
Grammar-Based Representations of
Large Sparse Binary Matrices

by

Jingyun Bian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Jingyun Bian 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Large sparse matrices representation is a fundamental problem in big data processing
and analysis. In some applications dealing with large sparse matrices, the I/O of these
sparse matrices is the bottleneck of the whole system. To reduce the requirement of memory
bandwidth in this scenario, it is important to develop alternative compact representations
of large sparse matrices, while facilitating, if possible, matrix operations.

In this thesis, we propose two grammar based methods to compactly represent a sparse
binary matrix with the capability of random accessing an element in the matrix. The
first approach combines dimension coding (proposed by Yang[12]) with one of raster scan
or Hilbert scan, where the so-called directionless grammar is applied. With the power of
scanning, dimension coding’s capability of representing 1-D sparse signals can be extended
to 2-D sparse matrices. This approach inherits the random accessibility of dimension
coding. In the second approach, we will introduce a new concept called Context-free
Bipartite Grammar (CFBG) and present a framework wherein large sparse binary matrices
can be represented by CFBG. Similar to the traditional concept of Context-free Grammar
(CFG), a CFBG consists of a set of production rules. Unlike CFGs, however, the right
member of each production rule in a CFBG is a labeled bipartite graph with each edge
labeled either as a variable or terminal symbol. As the right hand side of a production rule
is an ordered edge set, CFBG is also directionless. Two bipartite grammar transforms, a
Sequential D-Neighborhood Pairing Transform (SNPT) and an Iterative Pairing Transform
(IPT), are further presented to convert any binary matrix into a CFBG representing it.

Experiments show that compared with popular sparse matrix storage methods such as
compressed row storage and quadtree, grammar-based sparse binary matrix representations
can reduce the storage requirement of sparse matrices significantly (by a factor of as much
as 70).

iii

Acknowledgements

I would like to thank my supervisor, Prof. En-hui Yang, for his guidance and support.
He is a very good exemplar of researcher and always inspires me to think more logically
and precisely.

I would like to thank Prof. Derek Rayside and Prof. Mohamed Oussama Damen for
being the committee members and providing me valuable comments and suggestions.

I would also like to thank all my colleagues in the multimedia communications lab for
their continuous support and friendship: Yi Shan, Jiasen Xu, Xulai Cao, Hossam Amer,
Jeffrey Erbrecht, Jin Meng and Xiang Yu. I would like to thank visiting scholars Xiangwen
Wang and Jing He for their support and encouragement in my research.

Last but not least, I would like to thank my family members and my girl friend for
their understanding and support.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Research Motivation and Problem Description 1

1.2 Research Contributions . 1

1.3 Thesis Organization . 2

2 Background 4

2.1 Sparse Matrix Representation . 4

2.1.1 Coordinate Storage(COO) . 5

2.1.2 Compressed Row Storage(CRS) . 6

2.1.3 Quadtree . 6

2.1.4 Other representations . 7

2.2 JBIG . 9

2.2.1 Resolution Reduction algorithm . 9

2.2.2 Typical Prediction . 9

2.2.3 Compression algorithm . 10

2.3 Context-free Grammar . 11

2.4 Grammar-based code . 13

2.5 Summary . 16

v

3 Sparse Binary Matrix Representation via Dimension Coding 17

3.1 Dimension Coding . 17

3.1.1 Overview . 17

3.1.2 Directionless Grammar . 19

3.1.3 Incremental Directionless Grammar Transform 22

3.1.4 Grammar encoding . 24

3.1.5 Random access decoder . 25

3.2 Scan Methods . 26

3.2.1 Raster Scan . 27

3.2.2 Hilbert Scan . 27

3.3 Sparse Binary Matrix coder via Dimension coding 29

4 Binary Matrix Representation via Bipartite Gramamr Based Coding 31

4.1 Overview . 31

4.2 Correspondence between binary matrix and bipartite 33

4.3 Context-free Bipartite Grammar . 33

4.3.1 Graph Operations . 34

4.3.2 Context-free Bipartite Grammar . 35

4.4 Bipartite Grammar Encoding . 38

4.4.1 Canonical CFBG . 38

4.4.2 Grammar encoder . 40

4.5 Parallel Random Access . 42

4.6 Bipartite Grammar Transform . 44

4.6.1 Sequential D-Neighborhood Pairing Transform 45

4.6.2 Iterative Pairing Transform . 47

4.6.3 Implementation of IPT . 47

vi

5 Experimental Results 52

5.1 Source and Descriptions of Testing Matrices 52

5.2 Overall Result . 53

5.3 Detailed Result of Bipartite Grammar Coding 58

6 Conclusion and Future Work 61

6.1 Conclusion . 61

6.2 Future Work . 62

6.2.1 Locality and Random Accessibility 62

6.2.2 Potential Capability of Pattern Discovery 62

6.2.3 Support more operations . 62

References 63

vii

List of Tables

5.1 Statistics of testing matrices . 53

5.2 Description of testing matrices . 54

5.3 Space complexity of different representations 55

5.4 Experimental results including JBIG . 58

5.5 Statistics of Context-free Bipartite Grammar (CFBG) 59

viii

List of Figures

2.1 (a) Sample Matrix A. (b) COO representation of matrix A. 5

2.2 Compressed Row Storage (CRS) representation of the matrix in 2.1a . . . 6

2.3 Quadtree examples. A submatrix will be divided if its size is larger than
1 × 1(each non-empty leaf node corresponding to one non-zero elements).
Four numbers inside the tree node are corresponding to its four children. 0
denotes the child is empty while 1 denotes non-empty. (a) Matrix A. (b)
Quadtree representation of A. (c) Matrix B. (d) Quadtree representation
of B. 8

2.4 Resolution reduction weights . 10

2.5 Context templates in lowest layer (a) Two-line template. (b) Three-line
template. 11

2.6 Illustration of a grammar-based code. 13

3.1 Structure of a dimension coder . 18

3.2 Structure of a dimension encoder . 18

3.3 Illustration of raster scan . 27

3.4 Illustration of Hilbert scan. (a) 2× 2 (b) 4× 4 (c) 8× 8 28

3.5 Structure of a 2-D dimension coder . 30

4.1 Structure of a bipartite grammar coder . 32

4.2 (a) A bipartite graph B; (b) the biadjacency matrix of B 33

ix

4.3 Operations over B in Fig. 4.2a with solid edges labeled as δ and dash edges
labeled as v1: (a) subgraph B3 induced by {(2, 2)(3, 2)(3, 3)}; (b) bipartite
graph B3−(3, 2) indicated by label v1; (c) graph B′ obtained by subtracting
B3 from B at edge (3, 2); (d) graph obtained by adding B3 to B′ at edge
(3, 2). Adding B3 − (3, 2) to B′ at edge (3, 2) gets B back. 36

4.4 The derivation tree of CFBG in Exmp. 11 38

4.5 Structure of a bipartite grammar encoder 38

4.6 Matrix represented by G . 40

4.7 (a) Illustration of scanning. (b) Sort left end point of cord. 49

5.1 Structure of four matrices where CFBG is better. (a) bmw7st 1 (b) cegb2919
(c) cage12 (d) FEM 3D thermal2 . 56

5.2 Structure of matrix Chem97Zt . 57

5.3 Structure of matrix roadNet-CA . 57

x

Chapter 1

Introduction

1.1 Research Motivation and Problem Description

Large sparse matrices appear a lot in big data analytics (such as natural language
processing, consumer data analysis, etc) as well as many scientific and engineering appli-
cations. In some applications, the I/O of these sparse matrices is the bottleneck of the
whole system. Due to their sheer sizes, it is practically infeasible to represent and operate
large sparse matrices in terms of the standard two dimensional array structure.

Therefore, it is important to develop alternative compact representations of large sparse
matrices while facilitating, if possible, matrix operations, pattern discovery, and coding
directly over these compact representations. In this thesis, we will try to obtain compact
representations of binary matrices. These representations should not only require less
storage but also support matrix operations, to be specific, random accessing any element
in the matrix.

1.2 Research Contributions

In this thesis, we will discuss the problem of representing a large sparse binary matrix
so that the representation requires less storage and, meanwhile, supports random access of
this matrix.

We will inherit the idea of using context-free grammar to represent 1-D string, which
has already been proved successful in the series of papers of grammar-based code proposed
by Yang and Kieffer[20, 16]. We will propose two extensions of grammar-based coding.

1

The first approach combines dimension coding proposed by Yang[12], the target of
which is to represent 1-D sparse signal, with a scan method to represent 2-D matrices.
This approach naturally has the random accessibility provided by dimension coding. The
grammar used in [12] is called directionless grammar which is an extended context-free
grammar on an ordered index set.

The second approach uses newly proposed Context-free Bipartite Grammar (CFBG).
CFBG, like directionless grammar in [12], is directionless since it is a context-free grammar
on the ordered edge set of a bipartite graph. We will introduce the definition of CFBG and
provide an algorithm to further encode the CFBG into a vector representation. Compared
with the previous approach, the representations through this approach does not have as
strong random access capability as the dimension coding provides. Therefore, we will
call the random access on the CFBG based representation “Parallel random access”. We
will also provide two algorithms called grammar transformation which generate a CFBG
representing a binary matrix.

By doing experiments on various matrices from real applications, we will show that the
grammar-based representation greatly outperforms the state-of-art sparse matrix represen-
tation methods such as Compressed Row Storage (CRS)(by a factor of as much as 70) in
the sense of space complexity. We will also show that when the density of the matrix is
not extremely low and the distribution of the non-zero elements in the matrix is far from
random, the power of grammar can be fully utilized by CFBG. However, since the scan
method is not so adaptive to the distribution of non-zero elements, the performance of
dimension coding with scanning is not as steady as bipartite grammar-based coding.

1.3 Thesis Organization

The other parts of the thesis are organized as follows: In the second chapter, we will
first review some state-of-arts sparse matrix representation methods and then give the
definition of Context-free Grammar, which plays a vital role in so-called grammar-based
code, which is introduced right after CFG. In the third chapter, we will first introduce the
dimension code proposed by Yang[12] to represent 1-D sparse signal, where the CFG is
extended to so-called directionless grammar. Then we will introduce two scan methods,
which combined with dimension coding, can be used to represent 2-D sparse matrices. In
the fourth chapter, we further extended the grammar to Context-free Bipartite Grammar,
which has a true 2-D nature and does not need to work together with scan method. The
bipartite grammar-based coding is introduced right after the newly proposed grammar. In
the fifth chapter, we will show some experimental results that illustrate the comparison

2

between different representation methods. Finally, we will conclude the paper in chapter
6 and discuss some future work.

3

Chapter 2

Background

2.1 Sparse Matrix Representation

Sparse matrices are matrices that contain only a small number of non-zero elements.
As the percentage of non-zero elements in a matrix gets lower and lower, there is a turning
point where the traditional method in which a matrix is stored as a 2-D array is no longer
efficient since most operations with zeros are trivial. As a result, it is more efficient to
store only the non-zero elements in addition to some indexing scheme.

One main issue in sparse matrix storage is the reduction of space requirement. We are
concerned about two types of storage: “primary” where actual non-zero matrix elements
are stored; “overhead” where all indexing information are stored. When the matrix is
binary, primary storage can be omitted or replaced by a number indicating the number of
non-zero elements.

Besides the memory requirement, another issue we need to take into consideration is
the computational cost. In most cases, representing a matrix is not the ultimate goal.
When some computation needs to be done on the matrix, it is required that using the
representation will not sacrifice the complexity of the computation too much.

Example 1 Suppose we first represent a n×m binary matrix by 1. encoding it with some
entropy encoder, for example JBIG, or 2. traditional 2-D array. Then we query whether
the element at row r and column c is zero or not.

Compare the time complexity to query based on each representation:

Representation 1 Ω(nm) as the decoding process is needed beforehand.

4

Representation 2 O(1).

We can see that, although entropy codeword has good compression efficiency, the high time
complexity of following operations may prevent it from being a feasible representation.

We will briefly introduce some popular sparse matrix representations in the following
pages. During the discussion, the index of the array starts from 1, Nnz denotes the number
of non-zero elements, n,m denote the height and width of the matrix respectively.

2.1.1 Coordinate Storage(COO)

Coordinate Storage (COO) is the most intuitive format where a list of triple (r, c, v) is
stored. Here r denotes the row index, c denotes the column index, and v denotes the value
of the non-zero element located at row r and column c. Note that COO does not impose
any order of the triples, however, raster scan order is usually applied to facilitate element
look-up. Fig. 2.1 shows an example of COO representation. Each column in Tab. 2.1b
represent a triple. We may conclude that the storage requirement of COO is 3Nnz + 3
entries.

6 0 9 0 0 4 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0
0 0 3 5 8 0 0 0
0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4 3 0
0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0

(a)

v 6 9 4 4 3 5 8 6 4 3 2 2
r 1 1 1 2 4 4 4 5 7 7 8 8
c 1 3 6 6 3 4 5 5 6 7 7 8

(b)

Figure 2.1: (a) Sample Matrix A. (b) COO representation of matrix A.

5

2.1.2 Compressed Row Storage(CRS)

CRS format may be the most popular representation of sparse matrices. It has been in
use since at least the mid-1960s. In CRS, three arrays are needed:

value It contains the non-zero elements in raster scan order.

column index It contains the column positions of the corresponding element in value.

row pointer If value and column index are partitioned into runs, each run contains all
the non-zero elements in the same row. row pointer[i] contains the pointer to the
non-zero element where the run of row i starts.

Fig. 2.2 shows an example of CRS where Nnz = 12, row 3, 6 and 9 contain no non-zero
element. If row i and all the following rows have no non-zero element, row pointer[i]
will be set to Nnz + 1(row pointer[9] in Fig. 2.2). Set row pointer[n + 1] to Nnz + 1 for
the convenience of following discussions. Run of row i starts with element with index
row pointer[i] and ends with row pointer[i+ 1]− 1. row pointer[i] > row pointer[i+ 1]− 1
denotes row i is empty(row 3, 6 and 9 in Fig. 2.2).

We can conclude that CRS requires 2Nnz+n entries to represent the matrix. Compared
with COO, when there are on average at least one non-zero elements in each row, in other
words n < Nnz, CRS is better than COO.

value 6 9 4 4 3 5 8 6 4 3 2 2
column index 1 3 6 6 3 4 5 5 6 7 7 8

row index 1 4 5 5 8 9 9 11 13

Figure 2.2: CRS representation of the matrix in 2.1a

2.1.3 Quadtree

A quadtree[11] is a tree data structure where each internal node has exactly four chil-
dren. Quadtrees are often used to partition a 2D space by dividing it into 4 quadrants
recursively.

When applied to represent a matrix, the quadtree structure has larger control and
data overhead compared to standard formats such as COO and CRS. Therefore, some
modifications are needed[15]:

6

• Empty submatrices that contain no non-zero elements are represented by the NULL
pointer.

• When the size of submatrix is within some threshold, stop dividing.

• Modified versions of COO and CRS are used to represent non-empty nodes. Here
modified means all coordinates are expressed relatively to the beginning of the sub-
matrix (node).

Fig. 2.3 shows two matrices A, B and their quadtree representations. Both A, B have
4 non-zero elements. However, quadtree representation of A requires 6 more tree nodes
than that of B. We can see from this example that when non-zero elements are distributed
as several clusters, quadtree representation tends to have good performance.

To further reduce the overhead introduced by 4 pointers in each node, all the nodes
can be stored in an array in Breadth-first search (BFS) order. In this case, only 4 flags
indicating whether the child is empty are needed instead of 4 pointers. Note that applying
this storage saving method also means the loss of capability to get access to an element
without traverse the array from left to right.

2.1.4 Other representations

There are some other sparse matrix representations which we will concisely introduce
in the following paragraphs.

Compressed Column Storage (CCS) is the transpose of CRS. CCS stores row indices
and column pointers and is better than CRS in some programming language, such as
Fortune, where matrices are stored in a column-wise manner.

Compressed Diagnal Storage (CDS)[2] is used particularly when the matrix is banded.
CDS is not suitable for general usage as a few elements exceed the diagonal band will result
in storing a lot of zeros.

Jagged Diagnoal Storage (JD)[10] is tailored for sparse matrix-vector multiplications.
Non-zero elements are first shifted to the left leaving zeros to the right. Each row of the
new matrix is then permuted so that the number of non-zero elements of each row is in
decreasing order. Finally, the matrix we get from the previous step will be represented in
a column-wise manner. Transposed Jagged Diagnal Storage (TJD) is a variant of JD. In
TJD, all non-zero elements are shifted to the top instead of left. As TJD does not need
the permutation step, it can save the storage used to indicate the permutation in JD.

7

1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

(a)

1 1
1 1

Q0

1 0
0 0

Q1
0 1
0 0

Q2

0 0
1 0

Q3
0 0
0 1

Q4

1 0
0 0

Q5
0 1
0 0

Q6

0 0
1 0

Q7
0 0
0 1

Q8

(b)

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(c)

1 0
0 0

Q0

1 0
0 0

Q1

1 1
1 1

Q2

(d)

Figure 2.3: Quadtree examples. A submatrix will be divided if its size is larger than
1 × 1(each non-empty leaf node corresponding to one non-zero elements). Four numbers
inside the tree node are corresponding to its four children. 0 denotes the child is empty
while 1 denotes non-empty. (a) Matrix A. (b) Quadtree representation of A. (c) Matrix
B. (d) Quadtree representation of B.

Block Based Compression Storage (BBCS)[26, 24] is a block-based format which is also
designed for matrix vector multiplications under hardware support. In BBCS, a matrix is
first partitioned into Vertical Block (VB)s. Each VB is then stored as a sequence of 6-tuple
entries. Because the index values associated with each non-zero element are confined within
the VB boundary, BBCS can have lower memory overhead and bandwidth requirement.

Hierarchical Sparse Matrix Storage (HiSM)[25][7] is the format that retains the advan-
tages of BBCS while alleviating its two drawbacks: (1) a large number of indexed memory
accesses, (2) inflexibility of change the content of the matrix. In HiSM, the matrix is di-
vided hierarchically into several levels where the lowest level contains the actual value of

8

the non-zero elements and the higher levels contains pointers to the non-empty blocks of
one level lower.

2.2 JBIG

JBIG[1] is a lossless image compression standard from the Joint Bi-level Image Experts
Group. JBIG supports both sequential and progressive encoding methods. In sequential
encoding, an image is encoded from the top to bottom and from left to right. In progressive
encoding, series of multiple-resolution versions of the same image is stored within a single
JBIG data stream. We will call the image with lowest resolution “lowest layer” and other
images “differential layer”. Note that using the progressive transmission of JBIG usually
incurs a small overhead in bit-rate.

We will describe JBIG in three aspects: resolution reduction algorithm, prediction and
compression algorithm.

2.2.1 Resolution Reduction algorithm

The resolution reduction algorithm is used to obtain the lower resolution version of an
image. The original image is first divided into 2× 2 blocks, and one lower-resolution pixel
is assigned to each of these blocks. The low-resolution pixels is determined in the normal
raster scan order.

In Fig. 2.4, a circle denotes a pixel in lower-resolution layer while a square denotes a pixel
in higher-resolution layer. The question mark denotes the pixel that is being processed.
The same convention will be used in the following figures. As we can see in Fig. 2.4, a
weighted mean of 12 pixels (3 from lower-resolution layer and 9 from higher-resolution
layer) is calculated. Only if the mean value is greater than or equal to 5, the pixel will be
set to 1.

2.2.2 Typical Prediction

The typical prediction is designed to speed up the coding process since the encoding
of a typical line is skipped. Meanwhile, it also provides some coding gain.There are two
different typical predictions in JBIG, which are used in different layers.

9

Figure 2.4: Resolution reduction weights

In the differential layer typical prediction, a low-resolution pixel is said “not typical” if
(1) this pixel and all the pixels in its 8-neighborhood are the same color (2) one or more of
the four high-resolution pixels associated with it differs from this common color. A given
low-resolution line is “not typical” if it contains any not typical pixels. If a line composed
of only typical pixels, a flag will be generated to denote the decoder that the encoding of
the whole line is skipped.

In the lowest layer typical prediction, a line is said to be “typical” only if it is exactly
the same as the line above it.

2.2.3 Compression algorithm

The compression algorithm is a context-based arithmetic encoding. The arithmetic
coder applied in JBIG is Q-coder[23] developed by IBM and refined by Mitsubishi. The
context templates are chosen according to the layers.

The lowest resolution layer uses a two- or three- line template of the pixels, shown
in Fig. 2.2.3. The pixel to be coded is marked “?”, while the pixels to be used for the
template are marked “X” or “A”. The “A” pixel can be thought of as a floating member
of the neighborhood whose position can be changed. As 10 neighbor pixels make up the
context shown in Fig. 2.2.3, 1024 arithmetic coder in parallel is needed.

The differential layer context template comprises 6 neighbor pixels from the same layer
and 4 pixels from the lower layer. Based on the relative position of the pixel to be coded
and the lower-resolution pixel assigned to it, we may have 4 different phases as shown in

10

(a) (b)

Figure 2.5: Context templates in lowest layer (a) Two-line template. (b) Three-line tem-
plate.

Fig. 2.2.3. Because there are 10 pixels in the differential-layer templates and 2 bits to
describe the phase, there are 4096 different possible contexts.

2.3 Context-free Grammar

Context-free Grammar (CFG)[14] is a certain type of formal grammar that describes
all possible strings in a given formal language. If A is an alphabet with cardinality greater

11

than or equal to 2, let A+ be the set of all finite strings of positive length from A. Let
A∗ be A+

⋃
{ε}, where ε denotes the empty string. A CFG can be defined as a quadruple

G = (V,Σ, R, S), where

• V is a finite nonempty set whose elements are called variables,

• Σ is another finite nonempty set disjoint from V , whose elements are called terminal
symbols,

• R is a finite relation from V to (V ∪ Σ)∗, and

• S ∈ V is a special variable called the start variable.

A production rule in R is formalized mathematically as a pair (α, β) ∈ R. However,
instead of using ordered pair notation, production rules are usually written using an arrow
operator: α→ β. It is also common to list all right-hand sides for the same left-hand side
on the same line, using “|” to separate them. Note that, in CFG, production rules can be
one-to-one, one-to-many, or one-to-none. These production rules can be applied regardless
of context.

For any strings u, v ∈ (V ∪ Σ)∗, we say u directly yields v, written as u ⇒ v, if
∃(α, β) ∈ R with α ∈ V and u1, u2 ∈ (V ∪ Σ)∗ such that u = u1αu2 and v = u1βu2. We
can see that v is the result of applying the production rule α→ β to u. We say u yields v,
written as u

∗⇒ v if ∃u1, · · · , uk where k ≥ 1 such that u = u1 ⇒ u2 ⇒ · · · ⇒ uk = v.

The language of a grammar G is a set of string defined as follows: L(G) = {ω ∈ Σ∗ :

S
∗⇒ ω}
A derivation of a string for a grammar is a sequence of production rule applications that

transforms the start symbol into that string. A derivation proves that the string belongs
to the grammar’s language.

Example 2 Consider CFG G = ({S}, {a, b, c}, R, S) with production rules:

S → aS|abc

S directly yields aS, written as S ⇒ aS. First apply the first production rule then
the second, we can get S yields aabc, written as S

∗⇒ aabc. The derivation of string aaabc
is S ⇒ aS ⇒ aaS ⇒ aaabc. Thus, aaabc ∈ L(G). If we define string multiplication as
concatenation: u · v = uv where u, v are two strings. We may concludes that L(G) =
{anbc : n ∈ N+}.

12

2.4 Grammar-based code

There are some previous works that utilize CFG for lossless data compression. In
general, two approaches have been used. In one approach[3, 19], a fixed CFG is used,
known to both encoder and decoder, such that its language contains all of the data strings
that are to be compressed. To compress a particular data string, one then compresses the
derivation tree. In the other approach[6, 22], a unique CFG Gx is assigned to each possible
input string x, so that L(Gx) = {x}. The encoder transmit code bits to the decoder so
that Gx can be reconstructed, from which x can be derived. The grammar-based code we
will introduce here applies the second approach.

Grammar-based code was developed by Kieffer and Yang in a series of papers [20, 9, 16].
As shown in Figure 2.6, to compress a data object x, a grammar-based code first transforms
x into a CFG G, from which x can be fully recovered, and then compresses x indirectly by
lossless encoding G.

Grammar
transform

Lossless
encoding

x Context-free

grammar G

Binary

codeword

Figure 2.6: Illustration of a grammar-based code.

Clearly, CFGs play a vital role in grammar-based code. Following [20, 9], the CFG
used in grammar-based code is a quadruple G = (V,Σ, R, S) defined as follows, which is
slightly different from the normal definition in Section 2.3:

• V is a finite nonempty set whose elements are called variables,

• Σ is another finite nonempty set disjoint from V , whose elements are called terminal
symbols,

• R is a mapping from V to (V ∪ Σ)+, and

• S ∈ V is a special variable called the start variable.

Note that in this definition

1. one-to-many production rules are not allowed. Thus, the production rule of varialbe
v is unique and can be written as v → R(v).

2. empty production rules are not allowed.

13

3. many-to-one production rules are allowed but are actually useless. If ∃u, v ∈ V with
R(u) = R(v) we can simply replace all appearance of v by u resulting a grammar G′

that L(G′) = L(G). Keep doing this replacement, we can finally get a grammar with
no many-to-one production rules.

Given a CFG G, start with S and replace in parallel each variables v in R(S) by R(v).
We then get another string from V ∪Σ. If we keep doing this parallel replacement, one of
the two following will hold:

P1 after finitely many parallel replacement steps, we get a string x from Σ; or

P2 the parallel replacement procedure never ends because the string so obtained at each
step always contains a variable v ∈ V .

In grammar-base coding, we are interested only in G for which the parallel replacement
procedure ends up with State P1 and every production rule v → R(v) is used at least once
in the whole replacement procedure. Such a CFG G is called an admissible context-free
grammar, and the string x from Σ obtained at State P1 is said to be represented by G or
the start variable S. Since in this case, each production rule is used at least once, all other
variables v in V represent substrings of x.

Example 3 In this example, we will illustrate above discussions. Let Σ = {0, 1} and
V = {v0, v1, v2, v3} with v0 designated as the start variable. The set of production rules
below then defines an admissible CFG G:

v0 → 0v3v2v1v2v310

v1 → 01

v2 → v11

v3 → v1v2

Start with v0 and perform the parallel replacement:

v0
∗⇒ 0v3v2v1v2v310
∗⇒ 0v1v2v1101v11v1v210
∗⇒ 001v110110101101v1110
∗⇒ 001011011010110101110

The CFG G or v0 represents x = 001011011010110101110 with v1, v2, v2 representing sub-
strings 01, 011, and 01011, respectively.

14

A grammar transform converts any sequence x ∈ Σ+ into an admissible grammar G,
written as x→ G.

In [5, 4], a grammar transform called SEQUITUR algorithm was proposed. This al-
gorithm maintains a dictionary of the two-symbol pairs. Each time append one symbol
to the end of the current string. Based on the last two symbols, update the dictionary
or replace last two symbols with a variable. During the SEQUITUR algorithm, these two
properties hold: (1) no pair of adjacent symbols appears more than once in the grammar,
(2) every rule is used more than once.

Define the size |G| ofG as the total length of its production rules, i.e., |G| =
∑

v∈V |R(v)|.
We say x → G is asymptotically compact if |G|/|x| → 0 as |x| → ∞. Lempel-Ziv Gram-
mar Transform[28] and Bisection Grammar Transform are two examples of asymptotically
compact grammar transform. It is showed in [20] that a grammar-based code with an
underlying asymptotically compact grammar transform is universal.

Define an admissible grammar to be irreducible if

(1) Each variable v ∈ V −{S} appears at least twice in the right-hand sides of production
rules.

(2) There is no non-overlapping repeated pattern of length ≥ 2

(3) Each distinct variable represents a distinct sequence

If a grammar transforma converts x ∈ Σ+ into an irreducible grammar, we say the grammar
transform is irreducible. It is proved in [20][9] that any grammar based code with an
underlying irreducible grammar transform is universal and can outperform asymptotically
any finite state code. Also in [9], an irreducible grammar transform called greedy grammar
transform was proposed, based on which a universal lossless compression algorithm called
YK-algorithm was then proposed. YK-algorithm utilize the power of both arithmetic
coding and string matching to outperform standard 1-D compression algorithms.

Motivated by the great efficiency of Grammar-based code, some work has been done to
generalize Grammar-Based code to 2-D. Yang and Guo[27] combined 1-D Grammar-based
code with scanning and prediction. They got comparable or better result than JBIG[1].
However, as this method serialize 2-D data into 1-D sequence, it lacks 2-D nature. Multi-
level pattern matching(MPM) code as a special case of Grammar-Based code is proposed
by Kieffer, Yang, Nelson and Cosman[16]. Several years later, Jia and Yang[18] generalize
MPM code to 2-D MPM code to compress bi-level image. However, 2-D MPM code
is a block-based code and suffers from so-called 2-D boundary effect. With the power

15

of context modeling, 2-D boundary effect can be alleviated. It is shown that satisfying
a mild condition, the context-dependent 2-D MPM code has an O(1/ log n) worst case
redundancy[18].

2.5 Summary

In this chapter, we first reviewed some state-of-art sparse matrix representations includ-
ing COO, CRS and quadtree, which will be used as the benchmarks in the experiments.
Then we introduce the well-known definition of Context-free Grammar, which is applied
in the grammar based code to compress 1-D string. The idea of CFG and the structure
of grammar based code is introduced as well in this chapter and will be inherited by the
dimension coding and bipartite grammar based coding proposed in the following chapters.

16

Chapter 3

Sparse Binary Matrix Representation
via Dimension Coding

In this chapter, we will use Dimension Coding, which is proposed by Yang in [12] to
represent a sparse 1-D signal, along with a scanning method, which converts 2-D data into
1-D sequence, to represent sparse binary matrices.

The Dimension Coding will be introduced in Sec. 3.1. Two scan methods, namely
raster scan and Hilbert scan, will be introduced in Sec. 3.2. The new structure of coder
that utilize both dimension coding and a scan method to represent sparse binary matrix
will be shown in Sec. 3.3.

3.1 Dimension Coding

3.1.1 Overview

Dimension coding is proposed by Yang in [12] to represent sparse signal while facil-
itating computation over the compressed signal. Consider a sparse signal as a vector
x = [x(0), x(1), · · ·x(n− 1)], with density α = ω(x)

n
� 1, where ω(x) denotes the number

of non-zero elements in x. The compressed dimension representation of x is another vec-
tor r = [r(0), r(1), · · · , r(m− 1)] from which x can be fully recovered. The structure of a
dimension coder is shown in Fig. 3.1. The mapping from x to r is called the dimension
encoder. The mapping from r and l to x(l) is called the random access decoder whose

17

time complexity is a polynomial time of logω(x), say O(log2 ω(x)). The mapping from r
to x is called the recovery decoder whose time complexity is linear to ω(x).

Dimension
Encoder

Random
Access Decoder

Recovery
Decoder

x = [x(1), · · · , x(n)] r = [r(1), · · · , r(m)]

l

x(l)

O(log2 ω(x)) time

x

O(ω(x)) time

Figure 3.1: Structure of a dimension coder

Let P(x) denote the set of position of non-zero elements in x, i.e.

P(x) = {l : x(l) 6= 0, 0 ≤ l ≤ n− 1}

. As this paper mainly focuses on binary matrix representation, we will only introduce
how to represent P(x). Regarding how to represent the actual values of non-zero elements
along with the positions, please refer to [12].

The dimension encoder in Fig. 3.1 share a similar structure with grammar-based encoder
shown in Fig. 2.6. To compress a sparse signal x, we first transform x into a directionless
grammar G, from which x can be fully recovered, and then encode x indirectly by encode
G into r. According to the structure of dimension coder, in the following parts of this
section, we will first introduce the directionless grammar then explain the Incremental
Directionless Grammar Transform (IDGT) with the grammar encoder, and finally, take a
look at the random access decoder.

During the following discussions, let N denote the set of all integers and N+ denote the
set of all positive integers. Let Xn denotes the set of all vectors of length n. The notation
|A| denotes the dimension of A if A is a vector, the size of A if A is a set or a grammar.

Directionless
Grammar
Transform

Grammar
Encoder

x = [x(1), · · · , x(n)] Directionless grammar Gx r = [r(1), · · · , r(m)]

Figure 3.2: Structure of a dimension encoder

18

3.1.2 Directionless Grammar

Let V = {v0, v1, v2, · · · } be a countable infinite set disjoint with N . Elements in V are
called variables. Let Σ be a nonempty finite set disjoint with both N and V . Elements in
Σ are called terminal symbols. In the following discussion, we will use a singleton terminal
symbol set, i.e. Σ = {δ}.

A labeled set is a pair (S, L) such that S is a set and L is a labeling function which
assigns a label L(y) to each element y ∈ S, i.e.

(S, L) = {(y, L(y)) : y ∈ S, L(y) ∈ V ∪ Σ}

. For each element (i, L(i)) ∈ (S, L), integer i is called the position of the element while
L(i) is called the label of the element. We define a special labeling function Lδ so that it
only take value from Σ, i.e. Lδ(y) = δ for all y ∈ N . For any set U ⊂ V ∪ Σ, let S(U)
denote the set of all finite labeled sets (S, L) with S ⊂ N and L taking values over U .

We define two labeled sets (S1, L1) and (S2, L2) to be disjoint if S1 and S2 are disjoint.

We define an ordered set is a pair (S,≤) so that S is a set and ≤ is a transitive binary
relation defined on S under which any pair of elements in S are comparable. For the sparse
signal x, P(x) along with the natural order of integers is an ordered set.

For S ⊂ N and i ∈ N , define S + i = {j + i : j ∈ S}. We say S + i is a translation
of S by i. We can now generalize the definition of translation to labeled set. (S2, L2) is a
translation of (S1, L1) by i if S1 + i = S2 and L1(j) = L2(j + i) for every j ∈ S1. In this
case, we write (S2, L2) = (S1, L1) + i.

Let (S1, L1) and (S2, L2) be two subsets of (S, L), we say (S1, L1) and (S2, L2) are
repeated subsets of (S, L) if they are disjoint and (S1, L1) = (S2, L2) + i for some integer i.

We will now introduce two operations on labeled set which allow us to contract or
expand a labeled set.

Labeled Set Subtraction with Trace Let (S1, L1) be a subset of (S, L), subtracting
(S1, L1) from (S, L) with trace at i ∈ S1 means that we first subtract (S1, L1) from
(S, L) and then insert a new labeled element (i, v) into (S, L), where v ∈ V is a new
variable which has never appeared in (S, L) before and is designated to represent the
labeled set (S1, L1)− i.

Labeled Set Addition with Trace Let (S1, L1) and (S2, L2) be two labeled sets, sup-
pose that S1 + i, i ∈ S2 is disjoint with S2 − {i}. Adding (S1, L1) into (S2, L2)

19

with trace i ∈ S2 means that we first delete the element (i, L2(i)) from (S2, L2)
and then insert all elements in (S1, L1) + i into (S2, L2). Denote this operation by
(S1, L1) + (S2, L2)i. To be specific, we have

(S1, L1) + (S2, L2)i = ((S1, L1) + i) ∪ ((S2, L2)− {(i, L2(i))})

if i ∈ S2 and (S1 + i) ∩ (S2 − {i}) = ∅. Otherwise, this operation is not defined.

Example 4 Consider the labeled set (S, L) given by

(S, L) = {(1, δ), (2, v1), (8, δ), (7, v2), (14, v1), (20, δ)}

We can see that it contains two disjoint subsets {(2, v1), (8, δ)} and {(14, v1), (20, δ)} which
are a repetition of each other. Subtracting these two disjoint subsets from (S, L) with trace
at i = 2 and i = 14 respectively, we can get

(S1, L1) = {(1, δ), (2, v3), (7, v2), (14, v3)}

with v3 represents
(S2, L2) = {(0, v1), (6, δ)}

. Then add (S2, L2) to (S1, L1) with trace i = 2:

(S3, L3) = (S2, L2) + (S1, L1)i=2 = {(1, δ), (2, v1), (7, v2), (8, δ), (14, v3)}

. If add S2, L2 to (S3, L3) with trace i = 14, we will get (S, L). If add S2, L2 to (S3, L3)
with trace i = 1, the addition fails since it cause a collision at position 7.

Let V ⊂ V be a finite set containing v0, given V and Σ = {δ}, a directionless grammar
with variable set V , terminal set Σ, and starting variable v0 is a mapping G from V to
S(V ∪ Σ) such that

1. For any v ∈ V , |G(v)| ≥ 2.

2. For any v 6= v0, the labeled set G(v) contains an element whose position is 0, i.e.
(0, u) for some u ∈ (V ∪ Σ)

For each v ∈ V , v → G(v) is called the production rule corresponding to v and G(v) is
called the right hand side or right member of production rule. Give V, Σ, v0 a directionless
grammar G can be explicitly specified by its set of production rules {v → G(v) : v ∈ V }.

Start with v0 and for each element (i, v), v ∈ V in G(v0), add G(v) into G(v0) with
trace i. One of the following situations will happen:

20

(a) One of the labeled set addition with trace fails since it is undefined.

(b) A collision happens in the sense that a new position j is inserted at least twice by
different additions at different i.

(c) None of the above two happens, we get another labeled set.

If one of first two situations happens, declare a failure and stop. Otherwise, keep doing
the addition process, then one of the followings will hold:

(1) The process terminates and we get a labeled set (S∗, Lδ).

(2) The process never ends because there always are at least one variable labeled elements
in the labeled set.

If the process terminates with no failure reported and each G(v), v 6= v0 is added at least
once, during the whole process of addition, then G is said admissible.

Let G be an admissible grammar with variable set V , G is said to be localized if

1. each variable v ∈ V other than v0 appears at least twice in the right members of G,
i.e. in {G(u) : u ∈ V }.

2. each variable v ∈ V represents a distinct set under translation, i.e. the set represented
by one variable can not be a translation of the set represented by another variable.

3. for each v ∈ V and any two elements (i, u1), (j, u2) ∈ G(v) where u1 and u2 are
variables, if i < j, then the largest integer in the subset represented by (i, u1) is less
than the smallest integer in the subset represented by (j, u2).

Let S1 be a finite subset of S ⊂ N , define

imin(S1) = min{i : i ∈ S1}

and
imax(S1) = max{i : i ∈ S1}

S1 is said to be consecutive within S if the following argument holds:

For each j ∈ S, if imin(S1) ≤ j ≤ imax(S1) then j ∈ S1

Admissible directionless grammar G with variable set V is said regular if it is localized and
for each v ∈ V and any element (i, u) ∈ G(v), where u is a variable, the subset represented
by (i, j) is consecutive within the set represented by v.

21

3.1.3 Incremental Directionless Grammar Transform

Given x ∈ Xn, start with the trivial grammar

v0 → (P(x), Lδ) (3.1)

Sort elements (i, Lδ(i)) in (P(x), Lδ) in the increasing order of position i:

(P(x), Lδ) = {(ij, Lδ(ij))}ω(x)j=1 where i1 < i2 < · · · < iω(x)

Partition (P(x), Lδ) sequentially, in the increasing order of position i, into disjoint non-
empty subsets S1, S2, · · · , St such that

(a) S1 = {(i1, Lδ(i1))}, and

(b) for k > 1,
Sk = {(ij, Lδ(ij))}lj=j(k)

where

j(k) = 1 +
k−1∑
f=1

|Sf |

and l is the smallest integer such that translation of {(ij, Lδ(i, j))}lj=j(k) have not

appeared in S1, S2, · · · , Sk−1 if such an integer exists, and equal to ω(x) otherwise.

The above partition share the same spirit of the Lempel-Ziv incremental parsing of strings
[28] and is referred to as the incremental partition. It is not hard to verify that the
incremental partition has the following properties:

1. All subsets S1, S2, · · · , St except, possibly, St, are distinct under translation.

2. Each distinct (under translation) subset Sk in {S1, S2, · · · , St} with |Sk| ≥ 3 is equal
to the union of a translation of Si and (il, Lδ(il)) for some i < k.

Rewrite the production rule in (3.1) as

v0 → {S1, S2, · · · , St} (3.2)

For 1 ≤ k ≤ t, let pk be the smallest position in Sk, let v(Sk) be δ if |Sk| = 1 and
{(ij − jj(k), Lδ(ij))}lj=j(k) if Sk = {(ij, Lδ(i, j))}lj=j(k) with |Sk| ≥ 2. Now, Sk can be

uniquely represented by (pk, v(Sk)).

22

Replace Sk in (3.2) by (pk, v(Sk)), we can get

v0 → {(p1, v(S1)), (p2, v(S2)), · · · , (pt, v(St))} (3.3)

Treat {v(Sk) : |Sk| ≥ 2, 2 ≤ k ≤ t} as the variable set and write v(Sk) as

v(Sk)→ {(ij − ij(k), Lδ(ij))}lj=j(k) (3.4)

if |Sk| = 2 and as
v(Sk)→ {(0, v(Si)), (il − ij(k), Lδ(il))} (3.5)

if |Sk| ≥ 3. In (3.5), Sk is equal to the union of a translation of Si for some i < k and
{il, Lδ(il)}, which we can see from the second property of incremental partition.

Now (3.3) to (3.5) defines a directionless grammar Ĝ. Prune Ĝ by expanding each
element labeled with a variable that appears only once so that every variable other than
v0 appears at least twice on the right-hand side of all the production rules. Then remove
all the useless variables and relabel the remaining variables. The resulting directionless
grammar represents P(x) and is denoted by Gx. The mapping from x to Gx is called the
IDGT. It is easy to see that the grammar Gx obtained from IDGT is regular.

Example 5 In this example, we will illustrate the IDGT process. We choose a sparse
signal x with

P(x) = {3, 5, 7, 10, 13, 15, 17, 20, 24, 27, 31, 33}
Incremental partition (P(x), Lδ), we get

S1 = {(3, δ)}
S2 = {(5, δ), (7, δ)}
S3 = {(10, δ), (13, δ)}
S4 = {(15, δ), (17, δ), (20, δ)}
S5 = {(24, δ), (27, δ), (31, δ)}
S6 = {(33, δ)}

Note that S4 is the union of S2 + 10 and {(20, δ)}, S5 is the union of S3 + 14 and {(31, δ)}.
The directionless grammar Ĝ is:

v0 → {(3, δ), (5, v1), (10, v2), (15, v3), (24, v4), (33, δ)}
v1 → {(0, δ), (2, δ)}
v2 → {(0, δ), (3, δ)}
v3 → {(0, v1), (5, δ)}
v4 → {(0, v2), (7, δ)}

23

We can see that v3 and v4 appear only once on the right hand of Ĝ. Further prune Ĝ gives
Gx:

v0 → {(3, δ), (5, v1), (10, v2), (15, v1), (20, δ), (24, v2), (31, δ), (33, δ)}
v1 → {(0, δ), (2, δ)} (3.6)

v2 → {(0, δ), (3, δ)}

3.1.4 Grammar encoding

After a directionless grammar Gx is obtained through a directionless grammar trans-
form, it needs to be further encoded to vector r. Here we only consider the directionless
grammar generated by IDGT, for the grammar encoding of a general directionless gram-
mar, please refer to [12].

Suppose Ĝ is the grammar defined in (3.3) to (3.5) and prune Ĝ we get G. From the
second property of incremental partition in Sec. 3.1.3 we can easily concludes that all the
variable in Ĝ except v0 are of size 2. Let u, v be two variables that u 6= v0, v 6= v0 and
Ĝ(u) contains an element labeled by v. The production rule of u is of the following form:

u→ {(0, v), (∆u, δ)}

Where ∆u is some positive integer. Since v represents a partition of x and must have
already appeared in G(v0). Hence, pruning will not expand (0, v) in Ĝ(u). As a result,
pruning will only expand variable labeled element in Ĝ(v0). As a result, the following
property of G holds:

(1) for any v 6= v0 ∈ V , |G(v)| = 2.

(2) G(v) = {(0, l), (∆v, δ)} where l ∈ V ∪ Σ and ∆v ∈ N+

Having the above property, we can now start to encode the directionless grammar
obtained by IDGT.

STEP 1 All the variable labeled elements in G(v0) are sorted in increasing order by their
positions and then followed by terminal symbol labeled elements sorted again by
their positions in increasing order. Let |G(v0)|1 denotes the number of terminal
symbol labeled elements in G(v0) while |G(v0)|0 denotes the number of variable
labeled elements in G(v0).

24

STEP 2 Set r(1) = 2|G(v0)|0, r(2) = r(1) + |G(v0)|1 and r(3) = r(2) + 2(|V | − 1)

STEP 3 Follow the order we get in STEP 1, append all elements in G(v0) to r

(1) For a variable labeled element (∆, v), append ∆ then v.

(2) For a terminal symbol labeled elements (∆, δ), only ∆ is appended.

STEP 4 For variable v ∈ {v1, v2, · · · , v|V |−1}, G(v) = {(0, l), (∆v, δ)} first append l then
∆v to r.

STEP 5 Replace all the terminal symbol δ in r by 0, and variable vt by t.

It is easy to show that if each number in r is represented by fixed number of bis, then r is
a prefix code.

Example 6 Revisit the directionless grammar Gx in (3.6). After STEP 1, we have the
following grammar:

v0 → {(5, v1), (10, v2), (15, v1), (24, v2), (3, δ), (20, δ), (31, δ), (33, δ)}
v1 → {(0, δ), (2, δ)}
v2 → {(0, δ), (3, δ)}

And we have |G(v0)|0 = 4, |G(v0)|1 = 4 and |V | = 3. Hence r(1) = 8, r(2) = 12, r(3) = 16.
The final vector r is:

r = [8, 12, 16, 5, 1, 10, 2, 15, 1, 24, 2, 3, 20, 31, 33, 0, 2, 0, 3] (3.7)

3.1.5 Random access decoder

As in Sec. 3.1.4, here we only introduce the random access decoder based on IDGT, for
the description of a general random access decoder, please refer to [12]. Given a vector r
generated by the algorithm in Sec. 3.1.4 and l ∈ N+ denotes the position in x we want to
access. The output of random access decoder is a boolean value

S(l) =

{
1 l ∈ P(x)
0 Otherwise

Let r[a; b], where a ≤ b, denote a sub-vector from position a to position b of r:

r[a; b] = [r(a), r(a+ 1), · · · , r(b)]

The random access decode algorithm under IDGT shows as follows:

25

STEP 1 Binary search l in r[r(1) + 4; r(2) + 3]. If l can be found return 1.

STEP 2 If r(1) = 0 or l < r(4) return 0.

STEP 3 Binary search for r(p) in r[4; r(1) + 3] so that p is even and r(p) ≤ l. If r(p) = l
return 1. Otherwise, set v = r(p+ 1) and update the value of l to l − r(p).

STEP 4 If r(r(2) + 2v + 3) = l return 1.

STEP 5 If r(r(2) + 2v + 2) = 0 return 0. Otherwise, set v to r(r(2) + 2v + 2) and goto
STEP 4.

Example 7 In this example, we will use the vector r given by (3.7) in Exmp. 6.

l1 = 31: In STEP 1, 31 can be found in r[12; 16] and the algorithm returns 1.

l2 = 10: In STEP 2, r(6) = 10 will be found in the binary search and the algo-
rithm gives 1.

l3 = 13: p = 6 will be found in the binary search in STEP 3. v is then set to 2
and l3 is set to 13 − r(6) = 3. We have r(2) + 2v + 3 = 19. Because r(19) = l3, it
gives 1.

l4 = 9: p = 4 will be given in STEP 3. Then v = 1 and l4 is set to 4. We have
r(2) + 2v + 3 = 17. Since r(17) 6= 4, we will go to STEP 5. r(16) is found 0, in this
case, the algorithm terminates and gives 0.

Regarding the time complexity of random access decoder, the binary search applied in
STEP 1 and STEP 3 is O(logω(x)). Let d(x) be the depth of the derivation tree of Gx.
STEP 4 and STEP 5 will iterate at most d(x) times, which results in O(d(x)) time. The
time complexity in total is O(ω(x) + d(x)). The author of [12] shows that for most x,
d(x) = O(ω(x)). Therefore, we can conclude that the time complexity of random access
decoder for most x is O(ω(x)).

3.2 Scan Methods

A scan method is a one-to-one mapping that transforms a 2-dimensional matrix M into
1-dimensional vector s. In this section, we will first introduce the raster scan which is the
most intuitive and straightforward scan method and then the Hilbert scan which is capable
of preserving the locality of points.

26

3.2.1 Raster Scan

In the raster scan method, the whole matrix is scanned in a top-to-bottom and left-to-
right manner. To be specific, suppose all indices start from 0, given a n×m matrix Mn×m
and an element at position (x, y), after the raster scan, this element will have index xm+y
in resulted vector s. Given an index d in s, the corresponding x, y can be obtained by
x = bd/mc, and y = d % m. here “%” denotes modular.

Fig. 3.3 shows the raster scan on a 4 × 8 matrix. Note that the scan curve is not
continuous. When the scan reaches the right-most element in a row, it will jump to the
left-most element of next row. The jumps are denoted by dashed lines in Fig. 3.3.

Figure 3.3: Illustration of raster scan

3.2.2 Hilbert Scan

There are various scan methods that focus on maintaining the locality of 2-D points.
Scan methods using space filling curve is typical examples of such methods among which
Hilbert scan is the most popular one[21].

Hilbert scan requires the matrix to be a square matrix with the length of both sides
being a power of 2. In this case, before the scanning, we first pad 0s into the right and
bottom of the matrix until it becomes a square matrix with the height equal to 2k, k ∈ N+.
Note that unlike image compression, the padding here will not cause any trouble since all
the non-zero elements have the same coordinates after padding while the zero elements
are ignored in the later representation of the sparse matrix. Fig. 3.2.2 shows how Hilbert
scan works on 2 × 2, 4 × 4 and 8 × 8. We can see that the scan curve of Hilbert scan is
continuous.

27

(a) (b) (c)

Figure 3.4: Illustration of Hilbert scan. (a) 2× 2 (b) 4× 4 (c) 8× 8

Let (x, y) be the coordinates of a point in the n × n matrix Mn×n, where n is some
power of 2, and d be the length along the scan curve when it reaches that point. We say
Hilbert scan can preserve locality in the sense that, given two points in the matrix, say,
(x1, y1) with curve length d1 and (x2, y2) with curve length d2, if the difference between d1
and d2 is small then the distance between (x1, y1) and (x2, y2) is also small. Note that the
converse is not always true. There will sometimes be points where the (x, y) coordinates
are close but their d values are far apart (For example, (2, 1) and (2, 2) in 3.4b). Compared
with Hilbert scan, raster scan does not have the above property. Think of (0, 7) and (1, 0)
in Fig. 3.3. These two points are consecutive elements in the vector after scan. However,
they are far away from each other in the matrix.

When representing a sparse binary matrix, it makes more sense to have algorithms
to map (x, y) to d and vice versa. The following algorithm provides mappings in both
directions, meanwhile, it is implemented with iteration rather than recursion. In function
xy2d, d2xy and rot, all the arguments of these functions are passed by reference i.e.
the change of the arguments in the functions is still valid when the function ends. Also,
“�” denotes bit-wise left-shift, “�” denotes bit-wise right-shift, “&” is bit-wise and, “⊕”
is bit-wise xor. Function swap simply swap the values of its two arguments.

We can see that the function rot runs in constant time. The while loop in xy2d
executes at most dlog2 ne times, so does the while loop in d2xy. As a result, conversion
between (x, y) and d takes O(log n) time, where n is the height of the square matrix.

28

xy2d(n, x, y)

1 rx, ry, s = n� 1, d = 2
2 while s > 0
3 rx = (x & s) > 0
4 ry = (y & s) > 0
5 d = d+ s2 · ((3 · rx)⊕ ry)
6 rot(s, x, y, rx, ry)
7 s = s� 1
8 return d

d2xy(n, d, x, y)

1 rx, ry, s = 1, t = d
2 while s < n
3 rx = 1 & (t� 1)
4 ry = 1 & (t⊕ rx)
5 rot(s, x, y, rx, ry)
6 x = x+ s · rx
7 y = y + s · ry
8 t = t� 2
9 s = s� 1

10 return (x, y)

rot(n, x, y, rx, ry)

1 if ry == 0
2 if rx == 1
3 x = n− 1− x
4 y = n− 1− y
5 swap(x, y)

3.3 Sparse Binary Matrix coder via Dimension coding

Let the n×m sparse binary matrix to be represented is Mn×m. P(Mn×m) denotes the
set of the positions of all non-zero elements in Mn×m. In this case, given n and m, Mn×m
is equivalent to P(Mn×m). As in sparse matrix representation, zero elements are usually
ignored, we will use P(Mn×m) as our input. ω(Mn×m) denote the number of non-zero

29

elements in Mn×m. Recall the P(x) is the set of positions of non-zero elements in vector
x. A scan method s can be specified by a pair of function xy2ds(x, y) and d2xys(d) that
are the inverse function of each other. Txy2d and Td2xy are the time complexity of xy2d and
d2xy.

The structure of the sparse binary matrix coder via dimension coding called 2-D di-
mension coder is shown in Fig. 3.5.

Note that the random access capability of dimension coding is still maintained in
Fig. 3.5, however, the time complexity of recovery decoder may, possibly, if some high com-
plexity scan method is applied, increase. If raster scan is applied, where the mappings xy2d
and d2xy are O(1), 2-D dimension coder will have the same time complexity as dimension
coder in both random access decoder and recovery decoder. If Hilbert scan is applied, where
the time complexity of convert between 1-D and 2-D is log n, the random access decoder
will then have time complexity O(log(ω(Mn×m)) + log n) ≤ O(log nm+ log n) = O(log n),
while the recovery decoder has time complexity O(ω(Mn×m) · log n).

Dimension
Encoder

Random
Access Decoder

Recovery
Decoder

XY2D

XY2D

D2XY

P(Mn×m) P(xM) r = [r(1), · · · , r(q)]

(x, y)

l(x,y)

Mn×m(x, y)

O(log(ω(Mn×m)) + Txy2d)

P(xM) P(Mn×m)

O(ω(Mn×m) · Td2xy)

Figure 3.5: Structure of a 2-D dimension coder

30

Chapter 4

Binary Matrix Representation via
Bipartite Gramamr Based Coding

4.1 Overview

Recall that in CFG defined in grammar based coding, each R(v), v ∈ V represents
a string from (V ∪ Σ)+, hence, CFGs defined here as well as in computation theory [13]
are direction oriented. In other words, entries in R(v) are ordered from left to right;
replacement of v by R(v) in the parallel replacement procedure follows the same order
constraint; and re-ordering entries in R(v) would result in different CFGs representing
different x. This is further illustrated in the following example.

Example 8 Let us revisit the CFG G in Example 3, Re-ordering some entries in R(v0)
and R(v3) in G, we get a new CFG G′:

v0 → v2v3v1v2v3100

v1 → 01

v2 → v11

v3 → v2v1

G′ or v0 now represents 011011010101101101100 with v1, v2, v3 representing substrings 01,
011, and 01101, respectively.

When grammar-based coding was initially formulated in [20], CFGs were used to rep-
resent only strings from Σ. Later on, grammar-based coding and CFGs were also extended

31

to images and binary trees in limited settings [18], [17]. However, the direction oriented
constraint in CFGs makes them inapplicable to images and graphs in general.

Regarding the directionless grammar which we have used in dimension coding in the
previous chapter, even though it can overcome the direction oriented constraint, to repre-
sent a 2-D matrix, it needs to be used together with a scan method, which is not capable
of preserving all the neighborhood of an element. For example, even if we use Hilbert scan,
which is thought better to preserve the neighborhood. Hilbert scan works in a quadrant
by quadrant manner, the block boundary still exist and the relationship between elements
across this boundary can not be preserved.

In this chapter, we will introduce the new concept of CFBG for compactly representing
sparse matrices. In contrast with CFGs and directionless grammar, CFBGs are direction-
less with their variables capable of representing any subgraph of a given bipartite graph,
which gives CFBG true 2-D nature and, as a result, makes it very suitable for representing
the grammar.

The structure of coder that applies CFBG is shown in Fig. 4.1. Similar to the process
of dimension coding, a matrix Mn×m is first transformed into a CFBG, which is then
represented by a vector r.

Bipartite
Grammar
Encoder

Parallel
Random

Access Decoder

Recovery
Decoder

Mn×m r = [r(1), · · · , r(m)]

(x, y)

Mn×m[x, y]

Mn×m

Figure 4.1: Structure of a bipartite grammar coder

In the following discussion of this chapter, we will first show how to identify a matrix
by a bipartite graph in Sec. 4.2, then give the definition of CFBG in Sec. 4.3. Sec. 4.4
shows how to convert a general CFBG into its canonical form and then represent it by r.
After r is obtained, Sec. 4.5 shows how to parallel random access an element of matrix
through r. Finally, in Sec. 4.6, we will propose two grammar transformations.

32

4.2 Correspondence between binary matrix and bi-

partite

Consider a bipartite graph B = (X, Y,E), where X and Y are two disjoint vertex sets,
and E ⊂ X×Y is the set of edges. Without loss of generality, we assume that both X and
Y are subsets of N with the understanding that i ∈ X and i ∈ Y are two distinct vertices
with the former coming from X and the latter from Y . We define I(n) to be the set of all
integers from 1 to n, i.e. I(n) = {1, 2, · · · , n}.

When X = I(n) and Y = I(m) for some n,m ∈ N+, the biadjacency matrix of
B = (X, Y,E) is an n×m binary matrix Mn×m defined as

Mn×m[i, j] =

{
1 if (i, j) ∈ E
0 Otherwise

(4.1)

With this correspondence, one can identify any n × m binary matrix Mn×m with a
bipartite graph B = (I(n), I(m), E), the biadjacency matrix of which is equal to Mn×m.
As a result, rather than represent the original matrix Mn×m, we can now represent the
bipartite graph B. Fig. 4.2 illustrates the correspondence between B and Mn×m.

1

2

3

4

1

2

3

4

5

(a)

1 2 3 4 5

1 1 0 1 0 0
2 0 1 0 0 0
3 0 1 1 0 1
4 1 0 0 1 0

(b)

Figure 4.2: (a) A bipartite graph B; (b) the biadjacency matrix of B

4.3 Context-free Bipartite Grammar

The same as in the previous discussions, let V = {v0, v1, · · · } be a finite set of variables
where v0 denotes the starting variable and singleton Σ = {δ} be the set of terminal symbol.

33

We define a labeled bipartite graph is a quadruple A = (X, Y,E, L), where X, Y , and
E have the same meanings as in a bipartite graph B, and L : E → V ∪ Σ assigns a label
L(e) to each edge e ∈ E. Lδ is a special labeling function that takes value only from Σ,
i.e. ∀e ∈ E, Lδ(e) = δ.

A bipartite graph B that identify Mn×m can also be regarded as a labeled bipartite
graph with all edges labeled as δ. In this case, we say the labeled bipartite graph B =
(I(n), I(m), E, Lδ) identify the matrix Mn×m.

We define a labeled edge as a triple (x, y, L(x, y)), where x ∈ X, y ∈ Y . The pair (x, y)
is called the position of the edge while L(x, y) is called the label of the edge. If L(x, y) ∈ V
we say the edge is variable labeled. Otherwise, i.e. L(x, y) ∈ Σ, we say the edge is terminal
symbol labeled.

We say a labeled bipartite graph As = (Xs, Ys, Es, Ls) is a subgraph of A = (X, Y,E, L)
if (1) Xs ⊆ X (2) Ys ⊆ Y (3) Es ⊆ E and (4) Ls(x, y) = L(x, y) for any (x, y) ∈ Es.

The subgraphAs is said to be vertex-induced if Es = {(x, y) : x ∈ Xs, y ∈ Ys and (x, y) ∈
E}, and edge-induced if Xs = {x : (x, y) ∈ Es for some y} and Ys = {y : (x, y) ∈
Es for some x}.

Two subgraphs As and Âs of A = (X, Y,E, L) are said disjoint if the edge sets of As
and Âs are disjoint.

When X = I(n) and Y = I(m) for some n,m ∈ N+, the biadjacency matrix of A is
defined in a manner similar to (4.1) except that Mn×m[i, j] = L(i, j), i.e.

Mn×m[i, j] =

{
L(i, j) if (i, j) ∈ E
0 Otherwise

(4.2)

Example 9 In the bipartite graph B = (I(4), I(5), E, Lδ) shown in Fig. 4.2a. Consider
three subgraphs: B1 which induced by edge set {(1, 1), (2, 2), (1, 3)}, B2 which induced by
edge set {(3, 3), (4, 4), (3, 5)} and B3 which induced by edge set {(2, 2), (3, 2), (3, 3)}.

B1 and B2 are disjoint subgraphs of B. B3 and B1 are not disjoint since (2, 2) is the
common edge in both edge sets.

4.3.1 Graph Operations

In CFBG, we start with a bipartite graph and create, through graph operations, many
labeled bipartite graphs.

34

Graph Translation Let A1 = (X1, Y1, E1, L1) and A2 = (X2, Y2, E2, L2) be two labeled
bipartite graphs. A2 is said to be a translation of A1 if there exists (i, j) such that
X2 = X1+i, Y2 = Y1+j, E2 = {(k+i, l+j) : (k, l) ∈ E1}, and L2(k+i, l+j) = L1(k, l)
for any (k, l) ∈ E1, in which case we write A2 as A2 = A1 + (i, j).

With the translation, we can further define two disjoint subgraphs As and Âs to be
a repetition of each other (i.e., equivalent) if Âs = As + (i, j) for some (i, j). In
Exmp. 9, B1 and B2 are repetition of each other.

Graph Subtraction Let As = (Xs, Ys, Es, Ls) be a subgraph of A. Let (k, l) be an
edge in Es. By subtracting As from A at edge (k, l), we mean deleting all edges in
Es − {(k, l)} from A and then changing the label of edge (k, l) to a new label which
never appeared before in A. The new label represents the graph As − (k, l).

If As+(i, j) is a subgraph of A, disjoint with As, by subtracting As and its repetition
As+(i, j) simultaneously from A at edge (k, l), we mean subtracting As and As+(i, j)
from A at edges (k, l) and (k+ i, l+ j), respectively, and changing the label of edges
(k, l) and (k+ i, l+ j) to the same new label which never appeared before in A. The
new label represents the graph As− (k, l). The same principle applies to subtracting
more than two repetitions.

Graph Addition Let A1 and A2 be two labeled bipartite graphs. Let (k, l) be an edge
in A2. By adding A1 to A2 at edge (k, l), we mean first deleting edge (k, l) from A2

and then inserting all edges in A1 + (k, l) along with their labels into A2 with edges
in A1 + (k, l) overwriting any pre-existing edges in A2 whenever duplication occurs.

Example 10 Fig. 4.3 illustrates graph subtraction and addition for the bipartite graph B
shown in Fig. 4.2.

4.3.2 Context-free Bipartite Grammar

When the vertex sets are known, a labeled bipartite graph A can be conveniently identi-
fied with the set consisting of all its edges, called the edge set of A. For example, the graph
B′ in Fig. 4.3c can be identified with its edge set {(1, 1, δ), (1, 3, δ), (3, 2, v1), (3, 5, δ), (4, 1, δ), (4, 4, δ)}.
For any set Ω, denote the set of all possible finite edge sets with labels taking values over
Ω by B(Ω).

We define a CFBG is a quadruple G = (V,Σ, R, v0), where

35

2

3

2

3

(a)

−1

0

0

1

(b)

1

3

4

1

2

3

4

5

(c)

1

3

4

5

6

1

3

4

5

(d)

Figure 4.3: Operations over B in Fig. 4.2a with solid edges labeled as δ and dash edges
labeled as v1: (a) subgraph B3 induced by {(2, 2)(3, 2)(3, 3)}; (b) bipartite graph B3−(3, 2)
indicated by label v1; (c) graph B′ obtained by subtracting B3 from B at edge (3, 2); (d)
graph obtained by adding B3 to B′ at edge (3, 2). Adding B3 − (3, 2) to B′ at edge (3, 2)
gets B back.

• V is a finite nonempty set whose elements are called variables, and v0 ∈ V is a special
variable called the start variable;

• Σ is another finite nonempty set disjoint from V , whose elements are called terminal
symbols; and

• R is a mapping from V to B(V ∪Σ) satisfying that R(v) contains the edge (0, 0) for
any v 6= v0.

The relationship v → R(v) is once again called the production rule corresponding to v
and R(v) is the right hand side or right member of the production rule. Note that each
R(v) is a labeled bipartite graph.

Start with v0 and add in parallel, for each edge (x, y, v) in R(v0) with variable label v,
R(v) to R(v0) at edge (x, y). If there is no collision, i.e., no parallel edges would be inserted,
we then get another edge set in B(V ∪ Σ). Otherwise, a failure should be reported and
the parallel addition ends. If we keep doing this parallel addition and no collision would
occur, then one of the following holds:

36

(1) We arrive at an edge set in B(Σ) after finitely many steps

(2) The procedure never ends.

The CFBG G is said admissible if there is no collision in every step of parallel addition,
each R(v) is added at least once, and we finally arrive at an edge set in B(Σ); in this
case, G or v0 is said to represent the graph corresponding to the final edge set in B(Σ) or
equivalently its biadjacency matrix.

Example 11 Let Σ = {δ} and V = {v0, v1, v2}. The following production rules give an
admissible CFBG:

v0 → {(1, 1, v1), (3, 3, v1), (4, 1, v2)}
v1 → {(0, 0, δ), (1, 1, v2)}
v2 → {(0, 0, δ), (−1, 1, δ)}

Start with v0 and perform parallel addition:

v0 → {(1, 1, δ), (2, 2, v2), (3, 3, δ), (4, 4, v2),
(4, 1, δ), (3, 2, δ)}

→ {(1, 1, δ), (2, 2, δ), (1, 3, δ), (3, 3, δ),
(4, 4, δ), (3, 5, δ), (4, 1, δ), (3, 2, δ)}

It can be verified that G represents the graph B in Fig. 4.2a G also indicates that B
contains a repeated subgraph which appears at edges (1, 1) and (3, 3) and is a translation
of the graph represented by v1.

Given an admissible CFBG G, define the size of G as |G| =
∑

v∈V |R(v)| − (|V | −
1). Since each R(v) in G is a set, there is no order among the set elements of R(v)
and hence G is directionless. It is this directionlessness that allows CFBGs to provide
compact representations for graphs in B(Σ) by capturing repeated subgraphs of any kind.
In Exmp. 11, |G| = 5 whereas the graph B represented by G has 8 edges.

Given an admissible CFBG G representing B ∈ B(Σ), let {Bj}dj=0 be the sequence
of edge set obtained during the parallel expansion process of G, where B0 = G(v0) and
Bd = B. We can associate a tree called derivation tree with the repeated parallel expansion
process. The root of the tree is labeled with v0 and other nodes correspond one to one to
elements of the edge set. The derivation tree of CFBG shown in Exmp. 11 is shown in
Fig. 4.3.2. The value d, which indicates the number of iterations in the repeated expansion
process, is called the depth of derivation tree.

37

v0

(1, 1, v1) (3, 3, v1) (4, 1, v2)

(1, 1, δ) (2, 2, v2) (3, 3, δ) (4, 4, v2) (4, 1, δ) (3, 2, δ)

(2, 2, δ) (1, 3, δ) (4, 4, δ) (3, 5, δ)(1, 1, δ) (3, 3, δ) (4, 1, δ) (3, 2, δ)

Figure 4.4: The derivation tree of CFBG in Exmp. 11

4.4 Bipartite Grammar Encoding

The structure of the block “Bipartite Grammar Encoder” in Fig. 4.1 is shown in 4.5,
once we get a admissible CFBG GMn×m represents BMn×m ∈ B, through grammar trans-
form, we feed GMn×m to grammar encoder to get final representation vector r.

In the grammar encoder, the CFBG is first rewritten into its canonical form Ĝ and
then encoded into r.

Context-free
Bipartite
Grammar
Transform

Grammar
Encoder

Mn×m Bipartite grammar GMn×m r = [r(1), · · · , r(m)]

Figure 4.5: Structure of a bipartite grammar encoder

4.4.1 Canonical CFBG

Given an admissible CFBG G is said canonical if

(1) The variable set of G is V = {v0} ∪ {v2, v4, v6, · · · , v2i} ∪ {v1, v3, v5, · · · , v2j−1} for
some i ≥ 0 and j ≥ 0, where i = 0 or j = 0 implies the corresponding set is empty.

38

(2) G(v0) has following properties:

(a) The variable labeled edges are before the terminal symbol labeled edges.

(b) The variable labeled edges are of raster scan order, i.e. first ordered by x then
by y.

(c) The terminal symbol labeled edges are of raster scan order.

(3) for each variable v2t, 1 ≤ t ≤ i, G(v2t) is of size 2 and the position of its first edge
is (0, 0).

(4) for each variable v2t−1, 1 ≤ t ≤ j, G(v2t−1) has following properties:

(a) The edge with position (0, 0) is the first edge.

(b) The edges that have same type of label as (0, 0) are after (0, 0) and before the
edges with different type of label from (0, 0). i.e. if (0, 0) is variable labeled,
then all the variable labeled edge comes before all the terminal symbol labeled
edge. If (0, 0) is terminal symbol labeled, then the terminal symbol labeled
edges are before variable labeled edges.

(c) Among variable labeled edges,possibly except (0, 0), the edges are listed in
raster scan order, so do terminal symbol labeled edges, again possibly excep
(0, 0).

From an admissible CFBG G, we can always get a canonical CFBG Ĝ by renaming the
variable and reordering each edge set R(v), v ∈ V , see Exmp. 12.

Example 12 Consider the following CFBG G representing B ∈ B(Σ) that identify the
matrix shown in Fig. 4.6.

v0 → {(1, 1, v3), (1, 8, δ), (2, 6, v1), (4, 6, δ),
(4, 1, v2), (6, 5, δ), (7, 1, v3)}

v1 → {(0, 0, δ), (1, 0, δ)}
v2 → {(0, 0, δ), (0, 1, v1), (1, 2, δ)}
v3 → {(0, 0, v2), (0, 3, v1)}

39

1 1 0 1 0 0 0 1
0 1 1 1 0 1 0 0
0 0 0 0 0 1 0 0
1 1 0 0 0 1 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0

Figure 4.6: Matrix represented by G

Rename the variable v1 to v2, v3 to v4 and v2 to v1. Then reorder the edge set of each
variable, we can get Ĝ:

v0 → {(1, 1, v4), (2, 6, v2), (4, 1, v1), (7, 1, v4)
(1, 8, δ), (4, 6, δ), (6, 5, δ), }

v1 → {(0, 0, δ), (1, 2, δ), (0, 1, v2)}
v2 → {(0, 0, δ), (1, 0, δ)}
v4 → {(0, 0, v1), (0, 3, v2)}

4.4.2 Grammar encoder

We now use following algorithm to encode canonical CFBG Ĝ into vector r:

STEP 1: Traverse the production rules of Ĝ, edge by edge, in the following order:
Ĝ(v0) Ĝ(v2) · · · Ĝ(v2i) Ĝ(v1) Ĝ(v3) · · · Ĝ(v2j−1). During the traversal, for each
edge traversed, record its edge information. The edge information is defined as
follows:

(1) If the edge is in Ĝ(v0), its edge information is both its position and variable
label if that element is variable labeled, and only its position if that edge is
terminal symbol labeled.

(2) If the edge is the first edge in Ĝ(v), v 6= v0, its edge information is only its
label(variable or terminal symbol).

(3) If the edge is the second edge in Ĝ(2t), 1 ≤ t ≤ i, its edge information is
both its position and label.

40

(4) If the edge is in Ĝ(2t − 1), 1 ≤ t ≤ j, but not the first edge of Ĝ(2t − 1),
the edge information is both its position and variable label if that edge
is variable labeled, and only its position if that edge is terminal symbol
labeled.

Denote the resulting vector by r̂1(G)

Example 13 Apply STEP 1 to the canonical CFBG we get in Exmp. 12, the
resulting r̂1(G) is:

r̂1(G) = [1, 1, v4, 2, 6, v2, 4, 1, v1, 7, 1, v4, 1, 8, 4, 6, 6, 5,

δ, 1, 0, δ, v1, 0, 3, v2, δ, 1, 2, 0, 1, v2]

STEP 2: Replace the terminal symbol δ by 0 and each variable vt by t in r̂1(Ĝ), the
resulting vector is our desired first vector r1(Ĝ).

Example 14 Apply STEP 2 to r̂1(Ĝ) we get in Exmp. 13 yields:

r1(Ĝ) = [1, 1, 4, 2, 6, 2, 4, 1, 1, 7, 1, 4, 1, 8, 4, 6, 6, 5,

0, 1, 0, 0, 1, 0, 3, 2, 0, 1, 2, 0, 1, 2]

STEP 3: For each variable v ∈ V , let |Ĝ(v)|0 denote the number of edges in Ĝ(v) that is
terminal symbol labeled and |Ĝ(v)|1 denote the number of edges that is variable
labeled. For each 1 ≤ t ≤ j, let indicator variable I(Ĝ(v2t−1)) be 1 if the first
element in Ĝ(v2t−1) is variable labeled and 0 otherwise. Our desired second
vector r2(Ĝ) = [r2(0), r2(1), r2(2), · · · , r2(2j + 2)] is constructed recursively as
follows:

r2(0) = 3|Ĝ(v0)|1 (4.3)

r2(1) = r2(0) + 2|Ĝ(v0)|0 (4.4)

r2(2) = r2(1) + 4i; (4.5)

and for t = 1, 2, · · · , j

r2(2t+ 1) = r2(2t)

+

{
3|Ĝ(v2t−1)|1 − 2 if I(Ĝ(v2t−1)) = 1

2|Ĝ(v2t−1)|0 − 1 if I(Ĝ(v2t−1)) = 0
(4.6)

41

and

r2(2t+ 2) = r2(2t+ 1)

+

{
2|Ĝ(v2t−1)|0 if I(Ĝ(v2t−1)) = 1

3|Ĝ(v2t−1)|1 if I(Ĝ(v2t−1)) = 0
(4.7)

We can see that r2(Ĝ) indicates the partition of r1(Ĝ), which helps to reconstruct
the canonical CFBG Ĝ.

Example 15 Apply STEP 3 to the canonical CFBG we get in Exmp. 12 yields:

r2(Ĝ) = [12, 18, 26, 29, 32]

STEP 4: The vector representation of G

r(Ĝ) = [|r2(Ĝ)|, r2(Ĝ), r1(Ĝ)] (4.8)

It is easy to see that Ĝ → r(Ĝ) is a one to one mapping. And the set {r(Ĝ)}
is a prefix set.

Example 16 The final vector representation of the canonical CFBG we get in
Exmp. 12 is:

r(Ĝ) = [5, 12, 18, 26, 29, 32

1, 1, 4, 2, 6, 2, 4, 1, 1, 7, 1, 4, 1, 8, 4, 6, 6, 5,

0, 1, 0, 0, 1, 0, 3, 2, 0, 1, 2, 0, 1, 2]

4.5 Parallel Random Access

After first rewriting into canonical form and then encoding the CFBG G which repre-
sents matrix Mn×m into r, we can now have the capability to get access to the elements in
Mn×m through r.

The vector r = [|r2|, r2, r1] is self-delimiting, we can determine where r2 and r1 starts
and ends in r in constant time. Therefore, in what follows, the input vector r will be
regarded as two input vectors r2 and r1.

42

Further more, for each variable v ∈ Ĝ, we can in constant time, by the following
algorithm, get the sub-vector rv of r1, which stores all the edge informations of Ĝ(v).
Again, the variable set V of Ĝ is {v0} ∪ {v2, v4, · · · , v2i} ∪ {v1, v3, · · · , v2j−1}, where i = 0
or j = 0 denotes the corresponding set is empty and r[a; b] = [r(a), a(a + 1), · · · , r(b)] for
1 ≤ a ≤ b ≤ |r|.

1. If v = v0, rv starts at 1 and end at r2(2) i.e. rv = r1[1; r2(2)], where

(a) r1[1; r2(1)] stores the edge information of variable labeled edges, and

(b) r1[r2(1)+1; r2(2)] stores the edge information of terminal symbol labeled edges.

2. If v = v2t, 1 ≤ t ≤ i, rv = r1[r2(2) + 4t− 3; r2(2) + 4t], where

(a) r1(r2(2) + 4t− 3) denotes the label of edge (0, 0), and

(b) r1[r2(2) + 4t− 2; r2(2) + 4t] stores the edge information of the other edge.

3. If v = v2t−1, 1 ≤ t ≤ j, rv = r1[r2(2t+ 1) + 1; r2(2t+ 3)], where

(a) r1(r2(2t+ 1) + 1) denote the label of edge (0, 0),

(b) r1[r2(2t + 1) + 2; r2(2t + 2)] stores the edge information of edges which have
same type of label as (0, 0), and

(c) r1[r2(2t + 2) + 1; r2(2t + 3)] stores the edge information of edges which have
different type of label from (0, 0).

With the correspondence of edge information and edge in Ĝ(v), we can state the
random access algorithm in terms of Ĝ rather than r. The random access algorithm
Access(x, y, v), where x, y ∈ N and v ∈ V , is shown in the following pseudo-code.
Access(x, y, v0) will return Mn×m[x, y]. 1 and 0 are also regarded as boolean value True
and False, and vice versa.

Access(x, y, v)

1 foreach terminal symbol labeled edge (x1, y1, δ) ∈ Ĝ(v)
2 if (x == x1 and y == y1) then return True

3 foreach variable labeled edge (x1, y1, v1) ∈ Ĝ(v)
4 if Access(x− x1, y − y1, v1) then return True
5 return False

43

As the terminal symbol labeled edges in Ĝ(v) are sorted in raster scan order, the
functionality of the loop from line 1 to line 2 can be done by a binary search among all the
terminal labeled edges. Hence, the time complexity is O(|Ĝ(v)|).

However, unlike the random access in dimension coding, where the locality of grammar
makes it possible to directly go to the variable labeled element containing the query point,
given x, y, we can not tell which variable labeled edge to go to. In this case, we have to
check each variable labeled edge sequentially resulting in high time complexity.

If the multi-threading feature is allowed and assume each thread takes care of on of the
function calls of Access in line 4. These threads can run in parallel and if one of them
returns True, returns True, otherwise return False. In this scenario, we have O(d(Ĝ))
time complexity, where d(Ĝ) is the depth of derivation tree of CFBG Ĝ. This is the reason
why we say the random access is parallel random access.

4.6 Bipartite Grammar Transform

For any n×m binary matrix Mn×m, let {Mn×m} denote the edge set of its corresponding
bipartite graph. For example, if Mn×m is the matrix shown in Fig. 4.2b, then {Mn×m} =
{(1, 1, δ), (2, 2, δ), (1, 3, δ), (3, 3, δ), (4, 4, δ), (3, 5, δ), (4, 1, δ), (3, 2, δ)}. A bipartite grammar
transform is a mapping which assigns to each binary matrix Mn×m an admissible CFBG
GMn×m that represents {Mn×m}.

Start with the trivial CFBG consisting of the single production rule v0 → {Mn×m}.
Find a repeated subgraph of {Mn×m}, and simultaneously subtract all repetitions of that
subgraph from {Mn×m}. Then we get a new CFBG with two production rules {v0 →
R(v0); v1 → R(v1)}, where R(v0) is the updated {Mn×m}, v1 is the new label introduced in
the subtraction, and R(v1) is the edge set of the graph represented by v1. Repeating the
step for the resulting set of edge sets, one would get better and better CFBGs representing
{Mn×m} in general.

There are many possible bipartite grammar transforms providing reasonably compact
representations for Mn×m. Among them is the smallest bipartite grammar transform that
assigns to Mn×m an admissible CFBG GMn×m with the smallest size.

The CFBG in Exmp. 11 is the smallest CFBG for the matrix shown in Fig. 4.2b. In
general, however, we conjecture that finding the smallest CFBG for Mn×m is NP hard.
In the next sections, we will instead present two bipartite grammar transforms with low
complexity.

44

4.6.1 Sequential D-Neighborhood Pairing Transform

With reference to Mn×m as a 2-D array, we define the distance between two edges (i, j)
and (k, l) as Manhattan distance, i.e. |i− k|+ |j − l| and arrange edge in {Mn×m} in the
raster scan order of Mn×m (from top to bottom and left to right): (x1, y1, δ), (x2, y2, δ), · · · .
Denote the set consisting of the first i edge vectors by {Mn×m}i.

Fix D > 0. Sequential D-Neighborhood Pairing Transform (SNPT) recursively con-
structs an admissible CFBG Gi representing {Mn×m}i for i = 1, 2, · · · , |{Mn×m}|.

STEP 1: G1 consists of the single production rule v0 → {Mn×m}1.

STEP 2: Update R(v0) in Gi, i ≥ 1 into R(v0) ∪ {(xi+1, yi+1, δ)}. Then we get a CFBG
G′i+1 representing {Mn×m}(i+1).

STEP 3: Find a repeated subgraph of size 2 with its two edges within the distance D in
R(v0) of G′i+1, if any, and then subtract the repetitions of that subgraph from
R(v0) of G′i+1. We get a new CFBG G′′i+1 in which R(v0) is the updated R(v0)
in G′i+1 and which includes a new production rule v → R(v) with v being the
newly introduced label in the subtraction and R(v) the edge vector set of the
graph represented by v.

STEP 4: Repeat STEP 3 for the newly updated R(v0) until there is no repeated subgraph
of size 2 with its two edges within the distance D in R(v0). The resulting CFBG
is then Gi+1.

STEP 5: Repeat STEP 2, for 1 ≤ i < |{Mn×m}|. Once G|{Mn×m}| is obtained, further
prune it by removing, through graph addition, any variable appearing only once
in the union of allR(v), v ∈ V , and deleting the production rule corresponding to
that variable. The resulting CFBG isGMn×m produced by SNPT for representing
Mn×m.

Example 17 We will revisit the matrix Mn×m shown in Fig. 4.2b in this example. The
ordered edge set of labeled CFBG B is:

{Mn×m} = {(1, 1, δ), (1, 3, δ), (2, 2, δ), (3, 2, δ), (3, 3, δ), (3, 5, δ), (4, 1, δ), (4, 4, δ), }

Run the SNPT on this matrix with D = 2.

1. When the SNPT starts, G1:

v0 → {(1, 1, δ)}

45

2. G′2:

v0 → {(1, 1, δ), (1, 3, δ)}

There is no repetition of subgraphs in G′2(v0), hence, G2 = G′2.

3. Similar to G2, G3 = G′3:

v0 → {(1, 1, δ), (1, 3, δ), (2, 2, δ)}

4. Similar to previous steps, G4 = G′4:

v0 → {(1, 1, δ), (1, 3, δ), (2, 2, δ), (3, 2, δ)}

5. G5 = G′5:

v0 → {(1, 1, δ), (1, 3, δ), (2, 2, δ), (3, 2, δ), (3, 3, δ)}

Note that subgraphs {(1, 1, δ), (2, 2, δ)} and {(2, 2, δ), (3, 3, δ)} are not repetition of
each other since they are not disjoint.

6. G′6:

v0 → {(1, 1, δ), (1, 3, δ), (2, 2, δ), (3, 2, δ), (3, 3, δ), (3, 5, δ)}

The subgraphs {(1, 1, δ), (1, 3, δ)} and {(3, 3, δ), (3, 5, δ)} are repetition of each other.
The distance between (1, 1) and (1, 3) is 2 ≤ D. By subtracting them from G′6(v0)
and adding another variable v1, which represents {(1, 1, δ), (1, 3, δ)} − (1, 1), we get
G′′6 :

v0 → {(1, 1, v1), (2, 2, δ), (3, 2, δ), (3, 3, v1)}
v1 → {(0, 0, δ), (0, 2, δ)}

There is no more repetition of subgraphs. Therefore, G6 = G′′6.

7. G′7:

v0 → {(1, 1, v1), (2, 2, δ), (3, 2, δ), (3, 3, v1), (4, 1, δ)}
v1 → {(0, 0, δ), (0, 2, δ)}

There’s no repetition of subgraphs. Therefore, G7 = G′7.

46

8. G′8:

v0 → {(1, 1, v1), (2, 2, δ), (3, 2, δ), (3, 3, v1), (4, 1, δ), (4, 4, δ)}
v1 → {(0, 0, δ), (0, 2, δ)}

Subgraphs {(1, 1, v1), (2, 2, δ)} and {(3, 3, v1), (4, 4, δ)} are repetition of each other
and distance between (1, 1) and (2, 2) is 2 ≤ D. By subtracting these two repeated
subgraphs and adding a new variable v2, which represents {(1, 1, v1), (2, 2, δ)}−(1, 1),
we get G′′8:

v0 → {(1, 1, v2), (3, 2, δ), (3, 3, v2), (4, 1, δ)}
v1 → {(0, 0, δ), (0, 2, δ)}
v2 → {(0, 0, v1), (1, 1, δ)}

There is no repetition of subgraphs. We get G|Mn×m| = G8 = G′′8

9. Now we prune G8. We can see that variable v1 appears only once among the union
of all right hand sides of production rules {G|Mn×m|(v) : v ∈ V }. Delete v1 along
with its production rule and rename the remaining variables, we can get our final
grammar:

v0 → {(1, 1, v1), (3, 2, δ), (3, 3, v1), (4, 1, δ)}
v1 → {(0, 0, δ), (0, 2, δ), (1, 1, δ)}

4.6.2 Iterative Pairing Transform

When D is large, the complexity of SNPT is still high. To overcome this, we can
iteratively run SNPT, starting with a small D and gradually increasing D at each iteration,
as shown below in Iterative Pairing Transform (IPT).

Let 0 = D0 < D1 < D2 < · · · < DK = D and {M (0)} = {Mn×m}. For i = 1, 2, · · · , K,
run SNPT with Di on {M (i−1)} without the final pruning step in SNPT, and denote R(v0)
in G|{M(i−1)}| by {M (i)}. At the end of iterations, prune the grammar as in SNPT. The
resulting grammar is GMn×m produced by IPT for representing Mn×m.

4.6.3 Implementation of IPT

To better illustrate the implementation of IPT, when talking about Ĝ(v0) of some
canonical CFBG Ĝ, we will use its biadjacency matrix, i.e. edge (x, y, v) will be represented

47

by an element that has value v and locates on row x and column y in the biadjacency matrix.
Again, we use Manhattan distance as our distance metric.

Viewed as a set of edges, a bipartite graph is not sequential compared to a 1-D data
sequence. As a result, the number of possible subgraphs is exponential regarding to the
size of the bipartite graph while the number of sub-strings is polynomial regrading to the
length of sequence, which also means to find repetitions of sub-graphs is much harder than
to find repeated sub-string as in 1-D grammar based code.

As a result, we set the following constraints, which result in the two grammar transforms
discussed in Sec. 4.6:

1. We only look for subgraph of size 2, which corresponding to a pair of elements in the
biadjacency matrix.

2. These two elements are within some distance D

To find all the pairs of elements within distance D, we raster scan the biadjacency
matrix. As shown in Fig. 4.7a, during the scan, for each non-zero element we draw a
“circle” with radius D and a horizontal scan line that touches that element.

Finding all other elements, distances from which to element (r, c) are within D, is
equivalent to finding all the cords, which are the result of cutting previously drawed circles
by the scan line touches (r, c), that contains (r, c). As shown in Fig. 4.7a, where the current
scan line is the blue one, the cord of black circle contains (r, c) as well as the red circle,
which means the black point and red point are within D from (r, c). To find these cords,
we can, for each cord whose left end point lies in interval [c − D, c], check its right end
point. In this case, if we can order the cords by its left end point, finding all pairs within
distance D will be much easier.

As shown in Fig. 4.7b, let s denote the position of the scan line, and (s, x) denote the
left end of a cord. To sort all the cords by x, we can use the equation (c−x) + (s− r) = D
which gives x = c− r+ s−D. If the scan line is fixed, s and D are constant, sorting cord
by x value is equivalent to sort by c− r, i.e. sort the origin of the circle corresponding to
the cord by the difference of its column positions and row position. Therefore, it is possible
for us to store only the set of origins, again ordered by the difference of column and row,
instead of maintaining the set of cords, whose ending points are changing during the scan.

Note that in the description of IPT in Sec. 4.6, each Di, i ≥ 1 can be chosen in arbitary
mannar. However, in the actual implementation, we chose D1 = 1 and Di = 2Di−1 for
i ≥ 2. In this case, when D gets larger and larger, the biadjacency matrix gets sparser and
sparser, which not only accelerate the scan but also do good to the locality of subgraphs.

48

(a) (b)

Figure 4.7: (a) Illustration of scanning. (b) Sort left end point of cord.

To get more compact CFBG, we set the following constraints:

1. no pair of elements within distance D in the biadjacency matrix appears more than
once

2. every production rule is used more than once

The first constraint is satisfied by maintaining a dictionary that contains all pair of elements
within distance D. The second constraint will be satisfied after pruning the grammar.

Three maps will be maintained during the execution:

1. map from element position to element label L : (r, c)→ N

2. map from variable candidate to its position of appearance C : (∆r,∆c, v1, v2) →
(p1, p2). C is cleared at the beginning of each round.

3. map from variable to its index V : (∆r,∆c, v1, v2)→ N

Map C act as a dictionary, once we find a pair that is already in the dictionary and
does not overlap with current pair, we subtract these two subgraphs(pairs) from Ĝ(v0),
and then add a new member to V representing these two subgraphs.

49

In the following pseudo-code, repetitions of subgraphs will be replaced by an edge at
the position of lower-right edge rather than the upper-left edge for the convenience of
implementation, which does not affect the correctness of the algorithm.

Procedure Remove and Change-label are used to update map C and L. When called
on element p, they will change all the pairs that contain p in the dictionary. Procedure
Prune prune the CFBG represented by V . Before pruning, all variables in V except v0 are
of size 2. Prune expand the edge labeled by variable vi, which appears only once, until
all variable in V appear at least twice. Prune also relabel the variables.

Grammar-transform(R)

// R represent the number of rounds
1 L = ∅, V = ∅

// use variable count to count the number of variables
2 count = 1
3 for i = 0 to R
4 D = 2i

5 Scan-matrix(D)
6 G = Prune(V)
7 return G

Scan-matrix(D)

1 C = ∅
2 I = ∅ // I is set of origins
3 P = domain of L
4 Sort P first by row then by column
5 forall p ∈ P
6 s = p.r
7 forall q ∈ I and q.c− q.r ∈ [p.c− s, p.c− s+D]

// in other words,q.x ∈ [p.c−D, p.c]
8 if s− q.r > D

// scan line is too far from point q
9 remove q from P

10 elseif Dist(q, p) ≤ D
11 Process-pair(q, p)
12 I = I

⋃
{p}

50

Process-pair(p3, p4)

1 t = (p4.r − p3.r, p4.c− p3.c, L(p3), L(p4))
2 if t ∈ domain of V
3 Remove(p3)
4 Change-label(p4,V(t))
5 elseif t ∈ domain of C
6 if p2 == p3 continue // overlap
7 (p1, p2) = C(t)
8 V(t) = count++

9 domain of C = domain of C − {t}
10 Remove(p1), Remove(p3)
11 Change-label(p2,V(t)), Change-label(p4,V(t))

else
12 C(t) = (p3, p4)

51

Chapter 5

Experimental Results

5.1 Source and Descriptions of Testing Matrices

The testing matrices we use are all taken from The University of Florida Sparse Matrix
Collection[8], which is a large and actively growing set of sparse matrices that arise in real
applications. The collection is widely used in order to develop and evaluate the performance
of sparse matrix algorithms. The collection allows for robust and repeatable experiments:
robust because performance results with artificially-generated matrices can be misleading,
and repeatable because these matrices are made available publicly in many formats. We
chose 21 matrices from this matrix collection, whose statistics are shown in Tab. 5.1 and
descriptions are shown in Tab. 5.2.

In Tab. 5.1, the first column is the name of the matrix, according to which the matrix
can be found in [8]. The fourth column is the number of non-zero elements. Density is
calculated by # of NZ

height×width
. The last column shows the symmetricity of the matrix. Note

that if a matrix is symmetric, only lower triangular half of it is kept. As we can see in
Tab. 5.1, these matrices are of different size, the smallest of which is 1005 by 1005 matrix
dwt 1005 while the largest of which is 9.85× 106 by 9.85× 106 matrix wb-edu. Also, these
matrices are of different shape, some of them are square matrices like amazon0302, others
are rectangular such as wheel 601. The number of non-zero elements and the density of
selected matrices also covers a wide range.

As we can see in Tab. 5.2, these matrices cover a wide rage of domains, include those
from problems with underlying 2-D or 3-D geometry, such as thermodynamics, and those
that do not have such geometry, such as networks and graphs.

52

Table 5.1: Statistics of testing matrices
name height width # of NZ density sym

amazon0302 2.62E+05 2.62E+05 1.23E+06 1.80E-05 no

amazon0312 4.01E+05 4.01E+05 3.20E+06 1.99E-05 no

bmw7st 1 1.41E+05 1.41E+05 3.74E+06 1.87E-04 yes

cage12 1.30E+05 1.30E+05 2.03E+06 1.20E-04 yes

cegb2919 2.92E+03 2.92E+03 1.62E+05 1.90E-02 yes

Chem97Zt 2.54E+03 3.10E+04 6.20E+04 7.87E-04 no

dwt 1005 1.01E+03 1.01E+03 4.81E+03 4.77E-03 yes

enron 6.92E+04 6.92E+04 2.76E+05 5.76E-05 no

FEM 3D thermal2 1.48E+05 1.48E+05 3.49E+06 1.60E-04 yes

flower 8 4 5.51E+04 1.25E+05 3.75E+05 5.43E-05 no

Freescale1 3.43E+06 3.43E+06 1.89E+07 1.61E-06 no

gupta2 6.21E+04 6.21E+04 2.16E+06 5.60E-04 yes

IMDB 4.28E+05 8.96E+05 3.78E+06 9.85E-06 no

pf2177 9.73E+03 1.02E+04 3.10E+04 3.13E-04 no

roadNet-CA 1.97E+06 1.97E+06 2.77E+06 7.12E-07 yes

roadNet-PA 1.09E+06 1.09E+06 1.54E+06 1.30E-06 yes

roadNet-TX 1.39E+06 1.39E+06 1.92E+06 9.90E-07 yes

thread 2.97E+04 2.97E+04 2.25E+06 2.54E-03 yes

wb-cs-stanford 9.91E+03 9.91E+03 3.69E+04 3.75E-04 no

wb-edu 9.85E+06 9.85E+06 5.72E+07 5.90E-07 no

wheel 601 9.02E+05 7.24E+05 2.17E+06 3.33E-06 no

5.2 Overall Result

In Tab. 5.3, we compared three grammar based representations, including bipartite
grammar based coding shown in column CFBG, dimension coding with raster scan shown
in column Dim RS and dimension coding with Hilbert scan shown in column Dim HS,
with 2 state-of-art sparse matrix representation method, COO and CRS and quadtree
representation. The metric we use here is the number of 32-bit data entries needed in each
representation.

In our quadtree implementation, the tile size was set to 256; each non-leaf node stores
four addresses of its children while each leaf node stores its data in either COO or CRS
format. Since each index within a leaf node does not exceed 256, we can use one byte to

53

Table 5.2: Description of testing matrices
name description

amazon0302 Amazon product co-purchasing network from March 2 2003

amazon0312 Amazon product co-purchasing network from March 12 2003

bmw7st 1 stiffness matrix

cage12 DNA electrophoresis, 12 monomers in polymer. A. van Heukelum, Utrecht U

cegb2919 finite element problem. 3-dimensional cylinder with flange

Chem97Zt Mixed-effects model from D. Bates, Univ. Wisc.

dwt 1005 symmetric connection table from dtnsrdc, washington

enron Laboratory for Web Algorithmics (LAW) Enron email network

FEM 3D thermal2 FEM 3D nonlinear thermal problem, 8-node bricks as volume elements

flower 8 4 Combinatorial optimization as polynomial eqns, Susan Margulies, UC Davis

Freescale1 circuit problem from K. Gullapalli, Freescale Semiconductor

gupta2 Linear programming matrix (A*A’), Anshul Gupta, anshul@watson.ibm.com

IMDB Pajek network: IMDB movie/actor network, www.imdb.com

pf2177 linear programming problem, C. Meszaros test set

roadNet-CA Road network of California

roadNet-PA Road network of Pennsylvania

roadNet-TX Road network of Texas

thread DNV-Ex 7 : Threaded connector/contact problem-1999-01-17

wb-cs-stanford Stanford CS web, A(i,j)=1 if page i links to page j (2001)

wb-edu *.edu web pages, A(i,j)=1 if page i links to page j (2001)

wheel 601 Combinatorial optimization as polynomial eqns, Susan Margulies, UC Davis

represent it, which counts only for 1/4 data entry. Note that if this special calculation is
not applied, i.e. we count each index within a leaf node by 1 data entry, the quadtree can
not have better performance than COO or CRS since each non-zero element still needs to
be represented by either COO or CRS in the leaf nodes.

In our actual implementation of IPT, the following optimization is applied: same as
in grammar encoding of bipartite grammar based coder, R(v0) is first divided into two
disjoint subgraphs: one consisting of all terminal symbol labeled edges in R(v0), and the
other consisting of all the rest in R(v0). The biadjacency matrices of the two subgraphs are
then represented separately by COO or CRS depending on which representation is more
succinct. (If COO is adopted, then each variable labeled edge in R(S) is represented by
three data entries, and each terminal symbol labeled edge in R(v0) is represented by two

54

Table 5.3: Space complexity of different representations
name COO CRS QUAD CFBG Dim RS Dim HS

amazon0302 2.47E+06 1.50E+06 1.55E+06 1.54E+06 1.29E+06 1.18E+06

amazon0312 6.40E+06 3.60E+06 5.33E+06 3.12E+06 3.04E+06 2.77E+06

bmw7st 1 7.48E+06 3.88E+06 1.37E+06 1.29E+05 9.60E+05 5.24E+05

cage12 4.07E+06 2.16E+06 9.60E+05 2.55E+05 1.70E+06 7.37E+05

cegb2919 3.24E+05 1.65E+05 4.58E+04 3.20E+03 3.04E+04 2.63E+04

Chem97Zt 1.24E+05 6.46E+04 1.89E+04 7.63E+03 6.48E+03 2.38E+04

dwt 1005 9.63E+03 5.82E+03 1.95E+03 1.44E+03 3.11E+03 3.25E+03

enron 5.52E+05 3.45E+05 2.03E+05 2.38E+05 1.70E+05 1.95E+05

FEM 3D thermal2 6.98E+06 3.64E+06 1.16E+06 6.71E+04 1.89E+05 5.34E+05

flower 8 4 7.51E+05 4.30E+05 2.68E+05 1.42E+05 3.06E+05 3.58E+05

Freescale1 3.78E+07 2.23E+07 1.05E+07 2.18E+06 1.66E+07 5.07E+06

gupta2 4.31E+06 2.22E+06 6.40E+05 6.37E+05 7.24E+05 9.73E+05

IMDB 7.56E+06 4.21E+06 1.70E+07 4.67E+06 4.07E+06 4.20E+06

pf2177 6.20E+04 4.07E+04 1.65E+04 2.08E+04 3.10E+04 2.35E+04

roadNet-CA 5.53E+06 4.74E+06 1.92E+06 2.84E+06 2.28E+06 2.15E+06

roadNet-PA 3.08E+06 2.63E+06 1.22E+06 1.69E+06 1.33E+06 1.26E+06

roadNet-TX 3.84E+06 3.32E+06 1.33E+06 2.10E+06 1.64E+06 1.56E+06

thread 4.50E+06 2.28E+06 6.93E+05 3.17E+04 3.75E+05 4.16E+05

wb-cs-stanford 7.37E+04 4.68E+04 1.90E+04 2.08E+04 2.60E+04 2.26E+04

wb-edu 1.14E+08 6.70E+07 3.25E+07 1.59E+07 2.54E+07 1.99E+07

wheel 601 4.34E+06 3.07E+06 1.03E+07 2.80E+06 1.14E+05 2.11E+06

data entries, i.e., its edge position.)

It is clear from Tab. 5.3 that the grammar based codings provide, in general, signifi-
cantly more succinct representations than CRS and quadtree, especially when the density
of matrix is not extremely low and the distribution of non-zero elements in the matrix is
not very random. For example, in the matrix thread, CRS is 70 times larger than CFBG
and quadtree is 20 times larger.

In Tab. 5.3, among three grammar based representations, we color the best results
by green and worst results by red. We can see bipartite grammar based representation
performs better than the other two in the majority of cases. In some cases where bipartite
grammar is better, the difference is huge, for example in FEM 3D thermal2, CFBG is near
3 times better than Dim RS and almost 8 times better than Dim HS. Meanwhile, when

55

CFBG performs not so well, the difference between CFBG and the best representation is
not so significant, such as in amazon0312 and roadNet-CA.

(a) (b)

(c) (d)

Figure 5.1: Structure of four matrices where CFBG is better. (a) bmw7st 1 (b) cegb2919
(c) cage12 (d) FEM 3D thermal2

In Fig. 5.1, we show the structures of 4 matrices where CFBG is better. Note that all
of them are symmetric and hence only lower triangular half is kept. These and following
figures of the structure of matrices are all taken from [8]. We can see a lot of repeated
patterns in each of these four matrices. By introducing variables representing the subgraphs
corresponding to these repeated patterns, they can be captured well in CFBG, which results
in succinct representations.

However, the scan methods do not have the capability to get adapted to these pat-
terns. After the scanning, a pattern in original matrix is easily get separated apart in

56

the resulting vector, which makes it harder for the following dimension coding to give
compact representation. In matrix cegb2919 shown in Fig. 5.1b, where the patterns of
non-zeros are rectangular blocks, Hilbert scan is more suitable than raster scan. In matrix
FEM 3D thermal2 shown in Fig. 5.1d, both raster scan and Hilbert scan can not preserve
the patterns shown as skew lines, which result in worse performance than CFBG. In matrix
Chem97Zt shown in Fig. 5.2, the non-zero elements distribute in an echelon style, where
there are a lot of horizontal lines. In this case, raster scan naturally fits these patterns
performs much better than Hilbert scan. Note that in this matrix, CFBG is slightly worse
than Dim RS but still outperforms Dim HS by a factor of 3.

Figure 5.2: Structure of matrix Chem97Zt

Fig. 5.3 shows one example that grammar based representations do not perform very
well. We can see the distribution of non-zero elements is quite random compared to ma-
trices in Fig. 5.1.

Figure 5.3: Structure of matrix roadNet-CA

We can also treat sparse binary matrices as binary images and use binary image encod-
ing method JBIG to produce another representation. We only do so to relatively smaller
matrices, since JBIG needs to arithmetic encode every pixel in the image, which takes a

57

very long time on large matrices. Also, the representation produced by JBIG can not sup-
port any operation, since the representation is not comprehensible without first decoding
it. In out experiments, we run JBIG in non-progressive mode, since it requires slightly
less storage. The comparison between grammar based representations and JBIG is shown
in Tab. 5.4. We can see that grammar based representations sometimes are even more
compact than JBIG, for example, in matrix flower 8 4.

Table 5.4: Experimental results including JBIG
name # of NZ density QUAD CFBG Dim RS Dim HS JBIG

dwt 1005 4.81E+03 4.77E-03 1.95E+03 1.44E+03 3.11E+03 3.25E+03 1.33E+03

Chem97Zt 6.20E+04 7.87E-04 1.89E+04 7.63E+03 6.48E+03 2.38E+04 2.13E+03

cegb2919 1.62E+05 1.90E-02 4.58E+04 3.20E+03 3.04E+04 2.63E+04 3.52E+03

wb-cs-stanford 3.69E+04 3.75E-04 1.90E+04 2.08E+04 2.60E+04 2.26E+04 1.69E+04

pf2177 3.10E+04 3.13E-04 1.65E+04 2.08E+04 3.10E+04 2.35E+04 2.48E+04

thread 2.25E+06 2.54E-03 6.93E+05 3.17E+04 3.75E+05 4.16E+05 1.47E+05

enron 2.76E+05 5.76E-05 2.03E+05 2.38E+05 1.70E+05 1.95E+05 2.08E+05

flower 8 4 3.75E+05 5.43E-05 2.68E+05 1.42E+05 3.06E+05 3.58E+05 6.69E+05

gupta2 2.16E+06 5.60E-04 6.40E+05 6.37E+05 7.24E+05 9.73E+05 9.13E+05

5.3 Detailed Result of Bipartite Grammar Coding

We list some statistics of the CFBG based representations of the same set of testing
matrices in Tab. 5.5. The second column, again, is the number of non-zero elements in the
matrix, which is also the number of edges in G(v0) before grammar transform. The column
|V | is the total number of variables in the grammar. The column |G(v0)| denotes the size
of G(v0) after grammar transform. |G| denotes the total size of CFBG. The column |V2t|
denotes the number of even variables, i.e. the number of the variables of size 2, except,
possibly, v0. The last two columns denote the representation of terminal labeled edges and
variable labeled edges in G(v0).

From Tab. 5.5, in the matrices where CFBG can not provide huge gain, for example,
amazon0302,

1. The size of G(v0) is only slightly reduced by the grammar transform. Drop from
1.23× 106 to 5.88× 105 in amazon0302.

58

Table 5.5: Statistics of CFBG
name # of NZ |V | |G(v0)| |G| |G(v0)|δ |V2t| G(v0)δ G(v0)v

amazon0302 1.23E+06 3.08E+04 5.88E+05 6.50E+05 2.79E+05 3.08E+04 CRS CRS

amazon0312 3.20E+06 5.42E+04 1.39E+06 1.50E+06 6.75E+05 5.40E+04 CRS CRS

bmw7st 1 3.74E+06 6.62E+03 3.29E+04 4.72E+04 8.00E+01 6.01E+03 COO COO

cage12 2.03E+06 1.76E+04 3.75E+04 9.51E+04 7.98E+02 1.18E+04 COO COO

cegb2919 1.62E+05 2.63E+02 4.19E+02 1.21E+03 0.00E+00 3.20E+03 COO COO

Chem97Zt 6.20E+04 4.20E+02 1.97E+03 2.82E+03 1.50E+01 4.06E+02 COO COO

dwt 1005 4.81E+03 1.35E+02 1.91E+02 5.59E+02 1.20E+01 9.80E+01 COO COO

enron 2.76E+05 9.81E+03 6.99E+04 8.96E+04 1.12E+04 9.73E+03 COO COO

FEM 3D thermal2 3.49E+06 2.26E+02 2.85E+03 2.25E+04 0.00E+00 1.05E+02 COO COO

flower 8 4 3.75E+05 1.06E+04 2.15E+04 5.36E+04 1.42E+03 6.83E+03 COO COO

Freescale1 1.89E+07 8.06E+04 6.13E+05 7.97E+05 5.41E+04 7.52E+04 COO COO

gupta2 2.16E+06 4.31E+04 9.61E+04 2.48E+05 1.35E+03 3.09E+04 COO CRS

IMDB 3.78E+06 2.34E+04 3.05E+06 3.09E+06 2.37E+06 2.34E+04 CRS CRS

pf2177 3.10E+04 1.23E+03 4.50E+03 7.79E+03 2.57E+02 1.09E+03 COO COO

roadNet-CA 2.77E+06 9.37E+04 8.51E+05 1.04E+06 9.13E+04 9.36E+04 COO COO

roadNet-PA 1.54E+06 5.83E+04 5.02E+05 6.18E+05 5.19E+04 5.82E+04 COO COO

roadNet-TX 1.92E+06 7.22E+04 6.23E+05 7.68E+05 5.82E+04 7.21E+04 COO COO

thread 2.25E+06 2.53E+03 4.11E+03 1.20E+04 0.00E+00 1.68E+03 COO COO

wb-cs-stanford 3.69E+04 1.15E+03 5.18E+03 7.92E+03 8.58E+02 1.01E+03 COO COO

wb-edu 5.72E+07 6.13E+05 4.15E+06 5.83E+06 3.94E+05 5.35E+05 COO COO

wheel 601 2.17E+06 4.70E+02 1.17E+06 1.17E+06 6.97E+05 4.57E+02 COO COO

2. There are still a large number of terminal symbol labeled edges in G(v0) after the
transform. In amazon0302, around half of the edges in G(v0) are terminal symbol
labeled.

3. And most of variables excluding v0 is of size 2, i.e. the difference between |V | and
|V2t| is small. In amazon0302, this difference is negligible.

On the opposite side, in the matrices where CFBG greatly outperforms other methods,
such as matrix thread:

1. The number of edges in G(v0) is greatly reduced. In thread, drop from 2.25× 106 to

59

4.11× 103, which is 500 times smaller.

2. Very few terminal symbol labeled edges remains in G(v0) after grammar transforma-
tion. In thread, this number is negligible.

3. A lot of variables have sizes larger than 2. Around 2
5

of the variables have sizes larger
than 2 in thread.

Compare these two cases, we can have the conclusion that when the density of the
matrix is not extremely low and the distribution of non-zero elements are far from ran-
dom, in which case more repeated subgraphs can be found, the bipartite grammar based
representation can achieve better result in the sense of storage requirement.

60

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we discussed the problem of representing a large sparse binary matrix so
that the representation requires less storage and, meanwhile, supports operations on this
matrix. Here, by supporting operations, we only considered getting access to one element
in the matrix, which is the most fundamental operation. Followed the idea of context-free
grammar, which has already been applied in representing 1-D data sequences and proved
successful, we proposed two grammar based representations of sparse binary matrix. The
first one is based on so-called directionless grammar, which resulted in dimension coding
that can represent 1-D sparse signals. We combined dimension coding with raster scan
or Hilbert scan to get a representation of a 2-D matrix. This representation directly
inherits the random accessibility from dimension coding. The second one is based on a
new called concept Context-free Bipartite Grammar (CFBG), which we proposed in this
thesis. Compared with directionless grammar, CFBG is also directionless in the sense
that each variable represents a bipartite graph, which can be viewed as a set of edges.
However, CFBG has true 2-D nature. By doing experiments on various matrices from real
applications, we showed that the grammar based representation greatly outperforms the
state-of-art methods COO, CRS and quadtree. We also showed that when the density
of the matrix is not extremely low and the distribution of the non-zero elements in the
matrix is far from random, the power of grammar can be fully utilized by CFBG. However,
since the scan method is not adaptive to the distribution of non-zero elements, even if the
directionless grammar is very powerful, the performances are not stable.

61

6.2 Future Work

6.2.1 Locality and Random Accessibility

From the discussion in Chapter 4, we can see that CFBG does not have a well-defined
“locality” concept, which is vital for random accessing in dimension coding.

However, as we use the IPT as the grammar transform, it requires the distance of the
two labeled edges represented by a variable does not exceed some threshold. With this
property, it is possible to define some concepts similar to “locality” to speed up the random
access decoder.

6.2.2 Potential Capability of Pattern Discovery

When we use a CFBG G to represent a matrix M which is represented by B ∈ B(Σ), for
each variable v 6= v0, G(v) represents a subgraph of B. This subgraph can also be thought
of a pattern, i.e. subset of elements in M . The list of all G(v)s can also be thought of a
list of repeated patterns in the matrix. According to the meaning of each dimension of the
matrix, it is possible to utilize the grammar to help with the analysis of the matrix.

6.2.3 Support more operations

In this thesis, we only consider the operation of random access an element located at
specific row and column. There are other common operations on the matrix such as matrix-
vector multiplication. There exist some representations focusing on accelerating these
operations. It is also possible to extend the grammar or tune the grammar transformation
to support various operations.

62

References

[1] Progressive bi-level image compression. Technical Report ISO/IEC International Stan-
dard 11544, ISO/IEC, 1992.

[2] Richard Barrett, Michael W Berry, Tony F Chan, James Demmel, June Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.
Templates for the solution of linear systems: building blocks for iterative methods,
volume 43. Siam, 1994.

[3] Robert D Cameron. Source encoding using syntactic information source models. IEEE
Transactions on Information Theory, 34(4):843–850, 1988.

[4] C.Nevill-Manning and I.Witten. Compression and explanation using hierarchical
grammars. Comput.J., pages 103–116, 1997.

[5] C.Nevill-Manning and I.Witten. Identifying hierarchical structure in sequences: A
linear-time algorithm. J.Artificial Intell. Res., pages 67–82, 1997.

[6] Craig M Cook, Azriel Rosenfeld, and Alan R Aronson. Grammatical inference by hill
climbing. Information Sciences, 10(2):59–80, 1976.

[7] P. Tvrdik D. langr, I. Simecek and T. Dytrych. Adaptive-blocking hierarchical storage
format for sparse matrix. pages 545–551, Wroclaw, Poland, Jul. 2012. FedCSIS.

[8] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans-
actions on Mathematical Software, (1):1–25, 2011. Available: http://www.cise.ufl.
edu/research/sparse/matrices.

[9] E.-H.Yang and J. C. Kieffer. Efficient universal lossless data compression algorithms
based on a greedy sequential grammar transform—part i: Without context model.
IEEE Trans. Info. Theory, (3):755–777, May 2000.

63

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

[10] Anand Ekambaram and Euŕıpides Montagne. An alternative compressed storage for-
mat for sparse matrices. In International Symposium on Computer and Information
Sciences, pages 196–203. Springer, 2003.

[11] Raphael Finkel and J.L. Bentley. Quad trees: A data structure for retrieval on com-
posite keys. Acta Informatica, (1):1–9, 1974.

[12] E. h. Yang. Dimension coding—part one: Original sparse signals. Submitted to IEEE
Trans. Inf. Theory.

[13] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

[14] John E Hopcroft. Introduction to Automata Theory, Languages and Computation:
For VTU, 3/e. Pearson Education India, 1979.

[15] D. langr I. Simecek and P. Tvrdik. Minimal quadtree format for compression of
sparse matrices storage. pages 359–364, Timisoara, Romania, 2012. roc. 14th Int.
Symp. Symbolic & Numeric Algorithms for Scientific Computing.

[16] G. J. Nelson J. C. Kieffer, E. H. Yang and P. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Trans. Info. Theory, (4):1227–1245, Jul. 2000.

[17] E.-H. Yang J. Zhang and J. C. Kieffer. A universal grammar-based code for lossless
compression of binary trees. IEEE Trans. Inf. Theory, (3):1373–1386, Mar. 2014.

[18] Y. Jia and E.-H. Yang. Context-dependent multilevel pattern matching for lossless
image compression. IEEE Trans. Info. Theory, (12):3169–3184, Dec. 2003.

[19] Eiji Kawaguchi and Tsutomu Endo. On a method of binary-picture representation
and its application to data compression. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (1):27–35, 1980.

[20] J. C. Kieffer and E.-H. Yang. Grammar based codes: A new class of universal lossless
source codes. IEEE Trans. Info. Theory, (3):737–754, May 2000.

[21] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis
of the clustering properties of the hilbert space-filling curve. IEEE Transactions on
knowledge and data engineering, 13(1):124–141, 2001.

[22] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical strcture in se-
quences: A linear-time algorithm. J. Artif. Intell. Res.(JAIR), 7:67–82, 1997.

64

[23] William B. Pennebaker, Joan L. Mitchell, GG Langdon, and Ronald B Arps. An
overview of the basic principles of the q-coder adaptive binary arithmetic coder. IBM
Journal of research and development, 32(6):717–726, 1988.

[24] Pyrrhos Stathis, Sorin Cotofana, and Stamatis Vassiliadis. Sparse matrix vector multi-
plication evaluation using the bbcs scheme. In in Proc. of 8th Panhellenic Conference
on Informatics. Citeseer, 2001.

[25] Pyrrhos Stathis, Stamatis Vassiliadis, and Sorin Cotofana. A hierarchical sparse ma-
trix storage format for vector processors. In Parallel and Distributed Processing Sym-
posium, 2003. Proceedings. International, pages 8–pp. IEEE, 2003.

[26] Stamatis Vassiliadis, Sorin Cotofana, and Pyrrhos Stathis. Block based compression
storage expected performance. In High Performance Computing Systems and Appli-
cations, pages 389–406. Springer, 2002.

[27] E.-H. Yang and J. Guo. Lossless image coding via one-dimensional grammar based
codes. pages 966–972, Beijing, China, Aug. 2000. Proc. of the 16th IFIP World
Computer Congress | 2000 International Conference on Communication Technology.

[28] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE transactions on Information Theory, 24(5):530–536, 1978.

65

	List of Tables
	List of Figures
	Introduction
	Research Motivation and Problem Description
	Research Contributions
	Thesis Organization

	Background
	Sparse Matrix Representation
	Coordinate Storage(COO)
	Compressed Row Storage(CRS)
	Quadtree
	Other representations

	JBIG
	Resolution Reduction algorithm
	Typical Prediction
	Compression algorithm

	Context-free Grammar
	Grammar-based code
	Summary

	Sparse Binary Matrix Representation via Dimension Coding
	Dimension Coding
	Overview
	Directionless Grammar
	Incremental Directionless Grammar Transform
	Grammar encoding
	Random access decoder

	Scan Methods
	Raster Scan
	Hilbert Scan

	Sparse Binary Matrix coder via Dimension coding

	Binary Matrix Representation via Bipartite Gramamr Based Coding
	Overview
	Correspondence between binary matrix and bipartite
	Context-free Bipartite Grammar
	Graph Operations
	Context-free Bipartite Grammar

	Bipartite Grammar Encoding
	Canonical CFBG
	Grammar encoder

	Parallel Random Access
	Bipartite Grammar Transform
	Sequential D-Neighborhood Pairing Transform
	Iterative Pairing Transform
	Implementation of IPT

	Experimental Results
	Source and Descriptions of Testing Matrices
	Overall Result
	Detailed Result of Bipartite Grammar Coding

	Conclusion and Future Work
	Conclusion
	Future Work
	Locality and Random Accessibility
	Potential Capability of Pattern Discovery
	Support more operations

	References

