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Abstract 

The food system has been increasingly recognized as an indispensable component 

in professional planning in Canada. As its retailing part, the Retail Food Environment (RFE) 

has recently gained considerable attention, since it plays an important role in shaping 

residents’ eating behaviors and diet-related health outcomes, especially obesity. 

Identifying the strengths and weaknesses of the RFE in a neighborhood is essential for 

successful food planning and interventions. Yet current neighborhood RFE assessment 

mainly uses secondary food outlet datasets to evaluate absolute food access, largely 

overlooks the dynamic nature of the RFE and the variations of in-store features between 

food outlets, and predominantly applies descriptive RFE measures.  

Comprised of three articles that focus on a common theme, neighborhood RFE 

assessment, this dissertation uses novel spatial and spatio-temporal statistical modeling 

approaches to explore neighborhood RFE in the Regional Municipality of Waterloo with 

food outlet datasets that include the information of both the community and consumer 

nutrition environments. Firstly, this research explores spatio-temporal variations of relative 

healthy food access (RHFA) with a multiple-year RFE dataset. The results suggest that 

food swamps are more prevalent than food deserts in the study region and that food swamps 

have become more prevalent during the study period. Spatio-temporal food swamps, 

neighborhoods where RHFA is decreasing faster than the regional trend, are highlighted 

for interventions. 

Secondly, this research investigates the association between marginalization and 

neighborhood RFE at various geographical scales. ‘Healthy’ and ‘less healthy’ food outlets 

are differentiated based on in-store features from a primary food outlet dataset. RFE 

‘healthfulness’ is a relative measure of healthy food access, which is modeled via 

probability distributions. The results indicate that neighborhoods with higher residential 

instability, material deprivation, and population density are more likely to have access to 

healthy food outlets within a walkable distance from a binary ‘have’ or ‘not have’ access 

perspective. At the walkable distance scale however, materially deprived neighborhoods 

are found to have less healthy RFE (i.e., lower RHFA).  
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Finally, this research applies a spatial factor analysis model to assess neighborhood 

restaurant environment (NRE) for the city of Kitchener with multiple restaurant assessment 

indicators. Neighborhoods with least healthy NRE (simultaneously suffer from lower 

relative availability of healthy eating options, higher prices of healthy eating, and 

lower/higher healthy eating facilitator/barrier) are identified. Facilitator/barrier is found to 

be most relevant with NRE healthfulness. 

This research significantly advances our understanding of neighborhood RFE. 

Conceptually, it extends the definition of food swamps by incorporating a temporal 

dimension and provides empirical evidence that the deprivation amplification hypothesis 

in the RFE context holds only at specific geographical scales when neighborhood RFE is 

assessed with specific strategies. It also challenges the uncertainties associated with 

descriptive RFE measures that purport to represent the underlying concept – the 

‘healthfulness’ of neighborhood RFE. Methodologically, this research facilitates the 

application of spatial and spatio-temporal statistical approaches in RFE studies. Findings 

from this research could assist planners and policy makers in developing food intervention 

programs to improve neighborhood RFE and promote population-wide healthy eating in 

the Region of Waterloo.  
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Chapter 1: Introduction 

1.1. Context and motivation 

1.1.1. Obesity and retail food environments 

The World Health Organization (WHO) has announced that obesity would be an 

epidemic in the 21st century as early as 2003 on the basis of drastic increases of obesity 

rates in numerous developed and developing countries (WHO, 2003). In Canada 

specifically, the obesity rate has tripled in the past three decades with one in four adult 

Canadians and one in ten Canadian children being obese or overweight (Canadian Obesity 

Network, 2016). As a major risk factor for chronic diseases including high blood pressure, 

type 2 diabetes, stroke, and heart diseases, obesity is increasingly burdening Canada’s 

healthcare system, accounting for 4.1% of the total healthcare costs (Canadian Obesity 

Network, 2016). 

With the increasing prevalence of obesity being insufficiently explained by 

individuals’ social and psychological factors, recent studies have been directed to explore 

neighborhood-scale and environmental risk factors, including retail food environments 

(RFE) (Pearce & Witten, 2010). As the retailing part of a food system1, RFE is composed 

of food stores where people can buy food to cook at home and restaurants where people 

can eat away from home2. RFE merit attention since obesity is ultimately a consequence 

of imbalance between energy expenditure and energy consumption (Cummins & 

Macintyre, 2006; Papas et al., 2007; Raychaudhuri & Sanyal, 2012). In this context, 

numerous ecological models have been proposed, incorporating neighborhood RFE as a 

vital contributor to eating behaviors and diet-related health outcomes including obesity. 

Proposed by Swinburn and colleagues (1999), the ANGELO (Analysis Grid for 

Environments Linked to Obesity) model is one of the earliest ecological frameworks that 

dissected obesogenic factors (i.e., food and physical activity) into various environmental 

                                                 
1 A food system is “…a complex set of activities and relationships including production, processing, 

distribution, marketing, retail, consumption and waste” (Toronto Public Health, 2015, p.2). 
2 Food retailers in organizations such as schools and workplaces are excluded for analyses in this 

dissertation.  
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types (i.e., physical, economic, political, and socio-cultural) at different environmental 

levels (i.e., micro settings such as homes, schools, and workplaces, and macro sectors such 

as the transportation system, health system, and food manufacturing) (Table 1-1). The 

ANGELO framework emphasizes the significance of assessing obesogenic environments 

from a holistic perspective. In the context of food for example, there is a necessity to 

include physical food environment such as availability of grocery stores in neighborhoods 

(i.e., micro-environmental setting), economic food environment such as costs of healthy 

foods, political food environment including food product labeling (i.e., macro-

environmental sector), and socio-cultural food environment including social norms on 

healthy eating. Other ecological models in the literature that link the food environment and 

eating behaviors and diet-related health outcomes have been summarized elsewhere 

(Minaker, 2013). 

Table 1-1: The ANGELO conceptual framework (Swinburn et al., 1999) 

                  Size 

Type 

Micro-environment (settings) Macro-environment (sectors) 

Food Physical activity Food Physical activity 

Physical What is available? 

Economic What are the financial factors? 

Political What are the rules? 

Socio-cultural What are the attitudes, beliefs, perceptions, and values? 

 

These multi-facet and multi-scale food environmental variables have been 

incorporated into the behavioral pathways (Figure 1-1) through which the food 

environment 3  influences diet and diet-related health outcomes (Morland, 2015a). 

                                                 
3 Food environment is a relevant but different concept compared with food system. Broadly, it refers 

to “virtually all potential determinants of what people eat that are not clearly individual factors” (Glanz, 2009, 

p.S93), ranging from policy variables such as national regulations on food advertising to environmental 

variables including density of food retailers in a community. Food environment can also be narrowly defined 

as “features of the local physical environment that facilitate the consumption of certain types of food and 

detract from the consumption of others” (Diez Roux, 2009, p.27). In the literature, RFE is synonymous to 

food environment in some cases. 
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Corresponding variables from the ANGELO framework are highlighted in red. This 

diagram clearly demonstrates how various aspects of the food environment impact the final 

dietary decisions.  
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Figure 1-1: Decision making processes based on the food environment’s impact on eating behaviors 

and diet-related disease risk (Morland, 2015a) 

On the basis of these conceptual models, a growing body of public health studies 

explored the role of neighborhood RFE in shaping residents’ dietary behaviors and diet-

related health outcomes, in particular obesity. Although findings are mixed, studies 

increasingly show that residents living in a neighborhood with healthier RFE are more 
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likely to have healthier diets and lower body weight, and less likely to be burdened by diet-

related diseases (C. Black, Moon, & Baird, 2014; Caspi, Sorensen, Subramanian, & 

Kawachi, 2012; Engler-Stringer, Le, Gerrard, & Muhajarine, 2014; Kirkpatrick et al., 2014; 

Laraia, Hendrickson, & Zhang, 2015; Williams et al., 2014; Zenk, Thatcher, Reina, & 

Odoms-Young, 2015). 

1.1.2. Food planning and interventions 

1.1.2.1. Food system planning 

Compared with other areas of planning such as transportation and housing, food 

planning is relatively new (Raja, Born, & Russell, 2008). The food system was largely a 

“stranger to the planning field” (Pothukuchi & Kaufman, 2000, p.113) until late 1990s. 

Although food related issues such as the establishment of food stores is an indispensable 

component of urban design, historically, constructions and operations of food stores have 

been largely left to private industrial sectors (Donofrio, 2007).  

A seminal paper by Pothukuchi and Kaufman (1999) suggested putting the food 

system in the planning agenda; however, planners, at least those in North America, 

perceive food issues to be beyond their purview and assume that food system responds well 

to market forces (Pothukuchi & Kaufman, 2000). Consequently, few municipalities 

adopted plans that exclusively focus on or include an element of community food systems. 

Nevertheless, planners have recently changed their attitudes towards food planning and 

gained renewed interests in incorporating food issues into professional planning, probably 

recognizing that the food system is important to residents’ eating behaviors (and ultimately 

health status) and community vitalities. Such positive changes have been initiated in the 

U.S. In 2004 and for the first time, special issues were devoted entirely to food system 

planning in journals (i.e., Journal of Planning Education and Research, Vol.23, No.4, 2004; 

and Progressive Planning, Winter 2004) for academics and practitioners of professional 

planning (APA, 2007; Kaufman, 2009). Special track of sessions on food system planning 

were held at the American Planning Association (APA) National Planning Conference in 

2005, again, for the first time. Due to unexpected overwhelming responses, a follow-up 

session was also offered in the 2006 conference (APA, 2007), where a group of planners 

presented a white paper on food planning to the APA Delegate Assembly. Approved by 



5 

 

the APA Legislative and Policy Committee (APA, 2007), the white paper promoted the 

development and adoption of the APA Policy on Community and Regional Food Planning 

(APA, 2007), which was recognized as the “most significant indication” (Kaufman, 2009, 

p.13) of accepting food issues in professional planning. More recently, Raja et al. (2008) 

developed the Planning Advisory Service report entitled “a planners’ guide to community 

and regional food planning”, which provides strategies for planners to build healthier food 

systems. As well, their report comprehensively reviewed successful examples of food 

system planning initiatives in North America as of 2008. What was also revealed was the 

increasing recognition and support from APA members regarding more planning 

involvement in food-related issues, including the modification of zoning codes in 

comprehensive plans (“official plan” in Canada) to regulate food retails (advocated by 73% 

surveyed APA member). 

Although lagging behind its American counterpart, Canadian planning is getting 

more involved in community food systems in recent years, reflected by the continuing 

efforts and increasing supports from professional planning practitioners and academics. 

The inclusion of a special track on food planning at the Canadian Institute of Planners 

conference in 2008 (Kaufman, 2009), as well as a special issue completely devoted to food 

security as a growing concern in professional planning in the journal Plan Canada (Vol 49, 

No.2, 2009), exemplifies initial signs of this positive trend. Later, the Ontario Professional 

Planner Institution (OPPI) held a symposium entitled “Healthy Communities and Planning 

for Food – a Harvest of Ideas” in Guelph, Ontario in October 2010. The meeting convened 

professional urban and rural planners for discussing how professional planning can address 

food issues. Following these efforts, OPPI has recently called for action on planning for a 

healthy food system for Ontario by engaging planners with food relevant issue (OPPI, 

2011). 

Two models for food system planning have been identified from the literature. First, 

stand-alone plans can be implemented to exclusively deal with the food system. Such plans 

provide a comprehensive guide for communities who intend to improve their food systems 

and facilitate healthy eating. The Region of Waterloo exemplifies the first Canadian 

municipality that published a stand-alone plan for creating a healthy food system, in which 
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“all residents have access to, and can afford to buy safe, nutritious, and culturally-

acceptable food that has been produced in an environmentally sustainable way and that 

sustains our rural communities” (Region of Waterloo Public Health, 2007, p.4). The overall 

goal, specific objectives, and corresponding strategies were outlined in Figure 1-2. 

Waterloo’s plan covers a wide range of topics relevant to the food system: from food 

production (e.g., preserve and protect agriculture lands), processing (e.g., support on-farm 

food processing facilities), to retailing (e.g., strengthen local farmer’s market), from the 

economic dimension (e.g., boost local food processing industry) to the physical dimension 

(e.g., limit the establishment of unhealthy food outlets), and from the supply side (e.g., 

increase the availability of healthy foods) to the demand side (e.g., enhance consumers’ 

awareness of healthy eating). Improving the availability of healthy foods in every 

neighborhood and limiting unhealthy foods in specific neighborhoods are identified as two 

pivotal recommendations. Raja et al. (2008) outlined seven general steps that a community 

can follow for implementing stand-alone food system plans (Figure 1-3). Notably, 

gathering and analyzing relevant (food environment) datasets (phase IV) guides the 

implementation of plans, which are devised from phases I to III, during phases V to VII, 

making it a critical task in the process of planning for the food system.  
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Figure 1-2: Stand-alone food system plan for the Region of Waterloo (Region of 

Waterloo Public Health, 2007, p.5) 

 

 

Figure 1-3: Planning process for stand-alone food system plans (Raja et al., 2008) 
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Second, the food system can be incorporated as a component in the comprehensive 

or official plan that establishes a long-term blueprint for future community growth 

(Ministry of Municipal Affairs and Ministry Of Housing, 2015). The inclusion of food 

issues in a comprehensive/official plan ensures a well-operated community food system 

that enables all residents to access to healthy and affordable foods in the near future, along 

with ensuring sufficient housing, jobs, and transportation. In June 2009, Region of 

Waterloo included a brief section of food system planning in its regional official plan for 

the first time, paralleling with plans for housing, (active) transportation, energy, air quality, 

cultural heritage, and human services for improving the livability in the region. Policies 

and actions targeting food and agriculture related activities were profiled (Region of 

Waterloo, 2009). For example, the region would provide mixed land uses (including food 

destinations) that are located together to promote residents’ access to locally grown healthy 

foods. This official plan was officially approved in January 2010. Likewise, Toronto 

included food system planning in its official (and also subsequently updated) plans (City 

of Toronto, 2015). Programmatic (e.g., farmer’s market and community and rooftop 

gardens), policy (e.g., Toronto’s Food Charter), and planning/zoning guidelines were 

developed to facilitate food system planning in Toronto. Very recently, the city of London, 

Ontario has also explicitly incorporated the food system into its official plan, which has 

been submitted to Council for final approval (City of London, 2016). Similar efforts as 

those proposed by Toronto’s official plan were emphasized for creating a healthy and 

sustainable food system in London. Of note, the planning process for 

comprehensive/official plans that incorporate food as an element is similar to that of stand-

alone plans that exclusively deals with food systems as shown above, but with a narrower 

scope (Raja et al., 2008). Examples of stand-alone food system plans and comprehensive 

plans that incorporate food issues implemented in the U.S. can be found in Raja et al. (2008) 

and Kaufman (2009). 

In practice, planners could greatly contribute to improving the food system via 

planning tools such as zoning and regulation. For reference, zoning refers to “…the control 

by authority of the use of land, and of the buildings and improvements thereon” (Historica 

Canada, 2016). For instance, the city of Vancouver, British Columbia, adopted a planning 

guideline that used rezoning to incorporate urban agriculture into their landscape 
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development plans (City of Vancouver, 2008). Two components of urban agriculture on 

private development sites, shared garden plots and edible landscape, were addressed. 

Another example in Canada is the implementation of a neighborhood produce market 

program in underserved areas in the city of Kitchener (Maan Miedema, 2008), responding 

to the stand-alone food system plans published in the Region of Waterloo as noted above. 

This program encountered regulatory barriers since no bylaws or license existed for 

vendors that sell fruits and vegetables. Kitchener eventually removed this barrier (i.e., do 

not require a varied license for these markets under the extant zoning bylaws), and 

permitted the establishment of these markets in that they benefit the community. 

1.1.2.2. Zoning and regulating the RFE 

Recently, planners’ roles in shaping RFE (a subset of the entire food system) with 

zoning and regulation have been increasingly acknowledged. Although food retailing, 

especially food outlet establishment, is driven by the private market, it does not happen 

automatically or evenly (Raja et al., 2008), making it possible for the planners to engage 

with food retailer prioritizations. A theoretical support comes from the retail location 

theory, which indicates that land use planners do play a role in shaping (food) retailers’ 

distributions among other actors including developers, managers, and owners (S. Brown, 

1993). Interestingly, despite the newly acceptance of food issues into professional planning, 

urban planning, in particular zoning, is one of the two major determinants of (food) retailer 

distributions, apart from the commercial siting process, which involves a comprehensive 

assessment of both risks and rewards of establishing a new retailer (Black, Carpiano, 

Fleming, & Lauster, 2011). For instance, past research has revealed that planning practices 

tend to zone out commercial venues from residential neighborhoods where (semi-) 

detached houses dominate, in order to maintain house values (Shlay & Rossi, 1981).  

Driven by public health concerns especially the emerging obesity epidemic, zoning 

has been extensively proposed as a proactive tool for promoting health in North America, 

not surprisingly, by public health researchers. As early as 2003, Ashe and colleagues (2003) 

have suggested using zoning bylaws to restrict fast-food restaurant establishments in the 

academic journal American Journal of Public Health. Following Ashe et al.’s 

recommendations, several scholars who specialized in both law and public health (Mair, 
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Pierece, & Teret, 2005) prepared a monograph, wherein a number of zoning techniques, 

namely, conditional zoning, incentive zoning, and performance zoning, were proposed to 

limit fast-food restaurants while encouraging healthier alternatives. In particular, 

conditional zoning allows municipalities to rezone land parcels for designated land uses 

but prohibits certain uses such as establishments of fast-food restaurants at specific sites. 

This approach is exemplified by the Los Angeles case (Stephens, 2007), where zoning 

bylaws were passed by the government for regulating fast foods because of public health 

concerns. Incentive zoning encourages the construction of amenities that benefit a public 

interest, such as a supermarket in the RFE context, while exempting charges of contract 

zoning. This approach is usually coupled with financial incentives. For instance, New York 

City initiated the Food Retail Expansion to Support Health (FRESH) program to 

incentivize chain supermarkets to relocate in underserved neighborhoods (City of New 

York, 2009). Incentives such as waiving mortgage recording tax and abating real estate tax 

are included in FRESH. Lastly, performance zoning acts as a supplement to actual land use 

zoning in that it does not regulate how the land is used but instead sets specific standards 

that land users must meet. Although performance zoning is primarily applied in industrial 

land uses, for instance, limiting pollution levels, it can be adapted for regulating RFE. As 

an example, the municipality could request fast-food restaurants to offer a minimum of 

healthy eating options on their menus (Mair et al., 2005). Another example is that 

restaurants could be required to provide a “healthy offerings check” (Raja et al., 2008, p.99) 

in the licensing process when they are applying for a land use permit, certifying that they 

will offer healthy foods that meet the minimum nutritional quality suggested by the public 

health agency. 

As for zoning fast-food restaurants in particular, it manifests in a variety of 

regulation forms (Mair et al., 2005), which can be summarized as (i) prohibiting fast-food 

outlets and/or driving services; (ii) forbidding “formula” restaurants; (iii) banning fast 

foods in specific areas; (iv) regulating the number of fast-food restaurants via quota; (v) 

regulating densities of fast-food restaurants; and (vi) regulating fast-food restaurants from 

other uses including schools and day care. These regulations are recently resonated by 

Canadian reports that guide the development of healthy communities (Canadian Institute 

of Planners, 2013) and the intervention for regulating fast-food outlets around schools in 
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Quebec (Quebec Public Health Association, 2011). In addition to restricting less healthy 

foods, zoning has also been proposed for improving healthy food access. Raja et al. (2008) 

suggested examining and slightly modifying existing zoning ordinances to allow fruit and 

vegetable markets in all zoning districts. Supplementary to this zoning code modification, 

accelerating the licensing process for fruit and vegetable vendors to start up a business and 

waiving licensing fees were also recommended. 

1.1.2.3. Other RFE intervention approaches 

Apart from urban planning such as zoning, two other intervention approaches have 

been proposed to improve neighborhood RFE and facilitate healthy eating: (i) transforming 

consumer environments and (ii) a culture of transparency and participation (Mah, Cook, 

Rideout, & Minaker, 2016, p.eS64) 4.  

Compared with planning tools such as zoning that focus on built environment 

factors, transforming consumer environments enhances shopping experiences via 

improving in-store characteristics of food retailers. The Healthy Corner Store program 

exemplifies this type of effort. Defined as “businesses that stock and offer healthy food 

retail options” (Seeton, 2012, p.24), healthy corner stores aim to improve the availability 

and affordability of healthier foods including dairy, fresh produce, and high quality protein, 

replacing unhealthy and energy-dense options that commonly available in convenience 

stores. In contrast to attracting new healthy retailers via zoning and financial incentives as 

mentioned above, this initiative is less challenging for improving healthy food access by 

gradually increasing the stock of healthy and fresh foods in existing retailers (Seeton, 2012). 

Originated in the U.S., the Healthy Corner Store program has been implemented in a 

number of Canadian municipalities, including Ottawa (Just Food, 2016), Vancouver 

(Seeton, 2012), Toronto (Toronto Food Policy Council, 2014), Branch (in Newfoundland 

and Labrador) (Food First NL, 2015), and Winnipeg (in Manitoba) (Winnipeg Regional 

Health Authority, 2014). In addition to modifying in-store features of existing food retailers, 

transforming consumer environments can also be implemented via the mobile vending 

model (Mah et al., 2016), which brings fresh fruits and vegetables to neighborhoods 

                                                 
4 Mah et al. (2016) also included an intervention, economic and fiscal instruments, for improving 

RFE. These approaches are primarily applied in organizational food environments, but some can be adapted 

for improving RFE for the public, for example, taxing sugar-sweetened beverages.  
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without adequate fresh produce by truck or bus. Examples include the Market Mobile 

project in Ottawa (Ottawa Public Health, 2016) and the Mobile Good Food Markets project 

in Toronto (FoodShare, 2016). 

Disclosing nutritional information to the consumers and getting a wide variety of 

stakeholders involved with food system planning have also been proposed as proactive 

approaches for improving neighborhood RFE, which correspond to a culture of 

transparency and participation as mentioned above. As an example of the former approach, 

the menu labeling legislation will take effect in Ontario as of January 1, 2017 (Ontario’s 

Regulatory Registry, 2016). Specifically, food premises with more than 20 or more outlets 

in Ontario and serve prepared ready-to-eat foods are required to label calorie information 

on their menus. This regulation is adopted based on the assumption that the visibility of 

nutritional information encourages consumers to make healthier consumption decisions. 

Some experimental studies have demonstrated the effectiveness of this intervention in the 

Canadian context (Girz, Polivy, Herman, & Lee, 2012; Hammond, Goodman, Hanning, & 

Daniel, 2013; Scourboutakos, Corey, Mendoza, Henson, & L’Abbé, 2014; Vanderlee & 

Hammond, 2014). The latter approach solicits opinions from various research fields and/or 

organizations, for instance, public health professionals and Food Policy Council, for 

identifying and prioritizing policy issues (Mah et al., 2016), thus making it more likely to 

establish effective policies for promoting healthy RFE. 

1.1.3. Assessing neighborhood RFE 5 

The first step for planning a healthy food system is to identify strengthens and 

weaknesses of the food system via community or neighborhood food assessment 

(Pothukuchi, 2004), among which neighborhood RFE assessment is an indispensable 

component. Although RFE can be assessed at various geographical levels, at least 

including regional, municipal, and neighborhood (Raja et al., 2008), neighborhood RFE 

assessment merits special attention mainly for two reasons: one, assessing neighborhood 

                                                 
5  This dissertation focuses exclusively on objective RFE assessment. Comparisons between 

objective and subjective (based on residents’ perception) RFE assessment can be found in a couple of studies 

in the literature (Barnes et al., 2015; Giskes, Van Lenthe, Brug, Mackenbach, & Turrell, 2007; Health Canada, 

2012; Moore et al., 2008; Sohi, Bell, Liu, Battersby, & Liese, 2014). Individuals’ exposure to RFE has also 

been quantified in several recent studies (Christian, 2012; Crawford et al., 2014; Kestens et al., 2012, 2010; 

Sadler et al., 2016; Zenk et al., 2011); but again, it is not the focus of this dissertation. 
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RFE reveals heterogeneity of food access that might be masked by regional or municipal 

assessment. For example, people in a city with abundant grocery stores might still reside 

in neighborhoods lacking access to healthy foods; and two, neighborhood is a suitable and 

feasible intervention unit for planners to promote population-wide healthy eating. Of note, 

neighborhood in this dissertation is exclusively area-based (e.g., a dissemination area) 

rather than individual- or household-based, given that evaluating areal RFE is more 

relevant and practical for food planning and interventions. Neighborhood RFE assessment 

also corresponds to Phase IV, gather and analyze relevant data, in the planning process for 

the food system (Figure 1-3).  

As of 2012, over 500 food environment measures exist in the extant literature 

(National Cancer Institute, 2016). These measures have been summarized in recent review 

papers (Gustafson, Hankins, & Jilcott, 2012; Kelly, Flood, & Yeatman, 2011; Ohri-

Vachaspati & Leviton, 2010). In light of the evidence from these reviews, a framework, 

which involves various aspects of neighborhood RFE assessment, can be summarized in 

Figure 1-4. Essentially, five elements should be considered: the strategy, dimension, data, 

scale, and methodology. Any neighborhood RFE assessment is a combination of these five 

elements, which interconnect with each other.  



14 

 

 

Neighborhood RFE assessment

Strategy DataDimension MethodologyScale

Absolute Relative

Community nutrition 

environment

Consumer nutrition 

environment

Primary Secondary

Spatial Temporal

Descriptive Modeling

 

Figure 1-4: Essential elements of neighborhood RFE assessment (Areas under-researched are 

highlighted in red) 

1.1.3.1. Dimensions of neighborhood RFE assessment 

A conceptual framework that has been widely adopted for guiding RFE assessment 

is Glanz and colleagues’ ecological model of the food environment (2005) (Figure 1-5). In 

particular, RFE assessment usually involves the community and consumer nutrition 

environments. These two dimensions of the complex and multi-facet food environment 

have a higher priority as they are less explored in the literature but could have broad 

impacts (Glanz et al., 2005). For reference, the community nutrition environment focuses 

on aspects such as the type, number, and location of food outlets. It is commonly evaluated 

by geographic access measures including proximity (e.g., the distance from the 

neighborhood centroid to the nearest supermarket), density (e.g., concentration of fast-food 

restaurants within a neighborhood), and variety (i.e., the extent to which different types of 

food retailers exist in a neighborhood). These measures are usually implemented in a 

Geographic Information System (GIS) (Charreire et al., 2010; Thornton, Pearce, & 

Kavanagh, 2011).  

On the other hand, the consumer nutrition environment represents in-store 

characteristics that consumers encounter when they reach a food retailer (Glanz et al., 

2005). This dimension of the food environment manifests in a variety of variables including 

food availability, affordability, quality, and healthy eating facilitator/barrier. In particular, 

food availability directly measures the availability of food (e.g., shelf-space devoted to 

vegetables and fruits in a food store, or healthy eating options in a restaurant). This measure 
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overcomes the limitation of the assumption that food retailer type is a sufficient proxy for 

food availability, and food availability is invariant within food outlet types (Health Canada, 

2012; Minaker et al., 2011). Food affordability is conventionally used to depict “the cost 

of food relative to an individual’s or household’s income or purchasing power” (Health 

Canada, 2012, p.14). Nevertheless, this measure has been adapted to understand food costs 

within a neighborhood, and it can be absolute (e.g., the cost of a healthy food basket) or 

relative (e.g., the cost of healthy foods in relation to their unhealthy counterparts). Food 

quality measures the quality characteristics of foods in food retailers. This measure is more 

subjective compared with food availability and affordability in that even trained raters 

dispute over the degree to which fruits and vegetables have bruised or wilted (Health 

Canada, 2012). Lastly, facilitator/barrier evaluates whether healthy eating is encouraged 

in a restaurant by measures such as whether reduced-size portion and nutritional 

information are provided (Saelens, Glanz, Sallis, & Frank, 2007). Numerous tools have 

been developed for measuring these in-store or in-restaurant features, including the widely 

adopted Nutrition Environment Measure Survey (NEMS) developed for food stores 

(NEMS-S; Glanz, Sallis, Saelens, & Frank, 2007) and restaurants (NEMS-R; Saelens, 

Glanz, Sallis, & Frank, 2007).  

 

Figure 1-5: Ecological Model of Community Nutrition Environments (Glanz et al., 2005) 

1.1.3.2. Strategies of neighborhood RFE assessment 

Two main strategies exist in the literature for neighborhood RFE assessment: 

absolute and relative. Absolute RFE assessment focuses on a specific type of food outlet 

(e.g., supermarkets) or a specific item (e.g., healthy foods). It manifests in a variety of 
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forms including the presence/absence, density, and proximity of a food outlet as well as 

the absolute price of a food item. In contrast, relative RFE assessment involves multiple 

types of food outlets and food items. For example, the modified Retail Food Environment 

Index (mRFEI) (CDC, 2011) is a measure of relative healthy food access, which is 

calculated by dividing the number of accessible healthy food outlets by the total number of 

accessible healthy and less healthy food outlets. NEMS scores of in-store features are also 

relative measures of healthy and less healthy food items. 

1.1.3.3. Food outlet data for neighborhood RFE assessment 

Food outlet datasets for neighborhood RFE assessment can be classified as either 

primary or secondary. Such datasets include essential information including addresses or 

coordinates and store types, and optional information such as opening hours and time stamp 

if temporal investigation is conducted. Primary food outlet datasets are obtained via field 

observation, which is resource-intensive but offers the most accurate information. For 

example, in the Cardiovascular Health of Seniors and the Built Environment study, food 

outlets within participants’ 300m radius buffer zone were repeatedly recorded (Morland, 

2015a).  

Secondary food outlet datasets from private commercial companies could also be 

utilized for neighborhood RFE assessment, with InfoUSA (Ma et al., 2013) and DMTI 

Spatial (Clary & Kestens, 2013) as two examples from the U.S. and Canadian contexts, 

respectively. For researchers, these commercial data are usually cost free in university 

geospatial libraries, but have been extensively criticized for their information errors in 

terms of food outlet count, type, and geospatial coordinates (Liese et al., 2013; Lucan et 

al., 2013). A recent investigation (Ma et al., 2013) found that these inaccuracies could lead 

to variations in identifying low food access areas with different commercial data sources. 

Innovative approaches (Clary & Kestens, 2013; Lyseen & Hansen, 2014; Ma et al., 2013), 

for example, the remote sensing technology (Rossen et al., 2012), have been applied to 

validate these secondary data. Unfortunately, results indicated that field census is the most 

reliable validation method. Within this context, the literature suggests using government 

registry data, which contains higher levels of accuracy, rather than commercial data, if 

secondary data is the only option for cost-effective reasons (Fleischhacker et al., 2013). In 
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Canada for example, the food premise inspection data can be requested from the public 

health department. 

1.1.3.4. Spatial and temporal scales of neighborhood RFE assessment 

Neighborhood RFE assessment is inherently a spatial and temporal issue. First, the 

operationalization of ‘neighborhood’ requires spatial boundary information. For areal RFE 

assessment, neighborhoods are usually defined with administrative boundaries, an 

approach that benefits policy implementations and planning as local governments have 

jurisdiction over these administrative areas (Health Canada, 2012). Simply assessing RFE 

falling within the administratively bounded areas however, could be problematic since food 

retailers are often located in close proximity to small-area (e.g., Census Tract) borders 

(Black et al., 2011). To alleviate this problem, buffering zones, which are created around 

the geometric or population centroid 6 of an administrative area, are used instead. While 

these buffering zones can be circular- or network-based, the latter better captures realistic 

neighborhood RFE (Oliver, Schuurman, & Hall, 2007; Seliske, Pickett, Rosu, & Janssen, 

2013). Nevertheless, the buffering size remains debatable in the literature, with various 

distance thresholds set as the cut-off. Relatively shorter distances such as 500m, 800m, and 

1km (Apparicio, Cloutier, & Shearmur, 2007; J. L. Black et al., 2011; Gilliland et al., 2012; 

He, Tucker, Gilliland, et al., 2012; He, Tucker, Irwin, et al., 2012; Larsen & Gilliland, 2008; 

Smoyer-Tomic, Spence, & Amrhein, 2006) and longer distances such as 3km, 5km, and 

8km (Barnes, Bell, Freedman, Colabianchi, & Liese, 2015; Larsen & Gilliland, 2008) have 

both been applied in Canadian RFE studies. A reasonable justification for the choice of 

distance cut-offs could be based on transportation modes (e.g., walking, public transit, and 

driving) and research contexts (e.g., urban vs. rural). For example, Larsen et al. (2008) 

calculate supermarket accessibility for London, Ontario, based on 1km and 3km, which 

represent reasonable distances for walking and public transit, respectively. The U.S. 

Department of Agriculture (USDA) defines urban and rural food deserts as neighborhoods 

without or with few healthy food options within 1 mile and 10 miles, respectively (USDA, 

2014). 

                                                 
6 These centroids have also been used for operationalizing ‘proximity’ (i.e., the distance from the 

neighborhood centroid to the closest food outlet, see for example Black et al. (2011), Daniel et al., (2009), 

and Wang et al. (2016). 
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Second, neighborhood RFE varies at different temporal scales (Chen & Clark, 2015; 

Widener & Shannon, 2014): daily owing to opening hours of food retailers (as shown in 

Glanz et al.’s model, Figure 1-5) (Chen & Clark, 2013, 2015), seasonally due to the opening 

of temporary food retailers such as farmers’ markets (Widener, Metcalf, & Bar-Yam, 2011), 

and annually attributable to the opening and closing of food outlets (Chen & Wang, 2014; 

Filomena, Scanlin, & Morland, 2013). Variations of public transit availability due to transit 

schedule and frequency also contribute to the temporal variations of neighborhood RFE 

(Farber, Morang, & Widener, 2014; Widener, Farber, Neutens, & Horner, 2015). Although 

beyond the scope of this dissertation, it should be noted that temporal food access relies on 

individual consumers’ time availability as well (Horner & Wood, 2014). More details of 

the temporality of neighborhood RFE are provided in Chapter 2. 

1.1.3.5. Methodology of neighborhood RFE assessment 

To date, the methodology used for assessing neighborhood RFE is predominantly 

descriptive. For instance, the number of fast-food restaurants (e.g., Polsky, Moineddin, 

Dunn, Glazier, & Booth, 2016) and proportions of healthy food outlets (e.g., CDC, 2011) 

have been used for assessing the community nutrition environment. The cost of healthy 

food basket (e.g., Dawson et al., 2008) and mean NEMS scores (e.g., Duran, Diez Roux, 

Latorre, & Jaime, 2013) exemplify two descriptive approaches for evaluating the consumer 

nutrition environment of a neighborhood.  

In contrast, modeling approaches, which are usually applied by geographers and 

transportation researchers, take into account realistic constraints or uncertainties for 

assessing neighborhood RFE. Studies from Dai and Wang (2011) and Lee and Lim (2009) 

provide examples of accounting for distance decay effects, which assume that people 

would more likely to procure foods in their immediate vicinity. Thus, food outlets closer 

to the centroid of a neighborhood should be more weighted. In reality however, this 

assumption has been challenged by recent findings that residents do not necessarily shop 

at the closest food outlet to their homes (LeDoux & Vojnovic, 2013; Shannon, 2014; Zenk 

et al., 2011). Variations in transportation availability, in particular public transit, have also 

been considered in neighborhood RFE assessment. For example, incorporating nuanced 

details such as boarding and alighting time, Farber et al. (2014) and Widener et al. (2015) 



19 

 

modeled supermarket accessibility for public transit-dependent residents. Results revealed 

that factoring transit schedules into food accessibility measurement enables to depict “a 

more complete and realistic picture” (Farber et al., 2014, p.149) of the food environment. 

Additionally, residents’ available time for food procurement has been taken into account 

for modeling neighborhood RFE. Adapting the space-time prism that accounts for 

individuals’ space-time constraints, Widener et al. (2013, 2015) assessed supermarket 

accessibility at the neighborhood level. Compared with traditional assessments focusing 

on residential neighborhoods only, their approach accounted for supermarkets that are 

accessible to residents on the way back home from work, provided that residents have a 

fixed amount of free time for activities including food shopping after work.  

Table 1-2 provides examples of descriptive and modeling methods for assessing 

community and consumer nutrition environments using absolute and relative measures.  

Table 1-2: Examples of descriptive and modeling approaches for neighborhood RFE assessment 

 Community nutrition environment Consumer nutrition environment 

Descriptive Absolute Number of accessible fast-food 

restaurants (e.g., Polsky, Moineddin, 

Dunn, Glazier, & Booth, 2016) 

Cost of healthy food basket (e.g., 

Dawson et al., 2008) 

Relative Crude proportions of healthy food 

outlets such as mRFEI (CDC, 2011) 

Mean NEMS score in a neighborhood 

(e.g., Duran, Diez Roux, Latorre, & 

Jaime, 2013) 

Modeling Absolute Models accounting for (1) distance 

decay effects (Dai & Wang, 2011; Lee 

& Lim, 2009) and (2) supermarkets 

accessible on the way back home 

(Widener et al., 2015, 2013) 

Not available 

Relative Not available 

 

1.1.3.6. Marginalization and neighborhood RFE 

Extending neighborhood RFE assessment studies from a social justice and food 

equity perspective, researchers have investigated whether certain groups, based on socio-

economic status, have reduced healthy food access. Theoretical bases for such 
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investigations include the deprivation amplification hypothesis (Macintyre, 2007) and 

Lytle’s ecological model of individuals’ eating behaviors (Lytle, 2009).  

The concept of deprivation amplification posits that compared to their more-

affluent counterparts, deprived neighborhoods have less health-promoting resources 

including recreational amenities, physical activity facilities, and healthy food outlets. 

These disadvantageous environments magnify individual vulnerability, resulting in (built-) 

environmental characteristics more detrimental to health in deprived areas (Macintyre, 

2007). Likewise, Lytle’s model of eating behaviors demonstrates how individual, social, 

and environmental factors interact to influence eating behaviors (Figure 1-6). As individual 

and social factors become more restricted, the environmental characteristics explain more 

variance of eating behaviors. In contrast, eating patterns of residents with less restricted 

individual and social factors are less constrained by environmental factors. In this sense, it 

is necessary to understand whether marginalized neighborhoods have less healthy RFE 

given that the diet quality of residents restricted by individual and social factors largely 

depend on environmental factors. 
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Figure 1-6: Lytle's model of individuals' eating behaviors (Excerpt from Lytle, 2009, p.S142) 

Findings regarding the association between marginalization and neighborhood RFE 

are quite consistent in the U.S., suggesting that marginalized neighborhoods (i.e., lower 

income and higher proportion of minority residents) have lower access to food retailers 

that sell nutritious and affordable foods. The evidence is weak in other developed countries 

including Canada, the UK, Australia, and New Zealand (Beaulac, Kristjansson, & 

Cummins, 2009; Larson, Story, & Nelson, 2009).  

1.1.3.7. Limitations in neighborhood RFE research 

Past neighborhood RFE assessment studies suffer from a couple of limitations, 

which are highlighted in red in Figure 1-4. First, the temporality of neighborhood RFE is 

under researched. RFE measures are predominantly spatial, overlooking the dynamic 

nature of neighborhood RFE, although changes in the numbers and types of food retailers 

may lead to changes in food purchasing and consumption behaviors (Filomena et al., 2013). 

As it may take a long time for neighborhood RFE to manifest its health effects, ignoring 

RFE changes, especially at a small temporal scale (e.g., annually), might result in 

inconsistent findings regarding the impact of RFE on health (Health Canada, 2012; Zenk 

et al., 2015). 
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Second, a majority of studies use secondary and commercial RFE datasets that 

exclusively contain information of the community nutrition environment such as outlet 

addresses and types. Using secondary dataset is understandable from a cost-effective 

perspective, but it could result in biased findings that may adversely contribute to food 

interventions and planning, given that these datasets are subject to food outlet 

misclassification and data incompleteness as mentioned above. 

Third, neighborhood RFE assessment mainly focuses on the community nutrition 

environment dimension, ignoring the consumer nutrition environment (i.e., in-store 

characteristics). This overlook could be problematic since the literature has suggested 

variations of in-store food availability, quality, and prices within the same outlet type 

across neighborhoods (Franco, Diez Roux, Glass, Caballero, & Brancati, 2008; Zenk et al., 

2006). In this context, a multi-dimensional approach for assessing neighborhood RFE, 

which integrates both community and consumer nutrition environments, has been proposed 

(Rose, Bodor, Hutchinson, & Swalm, 2009) but rarely applied in the extant RFE literature. 

For reference, a multi-dimensional approach refers to the case in which RFE are assessed 

based on “information provided on the location dimension as well as dimensions regarding 

food product availability, pricing, and other in-store characteristics” (Rose et al., 2009, 

p.1171).  

Fourth, absolute rather than relative measures have been extensively utilized for 

evaluating neighborhood RFE. Emphasizing on a specific type of food outlet or food item 

rather than evaluating the full spectrum of the complex RFE is limited in representing the 

underlying ‘healthfulness’ of neighborhood RFE, then subsequently limited in guiding 

food planning and interventions. The literature has suggested that a neighborhood could 

simultaneously have good access to both healthy and less healthy food outlets (Mason, 

Bentley, & Kavanagh, 2013; Polsky, Moineddin, Glazier, Dunn, & Booth, 2014). 

Furthermore, growing evidence has shown that relative measures of RFE better represent 

food shopping and consumption behaviors (Clary, Ramos, Shareck, & Kestens, 2015; 

Mason et al., 2013; Mercille et al., 2012; Thornton, Bentley, & Kavanagh, 2009) as well 

as health outcomes such as weight status (Kestens et al., 2012; Mehta & Chang, 2008; 
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Polsky et al., 2016; Spence, Cutumisu, Edwards, Raine, & Smoyer-Tomic, 2009), making 

it necessary to assess neighborhood RFE using relative rather than absolute strategies. 

Finally, methodological limitations exist in extant studies that use descriptive 

approaches for assessing neighborhood RFE. Such descriptive measures are associated 

with uncertainties for evaluating the ‘healthfulness’ of neighborhood RFE, arising mainly 

from two sources. On the one hand, descriptive RFE measures fail to account for RFE in 

adjacent neighborhoods. While the choice of buffering sizes based on transportation modes 

makes sense to a certain extent, residents could still travel beyond the pre-defined zones. 

Incorporating neighboring RFE information strengthens RFE ‘healthfulness’ estimation 

and enables the differentiation between areas with the same descriptive RFE measure but 

varying RFE in adjacent neighborhoods. Such information could help prioritize 

neighborhoods for interventions. On the other hand, the number of total accessible food 

outlets is masked when relative measures are applied for neighborhood RFE assessment. 

For example, two areas with the same value of mRFEI or mean NEMS scores are regarded 

as equally healthy, although one might locate at central urban areas with numerous 

accessible food outlets, while the other locates at peripheral areas that can access much 

fewer outlets.  

Apart from the limitations as aforementioned, studies exploring the association 

between marginalization and neighborhood RFE are subject to additional limitations 

including inadequate characterization of marginalization as well as applying non-spatial 

statistical approaches to respond to this ultimately spatial issue. These limitations are 

described with more details in Chapters 2 to 4.  

1.1.4. RFE datasets in the Region of Waterloo 

As noted above, the Region of Waterloo is one of the leading municipalities that 

incorporate food issues into professional planning, using both stand-alone and official 

plans. Annually it inspects every food premise within the three cities, Waterloo, Kitchener, 

and Cambridge, as well as four townships, Wellesley, Woolwich, Wilmot, and North 

Dumfries. This inspection results in a food outlet database with spatial information such as 

outlet type and location. Temporal information including outlet opening and closing dates 

can be derived from this spatio-temporal dataset. In response to the open data movement 
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in Canada, Region of Waterloo has recently released its food inspection datasets for public 

use (Region of Waterloo Public Health, 2014). 

In addition, the Region of Waterloo conducted the interdisciplinary NEWPATH 

(Nutrition, Environment in Waterloo Region, Physical Activity, Transportation and Health) 

project that evaluates how different built environments impact health-related behaviors and 

outcomes, such as physical activity levels, walking rates, diet, and health in the urban areas 

of the three cities. A component that evaluates the quality of the RFE was included in this 

project. Specifically, the RFE-assessment component identifies food stores and restaurants 

based on the food outlet inspection database as mentioned above, followed by direct 

observations to identify additional food outlets, remove non-existent food outlets, and 

rectify outlet misclassification (Minaker et al., 2013). In-store characteristics of food stores 

and restaurants were assessed by the adapted NEMS-S (Glanz et al., 2007) and NEMS-R 

(Saelens et al., 2007) for Canadian studies, respectively. These two measures are inventory-

based, which record every food item available in a food outlet (National Cancer Institute, 

2016). Shelf-space devoted to fruits and vegetables as well as energy-dense foods including 

salty snack food, cookies & crackers, doughnuts & pastries, candy, and carbonated 

beverages in a food store was also measured. More details of these RFE datasets can be 

found in Chapters 2 to 4. 

Nevertheless, these rich food outlet datasets in the Region of Waterloo have not yet 

been fully exploited for RFE assessment, especially at areal-neighborhood level, but could 

advance the understanding of neighborhood RFE and benefit food planning and 

interventions for promoting population-wide healthy eating. 

1.2. Study purposes and research questions 

Motivated by addressing the limitations of neighborhood RFE assessment in 

current literature as noted above, this article-based dissertation analyzes RFE datasets at 

both community and consumer nutrition environment levels using novel spatial and spatio-

temporal statistical approaches. The connections between the guiding frameworks, the 

common theme, limitations in existing studies, and the three articles are presented in Figure 

1-7.  



25 

 

Neighborhood RFE assessment

Temporal ModelingRelative
Consumer nutrition 

environment
Primary

Article 1 

(Chapter 2)

Article 2  

(Chapter 3)

Article 3 

(Chapter 4)

ANGELO 

framework

Deprivation 

amplification

Lytle s model of 

eating behaviors

What new and value-added information can be 

extracted from varying food outlet datasets with 

novel spatial and spatio-temporal statistical 

approaches?

Professional 

planning for food

Glanz et al. s 

conceptual model of 

the food environment

 

Figure 1-7: Connections between the guiding frameworks, the common theme, limitations in existing 

studies, and the three articles 

Generally, the ANGELO framework and professional planning for food emphasize 

the necessity of neighborhood RFE assessment, which is the common theme of this 

dissertation and has the aforementioned limitations. Glanz et al.’s conceptual model of the 

food environment guides all three articles in terms of what food environment features to 

assess. Article 2 is also guided by the deprivation amplification hypothesis as well as 

Lytle’s model of eating behaviors. All three articles analyze relative RFE measures with 

modeling approaches, but each has its own objective, intending to fill in specific gaps as 

demonstrated in Figure 1-4 and Table 1-2. Specifically, Article 1 aims to analyze spatio-

temporal variations of relative healthy food access (RHFA) using spatio-temporal 

modeling approaches; Article 2 intends to explore how different marginalization 

dimensions associate with neighborhood RFE ‘healthfulness’ with hierarchical spatial 

models; and Article 3 aims to assess neighborhood restaurant environment (NRE) with a 

multi-dimensional approach that combines both community and consumer nutrition 

environments. Corresponding research questions are formulated in Table 1-3. Together, 

these three articles explore what new and value-added information can be extracted from 
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food outlet datasets with varying available information using spatial and spatio-temporal 

statistical approaches, and provide evidence for food planning and interventions. 

Table 1-3: Research objectives and questions 

Chapter 

# 

Objective Research questions Gaps to fill 

Chapter 

2 

Analyze spatio-

temporal variations of 

RHFA 

1. Is there an overall trend of RHFA 

(significant increasing/decreasing or 

insignificant change) in the Region of 

Waterloo at the neighborhood level? 

2. What are the local (area-specific) trends 

of RHFA? Neighborhoods could 

experience different local trends compared 

with the regional trend. 

3. Are there neighborhoods where RHFA 

decreases significantly faster than the 

regional trend? 

Relative measure 

of RFE + temporal 

dimension of RFE 

+ modeling 

approach 

Chapter 

3 

Explore the association 

between 

marginalization 

dimensions and 

neighborhood RFE 

‘healthfulness’ 

Do marginalized neighborhoods 

experience less healthy RFE? In other 

words, does the deprivation amplification 

hypothesis in the context of food access 

hold for the Region of Waterloo? 

Relative measure 

of RFE + primary 

food outlet dataset 

+ modeling 

approach 

Chapter 

4 

Assess NRE 

‘healthfulness’ with a 

multi-dimensional 

approach  

1. Which neighborhoods in the city of 

Kitchener have the least healthy NRE? In 

other words, which neighborhoods 

simultaneously suffer from deprived 

availability, affordability, and 

facilitator/barrier of healthy eating? 

2. What is the indicator that contributes the 

most to (or most relevant with) the NRE 

healthfulness? 

Relative measure 

of RFE + 

consumer nutrition 

environment + 

primary food 

outlet dataset + 

modeling approach 

 

1.3. Thesis outline 

This dissertation is composed of five chapters. Specifically, Chapters 2 to 4 present 

three articles that have been published or submitted for publication on the subject of spatial 



27 

 

and spatio-temporal analyses of neighborhood RFE. Each article addresses specific 

limitations of current neighborhood RFE assessment. 

Chapter 2 analyzes spatio-temporal variations of RHFA in the Region of Waterloo 

with a four-year RFE dataset. The focus is to explore the regional trend and local trends of 

RHFA (i.e., how RHFA varies over the region and at specific neighborhoods, respectively). 

This chapter extends the definition of food swamps by incorporating a temporal dimension 

and identifies spatio-temporal food swamps, neighborhoods where RHFA decreases faster 

than the average regional trend, using a hierarchical spatio-temporal model. Temporal 

variations of RHFA that cannot be revealed by descriptive statistics and/or multi-map 

comparison are also discussed. 

Chapter 3 explores the association between marginalization dimensions and RFE 

healthfulness at the neighborhood level using hierarchical models. A primary RFE dataset 

collected in 2010, which contains the information of both community and consumer 

nutrition environments, is analyzed. In contrast to similar past studies, this paper 

differentiates ‘healthy’ and ‘less healthy’ food outlets based on NEMS scores rather than 

food outlet types, explores the entire instead of a partial RFE dataset, models RFE 

healthfulness (i.e., relative measure of healthy food access) with probability distributions 

rather than descriptive statistics (i.e., crude proportions of healthy food outlets of all 

accessible food outlets), and derives marginalization dimensions using spatial statistical 

approaches. This study sheds light on how the deprivation amplification hypothesis should 

be interpreted in the context of RFE and provides policy implications for improving the 

balance between healthy and less healthy food access in the Region of Waterloo.  

Chapter 4 focuses on assessing NRE with a multi-dimensional approach in the city 

of Kitchener. A Bayesian spatial factor analysis approach is used to construct a composite 

index that represents NRE healthfulness, which is a weighted combination of three 

restaurant assessment indicators: availability, affordability, and facilitator/barrier of 

healthy eating. Such a modeling approach quantifies uncertainties associated with the mean 

NEMS-R score that result from masking the total number of accessible restaurants and 

variations of in-restaurant features, and ignoring NRE in adjacent neighborhoods. This 

study advances the understanding of NRE by introducing uncertainties in NRE assessment, 
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and informs food planning and interventions in terms of what in-restaurant features to 

prioritize and where the interventions should be targeted.  

Chapter 5 concludes this dissertation by summarizing key findings and highlighting 

major conceptual, methodological, and empirical contributions. Policy implications and 

future research directions are also discussed in this chapter.  
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Chapter 2: Identifying food deserts and swamps based on 

relative healthy food access: a spatio-temporal Bayesian 

approach 7 

2.0. Overview 

Obesity and other adverse health outcomes are influenced by individual- and 

neighborhood-scale risk factors, including the food environment. At the small-area scale, 

past research has analyzed spatial patterns of food environments for one-time period, 

overlooking how food environments change over time. Further, past research has 

infrequently analyzed relative healthy food access (RHFA), a measure that is more 

representative of food purchasing and consumption behaviors than absolute outlet density. 

This research applies a hierarchical model to analyze the spatio-temporal patterns of RHFA 

in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is 

calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy 

outlets) within 4-km from each small-area. This model measures spatial autocorrelation of 

RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA 

for small-areas. For the study region, a significant decreasing trend in RHFA is observed 

(-0.024), suggesting that food swamps have become more prevalent during the study period. 

For small-areas, significant decreasing temporal trends in RHFA were observed for all 

small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast 

Cambridge exhibited the steepest decreasing spatio-temporal trends, thus are classified as 

spatio-temporal food swamps. This research demonstrates a hierarchical spatio-temporal 

model to analyze RHFA at the small-area scale. Results suggest that food swamps are more 

prevalent than food deserts in the Region of Waterloo. Analyzing spatio-temporal trends 

of RHFA improves understanding of local food environment, highlighting specific small-

areas where policies should be targeted to increase RHFA and reduce risk factors of adverse 

health outcomes such as obesity. 

                                                 
7 This chapter is adapted from the article entitled “Identifying food deserts and swamps based on 

relative healthy food access: a spatio-temporal Bayesian approach”, which has been published in 

International Journal of Health Geographics, 2015, 14:37.  
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2.1. Introduction 

Past research has demonstrated that the food environment is an important factor in 

health outcomes. Several studies have shown that residents with higher access to healthy 

foods have healthier diets (Gustafson et al., 2013), lower risk of overweight/obesity (Cerin 

et al., 2011), and lower risk of high blood pressure (Dubowitz et al., 2012). Obesity, in 

particular, is a major risk factor for chronic diseases including heart diseases, stroke, and 

diabetes (WHO, 2013). 

Acknowledging the role of healthy food access in shaping food consumption and 

related health outcomes, policymakers have prioritized increasing healthy food access. In 

Canada, for example, the Ontario Professional Planners Institute has issued a call for action 

on planning for healthy food systems and engaging planners with food relevant issues 

(OPPI, 2011). Furthermore, the municipalities of Vancouver (Seeton, 2012) and Toronto 

(Toronto Food Policy Council, 2014) have developed local programs to increase healthy 

food access by establishing healthy corner stores that sell fresh produce and instituting 

mobile grocery stores.  

2.1.1. Measuring the food environment 

Various measures have been developed for assessing the food environment and 

have been summarized (Charreire et al., 2010; Gustafson et al., 2012; Kelly et al., 2011; 

Ohri-Vachaspati & Leviton, 2010) and compared (Mercille et al., 2013; Minaker et al., 

2014) in extant literature. While these measures can be categorized based on a number of 

different criteria such as community or consumer nutrition environments (Kelly et al., 

2011), one important distinction is between absolute and relative measures. 

The absolute and relative measures capture different aspects of the food 

environment (Mercille et al., 2013). Absolute metrics (e.g., the density of supermarkets 

within a census tract) measure access to one type of food outlet whereas relative metrics 

assess the relative accessibility of two types of food outlets, including healthy and 

unhealthy (Zenk, Powell, Rimkus, Isgor, & Barker, 2014). Recent research has 

demonstrated that relative healthy food access (RHFA), as measured by the percentage of 
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healthy food outlets (= healthy outlets / healthy + unhealthy outlets), better represents food 

purchasing and consumption behaviors (Clary et al., 2015; Mason et al., 2013) compared 

to absolute densities of healthy food outlets. This may be because RHFA measures the 

balance between healthy and unhealthy food outlets, while absolute measures assess only 

a portion of the total food environment. While analyzed in past research, relative measures 

have been shown to provide more consistent and expected associations with health 

outcomes. In a meta-analysis of 61 studies, Zenk et al. (2015) observed four studies that 

employ relative food environment measures, and all of these studies had consistent and 

expected findings (e.g., higher RHFA linked to lower odds of obesity), whereas mixed 

findings were identified in studies using absolute food environment measures. Relative 

measures also have methodological advantages since incorporating both absolute measures 

of healthy and unhealthy food outlets in regression models could lead to multi-collinearity 

as these two measures are usually positively correlated (Mason et al., 2013).  

Capturing both healthy and unhealthy food outlets in one measure allows for a more 

comprehensive analysis of different dimensions of the food environment (Lucan, 2015), 

and enables conceptualizing food deserts and food swamps on a continuous scale. Food 

deserts are areas lacking access to nutritious and affordable food (i.e., 0% RHFA), and food 

swamps are areas that with relatively few healthy options (i.e., small RHFA) (Centers for 

Disease Control and Prevention, 2011) or where “large relative amounts of energy-dense 

snack foods, inundate healthy food options” (Rose et al., 2009, p.2). The modified Retail 

Food Environment Index (mRFEI) is a relative measure of the food environment that can 

represent both food deserts and food swamps8, where a value equal to zero characterizes a 

food desert while a small value greater than zero characterizes a food swamp. Food deserts 

have been extensively investigated in past research, however recent research indicates food 

swamps may be more prevalent in countries including Canada (Health Canada, 2012; Rose 

et al., 2009; Strickland, Strategy, & Plan, 2014). 

2.1.2. Temporal variation in the food environment 

Previous research has indicated that changes in the numbers and types of retail food 

outlets may lead to changes in food purchasing and consumption behaviors (Filomena et 

                                                 
8 This paper follows the mRFEI approach to differentiate food deserts and food swamps. 
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al., 2013), however little research has analyzed temporal changes in healthy food access, 

especially RHFA.  

Temporal food access can be considered from supply (retail) and demand 

(consumer) sides. From the supply side, variations in temporal food access occur across 

years (e.g., new food outlets opening), seasons (e.g., farmers’ markets), and weekdays (e.g., 

opening hours of food outlets) (Chen & Wang, 2014; Chen & Clark, 2013, 2015; Filomena 

et al., 2013; Widener, Metcalf, & Bar-Yam, 2011). For example, Filomena et al. (2013) 

investigated annual changes of the food environment in Brooklyn, New York between 2007 

and 2011, and observed that changes in absolute healthy food outlets varied between 

neighborhoods based on income and ethnic composition, where low income and 

predominately non-white neighborhoods experienced higher variations in healthy food 

access. Widener et al. (2011) found that poorer neighborhoods have better spatial access to 

healthy foods in summer than in winter because of seasonal farmers’ markets. Also 

analyzing food environments at the seasonal scale, Lamichhane et al. (2015) explored 

associations between absolute densities of supermarkets, convenience stores and socio-

demographic characteristics. Positive associations were observed between the numbers of 

both types of food stores and neighborhood poverty. Two recent studies from Chen and 

Clark (2013, 2015) suggested that socio-economically marginalized neighborhoods have 

limited temporal access, rather than spatial access, to healthy food outlets due to limited 

daily opening hours of green retailers. Therefore, interventions such as extending opening 

hours of green retailers were recommended to reduce healthy food access disparities, 

complementing conventional interventions such as building new healthy food outlets. 

From the demand side, temporal food access is generally measured for individuals 

because it is largely determined by consumers’ time availability. For example, people 

working non-conventional hours may be constrained by food outlet operating hours (Chen 

& Clark, 2013). In this case, the space-time prism has been used to quantify food 

accessibility, incorporating individual mobility and time budgets (Horner & Wood, 2014; 

Widener et al., 2013). Findings from these studies identify which population rather than 

which areas have greater or less access to healthy foods. Temporal variations in 

transportation service (especially public transit) that link supply and demand sides also 
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influence healthy food access. For example, Farber et al. (2014) found that supermarket 

accessibility varied for public transit-dependent residents across the day in Cincinnati due 

to daily fluctuations in transit availability. 

This study analyzes annual spatio-temporal variations of RHFA at the small-area 

scale for the Region of Waterloo, from 2011 to 2014, complementing past research that 

analyzes only spatial variations and absolute healthy food access. RHFA at a small 

temporal scale (e.g., annual) merits attention given that changes in the number and type of 

food outlets are slow, and it probably takes a long time for the food environment to manifest 

its health effects (Moore & Diez-Roux, 2015). Specifically, this study has three objectives: 

1) to estimate temporal trend in RHFA for the study region (regional trend), 2) to identify 

spatio-temporal RHFA trends at the small-area scale (local trends), and 3) to highlight 

spatio-temporal food swamps, or small-areas where RHFA is decreasing at a greater rate 

than the study region.  

2.2. Study region and data  

2.2.1. Study region 

The Region of Waterloo, Ontario, Canada, is composed of three cities, Kitchener, 

Waterloo, and Cambridge, and four rural townships. It is located approximately one hour 

west of Toronto, Canada’s largest city. For this study, rural townships were excluded from 

the analysis because retail food outlets are primarily located in urban areas. City boundaries 

were collected from the Region of Waterloo (Region of Waterloo, 2014).  

In total, 655 DAs with a population of 444,681 were analyzed. For reference, DAs 

are the smallest census units that cover the entirety of Canada and are delineated according 

to roads and physical boundaries (Statistics Canada, 2012). Average DA population density 

was 3234/km2, ranging between 2/km2 in a predominantly industrial DA and 16025/km2 in 

a DA with many apartment buildings. Population data and geographic shapefiles were 

obtained from Statistics Canada (Statistics Canada, 2015). 

2.2.2. Food Outlet Data 

Retail food outlet locations were extracted from a food inspection dataset 

containing all food outlets in the Region of Waterloo. Misclassification of outlets was 
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detected, which is a common challenge encountered in secondary datasets (Liese et al., 

2013; Lucan et al., 2013). Retail food outlets were re-classified based on categories from 

the Nutrition, Environment in Waterloo Region, Physical Activity, Transportation and 

Health (NEWPATH) project (Minaker et al., 2013), which surveyed in-store characteristics 

of all food outlets (e.g., shelf-space dedicated to fruit and vegetables in a supermarket or 

availability of healthy eating options in a restaurant) in 2009. NEWPATH included nine 

categories: full-service restaurant, fast-food restaurant, bar/pub, supermarket, specialty 

food store, convenience store, pharmacy, superstore, and snack stand. 

In practice, dichotomously categorizing food outlets as ‘healthy’ or ‘unhealthy’ is 

contentious because many healthy food outlets supply unhealthy food products. We 

followed the most common and simplest classification scheme in the literature (Vernez 

Moudon et al., 2013): only supermarkets/superstores are classified as healthy and only 

convenience stores and fast-food restaurants are classified as unhealthy. Similar 

approaches have been employed in recent Canadian (Clary et al., 2015; Engler-Stringer, 

Shah, Bell, & Muhajarine, 2014) and Australian (Mason et al., 2013) studies. 

RHFA was calculated by dividing the number of healthy food outlets by the sum 

of healthy and unhealthy food outlets within a 4km road network buffering distance from 

DA centroids. Food outlets that were located outside of the study region, but were inside 

buffers, were included. This approach alleviates the ‘edge effects’ problem in measuring 

food access (Sadler, Gilliland, & Arku, 2011). A 4km buffering distance was chosen 

because RHFA within a DA is likely not representative of food purchasing behaviors, as 

DAs are small (average area = 0.48 km2) and retail food outlets are often located close to 

small-area borders (Black et al., 2011). A 4km road network buffer approximates a 5-

minute driving distance, which is the primary transportation mode for employment and 

shopping in the study region (approximately 85% of employed residents either drive to 

work or are passengers 9 ). A 5-minute driving distance also captures local food 

environments for residents using other forms of transportation, such as public transit and 

                                                 
9 The figure was derived based on Census Canada 2011.  



35 

 

cycling. For reference, the longest distance from a DA centroid to the closest healthy or 

unhealthy food outlet is 3.53km. 

Table 2-1 shows the descriptive statistics for healthy and unhealthy food outlets in 

the study region. Between 2011 and 2014, the number of healthy food outlets slightly 

declined by three (4.3%), while the number of unhealthy food outlets increased by 34 

(3.6%). As a result, RHFA for the study region decreased from 7% to 6.5%. Notably, 

because the number of convenience stores decreased by 12, the increase in unhealthy food 

outlets is due to increasing numbers of fast-food restaurants. 

Table 2-1: Descriptive statistics of retail food outlets and RHFA by year 

 2011 2012 2013 2014 

Healthy food outlets 70 69 68 67 

Unhealthy 

food outlets 

Total 932 939 942 966 

Convenience store 323 317 306 311 

Fast-food restaurant 609 622 636 655 

Total healthy and unhealthy food outlets 1002 1008 1010 1033 

RHFA (%) 7 6.8 6.7 6.5 

 

Figure 2-1 shows the geographic distribution of healthy food outlets in the study 

region from 2011 to 2014. Most healthy food outlets were operational during the four years 

(green dots), with the exception of two (red dots) in north Kitchener and one (pink dot) in 

south Cambridge. One healthy food outlet at middle Cambridge (blue dot) was closed in 

2012, but a new one was constructed at the same site in 2013.  
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Figure 2-1: Distributions of healthy food outlets in the Region of Waterloo from 2011 to 2014 

 

Figure 2-2 maps the calculated RHFA at the DA-scale for each year. RHFA values 

range from 0% in all years to 20% in 2012. Areas that have no healthy food outlets within 

4km are highlighted with hatched lines. 
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Figure 2-2: Quantile maps of RHFA from 2011 to 2014 

 

While no explicit thresholds have been applied to define food swamps, we assume 

that they are areas where RHFA is greater than zero and less than 10%. This is based on a 

recent study that demonstrated that, in areas with more than 10% of healthy food outlets, 

households had higher odds of purchasing healthier foods (Mason et al., 2013). Most DAs 

(~ 90%) are identified as food swamps because they have low RHFA (< 10%). Some DAs 

have RHFA of less than 5% for the duration of the study period and are highlighted in 

Figure 2-2: south Kitchener and north Cambridge (Location A), southeast Waterloo and 

northeast Kitchener (Location B), and north Waterloo (Location C).  

Notably, one DA in north Waterloo went from a food swamp in 2011 to a food 

desert in 2012, which was due to road network reconstructions that made 

supermarkets/superstores inaccessible within 4km. While the RHFA patterns in most 
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small-areas are similar from 2011 to 2014, RHFA fluctuations in Location B are noticeable. 

In 2012, RHFA increased in Location B because the number of accessible unhealthy food 

outlets decreased and the number of supermarkets/superstores was constant. Following 

closures of two supermarkets in 2013, RHFA decreased in these same areas. 

2.3. Methodology 

A hierarchical model was used to analyze the spatio-temporal trend of RHFA. This 

approach was adapted from Bernardinelli et al. (1995) and has been widely used in spatio-

temporal analysis of count data (Law, Quick, & Chan, 2013, 2014; Li, Haining, Richardson, 

& Best, 2014). Bayesian approaches combine prior knowledge and observed data (i.e., 

accessible healthy food outlets) to estimate posterior distributions of unknown parameters 

(i.e., regional RHFA trend).  

The spatio-temporal model consists of two levels. Level 1 (in Equation (1)) assumes 

that the count of healthy food outlets within 4km of DA i at time j follows a binomial 

distribution, where is the observed number of healthy food outlets,  is the sum of 

healthy and unhealthy food outlets, and  is the probability of a food outlet being healthy. 

Of note,  can be considered as an estimated RHFA and while different than calculated 

RHFA, they are both representative of the risk of low RHFA. The distinction will be 

detailed in the discussion section.  

     (1) 

Using a logit link function,  is decomposed into parameters measuring purely 

spatial variation, purely temporal variation, and spatio-temporal interaction at the second 

level (Equation (2), from Model I).  

    (2) 

Purely spatial variation is represented by an intercept  (average RHFA for the 

study region),  (unstructured random effects), and  (spatially structured random 
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effects). Random effects ( and ) deal with overdispersion (greater variance than 

expected based on a probability distribution), which occurs when modeling count data at 

the areal level. Sources of overdispersion in small-area studies include intra-area 

heterogeneity, which may be due to the presence of missing covariates or measurement 

errors in covariates (Haining, Law, & Griffith, 2009; Law & Haining, 2004; Law et al., 

2014). The spatially structured random effects, , model the spatial autocorrelation of 

RHFA. Because RHFA is calculated using a buffering approach, it is likely to be spatially 

autocorrelated such that nearby areas exhibit similar RHFA. 

In Equation (2), purely temporal variation of RHFA for the study region is captured 

by . We assumed a linear regional trend over a four-year period considering that the 

opening and closure of food outlets occur infrequently over time (compared to 

epidemiological cases that likely vary rapidly at small-area levels over four years, for 

example) (Figure 2-2). The spatio-temporal interaction term  models local differential 

trends (the difference between regional trend and local trends) in RHFA after accounting 

for purely spatial and temporal effects. Notably,  is the centered time, calculated by 

subtracting the empirical mean from each time value, which has been suggested for better 

model convergence (D. Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012). 

Equation (2) can be extended to include other covariates (Equation (3), from Model 

II). Specifically, is a vector of covariates that could be included in the modeling, and 

 is a vector of corresponding coefficients. An example of covariates to be included is 

population density to explore the possibility that food outlets are located in highly 

populated areas. 

   (3) 

The posterior probability (PPi) of  being less than zero measures the strength that 

the local trend negatively departs from the regional trend ( ) (Law et al., 2013, 2014). 

Spatio-temporal food swamps are small-areas that exhibit a decreasing RHFA trend and a 
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high probability of local RHFA trend being less than regional RHFA trend. Specifically, 

they are areas that have a negative local trend (  + < 0) (i.e., decreasing RHFA from 

2011 to 2014) and high PPi of  less than zero (i.e., local RHFA trend strongly differs 

from the study region trend).  

We specified an improper uniform prior  for the intercept . Priors for 

spatial random effect  and spatio-temporal interaction  were specified by the intrinsic 

(Gaussian) conditional autoregressive (ICAR) (Besag, York, & Mollie, 1991) distribution. 

Under the ICAR distribution, the expected mean of  and  of the ith DA is the mean of 

adjacent ’s and ’s, respectively, where adjacency is defined as areas sharing at least 

one common vertex (Law et al., 2013). Variances of  and  is controlled by 

hyperparameters10  and , respectively, and is inversely proportional to the number 

of neighbors of the ith DA. It should be noted that there are other prior specifications for 

spatial parameters, for example the proper (Gaussian) conditional autoregressive 

distribution. ICAR is appropriate for data that exhibits high spatial autocorrelation (Law & 

Haining, 2004; D. Lee, 2011) and strong spatial autocorrelation of RHFA has been 

identified using Moran’s I11 (>=0.8). 

A non-informative prior was given to the regional trend parameter 

 and covariate coefficients , respectively, while a prior of  was assigned 

to . Non-informative hyperpriors of  were given to the reciprocal 

of hyperparameters , , and  (denoted as , , and ). To determine the 

degree to which hyperparameter specification influenced results, we performed sensitivity 

analysis using three alternative priors: 1)  for , , and , 2) a 

                                                 
10  In Bayesian approaches, hyperparameters are the parameters of priors. Priors assigned to 

hyperparameters are called hyperpriors.  
11 Moran’s I is a statistical method to quantify spatial autocorrelations. A value of Moran’s I 

approaching 1 indicates strong positive autocorrelations.  

 i

i

( , ) U 

is i

is i

is i

is i

2

s 2



(0,1000)Normal

 β
2(0, )uNormal 

iu (0.5,0.0005)Gamma

2

s 2

u 2

 s u 

(0.001,0.001)Gamma s u 



41 

 

uniform prior U(0, 100) (Law et al., 2013) for , , and , and 3) a half normal prior 

12 (Gelman, 2006; Li et al., 2014) for , , and . 

We fitted the models using the WinBUGS software (Lunn, Thomas, Best, & 

Spiegelhalter, 2000) with two parallel chains. Convergence was checked by visually 

examining trace plots, history plots, autocorrelation plots, and Gelman-Rubin plots. 

Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002) 

was used to identify the model best fitting the data. The better model is the one with a 

smaller DIC value. 

2.4. Results 

Models I and II were compared in Table 2-2 to identify the model that better 

represents the spatio-temporal variation (rather than covariates) of RHFA, which is the 

main goal of this study. Model II extended Model I by testing the association between 

RHFA and population density, one of the major driving factors of the distribution of food 

outlets (Chen & Wang, 2014; Zenk et al., 2005). This association was found to be 

insignificant. A DIC difference of 1.2 (10,162.5 versus 10,163.7) does not indicate 

remarkable improvement of model fitting, so we selected Model I based on the principle 

of parsimony.  

Table 2-2:Spatio-temporal analyses results of Model I and Model II 

 Model I Model II 

Population density  (95% 

Credible Interval)* 

NA 0.003 (-0.015, 0.022) 

Regional trend  (95% 

Credible Interval) 

-0.024 (-0.036, -0.011) -0.024 (-0.037, -0.011) 

DIC 10,162.5 10,163.7 

* The 95% Credible Interval is the range in which there is a 95% probability that the posterior 

mean occurs.  

                                                 
12 +∞ means that only positive values from the normal distribution will be sampled.  

s u 
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For Model I, convergence occurred by 10,000 iterations (thinned by 10). We ran a 

further 10,000 iterations for both chains to obtain 20,000 samples of the posterior 

distribution. Regional trend ( ) was negative (-0.024) and statistically significant at the 

95% credible interval, indicating a decreasing trend of RHFA at the region-scale from 2011 

to 2014. The sensitivity analysis using the alternative hyperpriors discussed above obtained 

nearly identical results, suggesting that results are insensitive to the selection of hyperpriors. 

Figure 2-3a shows the area-specific differential trend, which indicates the degree 

to which local area-specific trends deviate from the regional trend. The map is smoothed 

because of the buffering approach used to calculate RHFA and the addition of spatially 

structured random effects.  

Since the regional trend ( ) is -0.024 and the largest differential trend ( ) is 0.004, 

no DAs exhibit a positive trend in RHFA (i.e., maximum trend is -0.024 + 0.004 = -0.02). 

A negative differential trend ( ) indicates a steeper decreasing trend than the regional 

trend while a positive one indicates a gentler decreasing trend. Areas in the lowest quantile 

(-0.004 ~ -0.002) have the steepest decreasing trend and are located in south Waterloo, 

north Kitchener, and southeast Cambridge.  

Figure 2-3b shows PPi, or the strength that area-specific trend negatively deviates 

from the regional trend. Because food outlet closures and openings are slow, PPis are 

relatively small with the maximum 0.63. We assumed 0.55, the fifth quintile threshold of 

PPis, to be a reasonable threshold for defining a “high” PPi although higher thresholds have 

been used in other contexts (Law et al., 2013; Li et al., 2014). This threshold enables the 

top 20% DAs to be identified as having a “high” PPi. As mentioned, areas with high PPi 

and negative (  + ) are spatio-temporal food swamps. In Figure 2-3b, areas in the lowest 

quantile (0.55 ~ 0.63, Figure 2-3b) are identified as spatio-temporal food swamps given 

that all small areas had a decrease trend of RHFA. As shown by Figure 2-3, areas with high 

PPi coincide with areas with the steepest area-specific differential trends. This is expected 

as there is more evidence that these areas have a trend that negatively deviates from the 

regional trend. Notably, in Figure 2-3b we highlight DAs that are not in the quantile with 



 i

i

 i
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lowest RHFA (based on Figure 2-2) but experienced a significant steeper decreasing trend 

of RHFA (more in the discussion).  

 

 

Figure 2-3: a) Local differential trends ( ) and b) the posterior probability of a local trend less than 

the regional trend (PPi) 

 

2.5. Discussion  

Consistent with previous findings in the Canadian context, this paper reveals that 

food swamps are more prevalent than food deserts in the study region. Using a hierarchical 

model that accounts for spatial autocorrelation and spatio-temporal interaction, this paper 

also shows that food swamps are becoming more prevalent during the study period.  

2.5.1. Interpreting spatio-temporal modeling results 

Past research evaluating the food environment is predominantly spatial, thus 

providing limited insight into how RHFA is changing over time at the local scale. For 

example, spatial analysis of the food environment shows that Locations A, B, and C (Figure 

2-2) have similar RHFA (<5%). Results of this spatio-temporal model, however, show that 

there is strong evidence (high PPi) that some DAs in Location B exhibited steeper 

decreasing trend of RHFA (  < -0.002), and can be categorized as spatio-temporal food 

swamps. Locations A and C had relatively stable RHFA and are not spatio-temporal food 
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swamps (0 < <0.002). It is noteworthy that a spatio-temporal food swamp could attribute 

to decreases of accessible healthy food outlets and/or increases of accessible unhealthy 

food outlets during the study period. For example, two DAs that are both identified as 

spatio-temporal food swamps in our analysis and have the same increase in fast-food 

restaurants; however, one exhibits an increase in convenience stores (unhealthy) and the 

other exhibits a decrease in supermarkets/superstores (healthy). 

This study has also identified areas that were not in the quantile of lowest RHFA 

based on only spatial and descriptive approaches, but have decreasing trends of RHFA that 

are steeper than the regional decreasing trend (highlighted in Figure 2-3b). If the trend 

continues, these highlighted DAs could become new areas that have the lowest RHFA. 

Such temporal information cannot be quantified through visual comparison of multiple 

maps (Figure 2-2) and can help policy makers prioritize specific areas for interventions. 

For instance, the spatio-temporal food swamps at south Waterloo, north Kitchener, and 

southeast Cambridge should be prioritized since RHFA decreases faster in these areas.  

As mentioned, estimated RHFA is different from calculated RHFA. Calculated 

RHFA is simply the number of healthy food outlets divided by the sum of healthy and 

unhealthy food outlets. Estimated RHFA is the probability of a food outlet being healthy 

(pij in Equation (2)) and is based on calculated RHFA in a given DA and the average of 

calculated RHFA’s in adjacent areas (via the spatial random effects in Equation (2)). In 

this case, estimated RHFA helps to account for the realistic assumption that people could 

travel beyond DA or buffering zone boundaries to procure food; therefore, the RHFA value 

is smoothed (Figure 2-4b). In contrast, calculated RHFA constraints food access within the 

DA or buffering zones. Two DAs with the same calculated RHFA could have varied 

estimated RHFA if the averages of calculated RHFA’s in their adjacent areas are different. 

To exemplify the difference between calculated RHFA and estimated RHFA, we selected 

two pairs of DAs (highlighted in Figure 2-4) with the same calculated RHFA but differing 

estimated RHFA in 2014: one pair are food deserts (Areas 1 and 2 have calculated RHFA 

= 0%) and the other pair are food swamps (Areas 3 and 4 have calculated RHFA = 4.76%). 

Area 1 has a higher average of calculated RHFA’s among adjacent areas (3.58%) compared 

to Area 2 (2.08%), leading to Area 1 having a greater estimated RHFA. Similarly, Area 3 

i
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has adjacent areas with a higher average of calculated RHFA’s than Area 4, leading to Area 

3 having a greater estimated RHFA. Practically, these results suggest that Area 2 is a more 

serious food desert than Area 1, and that Area 4 is a more serious food swamp than Area 

3. When identifying small-areas for food policy interventions, this information helps to 

continuously categorize food deserts and food swamps, suggesting that Area 2 should be 

prioritized first because it has the lowest estimated RHFA, followed by Area 1, Area 4, and 

Area 3 (Table 2-3). 

 

Figure 2-4: a) RHFA in 2014 and b) estimated RHFA in 2014 ( pi4 in Model I) 

 

Table 2-3: Calculated RHFA and estimated RHFA in 2014 

Area 

ID 

Calculated 

RHFA (%)  

Average calculated RHFA in 

neighbouring areas (%) 

Estimated RHFA(%)* (95% 

credible interval) 

1 0 3.58 5.2 (4.1, 6.5) 

2 0 2.08 4.9 (3.5, 6.6) 

3 4.76 6.72 6.0 (5.0, 7.0) 

4 4.76 5.31 5.3 (4.1, 6.7) 

*  in Model I indicates the estimated RHFA in 2014 
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2.5.2. Limitations and future research   

There are several limitations to this research. First, we employed a 4km buffer for 

calculating RHFA. Different buffer sizes could be used depending on policy targets (e.g., 

improve the RHFA within a walking distance), study region characteristics (e.g., 

compactness), and characteristics of the local population (e.g., car ownership). The 

buffering size could also be altered accordingly based on food outlet types, which may be 

linked to the behaviors underlying travel patterns to visit specific healthy or unhealthy 

stores (and subtypes among them). Second, we applied the most common scheme for 

classifying healthy and unhealthy food outlets. The NEWPATH survey, from which food 

outlets were classified, measured in-store characteristics of food outlets and indicated that 

all non-supermarket and non-superstore outlets (e.g., full-service restaurants and pub/bars), 

with the exception of specialty stores (e.g., bakeries), should be categorized as unhealthy. 

Moreover, supermarkets/superstores are also sources of unhealthy food options. We 

completed additional analyses following in-store classification and counting grocery stores 

as both healthy and unhealthy, but results of regional and local RHFA trends (thus the 

identification of spatio-temporal food swamps) were similar. Additional RHFA measures 

based on consumer nutrition environment, for instance, shelf space devoted to healthy 

foods divided by the total shelf spaces devoted to healthy and unhealthy foods in accessible 

food outlets (Glanz et al., 2007), should be considered. Lastly, we used 10% as a threshold 

to define food swamps. Nevertheless, this figure could be tailored for different research 

contexts depending on the intervention targets for striking balance between healthy and 

unhealthy food access as well as evidence of the level at which RHFA impacts healthy 

food purchase, consumption, or health outcomes in specific study regions.  

Future research should further apply this Bayesian approach in different contexts 

(e.g., outside Canada) and with different datasets (e.g., more than 4-year’s dataset) to study 

spatio-temporal variations of the food environment accounting for transportation networks. 

Of particular interest is the association between changes in public transit and changes to 

RHFA. Future research could also analyze the association between spatio-temporal 

patterns of the food environment and health or socio-economic data, when available. 

Compared to spatial studies that analyze one-time period, spatio-temporal analysis clarifies 

how changes in the food environment influence health outcomes (e.g., obesity), and how 
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the food environment may be changing in tandem with increasing or decreasing 

socioeconomic status.  

2.6. Conclusions  

This paper explores the spatio-temporal patterns of RHFA in the Region of 

Waterloo over four years, using a hierarchical spatio-temporal model. This method 

quantifies regional temporal trend and local spatio-temporal trends of RHFA, which are 

not available from traditional spatial or descriptive analyses. In particular, this study adds 

to the literature for investigating relative food access at a small temporal scale (based on 

annual RHFA changes).  

Results of our study are consistent with previous findings in the Canadian context 

that food swamps are more prevalent than food deserts. While food deserts should be 

prioritized, food swamps (especially spatio-temporal food swamps) should not be 

overlooked by public health practitioners and policy-makers. In general, food swamps have 

become more prevalent during the study period, given that RHFA has decreased at the 

regional level, and all DAs (most are food swamps in the starting year 2011) at the local 

level show significant decreasing trend of RHFA. Areas located at south Waterloo, north 

Kitchener, and southeast Cambridge have the steepest RHFA decreasing gradient (Figure 

2-3) thus are spatio-temporal food swamps and should be prioritized for interventions. 
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Chapter 3: Do marginalized neighborhoods have less healthy 

retail food environments? An analysis using spatial latent 

factor and hurdle models 13 

3.0. Overview 

Findings of whether marginalized neighborhoods have less healthy Retail Food 

Environments (RFE) are mixed across countries, in part because inconsistent approaches 

have been used to characterize RFE ‘healthfulness’ and marginalization, and researchers 

have used non-spatial statistical methods to respond to this ultimately spatial issue. This 

study uses in-store features to categorize healthy and less healthy food outlets. Spatial 

hierarchical models are applied to explore the association between marginalization 

dimensions and RFE healthfulness (i.e., relative healthy food access that modeled via a 

probability distribution) at various geographical scales. Marginalization dimensions are 

derived from a spatial latent factor model. Zero-inflation occurring at the walkable-distance 

scale is accounted for with a spatial hurdle model. Neighborhoods with higher residential 

instability, material deprivation, and population density are more likely to have access to 

healthy food outlets within a walkable distance from a binary ‘have’ or ‘not have’ access 

perspective. At the walkable distance scale however, materially deprived neighborhoods 

are found to have less healthy RFE (lower relative healthy food access). Food intervention 

programs should be developed for striking the balance between healthy and less healthy 

food access in the study region as well as improving opportunities for residents to buy and 

consume foods consistent with dietary recommendations. 

3.1. Introduction 

A growing body of literature has shown that neighborhood Retail Food 

Environment (RFE) has a role in shaping residents’ food shopping and consumption 

behaviors (C. Black et al., 2014; Caspi et al., 2012; Engler-Stringer, Le, et al., 2014; 

Kirkpatrick et al., 2014; Kimberly B. Morland, 2015c). Identifying and modifying 

                                                 
13 This chapter is adapted from the article entitled “Do marginalized neighborhoods have less 

healthy retail food environments? An analysis using spatial latent factor and hurdle models”, which has been 

published in International Journal of Health Geographics 2016, 15:29. 
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characteristics of neighborhood RFE could therefore be an important step in promoting 

population-wide healthy eating and reducing diet-related chronic diseases. An extensively 

explored research question is whether the RFE is less healthy in marginalized 14 

neighborhoods, wherein residents are more vulnerable to adverse health outcomes. The 

exploration is largely motivated by the deprivation amplification hypothesis, which 

postulates that residents living in deprived neighborhoods tend to have fewer health-

promoting resources such as healthy foods (Macintyre, 2007). In light of Lytle’s conceptual 

model of eating behaviors (Lytle, 2009), the more people are constrained by individual 

(e.g., disability) and social (e.g., income) factors, the more their eating behaviors are 

explained by the food environment. In other words, Lytle’s model posits that marginalized 

residents are particularly at risk of poor diet and subsequent nutrition-related chronic 

disease if they live in a less healthy RFE. 

Nevertheless, findings in terms of the association between marginalization and RFE 

are mixed across countries. Studies from the U.S. consistently indicate that neighborhoods 

with lower income and higher proportions of minority residents have reduced healthy food 

access, but the evidence is weak in other developed countries including Canada (Beaulac 

et al., 2009; Larson et al., 2009; Minaker et al., 2016). These inconsistent findings in past 

studies do not conclusively answer the question of whether marginalized neighborhoods 

have a less healthy RFE, in part because of limitations in the approaches used to 

characterize the ‘healthfulness’ of neighborhood RFE and neighborhood marginalization 

as well as deficiencies in the statistical methods used. 

3.1.1. Characterizing neighborhood RFE healthfulness 

The ‘healthfulness’ of the neighborhood RFE has been characterized using 

numerous methods. For example, focusing on absolute densities or numbers of so-called 

healthy food outlets such as supermarkets represents a focus on a single dimension of the 

complex RFE and thus could be biased. As reported, densities of healthy and less healthy 

food outlets are positively correlated, indicating that a neighborhood could simultaneously 

have high densities of healthy and less healthy food outlets (Mason et al., 2013). Recent 

                                                 
14 Marginalization occurs “when people are systematically excluded from meaningful participation 

in economic, social, political, cultural and other forms of human activity in their communities and thus are 

denied the opportunity to fulfil themselves as human beings” (Rao, 2007, p.223).  
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studies have attempted to characterize the RFE healthfulness using relative healthy food 

access metrics, such as the proportion of healthy food outlets of all accessible food outlets, 

see for example the modified Retail Food Environment Index (CDC, 2011).  

These relative measures however, ignore in-store characteristics (i.e., the quality 

and price of available foods as well as in-store marketing), which could vary within outlet 

types. For instance, the literature has suggested variations in shelf-space devoted to fruits 

and vegetables or healthy eating options, which have been proven relevant to healthy eating, 

within the same outlet types across neighborhoods (Franco et al., 2008; Zenk et al., 2006). 

Moreover, using outlet types to categorize healthy and less healthy food outlets has the 

potential to misclassify outlets and exclude outlets (e.g., specialty food stores) whose 

category is undetermined with a dichotomous classification scheme (Vernez Moudon et al., 

2013). Another limitation associated with crude proportions for estimating neighborhood 

RFE healthfulness is its uncertainty. Two areas with the same crude proportions, say 0.5, 

but different total number of accessible food outlets, say 2 and 20, respectively, are 

regarded to have a RFE with the same level of healthfulness. 

3.1.2. Characterizing neighborhood marginalization 

Much of the extant research is also limited by inadequate characterizations of 

neighborhood marginalization. Most studies, in particular those in the U.S., have explored 

the association between individual socio-demographic and/or socio-economic indicators 

(i.e., proportions of low-income and minority residents) and the neighborhood RFE. These 

individual indicators represent but a small fraction of marginalization, which is a multi-

faceted construct. Hence, many previous conclusions regarding these associations are 

actually based on associations between an oversimplified metric of the neighborhood RFE 

and specific indicators of marginalization rather than multi-dimensional marginalization. 

The literature suggests that representing an overall construct such as marginalization by 

selecting a particular facet of the construct could “reduce strength of the intended signal 

and thus underestimate its association with the outcome of interest” (Shishehbor & Litaker, 

2006, p.781). In addition, selecting individual socio-economic or socio-demographic 

indicators is problematic since they may correlate with another indicator belonging to the 

same marginalization dimension, such that it could act as a proxy of its related indicator in 
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the regression analysis and consequently the association. While the regression analysis 

could include all marginalization indicators, the multicollinearity problem is likely to occur.  

Alternatively, marginalization can be measured with a composite index (Matheson, 

Dunn, Smith, Moineddin, & Glazier, 2012). For instance, Larsen and Gilliland (2008) 

calculated deprivation for London, Ontario by adding the standardized scores of percentage 

of lone-parent families, prevalence of low income, percentage of low educational 

attainment, and percentage of unemployment. Such a composite index may also be subject 

to arbitrary inclusion of marginalization indicators. Compared with the London case, a 

study conducted in Montreal, Quebec (Apparicio et al., 2007) included an additional 

indicator, the percentage of recent immigrants in the past five years, to operationalize 

deprivation.  

Another limitation of current composite marginalization indices is that the included 

indicators are unweighted, an approach that assumes each indicator contributes evenly to 

marginalization. This assumption is problematic given that population structures vary 

across neighborhoods (Hogan & Tchernis, 2004). To weight each indicator, statistical 

approaches implemented in the frequentist framework such as Principal Component 

Analysis and Factor Analysis have been applied to construct the composite indices (Borrell, 

Mari-Dell’Olmo, Serral, Martinez-Beneito, & Gotsens, 2010; Matheson et al., 2012; 

Polsky et al., 2014; Zadnik & Reich, 2006). These approaches are flawed in presuming that 

indicators (and the associated constructs they purport to measure) in adjacent areas are 

independent, an assumption usually violated in spatial studies at a small-area level. 

3.1.3. Statistical methods in neighborhood RFE studies 

Methodologically, with few exceptions, most studies use non-spatial statistical 

approaches to analyze the association between neighborhood RFE and marginalization. For 

example, non-spatial versions of Ordinary Least Square (OLS) and Poisson/Negative 

Binomial regression approaches have been applied to model the continuous (e.g., distance 

to the nearest food outlet) (Black et al., 2011; Daniel, Kestens, & Paquet, 2009) and discrete 

(e.g., count of accessible food outlets) (Black et al., 2011; Polsky et al., 2014; Smoyer-

Tomic et al., 2008) measures of neighborhood RFE, respectively. Residuals from 

regression analyses could be spatially auto-correlated given that spatial dependence is 
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likely to exist between RFE measures at small-area levels with adjacent areas having 

similar RFE, a phenomenon rooted in the understanding that socioeconomic processes 

occur systematically and spatially across metropolitan areas (McKenzie, 2014). Ignoring 

spatial autocorrelation renders conclusions regarding the association potentially invalid. 

The mixed findings in the literature could also be partly attributed to this methodological 

limitation. A recent meta-analysis of 54 papers revealed that although the spatial nature is 

widely acknowledged in RFE studies, very few adopted appropriate spatial statistical 

approaches (Lamb, Thornton, Cerin, & Ball, 2015).  

Of the few studies that did use spatial approaches, Baker et al. (2006) applied a 

spatial scan method to model the counts of fast-food restaurants and supermarkets in urban 

areas of St. Louis, Missouri. Their research found that mixed-race or white high-poverty 

communities and all-black communities regardless of poverty are less likely to have access 

to healthy foods compared to their predominantly white high-income counterparts. 

McKenzie (2014) assessed neighborhood disparities in supermarket access for Portland, 

Oregon region with a spatial error model. Findings revealed that in comparison to their 

counterparts in urban areas, neighborhoods in suburban areas, either poor or non-poor, have 

longer travel distance and time to the nearest supermarket. Within suburban neighborhoods 

however, the study found that deprivation was associated with shorter travel distance but 

longer travel time. Applying and comparing both spatial and non-spatial regression 

techniques, Wang et al. (2016) analyzed the relationship between spatial proximity to fresh 

food retailers and socioeconomic status in Saskatoon and Regina, Saskatchewan, Canada 

at the dissemination area level. In addition to identifying significant associations between 

healthy food access and socio-economic variables, their research reported that in 

comparison with spatial regression approaches, OLS overestimated the magnitude of the 

associations. Lamichhane et al. (2013) analyzed the relationship between access to 

supermarkets as well as fast-food outlets and neighborhood characteristics with a spatial 

Bernoulli model for the State of South Carolina at the census block group level. Several 

characteristics including income, housing value, and educational attainment were found to 

have a positive association with access to both supermarkets and fast-food outlets, whereas 

a negative association was identified for characteristics such as percentage of minority and 

population living under poverty after accounting for geographic location (e.g., urban, rural, 
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etc.) and population density. Finally, Lamichhane et al. (2015) applied a spatio-temporal 

Poisson model to analyze the relationship between sociodemographic characteristics and 

densities of supermarkets and convenience stores for four U.S. cities at the Census Tract 

level. Results indicated that poorer neighborhoods have better access to both supermarkets 

and convenience stores after controlling for covariates including population density.  

3.1.4. Study objectives 

To address the limitations in past studies, this research uses measures of the 

consumer nutrition environment (a Canadian adaptation of the widely-used NEMS-S 

(Glanz et al., 2007) and the NEMS-R (Saelens et al., 2007)) to classify “healthy” vs. “less 

healthy” food outlets rather than assuming invariance in the consumer nutrition 

environment within outlet types. 

Second, this study constructs four composite indices representing the four different 

dimensions of marginalization for the study region, namely residential instability, material 

deprivation, dependency, and ethnic concentration, using a spatial latent factor model. A 

recent study reported that compared to its non-spatial counterpart, the spatial latent factor 

model provides more precise estimation for composite dimension scores, which thus 

enables more accurate assessment of the association between dimensions of neighborhood 

environment and health outcomes (Nethery et al., 2015). Specifically, each marginalization 

dimension is derived from a number of relevant indicators, which are theoretically 

informed and have been empirically validated (Matheson et al., 2012). These dimensions 

have been proven to be strongly and significantly associated with several public health 

outcomes derived from the nationally-generalizable Canadian Community Health Survey.  

Finally, using hierarchical spatial models, this research investigates whether 

marginalized neighborhoods experience less healthy RFE. Healthfulness of neighborhood 

RFE is represented as relative healthy food access, which is modeled via probability 

distributions rather than crude proportions of healthy food outlets. Various buffering sizes 

are used to characterize neighborhood RFE, accounting for potential transportation modes. 

More details regarding the datasets and methodologies are given in the following sections. 
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3.2. Study region and data 

3.2.1. Study Region 

Our study was conducted in the Regional Municipality of Waterloo (Figure 3-1), 

Ontario, specifically the cities of Waterloo, Kitchener, and Cambridge, which include 625 

dissemination areas (DA). For reference, a DA is the smallest census area in Canada that 

covers the entire territory and follows roads and physical boundaries (Statistics Canada, 

2015). DAs are delineated such that the population size is generally between 400 and 700 

(Statistics Canada, 2015). The average population density in the study region was 3273.37 

/km2, ranging from 1.26 /km2 to 16754.11/km2.  

 

Figure 3-1: Boundaries of Region of Waterloo and food outlet distributions, 2010 
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3.2.2. Marginalization indicators 

Guided by contemporary theories regarding marginalization in Canadian societies 

(Curtis, Grabb, & Guppy, 2004; MacLeod & Eisenberg, 2006) and the selection of 

characteristics for constructing areal deprivation indices in previous studies (Atkinson, 

Salmond, & Crampton, 2014; Pampalon et al., 2012; Townsend, Phillimore, & Beattie, 

1988), we followed Matheson et al.’s approach (2012) to include 18 indicators from 2006 

Canadian census that belong to four marginalization dimensions: residential instability, 

material deprivation, dependency, and ethnic concentration (Table 3-1). The inclusion of 

these indicators enables a comprehensive depiction of neighborhood marginalization, 

which involves diversified social problems relevant to health. The hypothesized loading 

sign of the indicator and its corresponding marginalization domain, which indicates the 

direction of correlation, is also presented. For example, percentage of living alone (R1) is 

assumed to be positively associated with residential instability, whereas percentage of 

dwellings that are owned (R6) is presumed to have a negative loading. 

Table 3-1: Variables used to measure marginalization dimensions, with hypothesized sign of loadings 

ID Indicator Hypothesized loading 

sign 

Residential Instability 

1 % of living alone (R1) + 

2 % of youth population aged 5-15 (R2) - 

3 Crowding: Average number of persons per dwelling (R3) - 

4 % of multi-unit housing (R4) + 

5 % of the population that is married/common-law (R5) - 

6 % of dwellings that are owned (R6) - 

7 % of residential mobility (same house as 5 years ago) (R7) + 

Material Deprivation 

8 % 25+ without certificate, diploma, or degree (M1) + 

9 % of lone-parent families (M2) + 

10 % of government transfer payment (M3) + 

11 % of unemployment 15+ (M4) + 

12 % of below low income cut-off (M5) + 

13 % of homes needing major repair (M6) + 

Dependency 

14 % of seniors (65+) (D1) + 

15 Dependency ratio [(0-14)+(65+)]/(15-64) (D2) + 

16 Labor force participation rate (aged 15+) (D3) - 

Ethnic Concentration 

17 % of 5-year recent immigrants (E1) + 

18 % of visible minority (E2) + 
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3.2.3. Measures of neighborhood RFE 

Food stores and restaurants were categorized as healthy if their Nutrition 

Environment Measures Survey (NEMS-S or NEMS-R) score fell within the highest two 

quartiles. The NEMS-S (Glanz et al., 2007) and NEMS-R (Saelens et al., 2007) are 

inventory-type measures of food stores and restaurants, respectively, that score outlets 

according to the quality, relative affordability, availability, and marketing of foods and 

beverages that comprise a large proportion of caloric intake at the population level. Data 

collection methods employed in the current study have been reported in detail elsewhere 

(Minaker et al., 2013, 2014). Briefly, the Region of Waterloo’s public health inspection 

database was used to identify food outlets, and systematic direct observation was used to 

identify additional outlets and remove non-existent food outlets within the three cities from 

the sampling frame. One of each chain convenience store, pharmacy and superstore, and 

each grocery store and independently owned convenience store, pharmacy, and specialty 

store in the three cities were assessed using the NEMS-S adapted for Canada (n=422 stores). 

One of each chain restaurant and each independently-owned restaurant was assessed using 

the NEMS-R (n=912). NEMS food outlet scores ranged from 0 to 43 for food stores and 

from -11 to 37 for restaurants. Data were collected in 2010. 

The numbers of accessible healthy and total food outlets within 1km, 4km, and 8km 

network buffering zones were calculated from each DA’s centroid. The first cut-off 

represents a walkable distance (10~15 min) which has been widely used in Canadian 

studies (Apparicio et al., 2007; Black et al., 2011; Larsen & Gilliland, 2008; Smoyer-Tomic, 

Spence, & Amrhein, 2006), while the second, which has been used in past research for the 

same study region (Luan, Law, & Quick, 2015), represents a 5-min driving distance and 

also represents accessibility for people who use alternative transportation modes such as 

bicycling and public transit. A third buffering size which approximately represents a 10-

min driving distance, 8km, is used for testing the sensitivity in terms of how the 

relationships change under the assumption that residents own cars. Descriptive statistics of 

accessible healthy and total food outlets are shown in Table 3-2.  
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Table 3-2: Descriptive statistics of accessible food outlets within 1km, 4km, and 8km from DA 

centroids 

Buffering size Food outlets Mean Min Max S.D. 

1km Healthy 5.1 0 48 7.6 

Total 11.6 0 117 17.5 

4km Healthy 82.1 2 208 51.4 

Total 178.6 3 478 119 

8km Healthy 249.3 32 414 94.9 

Total 527.5 52 859 199.4 

 

The count and crude proportion of accessible healthy food outlets are mapped in 

Figure 3-2. Areas without access to food outlets within a walkable distance are highlighted 

using hatch lines in Figure 3-2b. Within 1km, the central parts of the three cities have 

access to higher number of healthy food outlets. The spatial pattern becomes more distinct 

at the 4km and 8km scales, with south Cambridge and north Kitchener having highest 

number of accessible healthy food outlets. In contrast, areas with higher crude proportions 

of healthy food outlets locate at peripheral parts of the cities, probably attributable to the 

relatively low number of total accessible food outlets. This pattern suggests that 

uncertainties exist in using the crude proportion to estimate the healthfulness of 

neighborhood RFE. 
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Figure 3-2: Quantile maps of count and crude proportion of healthy food outlets 

(a) Count of healthy food outlets, 1km; (b) Proportion of healthy food outlets, 1km; 

(c) Count of healthy food outlets, 4km; (d) Proportion of healthy food outlets, 4km; 

(e) Count of healthy food outlets, 8km; (f) Proportion of healthy food outlets, 8km; 
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3.3. Methodology 

We use Moran’s I statistic to test spatial autocorrelation within each 

marginalization indicator and RFE measures including counts and crude proportions of 

healthy food outlets. A Moran’s I value approaching 1/-1 indicates strong positive/negative 

spatial autocorrelation, indicating that adjacent neighborhoods have similar/dissimilar 

values of marginalization indicators and RFE. In contrast, a value equal to or close to zero 

suggests spatial randomness. In other words, values of marginalization indicators and RFE 

are randomly distributed over space. Spearman’s rank correlation analysis is applied to 

examine the correlations between indicators belonging to the same marginalization domain. 

Below we detail the spatial latent factor model for constructing marginalization domains 

and spatial regression models for exploring the association between RFE healthfulness and 

marginalization dimensions as well as population density. All models are implemented in 

the Bayesian framework. For reference, Bayesian approaches combine prior knowledge 

and observed data to estimate posterior distributions of unknown parameters. 

3.3.1. Spatial latent factor model 

Given that each marginalization indicator is theoretically linked to a specific 

dimension (Matheson et al., 2012), the confirmatory rather than the exploratory factor 

model is used. Except for the dimension an indicator belongs to, the factor loadings of this 

indicator on other dimensions are set to zero. Similar approaches have been applied in 

Congdon (2008, 2011, 2016). Specifically, the normalized marginalization indicator j at 

area i (denoted as Vij) is assumed to follow a Normal distribution with mean (αj+δj*Xni) 

and variance  (Equation (1)), where Xni is the nth marginalization dimension at area i 

(that Vij belongs to); αj is the intercept representing the average of indicator j over the study 

region; and δj is the factor loading of Vij on Xni. For reference, the constructed factors X1i, 

X2i, X3i, and X4i represent residential instability, material deprivation, dependency, and 

ethnic concentration, respectively.  

    (1) 

An improper flat prior Uniform(-∞,+∞) is specified to the intercept αj. To avoid the 

“flip-flop” problem (i.e., ) and to achieve identifiability, we set δ1, 

2

j

2

ij j j ni jV ~ Normal( *X , )   

j ni j ni*X ( )*( X )   
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δ8, δ14, δ17 – the factor loading of the first indicator of corresponding marginalization 

dimensions – as one (P. Congdon, 2011). Alternatively, we can specify a prior distribution 

for these factor loadings to restrict their values to be positive (Abellan, Fecht, Best, 

Richardson, & Briggs, 2007; Peter Congdon, 2016; Marí-Dell’Olmo et al., 2011). A vague 

prior Normal(0, 1000) is assigned to all other δj’s. An intrinsic Conditional Autoregressive 

(ICAR) prior is assigned to marginalization dimensions Xni. Under this prior distribution, 

the expected mean of Xni is the mean of Xn’s in adjacent areas, and the variance of Xn, 

denoted as , is inversely proportional to the number of adjacent areas to area i. 

Adjacency is defined as areas sharing at least one vertex, a common approach used in 

spatial analysis studies (Haining et al., 2009). To address the identifiability issue between 

the scales of δj and Xni, we set the variance of Xn to 1, equivalent to standardizing Xn 

(Skrondal & Rabe-Hesketh, 2007). A non-informative prior Gamma(0.5, 0.0005) is given 

to the reciprocal of  and the variance of indicator j, . 

3.3.2. Spatial regression models 

3.3.2.1. Model for the 1km dataset: spatial hurdle model 

Considering that ~30% of DAs (178 out of 625) had no access to healthy food 

outlets within a walkable distance and adjacent areas have similar healthy food access, we 

used a spatial hurdle model to analyze the 1km dataset, accounting for the potential zero-

inflation and spatial autocorrelation. Similar spatial hurdle models have been applied to 

model emergency department visits (Neelon, Chang, Ling, & Hastings, 2014; Neelon, 

Ghosh, & Loebs, 2013) and adult mortality (Kazembe, 2013) with excess zeros. An 

alternative to the hurdle model for accounting for zero-inflation is the zero-inflated model 

(Amek et al., 2011), which assumes zeros arise from two sources – the “structural” zeros 

and “chance” zeros. The hurdle model is appropriate for this study because cases of zero 

accessibility are fully observed rather than latent – a DA either can or cannot access healthy 

food outlets within a walkable distance, and this access is not dependent on chance. Using 

a Binomial hurdle model (more details given in Appendix 1), zero counts and positive 

counts are modeled via a Bernoulli distribution with probability parameter πi and a 

truncated Binomial distribution with probability parameter pi, respectively. Specifically, πi 

represents the likelihood of a binary indicator – whether or not a DA has access to healthy 

n

2

X

n

2

X
2

j
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food outlets, while pi is the probability of a food outlet being healthy in DAi, which 

represents the prevalence of healthy food outlets (thus the healthfulness of neighborhood 

RFE). Notably, pi is equivalent to a modeled version of the relative healthy food access 

(Luan et al., 2015). Compared with calculated or crude proportions of healthy food outlets, 

pi is a more robust metric to reflect RFE healthfulness. Using a sampling distribution (i.e., 

Binomial) to model empirical counts (e.g., the number of accessible healthy food outlets) 

that occur as proportions (i.e., the proportion of healthy food outlets), the uncertainty 

associated with crude proportions of healthy food outlets as shown in Figure 3-2 can be 

accounted for by incorporating the sample size (i.e., the total number of accessible food 

outlets).  

Logistic regression was further performed for πi and pi (Equations (2) and (3)), 

where α1 and α2 are intercepts for the Bernoulli and truncated Binomial components and 

represent the average (logit) probability to access healthy food outlets and the (logit) 

average RFE healthfulness (or relative healthy food access) over the region, respectively. 

XT is a 1x5 vector of covariates (with corresponding regression coefficient vectors β1 and 

β2 for Bernoulli and truncated Binomial components, respectively). In particular, these 

coefficients represent the four marginalization dimensions (X1i, X2i, X3i, and X4i) estimated 

from Equation (1) and population density – a major driving factor of food outlet 

distributions (Chen & Wang, 2014; Zenk et al., 2005). The parameter vectors u (u1i and u2i) 

and s (s1i and s2i) are unstructured and spatial random effects (a.k.a., heterogeneity), 

respectively. These random effects are included to account for unmeasured, spatial or non-

spatial, covariates and overdispersion (Haining et al., 2009). 

    (2) 

    (3) 

An improper flat prior Uniform(-∞,+∞) is given to the intercepts α1 and α2. 

Regression coefficients β1 and β2 are specified with a vague prior Normal(0, 1000). 

Considering the potential correlation between the binary and positive outcomes, for 

example, areas more likely to have access to healthy food outlets (higher πi) also have 

healthier RFE (higher pi), we specify multivariate distributions for the random effects. 

i 1 1i 1ilogit( ) s uT

i 1X β     

i 2 2i 2ilogit(p ) s uT

i 2X β    
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Specifically, the unstructured random effects were assumed to follow a bivariate normal 

distribution (u1i, u2i)
T ~ MVN(0, Ω) with means 0 and a 2x2 variance-covariance matrix Ω. 

A bivariate ICAR (BICAR) distribution is assigned to the spatial random effects such that 

si=(s1i, s2i)
T|s-i ~ BICAR( ), where ni and mi are the number and the set of 

adjacent areas of DAi, respectively, and again, Σ is a variance-covariance matrix. We 

specify an inverse Wishart prior with 2 degrees of freedom to Ω and Σ. 

3.3.2.2. Model for the 4km and 8km datasets: spatial Binomial model 

A regular spatial Binomial model is used for the 4km and 8km datasets because all 

DAs have access to healthy food outlets within the 4km and 8km buffers. Specifically, the 

number of accessible healthy food outlet is assumed to follow a Binomial distribution with 

probability parameter pi. Similarly, a logistic regression model is fitted for pi (Equation 

(4)). Symbols in Equation (4) refer to the same variables in Equations (2) and (3). 

      (4) 

Uniform(-∞,+∞) and Normal(0, 1000) are assigned to α and β, respectively. We 

give an ICAR prior with variance  to the spatial random effect si and a prior of normal 

distribution with mean 0 and variance  to the unstructured random effect ui. The 

reciprocals of  and  are further specified with a prior Gamma(0.5, 0.0005). 

3.3.3. Model fit and implementation 

Models were implemented with the WinBUGS software (MRC Statistics Unit, 

2015). The spatial latent factor model (Equation (1)) was jointly implemented with spatial 

hurdle model (Equations (2) and (3)) and spatial Binomial model (Equation (4)), 

respectively, accounting for uncertainties associated with the constructed marginalization 

dimensions. Two parallel chains were fitted for the models, starting with diverging initial 

values. We checked model convergence by visually examining trace plots, history plots, 

autocorrelation plots, and Gelman-Rubin statistic plots. Model selection was based on the 

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). The best model is the 

one with lowest DIC. We ran each chain for 600,000 iterations, discarded the first 200,000 
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as burn-ins, and kept every 40th sample, resulting in a total of 20,000 samples for posterior 

estimates. Sensitivity analysis of prior specification was performed with alternative vague 

priors for parameters in the models. Similar results were obtained and DIC difference is 

smaller than 5, indicating that modeling results are insensitive to prior selections. 

3.4. Results 

3.4.1. Moran’s I analysis of marginalization indicators and RFE measures 

Results of Moran’s I analysis for marginalization indicators are presented in Table 

3-3. Most indicators are found significantly and spatially correlated with the exception of 

M4 (% of unemployment), D2 (dependency ratio), and E1 (% of 5-year recent immigrants), 

indicating the necessity to use spatial statistical approaches to construct the composite 

marginalization dimensions.  

Table 3-3: Moran's I test of marginalization indicators 

ID Indicator Moran’s I 

Residential Instability  

1 % of living alone (R1) 0.537*** 

2 % of youth population aged 5-15 (R2) 0.467*** 

3 Crowding: Average number of persons per dwelling (R3) 0.588*** 

4 % of multi-unit housing (R4) 0.371*** 

5 % of the population that is married/common-law (R5) 0.497*** 

6 % of dwellings that are owned (R6) 0.396*** 

7 % of residential mobility (same house as 5 years ago) (R7) 0.221*** 

Material Deprivation  

8 % 25+ without certificate, diploma, or degree (M1) 0.488*** 

9 % of lone-parent families (M2) 0.11*** 

10 % of government transfer payment (M3) 0.384*** 

11 % of unemployment 15+ (M4) 0.066** 

12 % of below low income cut-off (M5) 0.157*** 

13 % of homes needing major repair (M6) 0.362*** 

Dependency  

14 % of seniors (65+) (D1) 0.278*** 

15 Dependency ratio [(0-14)+(65+)]/(15-64) (D2) 0.038* 

16 Labor force participation rate (aged 15+) (D3) 0.233*** 

Ethnic Concentration  

17 % of 5-year recent immigrants (E1) 0.099*** 

18 % of visible minority (E2) 0.325*** 

Note: (1) p-value: <0.001, ***; <0.01, **; <0.05, *; (2) the smaller the p-value, the less likely that the 

correlation occurs by chance. 

Table 3-4 shows results of Moran’s I test of count and crude proportions of healthy 

food outlets. All RFE measures at the three scales are significantly auto-correlated with 
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high autocorrelation except the crude proportion at the 1km scale, which has a moderate 

autocorrelation. This finding indicates that adjacent areas have similar absolute and relative 

healthy food access thus again demonstrates the necessity to apply spatial statistical 

approaches. 

Table 3-4: Moran's I test of count and crude proportions of healthy food outlets 

Buffering size RFE measures 

Count Crude proportion 

1km 0.709*** 0.295*** 

4km 0.917*** 0.805*** 

8km 0.957*** 0.701*** 

Note: (1) p-value: <0.001, ***; <0.01, **; <0.05, *; (2) Crude proportion = (number of accessible healthy 

food outlets/total number of accessible food outlets) * 100 

3.4.2. Bivariate correlation analysis of marginalization indicators 

Results of bivariate analysis of marginalization indicators are shown in Table 3-5. 

As expected and consistent with previous findings (Matheson et al., 2012), indicators 

belonging to the same marginalization dimension are significantly and highly or 

moderately correlated. Exceptions are R2 and R7, M1 and M4, and M4 and M6, which 

have significant but weak correlations.  

Table 3-5: Bivariate correlation analysis between indicators belonging to the same marginalization 

dimension 

Residential Instability 

 R1 R2 R3 R4 R5 R6 R7 

R1 1       

R2 -0.66*** 1      

R3 -0.83*** 0.78*** 1     

R4 0.61*** -0.28*** -0.57*** 1    

R5 -0.71*** 0.55*** 0.74*** -0.71*** 1   

R6 -0.67*** 0.39*** 0.66*** -0.82*** 0.78*** 1  

R7 0.37*** -0.08* -0.24*** 0.56*** -0.35*** -0.52*** 1 

Material Deprivation 

 M1 M2 M3 M4 M5 M6  

M1 1       

M2 0.33*** 1      

M3 0.57*** 0.46*** 1     

M4 0.1** 0.24*** 0.27*** 1    

M5 0.23*** 0.45*** 0.49*** 0.3*** 1   

M6 0.29*** 0.31*** 0.27*** 0.17*** 0.25*** 1  

Dependency 

 D1 D2 D3     
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D1 1       

D2 0.75*** 1      

D3 -0.59*** -0.43*** 1     

Ethnic Concentration 

 E1 E2      

E1 1       

E2 0.46*** 1      

Note: p-value: <0.001, ***; <0.01, **; <0.05, *. 

3.4.3. Spatial latent factor modeling 

Factor loadings from the spatial latent factor model (Equation (1)) are presented in 

Table 3-6. All indicators significantly load on their corresponding marginalization 

dimensions, with the expected positive or negative sign shown in Table 1. The posterior 

mean as well as the 95% credible interval (CrI) of factor loadings ascertain indicators that 

most central to defining corresponding marginalization dimensions. For example, the level 

of material deprivation, dependency, and ethnic concentration seem to be mainly driven by 

the percentage of government transfer payment, percentage of seniors (65+), and 

percentage of visible minority, respectively, whereas all indicators of residential instability 

similarly relate to the constructed factor, with the exception of the percentage of residential 

mobility (same house as 5 years ago), which has a relatively low impact. 

Table 3-6: Loadings of indicators on corresponding marginalization dimensions from Equation (1) 

ID Indicator Parameter Posterior mean (95% 

credible interval) 

Loadings on Residential Instability 

1 % of living alone (R1) δ1 1 

2 % of youth population aged 5-15 (R2) δ2 -0.984 (-1.081, -0.889) 

3 Crowding: Average number of persons per dwelling 

(R3) 

δ3 -1.164 (-1.253, -1.078) 

4 % of multi-unit housing (R4) δ4 0.972 (0.872, 1.074) 

5 % of the population that is married/common-law 

(R5) 

δ5 -1.081 (-1.178, -0.987) 

6 % of dwellings that are owned (R6) δ6 -1.116 (-1.212, -1.025) 

7 % of residential mobility (same house as 5 years 

ago) (R7) 

δ7 0.491 (0.383, 0.604) 

Loadings on Material Deprivation 

8 % 25+ without certificate, diploma, or degree (M1) δ8 1 

9 % of lone-parent families (M2) δ9 0.747 (0.621, 0.875) 

10 % of government transfer payment (M3) δ10 1.194 (1.073, 1.319) 

11 % of unemployment 15+ (M4) δ11 0.313 (0.182, 0.447) 

12 % of below low income cut-off (M5) δ12 0.688 (0.559, 0.818) 

13 % of homes needing major repair (M6) δ13 0.738 (0.616, 0.862) 

Loadings on Dependency 

14 % of seniors (65+) (D1) δ14 1 
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15 Dependency ratio [(0-14)+(65+)]/(15-64) (D2) δ15 0.727 (0.597, 0.859) 

16 Labor force participation rate (aged 15+) (D3) δ16 -0.751 (-0.877, -0.629) 

Loadings on Ethnic Concentration 

17 % of 5-year recent immigrants (E1) δ17 1 

18 % of visible minority (E2) δ18 1.53 (1.352, 1.72) 

 

We map the four marginalization dimensions constructed from the spatial latent 

factor model (Figure 3-3). Clear spatial patterns of the four marginalization dimensions can 

be identified from the map: areas with high residential instability locate along the main 

road – King Street – in the region, mainly concentrating in the central parts of Waterloo, 

Kitchener, and Cambridge. Highly materially deprived areas locate in central Waterloo, 

central and northeast Kitchener, and south Cambridge. Five distinct clusters of areas with 

high levels of dependency are found at south Waterloo, north Kitchener, and west 

Cambridge. As for areas with high ethnic concentration, they cluster at northeast Waterloo 

and east Cambridge, and scatter across the region. 
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Figure 3-3: Quantile maps of marginalization dimensions at Dissemination Area scale, 2006 

(a) Residential instability; (b) Material deprivation; (c) Dependency; (d) Ethnic concentration 

3.4.4. Spatial regression 

Results regarding the associations between RFE healthfulness and marginalization 

dimensions as well as population density are presented in Table 3-7. The Bernoulli 

component of the spatial hurdle model (Equation (2)) shows that residential instability 

(1.242, 95% CrI: 0.755 - 1.721), material deprivation (0.558, 95% CrI: 0.166 - 0.945), and 

population density (0.824, 95% CrI: 0.45 - 1.252) are significantly and positively 

associated with the probability of accessing healthy outlets within a walkable distance. 

These significant associations are not found in the Binomial component (Equation (3)). 

Interestingly, a reversed direction is found between material deprivation and RFE 

healthfulness (-0.109, 95% CrI: -0.216 - -0.004). None of the marginalization dimensions 

or population density is found significantly related with RFE healthfulness with the 4km 
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and 8km datasets, with the exception of the negative association between dependency and 

RFE healthfulness at the 4km scale (-0.022, 95% CrI: -0.042 - -0.002). 

Table 3-7: Posterior estimates of coefficients from Equations (2) – (4) 

Covariate Posterior mean (95% credible interval) 

 

1km buffer 4km buffer 8km buffer 

Bernoulli Binomial Binomial Binomial 

Residential 

instability 

1.242 (0.755, 1.721) -0.004 (-0.088, 0.08) -0.017 (-0.038, 

0.005) 

0.003 (-0.007, 

0.013) 

Material 

deprivation 

0.558 (0.166, 0.945) -0.109 (-0.216, -

0.004) 

-0.018 (-0.042, 

0.007) 

-0.006 (-0.017, 

0.006) 

Dependency 0.168 (-0.227, 0.569) 0.019 (-0.067, 0.106) -0.022 (-0.042, -

0.002) 

-0.002 (-0.011, 

0.008) 

Ethnic 

concentration 

-0.249 (-0.584, 

0.074) 

-0.02 (-0.101, 0.061) 0.006 (-0.013, 

0.025) 

-0.002 (-0.011, 

0.007) 

Population 

density 

0.824 (0.45, 1.252) -0.006 (-0.062, 0.05) 0.002 (-0.013, 

0.016) 

0.003 (-0.004, 

0.011) 

Note: Significant coefficients are shown in bold text. 

3.5. Discussion 

3.5.1. Modeling results interpretations 

In the Region of Waterloo’s cities, neighborhoods with higher residential instability 

and material deprivation are more likely to have access to healthy food outlets (i.e., better 

absolute healthy food access) within a walkable distance. This makes sense since healthy 

food outlets (Figure 3-1) as well as residentially instable and materially deprived areas 

(Figure 3-3) concentrate along the arterial streets of the region. This finding aligns with 

previous Canadian findings that socio-economically deprived residents have better access 

to absolute densities of healthy food outlets (Apparicio et al., 2007; J. L. Black et al., 2011; 

Daniel et al., 2009; Mercille et al., 2013; Minaker et al., 2016; Polsky et al., 2014; Smoyer-

Tomic et al., 2008, 2006; H. Wang et al., 2016). A probable explanation is that residents 

who are socio-economically deprived might be more likely to find affordable housing in 

highly populated areas (Black et al., 2011; Polsky et al., 2014) where healthy food outlets 

are located, given that population density is a driving force of food outlet distribution as 

noted above.  

In contrast, modeling the relative healthy food access (via Binomial component 

from the spatial hurdle model), which represents RFE healthfulness in this study, reveals 
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that areas with higher material deprivation have a relatively less healthy RFE at the 

walkable distance scale, despite higher probability to access to healthy food outlets. The 

finding is contrary to past Canadian studies that explored the relationship between material 

deprivation and relative healthy food access which is measured with crude proportions. For 

instance, most materially deprived neighborhoods in Toronto were found to have healthier 

RFE (i.e., lower crude proportion of less healthy food outlets) (Polsky et al., 2014). 

Mercille et al. (2013) reported that the poorest areas in Montreal have lower crude 

proportions of fast-food outlets over all accessible restaurants and higher crude proportions 

of fruit and vegetable stores over all accessible food stores in comparison to their wealthier 

counterparts. This inconsistency could be attributed to the differences between our research 

and previous studies in terms of the methods used for differentiating ‘healthy’ and ‘less 

healthy’ food outlets, the completeness of RFE datasets, and the appropriateness of 

statistical modeling approaches. Compared with the two Canadian studies noted above, our 

study is strengthened by differentiating ‘healthy’ and ‘less healthy’ based on in-store 

characteristics instead of food outlet types. This approach for defining healthy food outlets 

enabled all retail food outlets to be included in our dataset, which was a major strength of 

the current study. Also, in contrast to previous studies, we explicitly accounted for spatial 

autocorrelation occurring within RFE measures and marginalization indicators as 

demonstrated above, which increases the reliability of our results. Finally, we modeled the 

count of healthy food outlets with a Binomial distribution rather than the crude proportion 

of healthy food outlets, which is associated with uncertainty thus is not a stable estimation 

of RFE ‘healthfulness’. As mentioned, our modeling approach is more robust to analyze 

relative healthy food access because it accounts for the underlying total number of 

accessible food outlets (thus the number of accessible less healthy food outlets), which 

cannot be reflected by crude proportions.  

Not surprisingly, while increasing the buffering size to 4km and 8km (thus 

increased mobility) based on alternative transportation modes such as bicycling, public 

transit, and driving, population density and marginalization dimensions are not 

significantly associated with RFE healthfulness since discrepancies in relative healthy food 

access between areas decrease with larger travel distances (Figure 3-2b, 3-2d, and 3-2f). 

An exception is the negative association between dependency and RFE healthfulness at the 
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4km scale, indicating that neighborhoods with higher proportions of seniors and children 

have a less healthy RFE; however, this might not be problematic given that these dependent 

populations may be more likely to walk than to take public transit or bicycle. 

3.5.2. Policy implications 

Findings from our study are important and informative for food environment 

planning and interventions for combating adverse diet-related health outcomes. 

Specifically, rather than improving absolute densities of healthy food outlets, a more 

pressing mission may be to strike a better balance between healthy and less healthy food 

access, especially given that increasing evidence shows that residents with higher relative 

healthy food access have healthier food purchasing (Mason et al., 2013; Thornton et al., 

2009) and consumption (Clary et al., 2015; Mercille et al., 2012) behaviors, and lower body 

weight (Kestens et al., 2012; Mehta & Chang, 2008; Polsky et al., 2016; Spence et al., 

2009). Traditional approaches such as building new supermarkets (Cummins, Flint, & 

Matthews, 2014) have been proposed in the U.S. for improving healthy food access thus 

the balance, but were found ineffective for promoting healthy eating (Cummins et al., 

2014), possibly due to residents’ hesitation of relying on a new food store (Morland, 2015a).  

Policy and program interventions to improve the food environment in Canada are 

nascent (Mah et al., 2016). One potentially effective intervention for the Region of 

Waterloo could be modifying the in-store characteristics of existing food outlets in 

materially deprived areas, for example, providing fruits and vegetables in less healthy food 

outlets through intervention programs such as healthy corner stores, which have been 

implemented in municipalities of Toronto and Vancouver (Seeton, 2012; Toronto Food 

Policy Council, 2014). This approach, if undertaken, should prioritize food outlets within 

a walkable distance to areas that fall inside the highest material deprivation quantile (Figure 

3-2b). An alternative intervention could be restricting the construction of less healthy food 

outlets within or around these neighborhoods via zoning bylaws. While Canadian planning 

laws do not permit discrimination against specific types of food outlets (Grant, MacKay, 

Manuel, & McHugh, 2010; Quebec Public Health Association, 2011), the Regional 

Municipality of Waterloo can apply several urban planning tools to limit the establishment 

of less healthy food outlets, for example, prohibiting fast-food restaurant establishments 
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and regulating the densities or quotas of less healthy food outlets in materially deprived 

neighborhoods (Canadian Institute of Planners, 2013; Quebec Public Health Association, 

2011).   

Modeling results of 4km- and 8km- datasets suggest that increasing mobility might 

be effective for alleviating the disparities of RFE healthfulness. Yet travelling further to 

access healthier RFEs could economically burden materially deprived residents. As 

discussed in LeClair and Aksan (2014), the high travelling costs might outweigh the cost 

savings from food shopping, thus deterring residents from taking public transit to procure 

healthy foods. In this sense, improving public transportation to healthy food retailers via 

interventions such as providing healthy food outlets (e.g., supermarkets) sponsored shuttle 

services could be potentially effective for encouraging materially deprived residents to 

travel beyond the walkable zones for food purchasing, complementary to aforementioned 

interventions. 

3.5.3. Methodology implications 

Methodologically, this study contributes to the RFE literature by introducing a 

flexible modeling approach to study the association between neighborhood RFE and 

marginalization. While the spatial lag (Wang et al., 2016) and spatial error (McKenzie, 

2014; Wang et al., 2016) models are inappropriate to model count data (e.g., number of 

supermarkets accessible to a DA), the applied Bayesian hierarchical approach can model 

the count of food outlets by following a discrete distribution, for example the Binomial 

distribution as demonstrated in this study, while simultaneously account for spatial 

autocorrelation by including spatial random effects. Moreover, this Bayesian approach 

applied is superior to the spatial scan statistical method (Baker et al., 2006), which is also 

capable of modeling count data, in terms of its feasibility to incorporate covariates.  

Another noticeable advantage of the applied Bayesian approach is its capability to 

model spatio-temporal RFE datasets, as demonstrated by Lamichhane et al. (2015). Future 

research could examine how neighborhood RFE might change over time in tandem with 

varying levels of marginalization. Furthermore, the spatial hurdle model used for analyzing 

the 1km dataset accounts for zero-inflation, an issue rarely reported by past RFE studies, 

but could occur in the case that a large portion of neighborhoods in the study region have 
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no access to (healthy) food outlets within a walkable distance. Not appropriately taking 

into account zero-inflation may result in biased or imprecise inferences. Although the 

Negative Binomial model implemented via conventional frequentist approaches can deal 

with zero-inflation in some cases, it cannot easily address the spatial autocorrelation issue. 

3.5.4. Study limitations 

Findings of this study are subject to several limitations. First, to create the buffering 

zones, the geographic centroid rather than the population centroid was used to represent 

each DA. We consider this approach acceptable considering that most DAs are relatively 

small so geographic centroids approximate population centroids. Second, we used 1km, 

4km, and 8km to represent potential transportation modes; however, a unified travelling 

distance might not be suitable for all DAs. In reality, residents in different neighborhoods 

could take different times to travel 4km by bus due to varying public transit availability 

and routes. More nuanced methods for characterizing transportation-based RFE (see for 

example Farber et al. (2014)) should be applied in future research. Lastly, ‘healthy’ and 

‘less healthy’ were differentiated based on a binary category. Although we observed similar 

results by conducting sensitivity analysis with a more rigorous definition of healthy food 

outlets (i.e., outlets falling into the highest tercile instead of the highest two quartiles), this 

categorization approach should be refined in future studies. 

3.6. Conclusion 

This paper contributes empirically and methodologically to the RFE literature that 

explores the association between neighborhood marginalization and RFE healthfulness. 

Using hierarchical spatial models, this research found that residents in neighborhoods with 

higher residential instability, material deprivation, and population density are more likely 

to have absolute access to healthy food outlets within a walkable distance. Materially 

deprived neighborhoods however, are also more likely to have a relatively less healthy RFE 

at the walkable distance scale. These findings indicate that a simple ‘yes’ or ‘no’ answer 

for the deprivation amplification hypothesis in the context of RFE is inappropriate. To infer 

a relatively unbiased conclusion, incorporating the complete RFE dataset, considering 

various assessment strategies (i.e., absolute and relative access) of RFE, and applying 

sound spatial statistical approaches are warranted.  
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For the Region of Waterloo in particular, striking the balance between healthy and less 

healthy food outlets in these neighborhoods via interventions such as modifying in-store 

characteristics, restricting the opening of less healthy food outlets, and improving public 

transit to healthy food outlets may be warranted. The hierarchical spatial models, including 

spatial latent factor and spatial hurdle models, as shown in this study can be further 

explored in other Canadian settings or different countries. Future research could tailor the 

buffering cut-offs for different types of food outlets, which are potentially linked to 

behaviors underlying travel patterns to visit specific types of food outlets and subtypes 

among them. 
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Chapter 4: Diving into the consumer nutrition environment: a 

Bayesian spatial factor analysis approach for assessing 

neighborhood restaurant environment 15 

4.0. Overview 

Neighborhood restaurant environment (NRE) is playing a vital role in shaping 

residents’ eating behaviors. Most previous studies, however, evaluate NRE ‘healthfulness’ 

based on restaurant types, thus largely ignoring variations of in-restaurant features. Of the 

few studies that account for in-restaurant characteristics, researchers simply average the 

composite ‘healthfulness’ scores of all the restaurants accessible to a neighborhood. This 

paper assesses NRE healthfulness in the city of Kitchener, Canada using a Bayesian spatial 

factor analysis approach, which incorporates several in-restaurant characteristics including 

availability and affordability of healthy eating options. This modeling approach identifies 

the specific indicator that is most relevant with NRE healthfulness, provides a metric for 

evaluating NRE healthfulness of neighborhoods without accessible restaurants, and 

quantifies uncertainties associated with the simple descriptive measure that are attributable 

to masking total number of accessible restaurants and ignoring NRE in adjacent 

neighborhoods. Being the first study that applies robust spatial statistical approaches to 

investigate restaurant consumer nutrition environment at the neighborhood level, this 

research advances the understanding of NRE from what in-restaurant characteristics should 

be intervened to what and where the characteristics should be prioritized. Implications for 

intervention program development and community food planning are discussed. 

4.1. Introduction 

Neighborhood restaurant environment (NRE) is the place where residents can eat 

away from home or buy take-out foods. It has become an indispensable component in 

residents’ daily life. For example, in North America, Canadians and Americans spend over 

25% and 50%, respectively, of their food expenditures on foods away from home (Statistics 

                                                 
15 This chapter is adapted from the article entitled “Diving into the consumer nutrition environment: 

a Bayesian spatial factor analysis approach for assessing neighborhood restaurant environment”, which is 

under review at Spatial and Spatio-temporal Epidemiology. 
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Canada, 2014; United States Development of Agriculture Economic Research Service, 

2016). According to the report on Canada’s Restaurant Industry, over 35% Canadians rank 

eating out in a restaurant as their top preferred activity with friends and families, and over 

60% Canadians eat out in restaurants at least once per week (Canadian Restaurant and 

Foodservices Association, 2010). In this context, NRE is playing a vital role in shaping 

residents’ eating behaviors, resulting in the development of numerous measures for 

assessing NRE healthfulness from researchers in multiple fields including public health, 

geography, and urban planning. 

4.1.1. Evaluating neighborhood restaurant environment 

Absolute restaurant density in a neighborhood, represented as total numbers of 

accessible restaurants (Jeffery, Baxter, McGuire, & Linde, 2006; Polsky et al., 2016) or 

restaurant density per population or per area (Hollands, Campbell, Gilliland, & Sarma, 

2013, 2014; Maddock, 2004; Mehta & Chang, 2008; Moore, Diez Roux, Nettleton, Jacobs, 

& Franco, 2009), is the most common measure for evaluating NRE. This measure has been 

extensively applied in public health studies exploring, for example, whether absolute 

densities of fast-food restaurants contribute to unhealthy eating and excess weights. Mixed 

findings, however, have been identified (Jeffery et al., 2006; Maddock, 2004; Mehta & 

Chang, 2008; Polsky et al., 2016), partly attributable to the application of absolute density 

measures that assess a single dimension of the multi-faceted NRE. While composite 

measures such as the ratio between unhealthy (e.g., fast-food) and healthy (e.g., full-service) 

restaurants have been used for NRE assessment (Mehta & Chang, 2008; Mercille et al., 

2013; Polsky et al., 2016), such measures ignore restaurants that cannot be simply 

classified as unhealthy or healthy, which is predominantly the case for restaurants that are 

independently owned (as opposed to franchised or chains). Furthermore, measures 

focusing on the community nutrition environment (e.g., restaurant types and numbers) fail 

to acknowledge differences between in-restaurant features such as availability of healthy 

eating options between restaurants of the same type in different neighborhoods. 

Additionally, in-restaurant features other than availability also have a role in defining NRE 

healthfulness. The presence of healthy eating options in restaurants does not necessarily 

guarantee a healthy NRE, given that higher prices of healthy eating options and barriers to 

healthy eating (e.g., overeating encouraged on the menu) could potentially prohibit 
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consumers from making healthy consumption decisions (Hammond et al., 2013; Haws & 

Liu, 2016; Nordström & Thunström, 2015). These limitations are problematic either in 

studies exploring geographical disparities of NRE healthfulness, or in studies examining 

the association between NRE and diet-related outcomes in that a measure evaluating the 

partial rather than complete NRE is used.  

Recently, in-store audit tools have been developed to assess restaurants. For 

example, the Nutrition Environment Measure Survey – Restaurant (NEMS-R) (Saelens et 

al., 2007) assesses in-restaurant features including availability, affordability, and 

facilitator/barrier of healthy eating, providing a composite measure of overall restaurant 

healthfulness. This tool allows to account for all restaurants and in-restaurant 

characteristics for assessing NRE healthfulness. However, the mean NEMS-R score per 

neighborhood is typically used for subsequent analyses (Duran et al., 2013; J. Wang et al., 

2016), for example, exploring its association with neighborhood distress level. Although 

the mean NEMS-R score provides a simple and intuitive measure for assessing NRE, it 

suffers from a number of limitations. First, it masks the total number of accessible 

restaurants to a neighborhood as well as variations of in-restaurant features, leaving the 

measure unreliable for assessing NRE healthfulness. Second, using the mean NEMS-R 

score to evaluate NRE healthfulness of a neighborhood ignores information of NRE in 

adjacent neighborhoods. In reality, people could travel beyond their own neighborhoods to 

procure foods, making it necessary to account for information of adjacent NRE to 

strengthen and stabilize the estimation (Luan et al., 2015). Finally, the mean score does not 

reflect which in-restaurant feature contributes the most to (or most relevant with) NRE 

healthfulness. Ignoring the difference of importance between in-restaurant features restricts 

the potential to inform food planning and interventions for promoting healthy eating.  

4.1.2. Bayesian spatial factor analysis 

To address the limitations associated with the mean NEMS-R score, we propose a 

Bayesian spatial factor analysis (BSFA) approach for assessing NRE healthfulness. 

Originated in psychometrics, factor analysis is a statistical approach used to describe the 

variation and correlation of a set of observable and correlated indicators with a lower 

number of latent factors that cannot be directly observed or measured (e.g., Brown, 2015). 
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Conceptually, NRE healthfulness is abstract and unobservable, but manifests in the form 

of a number of NRE indicators (i.e., availability, affordability, facilitator/barrier, etc.). In 

this sense, factor analysis is a suitable approach for assessing NRE healthfulness. For 

example, recognizing the correlation in terms of food provision and quality between 

different food outlet types, Michimi and Wimberly (2015) applied factor analysis to 

construct two factors representing the healthy and unhealthy dimensions of the food 

environment, respectively. In particular, Factor 1 consists of food outlets providing healthy 

options including supermarkets, snack/coffee shops, and full-service restaurants, while 

Factor 2 represents unhealthy food outlets including convenience stores and fast-food 

restaurants. 

Traditional factor analysis applied in the spatial context is flawed due to its 

unrealistic assumptions that the observed indicators are normally distributed and values of 

these indicators are independent between adjacent areas. Thus, the obtained latent factors 

of adjacent areas are assumed to be independent as well. In reality, these assumptions are 

likely invalid in the analysis of spatial data. Hierarchical models implemented with 

Bayesian approaches for factor analysis have been recently developed to overcome these 

limitations. Bayesian approaches provide posterior estimation for unknown parameters by 

combining prior information and observed data. Although hierarchical modeling can also 

be implemented with frequentist approaches, Bayesian inference via Markov chain Monte 

Carlo (MCMC) is often the most viable inference technique for complex hierarchical 

models with non-normal and spatially correlated observations and random effects (Marí-

Dell’Olmo et al., 2011; F. Wang & Wall, 2003). Additionally, Bayesian approaches more 

readily account for parameter uncertainties (Morris & Lysy, 2012). BSFA has been applied 

in various fields in addition to psychology (Stakhovych, Bijmolt, & Wedel, 2012), 

especially in estimating deprivation (Abellan et al., 2007; Peter Congdon, 2016; Hogan & 

Tchernis, 2004; Marí-Dell’Olmo et al., 2011) and spatial and spatio-temporal common risk 

factors of mortalities and morbidities (Courtemanche, Soneji, & Tchernis, 2015; Lawson, 

2013; Mezzetti, 2012; Tzala & Best, 2006; F. Wang & Wall, 2003). These studies 

demonstrate that BSFA is capable of quantifying uncertainties, tackling spatial 

autocorrelation, and assessing neighborhoods without observations. A recent study from 

Congdon (2016) exemplifies the only application in the literature that applies BSFA to 
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assess the food environment. His study constructs a healthy food access index at the 

Metropolitan county level in the U.S., and then uses the index as a predictor for explaining 

geographical variations of obesity. The ratio between convenience stores and grocery 

stores was identified as the central indicator in defining healthy food access. Nevertheless, 

Congdon’s study does not take into account variances of food outlets’ in-store features, but 

focuses on outlet types only. Further, his index was created at a relatively large-area (i.e., 

county) level; therefore, heterogeneity of the food environment is largely dissimulated. 

4.1.3. Research questions 

This study aims to answer two research questions. First, which neighborhoods have 

the least healthy NRE (simultaneously suffer from deprived availability, affordability, and 

facilitator/barrier of healthy eating)? A BSFA approach is used to create a composite NRE 

index at the neighborhood level. Being a combination of weighted restaurant assessment 

indicators, this index reflects the underlying NRE ‘healthfulness’. Neighborhoods with an 

index value in the lowest quintile are identified as neighborhoods with least healthy NRE. 

Two metrics are applied for quantifying uncertainties associated with the composite index 

thus NRE healthfulness: one, the 95% credible interval (CrI) of the index; and two, the 

posterior probability of the index falling into the lowest quintile.  

Second, what is the indicator (availability, affordability, or facilitator/barrier) that 

contributes the most to (or most relevant with) NRE ‘healthfulness’? Statistically, the 

indicator is the one with the highest factor loading on the composite NRE index. Its 

variance is also best explained by the NRE index. Overall, this specific indictor should be 

targeted for intervention to improve NRE in the study region.  

4.2. Study area and data 

4.2.1 Study area 

The analysis was conducted for the city of Kitchener at the dissemination area (DA) 

level. Kitchener is composed of 299 DAs and is located at the center of the Region of 

Waterloo, a municipality seated approximately one-hour west of Toronto. DA is the 

smallest census unit that covers the entirety of Canada (Statistics Canada, 2012). The 

population size of a DA generally ranges from 400 to 700. Considering the inconsistency 
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of neighborhood definitions, we used DAs to represent neighborhoods, an approach that 

benefits policy implementation and planning because local governments have jurisdiction 

over administrative areas (Health Canada, 2012). Figure 4-1 displays the DA boundaries 

of Kitchener city and spatial distributions of restaurants in 2010. Generally, restaurants 

concentrate at downtown Kitchener along the arterial road (i.e., King Street). NEMS-R 

scores of restaurants accessible to Kitchener are presented with proportional dots.  

 

 

Figure 4-1: DA boundaries of Kitchener city and distributions of restaurants, 2010 

4.2.2. Restaurant assessment indicators 

Three correlated restaurant assessment indicators were used for constructing the 

composite index: availability of healthy eating options, affordability of healthy eating, and 

facilitators or barriers to healthy eating (hereafter called availability, affordability, and 

facilitator/barrier, respectively). These indicators were collected in 2010 based on adapted 
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NEMS-R for Canadian food environment studies. More details are provided elsewhere 

(Minaker et al., 2013, 2014). Specifically, availability of a restaurant is assessed with a 

score that measures the availability of healthy food items such as main-dish salads with 

low calorie; affordability indicates the comparative pricing between ‘healthy’ and 

‘unhealthy’ foods; and a score of facilitator/barrier reflects whether a restaurant includes 

measures for facilitating (e.g., providing nutrition information on the menu) or prohibiting 

(e.g., encouraging larger portions on the menu) healthy eating. For all three indicators, a 

restaurant with a higher score is deemed healthier. Scores of availability, affordability, and 

facilitator/barrier range from -1 to 21, -3 to 3, and -9 to 24, respectively (Table 4-1). We 

performed correlation analyses for the indicators using Spearman’s rho. Results indicate 

that availability, affordability, and facilitator/barrier are significantly correlated. In 

particular, availability is positively associated with facilitator/barrier while affordability 

is negatively associated with availability and facilitator/barrier, suggesting that a 

restaurant with higher scores of availability and facilitator/barrier usually have a lower 

score of affordability (higher prices of healthy eating). In this sense, assuming that high 

availability is a positive contributor to NRE healthfulness, the three indicators used to 

construct the index represent high availability, low affordability, and high/low 

facilitator/barrier, respectively. 

Table 4-1: Descriptive statistics of in-store indicators for all restaurants accessible to Kitchener 

Indicator Mean Min Max S.D. 

Availability 8.15 -1 21 4.64 

Affordability -1.48 -3 3 1.78 

Facilitator/barrier 4.5 -9 24 6.46 

 

 A 1km road network buffer was created around each restaurant using ArcGIS 10.2 

to identify neighborhoods that can access to this specific restaurant (i.e., the centroid of the 

neighborhood falls inside the buffering zone of the restaurant). The distance demarcation, 

1km, represents a 10~15 mins walking distance, which has been widely used in Canadian 

food environment studies (Apparicio et al., 2007; J. L. Black et al., 2011; Larsen & 

Gilliland, 2008; Luan, Minaker, & Law, 2016; Smoyer-Tomic et al., 2006). Another reason 

for choosing a walkable distance for NRE assessment is that active transportation including 

walking is essential for creating healthy communities and combating obesity epidemics 
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(Ontario Professional Planners Institute, 2014). The number of neighborhoods that can 

access a specific restaurant ranges from 1 to 19, and the number of restaurants accessible 

to a neighborhood within 1km ranges from 0 to 87. 

4.3. Statistical modeling 

With BSFA, the unobservable concept, NRE healthfulness, can be inferred by 

multiple observable restaurant assessment indicators at the consumer nutrition 

environment level. In the model (denoted as Model I), the jth restaurant indicator 

(normalized scores of availability, affordability, or facilitator/barrier) of the kth restaurant, 

Yjk, is assumed to follow a Normal distribution with mean 
1




k

mj

m Nkn
 and variance 

2 j  

(Equation (1)), where nk is the number of neighborhoods whose centroids fall inside into 

the 1km buffering zone of the kth restaurant, Nk is the ID set of the nk neighborhoods, and 

mj is the latent value of indicator j at neighborhood m. ij is decomposed into an intercept 

 j  (the average of indicator j over the study region), a product of factor loading  j  (the 

loading of indicator j on the index) and index i (restaurant environment index at 

neighborhood i), and indicator-specific random noise ij  (Equation (2)). Notably, several 

neighborhoods do not have direct access to any restaurant within a walkable distance such 

that corresponding ij are not connected directly to the data via Equation (1). Their 

composite index i however, can be imputed via specifying an intrinsic Conditional 

Autoregressive (ICAR) distribution (Besag et al., 1991) to . Specifically, i follows a 

normal distribution with conditional mean that equals to the average of neighboring j’s 

and conditional variance that is inversely proportional to the number of neighbors, ni 

(Equation (3)). For reference, two areas are defined as neighbors if they share at least one 

common vertex, a common approach used in spatial statistical studies (Law et al., 2013). 

Note that wij = 1 if DA i and DA j are neighbors; otherwise, wij = 0. Under the ICAR 

distribution, NRE healthfulness of a neighborhood without accessible restaurants is 

estimated by ‘borrowing’ information from adjacent neighborhoods. 
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To estimate the parameters of Model I, we employed a Bayesian MCMC sampling 

approach, which begins by specifying priors on all the model parameters. An improper 

uniform prior on the whole real line was given to  j . To avoid the “flip-flop” problem 

( * ( )*( )    j i j i
) and allow feasible identification, we constrained 1  to be positive. 

Similar approaches have been applied in past studies (Abellan et al., 2007; Peter Congdon, 

2016; Marí-Dell’Olmo et al., 2011). 1  was assigned a prior of a log-normal distribution 

with mean zero and variance 100, and a vague prior of normal distribution with mean zero 

and variance 1000 was assigned to 2  and 3  (Abellan et al., 2007). For identification 

purposes, the variance of  (denoted as 2

 ) is set to 1, equivalent to index standardization 

(Skrondal & Rabe-Hesketh, 2007). The random noise ij
 was given a prior Normal(0, 

2 j ). 

A vague prior Gamma(0.5, 0.0005) was specified to the reciprocal of variance parameters 

2 j  and 
2 j . 

To test whether the spatial structure of restaurant assessment indicators is 

adequately captured by i, we also fitted a model (Model II) by modifying Equation (2) to 

include a spatial random effect ( ij
), making          ij j j i ij ij

. Similarly, an ICAR 

prior with variance 
2 j  was specified to ij , and the prior distribution of Gamma(0.5, 

0.0005) was given to the reciprocal of 
2 j .  

In addition to the unknown parameters in the model, we also monitored the 

posterior probability that i falls inside the lowest quintile (denoted as i
PP ) as a measure 

for identifying neighborhoods that have least healthy NRE. Complementary to the point 

estimate of i (i.e., posterior mean), i
PP  quantifies the uncertainty associated with i via 

taking into account the sampling variance of i and making use of the full posterior 
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distribution of i (Richardson, Thomson, Best, & Elliott, 2004). Each neighborhood was 

given a binary indicator at each iteration (one if i falls into the lowest 20%; otherwise 

zero). 
i

PP  is the fraction of one’s of all iterations. The higher the value of 
i

PP , the 

stronger evidence that neighborhood i has a least healthy NRE.  

To determine which restaurant indicator is most relevant with NRE healthfulness, 

we calculated the ratio (ρj) between the empirical variance of i (denoted as 
2

s ) and the 

sum of 
2

s  and the indicator-specific variance 
2 j  (ρj = 

2

s /(
2

s +
2 j )) (Abellan et al., 2007), 

apart from examining the magnitude of factor loadings  j . A higher value of ρj suggests 

stronger relevance between the restaurant indicator and NRE healthfulness. 

Both models were fitted in WinBUGS (D. J. Lunn et al., 2000) with two parallel 

chains. Trace plots, history plots, autocorrelation plots, and Gelman-Rubin plots were 

visually examined for checking convergence. Models converged after 50,000 iterations. 

We ran each chain for another 100,000 iterations and retained every 10th sample, resulting 

in an acceptable Monte Carlo error (<5% of sample posterior deviation). A final 20,000 

samples were obtained for posterior estimations. Model comparison was based on 

Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002). A model best fitting the 

dataset is the one with lowest DIC. We conducted sensitivity analysis by specifying a prior 

of Uniform(0, 100) directly to variance parameters (
2 j  and 

2 j ) in the best-fitting model. 

Similar results were obtained and DIC difference is smaller than 5, indicating that 

inferential results are essentially insensitive to prior selections. 

4.4. Results 

Table 4-2 shows the values of DIC and pD (effective parameters) from the two 

fitted models. Although Model II has a higher pD, the DIC difference is only 2937.88 - 

2937.36 = 0.52, indicating that the two models fit the dataset equally well. Thus, the 

parsimonious Model I was chosen as the final model. We report below results from Model 

I. 
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Table 4-2: DIC and pD values from two fitted models 

Model DIC pD 

Model I: Without spatial residuals ( ) 2937.88 39.004 

Model II: With spatial residuals ( ) 2937.36 42.24 

 

4.4.1. Factor loadings 

Loadings of availability, affordability, and facilitator/barrier on the common factor 

(the composite index i) are presented in Table 4-3. All three indicators are significantly 

associated with the composite index since the 95% CrI of the factor loadings do not cover 

zero, suggesting that each indicator is a meaningful manifestation of the underlying concept 

– the ‘healthfulness’ of NRE. Facilitator/barrier (1.036, 95% CrI: [0.525, 1.715]) has the 

highest magnitude of loading factor, followed by availability (0.823, 95% CrI: [0.321, 

1.443]) and affordability (-0.675, 95% CrI: [-1.127, -0.280]). While availability and 

facilitator/barrier are positively associated with the index, a negative association was 

found between affordability and the composite NRE index, indicating that the low 

affordability as noted above is discounting NRE healthfulness. The calculated ratio (ρj) as 

explained above for availability, affordability, and facilitator/barrier are 0.955, 0.906, and 

0.980, respectively, which are in agreement with the factor loadings of each indicator on 

the index. 

Table 4-3: Factor loadings ( ) on and the ratio (ρj) from Model I 

Indicator Factor loading (95% 

CrI) 

The ratio (ρj) 

Availability of healthy eating 

option 

0.823 (0.321,1.443) 0.955 

Affordability of healthy eating -0.675 (-1.127, -0.280) 0.906 

Facilitator/barrier of healthy 

eating 

1.036 (0.525, 1.715) 0.980 

 

ij

ij

 j
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4.4.2. Posterior estimations of the composite NRE index 

Posterior means and 95% CrI of the composite index i, which represents NRE 

healthfulness, are plotted in Figure 4-2. Varying NRE ‘healthfulness’ is observed among 

neighborhoods. Notably, neighborhoods with similar posterior means (shown in red dots) 

could have different 95% CrI thus associated with different degrees of uncertainty in 

identifying neighborhoods with least healthy NRE. Such uncertainties are also reflected by 

the fraction of the 95% CrI that falls within the lowest quintile (Figure 4-2). Posterior 

means of i are further mapped (Figure 4-3a). Four distinct clusters of neighborhoods 

locating at west, northwest, north, and northeast Kitchener are identified as having least 

healthy NRE. These areas simultaneously suffer from deprived availability, affordability, 

and facilitator/barrier, or in other words, lower relative availability of healthy eating 

options, higher relative prices of healthy eating, and higher/lower levels of 

facilitators/barriers to healthy eating. 

We also map the posterior probability of i that falls inside the lowest quintile, 
i

PP

(Figure 4-3b). Following Marí-Dell’Olmo et al.’s (2011) approach for classifying 

deprivation and considering that the maximum of 
i

PP  is 0.634, we categorized  into 

three groups, representing neighborhoods that ‘probably suffer from least healthy NRE’ 

( > 0.5), ‘probably do not suffer from least healthy NRE’ (0.05 < <= 0.5), and 

‘have low probability of least healthy NRE’ ( <= 0.05). Two clusters of neighborhoods 

locating at west and towards northwest Kitchener as well as several neighborhoods 

scattering across the region are identified as ‘probably suffer from least healthy NRE’. 

These neighborhoods all fall inside the lowest quintile based on the posterior mean of i 

(Figure 4-3a). Compared with their counterparts in the same quintile, they have a NRE that 

is more likely to be least healthy, which, again, shows the unreliability of using a point 

estimate (i.e., posterior mean) to evaluate NRE healthfulness. 

i
PP

i
PP i

PP

i
PP
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Figure 4-2: Caterpillar plot of the posterior mean and 95% credible interval of composite index (i) 

 

Figure 4-3: Quantile map of (a) the composite NRE index (i) and (b) the posterior probability of i 

falling into the lowest quintile ( ) 

  

i
PP
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4.5. Discussion 

4.5.1. Dissecting uncertainties associated with descriptive measures for quantifying NRE 

‘healthfulness’ 

As noted above, using just the mean NEMS-R score to quantify NRE healthfulness 

ignores the variability associated with this statistic, and thus has limited ability to address 

the following questions. First, do two neighborhoods with the same mean NEMS-R score 

but different numbers of accessible restaurants have the same level of healthfulness 

(scenario A)? Second, is a neighborhood with higher mean NEMS-R score but lower 

number of accessible restaurants necessarily healthier than a neighborhood with lower 

mean NEMS-R score but higher number of accessible restaurants (scenario B)? Lastly, 

which neighborhood of the two has a healthier NRE: a neighborhood without accessible 

restaurants or a neighborhood with accessible restaurants that have low scores of 

availability, affordability, and facilitator/barrier (scenario C)? The mean NEMS-R score 

of accessible restaurants for each neighborhood is mapped in Figure 4-4. Neighborhoods 

without accessible restaurants are highlighted with hatch lines. We also highlight and label 

three groups of neighborhoods, and demonstrate how the applied BSFA approach 

quantifies the aforementioned uncertainties. 
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Figure 4-4: Mean NEMS-R scores at the dissemination area level, 2010 

 

Table 4-4 presents the descriptive statistics and posterior estimates for selected 

neighborhoods. Under scenario A, the mean NEMS-R scores of neighborhoods A1 and A2 

are the same (14); however, the posterior means for A1 and A2 are -0.185 and 0.245, 

respectively. This difference is not surprising given that the estimations incorporate 

NEMS-R information from adjacent neighborhoods, which are usually different, thus 

enabling the differentiation between two neighborhoods with the same mean NEMS-R 

score. ‘Borrowing strength’ from neighbors is reasonable since it strengthens NRE 

healthfulness assessment via accounting for the possibility that residents could walk 

beyond their own neighborhoods (Luan et al., 2015). Furthermore, the uncertainty 

associated with varied total number of accessible restaurants is reflected by the 95% CrI of 

the index. The index of neighborhoods with smaller numbers of accessible restaurants 

usually has a wider 95% CrI range. For example, the range for A1 (only one accessible 

restaurant) is 1.613 (=0.621+0.992), wider than that (1.076, =0.255+0.821) of A2 (5 

accessible restaurants), suggesting that there is greater uncertainty associated with the 
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assessment for A1. With smaller sample size (i.e., observed accessible restaurants) 

providing limited information, the posterior estimation is largely determined by the prior 

distribution, which in our case is vague, leaving the posterior estimation with a wide 95% 

CrI. 

Under scenario B, neighborhood B1 has a higher mean NEMS-R score (12) than B2 

(9.94). However, the former can access to one restaurant only while the latter 87. Not 

surprisingly, the 95% CrI for B1 is wider than that of B2 (1.529 versus 1.377), indicating 

greater uncertainty of NRE healthfulness assessment for B1 for the same reason as 

mentioned above. Interestingly, B1 has a lower posterior mean of the composite index i 

and a higher 
i

PP  than B2 (-0.291 versus -0.270 and 0.324 versus 0.276, respectively), 

suggesting that B1 has a less healthy NRE although its mean NEMS-R score is higher. 

Comparing the posterior estimations of C1 and C2, we found that neighborhoods 

without access to restaurants do not necessarily have a lower composite index or a higher 

 (i.e., NRE is more likely to be least healthy) compared to neighborhoods with 

accessible restaurants. Nevertheless, according to the 95% CrI of i, greater uncertainties 

are associated with the posterior estimation for neighborhoods without accessible 

restaurants. Additional comparison between C2 and C3 (both do not have access to 

restaurants) highlights the impact of spatial lag 16  on posterior estimations for 

neighborhoods without access to restaurants. Neighborhoods with a higher spatial lag have 

a higher composite index, and are less likely to have least healthy NRE (i.e., lower ). 

Table 4-4: Dissecting uncertainties under different scenarios 

ID # of accessible 

restaurants 

Mean NEMS-R 

score 

Spatial lag Posterior mean (95% CrI)  

Scenario A: Neighborhoods with the same mean NEMS-R score but different number of accessible restaurants 

A1 1 14 11.64 -0.185 (-0.992, 0.621) 0.247 

A2 5 14 18.59 0.245 (-0.255, 0.821) 0.003 

Scenario B: Neighborhoods with low number of accessible restaurants have higher mean NEMS-R score than 

neighborhoods with higher number of accessible restaurants 

B1 1 12 7.56 -0.291 (-1.068, 0.461) 0.324 

B2 87 9.94 10.51 -0.270 (-0.967, 0.410) 0.276 

Scenario C: Neighborhoods with and without accessible restaurants 

C1 2 -0.5 8.54 -0.087 (-0.834, 0.658) 0.163 

                                                 
16 Spatial lag refers to the mean NEMS-R score in adjacent neighborhoods.  

i
PP

i
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C2 0 NAa 13.98 0.352 (-0.522, 1.227) 0.037 

C3 0 NA 2 -0.226 (-1.57, 1.107) 0.359 
a NA: not available 

 

4.5.2. From community to consumer nutrition environment: policy and planning 

implications 

Findings from our study are informative for developing in-restaurant feature based 

interventions for planning and improving NRE. Past restaurant interventions are 

predominantly implemented at the community nutrition environment level, for example, 

banning the construction of fast-food restaurants to encourage establishments of restaurants 

with more healthy eating options (Mair et al., 2005; Stephens, 2007), probably attributable 

to the lack of primary consumer nutrition environment data that support sound spatial 

statistics for NRE assessment. Our modeling however, provides information in terms of 

what indicator to prioritize and where the interventions should be targeted.  

In general, our findings suggest that Kitchener should increase availability and 

facilitator, and decrease prices and barriers of healthy eating because all three indicators 

are meaningful manifestations of NRE healthfulness (Table 4-3). Increasing/decreasing 

facilitator/barrier could be an intervention priority in that facilitator/barrier is most relevant 

with NRE healthfulness (i.e., highest values of factor loading ( ) and the ratio (ρj), Table 

4-3). This finding suggests that interventions such as implementing the regulation of menu 

labeling (e.g., labeling calorie, nutrient, and sodium) in Kitchener’s restaurants could 

potentially be effective for improving NRE healthfulness and promoting population-wide 

healthy eating. Mandatory menu labeling regulations have been implemented in several 

U.S. cities including New York City (Dumanovsky, Huang, Bassett, & Silver, 2010), but 

not in Ontario until January 01, 2017 (Ontario’s Regulatory Registry, 2016). Nevertheless, 

menu labeling has been found effective in reducing calorie and sodium intake and 

increasing awareness of healthy eating in the Region of Waterloo (Hammond et al., 2013) 

and other Canadian contexts (Girz et al., 2012; Scourboutakos et al., 2014; Vanderlee & 

Hammond, 2014). Such labeling regulations might need to couple with additional 

interventions, for example, removing barriers to healthy eating, to take effect since multiple 

facilitators and/or barriers could interact to impact eating behaviors (Haws & Liu, 2016). 

 j
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Interestingly, regulating calorie- and nutrition-labeling also has the potential to affect other 

indicators of NRE healthfulness, for example, motivating restaurants to provide more 

healthy eating options (Namba, Auchincloss, Leonberg, & Wootan, 2013) and improve 

signage for promoting healthy eating (Saelens et al., 2012), as evidenced by recent studies.  

Neighborhoods with least healthy NRE (lowest quintile with darkest color in Figure 

4-3a) should be prioritized for interventions in availability, affordability, and 

facilitator/barrier because they simultaneously suffer from these indicators as explained 

above. If resources are limited, priorities should be placed on the neighborhoods with 

higher 
i

PP  (i.e., > 0.5) (Figure 4-3b), where stronger evidence of least healthy NRE is 

present. The identification of neighborhoods with least healthy NRE is beneficial for 

community food planning, which has recently emerged as a tool for improving the food 

environment and facilitating healthy eating. Although planners cannot control the food 

prices and what to sell in restaurants (Minaker et al., 2011), they can greatly contribute to 

restaurant environment improvement via zoning and licensing regulations. For example, 

Raja et al. (2008) suggested that fast-food restaurants should be required to provide a 

‘healthy offerings check’, which certifies that healthy foods will be offered, from the local 

public health agency in the licensing process, when they are applying for a food 

establishment permit. In a similar fashion for Kitchener, municipalities and planners could 

request checks for availability, affordability, and facilitator/barrier from pending 

restaurants that are accessible to the neighborhoods with least healthy NRE (Figure 4-3), 

ensuring that the new establishments could improve the NRE or at least maintain the 

healthfulness level in specific neighborhoods. 

Interventions for neighborhoods without access to restaurants within a walkable 

distance, especially those with a high estimated composite index and low , require 

special attentions. The population density of these neighborhoods (64 in total; areas with 

hatch pattern, Figure 4-4) ranges from 87.86 to 5553.85 per km2 (median: 2855.86), 

indicating that restaurants are inaccessible by walking to a substantial amount of residential 

neighborhoods in Kitchener. This inaccessibility probably results from zoning ordinances 

that prohibit the establishment of food outlets in residential neighborhoods or within a pre-

designated distance (J. L. Black et al., 2011; Raja et al., 2008). The NRE healthfulness for 

i
PP
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these neighborhoods is estimated by pooling information from adjacent neighborhoods, 

which is usually associated with high uncertainties as noted above. While this approach is 

reasonable from a spatial statistical perspective since food access is a continuous 

phenomenon (Charreire et al., 2010), the estimation might not reflect the underlying needs 

of people residing in these neighborhoods, especially in the context that active 

transportation such as walking could be potentially effective for facilitating physical 

activity, thus reducing obesity rates. Future (qualitative) research surveying residents’ 

interests and desires in dining away from home within a walkable distance should therefore 

be warranted. Survey results could be incorporated in the community food planning process 

for these neighborhoods. 

4.5.3. Study strengths and limitations 

Our research has several notable strengths. Instead of focusing on a proportion of 

restaurants such as fast-food restaurants and full-service restaurants, this study analyzes all 

restaurants, franchised, chain, or independent, in the study region. The analysis gives a 

holistic and more nuanced picture of NRE in Kitchener, which is essential for accurately 

targeting neighborhoods for interventions. In addition, rather than concentrating on the 

community nutrition environment, we explore the consumer nutrition environment. 

Compared with other measures based on restaurant types (e.g., number of fast-food 

restaurants), the composite index constructed in this paper could be more meaningful and 

useful for determining NRE healthfulness, and evaluating opportunities for procuring and 

consuming healthy foods away from home, given that affordability and facilitator/barrier 

also influence residents’ eating behaviors other than availability as noted above. Finally, 

to our knowledge, our study is the first of its kind to analyze spatial patterns of NRE 

‘healthfulness’ with in-restaurant indicators using a robust spatial statistical approach. This 

modeling approach advances the understanding of NRE by providing a more reliable 

measure of NRE healthfulness, which quantifies uncertainties associated with NRE 

assessment and could benefit food planning and interventions. 

Several limitations of this study should be acknowledged. First, we used geographic 

centroids to determine whether a DA has access to a specific restaurant. This approach 

might result in the ‘positional discrepancy’ problem due to the discrepancies between 
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residents’ actual addresses and DA centroids (Healy & Gilliland, 2012). Second, the 

uncertainty of NRE healthfulness assessment might be greater for periphery neighborhoods 

where the estimation cannot borrow strength from adjacent neighborhoods (which are 

outside Kitchener and not included in our dataset). Third, only availability, affordability, 

and facilitator/barrier are used to construct the composite index. Beyond these in-

restaurant features collected via NEMS-R, additional consumer nutrition environment 

indicators could be incorporated in the model to refine the index. For example, when the 

index is intended to reflect NRE healthfulness for a specific group of population (e.g., 

Chinese, vegan, etc.), availability of culturally acceptable healthy foods should be included. 

Lastly, exploring the spatial patterns of NRE healthfulness is inherently exploratory. Socio-

economic and socio-demographic environments should be incorporated into future NRE 

assessment in that residents with similarly healthful NRE but different socio-economic 

status could experience disparate eating patterns.  

4.5.4. Future research 

Future research could apply the proposed approach to the whole Region of 

Waterloo and other cities inside and outside Canada for assessing the healthfulness of NRE 

or the entire retail food environment. The derived composite NRE index could be further 

tested in terms of its usefulness for explaining geographical disparities of eating behaviors 

or diet-related health outcomes. The proposed approach is also useful for validating other 

indicators purported to measure the healthfulness of restaurants or food stores, especially 

given that increasing indicators are available for food environment measurement but 

validation approaches are lacking (Minaker et al., 2014).  

Additionally, future research could analyze dynamic NRE healthfulness via spatio-

temporal factor analysis by incorporating a temporal dimension. Availability, affordability, 

and facilitator/barrier change over short-term temporal scales including hours and 

weekdays due to restaurant opening-hour variations, and over long-term temporal scales 

including seasons and years attributable to the opening and closing of restaurants. Yet 

spatio-temporal analyses of the NRE require repeated assessment of in-restaurant features, 

which is costly and time-consuming. Alternative assessment tools, for example, the 

reduced-item audit tools (Partington, Menzies, Colburn, Saelens, & Glanz, 2015) and 
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mobile phone applications (Kanter, Alvey, & Fuentes, 2014) could be applied for rapid 

data collection in future research. Such spatio-temporal analyses could also be 

computationally challenging, for which fast but approximate inference methods for latent 

factor models, for example, the Integrated Nested Laplace Approximation approach 

(Blangiardo, Cameletti, Baio, & Rue, 2013; Carroll et al., 2015; Rue & Martino, 2009), 

might be required. Finally, while this paper analyzes objective food environment and 

identifies neighborhoods with less healthy NRE from a statistical modeling perspective, 

future research could investigate how residents perceive the restaurant environment in their 

neighborhoods (Barnes et al., 2015) or how they are truly exposed to the restaurant 

environment based on activity space (Sadler & Gilliland, 2015).  

4.6. Conclusion 

This research illustrates a BSFA approach for assessing the healthfulness of 

restaurant environment at the neighborhood level, where healthfulness is a latent factor 

derived from three correlated restaurant assessment indicators: availability, affordability, 

and facilitator/barrier of healthy eating. Methodologically, uncertainties associated with 

the descriptive statistic (i.e., mean NEMS-R score) are modeled by accounting for the 

varying total number of accessible restaurants between neighborhoods, borrowing 

information of NRE healthfulness in adjacent neighborhoods, and incorporating variations 

of in-restaurant features within neighborhoods. These uncertainties are quantified with 

posterior estimates including the range of 95% CrI and the posterior probability of the 

composite index falling into the lowest quintile. 

The applied modeling approach enables to identify neighborhoods with least 

healthy NRE and the in-restaurant feature that is most relevant with NRE healthfulness. 

Such information guides community food planning and interventions in terms of where 

and what restaurant indicators to intervene. In particular, neighborhoods with a composite 

NRE index in the lowest quintile (i.e., those with the darkest color and locate at west, 

northwest, north, and northeast Kitchener, Figure 4-3a) should be targeted for interventions, 

with prioritization of two clusters of neighborhoods at west and towards northwest 

Kitchener and several individual neighborhoods across the city (Figure 4-3b). The 

identification of facilitator/barrier with highest loading (compared to availability and 
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affordability) on NRE healthfulness supports implementing interventions for 

increasing/decreasing facilitator/barrier of healthy eating such as mandatory menu labeling. 

While the applied modeling approach provides a tool for assessing NRE healthfulness of 

neighborhoods without accessible restaurants within a walkable distance, interventions for 

these neighborhoods warrant special attentions. 
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Chapter 5: Conclusion 

Using spatial and spatio-temporal statistical approaches, this research illustrates 

how new and value-added information can be extracted from the food outlet datasets that 

are associated with geographical and temporal information. Although with different foci, 

the three articles presented in Chapters 2 to 4 significantly contribute to the common theme, 

neighborhood RFE assessment. They demonstrate how neighborhood RFE can be assessed 

with varying availability of food outlet information, for example, whether food outlets are 

inspected for multiple years or whether in-store features are measured. Results are 

informative for planners who can substantially contribute to the construction of healthy 

communities, of which healthy RFE is an indispensable component. Key findings and 

major contributions are briefly summarized in Table 5-1, in correspondence with the 

research questions proposed in Table 1-3 and the limitations of past RFE studies that are 

highlighted in Figure 1-4 and discussed in section 1.1.3.7, respectively. More details are 

given in the following sections. 

Table 5-1: Key findings and major contributions 

 Key findings Major contributions 

Chapter 2 

(Article 1) 

1. Food swamps are more prevalent 

than food deserts in the Region of 

Waterloo; 

2. Food swamps are becoming more 

prevalent during the study period; 

3. Spatio-temporal food swamps are 

identified at south Waterloo, north 

Kitchener, and southeast Cambridge. 

1. Applies a spatial modeling approach 

for analyzing RHFA; 

2. Provides an empirical study for 

analyzing the temporal dimension of 

RFE; 

3. Extends the definition of food swamps 

by incorporating a temporal dimension. 

Chapter 3 

(Article 2) 

1. Neighborhoods with higher 

residential instability, material 

deprivation, and population density are 

more likely to have access to healthy 

food outlets within a walkable distance; 

1. Applies a spatial latent factor model for 

deriving neighborhood marginalization 

dimensions; 

2. Applies a spatial hurdle model for 

accounting for zero-inflation occurring in 
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2. At the walkable distance scale, 

materially deprived neighborhoods are 

found to have less healthy RFE (i.e., 

lower RHFA). 

 

RFE studies at the walkable distance 

scale; 

3. Analyzes a primary RFE dataset which 

contains the information of both 

community and consumer nutrition 

environments; 

4. Provides insights into food 

interventions for balancing healthy and 

less healthy food access; 

5. Provides empirical evidence that the 

deprivation amplification hypothesis 

holds only at specific geographic scales 

with specific RFE measures.  

Chapter 4 

(Article 3) 

1. Neighborhoods located at west, 

northwest, north, and northeast 

Kitchener are found to have least 

healthy NRE. These neighborhoods 

simultaneously suffer from lower 

relative availability, higher prices, and 

lower/higher facilitator/barrier of 

healthy eating; 

2. Two clusters of neighborhoods 

located at west and towards northwest 

Kitchener as well as several individual 

neighborhoods across the city are more 

likely to have least NRE, thus should 

be prioritized for interventions; 

3. Facilitator/barrier of healthy eating 

is found most relevant with NRE 

healthfulness. 

1. Provides an empirical application of 

the multi-dimensional approach in NRE 

assessment; 

2. Proposes a spatial factor analysis 

model for assessing NRE healthfulness;  

3. Dissects uncertainties associated with 

the mean NEMS-R score for assessing 

NRE; 

4. Provides a modeling approach for 

analyzing relative measures of the 

consumer nutrition environment; 

5. Informs the development of food 

intervention programs that focus on 

modifying in-restaurant features.  

 



98 

 

5.1. Key findings 

Consistent with previous findings in the Canadian context, the second chapter 

(article 1) reveals that food swamps are more prevalent than food deserts in the Region of 

Waterloo since most neighborhoods in the region have access to supermarkets within a 

4km buffering zone from 2011 to 2014. The spatio-temporal modeling also shows that food 

swamps are becoming more prevalent during the study period, evidenced by the decreasing 

trend of RHFA during the study period. These results support interventions for ‘fixing’ 

food swamps such as limiting the establishments of fast-food restaurants or convenience 

stores via zoning bylaws, or increasing the relative availability of healthy foods (e.g., fruits 

and vegetables) via programs such as Healthy Corner Store. Spatio-temporal food swamps, 

neighborhoods that experience a steeper decreasing trend of RHFA than the average trend 

at the regional level, are identified at south Waterloo, north Kitchener, and southeast 

Cambridge, where interventions should be prioritized. 

The third chapter (article 2) reports that residentially instable, materially deprived, 

and highly populated neighborhoods are more likely to have access to healthy food outlets 

within a walkable distance when RFE is measured by the presence/absence of healthy food 

outlets. However, neighborhoods with higher material deprivation are found to have a less 

healthy RFE (i.e., lower RHFA) at the walkable distance scale. Such results are in 

contradictory with two existing Canadian studies that measure neighborhood RFE with 

crude proportions of healthy/unhealthy food outlets of all accessible food outlets rather 

than probability distributions. These findings partially support the deprivation 

amplification hypothesis, suggesting that a simple ‘yes’ or ‘no’ answer for this hypothesis 

does not exist in the context of food access in the Region of Waterloo. 

The fourth chapter (article 3) indicates that neighborhoods with least healthy NRE 

cluster at west, northwest, north, and northeast Kitchener. These neighborhoods 

simultaneously suffer from lower relative availability, higher prices, and lower/higher 

facilitator/barrier of healthy eating. Accounting for uncertainties associated with the point 

estimate (i.e., posterior mean) of NRE healthfulness, two clusters of neighborhoods located 

at west and towards northwest Kitchener as well as several individual neighborhoods 

scattered across the region are identified as ‘probably have least healthy NRE’ (i.e., more 
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likely to have least healthy NRE), thus should be prioritized for interventions. Compared 

with availability and affordability, facilitator/barrier of healthy eating is more relevant with 

NRE healthfulness. Hence, increasing/decreasing healthy eating facilitator/barrier is a 

higher priority, when food intervention programs that focus on modifying in-restaurant 

features are developed. 

5.2. Major contributions 

This research has significant conceptual, methodological, empirical, and policy 

implication contributions, which are detailed below.  

5.2.1. Conceptual contributions 

Conceptually, this research illustrates how the concept of food swamp can be 

extended to include a temporal dimension, resulting in the identification of spatio-temporal 

food swamps. To my knowledge, this is the first study in the RFE literature that explores 

temporal variations of RHFA. This concept refinement acknowledges that RFE research 

should be conducted from both the spatial and temporal perspectives, provides 

opportunities for further research (e.g., why RHFA in several neighborhoods decreases 

faster than the average trend of the study region, and how does this change impact on the 

diet of residents living in these neighborhoods), and informs which neighborhoods should 

be prioritized for increasing RHFA.  

An additional conceptual contribution results from the empirical evidence that in a 

mid-sized Canadian region such as the Region of Waterloo, the deprivation amplification 

hypothesis holds only at the walkable distance scale, when RFE ‘healthfulness’ is measured 

with the relative strategy (i.e., modeled via probability distributions). This finding supports 

Macintyre et al.’s (2008) conclusion that in modern societies, marginalized neighborhoods 

are not always disadvantaged with poorer access to health-promoting resources. In the RFE 

context specifically, it largely depends on how the RFE healthfulness is characterized 

(absolute versus relative, and descriptive versus modeling), what statistical approach is 

used (spatial versus non-spatial), and whether the entire RFE dataset is used. 

Moreover, this research advances the understanding of the concept of RFE 

‘healthfulness’. In particular, the uncertainty associated with descriptive RFE assessment 
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measures is challenged. As demonstrated throughout this dissertation, measuring RFE 

‘healthfulness’ with the commonly applied descriptive statistics such as mRFEI and mean 

NEMS scores is associated with uncertainties that arise from three sources: one, the total 

number of accessible food outlets is masked; two, in-store features are largely ignored; and 

three, RFE in adjacent neighborhoods are overlooked. Accounting for these uncertainties, 

the present research provides a more rigorous approach for interpreting the concept of 

neighborhood RFE ‘healthfulness’. 

Finally, this research proposes a framework for neighborhood RFE assessment 

(Figure 1-4), which includes five essential elements: strategy, dimension, data, scale, and 

methodology. Along with Glanz et al.’s conceptual framework (Figure 1-5) of the food 

environment, the proposed framework serves as a base for comprehensive evaluations of 

neighborhood RFE. It emphasizes diversified aspects that should be considered in RFE 

assessment, and could be applied in other RFE studies conducted elsewhere (inside or 

outside Canada).  

5.2.2. Methodological contributions 

This research also has substantial methodological contributions. The presented 

Bayesian spatial and spatio-temporal statistical approaches have been widely applied in a 

variety of research fields, especially spatial epidemiology, but not necessarily in RFE 

studies. As noted above, such methodologies provide a flexible analytical framework for 

analyzing discrete and continuous measures of neighborhood RFE with the presence of 

spatial autocorrelation. In particular, these methodologies strengthen and stabilize the 

estimation of RFE ‘healthfulness’ when the total number of accessible food outlets is small, 

provide a modeling approach for the evaluation of NRE with a multi-dimensional approach 

(i.e., integrating community and consumer nutrition environments), enable the 

quantification of the uncertainties associated with the descriptive estimation of RFE 

‘healthfulness’, and take into account potential zero-inflation that occurs at the walkable 

distance scale. 

Additionally, this research presents a spatial statistical approach (i.e., spatial latent 

factor model) for constructing marginalization dimensions, which are proven relevant with 

several public health outcomes in the Canadian society, at a small-area level (Matheson et 
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al., 2012). Compared with the recently released and widely used Canadian Marginalization 

Index (Matheson et al., 2012) (developed with non-spatial factor analysis), the 

marginalization indices constructed from the spatial model retains the spatial structures and 

uncertainties associated with marginalization dimensions, thus benefiting subsequent 

analyses such as exploring the association between marginalization and food access or 

health outcomes. 

Lastly, the Bayesian spatial factor analysis approach is proposed to assess NRE 

healthfulness in Chapter 4. This is the first study in the RFE literature that uses a spatial 

statistical model to assess NRE with multiple relative measures of the restaurant consumer 

nutrition environment. Accounting for uncertainties associated with the mean NEMS-R 

score as noted above, this modeling approach identifies neighborhoods where the NRE is 

more likely to be least healthy. It also reveals the indicator most relevant with NRE 

healthfulness, thus enabling to differentiate the importance of different restaurant 

assessment indicators (i.e., availability, affordability, and facilitator/barrier). This approach 

can be further adopted for validating RFE measures that purport to represent the underlying 

concept, RFE ‘healthfulness’. For example, RFE assessment indicators that do not 

significantly load on the composite index (e.g., the composite NRE index constructed in 

Chapter 4) are not valid measures for evaluating neighborhood RFE. 

5.2.3. Empirical contributions 

This research empirically contributes to the RFE literature by analyzing a primary 

RFE dataset (Chapters 3 and 4), which includes all validated food outlets (i.e., food stores 

and restaurants) in the Region of Waterloo, and contains the information of both 

community and consumer nutrition environments. Compared with past RFE studies that 

use secondary RFE datasets, results from this research are more reliable for informing food 

planning and interventions.  

In particular, the empirical evidence strengthens the finding that “food swamps 

seem to be a more appropriate metaphor for urban Canada than food deserts” (Minaker et 

al., 2016, p.eS10) and partially supports the deprivation amplification hypothesis in the 

urban area of a mid-sized Canadian city. A further empirical contribution results from the 

analysis of a multi-year RFE dataset, of which the results indicate that local neighborhoods 
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could experience differing trends of RHFA. Finally, diving into the consumer nutrition 

environment, this research provides an empirical example that different restaurant 

assessment indicators could have varying contributions to NRE ‘healthfulness’, a finding 

that is informative for developing food intervention programs. 

5.2.4. Policy implications 

This research also has substantive contributions that have crucial policy 

implications. Studies in Chapters 2 and 3 demonstrate that food interventions in the Region 

of Waterloo should focus on striking the balance between healthy and less healthy food 

access. In other words, improving relative rather than absolute healthy food access is a 

priority. This goal can be achieved by implementing food intervention programs focusing 

on modifying either the community or the consumer nutrition environment. The Healthy 

Corner Store program exemplifies an intervention that modifies in-store features of existing 

food outlets to improve RHFA. Compared with traditional intervention programs such as 

opening new healthy retailers including supermarkets and grocery stores, working with 

existing retailers to increase the availability of fresh produce is less challenging, financially 

and functionally. Limiting the establishment of less healthy food outlets such as fast-food 

restaurants and convenience stores via zoning policies is another option for increasing 

RHFA. In contrast with the Healthy Corner Store program, this intervention concentrates 

on changing the community nutrition environment instead, and can be implemented by 

regulating the number or density of less healthy food outlets. Moreover, improving 

transportation, especially those supported by the food outlets such as supermarket-

sponsored shuttles, to enable (materially deprived) residents to travel beyond their 

neighborhoods can also increase RHFA, as suggested by Chapter 3. This finding implies 

that it might be necessary to include food as an element in other plans such as transportation 

plans and official plans.  

Results from chapter 4 are informative for developing intervention programs with 

a focus on modifying in-restaurant features for improving NRE. In general, the city of 

Kitchener should increase the relative availability, reduce the price, and increase/decrease 

the facilitator/barrier of healthy eating, given that availability, affordability, and 

facilitator/barrier have significant positive, negative, and positive associations with NRE 
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healthfulness, respectively. Moreover, it might be necessary to require a check for in-

restaurant features in the licensing process from pending restaurants that will operate in 

neighborhoods where residents suffer more from availability, affordability, and 

facilitator/barrier, in particular those with a higher probability of having a least healthy 

NRE. This intervention could be effective for improving the NRE in specific 

neighborhoods, at least maintaining the current level of ‘healthfulness’. Lastly, the 

identification of facilitator/barrier being most relevant with NRE healthfulness supports 

the implementation of the menu labeling legislation in Ontario, which will take effect on 

January 1, 2017 as noted above. This legislation might be effective for promoting 

population-wide healthy eating in the Region of Waterloo. 

5.3. Future research 

5.3.1. Continuing spatio-temporal analyses of neighborhood RFE 

Future research should continue spatio-temporal analyses of neighborhood RFE in 

the following two ways. First, extending the work presented in Chapter 2, future studies 

could analyze RHFA at other temporal scales apart from annual RHFA variations. For 

example, it would be worthwhile investigating whether several neighborhoods experience 

reduced RHFA at specific seasons, specific days of a week, or specific times of a day. 

Results from these investigations are informative for developing food intervention 

programs other than incentivizing or restricting the construction of specific types of food 

outlets, for example, extending opening hours of supermarkets or establishing farmers’ 

markets in specific neighborhoods. Second, the research conducted in Chapters 3 and 4 can 

be expanded to include a temporal dimension, answering spatio-temporal research 

questions such as (i) how does the RFE vary over time in tandem with changing 

neighborhood marginalization, and (ii) are there neighborhoods that experience 

significant increasing/decreasing trends of NRE healthfulness. 

5.3.2. Comparing objective and subjective, and place-based and people-based RFE 

measures 

Another potential topic for future research concerns the comparison between 

objective and subjective assessments of neighborhood RFE. Depending on the research 

contexts, objective and subject RFE measures might not align well with each other (Barnes 
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et al., 2015; Health Canada, 2012; Moore, Diez Roux, & Brines, 2008). Identifying which 

RFE assessment approach, objective, subject, or both, contributes to eating behaviors and 

subsequent health outcomes have important and distinct policy implications. For instance, 

if objective RFE measure is a stronger predictor of residents’ eating patterns, increasing 

RHFA at the neighborhood level might be an effective step for improving population-wide 

eating behaviors; otherwise, intervention programs with an emphasis on strengthening 

residents’ awareness of neighborhood RFE and nutrition knowledge are warranted. 

Future research should also compare place-based and people-based (in particular 

activity space) RFE measures. In contrast to place-based measures that quantify potential 

food exposures of a neighborhood, activity space captures individuals’ movements via 

travel surveys (Crawford, Jilcott Pitts, McGuirt, Keyserling, & Ammerman, 2014; Kestens 

et al., 2012; Kestens, Lebel, Daniel, Thériault, & Pampalon, 2010) or geospatial 

technologies including the Global Positioning System (Christian, 2012; Sadler, Clark, Wilk, 

O’Connor, & Gilliland, 2016; Zenk et al., 2011) such that it usually returns a larger value 

of food exposures. Measuring activity space has important policy implications because it 

helps to examine whether residents with restricted mobility cluster in specific 

neighborhoods, where food interventions should be prioritized.  

5.3.3. Implementing and evaluating food interventions 

An important direction for future research is to implement the recommended food 

interventions as noted above. From a planning perspective, these interventions can be 

implemented via stand-alone food system plans or official plans that includes ‘food’ as an 

element. As food is not in the purview of any single department, implementing these 

interventions require multi-sector collaborations (e.g., planners and local public health 

agency), and the role that each sector plays should be made clear (Raja et al., 2008). For 

example, when planners use performance zoning to regulate restaurant constructions and 

require ‘healthy offering’ certifications from pending restaurants in the licensing process, 

nutritionists could assist planners in defining what constitutes a ‘healthy offering’. Notably, 

each food intervention should be accompanied with clear benchmarks that enable to gauge 

progress after the implementation of these plans (Raja et al., 2008).  
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Evaluating food interventions is another important area of future research, which 

also requires multi-sector and multi-disciplinary collaborations, especially between 

researchers from institutions (e.g., universities) and practitioners from local governments 

(e.g., professional planners and public health professionals). For example, assessing the 

impact of public transit availability changes (attributed to transit constructions such as 

Light Rail Transit) on neighborhood food access requires the collaboration between 

geographers, transportation researchers, and public health practitioners; examining 

whether the implementation of food interventions (e.g., the Healthy Corner Store program 

and the menu labeling legislation) improves residents’ eating behaviors necessitates a 

partnership between public health researchers who are capable of characterizing ‘healthy 

diet’ with appropriate measures and (spatial) statistician who can guide robust statistical 

analyses. 

5.3.4. Advancing the application of up-to-date spatial statistical approaches in RFE 

studies 

Up-to-date spatial and spatio-temporal statistical approaches should be applied in 

future RFE studies. The application includes not only the statistical models, but also the 

algorithms used to implement the models. All the models fitted in this dissertation were 

implemented using the MCMC algorithm, which is computationally inefficient and time 

consuming, especially when the applied statistical model is highly complex or big datasets 

are analyzed (Banerjee, Carlin, & Gelfand, 2014). For example, it approximately took two 

weeks to run the joint spatial latent factor and spatial hurdle models in Chapter 3 on an 

IBM ThinkPad with relatively high configuration (2.4 GHz processor and twelve gigabytes 

RAM). This computational inefficiency also makes it difficult to compare different 

assumptions of the priors for the unknown parameters in the model. Future research could 

employ a more efficient alternative, the Integrated Nested Laplace Approximation (INLA) 

algorithm (Rue & Martino, 2009), for Bayesian analysis of spatial and spaio-temporal RFE 

datasets. INLA approximates posterior probability distributions via numerical integration 

rather than an iterative process (Blangiardo et al., 2013). Compared with MCMC-based 

algorithms, INLA dramatically reduces computational time while retaining reliable 

parameter estimates (Carroll et al., 2015). 
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Balancing the soundness of statistical assumptions and the appropriateness of RFE 

measures is a relevant area of future research that explores the RFE with spatial statistical 

models. As noted above, compared with administrative boundaries, buffering zones better 

identify food outlets accessible to a neighborhood, especially when the neighborhood is a 

relatively small area such as a DA and food access is characterized based on transportation 

modes. A food outlet accessible to multiple neighborhoods (say, N), however, correspond 

to multiple Yij (Chapter 2) or Yi (Chapter 3) specified by different models, such that it is 

healthy with different probabilities p1, p2, …, pN, which is possible only when p1=p2=…=pN. 

Such models are invalid from a data-generating perspective, resulting in severely limited 

statistical inferences. When there is no data-generating mechanism p(data|pi), the concept 

of posterior distribution p(pi|data) is meaningless. Thus, the distribution of pi is some 

function of the data. This issue has been addressed by the model developed in Chapter 4. 

A conceptually flawed model (i.e., a model without valid data-generating mechanism, not 

presented in this dissertation) was also fitted with the same dataset used in Chapter 4. 

Specifically, this model assumed that a restaurant accessible to multiple neighborhoods 

(DAs) correspond to different models, the same issue existing in Chapters 2 and 3. Very 

similar results, however, were obtained from the invalid and valid models, indicating that 

this statistical drawback is unlikely to have much influence on the inferential results. 

Nevertheless, more statistically sound models should be developed and applied in future 

RFE studies. For example, the spatio-temporal model from Chapter 2 can be improved as 

follows (Equations (1) and (2)), where Ikj = 1 if the kth food outlet is healthy at time j; 

otherwise, Ikj = 0. Using a logit function, the probability that Ikj = 1, pkj, can be linked with 

the latent RFE ‘healthfulness’ for DA i at time j, μij. Similar with Chapter 4’s approach, 

Nkj is the set of DA’s that can access to the kth food outlet at time j, and the weight wkij 

denotes this accessibility. μij can be further modeled with relevant covariates including time 

and socio-economic indicators.  

ind

kj kjI | ~ Bernoulli(p )μ      (1) 

kj

kj kij ij

i N

logit(p ) w


       (2)  



107 

 

References 

Abellan, J. J., Fecht, D., Best, N., Richardson, S., & Briggs, D. J. (2007). Bayesian analysis 

of the multivariate geographical distribution of the socio‐economic environment in 

England. Environmetrics, 18, 745–758. http://doi.org/10.1002/env 

Amek, N., Bayoh, N., Hamel, M., Lindblade, K. A., Gimnig, J., Laserson, K. F., … 

Vounatsou, P. (2011). Spatio-temporal modeling of sparse geostatistical malaria 

sporozoite rate data using a zero inflated binomial model. Spatial and Spatio-

Temporal Epidemiology, 2(4), 283–290. http://doi.org/10.1016/j.sste.2011.08.001 

American Planning Association. (2007). APA Policy Guide on Community and Regional 

Food Planning. Retrieved June 18, 2016, from https://www.planning.org 

/policy/guides/adopted/food.htm 

Apparicio, P., Cloutier, M.-S., & Shearmur, R. (2007). The case of Montréal’s missing 

food deserts: evaluation of accessibility to food supermarkets. International Journal 

of Health Geographics, 6, 4. http://doi.org/10.1186/1476-072X-6-4 

Ashe, M., Jernigan, D., Kline, R., & Galaz, R. (2003). Government, politics, and law. Land 

use planning and the control of alcohol, tobacco, firearms, and fast food restaurants. 

American Journal of Public Health, 93(9), 1404–1408 5p. http://doi.org/10.2105 

/AJPH.93.9.1404 

Atkinson, J., Salmond, C., & Crampton, P. (2014). NZDep2013 Index of Deprivation. 

Wellington. 

Baker, E. A., Schootman, M., Barnidge, E., & Kelly, C. (2006). The role of race and 

poverty in access to foods that enable individuals to adhere to dietary guidelines. 

Preventing Chronic Disease, 3(3), A76. http://doi.org/A76 [pii] 

Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis 

for spatial data (2nd ed.). Boca Raton: CRC Press. 

Barnes, T. L., Bell, B. a., Freedman, D. a., Colabianchi, N., & Liese, A. D. (2015). Do 

people really know what food retailers exist in their neighborhood? Examining GIS-

based and perceived presence of retail food outlets in an eight-county region of South 

Carolina. Spatial and Spatio-Temporal Epidemiology, 13, 31–40. http://doi.org 

/10.1016/j.sste.2015.04.004 

Beaulac, J., Kristjansson, E., & Cummins, S. (2009). A Systematic Review of Food 

Deserts , 1966-2007. Preventing Chronic Disease, 6(3), A105. 

Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M., & Songini, M. 

(1995). Bayesian analysis of space-time variation in disease risk. Statistics in 

Medicine, 14(21–22), 2433–2443. http://doi.org/10.1002/sim.4780142112 

Besag, J., York, J., & Mollie, A. (1991). Bayesian image restoration, with two applications 

in spatial statistics. Annals of the Institute of Statistical Mathematics, 43(1), 1–20. 



108 

 

http://doi.org/10.1007/BF00116466 

Black, C., Moon, G., & Baird, J. (2014). Dietary inequalities: what is the evidence for the 

effect of the neighbourhood food environment? Health & Place, 27, 229–42. 

http://doi.org/10.1016/j.healthplace.2013.09.015 

Black, J. L., Carpiano, R. M., Fleming, S., & Lauster, N. (2011). Exploring the distribution 

of food stores in British Columbia: associations with neighbourhood socio-

demographic factors and urban form. Health & Place, 17(4), 961–70. http://doi.org 

/10.1016/j.healthplace.2011.04.002 

Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and spatio-temporal 

models with R-INLA. Spatial and Spatio-Temporal Epidemiology, 4, 33–49. 

http://doi.org/10.1016/j.sste.2013.07.003 

Borrell, C., Mari-Dell’Olmo, M., Serral, G., Martinez-Beneito, M., & Gotsens, M. (2010). 

Inequalities in mortality in small areas of eleven Spanish cities (the multicenter 

MEDEA project). Health & Place, 16(4), 703–711. http://doi.org/10.1016 

/j.healthplace.2010.03.002 

Brown, S. (1993). Retail location theory: Evolution and evaluation. The International 

Review of Retail, Distribution and Consumer Research, 3(2), 185–229. 

Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (Second Edi). 

New York: The Guilford Press. 

Canadian Institute of Planners. (2013). Healthy Communities Practice Guide. 

Canadian Obesity Network. (2016). Obesity in Canada. Retrieved January 6, 2016, from 

http://www.obesitynetwork.ca/obesity-in-canada 

Canadian Restaurant and Foodservices Association. (2010). Canada’s restaurant industry: 

putting jobs and economic growth on the menu. Retrieved from 

https://www.restaurantscanada.org/Portals/0/Non-

Member/2013/Report_IpsosPublicOpinion_Dec2010.pdf 

Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M., & Watjou, K. (2015). 

Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease 

mapping. Spatial and Spatio-Temporal Epidemiology, 14–15, 45–54. http://doi.org 

/10.1016/j.sste.2015.08.001 

Caspi, C. E., Sorensen, G., Subramanian, S. V, & Kawachi, I. (2012). The local food 

environment and diet: a systematic review. Health & Place, 18(5), 1172–87. 

http://doi.org/10.1016/j.healthplace.2012.05.006 

Centers for Disease Control and Prevention. (2011). Census Tract Level State Maps of the 

Modified Retail Food Environment Index (mRFEI). Retrieved October 21, 2013, from 

ftp://ftp.cdc.gov/pub/Publications/dnpao/census-tract-level-state-maps-

mrfei_TAG508.pdf 



109 

 

Cerin, E., Frank, L. D., Sallis, J. F., Saelens, B. E., Conway, T. L., Chapman, J. E., & Glanz, 

K. (2011). From neighborhood design and food options to residents’ weight status. 

Appetite, 56(3), 693–703. http://doi.org/10.1016/j.appet.2011.02.006 

Charreire, H., Casey, R., Salze, P., Simon, C., Chaix, B., Banos, A., … Oppert, J.-M. 

(2010). Measuring the food environment using geographical information systems: a 

methodological review. Public Health Nutrition, 13(11), 1773–85. http://doi.org 

/10.1017/S1368980010000753 

Check it! We insepct it. (2014). Retrieved December 20, 2014, from 

http://checkit.regionofwaterloo.ca/portal/Facility 

Chen, H.-J., & Wang, Y. (2014). The changing food outlet distributions and local 

contextual factors in the United States. BMC Public Health, 14(1), 42. http://doi.org 

/10.1186/1471-2458-14-42 

Chen, X., & Clark, J. (2013). Interactive three-dimensional geovisualization of space–time 

access to food. Applied Geography, 43, 81–86. http://doi.org/10.1016 

/j.apgeog.2013.05.012 

Chen, X., & Clark, J. (2015). Measuring Space–Time Access to Food Retailers: A Case of 

Temporal Access Disparity in Franklin County, Ohio. The Professional Geographer, 

(June), 1–14. http://doi.org/10.1080/00330124.2015.1032876 

Christian, W. J. (2012). Using geospatial technologies to explore activity-based retail food 

environments. Spatial and Spatio-Temporal Epidemiology, 3(4), 287–95. 

http://doi.org/10.1016/j.sste.2012.09.001 

City of London. (2016). The London Plan. London, Ontario. Retrieved from 

http://www.london.ca/business/Planning-Development/Official-

Plan/Documents/London Plan-Final-July2016-pagesreduced.pdf 

City of New York. (2009). Mayor Bloomberg, Governor Paterson, and Speaker Quinn 

announce comprehensive strategies to increase and retail grocery stores in New York 

City. Retrieved December 24, 2014, from http://www1.nyc.gov/office-of-the-

mayor/news/222-09/mayor-bloomberg-governor-paterson-speaker-quinn-

comprehensive-strategies-to 

City of Toronto. (2015). Toronto Official Plan. Toronto. Retrieved from 

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=03eda07443f36410Vgn

VCM10000071d60f89RCRD 

City of Vancouver. (2008). Urban Agriculture Design Guidelines for the Private Realm -. 

Clary, C. M., & Kestens, Y. (2013). Field validation of secondary data sources: a novel 

measure of representativity applied to a Canadian food outlet database. The 

International Journal of Behavioral Nutrition and Physical Activity, 10(1), 77. 

http://doi.org/10.1186/1479-5868-10-77 

Clary, C. M., Ramos, Y., Shareck, M., & Kestens, Y. (2015). Should we use absolute or 



110 

 

relative measures when assessing foodscape exposure in relation to fruit and vegetable 

intake? Evidence from a wide-scale Canadian study. Preventive Medicine, 71, 83–87. 

http://doi.org/10.1016/j.ypmed.2014.11.023 

Congdon, P. (2008). The need for psychiatric care in England: a spatial factor methodology. 

Journal of Geographical Systems, 10(3), 217–239. http://doi.org/10.1007/s10109-

008-0064-6 

Congdon, P. (2011). The Spatial Pattern of Suicide in the US in Relation to Deprivation, 

Fragmentation and Rurality. Urban Studies, 48(10), 2101–2122. http://doi.org/ 

10.1177/0042098010380961 

Congdon, P. (2016). Explaining variations in obesity and inactivity between US 

metropolitan areas. GeoJournal, 81(2), 211–229. http://doi.org/10.1007/s10708-014-

9614-2 

Courtemanche, C., Soneji, S., & Tchernis, R. (2015). Modeling area-level health rankings. 

Health Services Research, 50(5), 1413–1431. http://doi.org/10.1111/1475-

6773.12352 

Crawford, T. W., Jilcott Pitts, S. B., McGuirt, J. T., Keyserling, T. C., & Ammerman, A. 

S. (2014). Conceptualizing and comparing neighborhood and activity space measures 

for food environment research. Health & Place, 30, 215–25. http://doi.org 

/10.1016/j.healthplace.2014.09.007 

Cummins, S., Flint, E., & Matthews, S. A. (2014). New neighborhood grocery store 

increased awareness of food access but did not alter dietary habits or obesity. Health 

Affairs, 22(2), 283–291. 

Cummins, S., & Macintyre, S. (2006). Food environments and obesity--neighbourhood or 

nation? International Journal of Epidemiology, 35(1), 100–4. http://doi.org 

/10.1093/ije/dyi276 

Curtis, J. E., Grabb, E. G., & Guppy, N. (2004). Social Inequality in Canada: Patterns, 

Problems, and Policies (4th ed.). Toronto: Pearson Prentice Hall. 

Dai, D., & Wang, F. (2011). Geographic disparities in accessibility to food stores in 

southwest Mississippi. Environment and Planning B: Planning and Design, 38(4), 

659–677. http://doi.org/10.1068/b36149 

Daniel, M., Kestens, Y., & Paquet, C. (2009). Demographic and urban form correlates of 

healthful and unhealthful food availability in Montréal, Canada. Canadian Journal of 

Public Health, 100(3), 189–193. http://doi.org/10.2307/41995243 

Dawson, J., Marshall, D., Taylor, M., Cummins, S., Sparks, L., & Anderson, A. S. (2008). 

Accessing healthy food: availability and price of a healthy food basket in Scotland. 

Journal of Marketing Management, 24(9–10), 893–913. http://doi.org/10.1362 

/026725708X381957 

Diez Roux, A. V. (2009). The Public Health Effects of Food Deserts. 



111 

 

Donofrio, G. A. (2007). Feeding the City. Gastronomica, 7(4), 30–41. http://doi.org 

/10.1525/gfc.2007.7.4.30 

Dubowitz, T., Ghosh-Dastidar, M., Eibner, C., Slaughter, M. E., Fernandes, M., Whitsel, 

E. a., … Escarce, J. J. (2012). The Women’s Health Initiative: The Food Environment, 

Neighborhood Socioeconomic Status, BMI, and Blood Pressure. Obesity, 20(4), 862–

871. http://doi.org/10.1038/oby.2011.141 

Dumanovsky, T., Huang, C. Y., Bassett, M. T., & Silver, L. D. (2010). Consumer 

awareness of fast-food calorie information in new york city after implementation of a 

menu labeling regulation. American Journal of Public Health, 100(12), 2520–2525. 

http://doi.org/10.2105/AJPH.2010.191908 

Duran, A. C., Diez Roux, A. V., Latorre, M. R. D. O., & Jaime, P. C. (2013). Neighborhood 

socioeconomic characteristics and differences in the availability of healthy food stores 

and restaurants in Sao Paulo, Brazil. Health & Place, 23, 39–47. 

http://doi.org/10.1016/j.healthplace.2013.05.001 

Engler-Stringer, R., Le, H., Gerrard, A., & Muhajarine, N. (2014). The community and 

consumer food environment and children’s diet: a systematic review. BMC Public 

Health, 14(2), 522. http://doi.org/10.1186/1471-2458-14-522 

Engler-Stringer, R., Shah, T., Bell, S., & Muhajarine, N. (2014). Geographic Access to 

Healthy and Unhealthy Food Sources for Children in Neighbourhoods and from 

Elementary Schools in a Mid-Sized Canadian City. Spatial and Spatio-Temporal 

Epidemiology, (2014). http://doi.org/10.1016/j.sste.2014.07.001 

Farber, S., Morang, M. Z., & Widener, M. J. (2014). Temporal variability in transit-based 

accessibility to supermarkets. Applied Geography, 53, 149–159. http://doi.org 

/10.1016/j.apgeog.2014.06.012 

Filomena, S., Scanlin, K., & Morland, K. B. (2013). Brooklyn, New York foodscape 2007-

2011: a five-year analysis of stability in food retail environments. The International 

Journal of Behavioral Nutrition and Physical Activity, 10, 46. http://doi.org 

/10.1186/1479-5868-10-46 

Fleischhacker, S. E., Evenson, K. R., Sharkey, J., Pitts, S. B. J., & Rodriguez, D. a. (2013). 

Validity of secondary retail food outlet data: a systematic review. American Journal 

of Preventive Medicine, 45(4), 462–73. http://doi.org/10.1016/j.amepre.2013.06.009 

Food First NL. (2015). Healthy Corner Stores NL. Retrieved August 1, 2016, from 

http://www.foodfirstnl.ca/our-projects/2015/10/healthy-corner-stores-nl 

FoodShare. (2016). A different kind of food truck. Retrieved August 1, 2016, from 

http://foodshare.net/program/mobile/ 

Franco, M., Diez Roux, A. V., Glass, T. A., Caballero, B., & Brancati, F. L. (2008). 

Neighborhood Characteristics and Availability of Healthy Foods in Baltimore. 

American Journal of Preventive Medicine, 35(6), 561–567. 



112 

 

http://doi.org/10.1016/j.amepre.2008.07.003 

Gelman, A. (2006). Prior distribution for variance parameters in hierarchical models. 

Bayesian Analysis, 1(3), 515–533. http://doi.org/10.1214/06-BA117A 

Gilliland, J. a, Rangel, C. Y., Healy, M. a, Tucker, P., Loebach, J. E., Hess, P. M., … Wilk, 

P. (2012). Linking childhood obesity to the built environment: a multi-level analysis 

of home and school neighbourhood factors associated with body mass index. 

Canadian Journal of Public Health, 103(9 Suppl 3), eS15-21. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/23618083 

Girz, L., Polivy, J., Herman, C. P., & Lee, H. (2012). The effects of calorie information on 

food selection and intake. International Journal of Obesity, 36, 1340–1345. 

http://doi.org/10.1038/ijo.2011.135 

Giskes, K., Van Lenthe, F. J., Brug, J., Mackenbach, J. P., & Turrell, G. (2007). 

Socioeconomic inequalities in food purchasing: the contribution of respondent-

perceived and actual (objectively measured) price and availability of foods. 

Preventive Medicine, 45(1), 41–8. http://doi.org/10.1016/j.ypmed.2007.04.007 

Glanz, K. (2009). Measuring food environments: a historical perspective. American 

Journal of Preventive Medicine, 36(4 Suppl), S93-8. http://doi.org/10.1016 

/j.amepre.2009.01.010 

Glanz, K., Sallis, J. F., Saelens, B. E., & Frank, L. D. (2005). Healthy nutrition 

environments: concepts and measures. American Journal of Health Promotion, 19(5), 

330–3, ii. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15895534 

Glanz, K., Sallis, J. F., Saelens, B. E., & Frank, L. D. (2007). Nutrition Environment 

Measures Survey in stores (NEMS-S): development and evaluation. American 

Journal of Preventive Medicine, 32(4), 282–9. http://doi.org/10.1016 

/j.amepre.2006.12.019 

Grant, J. L., MacKay, K. C., Manuel, P. M., & McHugh, T. L. F. (2010). Barriers to 

optimizing investments in the built environment to reduce youth obesity: Policy-

maker perspectives. Canadian Journal of Public Health, 101(3), 237–240. 

Gustafson, A., Hankins, S., & Jilcott, S. (2012). Measures of the consumer food store 

environment: a systematic review of the evidence 2000-2011. Journal of Community 

Health, 37(4), 897–911. http://doi.org/10.1007/s10900-011-9524-x 

Gustafson, A., Lewis, S., Perkins, S., Wilson, C., Buckner, E., & Vail, A. (2013). 

Neighbourhood and consumer food environment is associated with dietary intake 

among Supplemental Nutrition Assistance Program (SNAP) participants in Fayette 

County, Kentucky. Public Health Nutrition, 16(7), 1229–37. http://doi.org/10.1017 

/S1368980013000505 

Haining, R., Law, J., & Griffith, D. (2009). Modelling small area counts in the presence of 

overdispersion and spatial autocorrelation. Computational Statistics & Data Analysis, 



113 

 

53(8), 2923–2937. http://doi.org/10.1016/j.csda.2008.08.014 

Hammond, D., Goodman, S., Hanning, R., & Daniel, S. (2013). A randomized trial of 

calorie labeling on menus. Preventive Medicine, 57(6), 860–866. http://doi.org 

/10.1016/j.ypmed.2013.09.020 

Haws, K. L., & Liu, P. J. (2016). Half-size me? How calorie and price information 

influence ordering on restaurant menus with both half and full entrée portion sizes. 

Appetite, 97, 127–137. http://doi.org/10.1016/j.appet.2015.11.031 

He, M., Tucker, P., Gilliland, J., Irwin, J. D., Larsen, K., & Hess, P. (2012). The influence 

of local food environments on adolescents’ food purchasing behaviors. International 

Journal of Environmental Research and Public Health, 9(4), 1458–1471. 

http://doi.org/10.3390/ijerph9041458 

He, M., Tucker, P., Irwin, J. D., Gilliland, J., Larsen, K., & Hess, P. (2012). Obesogenic 

neighbourhoods: the impact of neighbourhood restaurants and convenience stores on 

adolescents’ food consumption behaviours. Public Health Nutrition, 15(12), 2331–9. 

http://doi.org/10.1017/S1368980012000584 

Health Canada. (2012). Measuring the food environment in Canada. Retrieved from 

http://publications.gc.ca/collections/collection_2013/sc-hc/H164-155-2012-eng.pdf 

Healy, M. A., & Gilliland, J. A. (2012). Quantifying the magnitude of environmental 

exposure misclassification when using imprecise address proxies in public health 

research. Spatial and Spatio-Temporal Epidemiology, 3(1), 55–67. 

http://doi.org/10.1016/j.sste.2012.02.006 

Historica Canada. (2016). Zoning. Retrieved June 21, 2016, from 

http://www.thecanadianencyclopedia.ca/en/article/zoning/ 

Hogan, J. W., & Tchernis, R. (2004). Bayesian Factor Analysis for Spatially Correlated 

Data, With Application to Summarizing Area-Level Material Deprivation From 

Census Data. Journal of the American Statistical Association, 99(466), 314–324. 

http://doi.org/10.1198/016214504000000296 

Hollands, S., Campbell, M. K., Gilliland, J., & Sarma, S. (2013). A spatial analysis of the 

association between restaurant density and body mass index in Canadian adults. 

Preventive Medicine, 57(4), 258–64. http://doi.org/10.1016/j.ypmed.2013.07.002 

Hollands, S., Campbell, M. K., Gilliland, J., & Sarma, S. (2014). Association between 

neighborhood fast-food and full-service restaurant and body mass index: A cross-

sectional study of Canadian adults. Canadian Journal of Public Health., 105(3), 

e172–e178. 

Horner, M. W., & Wood, B. S. (2014). Capturing individuals’ food environments using 

flexible space-time accessibility measures. Applied Geography, 51, 99–107. 

http://doi.org/10.1016/j.apgeog.2014.03.007 

Jeffery, R. W., Baxter, J., McGuire, M., & Linde, J. (2006). Are fast food restaurants an 



114 

 

environmental risk factor for obesity? The International Journal of Behavioral 

Nutrition and Physical Activity, 3, 2. http://doi.org/10.1186/1479-5868-3-2 

Just Food. (2016). Healthy Corner Stores. Retrieved August 1, 2016, from 

http://justfood.ca/ottawa-food-action-plan/healthy-corner-stores/ 

Kanter, R., Alvey, J., & Fuentes, D. (2014). A novel mobile phone application to assess 

nutrition environment measures in low-and middle-income countries. Food and 

Nutrition Bulletin, 35(3), 296–300. http://doi.org/10.1177/156482651403500302 

Kaufman, J. L. (2009). Food system planning: Moving up the planner’s ladder. Plan 

Canada, 49(2), 12–16. 

Kazembe, L. N. (2013). A Bayesian Two Part Model Applied to Analyze Risk Factors of 

Adult Mortality with Application to Data from Namibia. PLoS ONE, 8(9), e73500. 

http://doi.org/10.1371/journal.pone.0073500 

Kelly, B., Flood, V. M., & Yeatman, H. (2011). Measuring local food environments: an 

overview of available methods and measures. Health & Place, 17(6), 1284–93. 

http://doi.org/10.1016/j.healthplace.2011.08.014 

Kestens, Y., Lebel, A., Chaix, B., Clary, C., Daniel, M., Pampalon, R., … P Subramanian, 

S. V. (2012). Association between activity space exposure to food establishments and 

individual risk of overweight. PloS One, 7(8), e41418. http://doi.org/10.1371 

/journal.pone.0041418 

Kestens, Y., Lebel, A., Daniel, M., Thériault, M., & Pampalon, R. (2010). Using 

experienced activity spaces to measure foodscape exposure. Health & Place, 16(6), 

1094–103. http://doi.org/10.1016/j.healthplace.2010.06.016 

Kirkpatrick, S. I., Reedy, J., Butler, E. N., Dodd, K. W., Subar, A. F., Thompson, F. E., & 

McKinnon, R. A. (2014). Dietary assessment in food environment research: a 

systematic review. American Journal of Preventive Medicine, 46(1), 94–102. 

http://doi.org/10.1016/j.amepre.2013.08.015 

Lamb, K. E., Thornton, L. E., Cerin, E., & Ball, K. (2015). Statistical Approaches Used to 

Assess the Equity of Access to Food Outlets: A Systematic Review. AIMS Public 

Health, 2(3), 358–401. http://doi.org/10.3934/publichealth.2015.3.358 

Lamichhane, A. P., Warren, J. L., Peterson, M., Rummo, P., & Gordon-Larsen, P. (2015). 

Spatial-Temporal Modeling of Neighborhood Sociodemographic Characteristics and 

Food Stores. American Journal of Epidemiology, 181(2), 137–150. 

http://doi.org/10.1093/aje/kwu250 

Lamichhane, A. P., Warren, J., Puett, R., Porter, D. E., Bottai, M., Mayer-Davis, E. J., & 

Liese, A. D. (2013). Spatial patterning of supermarkets and fast food outlets with 

respect to neighborhood characteristics. Health & Place, 23, 157–64. 

http://doi.org/10.1016/j.healthplace.2013.07.002 

Laraia, B. A., Hendrickson, B., & Zhang, Y. T. (2015). Local Food Environments and 



115 

 

Dietary Intake. In K. B. Morland (Ed.), Local Food Environments: Food Access in 

America (pp. 121–165). CRC Press. 

Larsen, K., & Gilliland, J. (2008). Mapping the evolution of “food deserts” in a Canadian 

city: supermarket accessibility in London, Ontario, 1961-2005. International Journal 

of Health Geographics, 7, 16. http://doi.org/10.1186/1476-072X-7-16 

Larson, N. I., Story, M. T., & Nelson, M. C. (2009). Neighborhood Environments. 

Disparities in Access to Healthy Foods in the U.S. American Journal of Preventive 

Medicine, 36(1), 74–81.e10. http://doi.org/10.1016/j.amepre.2008.09.025 

Law, J., & Haining, R. (2004). A Bayesian Approach to Modeling Binary Data: The Case 

of High-Intensity Crime Areas. Geographical Analysis, 36(3). 

Law, J., Quick, M., & Chan, P. (2013). Bayesian Spatio-Temporal Modeling for Analysing 

Local Patterns of Crime Over Time at the Small-Area Level. Journal of Quantitative 

Criminology, 30(1), 57–78. http://doi.org/10.1007/s10940-013-9194-1 

Law, J., Quick, M., & Chan, P. W. (2014). Analyzing Hotspots of Crime Using a Bayesian 

Spatiotemporal Modeling Approach: A Case Study of Violent Crime in the Greater 

Toronto Area. Geographical Analysis, 1–19. http://doi.org/10.1111/gean.12047 

Lawson, A. B. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial 

Epidemiology (second edi). Boca Raton: CRC Press. 

LeClair, M. S., & Aksan, A. M. (2014). Redefining the food desert: combining GIS with 

direct observation to measure food access. Agriculture and Human Values, 31(4), 

537–547. http://doi.org/10.1007/s10460-014-9501-y 

LeDoux, T. F., & Vojnovic, I. (2013). Going outside the neighborhood: The shopping 

patterns and adaptations of disadvantaged consumers living in the lower eastside 

neighborhoods of Detroit, Michigan. Health & Place, 19(1), 1–14. 

http://doi.org/10.1016/j.healthplace.2012.09.010 

Lee, D. (2011). A comparison of conditional autoregressive models used in Bayesian 

disease mapping. Spatial and Spatio-Temporal Epidemiology, 2(2), 79–89. 

http://doi.org/10.1016/j.sste.2011.03.001 

Lee, G., & Lim, H. (2009). A Spatial Statistical Approach to Identifying Areas with Poor 

Access to Grocery Foods in the City of Buffalo, New York. Urban Studies, 46(7), 

1299–1315. http://doi.org/10.1177/0042098009104567 

Li, G., Haining, R., Richardson, S., & Best, N. (2014). Space–time variability in burglary 

risk: A Bayesian spatio-temporal modelling approach. Spatial Statistics, 9, 180–191. 

http://doi.org/10.1016/j.spasta.2014.03.006 

Liese, A. D., Barnes, T. L., Lamichhane, A. P., Hibbert, J. D., Colabianchi, N., & Lawson, 

A. B. (2013). Characterizing the food retail environment: impact of count, type, and 

geospatial error in 2 secondary data sources. Journal of Nutrition Education and 

Behavior, 45(5), 435–42. http://doi.org/10.1016/j.jneb.2013.01.021 



116 

 

Luan, H., Law, J., & Quick, M. (2015). Identifying food deserts and swamps based on 

relative healthy food access: a spatio-temporal Bayesian approach. International 

Journal of Health Geographics, 14(1), 37. http://doi.org/10.1186/s12942-015-0030-8 

Luan, H., Minaker, L. M., & Law, J. (2016). Do marginalized neighbourhoods have less 

healthy retail food environments? An analysis using Bayesian spatial latent factor and 

hurdle models. International Journal of Health Geographics, 15(1), 29. 

http://doi.org/10.1186/s12942-016-0060-x 

Lucan, S. C. (2015). Concerning Limitations of Food-Environment Research: A Narrative 

Review and Commentary Framed around Obesity and Diet-Related Diseases in Youth. 

Journal of the Academy of Nutrition and Dietetics, 115(2), 205–212. 

http://doi.org/10.1016/j.jand.2014.08.019 

Lucan, S. C., Maroko, A. R., Bumol, J., Torrens, L., Varona, M., & Berke, E. M. (2013). 

Business list vs ground observation for measuring a food environment: saving time or 

waste of time (or worse)? Journal of the Academy of Nutrition and Dietetics, 113(10), 

1332–9. http://doi.org/10.1016/j.jand.2013.05.011 

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS - A Bayesian 

modelling framework: Concepts, structure, and extensibility. Statistics and 

Computing, 10, 325–337. http://doi.org/10.1007/s13398-014-0173-7.2 

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS Book: 

A Practical Introduction to Bayesian Analysis. CRC Press. 

Lyseen, A., & Hansen, H. (2014). Spatial and Semantic Validation of Secondary Food 

Source Data. ISPRS International Journal of Geo-Information, 3(1), 236–253. 

http://doi.org/10.3390/ijgi3010236 

Lytle, L. a. (2009). Measuring the food environment: state of the science. American 

Journal of Preventive Medicine, 36(4 Suppl), S134-44. http://doi.org/10.1016 

/j.amepre.2009.01.018 

Ma, X., Battersby, S. E., Bell, B. a, Hibbert, J. D., Barnes, T. L., & Liese, A. D. (2013). 

Variation in low food access areas due to data source inaccuracies. Applied 

Geography, 45, 131–137. http://doi.org/10.1016/j.apgeog.2013.08.014 

Maan Miedema, J. (2008). Neighbourhood Markets Initiative. 

Macintyre, S. (2007). Deprivation amplification revisited ; or , is it always true that poorer 

places have poorer access to resources for healthy diets and physical activity ? 

International Journal of Behavioral Nutrition and Physical Activity, 4(32). 

http://doi.org/10.1186/1479-Received 

Macintyre, S., Macdonald, L., & Ellaway, A. (2008). Do poorer people have poorer access 

to local resources and facilities? The distribution of local resources by area 

deprivation in Glasgow, Scotland. Social Science and Medicine, 67(6), 900–914. 

http://doi.org/10.1016/j.socscimed.2008.05.029 



117 

 

MacLeod, C. M., & Eisenberg, A. (2006). The normative dimensions of equality. In D. A. 

Green & J. R. Kesselman (Eds.), Dimensions of Inequality in Canada (pp. 33–64). 

Vancouver, BC: UBC Press. Retrieved from http://search.proquest.com 

/docview/56681510?accountid=17248 

Maddock, J. (2004). The Relationship Between Obesity and the Prevalenc of Fast Food 

Restaurants: State-Level Analysis. American Journal Of Health Promotion, 19(2), 

137–144. 

Mah, C. L., Cook, B., Rideout, K., & Minaker, L. M. (2016). Policy options for healthier 

retail food environments in city-regions. Can J Public Health, 107(Suppl 1), eS64-

eS67. http://doi.org/10.17269/cjph.107.5343 

Mair, J. S., Pierece, M. W., & Teret, S. P. (2005). The use of zoning to restrict fast food 

outlets: a potential strategy to combat obesity. 

Marí-Dell’Olmo, M., Martínez-Beneito, M. A., Borrell, C., Zurriaga, O., Nolasco, A., & 

Domínguez-Berjón, M. F. (2011). Bayesian factor analysis to calculate a deprivation 

index and its uncertainty. Epidemiology, 22(3), 356–64. http://doi.org/10.1097 

/EDE.0b013e3182117747 

Mason, K. E., Bentley, R. J., & Kavanagh, A. M. (2013). Fruit and vegetable purchasing 

and the relative density of healthy and unhealthy food stores: evidence from an 

Australian multilevel study. Journal of Epidemiology & Community Health, 67, 231–

236. http://doi.org/10.1136/jech-2012-201535 

Matheson, F. I., Dunn, J. R., Smith, K. L. W., Moineddin, R., & Glazier, R. H. (2012). 

Development of the Canadian Marginalization Index: A New Tool for the Study of 

Inequality. Canadian Journal of Public Health, 103(Suppl 2), S12–S16. 

McKenzie, B. S. (2014). Access to supermarkets among poorer neighborhoods : a 

comparison of time and distance measures. Urban Geography, 35(1), 133–151. 

http://doi.org/10.1080/02723638.2013.856195 

Mehta, N. K., & Chang, V. W. (2008). Weight Status and Restaurant Availability. A 

Multilevel Analysis. American Journal of Preventive Medicine, 34(2), 127–133. 

http://doi.org/10.1016/j.amepre.2007.09.031 

Mercille, G., Richard, L., Gauvin, L., Kestens, Y., Payette, H., & Daniel, M. (2013). 

Comparison of two indices of availability of fruits/vegetable and fast food outlets. 

Journal of Urban Health : Bulletin of the New York Academy of Medicine, 90(2), 240–

5. http://doi.org/10.1007/s11524-012-9722-6 

Mercille, G., Richard, L., Gauvin, L., Kestens, Y., Shatenstein, B., Daniel, M., & Payette, 

H. (2012). Associations between residential food environment and dietary patterns in 

urban-dwelling older adults: results from the VoisiNuAge study. Public Health 

Nutrition, 15(11), 2026–2039. http://doi.org/10.1017/S136898001200273X 

Mezzetti, M. (2012). Bayesian factor analysis for spatially correlated data: Application to 



118 

 

cancer incidence data in Scotland. Statistical Methods and Applications, 21(1), 49–

74. http://doi.org/10.1007/s10260-011-0177-9 

Michimi, A., & Wimberly, M. C. (2015). The food environment and adult obesity in US 

metropolitan areas. Geospatial Health, 10(2), 368. http://doi.org/10.4081 

/gh.2015.368 

Minaker, L. M. (2013). Evaluating food environmnet assessment methodologies: a multi-

level examination of associations between food environments and individual 

outcomes. University of Alberta. 

Minaker, L. M., Fisher, P., Raine, K. D., & Frank, D. (2011). Measuring the food 

environment : From theory to planning practice. Journal of Agriculture, Food Systems, 

and Community Development, 2(1), 65–82. 

Minaker, L. M., Raine, K. D., Wild, T. C., Nykiforuk, C. I. J., Thompson, M. E., & Frank, 

L. D. (2013). Objective food environments and health outcomes. American Journal 

of Preventive Medicine, 45(3), 289–96. http://doi.org/10.1016/j.amepre.2013.05.008 

Minaker, L. M., Raine, K. D., Wild, T. C., Nykiforuk, C. I. J., Thompson, M. E., & Frank, 

L. D. (2014). Construct validation of 4 food-environment assessment methods: 

adapting a multitrait-multimethod matrix approach for environmental measures. 

American Journal of Epidemiology, 179(4), 519–28. http://doi.org/10.1093 

/aje/kwt272 

Minaker, L. M., Shuh, A., Olstad, D. L., Black, J. L., Engler-Stringer, R., & Mah, C. L. 

(2016). Retail food environments research in Canada: a scoping review. Canadian 

Journal of Public Health, 107(Suppl 1), eS4-eS13. 

Ministry of Municipal Affairs and Ministry Of Housing. (2015). Official Plans. Retrieved 

June 19, 2016, from http://www.mah.gov.on.ca/Page1759.aspx 

Moore, L. V., Diez Roux, A. V., Nettleton, J. A., Jacobs, D. R., & Franco, M. (2009). Fast-

Food consumption, diet quality, and neighborhood exposure to fast food. American 

Journal of Epidemiology, 170(1), 29–36. http://doi.org/10.1093/aje/kwp090 

Moore, L. V., & Diez-Roux, A. V. (2015). Measurement and Analytical Issues Involved in 

the Estimation of the Effects of Local Food Environments on Health Behaviors and 

Health Outcomes. In K. B. Morland (Ed.), Local Food Environments: Food Access in 

America (pp. 205–230). CRC Press. 

Moore, L. V, Diez Roux, A. V, & Brines, S. (2008). Comparing Perception-Based and 

Geographic Information System (GIS)-based characterizations of the local food 

environment. Journal of Urban Health : Bulletin of the New York Academy of 

Medicine, 85(2), 206–16. http://doi.org/10.1007/s11524-008-9259-x 

Morland, K. B. (2015a). Geography of Local Food Environments: People and Places. In K. 

B. Morland (Ed.), Local Food Environments: Food Access in America (pp. 87–120). 

CRC Press. 



119 

 

Morland, K. B. (2015b). Introduction. In K. B. Morland (Ed.), Local Food Environments: 

Food Access in America (pp. 1–28). CRC Press. 

Morland, K. B. (Ed.). (2015c). Local Food Environments: Food Access in America. CRC 

Press. 

Morris, C. N., & Lysy, M. (2012). Shrinkage Estimation in Multilevel Normal Models. 

Statistical Science, 27(1), 115–134. http://doi.org/10.1214/11-STS363 

MRC Statistics Unit. (2015). WinBUGS. Retrieved July 1, 2015, from http://www.mrc-

bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/ 

Namba, A., Auchincloss, A., Leonberg, B. L., & Wootan, M. G. (2013). Exploratory 

analysis of fast-food chain restaurant menus before and after implementation of local 

calorie-labeling policies, 2005-2011. Preventing Chronic Disease, 10, E101. 

http://doi.org/10.5888/pcd10.120224 

National Cancer Institute. (2016). Measures of the food environment. Retrieved May 1, 

2015, from http://epi.grants.cancer.gov/mfe/ 

Neelon, B., Chang, H. H., Ling, Q., & Hastings, N. S. (2014). Spatiotemporal hurdle 

models for zero-inflated count data: Exploring trends in emergency department visits. 

Statistical Methods in Medical Research, March, 1–19. 

http://doi.org/10.1177/0962280214527079 

Neelon, B., Ghosh, P., & Loebs, P. F. (2013). A spatial Poisson hurdle model for exploring 

geographic variation in emergency department visits. Journal of the Royal Statistical 

Society. Series A: Statistics in Society, 176(2), 389–413. http://doi.org/10.1111 

/j.1467-985X.2012.01039.x 

Nethery, R. C., Warren, J. L., Herring, A. H., Moore, K. A. B., Evenson, K. R., & Diez-

Roux, A. V. (2015). A common spatial factor analysis model for measured 

neighborhood-level characteristics: The Multi-Ethnic Study of Atherosclerosis. 

Health & Place, 36, 35–46. http://doi.org/10.1016/j.healthplace.2015.08.009 

Nordström, J., & Thunström, L. (2015). The impact of price reductions on individuals’ 

choice of healthy meals away from home. Appetite, 89, 103–111. 

http://doi.org/10.1016/j.appet.2015.01.023 

Ohri-Vachaspati, P., & Leviton, L. C. (2010). Measuring food environments: a guide to 

available instruments. American Journal of Health Promotion : AJHP, 24, 410–426. 

http://doi.org/10.4278/ajhp.080909-LIT-190 

Oliver, L. N., Schuurman, N., & Hall, A. W. (2007). Comparing circular and network 

buffers to examine the influence of land use on walking for leisure and errands. 

International Journal of Health Geographics, 6, 41. http://doi.org/10.1186/1476-

072X-6-41 

Ontario’s Regulatory Registry. (2016). Reuglation under the Healthy Menu Choices Act, 

2015. Retrieved August 1, 2016, from http://www.ontariocanada.com/registry 



120 

 

/view.do?postingId=19762 

Ontario Professional Planners Institute. (2014). Healthy Communities and Planning for 

Active Transportation: Moving Forward on Active Transportation in Ontario’s 

Communities - A Call to Action. 

OPPI. (2011). Healthy Communities and Planning for Food - Planning for Food Systems 

in Ontario: A Call to Action. Retrieved from http://ontarioplanners.ca/PDF/Healthy-

Communities/2011/a-call-to-action-from-oppi-june-24-2011.aspx 

Ottawa Public Health. (2016). Market Mobile: Good Food on the Move. Retrieved August 

1, 2016, from http://ottawahealth.tumblr.com/post/93125149755/market-mobile-

good-food-on-the-move 

Pampalon, R., Hamel, D., Gamache, P., Philibert, M. D., Raymond, G., & Simpson, A. 

(2012). An area-based material and social deprivation index for public health in 

Quebec and Canada. Canadian Journal of Public Health, 103(Suppl.2), S17–S22. 

http://doi.org/10.17269/cjph.103.3156 

Papas, M. a, Alberg, A. J., Ewing, R., Helzlsouer, K. J., Gary, T. L., & Klassen, A. C. 

(2007). The built environment and obesity. Epidemiologic Reviews, 29(27), 129–43. 

http://doi.org/10.1093/epirev/mxm009 

Partington, S. N., Menzies, T. J., Colburn, T. A., Saelens, B. E., & Glanz, K. (2015). 

Reduced-item food audits based on the nutrition environment measures surveys. 

American Journal of Preventive Medicine, 49(4), e23–e33. http://doi.org/10.1016 

/j.amepre.2015.04.036 

Pearce, J., & Witten, K. (Eds.). (2010). Geographies of Obesity: Environmental 

understandings of the obesity epidemic. Farnham, England: Ashgate Publishing 

Limited. 

Polsky, J. Y., Moineddin, R., Dunn, J. R., Glazier, R. H., & Booth, G. L. (2016). Absolute 

and relative densities of fast-food versus other restaurants in relation to weight status: 

Does restaurant mix matter? Preventive Medicine, 82, 28–34. http://doi.org/10.1016 

/j.ypmed.2015.11.008 

Polsky, J. Y., Moineddin, R., Glazier, R. H., Dunn, J. R., & Booth, G. L. (2014). 

Foodscapes of sourthern Ontario: Neighbourhood deprivation and access to healthy 

and unhealthy food retail. Canadian Journal of Public Health, 105(5), e369–e375. 

Pothukuchi, K. (2004). Community Food Assessment: A First Step in Planning for 

Community Food Security. Journal of Planning Education and Research, 23(4), 356–

377. http://doi.org/10.1177/0739456X04264908 

Pothukuchi, K., & Kaufman, J. L. (1999). Placing the food system on the urban agenda : 

The role of municipal institutions in food systems planning. Agriculture and Human 

Values, 16, 213–224. 

Pothukuchi, K., & Kaufman, J. L. (2000). The food system: A Stranger to the Planning 



121 

 

Field. Journal of the American Planning Association, 66(2), 113–124. 

http://doi.org/10.1016/0306-9192(96)81817-3 

Quebec Public Health Association. (2011). The School Zone and Nutrition: Courses of 

Action for the Municipal Sector. Retrieved from http://www.aspq.org 

/documents/file/guide-zonage-version-finale-anglaise.pdf 

Raja, S., Born, B., & Russell, J. K. (2008). A Planners Guide to Community and Regional 

Food Planning: Transforming Food Environments, Facilitating Healthy Eating. 

American Planning Association. 

Rao, D. B. (2007). Education for All: Issues and Trends. APH Publishing Corporation. 

Raychaudhuri, M., & Sanyal, D. (2012). Childhood obesity: Determinants, evaluation, and 

prevention. Indian Journal of Endocrinology and Metabolism, 16(Suppl 2), S192-4. 

http://doi.org/10.4103/2230-8210.104037 

Region of Waterloo. (2009). Liveability in Waterloo Region. 

Region of Waterloo. (2014). City Town Village Boundaries. Retrieved July 10, 2015, from 

http://www.regionofwaterloo.ca/en/regionalGovernment/citytownvillages.asp 

Region of Waterloo Public Health. (2007). A healthy community food system plan for 

Waterloo Region. 

Richardson, S., Thomson, A., Best, N., & Elliott, P. (2004). Interpreting posterior relative 

risk estimates in disease-mapping studies. Environmental Health Perspectives, 112(9), 

1016–1025. http://doi.org/10.1289/ehp.6740 

Rose, D., Bodor, J. N., Hutchinson, P. L., & Swalm, C. M. (2009). The Importance of a 

Multi-Dimensional Approach for Studying the Links between Food Access and 

Consumption. The Journal of Nutrition, (140), 1170–1176. http://doi.org 

/10.3945/jn.109.113159.1 

Rossen, L. M., Pollack, K. M., & Curriero, F. C. (2012). Verification of retail food outlet 

location data from a local health department using ground-truthing and remote-

sensing technology: assessing differences by neighborhood characteristics. Health & 

Place, 18(5), 956–62. http://doi.org/10.1016/j.healthplace.2012.06.012 

Rue, H., & Martino, S. (2009). Approximate Bayesian Inference for Latent Gaussian 

Models by Using Integrated Nested Laplace Approximations. Journal of the Royal 

Statistical Society Series B: Statistical Methodology, 71(2), 319–392. 

Sadler, R. C., Clark, A. F., Wilk, P., O’Connor, C., & Gilliland, J. A. (2016). Using GPS 

and activity tracking to reveal the influence of adolescents’ food environment 

exposure on junk food purchasing. Can J Public Health, 107(Supplement 1), 14. 

http://doi.org/10.17269/cjph.107.5346 

Sadler, R. C., & Gilliland, J. A. (2015). Comparing children’s GPS tracks with geospatial 

proxies for exposure to junk food. Spatial and Spatio-Temporal Epidemiology, 14–



122 

 

15(2015), 55–61. http://doi.org/10.1016/j.sste.2015.09.001 

Sadler, R. C., Gilliland, J. a, & Arku, G. (2011). An application of the edge effect in 

measuring accessibility to multiple food retailer types in southwestern Ontario, 

Canada. International Journal of Health Geographics, 10(1), 34. http://doi.org 

/10.1186/1476-072X-10-34 

Saelens, B. E., Chan, N. L., Krieger, J., Nelson, Y., Boles, M., Colburn, T. A., … 

Bruemmer, B. (2012). Nutrition-labeling regulation impacts on restaurant 

environments. American Journal of Preventive Medicine, 43(5), 505–511. 

http://doi.org/10.1016/j.amepre.2012.07.025 

Saelens, B. E., Glanz, K., Sallis, J. F., & Frank, L. D. (2007). Nutrition Environment 

Measures Study in restaurants (NEMS-R): development and evaluation. American 

Journal of Preventive Medicine, 32(4), 273–81. http://doi.org/10.1016 

/j.amepre.2006.12.022 

Scourboutakos, M. J., Corey, P. N., Mendoza, J., Henson, S. J., & L’Abbé, M. R. (2014). 

Restaurant menu labelling: Is it worth adding sodium to the label? Canadian Journal 

of Public Health, 105(5), e354–e361. http://doi.org/10.17269/cjph.105.4492 

Seeton, M. (2012). Enhancing Healthy Food Retail : Models for increasing Access to 

Healthy Local Food in Vancouver Neighbourhoods. Retrieved from 

https://sustain.ubc.ca/sites/sustain.ubc.ca/files/Local Food - Meredith Seeton - 

Healthy Food Retail Models.pdf 

Seliske, L., Pickett, W., Rosu, A., & Janssen, I. (2013). The number and type of food 

retailers surrounding schools and their association with lunchtime eating behaviours 

in students. The International Journal of Behavioral Nutrition and Physical Activity, 

10(1), 19. http://doi.org/10.1186/1479-5868-10-19 

Shannon, J. (2014). What does SNAP benefit usage tell us about food access in low-income 

neighborhoods? Social Science and Medicine, 107(2014), 89–99. 

http://doi.org/10.1016/j.socscimed.2014.02.021 

Shishehbor, M. H., & Litaker, D. (2006). Letter: socioeconomic status and mortality. 

Annals of Internal Medicine, 144(10), 781–782. http://doi.org/10.1017/ 

CBO9781107415324.004 

Shlay, A. B., & Rossi, P. H. (1981). Keeping up the Neighborhood: Estimating Net Effects 

of Zoning. American Sociological Review, 46, 703–719. 

Skrondal, A., & Rabe-Hesketh, S. (2007). Latent variable modelling: A survey. 

Scandinavian Journal of Statistics, 34(4), 712–745. http://doi.org/10.1111/j.1467-

9469.2007.00573.x 

Smoyer-Tomic, K. E., Spence, J. C., & Amrhein, C. (2006). Food Deserts in the Prairies? 

Supermarket Accessibility and Neighborhood Need in Edmonton, Canada. The 

Professional Geographer, 58(3), 307–326. 



123 

 

Smoyer-Tomic, K. E., Spence, J. C., Raine, K. D., Amrhein, C., Cameron, N., Yasenovskiy, 

V., … Healy, J. (2008). The association between neighborhood socioeconomic status 

and exposure to supermarkets and fast food outlets. Health & Place, 14(4), 740–754. 

http://doi.org/10.1016/j.healthplace.2007.12.001 

Sohi, I., Bell, B. a., Liu, J., Battersby, S. E., & Liese, A. D. (2014). Differences in Food 

Environment Perceptions and Spatial Attributes of Food Shopping Between Residents 

of Low and High Food Access Areas. Journal of Nutrition Education and Behavior, 

46(4), 241–249. http://doi.org/10.1016/j.jneb.2013.12.006 

Spence, J. C., Cutumisu, N., Edwards, J., Raine, K. D., & Smoyer-Tomic, K. (2009). 

Relation between local food environments and obesity among adults. BMC Public 

Health, 9, 192. http://doi.org/10.1186/1471-2458-9-192 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian 

measures of model complexity and fit. Journal of the Royal Statistical Society. Series 

B: Statistical Methodology, 64(4), 583–616. http://doi.org/10.1111/1467-9868.00353 

Stakhovych, S., Bijmolt, T. H. A., & Wedel, M. (2012). Spatial Dependence and 

Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of 

Schwartz Values. Multivariate Behavioral Research, 47(6), 803–839. 

http://doi.org/10.1080/00273171.2012.731927 

Statistics Canada. (2012). Dissemination area (DA). Retrieved April 17, 2015, from 

http://www12.statcan.gc.ca/census-recensement/2011/ref/dict/geo021-eng.cfm 

Statistics Canada. (2014). Average household food expenditure, by province (Canada). 

Retrieved May 1, 2016, from http://www.statcan.gc.ca/tables-tableaux/sum-

som/l01/cst01/famil132a-eng.htm 

Statistics Canada. (2015). Statistics Canada. Retrieved May 11, 2015, from 

http://www.statcan.gc.ca/start-debut-eng.html 

Stephens, J. (2007). Los Angeles Tries To Zone Out Fast Food. Planning, 73(11), 48. 

Strickland, S., Strategy, M., & Plan, O. (2014). Region of Waterloo Planning , Housing 

and Community Services Transportation Planning Public Health Healthy Eating and 

Active Communities, 1–14. 

Swinburn, B., Egger, G., & Raza, F. (1999). Dissecting obesogenic environments: the 

development and application of a framework for identifying and prioritizing 

environmental interventions for obesity. Preventive Medicine, 29(6 Pt 1), 563–570. 

http://doi.org/10.1006/pmed.1999.0585 

Thornton, L. E., Bentley, R. J., & Kavanagh, A. M. (2009). Fast food purchasing and access 

to fast food restaurants: a multilevel analysis of VicLANES. The International 

Journal of Behavioral Nutrition and Physical Activity, 6, 28. 

http://doi.org/10.1186/1479-5868-6-28 

Thornton, L. E., Pearce, J. R., & Kavanagh, A. M. (2011). Using Geographic Information 



124 

 

Systems (GIS) to assess the role of the built environment in influencing obesity: a 

glossary. The International Journal of Behavioral Nutrition and Physical Activity, 

8(1), 71. http://doi.org/10.1186/1479-5868-8-71 

Toronto Food Policy Council. (2014). Food Strategy Update: Healthy Corner Store Project. 

Retrieved September 10, 2015, from http://tfpc.to/toronto-food/food-strategy-update-

healthy-corner-store-project 

Toronto Public Health. (2015). Toronto Food Strategy : 2015 Update. 

Townsend, P., Phillimore, P., & Beattie, A. (1988). Health and Deprivation: Inequality 

and the North. London: Croom Helm. 

Tzala, E., & Best, N. (2006). Bayesian latent variable modelling of multivariate spatio-

temporal variation in cancer mortality. Biometrics, 61, 269–278. 

http://doi.org/10.1177/0962280207081243 

United States Development of Agriculture Economic Research Service. (2016). Food 

Expenditures. Retrieved May 23, 2016, from http://www.ers.usda.gov/data-

products/food-expenditures.aspx 

USDA. (2014). Food Environment Atlas. Retrieved September 7, 2014, from 

http://www.ers.usda.gov/data-products/food-environment-atlas.aspx 

Vanderlee, L., & Hammond, D. (2014). Does nutrition information on menus impact food 

choice? Comparisons across two hospital cafeterias. Public Health Nutrition, 17(6), 

1393–402. http://doi.org/10.1017/S136898001300164X 

Vernez Moudon, A., Drewnowski, A., Duncan, G. E., Hurvitz, P. M., Saelens, B. E., & 

Scharnhorst, E. (2013). Characterizing the food environment: pitfalls and future 

directions. Public Health Nutrition, 16(7), 1238–43. http://doi.org/10.1017 

/S1368980013000773 

Wang, F., & Wall, M. M. (2003). Generalized common spatial factor model. Biostatistics, 

4(4), 569–82. http://doi.org/10.1093/biostatistics/4.4.569 

Wang, H., Tao, L., Qiu, F., & Lu, W. (2016). The role of socio-economic status and spatial 

effects on fresh food access: Two case studies in Canada. Applied Geography, 

67(2016), 27–38. http://doi.org/10.1016/j.apgeog.2015.12.002 

Wang, J., Engler-Stringer, R., & Muhajarine, N. (2016). Assessing the Consumer Food 

Environment in Restaurants by Neighbourhood Distress Level across Saskatoon, 

Saskatchewan. Canadian Journal of Dietetic Practice and Research, 77(1), 9–16. 

http://doi.org/10.3148/cjdpr-2015-031 

Widener, M. J., Farber, S., Neutens, T., & Horner, M. (2015). Spatiotemporal accessibility 

to supermarkets using public transit: An interaction potential approach in Cincinnati, 

Ohio. Journal of Transport Geography, 42(2015), 72–83. http://doi.org/10.1016 

/j.jtrangeo.2014.11.004 



125 

 

Widener, M. J., Farber, S., Neutens, T., & Horner, M. W. (2013). Using urban commuting 

data to calculate a spatiotemporal accessibility measure for food environment studies. 

Health & Place, 21, 1–9. http://doi.org/10.1016/j.healthplace.2013.01.004 

Widener, M. J., Metcalf, S. S., & Bar-Yam, Y. (2011). Dynamic urban food environments 

a temporal analysis of access to healthy foods. American Journal of Preventive 

Medicine, 41(4), 439–41. http://doi.org/10.1016/j.amepre.2011.06.034 

Widener, M. J., & Shannon, J. (2014). When are food deserts? Integrating time into 

research on food accessibility. Health & Place, 30, 1–3. 

http://doi.org/10.1016/j.healthplace.2014.07.011 

Williams, J., Scarborough, P., Matthews,  a, Cowburn, G., Foster, C., Roberts, N., & 

Rayner, M. (2014). A systematic review of the influence of the retail food 

environment around schools on obesity-related outcomes. Obesity Reviews : An 

Official Journal of the International Association for the Study of Obesity, 15(5), 359–

74. http://doi.org/10.1111/obr.12142 

Winnipeg Regional Health Authority. (2014). Making the (food) deserts bloom. Retrieved 

August 1, 2016, from http://www.wrha.mb.ca/wave/2014/11/making-food-deserts-

bloom.php 

World Health Organization. (2003). Obesity: preventing and managing the global epidemic. 

Retrieved June 23, 2016, from http://www.who.int/nutrition/publications 

/obesity/WHO_TRS_894/en/ 

World Health Organization. (2013). Obesity and Overweight. Retrieved from 

http://www.who.int/mediacentre/factsheets/fs311/en/index.html 

Zadnik, V., & Reich, B. J. (2006). Analysis of the relationship between socioeconomic 

factors and stomach cancer incidence in Slovenia. Neoplasma, 53(2), 103–110. 

Zenk, S. N., Powell, L. M., Rimkus, L., Isgor, Z., & Barker, D. C. (2014). Relative and 

Absolute Availability of Healthier Food and Beverage Alternatives Across 

Communities in the United States. American Journal of Public Health, 104(11), 

2170–2179. http://doi.org/10.2105/AJPH.2014.302113 

Zenk, S. N., Schulz, A. J., Israel, B. A., James, S. A., Bao, S., & Wilson, M. L. (2005). 

Neighborhood racial composition, neighborhood poverty, and the spatial accessibility 

of supermarkets in metropolitan Detroit. American Journal of Public Health, 95(4), 

660–667. http://doi.org/10.2105/AJPH.2004.042150 

Zenk, S. N., Schulz, A. J., Israel, B. a., James, S. a., Bao, S., & Wilson, M. L. (2006). Fruit 

and vegetable access differs by community racial composition and socioeconomic 

position in Detroit, Michigan. Ethnicity and Disease, 16(1), 275–280. 

Zenk, S. N., Schulz, A. J., Matthews, S. a, Odoms-Young, A., Wilbur, J., Wegrzyn, L., … 

Stokes, C. (2011). Activity space environment and dietary and physical activity 

behaviors: a pilot study. Health & Place, 17(5), 1150–61. http://doi.org/10.1016 



126 

 

/j.healthplace.2011.05.001 

Zenk, S. N., Thatcher, E., Reina, M., & Odoms-Young, A. (2015). Local Food 

Environments and Diet-Related Health Outcomes: A Systematic Review of Local 

Food Environments, Body Weight, and Other Diet-Related Health Outcomes. In K. 

B. Morland (Ed.), Local Food Environments: Food Access in America (pp. 167–204). 

Taylor & Francis Group. 

 

  



127 

 

Appendix 1: Formulation of a Binomial hurdle model 

A Binomial hurdle model is a two-component mixture model that consists of a point 

mass at zero with a Bernoulli model accounting for the zero counts and a truncated 

Binomial model accounting for the positive counts. The form of a Binomial hurdle model 

is given in Model (A1), where πi is the probability that a DA has access to healthy food 

outlets; Yi and Ni are the number of accessible healthy food outlets and total number of 

accessible food outlets of DAi, respectively; and pi is the probability of a food outlet being 

healthy in DAi.  

  (A1) 

 

i i

i i i i
i i

i

1 (Y 0)

Pr(y Y ) Binomial(Y | p , N )
* (Y 0)

1 Binomial(0 | p , Ni)
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Appendix 2: WinBUGS code for the analyses conducted in 

Chapters 2 to 4 

A2.1. WinBUGS code for Chapter 2 

 

  

model 

{ 

  for(j in 1:Time) 

  { 

    t[j] <- j  

  } 
   

  m_t <- mean(t[1:Time]) 

   

  for(i in 1:N) 

  { 

    for(j in 1:Time) 

    { 

      O[i,j] ~ dbin(p[i,j], T[i,j]) 

      logit(p[i,j]) <- alpha + s[i] + u[i] + gamma*(t[j]-m_t) + delta[i]*(t[j]-m_t) 

    } 

    u[i] ~ dnorm(0, prec.u) 

    hotspot[i] <- step(-delta[i]) 
  } 

   

  s[1:N] ~ car.normal(adj[], weights[], num[], prec.s) 

  delta[1:N] ~ car.normal(adj[], weights[], num[], prec.delta) 

   

  alpha ~ dflat() 

  gamma ~ dnorm(0,0.001) 

   

  prec.s ~ dgamma(0.5, 0.0005) 

  prec.u ~ dgamma(0.5, 0.0005) 

  prec.delta ~ dgamma(0.5, 0.0005) 
   

  for(k in 1:sumNumNeigh) 

  { 

    weights[k] <- 1 

  } 

} 
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A2.2. WinBUGS code for Chapter 3 

A2.2.1. Spatial latent factor model 

 

 

A2.2.2. Spatial hurdle model for 1km dataset 

 

model 

{ 

  ##Number of marginalization dimensions 

  for(n in 1:D)  

  { 

    ##Loading of the first indicator restricted to 1 

    for(i in 1:N) 

    { 

      ind[startID[n],i] ~ dnorm(mu[startID[n],i],tau[startID[n]]) 

      mu[startID[n],i] <- alpha[startID[n]] + index[n,i] 

    } 

     

    ##Factor loadings of other indicators follow Normal(0,1000) 

    for(j in (startID[n]+1):(startID[n+1]-1))  

    { 

      for(i in 1:N) 

      { 

        ind[j,i] ~ dnorm(mu[j,i], tau[j])  

        mu[j,i] <- alpha[j] + loading[j]*index[n,i] 

      } 

      loading[j] ~ dnorm(0,0.001) 

    } 

     

    index[n,1:N] ~ car.normal(adj[], weights[],num[], 1) 

  } 

   

  ##M: Total number of marginalization indicators 

  for(j in 1:M) 

  { 

    alpha[j] ~ dflat() 

    tau[j] ~ dgamma(0.5, 0.0005) 

  } 

   

  for(k in 1:sumNumNeigh) 

  { 

    weights[k] <- 1 

  } 

} 
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model 

{ 

  K <- 100000 

   

  for(i in 1:N) 

  { 

    p[i]<- max(0.00001,min(0.99999,q[i])) 

     

    ##Logistic regression: Bernoulli 

    logit(π[i])<- alpha[1]+beta[1,1]*Resi[i]+beta[1,2]*Mate[i] 

                      +beta[1,3]*Depen[i]+beta[1,4]*Eth[i] +beta[1,5]*popu_dense[i]+s[1,i]+u[i,1] 

    ##Logistic regression: Truncated Binomial 

    logit(p[i])<-alpha[2]+beta[2,1]*Resi[i]+beta[2,2]*Mate[i] 

                             +beta[2,3]*Depen[i]+beta[2,4]*Eth[i] +beta[2,5]*popu_dense[i]+s[2,i]+u[i,2] 

     

    u[i,1:2] ~ dmnorm(mean[], prec.u[,]) 

     

    z[i]<-step(y[i]-1)   

     

    ##Base distribution: Binomial 

    psi[i] <- max(0.00001, min(0.99999,p[i])) 

     

    ##Log-likelihood of Binomial distribution 

    ll[i] <- (1-z[i])*log(1-p[i]) + z[i]*(log(p[i])+loggam(n[i]+1) 

          -loggam(y[i]+1)-loggam(n[i]-y[i]+1)+y[i]*log(psi[i]) 

          +(n[i]-y[i])*log(1-psi[i])-log(1-pow((1-psi[i]),n[i]))) 

     

    ##Zero-tricks 

    zeros[i]<-0 

    zeros[i]~dpois(phi[i]) 

    phi[i]<-  -ll[i]+K 

  } 

   

  for(i in 1:2) 

  { 

    alpha[i] ~ dflat() 

    for(j in 1:betaNum) 

    { 

      beta[i,j] ~ dnorm(0, 0.001) 

    } 

  } 

   

  s[1:2, 1:N] ~ mv.car(adj[], weights[], num[], prec.s[,]) 

  prec.s[1:2,1:2] ~ dwish(Omega.s[,],2) 

   

  prec.u[1:2,1:2] ~ dwish(Omega.u[,],2) 

   

  for(k in 1:sumNumNeigh) 

  { 

    weights[k] <- 1 

  } 

} 
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A2.2.3. Spatial Binomial model for 4km and 8km datasets 

 

  

model 

{ 

  for(i in 1:N) 

  { 

    O[i] ~ dbin(p[i],N[i]) 

    logit(p[i]) <- alpha + beta[1]*Resi[i]+beta[2]*Mate[i] 

    +beta[3]*Depen[i]+beta[4]*Eth[i] +beta[5]*popu_dense[i] + s[i] + u[i] 

    u[i] ~ dnorm(0, prec.u) 

  } 

   

  prec.u ~ dgamma(0.5, 0.0005) 

   

  s[1:N] ~ car.normal(adj[], weights[], num[], prec.s) 

  prec.s ~ dgamma(0.5, 0.0005) 

 

  alpha ~ dflat() 

  for(k in 1:betaNum) 

  { 

    beta[k] ~ dnorm(0, 0.001) 

  } 

   

  for(k in 1:sumNumNeigh) 

  { 

    weights[k] <- 1 

  } 

} 
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A2.3. WinBUGS code for Chapter 4 

 

  

model 

{ 

  ##Number of indicators: 3 

  for(j in 1:M) 

  { 

    ##Number of restaurants: 351 

    for(k in 1:K) 

    { 

      for(m in START[k]:(START[k+1]-1)) 

      { 

        sub[j,m] <- mu[j,ID[m]] 

      } 

   

      mu2[j,k] <- sum(sub[j,START[k]:(STA RT[k+1]-1)])/TOTAL[k] 

      Y[j,k] ~ dnorm(mu2[j,k], tau[j]) 

    } 

     

    for(i in 1:N) 

    { 

      mu[j,i] <- alpha[j]+delta[j]*theta[i] + u[j,i] 

      u[j,i] ~ dnorm(0,tau.u[j]) 

    } 

     

    alpha[j] ~ dflat() 

    

    ##Random noise 

    tau.u[j] ~ dgamma(0.5,0.0005) 

    sigma.u[j] <- sqrt(1/tau.u[j]) 

     

    ##Indicator precision 

    tau[j] ~ dgamma(0.5, 0.0005) 

    sigma[j] <- sqrt(1/tau[j]) 

     

  } 

  delta[1] ~ dlnorm(0,0.01) 

  delta[2] ~ dnorm(0,0.001) 

  delta[3] ~ dnorm(0,0.001) 

   

  ##Identify the posterior probability that ith neighborhood falls into the lowest quantile 

  for(j in 1:N) 

  { 

    darank[j] <- rank(theta[],j) 

    hotspot[j] <- step(-darank[j]+60) 

  } 

  ##the value of the 20% threshold 

  ranked60 <- ranked(theta[], 60) 
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  ##variance explained 

  for(j in 1:M) 

  { 

    var.theta[j] <- pow(delta[j],2)*pow(sd(theta[]),2) 

    var.noise[j] <- 1/tau.u[j] 

    theta.explain[j] <- var.theta[j]/(var.theta[j]+var.noise[j]) 

  } 

   

  theta[1:N] ~ car.normal(adj[], weights[], num[], 1) 

  for(k in 1:sumNumNeigh) 

  { 

    weights[k] <- 1 

  } 

} 

 


