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Abstract

The stress-testing method formed an integral part of the practice of risk management. How-

ever, the underlying models for scenarios generation have not been much studied so far. In

past practice, the users typically did not model risk factors for portfolios of moderate size

endogenously due to the presence of “curse of dimensionality” problem. Moreover, it is al-

most impossible to impose the expert views for a future outcome of macroeconomy on the

scenario generator without making ad-hoc adjustments.

In this thesis we propose a GVAR-based framework which allows an efficient simulation of

risk factors for a complex multi-currency portfolio of various classes of assets conditioning on

economic scenarios. Given reasonable sets of economic forecasts, the GVAR model anticipates

the trend and codependency of the future path of portfolio risk factors and supports the

production of meaningful results from risk analytics.
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Chapter 1

Introduction

1.1 A Conditional Scenario Generation Problem

In stress testing, practitioners conduct risk analytics based on a portfolio P&L evaluated

under a range of scenarios which are relatively adverse but probable. The quality of these

scenarios are therefore key determinants of whether our risk analytics can provide a sound

basis for an investment decision-making. Over the past decades scenarios have primarily

been drawn from statistical models estimated based on using historical data of portfolio risk

factors. Although with the help of advanced dynamic models we could generate scenarios

based only on a marginal model of risk factors, we lack a formal framework to generate sce-

narios conditioning on available forecasts of macro-economy. Nowadays’ risk managers are

becoming more interested in how risk metrics of a portfolio P&L would evolve under different

economic scenarios. In the past, however, perspectives regarding future evolution of macro-

economic conditions are not sufficiently utilized in the generation of a forwarding-looking

scenarios. Alternatively, we focus on modeling cross-sectional and hierarchical interdepen-

dencies between economic factors and portfolio risk factors. The estimated models are then

used to produce forecasts of risk factors conditioning on the relevant information obtained

from analyst reports.

Suppose that all vectors are column vectors unless otherwise specified. We hereby formulate

a general set up of the problem as follows. For the set of integer index Z, denote time series

of the portfolio risk factors by X = {Xt}t∈Z, where Xt are k × 1 vectors, and that of the
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economic factors by Y = {Yt}t∈Z, which is m×1 dimensional. Portfolio risk factors are those

which have a direct impact on the P&L of the portfolio in question. In other words, suppose

that we have a multi-asset portfolio P of which the value is V , then we have

V := V (Xt).

If P consists of equities, government bonds, corporate bonds and CDS denominated in multi-

ple currencies, then typical portfolio risk factors include various stock indexes, points on the

term structure of interest rates (e.g. government bond and swap curve), points on term struc-

ture of credit spreads (difference between the yield curves of corporate bonds and government

bonds) and exchange rates.

On the other hand, economic factors influence the portfolio value indirectly through their

inter-dependencies with risk factors. For example, stock indexes seem to have a positive

codependency with real GDP of the country as real GDP is an aggregate measure of firms’

performance over time. According to the Purchasing Power Parity theory, inflation, as an

economic factor, is negatively correlated with exchange rate of the domestic currency. Typ-

ically, for the above portfolio in multiple currencies, one would want to include real GDP,

inflation, the unemployment rate, the short and long term interest rates and some commodity

prices in the set of economic factors.

We separate the past and future time indexes by setting current time point to T , namely,

for t ≤ T , we have full information on X and Y , whereas for t > T we only possess partial

information on Y which is acquired from economic forecast reports. For convenience of

illustrating conditional expectation, we denote past and future information sets with PT and

IT,h respectively. In particular, let

PT = {(xt, yt)|t ∈ Z, 1 ≤ t ≤ T}

IT,h = {yt| for some t ∈ Z, T < t ≤ T + h},

where h ≥ 1 denotes a maximum forecast horizon. Note that in practice it is not possible to

track any factor back to the origin of universe, thus we truncate PT for t < 1 to reflect the

historical data available to us. Moreover, we restrict the focus of this thesis on generating

scenarios conditioning on a fixed future path of economic factors, which is the reason why
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we specify elements in IT,h with lower case letters. Also note that we do not require the

future information regarding Yt for all t up to time T + h if we treat the economic variables

endogenously (see Section 2.5 for details).

Let A′ denote a transpose of matrix/vector A. With the notation defined so far, we formu-

late a conditional scenario generation problem as sampling from a joint distribution of the

random vector (X ′T+1, . . . , X
′
T+h)

′, conditioning on PT and IT,h. Specifically, we need to find

a statistical model for

F (X ′T+1, . . . , X
′
T+h|PT , IT,h) (1.1)

with F (·|·) denoting the conditional joint distribution function.

For the purpose of risk management, eventually we would like to measure the risk of our

portfolio with risk metrics. Given a certain future economic scenario IT,h, we can obtain the

portfolio P&L over time horizon s, 1 ≤ s ≤ h, for a realization (x′T+1, . . . , x
′
T+h)

′, which is

drawn out of (1.1), as

∆sV = V (xT+s|PT , IT,h)− V (xT |PT ),

which has the following conditional distribution

F∆sV |X,Y (v) = P{∆sV ≤ v|PT , IT,h}. (1.2)

If V (·|·) is a linear function or has a simple form, we can determine the distribution in

(1.2) analytically, with which the risk metrics can be calculated. Otherwise, the empirical

distribution can be obtained by means of a Monte Carlo simulation.

1.2 A Joint Factor Model

A key to the conditional scenario generation problem is to determine an appropriate under-

lying statistical model for (1.1). In spite of the negligible serial correlation for high-frequency

financial time series, when it comes to modeling the evolution of risk factors over relatively

long time horizons, the autocorrelation becomes persistent enough for us to consider an

autoregressive (AR) time series model. Further, to model the cross-sectional dependencies
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within and between X and Y , we apply a vector autoregressive (VAR) model as our joint

factor evolution model.

Let Z = {Zt}t∈Z be time series of vectors that collect X and Y such that Zt = (X ′t, Y
′
t )
′. The

AR model for Z can be written as

Zt =

p∑
l=1

FlZt−l + Cεt, (1.3)

where Fl, for l = 1, . . . , p, is the lag l coefficient matrix, εt ∼ N(0, Ik+m) is a Gaussian white

noise process with I• denoting the identity matrix and C specifies the covariance matrix of

innovations for each element of Zt.

The VAR model in (1.3) explicitly allows for potential auto-correlation and co-integrating

(long term) relations between time series. By modeling concatenated Xt and Yt we assume

all economic factors are endogenous to our portfolio risk factors. From the perspective of

computational efficiency, this specification significantly increases the cost of estimation since

the number of parameters in VAR grows quadratically with the dimension of the time series.

Alternatively, we can reduce the scale of our coefficient matrix by modeling economic factors

as common variables, i.e.

Xt =

p∑
l=1

FlXt−l +
s∑
l=0

HlYt−l + Cεt, (1.4)

where Hl, l = 0, . . . , s, is the lag l factor loading matrix. In this case, we assume strong

exogeneity (detailed in Section 2.2.3) of the economic factors. Moreover, if we possess com-

plete future path information of Y over the forecast horizon, we do not need to construct a

marginal model for Y for the purpose of conditional scenario generation.

Even though the number of parameters has been reduced for VAR as specified in (1.4), we

still suffer from the “curse of dimensionality” (i.e. a proliferation of parameters as the system

dimension grows) since there are usually dozens of risk factors that need to be modeled for

the analytics of a multi-asset portfolio. To make this model computationally tractable, we

will apply a modified version of VAR, known as the global vector autoregressive approach,

which is suitable for modeling high-dimensional systems.
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1.3 Literature Review

1.3.1 Relations Between Economic and Portfolio Risk Factors

For the idea of conditional scenario generation to work, there must at least exist some relations

between the economic and portfolio risk factors, so that the contemporaneous or lagged values

of the economic variables can have predictive power to the portfolio risk variables.

Fortunately, there is a rich literature on this topic. For instance, Tripathi and Seth (2014)

examine the causal and co-integration relationships between macroeconomic factors and per-

formance of the Indian stock market, which is represented by BSE Sensex index, employing

the Granger causality test, Johansen’s co-integration test and other statistical techniques.

They select a representative set of macroeconomic variables including inflation, a interest

rate, money supply, oil price, exchange rates and an Indian industrial production index and

conduct the aforementioned tests on monthly time series spanning the period from July 1997

to June 2011. In terms of causal relations in the short run, their results of the Granger causal-

ity test indicate that the exchange rate, money supply and oil price Granger cause Sensex.

However, there is bi-directional causality between the oil price and Sensex. Literature re-

viewed in their paper also provide supporting results. For example, Mukherjee and Naka

(1995) found that a co-integration relation exists among Japanese stock market performance

and six macroeconomic variables and a positive relation was found between the Japanese

industrial production and stock return; Abdalla and Murinde (1997) investigate interactions

between exchange rates and stock prices and found that the causality is uni-directional from

exchange rates to stock prices.

Hanousek and Filer (2000) also did a research on causal relationship between economic fac-

tors and stock returns. However, they provide a new perspective on this type of research

by interpreting the results of the causality tests in terms of semi-strong market efficiency

1. If the market is semi-strongly efficient, the stock prices at any time should reflect all

publicly available information. Thus, the contemporaneous value of economic factors should

have predictive power in stock returns. The lagged values, however, should not Granger

cause the stock returns since the historical information has already been accounted for. In

1Although they are not the first one in this class.
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mathematical terms, they estimate the equation (1.4) and test the Granger and instanta-

neous causality. If Granger causality fails to exist while instantaneous causality is found to

be statistically significant, the semi-strong efficient market hypothesis holds. By conducting

analysis on monthly data from 1993 to 1999 of four central-European countries, namely Hun-

gary, Poland, Czech Republic and Slovakia, they conclude that none of the four countries

had developed an efficient market. However, the performance of the more sophisticated two

stock markets, namely the Budapest Stock Exchange and the Warsaw Stock Exchange, are

more closely related to the macro economy.

A comprehensive survey conducted by Kirkulak and Ezzat (2014) examines the relationship

between market efficiency and level of economic development. In their paper, the weak-form

of the efficient market hypothesis is investigated by an array of statistical tests including

a serial correlation test, runs test and variance ratio test using a GARCH-M(1, 1) model.

Daily time series, with the sampling period from 2005 through 2013, of market returns from

17 developed and 12 emerging countries are considered. The emerging countries are further

divided into classes of ‘Developed’, ‘Advanced Emerging’, ‘Secondary Emerging’, ‘Watch

List’ and ‘Stand Alone’ according to the classification of the FTSE Group. They reached

the conclusion that market efficiency is associated with a high economic development level.

The developed countries generally exhibit greater evidence of market efficiency. Among

emerging markets, while the so called Advanced Emerging and Secondary Emerging Markets

are found to be weak-form efficient, the other two less developed groups are more predictable

with historical data. Although the weak-form efficiency is not of primary concern to our

study, such a relationship between market sophistication and efficiency indirectly justifies

the assumption of semi-strong form efficiency for more developed markets such as US, GB,

JP and EU stock exchanges.

The behavior of spreads on credit default swaps is more complicated, since a CDS is essentially

a derivative. There is an extensive literature regarding determinants of CDS spreads. In

the papers reviewed by Kim, Park, and Park (2013), researchers found that leverage ratio,

implied volatility of the stock option of the firm, realized volatility from high frequency equity

prices and the risk-free rate can explain most of the variations in CDS premia. Whereas

the previous work mostly concentrates on studying firm-specific variables, Kim, Park, and

6



Park (2013) did research on a number of macroeconomic variables (e.g. expected market

risk premium, S&P500 index, implied volatility of S&P500 index options, Goldman Sachs

financial conditions index, industrial price index etc.) in addition to the firm-specific variables

studied previously. The sampling period is from 2004 to 2012. The most interesting finding

in this paper is that, while the expected market risk premium, financial conditions index,

and industrial price index are significant in explaining CDS variation during pre-crisis and

post-crisis periods, the significance of these variables are weak during the crisis period. Based

on this finding, they concluded that the factor of macroeconomic conditions play a critical

role in pricing CDS when the underlying asset value of the CDS is likely to be farther from

the default barrier.

1.3.2 Scenario Generation for Stress Testing

Whether the risk management analytics are able to assist informed decision-making depends

on the quality of the scenarios studied in the stress-testing task. The “good” scenarios

are expected to be relevant and forward-looking and should be able to reflect the various

views the management has on the future outcome of the economy. Formally, Meucci (2008)

establishes a general theoretical framework of stress-testing. Assume that the portfolio is

driven by an N -dimensional vector of risk factors, X. Then at any time t, the portfolio value

is a deterministic function of the realization of X, which is similar to our setting in (1.1). In

the setting of Meucci (2008), X can contain variables that are not directly fed into the pricing

function, e.g. those influence P&L statistically through correlation, and thus is analogous to

Zt of (1.3). The existence of a model for X is assumed and the model is represented by a

probability density function

X ∼ fX . (1.5)

The model in (1.5) without any constraints is analogous to the marginal model in (1.3), which

can be seen as a special case of (1.5). Further, we impose “views” on the marginal model

(1.5) to obtain the conditional model of X under stressed scenarios. In the most general case,

the “views” are defined as constraints on any aspect of generic functions of X. In particular,
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for generic functions gi, i = 1, . . . , K,

V := (g1(X), . . . , gK(X))′ ∼ fV (1.6)

forms a new vector of random variables, upon which the constraints are imposed. fV can

be inferred completely from the gi’s and fX , although the analytical form is not necessarily

available. In the most detailed specification of views, we obtain the full subjective distribution

for V ,

V ∼ f̃V 6= fV . (1.7)

If the f̃X is uniquely solvable from f̃V , the task of constructing the conditional model is

accomplished and what follows is to draw simulations from f̃X and conduct portfolio analytics.

In a more common practical setting, however, we only impose constraints on a certain aspect

of the distribution of V , such as moments, percentiles and dependence structure. See Meucci

(2008) for a partial list of possible constraints. When the constraints are looser than a fully

specified distribution f̃V , we are left with a non-singleton set of conditional distributions,

among which we are to select an optimal candidate as f̃X . Meucci (2008) proposed the

following optimality criterion

f̃X ≡ arg min
f∈V

{E(f, fX)}, (1.8)

where f ∈ V stands for all candidate distributions that are consistent with the views im-

posed and the relative entropy, E(f̃X , fX), between a generic distribution f̃X and a marginal

distribution fX , is defined as

E(f̃X , fX) :=

∫
f̃X(x)

[
ln f̃X(x)− ln fX(x)

]
dx. (1.9)

As the relative entropy E(f̃X , fX) quantifies the difference between f̃X and fX , the criterion

(1.8) argues that one should select among all candidates the distribution that is “closest” to

the marginal model.

Among all possible models for X conditioning on “views”, Meucci (2013) proposed a semi-

parametric approach where probability is assigned to each observation of the time series

of X based on a mixture of exponential smoothing and kernels. In particular, let X =
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{x1, . . . , xt}t̄t=1 denote the past time series of X defined in (1.5). We omit the subscript

on X to emphasize the assumption that X are approximately independent and identically

distributed2. Thus X at any future time is represented as

X ∼ {xt, pt}t̄t=1 . (1.10)

The probabilities pt, which are the weights assigned to each historical scenario, xt, are then

determined semi-parametrically. Intuitively, recent observations should be weighted more

heavily as they carry a higher predictive power. This view is reflected through the so-called

exponential smoothing. Suppose that we are at time t̄. Conditioning on the observations up

until t̄, the probabilities, denoted by pt|t̄ for t = 1, . . . , t̄, are determined as follows

pt|t̄ ≡ pexpt ∝ e−
ln 2
τ
|t−t̄|, (1.11)

where τ > 0 is the half-time3 of the exponential decay and ∝ means “proportional to” with

the proportionality constant set in the way that the probabilities sum up to one.

On the other hand, it is desirable that simulations of X can be drawn from model (1.10)

with a target on certain elements of the vector X set. That is, the scenarios are generated

conditioning on certain levels of market indicators such as the volatility index (VIX) of the

Chicago Board Options Exchange (CBOE), real GDP, a five year swap rate and etc. Denote

one such market indicator by Zt, which is univariate, and its conditioned value by z∗. A

simple way to implement this is through the so-called “crisp” probabilities

pt|z∗ ≡ pcrisp ∝

1 if zt ∈ R(z∗)

0 otherwise

, (1.12)

where R(z∗) denotes a range around the target z∗. The range is set with respect to a prede-

termined probability α, symmetrically around z∗. Formally,
∫ z∗
z
f̂Z(z)dz = α

2
=
∫ z
z∗
f̂Z(z)dz,

where z and z denote an upper and lower bound of the range respectively and f̂Z denotes

the empirical distribution of Zt ∼ {zt, pt}t̄t=1 with pt set either non-parametrically or through

an exponential smoothing, crisp or kernel-based probabilities described below. If z∗ is in the

upper (lower) α/2 quantile, we can override it with max zt (min zt).

2The author loosens the exact iid assumption for his semi-parametric model.
3If τ = t̄

2 , then pτ = 1
2pt̄.
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A smoother implementation than crisp probability is kernel-based probability, which is given

as

pt|z∗ ≡ pkert ∝ e−|zt−z
∗|γ/h, (1.13)

where h is the kernel band-width and γ governs the kernel tails. Note that γ = 2 leads to

Gaussian kernel and γ = 1 is an exponential kernel.

We apply the entropy pooling approach in Meucci (2008) to combine exponential smoothing

probabilities with market-conditioned probabilities. We start by computing the moments of

a market indicator conditioning on target z∗

µ|z∗ =
t̄∑
t=1

ztp
crisp
t , σ|z∗ = (

t̄∑
t=1

z2
t p

crisp
t − (µ|z∗)2)1/2. (1.14)

Next, all probability sets pt which match the above moments are collected into a collection

V|z∗, namely

V|z∗ :


∑t̄

t=1 ptzt = µ|z∗∑t̄
t=1 ptz

2
t ≤ (µ|z∗)2 + (σ|z∗)2

. (1.15)

Taking the pexpt as the marginal model as in formula (1.9), we obtain the optimal probabilities

as

p|z∗ = arg min
p∈V|z∗

E(p,pexp) (1.16)

with E defined in formula (1.9).

Note that entropy pooling techniques allows only for a univariate conditioner. In order

to condition on multiple variables Z1,t, . . . , Zq̄,t with their respective targets z∗1 , . . . , z
∗
q̄ , we

first compute mixed probabilities for each conditioner individually using entropy pooling

techniques as in (1.16)

pq ≡ p|z∗p , q = 1, . . . , q̄. (1.17)

Each probability set pq is then weighted with the following weighting scheme, denoted by

w = {w1, . . . , wq̄}. For pq, compute the effective number of scenarios as

Tq = e−
∑t̄
t=1 pq,t ln pq,t . (1.18)
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Then for any pair of probability sets (pq,pr), define bq,r :=
∑t̄

t=1(pq,tpr,t)
1/2. Then we

compute the Hellinger distance dq,r =
√

1− bq,r between these two sets of probabilities. The

measure of diversity of pq from all other set of probabilities can then be computed as

Dq =
1

q̄ − 1

∑
r 6=q

dq,r. (1.19)

The argument made by Meucci (2013) is that the probability set which is more distant from

other sets and has a higher effective number of scenarios should be weighted more heavily,

namely

wq =
TqDq∑q̄
r=1 TrDr

. (1.20)

Two aggregation methods are proposed to obtain the final ensemble probability set pce. On

the one hand, the simple weighted average, which is given as

pce =

q̄∑
r=1

wrpr (1.21)

can be applied. Or, the log-linear weighted scheme defined as

ln pce
1←−

q̄∑
r=1

wr ln pr (1.22)

can be used, where
1←− denotes that rescaling is needed to make sure that elements of pce sum

up to one.

A more prevalent class of model for scenario generation is a fully parametric time series model.

Examples include an ARMA-GARCH model, a vector autoregressive (VAR) model and a

regime switching model. The global vector autoregressive (GVAR) model, as a restricted

case of a VAR model applicable to a high dimensional data setting, is studied extensively in

later chapters.

Another interesting paper is Rosen and Saunders (2015), where the authors proposed an

easy-to-implement framework to obtain a conditional expectation, or more generally the full

conditional distribution, of all portfolio risk factors, conditioning on the outcome of the

economic factors from a pre-computed simulation using a least squares regression, referred

to as Least Square Stress Testing (LSST). The process can be summarized as follows. First
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we need to construct a model for the joint distribution of portfolio risk factors and economic

variables, (X ′, Y ′)′. A large number of simulations are produced from the joint distribution,

denoted by S = {(x′i, y′i)′}Ni=1. We then run a generalized linear model regressing Y on X,

with the simulations

Y = BX + U, (1.23)

where B is the matrix of regression coefficients and U is the vector error with zero mean,

and is assumed to be independent of X. The linear model is generalized in the sense that

we can replace Y with certain non-linear functions of the economic variables, or we can

append X with non-linear functions of its elements. Such setting makes the regression-based

approach less restrictive. Denote the estimated coefficient matrix by B̂. Then the conditional

expectation of portfolio risk factors, given a scenario of economic outcome X = x0, is

ŷ0 = E[Y |X = x0] = B̂x0. (1.24)

A further construction of the full conditional distribution of FY |X(y|x0) depends on the

treatment of the regression residuals, ûi

ûi = yi − B̂xi. (1.25)

While the assumption of normal or other parametric distributions on ûi makes further calcu-

lation analytically tractable, LSST framework does not preclude a non-parametric approach.

For example, we may assume that

P [U = ûi] =
1

N
, for i = 1, . . . , N (1.26)

and consequently specify the conditional distribution of portfolio risk factors as

P [Y = ûi + ŷ0] =
1

N
, for i = 1, . . . , N. (1.27)

1.3.3 Solutions to Curse of Dimensionality Problem

A recurrent problem in modeling high-dimensional time series is that the number of variables

is large relative to the available time dimensions. This problem is usually referred to as a
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“curse of dimensionality”. Other than the GVAR approach applied in our study, possible ap-

proaches to modeling of high-dimensional time series in recent literature are broadly divided

into two categories: (i) data shrinkage and (ii) parameter space shrinkage.

Applied in Bernanke, Boivin, and Eliasz (2004) to model a monetary policy shock, the so-

called factor-augmented VAR model is a classic approach of data shrinkage. The FAVAR

model is devised to solve the “price puzzle”, namely the finding in the literature of the VAR

model for monetary policy that a contractionary monetary policy shock is followed by an

increase in the price level, rather than a decrease as standard economic theory would predict.

As pointed out in Sims (1992), this may be caused by absence of data that would have been

contributed to an explanation of the policy shock. However, the entire informational time

series usually consist of hundreds of variables, making the inclusion of the whole information

set impractical. The FAVAR model thus assumes that the economy is driven by an M × 1

vector of observable economic variables and a K × 1 vector of unobservable factors, which

jointly follow a transition equation:Ft
Yt

 = Φ(L)

Ft−1

Yt−1

+ vt, (1.28)

where Φ(L) is the lag polynomial of finite p order and the error term vt is zero mean with

covariance matrix Q. Note that this equation does not prevent the imposition of restrictions

in the lag polynomial Φ(L). Also, if the terms in Φ(L) that relate Yt to Ft are all zeroes,

the equation (1.28) reduces to a standard VAR model, otherwise the VAR model for Yt is

augmented by unobservable factors Ft.

Further, let an N×1 vector, Xt, represents all of the observable variables that reflect activities

in the economy. In practice, the dimension N is much larger than the time dimension T of the

sampling period. It is also assumed that N � K +M is required for estimation. As a result

of the assumption that (F ′t , Y
′
t )
′ collectively determines the economy, all of the variables in

Xt are functions of (F ′t , Y
′
t )
′. Assuming a linear relationship under the FAVAR framework,

this leads to an observation equation of the form,

Xt = ΛfFt + ΛyYt + et, (1.29)

where Λf and Λy are N ×K and N ×M matrices of factor loadings. The error term, et, has

13



a zero mean. Depending on the method of estimation, the error terms will be assumed to be

normal and uncorrelated or display only a small amount of correlation. The specification of

equation (1.29) that Xt depends only on contemporaneous values of (F ′t , Y
′
t )
′ is by no means

restrictive since Ft can contain arbitrary lags of fundamental factors.

Due to the unobservable factors, the equations (1.28) and (1.29) can not be estimated directly.

Bernanke, Boivin, and Eliasz (2004) thus proposed two methods of estimation, namely, a

two-step semi-parametric approach and a one-step maximum likelihood approach. The two-

step semi-parametric approach is based on a principle component analysis. As specified in

equation (1.28), each constituent of Xt is a linear combination of (F ′t , Y
′
t )
′. Thus when N

is sufficiently large (as assumed previously), the first K + M principle components, which

are the eigenvectors corresponding to the K + M largest eigenvalues of XX ′, where X =

[X1, . . . , XT ], recover the space spanned by (F ′t , Y
′
t )
′ consistently4. The principle components

found above, denoted by Ĉ(Ft, Yt), are arbitrary linear combinations of (F ′t , Y
′
t )
′. Once we

obtain the estimates of terms in Ĉ(Ft, Yt) which involve only Yt, if they are not known,

we can subtract them from Ĉ(Ft, Yt) to obtain linear combinations of Ft. F̂t are solved

based on some structural assumptions and an identification schemes. Equation (1.28) is

then estimated as a standard VAR model upon substitution in the F̂t and observations of

Yt. However, the estimation of the linear combination of Yt in Ĉ(Ft, Yt) relies further on

assumptions that allows the estimation of the linear combinations of only Ft. The details of

this can be found in Bernanke, Boivin, and Eliasz (2004). A more computationally intensive

method of estimation, where equations (1.28) and (1.29) are jointly estimated by maximum

likelihood with an independent normal assumption for the error terms et, is also considered.

In the context of high-dimensional time series, the joint estimation is enabled by applying

the so-called likelihood-based Gibbs sampling techniques (see Kim and Nelson (1999) for a

survey of this technique).

Unlike the FAVAR approach, which reduces the dimensionality of the data, a Bayesian

VAR shrinks the parameter space by imposing a prior belief on the coefficients of the VAR

model. Based on the results discussed in Litterman (1986), Kadiyala and Karlsson (1997)

4For N → ∞ and T → ∞, the bases of the first K + M principle components are equal to the bases of

space spanned by (F ′
t , Y

′
t )′ with probability 1 (see Stock and Watson (2002) for details).
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and Sims and Zha, 1998, Bańbura, Giannone, and Reichlin (2010) developed a procedure

of applying a Bayesian approach to a potentially large n-dimensional VAR(p) model for

Yt = (Y1,t, Y2,t, . . . , Yn,t)
′, defined as

Yt = c+

p∑
l=1

AlYt−l + ut, (1.30)

where ut is the n-dimensional Gaussian white noise process with a covariance matrix Ψ, c is

a n-dimensional vector of constants and Al’s are VAR coefficient matrices. The prior belief

that all equations are centered around a random walk with drift,

Yt = c+ Yt−1 + ut (1.31)

is first imposed on the VAR model in (1.30). The implications for the prior are that more

recent lags and the variables’ own lags should provide more information than other lags.

Thus the coefficients alone the diagonal of A1 are shrunk to one while the others are shrunk

towards zero. Mathematically, such prior beliefs are equivalent to setting the mean and

variance of the prior distribution for coefficients as follows:

E[(Al)ij] =

δi, j = i, l = 1

0, otherwise

, V[(Al)ij] =


λ2

l2
, j = i

ϑλ
2

l2
σ2
i

σ2
j
, otherwise

. (1.32)

The parameters, δi’s, are determined according to the prior beliefs on the time series being

modeled. For the time series whose recent shocks are believed to be highly persistent, we

set δi = 1, while for the time series which display mean reversion, we set δi = 0, which

implies a white noise assumption for that variable. The scale parameters σi are set to the

estimated variance of the residuals of the univariate AR(p) model for the variable Yi,t. As

stated in Bańbura, Giannone, and Reichlin (2010), this contradicts the principles of the

Bayesian approach but is acceptable in practice. λ controls the overall tightness of the prior

distribution around the random walk or white noise and its value should decline as the system

of Yt gets larger to avoid over-fitting the system. ϑ ∈ (0, 1) governs the extent to which lags

of other variables are less important than their own lags. However, in order to obtain a non-

diagonal covariance Ψ for the residual ut, to make it possible to model the correlations among

residuals of different equations, ϑ is required to be set to one. Then we collect all coefficients
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of the VAR(p) model of (1.30) in one matrix B by re-writing (1.30) in its companion form:

Y = XB + U, (1.33)

where Y = (Y1, . . . , YT )′, X = (X1, . . . ,XT )′ with Xt = (Y ′t−1, . . . , Y
′
t−p, 1)′, U = (u1, . . . , uT )′

and B = (A1, . . . ,Ap, c)
′. We posit the normal inverse Wishart prior on the joint system of

B and Ψ, which has the form

vec(B) ∼ N(vec(B0),Ψ⊗Ω0) and Ψ ∼ iW (S0, α0), (1.34)

where the prior parameters are chosen such that the prior expectation and variance of B

match those implied by equations (1.32). To this end, Bańbura, Giannone, and Reichlin

(2010) append Y with the following Td dummy observations

Yd =



diag(δ1σ1, . . . , δnσn)/λ

0n(p−1)×n

· · ·

diag(σ1, . . . , σn)

· · ·

01×n


Xd =


Jp ⊗ diag(σ1, . . . , σn)/λ 0np×1

0n×np 0n×1

01×np ε

 , (1.35)

where Jp = diag(1, 2, . . . , p) and ε is a small number that reflects the uninformative prior for

the intercept. Augmenting the regression in (1.33) with Y∗ = (Y′,Y′d)
′, X∗ = (X′,X′d)

′ and

U∗ = (U′,U′d)
′, we have

Y∗ = X∗B + U∗. (1.36)

Then the posterior has the form

vec(B)|Ψ,Y ∼ N(vec(B̃),Ψ⊗ (X′∗X∗)
−1) and Ψ|Y ∼ iW (Σ̃, Td + 2 + T − k)

(1.37)

with B̃ = (X′∗X∗)
−1X′∗Y∗ and Σ̃ = (Y∗−X∗B̃)′(Y∗−X∗B̃). The posterior expectation of the

coefficients coincides with the OLS estimates of the regression of Y∗ on X∗ and also with the

posterior mean of the Minnesota setup in Litterman (1986). The computational feasibility

of the estimation is ensured as it only requires the inversion of an (np+ 1)× (np+ 1) square

matrix.
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Chapter 2

Global Vector Autoregressive Model

Originally proposed by Pesaran, Schuermann, and Weiner (2004), the global vector autore-

gressive (GVAR) approach provides a simple yet effective way of modeling interdependencies

in a complex high-dimensional system. The methodological contribution of GVAR lays in

dealing with the curse of dimensionality in a theoretically coherent and statistically consis-

tent manner. Also, among all global models, GVAR is currently the only one that presents

a complete and closed system, which is required for simulation (see Chudik and Pesaran,

2014).

The two merits of the GVAR approach mentioned above motivate the application of this

model to the conditional scenario generation problem. Firstly, we need an easy-to-estimate

model to facilitate the modeling of interactions between portfolio risk factors and economic

variables, both of which are of high dimension. Secondly, for the purpose of risk analytics, we

require the joint factor model to be simple-to-simulate, as in most of the cases, the P&L of

the portfolio are not linear with respect to the underlying risk factors, which makes obtaining

close-form formulas for risk metrics particularly difficult, and necessitates the use of Monte

Carlo methods.

The GVAR method tackles the curse of dimensionality problem by using a simple data

shrinkage approach. For a high-dimensional system, we first divide its elements into segments

of a smaller scale. Each segment is then modeled with an augmented vector autoregressive

(VAR), denoted as VARX*, which features both domestic variables of the segment and

weighted cross-section averages of foreign variables (aka. star variables) in the system. The
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VARX* model not only shrinks the size of the coefficient matrix but also allows for the

cross-sectional interaction between segments through the star variables. Once the VARX*

models have been estimated, we can stack them and solve the simultaneous equations as one

large global VAR model as in (1.3) and (1.4). Together with the normality assumption for

the innovations, we can then use the solved GVAR model to construct the joint factor model

defined in (1.1).

2.1 Augmented Vector Autoregressive Model

Suppose that we divide the global vector into N cross-sectional units, Xit for i = 1, . . . , N ,

such that Xt = (X ′1t, . . . , X
′
Nt)
′ with some appropriate rearrangement of elements in Xt. As-

sume that Xit has a dimension ki×1, then clearly k =
∑N

i=1 ki. The first step of constructing

a GVAR model for the global vector Xt is to establish and estimate a VARX* model for Xit

of each of the cross-sectional units. Note that the feature of VARX* model is the presence

of star variables which are collected in the k∗ × 1 vector X∗it defined as

X∗it = W̃′
iXt, (2.1)

for i = 1, . . . , N , where W̃i is the k × k∗ weight matrix for the ith unit. In general, the di-

mension of X∗it does not need to be the same for all units. In recent applications of the GVAR

approach to modeling of international macroeconomics, weight matrices are constructed us-

ing foreign trade or capital flows (see e.g. Bussière, Chudik, and Sestieri, 2009). To ensure the

sufficiency of the parameter reduction, both ki and k∗ should be sufficiently small (typically

between 4 and 6).

The star variables and their lagged values are then included in the VAR model representing

each unit given as

Xit =

pi∑
l=1

ΦilXi,t−l + Λi0X
∗
it +

qi∑
l=1

ΛilX
∗
i,t−l + Ciεit, (2.2)

for i = 1, . . . , N , where Φil for l = 1, . . . , pi, Λil for l = 0, . . . , qi, are unknown ki × ki and

ki × k∗ coefficient matrices, Ci specifies the covariance matrix of the innovations of the ith
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cross-sectional unit. Under certain granularity conditions of the weight matrices, namely

||Wi|| = O(N−
1
2 ), (2.3)

and

||Wij||
||Wi||

= O(N−
1
2 ), (2.4)

,where the norm is the so-called spectral norm1, as N, T → ∞ and T/N → 02, the star

variables can be seen as an approximation to global common factors and thus be treated as

exogenous for the purpose of estimating the unknown coefficients. This means ideally that

if we have a large number of cross-sectional units and the granularity conditions specified in

(2.3) and (2.4) are satisfied, the actual value of the weights are of secondary importance (see

Dees et al., 2007; Chudik and Pesaran, 2011).

If one decides to model economic factors endogenously as the representation in (1.3), then

Yt can be modeled in the same manner as Xt. In this case we allow for the feedback effect

from portfolio risk factors to economic factors through the star variables. Otherwise, Yt can

be included in (2.2) as the common factors for all sub-sectional VARX* models as

Xit =

pi∑
l=1

ΦilXi,t−l + Λi0X
∗
it +

qi∑
l=1

ΛilX
∗
i,t−l + Di0Yt +

si∑
l=1

DilYt−l + Ciεit, (2.5)

where Dil for l = 0, . . . , qi, are ki ×m unknown factor loading matrices.

2.2 Causality and Exogeneity

Both the assumed forms of the VARX* model in (2.2) and (2.5) imply that the star variables

are treated as exogenous. This helps us further in achieving a more parsimonious model, even

though it is not a required treatment under the GVAR framework. On the other hand, the

common factors, Yt, are also assumed to be exogenous as in (2.5). In our application, economic

variables are likely to be taken as the common factors in the VARX* model. Intuitively, we

1The spectral norm of matrix A is the largest singular value of A.
2T/N → 0 is required in case of variables integrated of order one (meaning they are non-stationary but

can be rendered to be weakly stationary by first differencing), while T/N → κ for some 0 ≤ κ < ∞ is

sufficient in case of weakly stationary variables.
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expect that the economic variables are at a higher level of economic hierarchy and thus are

causal for the risk factors of interest but do not take any feedbacks from them (see e.g.

Wilkie, 1984). The assumption of uni-directional causality can be tested through hypothesis

tests constructed in Chapter 3. The weak form of exogeneity, however, has to be obtained by

construction. In the following subsections, we first discuss the definitions of Granger causality

and instantaneous causality, based on which the concept of exogeneity is then defined in the

following subsection.

2.2.1 Granger Causality and Instantaneous Causality

Granger (1969) proposed a simple and intuitive definition of a causal relationship which can

be easily applied to the context of a VARX* model. Upon assuming that the future can not

cause the past in the predictive sense, Granger causality between the vectors of stochastic

processes, Xt and Yt, are defined with respect to the effect that (lack of) past information

of one variable vector has on the current value of another variable. The predictor used

in Granger (1969) is the optimal (in the sense of minimum mean square error) predictor

defined on the set of all past information available in the universe up to time t, Ut, instead

of the information set Pt defined previously in Section 1.1, which consists of only the past

information of variables of interest. Originally the definitions are proposed for a bivariate

model. Following the description in Lütkepohl (2005), we extend the definition to VAR

models of an arbitrary finite dimension. Let Zt(h|Ut) denote the optimum h-step predictor

of Zt+h at time t and ΣZ(h|Ut) denote the corresponding mean square error (MSE). We have

the following definitions.

Definition 2.1 (Granger Causality for a VAR Model). The vector stochastic process Xt is

said to be Granger-causal for Yt if ∃h = 1, 2, . . . such that

ΣY (h|Ut) 6= ΣY (h|Ut\{Xs|s ≤ t}), (2.6)

where Ut\{Xs|s ≤ t} is the set containing all relevant information except that of Xt, and

ΣY (h|Ut) ≤ ΣY (h|Ut\{Xs|s ≤ t}), (2.7)
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where the inequality is defined in the sense that the matrix forming by subtracting the term

on the left hand side from that on the right hand side is positive semidefinite.

Note that when extending the concept of Granger causality to a VAR model, we require both

(2.6) and (2.7) to hold for the existence of a causal relationship. This is only to exclude the

case of equality in (2.7) since a zero matrix is also positive semidefinite. Despite the elusive

notation, this definition simply tells us that adding information on causal variables helps

improve the prediction efficiency. When both Xt and Yt mutually Granger-cause each other,

we say that they form a feedback system.

In some cases, contemporaneous information regarding one (set of) variable(s) is relevant in

making prediction for the other variables in the system. This is the so-called instantaneous

causality, defined as follows.

Definition 2.2 (Instantaneous Causality). There exists instantaneous causality between Xt

and Yt if

ΣY (1|Ut) 6= ΣY (1|Ut ∪ {Xt+1}), (2.8)

and

ΣY (1|Ut) ≤ ΣY (1|Ut ∪ {Xt+1}) (2.9)

hold.

Note that unlike the case of Granger causality, where the causal relationship can be either one

way or mutual, the instantaneous causality must be symmetric. In the following discussion we

will see that this is because instantaneous causality exists only when the innovation processes

of Xt and Yt have contemporaneous correlation.

In practice, however, it is not possible to acquire all relevant information. Therefore, re-

gardless of the problems considered, we still use Pt in place of Ut. Comments on issues

caused by such loss of information can also be found in Granger (1969). Moreover, since it

is not easy to obtain the optimal predictor among all possible functional forms, including

both linear and nonlinear ones, we use the optimal linear predictor instead for a character-

ization of Granger causality. The reason for using the optimal linear predictor is to ensure
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that Granger-noncausality results in the same predictor and MSE for the information sets

in comparison3, so as to simplify the characterization of causality in the context of a VAR

model.

2.2.2 Characterizing Causality for VAR Models

In this section we discuss how Granger causality and instantaneous causality are characterized

within the context of a VAR model. For convenience, we collect both risk and economic

factors in the vector Zt, such that Zt = (X ′t, Y
′
t )
′ and assume a stable VAR(p) model without

a constant term

Zt =

Xt

Yt

 =

p∑
l=1

ΨlZt + εt (2.10)

:=

p∑
l=1

Ψ11,l Ψ12,l

Ψ21,l Ψ22,l

Xt−l

Yt−l

+

ε1t

ε2t

 , (2.11)

where εt is the innovation process with a nonsingular covariance matrix Σε. In this case both

Xt and Yt are assumed to have zero means. Since (2.11) is stable, it has an MA representation

as

Zt =
∞∑
i=0

Θiεt−i

:=
∞∑
i=0

Θ11,i Θ12,i

Θ21,i Θ22,i

ε1,t−i

ε2,t−i

 , (2.12)

where the coefficient matrices Θi are defined using the following recursion formula

Θ0 = Ik+m,

Θi =
i∑
l=1

Θi−lΨl, i = 1, 2, . . . . (2.13)

3In our application, the information sets in comparison refer to Pt and Pt\{Xs|s ≤ t}
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Then the h-step optimal (linear) predictor of Yt based on (2.12) is given by (see Lütkepohl,

2005, pp. 37 - 38)

Yt(h|Pt) = [0 Im]Zt(h|Pt)

=
∞∑
i=0

Θ21,i+hε1,t−i +
∞∑
i=0

Θ22,i+hε2,t−i, (2.14)

where 0 is zero matrix of a conformable size. Using (2.12) and (2.14), the forecast error is

hence

Yt+h − Yt(h|Pt) =
h−1∑
i=0

Θ21,iε1,t+h−i +
h−1∑
i=0

Θ22,iε2,t+h−i. (2.15)

Since any subprocess of a stable VAR process also admits an MA representation (see Section

2.1.3 of Lütkepohl (2005)), Yt can be expressed in terms of another independent white noise

ξt as

Yt =
∞∑
i=0

Ξiξt−i. (2.16)

By the same token, the forecast error of Yt based on its own information set is given by

Yt+h − Yt(h|Pt\{Xs|s ≤ t}) =
h−1∑
i=0

Ξiξt+h−i. (2.17)

The definition of Granger-noncausality requires the prediction MSE based on Pt and Pt\{Xs|s ≤

t} to be the same for all h. Thus, we first compare (2.15) with (2.17) for h = 1. Since

Θ21,0 = 0, we need ε2,t+1 = ξt+1 for non-causality to hold. In this case, the uniqueness of

the canonical MA representation (An MA representation of the form in (2.12)) then implies

Ξi = Θ22,i and Θ21,i = 0 for all i = 0, 1, 2, . . .. Further it is easy to see that the conditions

required for (2.6) and (2.7) to hold for h = 1 imply that the same hold for all h. Then the

recursion in (2.13) shows that Ψ21,l = 0 for all l. Through the above derivation, we obtain the

necessary and sufficient condition for Granger-noncausality defined using the optimal linear

predictor, which is summarized in the following proposition (see Corollary 2.2.1 of Lütkepohl

(2005)).
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Proposition 2.1 (Characterization of Granger-noncausality). If Zt is a stable VAR(p) pro-

cess as in (2.11) with a nonsingular covariance matrix, then

Yt(h|Pt) = Yt(h|Pt\{Xs|s ≤ t}), h = 1, 2, . . .

⇔ Ψ21,l = 0, l = 1, 2, . . . . (2.18)

The above proposition states that as long as Xt is not Granger-causal for Yt, there is no need

for us to specify parameters of Xt in the model for the process Yt. Therefore the concept

of exogeneity defined later helps reduce the number of parameters to be estimated in the

system.

Next, we are to characterize instantaneous causality. Even though εt is assumed to be an

independent innovation process, there may potentially be non-zero correlation between its

components. To work with residual vectors with uncorrelated components, we first apply a

Cholesky decomposition to the positive definite covariance matrix Σε to obtain Σε = CC ′,

where C is an upper triangular nonsingular matrix. Then (2.12) becomes

Zt =
∞∑
i=0

Θiεt−i =
∞∑
i=0

ΘiCC
−1εt−i =

∞∑
i=0

Piωt−i, (2.19)

where Pi = ΘiC and ωt = C−1εt. ωt is a white noise process with a covariance matrix

Σω = Ik+m. The lower triangular form of C allows us to partition Zt as

Zt =

Xt

Yt

 =
∞∑
i=0

P11,i 0

P21,i P22,i

ω1,t−i

ω2,t−i

 . (2.20)

From (2.20) we can derive the 1-step optimal predictor of Yt taking into account the infor-

mation of Xt+1 as

Yt(1|Pt ∪ {Xt+1}) = Yt(1|Pt ∪ {ω1,t+1})

= P21,0ω1,t+1 +
∞∑
i=1

P21,iω1,t+1−i +
∞∑
i=1

P22,iω2,t+1−i, (2.21)

while its counterpart based solely on P is

Yt(1|Pt) =
∞∑
i=1

P21,iω1,t+1−i +
∞∑
i=1

P22,iω2,t+1−i. (2.22)
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To equate (2.21) and (2.22), we require P21,0 = 0 and this equality implies that there is no

instantaneous causality between Xt and Yt. We also summarize this result in the following

proposition (see Proposition 2.3 of Lütkepohl (2005)).

Proposition 2.2 (Characterization of Instantaneous Noncausality). If Zt is a stable VAR(p)

process as in (2.11) with a nonsingular covariance matrix, then the absence of instantaneous

causality between Xt and Yt is equivalent to

E(ε1tε
′
2t) = 0. (2.23)

Proposition 2.2 shows that instantaneous causality is equivalent to a contemporaneous cor-

relation between the white noises of the two VAR processes in question. Thus instantaneous

causality must be symmetric.

Regardless of the criticisms levied against these definitions of a causal relationship, at the very

least they formalize a way to analyze whether the past information of a certain set of variables

will be helpful in making predictions about the other variables. Therefore, Granger-causality

analysis, together with the definition of exogeneity discussed below, provide a theoretical

support for the parsimonious modeling assumption posited in the VARX* specification.

2.2.3 Exogeneity

In Section 2.1 we mentioned that under certain granularity conditions, the weak exogeneity of

star variables holds asymptotically and thus we can ignore the marginal distribution of these

variables in estimation. Moreover, the GVAR approach provides us with the flexibility to

model economic factors as (strongly) exogenous variables. As such, the prediction can then be

carried out step-wise, where the economic variables are first projected forward with separate

marginal models and the forecasts of portfolio risk factors are then conducted by conditioning

on the prediction of economic variables, which are assumed to be strongly exogenous in this

case.

We conclude this section by discussing respective definitions for weak and strong exogeneity.

Weak exogeneity is concerned mainly with estimation and statistical inference on parameters

of interest using conditional distributions only, while incurring no loss of information. Thus

it is important to define which parameters are of interest. Parameters may be of interest
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because they are directly related to economic theories under study or are presented in the

final model of our interest. For example, in the context of conditional scenario generation,

the ultimate objective is to obtain the conditional distribution for portfolio risk factors as in

(1.1). Thus if the true underlying joint system is the VAR model given in (2.11), then the

parameters of interest are in λ1 as defined in (2.29) below.

Using the notation defined previously, the definition for weak exogeneity given in Engle,

Hendry, and Richard (1983) is restated below.

Definition 2.3 (Weak Exogeneity). Let D(•; •|•) denote the conditional density function.

Then Yt is weakly exogenous with respect to parameters of interest over the sample period

if and only if the distribution function of the random vector Zt can be decomposed into a

conditional distribution for Xt and a marginal distribution for Yt, i.e.

D(Zt;λ|Pt−1) = D(Xt;λ1|Yt,Pt−1)D(Yt;λ2|Pt−1) (2.24)

where the parameter vector λ is partitioned into a variation-free sub-vector (λ1, λ2), i.e.

(λ1, λ2) ∈ Λ1 × Λ2; and the vector for parameters of interest is a function of λ1.

Note that condition (2.24) ensures that the likelihood function L(λ;PT ) can be decomposed

as

L(λ;PT ) =
T∏
t=1

D(Xt;λ1|Yt,Pt−1)D(Yt;λ2|Pt−1) =: L1(λ1;PT )L2(λ2;PT ). (2.25)

Together with the variation-free condition, the aforementioned decomposition facilitates an

independent analysis for the two partial likelihoods L1 and L2. Further, if the parameters

in λ1 provide all information regarding parameters of interest, inference can be conducted

based solely on L1 and we can thus exclude L2 from our analysis, which substantially improves

computational efficiency.

However, whether Yt can be treated as weakly exogenous depends on the selection of param-

eters of interest. For the VAR model in (2.11), partition Σε conformably with Zt = (X ′t, Y
′
t )
′

as

Σε =

Σ11 Σ12

Σ21 Σ22

 . (2.26)

26



Then by assuming normality for εt, the equation system for Xt given Yt can be written as

Xt = AYt +

p∑
l=1

BlXt−l +

p∑
l=1

ClYt−l + ξt, (2.27)

where A = Σ12Σ−1
22 , Bl = Ψ11,l−Σ12Σ−1

22 Ψ21,l, Cl = Ψ12,l−Σ12Σ−1
22 Ψ22,l and ξt follow N(0,Σξ),

where Σξ = Σ11 − Σ12Σ−1
22 Σ21. And the marginal distribution of Yt is then

Yt =

p∑
l=1

Ψ21,lXt−l +

p∑
l=1

Ψ22,lYt−l + ε2t, ε2t ∼ N(0,Σ22). (2.28)

Note that ε2t and ξt are independent by construction, which ensures the separation specified

in (2.24) to have a conditional density for Xt of the form

D(Xt;λ1|Yt,Pt−1) = N

(
AYt +

p∑
l=1

BlXt−l +

p∑
l=1

ClYt−l,Σξ

)
, (2.29)

where λ1 = (A,Bl,Cl,Σξ), l = 1, 2, . . . , p. The parameter vector for the marginal density,

D(Yt;λ2|Pt−1), is then λ2 = (Ψ21,l,Ψ22,l,Σ22), l = 1, 2, . . . , p. It is easy to see that λ1, λ2 are

variation-free. Thus if we are only interested in λ1, Yt is by construction weakly exogenous,

even though bi-directional Granger causality exists between Xt and Yt. In our application,

weak exogeneity holds true by construction for economic factors in the VARX* model. But

weak exogeneity of star variables depends on certain granularity conditions (e.g. (2.3) and

(2.4)) and holds only asymptotically.

The concept of strong exogeneity is built upon its weak counterpart and further requires

Granger noncausality from conditioning variables to conditioned variables, which ensures

that the forecast of conditioned variables can be carried out independently of the conditioning

variables. Here we restate the definition for strong exogeneity in Engle, Hendry, and Richard

(1983).

Definition 2.4 (Strong Exogeneity). Yt is strongly exogenous with respect to the parameters

of interest over the sample period if and only if Yt is weakly exogenous and Yt is not Granger-

caused by Xt.

As shown in Proposition 2.1, the additional condition required for strong exogeneity ensures

that the past realization of Xt does not affect the future evolution of Yt, which lays the

foundation for forecasting Yt independently first before carrying out the conditional forecast

of Xt.
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2.3 Estimation of VARX*

We restrict our attention to the stable VAR processes, for which the prevalent estimation

approaches include least squares, the Yule-Walker equation and maximum likelihood. In

this study, we focus on applying an ordinary least squares (OLS) approach, which, due to

the result in Zellner (1962), is known as the generalized least squares estimator. The OLS

approach is applied to mean-adjusted data to avoid estimating the intercept jointly with

other parameters, so as to reduce computational complexity. In this case, the variables Xt,

X∗t and Yt in the VARX* model are implicitly assumed to have zero mean (or mean-adjusted)

and thus the model specified below does not contain an intercept term. Since both X∗t and Yt

are treated as weakly exogenous, we collect them in a single Yt vector and focus our attention

on estimation of the model of the following form

Xt =

p∑
l=1

ΦlXt−l +
s∑
l=0

DlYt−l + ut, (2.30)

where Xt are mean-adjusted and ut is a white noise process, p ≥ 1 and s ≥ 0. The subscripts,

i, for each VARX* are omitted for expositional convenience.

For simplicity, we assume that presample values x−p+1, x−p+2, . . ., x0 and y−s+1, y−s+2, . . .,

y0 are available. This assumption is not at all restrictive since so long as we have a sample

of appropriate length, it is always possible to select the datum as a starting point such that

the required length of presample is available. Further, the following notations are defined so
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that we can re-write the VARX* model in (2.30) in a VAR(1) form as,

X := (x1, . . . , xT ) (k × T ),

B := (Φ1, . . . ,Φp,D0, . . . ,Ds) (k × (kp+ms)),

Zt :=



xt
...

xt−p+1

yt+1

...

yt−s+1


((kp+ms)× 1),

Z := (Z0, . . . , ZT−1) ((kp+ms)× T ),

U := (u1, . . . , uT ) (k × T ),

x := vec(X) (kT × 1),

β := vec(B) (k(kp+ms)× 1),

u := vec(U) (kT × 1).

(2.31)

With the notation defined previously, the VAR(1) form of VARX* can be expressed as

X = BZ + U (2.32)

or

vec(X) = vec(BZ) + vec(U)

= (Z′ ⊗ Ik) vec(B) + vec(U),

which, in our notation, is

x = (Z′ ⊗ Ik)β + u. (2.33)

The definition and properties of Kronecker product (⊗) and vectorization operators can be

found in Appendix A.1 and Appendix A.2.

2.3.1 Estimation of Process Mean

In general the mean of a process is unknown and thus needs to be estimated in order to

transform the data so that (2.30) can be fitted to it. Let X̃t := Xt + µX and Ỹt := Yt + µY
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denote the original processes. Further, define the following quantities:

X̄ =
1

T

T∑
t=1

X̃t, (2.34)

Ȳ =
1

T

T∑
t=1

Ỹt. (2.35)

Using (2.30) and (2.34), we have

X̄ =
1

T

T∑
t=1

(
µX +

p∑
l=1

Φl

(
X̃t−l − µX

)
+

s∑
l=0

Dl

(
Ỹt−l − µY

)
+ ut

)

= µX +

p∑
l=1

ΦlX̄ +
1

T

p∑
l=1

Φl

l−1∑
j=0

(
X̃−j − X̃T−j

)
−

p∑
l=1

ΦlµX

+
s∑
l=0

DlȲ +
s∑
l=1

Dl

l−1∑
j=0

(Y−j − YT−j)−
s∑
l=0

DlµY +
1

T

T∑
t=1

ut.

Hence,

Φ(X̄ − µX) =
1

T
(ST +RT ) + D(Ȳ − µY ) +

1

T

T∑
t=1

ut, (2.36)

where Φ = Ik − Φ1 − . . . − Φp, D =
∑s

i=0 Di, ST =
∑p

l=1 Φl

∑l−1
j=0

(
X̃−j − X̃T−j

)
and

RT =
∑s

l=1 Dl

∑l−1
j=0 (Y−j − YT−j). Under the assumptions made so far, we have

E
(

1√
T
ST

)
= 0, (2.37)

and

lim
T→∞

Var

(
1√
T
ST

)
= lim

T→∞

1

T
Var(ST ) = 0 (2.38)

for Xt; additionally, due to the central limit theorem (see e.g. Fuller, 2009)

1√
T

T∑
t=1

ut
d−→ N(0,Σu). (2.39)

On the other hand, assume that Ỹt follows

Ỹt − µY =

q∑
l=1

Al(Ỹt − µY ) + vt, (2.40)
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where vt is a white noise process with a covariance matrix Σv. Moreover, (u′t, v
′
t)
′ has a

covariance matrix of Σ. Presample observations, y−q+1, y−q+2, . . ., y0, some or all of which

may overlap the presample observations required previously, are also assumed to be available.

We further have

E
(

1√
T
RT

)
= 0, (2.41)

and

lim
T→∞

Var

(
1√
T
RT

)
= lim

T→∞

1

T
Var(RT ) = 0. (2.42)

Following the same derivation as before we obtain

A(Ȳ − µY ) =
1

T
PT +

1

T

T∑
t=1

vt, (2.43)

where A = Ik − A1 − . . . − Ap and PT =
∑q

l=1 Al

∑l−1
j=0 (Y−j − YT−j). Using the same

rationale, we have

E
(

1√
T
PT

)
= 0, (2.44)

and

lim
T→∞

Var

(
1√
T
PT

)
= lim

T→∞

1

T
Var(PT ) = 0. (2.45)

Assuming invertibility of A, by (2.36) and (2.43), we have

√
TΦ(X̄ − µX) =

1√
T

(ST +RT + DA−1PT ) +
1√
T

(
T∑
t=1

ut +
T∑
t=1

wt

)
, (2.46)

where wt = DA−1vt is white noise with a covariance matrix of Σw := DA−1Σv(DA−1)′,

which is independent of ut. Thus terms in the first bracket converge in probability to 0. Let

E = [Ik DA−1], due to the central limit theorem,

1√
T

(
T∑
t=1

ut +
T∑
t=1

wt

)
d−→ N (0,EΣE′) . (2.47)

Hence we summarize the asymptotic distribution of the mean estimator in the following

proposition.
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Proposition 2.3 (Asymptotic Property of Sample Mean). For X̃t in the VARX* model with

common variables, if the (strongly) exogenous variables Ỹt follow a stable VAR process defined

in (2.40), then

√
T (X̄ − µX)

d−→ N(0,ΣX̄), (2.48)

where

ΣX̄ = Φ−1EΣE′(Φ−1)′. (2.49)

The above proposition results from (2.46), (2.47) and properties of stochastic convergence

listed in Appendix B. The consistency of X̄ is also confirmed by the Proposition 2.3.

2.3.2 Ordinary Least Squares Estimator

For all of the derivations in this section, we assume that variables in both Xt and Yt are

independent of ut+i for i > 0. Using the expression in (2.33), the OLS estimator is obtained

by minimizing:

S(β) = u′u = [x− (Z′ ⊗ Ik)β]′[x− (Z′ ⊗ Ik)β]

= x′x− 2β′(Z⊗ Ik)x + β′(ZZ′ ⊗ Ik)β. (2.50)

Taking the first order derivative of S(β) gives

∂S(β)

∂β
= 2(ZZ′ ⊗ Ik)β − 2(Z⊗ Ik)x. (2.51)

Setting it to zero and solving for β yields the estimator

β̂ = ((ZZ′)−1Z⊗ Ik)x. (2.52)

Then the Hessian matrix

∂2S(β)

∂β∂β′
= 2(ZZ′ ⊗ Ik) (2.53)

is positive definite, which confirms that β̂ is indeed the estimator.

Substituting (2.33) into (2.52) yields an alternative expression for the estimator, i.e.

β̂ = β + ((ZZ′)−1Z⊗ Ik)u. (2.54)
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Based on (2.54), we reproduce the derivation in Section 3.2.2 of Lütkepohl (2005) for the

asymptotic distribution of β̂. The prerequisites for the asymptotic distribution to exist

include:

Γ := plim
ZZ′

T
exists and is nonsingular, (2.55)

and

1√
T

(Z⊗ Ik)u
d−−−→

T→∞
N(0,Γ⊗ Σu). (2.56)

Due to Lemma 3.1 of Lütkepohl (2005), one sufficient condition for (2.55) and (2.56) to hold

for a stable VAR(p) defined in (2.30) is that its residual is a standard white noise as defined

in the following definition.

Definition 2.5 (Standard White Noise). A white noise process ut = (u1t, . . . , ukt) is standard

if ut is a continuous random vector satisfying E(ut) = 0, E(utu
′
t) = Σu, which is nonsingular,

ut, us are independent for t 6= s, and, for some finite constant c,

E|uitujtuhtugt| ≤ c for i, j, h, g = 1, . . . , k, and all t. (2.57)

All of the conditions in Definition 2.5 are familiar except the last one, which requires that

all fourth moments exist and are bounded. A typical white noise that is standard is an

independent Gaussian process, i.e. ut ∼ N(0,Σu).

Note that in the context of VARX* as in (2.30), so long as the weak exogeneity of Yt holds,

the VARX* model can be written as a VAR model. Thus conditions (2.55) and (2.56) hold

for VARX* with a standard white noise, by using (2.54), we have

√
T (β̂ − β) =

√
T ((ZZ′)−1Z⊗ Ik)u

=

((
1

T
ZZ′

)−1

⊗ Ik

)
1√
T

(Z⊗ Ik)u. (2.58)

Thus
√
T (β̂ − β) has the same asymptotic distribution as(

plim

(
1

T
ZZ′

)−1

⊗ Ik

)
1√
T

(Z⊗ Ik)u =
(
Γ−1 ⊗ Ik

) 1√
T

(Z⊗ Ik)u. (2.59)
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Then (2.59) and condition (2.56) show that

√
T (β̂ − β)

d−−−→
T→∞

N(0,Σβ), (2.60)

where

Σβ = (Γ−1 ⊗ Ik)(Γ⊗ Σu)(Γ
−1 ⊗ Ik) = Γ−1 ⊗ Σu. (2.61)

The above result is summarized below.

Proposition 2.4 (Asymptotic Distribution of OLS Estimator). For a stable VARX* model

defined in (2.30) with standard white noise residuals, and with conditions specified in (2.55)

and (2.56), the OLS estimator

β̂ = ((ZZ′)−1Z⊗ Ik)x (2.62)

has the asymptotic distribution

√
T (β̂ − β)

d−−−→
T→∞

N(0,Σβ). (2.63)

Note that Γ and Σu need to be estimated before we can carry out statistical tests. If condition

(2.55) holds, Γ can be estimated consistently with

Γ̂ =
ZZ′

T
. (2.64)

For simplicity of derivation we first give the matrix representation of the OLS estimator, B̂,

i.e.

vec(B̂) = β̂ = ((ZZ′)−1Z⊗ Ik)x

= ((ZZ′)−1Z⊗ Ik) vec(x)

= vec(XZ′(ZZ′)−1).

Thus,

B̂ = XZ′(ZZ′)−1

= (BZ + U)Z′(ZZ′)−1

= B + UZ′(ZZ′)−1.
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Since Σu = E(utu
′
t), a plausible estimator is seen to be

Σ̃u =
1

T

T∑
t=1

ûtû
′
t =

1

T
ÛÛ′ =

1

T
(X− B̂Z)(X− B̂Z)′. (2.65)

Since we treat all of the regressors as predetermined, an adjustment for degrees of freedom

is needed in order to obtain an unbiased estimator, namely

Σ̂u =
T

T − kp− 1
Σ̃u. (2.66)

Evidently the two estimators, Σ̂u and Σ̃u, are asymptotically equivalent. The consistency of

these two estimators is demonstrated in Corollary 3.2.1 of Lütkepohl (2005).

2.4 Stacking VARX*

Once the unknown parameters in each VARX* have been estimated, we can then stack these

models to form one large GVAR model for statistical inference, impulse response analysis,

simulation and forecasting. First we define a (ki+k
∗)×k link matrix, Wi := (E′i,W̃

′
i)
′, where

E′i select Xit out of Xt, namely Xit = E′iXt. Then variables of the ith unit and corresponding

star variables can be linked to the global vector in the following way

Uit := (X ′it, X
∗′
it )
′ = WiXt.

Define p = max(pi, qi) for all i = 1, 2, . . . , N and

Ai0 = (Iki ,−Λi0) (2.67)

Ail = (Φil,Λil), (2.68)

for l = 1, . . . p, where Φil = 0 for l > pi and Λil = 0 for l > qi. Rearranging contemporaneous

star variables in (2.5) we obtain

Ai0WiXt =

p∑
l=1

AilWiXt−l + Ciεit. (2.69)

Stacking all units in the representation of (2.69) yields

G0Xt =

p∑
l=1

GlXt−l + Cεt (2.70)
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where εt = (ε′1t, . . . , ε
′
Nt)
′, and

C =


C1 0

. . .

0 CN

 (k × k), (2.71)

Gl =


A1lW1

A2lW2

...

ANlWN

 (k × k). (2.72)

Note that if we model the evolution of economic factors and market factors using a model

of the form in (1.3), then Yt is in fact modeled as one (or more) cross-sectional unit(s) and

is contained in Xt in (2.70). Otherwise if economic factors are modeled as exogenous, we

simply append (2.70) to include Yt as a common factor, i.e.

G0Xt =

p∑
l=1

GlXt−l + D0Yt +
s∑
l=1

DlYt−l + Cεt (2.73)

where s = max
i

(si) and

Dl =


D1l

D2l

...

DNl

 (k ×m), (2.74)

where similarly for l > si, Dil = 0.

Since our ultimate task is to conduct risk analytics with this model, it is very important

that the matrix G0 is invertible in both (2.70) and (2.73) so that we can solve the system

simultaneously. Otherwise one must resort to more advanced techniques for simulation (see

e.g. Bańbura, Giannone, and Lenza, 2015). Given that G0 is invertible, we have

Xt =

p∑
l=1

FlXt−l + Qεt (2.75)

Xt =

p∑
l=1

FlXt−l + H0Yt +
s∑
l=1

HlYt−l + Qεt (2.76)
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where Fl = G−1
0 Gl, Hl = G−1

0 Dl and Q = G−1
0 C.

In the case that G0 is not invertible, rank(G0) = k−m < k for some m > 0 and the systems

in (2.70) and (2.73) are undetermined. As suggested by Chudik, Grossman, and Pesaran

(2016), m additional equations are needed to complete the system. It is recommended that

the equations of cross-sectional averages in a VAR form should be good candidates to consider.

2.5 Conditional Forecasting and Simulation

The solved GVAR systems in (2.75) and (2.76) are essentially VAR models. Conditional

forecasting using VAR models based on fixed (referred to as hard condition) or a range

(referred to as soft condition) of future values of variables has been thoroughly studied in

Waggoner and Zha (1999). Subsequently a singular value decomposition based approach is

proposed in Jarociński (2010) to improve the computational efficiency in the case where the

number of conditioning path is small.

For a GVAR model with common variables, the approach is summarized as follows.

Re-write the augmented GVAR model defined by (2.76) in its companion form

X̃t = FX̃t−1 + HỸt + Q̃ε̃t (2.77)
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with the following newly defined matrices

X̃t =


Xt

Xt−1

...

Xt−p+1

 (pk × 1),

Ỹt =


Yt

Yt−1

...

Yt−s

 ((s+ 1)m× 1),

ε̃t =


εt

0
...

0

 (pk × 1),

F =

F1 . . . Fp

I 0

 (pk × pk),

H =

H0 . . . Hs

0 0

 (pk × (s+ 1)m),

Q̃ =

Q 0

0 0

 (pk × pk).

For s ≤ h the s-step forecast of X̃ is thus

X̃T+s = FsX̃T +
s−1∑
l=0

FlHỸT+s−l +
s−1∑
l=0

FlQ̃ε̃T+s−l. (2.78)

Collecting first k rows of (2.78) gives

XT+s = Fs
(1:k,·)X̃T +

s−1∑
l=0

ΨlỸT+s−l +
s−1∑
l=0

ΘlεT+s−l, (2.79)

where Fs
(1:k,·) denotes the first k rows of Fs, Ψl denotes the first k rows of FlH and Θl denotes

the upper left k × k of FlQ̃. Suppose that we have information of a complete future path of
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Y , then the conditional forecast is

E[XT+s|PT , IT,h] = Fs
(1:k,·)x̃T +

s−1∑
l=0

ΨlỹT+h−l. (2.80)

If we only have partial information on the future path of Y , some terms in the summation of

Yt need to be replaced with the corresponding forecasts, which means a separate VAR model

for Y is required.

From (2.80), it is easy to see that the conditional joint distribution function in (1.1) is

N(E[XT+s|PT , IT,h],
∑s−1

l=0 Θl(
∑s−1

l=0 Θl)
′). However, from the perspective of computational

efficiency, it is recommended to first sample from i.i.d normal distributions and then transform

the realization using Θl’s as in (2.79).

The more challenging task is to conduct forecasting with VAR model as in (2.75), where we

condition it on a subset of variables in Xt. This time we start from (2.79). Since Yt has been

included in Xt, we can leave out the Yt terms to obtain

XT+s = Fs
(1:k,·)X̃T +

s−1∑
l=0

ΘlεT+s−l. (2.81)

Stack (2.81) for all s = 1, . . . , h,

X = FX̃T + Rε (2.82)
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with the following newly defined matrices

X =


XT+1

...

XT+h

 (hk × 1),

ε =


εT+1

...

εT+h

 (hk × 1),

F =


F(1:k,·)

...

Fh
(1:k,·)

 (hk × pk),

R =


Θ0 0 . . . 0

Θ1 Θ0 . . . 0

. . . . . . . . . . . . . . . . . . . . . .

Θh−1 Θh−2 . . . Θ0

 (hk × hk).

Assume that the index set of the elements of X which are in IT,h is κ. We then substitute

the known values into (2.82) and extract these rows to form a system of equations as

R̃ε = r (2.83)

where R̃ = R(κ,·) (with a MATLAB style of matrix indexing), r = X(κ) − F(κ,·)X̃T . With a

little abuse of notation we denote the distribution of the random vector (ε′, (R̃ε)′)′ as ε

R̃ε

 = N

0,

 I R̃′

R̃ R̃R̃′

 . (2.84)

Clearly the covariance matrix of this normal distribution is singular as some elements of the

joint normal random vector are a linear combination of the others. However, this does not

prevent us from using the results of a conditional multi-variate normal distribution as studied

in Alexander, Graybill, and Duane (1974) to obtain

F (ε|R̃ε = r) = N
[
R̃′(R̃R̃′)−1r, I− R̃′(R̃R̃′)−1R̃

]
. (2.85)
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Then the conditional forecasting for all 1 ≤ s ≤ h is

E[X|PT , IT,h] = F x̃T + RE[ε|PT , IT,h], (2.86)

where the conditional expectation of ε is given in (2.85). The simulation can be done by

sampling from (2.85) as well.

2.6 Interpolating Times Series with Linear Constraints

In this section we discuss an easy-to-implement, nonstandard solution to a practical problem

one may encounter when applying the GVAR approach to a conditional scenario generation

task. In modeling the joint distribution of portfolio risk factors and economic factors with

the GVAR approach, one limitation inherited from the construction of the GVAR model is

that both factors have to be modeled with the same frequency. As most of the economic

forecasts are conducted with annual frequency, a problem may arise when the evolution of

the risk factors over a more granular time interval is of interest. A piece of good news is

that, if we model economic factors as endogenous variables and we have the information of

these variables at certain future times but with frequency which is different from that of

the model, we can still obtain the conditional expectation of the risk factors and conduct

simulations with the help of the techniques introduced in Section 2.5. An even worse case,

however, is that we only possess information about linear combinations of the future path for

the economic factors. For example, we construct a GVAR model, which models the difference

of economic factors with quarterly frequency but we can only obtain a one year forecast value

at level for them. In this case, by converting the level forecast to difference data, the sum

of four quarterly difference forecasts can be obtained. But this practice entails loss of low

frequency information. Without further information, there is no way to determine the exact

value of these variables and thus neither the conditional forecast nor simulation for portfolio

risk factors can be done.

To solve the aforementioned problem, we need to interpolate (or to forecast) the time series for

the economic factors over a number of future time intervals under certain linear constraints.

Collect the relevant past data and future values to be interpolated in vectors Yp and Yf
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respectively. Particularly, if we model the economic factors, Yt, with a VAR model of order

p, and we are to interpolate over h time periods, then

Yp =


YT−p+1

YT−p+2

...

YT

 (pm× 1),

Yf =


YT+1

YT+2

...

YT+h

 (hm× 1).

Let ff |p(Yf |Yp) be the joint distribution of Yf conditioning on Yp. Under the framework of

maximum likelihood estimation, the interpolation problem can be formulated as determina-

tion of

Ŷf = arg max
Yf

ff |p(Yf |Yp)

subject to AYf = b, (2.87)

where A and b are c × hm matrix and c × 1 vector respectively, which specify the linear

constraints on Yf . The matrix A is expected to be of rank c such that all constraints are

linearly independent.

Suppose that the random vector (Y ′p , Y
′
f )
′ has a multivariate normal distribution with mean

(E(Y ′p),E(Y ′f ))
′ and a covariance matrix Σ, such that it can be divided conformably as

Σ =

Σpp Σpf

Σpf Σff

 . (2.88)

Then ff |p(Yf |Yp) is a multivariate normal density. In particular,

ff |p(Yf |Yp) =
1√

(2π)hm det Σf |p
exp

{
−1

2
(Yf − E(Yf |Yp))′Σ−1

f |p(Yf − E(Yf |Yp))
}
, (2.89)

where Σf |p = Σff − ΣpfΣ
−1
pp Σpf . Without the constraints of (2.87), it is easy to see that

(2.89) is maximized at Ŷf = E(Yf |Yp), which results in the optimal linear predictor of Yf
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given Yp. It thus implies that the inclusion of the constraints leads to a loss of estimation

efficiency to some extent, as the estimates obtained under constraints are neither unbiased

nor consistent.

Further, suppose that Yt follows a VAR(p) model

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + εt, (2.90)

where p > 0 and the residual, εt, follows N(0,Σε) and is a white noise process. Suppose that

the observations of YT , . . . , YT−p+1 are available. Then

ff |p(Yf |Yp) =
h∏
t=1

f(YT+t|YT+t−1, . . . , Yp)

=
h∏
t=1

1√
(2π)m det Σε

exp

{
−1

2

(
YT+h −

p∑
l=1

ΦlYT+h−l

)′
Σ−1
ε

(
YT+h −

p∑
l=1

ΦlYT+h−l

)}
.

The log-likelihood function is thus given as

l(Yf |Yp) =− hm

2
log(2π)− h

2
log(det(Σε))

− 1

2

h∑
t=1

(
YT+h −

p∑
l=1

ΦlYT+h−l

)′
Σ−1
ε

(
YT+h −

p∑
l=1

ΦlYT+h−l

)
.

Ignoring all constants, the maximization of l(Yf |Yp) is equivalent to minimization of the sum

of squared errors, S(Xf |Xp),

S(Xf |Xp) =
h∑
t=1

(
YT+h −

p∑
l=1

ΦlYT+h−l

)′(
YT+h −

p∑
l=1

ΦlYT+h−l

)

=
h∑
t=1

(CtYf −DtYp)
′ (CtYf −DtYp)

= Y ′f

h∑
t=1

C′tCtYf − 2
h∑
t=1

Y ′pD
′
tCtYf + E,

where

Ct =
[
−Φt−1 −Φt−2 · · · −Φt−h

]
, (2.91)

Dt =
[
−Φt+p−1 −Φt+p−2 · · · −Φt

]
, (2.92)
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Φ0 = Im, Φl = 0 for l > p or l < 0. For a VAR(p) model, the interpolation problem posited

in (2.87) can thus be solved as a quadratic programming problem

minimize
Yf

Y ′f

h∑
t=1

C′tCtYf − 2
h∑
t=1

Y ′pD
′
tCtYf

subject to AYf = b.

As stated previously, due to the linear constraints, we lose the efficiency of maximum like-

lihood estimation to some extent. Moreover, the coefficients of the VAR(p) model are not

available to us in practice. Therefore, the coefficient matrices Φl in Ct and Dt need to be

replaced by the corresponding estimates, which introduces further uncertainty. As an in-

termediate step to overcome the limitation of the GVAR model, however, as shown by the

numerical example given in Section 4.2.3, this approach gives reasonable interpolation results

and is very easy to implement.

44



Chapter 3

Statistical Inference for Vector

Autoregressive Model

In this chapter, we introduce statistical tests for causality and assumptions on the residuals

(whiteness and normality) for the VAR model. The causality test is derived based on the

characteristics of Granger causality for the VAR model and can be applied to determine

whether a variable is to be modeled exogenously or endogenously. On the other hand, the

whiteness and normality tests are based on the estimated residuals of the fitted VAR model.

We note that these tests can be easily extended to apply to the GVAR model since the GVAR

model can be seen as a restricted version of the VAR model.

The rest of this chapter is organized as follows. In Section 3.1, test statistics for Granger

and instantaneous causality are derived, with a simple example given to illustrate the test

procedure. Residuals based tests for whiteness and normality are discussed in Section 3.2

first for the VAR model, and then with the extensions to the GVAR model.

3.1 Testing for Causality

In modeling the economic factors as common variables, implicitly we assume that they are

strongly exogenous. One way to test this assumption in the context of the VAR model is to

examine the significance of Granger causality, as stated in Definition 2.4. The VARX* model

also provides the flexibility of including the contemporaneous values of common variables.
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This can be viewed as a reflection of the correlation between the residual processes of common

variables and those of the domestic variables if normality is assumed for the distribution

of the residual process. This is due to the effect of instantaneous causality which can be

seen from (2.27) and Proposition 2.2. Thus, an alternative way to justify the inclusion of

contemporaneous variables in the VARX* system, other than testing the significance of the

estimated parameter, is to test for the instantaneous causality.

Both of the following causality tests are derived from the VAR(p) system as in (2.11), which

collects risk factors and economic factors in a single vector Zt. Let K := k +m. With some

minor modification to the notation in (2.31) as follows:

X := (z1, . . . , zT ) (K × T ),

B := (Ψ1, . . . ,Ψp) (K ×Kp),

Zt :=


zt
...

zt−p+1

 (Kp× 1),

Z := (Z0, . . . , ZT−1) ((Kp)× T ),

U := (ε1, . . . , εT ) (K × T ),

x := vec(X) (KT × 1),

β := vec(B) (K2p× 1),

u := vec(U) (KT × 1),

(3.1)

the OLS estimator of β is given as

β̂ = ((ZZ′)−1Z⊗ Ik)x. (3.2)

Then as stated in Proposition 3.1 of Lütkepohl (2005), we have

√
T (β̂ − β)− T→∞−−−→

d
N(0,Σε ⊗ Γ−1), (3.3)

where Γ = plim ZZ′/T .

The asymptotic distribution for the estimator of Σε is required for testing instantaneous

causality. We restate Proposition 3.4 of Lütkepohl (2005) for the asymptotic distribution of

the maximum likelihood (ML) estimator of σ.
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Proposition 3.1 (Asymptotic Distribution of ML Estimator of σ). For a stationary, sta-

ble Gaussian VAR(p) process defined in (2.11), its ML estimator σ̃ for σ := vech(Σε) is

consistent and

√
T (σ̃ − σ)

d−→ N(0, 2D+
k (Σε ⊗ Σε)D+′

k ), (3.4)

where Dk is the (k2 × 1
2
k(k + 1)) matrix such that

vec(Σε) = Dk vech(Σε).

and D+
k := (D′kDk)

−1D′k, which is the Moore-Penrose inverse of Dk.

3.1.1 Testing for Granger Causality

For a VAR(p) model defined in (2.11), we characterize the Granger-noncausality from Xt

to Yt in Proposition 2.1 as a test of zero constraints on some parameters in the coefficient

matrices Ψl. Moreover, it is established in Section 2.3.2 that the parameter estimator β̂

follows an asymptotic normal distribution (see also B.2). Based on the aforementioned facts,

we can construct test statistics to examine the validity of the zero constraints.

If the sub-matrix Ψ21,l is of dimension (m × k) for all l = 1, . . . , p, the total number of

constrained parameters is nc = mkp. Let C be a collection matrix which selects all the

parameters out of the β and c be a (nc × 1)-dimensional zero vector. For example, if we are

to conduct the zero restriction test,

H0 : ψ12,1 = ψ13,1 = ψ12,2 = ψ13,2 = 0,

with respect to a VAR(2) model, where ψij,l are elements of the coefficient matrix Ψl, then

C =


0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

 ,

since β as defined in (2.31) is a column vector collecting all parameters. Correspondingly, we

have c = (0, 0, 0, 0).
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Even though C takes the form of a selection matrix and c is a zero vector for the purpose of

testing Granger causality, the derivation of the test statistic can be done in a more general

setting. For testing

H0 : Cβ = c against H1 : Cβ 6= c (3.5)

with respect to an arbitrary (nc × K2p) matrix C of rank nc and an (nc × 1) vector c,

Proposition 2.4 states that the OLS estimator of β has an asymptotic normal distribution,

i.e.

√
T (β̂ − β)

d−→ N(0,Σβ). (3.6)

Then we have

√
T (Cβ̂ −Cβ)

d−→ N(0,CΣβC
′) (3.7)

due to Proposition B.3. Hence

T (Cβ̂ − c)′[CΣβC
′]−1(Cβ̂ − c) d−→ χ2(nc). (3.8)

Further replacing Σβ with its estimator, Σ̂β = Γ̂−1⊗ Σ̂u = T (ZZ′)−1⊗ Σ̂u, which is consistent

if Zt satisfies the conditions in Proposition 2.4, we obtain our test statistic as

λW = (Cβ̂ − c)′[C((ZZ′)−1 ⊗ Σ̂u)C
′]−1(Cβ̂ − c), (3.9)

which is a Wald statistic. λW in 3.9 follows an asymptotic χ2 distribution with nc degrees of

freedom. The result is summarized in the following Proposition, which is a restatement of

Proposition 3.5 of Lütkepohl (2005).

Proposition 3.2 (Wald Statistic). Under the conditions in Proposition 2.4, suppose that

Σ̂β = T (ZZ′)−1⊗ Σ̂u is nonsingular and H0 : Cβ = c is true, with C being an (nc×(k2p+k))

matrix of rank nc and c being an arbitrary nc-dimensional vector. Then

λW = (Cβ̂ − c)′[C((ZZ′)−1 ⊗ Σ̂u)C
′]−1(Cβ̂ − c). (3.10)

To compensate for the fact that Σβ is unknown in practice, the Wald statistic is usually

adjusted in the following way

λF = λW/nc, (3.11)
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and compared to the critical value of an F -distribution. This adjustment is due to the fact

that

ncF (nc, T )
d−−−→

T→∞
χ2(nc) (3.12)

Since an F (nc, T ) distribution has a fatter tail than the χ2(nc) distribution, the adjustment

takes into account the uncertainty of parameter estimation.

Another question to ask regarding the adjusted statistic is what degrees of freedom should

be used for the numerator and denominator of this statistic, respectively. From the previous

discussion, nc qualifies as the numerator degrees of freedom. For the denominator, the idea

is to use the number of observation minus the total number of parameters, as is applied to

the residual degrees of freedom in the context of a regression. In the case of a VAR model,

one can compute the degree of freedom with respect to either the entire VAR model, i.e.

kT − k2p− k, or each individual equation of the system, i.e. T − kp− 1. Either case should

result in a similar outcome if the sample size is large enough.

3.1.2 Testing for Instantaneous Causality

Due to Proposition 2.2, the absence of instantaneous causality for VAR(p) in (2.11) is char-

acterized as a zero constraint on some parameters in σ := vech(Σε). Thus we can derive the

asymptotic test for instantaneous causality with the same rationale underlying the derivation

of the Granger causality test.

Let nc be the number of zero constraints and C denote a (nc× (m+ k)(m+ k+ 1)/2) matrix

of rank nc, Then, for testing

H0 : Cσ = 0 against H1 : Cσ 6= 0, (3.13)

again by using Proposition B.3, the test statistic is given as

λ = T σ̃′C′[2CD+
k (Σu ⊗ Σu)D+′

k C′]Cσ̃, (3.14)

where σ̃ = vech(Σ̃ε) which is the vectorized ML estimator of Σε and λ follows the χ2(nc)

distribution asymptotically.
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Note that the estimator we derived in Section 2.3.2 is the OLS estimator instead of the ML

estimator. However, the form of the ML estimator coincides with that of (2.65), which is the

same as the OLS estimator up to a constant and thus they are asymptotically equivalent.

Also, thanks to the consistency of the OLS estimator, replacing all of the unknown quantities

in (3.14) by its OLS estimator, we have the following test statistic under the OLS framework

λW = T σ̂′C′[2CD+
k (Σ̂u ⊗ Σ̂u)D+′

k C′]Cσ̂, (3.15)

which is asymptotically equivalent to λ.

3.2 Residual Based Test

3.2.1 Test for Whiteness of Residuals

Due to its simplicity in computation, the portmanteau test is one of the most popular tests

for serial correlation of residuals. Let Ri denote the autocorrelation matrix of the residual

process at lag i for i = 0, 1, . . .. This test is designed to test the hypothesis

H0 : Rh = (R1, . . . , Rh) = 0 against H1 : Rh 6= 0. (3.16)

The autocorrelation matrix is defined as a standardized autocovariance matrix

Ri = D−1CiD
−1, (3.17)

where for i = 0, 1, . . ., Ci is defined as

Ci = E(utu
′
t−i) (3.18)

and D is a (k × k) diagonal matrix with the square roots of the diagonal elements of Σu on

its main diagonal. Further, Ch := (C1, . . . , Ch).

In practice, the aforementioned quantities are all unknown and need to be estimated. The

respective consistent estimators are given as

Ĉi :=
1

T

T∑
t=i+1

ûtû
′
t−i, (3.19)

Ĉh := (Ĉ1, . . . , Ĉh), (3.20)

R̂i := D̂−1ĈiD̂
−1, (3.21)
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where D̂ is a (k × k) diagonal matrix with the square roots of the diagonal elements of Ĉ0

on its main diagonal.

Following the illustration of Section 4.4.3 in Lütkepohl (2005), we present formulas of the

test statistic and derive a simpler form of it,

Qh := T

h∑
i=1

tr
(
R̂′iR̂

−1
0 R̂iR̂

−1
0

)
= T

h∑
i=1

tr
(
R̂′iR̂

−1
0 R̂iR̂

−1
0 D̂−1D̂

)
= T

h∑
i=1

tr
(
D̂R̂′iD̂(D̂R̂0D̂)−1D̂R̂iD̂(D̂R̂0D̂)−1D̂−1D̂

)
= T

h∑
i=1

tr
(
Ĉ ′iĈ

−1
0 ĈiĈ

−1
0

)
(3.22)

We cite the Proposition 4.7 of Lütkepohl (2005) for the asymptotic distribution of Qh.

Proposition 3.3 (Asymptotic Distribution of Portmanteau Statistic). Under the conditions

in Proposition 2.4, we have, approximately, for large T and h,

Qh = T
h∑
i=1

tr
(
Ĉ ′iĈ

−1
0 ĈiĈ

−1
0

)
(3.23)

= T vec(Ĉh)
′(Ih ⊗ Ĉ−1

0 ⊗ Ĉ−1
0 ) vec(Ĉh) ≈ χ2(k2(h− p)). (3.24)

The detailed proof for Proposition 3.3 can be found in Ahn (1988). Nevertheless, it is

important to point out the asymptotic χ2 distribution is only an approximation to the true

asymptotic distribution. The approximation becomes exact when h tends to infinity. Thus,

in practice we need to bear it in mind that even if the sample size is large enough, a small h

can produce misleading test results. On the other hand, because in practice the sample size

is always finite, we are interested in whether the asymptotic test is under or over rejecting

the null hypothesis relative to its nominal size. Using Monte Carlo techniques, researchers

found that with small samples, the test rejects the null hypothesis less often than indicated

by its size (see e.g. Davies, Triggs, and Newbold, 1977; Ljung and Box, 1978; Hosking, 1980).

To address this problem, it is proposed to use a modified test statistic of the form

Q̄h := T 2

h∑
i=1

(T − i)−1 tr(Ĉ ′iĈ
−1
0 ĈiĈ

−1
0 ), (3.25)
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which accounts for the number of terms in the summation of

Ĉi =
1

T

T∑
t=i+1

ûtû
′
t−i. (3.26)

Clearly, as T → ∞, T/[T 2(T − i)] → 1. Therefore Q̄h is asymptotically equivalent to Qh,

which leads to the following approximate asymptotic distribution of Q̄h

Q̄h ≈ χ2(K2(h− p)). (3.27)

When applying this test to a GVAR model, we need to keep in mind that GVAR is essentially

a VAR model with linear constraints on the parameters. For example, when we assign

different numbers of lags to each of the sub-sectional VARX*, we are in fact assuming that

certain blocks of parameter matrices of the final GVAR model are zero. Moreover, because the

coefficients that link the domestic variables of a VARX* and variables in other sub-sections

are solved through estimated parameters of star variables and the predetermined weights,

this can also be deemed as a restriction. As shown in Sections 4.4.2 and 4.4.3 of Lütkepohl

(2005), the derivation of an approximate, asymptotic distribution of the Portmanteau statistic

is based on an unrestricted estimator. In the case of a restricted VAR model, this test may

be more aggressive in rejecting the null hypothesis since the restrictions reduce the number

of parameters we can use to model the correlation.

In fact, this test can be adapted to the situations where we impose linear constraints on

coefficients of a VAR model. In the context of a general VAR model as defined in (2.11), one

way to formulate linear constraints is given as follows:

β = Rγ + r, (3.28)

where β is defined in (3.1), R is a known (K2p ×M) matrix of rank M , γ is a (M × 1)

vector of unconstrained parameters and r is a (K2p ×M) vector of known constants. This

specification of linear constraints seems to be different from the more familiar form

Cβ = c, (3.29)

where C is a known (N × (K2p)) matrix of rank N and c is a known (K2p × 1) vector.

However, it is easy to show that (3.29) is equivalent to (3.28).
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All of the implicit constraints that we impose on a GVAR model can be specified using

(3.28). On the one hand, for a VARX* model that includes less lags, the constraint is seen

as equating certain elements in β to zero. On the other hand, the estimated coefficients of

star variables can be seen as elements in γ with the predetermined weights being elements

of R.

Under the above settings, we reproduce Proposition 5.8 of Lütkepohl (2005) for the approx-

imated asymptotic distribution for the portmanteau statistic.

Proposition 3.4 (Asymptotic distribution of Portmanteau Statistic Under VAR with Linear

Constraints). Suppose that xt as defined in (2.11) is a stable, stationary, K-dimensional

VAR(p) process with identically distributed standard white noise ut and the parameter vector

β satisfies the restrictions (3.28). If the coefficients of yt are subject to linear constraints

specified as in (3.28), then the portmanteau test statistic, Qh has an approximate limiting

χ2-distribution with K2h− rank(R) degrees of freedom for large h.

Proposition 3.4 states that, when applying a portmanteau test to restricted VAR, instead

of subtracting K2p from K2h, we need to subtract the total number of unconstrained pa-

rameters, which equals the rank of matrix R. For a GVAR model, it is easy to see that the

unconstrained parameters are coefficients of the main variables and star variables in each of

its underlying VARX* models. The coefficients of common variables, if included, are also

unconstrained, and thus will also be subtracted in the determination of degrees of freedom,

even though common variables are assumed to be strongly exogenous.

3.2.2 Test for Normality of Residuals

Unless a rich enough dataset is available to support the use of a nonparametric approach

in the scenario generation exercise, a certain parametric model is required for the simulated

scenarios to cover a sufficiently wide range of possible future outcomes, so as to ensure the

adequacy of our risk analytics. Moreover, for the asymptotic analysis we derived previously

to hold, the residuals process of the VAR model is required to be standard white noise.

Except for the zero-mean and nonsingular covariance matrix requirements, confirmation of

the standard white noise assumption is two fold, namely independence and existence of
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moments up to fourth order. We apply the portmanteau test to determine whether there is

significant autocorrelation for the estimated residuals in Section 3.2.1. In this section, we

are to extend the Jarque-Bera Normality test for univariate random variables to multivariate

random variables. If the null hypothesis for both tests can not be rejected, at least we have

some degree of confidence that our GVAR model is a good representation of historical data.

The univariate Jarque-Bera test (see e.g. Jarque and Bera, 1987; Lomnicki, 1961) is con-

structed based on the respective estimators for the third and fourth moment of the random

variable in question, i.e. for x ∼ N(0, 1), we have E[x3] = 0 and E[x4] = 3. Further, let b1

and b2 be the estimator of third and fourth moment respectively, it can be shown that b1 and

b2 − 3 follow a joint normal distribution and test statistic is then constructed accordingly.

Following the derivation in Section 4.5 of Lütkepohl (2005), we first present the asymptotic

result for a white noise process. We then reproduce Proposition 4.10 for the asymptotic

results of estimated residuals of a VAR process.

Let ut be a K-dimensional Gaussian white noise process such that ut ∼ N(µu,Σu). Let P be

a matrix such that PP ′ = Σu, which can be obtained from a Cholesky decomposition. Then

wt = (w1t, . . . , wKt)
′ := P−1(ut − µt) ∼ N(0, IK), (3.30)

which is a vector of independent standard normal variables. Hence,

E


w3

1t

...

w3
Kt

 = 0 and E


w4

1t

...

w4
Kt

 =


3
...

3

 =: 3K . (3.31)

The same rationale is used to construct the normality test for a white noise process. Suppose

that we have observations u1, . . . , uT and define

ū :=
1

T

T∑
t=1

ut, Su :=
1

T − 1

T∑
t=1

(ut − ū)(ut − ū)′, (3.32)

and Ps is a matrix such that PsP
′
s = Su. Then Ps is a consistent estimator of P . Further
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define

vt := (v1t, . . . , vKt)
′ = P−1

s (ut − ū), t = 1, . . . , T, (3.33)

b1 := (b11, . . . , bK1)′ with bk1 =
1

T

T∑
t=1

v3
kt, k = 1, . . . , K, (3.34)

b2 = (b12, . . . , bK2)′ with bk2 =
1

T

T∑
t=1

v4
kt, k = 1, . . . , K, (3.35)

where b1 and b2 are the estimators of the moments in (3.31). With the notations defined

above, the following proposition, which is a reproduction of Proposition 4.9 of Lütkepohl

(2005), states the asymptotic distribution of these estimators.

Proposition 3.5 (Asymptotic Distribution for Third and Fourth Moment Estimators). If

ut is a Gaussian white noise such that ut ∼ N(µu,Σu), where Σu is a nonsingular matrix,

then

√
T

 b1

b2 − 3K

 d−→ N

0,

6IK 0

0 24IK

 . (3.36)

With this proposition, the overall test statistic for the third moment can be constructed as

λ1 := Tb′1b1/6
d−→ χ2(K), (3.37)

which is used to test

H0 : E


w3

1t

...

w3
Kt

 = 0 against H1 : E


w3

1t

...

w3
Kt

 6= 0. (3.38)

Similarly, for the fourth moment, the hypotheses are set up as

H0 : E


w4

1t

...

w4
Kt

 = 3K against H1 : E


w4

1t

...

w4
Kt

 6= 3K , (3.39)

which is tested using

λ2 := T (b2 − 3K)′(b2 − 3K)/24
d−→ χ2(K). (3.40)
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One can also test both moments jointly using

λ := λ1 + λ2
d−→ χ2(2K), (3.41)

for which the null hypothesis will be the combination of H0 in (3.38) and (3.39).

As discussed in White and MacDonald (1980) and Jarque and Bera (1987), the test generally

has poor power for a typical small sample size. Moreover, because these tests are based

on estimators of the third and fourth moments, we can not expect them to have power to

distinguish non-normal distributions that have the same third and fourth moments as those

of normal distributions.

For a general K-dimensional VAR(p) process

Xt =

p∑
l=1

ΦlXt−l + ut, (3.42)

the estimated residuals are obtained by

ût := Xt −
p∑
l=1

Φ̂lXt−l, (3.43)

where Φ̂l is the consistent and asymptotically normally distributed estimator of Φl. By using

the estimated residuals, the covariance matrix of the innovation process is estimated as

Σ̂u :=
1

T −Kp− 1
. (3.44)

Let P̂ be a matrix satisfying P̂ P̂ ′ = Σ̂u, so that it is a consistent estimator of P . Then we

define

ŵt := (ŵ1t, . . . , ŵKt)
′ = P̂−1ût, t = 1, . . . , T, (3.45)

b̂1 := (b̂11, . . . , b̂K1)′ with b̂k1 =
1

T

T∑
t=1

ŵ3
kt, k = 1, . . . , K, (3.46)

b̂2 = (b̂12, . . . , b̂K2)′ with b̂k2 =
1

T

T∑
t=1

ŵ4
kt, k = 1, . . . , K. (3.47)

With the above notations, we restate Proposition 4.10 of Lütkepohl (2005) here.

Proposition 3.6 (Asymptotic Distribution of Residual Third and Fourth Moment Esti-

mators). Let yt be a stationary, stable K-dimensional VAR(p) process as in (3.42) with a
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Gaussian standard white noise. Then the estimators of residual third and fourth moments as

defined in (3.46) and (3.47) converge to a multivariate normal distribution, i.e.

√
T

 b̂1

b̂2 − 3K

 d−→ N

0,

6IK 0

0 24IK

 . (3.48)

Similar to (3.37), (3.40) and (3.41), the test statistic based on b̂1 and b̂2, i.e.

λ̂1 := T b̂′1b̂1/6
d−→ χ2(K), (3.49)

λ̂2 := T (b̂2 − 3K)′(b̂2 − 3K)/24
d−→ χ2(K), (3.50)

λ̂ := λ̂1 + λ̂2
d−→ χ2(2K), (3.51)

can be constructed to test the same hypothesis.

In the context of an estimated GVAR model, we note that the estimated covariance matrix

Σ̂u is obtained by stacking the estimated covariance matrices of all VARX* and then solving

the structural VAR model. Empirically, the difference between the estimated covariance

matrix obtained in such a way and that obtained based on estimated residuals is substantial.

Following the standard framework of the GVAR model, we recommend that the stack-and-

solved covariance matrix be used, so as to ensure the covariance matrix to be tested is

consistent with the one used in simulation.

For an estimated GVAR model without exogenous variables, the test derived can be applied

directly because the multivariate Jarque-Bera test does not require the VAR model to be

unconstrained. On the other hand, if we are to include exogenous variables, the asymptotic

distributions of λ̂ should not be affected, because the inference can be conducted conditioning

on fixed values of exogenous variables (see Section 2.2.3 and Engle, Hendry, and Richard

(1983)). Thus we will apply the test to general GVAR models.
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Chapter 4

Empirical Analysis

With the help of the GVAR Model, we are now able to construct a joint factor model

which endogenously includes all market risk factors that directly impact a complex multi-

asset portfolio. Moreover, to obtain a joint factor model to facilitate portfolio analytics

conditioning on different perspectives of the future macroeconomic environment, a reasonable

subset of economic factors will also be a part of the joint factor model. Note that for a simple

portfolio, for which the joint factor model is only required to include a small number of factors,

the traditional VAR model is ideal from the perspective of the complexity/efficiency trade-

off. What essentially necessitates the use of the GVAR model is the presence of the “curse

of dimensionality” problem, in the case where a joint model with dozens or even hundreds of

factors is required. In order to illustrate the flexibility for inclusion of exogenous variables,

we construct the joint risk and economic factor model as specified in (1.4). The specification

is also examined with the causality tests constructed in Section 3.1. Note that, however, if

we are to collect a large set of economic variables in practice, we may need to model them

endogenously so as to enable parameter estimation for high-dimensional data. Regardless of

whether Granger causality is supported by the data or not, this will not cause a problem

since weak Granger causality simply results in models with parameters of lower dimension.

Once the joint factor model is estimated, we can then draw simulation of future scenarios. In

the case that economic factors are treated exogenously, it is required that the complete paths

of evolution for these economic variables are available so that we can conduct simulation with

the estimated model. This, however, is not necessary if we instead treat economic variables
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endogenously, in which case the techniques introduced in Section 2.5 are applied to enable the

simulation. In either case, simulation or forecasting is not feasible when the only information

regarding the future outcome of economic factors available are some linear combinations of

these variables. In this case the approach introduced in Section 2.6 is available as a quick and

easy solution to interpolate the future path of economic variables under these constraints,

unless this information can be obtained in a more direct way.

Once we obtained sets of simulated market risk factors conditioned on different economic

scenarios, the task for the joint factor model is accomplished. To illustrate the effectiveness

of the simulated scenario, we further construct a virtual portfolio which is driven by the set

of risk factors we selected. We value our portfolio on simulations of risk factors and compute

expected returns and a risk metric (Value-at-Risk) for the returns of the portfolio to analyze

the risks of our portfolio under different future macroeconomic conditions.

The rest of this chapter is organized in the following way. Section 4.1 describes the con-

stituents of the virtual portfolio and how each type of asset is evaluated in this thesis. The

mark-to-market value of the portfolio as of 31 December 2014 is also given in this section.

In Section 4.2, we construct three economic scenarios which respectively reflect favorable,

unfavorable and neutral views on future outcomes of macroeconomic conditions. The con-

stituents of economic scenarios are determined based solely on an expert judgment. We also

produce an unrealistically bullish economic scenario, which is the forecast based on a statis-

tical model. Section 4.3 demonstrates the procedure with which we construct the joint factor

model of the portfolio risk factors and the economic variables. Various tests are conducted

on the estimated model to examine the validity of the model specification. We also give some

illustration of simulated scenarios of risk factors in this section. Finally, in Section 4.4 we

compare the expected performance under each of the economic scenarios by analyzing its

expected returns and risk metrics.

4.1 The Portfolio

To demonstrate the ability of the GVAR model to cope with a large joint system of portfolio

and risk factors, we construct a fairly complex multi-asset portfolio which consists of equities,
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Table 4.1: High-level Summary of the virtual portfolio.

MtM($M) USD EUR GBP JPY Total

Equity 46.6 2.1 56.1 0.1 104.9

Bond 51.2 68.9 120.1

Credit 3.3 1.6 4.9

Total 101.1 72.6 56.1 0.1 229.9

government bonds and credit default swaps (CDS) denominated in four different currencies:

USD, EUR, GBP and JPY. The portfolio is evaluated in terms of USD. The high-level

summary of the entire portfolio as of 31 December 2014 is given in Table 4.1.

4.1.1 Equity Portfolio

Past empirical research on stylized facts of stock prices states that, while serial autocor-

relations are negligible for low frequency data, at higher frequency (usually intra-day time

scale) their presence is significant (see Cont, 2001, for details). Moreover, Tanaka-Yamawaki

(2011) states that cross-correlations between stock prices are present as multiple stocks in the

same business sectors move coherently (although these correlations are never static through

time). Therefore, it is reasonable to represent a panel time series of equity prices with a

vector autoregressive model, although in general we do not expect significant coefficients of

autocorrelation.

In our virtual portfolio, we hold a combination of well-diversified long positions in equities

traded on USD, EUR, GBP and JPY stock exchanges. For EUR, GBP and JPY equity

portfolios, we assume that they track the local market indexes closely enough such that their

performance can be approximated with the corresponding market indexes. We model the

USD equity portfolio in more detail by using the sector indexes, for example, Consumer

Discretionary, Energy, Finance, etc., to represent the stocks in our portfolio. Index values

are taken as proxies of sector portfolio prices. As of 31 December 2014, the entire equity

portfolio is worth $105M, with 44% in USD, 53% in the GBP market and the rest in the

EUR and JPY markets. The composition of USD equity portfolio is summarized in Figure
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4.1.

Figure 4.1: US Equity Portfolio Composition.

Before leaving the EQ portfolio, we want to point out that modeling equity portfolios using

an index approximation is not necessary. In a recent application of the GVAR model (see

e.g. Bussière, Chudik, and Sestieri, 2009), practitioners were able to model nearly a hundred

variables endogenously. Thus for an EQ portfolio with a moderate number of constituents,

it is possible to model using historical price data for each individual stocks.

4.1.2 Interest Rate Portfolio

Our interest rate portfolio consists of long positions in US and German government bonds

with remaining time to maturity ranging from 6 months to 30 years. We assume that all

our government bonds whose time to maturity is longer than 1 year will bear 2.5% coupons,

which are payable semi-annually. Those expiring within a year are all zero-coupon bonds.

Note that we are to project the portfolio one year forward. Thus, a reinvestment strategy

may impact the actual portfolio performance since there will be cash inflows due to coupon

payments and principal settlement. However, we simplify this part by assuming that the

matured bond will be replaced with a new one with the same term to maturity and coupon

income will be taken out of the portfolio. In this case, a small fraction of capital gain (or

loss) and cash income is ignored, which should not cause a material impact.
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Modeling interest rates under a real world measure has always been an extensive area of

research. The term structure model that currently prevails in the industry relies on some

dimension reduction techniques such as principle component analysis to enable inference for

time series of differences or log differences of historical interest rate data. Rebonato et al.

(2005) commented on this class of approaches and proposed a semi-parametric model to over-

come some of its limitations. Unfortunately, although the simplicity in the implementation

of this approach is very appealing, it can not be incorporated into the GVAR framework.

Another class of term structure models approximates the panel time series of the term struc-

ture at each time point with a Nelson-Siegel (NS) curve and model the evolution of the three

parameters of NS curves with a Vector Autoregressive model (see e.g. Diebold and Li, 2006;

Xiang and Zhu, 2013). The three parameters can be easily incorporated into the GVAR

system as GVAR is essentially VAR with certain parameter restrictions imposed. However,

the implementation per se is extremely costly. In this study, we model the panel time series

of differences (or logarithmic differences at the long end) of the term structure, in which

6 months, 1 year, 3 years, 5 years, 7 years and 30 years are included directly as part of

the GVAR joint factor model, and enjoy the simplicity of implementation. This approach

does not impose any restrictions on curvature of simulated term structures. However, the

simulations seems reasonable in general. Another problem is modeling the term structure

under the current regime of low interest rates. The global capital market post 2008 has gone

into an era of low interest rates and this phenomenon seems to be persistent. Observing our

data in Figure 4.2, which span the period of 1998 to 2014, we found that the logarithmic

difference time series of the short end of the spot curve clearly presents the characteristic

of regime switching. Using this data in model estimation and simulation leads to extremely

unreasonable spot rate curves. This is mainly due the regime change we observed. Thus,

we model the short end of the term structures at difference instead. The difference data is

illustrated in Figure 4.3. This approach also has the benefit of allowing negative interest

rates to be generated at the short end, which conforms with the current market observation.

The valuation of a bond with an arbitrary term to maturity requires the knowledge of the

entire term structure. The model presented by Cairns (2004) allows for such flexibility.
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Figure 4.2: This figure shows the log difference of the time series for 6 month interest rates

on USD and German government bonds. Data pre-2008 seem to be generated under a regime

of low volatility while post-2008 data are much more volatile.

Figure 4.3: This figure displays the difference of the time series for 6 month interest rates on

USD and German government bonds.

63



Figure 4.4: Interest Rate Portfolio Composition.

However, as a limitation of the approach we choose for this study, only values at reference

points that we include in the model are known exactly. As an approximation, we interpolate

between these points linearly. Such a treatment may leave some space for arbitrage but it

is not a material problem in this application. Finally, as of 31 December 2014, the entire

interest rate portfolio is worth $120M. Its composition is summarized in Figure 4.4.

4.1.3 Credit Portfolio

A small portion of the virtual portfolio is formed of long positions in credit derivatives such

as credit default swaps (CDS) and CDS indexes (CDX.NA.IG and CDX.NA.HY). A CDS is a

contract between two parties where an array of credit events with respect to a certain issuer,

which is usually not involved in the contract, are specified. Until the trigger of any credit

events, the buyer (long position) of the CDS pays a periodic fee specified in the contract

(usually payable quarterly) to the seller (short position). Upon the triggering of a credit

event, the seller has the obligation to pay the buyer the notional amount specified in the

contract in return for the defaulted bond with the same amount of face value.

The accurate valuation of CDS is rather complicated. The industry standard is the JPMorgan

CDSW calculator, available on the Bloomberg terminal. As the focus of this thesis is on the

construction of the GVAR joint factor model instead of an asset valuation, we follow the CDS
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valuation approach presented in Appendix I of Beinstein and Scott (2006) which is devised

based on certain simplifying assumptions. Here we briefly describe this approach.

Assume that the credit curve is flat, namely the CDS spread for the same entity will be the

same through all terms to maturity. In particular, we will use the current market spread of the

CDS to infer the default probability, PD, for all future cash flows in valuation. Also assume

that no accrual CDS fee is payable1. Then the risk neutral PD, between time (in integer

years, from commencement of the contract) n and time n+1, given that the underlying entity

has not defaulted until time x, is approximately current spread/(1 − recorvery rate), where

the recovery rate is the proportion of the notional amount that can be recovered by selling the

defaulted bond and is assumed to be 40%. Now, to interpolate between integer years, assume

that the time until default between any adjacent integer years, given that the entity has not

defaulted up to the beginning of this year, follows an exponential distribution, then the

probability of surviving beyond any time x (not necessarily an integer) from commencement

of the CDS contract is approximately 1/(1+PD)x. Then we will use this survival probability

to adjust the net cash flows from unwinding the current CDS contract by entering an offsetting

one. The present value of the risk-adjusted cash flows at the risk-free rate of interest will

be the mark-to-market value of the current CDS. Here we use the term structure of interest

rates on government bonds of the same denominated currency as the risk-free rates. The

difference between a contract spread and a current market spread, multiplied by the notional

amount of the contract, is the unadjusted cash flows from unwinding the contract.

We also take positions in CDS indexes such as investment grade (IG) and high yield (HY)

Dow Jones CDX. CDX indexes give investors the opportunity to take exposure to a basket

of credits of similar ratings. The CDX index is constructed in a way that is very similar

to a single-name CDS contract, except that the underlying credit is a portfolio of reference

entities with equal weights. Like a CDS contract, the CDX indexes have fixed maturities

and the seller will receive periodic payments specified by a deal spread, with the current

spread determined by market demand and supply. Since the indexes are designed to reflect

performance of a portfolio of entities, default of any one entity does not lead to termination

of the indexes but only a pro-rated reduction of notional. However, in the projection of our

1In practice, if the reference entity defaults between coupon dates, a pro-rated fee is payable.
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Figure 4.5: Credit Portfolio Composition.

portfolio, we do not quantify this partial default, as the impact of partial default tends to be

immaterial over the first year of the life time of the CDX indexes.

In the virtual portfolio we hold only long positions in CDS and CDX contracts with 5 years

to maturity. We assume that the deal spreads are either 1% or 0.5%. The composition of

our credit (CR) portfolio, valued at $4.9M as of 31 December 2014, is illustrated in Figure

4.5.

4.1.4 Market Data

The sampling period for all data of market variables ranges from 30, June, 1998 to 31,

December, 2014. Thus our quarterly time series contains 67 longitudinal data points. For

each data point there are 13 variables for EQ, 12 variables for IR and 5 variables for CR.

We model the USD denominated EQ portfolio at a more granular level by representing the

portfolio with ten S&P 500 sectors indexes, while the GBP, EUR and JPY EQ portfolios

are approximated roughly by only one major stock index of the region. The sector indexes

selected for our data set are S&P 500 Consumer Discretionary, S&P 500 Consumer Staples,

S&P 500 Energy, S&P 500 Financials, S&P 500 Health Care, S&P 500 Industrials, S&P 500

Info Tech, S&P 500 Materials, S&P 500 Telecom Services and S&P 500 Utilities. All compo-

nents of these indexes belong to the S&P 500 index and are classified according to the Global
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Industry Classification Standard. The respective indexes selected to represent the GBP, EUR

and JPY EQ portfolios are the FTSE 350, which includes a diversified portfolio of 351 stocks

listed on the London Stock Exchange; MSCI EMU, which consists of 240 constituents and

covers approximately 85% of the free float-adjusted market capitalization of the European

Economic and Monetary Union; and TOPIX 500, which measures the performance of the 500

most liquid stocks with the largest market capitalization that are members of the TOPIX

index. All index data are obtained from the Bloomberg terminal.

For the IR portfolios, we model the evolution of the spot rate curves of US and German

government bonds. The data used are the zero coupon bond yields up to 30 years of term

to maturity (values for longer terms are bootstrapped from coupon bond prices), which

are directly available from the Bloomberg terminal. The compounding frequency is annual.

Among all available terms, we selected the 3M, 6M, 1Y, 3Y, 5Y, 7Y, 10Y and 30Y as reference

points in our term structure model. Note that 3M and 10Y terms are assumed to be the

proxy for short-term and long-term policy rates of each sovereign respectively and thus are

included in the economic data set instead.

For the CDX in the CR portfolio, we use the time series of theoretical spreads on 5-year

CDX.NA.HY and CDX.NA.IG contracts at issuance as proxies. The CDX data are down-

loaded from the Bloomberg terminal. As stated in Section 4.1.3, the CDS spread varies

with time to maturity, even for the same entity. However, each series of CDX has a differ-

ent basket of credits. Therefore forming a term structure of credit spreads with data from

different series is not theoretically sound either. Thus we rely on the assumption of a flat

spread curve and model the time series of a single point of the spread curve for each CDX

contract. For modeling of the single name CDS contracts, we use the BofA Merrill Lynch

US Corporate Master Option-Adjusted Spread, which is a capitalization-weighted average of

option-adjusted spreads on corporate bonds with issuers rated as investment grade, as the

proxy of a USD denominated investment grade single name CDS spread. BofA Merrill Lynch

US High Yield Option-Adjusted Spread, which is the counterpart of the previous index for

below-investment grade rated entities, is used as the proxy for a USD denominated high

yield single name CDS spread. BofA Merrill Lynch Euro High Yield Index Option-Adjusted

Spread is used as the proxy for a EUR denominated high yield single name CDS spread.
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We note that the corporate bond spread is generally different from the CDS spread. How-

ever, these are the best existing proxies for the single name CDS spread. The corporate

bond spread indexes data are constructed by BofA Merrill Lynch and retrieved from FRED,

Federal Reserve Bank of St. Louis.

4.2 The Economic Scenarios

Although the set of risk factors can be determined based on the nature of the assets in

the portfolio, the economic factors conditioned on which the scenarios are generated have

to be chosen with experience and expert judgment. The data availability and modeling

requirements are also considerations that need to be taken into account in the selection of

the economic factors.

4.2.1 Constructing Economic Scenarios

In this study we generate risk factor scenarios conditioned on point economic scenarios only,

namely each economic scenario is a vector of economic variables with fixed values. Referring

to the S&P economic research, Credit Week, April 22nd 2015, we construct three economic

scenarios expressing favorable, best-estimate and unfavorable views on future macroeconomic

conditions respectively. The economic factors selected and the construction of the scenarios

can be viewed in Table 4.2.

We select a manageable set of 18 economic variables, which consists of macroeconomic indi-

cators for the regions where we invested in, such as real GDP growth, inflation (CPI growth)

and interest rates. Due to our focus on modeling of the USD assets, it is mainly the variation

of US economic variables that forms different scenarios. In general, economists expect the

global economy to continue to expand in 2015, at a slightly higher pace than 2014. In the

UP and BASE scenarios we anticipate to see a growth of 3.4% and 3% respectively, both

higher than the 2.4% growth in 2014. Moreover, EU, GB and JP are all expected to ex-

pand faster than they did in 2014, when the real growths were 1.2%, 2.7% and -0.1%. On

the monetary policy side, EU is expected to continue its quantitative easing program and

maintain a level as low as 0.1% for the short-term (3-month) and 0.3% for the long-term
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Table 4.2: The three examples of economic scenarios. The FX’s stand for exchange rate

converted to USD.

UP BASE DOWN Unconstrained

GDP Growth (GB) 2.8% 2.8% 2.8% 8.7%

GDP Growth (US) 3.4% 3% 2.1% 6.7%

GDP Growth (EU) 1.5% 1.5% 1.5% 5.9%

GDP Growth (JP) 0.8% 0.8% 0.8% 4.9%

Inflation (GB) 0.1% 0.1% 0.1% -0.6 %

Inflation (US) -0.3% -0.3% -0.3% 2.9%

Inflation (EU) -0.3% -0.3% -0.3% 1.2%

Inflation (JP) 0.4% 0.4% 0.4% -0.2%

Unemployment (US) 5.4% 5.4% 5.8% 4.0%

IR Short (USD) 0.4% 0.3% 0% 0.4%

IR Short (EUR) 0.1% 0.1% 0.1% 0.8%

IR Long (USD) 2.4% 2.3% 2.1% 3.4%

IR Long (EUR) 0.3% 0.3% 0.3% 1.0%

FX (GBP) 1.428 1.428 1.428 1.941

FX (EUR) 1.111 1.111 1.111 1.287

FX (JPY) 0.008 0.008 0.008 0.007

Oil Price 50.12 50 48.56 87.12

S&P 500 Return 10% 7.6% 8.5% 43.0%
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(10-year) interest rates. In the favorable scenario, the Federal Reserve will start to raise the

policy rates. However, there will still be a significant degree of uncertainty in the process of

normalization of the monetary policy. Thus we expect policy rates to stay at the 2014 level

in the BASE scenario and drop if the economic performance turns out to be unfavorable.

A counterintuitive point may be the S&P 500 return in the DOWN scenario, which is even

higher than that in the BASE scenario. This is because we believe a continued quantitative

easing in the DOWN scenario may result in a capital injection into the equity market.

4.2.2 Economic Data

The economic data spans the same period as that of the market data and contains time series

for all of the variables listed in Table 4.2. The quarterly real GDP data for all countries are

downloaded from the S&P Capital IQ platform, and cross-validated with Bloomberg data.

The GDP growth figures are computed as a first-difference of logarithmic GDP to reduce

over-dispersion. The inflation data for all countries are derived from the their CPI times

series, which are obtained from the same source, as the logarithmic first-difference, which

represents an approximate growth rate of the variable. The unemployment rates are reported

on a monthly basis on the S&P Capital IQ platform. We take a simple average of the data

of the three months in the same quarter to convert monthly data to quarterly frequency.

As discussed in Section 4.1.4, the 3M and 1Y spot rates on the sovereign bonds are taken

as the short- and long-term rates respectively. The exchange rates are close prices in terms

of USD per unit of the currency, which are recored on the last day of each quarter and

obtained from the S&P Capital IQ platform. The time series for oil prices are the Crude Oil

Prices: West Texas Intermediate (WTI - Cushing), published by the US. Energy Information

Administration and retrieved from FRED, Federal Reserve Bank of St. Louis. The oil prices

are reported on a daily basis and the missing values are replaced by the price on the previous

day. The values on the last day of the quarter are extracted to form the quarterly time series.

Finally, the S&P 500 index is selected as the indicator for the US equity market. The time

series data of the S&P 500 index are obtained from the Bloomberg terminal.
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(a) US Real GDP (b) GB Real GDP (c) GE 3-month policy rate

(d) US 10-year policy rate (e) Oil Price (f) S&P 500 Index

Figure 4.6: Interpolating time series of economic variables over 2015 conditioning on the

scenarios given in Table 4.2.

4.2.3 Interpolating Economic Scenarios

Note that the data in Table 4.2 describe the evolution of economic variables that spans a

one-year period, while in our joint factor model, the economic variables evolve on a quarterly

basis. The interpolation technique is applied to translate the annual data to a quarterly

frequency. We model logarithmic first-differences of the 18 economic variables, except for the

unemployment rate and interest rates, which are modeled at first difference. We examine

the quarterly time series, which span the period from Q2 1998 to Q4 2014, of the economic

variables that we use to estimate the joint factor model by conducting an augmented Dickey-

Fuller test on the differenced data for stationarity. The test results are presented in Appendix

C.1. We found that after the first-difference/logarithmic first-difference treatment, the null

hypothesis of a unit root can be rejected in most series. As a result, we continue with the

treatments tabulated in Table C.1.

We first fit a VAR model to the first-differenced panel time series of the economic variables

and then apply the technique introduced in Section 2.6 to interpolate the time series under the

fitted model, conditioning on the scenarios given in Table 4.2. We compare the interpolation

results given by the VAR models with 1, 2 and 3 lags respectively and determine to proceed

with the VAR(2) model. We only present the interpolated time series for some variables due

to the space limit. Note that the magnitude of the y-axis represents values at first difference.
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As demonstrated in Figure 4.6, the interpolations under different scenarios generally present

a similar cyclical pattern as their historical paths and seem to be reasonable. In Figure 4.6b,

we note that, although the forecasts of the UK real GDP growth over 2015 do not vary across

scenarios, there are still variations between paths under different economic scenarios due to

their correlation with other variables. Such interdependence causes some unexpected interpo-

lation results. For example, the UK real GDP growth is the highest under DOWN scenario

among the three towards the end of the interpolation period. Although the total growth

during 2015 is still 2.8%, it is possible that the market is projected to be less bullish due

to such interpolations. A similar observation is made in Figure 4.6e. As an approximation,

interpolation introduces model mis-specification. Since the conditional forecasts of portfolio

risk factors are very sensitive to the input economic scenarios, a better solution is to obtain

reliable economic forecasts of the same frequency as the model. Finally, note that the un-

constrained forecasts of the economic variables, which are generated directly from the fitted

VAR(2) model, are much more bullish than the constrained ones. The unrealistic bullishness

is expected as a result of forecasting the economy with purely statistical tools. When condi-

tioning on this scenario to simulate portfolio risk factors, we expect this bullishness to have

a major impact on the performance of the portfolio.

4.3 The Joint Factor Model

In this section, we construct a joint factor model with the GVAR approach using the quarterly

panel time series that spans the period of Q2 1998 to Q4 2014. We model the first-difference

or logarithmic first-difference of the panel time series and assume that all of the original time

series are of order one (I(1) variables) so that we are not worried about the cointegration

relations in the GVAR model. The stationarity assumption is confirmed by using the ADF

test in a similar manner as Section 4.2.3. The test results are presented in Appendix C.2.

Note that there are three times series that fail to reject the null hypothesis of a unit root even

after being first differenced. By observing their plots in Figure 4.7, we reckon that this may

result from switches in variance, rather than non-stationary in mean. Therefore, we proceed

with the first-difference treatment tabulated in Table C.2 and Table C.3. As mentioned in
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(a) USD IR - 6 Month (b) USD IR - 1 Year (c) USD IR - 7 Year

Figure 4.7: Plots for first-differenced time series of 6 month, 1 year and 7 year spot rates on

US government bonds.

Section 4.1, we include equity indexes (13), CDS/CDX spread (5), and reference points on

the spot rate curves of US and German government bonds (12) as endogenous variables of

the GVAR model and the 18 economic factors listed in Table 4.2 as common factors.

4.3.1 Sub-sector Model Specification

The first step in constructing a GVAR model is specifying and estimating the VARX* model

for each sub-sector. In previous empirical applications of the GVAR approach in global

macroeconomic modeling, such a sectioning is intuitive. Usually econometricians assume

that all of the economic variables form a large endogenous system and each country acts as

a sub-sector. Naturally, the weighted averages of the economic variables of the same type,

e.g. GDP, export, import, from all countries, are defined as the star variables.

In this study, we attempt to construct a joint factor model, where the portfolio risk factors

are determined endogenously while the economic variables are exogenous to the system.

Note that the extent of a parameter shrinkage by using a GVAR approach is related to how

granular the sectioning is. The larger the sub-sector compared to the entire system, the less

sufficient the parameter shrinkage is. Since our portfolio consists of assets denominated in

four currencies, using a currency as a sub-sector rendering a small number of sub-sectors

and thus an insufficient shrinkage in the parameter space. The same problem exists when

sectioning variables by asset type. To maximize the parameter shrinkage, we make each

portfolio risk factor a sector by itself. Then we take the average of variables by asset type

as the star variable. Note that the star variables are sector-specific. On the one hand, it

is a common practice that the domestic variables of the VARX* model for each sub-sector
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are not included in the computation of the corresponding star variables. On the other hand,

weights can vary across different sub-sectors. As for our case in particular, the star variables

are averages of US equity indexes, world equity indexes, credit derivatives spreads, spot rates

of US government bonds and of German government bonds. A financial justification of this

is that one would expect the star variables to act as proxies of unobservable common factors.

In this case, our star variables represent aggregate movements in different markets.

The choice of weights that one should employ in constructing star variables still remains an

open question in the empirical literature. In modeling global trade, possibilities include trade

shares and GDP weights, which are intuitive. However, as stated in Section 2.1, the weights

are of secondary importance as long as they meet the granularity conditions. Therefore,

we assign the same weight to every variable in the calculation of star variables to approach

granularity conditions.

Finally, we test for Granger causality from the domestic variable of each VARX* model

to the common factors (economic variables) and instantaneous causality. As suggested by

the test results tabulated in Appendix C.3, both Granger and instantaneous causality exist

between portfolio risk factors and economic factors. Interestingly, however, we observe that,

when testing in the bivariate systems formed by a pair of a portfolio risk factor and an

economic variable, the Granger causality test becomes insignificant. The test results for

instantaneous causality justify the inclusion of the contemporaneous value of the economic

variables. Despite the test results for Granger causality, we proceed with the choice of

modeling the economic variables exogenously.

4.3.2 Fitting VARX*

In other empirical applications of the GVAR model, significant effort is devoted to a specifi-

cation of cointegration relations, if the forcing variables are modeled as I(1). In the presence

of I(1) variables, we can fit the VARX* through its error-correction form (see Chudik and

Pesaran (2014) for details). In our application, we focus on modeling the short-term dynam-

ics of portfolio risk factors and include only stationary time series. Thus, for each VARX*

specified in Section 4.3.1, we estimate the parameters in formula (2.5) with mean-adjusted

data. Note that the VARX* model allows for the flexibility of different lags for domestic
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variables, star variables and common factors. The model selection results with both AIC and

BIC are tabulated in Appendix C.4. We take lags suggested by BIC to avoid an over fitting

problem and retain higher variability in residual terms. The VARX* models with BIC lags

are then estimated using the OLS techniques introduced in Section 2.3.

Once the sub-sector models are established, we then stack and solve them to obtain the final

GVAR model, following the steps in Section 2.4. In our application, the system is solvable.

Therefore we save the effort of appending the system with equations on star variables to make

the system uniquely determined. Note that the solved system of VARX* models essentially

forms a VAR model with linear restrictions on the parameters. All of the residual-based tests

for the restricted VAR models are therefore applicable. Using the solved GVAR model, we

estimate the residuals and apply the tests for whiteness and normality introduced in Section

3.2. Not surprisingly, both tests reject the null hypothesis with a high level of confidence (over

99.9%). If we are only concerned with the mean scenario of portfolio risk factors under each

conditioned economic scenario, the assumptions regarding residuals are unimportant. More

effort can be invested into a careful modeling of residuals if we are interested in obtaining

a full conditional distribution under each economic scenario. The possible solutions include

a vector moving average process, parametric distributions other than the assumed normal

distribution or even a non-parametric approach. For this study, we will proceed with the

assumption of a normal white noise.

4.3.3 Out of Sample Forecast

We leave out the data over the period of Q1 2013 to Q4 2014 and fit a GVAR model with

the above specification to the truncated data. We then project the portfolio risk factors by

8 periods forward, conditioning on the realized path of the economic variables and compare

the forecasts with the actual evolution of the markets to see how well the GVAR model under

our specification can capture the market variation.

In Figure 4.8, we present the out of sample forecast for some portfolio risk factors. The upper

and lower bound present a 99% confidence interval. Note that due to our normality assump-

tion, the complete distribution of the forecast can be obtained analytically. Nevertheless, if

a more sophisticated approach is applied to model the residuals in practice, it is still possible
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Figure 4.8: Projected portfolio risk factors 2 years ahead out of sample, conditioning on the

actual evolution of the economic variables over the projection period.

to approximate the distribution with a Monte-Carlo method. Observing the plots of the

forecasts, we find that for most of the portfolio risk factors, the actual path is covered by the

99% interval. This is good news for the GVAR approach in applications to risk management

since the model contains the actual outcome with its 99.5% VaR, which is a confidence level

frequently adopted by financial institutions. Moreover, some marginal processes even follow

the actual paths quite closely, testifying to the effectiveness of the GVAR approach.

In Figure 4.9, we further observe the ability of the GVAR model in modeling the dependence

structure of short-term dynamics in the joint system formed by the risk factors and economic

variables. It is easy to see that the GVAR model successfully captures the linear correlation

within the system, especially for credit and interest rate sectors, where the pattern of de-

pendence has been stable over the sample period. It seems that the dependence structure in

the equity sector is much more difficult to capture with a linear model. However, we would

attribute this observation to a characteristic of the equity market, rather than to the model

limitation.

In sum, the GVAR model has the abilities to capture both the trend and variability in the

marginal portfolio risk factor processes and to model the linear dependence between variables
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Figure 4.9: The mean path of some portfolio risk factors.

under the given economic forecasts, provided that the system is indeed stable over the sample

period.

4.4 Portfolio Analytics

In this section, we simulate our virtual portfolio over scenarios of risk factors generated con-

ditionally with the GVAR model. The model with the specification stated in Section 4.3.1

is estimated with the entire panel time series that spans the period from 1998 Q2 to 2014

Q4. We then simulate the short term dynamics of the joint factor system four periods ahead

conditioning on the interpolated economic scenarios described in Section 4.2. For each simu-

lation, the dynamics are added to the Q4 2014 data to obtain the simulations of the Q4 2015

risk factors, which forms the basis for valuation of the virtual portfolio. When the calculation

is completed, we will possess the empirical full conditional distribution for the P&L of each

asset, from which a huge amount of information can be drawn. Alternatively, we note that

the current model specification is equivalent to a joint distribution with a normal marginal

distribution for the short-end of the interest rate term structure and log-normal marginal

distributions for other variables. Therefore, the full conditional distribution can be obtained
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Figure 4.10: Full Conditional Distribution of Equity Portfolio.

Table 4.3: Descriptive Statistics for Return on EQ Portfolio under Each Economic Scenario.

UP BASE DOWN Unconstrained

Min -7.6% -11.1% -11.4% 29.3%

Max 26.1% 24.7% 23.7% 79.8%

Mean 6.4% 3.9% 4.3% 50.6%

Stdev 4.5% 4.3% 4.3% 7.0%

Skewness 0.2518 0.2138 0.2316 0.2383

Kurtosis1 0.1020 0.0609 0.0615 0.0084

99.5% VaR -4.2% -6.4% -5.9% 34.4%

1The kurtosis is sample excess kurtosis.

analytically, at least for equities. However, as we do not implement heteroskedasticity and

regime-switching features, the variability of risk factors remains the same for all economic

scenarios. We focus on analyzing the mean returns under the first three scenarios, since

they are conditioned on carefully constructed economic scenarios and are expected to be

more meaningful. The simulation results for the Unconstrained scenario are given mainly for

the purpose of demonstrating the sensitivity of simulated risk factors to the input economic

scenario. The 99.5% VaR of returns will also be tabulated for reference.

The full conditional distributions of the entire equity portfolio under each economic scenario

is illustrated in Figure 4.10, with some statistics tabulated in Table 4.3.
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As expected, the distributions are right skewed with the standard deviations increasing

slightly with the means. Among the three postulated economic scenarios, the UP scenario

produces the highest expected return. Although a slightly higher GDP is anticipated in the

BASE scenario, the S&P 500 index is much higher in the DOWN scenario, which brings the

expected return to a level above that of the BASE scenario. Due to the weak GBP and

EUR, both of which are expected to depreciate by over 8% during 2015, the overall return

falls behind the S&P 500 index. Under the unrealistically bullish scenario, the portfolio is

expected to grow by 50.6% and produce huge profit even in the worst 99.5% case.

A careful look at the sub-portfolio level provides more information. Here we only tabulate

in Table 4.4 the mean and 99.5% VaR of the return, as these are sufficient to represent all

the information we can draw from the model.
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Table 4.4: Expected Return at Sub-portfolio Level

UP BASE DOWN Unconstrained

Return 99.5%VaR Return 99.5% VaR Return 99.5% VaR Return 99.5% VaR

EQ USD 11.0% 2.5% 8.3% -0.3% 8.8% 0.6% 42.2% 31.8%

EQ GBP 12.3% -8.9% 9.7% -11.1% 10.0% -10.7% 71.2% 38.7%

EQ EUR 6.3% -20.9% 3.4% -23.6% 5.4% -21.9% 86.8% 38.9%

EQ JPY 39.0% -18.7% 36.1% -20.7% 32.0% -24.2% 41.7% -16.6%

EQ ConsDisc 8.1% -21.3% 4.5% -24.8% 2.9% -25.8% 52.8% 9.7%

EQ ConsStaple -1.8% -34.4% -4.8% -36.9% -7.6% -37.9% 13.6% -24.1%

EQ Energy 8.9% -13.9% 7.4% -15.0% 8.2% -13.7% 43.7% 12.5%

EQ Fin -0.9% -34.4% -3.5% -37.3% -2.3% -36.4% 90.9% 26.4%

EQ Health 6.1% -26.4% 3.7% -27.3% 2.4% -27.9% 25.3% -12.1%

EQ Indust 29.2% -2.3% 24.7% -5.1% 24.8% -5.3% 60.2% 21.5%

EQ InfoTech 26.7% -17.5% 22.9% -19.8% 28.4% -16.5% 39.0% -9.0%

EQ Mat 11.5% -44.9% 10.1% -45.5% 8.6% -45.8% 74.4% -13.1%

EQ Telco 2.7% -36.0% 1.7% -37.2% 3.4% -34.8% 22.8% -24.5%

EQ Utils 4.1% -34.2% 4.1% -34.5% 9.2% -32.0% 5.3% -34.3%
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The returns in Table 4.4 are computed in the denominated currency. Ignoring the effect of

depreciating GBP and EUR, we can conclude that the performances of the GBP and EUR

EQ portfolios are not too unsatisfactory. Their variations across different economic scenarios

are similar to those of the USD EQ portfolio. We note that the JPY EQ portfolio produces

an extraordinary result at a cost of huge risk (large loss in 99.5% case). We reckon that

such a high expectation of return may not be reliable for two reasons. Firstly, the volatility

measure implied by the data is extremely high, leading to an unreliable estimation of the

model parameters. Secondly, we observe that the forecast of the JPY EQ index is highly

sensitive to the short-term interest rate on German government bond spot curve and the

long-term rate of US government bonds. However, as illustrated in Figures 4.6c and 4.6d,

the interpolations are much more volatile than the unconditional ones, which seem to be

unreasonable as economic forecasts.

Since the economic scenarios mainly vary in terms of US economic variables, we observe more

interesting movements of returns on S&P sector and industry indexes across scenarios. Unlike

the returns of the GBP, EUR and JPY market indexes, which are more closely related to

the S&P 500 index, the returns of consumer discretionary and consumer staples have higher

correlation with GDP and unemployment, which are proxies for household income. Moreover,

the consumer discretionary sector moves more drastically with the macroeconomic conditions

than the consumer staples sector does. The economic implication behind this observation is

that, although both sectors reflect the level of consumption in the economy, the consumer

discretionary sector, which includes automobile and apparel industry, relates more closely to

the luxury needs of consumers. When economic conditions are favorable, as reflected by high

GDP growth and low unemployment rate, consumers tend to spend more in the consumer

discretionary sector.

Theoretically, the performance of the energy sector should be positively correlated with the

oil price. The simulation results are consistent with this intuition as the mean return of

the energy sector under the BASE scenario is lower than that under the UP scenario, in

which the oil price is higher. The higher mean return under the DOWN scenario is due to

the combined effects of a higher expected S&P 500 index and lower oil price. Movements of

return in other sectors are generally at reasonable levels, although the implications are harder
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Figure 4.11: Full Conditional Distribution of Return on the Interest Rate Portfolio.

to interpret. On the other hand, the excess return observed in the utility sector under the

DOWN scenario over the other two scenarios implies better performance that results from

lower operational costs represented by the lower oil price.

Analyzing the IR portfolio is more difficult since the variations come from the entire term

structure, rather than a single index. From Figure 4.11, we observe a general trend that the

IR portfolio return tends to decrease as macroeconomic conditions become more favorable.

In particular, the mean returns under the UP, BASE and DOWN scenarios are -3.6%, -3.4%

and -3.0% respectively. This is consistent with the fact that, in recent decades, Federal

Reserve increases policy rates to avoid an unhealthy expansion of the economy while reduces

the interest rates when economic conditions are unfavorable to stimulate the market. The

higher return in the Unconstrained scenario results from a strong EUR, which appreciates

by 6% in 2015 under this scenario.

Figure 4.12 presents the mean term structure of interest under each economic scenario. We

understand that these term structures of interest do not necessarily result in the mean IR

portfolio values. However, a direct look at these term structures still helps in understanding

the portfolio performance under each scenario. Both USD and EUR term structures are in

shapes similar to that in present year, which guarantees the reasonableness of the generated

curves. As expected, the curves generally present a pattern of upward shifting as the economic

conditions become more favorable. Only a minor variation is observed in the EUR rates

among different economic scenarios due to the construction of the scenarios, except for the
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Figure 4.12: The mean term structure of interest under each scenario.

Unconstrained scenario, in which most economic variables deviates significantly from those

in the other three scenarios. Due to the model specification for the short end of the EUR

term structure, we observe negative interest rates. As mentioned previously, this may be

justifiable under the current low interest rate environment.

Even more complicated is the variation of returns under different economic scenarios for

the credit portfolio. A general idea is that the spreads on CDS/CDX reflect the likelihood

of default for the underlying entity/basket of entities and thus under favorable economic

conditions we would expect a narrower spread and vice versa. The simulation results confirm

our conjecture: The mean returns under the UP, BASE and DOWN scenarios are respectively

4.2%, 10.7% and 12.4%. The standard deviations of spreads on each credit derivative under

each scenario are all greater than the means, which may lead to high volatility in the portfolio

return. In addition, we do not attempt to hedge any of these positions. The variations in the

interest rate term structure also contribute to the volatility of the CR portfolio. As presented

in Figure 4.13, the return can be as high as 400% and as low as -150%. Note that a return

lower than -100% is feasible for CDS/CDX as long as the deal spread is greater than 0.

In Figure 4.14 we present the mean spreads of each credit derivative under each economic

scenario. In general the spreads vary in the direction as expected, with minor exceptions of a

single name IG CDS and a HY CDS in EUR, for which other factors may dominate in terms

of the variations.
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Figure 4.13: Full Conditional Distribution of Return on the Credit Portfolio.

Figure 4.14: Mean Spreads Under Each Economic Scenario.
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Chapter 5

Conclusion

In this thesis, we have proposed a GVAR-based framework which allows risk managers to

simulate a large set of risk factors that are relevant to a complex multi-currency portfolio of

various classes of assets, conditioning on views of the future evolution of the global economy.

Thanks to the application of the GVAR model, a large number of risk factors can be modeled

endogenously, which effectively captures the interdependence between risk factors within one

market or from different markets, with a relatively small sample size. Moreover, the GVAR

model is capable of modeling correlations between portfolio risk factors and economic vari-

ables. Whether to model economic variables endogenously or exogenously is a flexible choice

that can be made by practitioners. In this study, our implementation uses endogenous risk

factors with exogenous economic variables. As illustrated in Chapter 4, such a specification

allows the users to draw meaningful simulations for risk analytics, which combines the views

on future economic conditions and historical paths of portfolio risk factors. When the condi-

tioned set of economic variables is carefully selected and predicted, the simulated evolution

of risk factors can be fairly precise. However, the success of an exogenous specification for

economic variables does not preclude the possibility of improvement from modeling them

endogenously. While a certain level of programming skill is required as the practitioners

are likely to be working with high-dimensional data, the implementation is manageable in

general. Also, due to the linear framework under which the GVAR model is devised, the

estimation and simulation are both relatively tractable. Further, the risk analytics are quite

tractable and easily explainable under this linear framework.
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Although not demonstrated in this thesis, the GVAR model can be easily extended to sim-

ulation of risk factors conditioning on a range of outcomes of economic variables. This can

be implemented by using a nested Monte-Carlo approach, where simulations are first drawn

from the range of economic variables and then risk factors are simulated on top of the point

economic simulation. However, the computational cost can be substantial.

In this study we have focused on exploring the feasibility of applying the GVAR model to

the conditional scenario generation problem. The more advanced models for residuals are

not implemented in this thesis. Incorporating the features of autocorrelated, non-normal

innovation processes, heteroskedasticity and regime-switching can be considered in future

work.

In addition, we should mention a few caveats to this thesis. The GVAR methodology has

several attractive features, not all of which are exploited in this thesis. Firstly it allows for

a systematic treatment of long-run properties through cointegration analysis, and a flexible

dynamic specification through vector error correction modeling. In the thesis, we modeled the

variables in first difference form, precluding information at the low frequency being utilized in

the estimation and, hence, forecast. In addition, since weak exogeneity plays an important

role in the GVAR model by allowing conditional subsystem analysis on a sector-by-sector

basis, weak exogeneity allows us to focus on the conditional error correction model, which

is a GVAR model, and allows us to ignore the marginal error correction model. Secondly,

the GVAR model implicitly assumes parameter constancy. Given the sample period used

in this thesis, this assumption is likely to be violated, potentially affecting our forecast

performances. Third, in a GVAR model, an important marginalization involves aggregation

across the variables of the individual foreign countries. This marginalization is testable in

principle for a GVAR because the variables of all individual sub-sectors are available: the

variables for a given sub-sector are the “domestic” variables for the VARX* for specification

for which that particular country is treated as domestic rather than foreign. However testing

this marginalization involves a practical difficulty involving degrees of freedom.

Lastly, in this thesis, we have matched frequencies of variables by interpolating low frequency

variables to the higher frequency. This is commonly done by adopting a two-step procedure,

where first missing data are interpolated, then model parameters are estimated using newly
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augmented series. Ideally this procedure should take into account measurement errors in-

duced by disaggregation involved in the interpolation exercise. Both steps can be conveniently

and jointly run in a Kalman filter set-up, starting with a state-space representation of the

model (see e.g. Harvey, 1990). This interpolation option is generally unsatisfactory since

commonly used interpolation methods, including the method used in this thesis, do not fully

exploit the available sample information.
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Appendix A

Matrices

We reproduce part of the Appendix A in Lütkepohl (2005) for reference. The following

sections elucidate some operators and rules used in the chapters of this thesis.

A.1 Kronecker Product

Let A = (aij) and B = (bij) be (m × n) and (p × q) matrices respectively. The (mp × nq)

matrix

A⊗B :=


a11B · · · a1nB

...
...

am1B · · · amnB

 (A.1)

is a Kronecker product or direct product of matrices A and B. Assuming that all matrices

below are of conformable dimensions, here we list a number of rules for the Kronecker product :

(1) A⊗B 6= B⊗A in general.

(2) (A⊗B)′ = A′ ⊗B′.

(3) A⊗ (B + C) = A⊗B + A⊗C.

(4) (A⊗B)(C⊗D) = AC⊗BD.

(5) If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.

(6) If A and B are square matrices, then tr(A⊗B) = tr(A) tr(B).
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A.2 The vec and vech Operators

Let A = (a1, . . . , an) be an (m × n) matrix with (m × 1) columns ai. The vec operator

transforms A into an (mn× 1) vector by stacking the columns, namely,

vec(A) =


a1

...

an

 . (A.2)

Assume matrices A, B and C are of conformable dimensions, we have following rules:

(1) vec(A + B) = vec(A) + vec(B).

(2) vec(ABC) = (C′ ⊗A) vec(B).

(3) vec(AB) = (I⊗A) vec(B) = (B′ ⊗ I) vec(A).

(4) vec(ABC) = (IAB) vec(C) = (C′B⊗ I) vec(A).

(5) vec(B′)′ vec(A) = tr(BA) = tr(AB) = vec(A′)′ vec(B).

(6)

tr(ABC) = vec(A′)′(C′ ⊗ I) vec(B)

= vec(A′)′(I⊗B) vec(C)

= vec(B′)′(A′ ⊗ I) vec(C)

= vec(B′)′(I⊗C) vec(A)

= vec(C′)′(B′ ⊗ I) vec(A)

= vec(C′)′(I⊗A) vec(B)

The vech operator is similar to vec, which stacks only the elements on and below the main

diagonal of a square matrix. In general, for an (m×m) matrix A, vech(A) is an m(m+1)/2-

dimensional vector. The vech operator is usually applied to a symmetric matrix to collect

distinct elements only.

94



A.3 Vector and Matrix Differentiation

In optimization with respect to a multivariate function, using vector/matrix differentiation

helps tidy up the derivation. In essence, differentiation of vector/matrix form is equivalent to

summarizing all derivatives of a certain function in a vector/matrix. Assuming all derivatives

exist and are continuous, let f(β) be a scalar function that depends on the (n × 1) vector

β = (β1, . . . , βn)′. We define the following:

∂f

∂β
:=


∂f
∂β1

...

∂f
∂βn

 , ∂f

∂β′
:=
[
∂f
∂β1
, . . . , ∂f

∂βn

]
,

which are (n×1) and (1×n) vectors of first order partial derivatives, respectively. Moreover,

∂2f

∂β∂β′
:=
[

∂2f
∂βi∂βj

]
=


∂2f

∂β1∂β1
· · · ∂2f

∂β1∂βn
...

...

∂2f
∂βn∂β1

· · · ∂2f
∂βn∂βn


is the (n×n) Hessian matrix of second order partial derivatives. If f(A) is a scalar function

of an (m× n) matrix A = (aij), then

∂f

A
:=
[
∂f
∂aij

]
(A.3)

is an (m × n) matrix of partial derivatives. Based on the above definitions, we give some

rules of vector/matrix differentiation without proof:

(1) Let A be an (m× n) matrix and β be an (n× 1) vector. Then

∂Aβ

∂β′
= A and

∂β′A′

∂β
= A′. (A.4)

(2) Let A be (m×m) and β be (m× 1), then

∂β′Aβ

∂β
= (A + A′)β and

∂β′Aβ

∂β′
= β′(A′ + A). (A.5)

(3) Let A be (m×m) and β be (m× 1), then

∂2β′Aβ

∂β∂β′
= A + A′. (A.6)
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(4) If A is a symmetric (m×m) matrix and β an (m× 1) vector then

∂2β′Aβ

∂β∂β′
= 2A. (A.7)

(5) Let Ω be a symmetric (n × n) matrix and c(β) an (n × 1) vector that depends on the

(m× 1) vector β. Then

∂c(β)′Ωc(β)

∂β
= 2c(β)′

∂c(β)

∂β′
(A.8)

and

∂2c(β)′Ωc(β)

∂β∂β′
= 2

[
∂c(β)′

∂β
Ω
∂c(β)

∂β′
+ [c(β)′Ω⊗ Im]

∂ vec(∂c(β)′/∂β)

∂β′

]
. (A.9)

In particular, if y is an (n× 1) vector and X is an (n×m) matrix, then

∂(y −Xβ)′Ω(y −Xβ)

∂β′
= −2(y −Xβ)′ΩX (A.10)

and

∂2(y −Xβ)′Ω(y −Xβ)

∂β∂β′
= 2X′ΩX. (A.11)
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Appendix B

Stochastic Convergence

In the derivation of the limiting distribution for the estimator, we applied some results

in the theory of stochastic convergence. In this appendix we reproduce part of Appendix

C in Lütkepohl (2005) for reference. This appendix is organized as follows: In Section B.1,

convergence of a sequence of random variables is defined in a number of ways. These concepts

are then extended to random vectors. Section B.1 is then concluded with some properties of

stochastic convergence. Some results regarding determination of the asymptotic distribution

of estimators and test statistics are given in Section B.2.

B.1 Basic Concepts of Stochastic Convergence

We give definitions on four types of convergence of a sequence of random variables.

Definition B.1 (Convergence in Probability). Let x1, x2, . . ., or {xT}, T = 1, 2, . . ., be

a sequence of scalar random variables which are all defined on a common probability space

(Ω,F ,P). The sequence {xT} converges in probability to the random variable x (which is also

defined on (Ω,F ,P)) if for every ε > 0,

lim
T→∞

P{|xT − x| > ε} = 0 (B.1)

or equivalently,

lim
T→∞

P{|xT − x| < ε} = 1. (B.2)
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This type of convergence is abbreviated as

plimxT = x or xT
p−→ x,

where x can be either a random variable or a fixed, non-stochastic real number which is a

so-called a degenerate random variable that takes only one value a with probability one.

Definition B.2 (Almost Sure Convergence). The sequence {xT} converges almost surely or

with probability one to the random variable x if for every ε > 0,

P{ lim
T→∞

|xT − x| < ε} = 1. (B.3)

This type of convergence is often written as

xT
a.s.−−→ x

and is also called strong convergence.

Definition B.3 (Convergence in Quadratic Mean). The sequence {xT} converges in quadratic

mean or mean square error to x if

lim
T→∞

E(xT − x)2 = 0. (B.4)

This type of convergence is written as

xT
q.m.−−→ x

and requires that both mean and variance exist for xT , T = 1, 2, . . . and x.

Denoting the distribution functions of xT and x by FT and F respectively, we define the

convergence in distribution or weak convergence or convergence in law in following definition.

Definition B.4 (Convergence in Distribution). The sequence {xT} converges in distribution

to x if for all real numbers c for which F is continuous,

lim
T→∞

FT (c) = F (c). (B.5)

98



This type of convergence is abbreviated as

xT
d−→ x.

One important point to note that convergence in distribution does not imply convergence in

probability density function (p.d.f.) in general. Moreover, it does not even require p.d.f to

exist.

All of the aforementioned definitions can be easily extended to a sequence of random vectors.

Denote a sequence of K-dimensional random vectors as {XT = (x1T , . . . , x
′
KT )}, T = 1, 2, . . .

and a K-dimensional random vector as X = (x1, . . . , x
′
K). Further, denote the joint distri-

bution of XT and X as FT and F respectively. Then the following are corresponding to the

four definitions above.

plimXT = X or XT
p−→ X if plimxkT = xk for k = 1, . . . , K.

XT
a.s.−−→ X if xkT

a.s.−−→ xk for k = 1, . . . , K.

XT
q.m.−−→ if lim

T→∞
E[(XT −X)′(XT −X)] = 0.

XT
d−→ X if lim

T→∞
FT (c) = F (c) for all continuity points of F .

The properties of stochastic convergence defined above are given in the following two propo-

sitions in concluding the appendix.

Proposition B.1 (Convergence Properties of Sequences of Random Variables). Suppose

{xT} is a sequence of random variables. Then the following relations hold:

(1) xT
a.s.−−→ x⇒ xT

p−→ x⇒ xT
d−→ x.

(2) xT
q.m.−−→ x⇒ xT

p−→ x⇒ xT
d−→ x.

(3) If x is a fixed, non-stochastic vector, then

xT
q.m.−−→ x⇔ [ lim

T→∞
E(xT ) = x and lim

T→∞
E[(xT − E(xT ))′(xT − E(xT ))] = 0].

(4) If x is a fixed, non-stochastic random vector, then

xT
p−→ x⇔ xT

d−→ x.

99



(5) (Slutsky’s Theorem) If g : RK → Rm is a continuous function, then

xT
p−→ x⇒ g(xT )

p−→ g(x)[plim g(xT ) = g(plimxT )],

xT
d−→ x⇒ g(xT )

d−→ g(x),

and

xT
a.s.−−→ x⇒ g(xT )

a.s.−−→ g(x).

Proposition B.2 (Properties of Convergence in Probability and in Distribution). Suppose

{xt} and {yT} are sequences of (K × 1) random vectors, {AT} is a sequence of (K × K)

random matrices, x is a (K × 1) random vector, c is a fixed (K × 1) vector, and A is a fixed

(K ×K) matrix.

(1) If plimxT , plim yT , and plim AT exist, then

(a) plim(xT ± yT ) = plim xT ± plim yT ;

(b) plim(c′xT ) = c′(plimxT );

(c) plimx′TyT = (plimxT )′(plim yT );

(d) plim ATxT = plim(AT ) plim(xT ).

(2) If xT
d−→ x and plim(xT − yT ) = 0, then yT

d−→ x.

(3) If xT
d−→ x and plim yT = c, then

(a) xT ± yT
d−→ x± c;

(b) y′TxT
d−→ c′x.

(4) If xT
d−→ x and plim AT = A, then ATxT

d−→ Ax.

(5) If xT
d−→ x and plim AT = 0, then plim ATxT = 0.
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B.2 Standard Asymptotic Properties of Estimators and

Test Statistics

Let β̂T be an estimator of a (K × 1) parameter vector, where the subscript T denotes the

size of the sample with which the estimator is computed. Then {β̂T} for T = 1, 2, . . . is

a sequence of random variables. Applying the concepts of stochastic convergence from the

previous section, the estimator is said to have an asymptotic normal distribution if

√
T (β̂T − β)

d−→ N(0,Σ). (B.6)

Once we obtain the estimator and its asymptotic distribution, we may be interested in testing

the significance of our estimates. To cover as many cases as possible, we usually derive test

statistics as a general function of estimators. The following results are given to assist such

derivations.

Proposition B.3 (Asymptotic Properties of Estimators). Suppose β̂T is an estimator of the

(K × 1) vector β with
√
T (β̂T − β)

d−→ N(0,Σ). Then the following rules hold:

(1) (A special case of (2)) If R 6= 0 is a (M × K) matrix, then
√
T (Rβ̂T − Rβ)

d−→

N(0,RΣR′).

(2) For a sequence of (M ×K) matrices, {ÂT}, and a fixed matrix A, if plim ÂT = A, then
√
T Â(β̂T − β)

d−→ N(0,AΣA′) (see Schmidt, 1976, p. 251).

(3) (Delta Method) If g(β) = (g1(β), . . . , gm(β)) is a vector-valued continuously differentiable

function with ∂g
∂β′
6= 0 at β, then

√
T [g(β̂T )− g(β)]

d−→ N

(
0,
∂g(β)

∂β′
Σ
∂g(β)′

∂β

)
.

∂g
∂β′

= 0 at β,
√
T [g(β̂)− g(β)]

p−→ 0 (see Serfling, 1980, pp. 122 - 124).

(4) (A special case of (5)) If Σ is nonsingular, then T (β̂T − β)′Σ−1(β̂T − β)
d−→ χ2(K).

(5) If Σ is nonsingular and plim Σ̂ = Σ, then T (β̂T − β)′Σ̂−1(β̂T − β)
d−→ χ2(K).

(6) If Σ = QA, where Q is symmetric, idempotent of rank n and A is positive definite, then

T (β̂T − β)′A−1(β̂T − β)
d−→ χ2(n).
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Appendix C

Tables and Figures

C.1 Augmented Dickey-Fuller Test for Economic Vari-

ables

Without carrying out an explicit model selection, we conduct an augmented Dickey-Fuller

(ADF) test with lags 2, 3 and 4 on time series of levels and differences of economic variables.

The treatment for each variable at first difference is tabulated. We only present the p-values

of the test statistics here due to space limitations.
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Table C.1: Augmented Dickey-Fuller Test for Economic Variables

Level Difference
Lag Lag

Variable 2 3 4 Treatment 2 3 4

GB REAL GDP 0.536105 0.603313 0.475915 LogDiff 0.01824 0.09015 0.07241
US REAL GDP 0.543994 0.500602 0.43435 LogDiff 0.07052 0.25060 0.19375
XE REAL GDP 0.380132 0.352727 0.371051 LogDiff 0.05101 0.05608 0.10234
JP REAL GDP 0.249296 0.307847 0.489821 LogDiff 0.01000 0.01000 0.01000
GB CPI INF 0.567786 0.585629 0.498254 LogDiff 0.01000 0.37942 0.37767
US CPI INF 0.474645 0.795632 0.504362 LogDiff 0.01000 0.01000 0.02019
XE CPI INF 0.65477 0.579008 0.166637 LogDiff 0.03585 0.39556 0.16026
JP CPI INF 0.952046 0.945243 0.643819 LogDiff 0.01000 0.30105 0.13937
US UNEMPLOYMENT 0.360572 0.407272 0.530428 Diff 0.35287 0.27675 0.26806
US RATE SHORT 0.544276 0.234056 0.221397 Diff 0.19882 0.24223 0.33962
XE RATE SHORT 0.11274 0.187283 0.059326 Diff 0.01000 0.05234 0.08835
US RATE LONG 0.118292 0.074081 0.214464 Diff 0.01000 0.01000 0.01838
XE RATE LONG 0.293841 0.324591 0.452307 Diff 0.01000 0.01000 0.01000
GB FX 0.659565 0.605172 0.637913 LogDiff 0.01000 0.01000 0.07831
XE FX 0.664592 0.729616 0.910095 LogDiff 0.01954 0.01000 0.13722
JP FX 0.973797 0.74439 0.565644 LogDiff 0.06304 0.25941 0.41830
WRLD OIL 0.383644 0.294265 0.487478 LogDiff 0.01000 0.01000 0.01000
US MKT IDX 0.843911 0.864877 0.737064 LogDiff 0.01000 0.01923 0.07116

The tabulated values are p-values of the ADF test under the null hypothesis of the time series being integrated to order one.
The p-values are interpolated from Banerjee et al. (1993). If the computed statistic is outside the table of critical values, we use the
left/right end value instead.
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C.2 Augmented Dickey-Fuller Test for Risk Factors

Table C.2: Augmented Dickey-Fuller Test for Portfolio Risk Variables - Part I

Level Difference
Lag Lag

Variable 2 3 4 Treatment 2 3 4
IG-Spread 0.36485 0.14856 0.334556 LogDiff 0.010151 0.022712 0.048518
HY-Spread 0.377516 0.226805 0.30149 LogDiff 0.01 0.047204 0.059702
CDX IG 5Y 0.383326 0.280532 0.405414 LogDiff 0.011429 0.024954 0.080388
CDX HY 5Y 0.365938 0.280946 0.346332 LogDiff 0.01 0.03429 0.075508
HY-Spread.EUR 0.281546 0.303436 0.220777 LogDiff 0.013319 0.054813 0.112688
FTSE350 0.451649 0.405954 0.279899 LogDiff 0.01 0.035513 0.088225
MSCI.EMU 0.279591 0.475498 0.412191 LogDiff 0.01 0.017681 0.038522
Topix.500 0.492604 0.407282 0.359512 LogDiff 0.038733 0.065949 0.10273
SP500.ConsDisc 0.99 0.99 0.975881 LogDiff 0.01 0.018203 0.058906
SP500.ConsStaple 0.957742 0.986331 0.99 LogDiff 0.01 0.01 0.01
SP500.Energy 0.256649 0.33145 0.3507 LogDiff 0.01 0.016845 0.143889
SP500.Fin 0.612738 0.52816 0.472081 LogDiff 0.01 0.039317 0.175386
SP500.Health 0.99 0.99 0.99 LogDiff 0.01 0.01 0.195628
SP500.Indust 0.659596 0.711254 0.649092 LogDiff 0.01 0.01 0.057087
SP500.InfoTech 0.464236 0.526442 0.680733 LogDiff 0.01 0.010032 0.011606

The tabulated values are p-values of the ADF test under the null hypothesis of the time series being integrated to order one.
The p-values are interpolated from Banerjee et al. (1993). If the computed statistic is outside the table of critical values, we use the
left/right end value instead.
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Table C.3: Augmented Dickey-Fuller Test for Portfolio Risk Variables - Part II

Level Difference
Lag Lag

Variable 2 3 4 Treatment 2 3 4
SP500.Mat 0.166276 0.404451 0.247619 LogDiff 0.01 0.01 0.01
SP500.Telco 0.219307 0.304915 0.263025 LogDiff 0.01 0.01 0.089632
SP500.Utils 0.388003 0.41505 0.545121 LogDiff 0.01 0.01 0.147725
EUR Govt Zero.6m 0.265037 0.167249 0.092771 LogDiff 0.017688 0.048323 0.060962
EUR Govt Zero.1y 0.349329 0.234493 0.203469 LogDiff 0.01 0.03473 0.049862
EUR Govt Zero.3y 0.349778 0.307813 0.380749 LogDiff 0.01 0.01 0.026049
EUR Govt Zero.5y 0.313805 0.31825 0.426638 LogDiff 0.01 0.01 0.01
EUR Govt Zero.7y 0.289751 0.343889 0.447053 LogDiff 0.01 0.01 0.01
EUR Govt Zero.30y 0.182382 0.258407 0.463632 LogDiff 0.01 0.039318 0.07355
USD Govt US Zero.6M 0.54159 0.206237 0.211683 LogDiff 0.243922 0.239513 0.34585
USD Govt US Zero.1Y 0.572611 0.276462 0.183734 LogDiff 0.165392 0.257596 0.375877
USD Govt US Zero.3Y 0.585677 0.461374 0.321545 LogDiff 0.01 0.069408 0.180836
USD Govt US Zero.5Y 0.475685 0.393201 0.384522 LogDiff 0.01 0.018577 0.04824
USD Govt US Zero.7Y 0.296442 0.211119 0.313282 LogDiff 0.092384 0.116612 0.253946
USD Govt US Zero.30Y 0.013576 0.01 0.011999 LogDiff 0.01 0.01 0.01

The tabulated values are p-values of the ADF test under the null hypothesis of the time series being integrated to order one.
The p-values are interpolated from Banerjee et al. (1993). If the computed statistic is outside the table of critical values, we use the
left/right end value instead.
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C.3 Causality Tests

Table C.4: Causality Tests for VARX* Models

Variable Granger Causality Instantaneous Causality
IG-Spread 0.00968 0.106749
HY-Spread 7.73E-08 0.09784
CDX IG CDSI GEN 5Y 0.005815 0.111969
CDX HY CDSI GEN 5Y 7.52E-13 0.064042
HY-Spread.EUR 0.008859 0.099459
FTSE350 2.10E-06 0.034319
MSCI.EMU 0.000579 0.03262
Topix.500 7.19E-05 0.118333
SP500.ConsDisc 3.71E-06 0.026485
SP500.ConsStaple 5.09E-06 0.144094
SP500.Energy 0.001035 0.040948
SP500.Fin 3.76E-07 0.034076
SP500.Health 0.006188 0.084801
SP500.Indust 0.00063 0.031201
SP500.InfoTech 0.000722 0.033973
SP500.Mat 2.35E-13 0.071423
SP500.Telco 2.93E-14 0.073516
SP500.Utils 4.51E-08 0.147638
EUR Govt.6m 1.35E-09 0.021548
EUR Govt.1y 3.49E-10 0.028651
EUR Govt.3y 7.14E-10 0.029599
EUR Govt.5y 1.23E-09 0.023554
EUR Govt.7y 2.77E-12 0.020563
EUR Govt.30y 5.22E-11 0.038146
USD Govt US.6M 0 0.02166
USD Govt US.1Y 3.33E-14 0.028863
USD Govt US.3Y 5.04E-12 0.04522
USD Govt US.5Y 8.63E-07 0.033148
USD Govt US.7Y 5.24E-11 0.108061
USD Govt US.30Y 8.98E-06 0.030496

C.4 Model Selection

We fix the number of lags included for economic variables at zero to our view that all

markets under consideration are at least semi-strong efficient. In practice, depending on

data availability and development levels of the markets, more lags can be included.
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Table C.5: Selected Lags for each Variable with AIC and BIC

AIC BIC
Xt X∗t Yt Xt X∗t Yt

IG-Spread 4 2 0 1 0 0
HY-Spread 1 2 0 3 0 0
CDX IG 5Y 1 2 0 2 0 0
CDX HY 5Y 5 1 0 1 0 0
HY-Spread.EUR 2 2 0 1 1 0
FTSE350 2 2 0 1 0 0
MSCI.EMU 1 1 0 1 0 0
Topix.500 2 0 0 2 0 0
SP500.ConsDisc 1 2 0 1 0 0
SP500.ConsStaple 1 0 0 1 0 0
SP500.Energy 5 1 0 2 1 0
SP500.Fin 4 1 0 4 0 0
SP500.Health 1 2 0 1 0 0
SP500.Indust 5 2 0 1 1 0
SP500.InfoTech 1 1 0 1 0 0
SP500.Mat 5 2 0 5 2 0
SP500.Telco 2 2 0 1 0 0
SP500.Utils 4 2 0 1 0 0
EUR Govt.6m 2 2 0 2 0 0
EUR Govt.1y 2 2 0 2 0 0
EUR Govt.3y 1 2 0 1 0 0
EUR Govt.5y 5 2 0 1 0 0
EUR Govt.7y 1 2 0 1 0 0
EUR Govt.30y 4 2 0 1 0 0
USD Govt US.6M 3 2 0 1 0 0
USD Govt US.1Y 3 2 0 1 0 0
USD Govt US.3Y 5 2 0 1 0 0
USD Govt US.5Y 5 2 0 1 0 0
USD Govt US.7Y 5 2 0 5 1 0
USD Govt US.30Y 5 2 0 5 2 0
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