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ABSTRACT

Sampling and sample preparation plays an important role in untargeted analysis as it influences  

final composition of the analyzed extract and consequently reflection of the metabolome.  In the 

current work, mechanism of bactericidal action of cinnamaldehyde (CA) against Escherichia coli 

(E.coli) during bacteria growth applying high throughput solid phase microextraction (SPME) in 

direct immersion mode coupled to high performance liquid chromatography-mass spectrometry 

(HPLC-MS) system was investigated. Numerous discriminant metabolites due to CA addition to 

the bacteria culture were mapped in the  E.coli metabolic pathways.  We propose new metabolic 

pathways confirming that CA acts as an oxidative stress agent against  E.coli. The results of the 

current  research  have  successfully  demonstrated  that  CA changes  the  bacterial  metabolism 

through interactions with different biochemical families such as proteins, nucleic acids, lipids,  

and carbohydrates, which needs further validation by proteomics and transcriptomics studies.  The 

results presented here show great potential of the novel approach in drug discovery, and food  

safety.

KEYWORDS: metabolomics, sample preparation, SPME, LC/MS, antibacterial agent
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1. INTRODUCTION

In  recent  times,  transcriptomics,  proteomics,  and  metabolomics,  as  functional  genomics 

techniques,  have  burgeoned investigative  fields  in  different  areas  of  research;  however,  their  

challenging  methodologies,  particularly for  in  vivo  analysis,  have  abated  further  progress  in 

various areas of research.1 Metabolites are the building blocks of proteins, RNA, DNA, and cell 

membranes.  They play important  roles  in  system metabolism,  signaling,  and  regulation  with 

provision of vital components for life.2,3 The goal of metabolomics is to generate the metabolic 

profiles of biological systems at a specified time and under specific environmental conditions. As 

metabolomics  has  the  closest  proximity to  the  phenotype  of  a  given  biological  system,  any 

environmental perturbation in a given biological system is reflected rapidly in its metabolome. 

Also,  in  comparison to  other  ‘omics’ approaches,  the  high-throughput  approach available  for 

metabolic analyses of large numbers of samples provides a more cost effective alternative for 

determinations of changes in biological systems.4 

Recently, microbial metabolomics has received a lot of scientific attention due to its potential 

applications  in  a  wide range of  research areas,  for  instance metabolic  engineering,  and drug 

discovery and development.5 Biofilm formation on food as well  as exposure  of food contact 

surfaces to human pathogens enhances their ability to survive in harsh environments, as well as  

their resistance in response to antibacterial treatments. In this regard, one of the most important 

areas of research in microbial metabolomics involves investigations into the bactericidal modes  

of action of antibacterial agents against different bacterial strains.6

Plants, as a rich source of biologically active components, have been prominently used as a basis  

for drug development, contributing to human health.7 Essential oils,  as secondary products of 

aromatic plants, are mixture of volatile compounds that are characterized by a strong odor, and 

used as food preservers due to their antiseptic, bactericidal, virucidal, fungicidal, and medicinal  

properties.  The cytotoxic  nature  of  these compounds  is  attributed to  the  presence of  phenol,  
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aldehyde, and alcohol functional groups in their structures, which have a pro-oxidant effect on 

proteins and DNA through the generation of reactive oxygen species.8-14

Cinnamon  is  one  of  the  oldest  herbal  medicines  used  as  a  spice  and  traditional  medicine.  

Cinnamaldehde (CA), as the main component of cinnamon bark extract,  produces its distinct  

cinnamon  odor  and flavor.  This  compound has  been  proven to  be  active  against  pathogenic 

bacteria,  fungi,  and  viruses.15,16,17 The  target  action  of  cinnamon  is  introduced either  on  cell 

structure  and  membrane  functionality,  proteins  and  enzymes,  or  other  essential  processes 

involved in biosynthesis or energy generation.11 CA is also capable of altering the lipid profile of 

the microbial cell membrane.18 Consequently, tracking biochemical alterations during treatment 

of the biological system by this antibacterial agent could be used to find specific biomarkers or 

pathway mechanisms.

Metabolomics has been conducted through the use of a variety of analytical platforms, although 

MS coupled to LC or GC has been most regularly applied. The most important goal in untargeted 

analysis is to detect as many metabolites as possible so as to enhance the chances of detecting 

dysregulated  metabolites  in  a  biological  system,  which  can  indicate  the  metabolic  pathways 

affected by the stimuli.19 Due to the complexity of the biological matrix under study, in this case, 

bacteria media, appropriate sample preparation steps need to be taken prior to analysis so as to 

reduce possible matrix effects.4 To this extent, different sample preparation techniques have been 

introduced for bacterial metabolomics, each with its own set of advantages and disadvantages. In 

recent times, SPME has been successfully shown as a feasible technique for global metabolomics  

determinations.20,21 The  use  of  SPME  towards  metabolomics  applications  includes  several 

advantages, such as its applicability for in vivo analysis, reduced matrix effects, extraction of a  

wide variety of metabolites, extraction of unstable or short-lived metabolites, circumvention of 

chemical modification, and contamination probable in solvent-based extraction techniques.21,22

Recently, qualitative and semi-quantitative analyses of metabolic responses of E.coli to CA were 

conducted through the use of headspace SPME coupled to GC-MS (HS-SPME-GC-MS). This 
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research showed that the metabolic profile of  E.coli treated by CA changed in comparison to 

control samples. In this research, 25 volatile and semivolatile metabolites were identified in the 

HS of complex biological  samples.23 The current  research presents a comprehensive study of 

E.coli bacteria affected by CA, performed with the recently developed SPME-LC/MS protocol to 

evaluate potential biomarkers related to the microorganism’s response to stress induced by the  

biologically active component.24 The developed 96-blade SPME-HPLC-MS method provides a 

comprehensive as well as unbiased metabolic profile,  ranging from polar metabolites such as 

amino acids and nucleotides, to nonpolar metabolites such as lipids. The method is simple, fast,  

reproducible,  and  incorporates  a  metabolism-quenching  step  while  providing  high-throughput 

analysis.  With  the  proposed  protocol,  the  extraction  of  both  hydrophilic  and  hydrophobic  

metabolites can be performed in one experiment, making this method a time-efficient alternative 

as compared to solvent-based sample preparation methods. For this series of experiments, The  

HPLC  method  coupled  to  Orbitrap  mass  spectrometer  with  high  mass  resolution,  excellent 

analytical  sensitivity,  signal  stability,  and  mass  accuracy was  applied  for  comparative  global  

metabolomics profiling.

The optimized protocol was applied to sets of samples of  E.coli harvested at different growth 

phase time points. The samples were treated with CA at concentrations ranging from lower to  

higher  than  minimum  inhibitory  concentration  (MIC).  Different  trends  in  metabolite 

concentrations were observed over time for each set of experiments, and multivariate analysis 

was applied towards determinations of  statistically significant discriminating features between 

control and test groups. The observed changes reflected perturbations in the regular metabolic 

pathways of  E.coli  induced by the bactericidal effect of CA. The findings were supported by 

results previously obtained from transcriptomics and proteomics studies while there are also some 

new findings reported in current study. 
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2. MATERIAL AND METHODS

2.1. Chemical and Materials

LC-MS grade solvents and LC-MS grade formic acid (1 mL glass ampules) were obtained from 

Fisher  Scientific  (Ottawa,  Canada).  Polypropylenes  deep  96-well  plates  (Nunc)  and  easily 

modified  polystyrene–divinylbenzene  (Macherey-Nagel)  particles  were  purchased  from VWR 

International (Mississauga, Canada). All metabolites, peptone, yeast extract, NaCl, and CA were 

purchased  from  Sigma–Aldrich.  E.coli BL21  samples  were  donated  from  the  laboratory  of 

Professor John Brennan at McMaster University (Hamilton, Ontario, Canada). The Concept 96-

SPME-blade  unit  and  robotic  Concept  96  autosampler  were  purchased  from  Professional  

Analytical Systems (PAS) Technology (Magdala, Germany) for SPME sample preparation.

2.2. Bacterial Strain, Culture Condition, and CA Effect on Bacterial Strain Growth

E.coli BL21  was  used  as  non-pathogenic  bacteria  for  the  currently  presented  microbial 

metabolomics study. Standard Luria Bertani (LB) media (10 g trypton, 5 g yeast extract, and 5 g 

NaCl in 1 L nanopure water) was used as media for growth of bacteria, while LB agar media (10  

g trypton, 5 g yeast extract, and 5 g NaCl; 15 g Agar in 1 L nanopure water) was used to count the  

number of colonies forming in units per mL (CFU mL -1) in bacterial suspensions. Cells were 

grown in nutrient media at  37°C and 125 rpm for 24 hours.  To provide countable numbers of 

colonies present in agar media, cultures were serially diluted with sterile media. Next, 100 µL of 

diluted media  were distributed on the warm agar plate,  and incubated at  37°C for a 24-hour  

period. The growth curve of E.coli culture was obtained by counting the CFU mL-1 from the first 

moment of bacteria addition to LB media up until 24 hours had elapsed.

The antibacterial activity was determined by an agar dilution method (according to the guidelines 

of  Clinical  and  Laboratory  Standard  Institute). Different  concentrations  of  CA in  methanol 

(0-2000 mg L-1) were added into the 96-well plate containing a suspension of bacterial cells with 

an initial concentration of 105 CFU mL-1. Subsequently, growth curves were obtained for each of 
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the E.coli cultures. Final and initial CFU mL-1 figures were obtained for control cultures and CA-

treated cultures grown under the same conditions, and used to obtain a MIC value for CA. 

2.3.  Metabolite Extraction and Metabolic Profiling Using 96-blade-SPME-UPLC-

MS

In the present study, for each set of samples, bacteria were cultivated in sterile 96-well plates.  

Subsequently, the 96-thin film (blades) SPME system operated by the robotic Concept 96- was 

applied for in vivo metabolite extractions. The stainless steel blades were coated with PS-DVB-

WAX:HLB 50:50 [w/w]. The coating preparation procedure as well as information related to the 

concept autosampler have been reported in previous works.24,25 Different types of experiments 

were designed in order to evaluate results in terms of different errors (biological or nonbiological) 

and explain significant biological differences with higher confidence. Biological replicates were 

obtained to differentiate between random results and statistically significant differences between 

two groups of samples exposed to different treatments, so as to ascertain whether the observed 

differences represent a true biological difference induced due to treatment  with the  naturally-

occurring antibacterial agent.

The experimental design consisted of two approaches: in the first case, bacteria was treated with  

CA (below and above MIC) at the beginning of incubation, and extraction was performed at 0, 3,  

6, 9, 12, and 15 hours from 1 mL of E.coli culture in sterile LB media (initial concentration 5.0 

log  CFU mL-1).  As  a  control,  a  sample  obtained  from the same batch  of  E.coli culture  was 

extracted  under  identical  conditions  with  no  CA addition.  In  the  second  case,  CA (above 

minimum inhibitory concentration) was added every three hours after E.coli incubation up to the 

15th hour. For each time point, metabolic profiling data was obtained in triplicate. 

The SPME procedure conditions for all experiments were as follows: coatings were conditioned 

for 120 min in 1 mL ethanol:water 70:30 (v/v) mixture in the 96-well plate with orbital agitation 

set at 850 rpm. Next, extraction from 1 mL 5.0 log CFU mL-1 E.coli (initial concentration) in 
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sterile LB media was carried out in direct immersion mode for 60 min with agitation speed set at  

1000 rpm (2.5 mm amplitude). After extraction, coatings were washed for 30 seconds in 1 mL of  

distilled water with 0.1% formic acid under agitation at 850 rpm in order to remove loosely  

attached particulates and salt from the surface of the sorbent. Desorption was performed in 1 mL 

acetonitrile:water 50:50 (v/v), at 1500 rpm speed for 60 min. Next, the desorption solution was 

transferred  to  the  autosampler  of  the  LC–MS  system  for  separation  and  quantitation. 

Optimization of the SPME protocol is described in previous study.24 

Chromatographic separation was performed with a Kinetex PFP column [100  2.1mm, 1.7μm] 

(Phenomenex,  Torrance,  CA,  USA)  with  a  guard  filter  (Security  Guard  ULTRA Cartridges 

UHPLC PFP for 2.1 mm). The column temperature was maintained at 25°C, and gradient mobile 

phase conditions were composed of phase A (water containing 0.1% formic acid) and phase B 

(acetonitrile with 0.1% formic acid) with the following set conditions: 0-1 min 90% A; 1-9 min 

90-10% A; 9-12 min 10% A; 12-16 min 10-90% A. All extracts were injected randomly, while 

blank and Pooled quality control (QC) samples were analyzed following introduction of every set 

of  15  samples  throughout  the  sequence  as  to  avoid  cross  contamination,  as  well  as  verify 

instrument performance. The QC sample was prepared by mixing 10 μL aliquots of each extract. 

The injection volume was 10 μL. Autosampler temperature was set at 4°C, and extracts were kept 

at 4°C. 

The high-resolution orbitrap Exactive mass spectrometer (Thermo, San Jose, California, USA) 

was operated in both negative and positive electrospray ionization (ESI) modes and at 50-1000 

m/z mass range. Optimum sheath gas (arbitrary units), auxiliary gas (arbitrary units), ESI voltage 

(kV), capillary voltage (V), capillary temperature (°C), and tube lens voltage (V) were set at 40, 

25,  4.0,  27.5,  275, and 100 for positive ESI mode,  and 50, 25,  -2.7, -67.5,  325, and -85 for 

negative ESI mode. External instrument mass calibration was performed every 24 h, resulting in 

2 ppm mass accuracy. Compound identification was confirmed for discriminant features using a 

Q-Exactive mass spectrometer (Thermo Fisher Scientific, CA, USA) operating in positive and 
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negative ionization modes with the same chromatographic conditions as the primary analysis.  

Collision energy ranging from 50-100 V was applied for MS/MS fragmentation of target ions.

2.4. Metabolite Identification, Data Mining, and Statistical Analysis 

The raw data (.raw) obtained with Xcalibur software  version 2.1 (Thermo)  was converted to 

(mzXML) with the MS conversion software. The converted data was then processed with the 

XCMS R-package (Scripps Center for Metabolomics, California, USA). The output is a table  

containing retention times, m/z, and intensity of features.20 Alignment, framing, peak picking, and 

feature detection were done with R software. The CAMERA R-package (Bioconductor Version 

2.10) was applied to provide ion annotation on the list  of  features so as to identify detected 

isotopes, adducts, and in-source fragment ions. 

Putative identification of discriminant compounds was based on comparisons of their accurate 

masses  with METLIN online  database  queries,  using a  5 ppm tolerance window.  Data  from 

MS/MS METLIN  and  MassBank  databases  as  well  as  literature  surveys  were  subsequently 

applied to confirm the identification of putative candidates. Moreover, commercially available 

chemical standards were analyzed by LC-MS and LC-MS/MS to confirm metabolite identities of 

the most significant metabolites by retention time and mass spectral matching. Ions were targeted 

by collision energy and the MS/MS fragmentation pattern and retention time of  discriminant 

features were compared by those of commercially available chemical standards. 

Multivariate data analysis was performed with the use of  SIMCA-P+ software (Umetrics, NJ, 

USA) for statistical analyses. The Principal Component Analysis (PCA) was used to assess the  

quality of data and Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to assess 

information  regarding  variances  in  metabolic  phenotypes  corresponding  to  bacteria  cultures 

treated with antibacterial agents at different time points in comparison to control samples at the  

same  time  intervals.  All  processed  data  of  each  chromatogram were  normalized  and  Pareto 

scaled, prior to multivariate statistical analysis. Statistically significant variables between treated 

E.coli by CA and control  E.coli cultures were acquired by analysis of  S-plots obtained from 
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OPLS-DA score plots. The KEGG database was used in the identification of important metabolic  

pathways  and  subsequent  biological  interpretations.  For  this  data  processing  step,  abundant 

dysregulated  features  were  filtered  according  to  the  following  criteria:  p-value  <  0.01,  fold  

change >1.5, and MS peak intensity >10000 ion counts, representing the threshold required to  

generate high-quality MS spectra on an Orbitrap instrument.

3. RESULTS AND DISCUSSION

3.1. Effect of CA on E.coli Growth 

In order to investigate the influence of CA on E. coli growth, the minimum concentration of CA 

needed for inhibition of E.coli growth was obtained via addition of different concentrations of CA 

to media containing the same  E.coli concentration.  As can be seen in  Figure S1 (Supporting 

Information), concentrations of CA above the 500 mg L-1 threshold result in total inhibition of 

E.coli at an initial concentration of 105 CFU mL-1 in LB media. 

The influence of sub-lethal doses of CA (100 mg L -1) on bacteria growth was also studied and 

compared with control samples. Bacterial growth was observed through lag phase, exponential 

phase, and stationary phase. For the system under study, a slow growth of E.coli was observed for 

3  hours  after  incubation.  The  bacteria  then  proceeded  to  enter  its  exponential  phase  for  a  

subsequent 12 hour period. Lastly, exponential growth was observed to stop in batch cultures, 

indicating  the  bacteria  reached  its  stationary  stage.  Figure  S2  (Supporting  Information) 

demonstrates the growth curve of E.coli at control conditions in comparison to samples where CA 

was added in sub-lethal concentrations. At sub-lethal concentrations of CA, the rate of bacterial  

growth was observed to  decrease during the lag phase,  which was prolonged for  6  hours  in 

comparison  to  the  control  culture;  following  this  period,  bacteria  cultures  were  observed  to 

achieve stable growth after adaptation to the new environment.

As described in the Experimental  section,  CA was also added to bacteria culture at  different  

incubation time points. In the case of bacteria treated with CA at lethal concentrations (above 
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MIC), immediately after cell  incubation, no bacteria were observed to appear on the agar gel 

plating during growth, indicating that at the established concentrations, CA completely inhibited 

bacterial  growth.  CA,  as  an antibacterial  agent  containing an aldehyde  group in its  structure 

conjugated to a carbon double bond with a highly electronegative arrangement, interferes with 

biological  processes  involving electron transfers.  It  covalently binds with nitrogen-containing 

structures such as DNA and proteins via their amine groups, thus extinguishing the metabolic  

functions of E.coli.18 The polarity of this bond makes the carbon atom electrophilic and reactive 

to nucleophiles such as primary amines; it also reacts with oxygen-, sulfur-, or nitrogen-centered 

nucleophiles, resulting in carbamates, thiocarbamates, or thiourea derivatives, respectively,  under 

mild conditions. 

3.2. E.coli Metabolic Profiling 

To monitor the metabolic stress response of E.coli exposed to CA, samples treated with different 

conditions  were  taken  from different  stages  of  the  growth  curve  for  analysis,  followed  by 

subsequent analysis of changes in metabolic profiling between treated and control E.coli samples.

According  to  the  obtained  results,  the  highest  numbers  of  features  were obtained during the 

exponential  phase of the control  samples:  83722 and 77382 features in positive and negative 

modes, respectively. The features of all chromatographic peaks were extracted for the discovery 

of discriminative metabolites during bacteria growth. 

The trends in the obtained metabolite profiles are observed to change at different growth phases, 

as shown in Figure S3 (Supporting Information).  For instance, levels of  amino acids such as 

phenylalanine or serine were observed to increase during the lag phase, and then decrease during 

the log phase, while for other amino acids, such as threonine, isoleucine, and valine, values were 

observed to increase by time. Increased levels of most amino acids during the stationary phase 

may suggest an enhancement in enzymatic activity related to protein degradation. Changes in the 

lipid composition of bacteria were also observed during E.coli growth, especially for fatty acids 

and phospholipids; throughout the E.coli growth cycle, levels of saturated fatty acids (SFAs) such 
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as myristic acid and palmitic acid were observed to increase, while levels of unsaturated fatty 

acids  (UFAs)  such  as  palmitoleic  acid  were  observed  to  decrease.  Moreover,  increases  in 

cyclopropane fatty acids such as cis-9,10 methylene hexadecanoic acid, and 11-R 12-S methylene 

octadecanoic  acid  were  observed to  occur  during  the  E.coli growth  cycle,  further  validating 

previous finding about accumulation of cyclopropane fatty acids as a result of microorganism 

growth for microorganisms such as  Serratia marcescens, Lactobacillus sp., and E.coli  has been 

previously reported by Kates et al.26 In addition, levels of phospholipids such as phosphatydil 

glycerol (PGs) were also observed to decrease, while phosphatidylethanolamine acid (PEs) levels 

correspondingly decreased.  Previous  work  has  indicated  that  the  observed decrease  in  UFAs 

during the growth cycle of  E.coli could be attributed to their conversion to cyclopropane fatty 

acids,  while  the  observed  decrease  in  PGs  levels  may  be  connected  to  their  conversion  to 

cardiolipin.27 Cardiolipin is involved in the transfer of phosphatidyl functional groups from one 

PG to the hydroxyl group of another PG.27 It is likely that the observed metabolic alterations are 

linked to bacteria adaptation to new media conditions due to the increase in bacteria numbers  

during growth. 

3.3. Identification of Discriminating Compounds Related to  E. coli Growth Under 

CA Treatment Below MIC

To characterize the metabolic response of E.coli to CA as an antibacterial agent, comparisons of 

signal  abundance  in  control  versus  treated  groups  were  conducted  for  CA at  two  different 

concentrations, below and above the minimum inhibitory concentration (MIC=500 mg L -1), 100 

mg L-1 and 2000 mg L-1,  respectively.  For  this  purpose,  different  types  of  experiments  were 

designed so as to evaluate results in terms of different errors (biological or nonbiological), as well  

as explain significant biological differences with higher confidence. Biological replicates were  

prepared for  E.coli  samples grown and treated under the same conditions in different 96-well 
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plates  so  as  to  monitor  possible  biological  variability.  Moreover,  technical  replicates  were 

performed  in  order  to  determine  experimental  error  attributed  to  the  analytical  techniques 

employed (SPME, MS, and LC methods). The obtained results indicated a variation of less than 

10% RSD for the technical analytical approach, and less than 20% for biological replicates. 

Trends in metabolite profiles by time were observed for both concentrations of CA. Metabolic  

variations for both immediate CA addition, and CA addition to growing cultures at different time 

intervals were also investigated. 

Figure S4 (Supporting Information) presents metabolic profiles of bacteria affected by CA at 100 

mg L-1, and Figure 1 indicates the heat map of statistically significant metabolites at P < 0.001 

based on comparison the control samples in comparison to the cinnamaldehyde treatment samples 

at below MIC condition (added to growing media immediately after incubation at each individual 

time point). Results showed an increase in levels of amino acids for samples treated with CA at  

MIC, while levels of metabolites related to the TCA cycle such as fumaric acid, malic acid, and 

glucose  6-phosphate  were  observed  to  decrease,  indicating  down-regulation  of  TCA cycle 

metabolism. Levels of SFAs were observed to increase while USFAs levels were observed to 

decrease  demonstrating  transformation  in  SFAs  to  unstaturated  ones,  resulting  in  prolonged 

bacteria life time likely attributed to increasing cell membrane fluidity in stress conditions. An 

increase in levels of cyclopropane fatty acids such as cis-9,10 methylene hexadecanoic acid, and  

11-R 12-S methylene octadecanoic acid was observed to occur in relation to CA addition. Karkas 

et al. reported that at severe environmental conditions, small amounts of cyclopropane fatty acids 

were produced to protect the double bond of fatty acids from oxidation. 28 Other studies have also 

shown an increase in these metabolites  as a function of  bacteria  growth at  high temperature  

conditions.29,30  In the  present  work,  the  observed increase in  cyclopropane fatty acids  by CA 

addition could support the evidence of bacteria adaptation to newly introduced harsh conditions.

In addition, increases in levels of N-methylated amino acids such as proline were observed to 

occur.  E.coli responds to CA addition as a stress factor by adjusting its membrane composition 
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through the production of n-methylated amino acids such as proline, which function to maintain 

cell turgor by osmotic regulation and redox metabolism to eliminate excess amounts of reactive 

oxygen species (Figure S4 (Supporting Information)). N-methylated amino acids produced by a 

new class of genes called osm (osmotic tolerance) were introduced as potent osmoprotectants and 

anti-stress activity regulators against dehydration in bacteria by Le Rudulier et al. 31 The potential 

of these metabolites in the presence of naturally occurring compounds in bacteria environment  

was confirmed through the introduction of CA in growing bacteria. The cell membrane is the first  

target of CA, as this compound can change membrane permeability as well as protein functions 

embedded inside the membrane. Lambert et al. and Burt et al. reported that in the presence of  

sub-lethal  concentrations  of  naturally  occurring  antibacterial  agents,  bacteria  reacts  by 

overexpressing  stress-response  proteins  to  repair  damaged  proteins;  however,  at  lethal 

concentrations, this response is unable to prevent cell death.13,14

3.4. Potential Biomarkers in the Case of E.coli Treatment by CA above MIC

No bacteria growth was observed for bacteria cultures treated with CA above MIC immediately 

after incubation (t=0). Growing bacteria cultures treated with CA above MIC every 3 hours after  

inoculation were sampled every 60 minutes following CA addition. PCA score plots (Figure 2 and 

Figure 3) are used to demonstrate variability in biological replicates. These plots shows clear 

separation  between  extractions  performed  for  treated  E.coli groups  and  controls,  as  well  as 

extractions conducted between different incubation times, in addition to good clustering of QC 

samples tightly located in the middle,  demonstrating good reproducibility of analysis for this 

metabolomics study for both positive and negative electrospray ionization modes. Two principal 

components explain 64% of the variance; PC1 51% and PC2 13% for positive ESI, and PC1 45% 

and PC2 12% for a total negative ESI of 57%.  PCA was applied in order to control the quality of 

the data while PLS-DA was performed to discriminate between control and treatment samples. 

Figure S5 (Supporting Information) demonstrates clear separation among control and treatment 
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samples  (above  MIC),  6  and  12  hours  after  incubation,  which  are  exponential  phase  and 

stationary phase, respectively.

Metabolic profiling of E.coli before perturbation at different time points demonstrated significant 

metabolic changes.  Furthermore, the metabolic profiles of bacteria treated by CA under MIC 

showed significant  differentiation from samples treated with sequential  addition of CA levels  

above  MIC  threshold. Individual  clusters  were  found  to  contain  samples  corresponding  to 

different time points and different CA dosing regimens, demonstrating that different pathways of  

bacterial metabolome are affected by application of CA at different stages of E. coli growth.

Hierarchical clustering analysis dendrogram showing the relationship between control samples 

and  cinnmaldehyde  treatment  samples  (above  MIC)  for  different  biological  replicates  at  

stationary phase is demonstrated at Figure S6 (Supporting Information).

A total  of  41  up-  and  32  down-regulated  metabolites  were  detected  (p-value  <  0.0001)  for 

samples dosed with CA above MIC treatment levels. The list of identified compounds is provided 

in Table 1. Data analysis demonstrated that CA addition above MIC inhibited the metabolism of 

E.coli via different mechanisms, such as  inhibition of enzyme-catalyzed reactions, inhibition of 

cell membrane synthesis following cell lysis and cell death, inhibition of protein synthesis, and 

protein disruption, which cause disruption of essential enzymatic synthesis, as well as interaction 

with plasma membranes, consequently affecting membrane permeability as well as metabolism 

inhibition. Comparisons of profiles yielded significant differentiation in the metabolic pathways 

of bacteria treated with CA. Based on the obtained results, it can be concluded that introduction 

of lethal doses of CA disrupts different metabolic pathways such as fatty acids, phospholipids, 

amino acids, peptides, glycolysis, as well as the TCA cycle, which is discussed in the following 

section. To the best of this author’s knowledge, this is the first time that some of the observed  

changes  in  the  metabolic  pathway of  E.coli as  a  function  of  CA dosing  are  reported  in  the 

literature.

3.4.1. Changes in Membrane Lipids
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Results  related to comparisons of extractions conducted at  different  time points of  the  E.coli 

growth curve using two concentration levels of CA indicated significant differences between the 

growth curve course and the obtained metabolite profiles. Of note, the metabolic profile of lipids  

has been observed to significantly differ under different stress conditions in relation to time points 

and  concentration  levels.  The  cytoplasmic  membrane  of  E.coli consists  of  phospholipids 

containing  three  fatty  acids:  palmitic  (hexadecanoic)  acid  as  a  SFA,  as  well  palmitoleic 

(hexadecenoic)  acid  and  cis-vaccenic  (cis-11-octadecenoic)  acid  as  USFAs.32 The  concurrent 

changes in USFA concentration levels, in conjunction with the observed decrease in SFA levels in  

under-MIC CA-treated cultures, can be attributed as principal factors related to changes in the  

obtained  lipid  profile;  levels  of  palmitic  acid  and  docosanoic  acid,  SFAs,  were  observed  to 

decrease, while an increase in the level of palmitoleic acid, an USFA, was observed to occur. This 

may suggest up-regulation of desaturase enzyme to increase membrane fluidity through changing 

SFAs to USFAs. A metabolic pathway investigation indicated that at sub-lethal concentrations of 

CA, the desaturase enzyme caused an increase in membrane fluidity by promoting changes in 

SFAs  to  USFAs.  In  the  presence  of  stress  conditions,  cells  maintain  membrane  fluidity  by 

recruiting  USFAs  as  membrane  phospholipids.  Desaturase  enzyme  produces  USFAs  by 

transferring two hydrogen atoms to oxygen,  allowing microorganisms to remain alive  longer  

through  the  maintenance  of  membrane  structure  and  function.33 The  consequent  increase  in 

bacteria resistance due to this adaptation can be clearly observed through a comparison between 

the growth curves of E.coli treated with sub-lethal CA concentrations and E.coli control groups. 

However, E.coli response to CA was noted to differ at lethal CA concentrations. In this condition, 

levels of metabolites such as USFAs  8-methylnonenoate, 7-oxo-11E-tetradecenoic acid, 7-oxo-

11E-tetradecenoic  acid,  fumarylacetic  acid, 6,8,10,12-pentadecatetraenal,  9,10-dihydroxy-12-

octadecenoic acid,  3,5,7-trimethyl-undecatetraene, hexadecatetraenoic acid,  dodecadienoic acid, 

and hydroxyl fatty acids such as  α-hydroxy myristic acid, myristoyl-EA, and  2-hydroxy capric 

acid were observed to decrease, while SFA concentrations of 2-keto palmitic acid was observed to 
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increase concurrently. This observation is in accordance with previous findings about the ability 

of  CA to  damage  cell  membranes.  Increase  of  USFAs  is  known to  induce  decrease  in  cell 

membrane fluidity, respiratory activity, coagulation of cytoplasmic materials, and eventually lead 

to cell lysis and leakage of macromolecules.33-38  In addition, the newly determined change in the 

metabolic  pathway  of  CA-treated  E.coli,  observed  by significant  up-regulation  in 

lysophosphatidylserine,  could  be  related  to  phospholipase  or  carboxylic  ester  hydrolase 

inactivation, which could be attributed to the interaction of CA by lipid membrane. 

3.4.2. Changes in Amino acids

The observed increase  in  levels  of  amino acids  and peptides  such as  lysine,  tyrosyl-alanine,  

glutamyl-hydroxyproline, 2-hydroxymethylserine, n-(6)-[(Indol-3-yl)acetyl]  lysine, 

phenylacetylglycine, lysopine,  histidine,  5-methoxytryptophan, phenylalanylproline, 3-

(phosphoacetylamido)  alanine,  threonine,  glutamine,  and  prolylhydroxyproline  could  be 

attributed to protein denaturing and inhibition of protein synthesis, which is caused by a halt in  

the  synthesis  of  essential  enzymes  as  a  result  of  the  addition  of  CA.  On  the  other  hand,  a  

comparison of changes in metabolite levels between CA-treated bacteria and control  bacteria  

demonstrated that this compound can perturb enzyme-catalyzed reactions such as  glutathione, 

arginine decarboxylase,  and histidine decarboxylase.  For example,  increases in riboflavin and 

histidine could be attributed to the interruption of histidine decarboxylase action. Conversely, a 

decrease in the agmatine metabolite may be caused by the inhibition of arginine decarboxylase by 

CA. Agmatine is the resulting product from the decarboxylation of arginine through the action 

arginine decarboxylase enzyme.39 These results support previous findings that demonstrated the 

inhibitory  activity  of  CA for  some  enzymes  including  histidine  decarboxylase  and  arginine 

decarboxylase, leading to accumulation of amino acids.39,40 

3.4.3. Inhibition of Glycolysis Pathway
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The obtained results  indicated that  CA could also dysregulate  the  citrate  metabolic  pathway,  

consequently influencing enzymes involved in ATP synthesis. Accumulation of glucose indicates 

down-regulation of the catabolic pathway in bacteria affected by CA, and lead to failure in ATP  

formation – the main source of energy. Previous studies confirmed that diffusion of CA to the cell  

periplasm induce  a  decrease  in  ATPase  activity of  cell  membrane.41,42 Consequently,  without 

energy production, cells loss their viability.43 

Therefore, CA was recognized as an interesting candidate for cancer treatment due to its natural  

occurrence and its ability to inhibit  glycolysis,  since most cancer cells use ATP-derived from 

glucose catabolism as energy source.44

3.4.4. Changes in Other Metabolites

Based on the obtained result, increases in cyclic CMP, which can be related to inhibition of CMP 

kinase  activity due  to  interruption  of  the  phosphorylation  mechanism in  CA treated  bacteria  

revealed in the presented work. Accumulation of carnitine accompanied by down-regulation of  

glycine  betaine  could  be  directly  linked  to  inhibition  of  various  catabolic  enzymes  such  as 

carnitine dehydrogenase. The carnitine pathway may play more than one role in cell function; in 

addition to generation of an osmoprotectant (glycine betaine), carnitine may play a role in the 

generation of an external electron acceptor in anaerobic respiration. Moreover, glycine betaine 

levels  were  observed  to  decrease  in  E.coli under  administration  of  above-MIC  CA levels, 

suggesting that CA may impair the glycine betaine pathway in which choline dehydrogenase is 

involved.  Str m et al.  introduced glycine betaine as an osmoprotectant in  ϕ E.coli under stress 

conditions induced by addition of salt and exposure to cold.45 In our present study, the observed 

results indicated that under administration of CA above MIC levels, this metabolite was unable to  

preserve cell turgor.

Other down-regulated metabolites such as myo-inositol 3-triphosphate and phytic acid were also 

indicated  as  discriminant  compounds  for  the  present  study.  Phytase  (myo-inositol 

hexakisphosphate phosphohydrolase) is classified as a phosphatase enzyme that catalyzes phytic  
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acid hydrolysis as a source of phosphorous.46,47 This type of change in metabolome profile infers 

inhibition of  phytase  activity in  CA-treated sample.  Our  study indicated that  CA could stop  

enzymatic  activity while  concurrently blocking  the nitrogen or  carbonyl  terminal  of  proteins 

through covalent bonds. Upregulation of carnitine also could be representative of enhancement in 

fatty acids β-oxidation as an alternative energy supply.

Another  enzyme  inferred  to  be  affected  due  to  CA addition  in  growing  bacteria  media  is 

glutathione S-transferase, known to catalyze the addition of glutathione thiol groups to suitable  

electrophilic species. This enzyme is responsible for producing reduced glutathione by catalyzing 

the  conjugation  of  electrophilic  compounds.  Glutathione  S-transferase  is  responsible  for 

detoxification of reactive oxygen species through decreasing peroxide levels to increase bacterial  

survival. Kanai et al. reported three distinct types of glutathione S-transferase from E.coli with 

defensive characteristics against oxidative stress (hydrogen peroxide).48  The presented research 

work demonstrated that CA influences  glutathione S-transferase  activity; the same observation 

has been previously reported in the literature for  E.coli treated by hydrogen peroxide, showing 

that CA acts as an oxidative agent.

3.4.5. Anti-Quorum Sensing Activity

Quorum sensing, defined as gene expression regulation in response to cell population fluctuation, is  

the phenomena in which bacteria secrets auto-inducers; when these compounds reach their threshold 

level,  their  interaction  with  transcriptional  regulators  affects  gene  expression.49  Enzymatic 

degradation of signaling molecules inhibits  biofilm formation in systematic and local  infections,  

pathogenicity, and antibiotic resistance. In this study, we observed the significant down-regulation of 

signal  molecules  such  as  N-decanoyl-L-homoserine  lactone and  N-tetradecanoyl-L-homoserine 

lactone levels produced by microorganism in CA treated media. Decrease in the levels of these two 

signaling molecules may be related to the disruption of cell-to-cell communication, and then lead to 

inhibition  of  biofilm  formation.  Quorum  sensing  is  known  to  contribute  significantly  to  the 

resistance and virulence of E.coli. The anti-quorum sensing activity of CA was already proposed by 
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Urbanowski et al.50 The authors suggested that CA or one of its metabolites act as antagonist to 

autoinducer receptor binding. 

The  above-mentioned  changes  in  the  metabolic  pathways  due  to  response  of  E.coli to  CA 

treatment provide evidences of multi-functional role of this natural compound as antibacterial 

agent. The obtained results demonstrated that SPME is a sensitive tool for in vivo metabolomics 

analysis enabling obtaining time-resolved data without  the need of sample collection thus no  

disturbance  of  living  systems.  This  approach may be  successfully applied  for  monitoring  of  

metabolic pathways towards discovery of molecules which can serve as significantly differentiate 

metabolites or improving the knowledge on mechanisms that pathogens react to newly discovered 

compounds in drug discovery and development.

4. CONCLUSION

In this research,  SPME-LC-MS platform was used for  the  first  time due for  investigation of 

bacterial metabolome to provide time-resolved information about changes induced by different  

doses of natural antibacterial agent, cinnamaldehyde (CA), at different stages of the pathogen 

growth.  Numerous discriminant  metabolites were identified using the technique and provided 

further insight into metabolic pathways alteration in E.coli culture. Among compounds influenced 

by CA were those related to TCA cycle, fatty acids, glycolysis, amino acids metabolism, cell  

membrane, and protein synthesis. Based on the up-regulation and down-regulation in the above-

mentioned metabolite levels of treatment samples versus control samples, CA influences many 

enzymes involved in protein interactomes. The developed SPME-LC-MS method assists in the 

evaluation of metabolome changes, and the results of the current work could contribute to the 

field by obtaining more knowledge regarding endogenous and exogenous molecules participating 

in molecular binding including proteins, nucleic acids, carbohydrates, lipids and drugs. Based on 

the  results  obtained  from  metabolic  profiling  investigation,  low  level  concentration  of  CA 

interacts with membrane and proteins embedded inside while higher levels of CA can diffuse 
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inside  the  cell  and  affect  the  cytoplasmic  enzymes  and  transcriptome.  Moreover,  the  latter 

condition  disrupts  the  membrane  and  cause  cell  death.  The  proposed  approach  may  offer 

additional opportunities to food microbiologists for evaluation of metabolic pathways involved in 

growth and survival of pathogens in foods, food processing environments as well as humans.
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Table  1. Statistically significant  differentiated metabolites between CA treated bacteria  above 
MIC added every 3 hours after incubation and control  E.coli sample (metabolites confirmed by 
retention  time  and  fragmentation  pattern  matching  with  commercially  available  reference 
standards are highlighted in bold). Mass accuracy of the measurement is defined as the ratio of 
mass error (difference between experimentally measured mass (mz (expr.)) and exact theoretical  
mass (mz (theor.))  and can be calculated using the following equation: 
mass accuracy (ppm)= (Regulation:;Up-regulated:;Down-regulated: ) 

Metabolite Chemical formula METLIN ID Class P value mz (theor.) RT (min) mz (expr.)  Adduct Mass 

accuracy 

(ppm)

Main 

fragments

Betaine aldehyde C5H11NO 278 Alkylamines 0.00062 102.0918 0.86 102.0910  M+ H -7.8 58.0662; 

59.0734
n(6)-[(indol-3-yl)acetyl]-L-

lysine

C16H21N3O3 66141 Amino Acids and 

Derivatives

5.95920e-7 304.1661 3.35 304.1660  M+H -0.3 -----------

Glycine betaine C5H11NO2 287 Amino Acids and 

Derivatives

7.81195e-7 118.0868 0.86 118.0866  M+H -1.7 58.0662; 

59.0736

Methionine C5H11NO2S 26 Amino acids and 

derivatives

1.16363e-6 150.0588 0.98 150.0584  M+H -2.6 56.0502; 

61.0114; 

104.0525; 

133.0312

Phytic acid C6H18O24P6 4238 Cyclic alcohols and 

derivatives

0.00047 698.8250 2.56 698.8250  M+K 0 80.9719; 

98.9835; 

462.891; 

642.8589

myo-inositol

3-triphosphate

C6H13O9P 359 Cyclic alcohols and 

derivatives

3.83342e-6 261.0375 1.01 261.0372  M+ H -1.1 241.0102, 

138.9731

8-methylnonenoate C10H17O2 62842 Fatty Acids and 

Conjugates

1.55983e-10 170.1306 6.84 170.1304  M+H -6.9 -----------

7-oxo-11E-tetradecenoic acid C14H24O3 45868 Fatty Acids and 

Conjugates

1.65801e-6 241.1803 6.07 241.1804  M+H 0.6 -----------

Fumarylacetic acid C6H6O5 45910 Fatty Acids and 

Conjugates

1.27344e-6 181.0112 0.98 181.0101  M+Na -6.1 -----------

6,8,10,12-pentadecatetraenal C15H22O 91269 Fatty Acids and 

Conjugates

6.71761e-6 241.1568 4.84 241.1563  M+ Na -2.1 -----------

9,10-dihydroxy-12- C18H34O4 35501 Fatty Acids and 9.52547e-7 337.2354 8.16 337.2351  M+Na -0.9 229.1573;
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octadecenoic acid Conjugates 163.1359
3,5,7-trimethyl-

undecatetraene

C14H22 97470 Fatty Acids and 

Conjugates

0.00024 191.1799 6.12 191.1793  M+H -3.1 177.0523;

129.1326
Hexadecatetraenoic acid C16H24O2 34835 Fatty Acids and 

Conjugates

0.00055 249.1854 7.08 249.1845  M+H -3.6 219.1952;

124.0869

13-hexadecenoic acid C16H30O2 34927 Fatty Acids and 

Conjugates

6.3251e-6 277.2143 7.11 277.2145  M+Na 0.7 259.1901;

228.2319;

195.1014
Dodecadienoic acid C12H20O2 34896 Fatty Acids and 

Conjugates

0.00160 197.1541 5.05 197.1539  M+H -1.0 137.1325;

109.1011
α-hydroxy myristic acid C14H28O3 35391 Fatty Acids and 

Conjugates

3.27691e-7 243.1960 5.16 243.1961  M-H 0.4 197.1911; 

169.1590
Myristoyl-EA C16H33NO2 46563 Fatty Acids and 

Conjugates

0.00001 310.2148 5.74 310.2136  M+K -3.8 244.1287;

227.1750;

213.1594
2-hydroxy capric acid C10H20O3 35411 Fatty Acids and 

Conjugates

0.00071 187.1334 5.05 187.1338  M-H 2.1 -----------

6-Tridecene C13H26 97873 Fatty Acids and 

Conjugates

7.33244e-7 181.1956 3.93 181.1955  M-H -0.6 -----------

2,6-

dimethylheptanoyl 

carnitine

C16H31NO4 58391 Fatty Acid Esters 5.44908e-6 324.2150 4.62 324.2151  M+ Na 0.4 205.0856;

301.1403;

279.1585;

190.0496
9,12-hexadecadienoic acid C16H28O2 34787 Fatty acyls 0.00086 251.2011 10.53 251.2012  M-H 0.4 -----------

pentadecatetraenal C15H22O 91269 Fatty aldehydes 6.71761e-6 217.1592 4.84 217.1591  M-H -0.5 -----------
1-nonaDecanol C19H40O 26349 Fatty alcohols 5.83294e-7 283.3000 8.40 283.2999  M-H -0.4 -----------

Agmatine C5H14N4 3523 Guanidines 3.88392e-6 131.1296 1.33 131.1286  M+H -7.6 60.0549; 
72.0812;
114.1025

4-hydroxyindole C8H7NO 34514 Indols 2.36999e-8 134.0605 3.51 134.0605  M+ H 0 115.0542
Methylindole C9H9N 5453 Indols 0.00009 132.0813 5.07 132.0806  M+H -5.3 77.0394; 

89.0401; 

103.0545; 

117.0574

Guanine C5H5N5O 315 Imizopyrimidines 2.11405e-9 152.0572 0.93 152.0572  M+H 0 135.0302; 

110.0358

Creatinine C4H7N3O 8 Lactams 0.00234 114.0667 1.27 114.0662  M+H -4.4 114.0687, 

86.0741

N-decanoyl-L-

homoserine lactone

C14H25NO3 45310 --------------- 9.41730e-7 256.1912 5.21 256.1923  M+H 4.3 57.0702; 

74.0216; 

84.0381; 

95.0782; 

102.0521

N-tetradecanoyl-L-

homoserine lactone

C18H33NO3 64716 --------------- 9.46201e-7 310.2382 8.40 310.2375  M-H -2.3 74.0413; 

102.0561; 

211. 2075
2-hydroxymethylserine C4H9NO4 65894 Amino Acids and 

Derivatives

2.15173e-7 136.0609 0.93 136.0610  M+ H 0.7 -----------

N2-(D-1-Carboxyethyl)-L-

lysine

C9H18N2O4 63467 Amino Acids and 

Derivatives

9.61847e-6 219.1344 1.27 219.1331  M+H -5.9 -----------

Phenylacetylglycine C10H11NO3 4237 Amino Acids and 

Derivatives

6.60221e-7 194.0817 2.82 194.0815  M+H -1.0 65.0414; 

91.0553
5-methoxytryptophan C12H14N2O3 103475 Amino Acids and 

Derivatives

2.47692e-6 257.0902 0.97 257.0901  M+Na -0.4 -----------

Phenylalanylproline C14H18N2O3 23997 Amino Acids and 

Derivatives

0.00002 263.1395 2.24 263.1393  M+H -0.8 -----------

3-(phosphoacetylamido) 

alanine

C5H11N2O7P 66116 Amino Acids and 

Derivatives

0.00001 280.9940 0.89 280.9932  M+K -2.8 -----------

Proline C5H9NO2 29 Amino acids and 

derivatives

0.00003 116.0711 0.98 116.0710  M+H -0.9 70.0662

Aspartic acid C4H7NO4 15 Amino acids and 

derivatives

0.00001 134.0453 0.88 134.0448  M+H -0.9 74.0243, 

88.0378; 

116.0352

Glutamic acid C5H9NO4 19 Amino acids and 

derivatives

1.4215e-6 148.0609 0.80 148.0604  M+H -3.4 84.0451; 

102.0554; 

130.0503

Phenylalanine C9H11NO2 28 Amino acids and 

derivatives

2.2586e-7 166.0868 1.17 166.0868  M+H 0 103.0559; 

120.0824

Histidine C6H9N3O2 21 Amino acids and 

derivatives

0.00005 156.0773 0.93 156.0769  M+H -2.5 83.0611; 

93.0453; 

110.0712
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Arginine C6H14N4O2 13 Amino acids and 

derivatives

5.0953e-7 175.1195 1.03 175.1189  M+H -3.4 74.0246; 

88.0394; 

116.0351

Tryptophan C11H12N2O2 33 Amino acids and 

derivatives

0.000014 205.0977 2.86 205.0972  M+H -2.4 118.0657; 

146.0593; 

188.0702
2-hydroxymethylserine C4H9NO4 65894 Amino Acids and 

Derivatives

2.15173e-7 136.0609 0.93 136.0610  M+ H 0.7 132.1015

N2-(D-1-carboxyethyl)-L-

lysine

C9H18N2O4 63467 Amino Acids and 

Derivatives

9.61847e-6 219.1344 1.27 219.1331  M+H -5.9 --------------

Phenylacetylglycine C10H11NO3 4237 Amino Acids and 

Derivatives

6.60221e-7 194.0817 2.28 194.0815  M+H -1.0 153.0544;

125.0597

Valine C5H11NO2 35 Amino acids and 

derivatives

0.000036 118.0868 2.20 118.0864  M+H -3.3 118.0868, 

72.0815

Isoleucine C6H13NO2 23 Amino acids and 

derivatives

6.53741e-8 132.1024 1.27 132.1020  M+H -3.0 132.1018, 

86.0968

Cysteine C3H7NO2S 3757 Amino acids and 

derivatives

0.000071 122.0275 0.80 122.0275  M+H 0 76.0815; 

87.0354; 

104.9781

Threonine C4H9NO3 32 Amino acids and 

derivatives

0.000033 120.0660 0.93 120.0656  M+H -3.3 56.0512; 

74.0610; 

102.0557

Glutamine C5H10N2O3 18 Amino acids and 

derivatives

4.66183e-6 147.0769 1.15 147.0771  M+H 1.3 84.0454; 

130.0492

Lysine C6H14N2O2 71200 Amino Acids and 

Derivatives

3.52559e-9 147.1133 1.02 147.1129  M+H -2.7 56.0508; 

84.0817; 

130.0861
Galactosyl

4-hydroxyproline
C10H16O 86214 Carboxylic acid and 

derivatives

1.457687e-6 153.1279 4.21 153.1281  M+H 1.3 149.1323;

119.0855

Carnitine C7H15NO3 63461 Alkylamines 4.45447e-6 162.1130 1.33 162.1131  M+ H -0.6 60.0814; 

85.0291; 

103.0392
4-keto lauric acid C12H22O3 35733 Fatty Acids and 

Conjugates

0.00038 215.1647 4.01 215.1644  M+H 1.4 -----------

2-keto palmitic acid C16H30O3 35744 Fatty Acids and 

Conjugates

0.00005 269.2116 5.55 269.2117  M-H 0.4 195.1014;

181.0646;

161.1323;

127.1117

Hexadecanoic acid C16H32O2 187 Fatty acyls 0.00086 255.2324 8.20 255.2324  M-H 0 57.0709; 

71.0857; 

103.0745
Dodecanamide C12H25NO 36671 Fatty amides 0.00029 200.2014 6.85 200.2013  M+ H -0.5 161.1323;

127.1117
PA(13:0/0:0) C16H33O7P 3886 Glycerophospholipids 1.36265e-8 367.1885 5.17 367.1884  M-H -0.3 -----------

PA(P-

16:0/20:5(5Z,8Z,11Z,14Z,17

Z))

C39H67O7P 82262 Glycerophospholipids 6.21982e-7 717.4261 5.77 717.4254  M+K -1.0 572.3438;

501.7861;

445.2444;

333.1038;

264.1591
PE(18:0/12:0)[U] C35H70NO8P 40423 Glycerophospholipids 0.00027 664.4917 7.54 664.4898  M+H -2.9 -----------

LysoPE(0:0/15:0) C20H42NO7P 62289 Glycerophospholipids 0.00018 440.2777 5.92 440.2765  M+H -2.7 -----------
Lysophosphatidylserine C24H48NO9P 34531 Glycerophospholipids 0.00005 525.3066 5.92 525.3062  M+ -0.8 526.3134, 

508.3015
2-hydroxydecanedioic acid C10H18O5 5413 Hydroxy acids and 

derivatives
1.6437e-7 257.0791 0.95 257.0792  M+K -0.4 -----------

Glucose C6H12O6 3755 Monosaccharides 6.07467e-6 203.0531 0.77 203.0531  M+Na 0 56.7694; 

118.0872; 

143.0715
Glutamyl-hydroxyproline C10H11N5O5 69076 Peptides 6.80448e-8 282.0838 0.87 282.0821  M+H -6.0 -----------

Prolylhydroxyproline C10H16N2O4 58518 Peptides 6.76841e-6 229.1188 1.15 229.1190  M+H 0.9 197.1281;

135.1013
Tyrosyl-alanine C12H16N2O4 85991 Peptides 1.67676e-9 253.1188 1.86 253.1174  M+H -5.5 ----------

Riboflavin

(vitamin B2)

C17H20N4O6 233 Pteridines and 

derivatievs

0.00008 377.1461 1.51 377.1460  M+H -0.3 172.0872; 

198.0651; 

243.0895

Cyclic CMP C9H12N3O7P 3436 Pyrimidine 

nucleotides

7.08504e-6 306.0491 0.78 306.0481  M+H -3.2 95.024; 

112.050

Hexylglutathione C16H29N3O6S 24067 --------------- 0.00060 392.1855 4.35 392.1854  M+H -0.3 84.0456; 

86.9913; 

116.0162
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FIGURE CAPTIONS

Figure 1. Heat map of statistically significant metabolic change (p<0.001) between control E.coli 
sample  comparison  and cinnamaldehyde  (under  MIC)  treated  E.coli  at  different  time  points: 
#h_C:  control  sample  after  inoculation  a  liquid  bacterial  culture  at  #  of  hours;  #h_CA: 
cinnamaldehyde treated sample (under MIC) after inoculating a liquid bacterial culture at # of  
hours time point. The color gradient indicates low to high relative levels of metabolites. 
Figure 2. PCA score plot_positive ESI mode: E.coli bacteria during growth curve at # hours after 
bacteria incubation in meida and treatment  by cinnamaldehyde  above MIC at  # hours:  CC#, 
control bacteria during growth curve at # hours after incubation: C#. (Experimental points are 
related to biological replicates).
Figure 3. PCA score plot_negative ESI mode: E.coli bacteria during growth curve at # hours after 
bacteria incubation in meida and treatment by CA above MIC at # hours: CC#, control bacteria  
during growth curve at # hours after incubation: C#. (Experimental points are related to biological  
replicates).

FIGURES
Metabolite

3h_C 3h_CA
6h_
C 6h_CA 9h_C 9h_CA

12h_
C 12h_CA

15h_
C 15h_CA

Acetylcholine
1.43 1.1 2.54 1.54 3.53 2.54 5.36 3.87 7.81 6.32

Agmatine
4.55 4.94 5.04 5.06 5.51 5.73 6.22 6.39 6.23 6.47

Arginine
4.37 4.05 4.69 4.82 4.12 4.85 3.54 4.13 3.21 4.05

Aspargine
2.65 2.83 2.98 3.64 3.98 4.74 4.98 5.26 4.98 5.02

Aspartic acid
3.56 3.58 3.99 4.04 4.05 4.56 4.98 5.23 4.38 5.03

Benzoic acid
1.78 1.32 2.98 2.32 3.87 2.57 4.78 3.64 4.81 4.81

Cardiolipin
2.43 1.42 3.24 1.78 4.53 2.53 6.82 4.32 7.32 4.12

Cysteine
3.52 1.54 4.74 2.65 5.33 3.98 6.17 4.12 8.54 5.23

Fumaric acid
1.83 1.3 3.25 2.53 4.16 3.65 2.51 2.1 1.95 2.43

Glucose-6-phosphate
1.86 0.8 2.93 0.83 3.92 0.93 1.47 1.1 1.21 0.7

Glutamic acid
1.54 1.73 1.78 2.43 3.46 3.92 4.95 5.15 5.89 6.04

Glycine
3.58 3.87 4.65 4.78 4.87 5.19 4.9 6.37 5.32 6.45

guanine
3.52 1.32 3.53 1.56 3.84 2.43 3.98 2.38 3.74 2.43

Isoleucine
2.47 2.65 3.61 3.76 5.89 6.23 7.19 7.63 8.92 9.03

LysoPE(0:0/15:0)
1.83 2.432 2.43 3.43 3.78 3.78 4.64 5.73 4.94 4.94

Malic acid
2.49 0.7 3.18 0.9 4.81 1.4 3.71 1.8 3.12 1.62
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Methionine
1.45 1.1 2.94 2.32 4.74 3.1 4.95 3.65 4.98 3.64

Methyltryptophan
2.5 1.8 3.14 2.42 5.92 3.53 5.19 4.01 4.22 4.05

Myristic Acid 
1.45 1.32 2.54 1.67 4.87 2.53 5.94 4.12 7.63 3.53

N-heptanoyl-homoserine lactone
2.43 1.3 3.23 1.86 5.23 2.23 3.21 2.45 1.43 1.1

N-undecanoyl-L-Homoserine lactone
1.43 1.02 3.53 2.21 4.12 3.42 3.12 1.94 1.12 1.31

N8-Acetylspermidine
1.65 0.78 2.15 0.98 1.3 1.1 1.12 0.92 0.51 0.8

PA(13:0/0:0)
1.42 1.32 1.64 1.43 1.27 1.454 1.38 2.42 1.37 2.47

PA(P-16:0/20:5(5Z,8Z,11Z,14Z,17Z))
1.43 1.32 1.43 1.65 1.54 1.54 1.65 1.87 1.29 1.29

Palmitic acid
1.46 1.23 1.68 1.31 3.27 2.43 5.37 3.96 7.57 3.81

Palmitoleic acid
1.43 1.74 2.43 2.53 3.21 4.242 1.21 4.75 1.1 6.33

PE(17:1(9Z)/18:4(6Z,9Z,12Z,15Z))
2.13 2.42 3.21 3.42 3.43 4.53 4.22 5.3 5.43 6.3

PE(18:0/12:0)[U]
1.34 2.12 1.52 2.43 2.17 3.43 3.74 5.64 4.18 7.42

PE(18:4(6Z,9Z,12Z,15Z)/P-18:1(11Z))
1.54 3.42 2.43 4.223 3.53 5.34 5.87 6.3 7.2 8.2

PG(13:0/17:2(9Z,12Z))
4.19 4.19 3.19 3.19 2.56 2.56 1.83 1.53 1.33 1.33

PG(16:0/16:0)
6.91 6.91 4.71 4.71 3.89 3.89 2.34 2.32 1.56 1.56

PG(18:3(6Z,9Z,12Z)/0:0)
7.18 6.32 6.19 4.42 4.38 4.24 2.98 2.67 1.13 2.12

PG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)
)

8.56 2.32 6.12 3.43 5.75 3.64 4.84 3.75 0.91 3.53

Phenylalanine
1.43 1.56 3.85 3.96 5.94 6.03 3.81 4.64 2.56 3.543

Proline
2.83 3.31 3.78 3.98 4.62 4.65 6.93 8.22 3.78 6.32

Serine
1.48 1.69 2.53 2.89 4.67 5.05 2.1 2.31 0.7 1.5

Threonine
2.34 3.455 3.64 4.23 4.19 5.23 6.23 6.89 4.1 7.32

Tyrosine
1.51 1.86 2.5 2.78 3.78 3.98 4.92 5.01 1.57 5.05

Valine
1.58 1.63 2.53 2.58 2.87 2.98 2.94 2.99 2.62 2.84

                                                    
Figure 1. Heat map of statistically significant metabolic change (p<0.001) between control E.coli 
sample  comparison  and cinnamaldehyde  (under  MIC)  treated  E.coli  at  different  time  points: 
#h_C:  control  sample  after  inoculation  a  liquid  bacterial  culture  at  #  of  hours;  #h_CA: 
cinnamaldehyde treated sample (under MIC) after inoculating a liquid bacterial culture at # of  
hours time point. The color gradient indicates low to high relative levels of metabolites. 
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Figure 2. PCA score plot_positive ESI mode: E.coli bacteria during growth curve at # hours after 
bacteria incubation in meida and treatment  by cinnamaldehyde  above MIC at  # hours:  CC#, 
control bacteria during growth curve at # hours after incubation: C#. (Experimental points are 
related to biological replicates).

Figure 3. PCA score plot_negative ESI mode: E.coli bacteria during growth curve at # hours after 
bacteria incubation in meida and treatment by CA above MIC at # hours: CC#, control bacteria  
during growth curve at # hours after incubation: C#. (Experimental points are related to biological  
replicates)
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