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Abstract

In this thesis we provide two contributions to the study of structure in stable matching
problems. The first contribution is a short new proof for the integrality of Rothblum’s
linear description of the convex hull of incidence vectors of stable matchings in bipartite
graphs. The key feature of our proof is to show that extreme points of the formulation
must have a 0, 1-component.

The second contribution is a computer search procedure for instances of cyclic stable
matching problems with three genders as proposed by Knuth. We provide sufficient condi-
tions for the existence of a stable matching in this context. We also investigate bijections
of the problem instance vertex set to itself which preserve the set of stable matchings (up
to permutation). Such bijections define “symmetric” problem instances. We study this
notion of symmetry, and use it to cut down on the number of problem instances in our
search. We implemented our proposed computational procedure in Java and end with a
discussion of the results running computational experiments using our code on problem
instances of size 5.
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Chapter 1

Introduction

This chapter gives motivation, history of related work, and how our results fit into the
current body of knowledge.

1.1 Motivation and Related Work

These days online dating applications are all the rage for eligible singles, but before these
apps made finding a date as easy as a swipe of the finger, one way people met potential
suitors was through their social circle. Imagine you really like playing cupid and you
happen to know n heterosexual male and heterosexual female friends who are all single
and looking for dates. Since you’re such a good friend you know each of your friends’
preferences over who they would like to be paired with in the opposite gender, and even
who they deem unacceptable. You would like to set up your single friends together in n
pairs and you have a goal: you don’t want your friends to mutually circumvent your dating
suggestions. Say some are your friends are Adam, Bob, Amy, and Brianne. If you pair
Adam and Amy together, and Bob and Brianne, but Adam and Brianne mutually prefer
each other to Amy and Bob respectively then they might want to ditch their suggested
dates for each other. You hope to avoid this.

In the previous dating game your single friends with their preferences form what is called
by economists a two-sided matching market [43]. The hope that your friends don’t mutually
want to ditch their dates is the condition of stability which is a highly desirable property
in matching markets. A pair of friends who mutually prefer each other to their matches
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Adam: Brianne > Amy > Carly
Bob: Brianne > Carly > Amy

Chad : Carly > Amy > Brianne

Amy : Bob > Adam > Chad

Brianne: Adam > Chad > Bob
Carly: Chad > Bob > Adam

A

B

C

A

B

C

Figure 1.1: A simple example of stable marriage

Solid edges indicate a matching and dashed edge indicates a blocking pair who prefer each other
to their math. The pair (Chad,Carly) will appear in any stable matching since they are each
other’s top choice.

are called a blocking pair, and the existence of a blocking pair prevents stability. Other
(perhaps more practical) examples of two-sided matching markets are the matching of
medical school residents with hospitals for internships [41], college applicants with colleges
[18], and labour markets between employers and employees [43]. The critical features of
two-sided matching markets are the presence of two distinct groups without crossover who
have interests in forming some mutual relationship with a member of the opposite group,
and not only that but each member has preferences who they become involved with in the
opposite group.

The abstract mathematical model of these phenomena is called a stable matching prob-
lem. In particular the model with two sides and strict preferences, referred to as Stable
Marriage was first introduced by Gale and Shapley to investigate college admissions [18].
Formally stable marriage asks for a matching in a bipartite graph such that no two vertices
not matched together mutually prefer each other to their partners in the matching. See
section 2.3 of chapter 2 for more detail.

In Gale and Shapley’s work they prove that stable matchings always exist for stable
marriage problems through giving their famous deferred acceptance algorithm to compute
stable matchings. See subsection 2.3.2 for details. For this work Shapley earned the Nobel
Prize in Economics [10].
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Stable matchings in two-sided markets come with a lot of interesting structure. In Gale
and Shapley’s original paper [18] they observed that their algorithm favoured one side of
the market over the other. Deferred acceptance has one side of the market play the role of
proposers, and the other side playing the role of proposees. Proposers propose to proposees
in order from their first to last choice and proposees tentatively accept or reject. They
accept if they have no partner or they prefer the proposer to their current tentative partner.
For a formal description see 2.3.2. As it turns out the algorithm gives the proposers the
best possible partner they could hope for in any stable matching.

A major landmark in stable marriage was the work of Knuth [30]. Knuth demonstrated
that when given two stable matchings, if all members of one side of the market like the
first stable matching at least as well as the second then all members of the other side of
the market like the second stable matching at least as well as the first. In plainer language
the interests of both sides of the market are opposed.

A1: A2 > B2 > C2
B1: B2 > A2 > C2
C1 : C1 > A2 > B2

A2 : C1 > A1 > B1
B2: A1 > B1 > C1
C2: B1 > C1 > A1

A

B

C

A

B

C

Figure 1.2: Comparing two stable matchings

Solid edges indicate one stable matching and dashed edges indicate another stable matching.
The solid matching is preferred by everyone on side 1 and the dashed matching is preferred by
everyone on side 2.

In his work Knuth also mentions that the set of stable matchings of a two-sided market
forms an algebraic structure called a distributive lattice. He credits Conway with the result.
For details of a proof of this result see subsection 2.3.3 of chapter 2 and in particular the
proof of theorem 2.3.6.
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One line of investigation related to our work in Chapter 3 is to consider involves problems
wherein each possible pairing in a stable matching problem is weighted by some possible
utility, and our goal is to find a stable matching of maximum total weight. More formally if
we let E be the set of possible pairs in a stable matching instance we have a weight function
w : E → Q and our goal is to find a stable matching M ⊆ E such that

∑
e∈M w(e) is

maximized over the set of all stable matchings. In a paper of Irving, Leather, and Gusfield
[25] they give an algorithm which solves weighted stable marriage by applying network
flow theory methods to the set of “rotations” in a problem instance. Another approach to
solving weighted stable marriage would be via linear programming. Vande Vate was the
first to formulate stable matchings in the stable marriage problem as the feasible region
of a linear program and prove that the extreme points of his formulation were integer-
valued vectors [49]. In doing so he implies a means of solving the weighted stable matching
variant through the use of linear programming techniques. Vande Vate’s formulation was
only for the case of no unacceptable matches and his proof was complicated. Rothblum
gave a formulation for the more general case where unacceptable matches were allowed, and
Rothblum’s proof via an extreme point argument was simpler than Vande Vate’s original
proof. [44].

Another line of investigation gaining more attention in recent years is the question of
stable matching markets with more than two sides. In Knuth’s work on stable matching he
proposes a variant where we consider three-sided markets instead of two. In this context
matchings are triples with one member from each side of the market, and matchings are
stable if there does not exist a triple where each member mutually prefers the triple to the
triple they are matched in. One important application for this type of model would be
three-way kidney exchange in the context of organ transplant procedures in hospitals [45].
There are essentially two variants to this problem. The first is where each participant has
preferences over the possible pairs they could be matched with. Ng and Hirschberg [39]
consider this variant in their work and demonstrate that finding stable matchings for such
problems in NP -hard.

The other possible variant, which we will focus our attention on in Chapter 4, is the
cyclic three-sided matching problem. In this problem participants from the first side of the
market has preferences over the members of the second side (with indifference towards the
third), the second side has preferences over the third, and the third side has preferences
over the first side. It is an open conjecture by Knuth that stable matchings always exist for
this problem when there are no unacceptable triples. As late as 2006 Eriksson et al. [15]
showed that for complete preference lists with at most 4 agents in each side there always
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exists a stable matching. In 2010 Biro et al. [7] show a counterexample with 6 agents
in each side but with incomplete preferences allowed. Later Farczadi et al. [16] proved
that a natural approach through extending Gale and Shapley’s deferred acceptance may
be intractable by proving that the problem of deciding if any matching of two sides of a
three-sided market can be extended to a stable three-sided matching is NP -complete.

1.2 Surrounding Literature

Gale and Shapley’s work on stable marriage spawned a field of inquiry that brings
together mathematicians, computer scientists, and economists in studying stable matching
problems and their variants. We will discuss many of their results in this section. To learn
more about the body of literature surrounding stable matching see the excellent texts of
Roth and Sotomayor [43], Gusfield and Irving [22], and Manlove [35].

Once Gale and Shapley demonstrated that stable matchings always exist the next natural
questions involved what the set of stable matchings in stable marriage problems look like.
McVitie and Wilson [37] gave an algorithm which found not just one stable matching,
but the entire set of possible stable matchings for a given market. They also observed
that in a stable matching where one side of the market are all matched with their best
possible partner, like in deferred acceptance, the other side of the market are all matched
with their worst possible partner. Another interesting structural result came from Gale
and Sotomayor [19] when they demonstrated that if someone was matched in any stable
matching they were matched in all stable matchings. An immediate corollary of this is
that all stable matchings of a given market have the same size.

Following Conway’s Lattice Theorem 2.3.6, Blair [8] demonstrates the amazing fact that
any finite distributive lattice is isomorphic to the set of stable matchings of some stable
marriage problem. In Blair’s paper he gives a construction which takes a finite distributive
lattice and constructs a stable marriage problem whose set of stable matchings is isomorphic
to the given lattice. Blair notes that his construction is not the most efficient possible in
terms of the number of vertices in the stable marriage graph. In particular his construction
has potentially exponential growth in the number of vertices in the stable marriage instance
in terms of the number of elements of the lattice. Later Gusfield et al. [21] show a more
efficient construction which reduces the exponential growth to at worst polynomial growth.

5



One natural question which arises when first hearing about stable matching is: what
happens when we remove sides from the market? That is, what happens when we allow
all participants in the market to match with any other participant? Formally in stable
marriage we were considering a constrained matching problem in bipartite graphs, but
now we intend to lift the restriction that the graph is bipartite. This problem has been
given the evocative name Stable Roommates. In Gale and Shapley’s original work [18]
they consider this problem and give an example which shows the existence of a problem
instance where no stable matching is possible. Abeledo and Isaak [1] advance this further
by proving that a matching market is two-sided if and only if every reordering of the
participants’ preferences results in a market that has a stable matching.

In the stable roommates problem we would like an algorithm like the deferred acceptance
procedure of Gale and Shapley that provides stable matchings, but since not every problem
instance has a stable matching the algorithm should also be able to decide when a stable
matching does not exist. In 1985, Irving [23] provided such an algorithm. In collaboration
with Gusfield [25], Irving showed as a consequence of his algorithm that for any stable
roommates instance if a participant is matched in a stable matching they are matched in
all stable matchings. As a corollary this implies that stable matchings in a given market
all have the same size. While Irving has an algorithm to find a stable matching or report
that none exist we need consider the question what sort of matching is desirable when no
stable matching exists. A possible relaxation would be to ask for a matching with the least
number of blocking pairs. It has been shown that it is NP -hard to find such a matching [3].
For those without a complexity background, an optimization problem being NP -hard is
considered strong evidence that no efficient algorithm exists for that problem. By efficient
we mean that worst case running time is bounded above by a polynomial function of the
size of the input specified in some reasonable encoding, for instance binary. See chapters
3 and 4 of Introduction to Algorithms [12] for an introduction to time complexity analysis
and chapter 34 for a discussion of NP -hardness.

Another natural question is to ask about what happens if indifference is allowed in stable
marriage problems. By this we mean that we allow ties in participants’ preferences. Once
we allow ties we need to delineate between three different notions of stability. In any
notion of stability a matching is considered stable if a blocking pair does not exist. A
blocking pair with respect to a matching is a pair of vertices u and v that are not matched
in the matching and that mutually prefer each other to their respective partners. In our
original definition of stability in stable marriage both u and v strictly prefer each other
to their matched partners. When ties are involved this notion of stability will be called
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weak-stability. Strong-stability says u must strictly prefer v to their partner but v may
strictly prefer, or be indifferent to, u compared to their matched partner. Super-stability
allows both u and v to either strictly prefer, or be indifferent to, each other compared to
their matched partner.

Irving found that for stable marriage with ties, and where all possible pairings from
both sides of market are acceptable to the participants, there always exists a weakly-stable
matching [24]. It is also known that strong-stable and super-stable matchings need not al-
ways exist, but that polynomial time algorithms for deciding if they do and finding one if so
exist. Irving resolves the super-stable case, while Kavitha et al. [29] resolved the strongly-
stable case. The work of Kavitha also covers the possibility of unacceptable matches, while
an algorithm for finding strongly-stable matchings with unacceptable partners was given
by Manlove [34]. For weakly-stable matchings with unacceptable matches Manlove et al.
[36] demonstrated that weakly-stable matchings always exist, but they may have different
sizes, which for previously mentioned variants was not the case. They showed that the
problem of finding a largest weakly-stable matching is NP -hard.

We mentioned in the previous section (1.1) that the problem of finding a stable matching
of optimal weight in a stable marriage problem is solvable in polynomial time. While this
is true, the weighted stable roommates problem is considerably harder. Feder has shown
that the problem of solving weighted stable roommates is NP -hard [17]. Interestingly
though the linear programming formulation Rothblum gave for weighted stable marriage
can be used to find 1

2
-integral weighted stable roommates solutions. In 1994 he proved

this result with Abeledo [2]. By 1
2
-integral we mean extreme point solutions of Rothblum’s

formulation take variable values in the set {0, 1
2
, 1}. While not solving the problem entirely,

if the reader has an eye for applications we could imagine that a 1
2

matching can have
reasonable interpretations. For example splitting time in half between two contracts, or
having a 50 percent chance of being matched with a 1

2
matched partner.

1.3 Our Contributions and Outline

Our first significant contribution to this body of theory is a simpler view of the linear
programming formulation of weighted stable matching studied by Vande Vate and Roth-
blum. We present a short proof that Rothblum’s formulation has integer-valued vectors for
extreme points which uses only some elementary theory of polytopes and basic structural
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results on stable matchings. Our proof is inspired by the common paradigm of iterative
rounding [33], yet takes a slightly different direction as one will see in Chapter 3. We are
hopeful that our proof technique can be used in the investigation of linear programming
formulations for other stable matching type problems in the future since its simplicity
leaves it wide open for extension.

Our other contributions are in the study of cyclic complete three-sided stable matchings
as proposed by Knuth. We began our study in hopes of applying modern computing power
to push higher the best known size for which it was known there is always a stable matching.
As we previously mentioned it currently stands at 4 and that result belongs to Eriksson
and his collaborators. We propose a computer search framework for testing all instances of
the problem for a given size. The framework is interesting because it allows for the cutting
off of many instances simultaneously by not needing to explore their full preferences. It
does this through the use of lemmas which are sufficient for proving existence of stable
matchings, and eliminating from consideration instances that are equivalent to previously
checked instances.

We provide some new lemmas which are sufficient for concluding that an instance of
the three-sided problem has stable matchings. Many of these lemmas are about finding
a particular partial matching and applying “induction” to get a stable matching in a
smaller instance. Other lemmas try to satisfy all agents of a given side in a way that they
are unwilling to prevent the matching from being stable. In the study of symmetry, we
provide a definition of when two instances of the three-sided problem are symmetric and
study the structure of equivalence classes under this symmetry.

In the next chapter we will give the reader the necessary background to understand our
contributions, taking them through many of the the famous results previously mentioned
along the way. They will also learn about linear programming and the methods of iterative
rounding, and previous structural results in stable matching theory. The two chapters
following preliminaries will detail our contributions to firstly polyhedral theory in stable
matching, and secondly to three-sided stable matching problems. After that we conclude
with a summary of what was studied, and provide many open avenues for the interested
reader to begin exploring research problems in the theory of stable matchings based on our
contributions in this thesis.
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Chapter 2

Preliminaries

This chapter gives background on the tools used in the main body of work. Most of this
material, with possible exceptions being iterative rounding and the structure of stable
matching instances, should be familiar to a student with comparable background to a
Combinatorics and Optimization undergraduate at the University of Waterloo. We will
emphasize the results in the covered areas that we will need later, but it is important to
point out that these areas go much deeper than what is written here and so the end of
each section includes suggested texts for further reading.

2.1 Matching Theory

2.1.1 Graphs and Matchings

A graph G is an ordered pair (V,E) where V is called the vertex set and E ⊆ {{a, b} :
a, b ∈ V, a 6= b} is called the edge set. The clause a 6= b forbids self-loops and insisting that
E is a proper set forbids parallel edges. Some authors choose to work with more generality
but for ease of exposition we will not. As defined above, G is an undirected graph, but if
one were to change E to a set of ordered pairs in V ×V then G would be called a directed
graph. We will work here with undirected graphs. When V and E are not explicit we can
use V (G) and E(G) respectively to refer to the vertex and edge sets of G.

Since it is somewhat cumbersome to write {a, b} ∈ E(G) every time we wish to refer to
an edge of the graph G we will use throughout this text the shorthand ab to denote the

9



edge {a, b}.

In a graph G, two vertices a, b ∈ V (G) are said to be adjacent, denoted a ∼ b, if ab ∈ E.
For any vertex a ∈ V (G) we denote by δ(a) = {e ∈ E(G) : a ∈ e} the set of edges incident
upon a. The : degree of a, d(a),is defined as d(a) = |δ(a)|.

A path P is a graph where V (P ) = {v0, v1, . . . , vn} and

E(P ) = {v0v1, v1v2, . . . , vn−1vn}.

where all vi are distinct for i ∈ {0, 1, . . . , xn}. A cycle is a path with the exception that
v0 = vn.

A graph G = (V,E) is said to be bipartite if there exists a partition of V into V0, V1 such
that for every edge ab ∈ E either a ∈ V0 and b ∈ V1, or b ∈ V0 and a ∈ V1.

Given a graph G = (V,E), a matching on G is any M ⊆ E satisfying that for all
e1, e2 ∈ M we have e1 ∩ e2 = ∅. We use V (M) = {v ∈ V : ∃e ∈ M, v ∈ e} to denote
the set of vertices matched in M . Intuitively our definition of matching means that each
vertex matched in M (those in V (M)) is matched to exactly one “partner”. That is to say
|δ(v)∩M | = 1. The partner of vertex v, denoted M(v), is the vertex such that vM(v) ∈M .
When it is clear from context we may also use M to refer to the graph “induced” by M ,
by which we mean the graph (V (M),M).

a0

a1

a2

b0

b1

b2

Figure 2.1: A complete bipartite graph and matching.

Graph has vertex set {a0, a1, a2} ∪ {b0, b1, b2}. The red edges indicate matching the matching
{a0b0, a1b1, a2b2}.
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2.1.2 Maximum Cardinality Matching

Problem One classical problem in Matching Theory is the question of finding a maximum
cardinality matching given a graph. This question was first investigated by Berge in [5].
He gave a characterization of when a matching has maximum cardinality.

Let M be a matching in graph G. Let P be a path contained in G with E(P ) =
{v0v1, . . . , vn−1vn}. We say that P is M -alternating if the sequence of edges E(P ) alternate
being in M and not being in M . More precisely P is M -alternating provided that for any
i ∈ {0, . . . , n − 2}, edge vivi+1 ∈ M if and only if vi+1vi+2 ∈ E(G)\M . An M -alternating
path P is called M -augmenting if v0 and vn are not in V (M) and n ≥ 1.

The name M -augmenting path purposefully evokes the image of flow augmenting paths
in network flow theory as there is a way to increase the cardinality of a matching M by
augmenting it with an M -augmenting path. This augmenting operation is called symmetric
difference, which we define below.

For any sets S, T ⊆ U the symmetric difference of S and T , denoted S4T , is given by
S4T = (S ∪ T )\(S ∩ T ).

The definition of symmetric difference tells us that for any x ∈ S4T either x ∈ S or
x ∈ T but not both. Formally we could say S4T = (S\T ) ∪ (T\S), which is immediate
from our definition of 4 and basic set theory.

Theorem 2.1.1 Augmenting Path Theorem (Berge [5]): Let G be a graph and let M ⊆
E(G) be a matching. Then M is of maximum cardinality over the set of matchings in G
if and only if there does not exist any M-augmenting path contained in G.

Proof: For the ( ⇐= ) direction suppose that there exists M -augmenting path P in G.
We denote the edge set of P by E(P ) = {v0v1, . . . , vn−1vn}. We claim that M ′ = M4E(P )
is a matching of greater cardinality than M . To see that M ′ is a matching we will show
that for all v ∈ V (M ′), |δ(v)∩M ′| = 1. Let v ∈ V (M ′). Since v ∈ V (M ′), |δ(v)∩M ′| > 0.
Suppose for a contradiction that |δ(v) ∩M ′| ≥ 2. Then there exist distinct e1, e2 ∈ δ(v)
such that e1, e2 ∈ M ′. By the nature of symmetric difference either e1 ∈ M\E(P ) or
e1 ∈ E(P )\M , and similarly either e2 ∈M\E(P ) or e2 ∈ E(P )\M . We cannot have both
e1, e2 ∈M\E(P ) since M is a matching, and we cannot have both e1, e2 ∈ E(P )\M since P
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is an M -alternating path. So we may assume without loss of generality that e1 ∈M\E(P )
and e2 ∈ E(P )\M . Since e1 ∈ M , v 6= v0 and v 6= vn. Since P is an M -augmenting path,
v 6= v0, v 6= vn, and e2 ∈ E(P )\M there exists e ∈ M ∩ E(P ) such that e ∈ δ(v). Since
e1 6∈ E(P ) we have that e 6= e1. But then e, e1 ∈M with e∩e1 = {v} 6= ∅ contradicting that
M is a matching. Therefore |δ(v)∩M ′| < 2, implying that |δ(v)∩M ′| = 1 and thus that M ′

is a matching. Now since V (M ′) = V (M)∪{v0, vn} we observe that |M ′| = |M |+1 > |M |.
This implies that M is not a maximum cardinality matching in G.

Now suppose for the ( =⇒ ) direction thatM is a matching inG which is not of maximum
cardinality. That is there exists some matching M ′ such that |M ′| > |M |. Consider their
symmetric difference J = M ′4M . Observe that each vertex in the graph (V (G), J) has
degree at most two. This follows from observing that if there was a vertex v whose degree
in (V (G), J) was at least three then either two edges incident upon v are in M or M ′

contradicting that M and M ′ are matchings. Therefore (V (G), J) consists only of vertex
disjoint paths and cycles. The edges of said paths and cycles alternate belonging to M ′

and to M . Otherwise there would be a vertex with two edges incident upon it in the same
matching, a contradiction. So the cycles are even in number of edges and contain the same
number of edges from each of M ′ and M . But since |M ′| > |M | there is a path, P , with
more edges in M ′ than in M . This follows from counting edges in M and M ′ noticing that
cycles contribute the same number to each. The path P is M -augmenting.

We cover this proof not only because it is intrinsically interesting, but also because the
structure of J , the symmetric difference of two matchings, will arise in the future when we
study the structure of stable matchings.

Further Reading This problem is very well understood. For instance Tutte’s classic
min-max theorem [48], and Edmond’s Blossom algorithm [14]. A textbook appropriate for
advanced undergraduate or beginner graduate students is Combinatorial Optimization by
Cook, Cunningham, Pulleybank, and Schrijver [11] which contains a chapter covering the
results mentioned here.

2.1.3 Maximum Weight Matching

Problem Suppose we are given a bipartite graph G and a weight function w : E(G) →
R. The Maximum Weight Matching problem is to find a matching M which maximizes
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∑
e∈M w(e). This problem and its solution via the Hungarian Algorithm attributed to Kuhn

and Munkres [32][38] is one of the earliest success stories of Combinatorial Optimization.
Another approach which gives some flavour of the work to come is to model the problem
via a linear program. It is this approach we will explain here.

Linear Program Linear programming has proven to be a powerful and unifying tool in
combinatorial optimization. If the reader is uncomfortable with linear programming please
see section 2.2.1 for a primer. Consider the following linear program:

max
∑

e∈E(G)

w(e)xe

s.t.
∑
e∈δ(v)

xe ≤ 1 for all v ∈ V (G)

xe ≥ 0 for all e ∈ E(G).

Let E be a set of discrete elements. Let S ⊆ E. We define the incidence vector of S to
be χ(S) ∈ Z|E| where

χ(S)e =

{
1, if e ∈ S
0, otherwise.

Let M ⊆ E(G) be a matching in G. Then χ(M) is feasible for the above linear program.
Hence the optimal solution to the linear program is an upper bound on the maximum
weight of a matching in G. In fact Birkhoff [6] showed that all extreme point solutions
(see 2.2.1 for definition) to this program are integral. This implies the optimal extreme
point solutions are incidence vectors of matchings and that the optimal value of this linear
program is equal to the maximum weight of a matching in G. In the next section we
will define the terms of Birkhoff’s Theorem and discuss a proof, not the original proof of
Birkhoff, but a proof using the techniques of iterative rounding.

2.2 Iterative Rounding

The technique of iterative rounding was originally inspired by Jain’s work on survivable
network design [27]. Since that time it has proven to be a versatile technique seeing
application across a wide variety of branches of Combinatorial Optimization including
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Matchings, Spanning Trees, Flows, and Network Design [33] to name a few. Iterative
Rounding was initially studied as a procedure for obtaining approximation algorithms,
but has since been adapted to reprove many classical results. The earliest known use of
iterative rounding for exact optimization problems was given by Steinitz in his study of
rearrangements [47]. It is this latter application to proofs of integrality that we will focus
on, but in the context of matching. We will begin with some necessary background from
the theory of linear programming, then proceed to discuss the general form the iterative
rounding technique takes in the context we are studying, and finish by demonstrating its
application to maximum weight bipartite matching.

2.2.1 Linear Programming Tools

In this section we will review the fundamentals of linear programming theory and discuss
results necessary for application to iterative rounding. For a comprehensive treatment of
linear programming consider the classic text of Chvatal [9].

Let A be an m×n matrix, let b ∈ Rm and let c ∈ Rn. The goal of a linear programming
problem is to find x∗ ∈ {x ∈ Rn : Ax ≤ b, x ≥ 0} which maximizes cTx∗. Here x ≥ 0 is
a shorthand for xi ≥ 0 for all i ∈ {1, . . . , n}. This can be written in the compact form
max{cTx : Ax ≤ b, x ≥ 0} or displayed as

max cTx

Ax ≤ b (2.1)

x ≥ 0.

The linear function cTx is referred to as the objective function in variables x. Given any
row ai of A and the corresponding bi entry of b, aTi x ≤ bi is a constraint. The constraints
x ≥ 0 are called non-negativity constraints.

The choice of the standard form (2.1) eases exposition, but it is by no means rigid. If
one wishes to apply a constraint of the form aTx = b or aTx ≥ b, or even wishes to be
free of non-negativity constraints then such a linear program could be written down and
converted to an equivalent program (possibly with more variables) in our standard form.
To see how to do this refer to Chvatal [9], or try it as an easy exercise.
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Figure 2.2: An unbounded polyhedron

Given a linear program in the form 2.1, P = {x ∈ Rn : Ax ≤ b, x ≥ 0} is referred to
as the feasible region. It describes the space of vectors which satisfy the constraints of the
linear program. Such P is a geometric object called a polyhedron, which can be defined as
the space formed by the intersection of a finite number of half-spaces.

A polyhedron, P , is unbounded if there exists d ∈ Rn\{0} such that for all α ∈ R with
α ≥ 0 and x ∈ P , x + αd ∈ P . Such d is called a direction. A polyhedron which is not
unbounded is called bounded, and such polyhedra are called polytopes.

Observe that if P is unbounded then the corresponding linear program may not have a
finite optimal value. In particular this happens when translating along a direction d can
increase the objective value That is to say P 6= ∅, and there exists direction d and objective
function c for which cTd > 0. By choosing successively larger α we may make the objective
value of x + αd arbitrarily large. Linear programs whose feasible regions are polytopes
always have finite optimal values. For the critical reader we refer you to Chvatal [9] for a
proof.

Let P denote the feasible region of a linear program of the form 2.1 and let x be a vector
in P . Then x is a vertex of P if there exist h and δ such that hTx = δ and for all y ∈ P
such that y 6= x we have hTy < δ. The hyperplane specified by (h, δ) is called a supporting
hyperplane for x.

15



In the same setting as the previous definition, we say x is an extreme point if there do
not exist distinct y1, y2 ∈ P such that

x =
1

2
y1 +

1

2
y2.

Again in the same setting, for ease of exposition let

A′ =

[
A
−I

]
b′ =

[
b
0

]
(2.2)

and thus P = {x : A′x ≤ b′}. The vector x ∈ P is called a basic feasible solution if there
exist n linearly independent rows of A′, say a1, . . . , an (not necessarily the first n rows of
A), with corresponding entries of b′: b1, . . . , bn satisfying aix = bi for all i ∈ {1, . . . , n}.

It is not immediately obvious that the three concepts x being a vertex, an extreme point,
or a basic feasible solution are equivalent but in the next lemma we will show the fact that
they are indeed.

Lemma 2.2.1 Let P be the polyhedron corresponding to the feasible region of 2.1, and let
x ∈ P . Then the following are equivalent:

1. x is a vertex of P ,

2. x is an extreme point of P ,

3. and x is a basic feasible solution of P .

Proof: ((1) =⇒ (2)) First suppose that x is a vertex of P with supporting hyperplane
hTx = δ. Then hTy < δ for all y ∈ P such that y 6= x. Suppose for a contradiction that x
is not an extreme point of P . Then there exist y1, y2 ∈ P with y1 6= y2, such that

x =
1

2
y1 +

1

2
y2.

So then

δ = hTx = hT (
1

2
y1 +

1

2
y2) =

1

2
hTy1 +

1

2
hTy2 <

1

2
δ +

1

2
δ = δ,

yielding δ < δ, a contradiction. Thus x is a vertex implies x is an extreme point.
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((2) =⇒ (3)) For ease of exposition let A′ and b′ be as in equations 2.2. We proceed
by contraposition. Suppose that x is not a basic feasible solution. Then there are not n
linearly independent constraints tight at x. Let k be the number of constraints satisfied
by x at equality. We may assume that the first k rows of A′, a1, . . . , ak along with the first
k entries of b′ describe the constraints x satisfies at equality. Notice that either k < n, or
k ≥ n and a1, . . . , ak are not linearly independent. In either case the system (in variables
y):

aT1 y = 0

. . .

aTk y = 0

has a non-trivial solution. Let d 6= 0 ∈ Rn be such a solution. Since adding or subtracting
multiples of d from x does not affect satisfaction of tight constraints, and all other con-
straints satisfied by x are not tight (that is, aix < bi for such constraints), there exists
ε 6= 0 such that x+ εd, x− εd ∈ P . Thus letting y1 = x+ εd and y2 = x− εd we have

1

2
(y1 + y2) =

1

2
(2x) = x.

Since y1, y2 ∈ P with y1 6= y2, and x = 1
2
y1 + 1

2
y2, x is not an extreme point. Thus we have

shown that x is extreme point implies that x is a basic feasible solution.

((3) =⇒ (1)) Now suppose that x is a basic feasible solution. Suppose that rows of A′,
a1, . . . , an, along with b1, . . . , bn describe the linearly independent constraints satisfied by
x at equality. By linear independence, x is the unique solution toa1...

an

x =

b1...
bn

 .
Let hT =

∑n
i=1 ai and let δ =

∑n
i=1 bi. We claim that (h, δ) describe a supporting hyper-

plane for x. Indeed let y ∈ P . Then

hTy =
n∑
i=1

aiy ≤
n∑
i=1

bi

with the last inequality following since y ∈ P implies aiy ≤ bi for all i ∈ {1, . . . , n}.
Observe that equality holds above if and only if aiy = bi for all i ∈ {1, . . . , n}. But since x
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is the unique solution to the system of equations aiy = bi for all i ∈ {1, . . . , n} this implies
that y = x . Hence if y ∈ P with y 6= x then hTy < δ. Therefore x is a basic feasible
solution implies that x is a vertex, and hence the lemma holds.

Lemma 2.2.2 (Rank Lemma [33]) Let x be an extreme point of P . If x > 0 then there are
n linearly independent constraints tight at x of the form aix = bi, which is the maximum
number possible. Here ai denotes a row of A and bi is the entry of b corresponding to ai.

Proof: By Lemma 2.2.1 we have that x is a basic feasible solution. Hence there exist
n linearly independent constraints tight at x. Since x > 0 each tight constraint is of the
form aix = bi for some i, as no non-negativity constraints are tight. Therefore the row
rank of A is at least n. But A is an m × n matrix, and thus the column rank of A is at
most n. Since it is a ubiquitous fact from linear algebra that column rank and row rank
are equal for any matrix this implies that the row rank of A is equal to n. Therefore n is
the maximal number of linearly independent constraints of the form, aix = bi, tight at x.

Lemma 2.2.3 Let x be an optimal solution to a linear program of the form 2.1 with feasible
region denoted by P . We claim there exists x∗ ∈ P such that x∗ is an extreme point and
cTx = cTx∗.

Proof: Let x be an optimal solution with the maximum number of constraints tight at
x. Suppose for a contradiction that x is not an extreme point. We will demonstrate that
we can always find another optimal solution with more tight constraints than x (possibly
non-negativity constraints, which manifest as 0-entries of x) contradicting our choice of x.
Since x is not an extreme point there exists y1, y2 ∈ P with y1 6= y2, such that

x =
1

2
y1 +

1

2
y2.

We define a direction d 6= 0 along which we will translate x without ruining optimality.
Let

d =
1

2
y2 − 1

2
y1.

Then x+ d = y2 ∈ P and x− d = y1 ∈ P . We have the following inequalities

A(x+ d) ≤ b

x+ d ≥ 0

A(x− d) ≤ b

x− d ≥ 0.
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Let A= be the collection of rows of A along with corresponding entries of b, b=, that satisfy
A=x = b=. So by the above inequalities A=(−d) ≤ 0 and A=d ≤ 0. Therefore A=d = 0.
Further, by the optimality of x,

cTx ≥ cT (x+ d)

and cTx ≥ cT (x− d)

which implies cTd = 0.

Thus for any ε, x + εd satisfies A=(x + εd) = b= and cT (x + εd) = cTx. Since d 6= 0, we
may assume that there exists i such that di < 0 (otherwise we may use −d instead of d).
We define ε > 0, which is finite as di < 0, as follows:

ε = min{min{ xj
−dj

: dj < 0},min{bi − aix
−aid

: aix < bi, aid < 0}}.

where ai are the rows A and bi is the corresponding entry of b. By our choice of ε either
x + εd has one more 0 entry (in the

xj
−dj case) or one more tight constraint (in the bi−aix

−aid
case) than x. Further by the minimality of ε the non-tight constraints remain feasible,
and as previously argued the tight constraints are not violated so x+ εd is feasible. Since
cTd = 0 we thus have x+ εd is an optimal solution with more tight constraints than x.

Integrality The previous lemma tells us that an algorithm which solves linear programs
need only concern itself with extreme point solutions. So extreme point solutions are of
particular interest in applications. We call a polyhedron P integral if every extreme point
x of P is contained in Zn. We will call a linear program integral if its feasible region is
integral. Integrality is important when using linear programs to model discrete optimiza-
tion problems since fractional solutions rarely have an interpretation in this context. Later
in this section we will demonstrate how iterative rounding can be used to prove that the
feasible region of a linear program is integral.

Algorithms for Linear Programming The most widely taught algorithm for solving
linear programs is the simplex method[13]. The algorithm works by starting at an extreme
point and traveling along edges of the polyhedron given by the feasible region to adjacent
extreme points which improve the objective value until the optimal solution is found. The
order it chooses extreme points to visit is based on what is called a pivot rule. There is no
known pivot rule which ensures that the simplex method examines a polynomial number
of extreme points in the worst case. While this indicates a poor worst case performance for
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(0, 0)

(0, 1) (1, 1)

(1, 0)

Figure 2.3: An integral polytope

This integral polytope has extreme points (0, 0), (0, 1), (1, 1), and (1, 0) which are all in
{0, 1}2 ⊆ Z2.

known implementations of the simplex method, it has been observed to work efficiently in
practice possibly due to its average case polynomial time performance [46]. The ellipsoid
method came later, initially as an approximation algorithm for real convex minimization,
and later shown to be able to solve linear programs in polynomial time [20]. While not
thought to be faster than simplex in practice, the polynomial time worst case bound of
the ellipsoid method is important for discrete optimization as it allows the use of linear
programming for giving polynomial time algorithms for combinatorial problems,

Further Reading The theory of linear programming is rich and very well understood.
One particularly important topic not mentioned here that one needs to know to truly un-
derstand linear programming is duality theory and complementary slackness. It studies
the phenomenon that linear programs come in primal-dual pairs that are solved simul-
taneously, and the consequences surrounding this. Unfortunately this theory is outside
the scope of this thesis, but we encourage the interested reader to see Chvatal [9] for a
treatment of this topic. Its study is worthwhile for combinatorial optimizers as it has led
to, among other ideas, the famous class of algorithms known as primal-dual methods.
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2.2.2 Strategy

After our brief detour into the theory of linear programming, we are now ready to de-
scribe the method through which iterative rounding can be used to prove that a linear
programming relaxation of a combinatorial optimization problem is integral. In this sub-
section we will describe the general approach at a high level, and in the following section
we will apply this approach to bipartite matching to demonstrate the technical details. See
the excellent monograph of Lau, Ravi, and Singh[33] for other applications, and ways to
extend this approach to giving approximation algorithms.

Since we wish to describe iterative rounding in general, we are going to need some termi-
nology to formalize what we mean in general by a problem, a combinatorial optimization
problem, residual problem instances, and linear programming relaxations. This may seem
somewhat esoteric, but the goal is to capture the general principles common to iterative
rounding approaches. For a more concrete treatment of iterative rounding as it pertains
to maximum weight matching in bipartite graphs see the next subsection: 2.2.3

We formalize the notion of a problem as a relation R ⊆ I × O where I is some set
of possible inputs, and O is some set of possible outputs. The pair (I, O) ∈ I × O are
related in R if O is a solution when given input instance I. We say that algorithm A solves
problem R if A takes inputs from I and for every I ∈ I, running A with input I yields
output O such that (I, O) ∈ R.

Example For example consider the maximum cardinality matching problem from sub-
section 2.1.2. In this problem we could say that I is the set of all graphs, and O is the
set of all matchings of a graph. So if we let R denote the maximum cardinality matching
problem, G denote a graph and M denote a matching of G then we can say

(G,M) ∈ R if and only if for all matchings M ′ of G, we have |M | ≥ |M ′|.

Moreover we have an algorithm, namely Edmonds Blossom algorithm [14], which solves
problem R.

Combinatorial Optimization Problems Generally speaking combinatorial optimiza-
tion problems are problems wherein either implicitly or explicitly one is tasked with choos-
ing an optimal subset S ∈ S where S is a family of feasible sets formed from elements
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of a discrete ground set E. In our previous example, the maximum cardinality matching
problem satisfies this definitions of a combinatorial optimization problem. Namely given
a graph G as input then our ground set is E(G), and our family of feasible subsets can
be described implicitly as S = {M ⊆ E : |M ∩ δ(v)| ≤ 1 for all v ∈ V (G)}. Our optimal
M ∈ S is the matching which satisfies |M | ≥ |M ′| for all M ′ ∈ S.

Step 1 - Linear Programming Formulation We are given some combinatorial opti-
mization problem CP with ground set E as an input instance to start. From this optimiza-
tion problem instance we attempt to write a linear programming relaxation LP (E). For
LP (E) to be a relaxation of this instance of CP , there is necessarily a means of translating
between solutions of this instance of CP and integral solutions of LP (E). Classically this
is achieved via the mapping of subsets of E to their corresponding incidence vectors (see
χ in max weight matching section 2.1.3). Such LP (E) is called a relaxation because the
optimal value of CP (E) is bounded by the optimal value of LP (E) and in the case that
LP (E) is integral the optimal values are equal.

In some applications the linear programming relaxation given in step 1 will have an
exponential number of constraints. In this situation it is not immediate that LP (E) is
solvable in polynomial time with respect to size of the input to CP . While this problem
does not arise in the applications to matching we describe in this thesis, there are methods
which may circumvent it. The ellipsoid method operates with a separation oracle [20],
which is a procedure that decides if a given point is feasible for the linear program, and in
the case of infeasibility provides a hyperplane which separates the point from the feasible
region. It is normal that the inequalities of LP (E) have some implicit description in terms
of the combinatorics of CP , and so it may be possible to give a polynomial time separation
oracle despite having an exponential number of constraints needed to define LP (E). If
one can give such a separation oracle then LP (E) is polynomial time solvable despite its
exponential size.

In our upcoming description of a general iterative rounding procedure, we will refer to
the concept of residual problem instances. What we are aiming to capture is the idea of
being able to use solutions to smaller instances of a problem to solve a larger instance of
a problem, for some appropriate notion of smaller and larger.

Let P ⊆ I×O be a problem. Suppose that I is equipped with some partial order ≤. Let
I, I ′ ∈ I. If I ′ ≤ I then we say that I ′ is a residual problem instance of problem instance
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I.

Example Consider once more the example of the maximum cardinality matching prob-
lem. Let G,G′ be graphs. We say G′ is a subgraph of graph G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). The subgraph relation is a partial order on the space of all graphs. Hence
we can say that G′ is a residual problem instance of G.

Step 2 - Iterative Algorithm Let CP be a combinatorial optimization problem on
ground set E. Let LP (E) be a linear programming relaxation of CP (E) for which the
variables of our linear program are bounded between 0 and 1. The assumption that the
feasible region of our linear programs is contained in [0, 1]|E| is reasonable because such a
case occurs naturally when using χ to map between solutions of CP and integral solutions
of LP (E).

In this step we describe an algorithm which constructs an integral optimal solution to
LP (E), which is equivalently a solution to CP (E). The algorithm constructs integral
optimal solution x∗ as follows:

1. Let x be an optimal extreme point solution of LP (E).

2. For each e ∈ E for which xe ∈ {0, 1} set x∗e = xe and remove e from E.

3. If E is now empty return x∗ and terminate.

4. Otherwise repeat from step 1.

Observe that if the algorithm always finds xe ∈ {0, 1} then |E| decreases at every iteration
and thus the algorithm terminates. What the algorithm is doing intuitively is finding vari-
ables which are integral in an extreme point solution, fixing them to their corresponding
values in the solution it will return, then removing those variables from the ground set re-
sulting in a residual problem. The algorithm then iterates, considering an optimal solution
for the residual problem.

The following lemma explains how an algorithm can be used to prove the integrality of a
polytope. This lemma indicates the properties we will need to prove our algorithm satisfies
in order for its existence to imply that LP (E) is integral.
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Lemma 2.2.4 If there exists an algorithm A that always returns an integral optimal so-
lution to LP (E) for any objective function c, and terminates then the feasible region of
LP (E) is integral.

Proof: We may assume without loss of generality that LP (E) is a maximization problem.
Let x be an extreme point of P , the feasible region of LP (E). Then x is equivalently a
vertex of P by Lemma 2.2.1. So there exists a supporting hyperplane described by (h, δ)
for which hTx = δ and for all x′ ∈ P with x′ 6= x, we have hTx′ < δ. If we consider the
linear program LP (E) with objective function h then x is the unique optimal solution of
this linear program. Therefore if we run algorithm A with objective function h as input
then the integral solution returned is equal to x by uniqueness. Thus x is integral, and so
any extreme of P is integral.

Step 3 - Algorithm Analysis We need to establish two things in this phase: that the
algorithm terminates in finite time giving an integral vector and that it indeed returns an
optimal solution.

Termination Recall that we are assuming that the feasible region of LP (E) is con-
tained in [0, 1]|E|. To show that the algorithm terminates we demonstrate that there always
exists an e for which xe ∈ {0, 1} for every iteration. Doing so proves inductively that the
algorithm terminates with a {0, 1} valued vector. There is a standard approach to showing
the existence of xe ∈ {0, 1} which proceeds by contradiction. If we suppose that every
xe lies in the interval (0, 1) then we may obtain a contradiction as follows. Since x > 0
we may invoke Lemma 2.2.2 saying there exists a maximal set of |E| linearly independent
constraints not drawn from non-negativity constraints which are tight at x. If we can then
show an upper bound on the number of linearly independent constraints tight at x that is
smaller than |E|, then we have obtained a contradiction as desired. This will become more
concrete in the next section when we demonstrate an example.

Correctness It remains to show that the algorithm returns an optimal solution. For
iterative algorithms this typically takes the form of an inductive argument on |E|. We
show two things:

1. the vector x restricted to the variables in the residual problem instance is feasible for
the linear programming relaxation of the residual problem instance,

24



2. and the integral optimal solution to the linear programming relaxation of the residual
problem instance, along with the variables which were previously fixed to 0 or 1 in
step 2 of the current iteration is a feasible solution to LP (E).

Together this allows one to conclude that the objective value at x is at most that of the
integral solution returned by the algorithm. Since x is optimal this implies that the integral
solution returned has the same objective value as x and is thus optimal.

2.2.3 Application to Matching

Recall the linear programming relaxation of maximum weight matching in bipartite
graphs which we will denote LP (G) for a given bipartite graph G:

max
∑

e∈E(G)

w(e)xe

s.t.
∑
e∈δ(v)

xe ≤ 1 for all v ∈ V (G)

xe ≥ 0 for all e ∈ E(G).

We will use iterative rounding to prove that this linear program is integral. Consider an
iterative rounding algorithm for bipartite matching with weighted input graph G.

1. Set M ← ∅

2. While |E(G)| > 0

(a) Let x be an extreme point optimal solution to LP (G).

(b) For each edge e with xe = 1: M ←M ∪ {e}.
(c) For each edge e with xe ∈ {0, 1} : G← G− e.

3. return M

It is important to note that the linear program in step 2(a) needs only be solved once,
during the first iteration, to obtain x. This is because the original extreme point x remains
an extreme point for each subsequent iteration’s linear programming relaxation when re-
stricted to the appropriate variables.
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To prove that LP (G) is integral for any weighted bipartite graph G we need to show that
our iterative algorithm always terminates in finite time and returns an integral solution of
optimal value.

Since our graph G is finite, demonstrating termination is simply a matter of verifying
that for any extreme point solution x of LP (G) there exists an edge e with xe ∈ {0, 1}. In
doing so we will need the following lemma about extreme points of LP (G).

Lemma 2.2.5 Let x be an extreme point optimal solution to LP (G). Suppose that for all
e ∈ E(G), xe > 0. Then there exists W ⊆ V (G) satisfying

•
∑

e∈δ(v) xe = 1 for all v ∈ W

• {χ(δ(v)) : v ∈ W} is linearly independent (recall that χ : E(G) → {0, 1}|E(G)| maps
edge sets to incidence vectors)

• |W | = |E(G)|.

Proof: The proof is immediate from Lemma 2.2.2.

We will now prove that our iterative rounding algorithm always terminates returning a
matching (equivalently an integral solution). We will do this via a contradiction argument
proving that a 0, 1 variable can always be found.

Lemma 2.2.6 Let x be an optimal extreme point solution to LP (G). Then there exists
e ∈ E(G) such that xe ∈ {0, 1}.

Proof: Suppose for a contradiction that for all e ∈ E(G), 0 < xe < 1. By Lemma 2.2.5
there exists W ⊆ V (G) containing vertices corresponding to |E(G)| linearly independent
tight vertex constraints. Let v ∈ W . Since

∑
e∈δ(v) xe = 1 and xe < 1 for all e, we have

d(v) ≥ 2. So then

2|W | = 2|E(G)| =
∑

v∈V (G)

d(v) ≥
∑
v∈W

d(v) ≥ 2|W |.

The inequalities above thus hold as equalities. Since
∑

v∈V (G) d(v) =
∑

v∈W d(v), d(v) = 0

for all v 6∈ W . Since
∑

v∈W d(v) = 2|W | we have d(v) = 2 for all v ∈ W . Therefore

26



E(G) is a set of cycles covering the vertices of W , which is to say each vertex is contained
in an edge of E(G) and the edges of E(G) form cycles. Let C ⊆ E(G) be a cycle with
V (C) ⊆ W . Let V1, V2 be a bipartition of the vertex set of G (which exists since G is
bipartite). Further since G is bipartite for each edge vw ∈ E(C) one of v, w is in V1 and
the other is in V2. Hence we have∑

v∈V (C)∩V1

χ(δ(v)) =
∑

v∈V (C)∩V2

χ(δ(v))

which contradicts the linear independence of {χ(δ(v)) : v ∈ W}.

It remains to verify that our algorithm returns an optimal solution. We show that via
an inductive argument in the following lemma.

Lemma 2.2.7 The iterative rounding algorithm returns a matching of weight at least that
of an optimal solution LP (G).

Proof: We proceed by induction on the number of iterations the algorithm runs to
solve the problem. In the base case if the algorithm runs for a single iteration then the
returned solution is exactly the incidence vector of an extreme point optimal solution
to LP (G). That is, the lemma holds trivially. So for induction suppose the algorithm
needs k iterations to return an answer for input graph G and for any graph G′ such that
the algorithm needs less than k iterations to solve the problem, the algorithm returns an
optimal matching. Let x be the extreme point of LP (G) found in step 2(a). Let R be the
set of edges removed in step 2(c) of the algorithm when run on G. Let G′ be the residual
graph (G restricted to edges E(G)\R). The next iterations of the algorithm are equivalent
to simply running the algorithm on G′. Let M ′ be the matching returned. By the inductive
hypothesis w(χ(M ′)) ≥ w(x′) for any x′ feasible for LP (G′). Let x′ be the point x restricted
variables corresponding to edges in E(G′). Then w(x) = w(x′) + w(χ(R)). Further, as x′

is feasible for LP (G′), we have w(χ(M ′)) ≥ w(x′). Let M be the matching returned. Then
M = M ′ ∪R and thus

w(χ(M)) = w(χ(M ′)) + w(χ(R)) ≥ w(x′) + w(χ(R)) = w(x).

Therefore by induction the algorithm always returns a matching with weight at least that
of an optimal solution to LP (G).

As discussed in the previous section, the above lemmas imply that that LP (G) is integral.
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2.3 Stable Matching

2.3.1 Problem

Input The stable matching problem gives as input a bipartite graph G = (V,E) with
bipartition V = A ∪ B, where each v ∈ V has a strict order over δ(v) referred to as v’s
preferences. We will use u <v w to denote that edge vw is preferred by v to edge vu, and
we will use >v, ≤v, ≥v, and =v analogously. We say equivalently that v prefers w to u
and can treat <v as an order on the vertices adjacent to v. It will usually be clear from
context how we are viewing <v.

Output Given a stable matching instance as input with underlying graph G one is to
find a matching M in G that is stable. A matching is called stable if there is no blocking
pair ab. The edge ab ∈ E(G) is said to be a blocking pair with respect to M if

ab 6∈M and b >a M(a) and a >b M(b).

Application The sets A,B are colloqially referred to as men and women respectively.
This alludes to the toy application of stable matching in forming couples from single people
together who have preferences over the opposite gender. In this context a blocking pair
references to a pair who mutually prefer each other to their partner. One of the original
applications of stable matching [42] was to pair medical students with hospitals at which
they were to do their residency, and another was college admissions.

2.3.2 Gale Shapley Algorithm

In their original work, Gale and Shapley gave an algorithm, called deferred acceptance
[18], for solving the stable matching problem and in doing so proved that every bipartite
graph with strict preference orders has a stable matching.

Deferred Acceptance Algorithm In the following description of the algorithm we
adopt the convention that vertices prefer to be matched than to be unmatched. For each
vertex in a ∈ A we maintain a set P (a) of vertices in B that a has previously “proposed”
to. Given an input graph G = (A ∪B,E) with preferences do:

1. Assign M ← ∅
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2. Assign P (a)← ∅ for all a ∈ A

3. While there exists a ∈ A such that a 6∈ V (M) and P (a) 6= {b ∈ B : b is adjacent to a}:

(a) Let b be such that b ≥a b′ for all b′ ∈ δ(v)\P (a)

(b) Assign P (a)← P (a) ∪ {b}
(c) If a >b M(b) then assign M ←M ∪ {ab}\{M(b)b}

4. Return M .

Lemma 2.3.1 Deferred Acceptance returns a matching.

Proof: From step 3(c) it is clear that each b ∈ B is matched to at most one a ∈ A.
Further any a ∈ A matched in step 3(c) is unmatched by the While condition of step 3, and
hence each a ∈ A is matched to at most one b ∈ B. Therefore M returned is a matching.

Theorem 2.3.2 (Gale-Shapley): The matching returned by Deferred Acceptance is stable.

Proof: We claim that Deferred Acceptance maintains the following invariant: at any
iteration for any a ∈ A for all b ∈ P (a), M(b) ≥b a. We prove this claim by induction. In
the base case, at the start of the algorithm P (a) = ∅ for all a ∈ A and hence the claim is
vacuously true. In the inductive case consider some iteration of the algorithm. Let a ∈ A
be the vertex chosen in step 3. Let b ∈ B be as chosen in step 3(a). In step 3(b), b is
added to P (a). By induction the invariant holds for all b′ ∈ P (a) except b. In step 3(c) if
a ≤b M(b) then the invariant holds for b ∈ P (a) and no changes are made. If a >b M(b)
then b is matched to a and hence after step 3(c) the invariant holds for b and thus the
entirety of P (a). For all other a′ 6= a, P (a′) is unchanged and hence by induction the
invariant holds for all b′ ∈ P (a′) except b. So consider if b ∈ P (a′). Observe that a is
preferred by b to her match prior to this iteration and hence by transitivity the invariant
also holds for b ∈ P (a′). Therefore by induction the invariant holds. It is easy to see
from step 3 that the algorithm also maintains the invariant that for all b ∈ δ(a)\P (a),
M(a) ≥a b. Hence if ab ∈ E with ab 6∈ M at termination of the algorithm then either
b ∈ P (a) or b 6∈ P (a). If b ∈ P (a) then M(b) >b a (as a 6= M(b)) and so ab is not a
blocking pair. If b 6∈ P (a) then as ab ∈ E, b ∈ δ(a)\P (a) and so M(a) >a b (as b 6= M(a)).
Therefore in either case ab does not block M . Therefore M is stable.
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2.3.3 Structure

Over time a rich body of literature around the structure of the set of stable matchings
for certain families of bipartite graphs with preferences has been developed [43]. In this
subsection we will explore some of these results that will come up in our chapter on stable
matching polytopes.

We say a stable matching M is A-optimal with respect to our problem instance if for
every stable matching M ′ in this problem instance and for every a ∈ A, M(a) ≥a M ′(a).
That is, every man in A likes M at least as well as they like any other stable matching.
We can define B-optimal analogously. Gale and Shapley showed that not only do A-
optimal and B-optimal stable matchings exist in any problem instance, but also that their
Deferred Acceptance algorithm computes an A-optimal stable matching [18] (and could
compute B-optimal matching by switching roles of A and B).

Theorem 2.3.3 (Gale and Shapley): For any bipartite graph G = (A ∪ B,E) with strict
preferences there always exists a unique A-optimal (B-optimal analogously) stable matching
and it can be computed via the Deferred Acceptance algorithm.

Proof: For any v ∈ A ∪B let

C(v) = {w ∈ V (G) : w ∼ v and there exists stable matching M,w = M(v)}

be the set of partners v has a chance of being matched to in a stable matching. We will show
that no a ∈ A is ever rejected by any b ∈ C(a) during the operation of Deferred Acceptance
and hence since each a ∈ A proposes to their most preferred choice in C(a) before any
other vertex in C(a) the resulting matching is A-optimal. The uniqueness is achieved
since the preferences are strict. We proceed by induction on the number of iterations
Deferred Acceptance has run. In the base case no proposals and hence no rejections have
yet happened. So consider the inductive case. Suppose that at the given iteration b rejects
a (that is, either a is unsuccessful in proposing to b or b leaves a for a better proposer at
this step). Let a′ 6= a be the vertex b is matched to at the end of step 3(c) of the iteration
under consideration. Then a′ >b a. By our induction hypothesis P (a′) ∩ C(a′) = {b} as
a′ has not been rejected by any b′ ∈ C(a′). Let M be a matching formed by matching a
to b and matching every other v to a vertex in C(v). Then b >a′ M(a′) as b is the most
preferred vertex of a′ in C(a′). Further a′ >b a = M(b), and thus the pair a′b blocks M .
Since a′b blocks any such matching M , b 6∈ C(a) (as otherwise we could form a stable
matching M matching a to b). Hence the claim holds by induction, and we have proven
the theorem.
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Knuth took the above idea a step further to show that the interests of A and B are
opposed to each other.

Theorem 2.3.4 (Knuth) [30]:Let M and M ′ be two stable matchings for some problem
instance. Let M ≥A M ′ denote that for all a ∈ A, M(a) ≥a M ′(a). Define M ≥B M ′

analogously. We have that M ≥A M ′ if and only if M ′ ≥B M .

Proof: Suppose M ≥A M ′. We will show that M ′ ≥B M since the other direction is
symmetric about the roles of A and B. Suppose for a contradiction that there exists b ∈ B
for which M(b) >b M

′(b). Let a = M(b). Then M ′(b) 6= M(b) and thus M ′(a) 6= M(a)
as otherwise b has two matches in M ′. Since M ≥A M ′ and M(a) 6= M ′(a), b = M(a) >a

M ′(a). That is we have a >b M
′(b) and b >a M

′(a) and thus ab blocks M ′. So M ′ is not
a stable matching, a contradiction.

Corollary 2.3.5 For each b ∈ B, let

C(b) = {a ∈ A : there exists stable matching M,a = M(b)}.

Let `(b) ∈ C(b) be the vertex satisfying that for all a ∈ C(b), a ≥b `(b). Then the A-optimal
stable matching matches each b ∈ B to `(b). Note that there is also a symmetric result
obtained by exchanging the roles of A and B.

These theorems begin to point towards an interesting structure for the set of stable
matchings of a given problem instance. It was first observed by Conway [30] that this
set forms an algebraic structure called a lattice. For those unfamiliar with lattices in this
context we will proceed by explaining all the terms necessary to continue.

Let L be a set endowed with a partial order ≥. The set L is said to be a lattice if for
any x, y ∈ L there exists a unique sup(x, y) ∈ L such that sup(x, y) ≥ x, y and for every
z with z ≥ x, y we have z ≥ sup(x, y). Similarly there exists a unique inf(x, y) ∈ L such
that x, y ≥ inf(x, y) and for every z with x, y ≥ z we have inf(x, y) ≥ z. A lattice is said
to be complete if each X ⊆ L also has functions sup and inf .

Lattice functions for stable matchings We now describe functions that will behave
as sup and inf for stable matchings. Let M,M ′ be any two stable matchings for a given
problem instance. Let M∗ = sup(M,M ′) be given as follows. For all a ∈ A, M∗(a) = M(a)
if M(a) >a M ′(a) and M∗(a) = M ′(a) otherwise. For all b ∈ B, M∗(b) = M(b) if
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M(b) <b M
′(b) and M∗(b) = M ′(b) otherwise. We can define inf(M,M ′) analogously

by interchanging the roles of A and B in the define of sup(M,M ′). Explicitly let M− =
inf(M,M ′) be given as follows. For all b ∈ B, M−(b) = M(b) if M(b) >b M

′(b) and
M−(b) = M ′(b) otherwise. For all a ∈ A, M−(a) = M(a) if M(a) <a M

′(a) and M−(a) =
M ′(a) otherwise.

Intuitively sup presents each a ∈ A with a choice between their partner in M and partner
in M ′ and pairs them with their preferred choice. In the next theorem we need to show
sup and inf map to stable matchings and respect the partial order ≥A.

Theorem 2.3.6 (Conway) [30]: The set of stable matchings for a given problem instance
endowed with the partial order ≥A is a lattice via the functions sup and inf defined above.

Proof: We will demonstrate that sup behaves as desired and note that the argument is
symmetric about the roles of A and B for inf . Let M,M ′ be stable matchings. It is clear
from the construction of sup(M,M ′) that sup(M,M ′) is unique and sup(M,M ′) ≥A M
and sup(M,M ′) ≥A M ′ provided that sup(M,M ′) is a stable matching. Further if Z is
a stable matching such that Z ≥A M,M ′ then for any a ∈ A, Z(a) ≥a M(a),M ′(a).
So Z(a) ≥a sup(M,M ′)(a) (since Z(a) ∈ {M(a),M ′(a)}) and thus Z ≥A sup(M,M ′).
Therefore it remains to show that sup(M,M ′) is a stable matching.

Let M∗ = sup(M,M ′). We first show that M∗ is a matching and then verify stability.
To show that M∗ is a matching we will prove that M∗(a) = b if and only if M∗(b) = a.
First, for sufficiency, suppose that M∗(a) = b. We may assume without loss of generality
that b = M(a). Then b ≥a M ′(a). Since M ′ is stable, a ≤b M ′(b) and hence M∗(b) = a as
desired. Now to show necessity suppose that M∗(b) = a. We may assume that a = M(b).
So a ≤b M ′(b). Again by the stability of M ′, b ≥a M ′(a). So M∗(a) = b as desired.
Therefore M∗ is a matching.

Now to see stability. Suppose for a contradiction that ab blocks M∗. Then b >a M
∗(a)

and thus b >a M(a) and b >a M
′(a). Also a >b M

∗(b). So if M∗(b) = M(b) then ab
blocks M and if M∗(b) = M ′(b) then ab blocks M ′. Therefore in either case we have a
contradiction.

Further Reading The set of stable matchings of a given graph with preferences has been
widely studied in academic literature. We have covered here the results key to our work in
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the following chapter, but many more interesting results are known. For instance, another
interesting result to study is the surprising equivalence between distributive lattices and
sets of stable matchings that we only began to set the stage for here. To read more on
these things we recommend the survey text of Roth and Sotomayor[43].
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Chapter 3

Stable Matching Polytope

In this we focus on a polyhedral characterization of the set of incidence vectors of stable
matchings. Vande Vate first provided such a description in [49] for the special case where
G is a complete bipartite graph. Rothblum [44] later generalized Vande Vate’s result to
incomplete preference lists and simplified the proof of integrality via an extreme point
argument.

We provide a simpler, more compact argument for the integrality of Rothblum’s for-
mulation. Our arguments are elementary and rely solely on some well-known results on
stable matchings as well as some knowledge of the local structure of extreme points in
our formulation to achieve the desired result. This proof operates in the spirit of iterative
rounding as discussed in 2.2. We say it is iterative rounding in spirit because, while it
does not follow the strict approach of iterative rounding, it proves that there is an integral
variable in every extreme point and analyses the result of dropping that variable and ap-
plying induction to the smaller problem instance to obtain a contradiction. Since it is an
argument by minimal counterexample it is not immediately clear how to extend this proof
to an iterative rounding algorithm.

3.1 Linear Description

Notation We will use some notation to ease exposition. Suppose G = (A ∪ B,E) is a
bipartite graph. Let S ⊆ E and let x ∈ R|E|. Then we denote

∑
e∈S xe by x(S). Suppose
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every vertex in A ∪ B has strict preference orders over its neighbours in G as in a stable
matching instance. Then for any a ∈ A and b ∈ B we let

δ>a(b) = {a′b ∈ E(G) : a′ >b a}.

We can define δ>b(a) analogously, and further replace > with <,≤,≥,= in the natural
way.

Linear Description We will begin with a linear description of a polytope which we
claim has incidence vectors of stable matchings as its extreme points. This polytope is
the matching polytope described in 2.1.3 with added “stability” constraints. If we let
G = (A ∪ B,E) be a bipartite graph with preferences then we will denote the so-called
stable matching polytope of G by P (G) and it has the following description:

x(δ(v)) ≤ 1, for all v ∈ A ∪B (3.1)

xe ≥ 0, for all e ∈ E (3.2)

x(δ>a(b)) + x(δ>b(a)) + xab ≥ 1, for all ab ∈ E. (3.3)

Our major theorem of this chapter is to demonstrate that P (G) is integral, but first we
must verify that indeed the integral extreme points of P (G) are exactly the incidence
vectors of stable matchings in G.

Lemma 3.1.1 Let x ∈ R|E|. Then x is an integral extreme point of P (G) if and only if
there exists a stable matching M of G such that x = χ(M).

Proof: Suppose that x is an integral extreme point of P (G). By constraints 3.1 and 3.2,
x is the incidence vector of some matching M of G. Suppose that M is not stable, that is
to say there exists ab ∈ E which blocks M . But ab satisfies:

x(δ>a(b)) + x(δ>b(a)) + xab ≥ 1.

Since x is integral this implies that either

x(δ>a(b)) = 1 or x(δ>b(a)) = 1 or xab = 1,

and as ab 6∈M we known χ(M)ab = xab = 0. Thus we have two cases:

x(δ>a(b)) = 1 or x(δ>b(a)) = 1.

In the first case there exists ab′ ∈ δ>a(b) for which xab′ = 1 and hence ab′ ∈M with b′ >a b.
Thus in the first case ab does not block M . Similarly in the second case there exists a′ >b a
with a′b ∈M and hence ab does not block M in either case. Therefore M is stable.
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Now let M be a stable matching in G, and suppose x = χ(M). Since M is a matching
x(δ(v)) ≤ 1 for all v ∈ A ∪ B and xe ≥ 0 for all e ∈ E. Hence it remains to verify that
x satisfies constraints 3.3. Indeed let ab ∈ E. If ab ∈ M then 1 = χ(M)ab = xab and so
3.3 is satisfied for ab. Now if ab 6∈M then, since M is stable, (a, b) is not a blocking pair.
So there exists ab′ ∈ M with b′ >a b or there exists a′b ∈ M with a′ >b a. In the former
case x(δ>b(a)) = 1 and in the latter x(δ>a(b)) = 1. In either case 3.3 is satisfied for ab as
desired.

3.2 Proof of Integrality

In this section we build the necessary theory towards a proof that P (G) is integral.

3.2.1 Edges of Polytopes

Before discussing the proof proper we need to take a slight detour to review some more
elementary polyhedral geometry.

Let x1, x2 ∈ Rn. Then x ∈ Rn is a convex combination of x1, x2 provided there exists
λ ∈ R with 0 ≤ λ ≤ 1 and

x = λx1 + (1− λ)x2.

Let P ⊆ Rn be a polytope. Then the hyperplane given by (h, δ) is said to describe a
valid inequality for P if for all x ∈ P hTx ≤ δ.

Let P ⊆ Rn be a polytope. For our purposes we define an edge of P to be a set F of the
form

F = P ∩ {x ∈ Rn : hTx = δ}
where (h, δ) describes a valid inequality for P , and there exist x1, x2 ∈ P such that x1 and
x2 are vertices of P for which all x ∈ F are a convex combination of x1, x2.

Lemma 3.2.1 Let P ⊆ Rn be a polytope. Let F be an edge of P defined by valid inequality
(h, δ) and extreme points x1, x2. Suppose there exist y1, y2 ∈ Rn neither of which is a convex
combination of x1, x2 satisfying

1

2
x1 +

1

2
x2 =

1

2
y1 +

1

2
y2.
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x1

x2
y1

y2

Figure 3.1: Visualizing Lemma 3.2.1

The extreme points x1 and x2 define an edge of this polytope. From the visual one can see that
any line segment intersecting the edge between x1 and x2 cannot have both its endpoints y1 and
y2 in the polytope.

Then at most one of y1, y2 lies in P .

Proof: Let

x =
1

2
x1 +

1

2
x2 =

1

2
y1 +

1

2
y2.

Suppose for a contradiction that y1, y2 ∈ P . Since y1, y2 6∈ F as y1 and y2 are not convex
combinations of x1 and x2, we have

hTy1 < δ and hTy2 < δ.

So then,

hTx = hT (
1

2
y1 +

1

2
y2)

=
1

2
hTy1 +

1

2
hTy2

<
1

2
δ +

1

2
δ

= δ.

That is hTx < δ. But since x = 1
2
x1 + 1

2
x2, x is a convex combination of x1, x2 and hence

x ∈ F . That is hTx = δ, contradicting hTx < δ.

Lemma 3.2.1 says intuitively that line segments intersecting the midpoint of an edge of
a polytope have at most one endpoint in P .
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3.2.2 Structural Lemmas

In this section we describe some theory connecting the lattice structure of stable match-
ings described in 2.3.3 and the polytope P (G). Going forward we assume that E(G) 6= ∅
as otherwise P (G) = ∅ is vacuously integral. Observe that this assumption implies that
0 6∈ P (G) as all constraints 3.3 are violated by 0.

Lemma 3.2.2 Let M and M ′ be distinct stable matchings in bipartite graph G with pref-
erences. If χ(M) and χ(M ′) are extreme points of P (G) which define an edge of P (G)
then either sup(M,M ′) = M or sup(M,M ′) = M ′.

Before we begin the proof, we make a quick observation. We observe that sup(M,M ′) =
M if and only if inf(M,M ′) = M ′. This follows since sup(M,M ′) = M if and only if
M(a) ≥a M ′(a) for all a ∈ A and hence inf(M,M ′) = M ′. Proof: Let S = sup(M,M ′)
and I = inf(M,M ′). Suppose for a contradiction that S 6= M and S 6= M ′. That is,
by our preceding observation, S and I are distinct stable matchings from M and M ′. We
claim that

χ(M) + χ(M ′) = χ(S) + χ(I) (3.4)

To see the claim, let e ∈ E(G). If e ∈ M ∩M ′ then the left hand side of 3.4 is 2, and
further e ∈ S ∩ I and hence the right hand side of 3.4 is 2. If e 6∈ M ∪M ′ then both the
left and right hand side of 3.4 are 0. If e ∈ M\M ′ then either e ∈ S or e ∈ I. In either
case the left and right hand side of 3.4 is 1, and the same holds for e ∈ M ′\M . That is
the claim holds.

By claim 3.4 we observe two things. First that χ(S) and χ(I) are not convex combina-
tions of χ(M) and χ(M ′) since S and I are not equal to either of M or M ′. Second we
observe that

1

2
χ(M) +

1

2
χ(M ′) =

1

2
χ(S) +

1

2
χ(I).

Therefore we are in a position to invoke Lemma 3.2.1, concluding that one of χ(S), χ(I) 6∈
P (G). But this contradicts the Lattice Theorem 2.3.6 since S, I are stable matchings in G
implies that χ(S), χ(I) ∈ P by Lemma 3.1.1.

Corollary 3.2.3 (Ratier) [40]: Let M and M ′ be distinct stable matchings in bipartite
graph G = (A ∪B,E) with preferences. If there exist a ∈ A and b ∈ B such that

M(a) >a M
′(a) and M(b) >b M

′(b) (3.5)

then χ(M) and χ(M ′) do not define an edge of the polytope P (G).
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Proof: Since M(a) >a M
′(a), aM(a) ∈ sup(M,M ′). That is

sup(M,M ′) ∩M 6= ∅

and since M ′(a) 6= M(a),
sup(M,M ′) 6⊆M ′.

Since M(b) >b M
′(b), M ′(b)b ∈ sup(M,M ′). That is

sup(M,M ′) ∩M ′ 6= ∅

and since M(b) 6= M ′(b),
sup(M,M ′) 6⊆M.

Taken together these observations prove that sup(M,M ′) is a distinct stable matching
from M and M ′. Thus by Lemma 3.2.2, χ(M) and χ(M ′) do not define an edge of P (G).

3.2.3 Integrality of P (G)

We are now ready to provide our proof that P (G) is integral. The strategy is to first
show that every extreme point x has some variable e ∈ E with xe ∈ {0, 1}, then, in
a minimal counterexample, remove that variable and look at the reduced problem in the
smaller variable set. By induction the vertices of the smaller polytope are integral. We will
consider a particular edge of this polytope and obtain a contradiction via our structural
lemmas of the previous section showing its end vertices cannot define an edge. The details
will be made clear as we proceed.

Lemma 3.2.4 Let G = (A ∪ B,E) be a bipartite graph with preferences. Let x be an
extreme point of P (G). Then there exists e ∈ E(G) such that xe ∈ {0, 1}.

Proof: By constraints 3.2 and 3.1 we have that 0 ≤ xe ≤ 1. Suppose for a contradiction
that for all e ∈ E(G), 0 < xe < 1. Since x is an extreme point of P (G) with x > 0
we may invoke Lemma 2.2.2, which says that x is defined by |E| linearly independent
constraints which are tight (satisfied with equality) at x and no such constraints are from
constraints 3.2. Thus all such constraints are from 3.1 and 3.3. Let Vx ⊆ V (G) and
Ex ⊆ E(G) be such that Vx and Ex respectively contain vertices and edges corresponding
to a set of |E| linearly independent constraints tight at x. That is Vx contains vertices
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corresponding to constraints from 3.1, Ex contains edges corresponding to constraints from
3.3, |E| = |Ex|+ |Vx|, and

{χ(δ(v)) : v ∈ Vx} ∪ {χ(δ>a(b)) + χ(δ>b(a)) + χ({ab}) : ab ∈ Ex}

is linearly independent. Choose Vx and Ex in such a way that |Vx| is maximized.

First observe that Vx ( V . To see this, suppose that Vx = V . Then since G is bipartite∑
a∈A

χ(δ(a)) =
∑
b∈B

χ(δ(b))

and hence {χ(δ(v)) : v ∈ V = Vx} is not linearly independent. Thus our observation that
Vx ( V holds.

For any v ∈ V (G) denote by N(v) the set {w ∈ V (G) : vw ∈ δ(v)} and let Nmax(v) ∈
N(v) be such that Nmax(v) ≥v w for all w ∈ N(v). Similarly let Nmin(v) ∈ N(v) be such
that Nmin(v) ≤v w for all w ∈ N(v).

Let v ∈ V (G). We claim that if w = Nmax(v) then vw 6∈ Ex. Indeed suppose for a
contradiction that vw ∈ Ex. Since w = Nmax(v), δ>w(v) = ∅ and hence

1 ≤ x(δ>w(v)) + x(δ>v(w)) + xvw = x(δ≥v(w)) ≤ x(δ(w)) ≤ 1,

shows that 1 = x(δ≥v(w)) and thus x(δ<v(w)) = 0. Since xe > 0 for all e ∈ E(G) this
implies that δ<v(w)) = ∅. Therefore

χ(δ(w)) = χ(δ≥v(w)) = χ(δ>w(v)) + χ(δ>v(w)) + χ({vw})

and hence by linear independence we cannot have both vw ∈ Ex and w ∈ Vx. Since
vw ∈ Ex this implies w 6∈ Vx. But then the sets Vx ∪ {w} and Ex\{vw} describe the same
vectors as Vx, Ex but |Vx ∪ {w}| > |Vx| contradicting our choice of Vx. Thus vw 6∈ Ex.
Therefore for any v ∈ V (G), vNmax(v) 6∈ Ex.

Let v ∈ Vx. Let w = Nmin(v). We claim analogously to the previous claim that vw 6∈ Ex.
Indeed suppose for a contradiction that vw ∈ Ex. Since v ∈ Vx, by tightness,

x(δ(v)) = 1
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and since vw ∈ Ex, by tightness,

x(δ>v(w)) + x(δ>w(v)) + xvw = 1.

Since w = Nmin(v), δ>w(v) ∪ {vw} = δ(v) and hence

x(δ>w(v)) + xvw = x(δ(v))

and
χ(δ>w(v)) + χ({vw}) = χ(δ(v)).

Thus

1 = x(δ>v(w)) + x(δ>w(v)) + xvw = x(δ>v(w)) + x(δ(v)) = x(δ>v(w)) + 1,

which implies that x(δ>v(w)) = 0. Again since xe > 0 for all e ∈ E(G), this implies that

χ(δ>v(w)) = 0.

So we have that

χ(δ(v)) = χ(δ>w(v)) + χ({vw}) = χ(δ>v(w)) + χ(δ>w(v)) + χ({vw}),

and hence by linear independence we cannot have both vw ∈ Ex and v ∈ Vx. Since v ∈ Vx
this implies vw 6∈ Ex, a contradiction.

We now apply a token argument to demonstrate that |E| > |Ex|+ |Vx|, a contradiction.
The argument will proceed by assigning each e ∈ E a token which it will distribute accord-
ing to a pair of rules to Ex and Vx. We will argue that each e ∈ Ex and v ∈ Vx receives a
token, and that some e ∈ Ex has at least some token fraction leftover. In demonstrating
this we have proven the desired claim.

Assign each ab ∈ E a token. Redistribute the tokens according to the following rules:

1. if ab ∈ Ex assign the token to ab ∈ Ex

2. otherwise

(a) if a ∈ Vx assign 1
2

a token to a ∈ Vx
(b) if b ∈ Vx assign 1

2
a token to b ∈ Vx.
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First it should be clear that these rules are well-defined since no ab ∈ Ex gives away more
than the one token it receives. Let ab ∈ Ex. Obviously from rule 1, ab receives one token.
Now consider v ∈ Vx. Since xe < 1 for all e we know Nmin(v) 6= Nmax(v), as otherwise
x(δ(v)) = xvNmin(v) < 1 which contradicts v ∈ Vx defining a tight constraint. Further
by our previous observations, vNmin(v) 6∈ Ex and vNmax(v) 6∈ Ex. So when the edges
vNmin(v) and vNmax(v) are applying the rules to distribute their token they each give 1

2

token to v by rule 2. So v receives at least one token. To complete the proof we need to
find some e ∈ E which did not give away its whole token. We have previously observed
that Vx ( V (G). So let v ∈ V (G)\Vx. Consider the edge vNmax(v). Since vNmax(v) 6∈ Ex
it does not give away its token by rule 1, and since v 6∈ Vx it gives away at most half its
token by rule 2. So the edge vNmax(v) has at least 1

2
a token remaining at the end of

redistribution. Therefore |E| > |Ex|+ |Vx|, contradicting that |E| = |Ex|+ |Vx|.

Theorem 3.2.5 Let G = (A ∪ B,E) be a bipartite graph with preferences. Then the
polytope P (G) is integral.

Proof: Suppose for a contradiction the theorem does not hold. Let G = (A∪B,E) be a
minimal counterexample in terms of |E|. It is clear from case analysis that |E| > 2. Let x
be a non-integral extreme point of P (G). By Lemma 3.2.4 there exists ab ∈ E such that
xab ∈ {0, 1}.

First we consider the case where xab = 0. Let P ′ = P (G) ∩ {x ∈ R|E(G)| : xab = 0}.
Then x is an extreme point of polytope P ′ since P ′ ⊆ P (G). Let G′ be the graph with
V (G′) = V (G) and E(G′) = E(G)\{ab}. Observe that by dropping edge ab P (G′) differs
from P (G) only in not having constraint 3.3 for ab and constraints 3.1 for a and b not
counting edge ab (which is equivalent to assigning xab = 0 always), hence we have

P ′ = P (G′) ∩ {x ∈ R|E(G′)| : x(δ>a(b)) + x(δ>b(a)) ≥ 1}.

Let H be the hyperplane {x ∈ R|E(G′)| : x(δ>a(b)) + x(δ>b(a)) = 1}. Then every extreme
point of P ′ is either an extreme point of P (G′) or the intersection of an edge of P (G′)
with H. Since the extreme points of P (G′) are integral by our minimality assumption,
x must be in the intersection of an edge F of P (G′) with H. Let M and M ′ be stable
matchings such that χ(M) and χ(M ′) define F . Since x is not integral, x 6= χ(M) and
x 6= χ(M ′). Also note that neither χ(M) nor χ(M ′) lies on the hyperplane H, since x is
the unique and distinct intersection of H with the line segment of convex combinations
of χ(M) and χ(M ′). Thus from our definition of H, since χ(M), χ(M ′) 6∈ H, we have∣∣M ∩ (δ>a(b) ∪ δ>b(a))

∣∣ 6= 1 and
∣∣M ′ ∩ (δ>a(b) ∪ δ>b(a))

∣∣ 6= 1. On the other hand, the line
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segment of convex combinations of χ(M) and χ(M ′) has a non-empty intersection with H,
namely x, and so without loss of generality we may assume that

∣∣M ∩ (δ>a(b) ∪ δ>b(a))
∣∣ = 2

and
∣∣M ′ ∩ (δ>a(b) ∪ δ>b(a))

∣∣ = 0 (notice the size of said intersections is at most 2 by 3.1).

Since
∣∣M ∩ (δ>a(b) ∪ δ>b(a))

∣∣ = 2, |M ∩ δ(a)| ≤ 1 and |M ∩ δ(b)| ≤ 1, we have M(a) >a

b and M(b) >b a. Further since
∣∣M ′ ∩ (δ>a(b) ∪ δ>b(a))

∣∣ = 0 we have that b >a M
′(a) and

a >b M
′(b). Thus M(a) >a M

′(a) and M(b) >b M
′(b). Critically, this means M and M ′

satisfy 3.5 and so by corollary 3.2.3, χ(M) and χ(M ′) do not define an edge of P (G′). This
contradicts that they do indeed define an edge of P (G′).

Finally we consider the case where xab = 1. By constraints 3.1 for a and b we see that
xe = 0 for all e ∈ (δ(a)∪δ(b))\{ab}. Thus if there exists e ∈ (δ(a)∪δ(b))\{ab} then xe = 0
and we may run the previous case analysis with edge e. So it remains to consider when
(δ(a) ∪ δ(b))\{ab} = ∅. If we let G′ be the graph G with edge ab removed then P (G′) is
described by precisely the same constraints as P (G) with the exclusion of constraint 3.3
for edge ab. Let x′ be the vector x restricted to variables E(G)\{ab}. We claim that x′ is
an extreme point of P (G′). By the Rank Lemma 2.2.2, x is described by |E(G)| linearly
independent tight constraints. Since δ(a) = δ(b) = {ab}, the constraints 3.1 for a and b
and the constraint 3.3 for ab are pairwise linearly dependent, and in fact equal. Hence at
most one of them is in the description of x. Thus we can find |E(G)|−1 = |E(G′)| linearly
independent constraints tight at x′ in P (G′) by excluding the constraint 3.3 for ab from
those which describe x. Therefore x′ is an extreme point of P (G′). So by minimality x′ is
integral, and thus x is integral.

This theorem is significant because it allows one to be able to solve maximum weight
stable matching problems in bipartite graphs in polynomial time via the use of linear
programming.
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Chapter 4

Cyclic Stable Matching

This chapter describes the cyclic stable matching problem as posed by Knuth. We give
some sufficient conditions for a matching to be stable in this context. Then we proceed
to describe a computer search procedure for deciding if all preference systems of a certain
size have a cyclic stable matching or finding a counterexample should one exist.

4.1 The Problem

In Knuth’s writing on stable matching [31] he talks about some extensions of the clas-
sical stable matching problems as discussed so far. One such avenue for generalization is
increasing the number of “genders”, which is to say instead of matching pairs, we con-
sider matching triples in tripartite graphs or more generally matching k-tuples in k-partite
graphs. We will make this notion formal through the terminology of hypergraphs.

We say G = (V,E) is a hypergraph if V is some discrete set and E ⊆ 2V (2V denotes
the set of all subsets of elements in V ). We can think of adjacency in this case as v ∼ w
provided there exists e ∈ E such that v, w ∈ e. The notions of degree d and δ(v), the edges
incident upon a vertex, extend naturally. A matching in this context is a set M ⊆ E such
that for all m1,m2 ∈ M , m1 ∩ m2 = ∅. We call G k-uniform if for all e ∈ E, |e| = k.
We call k-uniform G k-partite if there exists V0, . . . , Vk−1 which partition V and for all
e = {v0, . . . , vk−1} ∈ E, vi ∈ Vi for i = 0, . . . , k − 1. Lastly we say k-partite graph G is
balanced if |V0| = · · · = |Vk−1|.
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With our description of hypergraphs complete we are ready to describe a generalization
of stable matching.

In an instance of cyclic k-gender stable matching (kGSM), we are given a k-partite
hypergraph G = (V0 ∪ · · · ∪ Vk−1, E) and for each i ∈ {0, . . . , k − 1}, each vi ∈ Vi is
equipped with a preference order over Vi+1 ∩ V (δ(vi)) where addition of indices is taken
modulo k (so Vk−1 vertices have preferences over V0 vertices, hence the descriptor cyclic).
That is each vertex in gender i has preferences over vertices acceptable to them in gender
i+ 1.

We say our instance of kGSM , and naturally the hypergraph G, is complete if for all
v0 ∈ V0, . . . , vk−1 ∈ Vk−1, we have {v0, . . . , vk−1} ∈ E. Hence in complete instances,
which we will shorthand to CkGSM instances, all possible tuples are acceptable to use in
matchings.

A solution to an instance of kGSM is a matching M ⊆ E that is stable in the sense that
no blocking tuple exists. A tuple e = {v0, . . . , vk−1} ∈ E blocks M if e 6∈ M and for each
i ∈ {0, . . . , k − 1}, vi+1 >vi M(vi) where M(vi) ∈ Vi+1 is the vertex satisfying that there
exists an edge m ∈M for which vi,M(vi) ∈ m.

Note 4.1.1 We may assume that instances of kGSM are balanced. To see this observe
that adding dummy vertices does not affect the solutions. Thus if |Vi| < |Vj| we can add
|Vj|− |Vi| dummy vertices to Vi to balance their sizes. If incomplete preferences are allowed
then dummy vertices can simply have no incoming edges. If preferences are required to be
complete then we may simply place dummy vertices as the least preferred vertices among the
relevant preference lists and give the dummy vertices arbitrary orders over “real” vertices
they face. We say that an instance of kGSM is of size n if it is balanced with each Vi
having size n.

We will focus on instances where k = 3 to simplify things somewhat. Knuth asked if
instances of 3GSM always have stable solutions. To this day this question is unresolved
for complete instances. Some, but not many, results are known and we will present them
in the next section.

Conjecture 4.1.2 (Knuth) For all sizes n, instances of 3GSM of size n have a stable
matching.
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4.2 Known Results

First we will present a counterexample that demonstrates that when instances are not
complete there need not always be a stable matching solution. This example is due to Biro
et al. [7] and shows that when there are incomplete preferences there is a hypergraph with
each Vi having size 6 and preference lists that admit no stable matching.

Note 4.2.1 For our counterexample consider the tripartite hypergraph R6 = (A∪B∪C,E)
where

A = {a0, a1, a2, a′0, a′1, a′2}, B = {b0, b1, b2, b′0, b′1, b′2}, and C = {c0, c1, c2, c′0, c′1, c′2}.

Below we present the preference orders of each vertex, where vertices omitted from a list
are deemed unacceptable and cannot form edges with the given vertex whose list is under
consideration:

a0 : b0 > b′0 b0 : c0 > c′0 c0 : a1 > a′1
a1 : b1 > b′1 b1 : c1 > c′1 c1 : a2 > a′2
a2 : b2 > b′2 b2 : c2 > c′2 c2 : a0 > a′0
a′0 : b2 b′0 : c2 c′0 : a0

a′1 : b0 b′1 : c0 c′1 : a1

a′2 : b1 b′2 : c1 c′2 : a2.

We will adopt the notation of the original authors calling the agents {ai, bi, ci : 1 ≤ i ≤ 3}
the inner agents and {a′i, b′i, c′i : 1 ≤ i ≤ 3} the outer agents.

Lemma 4.2.2 The problem instance of 3GSM described in Note 4.2.1 has no stable
matching.

Proof: Let M be a matching in R6. We observe that the possible triples in M have very
particular forms. Let m ∈ M be a triple. Suppose that inner vertex ai is in m. Then by
ai’s preferences either bi ∈ m or b′i ∈ m. If bi ∈ m then as ai is not acceptable to ci, the
triple m is of the form aibic

′
i. If b′i ∈ m then ci−1 ∈ m (recall index addition and subtraction

is done modulo 3) and hence the triple m is of the form aib
′
ici−1. Otherwise if outer vertex

a′i ∈ m then the triple m is of the form a′ibi−1ci−1. That is the only triples in M are those
of the form

aibic
′
i or aib

′
ici−1 or a′ibi−1ci−1.
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Then triples in M contain exactly two inner agents and one outer agent each. Since each
agent can only be matched at most once, and inner agents are matched in pairs then M
matches an even number of inner agents. But there are an odd number of inner agents (9
to be precise). Hence at least one inner agent is unmatched in M . By the symmetry of R6
we may assume without loss of generality that this inner agent is ai. Consider the triple
T = {ai, b′i, ci−1}. If ci−1 is matched in M then, as ai is unmatched, M(ci−1) = a′i. Hence
ai >ci−1

M(ci−1). Again since ai is unmatched, b′i is unmatched and thus prefers T to M .
Hence the triple T blocks M , and since M was an arbitrary matching no matching of R6
is stable.

Since we have a counterexample to stability in the case where incomplete preferences are
allowed this motivates us to restrict the problem to the situation where problem instances
are complete. It is in this setting that we will work going forward. At the time of this
writing we are not aware of any counterexample instance for complete 3GSM (C3GSM)
that has no stable matching, nor of any proof that all instances admit a stable matching.
Thus we consider a modified conjecture for C3GSM instances as follows.

Conjecture 4.2.3 (Knuth) For all sizes n, all instances of C3GSM of size n have a stable
matching.

One natural angle towards a proof would be to attempt to extend the Deferred-Acceptance
algorithm of Gale and Shapley to C3GSM . Farczadi et al. provide some insight into the
feasibility of this route in [16]. Here they claim a certain step in the natural approach to
extending Deferred-Acceptance is NP -complete. For readers without a complexity theory
background this result gives strong evidence that there is no polynomial time algorithm
for the concrete approach to extending Deferred-Acceptance examined in [16].

Let G = (A ∪ B ∪ C,E) be a hypergraph underlying an instance of C3GSM . Let M ′

be a matching of A to B. We say that a matching M in G is an extension of M ′ if for all
a ∈ V (M ′) ∩ A, M ′(a) = b implies M(a) = b.

Theorem 4.2.4 (Farczadi et al.): Consider an instance of C3GSM with hypergraph G =
(A∪B∪C,E). Fix a perfect matching of A to B. The problem of deciding if this matching
can be extended to a stable matching of G is NP -complete.
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So in lieu of algorithmic insight into the problem, researchers have presented ad-hoc
methods to demonstrate when instances of C3GSM are stable for fixed sizes n. It has
been shown by Eriksson et al. [15] that complete instances of size n ≤ 4 always have a
stable matching. First observe that cases of size n ≤ 2 are not interesting as blocking triples
are impossible since a blocking triple must draw each of its vertices from a distinct triple
in the matching (no vertices in instances of C3GSM are unmatched in a stable matching,
as there would be at least three and they prefer to be together than unmatched). The case
for n = 3 is straightforward and can even be checked by hand. Eriksson et al. have shown
something stronger for the n = 3 case: that they can actually fix the quality of match any
arbitrary vertex receives in a stable matching. We will present below some notation to
ease exposition then give their proof.

Let G = (A ∪ B ∪ C,E) be the hypergraph for an instance of C3GSM of size n. We
will define the following functions for A but we will use analogous versions for B and C
throughout. Let a ∈ A. Let s ∈ {1, . . . , n}. We say that f(G, a, s) = b provided that

|{b′ ∈ B : b′ >a b}| = s− 1.

Intuitively f(G, a, s) is a’s s-th choice among vertices in B where G = (A ∪B ∪ C,E).

Let G = (A∪B∪C,E) be the hypergraph for an instance of C3GSM . We say G has an
i, j, k triple if there exist a ∈ A, b ∈ B, and c ∈ C such that f(G, a, i) = b, f(G, b, j) = c,
and f(G, c, k) = a. Of particular interest are 1, 1, 1 triples. If a matching contains a 1, 1, 1
triple then none of the vertices in the triple will participate in any blocking triple that
prevents the matching from being stable.

Lemma 4.2.5 (Eriksson et al.) [15]: Let G = (A ∪ B ∪ C,E) be the hypergraph for an
instance of C3GSM of size 3. Let a ∈ A. Then G has a stable matching M where either
M(a) = f(G, a, 1) or, M(a) = f(G, a, 2) and M(b) = f(G, b, 1) where b = f(G, a, 1).

Proof: First consider the case where G has a 1, 1, 1 triple (a′, b′, c′). Construct the
matching M as follows. Add a′b′c′ to M . Now a′, b′, c′ will not participate in any blocking
triples against M . Hence there are only 6 vertices remaining, so regardless of how we
choose the next two triples for M the resulting matching will be stable. If a = a′ then
we are done, so we may assume a 6= a′. If b = b′ then complete M arbitrarily as long
as M(a) = f(G, a, 2). Otherwise, b 6= b′ and we may complete M arbitarily ensuring
M(a) = b.
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Now consider the case where G has no 1, 1, 1 triple. Let c = f(G, b, 1). Since there is
no 1, 1, 1 triple, a 6= f(G, c, 1). Let a′ = f(G, c, 1). Again since there is no 1, 1, 1 triple
b 6= f(G, a′, 1). Let b′ = f(G, a′, 1). Similarly c 6= f(G, b′, 1) and let c′ = f(G, b′, 1).
Let a′′, b′′, c′′ be the remaining vertices in A,B,C respectively. Form the matching M =
{abc, a′b′c′, a′′b′′c′′}. We claim M is stable. Since a and a′ were matched to their first choices
they will not participate in any blocking triple. Hence a′′ is the only vertex in A willing to
participate in a blocking triple. But a′′ is only unmatched to b and b′, both of which are
matched to their first choices and hence are unwilling to participate in any blocking triple.
Thus there are no blocking triples with respect to M and hence M is stable. Further since
M(a) = b we are done.

Using Lemma 4.2.5 Eriksson et al. show the following theorem. We omit the proof as,
by the authors’ own admission, it is a technical case analysis.

Theorem 4.2.6 (Eriksson et al.) [15]: The conjecture 4.2.3 holds for n ≤ 4.

4.3 Our Contributions

In this section we will describe some work done towards resolving if C3GSM instances
always have solutions for higher sizes n ≥ 5. We present first some sufficient conditions for
problem instances to have stable matchings. Next we study the symmetry of problem in-
stances and describe when problem instances are equivalent with respect to having a stable
matching. All this work is building towards a proposal for a computer search procedure to
decide if all instances of C3GSM for a given size n have a stable matching, or present a
counterexample if they do not.

4.3.1 Sufficient Conditions

Let G be the hypergraph for an instance of C3GSM , and let M be a matching in G. We
denote by B(G,M) the set of blocking triples in G against M . Formally B(G,M) = {abc ∈
E(G) : b >a M(a), c >b M(b), a >c M(c)}. We denote the set of discontent vertices, those
that participate in blocking triples, as D(G,M) = V (B(G,M)).

Note 4.3.1 If we let S ⊆ V (G) and denote by G[S] the hypergraph G restricted to vertices
in S and edges between vertices in S (G[S] denotes the subgraph induced by S) then we
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may use B(G[S],M) to describe the blocking triples of M in G among vertices in S. In
particular if we wish to study blocking triples present among agents matched in M we study
the set B(G[V (M)],M).

Note 4.3.2 We mention a few things here that are immediately obvious from the definition
of D. Let G = (A∪B ∪C,E) be a hypergraph underlying an instance of C3GSM . Let M
be a matching in G. Then we have:

• If M ′ is matching such that M ⊆M ′ then D(G,M ′) ⊆ D(G,M).

• M is a stable matching in G if and only if D(G,M) = ∅.

• If v ∈ D(G,M) then there exists w >v M(v) such that w ∈ D(G,M).

Sometimes we want to talk about the vertices that some given vertices can form blocking
triples with. The following definition defines a superset of such vertices which we will study
in our subsequent lemmas.

Let G be the hypergraph underlying an instance of C3GSM . Let W ⊆ V (G). We define
D(G,M,W ) = {w ∈ D(G,M) : ∃v ∈ W : w >v M(v)}.

The following lemma underlies a common approach to finding stable matchings. In it we
demonstrate how a partial matching can be used to construct a complete stable matching.

Lemma 4.3.3 Let G = (A∪B∪C,E) be a hypergraph underlying an instance of C3GSM
of size n, where n−1 satisfies conjecture 4.2.3. Suppose there exists a non-empty matching
M in G such that V (M) ∩ D(G,M) = ∅. Then G has a stable matching.

Proof: Let G′ = G[V (G)\V (M)] be the subgraph of G induced by vertices unmatched
in M . Consider the instance of C3GSM with underlying hypergraph G′ and preference
orders induced by G. Since M 6= ∅ the size of this new instance is at most n − 1. Hence
by conjecture 4.2.3 there exists a stable matching M ′ in G′. Let S = M ∪ M ′. Then
S is a perfect matching in G. We claim that S is stable. Indeed since M ⊆ S and
V (M) ∩ D(G,M) = ∅ we have that V (M) ∩ D(G,S) = ∅. So D(G,S) ⊆ V (M ′). Since
V (M ′) = V (G′), if D(G,S) is non-empty then D(G′,M ′) is non-empty, contradicting that
M ′ is a stable matching in G′. Thus D(G,S) = ∅ and therefore S is a stable matching in
G.
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Let G be a hypergraph underlying an instance of C3GSM and let M be a matching in
G. We define the set of vertices higher ranked than some partner of a matched vertex as

S(G,M) = {w ∈ V (G) : ∃v ∈ V (M), w >v M(v)}.

The condition in Lemma 4.3.3 that V (M) ∩ D(G,M) = ∅ is not very useful for our
computer search to be described in 4.3.3 because we are operating with partial information
about preferences in that context. We propose a stronger requirement which is easier to
verify with partial information. The conditions B(G[V (M)],M) = ∅ and S(G,M) ⊆ V (M)
together imply that V (M) ∩ D(G,M) = ∅. In the proof of the following lemma this will
be made clear.

Lemma 4.3.4 Let G = (A ∪ B ∪ C,E) be the hypergraph for an instance of C3GSM of
size n where n− 1 satisfies conjecture 4.2.3. Suppose that G has a non-empty matching M
for which B(G[V (M)],M) = ∅. If

S(G,M) ⊆ V (M)

then G has a stable matching.

Proof: Let a ∈ V (M). Suppose there exists abc ∈ B(G,M). Since b >a M(a) and a ∈
V (M), we have that b ∈ V (M). Similarly since c >b M(b) we have that c ∈ V (M). Further
since a >c M(a) we have that abc ∈ B(G[V (M)],M), contradicting that B(G[V (M)],M) =
∅. Hence for all e ∈ B(G,M), a 6∈ e. Thus a 6∈ D(G,M) and therefore V (M)∩D(G,M) =
∅. So by Lemma 4.3.3 G has a stable matching.

Example Consider the following instance of C3GSM with . . . denoting arbitrary pref-
erences:

a0 : b1 > b0 > . . . b0 : c1 > c0 > . . . c0 : a1 > a0 > . . .

a1 : b0 > b1 > . . . b1 : c0 > c1 > . . . c1 : a0 > a1 > . . .

a2 : . . . b2 : . . . c2 : . . .

a3 : . . . b3 : . . . c3 : . . .

a4 : . . . b4 : . . . c4 : . . .

Matching M = {a0b0c0, a1b1c1} satisfies Lemma 4.3.4. Therefore M and any stable match-
ing of a2, a3, a4, b2, b3, b4, c2, c3, c4 together form a stable matching in this problem instance.
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Corollary 4.3.5 Let G be the hypergraph for an instance of C3GSM and n be as in
Lemma 4.3.4. If there exists a, b, c ∈ V (G) such that b = f(G, a, 1), c = f(G, b, 1), and
a = f(G, c, 1) (a 1, 1, 1 triple) then G has a stable matching.

Proof: Invoke Lemma 4.3.4 with M = {abc}.

Corollary 4.3.6 Let G = (A ∪ B ∪ C,E) be the hypergraph for an instance of C3GSM
with n as in Lemma 4.3.4. If one of A,B,C, say without loss of generality A, is such that
there exists b ∈ B, such that for all a ∈ A, f(G, a, 1) = b then G has a stable matching.

Proof: Let a1, . . . , an ∈ A. Let c = f(G, b, 1). Then there exists some ak such that
ak = f(G, c, 1). Since ak ∈ A we may invoke corollary 4.3.5 with (ak, b, c) to complete the
proof.

The following lemmas study situations where we nearly have a matching which satisfies
D(G,M) = ∅ except some part, without loss of generality A, has matched vertices which
participate in some blocking triples of a particular form. The first lemma looks to build
a matching containing M and using Lemma 4.3.3 to find a stable matching. The second
lemma shows that if the matching M is large enough it implies the existence of a stable
matching directly.

Lemma 4.3.7 Let G = (A∪B∪C,E) be the hypergraph underlying an instance of C3GSM
of size n where n− 1 satisfies conjecture 4.2.3. Let M be a matching in G. Suppose that

V (M) ∩ (B ∪ C) ∩ D(G,M) = ∅

and that there exists b ∈ B\V (M) satisfying

D(G,M, V (M) ∩ A) = {b}

and for all a ∈ A\V (M), f(G[V (G)\V (M)], a, 1) = b. Then G has a stable matching. See
figure 4.3.1 for a visualization.

Proof: Let G′ = G[V (G)\V (M)] be the subgraph of G induced by vertices unmatched
in M . Let c = f(G′, b, 1) and a = f(G′, c, 1). By our hypothesis, b = f(G′, a, 1). Let
T = {abc}. Consider the matching M ′ = M ∪T . We will show that V (M ′)∩D(G,M ′) = ∅
to invoke Lemma 4.3.3 to complete the proof.
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a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

{b2} ∅

{b2} ∅

∅

∅

Figure 4.1: Visualizing Lemma 4.3.7

Solid arcs indicate matching M , and are labelled with the vertices preferred by the tail vertex of
the arc to their match. Dashed arcs indicate first choice of tail vertex outside V (M). Here a2, b2
and c2 are analogous to a, b and c in the lemma statement.

Let v ∈ V (M ′). First consider the case where v ∈ V (M) ∩ (B ∪C). Since v 6∈ D(G,M)
and M ⊆ M ′, we have that v 6∈ D(G,M ′). Second consider the case where v ∈ {a, b}.
If w >v M

′(v) = T (v) then w ∈ V (M) ∩ (B ∪ C) by our construction of T . Since such
w 6∈ D(G,M ′) we have v 6∈ D(G,M ′). Third consider the case where v ∈ V (M) ∩ A.
By our hypothesis if w >v M

′(v) = M(v) then w = b. Since b 6∈ D(G,M ′) we have
v 6∈ D(G,M ′). Finally consider the case where v = c. Since v ∈ T , by our construction of
T , if w >v M

′(v) then w ∈ V (M) ∩ A. Since such w 6∈ D(G,M ′) we have v 6∈ D(G,M ′).
Therefore V (M ′) ∩ D(G,M ′) = ∅, and since T ⊆ M ′, we have M ′ 6= ∅ so we may apply
Lemma 4.3.3 to conclude that G has a stable matching.

Lemma 4.3.8 Let G = (A∪B∪C,E) be the hypergraph underlying an instance of C3GSM
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of size n. Let M be a matching in G such that |M | ≥ n− 3. Suppose that

V (M) ∩ C ∩ D(G,M) = ∅

and there exists b ∈ B\V (M) satisfying

D(G,M, V (M) ∩ A) = {b}

and for all a ∈ A\V (M), f(G[V (G)\V (M)], a, 1) = b. Suppose also that there exists
c ∈ C\V (M) satisfying

D(G,M, V (M) ∩B) = {c}.
Then G has a stable matching.

Proof: Let G′ = G[V (G)\V (M)] be the subgraph of G induced by vertices unmatched
in M . Let c′ = f(G′, b, 1) be the first choice of b among vertices unmatched in M . We
consider two cases: when c′ = c and when c′ 6= c.

First consider when c′ = c. Let a′ = f(G′, c′, 1) be the first choice of c′ unmatched in M .
Let T = {a′bc}. Let M ′ = M ∪ T . We will show V (M ′) ∩ D(G,M ′) = ∅. Let v ∈ V (M ′).
We give the following case analysis on v:

• If v ∈ V (M) ∩ C then v 6∈ D(G,M ′) since M ⊆M ′.

• If v = b then w >v M
′(v) = c implies w ∈ V (M ′)∩C by our construction of T . Thus

w 6∈ D(G,M ′) and so v 6∈ D(G,M ′).

• If v ∈ V (M) ∩ A then w >v M
′(v) = M(v) implies w = b by our hypothesis. Since

b 6∈ D(G,M ′) we thus have v 6∈ D(G,M ′).

• If v = c then w >v M
′(v) = T (v) implies w ∈ V (M ′)∩A and thus w 6∈ D(G,M ′), so

v 6∈ D(G,M ′).

• If v ∈ V (M) ∩ B then w >v M
′(v) = M(v) implies w = c and thus w 6∈ D(G,M ′),

so v 6∈ D(G,M ′).

• If v = a′ then w >v M
′(v) = T (v) implies that w ∈ V (M ′) ∩ B by our construction

of T . Thus w 6∈ D(G,M ′) and so v 6∈ D(G,M ′).

Therefore V (M ′) ∩ D(G,M ′) = ∅. Let S be an arbitrary perfect matching in G such that
M ′ ⊆ S. Since |M ′| ≥ n − 2, |S\M ′| ≤ 2. Since V (M ′) ∩ D(G,M ′) any blocking triple
against S must use one vertex from each of three edges in S\M ′, but since |S\M ′| ≤ 2
this implies it is impossible to form a blocking triple against S.
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Now consider the case when c′ 6= c. Let a = f(G′, c, 1). Let a′ = f(G′[V (G′)\a], c′, 1)
be the first choice of c′ among vertices unmatched in M and excluding c’s first choice,
a. Let b′ = f(G′[V (G′)\b], a, 1). Let T = {ab′c} and T ′ = {a′bc′}. Form the matching
M ′ = M ∪ T ∪ T ′. Again we study V (M ′) ∩ D(G,M ′). Let v ∈ V (M ′). In the same
manner as the analysis for the previous case, we observe V (M) ∩ C ∩ D(G,M ′) = ∅,
b 6∈ D(G,M ′), V (M) ∩ C ∩ D(G,M ′) = ∅, c 6∈ D(G,M ′), and V (M) ∩ B ∩ D(G,M ′) = ∅,
and a′ 6∈ D(G,M ′). So it remains to consider v ∈ {a, b′, c′}:

• If v = a then w >a M
′(a) = b′ implies that w ∈ V (M) ∩ B or w = b. In either case

w is not in D(G,M ′) and thus v 6∈ D(G,M ′).

• If v = c′ then w >c′ M
′(c′) = a implies that w ∈ V (M) ∩ A or w = a. In either case

w is not in D(G,M ′) and thus v 6∈ D(G,M ′).

Now we did not explicitly choose the partner of b′ based on her preference, so we cannot
perform the above line of reasoning to conclude that b′ 6∈ D(G,M ′). Therefore V (M ′) ∩
D(G,M ′) ⊆ {b′}. Let S be an arbitrary perfect matching of G such that M ′ ⊆ S. Since
|M ′| ≥ n− 1 and V (M ′) ∩ D(G,M ′), there is exactly one triple e ∈ S\M ′ such that V (e)
and b′ are the only vertices which could participate in any blocking triple against S in G.
This is insufficient to form a blocking triple and thus S is a stable matching in G.

Just as we did with Lemma 4.3.3 and Lemma 4.3.4, in Lemmas 4.3.7 and 4.3.8 we want
to replace conditions regarding the set of vertices in blocking triples with ones easier to
check in our computer search. The following lemmas do so in a manner analogous to our
approach to transforming Lemma 4.3.3 into Lemma 4.3.4.

Lemma 4.3.9 Let G = (A∪B∪C,E) be the hypergraph underlying an instance of C3GSM
of size n where n − 1 satisfies conjecture 4.2.3. Let M be a matching in G. Suppose that
B(G[V (M)],M) = ∅, and

S(G,M) ∩ (A ∪ C) ⊆ V (M)

and that there exists b ∈ B\V (M) satisfying

S(G,M) ∩B ⊆ {b} ∪ V (M)

and for all a ∈ A\V (M), f(G[V (G)\V (M)], a, 1) = b. Then G has a stable matching.

Proof: Similarly to the proof of Lemma 4.3.4 the conditions

B(G[V (M)],M) = ∅

55



and
S(G,M) ∩ (A ∪ C) ⊆ V (M)

imply that
V (M) ∩ (B ∪ C) ∩ D(G,M) = ∅.

Further
S(G,M) ∩B ⊆ {b} ∪ V (M)

implies similarly that
D(G,M, V (M) ∩ A) = {b}.

Thus by Lemma 4.3.7 G has a stable matching.

Lemma 4.3.10 Let G = (A ∪ B ∪ C,E) be the hypergraph underlying an instance of
C3GSM of size n. Let M be a matching in G such that |M | ≥ n − 3. Suppose that
B(G[V (M)],M) = ∅, and

S(G,M) ∩ A ⊆ V (M)

and there exists b ∈ B\V (M) satisfying

S(G,M) ∩B ⊆ {b} ∪ V (M)

and for all a ∈ A\V (M), f(G[V (G)\V (M)], a, 1) = b. Suppose also that there exists
c ∈ C\V (M) satisfying

S(G,M) ∩ C ⊆ {c} ∪ V (M).

Then G has a stable matching.

Proof: Similar to the proof of 4.3.9.

Another idea in finding stable matchings is to consider vertices left out of matchings.
The following lemma shows that if you have a large enough matching where a dissatisfied
vertex is not matched to their last choice then that matching can be extended to a stable
matching.

Lemma 4.3.11 Let G = (A ∪ B ∪ C,E) be the hypergraph underlying an instance of
C3GSM of size n. Let M be a matching in G with |M | = n − 2. Suppose there exists
a ∈ A ∩ V (M) such that

V (M) ∩ D(G,M) = {a}.

If f(G, a,n) is not in V (M) then G has a stable matching.
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In figure 4.3.1 we see that vertex a2 is the only vertex in V (M) blocking the matching.
It prefers only b3 to its partner and b4 is the last choice of a2. Since b4 is unmatched in M
and |M | = 3 = 5− 2 we see that this example satisfies the conditions of Lemma 4.3.11.

a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

∅ ∅

∅ ∅

{b3} ∅

∅

∅

∅

Figure 4.2: Visualizing Lemma 4.3.11

Solid arcs indicate matching M , and are labelled with D(G,M, {t}) where t is the tail vertex of
the arc. In this figure b4 is the last choice of a2.

Proof: By the size of M there exist b, b′ ∈ B such that {b, b′} = B\V (M). Without
loss of generality say that b = f(G, a, n). Let G′ = G[V (G)\V (M)] and let c′ = f(G′, b′, 1).
Let a′ ∈ A\V (M). Let T = {a′b′c′} and let T ′ = {a′′bc′′} where a′′ and c′′ the remaining
two vertices unmatched in M or T . Then S = M ∪ T ∪ T ′ is a perfect matching of G. We
claim that S is stable.
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Let v ∈ V (G). We will show that v 6∈ D(G,S) and thus that S is stable. If v ∈
V (M) ∩ (A\{a} ∪ B ∪ C) then v 6∈ D(G,M) and thus v 6∈ D(G,S) as M ⊆ S. If
v = b′ then w >v S(v) implies that w ∈ V (M) ∩ C by our construction of T . Since such
w 6∈ D(G,S) we have v = b′ 6∈ D(G,S). Now if v = a then w >v S(v) implies that
w ∈ V (M)∩B or w = b′. In either case w 6∈ D(G,S) and thus a 6∈ D(G,S). Now we have
V (M)∩A∩D(G,S) = ∅. So D(G,S) ⊆ {a′, a′′, b, c′, c′′}. But {a′, a′′, b, c′, c′′} consists only
of vertices matched together in either the triple of T or the triple of T ′, hence they cannot
form a blocking triple, as any triple from {a′, a′′, b, c′, c′′} would contain a vertex and their
match in S. Therefore D(G,S) = ∅ and thus S is stable.

Stabilizing A,B,C: The previous lemmas have the common theme of building match-
ings that have no blocking triples in the hypergraph among the matched vertices then
using induction to make the matching perfect. The following lemma and corollary take a
different strategy. Whereas before we tried to create a matching where matched vertices
have no blocking triples even with unmatched vertices, alternatively we can attempt to
pair all the vertices in one of A,B,C with a partner in such a way that none of them will
participate in a blocking triple.

A motivation to consider this different approach comes from the context we intend to
use these lemmas. In our computer search procedure to be defined in 4.3.3 we use these
lemmas to eliminate instances of C3GSM from consideration without actually finding a
stable matching. A desirable feature in these lemmas is that they can eliminate instances
with minimal knowledge of the preferences of the vertices. That is a lemma that can prove
a stable matching exists only considering f(G, v, 1) for all v is preferable to one that also
needs to check f(G, v, 2).

With the above motivation in mind, the intuitive difference between the lemmas pre-
viously described and those to be described is that the previous lemmas capture a lot of
instances where vertices of A or B or C largely agree on which vertices are high ranking in
terms of preferences. For example when there is a 1, 1, 1 triple corollary 4.3.5 proves the
existence of a stable matching. A distinctly different situation, but still operating within
the first choices of vertices occurs when there are no 1, 1, 1 triples, but each vertex in A has
a different first choice vertex in B. Then one of the corollaries to follow, corollary 4.3.13,
says that there is a stable matching in this instance.

Lemma 4.3.12 Let G = (A ∪ B ∪ C,E) be the hypergraph underlying an instance of
C3GSM . Let M be a perfect A-B matching (that is a perfect matching of the underlying
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complete bipartite graph between A and B). Let B′ = {b ∈ B : ∃a ∈ A : b >a M(a)}.
Hence B′ is the set of vertices through which agents of A can form blocking triples. If for
all b, b′ ∈ B′, f(G, b, 1) 6= f(G, b′, 1) then G has a stable matching.

a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

∅

{b0}

{b1}

{b2}

∅

Figure 4.3: Visualizing Lemma 4.3.12

Solid arcs indicate matching M , and are labelled with D(G,M, {t}) where t is the tail vertex of
the arc. Dashed arcs indicate first choice of tail vertex.

Proof: Let C ′ = {c ∈ C : ∃b ∈ B′, c = f(G, b, 1)}. Since f(G, ·, 1) is a bijection between
B′ and C ′ we can form the matching S1 = {abc ∈ E : a = M(b) and c = f(G, b, 1)}. Let
S2 be an arbitrary perfect matching of G[V (G)\V (S1)], the remaining vertices unmatched
in S1. Let S = S1 ∪ S2. Then S is a complete matching on G. We claim that S is stable.
Suppose for a contradiction there exists blocking triple a, b, c. Then b >a M(a) and hence
b ∈ B′. Thus M(b) = f(G, b, 1) and so M(b) ≥b c by definition of f(G, ·, 1), but this
contradicts that a, b, c is a blocking triple since that requires c >b M(b).

Corollary 4.3.13 If f(G, a, 1) 6= f(G, a′, 1) for all a, a′ ∈ A in a hypergraph G = (A ∪
B ∪ C,E) underlying a C3GSM instance then G has a stable matching.
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Proof: Observe that M = {ab : b = f(G, a, 1)} is a perfect A-B matching since f(G, ·, 1)
is a bijection between A and B. In this case we have B′ = ∅ by the definition of f(G, ·, 1).
Thus we may invoke Lemma 4.3.12 to obtain a stable matching of G.

4.3.2 Symmetry in Problem Instances

We will now turn our attention towards formulating an equivalence relation on instances
of C3GSM . In doing so we hope to answer the question “when does knowledge that one
instance of C3GSM has a stable matching translate to knowing that another instance
does?”. This question is motivated by our efforts to design a computer search protocol in
the next subsection. In checking if all C3GSM instances of a certain size have a stable
matching it is desirable to avoid repeated work by not checking instances “symmetric” to
one already checked.

Let G and H be two hypergraphs underlying distinct instances of C3GSM . Let >v for
v ∈ V (G) denote the orders associated with vertices in G. Let >′v for v ∈ V (H) denote the
orders associated with vertices in H. We say that G with > and H with >′ are equivalent
in the sense that they denote symmetric problem instances, written G ≡ H, if there exists
a bijection φ : V (G)→ V (H) such that for all v ∈ V (G),

w >v u if and only if φ(w) >′φ(v) φ(u). (4.1)

Note 4.3.14 It is clear that ≡ is an equivalence relation. Through the identity bijection we
have reflexivity, through the inverse bijection we have symmetry, and through composition
of bijections we have transitivity. Thus ≡ is an equivalence relation as desired.

Lemma 4.3.15 If G ≡ H then G has a stable matching if and only if H has a stable
matching

Proof:

By symmetry it suffices to prove the sufficiency direction. Let M be a stable matching
of G. Define the matching φ(M) in H as

φ(M) = {φ(a)φ(b)φ(c) : abc ∈M}.

It is not hard to see that since M is a matching and φ is a bijection that φ(M) is a matching.
Suppose for a contradiction that φ(M) is not stable for H. Let xyz be a blocking triple
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of φ(M) against H. Let abc = φ−1(x)φ−1(y)φ−1(z). By our definition of φ(M), abc 6∈ M .
Further since y >x φ(M)(x), by the definition of φ we have b >a M(a). Similarly c >b M(b)
and a >c M(c). Thus abc is a blocking triple of M , a contradiction.

Note 4.3.16 Since we require that φ is a bijection it is necessary that G and H underlie
instances of C3GSM of the same size, say n. Let V (G) be partitioned as V (G)0∪V (G)1∪
V (G)2 since G is tripartite. Let i ∈ {0, 1, 2}. Since each V (G)i is of size n we may label
the elements of V (G)i as (i, 0), . . . , (i, n − 1). We may use the same labelling convention
for V (H). Then φ is a bijection from Z3×Zn to itself which preserves each vertex’s order
of its neighbours (and consequently the graph incidence structure). So we can say a few
things about φ from this perspective.

Observations Firstly by 4.1 we must preserve the graph structure. Hence for any i ∈
{0, 1, 2} there exists j ∈ {0, 1, 2} such that φ(Vi) = Vj otherwise the graph H is not
tripartite. Furthermore if φ(Vi) = Vj then φ(Vi+1) = Vj+1 with addition taken modulo 3.
Again this follows from condition 4.1.

Together the previous observations imply that there exists r ∈ {0, 1, 2} such that φ(Vi) =
Vi+r for any i ∈ {0, 1, 2}. Hence we can specify φ by (r,Π) where Π = {π0, π1, π2} is a
family of three permutations πi on Zn, one for each part V (G)i. In specifying φ = (r,Π)
we require that (r,Π) satisfies a translation of condition 4.1 for all (i, a) ∈ V (G); that is,

(i+1, b) >(i,a) (i+1, b′) if and only if (i+1+r, πi+1(b)) >(i+r,πi(a)) (i+1+r, πi+1(b
′)). (4.2)

Of interest to us are the equivalence classes of a given problem instance under ≡. For
a hypergraph G underlying an instance of C3GSM we will denote the equivalence class
containing G by [G]. In a procedure to test whether instances of C3GSM of a certain size
have stable matchings one can hope to avoid unnecessary repeated work by only testing
one representative from [G] instead of all instances in [G]. We will now define a strict total
order on instances of C3GSM of size n, with the goal of obtaining a method to test only
the minimum element with respect to this order for each equivalence class [G].

To define an order on instances of C3GSM of size n we will translate instances into finite
sequences then apply a natural lexicographic order to said sequences. The next sequence
of definitions will make this formal.
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Let G be a hypergraph underlying an instance of C3GSM of size n. Let i ∈ {0, 1, 2}
and let j ∈ {0, . . . , n− 1}. We define

seq(G, i, j) = f(G, (i, j), 1)f(G, (i, j), 2) . . . f(G, (i, j), n)

to be the sequence of first through to last choices for vertex (i, j).We sometimes will refer
to seq(G, i, j) as (i, j)’s preference list.

Let G be a hypergraph underlying an instance of C3GSM of size n. Let i ∈ {0, 1, 2}.
We define a sequence for each vertex partition, seq(G, i), by concatenating seq(G, i, j) for
each j ∈ {0, . . . , n− 1}. Formally we say

seq(G, i) = seq(G, i, 0) . . . seq(G, i, n− 1).

Let G be a hypergraph underlying an instance of C3GSM of size n. We define our
sequence for G, seq(G), by concatenating the sequences corresponding to each vertex
partition. Formally we have

seq(G) = seq(G, 0)seq(G, 1)seq(G, 2).

So seq(G) consists of concatenating the preference lists of vertices 0 through n−1 of V (G)0
followed by concatenating the same for V (G)1 and finally V (G)2.

We will use the symbol >lex to denote our lexicographical order of instances of C3GSM
of a given size n. Let G and H be hypergraphs underlying size n instances of C3GSM .
We say G >lex H if seq(G) is lexicographically larger than seq(H). That is there exists
some k such that

seq(G)k > seq(H)k

and for all i < k
seq(G)i = seq(H)i.

We compare vertices in seq(G)k and seq(H)k as if they are natural numbers corresponding
to their labels. That is if seq(G)k = (i, a) and seq(H)k = (j, b) then we simply say
seq(G)k > seq(H)k if and only if a > b.

Unfortunately we do not have a full characterization of the lexicographic minimum of
a given equivalence class under the order >lex, which would be desirable. Instead we do
have some necessary conditions which we collect in the following lemma. These are useful
for finding instances of C3GSM that we can avoid testing in a computer search since we
are certain we are at least testing the lexicographic minimum of each equivalence class.
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The following lemma presents four necessary conditions which we will summarize intu-
itively before presenting in rigorous formality. The first condition says that vertex (0, 0)
has preference list 0, 1, . . . , n − 1, which means that (1, 0) >(0,0) (1, 1) >(0,0) (1, 2) >(0,0)

· · · >(0,0) (1, n− 1). The second condition says the same thing regarding (1, 0). The third
condition says that preference lists of vertices in A are sorted lexicographically. The last
condition says that you cannot rotate the roles of A,B,C to obtain a lexicographically
smaller instance than the lexicographic minimum.

Lemma 4.3.17 Let G be the hypergraph underlying an instance of C3GSM of size n. If
G is the lexicographic minimum of [G] then the following are satisfied:

1. seq(G, 0, 0) = 0, 1, . . . , n− 1,

2. seq(G, 1, 0) = 0, 1, . . . , n− 1,

3. let a, b ∈ {0, 1, . . . , n − 1} and let k ∈ {1, . . . , n}. If f(G, (0, a), k) < f(G, (0, b), k)
and for all j ∈ {0, . . . , k − 1}, f(G, (0, a), j) = f(G, (0, b), k) then a < b,

4. We have that
seq(G) ≤lex seq(G, 1)seq(G, 2)seq(G, 0)

and
seq(G) ≤lex seq(G, 2)seq(G, 0)seq(G, 1).

Proof: We first prove (1). Let φ : V (G) → V (G) be described by (0, e, π1, e) where
e denotes the identity permutation and π1 is the permutation which sends seq(G, 0, 0) to
0, 1, . . . , n − 1. Let H be the hypergraph underlying an instance of C3GSM such that
G ≡ H with respect to φ. Since G is the lexicographic minimum of [G] and H ∈ [G],
seq(G, 0, 0) ≤lex seq(H, 0, 0) = 0, 1, . . . , n − 1. Since 0, 1, . . . , n − 1 is the lexicographic
minimum sequence possible we have seq(G, 0, 0) = 0, 1, . . . , n− 1.

To prove (2) we do something similar to (1). Let φ be described by (0, e, e, π2) where
π2 is the permutation which sends seq(G, 1, 0) to 0, 1, . . . , n− 1. Let H be the hypergraph
underlying an instance of C3GSM such that G ≡ H with respect to φ. Observe that since
r = 0 and π0 = π1 = e, seq(G, 0) = seq(H, 0). Since G is the lexicographic minimum of
[G] and H ∈ [G], seq(G, 1, 0) ≤lex seq(H, 1, 0) = 0, 1, . . . , n− 1. Since 0, 1, . . . , n− 1 is the
lexicographic minimum sequence possible we have seq(G, 1, 0) = 0, 1, . . . , n− 1.
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We now turn our attention to proving (3). Observe that seq(G, 0, a) <lex seq(G, 0, b).
Let φ be described by (0, π0, e, e) where π0 is the permutation which transposes a and b.
Let H be the hypergraph underlying an instance of C3GSM such that G ≡ H with respect
to φ. Suppose for a contradiction that b < a. Since r = 0, π1 = π2 = e, and π0 simply
transposes a and b, this yields

seq(H, 0) = seq(G, 0, 0) . . . seq(G, 0, b− 1)seq(G, 0, a)seq(G, 0, b+ 1)

. . . seq(G, 0, a− 1)seq(G, 0, b)seq(G, 0, a+ 1) . . . seq(G, 0, n− 1)

<lex seq(G, 0).

This contradicts the lexicographic minimality of G.

Finally we prove (4). Let φ be described by (1, e, e, e). We will prove seq(G) is lexi-
cographically at most seq(G, 1)seq(G, 2)seq(G, 0). The proof that G is lexicographically
smaller that seq(G, 2)seq(G, 0)seq(G, 1) follows similarly using (2, e, e, e). Let H be the
hypergraph underlying an instance of C3GSM such that G ≡ H with respect to φ. Since
π0 = π1 = π2 = e and r = 1 we have that

seq(H) = seq(G, 1)seq(G, 2)seq(G, 0)

and thus by the lexicographic minimality of G, seq(G) ≤lex seq(H) and the result follows.

4.3.3 Computer Search

Our goal now is to describe a computer search procedure to test all instances of C3GSM
for a given size n under the assumption that for k < n it is known that all instances of
C3GSM have a stable matching. In our case we study n = 5. A major challenge towards
solving this problem computationally is that enumerating all instances of C3GSM would
be infeasible. For each vertex there is one possible preference order or each permutation of
{1, . . . , n}. There are 3n such vertices, and thus there are (5!)15 possible problem instances
for C3GSM with size 5.

We resolve to overcome the sheer number of possible C3GSM instances by eliminating
instances from consideration using our symmetry and sufficiency checks theory from the
previous subsections. Our approach is based on the idea that if we relax the total orders
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to partial orders giving only the first few preferences of each vertex and can find a perfect
stable matching then any C3GSM instance that results from completing the partial order
will also have said stable matching. The following theory formalizes this idea. Herein and
henceforth we use the ordered pair labeling for vertices of G as outlined in Note 4.3.16.

A partially specified instance of C3GSM of size n provides a complete 3-partite hyper-
graph G, as in an instance of C3GSM , but not the total orders for each of the vertices of
G. In our partially specified instance there exists a vertex (g, v) called the extender, and
an integer ` ∈ {1, . . . , n+ 1} called the length satisfying that:

1. For all (h,w) where h < g, or h = g and w < v we have that

f(G, (h,w), 1), . . . , f(G, (h,w), `)

are specified in the partial order of (h,w), and

f(G, (h,w), `+ 1), . . . , f(G, (h,w), n)

are not specified in the partial order of (h,w). That is, (h,w) specifies their top-
ranked ` preferences in their partial order.

2. For all (h,w) where h = g and w ≥ v, or h > g we have that

f(G, (h,w), 1), . . . , f(G, (h,w), `− 1)

are specified in the partial order of (h,w) and

f(G, (h,w), `), . . . , f(G, (h,w), n)

are not specified in the partial order of (h,w). That is, (h,w) specifies their top-
ranked `− 1 preferences in their partial order.

The idea of the definition is that every vertex lexicographically smaller than the extender
has only specified their first ` choices, where ` is the length, and every vertex lexicograph-
ically at least the extender has only specified their first `− 1 choices. We give a few quick
examples:

• A partially specified instance of C3GSM with no vertices specifying any of their
orders has extender (0, 0) and length 1. This is the unique “empty” instance.
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• A partially specified instance of C3GSM of size 5 that is in fact an instance of
C3GSM proper has extender (0, 0) and length 6. Observe that since 6 is one greater
than the size of the instance this is the only situation where the length is 6.

• The two previous examples can be generalized. A partially specified instance of
C3GSM of size n where each vertex has specified their first k choices, for k ∈
{0, . . . , n} has extender (0, 0) and length k + 1.

• A partially specified instance of C3GSM that has only every vertex of V (G)0 speci-
fying their first choice and no other choices specified has extender (1, 0) and length
1.

• A partially specified instance of C3GSM of size 5 with extender (2, 2) and length 3
has every vertex of V (G)0 and V (G)1 specifying their first 3 choices. It also (2, 0)
and (2, 1) specifying their first 3 choices. The vertices (2, 2), (2, 3), and (2, 4) specify
only their first 2 choices.

Let I and I ′ be two partially specified instances of C3GSM of size n with the same
underlying hypergraph G. Let (g, v) be the extender of I and ` be the length of I. Let
(g′, v′) be the extender of I ′ and `′ be the length of I ′. We say that I ′ is an extension of I
provided that for all v ∈ V (G) the preference order specified by v in I is contained in the
preference order specified by v in I ′, and the following cases are satisfied:

1. If (g, v) = (2, n− 1) then (g′, v′) = (0, 0) and `′ = `+ 1.

2. If g < 2 and v = n− 1 then (g′, v′) = (g + 1, 0) and `′ = `.

3. If g < 2 and v < n− 1 then (g′, v′) = (g, v + 1) and `′ = `.

For example consider the partially specified instance of C3GSM of size 5 where the first
four vertices of V (G)0 specify their first choice to be (1, 0), and the remaining vertices
specify no choices. This instance has extender (0, 4) and length 1. The partially specified
instances of C3GSM where the first four vertices of V (G)0 specify their first choice to be
(1, 0) and the vertex (0, 4) specifies f(G, (0, 4), 1) = k where k ∈ {(1, 0), . . . , (1, 4)} are
extensions of our original partially specified instance. In this example the indicator of our
original instance satisfies the third case in our definition of extension.
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As another example consider an instance of C3GSM where each vertex has specified their
first choice, and each vertex of V (G)0 has specified their second choice. Each extension
would have the same preferences but additionally have (1, 0) specify their second choice.
This example covers the second case in our definition of extension.

Any instance of C3GSM where the first k preferences have been specified for each vertex
provides an example for the first case in our definition of extension. In any such instance
the extensions have vertex (0, 0) specifying their k + 1-th preference.

Let I and I ′ be partially specified instances of C3GSM with the same underlying graph.
We say that I ′ is a descendant of I if there exists a sequence of partially specified C3GSM
instances

I = I0, I1, . . . , Ik = I ′

such that for all i ∈ {0, . . . , k − 1} we have that Ii+1 is an extension of Ii.

Let I be a partially specified instance of C3GSM . We say that I is stable if every
instance of C3GSM which is a descendant of I has a stable matching.

Computer Search Algorithm We now describe our procedure for deciding if each
instance of C3GSM of size n = 5 has a stable matching. For any partially specified
instance of C3GSM , I, let E(I) denote the list of partially specified instances of C3GSM
which are extensions of I and let P(I) denote the unique instance such that I is an extension
of P(I). For convention we will say P(I) = I for the empty instance with extender (0, 0)
and length 1. The algorithm is as follows:

1. Let I be the partially specified instance of C3GSM of size 5 with extender (0, 0) and
length 1.

2. While E(I) 6= ∅ or P(I) 6= I

(a) If I is stable via a lemma of 4.3.1 or the graph underlying I does not satisfy a
conclusion of Lemma 4.3.17 then set E(I) ← ∅ and I ← P(I), and continue to
the next iteration of step 2.

(b) Else If E(I) = ∅ then return I as a counterexample to conjecture 4.2.3

(c) Otherwise let E ∈ E(I). Remove E from E(I) and set I ← E.
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3. If While loop terminates with no counterexample found then conjecture 4.2.3 is
proven for n = 5 and return that it is so.

On using lemmas of subsection 4.3.1 In step 2(a) it may not be clear how to use the
lemmas of subsection 4.3.1 to conclude that I is stable. This is actually easier to verify
in many cases than is immediately apparent. If one can form a matching in I that only
matches vertices with those that they have specified a ranking for, then it is easy to see
which vertices they prefer to the matching. When the k-th choice of a vertex in an extension
is specified all their choices of rank less than k have previously been specified. Hence if we
have a matching M valid in a partially specified instance I, by which we mean for each
v ∈ V (M), M(v) is ranked in v’s partial order with respect to I, then the set of vertices
preferred by some v ∈ V (M) to M(v) is completely known at I and does not change for
any descendant of I. Therefore Lemmas 4.3.4, 4.3.9, 4.3.10, and 4.3.12 can be checked for
instance I without worry that any descendant instances would violate their hypotheses.
This follows since descendant instances are generated by a sequence of extensions which
do not alter the set of vertices preferred by any matched vertex to their partner. There is
a notable exception in Lemma 4.3.11 which we use in a slightly different way.

Fixing Choices With Lemma 4.3.11 Lemma 4.3.11 requires knowledge of a vertex’s
last choice in order to conclude that the given problem instance has a stable matching.
Unfortunately lemmas which rely on last choices don’t naturally lend themselves to cutting
instances from consideration early on via step 2(a). There is an alternative approach to
using them though. Suppose there is a partially specified instance I and matching M for
which each vertex except for a that is matched in I is matched to a partner that they have
already specified their ranking for in I, and all vertices a has specified a ranking for are
matched in M . Also suppose that M satisfies all the requirements of lemma 4.3.11 except
for the requirement that a’s last choice is unmatched in M (as a consequence of not knowing
a’s last choice). Then by lemma 4.3.11 any fully specified instance of C3GSM extended
from I wherein M(a) is not the last choice of a is one where a’s last choice is unmatched in
M and hence has a stable matching. Thus we know we need only consider extensions where
M(a) is the last choice of a. If one can find another such matching M ′ with M ′(a) 6= M(a)
then we know I is stable since the last choice of a cannot simultaneously be M ′(a) and
M(a).
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Example of Fixing Choices Consider the following partially specified instance of
C3GSM :

a0 : b0 > b1 b0 : c0 > c1 c0 : a4 > a3

a1 : b1 > b0 b1 : c1 > c0 c1 : a0 > a1

a2 : b0 > b2 b2 : c2 > c3 c2 : a2

a3 : b0 > b3 b3 : c0 > c3 c3 : a0

a4 : b0 > b2 b4 : c0 > c3 c4 : a0

If we consider matching M1 = {a0b0c0, a1b1c1, a2b2c3} then the matching is only violated
with respect to the partner of c0. Further there are no blocking triples internal to M1 except
possibly with c0 and |M1| = 3 = 5 − 2. By the previous discussion the only descendants
of this instance which could possibly not be stable are those where c0 has a0 as their last
choice. But if we consider M2 = {a0b1c1, a1b0c0, a2b2c2} this matching similarly says the
only descendants of this instance which could possibly not be stable are those where c0 has
a1 as their last choice. Since c0 cannot possibly have both a0 and a1 as their last choice all
descendants of this instance are stable.

Correctness of Algorithm With the prior discussion in mind it becomes clear that
the computer search procedure works. If the graph underlying some partially specified
instance I does not satisfy a conclusion of lemma 4.3.17 then no instance of C3GSM which
is a descendant of I will satisfy that same conclusion and thus is not the lexicographical
minimum instance of its equivalence class. Therefore step 2(a) only eliminates instances
of C3GSM which not lexicographical minima or have a stable matching by a lemma of
subsection 4.3.1. In the former case, by lemma 4.3.15, we need not consider this instance as
it has a stable matching if and only if the lexicographical minimum of its equivalence class,
which we do consider, has a stable matching. In the latter case the sufficient condition
lemmas tell us directly we need not consider these instances as they have a stable matching.
Hence all removed instances during the execution of the computer search algorithm have a
stable matching or are equivalent to an instance considered by the algorithm. Furthermore
all instances of C3GSM are considered since they all are descendants of the “empty”
instance the algorithm starts running with.

The intuition behind our computer search procedure is that we can often conclude that
a problem instance has a stable matching without looking at all the preferences of each
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vertex. Recall, for instance that if there is a cycle of vertices, all respective first choices
of each other, then there is a stable matching. The goal is to develop enough theory of
lemmas that imply stable matchings as in subsection 4.3.1 that we can eliminate many
instances in step 2(a) early on in execution. To see the benefit of this suppose we eliminate
in step 2(a) a partially specified instance that has only specified each vertex’s first choice.
There are (4!)15 possible fully specified instances of C3GSM which are descendants of the
eliminated instance that we do not need to check now.

Results of Computational Experiments We implemented our computer search algo-
rithm in Java (see github.com/tothw/cyclicstablematching for our source code). We were
unsuccessful in getting the algorithm to terminate but we were able to eliminate many
preferences. We are confident that our computations are close to proving that all C3GSM
instances of size 5 admit a stable matching or finding a counterexample to 4.2.3. Our
confidence comes from the observation that the current implementation very rarely needs
to go deeper than specifying every vertices’ second choice to decide that the instance has
a stable matching. However our computations have not terminated yet, so nothing can be
said about the conjecture for n = 5 at this time. On the other hand for considering in-
stances of size n ≥ 6 we will need considerably more ideas characterizing when an instance
has a stable matching in order to hope that the computational approach will go through.
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Chapter 5

Conclusion

In this chapter we summarize our work and suggest some open problems for further
investigation.

5.1 Summary

The focus of this thesis has been on understanding the nature of stable matching prob-
lems. In Chapter 2 we gave the necessary background to read this work, and also gave some
interesting previously known results about the structure of the classical stable matching
problem. This culminated in a lattice theorem for stable matchings: theorem 2.3.6.

In Chapter 3 we formulated an instance of the stable matching problem as the feasible
region of a linear program. We then proved that the extreme points of this feasible region
were integral using a technique inspired by the methods of iterative rounding. In our proof
the structure given by the lattice theorem was instrumental in obtaining the result.

In Chapter 4 we turn our attention to stable matching problems with more than two
parties. We investigated the cyclic stable matching problem with 3 “genders” and complete
preference lists. It is conjectured (4.2.3) that all such instances of C3GSM have a stable
matching. We considered the case where instance sizes were n = 5, one greater than the
best known. We offered some sufficient conditions for existence of a stable matching, and
some theory about symmetry in problem instances. This new understanding was applied
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in a computational search framework to attempt to find counterexamples to the conjecture
or prove that none exist. We implemented and ran experiments with this procedure, but
could not find a counterexample or exhaust all possible cases.

It is my hope for the reader that through studying this work the rich structure of stable
matchings has become apparent. Indeed this work is exciting because stable matching
problems are very simple to state, and can arise so naturally in applications, yet they
have such beautiful theoretical structure. It is this pairing of theory and application that
makes these problems such a rewarding domain to work in. In the following section we will
describe some open questions for the reader who has been excited by this work and hopes
to jump in and solve problems.

5.2 Open Problems

To conclude we mention some problems that remain open. We will draw some questions
from our work in Chapter 3 and Chapter 4.

5.2.1 Questions from Chapter 3

Convert Our Integrality Proof to an Iterative Rounding Procedure In spirit
our short proof that the stable matching polytope is integral in chapter 3 is very close to
the iterative rounding procedures discussed in [33]. If one were able to convert the proof
into an iterative rounding algorithm and give a proof of correctness that would convert our
approach into a more useful form. This is because there are natural extensions of those
algorithms to more difficult problems, as can also be seen in [33]. In fact, that motivates
the next question.

Approximation Algorithms via Our Integrality Proof It is well-known that the
methods of iterative rounding are not simply for proofs of integrality, but are commonly
used in designing approximation algorithms [33]. Since our proof of integrality for the
stable matching polytope as given in chapter 3 is so close to an iterative rounding approach,
can these methods be extended to given good approximations for hard variants of stable
matching problems such as the introduction of non-strict preferences or relaxing the need
for a bipartite graph [26]?
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Consider the Popular Matching Polytope Besides stability there are types of de-
sirable properties for matching under preferences, such as popularity [4]. A 1

2
-integral

formulation of the popular matching polytope has recently been given [28], but an integral
formulation is not known. To our knowledge no one has looked at approaching this prob-
lem from an iterative rounding perspective. Perhaps such a perspective could inspire an
integral formulation and lead to simple proof as it did for stable matchings?

5.2.2 Questions from Chapter 4

Fully Characterize Symmetry In subsection 4.3.2 our discussion of symmetry in in-
stances of C3GSM left some questions open. We gave some necessary conditions for an
instance to be the lexicographic minimum of its equivalence class. One opportunity would
be to extend these conditions and give a full set of necessary and sufficient conditions
for being the lexicographic minimum. Another opportunity once that is done is to give
an algorithm that computes the lexicographic minimum instance in the equivalence class
of a given problem instance of C3GSM . This would lead to being able to decide if two
instances are symmetric since we could compute their lexicographic minimums and check
if they are the same or not.

Solve the size n case for small n From our computational results, the size 5 case of
conjecture 4.2.3 is close at hand, but still eluding us. It is my opinion that it is true, and
that we just need more lemmas that yield stable matchings early on in running to make
the computer search procedure go through. The size 5 case has been fruitful in leading to
better understanding of sufficient conditions for stable matchings and so once resolved it
may be worthwhile to consider size 6 and higher. Naturally of course at some point we
must jump to the next question.

Resolve Conjecture 4.2.3 The big looming question is to resolve the conjecture that
all instances of C3GSM have a stable matching. We feel that our approach to studying the
problem computationally may in fact lead to resolving the conjecture. Either with enough
sophistication the computer search can be used to find a counterexample, or the theory
built up to run the procedure for higher sizes reaches a critical mass where we understand
enough to prove that conjecture 4.2.3 is true.
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