple 

physiological systems involved in the energetic supply. The longitudinal study of the aerobic 

system dynamics through 𝑉̇𝑂2
̂  data analysis in realistic settings may permit development of a 

practical tool with direct physiological significance to clinical outcomes (Guazzi et al., 2012; 

Newman et al., 2006).  

Wearable devices (e.g., accelerometers) are commonly used to estimate 𝑃𝐴 levels based 

on 𝑉̇𝑂2 steady state response for each specific 𝑃𝐴 type (Staudenmayer et al., 2009). There is an 

association between the 𝑂2 cost (steady state 𝑉̇𝑂2) and energetic demand which allows the energy 

expenditure estimation based on wearable sensors. However, during 𝑃𝐴 transitions, the aerobic 

response and consequently the 𝑉̇𝑂2 dynamic lags behind the energetic demand (Barstow et al., 

1994). Nonetheless, it is during 𝑃𝐴 transitions, periods of high homeostatic perturbation, that the 

aerobic system demonstrates its integrity for the interactions with the external work. Classically, 

it is hypothesized that a faster aerobic adjustment to a new energetic demand is associated with a 
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better aerobic fitness (Norris & Petersen, 1998; Phillips et al., 1995; Powers et al., 1985), while 

slower adjustments are associated with disease prognosis (Borghi-Silva et al., 2012; Pessoa et al., 

2013; Regensteiner et al., 1998). The energetic supply during 𝑃𝐴  transitions relies more on 

anaerobic high energy phosphate stores and glycolysis when the aerobic responses are slower 

(Koskolou et al., 1997) which might be associated with an impaired exercise perception with 

consequences on functional mobility and performance (Alexander et al., 2003). The early detection 

of abnormal aerobic system dynamics by wearable sensors might be used as a marker for primary 

prevention of non-communicable diseases (Guazzi et al., 2012). 

The main objective of this study was to evaluate the aerobic system dynamics based on 

𝑉̇𝑂2
̂  data obtained from wearable sensors during 𝑢𝐴𝐷𝐿 . Specifically, data acquired from 

accelerometer, heart rate monitor and respiratory bands during 𝑢𝐴𝐷𝐿 were processed by a machine 

learning (𝑀𝐿) algorithm that predicts 𝑉̇𝑂2
̂  data. The aerobic system dynamics were characterized 

based on a parameter, mean normalized gain (𝑀𝑁𝐺), derived from frequency domain analysis of 

𝑉̇𝑂2
̂  and compared with the 𝑀𝑁𝐺 calculated from laboratory testing with directly measured 𝑉̇𝑂2. 

The hypothesis of this study was that it is possible to evaluate the aerobic system dynamics from 

wearables sensors during 𝑢𝐴𝐷𝐿. 

 

7.3 Methods  

7.3.1 Study Design 

Thirteen healthy active men (26 ± 5.6 years old, 179 ± 9 cm and 79 ± 13 kg) participated in this 

study. A written, informed consent was obtained from all participants. The Office of Research 

Ethics at the University of Waterloo reviewed and approved the research procedures that were 

consistent with the Declaration of Helsinki. This longitudinal study was divided in two parts. The 
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first part comprised of data collection without supervision (𝑢𝐴𝐷𝐿) where the participants wore 

wearable sensors during their normal daily routine for four consecutive days. One participant only 

wore the wearables for three days. The researchers briefly met with the participant twice a day, at 

9:52 ± 1:17 am and 4:11 ± 1:21 pm, to administer and remove the wearable monitoring devices, 

respectively. Therefore, participants wore the sensors for 6.3 ± 1.4 hours a day. Three additional 

participants (26 ± 1.2 years old, 178 ± 4 cm and 89 ± 7 kg) started the protocol, but due to technical 

problems related to the respiratory bands and ECG electrodes, they were excluded from further 

analysis. From the 13 participants who completed the 𝑢𝐴𝐷𝐿 analysis, 1.16 billion samples for each 

variable were analyzed. 

In the second part of this study, participants walked and performed prescribed, simulated 

𝐴𝐷𝐿 while wearing the wearable sensors and a portable metabolic measurement system. The test 

protocol included two identical pseudorandom ternary sequence (PRTS) (Kerlin, 1974) over-

ground walking protocols. The PRTS consisted of units that were 30s duration and three levels of 

walking cadence: 75, 105 or 135 steps·min-1. The selected cadences were within the range of 

normal walking expected during 𝐴𝐷𝐿 (Tudor-Locke & Rowe, 2012). Between the two PRTS, 

participants performed simulated 𝐴𝐷𝐿 composed by sitting (≈ 10 min), organizing the shelf (≈ 5 

min), carrying an object (≈ 5 min), stairs (≈ 5 min) and self-paced over-ground walking in different 

environments (≈ 15 min). From the PRTS and simulated 𝐴𝐷𝐿, wearable sensor data and directly 

measured 𝑉̇𝑂2 were used to build an algorithm to obtain 𝑉̇𝑂2
̂  with a 𝑀𝐿 algorithm as described 

further below. All 13 participants and three additional participants completed this part of the study. 
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7.3.2 Data Collection 

For both study parts, participants wore the hip accelerometer, 3-lead ECG electrodes and two 

respiration bands that were integrated into a smart shirt (Hexoskin®, Carré Technologies Inc., 

Montréal, Canada). From the sensor raw signals, previously validated proprietary algorithms 

(Villar et al., 2015) were used to obtain second-by-second heart rate (𝐻𝑅), minute ventilation (𝑉̇𝐸), 

breathing frequency (𝐵𝐹), total hip acceleration (𝐴𝐶𝐶𝐻𝐼𝑃), and walking cadence (𝐶𝐴𝐷) data. Data 

were recorded internally, and then uploaded to a PC for further analysis. These variables were 

considered features to obtain 𝑉̇𝑂2
̂ . For the second part of this study, the 𝑉̇𝑂2 data were acquired 

breath-by-breath by a portable metabolic system (K4b2, COSMED, Italy) and expressed relative 

to each participant’s body mass in kg. Before each test, the air volume/flow and gas concentrations 

of the metabolic system were calibrated following manufacturer’s specifications. 

 

7.3.3 Prediction Algorithm 

Concurrently with the advances in wearable devices, 𝑀𝐿 methods are becoming popular to analyze 

the data generated by these devices. 𝑀𝐿 algorithms provide the technical basis to better identify 

non-trivial patterns in complex and intensive longitudinal data (Witten & Frank, 2005). The 𝑀𝐿 

algorithm built to estimate 𝑉̇𝑂2
̂  was based on a random forest regression model (Breiman, 2001). 

All features (𝐻𝑅, 𝑉̇𝐸, 𝐵𝐹, 𝐴𝐶𝐶𝐻𝐼𝑃 and 𝐶𝐴𝐷) and the 𝑉̇𝑂2 data collected during the second part of 

this study were time aligned, low-pass filtered at 0.01 Hz and processed in Matlab R2016a 

(MathWorks, Natick, MS, US). The predictor was validated by leave-one-participant-out cross-

validation (Ross et al., 2009). Ensemble of random forest models were trained for optimal 𝑉̇𝑂2 

dynamics prediction. Each random forest contained a set of decision trees that predicted 𝑉̇𝑂2 data 

based on an optimal split of the features. The output from these forests were ensemble averaged to 
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reduce system noise, resulting in a final 𝑉̇𝑂2
̂  predictor. The 𝑀𝐿 algorithm successfully predicted 

𝑉̇𝑂2 data during the PRTS and simulated 𝐴𝐷𝐿 (part 2). The Pearson coefficient (𝑟) indicated a 

strong linear correlation between measured and predicted data (𝑟 = 0.86, 𝑝 <0.001, 𝑛 = 63,571) 

with an error bias of only 0.02 ml-1·min-1·kg-1. The generated algorithm was finally used to obtain 

𝑉̇𝑂2
̂  based on the wearables-derived features during 𝑢𝐴𝐷𝐿. 

 

7.3.4 Data Analysis 

The 𝐵𝐹, 𝑉̇𝐸, 𝐻𝑅, and 𝑉̇𝑂2
̂  data obtained during the 𝑢𝐴𝐷𝐿 (part 1) were initially submitted to data 

distribution analysis. The data used in the histograms were clustered between “active” or 

“inactive” groups to allow a better identification of the 𝑃𝐴 influences over the variable tested. 

When the 𝐴𝐶𝐶𝐻𝐼𝑃 was higher than 0.05 g, data were labeled as “active”; otherwise, “inactive”. 

Since participants did not present exactly the same number of samples, the histograms were 

normalized to the total number of samples of each cluster for each participant.  

When appropriate, the predicted metabolic equivalents (𝑀𝐸𝑇𝑆̂) were estimated by the ratio 

𝑉̇𝑂2
̂ 3.5⁄ . When active, 𝑃𝐴 levels were classified as light, moderate or vigorous intensity when 

𝑀𝐸𝑇𝑆̂ were < 3, between 3.1 - 6 or > 6.1, respectively (Crouter et al., 2011). The time spent in 

each 𝑃𝐴 level was also computed. Also, the duration of each walking bout and the time spent 

walking was obtained by a peak detection algorithm that extracted the feature 𝐶𝐴𝐷 based on hip 

accelerometer data. 
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7.3.4.1 Aerobic System Analysis 

Previous analyses of aerobic system dynamics under controlled laboratory conditions were based 

on the relationship between system input (i.e., 𝑃𝐴) and the aerobic response inferred by 𝑉̇𝑂2 data 

(i.e., system output) at different frequencies (Eßfeld et al., 1987; Hughson et al., 1990, 1991). 

Application of similar frequency domain methods to extract system dynamics during 𝑢𝐴𝐷𝐿 

requires some modifications and application of specific criteria. Following previous literature 

(Hughson et al., 1990; Yoshida et al., 2008), the amplitude (𝐴𝑚𝑝) of the 𝐴𝐶𝐶𝐻𝐼𝑃 (system input) 

and the outputs (𝑉̇𝑂2 and 𝑉̇𝑂2
̂ ) were computed by fast Fourier transformation for a selected range 

of frequencies. The system gain was obtained by the (input 𝐴𝑚𝑝) / (output 𝐴𝑚𝑝) ratio. The 

selection of satisfactory energy delivered to the aerobic system was also based on 𝐴𝐶𝐶𝐻𝐼𝑃 data. 

Since the focus of the frequency domain approach was aerobic system analysis, only 𝐴𝐶𝐶𝐻𝐼𝑃 𝐴𝑚𝑝 

responses higher than 0.05 g at a given frequency were classified as “satisfactory” for system 

analysis, otherwise, “unsatisfactory”. Low energy stimulus does not allow the correct 

identification of the aerobic system gain since the observed output response cannot be discerned 

from non-exercise related factors which confound system analysis (Hughson et al., 1990).  

The selection of the frequency range of interest was based on previous studies (Eßfeld et 

al., 1991; Hoffmann et al., 1992). To adhere to the linearity principle, the analyzed frequencies 

were limited to periods greater than 100s (i.e., ≤ 0.01 Hz). For frequencies higher than 0.01 Hz, 

the 𝑉̇𝑂2 dynamics complexity/noise appears to increase considerably (Hoffmann et al., 1992), 

decreasing the physiological significance of the system responses. In addition to the detailed 

responses at different frequencies, the overall aerobic system temporal dynamics were assessed by 

the mean normalized gain (𝑀𝑁𝐺). The 𝑀𝑁𝐺 was calculated as the average of the gain 𝐴𝑚𝑝 of all 

tested frequencies previously normalized by gain 𝐴𝑚𝑝 of the very first frequency as previous 
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reported (Eßfeld et al., 1991). Like time constants obtained in time domain analysis (Henry, 1951; 

Hughson, 2009; Whipp & Ward, 1992), 𝑀𝑁𝐺  is an indicator of the overall aerobic system 

temporal dynamics which seems to be related to aerobic power (Phillips et al., 1995; Powers et al., 

1985). 

The data window length (𝑤𝑙) selected for the frequency domain analysis will define the 

number of harmonics (ℎ) included within the selected frequency range (<0.01 Hz) since the 

fundamental frequency (𝑓1) is the inverse of 𝑤𝑙 (Kerlin, 1974). Therefore, the frequency analyzed 

is defined by the product ℎ ∗ 𝑓1. Higher 𝑤𝑙 means a better frequency domain resolution due to a 

lower 𝑓1 ; therefore, more ℎ  can be included into the frequency interval. However, higher 𝑤𝑙 

decreases the chance of having “satisfactory” samples for all tested frequencies (i.e., 𝐴𝐶𝐶𝐻𝐼𝑃 < 

0.05 g) since the input energy is dissipated between ℎ (Kerlin, 1974) which compromise the 

aerobic system analysis (Hughson et al., 1990). The relationship between 𝑤𝑙, ℎ, 𝑓1 and the number 

of “satisfactory” samples will be further explored. 

The 𝐴𝐶𝐶𝐻𝐼𝑃 response during PRTS (part 1) was initially investigated for the inspection of 

the stimulus signal in response to an optimized exercise protocol for frequency domain analysis 

(as the PRTS). For this optimized protocol, the 𝑤𝑙 was equal to the exercise protocol duration (i.e, 

780s) thus the 𝑓1  was 0.001 Hz. Figure 47 displays the 𝐴𝐶𝐶𝐻𝐼𝑃  group response in frequency 

domain during the PRTS protocol. As a characteristic of the PRTS protocol and as expected to 

observe in completely random stimulus (e.g., 𝑢𝐴𝐷𝐿), some input 𝐴𝑚𝑝 in the PRTS protocol were 

below the satisfactory amount of energy necessary for system analysis. In the case of PRTS, even 

ℎ  presented “unsatisfactory” energy for system analysis. In addition, PRTS protocols also 

stimulate the system with satisfactory energy in frequencies outside of the interval of interest (> 
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0.01 Hz). From the PRTS 𝐴𝐶𝐶𝐻𝐼𝑃 responses in frequency domain, only the first four odd ℎ could 

be labeled as “satisfactory” for system analysis between all participants. 

 

 

Figure 47. Frequency domain amplitude of the total hip acceleration. 

Group response (mean ± SD) of frequency domain amplitude (𝐴𝑚𝑝) of the total hip acceleration (𝐴𝐶𝐶𝐻𝐼𝑃) 

during pseudorandom ternary sequence protocol. As a characteristic of this protocol, the stimulus energy 

decreases to values close to zero at even harmonics. For the correct system analysis, a range of frequencies 

and 𝐴𝑚𝑝 was established (grey area). 𝐴𝑚𝑝 lower than 0.05 g were considered as unsatisfactory for system 

analysis. Frequencies higher than 0.01 Hz were considered as non-linear and therefore excluded from 

further analysis (see text). 

 

In contrast to the first four odd ℎ in PRTS protocols, the system input during 𝑢𝐴𝐷𝐿 is not 

optimal for system analysis at these same frequencies. Therefore, further analysis was carried on 

to optimize the frequency domain analysis during 𝑢𝐴𝐷𝐿. With the minimal stimulus level (0.05 g) 

and frequency range (< 0.01 Hz) established, the only variable that can be arbitrarily altered to 

optimize system analysis was 𝑤𝑙 . The 𝑓1  and ℎ  will change as consequence of 𝑤𝑙  variations. 

Accordingly, the search for an optimal 𝑤𝑙 aimed to fit as many ℎ as possible (higher resolution) 



 

159 
 

within the frequency interval of interest but at the same time all tested ℎ need to have “satisfactory” 

energy for system analysis.  

A certified (#100-314-4110) LabVIEW associated developer (National Instruments, 

Austin, TX, US) programmed an iterative algorithm that continuously computed 𝐴𝑚𝑝  from 

multiple fast Fourier transformations across the four days of 𝐴𝐶𝐶𝐻𝐼𝑃  𝑢𝐴𝐷𝐿  data for each 

arbitrarily selected 𝑤𝑙 of 200s to 1000s, incrementing 100s. The algorithm iteration stepwise was 

similar to the 𝑤𝑙 duration. The frequency range of interest was also maintained below 0.01 Hz. 

Samples composed by data from different days were discarded to avoid overlapping between days. 

This program classified the samples at each frequency (ℎ ∗ 𝑓1) as “satisfactory” for system analysis 

when the 𝐴𝐶𝐶𝐻𝐼𝑃 𝐴𝑚𝑝 was higher than 0.05 g. The 𝑉̇𝑂2
̂  𝐴𝑚𝑝 was simultaneously computed. If 

more than one reliable 𝐴𝑚𝑝 was computed for the same frequency between iterations, the final 

𝐴𝑚𝑝 value was taken as the average.  

Figure 48A displays the mean group response (𝑛 = 13 for each data point) of the number 

of “satisfactory” samples (z-axis) at each tested frequency (x-axis) as a function of 𝑤𝑙 (y-axis). 

The plot was superimposed by a mesh plot for better pattern visualization. As the 𝑤𝑙 increases, the 

number of analyzed frequencies (i.e., resolution) increases (more data in x-axis); however, the 

number of samples with enough energy for system analysis decreases (z-axis). On the other hand, 

shorter 𝑤𝑙 presented more “satisfactory” samples for system analysis but at the same time less 

resolution (fewer frequencies analyzed). In addition, for all selected 𝑤𝑙 , more “satisfactory” 

samples are located at lower frequencies. 

Figure 48B demonstrates the number of participants that did not present “satisfactory” 

𝐴𝑚𝑝 for system analysis in at least one tested frequency thus precluding a comparable aerobic 

system analysis. Below 𝑤𝑙 of 600s, all participants presented “satisfactory” 𝐴𝐶𝐶𝐻𝐼𝑃 𝐴𝑚𝑝 for all 
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tested ℎ. Therefore, based on 𝐴𝐶𝐶𝐻𝐼𝑃 data, the 𝑤𝑙 of 600s was selected as optimal 𝑤𝑙 for system 

analysis during 𝑢𝐴𝐷𝐿. For the sake of data comparison between 𝑢𝐴𝐷𝐿 and PRTS stimulus, the 

final 𝐴𝑚𝑝 responses were linearly interpolated to a common frequency bandwidth of 0.0022 to 

0.0088 Hz with a stepwise of 0.0002 Hz, totaling 35 interpolated ℎ for 𝑢𝐴𝐷𝐿 and PRTS. The 𝑀𝑁𝐺 

was also calculated during 𝑢𝐴𝐷𝐿 and PRTS considering this interval. 
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Figure 48. Satisfactory samples for frequency domain analysis. 

A: mean group response (𝑛 = 13 for each data point) of the number of satisfactory samples for system 

analysis in frequency domain (z-axis) at each tested frequency (x-axis) as a function of data window length 

(𝑤𝑙, y-axis) during four days of unsupervised activities of daily living. B: Number of participants that did 

not present a satisfactory stimulus for system analysis in at least one tested frequencies as a function of 𝑤𝑙. 
 

7.3.5 Statistical Analysis 

Student t-test was used to compare the frequency domain responses based on 𝑉̇𝑂2
̂  data obtained 

during the 𝑢𝐴𝐷𝐿 (part 1) with the responses based on 𝑉̇𝑂2 data obtained during the PRTS protocol 

(part 2). When appropriate, 𝑟 coefficient and Bland-Altman plot was used to compute the level of 

agreement between variables. 
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7.4 Results 

The histograms for the relative distribution of incidence are displayed in Figure 49. The 𝐵𝐹 

(Figure 49A) during resting was evenly distributed around 18 breath·min-1 while during 𝐴𝐷𝐿 it 

increased ≈ 4 breaths·min-1. The 𝑉̇𝐸 (Figure 49B) during rest has a peak of incidence at ≈ 7 L·min-

1. During 𝑃𝐴, the 𝑉̇𝐸 reached a peak of incidence at ≈ 13 L·min-1 and then linearly decreased as 

the 𝑉̇𝐸 value increased. The 𝐻𝑅 (Figure 49C) during rest was normally distributed around a mean 

of ≈ 65 bpm and increased to ≈ 90 bpm during 𝑃𝐴. The 𝑉̇𝑂2
̂  (Figure 49D) during resting was 

maintained at around 5 ml·min-1·kg-1. During 𝑃𝐴, 𝑉̇𝑂2
̂  presented two peaks at ≈ 7.7 and ≈ 14 

ml·min-1·kg-1 (amplified in the smaller graph in Figure 49D) which corresponded to light and 

moderate intensities of 𝑃𝐴, respectively. 
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Figure 49. Histograms. 

Normalized histograms of the incidence of breathing frequency (𝐵𝐹, A), ventilation minute (𝑉̇𝐸, B), heart 

rate (𝐻𝑅, C) and predicted oxygen uptake (𝑉̇𝑂2
̂ , D) during four days of data collection of unsupervised 

activity of daily living. Data (mean ± SD) were clustered between active (solid circle) and inactive groups 

(filled circle) based on accelerometer values greater than or less than 0.05 g. The inset figure in D displays 

the incidence of 𝑉̇𝑂2
̂  data related to physical activity intensity domains. 

 

The average walking bout duration was 24 ± 7 s. Participants spend ≈ 80 % of the time 

being inactive (Figure 50). When active, ≈ 90% of the 𝑢𝐴𝐷𝐿 was light or moderate intensity 𝑃𝐴 

(< 6 𝑀𝐸𝑇𝑆̂). In 50% of the active time, participants were walking. The majority of the walking 

bouts (≈ 80 %) were contained in moderate intensity domain. 
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Figure 50. Physical activity patterns during unsupervised activities of daily living. 

Identification of physical activity patterns during four days of unsupervised activities of daily living. A: 

percentage of time spent being active or inactive. B: when active, percentage of time spent within each 

physical activity intensity domain (light, moderate or vigorous). C: when active, percentage of time spent 

walking or performing another physical activity. D: when walking, percentage of time spent within each 

intensity domain. 

 

The frequency domain analysis during 𝑢𝐴𝐷𝐿  considered a 𝑤𝑙  of 600s. For a better 

comparison between 𝑢𝐴𝐷𝐿  and PRTS, the responses from both inputs were interpolated at a 

common bandwidth of 0.0020 to 0.0088 Hz (period of 113 to 500 s). Figure 51A displays the 

system gain analyzed during 𝑢𝐴𝐷𝐿 and PRTS and the difference between them at each frequency 

(in mHz). After frequencies higher than 0.0036 Hz (or ℎ = 9), the system gains were statistically 
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(𝑝 < 0.05) higher during 𝑢𝐴𝐷𝐿 in comparison to PRTS. When the system is normalized by the 

first analyzed frequency (ℎ = 1 or 0.0020 Hz) which isolates the temporal dynamics of the system 

(Hoffmann et al., 1992), the normalized gains (Figure 51B in mHz) were statistically (𝑝 < 0.05) 

higher at frequencies higher than 0.004 Hz (ℎ = 11). Notice that the difference between the system 

absolute or normalized gain during 𝑢𝐴𝐷𝐿 and PRTS linearly increases as the frequency increases.  
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Figure 51. Aerobic system gain. 

A: aerobic system gains per unit of hip acceleration at different frequencies based on predicted oxygen 

uptake during unsupervised activities of daily living (𝑢𝐴𝐷𝐿) and based on measured oxygen uptake during 

pseudorandom ternary sequence (PRTS) walking protocol. The gain during 𝑢𝐴𝐷𝐿 was statistically (*, 𝑝 < 

0.05) higher than the gain during PRTS after 3.6 mHz. B: aerobic system normalized gain (see text). The 

normalized gain during 𝑢𝐴𝐷𝐿 was statistically (*, 𝑝 < 0.05) higher than the gain during PRTS after 4 mHz.  

 

 Data presented in Figure 52B were used to obtain the 𝑀𝑁𝐺 that indicate the overall aerobic 

system temporal dynamics. The 𝑀𝑁𝐺  was obtained by the average between all 𝐴𝑚𝑝  gains 

previously normalized by the 𝐴𝑚𝑝 gain of the first frequency. The 𝑀𝑁𝐺 was estimated from 𝑉̇𝑂2 

data during PRTS (ideal protocol) and from 𝑉̇𝑂2
̂  data obtain during PRTS and 𝑢𝐴𝐷𝐿. Higher 

𝑀𝑁𝐺 values are equivalent to a faster 𝑉̇𝑂2 adjustment thus faster aerobic response. The 𝑀𝑁𝐺 

computed from 𝑉̇𝑂2 during PRTS was statistically correlated (𝑟 = 0.68, 𝑝 = 0.01 and 𝑛 = 13) and 
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not statistically (𝑝 = 0.53) different in comparison to 𝑀𝑁𝐺 estimated from 𝑉̇𝑂2
̂  during PRTS. In 

addition, the 𝑀𝑁𝐺 computed from 𝑉̇𝑂2
̂  during PRTS was statistically correlated (𝑟 = 0.63, 𝑝 = 

0.01 and 𝑛 = 13) and statistically (𝑝 < 0.001) faster (i.e., higher) than the 𝑀𝑁𝐺 estimated from 

𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿 . Therefore, the 𝑀𝑁𝐺  during 𝑢𝐴𝐷𝐿  was faster than the 𝑀𝑁𝐺  during PRTS 

(considering both, 𝑉̇𝑂2 or 𝑉̇𝑂2
̂ ). As depicted in Figure 52A, the 𝑀𝑁𝐺 calculated from 𝑉̇𝑂2 during 

PRTS and 𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿 were strongly correlated (𝑟 = 0.82, 𝑝 < 0.001 and 𝑛 = 13). However, 

the 𝑀𝑁𝐺 obtained during 𝑢𝐴𝐷𝐿 was statistically (𝑝 < 0.001) faster in comparison to 𝑀𝑁𝐺 during 

PRTS (Figure 52A). In addition, the linear regression between the 𝑀𝑁𝐺 obtained from the 𝑉̇𝑂2 

data during PRTS and the 𝑀𝑁𝐺 obtained from 𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿 had a slope of 45.10 which is 

similar to the expected slope of the equality line (450). Therefore, the 𝑀𝑁𝐺 during 𝑢𝐴𝐷𝐿 can be 

biased by -16 % to match the equality line if further comparison with PRTS is desired. As depicted 

in Figure 52B, the difference between the 𝑀𝑁𝐺 based on 𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿 and based on 𝑉̇𝑂2 

during PRTS (y-axis) seemed to be independent from 𝑀𝑁𝐺 value (x-axis) with no significant (𝑝 

> 0.05) statistical correlation between axis. 
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Figure 52. Predicted and measured mean normalized system gain. 

A: linear correlation between the mean normalized gain (𝑀𝑁𝐺) calculated from predicted oxygen uptake 

data (𝑉̇𝑂2
̂ ) during unsupervised activities of daily living (𝑢𝐴𝐷𝐿) and calculated from measured oxygen 

uptake (𝑉̇𝑂2) data during pseudorandom ternary sequence (PRTS) walking protocol. The 𝑀𝑁𝐺 obtained 

from 𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿 was statistically (*, 𝑝 < 0.001) higher than the 𝑀𝑁𝐺 obtained from 𝑉̇𝑂2 during 

PRTS. The difference between both 𝑀𝑁𝐺 (16 %) was consistent across the participants characterized by a 

similar linear regression slope in comparison to the equality line. B: Bland-Altman plot of the data displayed 

in A with the bias and the confidence interval (𝐶𝐼95) between the two methods used to estimate 𝑀𝑁𝐺. 

 

7.5 Discussion 

In agreement with our initial hypothesis, the aerobic system dynamics were successfully mined 

from wearable sensors during unsupervised activities of daily living. The temporal characteristics 

of the predicted oxygen uptake data during activities of daily living were correlated to the temporal 

characteristics of the measured oxygen uptake data during a controlled protocol. In addition, the 

predicted oxygen uptake can be used to study physical activity intensity during realistic 

environments. 

In contrast to step-transition laboratory-based studies, the randomness characteristics of 

PA patterns during 𝑢𝐴𝐷𝐿 has complicated obtaining information with clinical significance. Time 

domain 𝑉̇𝑂2 data modeling is not practical during 𝑢𝐴𝐷𝐿 due to the lack of steady state responses 
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which decreases the signal-to-noise ratio thus preventing calculation of the system temporal 

dynamics (Hughson, 2009). However, we demonstrated that frequency domain analysis can be 

used to infer about the aerobic system dynamics from random data during 𝑢𝐴𝐷𝐿. Our results 

showed that a data window of 600s can be used to extract information regarding the aerobic system 

temporal dynamics based on predicted 𝑉̇𝑂2
̂  data. 

Since the system analysis quality also dependents on the number of analyzed frequencies, 

the data window size (𝑤𝑙) should be as large as possible. However, the larger the data window 

size, the greater the chance to present unreliable samples for system analysis. As depicted in Figure 

48, a window size of 600s was found to be ideal for aerobic system analysis. 

The 𝑀𝑁𝐺  characterized overall system dynamics where a higher % as during 𝑢𝐴𝐷𝐿 is 

equivalent to faster kinetics than during the PRTS protocol. The linear increment of these 

differences between frequencies and consequently the 𝑀𝑁𝐺 could originate from the prediction 

algorithm or from biological variability. There are a few observations that allow us to rule out the 

first possibility. First, the 𝑀𝑁𝐺  computed from 𝑉̇𝑂2
̂  during PRTS was correlated and not 

statistically different from the 𝑀𝑁𝐺 based on measured 𝑉̇𝑂2 also during PRTS. In addition, the 

𝑀𝑁𝐺  computed from 𝑉̇𝑂2
̂  during PRTS was correlated with the 𝑀𝑁𝐺  calculated from 𝑉̇𝑂2

̂  

during 𝑢𝐴𝐷𝐿 but they were statistically different, suggesting that the observed difference did not 

originate from the predictor but from biological variability between PRTS and 𝑢𝐴𝐷𝐿. 

The system analysis during 𝑢𝐴𝐷𝐿 has an elevated source of distortion. The rest-to-exercise 

transition is very common during 𝑢𝐴𝐷𝐿 and maybe this was the main cause of this faster response. 

However, the 𝑀𝑁𝐺 during PRTS was used only as a reference to check if the 𝑀𝑁𝐺 estimated 

from 𝑢𝐴𝐷𝐿 was also able to detect different aerobic system temporal dynamics, which was the 

case. Therefore, participants who presented a faster aerobic dynamics during PRTS also presented 
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a faster adjustment during 𝑢𝐴𝐷𝐿, demonstrating the effectiveness of our method to track future 

changes in aerobic fitness during 𝑢𝐴𝐷𝐿 by wearable sensors.  

The 𝑀𝑁𝐺 estimated during PRTS and uADL is an index composed of an amalgamated 

response of components with variable speeds (Chapter 2) that at the end translate the overall 

aerobic system temporal dynamic that has clinical relevance (Chapter 5). As it is possible to see in 

Figure 52A, the 𝑀𝑁𝐺  calculated from 𝑉̇𝑂2
̂  during 𝑢𝐴𝐷𝐿  was strongly correlated to the 𝑀𝑁𝐺 

computed during PRTS indicating that a participant with a faster aerobic dynamic during an ideal 

protocol only composed by exercise-to-exercise transitions also presented a faster aerobic 

adjustment during a totally random stimulus as 𝑢𝐴𝐷𝐿. This observation demonstrates a certain 

degree of linearity of the aerobic response allowing us to obtain information with potential for 

clinical relevance during different stimulus patterns as expected during different exercise 

modalities. Regardless, even without practical applications, if future studies aim to compare the 

aerobic response during exercise-to-exercise controlled protocols with the aerobic response during 

𝑢𝐴𝐷𝐿, the current results suggest that a simple linear bias of -16 % can adjust the 𝑀𝑁𝐺 derived 

from 𝑢𝐴𝐷𝐿. 

The 𝑀𝑁𝐺  obtained during 𝑢𝐴𝐷𝐿  was calculated based on the mean 𝑉̇𝑂2
̂  of multiple 

“satisfactory” samples at each frequency while the 𝑀𝑁𝐺 estimated from 𝑉̇𝑂2
̂  during PRTS was 

based only on a single sample for each frequency. In addition, the 𝑀𝑁𝐺 calculated from 𝑉̇𝑂2
̂  data 

during 𝑢𝐴𝐷𝐿  was better correlated with the 𝑀𝑁𝐺  estimated from 𝑉̇𝑂2  during PRTS in 

comparison to the 𝑀𝑁𝐺 estimated from 𝑉̇𝑂2
̂  during PRTS. Therefore, the 𝑀𝑁𝐺 mined from 𝑉̇𝑂2

̂  

data during 𝑢𝐴𝐷𝐿 seemed to be better to characterize the aerobic system temporal dynamics in 

comparison to the 𝑀𝑁𝐺 estimated during PRTS based on 𝑉̇𝑂2
̂  data.  
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In agreement to previous study (Orendurff et al., 2008), the average of walking bout 

durations was 24 ± 7 s. However, it is peculiar, in 𝑢𝐴𝐷𝐿 context, that the hip was accelerating but 

the participant was not walking. Walking should be the major 𝑢𝐴𝐷𝐿  that changes the hip 

acceleration. We found that only 50% of the time participants were being active by moving their 

hip but at the same time not walking which is unlikely. Probably, the step detection algorithm of 

the smart shirt failed to detect low cadences walking due to the lower propagation of the 

acceleration generated at the heel to the hip during slow walking cadences. This demonstrated that 

𝐴𝐶𝐶𝐻𝐼𝑃 might be better for system analysis instead of 𝐶𝐴𝐷. As previously reported (Cleland et al., 

2013), the total hip acceleration represents the total body movements and it can be used as a reliable 

proxy of energy expenditure (i.e., metabolic demand) during physical activity (A. Bauman et al., 

2011; Ellis et al., 2014). However, further methods are necessary to optimize the metabolic 

demand prediction based on hip acceleration (Chen et al., 2003). 

Our novel methodology is a combination of four main components.  

1) Machine learning was used for 𝑉̇𝑂2 data prediction based on wearable sensors to 

address the complexities of the 𝑉̇𝑂2 response to 𝐴𝐷𝐿.  

2) FFT was used for aerobic system analysis as it has intrinsic noise reduction 

characteristics and allows for a detailed investigation of the aerobic response during different 

stimulus periods. 

3) The 𝑀𝑁𝐺  calculation, that may have clinical relevance, was used to obtain the 

temporal dynamics of the aerobic system based on the FFT results. 

4) An iterative algorithm was developed to search for the best data window for the 

investigation of the aerobic system dynamics during completed random physical activities. 
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Results from our work have suggested specific methods for the use of our model in 

evaluating aerobic system temporal dynamics during 𝑢𝐴𝐷𝐿 . Standard algorithms need to be 

developed to transform the raw signals from wearable sensors into the initial model input variables 

(e.g. 𝐻𝑅). These variables should feed our machine learning algorithm (random forests) that will 

generate the predicted 𝑉̇𝑂2. The input (𝐴𝐶𝐶𝐻𝐼𝑃) and the output (predicted 𝑉̇𝑂2) can then be used 

to calculated the aerobic system gain based on FFT calculations. As shown in our study, the most 

appropriate data window length used for each FFT is 600s and gain should be computed and 

recorded only when the 𝐴𝐶𝐶𝐻𝐼𝑃 is higher than 0.05 g. The frequency range should be limited to 

0.01 Hz. The average is calculated if more than one reading is made for the same frequency. After 

four days, the 𝑀𝑁𝐺  is computed based on the normalized system gain. This four-day data 

processing cycle can be repeated as often as necessary to account for changes in 𝑀𝑁𝐺. 

Further epidemiologic studies are necessary to investigate the relationship between the 

aerobic system temporal dynamics with different 𝑃𝐴  patterns during realistic settings. These 

investigations would enable the identification of sedentary or active behaviors that are correlated 

with different aerobic system dynamics which might impact 𝑃𝐴 recommendations. 

 

7.6 Conclusion 

For the first time, this study has shown that aerobic system dynamics can be investigated during 

unsupervised activities of daily living by wearable sensors. The longitudinal frequency domain 

analysis of predicted oxygen uptake derived from wearables allowed the characterization of the 

temporal dynamics of the aerobic system during realistic activities. We identified reliable samples 

for aerobic system analysis based on 20% of the data when the participants were active during 

𝑢𝐴𝐷𝐿. 
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Deployment of non-intrusive technologies in conjunction with the algorithms developed in 

the current study into large scale epidemiological investigations may offer the unique opportunity 

of investigating relationships between patterns of daily physical activity and health/fitness 

indicators. 
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Chapter 8: General Discussion  

The accurate prediction of 𝑝𝑉̇𝑂2 data under randomly varying patterns of physical activity allows 

the precise estimation of 𝐸𝐸 and the investigation of the aerobic system dynamics. Specially, the 

𝑝𝑉̇𝑂2 prediction during realistic 𝐴𝐷𝐿 by wearable sensors is an innovative technology that can be 

used as tool to obtain health-related outcomes daily. The possibility to “mine” the temporal 

characteristics of the aerobic system based on predicted 𝑝𝑉̇𝑂2 data in realistic settings (Chapter 7) 

allows for inferences about the aerobic system integrity during 𝐴𝐷𝐿. This thesis provided a series 

of seven multiple-level studies that covered the prediction and evaluation of the 𝑝𝑉̇𝑂2 dynamic 

during controlled and free physical activities. The combination between new tools for the 𝑝𝑉̇𝑂2 

prediction (such as machine learning) and innovative methods to characterize the aerobic response 

during random activities (such as 𝑀𝑁𝐺) evidenced the applicability of our finding. The proposed 

tools can be used, to characterize the temporal dynamics of the aerobic system allowing the 

development of personalized and “real-time” adjustable exercise programs. In the future, the 

algorithms presented in this thesis can be used to explore novel applications for wearable 

technologies to expand uses beyond sport-related activities into new user markets. 

 

8.1 Summary of Findings 

During moderate exercise, aerobic system linearity implies that the 𝑝𝑉̇𝑂2 response steady state 

amplitude is proportionally correlated to the magnitude of the 𝑊̇ (static linearity) and that the 

𝑝𝑉̇𝑂2 time course (i.e., 𝜏) is independent of the 𝑊̇ (dynamic linearity) (Hughson, 2009). However, 

results from Chapter 2 demonstrated, in agreement with previous studies (Brittain et al., 2001; 

Hughson & Morrissey, 1982), that the aerobic response followed a multiple-order system, thereby 

questioning the dynamic linearity assumption (Ozyener et al., 2001). Despite not being the first 
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time that aerobic system linearity was tested (Hughson & Morrissey, 1982), this study, for the first 

time, tested the linearity of the aerobic response simultaneously with 𝐻𝐻𝑏 and 𝑄̇ responses during 

PRBS. Regardless, as demonstrated in Chapter 5, the presence of multiple components in 𝑝𝑉̇𝑂2 

dynamics did not prevent the use of the overall system temporal dynamics as a tool to investigate 

health-related outcomes. 

It is well accepted in the literature (Chilibeck et al., 1995; Eßfeld et al., 1987; Powers et 

al., 1985; Yoshida et al., 2008) that the overall 𝑝𝑉̇𝑂2 dynamic varies according to fitness status 

(Phillips et al., 1995; Powers et al., 1985) and has associations with clinical outcomes (Borghi-

Silva et al., 2012) and functional mobility performance (Alexander et al., 2003). However, the 

time-domain characterization of 𝑝𝑉̇𝑂2  temporal dynamics, that assume dynamic linearity, 

presents data modeling limitations being restricted to controlled step protocols generally 

performed on the cycle ergometer. The pseudorandom protocols (PRBS and for the first time, over-

ground PRTS) offered a unique possibility to test the aerobic response during realistic and dynamic 

changes in 𝑊̇. Despite being a controlled stimulus, these protocols approximate the study of the 

𝑝𝑉̇𝑂2  dynamics to what occurs during 𝐴𝐷𝐿  where the variation of the metabolic demand is 

stochastic. 

Chapters 5 and 7 demonstrated that the frequency domain responses of 𝑝𝑉̇𝑂2 datasets can 

be valuable to extract information with clinical relevance where time-domain approaches are 

inappropriate. So far, there was not an index able to translate the overall temporal dynamics of the 

aerobic system during random stimulus such as PRBS and PRTS protocols. As proposed in 

Chapter 3, the 𝑀𝑁𝐺  was validated to characterize the aerobic system temporal dynamics. In 

addition, as described in Chapter 5, the 𝑀𝑁𝐺 was correlated to the aerobic capacity estimated by 

maximal 𝑝𝑉̇𝑂2, demonstrating another clinical outcome of the 𝑀𝑁𝐺. Unlike incremental exercise 
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protocols used to obtain maximal 𝑝𝑉̇𝑂2, submaximal protocols such as 𝑃𝑅𝐵𝑆 and 𝑃𝑅𝑇𝑆 are more 

functional and involve less muscle aches, joint pain, discomfort, fatigue, muscle soreness, fainting 

and acute cardiovascular events associated with maximal exertion.  

Interestingly, for the first time in literature and as described in Chapter 7, the 𝑀𝑁𝐺 can be 

derived from predicted 𝑝𝑉̇𝑂2 data based on wearable sensors during unsupervised 𝐴𝐷𝐿. 

Due to the complexity of the aerobic response, the prediction of the 𝑝𝑉̇𝑂2 dynamics is 

challenging and could explain why simple linear regressions fail to predict 𝑝𝑉̇𝑂2  data from 

wearable sensors during realistic activities (Ravussin, Lillioja, Anderson, Christin, & Bogardus, 

1986). As described in Chapter 4 and 6, 𝑀𝐿 approaches could “understand” the complexity of the 

𝑉̇𝑂2 dynamics during transitions by predicting the aerobic responses based on variables obtained 

from wearable sensors. 

Following Chapter 4, the subsequent chapters started moving beyond the laboratory 

environment. Chapter 5 focused on the development of a novel exercise protocol for over-ground 

walking that has similarities to the pattern of walking during 𝐴𝐷𝐿. In addition, the use of hip-

placed accelerometer data to assess 𝑊̇ during randomly varying stimulus was also investigated in 

Chapter 5. The results suggested that the proposed protocol (PRTS) can be used for aerobic system 

analysis during randomly varying walking cadences. Afterwards, as described in Chapter 6, 

accelerometer, 𝐻𝑅 and respiratory bands were used as inputs to predict the 𝑉̇𝑂2 dynamics during 

PRTS and simulated 𝐴𝐷𝐿. It was successfully shown that the aerobic system dynamics can be 

predicted during PRTS protocol and simulated 𝐴𝐷𝐿. 

Finally, Chapter 7 demonstrated some applications of the tools developed in this thesis. 

The algorithm developed in Chapter 6 was used to investigate the aerobic system dynamics during 

four days of unsupervised 𝐴𝐷𝐿. The predicted 𝑝𝑉̇𝑂2 data were used to investigate, among others, 
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𝑃𝐴 levels and their occurrence, and the ambulatory monitoring of the aerobic system temporal 

dynamics. The 𝑀𝑁𝐺  validated in Chapter 3 was used to investigate aerobic fitness during 

unsupervised 𝐴𝐷𝐿 based on predicted 𝑝𝑉̇𝑂2 obtained from wearable sensors. A specific method 

was developed in Chapter 7 to investigate the optimal data window length for the ambulatory 

𝑝𝑉̇𝑂2 frequency domain analysis. 

 

8.2 Future Applications and Economic Impact  

The early detection of subclinical aerobic system impairments (slower response for example) 

might be an indicative of impaired physiological reserve that impact physical activity capacity, 

which in turn can lead to frailty or illness (Newman et al., 2001). Therefore, indexes that describe 

“how fast” the energy demand is supplied by the aerobic system (such as the frequently used time 

domain indices 𝜏 and 𝑀𝑅𝑇, or the novel frequency domain index, proposed in this thesis, 𝑀𝑁𝐺) 

have the potential to be considered into models for the early detection of disease states. In addition, 

in a clinical practice, the new index 𝑀𝑁𝐺 can be used in the future to track changes in aerobic 

fitness as a consequence of aging, training status, aerobic exercise programs effectiveness and 

disease prognosis, just to name a few.  

Wearable technologies (e.g. Hexoskin®) are becoming more popular and less costly, 

allowing consumers to obtain personal data on a daily basis. The combination of wearable sensors 

and new data processing techniques has direct applicability for disease prevention, and for the 

evaluation of treatment progression. The investigation of 𝑝𝑉̇𝑂2 data during unsupervised 𝐴𝐷𝐿 

may allow us to search for potential associations between aerobic response and other variables like 

𝑃𝐴 types, frequency of this 𝑃𝐴 throughout the day and the total energy expenditure, just to name 

a few. These associations could bring new insight about how to prescribe exercise and how a 
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specific activity pattern is stimulating the aerobic metabolism on a daily basis. The identification 

of loss in aerobic fitness could be also useful to investigate aging effects and the implementation 

of the proposed ready-to-use algorithms into wearable systems will make the benefits described in 

this thesis available for the general population. The temporal dynamics of the predicted 𝑝𝑉̇𝑂2 

response might be investigated by 𝑀𝑁𝐺 on a daily basis and impairments in the aerobic response 

might be identified before the clinical manifestation of chronic diseases. 

As demonstrated in Chapters 4 and 6, the temporal characteristics of the aerobic system 

was predicted by the proposed algorithms that can be incorporated into wearable systems. For 

clinical practice, these algorithms in association with the methods described in Chapter 7 can be 

used to track changes in aerobic power during unsupervised activities of daily living. 

Considering the price of the metabolic carts (≈ $ 30,000) and the cost associated with 

consumables such as calibration gases and masks, and the need for trained technicians, the 

prediction of 𝑝𝑉̇𝑂2 data by wearable sensors that cost ~ $ 400 has an evident economic impact. 

Even though this thesis did not validate the use of the proposed algorithm for all possible 

conditions and populations, it somehow offered a possible option to generate a reliable estimated 

𝑝𝑉̇𝑂2 when metabolic carts are not easily accessible, as in new research groups in developing 

countries for example. In addition, the algorithms proposed in this thesis could be also used to 

monitor positive or negative aerobic adaptation to training, allowing a continuous assessment of 

aerobic fitness changes without the need of constant laboratory testing. 

 

8.3 Thesis Limitations 

Except for Chapter 4 that predicted the 𝑝𝑉̇𝑂2 for a metabolic demand higher than 6 𝑀𝐸𝑇𝑆, all the 

studies of this thesis dealt with light to moderate metabolic demands. Therefore, the applicability 



 

177 
 

of our findings is limited to light to moderate intensity activities. However, the general purpose of 

this thesis was to predict the aerobic response during 𝐴𝐷𝐿 where the majority of the metabolic 

demand is constrained between light to moderate intensities (Hendelman et al., 2000). In fact, as 

described in Chapter 7, we showed that only ~10 % of data collected during four days of 𝐴𝐷𝐿 in 

active young participants were related to vigorous metabolic demand (higher than 6 𝑀𝐸𝑇𝑆 or 21 

ml·min-1·kg-1). 

The population tested in this thesis was exclusively composed by healthy individuals and 

mainly by men with only small variations in weight and age. Therefore, more studies are necessary 

to verify the applicability of the described algorithm in different populations ranging from 

endurance athletes to younger or older participants, and to various disease states. In addition, the 

actual impact of this thesis over the clinical practice remains to be tested. 

In this thesis, physical activity levels were based on the total vector magnitude of triaxial 

hip-worn accelerometers. As previously reported (Cleland et al., 2013), the total hip acceleration 

represents the total body movements and it can be used as a reliable proxy of energy expenditure 

(i.e., metabolic demand) during 𝑃𝐴 (Bassett et al., 2000; A. Bauman et al., 2011; Ellis et al., 2014). 

However, due to the direct link between 𝑝𝑉̇𝑂2  and energy expenditure, future work should 

optimize the feature extraction of triaxial hip-worn accelerometer data before training machine 

learning algorithms. In agreement with previous research (Bassett et al., 2000), our results 

supported the use of the total hip acceleration, considering vertical, anterior–posterior and medial–

lateral planes, to predict energy expenditure during 𝐴𝐷𝐿. Our success might be attributed to the 

random forest approach developed in Chapter 6, which, in agreement with previous work (Ellis et 

al., 2014), has a better ability to understand highly complex data. However, some studies reported 

that total vector magnitude may overestimate (Hendelman et al., 2000) or underestimate 
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(Matthews & Freedson, 1995) energy expenditure predictions during 𝐴𝐷𝐿 . Therefore, factors 

affecting movement patterns, and consequently the hip acceleration, can influence the prediction 

of energy expenditure (Ludlow & Weyand, 2016; Zarrugh, 1981) and more research is needed to 

define the best hip accelerometer planes for energy expenditure predictions during complex 𝑃𝐴 as 

𝐴𝐷𝐿. In addition, identification of slow walking cadences may be compromised when hip, instead 

of ankle, accelerometers are used for step detection (Chapter 7). Further studies are necessary to 

optimize step detection algorithms based on hip accelerometer, which could improve energy 

expenditure predictions. 

 

8.4 Thesis Conclusion 

The conclusion of this thesis is that, despite the complexity of the oxygen uptake response to 

physical activity, the temporal dynamics of the aerobic system can be evaluated from an 

appropriate combination of wearable sensors processed by novel algorithms during unsupervised 

activities of daily living.  
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Appendix A: Sex Differences in the Oxygen Delivery, Extraction and Uptake 

During Moderate Walking Exercise Transition 

This Appendix was submitted as: 

Beltrame T, Villar R, Hughson RL. Sex differences in the oxygen delivery, extraction and uptake 

during moderate walking exercise transition. Submitted to Am J Physiol Regul Integr Comp 

Physiol since November 7, 2016  
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A.1 Overview 

Due to known greater maximal aerobic power of men compared to women, it was hypothesized 

that men would have faster aerobic system dynamics in response to the onset of exercise challenge. 

This study investigated the interactions between oxygen supply and utilization by characterizing 

the dynamics of oxygen uptake (𝑉̇𝑂2), deoxyhemoglobin (𝐻𝐻𝑏), tissue saturation index (𝑇𝑆𝐼), 

cardiac output (𝑄̇) and total arteriovenous 𝑂2  difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓) in women and men. 

Eighteen healthy active young women and men (9 of each sex) with similar body mass index 

volunteered for this study. On the first day, participants performed an incremental 

cardiopulmonary treadmill exercise test. On the second day, three moderate intensity treadmill 

exercise tests (at 80 % 𝑉̇𝑂2 of gas exchange threshold) were performed. Data related to the second 

visit were submitted to a exponential data modeling technique to obtain parameters related to the 

aerobic system dynamics. The time constants of the 𝑉̇𝑂2 , 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓, 𝐻𝐻𝑏 and 𝑇𝑆𝐼  (30±6, 

29±1, 16±1 and 15±2 s, respectively) in women were statistically (𝑝<0.05) faster than the time 

constants in men (42±10, 49±21, 19±3 and 20±4 s, respectively). Although 𝑄̇ dynamics were not 

statistically different (𝑝=0.06) between women and men, there was a trend to slower 𝑄̇ dynamics 

in men corresponding with the slower 𝑉̇𝑂2 kinetics. These results indicated that the peripheral and 

central oxygen extraction dynamics were remarkably faster in women thus, contrary to the 

hypothesis, 𝑉̇𝑂2 dynamics measured at the mouth at the onset of submaximal treadmill walking 

were faster in women compared to men.  
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A.2 New & Noteworthy 

The regulation of the aerobic system response to moderate exercise seems to differ between women 

and men. However, the control mechanisms responsible for this hypothetical difference are not 

fully understood. We investigated the integrated aerobic response in both sexes by evaluating the 

oxygen delivery-utilization balance simultaneously with oxygen uptake response. Based on our 

results, women presented a faster aerobic adjustment during exercise transition in comparison to 

men due to an apparent faster peripheral oxygen extraction. 

 

A.4 Introduction 

The characterization of the oxygen uptake (𝑉̇𝑂2) dynamics during exercise transition can be used 

to investigate the adjustments of the aerobic response to supply a new energetic demand (Krogh 

& Lindhard, 1913). The rate at which the 𝑉̇𝑂2 increases at the beginning of exercise seems to be 

determined by the integrative control of several mechanisms involving the 𝑂2 transport by the 

circulation and its utilization by the myocyte (Grassi et al., 1996; Hughson & Morrissey, 1983; 

Keir et al., 2016; Macdonald et al., 1997).  

The sex influences over the aerobic response dynamics during exercise transition are not 

fully understood. The greater maximal aerobic power of men compared to women is well 

recognized (Cureton et al., 1986), as well as sex differences in the autonomic nervous control 

(Dart, Du, & Kingwell, 2002; Rossy & Thayer, 1998) and muscle tissue composition (Nygaard, 

1981). These differences are expected to influence the 𝑉̇𝑂2 dynamics during exercise transition 

(Barstow, Jones, Nguyen, & Casaburi, 1996; Hughson, 1984; Powers et al., 1985). Nevertheless, 

some studies (Bauer, Reusch, Levi, & Regensteiner, 2007; Endo et al., 2007) investigated the 𝑉̇𝑂2 

dynamics in men and women as a single group. 
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Faster 𝑉̇𝑂2 kinetics have been observed in pre-pubertal boys compared to girls (Fawkner 

& Armstrong, 2004), and in obese male compared to female adolescents (Franco et al., 2014). In 

older adults, sex explained some variation in 𝑉̇𝑂2 kinetics (Chilibeck et al., 1995), but another 

study observed no difference between men and women in healthy or diabetic populations 

(O’Connor, Kiely, O’Shea, Green, & Egaña, 2012). However, none of these investigations 

performed measurements that allowed the simultaneous investigation of 𝑉̇𝑂2  kinetics and the 

contributions of the 𝑂2  delivery-utilization systems during exercise transition. Near infrared 

spectroscopy (NIRS) and cardiac output (𝑄̇) measurements can be used to assess the 𝑂2 delivery-

utilization distortions in vivo (Faisal et al., 2010; Ferrari, Binzoni, & Quaresima, 1997; Murias et 

al., 2011b). These variables, when obtained simultaneously with 𝑉̇𝑂2 data, offer the opportunity 

to study how the 𝑂2 delivery-utilization balance differs between women and men, and how this 

might impact the rate at which the aerobic system supplies the energy demand.  

Therefore, the purpose of this cross-sectional study was to further explore how sex 

influences the 𝑉̇𝑂2 response during exercise transition with simultaneous measurement of NIRS 

and 𝑄̇. We hypothesized that men have a faster 𝑉̇𝑂2 dynamics in comparison to women, and that 

this would be supported by a better peripheral 𝑂2 delivery and extraction in men. 

 

A.5 Methods 

A.5.1 Participants 

Eighteen healthy, recreationally active young adults (9 women and 9 men) of similar age and body 

mass index (women = age 23±3 years, height 164±7 cm, weight 62.9±5.9 kg, and BMI 23.2±1.2 

kg/m2 and men = age 29±6 years, height 181±8 cm, weight 81.1±11.1 kg, and BMI 24.6±2 kg/m2) 

without any cardiovascular or orthopedic complications volunteered for this study. Participants 
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were evaluated during walking activities on a previously calibrated treadmill (error lower than 1% 

for speeds between 0.5 to 8 km·h-1) (Bodyguard, St-Georges, QB, Canada). Participants signed a 

written informed consent after receiving detailed information about the experimental procedures 

and potential risks involved. They were aware of their right to withdraw from the study at any 

time. The study procedures were reviewed and approved by the Office of Research Ethics at the 

University of Waterloo and in agreement with Declaration of Helsinki. It was requested of all 

participants to not consume a large meal within 2 h prior testing, not drink alcohol and caffeinated 

beverages as well as not perform high intensity exercise for 24 h prior testing. 

 

A.5.2 Experimental Design 

Data were collected on two separate visits. The first visit consisted of incremental 

cardiopulmonary exercise testing, while the second visit consisted of three moderate walking 

exercise tests. Following the measurement of height and weight, a 3-lead electrocardiogram (ECG) 

electrodes were applied over the participant’s skin and an air cushion mask was fitted to the 

participant’s face to allow measurement of gas exchange. Prior to testing, all individuals were 

trained to step on the treadmill in motion according to speed and inclination requirements and 

familiarized with the protocols. Experiments were performed in a quiet room with temperature and 

humidity relatively constant (22.4 ± 0.5 ºC, 23.4 ± 0.9% respectively) and barometric pressure of 

728.7 ± 4.4 mmHg. 

 

A.5.3 Experimental Protocols 

The incremental cardiopulmonary exercise testing protocol consisted of 1-minute baseline, 6-

minute warm-up at 4.5 km·h-1 no slope, followed by a new increment in speed (individual 
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maximum walking speed of ~6 km·h-1) and then progressive increments in grade (1%·min-1). The 

test was terminated when subjects reached 80% of their predicted maximal heart rate. This protocol 

was performed in order to obtain individual gas exchange threshold (𝐺𝐸𝑇) (Beaver et al., 1986) 

that was used to calculate the relative moderate work rate performed in the following laboratory 

visit. On the second visit, participants performed three identical walking exercises at a work rate 

corresponding to 80% of their 𝑉̇𝑂2 at 𝐺𝐸𝑇 (Ozyener et al., 2001). This protocol included 1 minute 

of baseline standing at the treadmill edge followed by 6 min walking at individual selected speeds 

and grades and 6 minutes of recovery. 

In order to minimize any carry over effect between exercise bouts, seated recovery periods 

between all constant work rate exercise tests lasted at least 20 min. The treadmill was operating at 

the target work rate even during baseline for at least 5 min to avoid anticipatory responses. To 

indicate when participants should start walking on the treadmill, a computer monitor was placed 

at the participant’s eye level to control the transitions. 

 

A.5.4 Data Acquisition 

Breath-by-breath measurements of pulmonary 𝑉̇𝑂2 and carbon dioxide output (𝑉̇𝐶𝑂2) were taken 

during tests. A low dead space, bidirectional, low resistance turbine was used to measure 

inhale/exhale air volumes and flows (UVM-1725, Vacumed, Ventura, California, US) and it was 

attached to an air cushion mask (Vacumed, Ventura, California, US) for a total system dead space 

of 170 mL. A 3 L syringe using different flow rates (0.5 to 2 L·s-1) was used to calibrate the turbine 

prior to each test bout. Air samples inside the mask were sent to a mass spectrometer (Amis 2000, 

Innovision, Odense, Denmark) by a short sample line (~1.5 m). The system gas concentration 

calibration was performed using gas tanks with known 𝑂2, 𝐶𝑂2, 𝑁2, and 𝐴𝑟 concentrations. The 
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turbine and mass spectrometer signals were synchronized and utilized in the estimation of 𝑉̇𝑂2 

and 𝑉̇𝐶𝑂2 (First Breath, Waterloo, ON, Canada). 

 The heart rate beat-by-beat calculation was derived from the ECG signal (Pilot 9200, Colin 

Medical Instruments, San Antonio, TX, US) recorded with LabChart 7.3.7 (ADInstruments, 

Colorado Springs, CO, US). The finger arterial pressure signal (Finometer, Finapres Medical 

System, Arnhem, The Netherlands) was used to provide a beat-by-beat estimate of Q̇ as previously 

validated for exercise (Faisal et al., 2009). The total arteriovenous 𝑂2 difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓) 

was calculated by the ratio 𝑉̇𝑂2/𝑄̇ and it was used as a proxy of the total venous 𝑂2 content during 

exercise transition (Barstow et al., 1990). 

A multi-distance continuous-wave single channel near infrared spectroscopy (NIRS) 

(PortaLite, Artinis Medical Systems B.V., Elst, The Netherlands) evaluated changes in 

Gastrocnemius Lateralis muscle oxy- (𝑂2𝐻𝑏) and deoxy-hemo/myoglobin (𝐻𝐻𝑏) concentrations 

(expressed in 𝜇𝑀) sampled at a rate of 10 Hz. The light emitting probe was composed by three 

light-emitting diodes operating at two wavelengths (1=845 and 2=759 nm) resulting in six 

different light sources with different light in/out distances (~ 35 mm). The probe was placed in the 

target area and the device was warmed-up for at least 30 min before the data collection. In order 

to avoid any motion artifact and ambient light influences, the probe was fixed by tape and then a 

dark cloth was gently wrapped around the calf.  

The tissue saturation index (𝑇𝑆𝐼) expressed as the percent of 𝑂2 for a given capillary blood 

volume was calculated in real time by the slope of the curve between the tissue optical density and 

the three light in/out distances. Any probe movement was checked in real-time by the correlation 

level (𝑟2 ) between the light in/out distance and the optical density. During the entire data 

collection, the 𝑟2 was > 98% indicating appropriate signal quality. The adipose tissue thickness 
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(𝐴𝑇𝑇) was determined by measurements of the Gastrocnemius lateral head skinfold thickness 

using a skinfold caliper. The 𝐴𝑇𝑇 did not exceed the minimum penetration depth of the NIRS 

system. The average 𝐴𝑇𝑇 was 7.06 ± 2.57 mm, or ~40% lower than the NIRS light penetration 

depth. The 𝐴𝑇𝑇 was not correlated to any variable evaluated in this study. The selected 𝐻𝐻𝑏 and 

𝑂2𝐻𝑏 signals were related to the deepest penetrating transmitter of the NIRS (i.e., highest light 

in/out distance). 

 

A.5.5 Data Analysis 

The data from the constant work rate protocols were linearly interpolated and re-sampled at 1 Hz. 

The signals for each of the three constant work rate exercise transitions were time-aligned with 

time zero matching the onset of walking exercise. The data from the three repetitions were 

ensemble-averaged generating a single exercise dataset per participant. Afterwards, a 5-s moving 

average was used for filtering to reduce the influence of the inter-breath oscillations (Lamarra et 

al., 1987), narrowing the confidence interval of the parameters to be estimated (Keir, Murias, et 

al., 2014). Finally, the kinetics of 𝑉̇𝑂2 , 𝑄̇ , 𝐻𝑅  and 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓  were analyzed by the bi-

exponential model following previous literature (Hughson et al., 1988): 

 

Equation 13 𝑉𝑂2, 𝑄̇, 𝐻𝑅 𝑜𝑟 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓(𝑡) = 𝑎0 + 𝑎1 ∗ (1 − 𝑒
(−

𝑡−𝑇𝐷1
𝜏1

)
) + 𝑎2 ∗ (1 −

𝑒
(−

𝑡−𝑇𝐷2
𝜏2

)
); 

 

where: “𝑡” is time (independent variable); “𝑎0” is the mean value during baseline; “𝑎1” and “𝑎2” 

are the steady-state amplitudes for the cardio-dynamic and fundamental phases, respectively; 
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“𝜏1”and “𝜏2” are time constants for each phase; “𝑇𝐷1” and “𝑇𝐷2” are time delays for each phase. 

For all variables, the steady-state of the cardio-dynamic phase (i.e., 4*[𝜏1+𝑇𝐷1]) coincided with 

the beginning of the fundamental phase (i.e., 𝑇𝐷2), so that phase 1 had minimal impact on fitting 

of phase 2. The mean response time (𝑀𝑅𝑇) was calculated by the sum of 𝑇𝐷2 and 𝜏2. The quality 

of the fitting was assured by the analysis of residuals, degree of linear correlation between the 

experimental data and fitted function (𝑟), 95% confidence interval band (𝐶𝐼95) (Fawkner et al., 

2002; Keir et al., 2016) and the significance level (𝑝 value) of the estimated parameters. 

The NIRS signals were normalized by the average of the data during 30 s prior the onset 

of exercise for better data visualization. The 𝐻𝐻𝑏 and 𝑇𝑆𝐼 time constants were obtained following 

a previously described method (DeLorey et al., 2003; Murias et al., 2011b). Data not directly 

associated to the muscular 𝑉̇𝑂2 dynamics (DeLorey et al., 2003) were excluded based on the 

detection of two nadir values for each individual exercise transition dataset. The first portion of 

excluded data was related to the muscle pump. The first nadir occurred at 11±0.6 and 11.6±1.3 s 

for women and men, respectively. This period was characterized by a sudden decrease in 𝐻𝐻𝑏 

signal (Figure 53A) with a simultaneous increase in 𝑇𝑆𝐼 as a consequence of an elevated initial 

blood flow that surpasses the 𝑉̇𝑂2 increase (Tschakovsky et al., 2006) decreasing the 𝑂2 extraction 

(Murias et al., 2014). After this first nadir, the 𝐻𝐻𝑏 increased and 𝑇𝑆𝐼 decreased following an 

exponential-like function. It is believed that this behavior is a consequence of the 𝑉̇𝑂2 dynamics 

characteristics during exercise transition, and therefore the phase of interest (Figure 53A) (Murias 

et al., 2011b).  

Instead of studying the influence of data window selection over the parameters estimation 

by arbitrarily choosing different time intervals (Dumanoir et al., 2010; Keir et al., 2016; Murias et 

al., 2011b), the end of the data window was selected according to the identification of a second 
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nadir (Bauer, Brass, & Hiatt, 2004). Due to the late overshooting characteristics of the 𝐻𝐻𝑏 signal 

(Bauer et al., 2007) usually more pronounced in women, the second nadir was set when a 

systematic increase in capillary blood volume assessed by the total hemoglobin ( 𝑡𝐻𝑏 =

𝐻𝐻𝑏+𝑂2𝐻𝑏) was observed after a brief period of steady-state (─ ─ in Figure 53B). This increment 

in the capillary blood volume (Truijen et al., 2012) might be occurring due to temperature increase 

that elevates skin blood flow and/or due to the local metabolites action over the capillary bed. The 

second nadir occurred after 37±8 and 41±11 s for women and men, respectively. To avoid 

misinterpretation of the 𝐻𝐻𝑏 dynamics associated to non-steady capillary blood volume (Kime et 

al., 2013), both nadirs were used to select the optimized data widow to be fitted. 
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Figure 53. Near infrared spectroscopy signal dynamics evaluation during exercise transition. 

Group mean response (𝑛 = 18) of the deoxyhemoglobin (A, 𝐻𝐻𝑏) and total hemoglobin (B, 𝑡𝐻𝑏) changes 

(in ∆𝜇𝑀 ) during walking exercise transition. The method used to select the data to be fitted by an 

exponential function was based on the identification of two nadir values (see text). 

 

To facilitate comparison with previous literature (Murias et al., 2011b, 2014), we 

implemented an exponential fitting procedure on the selected data. The 𝐻𝐻𝑏  data contained 

between the two nadirs were fitted by the equation: 𝐻𝐻𝑏(𝑡) = 𝑎0 + 𝑎1 ∗ (1 − 𝑒
(−

𝑡−𝑇𝐷1
𝜏1

)
) , as 

depicted in Figure 53A. The equation parameters are the same as previously described. The 

selected 𝑇𝑆𝐼  data were fitted by the same equation but instead of adding the exponential 

component to the 𝑎0, it was decreased from the 𝑎0. Since the response can be interpreted as a non-

delayed local response, the 𝑀𝑅𝑇 of the 𝐻𝐻𝑏 and 𝑇𝑆𝐼 (𝐻𝐻𝑏-𝑀𝑅𝑇 and 𝑇𝑆𝐼-𝑀𝑅𝑇, respectively) 

was also calculated by the sum of 𝜏1 and 𝑇𝐷1 and considered as the only time constant for these 

variables (Allart, Olivier, Hovart, Thevenon, & Tiffreau, 2012; Murias et al., 2011b). All data 

modeling parameters were calculated by a G-language computer program developed by a certified 

LabVIEW programmer (LabVIEW 2012, National Instruments, Austin, TX, US). This program 

fitted the data using a nonlinear curve fit function that finds the lowest sum of the squared errors 

by a standard Levenberg-Marquardt algorithm.  
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A.5.6 Statistical Analysis 

Data were expressed as mean ± SD. The one-way repeated measures ANOVA was used to compare 

the 𝑉̇𝑂2 baseline between the three bouts of moderate walking exercise to confirm no carryover 

effects prior to ensemble averaging to achieve a single exercise transition per participant. For 

comparison of the parameters obtained by the kinetics analysis between women and men, Shapiro-

Wilk test was used to assess data distribution. The t-test or Mann-Whitney Rank Sum test was 

used for normal and non-normal data distribution, respectively. The established cut-off 

significance level was 5% (𝑝 < 0.05). 

 

A.6 Results 

The selected treadmill grade at 80% of 𝐺𝐸𝑇 was not statistically (𝑝 > 0.05) different between 

groups (6±1 % for women and 6±2 % for men). As statistically (𝑝 < 0.05) taller individuals, the 

treadmill speed at 80% of 𝐸𝑇 was statistically (𝑝 < 0.05) higher in men (3.4±0.0 km·h-1 for women 

and 3.9±0.2 km·h-1 for men). The 𝑉̇𝑂2  at 𝐺𝐸𝑇 was not statistically (𝑝 > 0.05) different between 

groups (26±3 ml·min-1·Kg-1 for women and 30±5 ml·min-1·Kg-1 for men). One-way repeated-

measures ANOVA indicated that there were no statistically significant differences between the 

𝑉̇𝑂2 baseline (initial condition) of three bouts of moderate walking exercise. 

 Figure 54 displays the normalized second-by-second group response of the 𝑉̇𝑂2 (Figure 

54A) and 𝑄̇  (Figure 54B) during exercise transitions. The 𝑉̇𝑂2 -𝜏2 was significantly faster in 

women in comparison to men (Figure 55A). The 𝑄̇-𝜏2 was not different between women and men 

(Figure 54B), but the 𝑀𝑅𝑇  approached statistical significance (𝑝  = 0.06), with men showing 

slower 𝑀𝑅𝑇 than women. 
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Figure 54. Oxygen uptake and cardiac output during exercise transition. 

Mean ± SD of the normalized pulmonary oxygen uptake (A, 𝑉̇𝑂2) and cardiac output (B, 𝑄̇) of women (𝑛 

= 9) and men (𝑛 = 9) during moderate walking exercise transition. The smaller bar graphs show the speed 

of the signal adjustment (represented by “𝜏2”) of each variable. To display the function used for data fitting, 

the mean 𝑉̇𝑂2 and 𝑄̇ responses were fitted by a bi-exponential model (▬, see text for further details). *: 

statistically (𝑝 < 0.05) faster (i.e., lower 𝜏2) in women. 

 

The second-by-second 𝐻𝐻𝑏  and 𝑇𝑆𝐼  data (Figures 55A and 55B, respectively) for the 

region of interest (selected as described in Figure 53) revealed a statistically (𝑝 < 0.05) faster 

adaptation in women. The exponential characteristics of the response were evident and the data 

modeling presented low residuals, as well as low 𝐶𝐼95 and 𝑝 values. 
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Figure 55. Deoxyhemoglobin and tissue saturation index during exercise transition. 

Mean ± SD of the normalized deoxy-hemoglobin (A, 𝐻𝐻𝑏) and tissue saturation index (B, 𝑇𝑆𝐼) of women 

(𝑛 = 9) and men (𝑛 = 9) during moderate walking exercise. The smaller bar graphs show the speed of the 

signal adjustment (represented by the mean response time or “𝑀𝑅𝑇”) of each variable. *: statistically (𝑝 < 

0.05) faster (i.e., lower 𝑀𝑅𝑇) in women. 

 

Table 6 shows the comparison of the data fitting parameters between men and women. The 

statistical analysis indicated that women presented lower 𝑉̇𝑂2-𝑎2 (𝑝 < 0.05) in comparison to men, 

but no differences for the parameters 𝑎0, 𝑎1, 𝜏1, 𝑇𝐷1 and 𝑇𝐷2. The 𝑉̇𝑂2-𝑀𝑅𝑇 was statistically (𝑝 

< 0.05) faster (i.e., lower) in women. The initial cardio-dynamic component of the 𝑄̇ response (i.e., 

𝑄̇-𝑎1) was statistically (𝑝 < 0.05) more pronounced in men. No differences were found in 𝑄̇ for 

the parameters 𝑎0, 𝑎2, 𝜏1, 𝜏2 and 𝑇𝐷1; however, 𝑀𝑅𝑇 for 𝑄̇ approached statistical significance (𝑝 

= 0.06) with women having a faster response than men. The 𝑄̇ baseline amplitude (i.e., 𝑎0) and 

the 𝑄̇-𝑇𝐷2 also approached statistical significance between groups (𝑝 = 0.06) being both higher in 

men. In comparison to men, the faster local oxygen extraction (faster 𝐻𝐻𝑏-𝑀𝑅𝑇) found in women 

was also associated to faster alveolar 𝑂2 extraction investigated by 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓-𝜏2 . The 𝑎 −

𝑣𝑂2𝑑𝑖𝑓𝑓  parameters 𝑎0 , 𝑎1 , 𝑎2 , 𝜏1 , 𝑇𝐷1  and 𝑇𝐷2  were not statistically different (𝑝  > 0.05) 

between groups. Like 𝑄̇, the 𝑀𝑅𝑇 for 𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 also approached statistical significance (𝑝 = 
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0.06) with women having a faster response than men. In addition, the 𝐻𝑅-𝑎2 was higher in women 

in comparison to men (𝑝 < 0.05). However, the 𝐻𝑅 parameters 𝑎0, 𝑎1, 𝜏1, 𝜏2, 𝑇𝐷1 and 𝑇𝐷2 did 

not present statistical differences (𝑝 > 0.05) between groups. 
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Table 6. Parameters obtained from the kinetic analysis of the oxygen uptake (𝑉̇𝑂2), cardiac output 

( 𝑄̇ ), total arteriovenous 𝑂2  difference (𝑎 − 𝑣𝑂2𝑑𝑖𝑓𝑓 ) and heart rate (𝐻𝑅 ) during moderate 

walking exercise transition in women and men. 
𝑽
𝑶
𝟐
 

 

Women 

(𝒏 = 9) 

Men 

(𝒏 = 9) 

𝒂𝟎 (ml·kg-1·min-1) 4.75±0.48 4.38±0.53 

𝒂𝟏 (ml·kg-1·min-1) 7.62±1.31 8.79±1.93 

𝝉𝟏 (s) 4.04±2.56 3.98±2.28 

𝑻𝑫𝟏 (s) 0.55±0.59 1.21±1.56 

𝒂𝟐 (ml·kg-1·min-1) 11.97±1.19 14.99±2.46 * 

𝝉𝟐 (s) 30.30±6.42 42.40±10.00 * 

𝑻𝑫𝟐 (s) 18.26±4.70 16.98±6.24 

𝑴𝑹𝑻 (s) 48.56±3.99 59.38±8.33 * 

𝐐
 

𝒂𝟎 (l·min-1) 4.22±0.72 5.18±1.17 # 

𝒂𝟏 (l·min-1) 4.36±0.85 5.95±1.92 * 

𝝉𝟏 (s) 4.26±2.89 5.78±3.20 

𝑻𝑫𝟏 (s) 1.00±0.72 1.33±1.70 

𝒂𝟐 (l·min-1) 3.06±0.77 5.07±2.80 

𝝉𝟐 (s) 20.78±12.59 27.37±8.88 

𝑻𝑫𝟐 (s) 14.91±7.21 20.32±2.84 # 

𝑴𝑹𝑻 (s) 35.69±14.96 47.69±8.87 # 
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Abbreviation: 𝑎0 is the baseline value; 𝑎1 and 𝑎2 are the steady state amplitude of the response above 𝑎0 

and 𝑎1, respectively; 𝜏1 and 𝜏2 are time constants (i.e. speed of the adaptation) for each phase; 𝑇𝐷1 and 

𝑇𝐷2 are time delays of each phase and 𝑀𝑅𝑇 is the mean response time. Please see text for further details 

regarding the parameters. * means statistically different (𝑝 < 0.05) between women and men and # means 

statistical significance level of 𝑝 = 0.06. 

 

A.7 Discussion 

Our hypothesis that men present faster 𝑉̇𝑂2 dynamics in comparison to women was not supported 

by our findings. On the contrary, women had faster 𝑉̇𝑂2  dynamics during walking exercise 

𝒂
−
𝒗
𝑶
𝟐
𝒅
𝒊𝒇
𝒇

 

𝒂𝟎 (mlO2·(l·b) -1) 71.80±10.18 72.77±30.72 

𝒂𝟏 (mlO2·(l·b) -1) 24.62±11.33 34.90±19.73 

𝝉𝟏 (s) 4.90±7.83 0.67±0.88 

𝑻𝑫𝟏 (s) 3.90±8.28 1.32±1.60 

𝒂𝟐 (mlO2·(l·b) -1) 40.47±12.61 65.35±67.93 

𝝉𝟐 (s) 29.22±12.5 49.94±21.96 * 

𝑻𝑫𝟐 (s) 28.49±11.23 24.45±2.52 

𝑴𝑹𝑻 (s) 57.71±12.16 74.39±21.37 # 

H
R

 

𝒂𝟎 (bpm) 86.43±9.33 78.48±10.12 

𝒂𝟏 (bpm) 24.65±13.63 27.50±7.32 

𝝉𝟏 (s) 6.65±8.49 7.36±4.18 

𝑻𝑫𝟏 (s) 0.44±0.77 1.38±3.44 

𝒂𝟐 (bpm) 29.53±5.56 22.81±6.93 * 

𝝉𝟐 (s) 60.67±45.13 75.20±52.33 

𝑻𝑫𝟐 (s) 26.67±32.47 30.45±5.79 

𝑴𝑹𝑻 (s) 87.34±73.47 105.65±52.29 
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transition than men. This contrasts with the normally greater maximal aerobic power in men 

(Cureton et al., 1986). In addition, there was a strong trend for faster central 𝑂2 transport (𝑄̇) while 

the peripheral and alveolar 𝑂2 extraction dynamic were remarkably faster in women in comparison 

to men. To the best of our knowledge, this was the first time that the influence of sex on the 

adaptive dynamic and integrative cardiovascular and metabolic responses during moderate 

walking exercise was simultaneously explored in humans. 

In contrast to previous studies that reported faster 𝑉̇𝑂2 kinetics in younger boys compared 

to girls (Fawkner et al., 2002; Franco et al., 2014) and an investigation of 55-year-old men and 

women that reported no difference in 𝑉̇𝑂2 kinetics between the sexes (O’Connor et al., 2012), we 

observed significantly faster responses in young, healthy women compared to men. The current 

study demonstrated that sex influenced the aerobic adaptation during moderate walking. From rest 

to exercise transition, women presented 𝑉̇𝑂2 dynamics ~28 % faster in comparison to men as 

indicated by the faster 𝜏2 (Figure 54A) and 𝑀𝑅𝑇 (Table 6). In addition, as depicted in Figure 55, 

the 𝐻𝐻𝑏 and 𝑇𝑆𝐼 adaptive responses (𝑀𝑅𝑇) in women were 19 % and 22 % faster than men, 

indicating a faster peripheral 𝑂2  extraction ( 𝐻𝐻𝑏 ) and 𝑂2  desaturation ( 𝑇𝑆𝐼 ) dynamics, 

respectively. Despite the lack of statistical significance of the 𝑄̇ temporal dynamics (i.e., 𝑄̇-𝑀𝑅𝑇) 

between groups, the mean effect size of ≈ 25% associated with a statistical significance level (𝑝) 

of 0.06 cannot be overlooked. The observed faster 𝑉̇𝑂2  dynamics in women might be also 

associated with faster 𝑄̇ dynamics reflecting 𝑂2 transport in addition to the statistically significant 

faster 𝑂2 extraction. Consequently, the blood with lower 𝑂2 content might be reaching the lungs 

faster in women which would support the remarkable faster pulmonary 𝑉̇𝑂2  observed in this 

group. 
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The faster 𝑉̇𝑂2 dynamics for the same relative metabolic demand (80% 𝐺𝐸𝑇) showed that 

women were able to utilize aerobic rather than anaerobic metabolism to supply the energetic 

demand during exercise transition. The mechanisms that underlie the more rapid increase in 𝑉̇𝑂2 

are complex. The capillary density of the gastrocnemius muscle seems to be similar between 

women and men (Coggan et al., 1992) but women have lower hemoglobin concentration 

(Vahlquist, 1950) and possibly different respiratory function (Harms & Rosenkranz, 2008) which 

contributes with 𝑄̇ dynamics to affect convective 𝑂2 transport. 

In order to diminish the influence of other variables beyond sex over the aerobic response 

(Lundsgaard & Kiens, 2014), women and men were similar in their age, BMI and 𝐺𝐸𝑇 . 

Differences between matched men and women in observed pulmonary 𝑉̇𝑂2 might also reflect 

muscle metabolic potential. Women apparently have a higher slow-twitch muscle fiber 

composition which has a better oxidative capacity (Haizlip, Harrison, & Leinwand, 2015; 

Lundsgaard & Kiens, 2014; Staron et al., 2000). Different muscle type compositions has an impact 

over the 𝑉̇𝑂2 measured at the mouth and as expected greater recruitment of slow-twitch fiber will 

speed up the aerobic system energy supply during an exercise transition (Barstow et al., 1996; 

Crow & Kushmerick, 1982). In addition, it was reported that women have similar citrate synthase 

(Roepstorff et al., 2005) and cytochrome 𝑐  oxidase (Rouleau, Santana, Jones, & Park, 1995) 

activity in comparison to matched men. These enzymes have a direct effect over the electron 

transport chain which ultimately has the 𝑂2 as the final electron receptor (Clanton, Hogan, & 

Gladden, 2013). In addition, the mitochondrial content and myocyte respiration was reported to be 

similar between women and men for the same muscle fiber type (Thompson et al., 2013). 

Therefore, the observed faster aerobic adjustment in the current study seems to be accounted for 

in part by a higher composition or recruitment of slow-twitch muscle in women.  
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Women have a greater reliance on fat oxidation in comparison to men during dynamic 

exercise (L. J. Tarnopolsky, MacDougall, Atkinson, Tarnopolsky, & Sutton, 1990; M. A. 

Tarnopolsky, 2008) which should also influence the 𝑉̇𝑂2  dynamics during exercise transition 

(Molé & Hoffmann, 1999). However, 𝑉̇𝑂2  dynamics were slowed during a high fat diet 

intervention (Raper et al., 2014), contrary to the observed faster 𝑉̇𝑂2 adjustment in women of the 

current study. Nonetheless, despite the impossibility of exactly identifying the intracellular 

mechanisms that trigger a faster 𝑉̇𝑂2 dynamics in women, the faster peripheral 𝑂2 extraction in 

the capillary bed lead to a faster detachment of the 𝑂2 from the 𝑂2𝐻𝑏, accelerating the dynamics 

of 𝐻𝐻𝑏  concentration and the blood 𝑂2  desaturation (i.e. 𝑇𝑆𝐼 ) (Figure 55). As previously 

described (Hughson, 2009), interactions of 𝑂2 transport and 𝑂2 delivery mechanisms establish the 

rate of increase in 𝑉̇𝑂2 accounting for differences between men and women.  

Regarding the quality of the parameters estimation, the data modeling presented elevated 

reliability which allowed us to infer about the aerobic system response profile based on the 

parameters estimated from the 𝑉̇𝑂2  data measured at the mouth (Keir, Murias, et al., 2014; 

Lamarra et al., 1987). The 𝐶𝐼95  of the 𝑉̇𝑂2-𝜏2  (main variable) was not statistically (𝑝 > 0.05) 

different between women (2.2±0.5 s) and men (2.6±0.5) and corresponded to ~7 and ~6 % of the 

women’s and men’s group mean response, respectively. 

 

A.8 Conclusion 

Women presented a faster 𝑉̇𝑂2 dynamics during walking exercise transition, indicating a faster 

aerobic system adjustment to supply the energetic demand. Women also presented a remarkably 

faster 𝑂2 extraction dynamics in comparison to men at both, peripheral and central compartments. 

The observed faster aerobic system adjustment in women during treadmill walking at a 
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submaximal intensity was a consequence of faster intracellular 𝑂2 handling in combination with 

faster central 𝑂2 delivery.  
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Appendix B: Common Procedures Between Studies 

All participants came to the University of Waterloo where all studies were conducted. During each 

visit, a basic physical examination was performed (height, weight and self-reported medical 

history). Participants were advised to consume a light meal two hours before testing (Ahuja, 

Robertson, & Ball, 2009), and to refrain from consumption of caffeine and/or alcohol and any 

strenuous exercise 48 h before each of the laboratory visits. 

At the beginning of the first visit for each study, participants completed a comprehensive 

questionnaire (PAR-Q & YOU, Figure 56), followed by an explanation of the procedures. A 

familiarization protocol (on cycling or treadmill depending on the study) with all the testing 

equipment was also performed to reduce anxiety that could affect the cardiovascular physiological 

response during exercise (Hickam, Cargill, & Golden, 1948). Room temperature, barometric 

pressure, and relative humidity were monitored to ensure similar environmental conditions 

between laboratory tests. Each laboratory visit had approximately three hours of duration. 

All studies evaluated healthy young participants. The participants were recruited from the 

University of Waterloo campus and once they met the inclusion criteria, an initial interview was 

scheduled to explain the research study. During the interview, each participant had their medical 

history reviewed in order to search for any exclusion criteria that may restrict them to participate. 

The inclusion/exclusion criteria are described below. 

Inclusion Criteria 

 Male and female young healthy participants (age between 18-40 years old).  

Exclusion Criteria  

 Unstable medical condition  

 Diabetes mellitus  
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 Uncontrolled hypertension (BP > 140/90)  

 History of heart disease  

 Resting heart rate >100  

 Recent or past history of neurological disorder such as stroke or parkinsonism  

 Medications that influence heart rate, or blood pressure, such as beta blockers; 

 Medications that may influence cardiac and/or peripheral responses to exercise, 

such as anticoagulants or anticholinergics  

 Hormone replacement therapy  

 Chronic obstructive pulmonary disease 

 Arthritis limiting mobility 
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Figure 56. PAR-Q & YOU questionnaire for initial physical evaluation. 


