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Molecular analyses using sixteen insertion-deletion polymorphic markers revealed that 

somatic sectoring occurs relatively frequently during the course of normal vegetative 

development. This is the first report that documents the spontaneous but targeted appearance 

of unique genomic insertions at multiple discreet loci in single plants. These sectors hosted 

genetic variation attributed to single nucleotide changes, insertions, or sequence loss. The 

most important finding is the appearance of a 54 base-pair insertion in the progeny that 

resulted in an identical sequence match with the corresponding allele of the grand-parental 

genome, rather than the genome of the immediate parent.  

Because somatic sectoring was observed five times more frequently in hothead (hth) 

mutant plants, studies were initiated to determine HTH protein localization with a view 

toward elucidating its possible functions. Here, I present the results of HTH protein 

localization using a fluorescent protein-tagged HTH fusion protein generated by a native 

promoter-driven construct (annotated as HTHpro:HTH-FP). The HTH-FP protein was 

predominantly localized to the epidermis of seedling and mature tissues; moreover, it was 

also present in the seed coat outer integument that is of epidermal origin. Most interestingly, 

in seedlings the HTH-FP protein was localized to the endoplasmic reticulum (ER) and ER-

derived structures called ER bodies. Since ER bodies have been previously associated with 

stress response, the ER body localization suggests a role of HTH in stress responses. This 

notion is supported by the effect of the wounding hormone methyl jasmonate which elevated 
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HTH expression in wildtype plants and induced ER bodies in rosette leaf epidermis of 

HTHpro:HTH-FP plants. 

Previously, HTH has been proposed to function either as a mandelonitrile lyase involved 

in cyanogenesis or as a fatty alcohol dehydrogenase involved in the biosynthesis of cutin 

monomers (fatty acids). To determine whether HTH has any of these catalytic activities, a 

maltose binding protein (MBP)-HTH fusion protein was generated in bacteria and the 

recombinant protein used for in vitro assays. Although results of the enzymatic assays were 

inconclusive, bioinformatics analyses of putative catalytic residues favor functional 

involvement in fatty alcohol dehydrogenation, rather than in nitrile lyation. This prediction 

suggests that HTH might be functionally distinct from the closely-related enzyme, 

mandelonitrile lyase. In addition, coexpression analysis showed that HTH is coexpressed not 

only with genes involved in cutin synthesis but also with those modulated by pathogens and 

stress. Although results also pointed towards an association between HTH and defense/stress 

response, how this association might be linked to genome instability observed in hth mutants 

is discussed.  
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1. Documentation of individual Arabidopsis plants that are capable of producing somatic 

sectors during the course of normal vegetative development.  

2. These somatic sectors have distinct genetic profiles, and variation is attributed to either 

single nucleotide composition, small DNA insertions or sequence loss.  

3. The genomic insertions have characteristics that are consistent with the previously 

proposed template-driven mechanism (Lolle et al., 2005). 

4. Cuticle-specific HTH protein function is retained by C-terminal fluorescent protein-

tagged HTH proteins (HTH-FPs). HTH-FPs are localized to the epidermis of seedling 

and mature tissues.  

5. Seeds of mutant hth plants are often misshapen and have enhanced seed coat 

permeability. Furthermore, HTH-FPs are present in the seed coat outer integument, a 

tissue that is of epidermal origin. This is the first report implicating HTH in seed coat 

development. 

6. HTH-FPs derived in plants are glycosylated. The protein is localized to the endoplasmic 

reticulum (ER) network and ER bodies which have been previously associated with 

stress responses. In accordance, HTH expression was elevated by methyl jasmonate, a 

plant hormone involved in the response to wounding. These represent the first evidence 

implicating HTH in plant stress response pathways. 
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7. Predictions of catalytic residues support the postulated function of fatty alcohol 

dehydrogenase although HTH is phylogenetically closer to mandelonitrile lyases. 

8. HTH is part of a network in which genes encode proteins associated with both fatty acid 

processing and stress responses. Moreover, these proteins are predominantly specific to 

land plants.  
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Arabidopsis hothead (hth) mutants typically exhibit floral organ fusion and increased cuticle 

permeability (Lolle et al., 1998). An unusual case of genome instability was observed in hth 

mutants wherein progeny appeared to acquire novel DNA sequences that were absent in the 

immediate parent plant but present in an earlier ancestor (Lolle et al., 2005). Little is known 

about how mutation of the HTH gene is associated with genome instability and the 

biochemical function of the protein. This thesis aims to 1) investigate genetic instability of 

molecular markers distributed across all five chromosomes, 2) examine HTH expression 

patterns, and 3) further investigate previously proposed protein functions of HTH using in 

vitro assays and bioinformatics. Based on the experimental results and bioinformatics 

analyses, the possible link between hth mutation and genome instability through plant 

defense responses is discussed.  

In Chapter 1, a review of literature relevant to 1) the plant cuticle structure and its 

constituents, 2) genes involved in cutin and wax biosynthesis, 3) seed coat structure, 4) plant 

stress responses, and 5) the hth mutant phenotype and putative functions of the HTH protein 

is given; special attention is given to cutin biosynthesis and stress-related genome instability. 

In Chapter 2, we used genetic and molecular approaches to test whether the inherited 

genomic changes initially discovered in 2005 could be explained by outcrossing. In this 

chapter we showed that DNA sequence changes occur in somatic tissues and that individual 

plants are, in fact, genetic mosaics. The following experiments led to this key finding. First, 

to establish how susceptible hth plants were to out-crossing, mutant plants were grown 
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together with a pollen donor harboring a dominant gene conferring resistance to the herbicide 

glufosinate. Outcrossing frequencies were compared to those observed in plants isolated from 

exogenous pollen sources. Second, to investigate the extent of changes that occur, we used 

sixteen small insertion/deletion (indel) polymorphic molecular markers distributed across all 

five chromosomes. Using these polymorphic lines we demonstrated that these markers were 

not stably inherited in progeny derived from F2 parent lines with known indel marker 

profiles. In addition, we showed that the observed genetic discordance between parent and 

offspring reflected sporophytic as opposed to gametophytic events by collecting multiple 

tissue samples from individual soil-grown adult plants and from shoots and roots of single 

seedlings grown under sterile conditions. Finally, tissue samples that were subjected to 

quantitative assays revealed these sectors to be relatively small, assuming the copy number 

was proportionally related to the number of cells harbouring the reverted insertion within a 

fixed tissue area.  

Genetic analyses have shown that the HTH gene is important for proper cuticle function 

and that its mutation leads to a floral organ fusion phenotype (Lolle et al., 1998). In Chapter 

3, I analyzed transgenic plants expressing fluorescent protein-tagged constructs 

(HTHpro:HTH-FP) that allowed direct visualization of protein localization. To minimize 

artifacts due to over-expression these HTH reporter constructs were driven by the native 

HTH gene promoter. Using these transgenic lines, I was able to show that HTH-FP fusion 

protein was predominantly localized to the epidermis of seedling and mature tissues; 

moreover, its expression was also present in the seed coat outer integument that is of 

epidermal origin. Interestingly, within epidermal cells HTH-FP was found to localize to the 
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endoplasmic reticulum (ER) network and ER-derived bodies that have been associated with 

plant stress responses. In agreement, the RT-qPCR results showed that the HTH expression 

in Ws wildtype plants was elevated by exposure to the wounding hormone methyl jasmonate 

(MeJA) which, in turn, also induced ER bodies in epidermal cells. 

Based on sequence homology, the HTH protein belongs to the glucose-methanol-choline 

(GMC) oxidoreductase family. To date no direct biochemical evidence has been published to 

address the question of HTH protein function although two different enzymatic activities 

have been proposed. In 2003, Krolikowski et al. proposed that HTH encodes a mandelonitrile 

lyase (MDL) based on sequence similarity and the genetic identification of functional 

residues, whereas Kurdyukov et al. (2006b) proposed that HTH is involved in cutin monomer 

biosynthesis and encodes an ω-fatty alcohol dehydrogenase based on a shift in the cutin 

monomer profile of mutant plants (Kurdyukov et al., 2006b). In Chapter 4, these two 

possible catalytic functions were investigated using in vitro enzymatic assays with maltose 

binding protein (MBP)-tagged recombinant HTH protein generated in Escherichia coli. No 

activities were detected in these assays. Later analyses revealed that when expressed in plants 

HTH-FP is a glycoprotein offering one possible explanation for why expression in E. coli 

may have produced a non-functional protein. With a view towards understanding the protein 

function, I constructed a phylogenetic tree and compared functional residues of HTH and 

other GMC oxidoreductase proteins. Moreover, multiple sequence alignment was used to 

identify HTH’s putative catalytic residues. However, predicted catalytic residues suggest that 

HTH shares common active sites with a bacterial medium chain fatty alcohol dehydrogenase, 

supporting the possibility of an enzymatic function distinct from the MDLs. Furthermore, 



xxv 

 

genes involved in cutin synthesis and also those in defense or stress responses were found to 

be coexpressed with HTH.  

In Chapter 5, I summarize results from previous chapters and discuss possible 

mechanisms by which a putative fatty alcohol dehydrogenase such as HTH, could be 

associated with plant defense/stress response. Lastly, genome instability in response to stress 

is reviewed.
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Evolution from aquatic multicellular green algae to land plants required new strategies to 

cope with the terrestrial environment. The development of a cuticle, the cutin-based layer 

sealing the epidermis of aerial organs, allowed for the colonization and spread of land plants 

culminating in the gymnosperms and angiosperms. In addition to enabling plant growth on 

land, the cuticle layer has important roles in plant biology beyond regulating water status; it 

also acts as a selectively permeable barrier to control the movement of gases, solutes, small 

signaling molecules and charged large molecules such as herbicides (Kerstiens, 1996; Lolle 

and Pruitt, 1999; Pruitt et al., 2000; Schreiber, 2002; Schreiber, 2005). From a practical 

perspective, understanding the cuticle is important to the agriculture industry for generating 

more drought tolerant crops in face of global climate change and for improving the 

effectiveness of herbicide absorption. 

The cuticle is implicated in normal plant development and is essential for achieving 

organ partitioning after inception of a meristem. In some cases during formation of the 

female reproductive organ, some epidermal cells, upon growing into direct contact, 

participate in cell wall fusion (Lolle et al., 1992). Regulation of organ fusion is achieved by 

cell-cell signaling that is mediated by small, water-soluble molecules as demonstrated by 

classic experiments in which barriers that block exchange of water-soluble molecules 

between carpel primordia have been shown to prevent fusion of Catharanthus roseus carpels. 

Using barriers of known pore size, it was demonstrated that unidentified water-soluble agents 

of a molecular weight less than 1000 daltons can diffuse through the fusion zone (two cell 
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walls and the cuticle) and allow dedifferentiation of the contacting epidermal cells (Verbeke 

and Walker, 1986). Accordingly, the concept of a “morphogen” molecule as the factor 

initiating cell dedifferentiation was proposed. Siegel and Verbeke (1989) showed that these 

diffusible factors could be trapped in agar, and could stimulate redifferentiation of epidermal 

cells to parenchymal cells by exposing the non-fusing carpel region to the factor-loaded agar 

barriers. These results serve as evidence that organ separation is at least in part regulated by 

cuticle permeability.  

In Arabidopsis, defects in the cuticle can result in abnormal organ fusion as observed in 

cuticle mutants such as fiddlehead (fdh) and hothead (hth) (Lolle et al., 1992; Lolle et al., 

1998). The cuticle also mediates cell-cell signaling influencing the spatial distribution of 

trichomes and stomata. Furthermore, it plays an important role in sexual reproduction. The 

cuticle of the stigma papillary cells serves as a diffusion barrier between the pollen grains 

and papillary cells since water and other regulatory factors are transported through it (Lolle 

and Pruitt, 1999), and as a result the cuticle has a determining effect on pollen adhesion, 

compatibility recognition, and pollen tube growth (Hulskamp et al., 1995).  

 Cuticle structure 

The epidermal cuticle is a matrix consisting of cutin polymers, polysaccharide microfibrils 

and waxes. It is found external to the epidermal cell wall and its development has been 

detected as early as the late globular stage of embryogenesis. Cuticle thickness can vary 

greatly across plant species ranging between 0.02 to 32 µm, with mature Arabidopsis leaves 

generally being covered by a cuticle that is 22 - 45 nm in thickness (Franke et al., 2005; 
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Schreiber and Riederer, 1996; Vogg et al., 2004). Although the composition also varies 

across plant species, generally the cuticle found on mature tissue is a composite structure 

made of three layers (Figure 1.1). 

Outermost are the epicuticular waxes and subjacent to this is the cuticle proper that 

mainly consists of cutin polymers embedded in intracuticular waxes. The third and final layer 

is found between the cell wall and the cuticle proper. This layer contains polysaccharides in 

addition to cutin polymers and waxes. The epicuticular and intracuticular waxes are 

hydrophobic compounds that are composed predominantly of aliphatic lipids, such as very 

long chain fatty acids (VLCFAs) (C24 - C34) and their derivatives (Samuels et al., 2008). 

When deposited on the outermost surface, waxes form a film or crystals that constitute the 

epicuticular wax layer. In contrast, waxes deposited in the cuticle proper are surrounded 

tightly by cuticle polymers and form dense, well-packed domains. It should be noted that 

cuticles of different parts of a plant can be highly heterogeneous as shown by Schreiber 

(2005) who observed that the cuticle covering Vicia faba stomata and trichomes is less 

lipophilic and thus forms the preferential site of ion penetration.  

 Cutin monomers and polymers  

The three-dimensional structure of the cuticle polymer is not clear, yet the monomer 

compositions can readily be identified by gas chromatography and mass spectrometry. The 

common constituents of cutin polymers are monomers such as C16 and C18 unsubstituted 

fatty acids, ω-hydroxy fatty acids and dicarboxylic fatty acids; some of these monomers 

might contain mid-chain functional groups (Table 1.1). To a lesser extent, fatty alcohols, 
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glycerol and phenolics have been identified as components of cutin polymer domains 

(Pollard et al., 2008).  

Whether cutins polymerize as branching molecules of a certain range of molecular 

weights, or as a greatly cross-linked network is unclear. Several theoretical three-dimensional 

structures of cutin (Figure 1.2) have been proposed by Pollard et al. (2008). The 

polymerization of ω-hydroxy fatty acids results in a linear polyester chain with primary ester 

linkages. The linear structure can develop branches at the sites of mid-chain oxygen-

containing functional groups (epoxy, oxo, hydroxy or vicinal diol). For example, the mid-

chain hydroxyls may be esterified to the carboxyl group of other monomers, forming a 

secondary ester linkage and a local branching structure. Alternatively, branching structures 

can also be achieved with the presence of glycerol (Graca et al., 2002). Any of the three 

hydroxyl groups of glycerol can be esterified with the carboxyl group of fatty acids. With 

glycerol acting as a “linker” between dicarboxylic fatty acids (DCA), a much larger 

branching structure can be achieved. Glycerol-DCA structures can also form extensively 

cross-linked network structures. However, these large branching and cross-linked polymer 

domains might only account for a small portion of total cutin polymer domains since 

dicarboxylic fatty acids normally exist as a minor monomer component (< 5%) (Pollard et 

al., 2008).  

One exception is found in the cuticle of Arabidopsis thaliana, which contains high levels 

(> 50%) of C18:2 α,ω-dicarboxylic acid monomers (Bonaventure et al., 2004). High 

dicarboxylic acid content is usually diagnostic of suberin, a polyester also made of long chain 
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fatty acids (Bonaventure et al., 2004; Matzke and Riederer, 1991). Provided that the cuticle is 

found to be ten times thinner in Arabidopsis thaliana than many other plants, a glycerol-

DCA cross-linked polymer with higher strength might be the dominating structure in 

Arabidopsis thaliana (Kurdyukov et al., 2006b; Pollard et al., 2008).  

 Cutin monomer biosynthesis 

Cutin monomers are likely synthesized from fatty acids made in plastids. Figure 1.3 shows 

one possible order for cutin monomer synthesis. The pathway starts with pyruvate or acetate 

that is transformed into acetyl-CoA by the pyruvate dehydrogenase complex (PDC) or acetyl-

CoA synthetase (ACS), respectively. The acetyl-CoA then goes through ATP-dependent 

carboxylation by acetyl CoA-carboxylase (ACCase), resulting in malonyl-CoA. With the 

stepwise addition of two-carbon acetyl groups, malonyl-CoA is elongated by fatty acid 

synthase (FAS) to fatty acids of various lengths. These molecules are either exported and 

integrated into membranes and other cellular components, or further elongated into C16 or 

C18 fatty acids that can be further processed into cutin building blocks. Plastid-derived fatty 

acids in turn are transported into the endoplasmic reticulum (ER). In the ER the acyl chain is 

first activated by long chain acyl-CoA synthase (LACS) which is then hydroxylated by fatty 

acyl ω-hydroxylase (FAH). The following step by ω-hydroxy fatty acyl dehydrogenase 

(HFADH) transforms hydroxy fatty acids to oxo products which are processed into 

dicarboxylic fatty acids by ω-oxo fatty acyl dehydrogenase (OFADH). Alternatively, 

hydroxyl acids can also be modified directly by FAH to give rise to dicarboxylic acids. These 

modified fatty acids may be esterified to glycerol-3-phosphate by glycerol 3-phosphate 

acyltransferase (GPAT) before being exported. It is possible that monomers can be esterified 
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by polyester synthase (PS) to form oligomers or polymer domains in the ER (Gronwald, 

1991; Pollard et al., 2008).  

These synthesized cutin monomers or building blocks are first exported from the ER to 

the cell wall and then subsequently to the cuticle. Although the key routes of cutin building 

block export are known, the sites for cutin polymer assembly and the presence of polyester 

synthases remain hypothetical. Possible mechanisms and putative cellular locations of cutin 

assembly are shown in Figure 1.4 (Pollard et al., 2008). In the first scenario, a plasma 

membrane-anchoring ER domain is in direct contact with the plasma membrane allowing 

monomer synthesis and transport across the membrane at one location. ATP binding cassette 

(ABC) transporters may be required for direct transport to occur. The second pathway is 

thought to be cytoplasmic, requiring soluble carrier proteins to move cutin monomers or 

small oligomers in concert with an ABC transporter and/or glycosylphosphatidyl-inositol 

(GPI)-anchored lipid transfer protein (LTPG) (DeBono et al., 2009). For larger oligomers or 

polyester domains, especially highly branched ones, different mechanisms are likely needed. 

Larger oligomers could be shuttled by oleophilic droplets whose genesis is similar to the 

budding process of seed oil bodies, and exocytosis by Golgi-mediated secretory vesicles.  

After being exported out of the cytoplasm, how do hydrophobic cutin monomers pass 

through a predominantly hydrophilic cell wall to reach the cuticle? Possible mechanisms 

include binding to lipid transfer proteins (Kader, 1997) or to a polysaccharide in the cell wall. 

Another mechanism is unchaperoned movement of oleophilic droplets across the cell wall as 
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suggested by the observation of oleophilic droplets found in rice internode epidermal cells 

under rapid expansion (Hoffmannbenning et al., 1994).  

 Wax biosynthesis 

Cuticular waxes predominantly consist of hydrophobic very-long-chain aliphatic compounds, 

such as straight-chain C25-35 alkanes and alcohols, aldehydes and fatty acids but also 

include cyclic compounds such as triterpenoids, sterols and flavonoids. Starting with 

hexadecanoic acid (C16), very-long-chain fatty acids of an even carbon number (C24 - C34) 

are produced by the fatty acid elongase (FAE) complex in the ER (Haslam and Kunst, 2013). 

These fatty acids are reduced to fatty aldehyde and primary alcohols or reduced and 

decarbonylated to alkanes, which can be further converted to secondary alcohols and ketones. 

These wax components are secreted to the cuticle in a variety of different ways. Some are 

Golgi-independent while others are Golgi-mediated. Waxes can also be transported from the 

ER directly to the plasma membrane as droplets, or exocytosis through the Golgi apparatus. 

ABC transporters and non-specific lipid transfer proteins might also be involved (Kunst and 

Samuels, 2003). 

When the wax components are deposited on the surface of the cuticle, they can self-

assemble into crystalline structures such as rods, tubes, or plates (Koch and Ensikat, 2008). 

The hydrophobicity of wax provides water repellency, and additionally the roughness created 

by the deposition patterns can further prevent water from adhering to the surface. Free fatty 

acids and alkanes in many cases accumulate in the epicuticular layer, whereas wax 

components, such as triterpenoids and very-long-chain aliphatic primary alcohols, 
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preferentially accumulate in the intracuticular layer instead. Given that wax components of 

similar chain lengths are typically distributed evenly between the layers, it has been proposed 

that partitioning occurs spontaneously due to the physicochemical properties of the wax 

compounds and interactions with the intracuticular polymers (Buschhaus and Jetter, 2011). 

 Cuticular polysaccharides 

Polysaccharides such as cellulose, hemicelluloses and pectins have been isolated from 

cuticles, and they are important for the rheological properties of the cuticle (Domínguez et 

al., 2011; Lopez-Casado et al., 2007). The polysaccharides that are associated with the cuticle 

are thought to originate from the epidermal cell wall as the polysaccharide composition ratio 

of the cuticular layer was found to be similar to that of a primary cell wall (Guzman et al., 

2014; Lopez-Casado et al., 2007).  

Polysaccharides such as pectin may be excreted shortly after cell division but prior to the 

formation of the pro-cuticle, providing a structural framework for subsequent cuticle 

assembly (Guzman et al., 2014). Consistent with this notion, Fourier-transformed infrared 

(FTIR) spectrometric studies revealed that polysaccharides are enriched in the inner layer 

(cuticular layer) (Heredia-Guerrero et al., 2014), whereas in the outer layer (cuticle proper) 

waxes and cutin predominate. Although the cuticle proper was originally defined to be a 

region free of polysaccharides, cellulose and pectins have been detected in enzymatically-

isolated cuticles, occasionally found just underneath the outermost epicuticular wax layer 

(Guzman et al., 2014).  
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In addition to improving the elastic strength of the plant cuticle, polysaccharides are 

important for the ionic exchange capacity of the cuticle with the cutin matrix itself thought to 

play only a minor role (Schonherr and Bukovac, 1973). An asymmetric charge gradient is 

established across the cuticle wherein the cuticular layer carries a net negative charge, likely 

ascribed to the polysaccharides while the outer wax-rich layer is mainly uncharged (Heredia 

and Benavente, 1991). This charge gradient is an important property that influences 

absorption, uptake and transport of ions and charged molecules. The presence of cellulose 

and pectins has been speculated to have characteristics that contribute to the bi-directional 

transport of water and solutes (Zwieniecki et al., 2001). Furthermore, polysaccharides are 

particularly important for water retention at low moisture. Water retained in the cuticle can 

be categorized as one of two types, either “volatile” or “embedded”. Volatile water 

molecules are in equilibrium with the ambient moisture and are held by one hydrogen bond 

with the hydroxyl groups of polysaccharides. By contrast, the embedded water molecules are 

held by two or three hydrogen bonds with the cutin and the polysaccharides simultaneously. 

This type of water cannot escape even at temperatures higher than 100°C (Heredia-Guerrero 

et al., 2014)  

 Cutin/wax biosynthetic genes in Arabidopsis thaliana 

Many of the key Arabidopsis genes involved in cuticle formation have been identified by 

forward genetic screens. The majority of identified genes are involved in fatty acid and/or 

wax biosynthesis, modification, transport, and polymerization of components, as well as the 

regulation of pathways that are involved in these processes (Javelle et al., 2011). Mutant 
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phenotypes include postgenital organ fusion, changes in the load, quantity or composition of 

cutin/wax, changes in cuticle permeability and/or ultrastructure, and altered resistance to 

pathogens. Among those, genes associated with cutin biosynthesis will be further discussed 

below, and presented in the order of the cutin biosynthesis steps (Figure 1.3).  

 Long-chain fatty acyl-CoA synthetase (LACS) 

The LACS gene family encodes enzymes required for long-chain fatty acyl-CoA formation as 

the first step in cutin and wax monomer synthesis. Characterization of lacs1, lacs2 and lacs1 

lacs2 double mutants revealed that LACS1 plays a role in the biosynthesis of cuticular wax 

and LACS2 in cutin monomer biosynthesis. Double mutant analysis indicated that 

deficiencies in both cutin and wax synthesis has a compounding effect on the functional 

integrity of the cuticle, including altering transpiration, water-soluble molecule movement, 

and organ fusion (Lue et al., 2009; Schnurr et al., 2004; Tang et al., 2007b; Weng et al., 

2010; Xiao et al., 2004). 

Similar to the function of LACS, FDH encodes a protein related to β-keto acyl-CoA 

synthase (KCS) that is associated with wax and suberin biosynthesis as a part of the fatty acid 

elongation complex (FAE) found in the ER (Pruitt et al., 2000; Yephremov et al., 1999). 

Results obtained by in situ hybridization of mRNA revealed that FDH is expressed 

predominantly in epidermal cells, and this finding is consistent with the highly permeable 

cuticle that is characteristic of these mutants (Lolle et al., 1998). Additionally, the detection 

of FDH transcripts in ovules suggested its role in ovule development (Pruitt et al., 2000).  
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 Fatty acyl ω-hydroxylase (FAH), a cytochrome P450 (CYP) family protein 

For cutin synthesis, fatty acyl-CoA can be transformed to hydroxy-fatty acids by reactions 

catalyzed by fatty acid hydroxylases (FAH), a group of cytochrome P450 (CYP) proteins 

(Kandel et al., 2006; Pinot and Beisson, 2011). A few examples are CYP86A1, a fatty acid 

ω-hydroxylase (Benveniste et al., 1998); CYP96A15, a mid-chain alkane hydroxylase 

responsible for cuticular wax formation (Greer et al., 2007); and CYP86B1, putatively a very 

long chain fatty acid hydroxylase for polyester biosynthesis (Compagnon et al., 2009). Two 

better-characterized genes of the CYP86 family are LCR (LACERATA) and ATT1 

(ABERRANT INDUCTION OF TYPE THREE 1). The LCR and ATT1 genes encode 

CYP86A8 and CYP86A2, respectively; both are putative monooxygenases with ω-

hydroxylase activity that catalyze ω-hydroxylation of fatty acids ranging from C12 to C18:1 

(Bak et al., 2011; Wellesen et al., 2001).  

 Hydroxy fatty acyl dehydrogenase (FADH) and oxo-fatty acyl 

dehydrogenase (OFADH)  

The two putative step transforming hydroxy fatty acids to oxo products are catalyzed by ω-

hydroxy fatty acyl dehydrogenase (HFADH), while ω-oxo fatty acyl dehydrogenase 

(OFADH) acts on the oxo products to produce dicarboxylic fatty acids (Pollard et al., 2008). 

Little is known about genes encoding proteins involved in these steps although a wound-

inducible ω-hydroxy fatty acid dehydrogenase has been purified from potato (Solanum 

tuberosum L.) and is postulated to be involved in oxidation of hydroxy fatty acids in the 

synthesis of the suberin lamella (Agrawal and Kolattukudy, 1977; Agrawal and Kolattukudy, 

1978a; Agrawal and Kolattukudy, 1978b). In Arabidopsis, five putative HFADH genes 
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(AT1G12570, AT1G72970, AT5G51950, AT5G51930, AT1G14185, AT3G56060) are 

predicted to function as FADHs in the cutin biosynthesis pathway (Plant Metabolic Network, 

http://www.plantcyc.org/). However, little experimental evidence validating this prediction is 

available. Among the five listed previously, HOTHEAD (HTH; AT1G72970) is the only gene 

that has been investigated and will be discussed later in the section dedicated to this gene.  

 Acyltransferase and polyester synthase for polymerization 

Glycerol-3-phosphate acyltransferases (GPAT) are known for their ability to create the ester 

bond between fatty acids and glycerol. With glycerol acting as a “linker” between 

dicarboxylic fatty acids, larger branching or cross-linked cutin structures can be achieved. 

Nine GPAT-like genes (GPAT1 to GPAT9) have been identified in Arabidopsis (TAIR, 

www.arabidopsis.org) by forward genetics. Overexpression of GPAT4 and GPAT8 increased 

the cuticular permeability and resulted in a more structurally diffuse cuticle as indicated by 

TEM results (Li et al., 2007), even though cutin monomer load became elevated. These 

results point to the importance of GPATs for polymerization of cutin monomers. 

Another two known acyltransferases required for incorporating monomers into a 

polymeric structure are encoded by DEFECTIVE IN CUTICULAR RIDGES (DCR) and 

BODYGUARD 1 (BDG1). Mutant dcr plants manifest postgenital organ fusion as well as 

significant reduction of a major cutin monomer (Panikashvili et al., 2009). These mutant 

plants also exhibited more susceptibility to abiotic stress such as water deprivation due to a 

defective cuticle that is unable to serve its function as a protective barrier. The BDG1 protein 

is localized to the extracellular space of the cell wall and has been proposed as an 
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extracellular polyester synthase (PS) that produces cutin polymers (Kurdyukov et al., 2006a). 

bdg1 mutant plants exhibit increased cuticle permeability and share phenotypes reminiscent 

of transgenic Arabidopsis expressing an extracellular fungal cutinase (Sieber et al., 2000).  

 ATP binding cassette (ABC) transporter  

Arabidopsis plants harbouring a mutation in the ABCG11/WBC11 (ATP BINDING 

CASSETTE G11/ WHITE-BROWN COMPLEX HOMOLOG PROTEIN 11; also known as 

PERMEABLE LEAVES 1) show a reduction of cutin load on the leaf surface, stunted growth, 

and leaf fusions. Studies using the recombinant fluorescent fusion protein, YFP-WBC11, 

showed that this protein is localized to the plasma membrane while T-DNA knock-out 

mutants exhibited lipidic inclusion bodies in the cytoplasm of epidermal cells (Bird et al., 

2007). Similar inclusions were also observed in mutants that exhibited reduced stem cuticular 

wax loads such as eceriferum5/abcg12 (Pighin et al., 2004). The expression of ABCG13, on 

the other hand, is restricted mainly to petals and carpels, and its mutant displayed significant 

reduction in flower cutin monomers and inter-organ postgenital fusion (Panikashvili et al., 

2011). According to these findings, ABCG11, 12 and 13 appear to encode proteins that 

secrete the building blocks of cutin and waxes (Bessire et al., 2011; Panikashvili et al., 2007; 

Panikashvili et al., 2011). 

LTPG1 and LTPG2 encodes proteins categorized to the class of 

glycosylphosphatidylinositol (GPI)-anchored lipid transfer proteins (LTPs). LTPG1 is 

expressed in the epidermis and is primarily localized in the plasma membrane 

(transmembrane protein) but is also present in the extracellular matrix (DeBono et al., 2009). 
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It has the highest expression in regions of rapid expansion, such as inflorescence stems. The 

fact that LTPG1 is capable of binding to lipids was experimentally determined by incubating 

Escherichia coli-expressed LTPG1 with the fluorescent lipophilic probe 2-p-

toluidinonaphthalene-6-sulfonate (TNS). Mutant ltpg1 plants showed a great reduction (> 

50%) in the C29 alkane, a major component of cuticular waxes of the stems and siliques, a 

defect that can be rescued by native promoter–driven LTPG1 expression (DeBono et al., 

2009; Lee et al., 2009b). Based on these properties, LTPGs are thought to be carriers of cutin 

and wax constituents to the plant surface. 

 Regulators of cutin/wax biosynthesis  

The Arabidopsis SHINE1 (SHN1)/WAX INDUCER 1 (WIN1) was first associated with the 

cuticle for the glossy appearance of the leaf surface and increase cuticle permeability of the 

mutant plants (Aharoni et al., 2004). SHN1 overexpression results in an increase in cutin and 

wax production in vegetative and reproductive organs, and such changes are preceded by 

induction of several genes known or likely to be involved in cutin biosynthesis. (Broun et al., 

2004; Kannangara et al., 2007). It has been shown that at least one of such cutin pathway 

genes is LACS2 as its promoter sequence is a direct target of SHN1 (Kannangara et al., 

2007). Interestingly, the expression of SHN1 is under control by another group of 

transcription factors, including MYB106 and MYB16, known regulators of epidermal cell 

differentiation (Jakoby et al., 2008).  

CER3 encodes a transmembrane protein that is implicated in wax alkane synthesis 

(Bernard et al., 2012). The cer7 mutant exhibits reduced cuticular wax accumulation, a 
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finding consistent with reverse transcription polymerase chain reaction (RT-PCR) studies 

that show considerably lower CER3 expression levels in cer7 plants. It was proposed that 

CER7 encodes a putative 3'-5' exoribonuclease that acts by degrading an mRNA species 

encoding a negative regulator of CER3 (Hooker et al., 2007). 

Furthermore, Voisin et al. (2009) proposed that the cuticle mutants can alleviate the 

functional disorder of the cuticle by reinforcing different cell integrity pathways. Using an in 

silico screening method, the author identified a gene SERRATE (SE) that encodes a protein 

involved in RNA-processing. It was demonstrated that the se lcr and se bdg double mutation 

eradicated severe leaf deformations as well as the organ fusions that are typical of lcr and 

bdg, suggesting that plants are capable of controlling the integrity of the cuticle by regulating 

small-RNA signaling. 

 Arabidopsis seed coat development  

 Seed coat structure  

An Arabidopsis seed consists of three main components, the embryo, the endosperm, and the 

seed coat. The seed coat, which is the outer most layer, constitutes about 20% of mature dry 

seed weight (Li et al., 2006). Distinct from the embryo and endosperm whose genetic 

makeup is a combination of both female and male counterparts, the seed coat is maternally 

derived and arises from the ovule integuments. The seed coat controls endosperm and 

embryo expansion during seed maturation, and for fully developed seeds, it maintains 
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dormancy and serves as a protective barrier shielding the embryo from adverse conditions 

(Haughn and Chaudhury, 2005). 

During early female gametophyte development, the megaspore mother cell resides 

within the ovule and is surrounded by the outer and inner integuments, both of which are of 

epidermal origin (Beeckman et al., 2000). The outer integument (oi) consists of an inner (oi1) 

and an outer layer (oi2). The inner layer is defined as the adaxial layer to the ovule axis and 

the outer layer is the abaxial layer (Truernit and Haseloff, 2008). Similarly, the inner 

integument (ii) also has an inner (ii1, also known as the endothelium) and an outer layer (ii2) 

but with an extra internal layer (ii’) between ii1 and ii2 (Figure 1.5). 

In the outer integument, vacuoles appear in the cells at the onset of embryogenesis while 

amyloplasts start to form at the globular stage. At the torpedo stage, mucilage production is 

initiated in the outer most oi2 layer. These cells gradually mature into specialized cells 

designed for seed rupture and mucilage release. When the embryo starts to expand (walking 

stick stage), the enlargement of the mucilage compartments pushes the starch grain-

containing amyloplast to form a small column, i.e. columella, in the center of the oi2 cell. 

While the embryo continues to enlarge, oi1, ii1’ and ii1 layers compress against the enlarged 

oi2. At the desiccation stage, ii1’ and ii2 (and sometime also oi1) collapse to form the brown 

pigment layer (bpl) that gives the brown colour of mature seeds (Beeckman et al., 2000; 

Creff et al., 2015; Windsor et al., 2000).  
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 Cuticle layers in the seed coat  

Cutin and suberin monomers have been identified in the seed coat of plants such as 

Arabidopsis thaliana, Brassica napus and Glycine max (Espelie et al., 1979; Molina et al., 

2006; Molina et al., 2008; Shao et al., 2007). Studies of cuticle mutants have demonstrated 

that deposition of these fatty acid monomers and their polymers are essential for the seed 

coat to attain proper permeability (Beisson et al., 2007; Compagnon et al., 2009; De Giorgi et 

al., 2015). Recently in a study of the bdg1 mutant, De Giorgi et al. (2015) demonstrated that 

this mutation also leads to an increase in permeability of an endosperm-associated cuticle 

layer, i.e. the cuticle on the inner surface of ii1. This layer was first reported in a histological 

study by Beeckman et al. (2000) who observed an electron-dense layer and considered it as 

the original cuticle of the inner integument. In addition to this endosperm-associated cuticle 

layer, a layer rich in cutin-like material situated in the thickened inner periclinal cell wall 

(also called wall 3) between the inner and outer integuments has also been described 

(Beeckman et al., 2000; Creff et al., 2015). Wall 3 represents a fusion zone at the boundary 

of the two integuments. By examining wall 3 at later developmental stages, Creff et al. 

(2015) revealed that wall 3 material was predominantly laid down by oi1, and that wall 3 

thickening was regulated by oi1’s response to mechanical stress. It was further postulated 

that oi1 senses the mechanical pressure on the seed coat due to endosperm expansion, and oi1 

thickens its outer cell wall (wall 3) to restrict seed growth, in essence serving as a corset 

around the developing seed. Whether or not wall 3 also regulates the seed coat permeability 

is unknown.  
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Given the epidermal origin of integuments and the existence of cuticle-like structures in 

the seed coat, it is not surprising that some genes essential for shoot epidermal cuticle 

formation are also important for seed coat development. In addition to the aforementioned 

bdg1 mutant that showed inability to restrict toluidine blue penetration into the endosperm as 

a result of higher permeability (De Giorgi et al., 2015), the dcr mutant also has been shown 

to have a more permeable seed coat. In addition, dcr mutant seeds were often deformed, 

showed evidence of seed fusion, and had limited mucilage release following seed imbibition 

(Panikashvili et al., 2009). Furthermore, many ltpg mutants discussed previously have 

decreased levels of ω-hydroxy fatty acids in seed coats and permit tetrazolium salt uptake 

into seeds. These observations demonstrate that some genes essential for cuticle formation 

are also important for seed coat development. 

 Plant stress responses 

Plants are sessile organisms that are exposed to a diversity of environmental challenges 

including water stress, soil salinity, temperature fluctuations, freezing, exposure to toxic 

metals, variable light intensity and mechanical wounding. In addition to abiotic stresses, 

plants also face the hazard of pathogens (including bacteria, fungi and viruses) and attack by 

herbivores or pests. Thus, plants have had to evolve mechanisms for sensing potentially 

harmful conditions to improve their chances of survival (Suzuki et al., 2014).  
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 Stress responses associated with an ER-derived structure, the ER body 

About one-third of all proteins are assembled in the ER (Deng et al., 2013). The capacity of 

the ER to fold, modify, assemble and route proteins, however, can be compromised under 

conditions of stress. Oxidative stress caused by reactive oxygen species (ROS), for example, 

can lead to protein misfolding (Malhotra and Kaufman, 2007) and can trigger the unfolded 

protein response (UPR). The UPR enables plants to sense and respond to adverse 

environmental conditions. Accumulation of unfolded or misfolded proteins activates the UPR 

pathway which leads to proteolysis of undesired proteins, changes in mRNA splicing, or cell 

death (Deng et al., 2013; Ruberti and Brandizzi, 2014). 

The ER forms highly organized network structures composed of tubules and cisternae. 

Environmental stresses can induce ER-derived organelles including protein bodies (PBs; 1-2 

µm), precursor-accumulating vesicles (PACs; 0.3-0.5 µm), KDEL-tailed protease-

accumulating vesicles (KVs; 0.2-0.5 µm), ricinosomes (0.2-0.5 µm), and coat protein 

complex (COP) II vesicles (0.05-0.1 µm); many of these structures function as repositories of 

proteases (Hara-Nishimura et al., 1998; Hara-Nishimura and Matsushima, 2003; Nakano et 

al., 2014). Among members of the Brassica family, a type of ER-derived structure called the 

ER body has been shown to be distinct from the aforementioned ER-derived bodies; ER 

bodies not only are longer and larger (5∼10 μm long and ∼1 μm wide) but also accumulate 

different kinds of proteins, mainly β-glucosidases (Matsushima et al., 2003b; Sherameti et 

al., 2008). The ER body was first discovered in radish root epidermal and cortical cells and 

was initially thought to be dilated ER cisternae (Bonnett and Newcomb, 1965). Decades 

after, these large dilated ER domains were also found in Arabidopsis but were initially 
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described as “mystery organelles” (Gunning, 1998). These so-called mystery organelles later 

were confirmed to be ER-derived using the ER-targeted green fluorescent protein (Hawes et 

al., 2001). Hayashi et al. (2001) proposed the term ‘ER body’ be used to describe these 

distinctive ER-derived structures.  

ER bodies are constitutively present in epidermal cells of cotyledons, hypocotyls and 

roots of young Arabidopsis seedlings. Although the density and distribution of these 

“constitutive ER bodies” varies with tissue type and developmental stage, these constitutive 

ER bodies are normally absent in rosette leaves (Hayashi et al., 2001). Nonetheless, it was 

discovered that methyl jasmonate (MeJA) treatment and wounding could induce ER bodies 

(“induced ER bodies”) in rosette leaves, and in MeJA-insensitive coronatine-insensitive 1 

(coi1) mutant plants, ER body induction was suppressed (Matsushima et al., 2002). This 

result is consistent with the notion that ER bodies are associated with plant stress responses 

since MeJA is a plant hormone involved in plant defense mechanisms. Furthermore, ER body 

formation appears to be a systemic response as when one of the two cotyledons was 

wounded, both the damaged and the intact cotyledon had increased numbers of ER bodies 

(Ogasawara et al., 2009). 

Electron microscopy analysis revealed a relatively high electron density in the ER body 

lumen, suggesting that the ER body contains a large amount of proteins (Nakano et al., 

2014). Studies of a mutant with no constitutive ER bodies, the nai1 mutant, revealed that a 

myrosinase called PYK10 is a major protein component of ER bodies in A. thaliana 

(Matsushima et al., 2003b). Myrosinase, a type of β-glucosidase, is known for its ability to 
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catalyze the hydrolysis of glucosinolates (Rask et al., 2000). The myrosinase activity of 

PYK10 has been directly demonstrated by hydrolysis of the fluorogenic substrate 4-

methylumbelliferyl β-glucopyranoside (Matsushima et al., 2003a). Based on analyses of 

mutants that lack ER bodies or form abnormal ones, a model for the formation of ER bodies 

in A. thaliana seedlings has been proposed. In this model, NAI1 encodes a basic-helix-loop-

helix type putative transcription factor that regulates the expression of four key genes for ER 

body formation: PYK10, NAI2, MEB1 (MEMBRANE OF ER BODY 1), and MEB2. In the 

ER, PYK10 and NAI2 first interact to initiate the budding process, and then NAI2 forms a 

complex with MEB1 and MEB2 that are later integrated to the ER body-specific membrane 

(Matsushima et al., 2004; Nakano et al., 2014) (Figure 1.6).  

 Glucosinolate pathways as defense mechanisms  

Myrosinase-catalyzed hydrolysis of glucosinolates gives rise to products that are components 

of a defense mechanism against herbivores and fungal infection (Hopkins et al., 2009; 

MacLeod and Rossiter, 1986; Sherameti et al., 2008). The reaction can give rise to a variety 

of derivatives, depending on reaction conditions such as cofactors, pH and facilitating 

proteins. Isothiocyanates are the most common product at neutral pH, whereas nitrile 

products are favoured when Fe2+ concentration or acidity (<pH 5.0) is elevated. Among 

derivatives, hydroxynitrile products can be catalyzed by hydroxynitrile lyase to form 

hydrogen cyanide (HCN), and this type of cyanogenesis is common in higher plants, 

particularly Brassicaceae plants (Figure 1.7) (Brabban and Edwards, 1995; Kissen and 

Bones, 2009; Nakano et al., 2014).  
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The substrates and enzymes of the glucosinolate-myrosinase system are sequestered in 

separated subcellular compartments or different tissues preventing undesired production of 

toxic compounds. For example, glucosinolates are stored in vacuoles while myrosinase 

resides in the cytosol or other organelles. Cell damage can bring these compounds into direct 

contact to yield hydrolytic products, but similar results can also be achieved by translocation 

of enzymes into vacuoles (Grob and Matile, 1979; Nakano et al., 2014; Poulton, 1990). For 

instance, three β-glucosidases that contain ER retention signals at their respective C termini 

(At1g52400, REEL; At1g66270, RDEL; At3g09260, KDEL) have been identified in the 

vacuole (Carter et al., 2004), indicating vacuolar sorting of β-glucosidases originating from 

the ER. Moreover, Hayashi et al. (2001) demonstrated fusion of ER bodies to each other and 

to the vacuole in the hypocotyl epidermal tissues under stress, an example of a plant stress 

response via Golgi-independent pathway of protein targeting to vacuoles (Xiang et al., 2013). 

In addition, ER body fusion with the plasma membrane has recently been proposed (Nakano 

et al., 2014). 

 Genome instability induced by stress  

Genetic variation is fundamental to the survival of a species, and it allows adaptation to 

changing environments. For crop plants the reduction of genetic variability, for example, is 

now a pressing issue for plant breeders around the world because of the need for intensifying 

food production and the predicted negative impact of climate change on crop productivity. 

There are many known mechanisms that drive genetic variation and include homologous 

recombination, polyploidy, DNA mutation, gene duplication, transposable element 

movement, chromosomal rearrangements, and epigenetics (Feng et al., 2010; Gbadegesin, 
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2012; Kaeppler and Phillips, 1993; Kovalchuk et al., 2003; Lippman et al., 2003; Wheeler, 

2013; Yao and Kovalchuk, 2011). 

Biotic or abiotic environmental factors such as pathogen attack and changes in growth 

conditions can trigger genetic instability and can in turn, result in genetic variation that 

provides plants with greater adaptive versatility (Boyko et al., 2005; Boyko et al., 2006; 

Boyko et al., 2010; Chen et al., 2005; Choi and Sano, 2007; Kovalchuk et al., 2003; Lucht et 

al., 2002; Madlung and Comai, 2004). In addition to increasing the fitness of the individual 

plant that hosts the novel genetic variation, there is evidence that in some cases environment-

induced genome instability can persist and is inheritable by its progeny and future 

generations (Agrawal et al., 1999; Boyko et al., 2007; Galloway and Etterson, 2007).  

 Environment-induced genetic instability 

Flax (Linum usitatissimum) has a genome that can be induced to undergo changes in response 

to specific growth conditions, with the most notable occurrences in the variety Stormont 

Cirrus, also known as the “plastic” line. Under inducing growth conditions, heritable 

genomic changes in the sequences encoding the ribosomal RNAs and particular repetitive 

sequence families have been reported, and most recently have come to include the acquisition 

of a relatively large insertion sequence (Chen et al., 2009; Chen et al., 2005; Cullis et al., 

2004; Schneeberger and Cullis, 1991). The acquisition of this single copy insertion termed 

Linum Insertion Sequence 1 (LIS-1) comprises a 5.7 kilobase (kb) DNA fragment, and it is 

identical to a sequence found in other flax varieties. As the sequence of LIS-1 fragment was 

not detected in the progenitor plant, it was proposed that this novel insertion arose through a 
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series of reproducible, targeted and complex rearrangements or insertion events that occur 

naturally (Chen et al., 2005). The environmental condition required for the appearance of 

LIS-1 is highly specific. Only plants treated with either solely nitrogen or no fertilizers 

hosted the LIS-1 insertion, whereas plants treated with three-component fertilizers (with 

nitrogen, potassium and phosphate) showed no such insertion. Furthermore, the LIS-1 

insertion required the appropriate inducing conditions to be maintained, otherwise it was 

subsequently lost in the offspring (Chen et al., 2009). These results agree with the postulation 

that the mechanism for the LIS-1 insertion event is specifically regulated and is not part of 

normal developmental processes in flax.  

The phenomenon of naturally-occurring environment-induced genome instability has 

been adopted as a strategy in plant breeding to produce novel genetic variation in highly 

homogeneous agriculture crops such as soybean. For example, Fasoula and Boerma (2005) 

discovered that growth condition such as ultra-low density (one-row plots with a row spacing 

of 0.76 m and a row length of 3.5 m) was effective in producing significant variation of seed 

protein and oil for three soybean cultivars. Using simple sequence repeat (SSR) markers as 

an indication for genetic variation, Yates et al. (2012) provided evidence that some of these 

induced phenotypic variations were likely due to genetic variation, rather than epigenetics or 

biological regulation.  

 Somatic variation and tissue culture-induced somatic mosaicism 

Unlike animals, plants consist of a series of repeating units (modules) that typically have 

identical genetic makeup. Modules that differ genetically from other modules can naturally 
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occur via somatic mutation, allowing the introduction of genetic variation into the gene pool 

of an individual without sexual reproduction. These genetically different units offer unique 

adaptive advantages as the increased diversity contributes to the fitness of the entire 

individual plant. Furthermore, in some cases, mutations arising somatically have a greater 

probability of being transmitted than mutations that arise in the gametes (Whitham and 

Slobodchikoff, 1981) because germ line cells are derived from somatic tissues that arise late 

in the developmental stage of the plant (Satina and Blakeslee, 1941; Youngson and 

Whitelaw, 2008). 

Somatic sectoring can be induced by biotic and abiotic stresses such as ionizing 

radiation, heavy metals, temperature and water (Yao and Kovalchuk, 2011). For instance, the 

occurrence of somatic sectors increased by a factor up to 56 when Arabidopsis plants were 

exposed to DNA-damaging agents such as UV-C, X-ray and methyl methanesulfonate 

(Kovalchuk et al., 2000). Mechanistically, somatic variation can arise from homologous 

recombination, microsatellite instability and DNA rearrangement, with somatic homologous 

recombination being the most common mechanism (Boyko et al., 2006; Boyko et al., 2010; 

Boyko and Kovalchuk, 2011; Kovalchuk et al., 2003; Lucht et al., 2002). 

Micropropagation techniques, such as tissue culture, are extensively used for 

maintaining highly desirable traits and to mass-produce certain economically important crop 

plants. Nonetheless, genetic changes can occur when plants are regenerated from 

dedifferentiated callus produced by tissue cultures (Phillips et al., 1994). These sporadic 

occurrences of somatic variation pose a great challenge to the commercialization of elite 
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clones. On the other hand, the resultant novel genotypes can also be useful in crop 

improvement, especially for highly homogeneous varieties (Jain, 2001). 

Tissue culture-induced somatic variation has been observed in a number of crop plants, 

including banana (Musa spp.), soybean (Glycine max), and rice (Oryza sativa ssp. japonica). 

The inequality in susceptibility to genetic variation among different genomic regions was 

demonstrated in banana whose genome contains one particularly labile portion especially 

susceptible to higher rearrangement than other portions of the genome during tissue culture 

(Oh et al., 2007). Using restriction fragment length polymorphism (RFLP) markers, Roth et 

al. (1989) reported that root tissue obtained from individual soybean plants developed novel 

RFLP allelic differences at various loci following in vitro culturing. What was more 

interesting is that these newly arisen alleles were almost always the same as ones previously 

found in other varieties of cultivated soybean. Although the genetic mechanisms driving such 

somaclonal variation are not well understood, Roth et al. (1989) postulated that the 

reappearance of these specific alleles resulted from precisely controlled recombination 

events. In rice tissue culture, Gao et al. (2011) observed a gain-of-function mutation that 

gave rise to the inheritable, dominant purple sheath trait. Regenerated plants with this trait 

harbour a 34-bp insertion in a gene encoding a putative transcription factor for anthocyanin 

pigmentation. Interestingly, the tissue culture-induced insertion-containing allele (“functional 

allele”) had been previously identified in another rice variety, similar to the cases of flax and 

soybean discussed previously (Chen et al., 2005; Roth et al., 1989). Hence, insertion of an 

extra-genomic sequence was one hypothesized mechanism for this mutation, aside from 

homologous recombination and transposition events. 
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 Pathogen-induced somatic mosaicism 

Pathogens apply one of the strongest selective pressures on plant populations and can bring 

about genetic variation in plants that is proposed as a strategy to improve the population 

fitness (Karasov et al., 2014). It was found that somatic recombination in Arabidopsis was 

elevated upon the infection of the water mould pathogen Peronospora parasitica, and the 

same effect was observed when plants were exposed to 2,6-dichloroisonicotinic acid and 

benzothiadiazole, chemicals that are known to trigger plant pathogen-defense mechanisms 

(Lucht et al., 2002). These results suggest that pathogen-induced genome instability might be 

activated via defense signaling pathways.  

Pathogens, such as viruses, can induce a systemic signal that leads to an increase in 

genetic variation. Such a signal has been demonstrated in Nicotiana tabacum (tobacco) plants 

infected with tobacco mosaic virus. When upper, virus-free leaves from an infected plant (the 

‘signal-carrying’ leaves) were grafted onto healthy plants (Kovalchuk et al., 2003), the 

uninfected plants serving as scions experienced a 2.3 times increase in somatic homologous 

recombination. This finding suggests that the recombination-inducing signal can be 

transmitted between different tissues of an individual plant and also between plants through 

grafting, independent of the presence of the virus.  

Earlier research has shown that elevated genetic variation caused by this systemic signal 

is heritable. Experiments conducted by Brakke (1984) demonstrated that plants infected with 

barley stripe mosaic viruses were able to give rise to an increased number of mutations in 

non-infected progeny. Furthermore, Boyko et al. (2007) found that the progeny of tobacco 
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plants to which the signal was transmitted by grafting also exhibited an increased frequency 

of homologous recombination. Moreover, in the progeny of plants that received this systemic 

signal, their genomes were found to be considerably hypermethylated. However, substantial 

hypomethylation was observed in several specific leucine-rich repeat (LRR)-containing loci 

that are associated with pathogen recognition (Diévart and Clark, 2004). Since methylation of 

DNA and/or histones is thought to stabilize the genome, the loss of methyl groups may 

increase the susceptibility of the genome to rearrangement and mobilization of elements. 

Hence, Boyko et al. (2007) postulated that genome-wide hypermethylation of the progeny is 

part of a general protection mechanism incited by the stress signal, whereas locus-specific 

hypomethylation, such as that at the LRR-containing loci, is a consequence of a higher 

frequency of rearrangements. 

 The HOTHEAD gene 

 The HOTHEAD gene and the hypothetical protein model 

The HOTHEAD (HTH) gene maps to chromosome 1 (locus: AT1G72970) and is also known 

as EMBRYO SAC DEVELOPMENT ARREST 17 (EDA17) or ADHESION OF CALYX 

EDGES (ACE) (Araki et al., 1998; Krolikowski et al., 2003; Lolle et al., 1998; Pagnussat et 

al., 2005). In the Columbia ecoptype background, its coding region is 2834 basepairs (bp) in 

length, and the putative 5’-upstream promoter region from the ATG start codon to the stop 

codon of the neighboring upstream gene is 2009 bp long (Figure 1.8). Based on transcript 

data, the gene consists of six exons encoding a putative 594 amino acid (aa) protein that is 

65.3 kilodaltons (kDa) in size with the isoelectric point of 10.2 (based on protein coding gene 
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model AT1G72970.1; www.arabidopsis.org). The transcript anlyses also indicate putative 

alternative splicing at the fifth exon, giving rise to a protein isoform that is 567 aa-long and 

62.2 kDa in size (based on protein coding gene model AT1G72970.2).  

Over the past decade numerous hth mutant alleles have been generated by ethyl 

methanesulfonate (EMS), T-DNA insertion, and transposon mutagenesis. Among these, hth-

1 to hth-11 were identified in the Landsberg erecta background (except hth-9 in 

Wassilewskija), and they all harbour single nucleotide mutations (Figure 1.8) (Krolikowski et 

al., 2003; Lolle et al., 1998). In the hth-1 mutant, for example, the mutation introduces a stop 

codon, while in the hth-9 mutant the point mutation is predicted to alter a splice junction 

sequence. Thus, hth-1 and hth-9 likely encode truncated polypeptides. The other nine mutant 

alleles are predicted to encode proteins with single amino acid substitutions that may change 

the folding or catalytic properties of the HTH protein. The hth-12 mutant allele was 

generated by En/Spm transposon insertion in the 5’-untranslated region (UTR) of HTH in the 

Columbia ecotype background (Kurdyukov et al., 2006b). eda17 was generated by Ac/Ds 

transposon mutagenesis with the insertion site in the first intron (personal communication).  

 The hth mutant phenotype 

Mutations in the HTH locus result in promiscuous interactions between contacting epidermal 

cells that leads to fusion between organs (Lolle et al, 1998). The hth postgenital fusion 

phenotype is mostly restricted to the floral tissue but can occasionally be observed on rosette 

leaves. Similar to other organ fusion mutants such as deadhead, thunderhead, and fiddlehead, 

the floral organ fusion of hth alters the inflorescence configuration and blocks the emergence 



30 

 

of petals and anthers with the pistil generally protruding out from individual floral buds 

(Figure 1.10) (Lolle et al., 1997; Lolle et al., 1998).  

The organ fusion phenotype was previously associated with the increase in cuticle 

permeability. Lolle et al. (1998) described the isolation and characterization of 29 

independently derived mutations that led to organ fusion in Arabidopsis. Using 

complementation analyses, nine putative genes, including HTH, were identified. These 

mutants most frequently showed interorgan fusions within the flowers with a great range of 

severity. Occasionally fusion events between vegetative tissues (e.g., fiddlehead and 

thunderhead) were observed. Results of the chlorophyll extraction assay revealed that the 

cuticle of most mutants, including hth, were more permeable, suggesting the organ fusion 

phenotype was caused by a defective cuticle. 

In addition to organ fusion, hth mutants support pollen adhesion, germination and 

growth on epidermal cells other than stigmatic papillary cells. Pollen germination normally 

occurs only on the stigmatic surface of a receptive flower, and this response requires specific 

recognition interactions between the pollen grain and the stigma papillary cells. On the 

stigma, the cuticle functions as a selective and semi-permeable diffusion barrier and thereby 

acts in the identification of compatible pollen grains permitting germination and growth of 

pollen tubes (Hulskamp et al., 1995). For that reason, on vegetative tissues pollen grains 

normally do not hydrate or germinate. Mutant hth plants, however, allow the adhesion and 

germination of pollen grains on vegetative tissues, a phenomenon observed in at least five 

other mutants that display floral organ fusion and elevated cuticle permeability (Krolikowski 
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et al., 2003; Lolle and Cheung, 1993; Lolle et al., 1998; Lolle and Pruitt, 1999; Sieber et al., 

2000). Hence, the ectopic pollen germination on vegetative tissues of the hth mutant is likely 

a consequence of altered cuticle permeability.  

In addition to floral organ fusion, seed set is greatly reduced in most hth mutant lines, 

likely caused by the disfiguration of reproductive organs and ovule defects. Ovule 

abnormalities have been documented in hth-8, hth-10, and eda17 mutants (Lolle et al., 1998; 

Pagnussat et al., 2005). Unlike other hth mutants, eda17 was identified in a large-scale 

mutant screen aimed at identifying A. thaliana plants with defects in female gametophyte 

development. This mutant manifests abnormal embryo sac development, arresting at the two-

nuclear stage of gametophyte development. Collectively, these findings suggest that the HTH 

plays some role, directly or indirectly, in embryo sac development at the early mitotic phase 

in addition to serving important functions in epidermal development post-embryonically.  

 HTH protein localization and function 

HTH expression has been studied previously by two research groups using indirect methods 

that included the analysis of transgenic plants expressing promoter-driven reporter 

constructs, in situ mRNA hybridization, and RT-PCR assays (Krolikowski et al., 2003; 

Kurdyukov et al., 2006b). Tissue-specific expression was firstly demonstrated by 

Krolikowski et al. (2003) who used RT-PCR and in situ mRNA hybridization to show that 

HTH mRNA was expressed in all organs tested including the leaf, root, inflorescence and 

silique. This finding is consistent with results using promoter-driven reporter constructs 

(HTHpro:GUS and HTHpro:GFP). In four-leaf seedlings, GUS expression was detected in a 
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region surrounding the shoot apical meristem, in emerging leaves and lateral root initials. 

Additionally, GFP expression was detected in all floral organs including the sepal, petal, 

anther, ovule, and ovary septum (Kurdyukov et al., 2006b).  

Cell layer-specific HTH protein localization extrapolated from results generated by these 

two research groups are, however, at variance. Using in situ mRNA hybridization, 

Krolikowski et al. (2003) showed uniform distribution of HTH mRNA in both the epidermis 

and subepidermal cells of floral tissues, whereas Kurdyukov et al. (2006b) showed that, for a 

young apex and 4-week old stem, HTH mRNA was detected exclusively in the epidermal 

cells. Epidermis-specific expression of HTH was also observed in the anther, pedicle, and 

ovary wall of HTHpro:GFP plants, which also showed expression in individual ovules, 

specifically in the integument and embryo sac (Kurdyukov et al., 2006b).  

Although possible functions of HTH have been proposed based on its gene expression 

pattern and properties of the mutant cuticle, it is unclear how the mutations at the HTH gene 

contribute to the mutant phenotype. Based on the elevated cuticle permeability, pollen 

germination on vegetative tissue, and ubiquitous presence of the mRNA, Krolikowski et al. 

(2003) suggested that HTH encodes a product that is involved in a fundamental metabolic 

process required for cell function as well as cuticle formation. Alternatively, Kurdyukov et 

al. (2006b) proposed that HTH serves a catalytic function in cutin monomer biosynthesis 

based on the epidermal expression of HTH and fatty acid composition of the mutant hth-12 

cuticle. The fatty acid profile of the cuticle from the hth-12 mutant (transposon insertion in 

the 5’ upstream region) demonstrated that the mutant had lower than normal levels of α,ω-
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dicarboxylic fatty acids and elevated levels of ω-hydroxy fatty acids. This deviation in cutin 

composition led to the hypothesis that HTH is a ω-hydroxy fatty acyl dehydrogenase 

(HFADH) that oxidizes long chain ω-hydroxy fatty acids to ω-oxo products, precursors of 

the cutin monomer α,ω-dicarboxylic fatty acids (Table 1.1 and Figure 1.11). Therefore, the 

disruption of HTH function might alter the dicarboxylic acid ratio to other monomers and 

cause perturbation in cuticular polyester structures and, consequently, affect cuticle 

permeability. Assigning HFADH function to HTH, however, provides no obvious 

explanation for the ovule abnormalities observed in hth-4, hth-8, and eda17 mutants (Lolle et 

al., 1998; Pagnussat et al., 2005). 

The HTH protein shares sequence similarity with long-chain ω-fatty alcohol 

dehydrogenases from Candida species (Kurdyukov et al., 2006b) but sequence analyses also 

suggest that the HTH protein belongs to the glucose-methanol-choline (GMC) 

oxidoreductase family and may function as a mandelonitrile lyase (MDL) (Krolikowski et al., 

2003). MDL is a hydroxynitrile lyase that catalyzes hydroxynitriles to hydrogen cyanide and 

aldehydes or ketones (Figure 1.12) (Sharma et al., 2005; Yemm and Poulton, 1986). The 

substrate of this cyanogenesis reaction, hydroxynitrile, can derive from glucosinolate 

hydrolysis, a plant defense compound discussed earlier that gives rise to a variety of 

derivatives functioning as a pest deterrent. Were HTH to function as an MDL, this would 

lend support to the idea that HTH may be involved in plant defense pathways.  
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 Genome instability in hth mutants 

One of the most unusual phenomena documented in hth mutants is the non-Mendelian 

inheritance of wildtype HTH alleles. When self-fertilized, homozygous hth mutants gave rise 

to wildtype progeny that were genotypically heterozygous (HTH/hth) at a frequency up to 

10% (Figure 1.13) (Lolle et al., 2005). The wildtype progeny appeared to acquire novel DNA 

sequences that did not exist in the parents, but rather existed in an earlier ancestor. Although 

such individuals could have arisen from cross-pollination with neighbouring wildtype plants, 

two lines of evidence demonstrated that hth/hth homozygous mutant plants were capable of 

producing wildtype (HTH) gametes. First, it was shown that homozygous wildtype embryos 

could be isolated from homozygous mutant plants, and second it was determined that mutant 

plants could produce wildtype pollen. Although the source from which these wildtype alleles 

arose was not clear, these authors proposed the existence of an extra-genomic RNA cache 

that harboured these alleles (Lolle et al., 2005). 

Extra-genomic RNA-based heredity has been documented in several other organisms. In 

Caenorhabditis elegans, for example, RNA has been shown to be able to drive genomic 

sequence changes (Fire et al., 1998). Experiments where RNA interference (RNAi) was used 

have shown that interference was evident not only in the individuals injected with the 

exogenous double stranded RNA but also in their progeny and the effect persisted for several 

generations (Chandler et al., 2000; Fire et al., 1998; Rassoulzadegan et al., 2006). In mice 

(Mus musculus), epigenetic inheritance associated with the zygotic transfer of exogenous 

RNA molecules has been reported (Rassoulzadegan et al., 2006), while in Oxytricha trifallix, 

injected RNA was shown to drive genome rearrangement (Nowacki et al., 2008). 
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Evidence for the presence of cached maternal RNAs that guide rearrangement of 

genomic sequence in subsequent generations was demonstrated in ciliates by Nowacki et al. 

(2008). They showed that exogenous RNA injected directly into cells could reprogram 

genome rearrangements and direct specific DNA sequence changes. Moreover, the influence 

of injected templates extended to various alleles of the same gene despite template 

mismatches. RNA has also been shown to serve as a template for DNA synthesis during 

repair of a chromosome double-strand break in vivo (Storici et al., 2007).  

Together with the aforementioned genome instability induced by stress, pathogens and 

varying growth conditions, a view of genomes is emerging that sees genomes as much more 

fluid and much more responsive to extrinsic factors than previously thought. In plants, this 

fluidity may be even more pronounced wherein genome structure and function may be 

dynamically influenced both on an acute, as well as, a multi-generational scale by the 

environment. It may be that the genome changes seen in the hth mutants, in effect, reveal an 

inherent and completely novel mechanism that drives a form of selective genetic variation. In 

considering the type of instability manifested by Arabidopsis hth mutant plants, however, it 

is clear that there remain many more questions than answers.  

 Experimental objectives  

This thesis aims to investigate genetic instability of molecular markers in the hth background, 

examine HTH protein localization and investigate previously proposed HTH protein 

functions. In Chapter 2, we used molecular approaches to examine the outcrossing 
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frequency of mutant hth plants. Expanding from previous studies, non-Mendelian inheritance 

was investigated using insertion/deletion molecular markers, and the restored novel DNA 

sequence in the progeny was compared to its parental ancestor. Furthermore, we also 

determined whether the observed genetic discordance between the parent and offspring was 

due to somatic sectoring. 

Arabidopsis hothead (hth) mutants typically exhibit floral organ fusion, and genetic 

analyses have shown that the HTH gene is important for proper cuticle function. In Chapter 

3, I examined hth mutant phenotypes in terms of floral fusion and cuticle permeability. To 

investigate HTH protein localization pattern in tissue and cells, I developed transgenic plants 

harbouring fluorescent protein tagged recombinant HTH protein and tested whether the 

recombinant protein complements the mutant phenotype. To examine the possible 

association with stress, I measured HTH expression changes upon methyl jasmonate 

treatment. 

To date, no direct biochemical evidence has been published to address the question of 

HTH protein function although two different enzymatic activities have been proposed, one 

being a mandelonitrile lyase and another being an alcohol dehydrogenase (Krolikowski et al., 

2003; Kurdyukov et al., 2006b). These two possible catalytic functions were investigated in 

Chapter 4 using enzymatic assays and bioinformatics. In vitro enzymatic assays were 

conducted using recombinant HTH protein that was expressed and purified in a prokaryotic 

system. In addition, I conducted sequence, phylogenetic, and coexpression analyses of the 

HTH protein as well as constructed its candidate tertiary structures. Based on these results, 
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putative catalytic sites of HTH were identified and compared to those of related 

mandelonitrile lyases and alcohol dehydrogenases.  

 

  



38 

 

Figure 1.1 Schematic representation of a leaf cuticle. Cutin covers the outer cell wall of 

epidermal cells. The cuticular layer contains cutin, cell wall carbohydrates and waxes. The 

cuticle proper mainly comprises cutin embedded in waxes. Epicuticular waxes cover the 

cuticle proper. The middle lamella consists of suberin and pectin. The thickness, composition 

and existence of these layers can vary significantly among tissues, organs, developmental 

stages, and species. (Modified from Pollard et al. (2008)) 
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Table 1.1 Structures of seven types of common cutin monomers and typical ranges of 

composition values. Monomer types were assigned with individual symbols, which are 

referred to throughout this chapter. Representative structures within each monomer type are 

shown. The mid-chain functional groups including epoxy, hydroxy, vicinal dihydroxy and 

oxo groups can be part of normal fatty acids, ω-hydroxy fatty acids and α,ω-dicarboxylic 

acids. (Modified from Pollard et al. (2008)) 
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Figure 1.2 Hypothetical monomer linkage patterns of cutin polymers. (A) A small segment of 

a glycerol-linked cutin polyester is shown to illustrate the dominant primary ester bonds and 

a secondary ester bond that enables a branch point. (B-D) Representations of possible 

monomer polymerization patterns found in cutin structures. Mid-chain functional groups 

other than OH groups are omitted. (B) A branching domain made of fatty acid and ω-

hydroxy fatty acid monomers that are connected by primary and secondary ester bonds. (C) 

A branching domain made of α,ω-dicarboxylic acids and glycerol monomers with free OH 

groups on some of the glycerol monomers. (D) With less free OH groups on the glycerol, 

α,ω-dicarboxylic acids and glycerol monomers can also form a cross-linked network domain. 

See Table 1.1 for symbols. (Modified from Pollard et al. (2008)) 
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Figure 1.3 A simplified biosynthetic scheme representing the steps for the synthesis of cutin 

building blocks. Acetate or pyruvate is processed to acetyl-CoA by acetyl-CoA synthase 

(ACS) and pyruvate dehydrogenase complex (PDC). The acetyl-CoA is then processed into 

malonyl-CoA by acetyl-CoA carboxylase (ACCase), which is transformed to fatty acids by 

fatty acid synthase (FAS). Fatty acids are transported to the endoplasmic reticulum for 

further modification. Acyl chains of fatty acids are activated to CoA by long-chain fatty acyl-

CoA synthase (LACS) and hydroxylated by fatty acyl ω-hydroxylase (FAH). Alternatively, 

hydroxyl acids can be modified directly to dicarboxyl acids. The following step involving ω-

hydroxy fatty acyl dehydrogenase (HFADH) transforms hydroxy fatty acids to oxo products, 

which are processed into dicarboxylic fatty acids by ω-oxo fatty acyl dehydrogenase 

(OFADH). These modified fatty acids may be esterified to a glycerol-3-phosphate by 

glycerol-3-phosphate acyltransferase (GPAT). Monomers may also be esterified by polyester 

synthase (PS) to form oligomers before being exported. The acyl glycerol synthesis step is 

shown for dicarboxylic acids only. X, position of a C-C double bound; solid arrow, steps 

within the biosynthesis pathway; dotted arrow, transport of molecules. (Modified from 

Pollard et al. (2008), Gronwald (1991), and Plant Metabolic Network, 

http://www.plantcyc.org ) 
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Figure 1.4 Putative mechanisms and subcellular locations of cutin assembly. Monomer 

biosynthesis is thought to localize to the endoplasmic reticulum (ER). Four major routes for 

the movement of cutin building blocks from the ER through the cell wall to their final 

destination in the cuticle are illustrated (a-d). Monomers and oligomers are likely transported 

via route (a) and (b), whereas route (c) and (d) are likely for oligomers. (a) Plasma 

membrane-anchoring ER domain facilitates the spatial coupling of monomer synthesis and 

transport across the plasma membrane. (b) Cytoplasmic soluble carrier protein. An ABC 

transporter and/or glycosylphosphatidyl-inositol (GPI)-anchored lipid transfer protein 

(LTPG) may be required for (a) and (b). (c) Oleophilic droplets. (d) Golgi-mediated vesicular 

secretion is a possible major route, especially for polymer domains or polymers attached to 

polysaccharides. In addition, two proposed mechanisms where lipophilic precursors pass 

through the cell wall to the cutin polymer assembly site are depicted (i and ii). (i) 

Unchaperoned movement of oleophilic droplets across the cell wall. (ii) Movement of 

monomers, oligomers or polymers bound to a protein carrier (e.g. lipid transfer proteins, 

LTP) or after attachment to a carrier such as a cell wall polysaccharide. Polyester synthases 

(PS) are enzymes catalyzing the polymerization between monomers, and also between 

putative polyester oligomers or domains; their cellular localization remains to be identified. 

(Modified from Pollard et al. (2008))  
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Table 1.2 Genes involved in cuticle cutin and wax formation. Modified from Javelle et al. 

(2011) 
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Class/Plant Cutin and ⁄ or 
waxes 

Gene name or 
mutant 

Protein family or 
possible function 

Organs with cuticle phenotype in 
mutant or transgenic plant 

Reference 

Signaling      

Arabidopsis 
thaliana 

Not 
determined 

ZOU ⁄ RGE bHLH TF Cotyledons Yang et al. (2008); 
Kondou et al. (2008) 

Arabidopsis 
thaliana 

Not 
determined 

ALE1 Subtilisin-like serine 
protease 

Cotyledons and leaves Tanaka et al. (2001) 

Arabidopsis 
thaliana 

Not 
determined 

ALE2 RLK Ovules, cotyledons and leaves Tanaka et al. (2007) 

Arabidopsis 
thaliana 

Not 
determined 

ACR4 RLK Ovules and leaves Watanabe et al. 
(2004) 

Maize Not 
determined 

CR4 RLK Leaves Jin et al. (2000) 

Arabidopsis 
thaliana 

Not 
determined 

GSO1 LRR kinase Cotyledons Tsuwamoto et al. 
(2008) 

Arabidopsis 
thaliana 

Not 
determined 

GSO2 LRR kinase Cotyledons  

      

Biosynthesis/polymerization    

Arabidopsis 
thaliana 

Cutin LCR Cytochrome P450 Leaves and floral organs Wellesen et al. 
(2001) 

Arabidopsis 
thaliana 

Cutin ATT1 Cytochrome P450 Leaves and inflorescence stem Xiao et al. (2004) 

Arabidopsis 
thaliana 

Cutin ACE ⁄ HTH Long-chain ω-fatty 
alcohol dehydrogenases 

Floral organs Kurdyukov et al. 
(2006b) 

Arabidopsis 
thaliana 

Cutin GPAT4 Glycerol-3-phosphate 
acyltransferase 

Seedlings  Li et al. (2007)  

Arabidopsis 
thaliana 

Cutin GPAT8 Glycerol-3-phosphate 
acyltransferase 

Cuticular edges of stomata  Li et al. (2007)  

Arabidopsis 
thaliana  

Cutin DCR Glycerol-3-phosphate 
acyltransferase 

Seeds, vegetative organs and 
floral organs, trichomes, and seed 
coat 

Panikashvili et al. 
(2009);(Marks et al., 
2009) 

Arabidopsis 
thaliana  

Waxes KCS1 Long-chain acyl-CoA 
synthetase 

 (Todd et al., 1999) 

Arabidopsis 
thaliana  

Waxes KCS2 Long-chain acyl-CoA 
synthetase 

Roots and seeds (Franke et al., 2009) 

Arabidopsis 
thaliana  

Waxes KCS5 Long-chain acyl-CoA 
synthetase 

Stems (Trenkamp et al., 
2004) 

Solanum 
lycopersicum 

Cutin CD1 Acyltransferase  Yeats et al. (2012) 

Arabidopsis 
thaliana 

Cutin and 
waxes 

BDG α ⁄ β hydrolase Leaves, trichomes and seed coat Kurdyukov et al. 
(2006a) 

Arabidopsis 
thaliana 

Waxes LACS1 ⁄ CER8 Long-chain acyl-CoA 
synthetase 

Floral organs Lue et al. (2009)  

Arabidopsis 
thaliana 

Cutin  LACS2  Long-chain acyl-CoA 
synthetase 

Vegetative organs Schnurr et al. (2004)  

Arabidopsis 
thaliana 

Waxes CER9 ubiquitin-protein ligase 
activity 

cotyledons, leaves, roots, stems, 
inflorescences and siliques 

Lu et al. (2012) 

Arabidopsis 
thaliana 

Waxes CER10 ECR Vegetative and floral organs, 
siliques 

Gable et al. (2004) 

Arabidopsis 
thaliana  

Waxes PAS2 HCD Seeds and vegetative organs Bach et al. (2008)  

Arabidopsis 
thaliana 

Cutin and 
waxes 

CER3/WAX2 Sterol desaturase Vegetative organs and floral 
organs, siliques, lateral root 
primordia 

Chen et al. (2003) 

Arabidopsis 
thaliana  

Waxes CER4 FAR Inflorescence stem Rowland et al. 
(2006) 

Arabidopsis 
thaliana  

Waxes WSD1 Acyl-CoA: diacylglycerol 
acyltransferase 

Inflorescence stem Li et al. (2008)  

Arabidopsis 
thaliana  

Waxes MAH1 Cytochrome P450 Inflorescence stem Greer et al. (2007) 
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Table 1.2  (Continued) 

Class/Plant Cutin and ⁄ 
or waxes 

Gene name or 
mutant 

Protein family or 
possible function 

Organs with cuticle phenotype in 
mutant or transgenic plant 

Reference 

Arabidopsis 
thaliana  

Waxes HIC KCS Stomata Gray et al. (2000)  

Arabidopsis 
thaliana  

Waxes CER6 ⁄CUT1 KCS Inflorescence stem, siliques and 
pollen 

Fiebig et al. 
(2000); Millar et 
al. (1999) 

Arabidopsis 
thaliana 

Waxes FAE1 KCS Seeds James et al. 
(1995) 

Arabidopsis 
thaliana 

Wax FDH KCS Leaves and floral organs Yephremov et al. 
(1999) 

Rice Waxes WSL1 KCS Leaves and sheath Yu et al. (2008) 

Arabidopsis 
thaliana 

Waxes KCR1 KCR Seeds, vegetative and floral 
organs 

Beaudoin et al. 
(2009) 

Maize Waxes GLOSSY8 KCR Juvenile leaves Dietrich et al. 
(2005) 

Arabidopsis 
thaliana 

Waxes CER1 Fatty acid hydrolase ⁄ 
putative 
decarbonylase 

Inflorescence stem and pollen Aarts et al. (1995)  

Maize Cutin and 
waxes 

GLOSSY1 Desaturase ⁄ 
hydroxylase 

Juvenile leaves Sturaro et al. 
(2005) 

Transport 

Arabidopsis 
thaliana 

Waxes ATABCG12/CER5 ABC transporter Inflorescence stem Pighin et al. 
(2004) 

Arabidopsis 
thaliana 

Cutin and 
waxes 

WBC/ 
ATABCG11 

ABC transporter Vegetative organs, trichomes 
and floral organs 

Bird et al. (2007); 
Panikashvili et al. 
(2007) 

Arabidopsis 
thaliana 

Cutin ATABCG13 ABC transporter  Panikashvili et al. 
(2011) 

Arabidopsis 
thaliana 

Cutin ATABCG32 ABC transporter Vegetative organs, trichomes 
and floral organs, siliques 

Bessire et al. 
(2011) 
 

Arabidopsis 
thaliana 

Cutin and 
waxes 

LTPG1 LTPG Inflorescence stem, siliques and 
seed coat 

Lee et al. 
(2009a); DeBono 
et al. (2009) 

Arabidopsis 
thaliana 

Cutin and 
waxes 

LTPG2 LTPG Inflorescence stem (Kim et al., 2012) 

      

Regulation 

Arabidopsis 
thaliana 

Cutin and 
waxes 

WIN ⁄ SHN1 AP2 ⁄ EREBP TF Vegetative and floral organs Aharoni et al. 
(2004) 

Arabidopsis 
thaliana 

Not 
determined 

WIN ⁄ SHN2 AP2 ⁄ EREBP TF Vegetative and floral organs 
Leaves and siliques 

Aharoni et al. 
(2004); 
Kannangara et al. 
(2007) 

Arabidopsis 
thaliana 

Not 
determined 

AtMYB41 MYB R2R3 TF  Cominelli et al. 
(2008) 

Arabidopsis 
thaliana 

Waxes AtMYB30 MYB R2R3 TF Leaves Raffaele et al. 
(2008) 

Arabidopsis 
thaliana 

Waxes CER7 RRP45 
3’exoribonuclease 

Inflorescence stem and siliques Hooker et al. 
(2007) 

Medicago 
sativa 

Waxes WXP1 AP2 ⁄ EREBP TF Leaves Zhang et al. 
(2007) 

Arabidopsis 
thaliana 

Cutin and 
waxes 

ACP4 Acyl carrier protein Leaves Xia et al. (2009) 
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Table 1.2  (Continued) 

Class/Plant Cutin and ⁄ 
or waxes 

Gene 
name or 
mutant 

Protein family or 
possible function 

Organs with cuticle phenotype 
in mutant or transgenic plant 

Reference 

Other      

Arabidopsis 
thaliana 

Cutin CDEF1 GDSL lipase/esterase Lateral root emergence Takahashi et al. 
(2010) 

Maize Waxes GLOSSY2 Transferase similar to 
CER2 

Juvenile leaves Tacke et al. 
(1995) 

Maize Waxes glossy13 ABC transporter Seedlings Li et al. (2013)  

Maize Waxes glossy3 Elongation step C28-C30 Juvenile leaves Bianchi et al. 
(1985); Avato et 
al. (1987) 

Maize Waxes glossy4 Elongation step C30-C32  

Maize Waxes glossy5 Reductase producing 
C32 alcohols 

 

Maize Waxes glossy7 Production of fatty acids 
acting downstream of 
GLOSSY1 

 

Maize Waxes glossy11 Reductase producing 
aldehydes 

 

Maize Waxes glossy16 Elongation step C30-C32  

Maize Waxes glossy18 Production of fatty acids  

ACE, ADHESION OF CALIX EDGE; ACR, ARABIDOPSIS CRINKLY; ALE, ABNORMAL LEAF SHAPE; AP2, 

ACTIVATOR PROTEIN 2; ATT, ABERRANT INDUCTION OF TYPE THREE GENES; BDG, BODYGUARD; 

bHLH, basic helix-loop-helix; CDEF1, CUTICLE DESTRUCTING FACTOR 1; CR, CRINKLY; DCR, 

DEFECTIVE IN CUTICULAR RIDGES; ECR, enoyl-CoA reductase; EREBP, ETHYLENE RESPONSE 

ELEMENT BINDING PROTEIN; FAE, FATTY ACID ELONGATION; FAR, fatty acid reductase; FDH, 

FIDDLEHEAD; GPAT, GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE; GSO, GASSHO; HCD, β-

hydroxyacyl-CoA dehydratase; HIC, HIGH CARBON DIOXIDE; HTH, HOTHEAD; KCR, β-KETO ACYL 

REDUCTASE; KCS, β-ketoacyl-CoA synthase; LACS, LONG-CHAIN ACYL-COA SYNTHETASE; LCR, 

LACERATA; LRR, leucine-rich repeat; LTPG, LIPID TRANSFER PROTEIN G; MAH, MIDCHAIN ALKANES 

HYDROXYLASE; PAS, PASTICCHINO; RGE, RETARDED GROWTH OF EMBRYO; RLK, receptor-like 

kinase; RRP, ribosomal RNA processing; SHN, SHINE; TF, transcription factor; WBC, WHITE BROWN 

COMPLEX; WIN, WAX INDUCER; WSD, WAX ESTER SYNTHASE ⁄ ACYL-COA:DIACYLGLYCEROL 

ACYLTRANSFERASE; WSL, WAX CRYSTAL-SPARSE LEAF; WXP, WAX PRODUCTION; ZOU, ZHOUPI; 

DCR, DEFECTIVE IN CUTICULAR RIDGES. 
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Figure 1.5 Schematic diagrams of the Arabidopsis seed coat development. (A) During early 

female gametophyte development, integuments on the gynobasal side elongate first. Each of 

the outer (oi) and inner (ii) integuments consists of an abaxial (‘2’) and an adaxial (‘1’) layer. 

(B) At the mature stage, the inner and outer layers of gynobasal integuments have grown 

around the embryo sac. The gynoapical integuments elongate to a lesser extent. Inner and 

outer integuments from both sides meet and form the micropyle. (C-D) Illustration of the 

seed and seed coat structure. After fertilization, ovule integuments develop into the seed coat. 

Between ii2 and ii1 (also known as endothelium, et), an extra internal cell layer (ii1’) is 

present towards the chalazal zones of the seed coat. The outer integuments are separated 

from the inner integuments by an electron-dense cell wall layer (‘wall 3’) that is rich in cutin-

like material. The vast majority of the wall material deposited in wall 3 is produced by the 

oi1 layer. (E) Shortly before the embryo is fully expanded, mucilage formation is completed 

in oi2, with the presence of the amyloplast-containing columella in the middle and two 

mucilage pockets on the sides. Cells of ii2 and ii1’ (sometimes also oi1) collapse and form 

the brown pigment layer (bpl). MMC, megaspore mother cell; ii1, inner (adaxial) layer of 

inner integument; ii2: outer (abaxial) layer of inner integument; oi1: inner (adaxial) layer of 

outer integument; oi2: outer (abaxial) layer of outer integument. (derived from Truernit and 

Haseloff (2008) and www.seedgenenetwork.net) 
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Figure 1.6 A model of ER body formation in A. thaliana. NAI1 encodes a putative transcription 

factor that regulates the expression of four key genes for ER body formation: PYK10, NAI2, 

MEB1 (MEMBRANE OF ER BODY 1), and MEB2. In the ER cisternae, PYK10 and NAI2 first 

interact to form a core that continues to enlarge. NAI2 forms a complex with MEB1 and MEB2 

that are later integrated to the ER body-specific membrane. At maturation, the spindle-shaped ER 

subdomain breaks off from the ER network and form a separate body. (Derived from Nakano et al. 

(2014))  
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Figure 1.7 Simplified scheme of glucosinolate hydrolysis . Myrosinase acts on glucosinolates 

to form an unstable aglycone intermediate that spontaneously forms an isothiocyanate or 

thiocyanate by default. Under certain conditions (e.g. the presence of Fe2+ or at pH < 5), the 

aglycone can give rise to a corresponding nitrile. Nitriles can be metabolized to produce 

hydrogen cyanide for cyanogenesis. NSP is required for the nitrile formation, whereas ESP is 

required for epithionitriles. ESP, epithio-specifier protein; NSP nitrile-specifier protein; R, 

variable side chain; n = 1 or 2. (Modified from Kissen and Bones (2009) and Lambrix et al. 

(2001))
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Figure 1.8 The HTH gene model. The rectangular boxes represent the six exons and the lines 

connecting the rectangles represent the introns. The relative positions of single nucleotide 

point mutations (hth-1 to hth-11), transposon insertion sites (hth-12 and eda17) and T-DNA 

insertion sites (hth-13, hth-14 and hth-15) are indicated (Krolikowski et al., 2003; Kurdyukov 

et al., 2006b). The length of the 5’ upstream region is 2009 bp and the coding region is 2834 

bp. Mutant alleles generated by T-DNA insertion are in bold. Genes labelled with an asterisk 

(*) putatively encode a truncated protein.  
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Figure 1.9 Single nucleotide changes found in mutant hth alleles. The change in DNA 

sequence and the position relative to the start of the coding sequence are indicated. (Modified 

from Krolikowski et al. (2003)) 
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Allele Genetic Background DNA mutationa Amino acid changeb 

Truncation/Splicing 

hth-1 Landsberg erecta C1937 > T Gln353 > stop 

hth-9 Wassilewskija G1257 > A Splice site 

    

Amino acid substitution 

hth-2 Landsberg erecta G1761 > A Gly294 > Glu 

hth-3 Landsberg erecta G2267 > A Gly435 > Arg 

hth-4 Landsberg erecta C1472 > T Arg227 > Cys 

hth-5,11 Landsberg erecta C2654 > T Pro564 > Ser 

hth-6 Landsberg erecta G1445 > A Gly218 > Ser 

hth-7 Landsberg erecta C2661 > A Thr566 > Ile 

hth-8 Landsberg erecta G2657 > A Gly565 > Arg 

hth-10 Landsberg erecta G1947 > A Gly356 > Glu 

a, the change in DNA sequence and the position relative to the start of the coding sequence 

b, the change in the corresponding theoretical protein sequence and the position of amino acid 
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Figure 1.10 Floral phenotypes of wildtype and hth mutant plants. (A-C) wildtype and (D-F) 

hth mutant Arabidopsis plants. (A, D) Images of Arabidopsis inflorescences. (B-F) 

Schematic drawings of longitudinal (B, E) and cross-sectional (C, F) views of an individual 

flower. The mutant phenotype of closed flowers and protruding pistils were illustrated. Scale 

bar: 0.5 cm. 
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Figure 1.11 A proposed ω-oxidation pathway of fatty acids in cutin monomer biosynthesis in 

Arabidopsis. LCR and ATT1 have been identified as fatty acyl ω-hydroxylases that give rise 

to hydroxypalmitate. HTH is proposed to convert the hydroxyl fatty acid to an oxo product, 

which later is oxidized to a dicarboxylic acid. Oxidation steps for palmitate (C16:0) are 

shown, but HTH may also act on other substrates. FAH, fatty acyl ω-hydroxylase; HFADH, 

ω-hydroxy fatty acyl dehydrogenase; OFADH, ω-oxo fatty acyl dehydrogenase. (Modified 

from Kurdyukov et al. (2006b)) 

 

 

 

  



65 

 

  



66 

 

Figure 1.12 Cyanogenesis from mandelonitrile, a hydroxyl nitrile. Mandelonitrile lyase 

catalyzes the chemical reaction that yields hydrogen cyanide and benzaldehyde (Modified 

from Yemm and Poulton (1986)). 
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Figure 1.13 The schematic diagram depicting non-Mendelian inheritance observed by Lolle 

et al. (2005). Homozygous mutant F2 plants give rise to genotypically heterozygous F3 

progeny at a frequency up to 10%. The F3 progeny harbours the HTH allele that is absent in 

the F2 parent but present in the F1 grandparental generation. The authors proposed the 

existence of an extra-genomic mechanism that involves a template-directed process. HTH: 

wildtype HOTHEAD allele; hth: mutant allele  
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 Introduction  

Plants live in ever changing environments and must adapt using strategies that fundamentally 

differ from those employed by animals. Developmental plasticity is at the core of those 

strategies allowing plants to modify their growth in response to different environmental 

signals. This type of open-ended modular development enhances survival because damaged 

or diseased units can readily be discarded without compromising viability. Furthermore, 

because plants are constrained to sessile life styles, a modular growth habit affords greater 

versatility allowing phenotypic and genetic variation between modules to be used to the 

plant’s advantage, aiding adaption to pathogen life cycles (Todesco et al., 2010) or to longer-

term environmental perturbations such as climate change. As a consequence of this profound 

developmental versatility, even individuals composed of cell populations derived from 

different plant species are viable and can coordinate the growth and development of chimeric 

organs (Szymkowiak and Sussex, 1996). It was proposed that mosaicism offers a unique 

adaptive advantage for plants by allowing introduction of genetic variants into the gene pool 

either through vegetative propagation or through sexual reproduction (Whitham and 

Slobodchikoff, 1981). The authors further proposed that mutations arising somatically have a 

greater probability of being incorporated into the gene pool than mutations that arise in the 

gametes precisely because germ line cells are derived from somatic tissues that arise late in 

the developmental history of the plant (Satina and Blakeslee, 1941; Youngson and Whitelaw, 

2008). 
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The relatively frequent occurrence of mosaics among various plant species has been 

extensively utilized in the development of novel ornamentals and for the selection and 

maintenance of desirable traits in many cultivated crops. Any desirable cultivars that have 

arisen in this manner have been maintained through vegetative propagation and, to date, are 

responsible for a significant fraction of agriculturally important perennial plants. On the other 

hand, desirable traits in many important annual crops, such as rice, soybean, maize and 

wheat, have been introduced through classical genetic manipulations using directed breeding 

strategies. Once generated, annuals with good agronomic performance are usually maintained 

by inbreeding. 

In recent years, concern has grown over the presumed loss of genetic diversity resulting 

from the application of modern horticultural and breeding practices. Therefore, the benefit of 

excellent performance may come with a significant cost (Hopkin, 2008; Walck and Dixon, 

2009). However, recent and surprising results suggest that even highly inbred species harbor 

unanticipated sources of intrinsic genetic variation. For example, highly inbred soybean 

cultivars have been shown to manifest significant phenotypic and genetic variation in the 

absence of sexual manipulation (Fasoula and Boerma, 2005; Fasoula and Boerma, 2007; 

Yates et al., 2012). Such high intrinsic genetic variation has also been demonstrated for a 

number of other crop plants (Rasmusson and Phillips, 1997). 

In the natural world, inbreeding occurs in many highly successful flowering plant 

species including wild relatives of Arabidopsis thaliana (Tang et al., 2007a). Therefore, in 

nature species that are highly inbred have persisted despite their predicted reduction in 
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genetic diversity. Why would such inbreeding strategies be successful and what are the 

implications from an adaptive perspective? One possibility put forward by Barrett (2002) is 

that such populations are very successful in their particular niches and benefit from 

producing large numbers of genetically identical offspring. Nevertheless, selection should 

favor plant species that can co-evolve on time scales reflecting particular environmental 

challenges such as fluctuations and variations in pathogen populations. In keeping with this 

view, it has been shown that sequence variation in 20 diverse strains of Arabidopsis is highly 

non-random. In gene families mediating biotic interactions, such as those implicated in 

pathogen defense, variation far exceeds that seen in families involved in basic biological 

processes (Clark et al., 2007).  

The underlying mechanisms driving phenotypic variation in highly inbred lines, whether 

domesticated or wild, have often been inferred and have had limited experimental 

verification. Nevertheless, relatively simple molecular approaches have provided insight into 

some of the genomic events coinciding with visible changes in phenotype. In flax, for 

example, molecular assays have demonstrated that heritable phenotypic changes induced by 

environmental shifts are accompanied by reproducible changes in genomic DNA including 

changes in total DNA content, non-random changes in DNA sequences or sequence 

rearrangements (Chen et al., 2009; Chen et al., 2005; Cullis et al., 2004; Schneeberger and 

Cullis, 1991). In soybean, reproducible non-random DNA sequence changes induced by in 

vitro culturing of root explants have also been demonstrated using restriction fragment length 

polymorphic markers (Roth et al., 1989). Genomic changes manifesting similar hallmarks of 
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biased sequence alterations have also been described for banana (Oh et al., 2007) and in rice 

hybrids (Xu et al., 2007).  

In the work described by Roth et al. (1989) soybean root explants were shown to 

repeatedly give rise to particular alleles that were absent in the donor plants but had 

previously been found and characterized in other varieties of cultivated soybean. To account 

for the appearance of these particular allelic variants the authors proposed that these 

organisms had evolved “internal generators of genetic variation” that mediated genome 

changes through some type of recombination process. Later, Lolle et al. (2005) described a 

genome-wide phenomenon in Arabidopsis hothead (hth) mutants that was very reminiscent 

of that described by Roth et al. (1989). Based on the nature and genome-wide locations of the 

sequence changes detected, it was proposed that a template-directed process mediated these 

changes and that these cryptic but stable extra-genomic templates themselves had persisted 

since at least the grandparental generation. Not surprisingly, this proposal met with 

considerable skepticism and numerous alternative explanations for these data have since been 

published (Chaudhury, 2005; Comai and Cartwright, 2005; Krishnaswamy and Peterson, 

2007; Mercier et al., 2008; Peng et al., 2006; Ray, 2005).  

In this study we have employed presence-absence molecular markers to test for non-

Mendelian inheritance and found that Arabidopsis plants can inherit novel insertion 

sequences that were absent in their immediate parents. Furthermore, we show that discordant 

DNA-based marker profiles can be found between tissues isolated from different parts of an 

individual plant. These experiments demonstrate that individual plants spontaneously 
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produce somatic sectors and are genetic mosaics. Since genetic variation can occur in the 

same plant in the absence of sexual reproduction, we propose that these novel insertion 

sequences must originate from cryptic reserves intrinsic to the host plant itself. The data 

presented here support the original contention that a previously unknown template-directed 

mechanism exists (Lolle et al., 2005) and raise the encouraging possibility that other 

inbreeding species, including crop plants, may also harbor a cryptic reserve of genetic 

variation.  

 Methods 

 Plant material and growth conditions  

All genetic stocks of Arabidopsis thaliana used for these experiments have been described 

previously (Lolle et al., 1998). Arabidopsis seeds derived from these stocks were sown onto 

moistened potting mix (1:1 mixture of LC1:LG3 Sungro Sunshine potting mixes, Sungro 

Horticulture, Seba Beach, AB) and stratified at 4°C for 2-5 days. Plants were maintained in 

growth chambers (Econoair AC60, Ecological Chambers Inc., Winnipeg, MB; GC8-

VH/GCB-B, Environmental Growth Chambers, Chagrin Falls, Ohio; Conviron PGW36/E15, 

Controlled Environments Ltd., Winnipeg, MB) and illuminated with a mixture of 

incandescent and fluorescent lights (140 – 170 μmol m-2 sec-1 at pot level) with a 24-hour 

photoperiod. Growth chambers were maintained at 20 ± 4°C at 40 - 60% relative humidity. 

Plants were grown in flats or in 3- or 6-inch pots and watered as needed. Seeds used for 

seedling root-shoot comparison were surface sterilized using bleach and plated on agar 

medium containing half strength MS basal salts (Sigma-Aldrich, St. Louis, Missouri, USA). 
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Seedlings were harvested approximately 5 days post-germination. Hybrid lines were 

generated between wildtype Landsberg erecta plants or homozygous hth mutant lines in the 

Landsberg erecta background and Columbia accessions by manual pollination. All crosses 

were done reciprocally. F2 seed was obtained from self-fertilized F1 plants. Individual F2 

plants were reared in plastic tubes (Johnston Industrial Plastics, Ontario, Canada) and F3 

seed collected from each F2 plant individually. Tissue samples were collected from 

individual F2 and F3 plants, and genotypic profiles were determined using insertion-deletion 

polymorphic molecular markers (see Figure 2.1).  

 Out-crossing experiments 

Experimental set ups were replicated twice and the net out-crossing frequencies determined. 

Herbicide-resistant transgenic Arabidopsis pollen donors previously transformed with the 

pCB302 mini binary vector only (Xiang et al., 1999) and mutant test plants were grown in a 

1:1 ratio and arranged in randomized positions (www.random.org). Out-crossing frequencies 

were also compared to plants under the same conditions but reared within plastic tubes. 

Progeny were sprayed with glufosinate (40 micrograms ml-1 active ingredient: WipeOut, Nu-

Gro IP Inc., Ontario) to test for herbicide resistance and resistant plants tested for segregation 

of hth mutant progeny plants.  

 DNA extraction and molecular genotyping 

For DNA extraction, rosette or cauline leaf tissue was collected and DNA extracted 

according to the method of Edwards et al.(1991). Samples not processed immediately were 

stored at -20°C. To distinguish the mutant hth-4 allele from the wildtype, genomic DNA was 
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amplified using oligonucleotide primers immediately flanking the hth-4 point mutation 

(GAAGCTGGTGAAGGAGTCGT, CTCCGCCGCGGTGTGTC). The resulting 205 base 

pair (bp) PCR product was then digested with SalI restriction endonuclease (New England 

Biolabs, Ipswich, Massachusetts, USA) and endonuclease treated PCR products size 

separated by agarose gel electrophoresis. Sixteen sets of DNA oligonucleotide primers were 

designed to amplify approximately 150-300 bp genomic regions by polymerase chain 

reactions (PCR), each containing one 45-94 bp marker which is present in the Columbia but 

absent in the Landsberg accession (Table 2.1). PCR amplicon products were size separated 

by agarose gel electrophoresis. 

 Isolation, cloning and sequencing of PCR products 

Portions of genomic DNA were PCR amplified and sequenced directly or products cloned 

into standard pGEM TA vectors (Promega). Amplified or cloned PCR products were 

sequenced at the Centre for Applied Genomics (http://www.tcag.ca/, Toronto, Ontario). 

Sequence alignments were generated using CLC Sequence Viewer 6.4 software 

(www.clcbio.com). 

 Quantitative PCR methods 

Quantitative PCR (qPCR) was performed on a Real-Time thermal cycler CFX96 attached to 

a computer running CFX Manager (Bio-Rad Laboratories, Hercules, California, USA). 

SsoFast EvaGreen Supermix (Bio-Rad) was used according to manufacturer’s instructions. A 

series of primers either flanking or internal to the insertion sequences were used to generate 

control and experimental amplicons. The positive control was a PCR product amplified from 
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the Columbia accession, spanning the indel sequence of interest by ~700-900 bp. The 

positive control was gel purified and used to generate a standard curve for conversion of Ct 

value to copy number of the insertion sequence and the external reference sequence. External 

reference primers immediately flanked the indel markers. Insertion sequences were detected 

using one external reference primer paired with a primer homologous to sequences within the 

insertion itself. Primer sequences and amplicon product sizes are listed in Table 2.2. The 

colours indicated in the first column (insertion-deletion marker) correspond to the colours 

used for the qPCR-generated bar graphs. 

 Results 

 Mutant hth plants are susceptible to higher rates of out-crossing  

Homozygous hth mutant Arabidopsis plants were previously shown to give rise to wildtype 

(wt) progeny at relatively high frequencies (Lolle et al., 1998; Lolle et al., 2005). Although 

an intrinsic mechanism was proposed (Lolle et al., 2005), cross-pollination with neighboring 

plants was subsequently put forward as the more likely explanation for the appearance of 

these wildtype revertant offspring (Mercier et al., 2008; Peng et al., 2006). To test the 

susceptibility of hth plants to out-crossing under our growth conditions, experiments were 

conducted using a pollen donor harboring a dominant gene conferring resistance to the 

herbicide glufosinate. Herbicide-resistant transgenic lines were grown together with hth and 

eceriferum-10 (cer-10) (Koornneef et al., 1989) floral fusion mutants and wildtype 

Landsberg plants. These analyses confirmed that the majority of hth mutant plants did not 

cross-pollinate. However, when cross-pollination occurred, frequencies varied considerably 
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between individual hth mutant plants. Mutants with floral fusion phenotypes were 

predisposed to higher pollen capture than wildtype plants (0.02-0.43% for hth-4, hth-8 and 

hth-10 mutants, 0.89% for cer10 mutants, 0.01% for wildtype plants). In addition, factors 

such as donor-recipient proximity, the severity of the floral fusion phenotype, growth 

chamber airflow patterns and plant handling influenced the propensity to cross-pollinate. 

Nevertheless, growing hth mutant F2 plants in the complete absence of HTH pollen donors 

did not eliminate wildtype progeny from F3 progeny pools and, on average, 1.53% of F3 

progeny were phenotypically wildtype for HTH despite being derived from self-fertilized 

homozygous F2 hth mutant parent plants (2/133 hth-4, 2/131 hth-8 and 2/127 hth-10 gave 

rise to wildtype F3 progeny). Under our laboratory conditions, out-crossing could not be 

completely eliminated within hth mutant populations if mutants were grown together with 

wildtype plants, even if every hth mutant plant was shielded in transparent plastic tubes.  

While conducting segregation analyses and scoring offspring for herbicide resistance, a 

single hth mutant plant with a large phenotypically wildtype floral sector was identified 

(Figure 2.2). Sampling of shoot tissues confirmed that phenotype corresponded to genotype 

and that both mutant hth-4 and wildtype HTH alleles could be detected in tissue derived from 

this large wildtype sector (Figure 2.2B).  

The identification of this sectored individual provided the first phenotypic evidence that 

hth plants were capable of producing somatic sectors. This finding suggested that perhaps 

some of the wildtype revertants originally found among hth mutant progeny might have 

arisen from genetically heterozygous sectors on the parent plant (Lolle et al., 2005). Since 
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well over 300,000 mutant plants were screened in the course of our out-crossing experiments 

and only one plant with a very large phenotypically wildtype sector found such as that shown 

in Figure 2.2B, we reasoned that if sectoring does occur, the vast majority of sectors would 

be too small to result in a visible phenotype. This possibility prompted us to test whether 

novel genotypes could be detected in tissue samples obtained from single hth plants. 

 Single plants can have multiple genotypes 

For these experiments we chose to focus exclusively on molecular markers consisting of 

genomic DNA sequence tracts between 45-94 nucleotides in length that are either present or 

absent in the Columbia and Landsberg Arabidopsis accessions (insertion-deletion 

polymorphic indel markers or; Figure 2.1). In choosing to use indel markers we reasoned that 

deletions would be recalcitrant to enzyme repair or modification and therefore would help 

differentiate between enzyme-based mechanisms such as the one put forth by Comai and 

Cartwright (Comai and Cartwright, 2005) and a template-directed mechanism like the one 

previously proposed (Lolle et al., 2005). Hybrid F1 plants were constructed between 

Columbia and Landsberg accessions by manual cross-pollination, F1 plants allowed to self-

seed and F2 and F3 descendants used as experimental material. The Columbia accession was 

always wildtype for HTH while hth mutant alleles, when introduced in hybrid lines, 

originated from the Landsberg genetic background. For all of the indel markers used in this 

study, Columbia is homozygous for the insertion.  

Initially, F3 seed progeny derived from hybrid F2 parent lines with known indel marker 

profiles were screened to test whether or not these markers were stable. All F2 parent plants 
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were reared in plastic tubes to minimize outcrossing. When marker profiles were compared 

between hth-4 parent plants and their F3 adult offspring, 2.16% [6/277] deviated from the 

expected profile. This frequency is approximately 5 times higher than baseline rates (0.02-

0.43%) seen in outcrossing experiments described above. When F3 progeny were assayed as 

seedlings, similar frequencies were seen, with 2.5% [15/600] of the F3 seedlings showing 

discordant marker profiles. Altogether 600 seedlings were tested using a total of 30 seedlings 

per F2 plant (eleven hth-4, five hth-7, two hth-8 and two hth-10 F2 plants). Of the 15 F3 

seedlings that tested positive for at least one non-parental marker, 7 had acquired insertions. 

To test whether the observed genetic discordance between parent and offspring was due 

to sectoring, multiple tissue samples were collected from individual adult plants and indel 

marker profiles compared between these different samples. Molecular analyses confirmed 

that some tissue samples taken from individual hth mutant plants had novel marker profiles. 

For the plant shown in Figure 2.3A, seven out of eight samples scored homozygous for the 

Landsberg deletion marker as expected, however, one sample produced two amplicon 

products, one of which co-migrated with the Landsberg deletion allele while a second larger 

amplicon co-migrated with Columbia insertion allele.  

To test whether sectors could be detected earlier in development, the molecular 

genotype of shoots and roots of single seedlings grown under sterile conditions were 

compared to one another. On the assumption that wildtype plants would not produce sectors, 

identical tests were also conducted on wildtype hybrid lines as negative controls. In the 

majority of cases, as expected, there was a perfect correspondence between the molecular 
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profiles of root and shoot. However, in some cases, individual seedlings were found to have 

molecular signatures that differed between the two organ systems (10/44 hth-3; 1/50 hth-4; 

9/76 hth-7; Figure 2.3B). Surprisingly, wildtype hybrid seedlings also showed novel 

genotypes when roots and shoots from the same seedling were compared (10/184 wildtype 

hybrids; Figure 2.3B). 

 Markers are discordant with parental DNA sequences  

A subset of amplicon samples were subjected to DNA sequence analyses in order to 

determine their molecular features. Sequence analyses of DNA clones derived from 

individuals where the non-parental amplicon co-migrated with the smaller deletion allele 

showed identity with the Landsberg deletion marker (Figure 2.4). In two instances, 

polymorphisms immediately upstream of the deletion were also detected (Figure 2.4A). As 

indicated, the Landsberg accession differs from Columbia at these exact three nucleotides. 

DNA sequence analysis of novel amplicons that co-migrated with the larger insertion allele 

showed that this seedling shoot had acquired a 54-nucleotide insertion that shares identity 

with the Columbia reference genome (Figure 2.4B). This same insertion was absent in the F2 

parent plant. These particular seedlings descended from the same wildtype hybrid parent 

plant as the F3 progeny whose profiles are shown in Figure 2.3B. 

 Sectors have complex genotypes 

To obtain an estimate of sector size, tissue samples were subjected to quantitative assays 

where the copy number of a genomic reference sequence immediately flanking the marker of 

interest was compared to the copy number of a sequence internal to that particular insertion 



84 

 

marker (Figure 2.5 and Figure 2.6). Hybrid plants verified to be homozygous for a deletion at 

specific indel markers were subjected to quantitative assays. The quantitative polymerase 

chain reaction (qPCR) data reveal two remarkable findings. First, the majority of tissue 

samples collected from individual hth mutant plants tested positive for the presence of at 

least one insertion marker (Figure 2.5). In addition, multiple insertion sequences could be 

detected in many of the tissue samples tested (Figure 2.5B). In most instances the copy 

number of any given insertion sequence, relative to the reference, was very low (less than 

one copy per 1000). Second, wildtype hybrid plants also showed evidence of sectors with 

novel genotypes (Figure 2.6). Only two out of four wildtype plants tested, however, showed 

evidence of novel insertions. 
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Figure 2.1 Haploid representation of the 5 Arabidopsis chromosomes indicating the relative 

locations of the 16 insertion-deletion polymorphic markers used in this study. Nine of the 

markers are intergenic (*). Marker names reflect clone designations. The size of the insertion 

sequence is indicated in base pairs (bp). The relative location of HOTHEAD (HTH) is shown 

at the bottom of chromosome 1. 
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Table 2.1 List of primer pairs used for PCR-based molecular genotyping. Expected amplicon 

product sizes for the Columbia and Landsberg accessions are shown in adjacent columns.
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Insertion-

deletion 

Marker 

Primer pairs 
Columbia product size 

in base pairs 

Landsberg product 

size in base pairs 

F12K11 
ccatatcttggagttggcaga 

tgtcttcaggaacacaacca 
166 121 

F5J5 
tgaagatttcgtggaagcaa 

ctcatggatgcctaataccg 
275 200 

F6D8 
ctccgtcttccagagtttga 

ttcgggtgattagtacggaaa 
211 107 

F15H11 
atttgcggctgaaagacaag 

tgagtgtgtcatgagtgtttgttt 
229 153 

F23M2 
taaagttgttggccgaggag 

tcggagatacccgagctaaa 
231 163 

T14G11 
cctatgtgtcaagagagatttcca 

tttgttccatttataagcgtttctc 
286 213 

T6A23 
aacaccaagtcaactgtttttgtt 

tcaaaataaacacccccaact 
241 180 

T11I18 
ccccaattcgaaatgtaagg 

cgctccttgacagttttcct 
203 129 

MSA6 
ctggggtgttctcacaggat 

cgttggaggtggtcttaggt 
199 145 

T6H20 
tgcattggtttctctgcttg 

gggaaacctccatactcgaa 
231 154 

F4C21 
tggttagggttctggtcagg 

agtggctcatcgttcgagat 
195 113 

F16J13 
gaagcatgttttgtgtatcttgc 

ccgcatctccacatttcatt 
224 144 

F8D20 
caccagacggtgatgaagag 

cattcgcgcatttattgttg 
202 117 

F2P16 
aaaatggtttaccacatggaca 

tcccaaatcaattcaaggaaa 
223 175 

MNJ8 
catggatcaaagatgatctcca 

ttcgcttttcgtgtttctga 
184 133 

MGI19 
tgcacatgacttcaacagaaaa 

atgtgggtgggtgttgattt 
203 156 
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Table 2.2 List of primer sets used for qPCR analyses. Primer positions, left and right primer 

sequences and expected amplicon sizes are indicated for each marker. Colours correspond to 

those used in Figure 2.5B and Figure 2.6B. 
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Insertion-

deletion 

Marker 

Primer 

Position 
Left primer sequence Right primer sequence 

Product 

size in 

base pairs 

F6D8 

Positive 

control 
ctgaccagcaaattctcaagg tgagcaggtgaaacagatgg 766 

External 

reference 
aagtttaaaacgaaaactttataaaatacc tttcgtgttcgtggttttca 214 

Within 

insertion 
aaacaagtgcatgttgcg tttcgtgttcgtggttttca 266 

F15H11 

Positive 

control 
ctccactaactcccgttattcc gaacaatcgggccacatatag 701 

External 

reference 
tttcgtcacttttcaaaactaac gtgtgtgtgtgtgtgtgtgctc 151 

Within 

insertion 
tgatgattttggattgaacgtc gtgtgtgtgtgtgtgtgtgctc 201 

T14G11 

Positive 

control 
gagttgtgttccagggccta tttgttgtgcgaattcattg 897 

External 

reference 
cacaaaaattaaggaataataaatgttctc tttgttccatttataagcgtttctc 143 

Within 

insertion 
ttgtcccattttatttgatgtttg tttgttccatttataagcgtttctc 176 

T6H20 

Positive 

Control 
tttcctgtttgggatctgag tcaggagatagtccaccatgc 839 

External 

reference 
tgggcttaccctgttcatggag gcagagaaaccaatgcattttca 151 

Within 

insertion 
tgggcttaccctgttcatggag ccagaaaccgagtctctaagatttca 259 

MGI19 

Positive 

control 
atatgcttgtcagtgagggaag gaattcgacaggagcgtgaag 800 

External 

reference 
gaacaatttgtggaaaaatggaa cctagtttcatgtgcatatatgtc 181 

Within 

insertion 
gaacaatttgtggaaaaatggaa tgacatgtactcaccgcaatg 212 
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Figure 2.2 Molecular analysis of a mutant hth-4 plant showing a large wildtype sector. (A) 

Two mutant branches (white boxes) flank a phenotypically wildtype flower branch (magenta 

box). Examples of normal wildtype (HTH/HTH) and mutant (hth/hth) flowers are shown on 

the right. (B) DNA was extracted from tissue samples and allele-specific PCR-based 

molecular markers used to determine genotype. The wildtype branch scored as heterozygous 

(hth-4/HTH), while mutant branches scored as homozygous for the hth-4 allele.  
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Figure 2.3 Molecular analysis of an adult mutant plant and bisected mutant and wildtype 

seedlings. (A) DNA was extracted from multiple tissue samples and PCR-amplified using 

F8D20 primers. A novel PCR amplicon product corresponding in size to the insertion allele 

(C) was detected in hth-7 tissue sample 3 (arrow). (B) Sterile seeds were sown onto petri 

plates (top left) and 5-day old seedlings cut at the root-shoot junction (illustrated in the top 

right panel) and genotyped individually. DNA extracted from shoot (S) and root (R) samples 

derived from individual hth-3 or wildtype seedlings were PCR-amplified using F12K11 and 

F4C21 primers, respectively. Samples were loaded in pairs (indicated by horizontal bars). 

Novel amplicon bands were detected in five seedling samples (arrows) that correspond in 

size to the insertion allele (C). In one hth-3 sample, both organs (S, R) had a novel band, 

while a novel amplicon was detected only in the root in a second sample. In three cases, 

DNA extracted from wildtype seedlings gave rise to novel bands corresponding in size to the 

insertion allele (C) (arrows, S). In both cases, the parent plant was homozygous for the 

deletion allele (L) at the corresponding marker. Heterozygote (H), no DNA control sample 

(ND).  
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Figure 2.4 DNA sequence alignments showing F8D20 and MSA6 indel loci. (A) The F2 hth-

3 parent (F2 hth) shares sequence identity with 2 of 3 DNA clones isolated from this single 

hth-3 seedling (F3 R2 and F3 S1). DNA sequence data obtained from a root clone (F3 R1) 

shares identity with the Landsberg erecta sequence (Ler), including 3 flanking sequence 

polymorphisms (arrows) and a corresponding 85 base-pair deletion. The Columbia reference 

sequence (Col) is shown on the top line of the alignment. (B) The HTH wildtype hybrid 

parent (F2 wt) shares sequence identity with 2 of 3 DNA clones isolated from this single 

seedling (F3 S2 and F3 R1). DNA sequence data obtained from one shoot clone (F3 S1), 

however, reveals a 54 base-pair insertion sequence (junctions shown by arrows) and shares 

identity with the Columbia reference sequence (Col).   
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Figure 2.5 Relative genomic copy number of insertion sequences in a hth-7 mutant plant. (A) 

DNA was extracted from branches 1-7 of this hth-7 mutant plant and amplified using qPCR 

or standard PCR reactions. (B) Graphical representation of qPCR results using four different 

indel markers (F8D6 (red), F15H11 (yellow), T14G11 (blue), and T6H20 (green). Coloured 

bars show the number of insertion sequences per 1000 copies of the reference sequence (lines 

indicate standard error of the mean, n = 3). All 7 samples showed novel insertion sequences. 

(C) Standard PCR-amplification using T6H20 primers showed amplicons that corresponded 

exclusively to the deletion allele (L). Primer positions (arrows) relative to the T6H20 indel 

(green box) are depicted to the right of the gel image. (D) Pooled amplicon product from 

T6H20 reference primers demonstrate that this region was amplified equally in all samples, 

as was the positive control (+). The reference sequence is upstream of the T6H20 insertion 

marker, as depicted on the right. (E) Quantitative PCR using a primer anchored within the 

T6H20 indel gave rise to amplicons that corresponded in size to the positive control (+). No 

product was amplified from sample six. T6H20 indel (green box), Columbia (C), Landsberg 

(L), heterozygote (H), no DNA control sample (ND).  
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Figure 2.6 Relative genomic copy number of insertion sequences in two wildtype plants. (A) 

DNA was extracted from branches 1-5 of two wildtype hybrid plants (9B and 10B) and 

amplified using qPCR. (B) Graphical representation of qPCR results using three different 

indel markers ((F15H11 (yellow), T14G11 (blue), and MGI19 (pink)). Coloured bars show 

the number of insertion sequences per 1000 copies of the reference sequence (lines indicate 

standard error of the mean, n = 3). Novel insertion sequences could be detected in all 10 

samples.  
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 Discussion 

By employing classical genetic approaches in conjunction with low and high-resolution 

molecular methods, we show that one Arabidopsis plant can have multiple genotypes. We 

have found instances of intra-organismal variation in different genetic backgrounds, in plants 

reared in different growth chambers, at different developmental stages and under sterile 

growth conditions. Furthermore, the incidence of sectoring and genetic discordance appears 

to be in some way conditioned by the hth mutant background as we found a consistently 

higher frequency of genetic discordance within single hth plants as compared to HTH 

wildtype plants. This was also true for shoot and root systems compared between aseptically 

grown seedlings and for tissue samples taken from adult plants and subjected to qPCR. Of 

critical importance, in showing that single Arabidopsis plants are genetic mosaics, 

experimental error due to cross-pollination and seed contamination can be completely 

discounted. To the best of our knowledge, this is the first report that documents the 

spontaneous but targeted appearance of unique genomic insertions at multiple discreet loci in 

single plants.  

Only two other cases of spontaneous genomic insertions have been reported in plants 

that similarly could not be explained by any previously known mechanism. In both cases the 

insertion was non-random and targeted a specific locus. In the case of flax, the insertion 

sequence was 5.7 kilobase (kb) pairs in size (Chen et al., 2005) while in rice the insertion was 

comparatively small, being only 34 base pairs in size (Gao et al., 2011). Our data suggest that 

these reported cases of spontaneous genomic insertion events, like the sequence changes 
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reported here, occur by a process intrinsic to the plant. As before, we propose the possibility 

that Arabidopsis plants harbor a cryptic store of sequence templates that can overwrite the 

parentally contributed genomes by a template-directed mechanism (Lolle et al., 2005). 

If intrinsic drivers of genetic variation exist in inbreeding plant species, have additional 

incidents of cryptic genetic variation been documented in other systems? We believe that in 

soybean and cauliflower such events have indeed been reported and presented as cases of 

enigmatic phenotypic variation (Chable et al., 2008; Fasoula and Boerma, 2005; Fasoula and 

Boerma, 2007). In other studies, molecular data have been featured. Again in flax, for 

example, molecular assays have demonstrated that heritable phenotypic changes induced by 

environmental shifts are accompanied by reproducible locus-specific copy number changes 

in genomic DNA (Chen et al., 2009; Chen et al., 2005; Schneeberger and Cullis, 1991). In 

soybean, reproducible non-random changes in restriction length polymorphic markers 

induced by in vitro (Folse and Roughgarden, 2012; Thomson et al., 1991) culturing of root 

explants have also been documented (Roth et al., 1989). Genomic changes manifesting 

similar hallmarks of biased sequence alterations have also been described in rice (Gao et al., 

2011; Xu et al., 2007) and corn (Tracy et al., 2000) hybrids, as well as in Arabidopsis (Jiang 

et al., 2011; Yi and Richards, 2008; Yi and Richards, 2009). 

In long-lived arborescent plants, intra-organism genetic variation has been demonstrated 

in a variety of systems (Lopez et al., 2010; Thomson et al., 1991; Whitham and 

Slobodchikoff, 1981). The fitness benefits have also been validated using models that test 

whether the production of genetically divergent modules is an effective strategy for achieving 
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adaptive co-evolution with organisms that feed on or infect the plant (Boyko and Kovalchuk, 

2011; Folse and Roughgarden, 2012; Pineda-Krch and Lehtila, 2004). Models testing fitness 

benefits of module-level selection show that this is an effective strategy for achieving 

adaptive co-evolution between long-lived trees and short-lived herbivores when individual 

tree branches diverge genetically (Folse and Roughgarden, 2012). Furthermore, this held true 

across a range of assumptions, even when reproduction was predominantly asexual. 

However, the fitness benefits were only fully realized for sufficiently long-lived trees that 

experienced strong selection (Folse and Roughgarden, 2012). This fitness paradox is not 

exclusive to plants but also is relevant to organisms outside of the plant kingdom that have 

remained evolutionarily robust even though reproduction is predominantly asexual (Pineda-

Krch and Lehtila, 2004).  

For a short-lived organism such as Arabidopsis, what adaptive value would within-

organism genetic variation have? One possibility is that this heterogeneity offsets the 

predicted decline in genetic variation that should result from inbreeding. Plant development 

is open-ended and reiterative, allowing for the continuous output of repetitive units or 

modules that function to support the growth and reproduction of the individual. When 

combined with developmental plasticity and the absence of a sequestered germ line, modular 

development may actually drive plants toward becoming genetically heterogeneous 

(Fagerstrom et al., 1998; Lopez et al., 2010; Pineda-Krch and Fagerstrom, 1999; Pineda-Krch 

and Lehtila, 2004). As posited by Whitham and Slobodchikoff (1981), somatic sector 

formation permits the introduction of genetic variants into the gene pool either through 

vegetative propagation or through sexual reproduction. As these authors point out, germ line 
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cells are derived from somatic tissues that arise late in the developmental history of the plant 

and therefore somatic mutations are more likely to introduce genetic variation than mutations 

that arise in the gametes (Sangster et al., 2008; Satina and Blakeslee, 1941; Whitham and 

Slobodchikoff, 1981). By expanding the window of tolerance for genetic variation, plants 

may be afforded a better adaptive strategy given lifestyle constraints. The versatility of 

modular development combined with tolerance for genetic variation may allow plants to 

adapt at rates tailored to pathogen life cycles (Todesco et al., 2010) or to relatively expanded 

time scales, such as those affecting climate change. Even though self-fertilization is thought 

to have evolved approximately one million years ago (Tang et al., 2007a), Arabidopsis plants 

have not suffered the consequential genetic erosion but have continued to thrive. 

In addition to benefiting from a natural tendency toward genetic heterogeneity, the plant 

genome itself is thought to buffer the cost of having limited genetic diversity. In wild 

relatives of Arabidopsis the genome is thought to be highly dynamic and to respond to 

changes in environmental conditions or other extrinsic factors (Boyko and Kovalchuk, 2011; 

Yao and Kovalchuk, 2011). Genome responses include elevated rates of homologous 

recombination that persist for multiple generations (Molinier et al., 2006), changes in copy 

number (DeBolt, 2010) and modulation of epigenetic gene regulation (Lang-Mladek et al., 

2010). Pervasive genetic buffering (Queitsch et al., 2002; Sangster et al., 2008) ensures that 

phenotypes with potentially deleterious consequences are attenuated. In addition to the 

genome responses listed above, our findings suggest that an intrinsic source of genetic 

variation can be leveraged to enhance the diversity in genetic output achieved by Arabidopsis 

plants.  
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In considering alternate template-dependent mechanisms, such as gene conversion or 

homologous recombination, none can account for the de novo appearance of unique sequence 

insertions. Nevertheless, it is possible that the insertion or deletion of small DNA sequence 

tracts, as described here, could reflect the activity of transposable elements (Lisch, 2009; 

Tenaillon et al., 2010). However, numerous lines of evidence argue against this possibility. 

For instance, when novel amplicons were detected, they co-migrated with their 

corresponding insertion or deletion allele and did not show size heterogeneity, as would have 

been expected for transposon-driven excision or insertion events. Sequence data confirm that 

deletion events reproducibly eliminate a fixed length of sequence while insertion events 

reproducibly introduce a fixed sequence tract and both events repeatedly target precise 

genomic sites. Insertion and deletion events do not appear to produce obvious junction sites 

with altered nucleotides. Similarly, insertion events introduce sequences that share identity 

with the Columbia reference genome and do not appear to be chimeric gene or genome 

fragments. Furthermore, transposable element-mediated events cannot account for the fact 

that these insertion sequences appear to be generated de novo since no comparable conserved 

region of homology exists elsewhere in the host genome, as demonstrated by our qPCR data. 

Lastly, as determined by DNA database searches, none of the indel markers used in this 

study share significant sequence homology with annotated Arabidopsis transposable 

elements.  

If the genome of an intensely studied model organism such as Arabidopsis is subject to 

modification by the template-directed mechanism we propose, why has this phenomenon not 

been described previously? Our research shows that target choice and methodological 
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approach are critical in differentiating these genomic events from other processes that also 

modify DNA sequences. Based on our findings, the only genomic targets that are truly 

diagnostic of this phenomenon are deletions. To the best of our knowledge, deletions alleles 

have been used in genetic studies precisely because they are known to be stable and not to 

revert but have not been used to study phenomena related to epigenetic inheritance. There is 

no generalized precedent for genetic instability of deletions and assuming otherwise would 

go against an established biological paradigm. Polymorphic molecular markers such as single 

nucleotides, simple sequence repeats, or insertions that are subject to alterations by other 

processes will not provide sufficient resolution to differentiate mechanism, even though they 

are also likely targets for this process. In particular, our findings may explain why genome 

sequencing efforts have failed to register these sequence deviations or, if detected, why they 

may have been attributed to sequencing error and eliminated during curation. One possibility 

that immediately emerges from this prediction is that raw sequence data contained in existing 

genome database archives may already contain evidence of extra-genomic sequence 

information, revealed by features such as highly biased loci-specific “errors”.  

Collectively, our genetic and molecular data show that many, and perhaps most, 

insertion events occur somatically in both seedlings and adult plants. Sectoring may therefore 

be a constitutive process that takes place throughout development but may be limited such 

that, at any given time, only a few cells host these genetic changes. Importantly, this may 

explain why sequence changes seen in revertant hth progeny have rarely been found to affect 

both alleles. Although sexual transmission of non-parental markers clearly does occur (Lolle 

et al., 2005), the fact that we have not found HTH/HTH progeny among seed-derived 
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offspring suggests that sectors populating the gamete forming lineages are unstable or very 

rare. The qPCR data are consistent with this supposition. However, it is also possible that 

mechanistic differences exist between somatic and germ line tissues or that insertion events 

remain dynamic, limiting sexually transmitted changes to those that stabilize. It is also 

possible that certain genetic backgrounds condition this process as suggested by the greater 

number of events detected in hth mutants. 

In addition to validating our genetic and molecular data, the qPCR results extend those 

findings and suggest that the genetic makeup of individuals can be surprisingly complex. Our 

data show that each plant can produce multiple discreet sectors, at many different growing 

points and each with unique marker profiles. This finding implies that sectoring may be a 

relatively common occurrence, even in wildtype genetic backgrounds. Since the adult plants 

used for these experiments were left largely intact and only a small proportion of the plant 

sampled, many more sectors may have been present than quantified. As such, it is possible 

that our current census underestimates the frequency with which these smaller islands of 

genetic variation arise. Although sectors are more readily detected using qPCR, this method 

cannot distinguish, for example, between copy number variation within a small cluster of 

cells versus multiple cells that remain strictly diploid and are clonally related. Similarly, it is 

not possible to distinguish whether one sector hosts the full complement of genetic sequence 

changes, whether independent events occur in multiple discreet sectors, or if sectors overlap. 

Visualization of sectors in living tissue or tissue sections should help distinguish between 

these possibilities.  
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In addition to models demonstrating the fitness benefits of module-level selection (Folse 

and Roughgarden, 2012), computational models provide surprisingly strong support for an 

ancestrally based “error-correcting” mechanism such as the one we propose to exist in 

Arabidopsis plants (FitzGerald et al., 2010). In these constrained-optimization simulations, 

the evolutionary benefit of “genetic repair” strategies was compared between populations 

that access repair templates derived either from parents, grandparents or great-grandparents. 

Interestingly, a grandparent- or great grandparent-based genetic repair strategy is strongly 

favored over parental repair strategies. Furthermore, simulation results show that using a 

randomly selected template consistently gave superior results to those achieved using 

templates from the fittest parent or grandparent. From a biological perspective, such a 

strategy has considerable merit. Retaining a cache of templates derived from grandparental 

lineages would guarantee greater allele diversity precisely because the reservoir of allele 

variants would be deeper and allele redundancy would be less likely to occur. Random 

selection of templates would be the most parsimonious strategy to affect genome repair, 

again because it would promote diversity across alleles and between individuals. Since only 

those individuals that survived in previous generations would contribute to these cached 

templates, represented alleles would be biased to those that have proven robust under a 

spectrum of selective pressures. 

 Conclusions 

The research presented here brings to light five striking findings. First, individual 

Arabidopsis plants are capable of producing somatic sectors during the course of normal 
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vegetative development. Second, those sectors can have distinct and unique marker profiles 

and can differ in single nucleotide composition, can acquire small DNA insertions or can 

experience DNA sequence loss. Third, the de novo appearance of genomic insertions 

supports our original contention that cryptic sequence templates drive some of these changes 

(Lolle et al., 2005). Fourth, this phenomenon can be detected in wildtype genetic 

backgrounds raising the possibility that many Arabidopsis lab strains may be genetic 

mosaics. Finally, this process is genome-wide, impacting all 5 chromosomes, whether or not 

the target loci reside within genes or between genes. 

Our data expand on the ideas put forth by Whitham and Slobodchikoff (1981) and 

suggest that sector formation, even in a short-lived organism like Arabidopsis, may be a 

normal part of development and, furthermore, that the formation of sectors serves to capture 

novel genetic variation, irrespective of the source of that variation. Models testing the benefit 

of within organism genetic heterogeneity suggest that the average fitness of the population 

increases if some individuals within that population are genetic mosaics (Folse and 

Roughgarden, 2012). As our data show, not all individuals in the populations we tested 

showed evidence of genetically distinct sectors but for those individuals that did, the number 

of sectors varied greatly. Our findings raise the possibility that inbreeding plants and, perhaps 

other organisms that predominantly propagate asexually, may sequester cryptic sources of 

genetic variation that can be harnessed to promote greater genetic diversity. 
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 Introduction  

The plant epidermal cuticle is key to plant-environment interactions and protects plants from 

adverse environmental factors such as dehydration, excessive radiation, heat or cold stress, 

and attacks by herbivores (Kerstiens, 1996). The plant cuticle is a heterogeneous layer 

consisting of cutin, polysaccharide microfibrils, and waxes (Figure 1.1). Cutin is an insoluble 

biopolymer that is mainly composed of C16 and C18 ω-hydroxylated fatty acids interlinked 

via ester bonds (Table 1.2 and Figure 1.2). Waxes, which are a mixture of very-long-chain 

fatty acids (VLCFA) and their derivatives, can be deposited on the surface (epicuticular 

waxes) of or embedded (intracuticular waxes) within the cutin matrix (Domínguez et al., 

2011; Koch and Ensikat, 2008; Kolattukudy, 2001; Nawrath, 2006).  

Forward genetic screens have identified a number of genes that are important to 

cuticular function. Altered cuticle integrity such as that seen in the Arabidopsis eceriferum 

(cer), lacerata (lcr), fiddlehead (fdh), wax, long chain fatty acid-CoA synthetase (lacs) and 

hothead (hth) mutants, reveals that the cuticle also serves to maintain organ integrity and 

separation during normal development (Chen et al., 2003; Lolle et al., 1998; Lolle and Pruitt, 

1999; McNevin et al., 1993; Pruitt et al., 2000; Schnurr et al., 2004; Wellesen et al., 2001). 

Perhaps not surprisingly, many of these genes are involved in the biosynthesis of cuticle 

components. For example, FDH (Pruitt et al., 2000) and CER10 (Zheng et al., 2005) are both 

known to encode enzymes required for the biosynthesis of VLCFA that are constituents of 

epicuticular waxes. On the other hand, LCR and LACS2 encode enzymes that specifically 

catalyze reactions in cutin biosynthesis. The LCR protein is a CYP86A type of cytochrome 
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P450 monooxygenase that catalyzes ω-hydroxylation of fatty acids needed for cutin 

precursor production (Wellesen et al., 2001), whereas the LACS2 is likely a protein required 

for fatty acyl-CoA formation in the first step in cutin monomer synthesis (Schnurr et al., 

2004). In addition, many of these cuticle mutants also exhibit elevated permeability in the 

seed coat. For example, the defective in cuticular ridges (dcr) and bdg1mutant seed coats 

were more permeable allowing more toluidine blue staining. In addition, mutant dcr seeds 

were often deformed and occasionally fused showing diminished release of mucilage upon 

imbibition (De Giorgi et al., 2015; Panikashvili et al., 2009). 

The focus of this study, the HTH gene, is important to the cuticular function as 

mutations in the gene result in plants that have a more permeable cuticle and undergo floral 

organ fusions. Fusion severity varies among different alleles and is dependent upon the 

ecotype background in which they are expressed (Krolikowski et al., 2003; Lolle et al., 

1998). Regardless of the fusion phenotype, all hth mutants have the capacity to self-fertilize, 

and therefore the mutations can be maintained in homozygous state although seed yield 

varies with the severity of floral organ fusion. Unlike lacs2 and lcr, hth mutant plants rarely 

display fusion of rosette leaves, and the integrity of the cuticle layer is only moderately 

impaired (Bessire et al., 2007). Fatty acid analysis of mature rosette leaves from hth-12 

mutant plants showed a reduction in some types of dicarboxylic acids, and this altered cuticle 

monomer profile led to the supposition that HTH is involved in cutin monomer synthesis and 

functions as an ω-alcohol dehydrogenase (Kurdyukov et al., 2006b).  
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In addition to the protective role, the cuticle layer also serves as a differentially 

permeable barrier that plays multiple regulatory roles in plant reproduction and in plant-

pathogen interactions. For instance, the cuticle regulates pollen-pistil interactions by 

providing a receptive surface for adhesion, hydration and germination of compatible pollen. 

For mutants with altered cuticular permeability, pollen germination has been shown to occur 

on organs other than the stigma. Wildtype Arabidopsis pollen can hydrate and grow pollen 

tubes on vegetative organs of plants with higher cuticle permeability; these include mutant 

cer, fdh, hth, and fungal cutinase-expressing transgenic plants (Lolle and Cheung, 1993; 

Lolle et al., 1998; Sieber et al., 2000; Takahashi et al., 2010). In many cases, a more 

permeable cuticle layer increases susceptibility to biotic and abiotic stress as demonstrated in 

ltpg1, cer4 and dcr (Jenks et al., 1995; Lee et al., 2009b; Panikashvili et al., 2009). However, 

the contrary has been observed. For example, Tang et al. (2007b) showed that loss of LACS2 

function increased Arabidopsis plants’ sensitivity to a virulent Pseudomonas syringae strain 

as well as water and salt stresses. On the other hand, these lac2 mutants also showed 

improved resistance to a virulent strain of the necrotrophic fungus Botrytis cinerea. It was 

hypothesized that certain cutin-related fatty acids may function as signal molecules, and 

disrupting their synthesis could lead to changes in recognition of and interactions with 

pathogens (Tanaka et al., 2001; Xiao et al., 2004).  

Stress can lead to changes in plant physiology and metabolism that cause protein 

misfolding and degradation in the endoplasmic reticulum (ER) (Deng et al., 2013), a highly 

organized network composed of tubules and cisternae. Environmental stresses can induce the 

formation of ER-derived organelles such as protein bodies, precursor-accumulating vesicles 
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and ER bodies (Matsushima et al., 2003b; Sherameti et al., 2008). Methyl jasmonate (MeJA) 

treatment and wounding can similarly induce ER body formation or increase their number in 

Arabidopsis, therefore linking this organelle with plant stress responses (Hayashi et al., 2001; 

Ogasawara et al., 2009). 

Although two previous studies have investigated HTH expression patterns, results were 

somewhat inconsistent (Krolikowski et al., 2003; Kurdyukov et al., 2006b). To the best of 

my knowledge, this current study of HTH protein localization is the first to use a native HTH 

promoter to drive expression of a fluorescent protein-tagged HTH fusion protein (HTH-FP). 

By analyzing these transgenic reporter lines, I determined the tissue and cellular localization 

profile of the HTH-FP protein. Based on this work, the HTH protein appears to be present in 

seedlings, floral tissues, ovules and developing seeds. HTH-FP localization to the integument 

has not been reported previously, and led to a more in-depth analysis of the hth mutant seed 

phenotype that in turn revealed changes to seed morphology and seed coat permeability. At 

the cellular level, HTH-FP appeared to be localized to the ER network and stress-associated 

ER-derived bodies. To test whether stress regulates HTH gene expression, HTH expression 

levels were also investigated in non-transgenic lines using quantitative RT-qPCR following 

treatment with methyl jasmonate. 
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 Materials and Methods 

 Plant material and growth conditions 

Wildtype and mutant lines used in this study include Columbia (Col), Landsberg erecta 

(Ler), Wassilewskija (Ws), hth-1, hth-4, hth-5, hth-7, hth-9, hth-13 (SALK_019460), hth-14 

(SALK_024611) and hth-15 (SALK_141882). Arabidopsis seeds of homozygous Col, Ler, 

hth-13, hth-14 and hth-15 were acquired from the Arabidopsis Biological Resource Center 

(Columbus, Ohio, USA), and the other mutant alleles were developed by Lolle et al. (1998). 

Arabidopsis seeds were sown onto moistened potting mix (1:1 mixture of LC1:LG3 Sungro 

Sunshine potting mixes, Sungro Horticulture, Alberta, Canada) either in flats or 5 cm pots 

and stratified at 4°C for two to five days before being moved to the growth chamber. Growth 

chambers (Econoair AC60, Ecological Chambers Inc., Winnipeg, Canada, MB; GC8-

VH/GCB-B, Environmental Growth Chambers, Chagrin Falls, Ohio, USA; Conviron 

PGW36/E15, Controlled Environments Ltd., Winnipeg, Manitoba, Canada) were illuminated 

with a mixture of incandescent and fluorescent lights (140-170 μmol m-2 sec-1 at pot level) 

with a 24-hour photoperiod and maintained at 20 ± 4°C at 40 - 60% relative humidity. Plants 

were watered as needed. Reproductive tissues of mature plants were used for microscopy, 

and juvenile plants were harvested 11 days post-germination for the methyl jasmonate MeJA 

treatment.  

To grow plants in a sterile condition, seeds were placed in open microcentrifuge tubes 5-

6 layers thick and exposed to Cl2 gas for 1.5 hours in an air-tight chamber. The Cl2 gas was 

generated by mixing 100 mL of bleach (Javax, 5.25% NaOCl) with 4 mL of 1N HCl in a 
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beaker. Sterilized seeds were sprinkled on an agar medium containing half strength MS basal 

salts (Sigma-Aldrich, St. Louis, Missouri, USA) at a density of 10-15 seeds/plate and 

stratified at 4°C before being transferred to growth chambers. Four-day-old seedlings and 

two-week-old plant grown in the petri plates were used for microscopy. For colocalization 

studies, seedlings containing the erRFP construct were selected on half strength MS agar 

medium containing 20 µg/ml hygromycin B (BS725; Bio Basic Canada, Markham, Ontario, 

Canada). After stratification, the seeds were exposed to light for 12 hours to promote 

germination prior to growth in the dark for five days. Seedlings exhibited elongated 

hypocotyl indicated hygromycin resistance and were observed for erRFP localization.  

 Bioinformatics analyses 

Putative HTH expression patterns were analyzed using the microarray-based expression data 

(www.bar.utoronto.ca). Homologues of HTH were identified using the Basic Local 

Alignment Search Tool (BLAST) (www.ncbi.nlm.nih.gov). The COBALT tool 

(www.ncbi.gov) was used to look for similar protein sequences and to create multiple 

alignments. Basic characteristics of the HTH protein were acquired from UniProtKB/Swiss-

Prot at Expasy (www.expasy.org). Protein composition and structure were predicted using 

the PROFsec tool (www.predictprotein.org). Globularity was analyzed by GLOBPLOT 

(www.globlot.eml.de). Promoter analysis was performed using the CISTOME tool of the 

BAR database (Bio-Array Resource database; http://bar.utoronto.ca). SignalP 

(www.cbs.dtu.dk/services/SignalP) was used for predicting subcellular localization. 
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 HTHpro:HTH-FP transgene constructs and generation of transgenic plants  

The 4.8 kilobase (kb) genomic sequence containing the 2009 base pair (bp) fragment 

upstream of the start codon of HTH and full length genomic HTH sequence excluding the 

stop codon was amplified from purified genomic DNA (Appendix A) of Arabidopsis 

thaliana (Landsberg) using Phusion Hot Start II DNA Polymerase (Thermo Scientific, 

Waltham, Massachusetts, USA) using the forward 5'-

AGAGGAGAGAAACAAAGAATCTTCTTACT-3' and reverse 5'-

AACACCAGCTTTGTTTCCAAGT-3' primers. The resulting target PCR product was 

integrated by topiosomerase-mediated cloning into the pCR8/GW/TOPO vector (Invitrogen, 

Carlsbad, California, USA). Entry clones containing the HTH coding sequence, pENTR-

HTH, were digested with NheI, and the complete attL-flanked fragment recombined into the 

pGWB640 and pGWB650 vectors (Nakagawa et al., 2007) (Appendix B) using LR clonase 

(Invitrogen). Resulting expression constructs, HTHpro:HTH-EYFP and HTHpro:HTH-G3GFP, 

were transformed into Escherichia coli DH5-α cells. Plasmids containing the Nhe1 HTH 

genomic fragment were selected on spectinomycin Luria broth (LB) plates, and the HTH-

containing plasmids subjected to DNA sequencing. Expression constructs were subsequently 

transformed into Agrobacterium tumefaciens strain GV3101.  

A. tumefaciens-mediated transformation of A. thaliana plants was accomplished by 

using the floral dip technique (Bechtold and Pelletier, 1998). The amplified HTH wildtype 

genomic sequence with the 5’ upstream region were cloned into pGWB640 and pGWB650 

(Nakamura et al., 2010) to generate recombinant constructs HTHpro:HTH-EYFP and 

HTHpro:HTH-G3GFP, respectively. The empty vectors (referred to as ‘EV’) were used as 
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negative controls. Constructs, and corresponding empty vectors were transformed into 

homozygous hth-9 mutant (in the Ws background). Two to five independent T1 plants were 

isolated and characterized for each construct. Homozygous T2 plants were identified by 

testing for segregation of glufosinate resistance in their T3 progeny. These homozygous 

transgenic lines were used as the material for microscopy and immunoblotting experiments.  

The erRFP construct was provided by Dr. Jaideep Mathur at the University of Guelph. 

Sequences of monomeric RFP sequence with an N-terminal Arabidopsis chitinase signal 

peptide sequence and C-terminal HDEL ER retrieval signal were cloned in the binary vector 

pCAMBIA and expressed under a 35S CaMV promoter (Sinclair et al., 2009). The erRFP 

construct was transformed using A. tumefaciens into Ws wildtype plants, HTHpro:HTH-

EYFP, and HTHpro:HTH-G3GFP lines to generate the double transgenic lines for co-

localization studies. The erRFP protein targets the ER network and ER-derived organelles 

called ER bodies. Transgenic plants containing the erRFP construct were selected by 

hygromycin B resistance. Two to five independent T1 plants of each transgenic line were 

evaluated.  

 Permeability Assays  

Cuticle permeability was quantified by monitoring the rate of chlorophyll diffusion as 

described in Lolle et al. (1997). Whole, undamaged cauline leaves from approximately four-

week old plants were collected, immersed in 80% ethanol and gently agitated. Aliquots of the 

ethanol solution were removed at 20, 40, 60, 90, 120, 160 minutes as well as at 24 hours 

following tissue immersion and absorption determined spectrophotometrically. The 
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chlorophyll extraction rate was determined by standardizing to the concentration of the hth-9 

mutant sample after 24 hours (maximum extraction). Chlorophyll content in each sample was 

determined using absorption readings at 647 and 664 nm using a Cary 100 UV-Vis 

spectrophotometer (Agilent Technologies, Santa Clara, California, USA). The experiment 

was repeated three times. Data were processed and graphed using Sigma Plot (Systat 

Software, San Jose, California, USA).  

Toluidine blue staining was used to visualize the difference of cuticle permeability. 

Whole, fresh flowers were incubated in a solution of 0.025% (w/v) toluidine blue 

(89640; Sigma-Aldrich) in ¼ Luria Broth (LB; (w/v) 1.0% tryptone, 0.5% yeast extract, 

1.0% NaCl at pH 7.5) for 1 hour followed by rinsing with water for 10 minutes. Rosette 

leaves of 10-day-old plants were incubated with 5-μl droplets of a 0.025% (w/v) solution of 

toluidine blue for 2 hours and rinsed with water (Bessire et al., 2007).  

Seed coat permeability was assessed by the tetrazolium assay. An aliquot of 50 mg of 

dried Arabidopsis seeds was incubated in 1 ml of 1% (w/v) tetrazolium red 

(Triphenyltetrazolium chloride; T8877, Sigma-Aldrich) solution at 30°C for 48 hours in 

darkness. Red-coloured formazans are produced if tetrazolium permeates the seed coat and 

comes into contact with living tissue.  

 SDS-polyacrylamide gel electrophoresis and protein immuno-detection 

Arabidopsis tissue used for protein extraction was flash frozen in liquid nitrogen immediately 

after harvest. The tissue was ground to a fine powder using a mortar and pestle, or pulverized 

by vortexing frozen tissue in sealed 2 mL tubes containing 2 mm stainless steel beads (1/8” 
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diameter; Abbott Ball Company, West Hartford, Connecticut, USA). Extraction buffer (100 

mM Tris-HCl pH 8.0, 8M urea, 5mM EDTA, 2.5%  (w/v) SDS, 10% (v/v) glycerol, 1mM 

PMSF, 100 mM DTT and protease inhibitor cocktail (P9599; Sigma-Aldrich, St. Louis, 

Missouri, USA) was added and samples vortexed for 2 minutes, followed by centrifugation 

to pellet cell debris. The supernatant was collected and the total protein concentration 

determined using Bio-Rad Quick Start™ Bradford 1x Dye Reagent (Bio-Rad Laboratories, 

Hercules, California, USA), according to the manufacturer's instructions. Protein was 

solubilized in Laemmli Sample Buffer (60 mM Tris-Cl pH 6.8, 2% (w/v) SDS, 10% (v/v) 

glycerol, 5% (v/v) β-mercaptoethanol, 0.01% (w/v) bromophenol blue) and size separated 

using a 10% (w/v) SDS-polyacrylamide gel. Following electrophoresis, proteins were 

transferred onto 2 μm nitrocellulose membrane (Bio-Rad) using Trans-Blot® SD Semi-Dry 

Electrophoretic Transfer Cell (Bio-Rad). Membranes were stained with Ponceau-S to verify 

protein transfer, washed and then blocked with 1 pg/mL polyvinyl alcohol (P8136; Sigma-

Aldrich, molecular weight: 30K-70K) in Tris-buffered saline with Tween-20 (TBS-T; 20mM 

Tris pH 7.5, 300 mM NaCl, 0.1% (v/v) Tween-20). Membranes were incubated overnight at 

4°C with anti-GFP antibody (1:2500; Abcam, ab6556) in 5% (w/v) skimmed milk in TBS-T. 

Membranes were then washed with TBS-T five times for 5 minutes each and incubated with 

a 1:10,000 dilution of anti-rabbit IgG antibody conjugated to horseradish peroxidase (Sigma-

Aldrich, A0545) for 1 hour before washing. After washing steps with TBS-T, membranes 

were treated with ECL Prime Western Blotting Detection Reagents (GE Healthcare, Little 

Chalfont, Buckinghamshire, United Kingdom), and exposed to CL-Xposure films (PI34093; 

http://en.wikipedia.org/wiki/Little_Chalfont
http://en.wikipedia.org/wiki/Little_Chalfont
http://en.wikipedia.org/wiki/United_Kingdom
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Thermo Fisher Scientific, Waltham, Massachusetts, USA) for 1-10 minutes. X-ray films 

were developed using a CP1000 film processor (Agfa-Gevaert N.V., Mortsel, Belgium).  

 Dyes and microscopy imaging 

Seedling and plant tissues were mounted on GoldLine microscope slides (VWR 

International, Pennsylvania, USA) in water and examined using either Zeiss Axiophot 

epifluorescence microscope (Carl Zeiss Inc., Germany) or Zeiss LSM 510 META laser 

scanning confocal microscope (Carl Zeiss Inc., Germany). Wildtype ecotype Ws, hth-9 

plants transformed with pGWB640 and pGWB650, or Ws transformed with erRFP construct 

was prepared as needed in parallel as negative controls. Plant material was examined using 

either a fluorescence microscope (Zeiss Axio Imager D1 microscope equipped with a Zeiss 

AxioCam MRm camera controlled by Axio software) or a confocal microscope (Zeiss LSM 

510 META laser scanning confocal microscope controlled by Zen software). To label nuclei, 

samples were equilibrated in 0.1% (w/v) Hoechst 33258 nucleic acid stain (Invitrogen) in 

water for 5 minutes. For staining mitochondria, whole seedlings were equilibrated with 50 

nM TMRM (tetramethylrhodamine; T-668, Thermo Fisher Scientific) in half MS medium for 

30 minutes. Stained samples were rinsed three times with water before microscopy imaging. 

The epifluorescence microscope was equipped with a Q-Imaging digital camera (Quorum 

Technologies Inc., Guelph, Ontario, Canada) controlled by the manufacturer’s Axio 

software. Under UV illumination, filters of different excitation (ex) and emission (em) 

wavelengths were selected for different target signals as follows (ex/em): Hoechst, 365/395 

nm; EYFP, 500/515 nm; G3GFP, 470/525 nm; erRFP; autofluorescence, 470/525 nm. Note, 

when exposure setting was optimized for RFP in erRFP-expressing transgenic lines, 
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chloroplast autofluorescence was undetectable, especially in etiolated hypocotyl cells. For 

confocal scanning microscopy, the specimens were excited with an argon laser using the 

following excitation and emission wavelengths (ex/em): RFP, 543/560-615 nm; HTH-FP, 

488/505-530 nm; TMRM, 543/550-600 nm; autofluorescence, 543/642-749 nm. Controlled 

by Zen 2009 software, various pinhole and frame sizes were selected to minimize light 

exposure, fluorophore fading, and tissue damage. Representative images were chosen after 

similar results were obtained from at least three independent transgenic lines. For ER 

colocalization studies, images acquired by either epifluorescence or confocal microscopes 

were analyzed and the colocalization coefficient was determined by the Coloc 2 function 

with or without specific region of interest (ROI) settings on the Fiji/ImageJ platform 

(Schindelin et al., 2012; Schneider et al., 2012). Representative images (n = 10) were chosen 

after similar results were obtained from at least three independent transgenic lines. Images 

for transgenic lines harbouring the recombinant HTH protein, either tagged with EYFP or 

G3GFP, are all labelled as HTHpro:HTH-FP, as the results were similar regardless of the 

fluorescent tag used.  

 Methyl jasmonate (MeJA) treatment  

To make a 50 µM MeJA solution, 95% MeJA (Cat# 392707, Sigma-Aldrich, St. Louis, 

Missouri, USA) was first diluted in 95% ethanol, and the MeJA-ethanol mix was added in 

Milli-Q water, followed by stirring for 30 minutes at room temperature. Eleven-day-old 

wildtype (Ws) plants, including the root, were collected from the growth media. Soil was 

gently washed off the root by dipping the root in water repeatedly. Plants were transferred to 

the MeJA solution, placing the root in the solution and floating rosette leaves on the surface 
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and incubated at 22°C under continuous light. As a control, plants reared identically were 

removed from growth media, washed and floated in Milli-Q water. Rosette leaves were 

inspected 36 hours after the treatments using an epifluorescence microscope and the tissue 

subsequently stored at -80°C. MeJA treatments were repeated four times. Tissue collected 

from each replicate was considered one biological sample, resulting in four biological 

samples for each treatment. Samples were assayed using quantitative RT-qPCR.  

 Quantitative RT-PCR  

Tissue collection, RNA isolation and cDNA synthesis 

MeJA- and water-treated wildtype plants (four biological samples in total) were flash frozen 

in liquid nitrogen and pulverized by vortexing frozen tissue with stainless steel beads (1/8” 

diameter; Abbott Ball Company, West Hartford, Connecticut, USA) in 2 mL tubes. To 

prevent thawing, tubes were dipped in liquid nitrogen intermittently. Total RNA was 

extracted from 100 mg of tissue using the RNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany). The RNA quality was assessed using RNA agarose gel electrophoresis. The RNA 

gel consisted of 1.5% (w/v) agarose, 1× MOPS buffer (20 mM 3-(N-Morpholino) 

propanesulfonic acid, 5 mM sodium acetate, 1 mM EDTA), 1.2% (v/v) formaldehyde and 

DEPC-treated Milli-Q water. Samples that showed no smearing and a discreet 28S to 18S 

RNA bands were selected for DNase treatment. DNAase treatment was done using Turbo 

DNA-free Kit (Am1907; Ambion, Naugatuck, Connecticut, USA) and following the 

manufacturer’s instructions. The total RNA concentration of each DNase-treated RNA 

sample was determined using the NanoDrop 2000 spectrometer (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA). An aliquot of each RNA sample was transferred into a 
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separate tube and diluted with Milli-Q water until all samples reached the same total RNA 

concentration. These RNA samples were then reverse transcribed with random hexamer 

primers using SuperScript III or IV Reverse Transcriptase (Invitrogen, Carlsbad, California, 

USA).  

Quantitative RT-PCR experimental setup and data analysis 

Quantitative RT-PCR (RT-qPCR) was performed on a Real-Time Thermal Cycler CFX96 

(Bio-Rad Laboratories, Hercules, California, USA). The PCR program consisted of an initial 

denaturing step at 98°C for 30 seconds, followed by 39 cycles at 98°C for 5 seconds, 60°C 

for 3 seconds and a plate read. The primer sequences were designed based on gene structure 

models obtained at the Arabidopsis Information Resource (TAIR; http://www.arabidop-

sis.org) using QuantPrime (http://www.quantprime.de) (Arvidsson et al., 2008) or Beacon 

Designer™ Free Edition (Premier Biosoft International, Ltd., Palo Alto, California, USA) 

and by setting the primer melting temperature at 60°C.  

Standard curves were generated using different template cDNA concentrations to 

determine the reaction efficiency. To ensure the standard curve covered all potential template 

concentrations that might be encountered in the study, the eight biological cDNA samples of 

both MeJA treated and water treated samples were pooled, and a tenfold dilution series was 

generated over six points, starting from the most concentrated cDNA samples. For each 

dilution, a standard qPCR protocol was performed in triplicate for all the primer pairs. The 

standard curve was constructed by plotting the log of the starting quantity of the template 

against the CT values obtained by the CFX manager software 1.0 package (Bio-Rad 
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Laboratories). Primers that yielded 90-110% amplification efficiency and coefficient of 

determination (r2) values > 0.980 were selected.  

HTH cDNA was amplified using primers forwards 5’-

GAGAGGTGGCGTTCCGTTTA-3’ and reverse 5’-TTCACGAACGCAGCATCGG -3’. To 

verify that MeJA treatment was effective in triggering stress responses in plants, the 

transcript level of VEGETATIVE STORAGE PROTEIN 2 (VSP2; AT5G24770) was measured 

using forward primer 5’-CCGTTGGAAGTTGTGGAAGAAT-3’ and reverse primer 5’-

TCTTCACGAGACTCTTCCTC-3’. Three house-keeping genes, ACTIN 7 (ACT7; 

AT5G09810), GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE C-2 (GAPC2; 

AT1G13440) and TUBULIN 6 (TUB6; AT5G12250), were included for normalization of 

HTH and VSP2 transcript levels. The primer sequences were: ACT7, forward 5’-

TGGAACTGGAATGGTGAAGG-3’ and reverse 5’-GACTGAGCTTCATCACCAACG-3’; 

GAPC2, forwards 5’-GGTGACAACAGGTCAAGCATT-3’ and reverse 5’-

CAACCACACACAAACTCTCGC-3’; TUB6, forward 5’-

GGATTCTCCTCTGCACCATAAAA-3’ and reverse 5’-CATTGACACGCTCCAACTGC-

3’. The amplicon sizes ranged between 144 and 201 bp. Standard melting-curve analysis 

provided by the instrument (Real-Time Thermal Cycler CFX96, Bio-Rad Laboratories) was 

performed between 65°C to 95°C with an increment of 0.5°C after each PCR run to 

determine whether a single PCR product was amplified in each reaction. For each primer, 

four biological samples and three technical replicates were included for MeJA- and water-

treated plants. Therefore, one RT-qPCR run consisted of 24 15-μl reactions containing 300 or 

500 nM of primers, cDNAs, nuclease-free water, and the SsoFast EvaGreen Supermix (Bio-
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Rad Laboratories) as per manufacturer's instructions. In addition to experimental samples, 

each qPCR run also included control reactions, performed in triplets, that contained no 

cDNA templates (‘no template control’) and reactions that contained pooled RNA sample 

from all biological samples of both treatments that had not been subjected to reverse 

transcription (‘no RT control’). Expression levels of house-keeping genes were analyzed for 

stability (Coefficient Variance and M value) using CFX Manager 3.1 software (Bio-Rad 

Laboratories). The expression of target genes (HTH and VSPS2) were then normalized to the 

house-keeping genes. SigmaPlot 11.0 (Systat Software) was used to plot graphs and perform 

statistics 

 Results 

 Mutant phenotypes  

HTH gene was previously identified by its mutant floral fusion phenotype. Other mutant 

phenotypes including increased cuticle permeability, ovule defects, changes in cuticular lipid 

composition and ectopic pollen germination have been described (Krolikowski et al., 2003; 

Lolle et al., 1998; Lolle and Pruitt, 1999; Pagnussat et al., 2005). These reports mostly 

include descriptions of organ fusion observed in mutants generated by single point mutations 

in the Landsberg erecta (Ler) background (hth-1 to hth-8, hth-10 to hth-11) although 

mutations in other ecotype backgrounds have been identified. Here, hth mutant flowers were 

examined from three T-DNA insertion lines (hth-13, hth-14 and hth-15) generated in the 

Columbia (Col) background, one line harboring the hth-9 allele in the Wassilewskija (Ws) 

background and multiple lines harboring single point mutations in the Ler background 
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(Figure 3.1). Figure 1.8 shows the point mutations and T-DNA insertion sites found in these 

mutant alleles.  

In this study, plants of the Ler ecotype are referred to as ‘wildtype’ despite harboring a 

mutant erecta allele as many hth mutants were generated in this background. The flowers of 

Ler plants display fully opened and expanded petals regardless of shortened internodes due 

to the mutation. Ler siliques were straight or slightly curved. Mutant hth-1, hth-4, hth-5, hth-

7 and hth-8 flowers showed organ fusion of different severity (Figure 3.1B-G); for example, 

hth-8 flowers were completely closed preventing petals from being visible, whereas sepals of 

hth-5 were less fused and hence did not completely block petal emergence. Although the 

flower buds stayed partially or entirely closed, the pistil generally would protrude out of 

individual floral buds. If fertilized, developing mutant siliques tended to be shorter, bent or 

tangled. In hth-4, flowers were not entirely closed with petals exposed due to the opening of 

overlapping sepals on the side although sepals near the distal region remained fused. 

Ws wildtype plants showed a floral morphology similar to Ler having fully opened 

flowers. In contrast, mutant hth-9 flowers were mostly closed and had an undulating surface 

(Figure 3.1J-L). As the pistil elongated, occasionally the flower opened slightly allowing 

sepals to become fully separated. The petals became visible but remained furrowed. 

Sometimes, small tears on inner sepals were observed, usually at the edge of the overlap 

towards the tip.  

The floral phenotype of the T-DNA insertion lines hth-13 and hth-14 resembled mutants 

in the two other backgrounds. In contrast, hth-15 only showed moderate organ fusion (Figure 
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3.1N-P). Similar to hth-9, siliques of hth-13 were short and contained few seeds. Within 

these siliques, the empty spaces were predominantly occupied by aborted seeds (darker 

coloured) rather than unfertilized ovules (lighter coloured).  

 Preliminary bioinformatics analyses of the putative HTH protein  

Based on the nucleic acid sequence, the HTH gene encodes a protein consisting of 594 amino 

acids with a predicted molecular mass of 65.3 kilodaltons (kDa). The HTH protein belongs to 

the glucose-methanol-choline (GMC) oxidoreductase family, a protein group that exhibits 

diverse protein functions. Characterized GMC oxidoreductase enzymes exhibit multiple 

functions, including choline dehydrogenase, methanol oxidase and cellobiose dehydrogenase 

as well as a hydroxynitrile lyase (Dreveny et al., 2001). To elucidate some of the key 

structural features that characterize the HTH protein, bioinformatics analyses using different 

tools were employed. Using the PROFsec tool a compositional ratio of 22% helix, 21% 

extended sheet structure and 57% loop was predicted, and GLOBPLOT predicted that HTH 

is likley a globular protein. UniProtKB/Swiss-Prot at Expasy (www.expasy.org) revealed a 

FAD binding site in the corresponding GMC_oxred_N conserved domain. SignalP identified 

a putative 19 amino acid (aa)-long signal peptide at the N-terminus with the cleavage site 

located between the 19th and 20th aa (confidence: 0.606). The only predicted transmembrane 

helix motif is located in this region, indicating that the cleaved mature HTH (theoretical 

molecular weight 62.2 kDa) is likely a non-transmembrane protein.  

Putative HTH expression patterns and transcriptional regulators were analyzed using 

various prediction tools (Figure 3.2). According to available microarray-based expression 
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data, HTH is expressed predominantly in apical meristem tissue, young floral buds, and 

young siliques. Among floral organs, petals and ovaries exhibited the strongest expression. 

The analysis of the 500 bp upstream region of the HTH gene using the CISTOME tool 

revealed two types of putative transcription factor binding sequences, CArG and MYC. 

CArG is a target of MADS-domain transcription factors that are involved in plant 

development, whereas MYC recognition sites are found in the promoter region of many 

stress-responsive genes. Two CArG sites were identified at -82 and -321 bp, and three MYC 

sites at -71, -290 and -303 bp upstream of the ATG codon. 

 Phenotypes of HTHpro:HTH-FP transgenic plants in the hth-9 background 

HTH protein localization has not been directly determined but rather only inferred using 

indirect methods such as in situ mRNA hybridization or promoter-reporter fusion constructs 

(Krolikowski et al., 2003; Kurdyukov et al., 2006b). To further investigate HTH protein 

localization, transgenic plants were generated to allow direct visualization of a HTH protein 

that was fused with either a yellow (YFP) or green fluorescent protein (GFP). To minimize 

artifacts due to over-expression, the expression of HTH-FP was driven by the full-length 5’ 

upstream 2009 bp-long region flanking the HTH gene. Two reporter constructs HTHpro:HTH-

EYFP and HTHpro:HTH-G3GFP were generated from host vectors pGWB640 and 

pGWB650, respectively (Nakagawa et al., 2007). The two translational reporter constructs 

were transformed into hth-9 mutant plants and tested for rescue of the mutant phenotype 

(Figure 3.3). Meanwhile, the host vectors were also transformed into hth-9 plants, and the 

resultant plants are referred to as empty vector (EV) lines.  
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Multiple independently isolated transgenic T1 plants were tested, and in every case hth-

9 plants transformed with the translational reporter constructs exhibited wildtype phenotypes. 

Mutant plants transformed with the empty vector pGWB640 retained the mutant phenotype, 

whereas hth-9 mutant plants harbouring the HTHpro:HTH-EYFP construct gave rise to 

phenotypically wildtype flowers (Figure 3.3B-E). Mutant hth-9 plants transformed with 

either translational reporter construct were phenotypically wildtype, and the observed 

expression patterns were also identical. Therefore, the resulted transgenic reporter plants will 

henceforth be collectively referred to as HTHpro:HTH-FP transgenic lines unless otherwise 

specified. 

The expression of HTHpro:HTH-FP was further verified by immunoblotting (Figure 

3.3F). While no immunoreactive protein species were detected in flowers of empty vector 

lines, an immunoreactive protein species approximately 135 kDa in size was detected in 

seedlings, flower buds and siliques using an anti-GFP antibody. However, HTH-FP protein 

was not detected in rosette leaves using this method.  

To determine whether HTHpro:HTH-FP transgenic plants also had cuticle permeability 

restored to wildtype levels, a chlorophyll extraction assay was conducted. Using this assay 

changes in cuticle permeability can be quantified; the more permeable the cuticle is, the 

faster chlorophyll can be extracted from leaves (Figure 3.4A). Similar to the floral 

phenotypes, the rates of chlorophyll extraction from HTHpro:HTH-EYFP transgenic plants 

and HTHpro:HTH-G3GFP were comparable to that of Ws wildtype. In contrast, the 

permeability of EV plants was comparable to that of mutant hth-9 plants.  
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By staining inflorescences and rosette leaves with toluene blue (TBO) it is possible to 

visualize differences in cuticle permeability between wildtype, hth-9 and transgenic plants 

(Figure 3.4B-G). Based on TBO staining, hth-9 tissues were more permeable than wildtype 

and transgenic plant tissues. While Ws inflorescence was only slightly TBO stained, hth-9 

younger bud pedicels and sepal edges were stained dark blue. Similarly, partially exposed 

hth-9 petal tissues were also stained. TBO staining of 10-day-old rosette leaves isolated from 

wildtype differed from the hth-9 mutant, but was similar to HTHpro:HTH-EYFP transgenic 

plants. 

In summary, expression of the HTHpro:HTH-FP in hth-9 mutants appeared to render 

transgenic plants phenotypically wildtype and restored cuticle permeability to levels 

comparable to those found in Ws wildtype plants. These results suggest that the HTH-FP 

fusion protein functionally complements the hth-9 mutant. 

 HTH-FP localization in seedlings and juvenile plants 

HTH-FP was detected in the primary and lateral roots, the hypocotyl, the shoot apical 

meristem (SAM) region, the cotyledons, and trichomes (Figure 3.5). The protein localization 

was predominantly detected in the vasculature of the hypocotyl and cotyledon as well as the 

hydathode (Figure 3.5B and D). Fluorescence was also detected in two-week-old plants in 

the leaf trichomes. As shown in Figure 3.5F, both EV and HTHpro:HTH-FP rosette leaves 

had trichomes, but only HTHpro:HTH-FP trichomes fluoresced. In the root, fluorescence was 

localized to the stele of both primary and lateral roots, but no fluorescence was detected in 

root hairs (Figure 3.6). In the cotyledons, hypocotyl, and emerging leaves of seedlings, HTH-
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FP appeared to be localized to the epidermis (Figure 3.7E and F). Vasculature localization 

was also evident (Figure 3.7C, E and F). Interestingly, punctates were observed in epidermal 

cells of the hypocotyl. Strong fluorescence was observed in the stipules of two-week old 

plants. At higher resolution, both epifluorescence and confocal laser scanning microscopy 

confirmed fluorescence in the cotyledon epidermis, including pavement and guard cells 

(Figure 3.8A, B, H and L). Fluorescence confined to small punctates or aggregates within 

these epidermal cells was also observed (Figure 3.8H). 

 HTH-FP localization in floral and reproductive tissues  

HTH-FP in floral tissues is shown in Figure 3.9. In young flower buds, green fluorescence 

was detected in the vasculature, floral receptacle and pistil (Figure 3.9A and C). In isolated 

sepals and petals, expression was prominent in the veins and epidermis (Figure 3.9F and I). 

In the pistil, fluorescence was confined to the ovary wall (Figure 3.9K). For anthers, 

fluorescence was observed in the stamen epidermis, vascular bundle and the cells between 

adjoining locules (Figure 3.9N and O).  

To further examine the temporal expression pattern of HTH, the ovules/developing 

seeds were examined by microscopies (Figure 3.10 and Figure 3.11). In a dissected ovary, 

HTH-FP was present in the chalazal region of individual ovules (Figure 3.10E). To observe 

HTH-FP localization over time, ovules were removed from the ovary at various time points 

prior to and following anthesis ((Figure 3.10F-M). Two days before anthesis (FG3-4), HTH-

FP became detectable at the chalazal end of the embryo sac and was confined to a relatively 

small area. At FG6, fluorescent protein signal was highly polarized to the chalazal end of the 
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embryo sac, coincident with the antipodal cells. At anthesis, the chalazal fluorescence 

became more diffuse, and fluorescence outside of the embryo sac was also observed  

After fertilization, integument expression became apparent at 3 day post-anthesis (+3 

DPA), and it persisted at later stages when HTH-FP was more pronounced in the chalazal 

and micropylar seed coat (Figure 3.11). In Figure 3.12F-H, epifluorescence microscopy 

images of the developing seed coat at three different time points after anthesis (+7, +8 and 

+10 DPA) indicate that HTH-FP was localized to the inner layer of the outer integument 

(oi1) and possibly also other integument layers underneath since it is possible that 

fluorescence from multiple cell layers was incorporated in those images. At the post mature 

stage (+20 DPA), the confocal images showed that in addition to localization to oi1, the 

HTH-FP was also detected in the cytoplasm of the columella structures in the oi2 layer 

(Figure 3.13I and K).  

 Seed mutant phenotypes 

Detecting HTH-FP in the integument prompted further investigation of seed phenotypes 

among various hth mutant lines (Figure 3.14). Although homogenous in size for each 

ecotype, the seed size varied greatly between ecotypes, with Ws seeds being the largest and 

Ler seeds the smallest. Interestingly, regardless of the ecotype background, all hth mutant 

seeds were visually larger and more variant in size than their respective wildtype 

counterparts. Seed weight differences corroborated these initial observations (Table 3.1). Ws 

seeds weighed twice that of Ler seeds. Furthermore, there was approximately a 1.5 - 2 times 

increase in weight for mutant seeds relative to the corresponding wildtype. In addition, 
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mutant seeds were misshapen and lacked the more regular oval shape typical of wildtype 

seeds (insets in Figure 3.14). Although only observed infrequently, intact seeds adhering 

superficially to one another were also found (Figure 3.14G-inset). Importantly, among of 

HTHpro:HTH-G3GFP and HTHpro:HTH-EYFP plants, relative seed size and weight was 

comparable to that of the wildtype. 

To examine whether the mutant seed coat also has elevated permeability, and more 

importantly whether HTHpro:HTH-FP expression restores it, the permeability properties of 

mutant and wildtype seed coats, were tested using tetrazolium red. Tetrazolium red is a 

cationic dye that is largely excluded by a normal Arabidopsis seed coat. However, if this dye 

permeates the seed coat and comes into contact with embryonic tissue, it is reduced to red-

coloured formazans by NADPH-dependent reductases offering a simple visual assay for seed 

coat permeability (Beisson et al., 2007). In the Col and Ws backgrounds, exposure of mutant 

seeds to tetrazolium red consistently stained embryos red while wildtype seeds were stained 

minimally (Figure 3.15A and B). This difference was less apparent for mutants in the Ler 

background where wildtype seeds were also stained to some extent (Figure 3.15C). Among 

T-DNA insertion lines hth-13 and hth-14 that showed severe flower fusion produced seeds 

allowing high levels of tetrazolium staining, whereas hth-15 that showed a moderate floral 

fusion phenotype only exhibited moderate tetrazolium staining of seeds (Figure 3.15A). For 

transgenic HTHpro:HTH-FP plants, the staining pattern resembled that of wildtype Ws plants 

(Figure 3.15B); mutant embryos that had been removed from tetrazolium treated seeds were 

larger and misshapen relative to their wildtype counterpart. Overall, these results are 
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consistent with the mutant seed coat having altered and probably elevated seed coat 

permeability. 

 Subcellular localization of HTH-FP  

As shown above in Figure 3.7 and Figure 3.8, HTH-FP was detected in the cotyledon petiole, 

emerging leaf primordia and the hypocotyl. Within cells HTH-FP is localized to a reticular 

network and occasionally to discreet spindle-shaped bodies (see Appendix C for images of 

homozygous T2 individuals that descended from four independent T1 lines). To further 

resolve HTH-FP’s subcellular localization, hypocotyl and pedicel cells of young seedlings 

were examined using confocal laser scanning microscopy (Figure 3.16F-M). Confocal 

imaging revealed that the punctates were predominantly spindle shaped and 5-10 µm in size. 

These bodies were motile, trafficking at a speed of 0.5-1 µm/sec in the cell.  

To establish the etiology of these cellular bodies, organelle-specific stains or lines co-

expressing organelle-specific reporter constructs were used and co-localization assessed. For 

mitochondria labeling (Figure 3.16N-P), a fluorescent dye TMRM (tetramethylrhodamine) 

that is readily sequestered by functional mitochondria was used, and its fluorescent emission 

can be separated from HTH-FP. TMRM-stained mitochondria, however, did not colocalize 

with the fluorescent bodies observed in HTHpro:HTH-FP seedlings. Similarly, colocalization 

to chloroplasts and nuclei was not detected (Appendix D).  

To test for localization to the ER, a more comprehensive analysis of expression in 

seedling hypocotyl cells was undertaken using an epifluorescence and confocal microscope 

(Figure 3.17). A Cauliflower Mosaic Virus 35S promoter-driven construct (Sinclair et al., 
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2009) that leads to the expression of an ER-targeted red fluorescent protein (erRFP) was 

transformed into wildtype Ws plants. As previously reported, the pattern of erRFP 

localization in wildtype plants was restricted to ER-derived structures (i.e. ER bodies) and 

the network, comparable to that of HTH-FP in the HTHpro:HTH-FP plant (Figure 3.17A-B). 

Furthermore, doubly transformed lines coexpressing HTHpro:HTH-FP and erRFP were 

generated. In most cases, HTH-FP was detected in both the ER network and bodies, while 

erRFP predominantly in bodies (Figure 3.17C-I). This difference between erRFP and HTH-

FP in distribution to ER domains was reflected on Pearson’s coefficients. When 

colocalization to the spherical bodies only was considered using region of interest (ROI) 

analyses, the coefficient is higher (0.79 ± 0.063) than the coefficient (0.25 ± 0.051) by using 

the entire region of images (n = 10). In summary, the colocalization of HTH-FP and erRFP in 

the spindle-shaped structures further verified the ER origin of these highly motile, elliptical 

bodies.  

 The effect of MeJA on the expression level of HTH 

ER bodies are commonly present in seedlings but rarely seen in rosette leaves. Yet, Hayashi 

et al. (2001) showed that methyl jasmonate (MeJA) and wounding can induce ER bodies in 

rosette leaves. HTH-FP’s localization to this stress-associated organelle suggests a possible 

role in stress response pathways. Experiments were carried out to determine whether 

exposure of plants to MeJA elevates HTH expression and whether in turn, MeJA exposure 

induces the formation of HTH-FP containing ER bodies. Ws wildtype were exposed to MeJA 

and RT-qPCR used to quantify changes in HTH expression in wildtype Ws rosette leaves. 

The RT-qPCR analysis showed that HTH expression was elevated in MeJA-treated wildtype 
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Ws plants (Figure 3.18A). Plants treated with MeJA showed dark purple colouration in the 

petioles of treated plants (Figure 3.18C) and an increase in expression of the MeJA 

responsive gene VEGETATIVE STORAGE PROTEIN 2 (VSP2) (Dombrecht et al., 2007). 

When HTHpro:HTH-FP epidermal cells along the rosette leaf midrib were examined using 

epifluorescence microscopy, HTH-FP was detected in the ER network and not ER bodies for 

water-treated control plants (Figure 3.18D). Following  MeJA-treatment HTH-FP 

fluorescence was localized to structures reminiscent of  ER bodies, suggesting that MeJA 

induces HTH relocalization to ER bodies (Figure 3.18E). Future experiments with the erRFP 

marker need to be conducted to confirm these preliminary data.
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Figure 3.1 Phenotypes of hothead mutants in different ecotype backgrounds. (A) Ler ecotype 

flowers were open and had fully expanded petals. Individual petals (p) and sepals (s) were 

well separated. Siliques were straight or with a slight curve. (B-H) Mutant flowers in the Ler 

background. (B) hth-5 flowers were not fully open and petals failed to emerge. (C-F) hth-4, 

hth-7 and hth-8 exhibit severe floral organ fusion. Flowers were completely closed, and 

petals were enclosed within the unopen bud. Siliques were often bent in severe mutants 

harboring these alleles. (G) hth-1 siliques were short and tangled. (H) A pistil protruded 

through the tip of a closed flower. Petals exposed due to opening of overlapping sepals 

(asterisk) although sepal edges remained fused near the distal end (arrow). (I) Wildtype 

Wassilewskija (Ws) ecotype flowers. (J-M) Flowers and siliques of hth-9, a mutant in the Ws 

background. (J) Mutant flowers were mostly closed and had an uneven undulating surface. 

Flower buds remained enclosed by the fused sepals. (K) Occasionally, tissue rupture (arrow) 

was observed at the edge of overlap. (L) In some mature flowers sepal separation did occur 

but the petals remain furrowed. (M) In general, mutant plants had smaller siliques and fewer 

fertilized carpels. (N) Flowers of wildtype Columbia (Col) and three T-DNA insertion 

mutants. hth-13 and hth-14 exhibit more severe floral fusion than hth-15. (O-R) Mutant hth-

13 plants produce shorter siliques that contain fewer mature seeds (ms). The majority of 

fertilized ovules failed to mature. These aborted seeds (as) are clearly distinguishable from 

unfertilized ovules (uo). Scale bar: (A-L, N) 2 mm; (M) 10 mm; (O) 5 mm; (P-R) 400 µm.  
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Figure 3.2 Predicted tissue expression patterns and promoter elements in the upstream 500 bp 

region of HTH. (A). A graphic representation of microarray-based expression patterns of the 

wildtype HTH gene. This illustration was generated by the electronic fluorescent pictograph 

browser (eFP Browser) at BAR (http://bar.utoronto.ca). HTH-FP was most prominent in 

apical meristem, young flower buds, young siliques and immature ovules. (B) Analysis of the 

500 bp upstream region of the HTH sequence. Two types of promoter elements, CArG and 

MYC, were identified. The CArG type element is a target of MADS-domain containing 

transcription factors that are involved in plant development, whereas MYC recognition sites 

are found in the promoter region of many stress-responsive genes. The numbers indicate the 

positions of elements relative to the ATG initiation codon. Promoter analysis was performed 

by the CISTOME tool of the Bio-Analytic Resource (www.bar.utoronto.ca) with the setting 

of Ze cutoff of 3.5, functional depth cutoff of 0.9 and proportion of genes of 0.5.   
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Figure 3.3 HTHpro:HTH-FP constructs and floral phenotype of transgenic plants. (A) 

Gateway pGWB640 and pGWB650 destination vectors contain a C-terminal tagged Gateway 

cassette that is flanked by attR sites (R1 and R2) (Nakagawa et al., 2007). The HTH gene 

with its putative promoter (the 5’ upstream region) is flanked by attL sites (L1 and L2) and 

subsequently swapped in place of the Gateway cassette, resulting in expression vectors 

HTHpro:HTH-EYFP and HTHpro:HTH-G3GFP (collectively referred to as HTHpro:HTH-FP). 

(B) Mutant flowers of untransformed hth-9 plants are fused. (C) Mature flowers of hth-9 

plants resemble those of mutant plants when transformed with the vector alone (empty 

vector). (D-E) Mutant hth-9 plants transformed with the HTHpro:HTH-FP vector showed a 

wildtype floral phenotype that is indistinguishable from the Ws wildtype. (F) An anti-GFP 

antibody cross-reacts with protein bands when protein extracts are electrophoresed, 

transferred to a supporting membrane and probed using immunoblotting techniques. The 

lower panel is a membrane that has been Ponceau stained showing relative protein loading. 

RB, right boarder; LB, left boarder; Pnos, promoter of the nopaline synthase gene; Tnos, 

terminator of nopaline synthase; bar, bialaphos resistance gene; EYFP, enhanced yellow 

fluorescent protein; G3GFP, G3 green fluorescent protein; L1, L2, R1, R2: Gateway attL and 

attR recombination sites for sequence exchange. M: protein marker. Scale bar = 0.5 cm.  
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Figure 3.4 Chlorophyll extraction rates for wildtype, hth-9 and transgenic lines. (A) A graph 

showing the rate of chlorophyll extraction from cauline leaves submerged in 80% ethanol 

over a period of 160 minutes. The chlorophyll concentration after 24 hours was set to be 

100% as the extraction maximum. Error bar = ± 2 standard error (n = 4). (B-G) Flowers and 

rosette leaves stained with toluidine blue (TBO). (B, F) Ws wildtype flowers. Petals and 

sepals were only lightly stained. Anthers were heavily stained (F). For hth-9 mutants (C), in 

addition to anthers, pedicels (pd) and sepal edges (se) were clearly stained. (D, E) The hth-9 

petals (p) and 10-day-old rosette leaves were more readily stained. Relative staining of 

transgenic flower tissues (HTHpro: HTH-EYFP/-G3GFP) resembled that of wildtype flowers. 

(G) A close-up showing stained sepal edges and petals of hth-9. EV: empty vector transgenic 

plants (pGWB640); HTHpro:HTH-G3GFP and HTHpro:HTH-EYFP: transgenic plants in the 

hth-9 background transformed with respective vectors. Scale bar: 2 mm. 
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Figure 3.5 Epifluorescence micrographs showing HTH-FP tissue localization in 

HTHpro:HTH-FP transgenic plants. Side-by-side comparisons of HTHpro:HTH-FP and empty 

vector (EV) seedlings. (A-C) For four-day-old seedlings, fluorescence was detected the shoot 

apical meristem (SAM) region, within the hypocotyl (hp), cotyledons (co), lateral roots (lr) 

and vasculature (v). No fluorescence was present in the root hair (rh). (D) In cotyledons, 

fluorescence was detected in the veins (v) and hydathode (h). (E-F) Fluorescence was 

detected in the trichomes (t) of true leaves from two-week-old plants. Fluorescence+Auto, 

merge of fluorescence (green) and autofluorescence (red). Scale bars: 500 µm. 
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Figure 3.6 Epifluorescence micrographs showing HTH-FP localization in the root of 4-day-

old HTHpro:HTH-FP seedlings. (A-D) HTH-FP was localized to the stele (s) of the primary 

root and emerging lateral root (lr). (E-H) The HTH-FP localization in the lateral root 

continued to show in a more developed lateral root. No fluorescence was detected in 

epidermal cells and root hairs (rh). (I-L) No expression was observed in empty vector 

controls. Fluorescence+Auto, merge of fluorescence (green) and autofluorescence (blue). 

Scale bar: 100 µm. 
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Figure 3.7 Epifluorescence micrographs showing HTH-FP localization in above-ground 

tissues of HTHpro:HTH-FP transgenic plants. (A-F) Four-day-old seedlings. (G-H) Two-

week-old plants. HTH-FP fluorescence was observed in young HTHpro:HTH-FP seedlings 

(A-C), whereas no fluorescence in empty vector seedlings (D). (E) The fluorescence was 

apparent in vasculature (v) of cotyledons (co) and hypocotyl (hp), as well as trichomes (t). 

(F) At higher magnification, HTH-FP fluorescence was observed in the shoot apical 

meristem (SAM) region and the epidermal cells (ep) of cotyledon petioles (cp) and emerging 

leaves (el). Fluorescent punctates (p) were observed in some epidermal cells. (G) In two-

week-old juvenile plants, HTH-FP was prominent in the stipules (st, arrows). (H) A stipule 

shown at higher magnification. Scale bar: (A-F) 500 µm; (G-H) 300 µm. 
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Figure 3.8 Micrographs showing HTH-FP in cotyledon epidermal cells. (A-H) Images 

captured using an epifluorescence microscope. (I-L) Images captured using a confocal laser 

scanning microscope. (A) Detection of HTH-FP in cotyledon epidermal cells (ep), veins (v) 

and hydathodes (h). (B) HTH-FP was observed in pavement cells and guard cells (arrow). 

(B-inset) A merged image of HTH-FP fluorescence and nuclei staining (blue) showing a 

guard cell at higher magnification. (C-E) No expression in the empty vector plants was 

detected. (F-H) HTH-FP is restricted to the epidermis, and fluorescent punctates (p) were 

observed. (I-L) Confocal images also indicated epidermal localization of HTH-FP. 

Fluorescence+Auto, merge of fluorescence (green) and autofluorescence (red). Hoechst 

nuclei staining is shown in blue. Scale bar: (A-B) 100 µm; (C-L) 50 µm. 
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Figure 3.9 Epifluorescence micrographs showing HTH-FP localization in floral tissues. (A-

B) young flower buds, (C) pistils, (D-I) sepals and petals, (J-M) pistil cross-sections, and (N-

P) anthers. (C-D, G) Side-by-side comparison of HTH-FP fluorescence in HTHpro:HTH-FP 

and empty vector (EV) transgenic lines. HTH-FP was detected in flower buds (A), the ovary 

wall (K), vasculature (E, H) and epidermis (F, I) of sepals and petals. (J-M) In the pistil, 

fluorescence was confined to the ovary wall. (N-P) Whole mount and cross section images of 

anthers showing HTH-FP fluorescence in the epidermis (ep), vascular bundle (vb) and cells 

between adjoining locules (lc, arrow). Only autofluorescence and no HTH-FP was detected 

for pollen grains (pg). Ws, Wassilewskija wildtype plant. Fluorescence+Auto, merge of 

fluorescence (green) and autofluorescence (red). Scale bar: (A-C) 100 µm; (D-P) 50 µm.  
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Figure 3.10 Micrographs of HTH-FP localization in ovules prior to fertilization. (A) 

Illustrations of the seven female gametophyte developmental stages (FG1-FG7). (B) An 

illustration of an Arabidopsis ovule showing the seven cells that make up the mature female 

gametophyte. (C) A differential interference contrast (DIC) image of a fully developed ovule. 

In the dissected ovary at stage FG6-7, no fluorescence was observed in the ovules isolated 

from empty vector plants (D, in the orientation as panel C). (E) Fluorescence was detected at 

the chalazal end of embryo sacs of HTHpro:HTH-FP plants. An ovule is outlined and is 

shown in the same orientation as the ovule in panel B. (F-M) HTH-FP localization in 

unfertilized ovules at different stages. The female gametophyte developmental stages are 

matched with the ovule sampling time relative to anthesis. Two days before anthesis, HTH-

FP became detectable at the chalazal end of the ovule and it became more diffuse at anthesis. 

(N-O) In this ovule, fluorescence was less diffuse and was detected in discreet entities in the 

chalazal region, coincident with the antipodal cells. The embryo sac is outlined. The boxed 

region is shown at higher magnification panel P. (P) The arrowheads point to distinct entities. 

ac: antipodal cell; cc, central cell; sc, synergid cell; ec, egg cell; f, funiculus; mp, micropyle. 

Fluorescence+Auto, merge of fluorescence (green) and autofluorescence (red). 

Fluorescence+Auto, merge of fluorescence (green) and autofluorescence (red); 

Fluorescence+Auto+BF, merge of fluorescence, autofluorescence and bright field images 

(black and white). Scale bar: 100 µm.   
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Figure 3.11 Micrographs showing HTH-FP localization in seeds at different developmental stages. 

Three days after anthesis, the integumental expression became apparent. The expression 

persisted to later developmental stages, particularly in the micropylar (mp) and chalazal (ch) 

seed coat. BF, bright field; Fluorescence+Auto, merge of fluorescence (green) and 

autofluorescence (red). Scale bar: 100 µm. 
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Figure 3.12 Seed structure and HTH-FP localization. Schematic diagrams showing the seed (A) 

and seed coat structure (B; modified from www.seedgenenetwork.net). The seed coat is 

composed of the outer integument (oi) and the inner integument (ii). Each integument is 

comprised of an outer (‘2’) and an inner (‘1’) layer. Between ii2 and ii1 (also known as 

endothelium, et), an internal cell layer (ii1’) is present towards the chalazal zones of the seed 

coat. The outer integument is separated from the inner integument by an electron-dense cell 

wall layer (‘wall 3’) that is rich in cutin-like material. The vast majority of the wall material 

deposited in wall 3 is produced by the oi1 layer. (C-E) Epifluorescence micrographs showing 

HTH-FP localization in +7 DPA maturing seeds. HTH-FP (fluorescence, green) is localized 

to the integument that is external to the embryo sac (autofluorescence, red). (F-H) Images at 

higher magnification indicates that HTH-FP was not detected in the outermost oi2 layer but 

the inner layer of the outer integument (oi1) and possibly also inner integumentary layers. 

(H) Cross-section through the ovary showing an ovule ten days after anthesis. DPA, day post 

anthesis; BF, bright field; Fluorescence+Auto, merge of fluorescence (green) and 

autofluorescence (red); Fluorescence+BF, merge of fluorescence and bright field; 

Fluorescence+Auto+BF, merge of fluorescence, autofluorescence and bright field. Scale bar: 

100 µm. 
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Figure 3.13 Confocal images of HTH-FP in the seed coat of a developing seed (+20 DPA) at 

the post mature stage. (A-C) No fluorescence was detected in the Ws wildtype seed coat. (D-

F) At this later developmental stage, HTH-FP was detected in the outer layer (oi2) in addition 

to the inner layer (oi1) of the outer integument. (G) An illustration of the outer integuments 

of a developing seed at the post mature stage. Amyloplast-containing columella are present in 

the oi2 cells. (H-I) The inset in panel F at higher magnification. Two layers of the outer 

integument, oi2 and oi1, are indicated. Within a single oi2 cell, the columella has developed 

in the center and two mucilage compartments are on the side. (J-L) Top view of the oi2 layer. 

No HTH-FP was not detected in amyloplasts (arrowhead) within the columella but rather in 

the cytosol. mu, mucilage; co, columella. Scale bar: (A-F, H-I) 50 µm; (J-L) 20 µm.  
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Figure 3.14 Seed images of wildtype and mutant plants. (A-D) hth-13, hth-14 and hth-15 are 

T-DNA insertion mutants in the Col background. (E-H) hth-1, hth-4 and hth-8 are mutants 

isolated in the Ler background harboring single point mutations. (I-J) The hth-9 mutant 

harbours a single point mutation and was isolated in the Ws background. (K-L) Seed derived 

from two independent transgenic lines in the hth-9 background. (B, C, G, H-inset) Misshaped 

seeds (arrow) are shown at higher magnification. (G-inset) Two of the misshaped seeds are 

attached (arrowheads). Ecotype: Ler, Landsberg erecta; Ws, Wassilewskija; Col, Columbia. 

Scale bar: 1 mm.  
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Table 3.1 A table summarizing the weight of wildtype and mutant seeds. The relative seed 

weight for each wildtype ecotype background was normalized to 100%. Seed weight differs 

among ecotype backgrounds (Ws> Col> Ler). The seed weight of mutants was consistently 

greater than seed derived from the corresponding wildtype lines. The weight of seeds from 

two transgenic plant lines (HTHpro:HTH-G3GFP/EYFP) resembles that of Ws. Ecotype: Col, 

Columbia; Ler, Landsberg erecta; Ws, Wassilewskija. 
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Figure 3.15 Floral phenotypes and seed coat permeability of plants. Flowers, tetrazolium-

treated seeds and dissected embryos of isolated wildtype, mutants and transgenic plants in the 

Col (A), Ws (B) and Ler (C) backgrounds. Without exception, mutant seeds displayed more 

prominent staining. The transgenic HTHpro:HTH-FP plants showed fully open and unfused 

flowers, normal seed size and seed coat permeability. Ler wildtype seeds were more readily 

stained than those of Ws and Col. The ecotype background is indicated in each case. Scale 

bar: flower, 5 mm; seed and embryo, 1 mm. 
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Figure 3.16 Micrographs showing HTH-FP localization in hypocotyl cells of four-day-old 

HTHpro:HTH-FP transgenic seedlings. (A) HTH-FP was observed in discreet bodies 

(arrowhead) in young seedlings. (B-E) Images of hypocotyl epidermal cells. HTH-FP was 

sometime predominantly localized to in the bodies and sometime also in a reticular network 

(bracket) (D). The bodies were spindle shaped and are typically 5-10 µm in size. (F-M) 

Images of time-series showing movement of HTH-FP-containing bodies in cotyledon petiole 

epidermal cells. These spindle-shaped bodies (arrowhead) moved approximately 0.5-1 

µm/sec. The direction of movement is indicated (dashed arrow). (N-P) Images of 

HTHpro:HTH-FP transgenic cotyledon petiole epidermal cells stained with the mitochondrial 

dye, TMRM. HTH-FP fluorescence does not colocalize with the TMRM-stained 

mitochondria. HTH-FP (G3GFP; 505-530 nm) and TMRM (550-600 nm) were detected in 

two emission wavelength ranges. A-E, epifluorescence images; F-P, confocal images. Scar 

bar: (A-E) 50 µm; (F-P) 20 µm.  
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Figure 3.17 Colocalization of HTH-FP and erRFP in hypocotyl cells of four-day-old 

seedlings. (A) Ws wildtype harbouring the erRFP construct. (B) HTHpro:HTH-FP transgenic 

plants. (C-I) HTHpro:HTH-FP transformed with the erRFP construct. A-E, epifluorescence 

micrographs; F-I, confocal micrographs. Pearson's colocalization coefficient based on region 

of interest (ROI) analysis: 0.79 ± 0.063 (n = 10). Merge, overlapping images of HTH-FP 

(green) and erRFP (magenta). Scar bar: 20 µm.  
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Figure 3.18 MeJA-induced changes in HTH expression and HTH-FP localization . (A-B) RT-

qPCR analysis of HTH expression in wildtype Ws plants. (A) HTH expression was elevated 

in 11-day old MeJA-treated Ws. Exposure to MeJA increased VSP2 (VEGETATIVE 

STORAGE PROTEIN 2) expression. Numbers 1-4 indicate four biological replicates. Three 

technical repeats were performed for each biological sample. Error bar: 1 standard error of 

the technical repeats. **p < 0.001 (t-test). (B) The coefficient variances and M values of 

housekeeping genes used to normalize HTH and VSP2 expression. (C) The dark purple 

colouration is due to anthocyanin deposition. Only MeJA-treated Ws plants gave rise to 

purple petioles. (D-E) HTHpro:HTH-FP plants were observed. Leaf midrib epidermal cells 

showing HTH-FP localization with and without MeJA treatment. Fluorescence was detected 

in the ER network for both control and MeJA-treated plants. More ER bodies (arrow) 

containing HTH-FP were observed in the MeJA-treated samples. Scale bar: 20 µm. 
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 Discussion 

 Floral fusion phenotypes and cuticle permeability 

The organ fusion of hth mutants is predominantly restricted to flowers, as seen in many other 

organ fusion mutants described previously. Lolle et al. (1998) isolated and characterized 29 

independently derived mutations that led to organ fusion in Arabidopsis. Using 

complementation analyses, nine putative genes, including HTH, were identified. These 

mutants most commonly showed interorgan fusions within the flowers ranging in severity. 

Occasionally fusion events between vegetative tissues (e.g., fiddlehead and thunderhead) and 

abnormal ovule morphology (e.g., hth and deadhead) were observed. Results of the 

chlorophyll extraction assay revealed that the cuticle of most mutants were more permeable, 

suggesting the organ fusion phenotype was caused by a defective cuticle. Studies on these 

mutants have led to the characterization of genes such as FIDDLEHEAD involved in very 

long chain fatty acids (VLCFA; longer than 18 carbons) elongation reactions required for 

cuticular wax synthesis, and fatty acid analyses of hth-12 mutants have suggested the 

involvement of HTH in cutin biosynthesis (Kurdyukov et al., 2006b; Pruitt et al., 2000; 

Yephremov et al., 1999).  

Numerous hth mutant alleles have been generated by single point mutations, transposon 

mutagenesis, and T-DNA insertion. Floral fusion of mutant lines in the Ler background (hth-

1 to hth-11, except hth-9) has been described previously (Krolikowski et al., 2003; Lolle et 

al., 1998). Mutants in the Col and Ws backgrounds were examined in the current study and 

have not been extensively evaluated previously. For mutants in Ler, fusion propensity varied 
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greatly, with hth-5 mutants showing weak fusion and hth-1 mutants showing stronger fusion 

that completely blocked petal emergence. For hth-4, petal emergence was not completely 

prevented. Often the sepals remained joined at the distal end of the closed flower (Figure 

3.1), revealing the “adhesion of calyx edge” phenotype. The HTH gene was originally 

identified as ADHESION OF CALYX EDGES (ACE) because of fusion between sepal 

epidermal cells (Araki et al., 1998). In hth-9 mutants, tissue rupture along sepal edges was 

also evident. Interestingly, TBO staining was apparent along hth-9 sepals margins (Figure 

3.4), consistent with hth-9 plants potentially having higher cuticle permeability at calyx 

edges.  

In the Col background, T-DNA insertions in HTH also resulted in a floral organ fusion 

phenotype. Like hth-9 mutants, hth-13 and hth-14 gave rise to shorter siliques that generally 

contained fewer seeds than wildtype (approximately a 90% decrease). For hth-15 plants, 

however, floral fusion was less severe and silique length intermediate. This difference in 

fusion severity might be due to the position effect since the insertion sites of hth-13 and hth-

14 are in the exons of the HTH gene, and the insertion of hth-15 is located in the 5’ upstream 

putative promoter region (Figure 1.8).  

 HTH tissue expression 

To date, HTH expression has been studied using methods that include promoter-reporter 

constructs (HTHpro:GFP), in situ mRNA hybridization and reverse transcription-polymerase 

chain reaction (RT-PCR) assays. Krolikowski et al. (2003) used RT-PCR and in situ mRNA 

hybridization to show that HTH mRNA is expressed in all organs tested including the leaf, 
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root, inflorescence and siliques; moreover, the expression was found not only in the 

epidermis but also in subepidermal cells. In contrast, results reported by Kurdyukov et al. 

(2006b) showed that HTH expression was exclusive to the epidermis, as shown by results of 

both HTHpro:GFP and in situ mRNA hybridization.  

To expand on these previous works, transgenic lines harbouring YFP or GFP tagged-

HTH proteins were generated by expressing HTHpro:HTH-FP constructs in both wildtype 

and hth mutant plants. To minimize possible expression artifacts, the entire 2009 bp-long 

5’upstream region of the HTH gene was cloned as the promoter to drive the transgene 

expression. Results of a preliminary RT-qPCR experiment (Appendix E) indicated that the 

expression levels of wildtype HTH in Ws and the transgene (HTH-FP) in a HTHpro:HTH-FP 

line were quite comparable, suggesting that the observed HTH-FP localization was unlikely 

an artifact of excessive overexpression. Even so, the fluorescent tagging itself may be 

sufficient to alter function or localization of the target protein by masking function motifs, 

changing conformation or interfering with binding partners (DeBlasio et al., 2010; Tanz et 

al., 2013). Therefore, a complementation test was conducted to confirm normal function of 

the tagged protein. The fact that the HTHpro:HTH-FP construct rescued all hth-9 mutant 

phenotypes, including organ fusion, cuticle and seed coat permeability and seed size, 

provides evidence that the C-terminal fluorescence tag did not disrupt HTH function, and 

HTH fusion protein localization was likely reflective of the native HTH protein. 

Analyses of seedlings and young plants in this study revealed that HTH-FP was 

localized to shoot epidermal cells, seedling vascular tissue, the hypocotyl, cotyledons, 
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emerging true leaves, trichomes, the apical meristem region and the stele of primary and 

lateral roots. However, fluorescence was absent in the root epidermis, root hairs, and 

subepidermal mesophyll tissue (Figure 3.5 to Figure 3.8). These localization patterns in 

seedling are similar to those found by Kurdyukov et al. (2006b) who also reported HTH 

promoter (1.9 kb upstream region of the gene)-driven GUS (β-glucuronidase) expression in 

the shoot apical meristem region and in emerging leaves. In addition, HTH-FP in emerging 

lateral roots (Figure 3.6) is also in keeping with observations made by Kurdyukov et al. 

(2006b), although Kurdyukov and colleagues did not report HTH-FP expression in the stele 

of primary roots.  

In addition, to the best of my knowledge, this study provides the first evidence of HTH-

FP in the trichomes and guard cells. Fluorescence detected in trichomes, as shown in Figure 

3.5 and Figure 3.7, suggests that the presence of HTH-FP in trichomes initiates early (4-day-

old seedling) and continues to the later stage of development (2-week-old plants). Trichomal 

expression has been reported for another cuticle-associated gene, DCR. Mutant dcr plants 

have a defective cuticle that results in postgenital organ fusion with significant reduction of a 

hydroxylated 16-carbon fatty acid (Panikashvili et al., 2009). Its encoded protein is localized 

to the epidermal cells and trichomes, and occasional tangling of expanding trichomes has 

been reported in the dcr mutant (Marks et al., 2009). Likewise, reduced trichome numbers or 

morphological abnormalities were also reported for mutants of FDH (wax biosynthesis) and 

LCR (cutin biosynthesis) that exhibit organ fusion, although no trichomal expression has 

been directly observed (Pruitt et al., 2000; Wellesen et al., 2001).  
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Expression of genes like HTH in the vasculature is less readily explained. However, 

other genes known to be involved in cuticle biosynthesis are expressed in vascular tissue. For 

example, FDH mRNA was detected in the phloem tissues by in situ RNA hybridization and 

LACS1 (long-chain fatty acid synthesis) in the primary and lateral root, and vasculature 

bundle of young leaves (Weng et al., 2010).  

HTH-FP in floral buds, sepals, petals, stamens and ovaries (Figure 3.9) is consistent 

with what observed by Kurdyukov et al. (2006b) and was not unexpected given the 

diagnostic floral fusion phenotype of hth mutants. These localization patterns also are in 

accordance with the microarray-based profiles (Figure 3.2) that showed little expression in 

rosette leaves and high levels of expression in young floral buds, petals, carpels, siliques and 

their ovules, a result consistent with the floral organ fusion phenotype seen in these mutants. 

These transcript-based expression patterns are also consistent with profiles seen in the 

immunoblotting results of HTHpro:HTH-FP transgenic lines (Figure 3.3). 

In this study we corroborate earlier findings showing HTH expression in maternally 

derived ovule tissues but, as discussed below, extend this to include expression in accessory 

cells in the mature embryo sac. HTH-FP ovule localization was polarized and specifically 

localized to the chalazal end of the embryo sac (Figure 3.10). Although Kurdyukov et al. 

(2006b) also demonstrated expression in the embryo sac, it was not restricted to the chalazal 

end. These authors also showed expression in the integuments which are sporophytically 

derived and share a common L1 origin with epidermal cells.  
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The subepidermal localization of HTH-FP in the ovary wall (Figure 3.9C) contradicts 

the results reported by Krolikowski et al. (2003) and Kurdyukov et al. (2006b). These 

differences might be attributed to methodology. In this study the entire genomic region 

encoding the HTH protein was translationally fused to fluorescent reporter genes and the 

constructs driven by the full-length HTH promoter, whereas Kurdyukov et al. (2006b) did not 

use a translational fusion construct.  

The method employed by Krolikowski et al. (2003) who use in situ RNA hybridization 

to detect HTH transcripts instead of the HTH protein might also contribute to the different 

expression profile observed in the current study. Krolikowski et al. (2003) reported that HTH 

expression appeared to be present uniformly in epidermal and subepidermal tissues. As is 

evident from a growing body of literature, cells and tissues to which a protein localizes may 

not correspond directly to those synthesizing the mRNAs; that is, the mRNAs or proteins 

may be non-cell autonomous (Lee et al., 2011; Zhou et al., 2014). A classic example of non-

cell-autonomous regulation can be seen in the regulation of root hair (H) and non-hair (N) 

cell fates in root epidermis. In situ hybridization and promoter fusion studies revealed that 

GLABRA 3 (GL3) mRNAs are specifically expressed in H cells and not N cells, but the GL3 

protein was found in both H cells and N. This GL3 protein distribution is achieved by 

transport of the protein itself through the plasmodesmata between the two adjacent cell types 

(Bernhardt et al., 2005). In some cases, the RNA transcripts and not the proteins can travel 

long distance to other organs. For instance, mRNA transcribed by the NACP gene CmNACP, 

a member of the NAC domain gene family of transcription factors, was found in the phloem 

sap of mature pumpkin (Cucurbita maxima) leaves. Heterograft studies furthermore showed 
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that this mRNA could accumulate in cucumber (Cucumis sativus) scion phloem and apical 

tissues, suggesting that specific mRNA transcripts are transported from the body of the plant 

to the shoot apex (Ruiz-Medrano et al., 1999).  

 A possible role for HTH in female gametophyte development  

Female gametophyte development consists of two phases: megasporogenesis followed 

by megagametogenesis. During Arabidopsis megasporogenesis, the diploid megaspore 

mother cell gives rise to four haploid megaspores via meiosis. Three of these megaspores 

degenerate, and the one that survives becomes the functional megaspore. During Arabidopsis 

megagametogenesis, the functional megaspore develops into the mature female gametophyte 

in seven stages. At the first stage (FG1, female gametophyte stage 1), the functional 

megaspore contains a single nucleus. This nucleus undergoes mitosis without cell division, 

and this is the double-nucleate FG2 stage. The two nuclei move to the opposite ends of the 

embryo sac and a vacuole forms in the center, defining the FG3 stage. With one more round 

of mitosis, four nuclei are present at FG4. At FG5, one more nuclear division occurs and are 

followed by cellularization. During cellularization, two polar nuclei migrate toward the 

center. At FG6, the mature megagametophyte consists of seven cells and eight nuclei. 

consisting of an egg cell, two synergids, a central cell and three antipodal cells. At FG7, 

degeneration of the three antipodal cells occurs and the final four-celled female gametophyte 

(i.e. also known as the embryo sac) is ready for fertilization. After fertilization, gametic cells, 

the egg cell and the bi-nucleate central cell, form the embryo and the endosperm respectively 

(Christensen et al., 1997; Drews et al., 1998; Drews and Koltunow, 2011).  
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A role for the HTH protein in the female gametophyte development is supported by 

genetic evidence (Pagnussatt et al, 2005) and by HTHpro:HTH-FP temporal expression 

patterns shown here (Figure 3.10). HTH-FP was detected early in developing ovules (at 

about the FG3 stage), a stage when the two nuclei migrate to the opposite ends of the embryo 

sac symplasm and a large vacuole forms at the center. As the ovules mature, HTH-FP 

appears to resolve to distinct entities at the chalazal pole of the embryo sac. Following 

anthesis and fertilization, fluorescence becomes markedly diffuse as would be expected if 

cellular integrity were lost. 

Pagnussat et al. (2005) analyzed the eda17 mutant, a mutant hth allele generated by Ds 

transposon insertion, and showed developmental arrest at the FG3/two-nuclear stage. Ovule 

abnormalities of two hth mutants (hth-8 and hth-10) have also been reported previously 

(Lolle et al., 1998). This timeline of HTH-FP expression corresponds to the stage at which 

mutant ovules arrest and further supports a role for HTH in embryo sac development. 

Interestingly, no hth mutants with floral fusion phenotypes have mutations within a 1 kb 

genomic region at the 5' end of the gene, a region that includes the first two introns and 

exons. These genetic studies suggest that mutations falling within this 1 kb region either do 

not result in a visible phenotype or cause lethality. Identification of eda17, a mutant that 

harbors a Ds transposon insertion in the first intron suggests that this region (and perhaps the 

intron itself), is essential for female gametophyte development. Both genetic and expression 

data provide evidence for sporophytic and gametophytic HTH functions.  
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Antipodal cells are metabolically active and one proposed function is nourishing the 

embryo by transporting metabolites to the central cell via plasmodesmata (Vijayaraghavan et 

al., 1988). Secretory activity linking antipodal cells and the endosperm syncytium has been 

reported in wheat (Triticum aestivum L.). In wheat plants, large vacuoles of the endospermal 

syncytium contained fragments of the nucleolus and chromatin were extruded from adjacent 

antipodal cells (Chaban et al., 2011). However, what role HTH serves in accessory cell 

development and/or function remains unclear. 

 A novel role for HTH in seed coat development  

Mutant hth seeds were found to be 1.5 - 2 times larger than their wildtype counterpart, and 

were often misshapen and occasionally adhered to each other (Figure 3.14). In addition, the 

mutant seed coats showed enhanced permeability as demonstrated by tetrazolium assays 

(Table 3.1). These seed phenotypes were rescued by expressing HTHpro:HTH-FP constructs 

in the hth-9 background, demonstrating a previously unknown role for HTH in seed 

development.  

The question of how seed coat permeability is related to the normal function of the post-

embryonic epidermal cuticle remains. Some clues can be found in considering the relative 

fusion phenotypes of various hth alleles. For example, in comparing the relative severity of 

floral organ fusion, it is clear that hth-15 shows a milder fusion phenotype then either hth-13 

or hth-14. This same pattern is reflected in seed coat permeability, with hth-15 showing much 

decreased tetrazolium red staining (Figure 3.15). Similarly, hth-15 mutants tend to produce 
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fewer morphologically abnormal seeds. Whether or not similar trends exists among hth 

alleles in different ecotype backgrounds is an area for future investigation.  

The Arabidopsis seed coat is maternally derived and is composed of four to five cell 

layers that develop from the ovule integument. During early female gametophyte 

development, the megaspore mother cell is surrounded by the outer and inner integuments, 

which are both of epidermal origin (Beeckman et al., 2000). Each integument consists of two 

layers; however the inner integuments have an extra internal layer (ii’) between ii1 and ii2 

(Figure 3.12B). Vacuoles appear in the cells of the outer integument at the onset of 

embryogenesis, and amyloplasts start to form at the globular stage. In the outermost 

integument layer (oi2) mucilage production initiates at the torpedo stage. These cells 

gradually mature into specialized cells designed for seed rupture and mucilage release. When 

the embryo reaches the walking stick stage (expanding embryo), the enlargement of the 

mucilage compartments pushes cytoplasm and amyloplasts towards to the middle and form a 

small column, i.e. columella, that line up in the center of the oi2 cell (Figure 3.13G). At the 

desiccation stage, oi1, ii1’ and ii2 collapse to form the brown pigment layer that gives the 

brown colour of mature seeds (Beeckman et al., 2000; Creff et al., 2015; Windsor et al., 

2000).  

At the torpedo stage, in addition to the initiation of mucilage development, deposition of 

a thickened periclinal cell wall commences between the outer and inner integuments, also 

known as “wall 3”. Thickening of the primary wall rather than the formation of a secondary 

wall is responsible for increasing the width of wall 3 (Beeckman et al., 2000). Wall 3 is 
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deposited between the two L1-dervived integuments and represents a zone of fusion between 

oi1 and ii2. Similar to the leaf epidermal cuticle, an electron dense layer of cutin-like 

polyester material has been identified within wall 3 as well as a cuticle on the oi2 and 

ii1/endothelium layer (Beeckman et al., 2000; Creff et al., 2015; De Giorgi et al., 2015; 

Molina et al., 2008; Watanabe et al., 2004). Creff et al. (2015) showed that the innermost cell 

layer of the outer integument (oi1) is mainly responsible for wall 3 deposition. Interestingly, 

wall 3 thickening was shown to be regulated by mechanical stress. Wall 3 has been proposed 

to limit seed size by serving as a corset around the developing seed. It was suggested that 

mechanical pressure on the seed coat due to embryo and endosperm expansion is sensed by 

oi1, and in response oi1 thickens wall 3. 

Examination of HTHpro:HTH-FP developing seeds using both epifluorescence and 

confocal microscopy show HTH-FP localization in the ovule integument which later 

becomes the seed coat (Figure 3.11 to Figure 3.13). HTH-FP was initially detected in the 

mechanosensitive oi1 integument layer (Figure 3.12) and later in both oi1 and oi2 layers in 

the post mature stage (Figure 3.13) (Creff et al., 2015; Western et al., 2000; Windsor et al., 

2000). This HTH-FP localization to the seed coat is in accordance with the transcriptome-

based analyses reported previously (Appendix F). Taken together with the observed increase 

in seed size and changes in seed coat permeability, these data suggest a possible role for HTH 

in the production of the cutin-like polyester materials of the oi2 layer and wall 3 which is 

positioned at the boundary of two integumentary layers. Increased seed coat permeability 

may be a consequence of changes to the composition and integrity of the cuticle-like 
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structures of the hth mutant seed coat, since changes in the cuticle of vegetative tissues can 

lead to similar consequences for differential permeability (Lolle et al., 1998).  

Like the shoot epidermis, the integumentary cells of epidermal origin likely take part in 

the formation of a selectively permeable barrier. One way to achieve this is to synthesize an 

extracellular matrix, such as the wall 3 or the endothelium cuticle layer, that shares properties 

with the cuticle typically found on shoot epidermal cells. Therefore, common genes might be 

shared for cuticle (or cuticle-like layers) synthesis of the shoot and seed coat. Genes essential 

for shoot cuticle formation have also been reported to take part in seed coat development. 

The seed coat of dcr mutants, for example, has been shown to be more permeable resulting in 

greater toluidine blue staining than seen in Columbia wildtype seeds. Additionally, mutant 

dcr seeds were often deformed and occasionally fused and failed to release mucilage upon 

imbibition (Panikashvili et al., 2009). In bdg1 mutants, toluidine blue could permeate seeds 

and stain the endosperm, and possibly as a consequence of this enhanced permeability, 

showed reduced seed viability and dormancy (De Giorgi et al., 2015). GPAT5, a member of 

the glycerol-3-phosphate acyltransferase group, like HTHpro:HTH-FP, has been shown to be 

expressed in the oi1 layer. Seeds harbouring mutations in the GPAT5 gene showed altered 

permeability to tetrazolium dyes (Beisson et al., 2007; Molina et al., 2008). Although it is 

unknown whether a direct causal link exists between the observed changes in seed coat 

permeability and changes in wall 3 it remains a possibility that the epidermal cuticle and seed 

coat share overlapping biosynthetic pathways. 
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The Ler ecotype harbours a mutant allele of ERECTA and conditions some 

developmental aspects of the seed coat, including seed coat permeability. The ERECTA (ER) 

gene encodes a receptor kinase and its mutation has pleiotropic effects. As with other ER-like 

genes, ER regulates plant architecture, such as internode and pedicel elongation, axial 

polarity and stomata patterning, likely through modulating cell division and expansion (van 

Zanten et al., 2009). Although the er mutation itself did not result in ovule abnormities, it has 

been shown to enhance the severity of mutations that target female gametophyte 

development as demonstrated in short integuments1 (sin1) (Lang et al., 1994) The effect of 

hth-4 and hth-8 on seed coat permeability in this genetic background may therefore be less 

obvious, although increases in seed size and morphological abnormalities were still evident.  

 HTH is associated with stress responses 

ER bodies were originally described as ‘mystery organelles’ by Gunning (1998) because 

their size and shape are distinct from other ER-derived subcellular structures, such as coat 

protein vesicles that are responsible for protein export from the ER, and precursor-

accumulating vesicles that mediate the direct protein transport from the ER into vacuoles 

(Hara-Nishimura et al., 1998). A few years later, ER-targeted green fluorescent protein was 

used to confirm that these fusiform structures had an ER origin (Hawes et al., 2001), while 

ultrastructure studies provided evidence for these bodies being surrounded by membranes 

with ribosomes (Hawes et al., 2001). Hayashi et al. (2001) proposed the term ‘ER bodies’ to 

describe these distinctive ER-derived structures. Similar structures have since been reported 

in 46 other species of Brassicaceae, seven species of Capparaceae and four species from 

other families (Hara-Nishimura and Matsushima, 2003).  
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Several structural features predict that the HTH protein resides in the ER lumen. Based 

on bioinformatics analysis, HTH is predicted to be a globular protein without transmembrane 

helix motifs. It has a putative N-terminal signal peptide (1-19 a.a), although it lacks a C-

terminal ER-retention motif. ER-resident proteins often have C-terminal ER retention signals 

such as KDEL, HDEL, or REEL. These motifs allow for selective retrieval to the ER from 

the ER-Golgi intermediate compartment or the Golgi complex via a recycling pathway. For 

example, in Arabidopsis a major protein component of ER bodies is a β-glucosidase called 

PYK10 that has a KDEL retention signal at the C-terminus (Matsushima et al., 2003b). 

Although evidence presented here putatively localizes the HTH-FP protein to the ER and ER 

bodies, HTH does not contain a canonical C-terminal ER retention signal (i.e. KDEL, HDEL, 

or REEL) but instead has three KDEL-like sequences ([KRHQSA]-[DENQ]-E-L) at amino 

acid positions 270 (KDEK), 310 (KKEL), and 387 (KNEL). These signal motifs are 

predicted to position at or near exposed protein surfaces potentially allowing interactions 

with other proteins such as ER-sorting receptors. HTH ER retention could also be achieved 

by motifs other than those KDEL and KDEL-like signals; for example, the N-terminal 

tandem repeat PPPVHL and C-terminal cysteine-rich motif of maize γ-zein are essential for 

retention in the ER and ER-derived protein bodies (Saumonneau et al., 2011). Moreover, the 

retention motifs can be present in either the C- or N-termini as is the case for a rice prolamin, 

whose ER-retention motif resides in the middle of the protein sequence (Masumura et al., 

2015).  

Protein retention in ER bodies can also be achieved by other means such as protein 

aggregation. For instance, some Arabidopsis proteins known to reside in ER bodies such as 
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the vacuolar processing enzyme RESPONSIVE-TO-DESICCATION 21 (RD21) and the 

vacuolar invertase FRUCTOSIDASE 4 have no ER retention signals (Hayashi et al., 2001; 

Rojo et al., 2003), but are thought to be retained forming aggregates with β-glucosidase 

PYK10 (Hara-Nishimura et al., 2004). Instances of β-glucosidase aggregates have also been 

demonstrated in oats (Kim et al., 2000) and flax seedlings (Fieldes and Gerhardt, 1994).  

One well known response to wide-ranging adverse environmental factors such as 

drought, pest or pathogen attacks is the formation of ER bodies (Hara-Nishimura and 

Matsushima, 2003; Matsushima et al., 2002; Matsushima et al., 2003a; Matsushima et al., 

2003b). ER bodies are commonly present in seedling cotyledon epidermal cells, hypocotyls 

and roots of young Arabidopsis seedlings. These bodies, however, are rare in rosette leaves  

but can be induced by wounding, salt stress or stress signaling compounds (Hara-Nishimura 

and Matsushima, 2003; Hayashi et al., 2001; Matsushima et al., 2002; Ogasawara et al., 

2009). For example, treatment with the wound hormone, methyl jasmonate (MeJA), has been 

shown to induce ER body formation in rosette leaves, and this induction did not occur in 

MeJA-insensitive coronatine-insensitive 1 (coi1) mutant plants (Matsushima et al., 2002). In 

addition, Ogasawara et al. (2009) demonstrated that ER body formation is a systemic defense 

response, showing that when one of two seedling cotyledons was wounded, both the 

damaged and the intact cotyledon had increased the number of ER bodies.  

Epifluorescent and confocal microscopy imaging revealed that the HTH-FP were 

localized to 5-10 µm-long, spindle-shaped motile bodies that move at a maximum speed of 

0.5-1 µm/sec in the hypocotyl cell (Figure 3.16A-M), comparable to the in vivo ER tubule 
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growth rates (Sparkes et al., 2009). The properties described above are diagnostic 

characteristics of ER bodies. Furthermore, TMRM staining excluded HTH-FP localization to 

the mitochondria (Figure 3.16N-P), and crosses with a transgenic line (Kaleidocell) 

containing fluorescent protein labelled organelles ruled out nucleus and chloroplast 

localization (Appendix D). Last, colocalization studies using an ER-targeting RFP (erRFP) 

verified that HTH-FP was localized to the ER network and its derived ER bodies (Figure 

3.17). These findings support HTH-FP localization in ER bodies in epidermal cells.  

The ER body localization seen in our HTH-FP transgenic lines associate HTH with 

cellular structures known to be induced following exposure to stress. To directly test whether 

HTH expression was regulated by stress, HTH expression levels were quantified in Ws 

wildtype plants treated with MeJA (Figure 3.18) and shown to increase following these 

treatments. In addition, preliminary data suggest that MeJA treatment can induce ER bodies 

in the midrib epidermal cells of HTHpro:HTH-FP rosette leaves. On the other hand, no ER 

bodies were observed in water-treated (control) plants. Although ER markers need to be used 

in future research to further verify the ER body formation, this result is in keeping with 

previous work showing that ER body formation can be triggered by mechanical wounding or 

by exposure to the wound hormone MeJA (Hara-Nishimura and Matsushima, 2003; Hayashi 

et al., 2001; Matsushima et al., 2002; Ogasawara et al., 2009). Although HTH-FP containing 

ER bodies were not seen under control conditions, HTH-FP expression was detected in 

rosette leaves despite not been detected using immunoblotting approaches (Figure 3.3). This 

may reflect detection limits of immunoblotting compared with fluorescent protein detection 

(Swenson et al., 2007).  
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 Conclusions  

Epidermal expression of HTH-FP in vegetative and reproductive tissues suggests that HTH 

protein is involved with cutin biosynthetic pathways that ultimately determine cuticle 

structure. HTH-FP expression in the integument and elevated seed coat permeability in hth 

mutants suggest that HTH might serve a previously unknown function in seed coat 

development. Although embryo sac expression was observed, it is less clear what function 

HTH serves in this context. At the subcellular level, HTH-FP protein was found to reside in 

ER-derived structures and to colocalize with eRFP to ER bodies. By extending this and 

showing elevated HTH expression and possible ER body formation in response to MeJA 

treatment, results in this chapter also suggests a role of HTH in stress responses. What 

specific role HTH plays in stress responses, however, awaits further investigation. 

 Future Research  

The HTH-FP localization to the female gametophyte and seed coat suggests possible 

alternative functions for HTH in addition to the one involved in cuticle synthesis. To verify 

the importance in gametophyte development, the eda17 mutant plants that exhibit embryo 

sac development arrest serve as a suitable material. Functional complementation of eda17 

mutant plants by introducing HTHpro:HTH-FP would corroborate a role for HTH in female 

gametophyte development. To determine whether elevated cuticle permeability observed in 

mutants is a direct consequence of altered plant cuticle ultrastructure, ultrastructural 

examination by transmission electron microscopy (TEM) could be conducted. Furthermore, 
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with the increasing accuracy of genome editing techniques such as the type II clustered 

regularly interspaced short palindromic repeat (CRISPR)/Cas9 (CRISPR-associated) system, 

motifs essential for protein function can be verified by site-directed insertion/deletion on the 

native HTH gene (Barrangou et al., 2007; Jinek et al., 2012; Schiml and Puchta, 2016). 

Results showed that MeJA induced formation of structures similar to ER bodies in 

HTHpro-HTH-FP transgenic plants. To confirm preliminary results described here the ER 

body localization, two more control samples could be included. One is the erRFP transgenic 

plant as a positive control for its labeled ER bodies; the other is wildtype plants because 

MeJA may induce production of secondary compounds that emit fluorescence at the 

wavelength range of the reporter fluorescent protein. In addition, identifying other biotic or 

abiotic stress factors that also increase HTH expression or induce ER body formation in 

rosette leaves might point to novel connections between HTH expression and stress response 

pathways.  

HTHpro:HTH-FP transgenic plants developed in this research also serve as a material for 

studying protein-protein interactions. Co-immunoprecipitation can now be performed using 

commercially available antibodies that specifically bind to the fluorescent protein tags 

described here. Partner proteins that bind to HTH as part of a protein complex can be 

identified by techniques such as matrix-assisted laser desorption/ionization time-of-flight 

mass spectrometer (MALDI-TOF). Results might help elucidate not only HTH’s biochemical 

function but may also provide further insight into localization. In addition to proteins, HTH’s 

possible interaction with DNA could be investigated by chromatin immunoprecipitation. 

https://en.wikipedia.org/wiki/DNA
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 Introduction 

The epidermal cuticle is an extracellular hydrophobic layer that serves as an interface 

between the plant and the environment, preventing water loss and protecting the plant from 

harmful pathogens and chemicals. The composition of this external layer is complex, and the 

specific functional role of its individual constituents is relatively poorly understood. A major 

component of the cuticle is cutin, a polyester composed of fatty acids, phenolic compounds, 

and glycerol (Table 1.1) (Nawrath, 2006; Pollard et al., 2008). The composition of these 

cuticular monomers is a major determinant of the architecture of cutin polymers and cuticle 

properties (Pollard et al., 2008). Perturbation of biochemical pathways involved in fatty acid 

monomer synthesis can result in a number of phenotypes including changes in cuticle 

permeability and post-genital organ fusion (Chen et al., 2003; Lolle et al., 1998; McNevin et 

al., 1993; Pruitt et al., 2000; Schnurr et al., 2004; Wellesen et al., 2001).  

The Arabidopsis HOTHEAD (HTH) gene is among the numerous identified genes that 

regulate cuticle formation. Plants harbouring various mutant hth alleles display floral organ 

fusion although fusion of vegetative tissue is rarely observed (Lolle et al., 1998). As is the 

case for other mutants in this class, there is evidence that the cuticular properties of hth 

mutants are altered as demonstrated by increased cuticular permeability (Kurdyukov et al., 

2006a; Lolle and Cheung, 1993; Lolle et al., 1998).  

Typical cutin monomers are C16 and C18 ω-hydroxy fatty acids that can be esterified at 

the primary hydroxyl groups to produce a linear polyester chain. Branched structures can be 

produced by esterification between the carboxyl group of one fatty acid and a glycerol 



 

201 

 

hydroxyl group or a secondary hydroxyl group of another fatty acid. The majority of cutin 

monomers in Arabidopsis thaliana and Brassica napus, however, are α,ω-dicarboxylic acids 

(DCAs), a typical type of suberin monomer. DCAs can be esterified to glycerol and give rise 

to a cross-linked cutin architecture characteristic in the Brassicaceae species (Pollard et al., 

2008). The reduction in the relative percentage of C16 and C18 DCAs in hth-12 mutants 

(Kurdyukov et al., 2006b) points to a possible cause for the changes in cuticle properties 

observed in other hth mutants. Based on these compositional changes the HTH protein has 

been proposed to function as a ω-fatty alcohol dehydrogenase required for DCA 

biosynthesis, and mutations that cause loss of function would therefore disrupt normal cutin 

monomer genesis and consequently lead to changes in cuticle properties.  

On the other hand, the HTH protein has also been proposed to be a mandelonitrile lyase 

(MDL) (Krolikowski et al., 2003). Both HTH and mandelonitrile lyase belong to the glucose-

methanol-choline-oxidoreductase (GMC) family that includes proteins with a variety of 

catalytic activities including dehydrogenases, oxidases and lyases (Cavener, 1992). 

Hydroxynitrile lyases catalyze cyanogenesis in which dissociation of α-hydroxynitriles 

results in the production of hydrogen cyanide (HCN) and an aldehyde or ketone (Figure 1.12) 

(Poulton, 1990). Production of HCN is commonly considered to serve as a means to defend 

against herbivores and pathogen attack and is not exclusive to higher plants but rather 

common to a spectrum of organisms including ferns, bacteria, fungi and insects (Conn, 

1981).  
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One of the most commonly used approach to function prediction is established on the 

idea of inheritance through homology. This method is based on the premise that proteins with 

similar sequences are more closely related and likely perform similar functions. The activity 

of many enzymatic proteins is largely dependent of its overall tertiary structure and the 

catalytic triad, a group of three amino acids involved in catalysis. Hence, structure and 

catalytic site predictions often provide insight into the function of a protein (Edwards and 

Cottage, 2003; Lee et al., 2007). In addition, in functional genomics studies, mRNA 

expression data are often used to discover regulatory networks with the assumption that 

genes with similar mRNA expression profiles are likely to be regulated via the same 

mechanisms or involved in similar functions (Heyndrickx and Vandepoele, 2012).  

In this chapter, enzymatic assays were conducted to experimentally test for these two 

possible protein functions using a bacterial recombinant HTH protein. In addition, 

bioinformatics tools were employed to mine for evidence supporting either a ω-fatty alcohol 

dehydrogenase or hydroxynitrile lyase function for the HTH protein. Although neither 

enzymatic activity was detected in the in vitro assay, bioinformatics analyses suggest that 

HTH protein is more likely to function as a ω-fatty alcohol dehydrogenase involved in the 

biosynthesis of components integral to the epidermal cuticle. 
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 Materials and Methods 

 cDNA isolation and cloning 

Total RNA was extracted from inflorescence tissue of 6-week-old Arabidopsis thaliana 

plants in the Landsberg erecta (Ler) background using the RNeasy Plant Mini Kit (Qiagen, 

Venlo, Limburg, Netherlands). Reverse transcription to generate first strand cDNAs was 

performed using the SuperScript® III First-Strand Synthesis System Kit (Invitrogen, 

Carlsbad, California, USA) and 50 μM oligo (dT) primers. 

Synthesized cDNAs were used as the template to amplify the cDNA lacking the 5’ 

terminal fragment that encodes the predicted signal peptide. The polymerase chain reaction 

(PCR) was conducted using Phusion Hot Start II High-Fidelity DNA Polymerase (Cat. 

F549S, Thermo Fisher Scientific, Waltham, Massachusetts, USA) that produces amplicons 

with blunt ends. To amplify the cDNA of HTH without the region encoding the signal 

peptide, the forward primer MBPHTHNS (5’-TCCACTGCCTCTAAAGGTAAAGAGAAG-

3’) and reverse primer MBPEcoRI_R1 (5’-

TATTGAATTCTTATTAAACACCAGCTTTGTTTCC-3’) were used. An EcoRI restriction 

site was engineered at the 3’ end of the reverse primer.  

Approximately 3 ng of first strand cDNA was added to a 20 μl reaction mix (12.8 μl 

dH2O, 4.0 μl 5x Phusion HF Buffer, 0.4 μl dNTPs (10 mM), 0.5 μl forward primer (20 μM), 

0.5 μl reverse primer (20 μM), 0.2 μl Phusion DNA Polymerase (2 U/μl), 0.6 μl DMSO). 

Amplification was carried out using the following conditions: (a) 98°C for 30 seconds, (b) 

98°C for 10 seconds, (c) 70.1°C for 10 seconds, (d) 72°C for 30 seconds, repeat steps (b) - 
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(d) 25 times, (e) 72°C for 5 minutes. Blunt-ended PCR products were size separated using 

agarose gel electrophoresis, and amplicons of target size gel-purified using QIAquick Gel 

Extraction Kit (Cat. 28704, Qiagen).  

The HTH cDNA was cloned into the pMAL-c4x vector for cytoplasmic expression using 

the pMAL Protein Fusion and Purification System (New England Biolabs, Ipswich, 

Massachusetts, USA). The cloned cDNA was inserted downstream from the malE gene, 

resulting in the expression of a fusion protein with an N-terminal maltose-binding protein 

(MBP) tag that has a high affinity to amylose (Appendix G). The pMAL-c4x vector was 

digested with XmnI and EcoRI at 37°C for 1 hour and enzymes heat inactivated at 65°C for 

20 minutes to generate linearized vectors and the cDNA digested with the same restriction 

enzymes. Ligation reactions were conducted by mixing 2 μl of linearized vector (40 ng), 2 μl 

of digested cDNA (80 ng), 6 μl H2O, 10 μl 2X Quick Ligation Reaction Buffer and 1 μl 

Quick T4 DNA ligase (Cat. M2200, New England Biolabs) followed by a 10-minute 

incubation at room temperature. The ligation mix was transformed into DH5-α competent 

Escherichia coli cells using standard CaCl2-heat-shock techniques and transformed colonies 

selected for ampicillin resistance and the Lac- phenotype (i.e. white colonies).  

 Recombinant MBP-HTH protein purification 

Bacterial cultures were grown in rich broth media with ampicillin (10 g/L trypton, 5 g/L yeast 

extract, 5 g/L NaCl, 2 g/L D-glucose, 100 µg/mL ampicillin) at 37°C at 200 rpm overnight. 

A 15 mL aliquot of the overnight culture was used to inoculate 1.5 L of rich broth 

supplemented with ampicillin, and cultures incubated at 37°C on a shaker at 200 rpm until 
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OD600 reached 0.4 - 0.6. Protein expression was then induced by the addition of 

isopropylthiogalactoside (IPTG) to a final concentration of 0.1 mM, followed by overnight 

incubation at room temperature at 200 rpm. Afterwards, cells were harvested by 

centrifugation at 4000 ×g for 25 minutes at 4°C. The supernatant was discarded and the cells 

re-suspended in 100 mL column buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 1 

mM DTT, 1 mM sodium azid, 2 mM phenylmethanesulfonylfluoride (PMSF)) with 0.1% 

(v/v) Triton X-100 and frozen at -20°C for later use.  

Frozen cells were thawed in an ice-water bath for approximately one hour and then 

placed on ice. The cell suspension was sonicated in short pulses of approximately 15 seconds 

for a total of 2 minutes. Cell lysate was centrifuged at 4000 ×g at 4°C for 30 minutes to 

separate the soluble and insoluble fractions. The soluble fraction was diluted at a 1:1 ratio 

with column buffer and for every 50 mL, 2 mL of washed amylose agarose beads were 

added. Amylose agarose beads (New England Biolabs) were rinsed thoroughly with column 

buffer at a ratio of 1:10 before use. The protein-bead mixture was incubated at 4°C overnight 

on a rocker to prevent beads from settling. 

The MBP-HTH recombinant protein was purified using an affinity column. A 60 mL 

syringe was packed with compact glass wool to the 10-mL mark and rinsed with 40 mL of 

column buffer before pouring in the protein-bead mixture. The flow-through was collected at 

a flow rate of 1 mL/minute. For every 50 mL of the protein-bead mixture applied, an aliquot 

of 100 mL of column buffer was used to wash the column. The wash was collected to allow 

for detection of any protein loss.  
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The recombinant protein was eluted with 30 mL of 10 mM maltose dissolved in column 

buffer at a flow rate of 1mL/minute. The eluted fraction was further concentrated using 

Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-50 membrane (UFC905024; EMD 

Millipore, Billerica, Massachusetts, USA) by centrifugation at 4000 ×g for 30 minutes to 

eliminate proteins smaller than 50 kDa. The flow-through was discarded and the 

concentrated fraction retained. The total protein concentration was determined using Quick 

Start™ Bradford 1x Dye Reagent (Bio-Rad Laboratories, Hercules, California, USA) 

according to the manufacturer's instructions. For MBP cleavage from the fusion protein, 1 µg 

of factor Xa (P8010S, 1 mg/mL; New England Biolabs) was added in every 100 µg of fusion 

protein. The reaction mixture was incubated for 16 hours at 4°C. 

 Enzymatic assays 

Hydroxynitrile lyase activity was determined by monitoring cleavage of mandelonitrile into 

benzaldehyde and HCN at 25°C as described by Jorns (1979) with modifications. In the final 

assay solution, the concentrations are 95 mM sodium acetate, 2.8 mM mandelonitrile, 

0.003% (w/v) bovine serum albumin, and 1.6% (v/v) ethanol. Affinity purified MBP-HTH 

was treated with the protease factor Xa to remove the MBP tag, and post-cleavage mixture 

(MBP+HTH) used for the enzymatic assay. The absorbance of the assay solution was first 

monitored at 275 nm in a quartz cuvette with 1 cm light path for 5 minutes at 25°C until the 

readings stabilized. The reaction was then initiated by addition of either mandelonitrile lyase 

from almonds (Cat. M6782, Sigma-Aldrich) or MBP+HTH samples. Immediately after 

protein addition, the OD275 of the reaction was continuously monitored by Cary 100 UV-Vis 

spectrometer (Agilent Technologies, California, USA) over the duration of 45 minutes. The 
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slope of ΔOD275nm was determined at the linear range of the curve and corrected using the 

blank. By using the millimolar extinction coefficient of benzaldehyde, ε275 = 1.2 mM-1cm-1, 

the enzyme activity (nmol/mg protein/min) was calculated using the slope. One unit of 

enzyme activity is defined as the formation of 1.0 μmole of benzaldehyde and HCN from 

mandelonitrile per minute at pH 5.4. 

Alcohol dehydrogenase activity was assayed by spectrophotometry using Cary 100 UV-

Vis spectrometer. Alcohol dehydrogenase activity was determined by monitoring the 

absorbance at 340 nm resulting from reduction of NAD as described by Kagi and Vallee 

(1960). The final concentrations of the assay mixture are 22 mM sodium pyrophosphate, 7.5 

mM β-nicotinamide adenine dinucleotide, 0.3 mM sodium phosphate, 0.003% (w/v) bovine 

serum albumin and alcohol substrates, including ethanol (3.2%, v/v), 1-hexanol (3.2%, v/v) 

and benzyl alcohol ((v/v) 0.32%, with 0.1% Triton-X). The absorbance of the assay solution 

was first monitored at 340 nm at 25°C to achieve temperature equilibrium before initiating 

the 1-mL reaction by mixing in various amounts of yeast (Saccharomyces cerevisiae) alcohol 

dehydrogenase (A7011, Sigma-Aldrich) or post-cleavage purified protein (MBP+HTH). The 

enzyme activity was calculated using the slope of ΔOD340nm in the linear range with the 

millimolar extinction coefficient of β-NADH, ε340 = 6.22 mM-1cm-1
.  

 Deglycosylation and protein immuno-detection 

HTHpro:HTH-EYFP seedlings (see Chapter 3) were flash frozen in liquid nitrogen 

immediately after harvest. The tissue was pulverized by vortexing frozen tissue in sealed 2 

mL tubes containing ten stainless steel beads (1/8” diameter; Abbott Ball Company, West 
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Hartford, Connecticut, USA). Before thawing, pulverized tissue was mixed with the 

extraction buffer (100 mM Tris-HCl pH 8.0, 8 M urea, 5 mM EDTA, 2.5% (w/v) SDS, 10% 

(v/v) glycerol, 1 mM PMSF, 100 mM DTT) and protease inhibitor cocktail (1:50 (v/v) ratio; 

P9599; Sigma-Aldrich, St. Louis, Missouri, USA). The mix was vortexed for two minute, 

followed by centrifugation at 6000 ×g at 4°C to pellet cell debris. The supernatant was 

collected as the crude extract. To determine the total protein concentration, protein was 

acetone precipitated to remove interferences in the crude extract. One volume of crude 

protein solution was mixed with four volumes of cold acetone before incubation at -20ºC 

overnight. Samples were centrifuged for 5 minutes at 4°C at maximum speed (13000 ×g). 

The supernatant was carefully discharged and the pellet was dried by inverting the tube on 

tissue paper. The pellet was then resuspended with 100 mM Tris-HCl pH8.0. Protein 

concentration was determined using Bio-Rad Quick Start™ Bradford 1x Dye Reagent (Bio-

Rad Laboratories, Hercules, California, USA), according to the manufacturer's instructions.  

For protein deglycosylation, Protein Deglycosylation Mix (V4931; Promega, Madison, 

Wisconsin, USA) was used to remove glycans from both O-linked and N-linked 

glycosylation sites, and PNGase F (G1549, Sigma-Aldrich) to specifically deglycosylate N-

linked glycoproteins. To first denature proteins, an aliquot of 18 µl crude extract was mixed 

with 10× denaturing solution (0.5% (w/v) SDS, 40 mM DTT, 1× concentration) to give a 

denaturing reaction volume of 20 µl, followed by incubation for 10 minutes at 95°C and 5 

minutes on ice. For both O-linked and N-linked deglycosylation, 5 µl of 10× Deglycosylation 

Reaction Buffer, 5 µl of 10% (v/v) NP-40, 15 µl of water, and 5 µl of Protein 

Deglycosylation Mix were mixed into the tube to give a final reaction volume of 50 µl. For 
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specific N-linked deglycosylation, 5 µl (1.5 unit) of PNGase F was added instead. The 

reactions were incubated overnight at 37°C. The negative control mock reactions were 

conducted the same way without adding any glycosidases.  

 SDS-polyacrylamide gel electrophoresis and protein immuno-detection 

Protein samples were mixed in 5x Laemmli sample buffer (60 mM Tris-Cl pH 6.8, 2% (w/v) 

SDS, 10% (v/v) glycerol, 5% (v/v) β-mercaptoethanol, 0.01% (w/v) bromophenol blue), 

boiled for 10 minutes, and size-separated using a 10% (w/v) SDS-polyacrylamide gel (for 

each gel: 5 mL Tris pH 8.8, 9.8 mL H2O, 200 µL 10%  (w/v) SDS, 5.2 mL 30% (v/v) 

acrylamide, 100 µL 10% (w/v) ammonium persulfate (APS), 30 µL 

tetramethylethylenediamine (TEMED)) with a 4% stacking gel (for each gel, 2.5 mL Tris pH 

6.8, 6.2 mL H2O, 100 µL 10% (w/v) SDS, 1.3 mL 30% acrylamide, 50 µL 10% (w/v) APS, 

20 µL TEMED). Spectra Multicolour Broad Range Protein Ladder (Cat. 26623; Thermo 

Fisher Scientific) was loaded as size markers. Following electrophoresis using a Tris-glycine 

buffer (250 mM Tris, 1.92 M glycine, 1% (w/v) SDS), proteins were transferred onto 

membranes. Nitrocellulose or PVDF membranes were equilibrated in transfer buffer (25 mM 

Tris, 192 mM glycine, 10% (v/v) methanol) for 30 minutes while the gel was equilibrated for 

10 minutes prior to transfer. When PVDF used, membranes were pre-wetted in 100% 

methanol prior to equilibration. Proteins in the acrylamide gel were then transferred onto 

membranes using Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell (Bio-Rad 

Laboratories) at 20 volts for 25 minutes Membranes were stained with 0.1% (w/v) Ponceau-S 

in 5.0% (v/v) acetic acid; P3504, Sigma-Aldrich) to verify protein transfer, washed and then 

blocked with 5% (w/v) skimmed milk for 1 hour, or 1 pg/mL polyvinyl alcohol (P8136; 
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molecular weight: 30K-70K; Sigma-Aldrich, St. Louis, Missouri, USA) for 10 seconds in 

Tris-buffered saline with Tween-20 (TBS-T; 20 mM Tris pH 7.5, 300 mM NaCl, 0.1% (v/v) 

Tween-20).  

Membranes were incubated overnight at 4°C with anti-MBP monoclonal antibody 

(E8032S; New England Biolabs) using a 1:10,000 dilution, anti-GFP antibody (1:2500; 

ab6556; Abcam, Cambridge, UK) or anti-HTH antibody (1:500 dilution) in 5% (w/v) 

skimmed milk in TBS-T. The anti-HTH antibody was generated using the oligo peptide 

VIFKDEKGNQHQAL, an epitope sequence of the HTH protein, as the antigen. Membranes 

were washed with TBS-T 5 times for 5 minutes each and incubated in a 1:10,000 dilution of 

horseradish peroxidase-conjugated anti-rabbit IgG antibody (Cat. A0545, Sigma-Aldrich,) or 

alkaline phosphatase-conjugated anti-rabbit IgG antibody (Cat. A3687, Sigma-Aldrich) for 1 

hour. Membranes were washed with TBS-T, and then treated with either chemiluminescent 

reagents or alkaline phosphatase colourimetric solution for detection. For chemiluminescent 

detection, Clarity™ Western ECL Substrate and ChemiDoc™ (Bio-Read Laboratories) were 

used to detect signals for the deglycosylation assays. Otherwise, ECL Prime Western 

Blotting Detection Reagents (Cat. RPN2232, GE Healthcare, Little 

Chalfont, Buckinghamshire, United Kingdom) were used and the chemiluminescent signals 

detected by exposure of CL-Xposure X-ray films (Cat. PI34093, Thermo Fisher Scientific). 

X-ray films were developed using a CP1000 film processor (Agfa-Gevaert N.V., Mortsel, 

Belgium). For colourimetric detection, membranes were incubated in alkaline phosphatase 

buffer pH 9.5 (100 mM Tris, 100 mM NaCl, 50 mM MgCl2) with 0.03% (w/v) NBT (nitro 

blue tetrazolium) and 0.02% mM BCIP (w/v) 5-bromo-4-chloro-3-indolyl-phosphate).  

http://en.wikipedia.org/wiki/Little_Chalfont
http://en.wikipedia.org/wiki/Little_Chalfont
http://en.wikipedia.org/wiki/United_Kingdom
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 Bioinformatics analyses 

Features of the theoretical protein sequence of HTH (Appendix H) were predicted using 

bioinformatics tools available at the Expasy server (www.expasy.org) and based on 

automated UniProtKB/Swiss-Prot annotations. Protein domains were identified using the 

Pfam database (http://pfam.xfam.org). Posttranslational modification sites such as N-

glycosylation and phosphorylation were determined using PROSITE 

(http://prosite.expasy.org). A coexpression gene network was constructed using CytoScape 

version 3.3.0 (Shannon et al., 2003) through the GeneMania plugin (Montojo et al., 2010) 

with the Arabidopsis thaliana dataset. The phylogenetic distribution pattern of genes 

coexpressed with HTH was performed by String database and analysis tools (www.string-

db.org). Alignments using (predicted) full-length protein sequences were generated using 

ClustalO as implemented in the SeaView package (version: 4.5.0). Based on this alignment, 

the putative active sites of HTH and other GMC oxidoreductase family proteins were 

assigned by identifying the aligned sequences’ residues corresponding to the active sites of 

mandelonitrile lyase PdMDL2 (UniProt: Q945K2). According to the same alignment, 

phylogenetic trees were computed using PHYML within the SeaView package. The 

following parameters were used: LG model, bootstrap with 100 replicates, model-given 

amino acid equilibrium frequency, nearest-neighbour interchange (NNI) for tree searching 

operation, and neighbour-joining algorithm BioNJ for starting tree topology.  

The X-ray resolved three-dimensional protein structures of mandelonitrile lyase 

PdMDL2 (PDB: 1JU2) and pyranose dehydrogenase AmPDH (PDB: 4H7U) were used as the 

templates to derive protein models of HTH by the Investigator function of PHYRE 

http://www.expasy.org/
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(Protein Homology/analogY Recognition Engine; www.sbg.bio.ic.ac.uk /phyre2). PYMOL 

(www.pymol.org) was used to generate the images. The quality of modeling was estimated 

by ProQ2 (Ray et al., 2012) and Ramachandran plot analyses. A HTH sequence-to-secondary 

structure alignment was obtained by threading the HTH sequence onto the known template 

secondary structure of PdMDL2 and AmPDH using the PHYRE server.  

 Results 

 The HTH protein model 

The predicted full-length HTH protein is 594 amino acids (aa)-long, contains a 19-aa signal 

peptide, and both N- and C-terminal glucose-methanol-choline (GMC) oxidoreductase 

protein family domains (based on the protein coding gene model AT1G72970.1; 

www.arabidopsis.org) (Figure 4.1). Its splice variant has a 27-aa deletion in the 5th exon, 

upstream of the putative catalytic site residues, resulting in a 567 aa-long isoform (based on 

the protein coding gene model AT1G72970.2; see Appendix H for the HTH protein 

sequences). The protein is predicted to contain two domains; the N-terminal domain 

(GMC_oxred_N) corresponds to the cofactor-binding domain, and the C-terminal domain 

(GMC_oxred_C) is thought to function in substrate binding and catalysis.  

Eight amino acid residues (blue bar) that are important for HTH protein function were 

previously identified by mutant screens (Krolikowski et al., 2003; Lolle et al., 1998) and are 

hereafter referred to as functional residues. These functional amino acid residues, together 

with predicted posttranslational modifications and putative catalytic sites, are indicated on 

http://www.sbg.bio.ic.ac.uk/
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the HTH protein sequence in Figure 4.1. The majority of functional residues are located 

downstream of the third exon and within the GMC domains, with the exception of Gly-356. 

Of the five N-linked glycosylation and four phosphorylation sites predicted, none correspond 

to the positions of the eight functional residues identified previously. Three putative catalytic 

active site residues, Ile-527, His-529, and Asn-567, identified by multiple sequence 

alignment (See Section 4.3.5 ) situate near the C-terminal end of the GMC_oxred_C domain. 

Interestingly, the putative catalytic site residue Asn-567 clusters with three functional 

residues (Pro-564, Gly-565 and Thr-566) identified genetically.  

 Sequence and phylogenetic analyses 

To gain insight into HTH protein function, a phylogenetic tree was constructed from GMC 

oxidoreductases that share similarity to the 594-aa long theoretical HTH sequence (including 

the predicted signal peptide) in terms of their sequence identity and/or theoretical protein 

folding structure (Table 4.1; http://blast.ncbi.nlm.nih.gov; http://www.sbg.bio.ic.ac.uk). Five 

unknown Arabidopsis proteins, AtGMC1- AtGMC5, have the highest sequence similarity to 

HTH (approximately 90% coverage and 51% identity), followed by a group of putative 

mandelonitrile lyases (MDLs; approximately 88% coverage and 39% identity) from Prunus 

serotina (black cherry) and Prunus dulcis (almond). Herein, coverage indicates the 

percentage of the sequence that is included for the comparison. Among these MDLs, only 

PdMDL2 has been characterized (Dreveny et al., 2001; Dreveny et al., 2002; Dreveny et al., 

2009). The remaining HTH-related GMC family proteins include alcohol dehydrogenases 

(PpADH, PoADH, ToADH, NrADH and AmADH), an aryl alcohol oxidase (PeAAO), a 

pyranose dehydrogenase (AmPDH), a cholesterol oxidase (SsCHOX), glucose oxidases 
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(PaGOX and AnGOX), fatty acid oxidases from Arabidopsis (AtFAO4A, AtFAO1, 

AtFAO4B, and AtFAO3) and from Candida species (CcFAO1, CcFAO2, and CtFAO3).  

The phylogenetic relationship among HTH and related GMC oxidoreductases is 

depicted in Figure 4.2 (See Appendix I) for the sequence alignment used for tree 

construction). These proteins were grouped into seven groups (bootstrap value > 91), 

including AtFAO (fatty acid oxidases of Arabidopsis thaliana), CcFAO (fatty acid oxidase of 

Candida species), MDL (mandelonitrile lyases), HTH-AtGMC (HTH and HTH-like GMC 

oxidoreductases in Arabidopsis thaliana), ADH (alcohol dehydrogenases), OXDH (an aryl 

alcohol oxidase and a pyranose dehydrogenase), and GOX (glucose oxidases). Arabidopsis 

HTH-like GMC proteins (AtGMC1 to AtGMC4) are clustered with HTH in Group HTH-

AtGMC (bootstrap value = 91). The clade of HTH-AtGMC has an immediate common 

ancestor with the proteins in Group MDL, where PdMDL2 and all other putative 

mandelonitrile lyases are closely clustered (bootstrap value = 100). These two sister clades 

(HTH-AtGMC and MDL) form a higher order clade. On the same level, Group ADH, GOX 

and OXDH come together into a second higher order clade containing GMC oxidoreductase 

family proteins of diverse functions. The third higher order clade includes fatty acid oxidases 

of yeast (Group CcFAO) and Arabidopsis (Group AtFAO).  

 Conservation of functional residues  

DNA lesions that underlie the mutant phenotype can lead to the identification of amino acid 

residues important for the biological function of a protein, and the conservation of these 

residues could be indicative of a similar protein function. Eight functional amino acid 
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residues have been previously identified by mutant screens (Krolikowski et al., 2003; Lolle et 

al., 1998). Residues corresponding to the eight functional amino acids of HTH were 

investigated in closely related MDLs (Table 4.2) and other GMC oxidoreductases (Appendix 

J).  

Based on full sequence alignment all eight residues are conserved in the closely related 

but uncharacterized HTH-like proteins (AtGMC1-AtGMC4), except AtGMC5 where Gly-

356 was substituted by alanine. Six of these eight residues are invariant in the immediate 

MDL sister clade, except residues corresponding to Gly-565 and Thr-566 of the HTH 

sequence. Rather, these two residues are mostly invariant within the MDL clade, being 

alanine/asparagine and threonine respectively.  

 Hydroxynitrile lyase assay  

The proposed mandelonitrile lyase function for HTH is supported by the close phylogenetic 

relationship and matching functional residues (Figure 4.2 and Table 4.2) identified by 

multiple sequence alignment (Appendix I). To determine whether HTH has mandelonitrile 

lyase activity, a MBP-tagged recombinant HTH protein was generated and tested for activity 

using an in vitro enzyme assay. Figure 4.3 shows SDS-PAGE profiles of E. coli cell lysates 

obtained from strains transformed with the pMAL-c4x:HTH vector. Proteins of higher 

molecular mass, approximately the predicted size of the MBP-HTH fusion protein (~MW 

114.1 kDa), are more abundant in the lysate of IPTG-induced (+) cells relative to un-induced 

cells (-). 
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To remove the MBP tag, affinity purified MBP-HTH was treated with factor Xa 

protease. Immunoblotting analysis shows that the MBP tag was cleaved in the factor Xa-

treated samples (+). HTH (~MW 63.3 kDa; without the signal peptide) was detected using 

anti-HTH antibody, whereas the disassociated MBP tag (~MW 50.8 kDa) was only detected 

using the anti-MBP antibody.  

Cleaved MBP-HTH samples that constitute a mixture of the HTH recombinant protein 

and MBP tag (labeled as MBP+HTH) as well as the almond MDL were used for the 

hydroxynitrile lyase activity assays. A commercially available MDL extracted from almond 

was used as a positive control. Reaction kinetics are shown in Figure 4.4. The ΔA275 /min 

was determined by absorbance detected in the linear range in the period of 7 to 15 minutes. 

The specific activity of almond MDL was 208 nmol/mg/min, in the range of activities 

indicated by the manufacture (80-240 nmol/mg/min). The column buffer (CB) in which the 

protease-treated recombinant HTH protein was solubilized showed little background effect 

on the enzymatic assay (d in Figure 4.4A). In contrast, no hydroxynitrile lyase activity was 

detected when HTH+MBP samples were used in the reactions. 

 Alcohol dehydrogenase assay 

To determine whether HTH functions as an alcohol dehydrogenase, the MBP-tagged 

recombinant HTH protein used for the hydroxynitrile lyase assay was tested in an in vitro 

alcohol dehydrogenase (ADH) assay. The affinity purified MBP-HTH was cleaved with 

factor Xa protease to remove the MBP tag prior to performing the assay. The treated sample 

MBP+HTH was used in the dehydrogenation reaction. A commercially available alcohol 
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dehydrogenase isolated from yeast was used as a positive control. Alcohols of different 

carbon length and structure were used as the substrate, including ethanol (C2H5OH, 2 

carbon), 1-hexanol (CH3(CH2)5OH, 6-carbon aliphatic fatty alcohol) and benzyl alcohol 

(C6H5CH2OH, aromatic alcohol). The reaction kinetics were determined by measuring ΔA340 

/min in the linear range, and the calculated specific activities (nmol/mg/min) are listed 

(Figure 4.5). With this particular reaction setting, the yeast ADH reacted with ethanol at a 

specific activity of 216 ± 52 nmol/mg/min. When the carbon number of the substrate 

increased to six, yeast ADH activity dramatically diminished to 0.60 ± 0.23 nmol/mg/min, 

and no activity was detected when benzyl alcohol was used as the substrate. Benzyl alcohol 

was selected as a substrate because its chemical structure is similar to mandelonitrile lyase 

(Figure 4.5D), which has an additional −C≡N group. No such alcohol dehydrogenase 

enzymatic activity was detected in the in vitro assay using the above substrates.  

 Glycosylation analyses 

Glycosylation, the attachment of sugar moieties to proteins, is a post-translational 

modification that is critical for a wide range of biological processes (Rayon et al., 1998; 

Strasser, 2014). When a plant gene is heterologously expressed in a prokaryotic organism, 

the recombinant protein is likely not properly glycosylated, and this can lead to a loss of its 

protein function. If glycosylation is important for HTH protein folding and function, the 

absence of this type of post-translational modification could lead to a loss of enzymatic 

activity. 
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To determine if the native HTH protein is glycosylated in Arabidopsis, protein extracted 

from HTHpro:HTH-EYFP plants (See Chapter 3) was deglycosylated and analyzed for size 

shift. The crude extract was treated with a mix containing glycosidases that removes glycans 

from both N-link and O-linked (N+O) glycosylation sites. Protein samples were also treated 

with PNGase F which removes only N-linked glycans. Western blot analyses of HTH-EYFP 

protein using anti-GFP antibody revealed that HTH-EYFP in untreated crude protein extracts 

was detected at ~ 135 kDa and following glycosidase treatments migrated at ~124 kDa 

(Figure 4.6), showing an 11 kDa size shift in both types of deglycosylation reactions. 

 Predicted HTH catalytic sites  

Amino acids that directly participate in the catalytic reaction mechanism, catalytic site 

residues, are often highly conserved in functionally related proteins as a result of common 

ancestry or convergent evolutionary processes (Torrance et al., 2005). To further explore the 

possible function of HTH, putative active sites were identified by a multiple sequence 

alignment with mandelonitrile lyase PdMDL2, a protein that is closely related to HTH and 

has been characterized by crystallography and biochemical assays. PdMDL2 has 

mandelonitrile lyase activity and three catalytic sites of PdMDL2, Tyr-484, His-486 and His-

524, have been identified (Dreveny et al., 2001; Dreveny et al., 2002; Dreveny et al., 2009). 

The cladogram that accompanies the active site table and grouping was made according to 

the radial phylogenetic tree shown in Figure 4.2. Except Group HTH-AtGMC, each group is 

represented by at least one protein that has been experimentally validated (Cheng et al., 2004; 

Dickinson and Wadforth, 1992; Dreveny et al., 2001; Dreveny et al., 2002; Hecht et al., 
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1993; Kalisz et al., 1997; van Beilen et al., 1992; Vanhanen et al., 2000; Whittington et al., 

1990; Yue et al., 1999).  

For all of these GMC oxidoreductases, the second active site histidine (His) is strictly 

conserved. The first active site residue is slightly more variable while the third active site 

residue is either an asparagine (N) or a histidine (H). Identified putative catalytic residues are 

generally invariant within each phylogenetic group, as demonstrated in the CsFAO, MDL, 

and GOX clades where the conservation of putative active sites is stringent. Moreover, the 

fatty acid oxidase catalytic residues of two functionally similar groups, AtFAO (Arabidopsis) 

and CsFAO (yeast), are nearly identical. Importantly, the catalytic residues identified by 

multiple sequence alignment match known catalytic sites of SsCHOX, PeAAO, AmPDH and 

AnGOX (residues in bold, Figure 4.7). In spite of having a higher number of matching 

functional residues, HTH shares only the conserved histidine with the closely related MDLs. 

However, HTH and PoADH, a bacterial alcohol dehydrogenase that was experimentally 

verified to have mid-chain fatty acid alcohol dehydrogenase activity (van Beilen et al., 1992) 

have identical putative active site compositions. 

 Structural models of HTH 

To examine the relative spatial positions of functional residues and predicted catalytic sites, 

putative tertiary structures for HTH were constructed based on mandelonitrile lyase PdMDL2 

and pyranose dehydrogenase AmPDH (Figure 4.8). These two templates are among the best 

fits identified by the Phyre 2 server. Out of the 594 amino acid residues making up the HTH 

protein, 510 and 505 amino acids were modeled with 100% confidence on the PdMDL2 

(PDB: 1JU2) and AmPDH (PDB: 4H7U) crystal structure, respectively. The predicted 19-aa 
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signal peptide sequence did not match with either model and hence was not included in the 

predicted protein structure. The confidence of tertiary structure modeling is shown in 

Appendix K. The protein sequence alignments showing the secondary structure of the two 

templates and the predicted secondary structure of HTH are included in Appendix L and 

Appendix M. The tertiary structure modeling for the 567 aa-long HTH isoform predicted by 

the splice variant was also modeled onto the PdMDL2 strucure. The protein sequence 

alignments showing the secondary structure and predicted tertiary isoform structure are 

shown in Appendix N and Appendix O repsectively.  

The crystal structure of PdMDL2 (Figure 4.8A) shows that three active site residues 

(shown in red) are positioned in the catalytic pocket (grey) and are in close proximity to the 

FAD (flavin adenine dinucleotide) cofactor. The three-dimensional structure of AmPDH 

(Figure 4.8C) shares great overall similarity to PdMDL2 and consists of one alignment-based 

(Tyr-535) and two experimentally validated (His-537 and His-581) active sites (Tan et al., 

2013). As expected, the predicted active site residues are situated in the catalytic pocket of 

the PdMDL2- and AmPDH-templated HTH tertiary structural models (Figure 4.8B, D). 

Moreover, among seven of the eight functional residues (except Gly-356) that are included in 

the models, five of these functional residues are either within (Pro-564, Gly-565, and Thr-

566) or close to (Gly-218 and Arg-227) the catalytic pocket that is adjacent to the cofactor 

FAD/FED riboflavin ring. It is interesting to note that the peptide sequence absent in the 

smaller HTH isoform forms a helix on the protein surface according to the PdMDL2 model 

(Figure 4.8B).  
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 Coexpression gene network 

The coexpression profile analysis was conducted with the aim of shedding light on HTH’s 

possible biological functions, focusing on evidence associated with its mutant cuticle 

phenotype and stress response (see Chapter 3). The top twenty genes coexpressed with HTH 

and their (putative) functions, as determined by GeneMania analysis, are listed in Table 4.3. 

The complete network and function categories of selected genes are shown in Figure 4.9. The 

degree of correlation is proportional to the node/circle size depicted in the network.  

Genes that are involved, or likely so, in lipid metabolism or transport (highlighted in 

blue) include GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED LIPID PROTEIN 

TRANSFER (LTPG1), LACERATA (LCR), SUBTILASE 1.3 (SBT1.3), LTPG2, SEED FATTY 

ACID REDUER 5 (SFAR5), BODYGUARD 1 (BDG1), 3-KETOACYL-COA SYNTHASE 

5/ECERIFERUM 60 (KCS5/CER60), CYTOCHROME P450 FAMILY 86 PROTEIN 

CYP86A4, DEFECTIVE IN CUTICULAR RIDGES/PERMEABLE LEAVES 3 (DCR/PEL3). 

Among these genes, some have been shown to play an important role in cuticle formation, 

specifically in either cutin/wax monomer synthesis (LCR, KCS5/CER60 and CYP86A4), lipid 

transport (LTPG1, LTPG2 and AT4G16140), or cutin/wax monomer/oligomer polymerization 

(SBT1.3, AT5G45670, AT5G45950, BDG1 and DCR/PEL3). Genes that are essential for 

normal seed coat development (Figure 4.9, asterisk) include LTPG1, LTPG2, BDG1 and 

DCR/PEL3. Interestingly, the majority of coexpressed genes essential for cuticle 

development are also associated with plant stress/defense response to biotic and abiotic stress 

(highlighted in pink). Genes grouped to this category either exhibit increased stress-induced 

expression (SBT1.3 and LTL1), have been implicated in stress signaling (LTPG1 and LCR), 
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or confer increased pathogen resistance when mutated (LCR, LTPG2, BDG1 and 

DCR/PEL3). Overall, HTH appears to be networked with genes whose functions are involved 

in lipid processing or stress response, and in some cases both functions.  

 Phylogenetic distribution of proteins encoded by coexpressed genes in 

the evolutionary tree 

One omics-based method to infer biological function is phylogenetic profiling. By correlating 

the phylogenetic distribution of target genes with phenotypic characteristics or with a set of 

genes with known function, possible biological function can be deduced (Kensche et al., 

2008). A phylogenetic profile of the coexpression gene network of HTH was generated using 

the String database (Figure 4.10) and included protein sequences encoded by HTH and top 

twenty coexpressed genes. Four housekeeping genes included as controls were FUMARASE 

1 (FUM1), TUBULIN ALPHA-4 (TUA4), ACTIN 7 and RIBULOSE BISPHOSPHATE 

CAROXYLASE SMALL CHAIN 1A (RBCS1A). FUM1 is a mitochondrial-localized essential 

protein that plays a role in in the tricarboxylic acid cycle (Pracharoenwattana et al., 2010). 

TUA4 and ACTIN7 are components of eukaryotic cytoskeletal microtubules and 

microfilaments, respectively. RBCS1A belongs to the RuBisCO small subunit protein family 

and is important in the carbon fixation process.  

Based on the phylogenetic profile, homologous proteins of FUM1 occur in most 

organisms across prokaryotes and eukaryotes and those of TUA4 and ACTIN7 only in 

eukaryotes (including metazoa and fungi). In contrast, proteins with high homology to 

RBCS1A occur only in land plants and algae. This phylogenetic profile of known proteins 
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matches with evolutionary characteristics of different groups of organisms. In contrast, the 

phylogenetic distribution of proteins encoded by HTH and its coexpressed genes are 

predominant in land plants but not in algae. Among them, homologous sequences of LTPG1, 

LTPG2 and MYC1 are restricted to land plants. No homologues proteins (cut off: 4%) were 

identified out of Brassicaceae for two uncharacterized proteins AT4G16140 and 

AT4G29020. Proteins with less than 15% homology outside of the land plants are LTL1, 

AT5G45670, AT5G45950, AT4G18970, DRB5 and DCR/PEL3. Proteins that have less than 

25% homology outside of the land plant group consist of LCR, AT5G13400, AT1G10640, 

BDG1, OCT3, CYP86A4 and HTH. KCS5/CER60 and SBT1.3 however, have greater than 

37% homology outside of the land plants.  
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Figure 4.1 Schematic representation of the HTH protein showing the corresponding six 

exons, predicted glucose-methanol-choline (GMC) oxidoreductase domains, N-terminal 

signal peptide, posttranslational modification sites, active sites, and mutant phenotype-

determining residues. The signal peptide and GMC domains were predicted by 

UniProtKB/Swiss-Prot at Expasy (http://www.expasy.org). Posttranslational modification 

site recognition was performed by PROSITE, and the motifs are labelled with the 

composition residues and their positions. Amino acid residues identified by genetic analysis 

(Krolikowski et al., 2003) showing sequence positions and corresponding mutant 

designations. Active site predictions were generated by protein sequence alignment to a 

mandelonitrile lyase (see Section 4.3.5). Signal: putative signal peptide; GMC_oxred_N: 

Glucose-Methanol- Choline oxidoreductase family protein N-terminal domain; 

GMC_oxred_C: Glucose-Methanol-Choline oxidoreductase family protein C-terminal 

domain. Sequences for posttranslational modification sites: N-glycosylation site, N-{P}-

[ST]-{P}, Protein kinase C phosphorylation site, [ST]-x-[RK]. The eight genetically 

identified functional amino acid residues are designated with blue bars, and the three putative 

catalytic active sites with red bars.  
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Table 4.1 List of HTH-related proteins investigated in this chapter. These proteins were 

selected based on similarity to the HTH protein with respect to sequence identity and/or 

theoretical protein folding structure (http://blast.ncbi.nlm.nih.gov; 

http://www.sbg.bio.ic.ac.uk/phyre2). The first two letters of the sequence names represent the 

organism of origin. AAO: aryl alcohol oxidase; ADH: alcohol dehydrogenase; CHOX: 

cholesterol oxidase; FAO: fatty acid oxidase; GOX: glucose oxidase; MDL: mandelonitrile 

lyase; PDH: pyranose dehydrogenase. UniProt codes are referenced from 

http://www.uniprot.org/. NCBI accession numbers are referred from 

http://www.ncbi.nlm.nih.gov.  
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Sequence 

Name. 

UniProt/NCBI 

Accession 

Sequence  

Identity 

Sequence  

Coverage 
E-value Organism 

AtGMC2      Q94KD2 52% 92% ~0 Arabidopsis thaliana 

AtGMC4      Q66GI5 51% 92% ~0 Arabidopsis thaliana 

AtGMC3      Q93ZK1 51% 88% ~0 Arabidopsis thaliana 

AtGMC1      F4KEQ5 50% 89% 3.00e-175 Arabidopsis thaliana 

AtGMC5      Q9XI68 50% 80% 5.00e-94 Arabidopsis thaliana 

PdMDL2      Q945K2 40% 88% 5.00e-128 Prunus dulcis 

PsMDL3      P52707 39% 90% 4.00e-128 Prunus serotina 

PsMDL2      O50048 39% 90% 7.00e-128 Prunus serotina 

PsMDL1      P52706 39% 88% 2.00e-128 Prunus serotina 

PsMDL4      O82784 39% 88% 6.00e-125 Prunus serotina 

PdMDL1      O24243 38% 88% 5.00e-118 Prunus dulcis 

PsMDL5      O82435 37% 88% 2.00e-117 Prunus serotina 

SsCHOX      P12676 32% 20% 3.00e-06 Streptomyces sp. 

AtFAO1      Q9ZWB9 31% 13% 1.20e+00 Arabidopsis thaliana 

AtFAO4A      O65709 30% 12% 7.00e-05 Arabidopsis thaliana 

CcFAO2      Q9P8D7 28% 35% 5.00e-07 Candida cloacae 

AtFAO4B      Q94BP3 28% 24% 1.50e-02 Arabidopsis thaliana 

CtFAOT      Q9P8D9 28% 23% 3.00e-04 Candida tropicalis 

CcFAO1 Q9P8D8 28% 17% 1.00e-03 Candida cloacae 

NrADH WP_022978378.1 26% 88% 4.00e-25 Nevskia ramosa 

ToADH 5DPH3 26% 87% 6.00e-32 Thalassolituus oleivorans 

AmADH WP_020743879.1 26% 86% 1.00e-23 Alteromonas mediterranea 

AmPDH      Q3L245 25% 93% 2.00e-26 Agaricus meleagris 

PpADH      Q9WWW2 25% 88% 4.00e-29 Pseudomonas putida 

PoADH      Q00593 24% 88% 1.00e-25 Pseudomonas oleovorans 

PeAAO      O94219 24% 87% 6.00e-28 Pleurotus eryingii 

AnGOX      P13006 24% 87% 4.00e-18 Aspergillus niger 

AtFAO3      Q9LW56 24% 24% 2.00e-03 Arabidopsis thaliana 
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Figure 4.2 Phylogenetic relationships of HTH-related proteins. An unrooted radial 

phylogenetic tree constructed using the alignment of GMC (glucose-methanol-choline) 

oxidoreductases related to HTH (arrow head). These proteins were selected in terms of their 

sequence identity and/or theoretical protein folding structure (http://blast.ncbi.nlm.nih.gov; 

http://www.sbg.bio.ic.ac.uk/phyre2). Protein sequence alignments were generated using 

ClustalO as implemented in the SeaView package (version: 4.5.0), and phylogenetic trees 

were computed using PHYML within the SeaView package. The bootstrap values are 

indicated for the higher order clades. Seven clades (bootstrap value > 91) were identified. 

Group AtFAO proteins are closely related to corresponding genes in the Candida species in 

Group CsFAO, which comprises long-chain fatty acid alcohol oxidases capable of oxidizing 

α,ω-diols and probably, ω-hydroxy fatty acids. Group MDL is represented by mandelonitrile 

lyase PdMDL2. Group HTH-AtGMC (HTH and HTH-like GMC oxidoreductases) comprises 

five proteins including HTH. Group ADH includes five bacterial fatty acid dehydrogenases. 

Group OXDH include a fungal aryl alcohol oxidase and a fungal pyranose dehydrogenase. 

Group GOX contains two closely related glucose oxidases. HTH and the mandelonitrile lyase 

PdMDL2 are labeled with an arrow. Parameters for PHYML: bootstrap with 100 replicates, 

model-given amino acid equilibrium frequency, NNI for tree searching operation, and BioNJ 

for starting tree topology. The first two letters of the sequence names represent the organism 

of origin. AAO: aryl alcohol oxidase; ADH: alcohol dehydrogenase; CHOX: cholesterol 

oxidase; FAO: fatty acid oxidase; GOX: glucose oxidase; MDL: mandelonitrile lyase; PDH: 

pyranose dehydrogenase. UniProt codes are referenced from http://www.uniprot.org/. NCBI 

accession numbers are referred from http://www.ncbi.nlm.nih.gov.   
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Table 4.2 Eight functional HTH amino acids and the corresponding residues in four HTH-

like GMC oxidoreductases (AtGMC1 - AtGMC4) and mandelonitrile lyase PdMDL2. These 

eight HTH residues were identified by genetic analysis (Krolikowski et al., 2003) and are labeled with 

the corresponding HTH protein sequence position. The corresponding residues in other GMC proteins 

were identified based on sequence alignment (see Appendix I). Amino acid conservation is 

highlighted.  
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Protein 

UniProt/NCBI 

Accession  

Functional Residues of HTH 

/ Corresponding Residues in other GMC Proteins Match 

 HTH  Q9S746  G218 R227 G294 G356 G435 P564 G565 T566 Self 

 
            

HTH-like 

proteins 

AtGMC1 F4KEQ5  G R G G G P G T  

AtGMC2 Q94KD2  G R G G G P G T  

AtGMC3 Q93ZK1  G R G G G P G T  

AtGMC4 Q66GI5  G R G G G P G T 8/8 

 
     

Mandelonitrile 

lyase 

PdMDL2 Q945K2 
 

G R G G G P A S 
 

PsMDL1 P52706 
 

G R G G G P A S  
PdMDL1 O24243 

 
G R G G G P N S  

PsMDL5 O82435 
 

G R G G G P N S  
PsMDL4 O82784 

 
G R G G G P A S  

PsMDL2 O50048 
 

G R G G G P A S  
PsMDL3 P52707 

 
G R G G G P A S 6/8 
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Figure 4.3 Protein profiles obtained from bacterial cell lysates and immunoblots of affinity 

purified MBP-HTH recombinant protein probed with an anti-HTH or anti-MBP antibody. 

(A) Cell lysate SDS-PAGE profiles of E. coli proteins obtained from cells transformed with 

the pMAL-c4x:HTH construct. IPTG-induced cells expressed more MBP-HTH protein 

(~MW 114.1 kDa; arrow head) than uninduced cells (Control). (B-C) Immunoblot analysis of 

affinity purified MBP-HTH (5 µg) that was treated with (+) or without (-) the protease factor 

Xa that cleaves off the MBP tag. The MBP-HTH (~MW 114.1 kDa) was detected by anti-

HTH and anti-MBP antibodies in the uncleaved (-) sample. In the Factor Xa treated sample, 

HTH (~MW 63.3 kDa) was detected by the anti-HTH antibody, whereas the disassociated 

MBP tag (~MW 50.8 kDa) was detected by the anti-MBP antibody. M: protein molecular 

mass marker. 
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Figure 4.4 Spectrophotometric assays of hydroxynitrile lyase activity. (A) Reaction kinetics 

of four protein samples. Affinity purified MBP-HTH protein was cleaved with Factor Xa to 

remove the MBP tag prior to conducting the assay. 6µg (a) and 18µg (b) of the HTH and 

MBP tag protein (HTH+MBP) mix was directly used in the reaction. Absorbance at 275 nm 

was continuously monitored for the production of benzaldehyde to determine enzymatic 

activities. (c) Mandelonitrile lyase (MDL) extracted from almond was used as positive 

control. (d) The effect of Column Buffer (CB) in which MBP+HTH was solubilized is 

shown. (B) Calculated specific activities (nmol/mg protein/min). The ΔA275 /min was 

determined by absorbance detected in the period of 7 to 15 minutes (boxed linear range). All 

absorbance readings were corrected against a blank sample. Values are the mean ± 1 standard 

error. Experiments were repeated three times.  
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Figure 4.5 Spectrophotometric assays for alcohol dehydrogenase activity of recombinant 

HTH protein.. (A-C) Reaction kinetics of alcohol dehydrogenase activities using different 

alcohol substrates. Affinity purified MBP-HTH protein was cleaved with Factor Xa to 

remove the MBP tag, and this digest (MBP+HTH, back line) and alcohol dehydrogenase 

from yeast (positive control, grey line) were used for assays. (D) Benzyl alcohol was selected 

as a substrate due to its similar structure to mandelonitrile. (E) Calculated specific activities 

(nmol/mg protein/min). The ΔA340 /min was determined by absorbance detected in the linear 

range. All absorbance readings were corrected against a blank sample. Values are the mean ± 

1 standard error. Experiments were repeated three times.  
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Figure 4.6 Western blot analyses of HTH protein glycosylation using protein extract from 

HTHpro:HTH-EYFP plants. Probed with anti-GFP antibody, HTH-EYFP in the crude protein 

extract (lane 1) was detected at ~ 135 kDa. When the crude extract was subjected to a 

deglycosylation mix containing glycosidases that remove glycans from both N- and O-linked 

(N+O) glycosylation sites, HTH-EYFP (lane 3) was detected at the theoretical size ~124 

kDa. When the protein extract was treated with PNGase F (lane 5), a glycosidase that 

removes only N-linked glycans, the decrease in size was similar to that between lane 2 and 

lane 3. Each mock reaction (negative control) contained all the components except 

glycosidases. Molecular masses are indicated in kDa. 
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Figure 4.7 Putative key catalytic sites of HTH and other glucose-methanol-choline (GMC) 

oxidoreductases. The three putative protein active sites were identified by protein sequence 

alignment with PdMDL2 and its crystallography-verified sites. Active sites that have been 

identified by crystal structure are in bold. The previously identified catalytic sites PdMDL2 

(circle) and AmPDH (square) as well as the predicted sites of HTH (cross) are labelled with 

the corresponding positions of their own sequences. The third active site (boxed) of HTH and 

HTH-like proteins (AtGMC1-AtGMC4) matches with that of the ADH group rather than the 

MDL group. The cladogram is derived from the phylogenetic tree shown in Figure 4.2, and 

the bootstrap values indicated for each branch. For information about sequence names and 

grouping, refer to Table 4.1. AAO: aryl alcohol oxidase; ADH: alcohol dehydrogenase; 

CHOX: cholesterol oxidase; FAO: fatty acid oxidase; GOX: glucose oxidase; MDL: 

mandelonitrile lyase; OXDH: a group of oxidase and dehydrogenase; PDH: pyranose 

dehydrogenase. 
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Figure 4.8 Ribbon diagrams showing two hypothetical three-dimensional structures of HTH. 

Models were generated by the PHYRE2 server and graphed by the PYMOL tool. The 

predicted enzymatic pocket is shown in grey, and the putative active site residues in red. 

Seven functional residues identified by mutant screens are shown in blue. The position of the 

cofactor was superimposed onto the model. 510 (86%) and 505 HTH residues (85%) were 

modeled with 100.0% confidence on the PdMDL2 and AmPDH crystal structure, 

respectively. (A) The tertiary structure of the mandelonitrile lyase PdMDL2 (PDB:1JU2) 

with the cofactor FAD. (B) Hypothetical structure of full length (594 aa) HTH modeled on 

PdMDL2. The 27-aa deletion sequence of the isoform resulting from transcript alternative 

splicing is indicated on the modeled structure. (C) The tertiary structure of pyranose 

dehydrogenase AmPDH (PDB: 4H7U) with the cofactor FED. (D) Hypothetical structure of 

HTH modeled on AmPDH. The isoform deletion sequence was not included in modeling by 

the PHYRE2 server. FAD, flavin adenine dinucleotide; FED, [(2R,3S,4R,5R)-5-(6-amino-

9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl (2R,3S,4S)-2,3,4-trihydroxy-5-

[(4aR)-4a-hydroxy-7,8-dimethyl-2,4-dioxo-3,4,4a,5-tetrahydrobenzo[g]pteridin-10(2H)-

yl]pentyl dihydrogen diphosphate. 
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Table 4.3 The list of top 20 coexpressed genes and their encoded protein functions. Genes are 

ranked according to the correlation coefficient. The coexpression profile was generated using 

the GeneMania plugin of Cytoscape with the Arabidopsis thaliana dataset. Abbreviation: 

LTPG, GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED LIPID PROTEIN 

TRANSFER; LCR, LACERATA; SBT, SUBTILASE; LTL, LI-TOLERANT LIPASE; SFAR, 

SEED FATTY ACID REDUCER; DRB, DOUBLE STRANDED RNA-BINDING PROTEIN; 

MYC1, TRANSCRIPTION FACTOR MYC1; PDF, PROTODERMAL FACTOR; BDG, 

BODYGUARD; OCT3, ORGANIC CATION/CARNITINE TRANSPORTER; CER, 

ECERIFERUM; KCS, 3-KETOACYL-COA SYNTHASE; CYP86A4, CYTOCHROME P450 

FAMILY 86 PROTEIN; DCR, DEFECTIVE IN CUTICULAR RIDGES; PEL, PERMEABLE 

LEAVES; GPI, phosphatidyl-inositol; GDSL, glycine, aspartic acid, serine, and leucine 

domain. a: inferred from subtilase ABNORMAL LEAF-SHAPE 1. b: inferred from subtilase 

SBT1.7. c: inferred from OCT1 (71% similarity) 
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 Rank Gene ID Gene Name (Putative) Protein function or family  

1 AT1G27950 LTPG1 Cuticle development (Lee et al., 2009b), lipid transport (DeBono 

et al., 2009), seed coat permeability (Edstam and Edqvist, 2014), 

possible defense response signaling (Maldonado et al., 2002) 

2 AT2G45970 LCR Fatty acid hydrolase, cuticle development (Wellesen et al., 

2001) 

3 AT5G51750 SBT1.3 Cuticle formation (Tanaka et al., 2001)a, response to stress 

(Golldack et al., 2003)b 

4 AT3G04290 LTL1 Overexpression increases salt tolerance (Naranjo et al., 2006),  

5 AT4G29020 - - 

6 AT5G45670 - GDSL lipase  

7 AT5G45950 - GDSL lipase  

8 AT3G43720 LTPG2 Cuticle development, lipid transport (Kim et al., 2012); seed 

coat development (Edstam and Edqvist, 2014); possible defense 

response signaling (Maldonado et al., 2002) 

9 AT4G18970 SFAR5 Seed fatty acid content regulation (Chen et al., 2012); GDSL 

lipase  

10 AT5G41070 DRB5 MicroRNA pathway (Eamens et al., 2012) 

11 AT4G00480 MYC1 Trichome density (Symonds et al., 2011) 

12 AT5G13400 -  - 

13 AT2G42840 PDF1 L1 layer-specific expression (Abe et al., 1999) 

14 AT1G10640 - Pectin lyase-like superfamily protein 

15 AT1G64670 BDG1 Cuticle development, mutants have higher resistance to a 

fungal pathogen (Kurdyukov et al., 2006a); seed coat 

development (De Giorgi et al., 2015) 

16 AT1G16390 OCT3 Lateral root development (Lelandais-Briere et al., 2007) c 

17 AT1G25450 KCS5/CER60 Cuticle development, synthesis of very long chain fatty acids 

(Trenkamp et al., 2004) 

18 AT4G16140 - Predicted GPI-anchored protein (Borner et al., 2003) 

19 AT1G01600 CYP86A4 Fatty acid hydrolase (Rupasinghe et al., 2007), cuticle 

development (Li-Beisson et al., 2009) 

20 AT5G23940 DCR/PEL3 Cuticle development, diacylglycerol acyltransferase (Rani et 

al., 2010); seed coat development, extensive root branching 

(Panikashvili et al., 2009) 

 

  

https://www.arabidopsis.org/servlets/TairObject?type=publication&id=501721544
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Figure 4.9. The HTH coexpression network. (A) The coexpression gene network. The size of 

a node is proportional to the correlation coefficient. Each gene is colour-coded in blue 

(cuticle development or lipid processing) and/or pink (stress related) according to its 

functions. (B) A table including genes associated with cuticle development, seed coat 

development, and/or stress. Genes are ranked according to the correlation coefficient. 

Function codes: Cuticle formation: I, Cutin/wax monomer synthesis; II, Lipid transport, III, 

Cutin/wax monomer/oligomer polymerization. Stress response: I, Increased expression by 

stress; II, Stress singling; III, Increased resistance to pathogen in the mutant. The number of 

+ signs is proportional to the strength of evidence in the literature. Refer to Figure 4.2 for 

gene name abbreviations.  

  



 

247 

 

 

   

A

      Cuticle Development  Seed 
Coat 

 Stress 
Response  

      I II III 
 

I II III 

Rank Gene ID Gene Name              

1 AT1G27950 LTPG1   ++    +    +  

2 AT2G45970 LCR ++          +  +++ 

3 AT5G51750 SBT1.3    +  +    +     

4 AT3G04290 LTL1          +++     

6 AT5G45670 -     +         

7 AT5G45950 -     +         

8 AT3G43720 LTPG2   +    +++      + 

15 AT1G64670 BDG1     ++  +++      +++ 

17 AT1G25450 KCS5/CER60 ++             

18 AT4G16140 -   +           

19 AT1G01600 CYP86A4 +             

20 AT5G23940 DCR/PEL3     +++  +++      +++ 

 

B 
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Figure 4.10. Phylogenetic distribution of proteins in the HTH co-expression network. Each 

protein is named after the gene and is labelled with the co-expression rank shown in Table 

4.3. The presence of the protein in a species is marked with a red square and absence with a 

white space. The intensity of the colour reflects the amount of conservation of the 

homologous protein in other species (100% in Arabidopsis thaliana). The number to the right 

of the intensity square indicates the protein sequence homology to the respective protein in 

Arabidopsis. Proteins of higher homology to HTH and its coexpressed proteins are 

predominantly specific to land plants, except for KCS5/CER60 and SBT1.3. More precisely, 

proteins are grouped according to the occurrence of their homologous proteins: only in 

Brassicaceae (open circle), only in land plants (closed circle; cut off: 4%), homology less 

than 15% (pound sign) and less than 25% (open triangle) detected outside of the land plant 

group. Controls include FUMARASE 1 (FUM1; AT2G47510), TUBULIN ALPHA-4 

CHAIN (TUA4; AT1G04820), ACTIN7 (AT5G09810) and RIBULOSE BISPHOSPHATE 

CARBOXYLASE SMALL CHAIN 1A (RBCS1A; AT1G67090). The distribution pattern 

was generated using the String database (www.string-db.org).  
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 Discussion 

 The predicted tertiary structure of HTH has characteristics of an enzyme 

The two putative tertiary structural models shown in Figure 4.8 revealed that the majority of 

residues known to be important to HTH protein function based on genetic analyses are 

positioned within or in close proximity to the predicted catalytic pocket where putative active 

residues reside, corroborating the prediction that the main function of the HTH protein is 

enzymatic. This prediction, however, has not yet been experimentally verified and other 

functions mediated through protein-protein interaction cannot be ruled out. The following 

sections will discuss how the two previously proposed functions, i.e. mandelonitrile lyase 

and ω-fatty alcohol dehydrogenase, are substantiated by other lines of evidence. 

 HTH is closely related to mandelonitrile lyase  

HTH shares 40% sequence identity with the FAD-binding mandelonitrile lyase PdMDL2 

from almond (Prunus dulcis) and has two conserved GMC oxidoreductase domains (Dreveny 

et al., 2001; Hu and Poulton, 1997). In addition, HTH and PdMDL2 share considerable 

structural similarity (Appendix L) and close phylogenetic relationships (Figure 4.2), raising 

the possibility that they may have a similar function. Furthermore, six of the eight functional 

amino acid residues of HTH are conserved in four HTH-like proteins (AtGMC1 - AtGMC4) 

PdMDL2 (Table 4.2), suggesting functional similarity. However, this conservation also 

occurs among other GMC oxidoreductases that are functionally distinct from MDL though to 

a leser extent (Appendix J; three to five out of the eight residues). Also, it is to be noted that 

six of the eight functional residues identified are glycine; this bias may be an artifact of EMS 
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(ethyl methanesulfonate) mutagenesis, the method used to generate the original hth organ 

fusion mutants (Lolle et al., 1998; Perry et al., 2009). As such, other functional residues may 

not have been identified using this approach. 

PdMDL2 is a hydroxynitrile lyase that catalyzes the dissociation of α-hydroxynitriles to 

HCN and aldehydes or ketones (Figure 1.12) (Dreveny et al., 2001; Sharma et al., 2005; 

Yemm and Poulton, 1986). Its substrate hydroxynitriles can be derived from the 

glucosinolate metabolism pathway (Frisch and Moller, 2012) where hydrolysis of 

glucosinolates by myrosinase, a type of β-glucosidase, gives rise to a variety of derivatives 

(Figure 1.7). Although isothiocyanates are the most common product at neutral pH, nitrile 

products are favoured when Fe2+ concentration or acidity is elevated (<pH 5.0) (Brabban and 

Edwards, 1995; Kissen and Bones, 2009; Nakano et al., 2014). Some hydroxylated nitrile 

products can subsequently be catalyzed by a hydroxynitrile lyase to form hydrogen cyanide, 

and this type of cyanogenesis is a common defense strategy employed in higher plants, 

particularly the Brassicaceae. For instance, PYK10, a β-glucosidase, is the major protein 

component of the stress-inducible ER body (Matsushima et al., 2003b), and therefore HTH 

localization to this organelle (see Chapter 3) raises the possibility of HTH participating in the 

cyanogenesis defense response via glucosinolate catabolism.  

 Prokaryotically derived HTH showed neither mandelonitrile lyase activity 

nor alcohol dehydrogenase activity  

To experimentally determine whether HTH has a hydroxynitrile lyase activity, a 

recombinant MBP-HTH protein was used to conduct enzymatic assays. The putative HTH 

signal peptide domain was excluded from the pMAL-c4x:HTH construct because inclusion 
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of the signal peptide has been previously shown to impede enzyme activity. For example, 

Padham et al. (2007) showed that a MBP-tagged triacylglyceride lipase exhibited higher 

activity when the putative transit peptide was excluded from the recombinant protein. 

Affinity purification using a MBP tag was selected because of its demonstrated ability to 

increase the solubility of over-expressed eukaryotic fusion proteins in bacteria. Kapust and 

Waugh (1999), for example, showed that MBP can promote proper folding of the attached 

protein and was to a great extent the most effective solubilizing agent in comparison with 

glutathione S-transferase (GST) and thioredoxin (TRX). As large affinity tags such as MBP 

may interfere with the protein function and structure (Bucher et al., 2002; Smyth et al., 2003; 

Terpe, 2003), the N-terminal MBP tag was cleaved from the HTH protein prior to the 

hydroxynitrile lyase assay. Immunoblotting analysis (Figure 4.3) verified that the 

recombinant protein MBP-HTH was successfully produced in E. coli, and the MBP tag was 

effectively cleaved although non-specific cleavage or proteolysis at the C-terminus might 

have occurred as a ~70-80 kDa product was detected by both the anti-HTH and anti-MBP 

antibodies.  

Results from the in vitro lyase enzymatic assays (Figure 4.4A) showed that the 

prokaryotically expressed HTH protein had negligible hydroxynitrile lyase activity, whereas 

the almond mandelonitrile lyase showed a specific activity of around 200 nmol/mg 

protein/min with minimal inhibition by the column buffer. Because the HTH protein itself 

only accounted for roughly half of the total protein in the mixture (MBP+HTH), twice the 

amount of protein (6 µg) was used relative to the commercial MDL samples. An assay using 

a triple amount of cleaved recombinant protein (18 µg) was also performed, to compensate 
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for possible confounding effects of non-specifically proteolysis (Figure 4.4B) but detectable 

activity remained negligible.  

Similar to the mandelonitrile lyase assay, no alcohol dehydrogenase activity was 

detected using the cleaved recombinant MBP-HTH protein. Three substrates were tested and 

included ethanol (2 carbon), aliphatic alcohol 1-hexanol (6 carbon), and an aromatic alcohol 

benzyl alcohol. Benzyl alcohol was chosen as a substrate because benzyl alcohol has a 

similar chemical structure to the substrate of MDL, mandelonitrile. Both compounds consist 

of a benzene ring and a single hydroxymethyl substituent, but mandelonitrile bears the 

additional functional C≡N group (Figure 4.5C and D). Given the similar tertiary structures 

yet different catalytic residues of PdMDL2 and HTH (Figure 4.8), benzyl alcohol might fit 

into the pocket and hence interact with HTH protein.  

Based on fatty acid metabolite profiling, HTH as a putative alcohol dehydrogenase 

likely catalyzes long-chain (> 16 carbon) fatty alcohols into oxo acids (Kurdyukov et al., 

2006b). Therefore, if HTH has strict specificity for the alcohol carbon length, its enzymatic 

activity wouldn’t be detected in the in vitro assays conducted in this study. This substrate 

specificity was in fact observed for the yeast alcohol dehydrogenase that was used as a 

positive control. The yeast ADH reacted with ethanol at a specific activity of 216 ± 52 

nmol/mg/min. When the carbon number of the substrate increased to six, its activity 

decreased to 0.60 ± 0.23 nmol/mg/min.  
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 HTH-FP is glycosylated in plants 

Protein glycosylation has multiple functions; for instance, in the ER glycosylation is a way to 

control protein quality and to increase protein stability (Lodish et al., 2000; Rayon et al., 

1998; Strasser, 2014). In the absence of glycans many proteins misfold and even aggregate 

(Parodi, 2000; Shental-Bechor and Levy, 2008). To determine whether the HTH protein is 

glycosylated in Arabidopsis, protein extracted from HTHpro:HTH-EYFP plants was treated 

with glycosidases and analyzed for mobility shifts. The result showed that HTH-FP size was 

reduced by 11 kDa following treatments. This size shift suggested the recombinant HTH-FP 

is glycosylated, and hence the native HTH protein is likely a glycoprotein. Moreover, HTH-

FP is glycosylated with mostly, if not exclusively, N-linked rather than O-linked glycans 

(Figure 4.6). Since N-linked glycosylation predominantly occurs in the endoplasmic 

reticulum (ER) and O-linked glycosylation in the Golgi apparatus, this result corroborates 

HTH-FP localization in organelles that are directly derived from the ER (see Chapter 3). 

The N-linked glycosylation process involves glycans binding to the amino group of 

asparagine by oligosaccharide transferases. Hence, amino acid substitution can lead to altered 

glycosylation state and disrupt protein function, resulting in abnormal phenotypes. The 

relative positions of predicted glycosylation sites of the HTH protein and eight amino acids 

essential to protein function were shown in Figure 4.1. These amino acids were altered by 

single point mutations induced by EMS and were identified as functional residues because 

these substitutions resulted in floral fusion phenotype (Lolle et al., 1998). As the figure 

shows, none of these known functional residues are asparagine and therefore cannot be N-

linked glycosylated, suggesting that the mutant phenotype was not caused by changes in 
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protein glycosylation. This result, however, does not exclude the likelihood that 

glycosylation is important for HTH protein function because glycan-binding residues might 

yet to be identified with more screening with different methods such as site-directed 

mutagenesis. Furthermore, if the lack of accurate glycosylation of HTH is lethal to plants, no 

functional residues accountable for glycosylation could have been identified.  

Whether the absence of glycosylation affects HTH folding and hence its enzymatic 

activity remains to be determined. Strategies to bypass this issue include using eukaryotic 

expression systems for in vitro assays, conducting complementation assays in yeast fatty 

alcohol dehydrogenase mutants, or even coexpressing genes encoding enzymes that catalyze 

required glycosylation reactions in prokaryotic systems (Geisse et al., 1996; Khow and 

Suntrarachun, 2012; Laage and Langosch, 2001).  

 Putative catalytic residues of HTH are similar to those of fatty acid 

dehydrogenases  

With a view towards understaning HTH’s biochemical function, catalytic sites of these 

related GMC oxidoreductases were predicted using bioinformatics tools. Although close 

phylogenetic relationships often indicate similar protein functions, closely related proteins 

can evolve different protein functions through the substitution of a few key residues such as 

those at catalytic sites (Greenhagen et al., 2006), while otherwise showing high sequence or 

conformational similarity. For instance, two crotonase family proteins, enoyl-CoA hydratase 

and 4-chlorobenzoyl-CoA dehalogenase catalyze very different reactions regardless of their 

significant similarity in sequence and structure (Murzin, 1998). Enzyme active sites, 
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however, are the parts of an enzyme that directly interact with a substrate, and for that reason 

they are often highly conserved in functionally related proteins (Torrance et al., 2005) 

making these sites useful to identifying putative enzymatic function. To investigate the 

possible enzymatic function, putative catalytic sites of HTH as well as other GMC 

oxidoreductases were identified using multiple sequence alignment with PdMDL2.  

Putative GMC oxidoreductases catalytic site compositions uncovered by full length 

protein sequence alignment further supports the phylogenetic relationship among them 

(Figure 4.2 and Figure 4.7). That is, catalytic residues are mostly conserved within each 

phylogenetic group, suggesting the closely related proteins within each group might have 

similar functions. For instance, in group MDL, alignment indicates high conservation of 

putative catalytic site residues, consistent with the strict conservation of Tyr-484 and His-524 

observed among the majority of FAD-dependent hydroxynitrile lyases (Dreveny et al., 2002). 

Similarly, identified putative active sites are highly conserved in both CsFAO and AtFAO 

that have similar functions. The enzymatic activities of three proteins, including CtFAOT, 

CcFAO1 and AtFAO3, in these two groups have been experimentally verified. Yeast 

CtFAOT and CcFAO1 in Candida species are capable of catalyzing oxidation of C12 and 

C14 alkan-1-ols as long chain fatty alcohols (Dickinson and Wadforth, 1992; Vanhanen et 

al., 2000). Arabidopsis AtFAO3 is a homologue of CcFAO1, and purified AtFAO3 

overexpressed in E. coli showed long chain fatty acid oxidase activity for 1-dodecanol (C12), 

1-hexadecanol (C16), and 16-hexadecandiol (C16) (Cheng et al., 2004). The common 

function of AtFAO3, CcFAO1 and CtFAOT from two different clades and their nearly 
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invariant (putative) catalytic residues suggest that the active sites identified by sequence 

alignment are related to protein function.  

Furthermore, the catalytic sites predicted by multiple sequence alignment match with the 

crystallography-verified active sites in the case of the cholesterol oxidase SsCHOX, pyranose 

dehydrogenase AmPDH, aryl alcohol oxidase PeAAO and glucose oxidase AnGOX (Figure 

4.7, residues in bold). These results illustrate the usefulness of identifying putative catalytic 

sites using sequence alignment strategies. Therefore, if HTH functions as a mandelonitrile 

lyase, active site residues in PdMDL2 and HTH should show relatively high levels of 

conservation.  

 The results shown in Figure 4.7, however, indicate that important putative catalytic residues 

identified in HTH deviate from those of the MDLs. For PdMDL2, the substrate binding 

position is close to the FAD cofactor, with interactions occurring between the hydroxyl group 

of the substrate and the side chains of residues Tyr-484, His-486, and His-524. Cys-355 was 

previously thought to directly interact with the substrate (Dreveny et al., 2001), but since 

isoleucine or valine can also be present at this position, this possibility was later ruled out 

(Dreveny et al., 2009). Therefore, Cys-355 was not included in the analysis. Based on a 

proposed mechanism of cyanohydrin cleavage, His-524 likely acts as the general base, and 

Tyr-484 probably acts as a hydrogen bond donor to the mandelonitrile-OH (Dreveny et al., 

2009), while the strictly conserved His-486 is involved in interaction with the cleaved 

cyanide product. In HTH the nonpolar aliphatic Ile-527 is found in the position 

corresponding to the aromatic amino acid Tyr-484 in PdMDL2, a substitution that would 
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eliminate the OH side group that is thought to form a hydrogen bond with the substrate 

mandelonitrile, making it less likely that HTH functions as a mandelonitrile lyase.  

His-486 and His-524 are strictly conserved in most known FAD-dependent 

hydroxynitrile lyases, a finding supported by site-directed mutagenesis showing that both 

residues are essential for the cleavage reaction. When His-524 (the third active site position) 

is substituted with an asparagine (Asn), the mutant protein showed less than 5% activity 

compared to wildtype, indicating that His-524 is essential for mandelonitrile lyase to cleave 

the cyanide (Dreveny et al., 2009). Accordingly, the fact that HTH has an Asn-567 in the 

position corresponding to His-524 in PdMDL2 strongly suggests that HTH does not have a 

lyase activity. The genetic identification of three functional residues (Pro-564; Gly-565, Thr-

566; Figure 4.1) surrounding HTH Asn-567 lends further support to the importance of this 

residue because amino acid substitutions near a critical catalytic residue are likely to hinder 

substrate interaction and catalytic function.  

Interestingly, based on active site predictions, HTH and AtGMC1 to AtGMC4 share 

greater commonality with enzymes in Group ADH. Predicted HTH active site residues (Ile-

527, His-529, and Asn-567) share identity with four alcohol dehydrogenases including 

PoADH. PoADH functions as a fatty alcohol dehydrogenase that converts aliphatic medium 

chain alcohols (C6-12) into aldehydes. This enzymatic activity has been confirmed by 

complementing Pseudomonas putida alcohol dehydrogenase mutants for growth on alkanes 

(van Beilen et al., 1992). This active site composition match to alcohol dehydrogenases 

suggests that HTH might have a similar function. It also corroborates the proposed ω-fatty 

alcohol dehydrogenase function (Kurdyukov et al., 2006b) wherein a fatty acid metabolite 
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analysis of hth-12 mutant plants revealed that the mutants were defective in the biosynthesis 

of major long α,ω-dicarboxylic fatty acids, the predominant type of cutin monomers in 

Arabidopsis. 

In terms of catalytic site prediction, HTH’s higher similarity to ADHs instead of the 

more closely related MDLs raises the question about the evolutionary relationships between 

these proteins. The fact that the FAD cofactor does not participate in the catalysis of 

mandelonitrile as an electron donor or acceptor suggests that the cofactor is an evolutionary 

remnant from an alcohol-oxidizing ancestor (Dreveny et al., 2001). Hence, it is possible that 

PdMDL2 has evolved a new enzymatic activity, while the ancestral function is retained in 

HTH. Together with the match of active site composition of HTH and ADHs (alcohol-

oxidizing enzymes), this proposed alcohol-oxidizing catalytic activity of an ancestor supports 

the notion that HTH retains the activity of the common alcohol-oxidizing ancestor of these 

three groups. That is to say, MDLs, HTH and ADHs share an ancestor, and the ancestral 

alcohol oxidase/dehydrogenase function is conserved in HTH and ADHs rather than in the 

MDL clade where a lyase function evolved specifically within. 

A postulated ω-fatty alcohol dehydrogenase activity of HTH is also consistent with ER-

localization demonstrated in Chapter 3 as many enzymes involved in fatty acid monomer 

synthesis are known to reside in the ER. ER-localized enzymes participating in the pathway 

of wax and cutin monomer synthesis include, for example, long chain acyl-CoA synthetase 

(LACS) family proteins that catalyze the synthesis of ω-hydroxy fatty acyl-CoA 

intermediates (Pulsifer et al., 2012; Zhao et al., 2010) and cytochrome P450 (CYP) 
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CYP86A1 and CYPB1 that catalyze hydroxylation of fatty acids (Compagnon et al., 2009; 

Kandel et al., 2006; Pinot and Beisson, 2011). Another CYP450 member, LCR has been 

proposed to catalyze the hydroxylation step (Wellesen et al., 2001; Duan et al., 2005), 

followed by the dehydrogenation step putatively carried out by HTH. In this scenario, HTH 

would function as a ω-alcohol dehydrogenase that converts the ω-fatty alcohol substrate into 

a ω-aldehyde product, the precursor of α,ω-dicarboxylic fatty acid monomers (Figure 1.11). 

The ER localization of many fatty acid cutin monomer processing steps (Figure 1.3) and the 

finding that HTH localizes to this organelle, makes a stronger case for HTH encoding a ω-

fatty alcohol dehydrogenase involved in cutin monomer biosynthesis.  

Genes coexpressed with HTH are involved in both lipid processing and stress response 

Genes coding for components of a biosynthetic or response pathway are likely to have 

similar expression patterns (Eisen et al., 1998; Spellman et al., 1998). For example, genes 

that encode enzymes involved in fatty acid biosynthetic pathways have been shown to 

coexpress (Williams and Bowles, 2004). Furthermore, coexpression profiles can be 

informative about regulatory systems, as in some cases coexpressed genes are co-regulated 

by the same elements (Allocco et al., 2004). For HTH, many of the highly coexpressed genes 

fall into three categories involved in 1) cuticle formation, 2) seed coat development and 3) 

stress responses (Figure 4.9). Details about these genes are discussed below in this order. 

 Cuticle development 

Genes associated with cuticle development were further categorized into three groups 

according to their (potential) functions: cutin/wax biosynthesis (LCR, CYP86A4 and KCS5), 
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fatty acid monomer transport (LTPG1, LTPG2, AT4G16140) and monomer polymerization 

(DCR, BDG, AT5G45670 and AT5G45950). Each group is discussed below. 

Cutin/wax monomer synthesis 

The common constituents of cutin polymers are monomers such as C16 and C18 

unsubstituted fatty acids, ω-hydroxy fatty acids and dicarboxylic fatty acids; some of these 

monomers might contain mid-chain functional groups (Table 1.1). Cutin monomers are 

synthesized from fatty acids made in plastids, and these molecules are either exported and 

integrated into membranes and other cellular components, or further elongated into C16 or 

C18 fatty acids that can be further processed into cutin building blocks. Plastid-derived fatty 

acids in turn are transported into the ER (Wang and Benning, 2012). In the ER the acyl chain 

is first activated by long chain acyl-CoA synthase (LACS) which is then hydroxylated by 

fatty acyl ω-hydroxylase (FAH). The following step by ω-hydroxy fatty acyl dehydrogenase 

(HFADH) transforms hydroxy fatty acids to oxo products which are processed into 

dicarboxylic fatty acids by ω-oxo fatty acyl dehydrogenase (OFADH). Alternatively, 

hydroxyl acids can also be modified directly by FAH to give rise to dicarboxylic acids. 

The LCR gene encodes cytochrome P450 protein CYP86A8, a ω-hydroxylase that catalyzes 

ω-hydroxylation of fatty acids ranging from C12 to C18:1 (Wellesen et al., 2001). Its 

encoded protein is ER-localized and is likely involved in cutin monomer synthesis (Li-

Beisson et al., 2013; Pollard et al., 2008; Tang et al., 2007b; Wellesen et al., 2001). LCR and 

HTH are postulated to catalyze consecutive steps in the cutin monomer biosynthetic pathway 

(Figure 1.11); LCR is the ω-hydroxylase that converts fatty acids into hydroxyl acids, which 
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are subsequently turned into oxo-acids by ω-alcohol dehydrogenase, an enzymatic function 

proposed for HTH (Kurdyukov et al., 2006b). It should be pointed out that among 

coexpressed genes is the closely related cytochrome P450 protein CYP86A4 whose ω–

hydroxylase activity was confirmed by in vitro assays (Rupasinghe et al., 2007). Its 

expression is regulated by a cutin biosynthesis transcription factor WAX INDUCER 1 

(WIN1), and the fatty acid profile of cyp86a4 mutant plants showed a 50% reduction in cutin 

monomers such as 16-hydroxypalmitate, 10,16-dihydroxypalmitate, and 1,16-

hexadecanedioic acid (Kannangara et al., 2007; Li-Beisson et al., 2009). Furthermore, a 

HTH-like gene AtGMC4 (AT1G12570; UniProt: Q66GI5; Figure 4.7) is coexpressed with 

CYP86A7, another putative ω-hydroxylase that catalyzes the same reaction as LCR. The 

coexpression of HTH or HTH-like genes with ω-hydroxylases further supports HTH’s role in 

the cutin biosynthetic pathway.  

Very long chain fatty acids (VLCFAs; longer than 18 carbons) are the basic building 

components for cuticular waxes. Long chain fatty acids are elongated to form VLCFAs by an 

ER-localized fatty acid elongation complex (FAE) where ketoacyl-CoA synthases (KCSs) 

condense the acyl-CoA with malonyl-CoA and produce a β-ketoacyl-CoA to initiate the 

elongation cycle. Twenty one KCSs have been identified in Arabidopsis (Haslam and Kunst, 

2013). The coexpressed KCS5/CER60 is an ER-localized ketoacyl-CoA synthase. It is highly 

homologous to KCS6/CER6 (89% protein sequence identity under 100% coverage) whose 

mutations lead to reduction in long-chain lipids in the pollen coat and on the stem surface; 

moreover, complementation studies showed restored fertility and stem cuticle phenotype 

(Fiebig et al., 2000). When KCS5 was expressed in yeast, it was enzymatically active and 
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catalyzed endogenous yeast VLCFA elongation by cooperating with the yeast elongase 

complexes (Trenkamp et al., 2004).  

Lipid transport 

Synthesized cutin monomers or building blocks are first exported from the ER to the cell 

wall and then subsequently to the cuticle. Possible mechanisms and putative cellular 

locations of cutin assembly are shown in Figure 1.4 (Pollard et al., 2008). One possible 

pathway is thought to be cytoplasmic, requiring soluble carrier proteins to move cutin 

monomers or small oligomers in concert with an ABC transporter and/or 

glycosylphosphatidyl-inositol (GPI)-anchored lipid transfer protein (LTPG) (DeBono et al., 

2009). 

Proteins encoded by LTPG1, LTPG2 and AT4G16140 belong to the class of 

glycosylphosphatidylinositol (GPI)-anchored lipid transfer proteins (LTP). LTPG1 is 

expressed in the epidermis and is primarily localized to the plasma membrane 

(transmembrane protein) but is also found in the extracellular matrix (DeBono et al., 2009). 

Its lipid binding capacity was experimentally verified using E. coli-expressed LTPG1 in 

combination with the fluorescent lipophilic probe 2-p-toluidinonaphthalene-6-sulfonate 

(TNS). LTPG1 is thought to be a carrier of cutin and wax constituents to the plant surface. 

Mutant ltpg1 plants showed a great reduction (>50%) in the C29 alkane, a major component 

of cuticular waxes of the stems and siliques, and this defect in alkane load can be rescued by 

native promoter–driven LTPG1 expression (DeBono et al., 2009; Lee et al., 2009b). 
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LTPG1 has the highest expression in regions of rapid expansion growth, such as 

inflorescence stems. Spatial expression, as determined using LTPG1 promoter::GUS 

transgenic plants, showed a pattern similar to HTH-FP (see Chapter 3); that is, expression 

was detected in young seedlings, emerging lateral roots, the seed coat, and seedling 

vasculature. LTPG2 was identified later, and was found to be functionally redundant with 

LTPG1. ltpg2 mutants showed reduced load of wax, particularly the C29 alkane and have an 

expression pattern that overlaps with LTPG1 (Kim et al., 2012). AT4G16140 is an 

uncharacterized proline-rich family protein with a 23-aa long signal peptide. 

Cutin/wax monomer/oligomer polymerization 

Cutin monomers polymerize to form bigger oligomers in the cell or branching network in the 

extracellular space. With different monomer compositions, larger branching or cross-linked 

cutin structures can be achieved, and the different size and tertiary structure of these cutin 

polymers determines the cuticle properties such as its permeability.  

BDG1 is required for normal cuticle formation and encodes an extracellular protein with 

an α/β hydrolase domain. It is expressed exclusively in epidermal cells and is localized to the 

outermost cell wall of the epidermis. The bdg1 loss-of-function mutants display increased 

leaf surface permeability, have a thinner cuticular membrane with pockets in the cuticular 

zone and are devoid of an intervening cuticular wax layer between fused leaves, despite 

increased cutin and wax loads (Kurdyukov et al., 2006a). The bdg1 phenotype is similar to 

that of the fungal cutinase-expressing transgenic plants (Sieber et al., 2000), suggesting that 
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BDG1 may not be directly involved in cutin monomer/oligomer synthesis. Rather BDG1 

may function as a polyester synthase for cutin polymer formation (Pollard et al., 2008).  

DCR encodes a BAHD acyltransferase required for monomer incorporation into the 

cuticular polymeric structure. Mutant dcr plants exhibit postgenital organ fusions, have a 

significant reduction of a major cutin monomer and manifest excessive root branching. These 

mutants show altered fatty acid profiles such that a major flower-specific cutin monomer, 

9(10),16-dihydroxy-hexadecanoic acid, is reduced to near undetectable levels, while C16 

dicarboxylic fatty acid 1,16-hexadecanedioic acid levels are greatly elevated. Unlike BDG1, 

DCR is localized to the cytoplasm and is thought to be involved in acyl transfer of cutin 

monomers leading to formation of precursor intermediates or oligomeric structures 

(Panikashvili et al., 2009). Interestingly, both dcr and bdg1 mutants can give rise to 

misshapen trichomes (Marks et al., 2009; Panikashvili et al., 2009).  

The GDSL motif lipase family proteins have consensus amino acid sequence of glycine, 

aspartic acid, serine, and leucine around the active site, and they exhibit diverse functions 

with broad substrate specificities (Akoh et al., 2004). In plants, they are thought to play a role 

in cuticle biosynthesis (Irshad et al., 2008; Matas et al., 2011). Coexpressed gene 

AT5G45670 and AT5G45950 belong to the GDSL-motif esterase/acyltransferase/lipase 

family that share a SGNH (serine-glycine-asparagine-histidine) domain. The Agave 

americana (AgaSGNH) protein has been characterized as a plant SGNH-motif hydrolase; 

like the α/β hydrolase BDG1, it is localized to the epidermis outer cell wall, and AgaSGNH is 

mostly expressed in regions where cutin biosynthesis is active, such as rapidly expanding 
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leaves (Reina et al., 2007). The SGNH-motif protein encoded by AT5G45670 and 

AT5G45950 might also have similar functions. In fact, putative proteins encoded by these 

genes have notable homology (up to 53%) to a tomato extracellular acyltransferase TOMATO 

CUTIN DEFICIENT 1 (CD1), also a GDSL-like lipase family protein. The CD1 protein has 

been shown to have polyester synthesis activity and is required for cutin accumulation in vivo 

(Yeats et al., 2012).  

Others 

PROTODERMAL FACTOR 1 (PDF1) is thought to be involved in cuticle development 

because PDF1 expression is exclusive to the L1 layer of vegetative, inflorescence and floral 

meristems and to the protoderm of organ primordia. Yet, its biochemical function and 

whether it takes part in cuticle development is yet to be determined. SUBTILASE 1.3 

(SBT1.3) encodes a protein that has serine-type endopeptidase activity, but the biological 

function of SBT1.3 is unclear. Based on protein sequence similarity, SBT1.3 is related to 

ALE1 (ABNORMAL LEAF SHAPE 1; 44% identity) that plays a role in non-cell autonomous 

peptide signaling and, in embryos and juvenile tissues in Arabidopsis, is required for cuticle 

formation and epidermal differentiation (Tanaka et al., 2001).  

 Seed coat development  

Cuticle formation and seed coat development show genetic overlap such that some mutants 

with a cuticle phenotype also have a seed coat phenotype. In a study where nine LTPG1-6 T-

DNA insertion lines were examined, mutant ltpg2-6 seeds showed elevated permeability to 

tetrazolium salts. Lipid analysis of ltpg6 mutant lines revealed an increase of C20:0, C22:0 

and C24:0 and a decrease in ω-hydroxy fatty acids, suggesting altered suberin/cutin 
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deposition in the seed coat. Analyses using scanning electron microscopy revealed seed-

specific morphological changes with hair-like outgrowths in ltpg4 and ltpg5 seeds (Edstam 

and Edqvist, 2014). In cotton (Gossypium hirsutum), LTPs have been implicated in fiber 

development through cutin deposition (Orford and Timmis, 2000). In dcr mutants, the seed 

coat was more porous than the Columbia wildtype as determined by toluidine blue staining. 

Mutant dcr seeds were often deformed, occasionally fused to one another and following 

imbibition, failed to release mucilage (Panikashvili et al., 2009). The bdg1 mutant also 

showed increased toluidine blue permeability resulting in endosperm staining (De Giorgi et 

al., 2015).  

The notion of a “seed cuticle” emerged from the work above (De Giorgi et al., 2015; 

Panikashvili et al., 2009), wherein a cutin-containing layer surrounds the entire outer side of 

the endosperm, in effect encasing all living seed tissues. Likely as a result of higher 

permeability, the bdg1 mutant seeds suffer low seed viability and dormancy. Furthermore, 

dcr and bdg1 seed were more sensitive to salinity, osmotic, and water deprivation stress 

conditions, possibly as a consequence of the elevated level of oxidative stress conferred by 

increased porosity of the seed coat. The reported association of these cutin biosynthesis or 

polymerization genes with seed coat development is consistent with the reported increase in 

seed coat permeability of hth mutants described in Chapter 3.  

 Stress response  

Research has shown that cuticle defects can lead to increased susceptibility to pathogens or 

abiotic stress. For example, ltpg1 mutant plants that exhibit disorganized and diffuse cuticle 
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showed lower resistance to the necrotropic fungal pathogen Alternaria brassicicola (Lee et 

al., 2009b). This type of change in interaction with stress/pathogens is likely due to lack of 

protection provided by a normal cuticle barrier. Genes whose mutations caused cuticle 

defects and lowered resistance to stress, however, are not included in the group of 

stress/defense associated genes in Figure 4.9. Rather, included genes must show either 1) 

increased expression by stress, 2) increased resistance to pathogen in the mutant or 3) 

potential role in stress signaling. Genes included in this category are discussed below. 

LTL1 encodes a GDSL-like lipase family protein that upon exposure to LiCl or NaCl is 

rapidly induced  and can confer higher salt tolerance if overexpressed (Naranjo et al., 2006). 

Moreover, its gene expression can be activated by salicylic acid, a known mediator in the 

response to pathogen attack, suggesting a role of LTL1 in plant defense responses. Subtilases 

(SBTs) constitute a large family of serine peptidases with diverse functions. Subtilase P69 

from Solanum lycopersicum was the first member of this family identified and like its related 

subtilases P69A and P69B, has been shown to play a role in responses to pathogens (Granell 

et al., 1987; Jorda et al., 1999; Tornero et al., 1997). In Arabidopsis thaliana, subtilases 

comprise six distinct families AtSBT1 to AtSBT6 (Rupasinghe et al., 2007; Schaller et al., 

2012). The function of Arabidopsis SBT1.3 is unknown, but its encoded protein is 

categorized into the AtSBT1 group and is closely related to SBT1.7 (also known as ARA12 

or AtSLP1) (53% protein sequence identify; At1G04110) (Rautengarten et al., 2005; Schaller 

et al., 2012). The expression of SBT1.7 and two other subtilases genes AtSLP2 and AtSLP3 

can be altered by environmental stress and were shown to be elevated by jasmonate treatment 

in juvenile plants. Although the specific function is yet to be determined, research on closely 



 

269 

 

related subtilases have provided evidence of a possible association of Arabidopsis SBT1.3 

with plant response to environmental stress. 

Mutants such as bdg1, lcr and lacs2 (long-chain acyl-CoA synthetase 2) have also been 

shown to increase the resistance to a virulent fungal pathogen Botrytis cinerea (Kurdyukov et 

al., 2006a; Tang et al., 2007b; Wellesen et al., 2001). Likewise, transgenic plants expressing 

a fungal cutinase gene also showed elevated resistance to B. cinerea (Chassot et al., 2007; 

Sieber et al., 2000). These results demonstrate that the cuticle not only serves as a protective 

barrier but also as a component of the defense response signaling cascade that involves many 

components.  

In a study of lcr, fdh and bdg1 mutants, Voisin et al. (2009) proposed that the mutants 

alleviate the functional disorder of the cuticle by reinforcing different cell integrity pathways. 

Using an in silico screening method, the authors identified a gene that encodes a protein 

involved in small-RNA signaling, SERRATE (SE), that is essential for the elevated resistance 

of lcr and bdg1 mutants. In the se mutant background increased resistance to B. cinerea 

exhibited by lcr, fdh and bdg1 mutants is lost. The interconnection of a micro-RNA 

associated protein with cutin synthesis genes for disease resistance raises the possibility the 

coexpressed gene DRB5 which is associated with microRNA pathway might interact with 

HTH in a similar manner. Moreover, evidence has shown that a permeable cuticle is 

associated with the production of reactive oxygen species (ROS) (L'Haridon et al., 2011). It 

has been suggested that higher cuticle permeability allows early sensing and response to B. 

cinerea by the host, resulting in greater resistance to this pathogen (Reina-Pinto and 
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Yephremov, 2009). ROS production could be part of the early pathogen responses triggered 

by rapid penetration of fungus-secreted elicitors as ROS can potentially activate a cascade of 

stress-associated pathways (Schmitt et al., 2014). This notion is supported by studies 

showing that plant leaves treated with cutinase prior to the inoculation accumulated more 

ROS and also exhibited greater resistance to B. cinerea (Kauss et al., 1999; L'Haridon et al., 

2011).  

In addition to aforementioned mechanisms, proteins encoded by genes involved in cutin 

production have been reported to play a role in plant defense signaling of plant-pathogen 

interactions. CYP86A2 encoded by ATT1 (aberrant induction of type three genes 1) is a 

cytochrome P450 protein that catalyzes fatty acid hydroxylation (Bak et al., 2011). The cutin 

content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in cuticle 

formation. att1 has a diffuse cuticle of elevated permeability and a higher transpiration rate. 

In addition to these phenotypes, it has been demonstrated that the att mutation represses the 

expression of a Pseudomonas syringae gene essential for its virulence (Xiao et al., 2004). As 

many gram-negative bacterial pathogens, P. syringae employs the type III secretion system 

to deliver effector proteins into the host to initiate infection. When plants were incubated 

with P. syringae, the bacterial type III gene avrPto expression in the intercellular space was 

higher for att1 than for wildtype plants, suggesting the type III gene was negatively regulated 

in ATT1. Xiao et al. (2004) proposed that cutin monomers or other lipids derived from cutin 

monomers encoded by ATT1 may repress type III gene expression. This gene repression 

cannot be solely attributed to the diffuse cuticle structure because this enhanced avrPto 

expression was not observed in wax2 that exhibits thick but translucent cuticle membrane 
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and postgenital fusion (Chen et al., 2003). Similarly, Lee et al. (2009b) reported that ltpg1 

knockout mutant had increased vulnerability to the fungal pathogen Alternaria brassicicola, 

and suggested that GPI-anchored lipid transfer LTPG1 might also have functions in lipid 

signaling for plant defense against fungal pathogen attack as many lipid transfer proteins are 

involved in long-distance signaling during acquisition of systemic resistance in Arabidopsis 

(Lee et al., 2009b; Maldonado et al., 2002).  

In summary, the connection to a gene network that is associated with both functions 

points to a possibility that HTH might also play a role in both biological processes. The 

coexpression network shows that more than half of the top genes coexpressed with HTH are 

associated with lipid processing and seed coat development. The analysis also revealed that 

many of the cuticle development related genes are associated with plant defense or stress 

response. 

 HTH and coexpressed genes are predominantly specific to land plants 

and not algae 

The evolution of the cutin-based layer sealing the epidermis of aerial plant organs allowed 

for the colonization and spread of land plants from their aquatic ancestors, the green algae, 

by regulating water status to enabling plant growth on land (Ligrone et al., 2012). Whereas 

proteins of high homology to the small subunit of the RuBisCO protein RBCS1A occur in 

both land plants and algae, those coexpressed with HTH are mainly present in land plants 

(embryophyta) and not in algal species (Figure 4.10). It is noteworthy that uncharacterized 

AT4G16140 and AT4G29020, proteins encoded by neighboring genes, are strictly specific to 

Brassicaceae, indicating that they might be newly evolved proteins in this genus. In contrast, 
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genes that are involved in very-long-chain fatty acid elongation such as KCS5/CER60 have 

homologous sequences in organisms such as protists and slime molds suggesting that these 

are relatively ancient and conserved proteins. Although the function of endodermis-specific 

PDF1 has not been elucidated, it may play a role in cuticle formation given that this gene is 

found only among plants.  

 Conclusions  

Enzymatic assays and bioinformatics analyses were conducted to mine for evidence 

supporting either a hydroxynitrile lyase or ω-fatty alcohol dehydrogenase function for HTH. 

The apparent conservation of genetically identified functional residues between HTH and 

other known MDLs, the similarity in predicted structures, and phylogeny indicate that HTH 

and MDLs are closely related. However, comparison of putative active sites suggests that 

HTH might have a function distinct from MDLs. Although no definitive conclusions could 

be drawn from the results of in vitro enzymatic assays, other lines of evidence favour a fatty 

acid alcohol dehydrogenase function. First, HTH’s putative active site residues are identical 

to an alcohol hydrogenase that is capable of converting medium chain fatty acid alcohols in 

to aldehydes, a function comparable to the one put forward by Kurdyukov et al. (2006b). 

Second, HTH is coexpressed with genes that are directly or indirectly involved in cutin 

monomer biosynthesis or cutin polymerization/remodeling. Third, the coexpression profile 

analysis indicates that the majority of proteins encoded by coexpressed genes are specific to 

land plants. Last, the subcellular localization to the ER network and its derived bodies (see 

https://en.wikipedia.org/wiki/Protist
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Chapter 3), although it does not exclude a role in cyanogenesis, favours a function involved 

in cutin monomer biosynthesis which occurs predominantly in the ER.  

 Future Research  

To resolve the question of enzymatic activity, further experimentation is required. One 

approach is to determine the tertiary structure by protein X-ray crystallography. The derived 

electron-density map can be used to confirm the predicted catalytic residues that are 

indicative of the protein function (Wlodawer et al., 2013). However, the function suggested 

by catalytic sites still needs experimetnal confirmation by in vitro enzymatic assays. Given 

that the native HTH protein appears to be a glycoprotein in plants and glycosylation can be 

essential for protein function, the E. coli-based prokaryotic expression system employed in 

this study might be improved by coexpressing genes encoding enzymes required for 

glycosylation reactions (Geisse et al., 1996; Khow and Suntrarachun, 2012; Laage and 

Langosch, 2001). Additionally, codon bias in E. coli could also be taken into account to 

prevent translational errors. Although these measures might increase the likelihood of 

generating functional eukaryotic proteins in a prokaryotic system, it is optimal to use a 

eukaryotic organism such as yeast to produce the recombinant protein. 

Production of recombinant proteins in Pichia pastoris, a methylotrophic yeast, is an 

established system for biopharmaceuticals and industrial enzymes (Looser et al., 2015). Due 

to its increasing relevance, various strategies and host strains have been developed, including 

strains engineered to achieve complex N-glycosylation (De Pourcq et al., 2010; Hamilton and 
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Zha, 2015; Jacobs et al., 2009). Expression in glycosylation-competent P. pastoris may 

facilitate expression of a functional recombinant HTH protein for enzymatic assays. 

Additionally, the tag-removed functional recombinant protein would serve as an ideal antigen 

to generate polyclonal antibodies against the native HTH protein. Prior to setting up the P. 

pastoris expression system, the proposed alcohol dehydrogenase activity can also be tested in 

a complementation assay using yeast fatty alcohol dehydrogenase mutants such as the null 

deletion mutant stain saf1 (Achkor et al., 2003). The yeast SFA1/YDL168W encodes a class 

III alcohol dehydrogenase bifunctional protein that has both alcohol dehydrogenase and 

formaldehyde dehydrogenase activities (Wehner et al., 1993). SFA1 can act on a variety of 

alcohol substrates including the long chain alcohol 10-hydroxydecanoic acid and 12-

hydroxydodecanoic acid (Dickinson et al., 2003).  
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Arabidopsis thaliana propagates mainly by self-fertilizing, and therefore, like many crop 

plants, theoretically has a limited potential for producing genetically diverse offspring. 

Despite this, inbreeding has persisted in Arabidopsis for over a million years suggesting that 

some underlying adaptive mechanism such as somatic variation buffers the deleterious 

consequences of this reproductive strategy. In Chapter 2, we used presence-absence 

molecular markers to demonstrate that individual Arabidopsis plants are capable of 

producing somatic sectors during the course of normal vegetative development. Although 

genetically heterogeneous sectors have been detected in wildtype genetic backgrounds, 

hothead (hth) mutant plants give rise to genetically discordant somatic sectors and progeny 

more frequently (Hopkins et al., 2013). This finding suggests that the HTH protein might 

play a role in mediating genome instability.  

Sequence analyses reveal that these genetically discordant sectors contained single 

nucleotide changes, loss of sequences and, surprisingly, acquisition of unique genomic 

insertions. Estimates based on quantitative analyses suggest that these sectors are very small 

but can have a complex genetic makeup. In ruling out more trivial explanations for these 

data, our findings raise the possibility that intrinsic drivers of genetic variation are 

responsible for the targeted sequence changes we detect. The de novo appearance of genomic 

insertions supports our original contention that cryptic sequence templates drive some of 

these changes (Lolle et al., 2005). This process is genome-wide, impacting all five 

chromosomes, whether or not the target loci reside within genes or between genes. Given the 
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evolutionary advantage afforded to populations with greater genetic diversity, we 

hypothesize that organisms that primarily self-fertilize or propagate clonally counteract the 

genetic cost of such reproductive strategies by leveraging a cryptic reserve of extra-genomic 

information.  

While the connection between the hth mutant background and elevated frequencies of 

genome instability remains to be elucidated, previous genetic analyses have clearly 

demonstrated a role for the Arabidopsis HTH gene in achieving proper cuticle function as 

perturbation of the HTH gene leads to a floral organ fusion phenotype (Lolle et al., 1998). 

Little is certain about what type of biochemical pathways the HTH protein is involved and 

how its mutation would lead to changes in cuticle integrity. Two possible enzymatic 

functions have been proposed for HTH. In accordance with the fusion phenotype, Kurdyukov 

et al. (2006b) proposed that HTH is an alcohol dehydrogenase involved in the biosynthesis of 

cutin monomer α,ω-dicarboxylic fatty acids, and the resulted cutin monomer composition 

would cause perturbation in cuticular polyester structures. Alternatively, based on protein 

sequence analyses, Krolikowski et al. (2003) suggested that HTH may function as a 

mandelonitrile lyase, a hydroxynitrile lyase that catalyzes hydroxynitriles to hydrogen 

cyanide and aldehydes or ketones.  

 In Chapter 3, the localization of HTH was examined to gain insight into HTH’s 

function. I showed the results of the first study of HTH protein localization using a 

fluorescent protein-tagged HTH fusion protein generated by native promoter-driven construct 

(HTHpro:HTH-FP). HTH-FP was predominantly localized to the epidermis of seedling and 
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mature tissues; moreover, it was also present in the ovule outer integument that is of 

epidermal origin. HTH-FP’s presence in the L1 layer is in accordance with its mutant organ 

fusion phenotype and the proposed fatty alcohol dehydrogenase function associated with 

cutin monomer biosynthesis.  

On the subcellular level, the HTH protein was observed, for the first time, to reside in a 

subcellular structure that likely corresponds to the so-called “ER body”. ER bodies are ER-

derived compartments that have characteristics distinctive from other vesicles in the 

secretory pathway (Hara-Nishimura and Matsushima, 2003). ER bodies are constitutively 

present in the epidermal cells of cotyledons, hypocotyls and roots of young Arabidopsis 

seedlings. Although ER bodies generally are not found in rosette leaves, their formation can 

be induce by mechanical wounding and other biotic/abiotic stress (Ogasawara et al., 2009). 

In agreement, the RT-qPCR results showed that the HTH expression in Ws wildtype plants 

was elevated by the wounding hormone methyl jasmonate (MeJA) which also induced ER 

bodies in epidermal cells. Together, the localization of HTH-FP in the ER bodies and its 

elevated expression by MeJA suggests that one function of the HTH protein may be 

responsive to various types of plant stress.  

In Chapter 4, the two previously proposed functions were further examined by in vitro 

assays and bioinformatics analyses. Although results of the assays were inconclusive, 

analyses of amino acid conservation, protein structure and phylogeny indicated that HTH 

shares great similarity and close relationship with the mandelonitrile lyases PdMDL2 and 

many MDL-like proteins. However, investigation of putative active sites that are directly 
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involved in the catalytic reaction revealed that HTH shares the same catalytic sites of several 

fatty alcohol dehydrogenases, one of which was experimentally verified to be capable of 

converting medium chain fatty alcohols into aldehydes, a function comparable to the one put 

forward by Kurdyukov et al. (2006b).  

For cutin monomer synthesis, plastid-derived fatty acids at first are transported from 

plastids into the ER where various metabolic pathways give rise to a variety of cutin 

monomers. After a fatty acid is imported into the ER, the acyl chain is first activated and then 

hydroxylated by fatty acyl ω-hydroxylase (Figure 1.3). The hydroxy fatty acids can then in 

turn be transformed into oxo products (aldehydes) and subsequently dicarboxylic acids by 

dehydrogenases. Together with other constituents, different compositions of these monomers 

give rise to cutin polymers of various physical and chemical properties. Kurdyukov et al. 

(2006b) proposed that HTH is a ω-hydroxy fatty acyl dehydrogenase that oxidizes long chain 

ω-hydroxy fatty acids to ω-oxo products, precursors of the cutin monomer α,ω-dicarboxylic 

fatty acids (Table 1.1 and Figure 1.11). Since this step of fatty acid modification occurs in the 

ER network, HTH localization in the ER is in agreement with the alcohol dehydrogenase 

enzymatic function. HTH’s putative role in the cutin monomer biosynthesis was further 

supported by the fact that HTH is coexpressed with genes that are involved in cutin/wax 

monomer biosynthesis, polymerization and transport. In addition, the ER localization is also 

consistent with the existence of N-linked sugar to the protein as shown by the glycosylation 

analysis since this type of glycosylation predominantly occurs in the ER.  
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These synthesized cutin monomers or building blocks need to be exported from the ER 

to the cell wall and then subsequently to the cuticle where they polymerize. Specific carrier 

proteins, transmembrane transporters or oleophilic droplets have been known or proposed to 

be involved in the transport of cutin monomer/oligomers (Figure 1.4). HTH localization to 

ER bodies raise the possibility of ER bodies being part of the monomer exportation system. 

However, no fusion of ER bodies with the cytoplasmic membrane has been observed in the 

current study nor by other research groups. The association between ER body localization 

and the possible alcohol dehydrogenase activity of HTH remains to be determined.  

The ER body location also provides a clue for HTH’s association with stress responses. 

In addition to elevated expression by exposure to MeJA, bioinformatics analyses revealed 

that many genes of the coexpression profile are involved in stress/defense response. Even 

more interesting, many of the cuticle development related genes are associated with plant 

defense or stress response. The connection to a gene network that is associated with both 

functions points to a possibility that HTH might also play a role in both biological processes. 

This findings brings up the question of how the putative fatty acid processing function of 

HTH can be also associated with stress response.  

Fatty acid metabolites have been shown to play a part in a wide spectrum of 

stress/defense related biological processes. For example, elevated production of ω-fatty 

alcohol dehydrogenase is known to be a stress response to wounding in potato tubers 

(Solarium tuberosum L) and is thought to promote suberin  biosynthesis for wound healing 

(Agrawal and Kolattukudy, 1977; Agrawal and Kolattukudy, 1978a; Agrawal and 
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Kolattukudy, 1978b; Yang and Bernards, 2006). Furthermore, studies on altered pathogen 

resistance of cuticle mutants point to the role of cuticle permeability in regulating plant 

defense responses. The importance of cuticle integrity to plant defense has been shown in 

various cuticle mutants that present higher resistance to the necrotrophic fungus Botrytis 

cinerea (Bessire et al., 2007; Tang et al., 2007b). In these cases, it was proposed that higher 

cuticle permeability allowed early sensing and responses to B. cinerea by the host and 

eventually rendered the plants more resistant (Reina-Pinto and Yephremov, 2009). Rapid 

penetration of fungus-secreted elicitors can also elevate the production of reactive oxygen 

species (ROS) that potentially activate a cascade of stress-associated pathways (Schmitt et 

al., 2014). This notion is supported by studies showing that plant leaves treated with cutinase 

prior to pathogen inoculation accumulated more ROS and exhibited greater resistance to B. 

cinerea (Kauss et al., 1999; L'Haridon et al., 2011).  

In addition to serving as structural components, cutin and wax monomers and their 

derivatives can function as modulators of a variety of signal transduction pathways triggered 

by environmental stimuli (Kandel et al., 2006; Walley et al., 2013). An example is ATT1 

(ABERRANT INDUCTION OF TYPE THREE GENES 1) whose mutation results in a diffuse 

cuticle layer with increased sensitivity to water deprivation. Fatty acid profiling has 

suggested a role of ATT1 in cutin monomer synthesis (Xiao et al., 2004). Moreover, ATT1 

may also play a potential role in mediating the bacterial type III secretion system for 

delivering effector proteins into the host to initiate infection. When plants were incubated 

with Pseudomonas syringae, the bacterial type III gene avrPto expression in the intercellular 

space was higher for att1 than for wildtype plants, suggesting that ATT1 negatively regulates 
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avrPto that is important for bacterial virulence. Xiao et al. (2004) further proposed that 

certain cutin-related fatty acids synthesized by ATT1/CYP86A2 may function as signal 

molecules that repress the expression of bacterial type III genes.  

The imbalance among fatty acids has also been shown to elicit plant defense responses. 

For instance, elevated levels of palmitoleic acid (C16:1) in eggplants (Solanum melongena) 

resulted in improved resistance to the fungal plant pathogen Verticillium dahlia (Xing and 

Chin, 2000). Similarly, a change in equilibrium between saturated and unsaturated fatty acids 

was also observed in the ssi (suppressor of salicylic acid-insensitive) Arabidopsis mutant that 

exhibits high levels of C18:0 fatty acids and decreased levels of C18:1 fatty acids (Shah et 

al., 2001). The ssi mutant plants were resistant to the oomycete Hyaloperonospora 

arabidopsidis and a virulent bacterial strain of Pseudomonas syringae; this elevated 

resistance is likely attributed to constitutive activation of the resistance (R) genes in this 

mutant background by the change in the composition of fatty acids (Nandi et al., 2003; Rojas 

et al., 2014).  

In addition to the possibility that HTH mediates plant defense responses through the 

control of cuticle permeability or fatty acid composition, evidence for serving as an enzyme 

involved in cutin monomer synthesis that is localized in the stress-inducible organelle (ER 

body) raises the question of whether HTH is a multifunctional protein that can function in 

different pathways (Bunz, 2008; Huberts and van der Klei, 2010). Such proteins can arise by 

alternative splicing, posttranslational modification, or association with other partners (Moore, 

2004) and are known as multifunctional or moonlighting proteins. These proteins can act 
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enzymatically to recognize multiple substrates or perform independent non-enzymatic 

functions (Copley, 2003).  

In past decades, multifunctional proteins have been found in many species including 

plants, animals, yeast and prokaryotes (Copley, 2012; Huberts and van der Klei, 2010). A 

well-known example is the eukaryotic polypeptide elongation factor EF-1. EF-1 is a major 

translational factor but also contributes to signal transduction, cytoskeletal organization, 

apoptosis, nutrition, and nuclear processes such as RNA synthesis (Ejiri, 2002). Another 

example of a multifunctional protein is the plant peroxisomal multifunctional protein (MFP) 

that catalyzes multiple steps of fatty acid β-oxidation in the peroxisome matrix. In a 

microtubule-binding protein fraction extracted from rice seeds, MFP was found to cross link 

to mRNA, and this result was confirmed by expressing histidine-tagged MFP that showed 

mRNA and microtubule binding activities in addition to the enzyme activity involved in the 

β-oxidation of fatty acids (Chuong et al., 2005). Based on these studies, MFP is thought to 

associate with microtubules at the periphery of the peroxisome to enrich mRNA coded for 

peroxisome-destined proteins.  

Another example of a plant multifunctional protein is the currant tomato (Lycopersicon 

esculentum) LeCp protein, whose dual function was proposed by Matarasso et al. (2005). 

LeCP is an orthologue of known Arabidopsis vacuolar processing enzymes that typically act 

as cysteine proteases in the cytoplasm. When a small ubiquitin-like modifier binds to these 

proteins, they are transported to the nucleus and act as transcription factors for the gene that 

encodes 1-aminocyclopropane-1-caboxylic acid synthase, leading to ethylene production 
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(Rosin et al., 2005). The detection of a HTH splice variant transcript points to the possible 

existence of a smaller HTH isoform (Appendix H). The theoretical tertiary structure model 

(Appendix O) indicated that the peptide absent in the isoform is situated on the surface of the 

HTH protein. The protein surface provides binding sites for different ligands, allowing the 

protein’s function to be regulated or even modified (Kristiansen, 2004). Therefore, changes 

in amino acids positioned on the protein surface can greatly affect protein functions by 

altering interactions with other elements, as aforementioned cases of MFP and LeCP. 

Whether this HTH peptide sequence interacts with a partner important for protein function or 

regulation remains to be elucidated, but the existence of an isoform with a surface peptide 

deletion speaks to a possibility of HTH being a moonlighting protein whose isoforms serve 

different functions determined by the partnering element.  

The research described herein has brought new information and perspectives to the 

localization and possible functions of HTH. The epidermal localization and putative catalytic 

sites prediction point to an alcohol dehydrogenase function in cutin monomer biosynthesis. 

Since the modification of these monomer fatty acids predominantly occurs in the ER 

network, HTH’s glycosylation state and localization to the ER network are also in agreement 

with this enzymatic function. On the other hand, detection of HTH-FP in ER bodies and 

expression elevated by MeJA associate HTH with stress responses. In accordance, 

coexpression profile analyses indicate that HTH is coexpressed with genes involved in both 

lipid processing and stress/defense response. Further work needs to be done to verify whether 

HTH has a fatty alcohol dehydrogenase activity and to elucidate its role in stress responses. 
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Appendix A. The 5’ upstream region and the genomic sequence of HOTHEAD (Chapter 3 Materials 

and Methods). Source: http://www.arabidopsis.org 

 

  

ATG = Translational Start/Stop      atgc = UTR 

ATGC = Exon     atgc = Intron  

........TCACACCGGTGCAATGTAAATCTATATGGAGACAGTTCAAGACAGAAACAGAGTATACAGTGACTCAAGCCATATCCGCACAGgcatgatta

ctttcctcataagttagctcttcactctgcttatatgaatacttatataaagtgtttatactaattcagGAGGCGAACAGGCGTGGAAATAACTGGTTAC

CTCCTCCATGGGCAATTCTTGCATTGATCGTCCTTGGATTCAACGAATTCATGACTCTTTTAAGgtccatcaaagcttagtattcactgcttcatatcca

atgatgatatgtaacattctgatttctttacctttttgatgtaacagAAACCCTCTCTATCTTGGTGTCATGTTTGTCGCTTTCCTTCTGGCAAAAGCAC

TGTGGACGCAATTGGATATCCCTGGCGAATTCCGCAATGGTGCAgtaagtgtttgccaaccttctcaaatcccattaaagtagtagtagcgtttcaagaa

tcatggactcgagaaaacttcaagactcaagaattcttgataataatactcatatgatctatactacctgtggtttcttcagCTTCCAGGGCTCATATCG

ATATCCGCAAAGTTTGTTCCCACAGTAATGAACCTTATCAAGAACCTTGCAGCGCAAGGCGAAGACCCTCCTGCAGCTAATCCAGAGAACCGTCGTTCGA

GCAACAACACTTCTTCATCAGAAAATCCACCAGATCACAAAAGCTCCTCAAAAGAGGACTAAagaggagagaaacaaagaatcttcttactctccaaagg

tttgatctccagttcttgacgtttttttctccttattccctcactcatgagtccaaaacgctgcgtttatagggaccttttgctctgttttattagaact

tctcattatacacacgagtgaattagaacttgaaaacgttgtggcatcatttgaatatttttccttcaaataaacaaaaaaaaaaagatgaagatgaaaa

acaataataaatatatgtacgttctataataactcgtttcatgaaagtggaagcatgggatgagatgccaatcccatgaaaagtgagcaaaaattaatat

ttacattaactgctgagtgggtaaagtttaataaccattttctaaaaataacttttattcagaatccaactcatggattggtgtgtgtatttattatcat

catttctatacacatatccacccccaataactctgtcaattatacacctcaaaatcactgtaagttataaaaaaatgaatttctacaattaatcaaagac

cgtccaaagccttcgtggctaattggtgttaaactattcacatttttagtcaagtatttttgcatattatatgagattaattttgccacacaagatcgtt

aataaactcgacatgatgattctgtttatgtggcttctattaactaggaaatgaaacaatgtagttatagttgtgactgatatgaagtcagagaaaatgg

ctacgtaatcttatatgaccagaccaacgtacgtgatgcgatgtgacatttttcattcaacactaaagttaaaaccttgattgtttttgtattacatttg

gcaactaatccaatatgttttgttagttgttagtactaagtactgactgatgatcacattcacgctcaaccaaataaaacggatgatattgtttttggtt

aggtgaaagaacaattaaattagttgccaaaaacataacccgtgaagatttatgttagtaaccaacctacagtcataattaataagtttatgactaatag

taattaaatgacttgccaaaaacatggctctgtatagtatagtttttagattttggttaggtgaagatgattaattgatacactatgaatctatgaagac

ttgatccaacggctaccagatctccgacttcaactgttttcatatcgccattaatgatacagacaagctgtactactatcctttttatctctttattgtt

ttatatgattttacagtaatactattactaagtactaacaaattgtttttctttgcagctggtcccaaaagtcaaaatcatgggacaaaaaaacgagtta

ttattcttattatcatcaccaaggtaaaaaaatgtgaaaggaaatccttttaaggcttagtttcaatataaatacaaagatgttatttgatagtgattgt

tctttgtaacgaagtacttatcattaatttcaatttgcaacaaacaattctgtaacaataagtctaatgtgaggaaagttactagctggtaaaataaatt

agtaggtaactattttttatgagtaaatgagggaactattaattgagtaagatgattcatatgtccttttcatttgctatattcgacagaatgggacaca

cctaaaatcaaatttacgttttagtgtagaccaccccaacatctctttattacacaacttgtgtttttttttactatatgatttttttaccgaatgttgt

tgtctaaccaaaattcaatgtaccgtataagactataagttatacaactcgtagaaatggttacatatatgtaacaatatatagagacacatgtgggtgt

aattaatatagttgctctgttggatcgttagtgttatttataggagaagaaaacacacaaaacaagaccattcatcaaaagccacataagaagttgatgc

agaagcaataataacaaaacaaaaaaacattaaaaaaaaaagctcttcagttttggtttctgcagtctccaATGGCTCTCAAGCTCTTTCTCTTTGCTCT

TCTTCTCTGTCTCCCGACTTCTCTCTCCTCCACTGCCTCTAAAGgtcacttctctttctctctttaaacacaatcctcccattacaaagttctctctgtt

tttatctttctcttggtcgttgatgattctgtcttgtttttagctatagctctgtttttcgaaactagttacttattcatagacatgatatacattcata

agcttcttttttatatattaaagactctgtttcttgatccatcatgaccgaatcttgagtaaccaggacactagtgcacagtccagtctttttttaacgc

gtaaactgttgtgtgttttttgggttatgttctgctataaacacattaatggtgtaattacttctaccaactacccataattgttttatttattgaatag

tacaactaaaaaaaacaatgattttgtagGTAAAGAGAAGAAGTCGAAGTTTAATCCATACAGATACACATTCATCGATAAAGCAAGCACATTCTCATCA

TCTTCCTCATCTTCATTTTCATCCAACGGTCAAGATTCGTCCTACGACTACATAGTCATCGGAGGTGGAACCGCAGGGTGTCCTCTCGCCGCAACGTTGT

CGCAGAATTTCAGCGTTCTTGTTTTAGAGAGAGGTGGCGTTCCGTTTACAAACGCAAACGTTTCTTTCCTCAGGAATTTTCACATCGGACTTGCTGACAT

TTCAGCTTCTTCCGCGTCTCAAGCGTTTGTTTCCACTGACGGCGTTTACAACGCCCGTGCTAGAGTTCTCGGTGGCGGTTCCTGTATTAACGCCGGTTTT

TACTCCAGAGCCGATGCTGCgtaagtataatttttacctttttaagacaagaaaattatgttgtttattataactactaaaaggatttattggtataat

cgatgcctcgtgtcctagtggatatgttacatttatgaaaacgcaccgagcgagaatgttgtgttttcttaataattttgggggcaatggtccgtaagac

ttttaattctctttaatttttcacactaatcaacacaatatttttaacaaatacttttcttcagtaaaaattgcaaccattttttttttcttttcgaaaa

attgatttcttatataatattaaaaaaattctcgaaaaaactgatttactgtcataaaaactattttttttgttcagtaaaataaggtaagaacaaataa

atgatttaaattgtgacaaaacattcagGTTCGTGAAGCGAGCAGGATGGGATCCGAAGCTGGTGAAGGAGTCGTATCCATGGGTGGAGAGAGAGATTGT

TCATCAGCCAAAGTTAACGTTATGGCAGAAAGCTCTCAGAGACAGTCTTTTAGAGGTTGGAGTCAGACCTTTCAATGGTTTCACTTACGATCACGTTTCC

GGAACCAAAATCGGCGGTACAATTTTCGACAGATTCGGCCGTCGTCACACCGCGGCGGAGCTTCTCGCTTACGCTAATCCTCAGAAGCTTAGAGTCTTGA

TCTACGCCACCGTGCAAAAAATCGTCTTTGACACTTCTGgtactgataaatttttgtgtctaccaaatgttcgatgaaattcctgagtgaggaggttttt

aacttttgttttggttttggatgtagGAACAAGGCCTCGAGTAACAGGAGTAATATTCAAAGATGAGAAAGGTAATCAACACCAGGCTTTACTCTCGAAT

AGAAAGGGAAGTGAAGTGATCTTATCTAGTGGAGCTATTGGGTCACCACAGATGCTGATGTTAAGTGGGATTGGACCTAAGAAGGAGCTTCAGAGGCTGA

AGATTCCTGTGGTTTTAGAGAATGAGCATGTAGGAAAAGGAATGGCTGATAATCCCATGAACACGATCTTGGTGCCTTCAAAGGCGCCTATAGAGCAGTC

ACTTATTCAGACTGTTGGAATTACAAAGATGGGTGTGTATGTTGAAGCCAGTACTGGCTTTGGGCAATCTCCTGAGAGTATTCATACTCACTATGGGATT

ATGTCGAACAAGgtaacgtaactttgttgttggtgtctttgtaggagaatgttgtttgatgttaaggagataatggtcttttgattttgtatgcagAATG

AATTGTTTTCCACCATTCCTGCAAAGCAGAGAAGACCAGAAGCAACGCAAGCTTACATCACAAGAAACAAATACCAACTTCACGAAGCATTCAATGGAAG

TTTCATCTTGGAGAAACTTGCTTACCCGATCTCTAGAGGGCATTTGAGCTTGGTCAACACAAATGTTGATGACAACCCTTCAGTCACCTTCAATTACTTT

AAACACCCGGTGGATCTCCAACGCTGTGTTGAAGCCATTCGTCTTGTTTCCAAAGTGGTGACGTCTAACCGTTTCTTAAACTACACGCAGTGTGACAAGC

AAAACGTACACAAGATGCTTAGCTTAAGCGTCAAGGCAAACATCAATCTAAGGCCAAAGCAACTGAACGATACCAAATCAATGGCTCAGTTCTGCAAAGA

CACTGTTGTCACAATCTGGCACTACCATGGTGGATGTCTTGTGGGTAAAGTTGTGAGCCCTAACCGCAAAGTTCTTGGTGTCGACAGGCTCAGAGTTATT

GATGGTTCAACGTTTGACGAGTCTCCAGGAACCAACCCGCAAGCTACTATGATGATGATGGGAAGgtaaatcaaaatcattaccaacataatgaattgga

ggttttctttttagttcaatatataaacagaggatttgtcaatctttgcagATACATGGGAGTCAAGATTCTTCGGGAGAGACTTGGAAACAAAGCTGGT

GTTTAGtttgcagattgagcttttatggtagacaaattcgtagcagataattctgttgtggaattgtgttggagaatatctctctctgtctccttctctg

ttatttgatattcgattcattaaagtataggatcatattgtctaatgaactgtgtaaccctctattgggcaatcggctctgttgcttattagcttgtgtg

aaaagttaatcacgttttctgtttcaatactcttacaatcaattcatggcctgattttgctttc
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Appendix B. Gateway binary vectors pGWB640 and pGWB650(Chapter 3 Materials and 

Methods). 

 

 

RB, right boarder; LB, left boarder; Pnos, promoter of the nopaline synthase gene; Tnos, terminator of nopaline 

synthase; bar, bialaphos resistance gene; sta, region conferring stability in Agrobacterium tumefaciens; rep, 

broad host-range replication origin; bom, cis-acting element for conjugational transfer; ori, ColE1 recoplication 

origin; addA, gene for spectinomycin resistance (Spcr) used for selection in the bacteria; EYFP, enhanced 

yellow fluorescent protein; G3GFP, G3 green fluorescent protein; Cmr, chloramphenicol resistance gene, ; 

ccdB, a lethal gene that targets DNA gyrase; L1, L2, R1, R2: Gateway attL and attR recombination sites for 

sequence exchange (derived from Nakagawa et al. (2007).  

 

Source: Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, 

T., Tanaka, K., Niwa, Y., Watanabe, Y., Nakamura, K., Kimura, T. and Ishiguro, S. (2007). 

"Improved gateway binary vectors: High-performance vectors for creation of fusion constructs in 

Transgenic analysis of plants." Bioscience Biotechnology and Biochemistry 71(8): 2095-2100. 

5’ upstream region
(2009 bp)

HOTHEAD
(2834 bp)

RB Pnos:bar:Tnos LBTnos

pGWB640/pGBW650

R1 R2

L1 L2

EYFP/
G3GFP

R1 R2

sta rep bom ori aadA (Spcr)

HindIII SacI
AscI

Gateway Cassette

Vector 

name 

Bacterial 

selection 
Gateway cassette Markers for plant Type 

Accession 

Number 

pGWB640 Spcr attR1-Cmr-ccdB-attR2-EYFP-TNOS PNOS:bar (BASTAr) no pro, C-EYFP AB543141 

pGWB650 Spcr attR1-Cmr-ccdB-attR2-G3GFP-TNOS PNOS:bar (BASTAr) no pro, C-G3GFP AB543147 
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Appendix C. Epifluorescence micrographs showing cellular localization of HTH-FP in 

seedlings descended from four independent T1 lines. Plant materials are cotyledons of T3 

seedlings derived from homozygous (transgene) HTHpro:HTH-EYFP and HTHpro:HTH-

G3GFP T2 plants. Epidermal cells of the hypocotyl were examined. These transgenic lines 

are in the hth-9 background, and all these transgenic T2 plants showed rescued floral 

phenotypes that resemble wildtype. ER bodies (arrow) were observed in all of these 

independent transgenic rescued lines. Scale bar: 10 µm.  
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Appendix D. Confocal micrographs showing organelles labelled by fluorescent proteins in 

hypocotyls of 4-day-old seedlings of transgenic plants. In the Kaleidocell transgenic line, 

nuclei, plastids, mitochondria are genetically tagged with different fluorescent proteins; cyan 

fluorescent protein (CFP) for nuclei (A-B, arrow), red (RFP) for plastids (arrow) and green 

(GFP) for mitochondria (open arrow) (C-D). To examine if HTH-FP is colocalized with any 

of these organelles, crosses were conducted to generate plants harbouring transgenes of both 

Kaleidocell and HTHpro:HTH-FP lines (E-F). Due to difficulties separating the signal 

wavelengths, plastids, mitochondria, endoplasmic reticulum (ER) and ER bodies were all 

detected at the same time using a setting that allows detection for both RFP and GFP. Based 

on images A-D, the bright round-shaped organelles were identified as plastids (arrow) which 

can also be seen in E. Spindle-shaped ER bodies were also detected (arrowhead). Small 

speckles were mitochondria (solid arrowhead). Excitation (ex) and emission (em) 

wavelengths (nm): (B, D) CFP, ex 458, em 475 - 525; RFP, ex 543, em 560 - 615; GFP, ex 

488, em 505 - 530. (F) ex 514, em 530 - 560. Scale bar: 20 µm. For information about the 

Kaleidocell transgenic line, see Kato et al. (2008). 
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 These results showed that the spindle-shaped bodies detected in HTHpro:HTH-FP plants 

are not nuclei or plastids according to the shape and size.  
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Appendix E. RT-qPCR analyses of HTH and HTH-FP expression in Ws wildtype and 

HTHpro:HTH-FP 4-day-old seedlings. (A) The detected HTH expression in Ws and the 

calculated HTH-FP level of a transgenic line (HTHpro:HTH-EYFP). The primers used to 

quantify expression do not distinguish the transgene from hth-9 or wildtype HTH. Numbers 

1-3 indicate three biological replicates, each sampled at a different time. Three technical 

repeats were performed. Error bar: 1 standard error of the technical repeats. (B) The 

coefficient variances and M values of housekeeping genes used to normalize expression.  

 

Materials and methods: 

To amplify the cDNA of HTH transcripts, the forward primer QHTH-201_F (5’-

GAGAGGTGGCGTTCCGTTTA-3’) and reverse primer QHTH-201_R (5’-

TTCACGAACGCAGCATCGG-3’) were used. Procedures described in Section 3.2.8 were 

used to perform reverse transcription and quantitative PCR for this experiment.  

Note: 

This experiment was carried out to determine whether the HTH transcript level is comparable 

between the wild type and the native promoter driven transgenic line (HTHpro:HTH-FP, 

homozygous). Similar expression levels would lend strength to the accuracy of HTH-FP 

localization results (such as in ER bodies, see Chapter 3). Since the primers used in RT-

qPCR detect both hth-9 and the transgene transcripts, the HTH expression level in 

homozygous HTHpro:HTH-FP (in the hth-9 background) is attributed to both kinds of 

transcripts.  

Assuming hth-9 and HTH (Ws) were expressed at the same level (dash line), the calculated 

expression level of the transgene alone was 1.65 (2.84 - 1.19 = 1.65), being 1.4 times of the 

wildtype gene. This RT-qPCR result suggests that the native promoter-driven transgene was 

not excessively overexpressed and therefore HTH-FP fusion protein localization reported in 

Chapter 3 is reflective of the native HTH protein. 
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Appendix F. The HOTHEAD expression in the seed predicted by GeneChip Expression 

Profile (www.seedgenenetwork.net). CZE, chalazal endosperm; CZSC, chalazal seed coat; 

EP, embryo proper; GSC, general seed coat; MCE, micropylar endosperm; PEN, peripheral 

endosperm; S, suspensor. 
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334 

 

Appendix G. The pMAL-c4x vector and insertion site of HTH cDNA (Chapter 4 Materials 

and Methods). (A) The pMAL-c4x vector. lacq, transcription promoter; Ptac, transcription 

promoter; malE, a gene encoding maltose binding protein binding; polylinker, multiple 

cloning site; lacZα, rrnB terminator, rrnB T1T2 transcriptional terminator; the β-

galactosidase gene; Ampr, β-lactamase gene confering ampicillin resistance; M13 ori, M13 

origin of replication; pBR322 ori, pMB1 origin of replication. (B) The HTH cDNA contains 

not sequence coding for the putative signal peptide. The cDNA product was digested with 

XmnI and EcoRI for directional insertion into the linearized pMAL-c4x vector that was 

digested with XmnI and EcoRI. Factor Xa cleaves after its four amino acid recognition 

sequence (Ile-Glu-Glu-Arg). Figures are derived from www.neb.com. 
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Appendix H. Predicted protein sequence of HOTHEAD (HTH). Source: 

http://www.arabidopsis.org 
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>HOTHEAD (AT1G72970.1), 594 aa, 65.3 kDa 

MALKLFLFALLLCLPTSLSSTASKGKEKKSKFNPYRYTFIDKASTFSSSSSSSFSSNGQDSSYD

YIVIGGGTAGCPLAATLSQNFSVLVLERGGVPFTNANVSFLRNFHIGLADISASSASQAFVSTD

GVYNARARVLGGGSCINAGFYSRADAAFVKRAGWDPKLVKESYPWVEREIVHQPKLTLWQ

KALRDSLLEVGVRPFNGFTYDHVSGTKIGGTIFDRFGRRHTAAELLAYANPQKLRVLIYATV

QKIVFDTSGTRPRVTGVIFKDEKGNQHQALLSNRKGSEVILSSGAIGSPQMLMLSGIGPKKEL

QRLKIPVVLENEHVGKGMADNPMNTILVPSKAPIEQSLIQTVGITKMGVYVEASTGFGQSPES

IHTHYGIMSNKNELFSTIPAKQRRPEATQAYITRNKYQLHEAFNGSFILEKLAYPISRGHLSLV

NTNVDDNPSVTFNYFKHPVDLQRCVEAIRLVSKVVTSNRFLNYTQCDKQNVHKMLSLSVKA

NINLRPKQLNDTKSMAQFCKDTVVTIWHYHGGCLVGKVVSPNRKVLGVDRLRVIDGSTFDE

SPGTNPQATMMMMGRYMGVKILRERLGNKAGV 

 

>HOTHEAD (AT1G72970.2), splice variant, 567 aa, 62.2 kDa 

MALKLFLFALLLCLPTSLSSTASKGKEKKSKFNPYRYTFIDKASTFSSSSSSSFSSNGQDSSYD

YIVIGGGTAGCPLAATLSQNFSVLVLERGGVPFTNANVSFLRNFHIGLADISASSASQAFVSTD

GVYNARARVLGGGSCINAGFYSRADAAFVKRAGWDPKLVKESYPWVEREIVHQPKLTLWQ

KALRDSLLEVGVRPFNGFTYDHVSGTKIGGTIFDRFGRRHTAAELLAYANPQKLRVLIYATV

QKIVFDTSGTRPRVTGVIFKDEKGNQHQALLSNRKGSEVILSSGAIGSPQMLMLSGIGPKKEL

QRLKIPVVLENEHVGKGMADNPMNTILVPSKAPIEQSLIQTVGITKMGVYVEASTGFGQSPES

IHTHYGIMSNKNELFSTIPAKQRRPEATQAYITRNKYQLHEAFNGSFILEKLAYPISRGHLSLV

NTNVDDNPSVTFNYFKHPCDKQNVHKMLSLSVKANINLRPKQLNDTKSMAQFCKDTVVTI

WHYHGGCLVGKVVSPNRKVLGVDRLRVIDGSTFDESPGTNPQATMMMMGRYMGVKILRE

RLGNKAGV 

 

*VDLQRCVEAIRLVSKVVTSNRFLNYTQ: missing in AT1G72970.2 
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Appendix I. Sequence alignment used to construct the phylogenetic tree, and to compare 

putative functional residues and identify putative active sites among glucose-methanol-

choline (GMC) oxidoreductases. The putative active sites are indicated by blue boxes (on 

page 4/4). 
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 (page 1/4)  
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(continued, page 2/4) 
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(continued, page 3/4)  
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(continued, page 4/4)  

 

   

Active site 1   2

Active site 3 P564, G565,T566
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Appendix J. Eight functional HTH amino acid residues and their corresponding residues in 

related GMC proteins. (A) These eight residues were identified by genetic analysis 

(Krolikowski et al., 2003) and are labeled with the corresponding HTH protein sequence 

position. (B) The corresponding residues in other GMC proteins were identified based on 

sequence alignment (see Appendix H). Amino acid conservation of HTH functional residues 

in other GMC proteins is highlighted.  
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Appendix K. The confidence of the tertiary structure modelling of full-length HTH derived 

by ProQ2 and Ramachandran analyses. (A) HTH onto the mandelonitrile lyase PdMDL2 

(PDB:1JU2 and (B) the pyranose dehydrogenase AmPDH (PDB:4H7U). Both estimation 

methods indicate that the quality of modelling is average to good. ProQ2 (Ray et al., 2012) is 

a model quality assessment algorithm that uses support vector machines to predict local as 

well as global quality of protein models. Ramachandran plot analysis indicates the likelihood 

of the predicted structure based on the backbone angles. Both analyses show that the majority 

of the modelled three-dimensional protein structure of HTH is of good quality. Analyses 

were executed by Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2). 
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Appendix L. Protein sequence alignments showing the secondary structure of mandelonitrile 

lyase PdMDL2 and the predicted secondary structure of full-length HTH. The sequence 

alignment was derived from threading the HTH sequence onto the known template structure 

of the mandelonitrile lyase PdMDL2 (PDB ID: 1JU2) using the PHYRE server. Green 

helices represent α-helices, blue arrows indicate β-strands, faint lines indicate coil, and red 

and yellow blocks indicate alignment gaps. The key catalytic residues are boxed. 510 

residues (86%) of the query sequence have been modelled with 100.0% confidence by the 

single highest scoring template. The query and template sequences share 39% of sequence 

identity. Source: Protein Homology/analogY Recognition Engine V 2.0 (Phyre 2; 

http://www.sbg.bio.ic.ac.uk). 
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Appendix M. Protein sequence alignments showing the secondary structure of pyranose 

dehydrogenase AmPDH and the predicted secondary structure of full-length HTH. The 

sequence alignment was derived from threading the HTH sequence onto the known template 

structure of mandelonitrile lyase (PDB ID: 4H7U) using the PHYRE server. Green helices 

represent α-helices, blue arrows indicate β-strands, faint lines indicate coil, and red blocks 

and dots indicate alignment gaps. The key catalytic residues are boxed. 505 residues (85%) 

of the query sequence have been modelled with 100.0% confidence by the single highest 

scoring template. The query and template sequences share 22% of sequence identity. Source: 

Protein Homology/analogY Recognition Engine V 2.0 (Phyre 2; 

http://www.sbg.bio.ic.ac.uk). 
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Appendix N. Protein sequence alignments showing the secondary structure of the 

mandelonitrile lyase PdMDL2 and the predicted secondary structure of the predicted HTH 

isoform derived from a splice variant. The sequence alignment was derived from threading 

the HTH sequence onto the known template structure of the mandelonitrile lyase PdMDL2 

(PDB ID: 1JU2) using the PHYRE server. Green helices represent α-helices, blue arrows 

indicate β-strands, faint lines indicate coil, and red and yellow blocks indicate alignment 

gaps. The key catalytic residues are boxed. 470 residues (83%) of the query sequence have 

been modelled with 100.0% confidence by the single highest scoring template. The query 

and template sequences share 41% of sequence identity. Source: 

Protein Homology/analogY Recognition Engine V 2.0 (Phyre 2; 

http://www.sbg.bio.ic.ac.uk). 
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Appendix O. Ribbon diagrams showing hypothetical three-dimensional structures of the full-

length and a predicted smaller isoform of HTH. Protein sequences were modeled on the 

mandelonitrile lyase PdMDL2 three-dimensional crystal structure. The predicted tertiary 

structures of two HTH variants were generated by the PHYRE2 server and graphed by the 

PYMOL tool. The predicted enzymatic pocket is shown in grey, and the putative active site 

residues in red. Seven functional residues identified by mutant screens are shown in blue. (A) 

The theoretical structure of the 594-aa full-length HTH. The sequence absent in the isoform 

was highlighted in purple. (B) The theoretical structure of the predicted 567-aa long HTH 

isoform (with a 27-aa deletion: VDLQRCVEAIRLVSKVVTSNRFLNYTQ). Although helix 

structure-forming deletion sequence (purple) is absent in the smaller isoform, a similar helix 

structure (rainbow) consisted of neighbouring residues (CDKQNVHKMLSLSVK) is 

predicted, these residues are also highlighted in rainbow in panel A. Refer to Figure 4.8 for 

modeling parameters
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