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Summary

Life history studies collect information on events and other outcomes during people’s lifetimes. For
example, these may be related to childhood development, education, fertility, health, or employment.
Such longitudinal studies have constraints on the selection of study members, the duration and fre-
quency of follow-up, and the accuracy and completeness of information obtained. These constraints,
along with factors associated with the definition and measurement of certain outcomes, affect our
ability to understand, model, and analyze life history processes. My objective here is to discuss and
illustrate some issues associated with the design and analysis of life history studies.
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1 INTRODUCTION

Information about events and other outcomes in people’s lives is collected in many contexts, and well-
planned studies are important in understanding life history processes and factors that influence them.
Examples include studies related to employment [1], health [2, 3], and aging [4, 5]. I use the term life
history studies to describe such initiatives. Objectives of life history analysis include enhancing our
understanding of individual processes and of variation across individuals, groups, or populations; iden-
tifying relationships between processes and covariates; identifying risk factors associated with adverse
outcomes; assessing the effects of individual-level or population-level interventions; and providing pre-
dictive models for activities such as planning, resource allocation, or patient management. The extent to
which objectives can be realized depends on the representativeness of the panel members, on the events
and other variables that are measured, and on the completeness and accuracy of data collection. Time,
cost, and other constraints lead to a range of study designs, from ones where a randomly selected panel of
individuals is followed over a designated period to observational studies based on administrative records.
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Various statistical challenges arise with life history studies, and my objective is to discuss issues asso-
ciated with their design and analysis. Before outlining some issues to be addressed, I introduce three
studies that serve to illustrate various points.

Example 1.1 (Complications from Type 1 Diabetes)

The Diabetes Control and Complications Trial (DCCT) was a randomized study involving subjects with
type 1 diabetes, which ran from 1983 to 1993. The study randomized subjects in two cohorts to a program
of intensive diabetes therapy designed to achieve near-normal glucose levels or to conventional therapy
designed to prevent hyperglycemic symptoms [3]. The two cohorts were a primary prevention cohort,
consisting of individuals who had no retinopathy at the time of study entry, and a secondary intervention
cohort, whose members had some degree of retinopathy. Upon completion, the trial showed that the
intensive therapy led to a significant reduction in the onset and progression of diabetic retinopathy and
nephropathy. After the DCCT was terminated, most subjects (1375 of 1441) joined the observational
Epidemiology of Diabetes Interventions and Complications (EDIC) Study, which has been ongoing since
1994. Its objectives are to study complications from diabetes, and biological and genetic factors asso-
ciated with progression. Those conducting the study took eye and kidney measurements approximately
every 6 months during the DCCT, but only every 2-4 years during EDIC. They expressed the degree of
retinopathy (ranging from none to severe) on the ordinal Early Treatment Diabetic Retinopathy Study
(ETDRS) scale [6]. Measurements on renal function included urinary albumin excretion rate, and we can
base disease states on this [7].

Numerous covariates were measured at entry to the DCCT and at the start of EDIC, and several time-
varying covariates were measured at the intermittent visits. The most important of these is glycosylated
hemoglobin, which measures average blood glucose over 3-4 months preceding the measurement. A high
glycosylated hemoglobin value indicates poor control of blood glucose and is associated with diabetic
complications. The DCCT Research Group [3, 8, 9], Al-Kateb et al. [7], and Cook and Lawless [10]
described some analyses of DCCT and EDIC data.

Example 1.2 (The Canadian Longitudinal Study on Aging)

The Canadian Longitudinal Study on Aging (CLSA) is a national longitudinal study of adult development
and aging, with an initial stratified random sample of 50,000 persons ages 45-85 years. Recruitment be-
gan in 2009, and individuals are to be followed for at least 20 years or to death, with formal assessments
scheduled every 3 years. The broad objectives of the CLSA are to foster research into ‘understanding
how biological, physical, psychological, social, and environmental factors individually, and in combina-
tion, influence the health and well-being of aging individuals’ [5]. Information on demographic, social,
physical/clinical factors and on health service utilization are to be collected on all panel members. In
addition, 30,000 members will be asked to provide physical and biological measurements at scheduled
visits, but they may refuse to provide the biological specimens (blood and urine). The website for the
study is at www.clsa-elcv.ca.

Example 1.3 (Canadian Observational Cohort on HIV)

The Canadian Observational Cohort on HIV (CANOC) is composed of several observational Canadian
cohorts of HIV-positive individuals who initiated combination antiretroviral therapy (cART) since Jan-
uary 1, 2000 [11]. Biomarkers that are measured at follow-up visits (approximately every 3 months) for
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each individual include viral load, CD4 and CD8 cell counts and other measures such as blood lipid lev-
els. Clinical events that are recorded include AIDS-defining illnesses, death, and other events related to
heart disease and cancer. I will restrict discussion here to the British Columbia cohort of CANOC, con-
sisting of 2325 individuals with an average follow-up time of 3.6 years. The broad objectives of CANOC
are to study disease processes of HIV-positive individuals and their relationship to risk factors and cART
treatment.

These three studies represent a range of objectives and background conditions, but in all cases, in-
formation on the study individuals is collected intermittently, at visits ranging from 3 months to 3 years
apart. This affects design and analysis in important ways, including the following: (i) decisions concern-
ing which variables and events to record and whether the times of events occurring between successive
visits can be (accurately) ascertained; (ii) decisions concerning the frequency and duration of followup;
(iii) consideration of ways to avoid bias resulting from selection effects or nonignorable losses to follow-
up (LTFs); and (iv) consideration of statistical models for planning, analysis, and prediction that can
deal with partially observed life histories. At the planning stage, consideration must also be given to the
method of cohort formation and to the level of baseline information to be obtained. In particular, this
may include life history information prior to an individual’s admission to the study. Some studies are
purely retrospective, and the full data on individuals exist at the time they are selected. I will focus here
on prospective studies. For convenience, I refer to the study group as a cohort or panel. Inclusion in the
study sample may depend on observed covariates or prior life history for an individual, but conditional on
such factors, the process data during the study’s follow-up period are assumed independent of selection.

My objective is to discuss and comment on these issues. I organized the remainder of the paper as
follows. Section 2 describes a statistical framework for life history analyses. Because of their importance
and for reasons of brevity, I will focus on multistate models for life history events, along with concomitant
variables. Section 3 contains some general discussion of the preceding issues of design and analysis, and
Section 4 provides some technical development and illustrations. Section 5 contains some concluding
remarks.

2 STATISTICAL FRAMEWORK

2.1 MODELS FOR LIFE HISTORY ANALYSIS

Several types of variables arise in life history contexts. We can broadly categorize outcomes of interest
as follows:

(i) Events that, at least in theory, occur at a specific instant in time, for example, giving birth, getting
a job, or being diagnosed with a disease. We can use counting process notation for such events:
assuming that an individual i can experience a specified event beginning at a time origin t = 0,
we let Ni(t) denote the number of events experienced up to time t. The process {Ni(t), t ≥ 0} is
called a counting process [12]. This deals with events that can occur repeatedly or just once and is
extended to deal with R ≥ 2 types of events by letting Nir(t) denote the number of events of type
r (r = 1, 2, . . . , R).

(ii) Categorical variables Yi(t) that denote the status of an individual at time t; for example, a woman
may have given birth to y children (y = 0, 1, 2, . . .) by age t, or she may have attained any one
of a number of educational levels. A multistate framework can be used in such cases, with Yi(t)
allowed to take values in a set {1, 2, . . . , a} of distinct states. This framework is closely connected
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to counting processes since a transition from one specified state to another can be considered a type
of event.

(iii) Fixed variables such as birth year, sex, genotype. I will use (vectors) xi or zi to denote such features
for individual i.

(iv) Time-varying variables, denoted by Xi(t). These can be specific to an individual, for example,
internal biological variables such as blood pressure, weight, viral loads or blood cell counts, medi-
cation, or external factors such as air quality measures.

Data on panel members are typically collected intermittently. In many studies, this occurs at sched-
uled visits whose frequency and spacing may vary both within and between individuals; I denote the
data collection times for a generic individual as t0, t1, . . . , tk. Baseline conditions and covariates are ob-
tained at t0, and at tj (j = 1, . . . , k), information Dj pertaining to the time interval (tj−1, tj] is obtained.
Time-varying covariates are typically measured only at the times tj , but the occurrence times of events in
(tj−1, tj] can sometimes be retrospectively ascertained at tj . A design issue discussed later is whether to
ascertain such times when doing so is subject to errors of measurement. In some studies, the exact times
of certain events such as death may also be ascertainable in some other way. Other forms of incomplete or
inaccurate information can also arise, and panel members may be lost to follow-up before the designated
end of the study.

I will treat event histories and multistate paths as the processes of interest, with fixed and time-varying
variables as explanatory factors. However, events or states are often defined according to a processXi(t).
For example, we could define a ‘viral rebound’ (VR) event for HIV-positive individuals as occurring
when the viral load of an individual moves from a nondetectable level to a specified level such as 103

copies per milliliter [13]. Models that accurately represent the determinants and dynamics of processes
{Ni(t), t ≥ 0} or {Yi(t), t ≥ 0} are of great interest, but developing such models is difficult, given the
complexity of such processes, limitations on the thoroughness and frequency of data collection, and the
possibility of bias in cohort selection and follow-up. Nevertheless, stochastic models that capture certain
process dynamics can be developed and can help to improve understanding, prediction and decision-
making. For the comparison of randomized interventions, on the other hand, marginal process features
such as expected numbers of events or average time in a state are used (e.g., Section 8.4 in [14, 15]).
Stochastic modelling of life history processes has a long history, perhaps beginning with Halley’s models
for life tables and mortality (e.g., [16]) but with rapid expansion from the 1950s (e.g., [17–19]). Statistical
analysis based on such models has developed rapidly following seminal work on parametric, nonpara-
metric, and semiparametric methods. Andersen et al. [12] gave a comprehensive survey up to about 1993,
and [20] and [14] survey more recent work.

I consider continuous-time models that begin at some time origin t = 0, but discrete-time models are
sometimes appealing. The times of events are denoted by T1 < T2 < · · · and the gap times between
events by Wj = Tj − Tj−1 (j = 1, 2, . . .), where T0 = 0. We can express full models in terms of process
intensity functions. For a univariate counting process {Ni(t), t ≥ 0}, these take the form

λ (t|Hi(t)) = lim
∆t↓0

Pr {Ni(t−, t+ ∆t−) = 1|Hi(t)}
∆t

, (1)

where N(s, t) = N(t) − N(s) and Hi(t) is individual i’s event history up to time t−. External time-
varying or fixed covariates can be dealt with by incorporating them into Hi(t). Books on point processes
(e.g., [21, 22]) and on event history analysis (e.g., [12, 14, 20]) discuss many types of models. The two
most familiar are Poisson processes, for which λ(t|Hi(t)) = ρ(t) for some nonnegative function ρ(·),



Lawless JF 5

and semi-Markov processes, for which λ(t|Hi(t)), Ni(t−) = j) = hj(Bi(t)) for nonnegative functions
hj(w), with Bi(t) = t− TNi(t−) the time since the most recent event.

2.2 MULTISTATE MODELS

I will focus here on multistate models with states {1, 2, . . . , a} which have transition intensity functions

λrs (t|Hi(t)) = lim
∆t↓0

Pr {Yi(t+ ∆t−) = s|Hi(t), Yi(t−) = r}
∆t

, r 6= s. (2)

Markov models have λrs(t|Hi(t), Yi(t−) = r) = αrs(t); semi-Markov models have λrs(t|Hi(t), Yi(t−) =
r) = αrs(Bi(t)), where Bi(t) is the elapsed time since entry to the current state (r).

Under mild conditions and assuming that two or more events cannot occur simultaneously, the inten-
sities provide a full specification of the process in question. A broad discussion of models is beyond my
scope here, and I will mainly consider multistate models with intensities of modulated Markov form

λrs (t|Hi(t), Yi(t−) = r) = λ0
rs(t) exp (β′Zi(t)) , r 6= s , (3)

where the λ0
rs(t) are baseline intensity functions and Zi(t) is a vector that may include selected aspects

of previous life history along with fixed or time-varying covariates. These allow flexible modelling
of life history dynamics, and we can fit models with the λ0

rs(t) unspecified using Cox model survival
analysis software when complete data on life history paths and covariates are available (e.g., [12, 14]).
Unfortunately, this is rarely the case for the types of studies discussed here, and challenges arise when
trying to model such processes with incomplete data; Sections 3 and 4 discuss this issue.

2.3 AN ILLUSTRATION

Figure 1 shows a model that is used in settings where individuals can experience potentially recurring
episodes of some kind. For example, state 1 may represent good health; state 2 a state of illness, disability,
or hospitalization; and state 3 death. In some contexts, for example where state 2 represents hospitaliza-
tion, the exact times of transitions from one state to another are ascertainable even when an individual
is formally seen intermittently. In this case, models of the form (3) can readily include features of past
episodes (e.g., the number of visits to state 2 or their durations) in the covariate terms. However, if state 2
represents a condition that can be confirmed only through a diagnostic test (e.g., detectable viral load in a
person with HIV), then exact transition times cannot be observed in the case of intermittent observation.
In this case, the duration of sojourns in state 2 and even the exact number of visits are unknown. This
limits the models that it is feasible to fit and affects the precision of estimation and the possibilities for
model checking.

3 SOME DESIGN AND ANALYSIS ISSUES

3.1 DEFINITIONS OF STATES AND EVENTS

States and events sometimes have relatively unambiguous definitions (e.g., in or out of hospital and
giving birth), but often there is a degree of arbitrariness. For example, in the DCCT studies of Example
1.1, severity of retinopathy is measured on a 22-point ordinal ETDRS scale, which itself is based on
photographs of the eye [6]; other categorizations based on photographs also exist. I will consider here
five states of retinopathy based on the ETDRS measurements: 1 - ETDRS = 1 (no retinopathy); 2 -
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Figure 1: A model for recurrent episodes

ETDRS = 2 or 3; 3 - ETDRS = 4, 5, or 6; 4 - ETDRS = 7, 8, or 9; 5 - ETDRS ≥ 10 (severe retinopathy).
However, other sets of states could be used. Definitions of the ‘progression’ of retinopathy also vary; two
that have been used are the following: (i) first entry to state 3 and (ii) first occasion on which an individual
is observed to be in state 3 or higher at two consecutive observation times. Definition (ii) depends on the
observation schedule for an individual but has been used (e.g., [3]) because there is measurement error as
well as substantial short-term variability in ETDRS scores [10]. Events defined by a prolonged sojourn
in a state are used in many other areas (e.g., [23, 24]). The specification of states based on discrete
or continuous measurements, along with the decision to use states rather than the raw measurements,
depends on the context and objectives of analysis. States and events should be clinically meaningful and,
ideally, subject to reasonably accurate measurement. It is desirable to retain the information on which
individuals’ states are based in order to facilitate alternative analyses and to allow comparison of analyses
based on different sets of states. Section 4.1 considers some models for diabetic retinopathy.

3.2 MEASUREMENT ERROR

Errors of measurement can occur for states, events and covariates. Dealing properly with such errors can
be difficult, and the best approach is to minimize them by careful selection and measurement of variables.
To consider misclassification of states, for example, one can consider measurement error in the underlying
variables on which states are based. We must also make decisions about whether to measure event times
precisely. For example, if the time of an event that occurred between two successive observation points
can in principle be ascertained, then we must weigh potential gains from doing this against the possibility
and effects of measurement error. In longitudinal surveys, the ‘seam’ effect is well known: persons giving
an event time based on recall tend to place it closer to data collection times than it actually is [25]. The
use of the state or status at the time of measurement rather than retrospectively ascertained event times is
common in many areas (e.g., [26]), and the effect on estimation of time-to-event distributions has been
studied, but there has not been much investigation in the event history context. Covariate measurement
error is beyond my present scope. Prentice [27] and Prentice and Huang [28] gave valuable discussion
and references in the context of women’s health studies.

3.3 FOLLOW-UP OF PANEL MEMBERS

The resources available for a study constrain the frequency and length of follow-up. If the visit times
t1, . . . , tk for an individual are far enough apart that multiple events or state changes between successive
visits are likely, then estimation of state duration distributions and other detailed life history features is
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difficult in the case where only the Y (tj) (j = 1, 2, . . . , k) are observed. However, there may be adequate
information about aspects such as the incidence or prevalence of specific conditions. For example, the
CLSA in Example 1.2 collects information every three years over a long period for persons age 45 years
and older. Useful information on features such as the onset and progression of cognitive impairment
(CI) as a function of age and other factors can be obtained, but detailed information on the duration of
hospitalization spells or the use of community health services may not be ascertainable from the basic
data collection. The incorporation of auxiliary information from administrative records or from more
intensive follow-up of a selective subsample of the panel is an important area that is receiving increasing
attention but, so far, limited formal development.

Premature LTFs naturally decrease the information available, but a potentially greater concern is the
possibility of bias when LTF is related to an individual’s life history. If LTF is independent of future life
history (after LTF), given previously observed life history, then we can avoid bias through appropriate
conditioning on prior history. However, when successive visits are far apart, it is often likely that the
probability of becoming LTF at time tj depends on outcomes over the interval (tj−1, tj]. In studies where
heavy LTF is expected, there may be a strong argument for a budget that allows some tracing of persons
who are LTF (e.g., [29]). Section 4.3 provides a few details on these issues.

In observational studies, there may be a relationship between the visit times for an individual and their
life history since the last visit, as when healthier individuals postpone or forego visits. Models to address
this have been considered (e.g., [30, 31]), but they are often difficult to check or rely on uncheckable
assumptions. In addition, labeling a person as LTF, and specification of an LTF date, is problematic when
an individual’s last visit was a long time before the study’s administrative end date. It is important for
reliable analysis to try for adherence to a visit schedule. This can allow the scheduled time for the next
visit to depend on data collected up to the current visit (Section 4.3).

3.4 PANEL SELECTION AND INITIAL CONDITIONS

The collection of baseline information on individuals is crucial, regardless of whether the panel is a
random sample from some population or a group defined by certain characteristics. One reason is that
dynamic modelling and analysis uses previous life history (Section 2.2). Specification of models for
outcomes over a follow-up period from t0 to tk typically relies on relevant history H(t0) before time
t0. In economics, these are referred to as initial conditions. Failure to collect relevant information may
contribute to misleading conclusions or make it necessary to rely on uncheckable assumptions. Interest-
ing examples arise when the current duration of a condition is not recorded or modeled in an analysis.
Prentice et al. [2] and Prentice [27] discussed discrepancies in observational and randomized studies on
the effect of post-menopausal hormone therapy (HT) on coronary heart disease in women. These were
largely due to the fact that the effects were time dependent and that women in the randomized studies
were followed from the initiation of HT, whereas many in the observational studies were not. If insuf-
ficient attention is given to the duration of prior HT usage, misleading inferences might be drawn from
the observational studies. Glymour [32] discussed similar issues in longitudinal studies on aging and
cognitive impairment. Section 4.4 gives some additional discussion of initial conditions.

In studies where panel members are randomly selected, problems can still arise because of refusals
to participate. In the CLSA, it was estimated that 152,000 people would have to be approached to ob-
tain a panel of 50,000 [5]. A concern is that those agreeing to join differ in significant ways from those
who refuse. This can sometimes be addressed by the collection of relevant baseline information on both
joiners and refusers. In an empirical study on employment histories, Pyy-Martikainen and Rendtel [33]
demonstrated the biases that initial refusals and dependent LTF can produce by comparing analyses of
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European longitudinal survey data with complete administrative data on the panel members and refusers.
They found significant biases in survey-based estimates related to unemployment. There is a large litera-
ture on refusals and non-response in certain areas, including survey sampling (e.g., [34]) and case-control
studies (e.g., [35]).

4 SOME TECHNICAL ISSUES

4.1 MODELS FITTING AND ANALYSIS

Suppose that individual i in a study is observed at times ti0 < ti1 < · · · < tiki . At time tij infor-
mation Di(tij) on events and Xi(tij) on external covariates over the time interval (ti,j−1, tij] is ob-
tained (j = 1, 2, . . . , ki); baseline information is given by Di(ti0) and Xi(ti0). Under conditional
independence assumptions concerning the tij and LTF (Section 4.3), the probability distribution of
{Di(ti1), . . . , Di(tiki)} given the tij , Di(ti0) and external covariates is proportional to

ki∏
j=1

Pr
{
Di(tij)|D̄i(ti,j−1), X̄i(tij)

}
. (4)

In (4) and henceforth, ‘Pr’ denotes a probability density or mass function, and D̄i(tij) = {Di(ti0), . . . , Di(tij)}
and X̄i(tij) = {Xi(ti0), . . . , Xi(tij)} denote observed event and covariate histories. The times tij are
treated as fixed in (4), although they are allowed to depend on previous observations (Section 2.2 in [10]).
Detailed modelling of transition intensities as functions of previous event history and time-varying co-
variates is feasible only if sufficiently detailed information is collected. On the other hand, a common
situation is where Di(tij) consists only of event counts over (ti,j−1, tij] or, in the case of multistate mod-
els, only of the state Yi(tij) occupied at tij . In the latter case, (4) becomes

ki∏
j=1

Pr
{
Yi(ti,j−1)|Ȳi(ti,j−1), X̄i(tij)

}
. (5)

The timescale in (4) could be calendar time or, more commonly, an individual-specific scale such as
age or time in study. The key challenge is to specify models, such as (3), that represent the life history
process adequately but allow computation of (4), so as to serve as a basis for estimation. Cook and
Lawless (Section 3 in [10]) discussed models in some detail, and I summarize a few salient points needed
for later developments. Markov models dominate statistical practice, in part due to their tractability.
When all covariates are fixed, so that transition intensities λrs(t|H(t), x) in (2) are of the form qrs(t;x),
the terms in (5) are transition probabilities

Prs (ti,j−1, tij;x) = Pr {Yi(tij) = s|Yi(ti,j−1) = r, x} . (6)

For time-homogeneous models for which qrs(t;x) = qrs(x), the a × a transition probability matrix
P (u, u+ t;x) = (Prs(u, u+ t;x)) is given by the matrix exponential function [36],

P (u, u+ t;x) = P (t;x) = exp {tQ(x)} , (7)

where Q(x) is the a× a matrix with entries qrs(x) for r 6= s and qrr(x) = −
∑

s 6=r qrs(x). Nonhomoge-
neous models are harder to handle, but refer to Section 3.2 in [10] and [37] for computational methods.
The msm package in R [38] provides convenient software for fitting time-homogeneous models and will
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also handle models for which the intensities qrs(t;x) are piecewise constant. It should be noted that,
except for the case of time-homogeneous models, the specification of the time origin (t = 0) is of critical
importance in Markov modeling.

Models with time-varying covariates observed only at visit times require assumptions for tractability.
If inter-observation times are reasonably similar, we often assume Xi(t) = Xi(ti,j−1) over the time
interval (ti,j−1, tij). This may not reflect the full effect ofXi(t) on transition probabilities, but it is a good
way to specify models for which history up to time ti,j−1 is used to predict outcomes at tij . When times
between visits vary substantially, a preferable approach is to model the covariate process jointly with the
Yi(t); refer to Sections 3.6 and 5 in [10] and [39] for discussion and illustrations.

Sojourn times in states or waiting times until entry to a given state are often of interest, for example
the length of a spell in which an individual is disabled. We can obtain distributions for such variables
from Markov models. However, models such as qrs(t;x) = q0

rs(t)e
β′x, where covariates have a simple

effect on transition intensities, do not translate into simple covariate effects for sojourns or waiting times.
An alternative is to use models for which sojourn times play a central role, as with semi-Markov models.
However, such models are hard to fit when observation is intermittent except in simple cases, even when
there are no covariates (e.g., [37]). If a specific distribution is of interest, it is often preferable to model it
directly in terms of covariates. Andersen et al. [40] considered linking this to a multistate model.

In some situations, the observed life histories of individuals are more heterogeneous than can be
accounted for by observed covariates within a specific process. For discussion of unobserved random-
effects and mixture models that can address this, refer to Section 3 in [10]. Goodness of fit for Markov
models is usually checked by comparing observed and expected (model-based) transitions among states.
The R package msm provides a number of options for doing this. However, the frequency of observation
and incompleteness of the data often constrain model checking, and comprehensive validation of a model
is often impossible. Titman and Sharples [41] gave an excellent discussion of model checking, and
Section 4.2 makes some additional remarks.

Example 4.1 (Progression of diabetic retinopathy)

As an illustration of Markov multistate modelling and the choice of states, I consider some analyses
of diabetic retinopathy discussed by Cook and Lawless (Section 5.2 in [10]) and based on the DCCT
trial introduced in Example 1.1. I focus on the conventional therapy group within the primary prevention
cohort and on the white subjects, all of whom had no retinopathy (ETDRS = 1) and had diabetes durations
of 5 years or less at enrolment. Two models, each with five states as defined in Section 3.1, are considered,
with t representing time since enrolment. Figure 2 shows the state diagrams, and the models are denoted
as

M1: all transitions to adjacent states are allowed, giving the set of transition intensities
{q12(t), q21(t), q23(t), q32(t), q34(t), q43(t), q45(t), q54(t)},

M2: only transitions to adjacent higher states are allowed, giving the set of transition
intensities {q12(t), q23(t), q34(t), q45(t)} .

Model M2 is, as stated, inconsistent with the observed data as many individuals experience downward
transitions over successive observation times, which are approximately 6 months apart; Table 1 gives the
total transitions of each type for model M1, across all subjects and pairs of successive observation times.
For M2, we therefore use an operational definition of state occupancy; an individual is considered to
never revisit a state that they have left. For example, if the actual observed states over times t0 = 0, t1, t2,



Armitage Lecture 2011: the design and analysis of life history studies 10

t3 for an individual were 1, 2, 1, and 3, then for model M2, the sequence of states would be amended to 1,
2, 2, and 3. This has the undesirable features of tying the definition of states to the observation times and
being inconsistent with the observed data on state occupancy. However, it can be considered a reasonable
way to model progression of retinopathy in the DCCT and is one of the ways this was carried out in the
DCCT Research Group [3]. A second approach in that paper assumed that progression to a higher state
occurred only if it was sustained over two successive observation times. Table 2 shows the total numbers
of transitions for this ‘sustained progression’ model M3.

(b)

1 2 3 4 5

(a)

1 2 3 4 5

Figure 2: Two models for diabetic retinopathy: (a) M1, (b) M2

Table 1: Observed transition counts for five-state model M1 of retinopathy, conventional treatment

To state
1 2 3 4 5

1 1764 464 52 0 0
2 260 743 169 1 2

From state 3 16 108 199 11 3
4 0 0 6 6 0
5 1 0 1 1 3

Section 5.2 in [10] presents detailed analysis of these models, with transition intensities taken to be
piecewise constant. Several clinical papers have used entry to state 3 in models M2 and M3 as ‘progres-
sion of retinopathy’ outcomes and based treatment comparisons on them. M2 and M3 estimate 5-year
progression (i.e. the probability of entry to state 3 by 5 years) as about 0.34 (M2) and 0.28 (M3) for the
treatment group considered here. Model M1 estimates the probability of first entry to state 3 by 5 years
as 0.50, however. The discrepancy with models M2 and M3 is due to the fact that transitions into state
3 (and other states) under M2 or M3 include only a portion of the actual transitions. For example, an
individual who is observed in state 2 on two consecutive 6-monthly visits may have moved to state 3 and
then back to state 2 between visits. The higher estimates of progression to state 3 under M1 are because it
allows this possibility, whereas M2 and M3 do not. This discrepancy would become small if observation
times were close together. Treatment effects based on M1-M3 are a bit less discrepant. For example,
odds ratios (experimental over conventional treatment) for 5-year progression in this primary prevention
cohort are 0.51, 0.41, 0.47 for models M1, M2, and M3, respectively.
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Table 2: Observed transition counts for five-state ‘sustained’ progressive model of retinopathy, conven-
tional treatment

To state
1 2 3 4 5

1 1790 263 26 0 0
2 0 1153 96 0 1

From state 3 0 0 447 7 2
4 0 0 0 5 0
5 0 0 0 0 20

These models reflect the distinction between modeling the dynamics of a disease process and making
simple treatment comparisons. Model M1 represents the actual observed longitudinal retinopathy mea-
sures well (although it can be improved through the inclusion of covariates and biomarkers) but is less
satisfying for comparing the two treatment groups. In clinical studies, simpler progressive models like
M2 and M3 or just models for the time to some event are usually used for comparisons, even though
they may contradict certain features of the observed data. This, however, may inject an extra degree of
measurement error into the treatment comparison.

4.2 EFFECTS OF INTERMITTENT OBSERVATION IN MARKOV MODELS

4.2.1 Precision of estimation

The lengths of time between visits affects the precision of parameter estimates and the possibilities for
model assessment. Kalbfleisch and Lawless [36] provided some general discussion, and Hwang and
Brookmeyer [42] presented a limited numerical study of a progressive three-state, time-homogeneous
Markov model. Aside from this, rather little seems available, and in particular, results for bi-directional
multistate models. I consider here some simple calculations for time-homogeneous Markov models; a
more detailed study will appear in [43].

We can gain insight from two-state models M1 (q12 > 0, q21 > 0) and M2 (q12 > 0, q21 = 0). Model
M1 is bi-directional and M2 corresponds to an exponential survival distribution for the duration of a spell
in state 1. For model M1, it can be found that (Section 4 in [36])

P (s, s+ t) = P (t) =

(
1− π (1− e−αt) π (1− e−αt)

(1− π) (1− e−αt) π + (1− π)e−αt

)
, (8)

where α = q12 + q21 and π = q12α
−1. As t increases, both rows of (8) approach the limiting distribution

(1 − π, π) and it follows that if inter-visit times ∆t are sufficiently large, we may be able to estimate
π precisely but not q12 or q21. Table 3(a) shows ratios of the asymptotic standard deviations for panel
observation with designated ∆t divided by those for continuous observation (∆t = 0), for q̂12, q̂21,
P̂11(1) and P̂11(4), for the case where q12 = q21 = 1. Individuals are seen at times 0,∆t, 2∆t, . . . , 4, with
all individuals in state 1 at t = 0. The asymptotic standard deviations are based on Fisher information,
whose calculation for panel data is described in Section 3 in [36].

Table 3 shows that estimation of q12 and q21 in M1 is very imprecise as ∆t becomes larger than about
the average sojourn time in states 1 or 2 (q−1

12 = q−1
21 = 1). However, estimation of transition probabilities
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Table 3: Ratios of asymptotic standard deviations for estimators of transition intensities and probabilities
in two-state Markov models with (a) q12 = q21 = 1 (M1) (b) q12 = 1, q21 = 0 (M2)

∆t qa12 q21 P11(1) P11(4)

(a) M1 0.5 2.07 1.30 1.64 1.56
1 3.73 4.07 2.00 1.63
2 18.6 18.7 7.64 1.94

(b) M2 0.5 1.01 - 1.01 1.01
1 1.04 - 1.04 1.04
2 1.86 - 1.86 1.86

Values of P11(t) in (a) are P11(1) = 0.568, P11(4) = 0.500 and in (b) P11(1) = 0.368, P11(4) = 0.018.
a Values for each parameter θ are SD(θ̂) based on panel data with the given ∆t divided by SD(θ̂) based
on continuous observation.

P11(t) (which for large t are almost equal to 1−π, as is P21(t)) is much less affected. A caveat is that the
estimates depend on the validity of the assumed Markov model. Table 3(b) shows ratios of asymptotic
standard deviations for model M2; estimation of q12 is much less affected by larger ∆t.

Bi-directional models are important for describing (repeatable) transient spells that may occur in life
history processes, for example, periods of unemployment, disability or hospitalization. Our ability to
estimate transition intensities and other features such as sojourn time distributions is limited in studies
with widely spaced follow-up times, unless (partial or full) information on transition times can be retro-
spectively determined at each visit. However, as for progressive models, we can estimate the marginal
probabilities of being in specific states reasonably well; this is valuable for predicting population-level
outcomes and associated costs. Qualitatively similar results apply to more complex models [43].

4.2.2 Robustness and model assessment

When transition times are fully observed or right-censored, Markov nonparametric (Aalen-Johansen)
estimates also provide consistent estimation of state occupancy probabilities under non-Markov condi-
tions [44,45], provided LTF is independent of the multistate process. Datta and Satten [46] extended this
to cover state-dependent LTF through the use of inverse probability of censoring weights (Section 4.3).
These results do not hold when state occupancy is observed only intermittently, but a similar result holds
for discrete-time Markov chains, which can be employed when individuals are all (potentially) seen at a
common set of visit times. I will sketch a derivation and then discuss its implications for the application
of Markov models.

Assume that no covariates are under consideration, and suppose that a cohort ofm individuals have as-
signed observation times t = 0, 1, . . . , T ; the derivation is easily modified if observations are at arbitrary
times t0 < t1 < . . . , tT . Let pr(t) = Pr{Y (t) = r} and prs(t, t + 1) = Pr{Y (t + 1) = s|Y (t) = r} de-
note prevalence probabilities and one-step transition probabilities, respectively, where t = 0, 1, . . . , T −1
and r, s range over states 1, 2, . . . , a. Let Ri(t) equal 1 if individual i is seen at time t and 0 otherwise,
and assume that {Ri(t), t = 0, 1, . . . , T} is independent of {Yi(t), t = 0, 1, . . . , T}. Define
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nrs(t, t+ 1) =
m∑
i=1

Ri(t)Ri(t+ 1)I (Yi(t) = r, Yi(t+ 1) = s) (9)

and nr+(t, t+ 1) =
a∑
s=1

nrs(t, t+ 1). A nonparametric estimate of prs(t, t+ 1) is then given by

p̂rs(t, t+ 1) =
nrs(t, t+ 1)

nr+(t, t+ 1)
r, s = 1, . . . , a (10)

and it is easily seen that this estimate is consistent regardless of whether the process {Y (t), t = 0, 1, . . . , T}
is Markov or not. Further, robust estimates of the pr(t) are obtained from the relationship

ps(t+ 1) =
a∑
r=1

pr(t)prs(t, t+ 1) (11)

by starting with the robust estimates

p̂r(0) =
m∑
i=1

Ri(0)I (Yi(0) = r)

/ m∑
i=1

Ri(0) (12)

and applying (11) recursively. For example, if subjects in the DCCT in Example 4.1 were seen exactly
every half-year, this approach could be used to estimate the probability an individual in a given treatment
group is in each specific state at times 0.5, 1.0, 1.5 years, and so on after randomization.

We can also obtain consistent estimates if individuals are followed from times that are independent
of their life history and if LTF depends only on previously observed life history. This requires modeling
of LTF, and is sketched in the Appendix. Markov models can thus provide robust estimates of expected
state occupancy for individuals or populations, provided care is taken to allow flexible time-independent
transition intensities. Although the approach outlined here applies when individuals are seen at common
times, it is plausible that flexible continuous-time models based on more general intermittent observations
would also give fairly robust estimates. This has implications as well for the assessment of such Markov
models as model-based state occupancy probabilities will tend to agree with empirical (nonparametric)
estimates, as will transition probabilities for short time intervals (t, t+ δ). Thus, although we can assess
the need for time-dependent Markov transition intensities, for example through likelihood ratio tests for
nested models, assessment of the Markov assumption itself is more difficult. Evidence against Markov
models is best assessed by comparison with alternative models. However, comparison with non-Markov
models is more difficult because they are harder to fit. For example, refer to [47] and [48] concerning
semi-Markov models and intermittent observation. When covariates are present, we can likewise compare
different Markov models, but examination of non-Markov models is difficult.

Example 4.2 (Prediction of viral rebounds)

For HIV-positive individuals who have achieved viral suppression (reduction of the virus to non-detectable
levels) through cART (see Example 1.3), the time to a VR, and factors related to it, is of interest. One
approach is to use a survival model with suitably chosen covariates. In [13], a Cox model is used, and it
is noted that the occurrence of viral ‘blips’ is associated with shorter times to VR; a blip is defined as the
occurrence of a detectable viral load at a visit, preceded and followed by non-detectable viral load at ad-
jacent visits. One difficulty with this approach is in assessing the effect of variable times between visits.
An alternative approach is to use a multistate model in which VR is represented as an absorbing state.
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In [49], a model is considered in which state 1 represents non-detectable viral load, states 2, ..., a−1 rep-
resent detectable viral load ranges, and state a represents a VR state (e.g., viral load over 1000 copies per
milliliter). The multistate model allows more detailed modelling of the viral load process, and Markov
models readily deal with variable times between viral load measurements. Modulated Markov models
in which transition intensities depend on previous observed history, such as the occurrence of temporary
increases in viral load, can also be handled. Such models provide estimates of P1a(t), the probability of
a VR by time t.

4.3 LOSSES TO FOLLOW-UP

Letting Ri(tij) indicate whether individual i is seen at scheduled visit time tij , we assume in this section
that an individual is LTF at the first time tij for which Ri(tij) = 0. Intermittent missingness, where an
individual is absent at one visit but present at a later one, is harder to handle and is discussed briefly
in Section 5. If Ri(tij) is conditionally independent of observed life and covariate history D̄i(t) for
t > ti,j−1 given D̄i(ti,j−1), then we can use the (partial) likelihoods (4) and (5) for estimation, with
ki = maxj(Ri(tij) = 1). If this ‘sequential missing at random’ (SMAR) condition [50] does not hold
but there exists a vector xci(ti,j−1) of observed variables such that Ri(tij) is conditionally independent
of {D̄i(t), t > ti,j−1} given xci(ti,j−1) and D̄i(ti,j−1), then we can use inverse probability of censoring
weights to adjust the log likelihoods or estimating functions on the basis of (4) or (5) [1, 51]. The main
application of inverse probability of censoring weights is in fitting models with limited individual-level
covariates or process history contained in Di(tij); such models are typically used when interest lies in
simple treatment comparisons or population level inferences (e.g., [1, 15]).

When observation times tij are widely spaced, the SMAR assumption is often violated, with the
probability individual i is LTF at tij depending on life or covariate history over (ti,j−1, tij]. Several
authors have proposed not SMAR (NSMAR) models whereRi(tij) depends on bothHi(ti,j−1) and Yi(tij)
(e.g., [30, 31, 50]). They contain assumptions that cannot be checked with the observed data but in some
cases may be useful for sensitivity analysis. Multistate models that include an LTF state can be used for
this purpose, but first, let us consider their use for estimation with intermittent observation.

1

LTF

3

2

λ(t)

α2(t)α1(t)

Figure 3: A model incorporating loss to follow-up (LTF)

Consider the model in Figure 3, where the transition intensity λ(t) from state 1 to 2 is of interest. If
the transition intensities α1(t) and α2(t) into the LTF state differ, then the SMAR condition is violated
under intermittent observation. By modeling LTF, we can, however, adjust for this in the estimation of
λ(t). Note that in this model λ(t) is the transition intensity at time t given that Ri(t) = 1 and that we
cannot estimate the intensity for an individual who is LTF (Ri(t) = 0). For illustration, suppose that
all individuals begin in state 1 (S1) and that if a transition into state 2 (S2) occurs in (tj−1, tj), then if
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Ri(tj) = 1, we can ascertain the transition time t; the exact times of transitions into state 3 (S3) are
not ascertainable. There are then four types of observation for an individual who is in (S1) at t0 and is
observed at times 0 = t0 < t1 < · · · < tk, where tk is the LTF time: they are as follows: (i) still in S1 at tk;
(ii) transition to S2 at time t in (tj−1, tj] and still in S2 at tk; (iii) transition from S1 to S3 in (tk−1, tk]; (iv)
transition to S2 at time t in (tj−1, tj] and then transition to S3 in (tk−1, tk]. The likelihood contributions
from the four outcomes are (i) P11(0, tk); (ii) P11(0, t−)λ(t)P22(t, tk); (iii) P11(0, tk−1)P13(tk−1, tk); (iv)
P11(0, t−)λ(t)P22(t, tk−1)P23(tk−1, tk). We can estimate all the intensities λ(t), α1(t), and α2(t) for this
model. Because exact entry times to S3 are not known, it is best to use (flexible) parametric models for
α1(t) and α2(t). We should note that what makes this approach work is that we follow individuals after
they enter S2.

We can also use this model if exact entry times to S2 are not ascertainable. Moreover, we can use it to
assess the effect of naively considering LTF to be ignorable (SMAR). If a transition into S2 is observed
(at time tj) to have occurred at time t in (tj−1, tj], then we do not estimate λ(t), but

λ∗(t) = λ(t)

{
P22(t, tj)

P11(t, tj) + P12(t, tj)

}
tj−1 < t ≤ tj. (13)

When α1(t) = α2(t), we can see that λ∗(t) = λ(t), but otherwise, estimation of λ(t) is biased. For
example, if λ(t) = λ, α1(t) = α1 and α2(t) = α2, then

λ∗(t) =
λ (λ+ α1 − α2)

λ+ (α1 − α2) exp {− (λ+ α1 − α2) (tj − t)}
. (14)

The bias is positive (λ∗(t) > λ) if α1 > α2, negative if α1 < α2, and is maximal when t = tj−1.
The preceding model does not consider the transition intensity from S1 to S2 in the absence of LTF,

except under the SMAR assumption. Authors such as Barrett et al. [4] considered NSMAR models in
which sensitivity analysis can be undertaken. In the context here, for example, we could consider the
model in Figure 4. We cannot estimate all the four intensities from intermittent observations, and we do
not know if someone entering S2 did so from S1 or S3, and in some cases, whether a person is in S3 or
S4. Note that state 2 and λ(t) in Figure 4 are the same as in Figure 3 but that λ′(t) 6= λ(t) in general.
If we assume that λ′(t) = rλ(t) with r known, then we can estimate λ(t) and examine sensitivity to the
value of r. This, however, makes estimation of λ(t) dependent on r, unlike the model in Figure 3. The
main advantage, and importance, of the model in Figure 4 is in situations where some individuals who
are LTF can be traced, so we can determine whether they entered S3 or S4 and the time of entry to S2 if
that occurred. This allows us to assess whether λ′(t) and λ(t) differ.

4.4 INITIAL CONDITIONS AND HETEROGENEITY

In many studies, some of the panel members have begun a life history process of interest prior to en-
rolment and the start of follow-up. For example, in the CLSA (Example 1.2), one process of interest is
cognitive decline and impairment, and a person may already have some degree of impairment at enrol-
ment. Suppose for discussion that a process begins at age a0 for a specific individual and that they are
enrolled for follow-up at age t0 > a0. The study provides information {D̄(t), t > t0} on the process
history {H(t), t > t0}, along with baseline process and covariate information D(t0). A prospective like-
lihood function for inference purposes in the case of intermittent followup is given by (4). It has been
noted previously that calculation of (5) can be challenging for many models if crucial information in
H(t0) or {H(t), t > t0} is missing from D(t0) and {D̄(t), t > t0}. In this case, model assumptions that
are not fully verifiable may be needed to make progress.
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Figure 4: A model with two LTF states

A much-studied example concerns the distribution of time W from the onset of some condition (e.g.,
HIV infection) to a subsequent event (e.g., an AIDS-defining illness); see for example [52]. This may
be described (ignoring mortality for convenience) as a three-state progressive model with states 1, 2, 3
representing absence of the condition, presence of the condition only, and presence of the condition plus
the subsequent event; W is the sojourn duration in state 2. Suppose the conditional distribution of W
given the time a0 of entry to state 2 is of interest and that enrolment in a study is at time t0 > a0 for
a certain individual. If a0 is known, we can fit models with density f(w|a0; θ) via the left-truncated
likelihood based on f(w|a0; θ)/S(t0− a0|a0; θ), where S(w|a0) = Pr(W ≥ w|a0). However, if a0 is not
part of the initial information D(t0), we would instead have to base a likelihood on

Pr (entry to state 3 at time a0 + w|Y (t0) = 2 ) =

∫ t0
0
f1(a0)f(w|a0; θ)da0∫ t0

0
f1(a0)S(t0 − a0|a0; θ)da0

,

where f1(a) is the density for the time of entry to state 2. If the study includes individuals who are in
state 1 at enrolment, this can support modelling of f1(a0); we need otherwise external information.

Additional complications arise if random effects are considered (e.g., [10, 53]). In particular, if ui is
a random effect associated with the ith individual, then ui would in general be related to Di(ti0), and so
the distribution of ui at ti0 should be conditional on Di(ti0) [54]. Failure to allow for this can lead to
estimation biases; the following example provides an illustration.

Example 4.3 (Cognitive impairment)

The development and progression of CI as people age has received much attention (e.g., [4, 32, 55, 56]).
It is apparent that there is considerable heterogeneity in both the age of onset and the progression of
CI, only some of which is currently explainable by known risk factors. Consequently, we need to be
careful care in the modeling and analysis of data on CI. For illustration, consider the rather simple model
in Figure 5, in which state 1 represents no CI, state 2 represents mild CI, and state 3 represents severe
CI. An individual is often assigned a state at any given time on the basis of their response to a test, for
example, the Mini Mental State Examination. It is possible for a person’s score to improve over two
consecutive observations, but for simplicity I consider here a progressive model.
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1 2: MCI

DEAD

3: SCI

Figure 5: A simple model of cognitive impairment and death. MCI, mild cognitive impairment; SCI,
severe cognitive impairment

For the sake of discussion, consider a conditional Markov model in which t represents age, x repre-
sents known risk factors, and u represents unobservable random effects; the transition intensities I shall
focus on are from states 1 to 2 and 2 to 3. Multiplicative models might specify these as

λ12(t|u, x) = u12λ
0
12(t)eβ12x and λ23(t|u, x) = u23λ

0
23(t)eβ23x.

Suppose that an individual in a cohort study such as the CLSA (Example 1.2) is observed from age a0, at
which time they are in state 2. In addition, suppose that the (approximate) age t1 at which they entered
state 2 can be ascertained. With t2 defined as the minimum of the age of entry to state 3 and the age
of the individual at death or the last follow-up time, the prospective likelihood function is based on the
observed data {Y (t), t > a0}, and initial conditions (baseline information) are that Y (a0) = 2 and that
entry to state 2 was at age t1 < a0. This gives the likelihood

L =

∫ ∞
0

Pr (t2, δ2|u, x, t1, Y (a0) = 2) g (u|t1, t2 > a0) du, (15)

where δ2 indicates whether t2 is the observed age of entry to state 3 (δ2 = 1) or the age at death or end of
follow-up (δ2 = 0) and g(u|t1, t2 > a0) is the density of u = (u12, u23) given the initial conditions.

The likelihood (15) avoids left-truncation bias, assuming the adequacy of the models for u and for the
process. Within this framework, it is necessary to model the effect of u on both λ12(t|u, x) and λ23(t|u, x).
If a naive analysis were carried out in which the fact that Y (a0) = 2 was included but the corresponding
selection effect on u was not, then bias would be incurred in the estimation of baseline transition rates
and the effects of risk factors. For example, consider the simple model where there are no covariates x,
λ0

12(t) = λ12, λ0
23(t) = λ23, u12 = u23 = u, and u has a gamma distribution in the population with mean

= 1 and variance v = φ−1. Then, assuming that u does not affect the death intensities in Figure 5, the
expected value of u given that t2 > a0 and t1(< a0) is

E (u|t2 > a0, t1) =
1 + φ

λ12t1 + λ23(a0 − t1) + φ
. (16)

When φ is very large (that is, there is little variability in u), (16) is close to the population average u-
value 1. However, if u varies substantially in the population, then persons with larger value of t1 or larger
values of a0 − t1 are associated with smaller values of u. Conversely, for a given value of a0 − t1 or t1,
persons with larger values of u are underrepresented.

Random-effects modeling gives ‘observable’ intensity functions λ23(t|H(t), x) that depend on the
age t1 of entry to state 2. We can also consider such models without resorting to random effects. For
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example, the preceding model has transition intensity

λ23(t|H(t), Y (t) = 2) =
(1 + φ)λ23

λ12t1 + λ23(t− t1) + φ
.

The crucial point is that delayed observation of an individual’s sojourn in state 2 (i.e., entry to state 2
occurred prior to a0) necessitates modeling the sojourn in state 1, as well as mortality. In studies such
as the CLSA, many individuals are in state 1 upon entry to the study, and there are data to support such
modeling. In studies where this is not the case, we must rely on external information in order to model
λ12(t|H(t)) and mortality from state 1. Finally, studies in which individuals are randomized at some
point to alternative treatment interventions give balance across treatment groups with respect to initial
conditions, thus facilitating the use of simple outcomes for treatment comparisons. However, a detailed
understanding of treatment effects may require joint consideration of initial conditions and treatment.

5 CONCLUDING REMARKS

I have emphasized multistage models here, but the issues considered arise for other models and for most
studies of life history processes. In particular, data collected at intermittent times typically provide partial
information on processes of interest, and this constrains the models and questions that can realistically
be examined. Fairly accurate occurrence times for events or transitions are in principle feasible for
outcomes that are readily observed and recorded (for example, disability spells, hospitalization episodes
or diagnosis of disease), but outcomes related to biological variables, tests or questionnaires are usually
observable only when an individual is seen and so process history between visit times is missing. Well-
designed studies that use non-invasive measurement technology for biological variables, diaries and other
ways to obtain more detailed data may become more common. In addition, linkage of life history study
data to administrative data bases is increasingly common. This facilitates more detailed modeling and
analysis but also raises methodological issues concerning the comparison and combination of data from
different sources.

Multistate models have become very widely used for modeling and analysis in many areas of medicine
and public health. They are useful when dealing with both time-varying markers and clinical events and
facilitate investigation of LTF. They are also the basis for many microsimulation models that are used
for planning and policy making (e.g., [55]). As discussed here, Markov models are most easily fitted
to incomplete data, and they possess robustness properties (Section 4.2.2) where the prediction of state
occupancy at different time points is concerned. In addition, costs or utilities can be associated with
different states, thus allowing assessment of cumulative health costs, quality-of-life measures, and so
on [57].

There are many methodological issues that I have not discussed in any detail. One is measurement
error (Section 3.2). A second is nonignorable process-dependent selection of individuals for a study.
A selection plan is ignorable if the selection of an individual is conditionally independent of their life
history, given baseline information. Nonignorable plans require careful analysis (e.g., [10], Section 6.2)
and this area has received rather limited attention. A third issue concerns process-dependent subsampling
or measurement of specific variables ( [10], Section 6.3). This has received considerable attention in the
case of single event times (e.g., [58]) but has received rather little formal study for more general processes,
although selective subsampling of cohort members for the measurement of expensive variables is often
based on prior process information (e.g., [59]).

A final issue concerns situations where ‘intermittent’ missing data can occur. The simplest case is
when a study involves scheduled visits (e.g., annual), but an individual may miss one or more visits
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and then be seen later. If visits are SMAR, then the methods considered here apply to the observed life
history data. However, if whether or not an individual is seen at time tj is not conditionally independent
of process history following the preceding visit, then the only recourse is to use NSMAR models with
uncheckable assumptions (e.g., [30, 31]) or to seek supplementary data, for example through tracing
individuals or administrative records [29]. Another difficult situation is where individuals appear for
visits in a random fashion. Models that use a point process for the observation times {tij, j = 1, 2, . . .}
for an individual, which is related in some way to the life history process of interest, have been proposed
in special settings (e.g., [60]). Once again, these models involve uncheckable assumptions in cases where
the observation time process is non-ignorable.

Appendix A. Robust Estimation of One-Step Transition and State Occupancy Probabilities

To estimate the pr,s(t, t + 1) and pr(t) of Section 4.2.2 under state-dependent LTF, we assume that a
model for

πi(t+ 1) = Pr
{
Ri(t+ 1) = 1|Ȳi(t)

}
can be specified and fitted and that Ri(t + 1) is independent of {Yi(s), s ≥ t + 1}, given Ȳi(t). The
estimating equation

m∑
i=1

Ri(t+ 1)

πi(t+ 1)
I (Yi(t) = r) {I (Yi(t+ 1) = s)− prs(t, t+ 1)} (17)

is seen to have expected value zero for all r, s and t by first taking the expectation with respect toRi(t+1)
given Ȳi(t) and then the expectation with respect to Yi(t+ 1) given Yi(t). This is the Inverse Probability
of Censoring approach of Robins et al. [51]. For consistent estimation of prs(t, t + 1), we require a
consistent estimate π̂i(t+ 1) of πi(t+ 1); refer to Hajducek and Lawless [1] for discussion of this. Then,
we estimate prs(t, t+ 1) by replacing nrs(t, t+ 1) in (10) with

ñrs(t, t+ 1) =
m∑
i=1

Ri(t+ 1)

π̂i(t+ 1)
I (Yi(t) = r, Yi(t+ 1) = s) (18)

and defining ñr+(t, t+ 1) accordingly.

ACKNOWLEDGEMENTS

This paper is based on the 9th Armitage Lecture, presented on November 9, 2011 at the Medical Research
Council Biostatistics Unit in Cambridge, UK. The support and hospitality of the Biostatistics Unit are
gratefully acknowledged. The author thanks the DCCT sponsored by the National Institute of Diabetes
and Digestive and Kidney Diseases of the US National Institutes of Health for access to data on the
DCCT and Janet Raboud and the CANOC for access to CANOC data. Thanks to Richard Cook for
valuable comments, to Ker-Ai Lee for technical assistance, and to Narges Nazeri Rad for providing
information for Table 3. The authors research was supported by the Natural Sciences and Engineering
Research Council of Canada.

REFERENCES

[1] Hajducek DM, Lawless JF. Duration analysis in longitudinal studies with intermittent observation
times and losses to followup. Canadian Journal of Statistics 2012; 40 (1): 1–21.



Armitage Lecture 2011: the design and analysis of life history studies 20

[2] Prentice RL, Langer R, Stefanick ML, Howard BV, Pettinger M, Anderson G, Barad D, Curb JD,
Kotchen J, Kuller L, Limacher M, Wactawski-Wende J and for the Women’s Health Initiative Inves-
tigators. Combined postmenopausal hormone therapy and cardiovascular disease: toward resolving
the discrepancy between observational studies and the Women’s Health Initiative Clinical Trial.
American Journal of Epidemiology 2005; 162 (5): 404–414.

[3] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment
of diabetes on the development and progression of long-term complications in insulin-dependent
diabetes mellitus. The New England Journal of Medicine 1993; 329 (14): 977–986.

[4] Barrett JK, Siannis F, Farewell VT. A semi-competing risks model for data with interval-censoring
and informative observation: An application to the MRC cognitive function and ageing study. Statis-
tics in Medicine 2011; 30: 1–10.

[5] Raina PS, Wolfson C, Kirkland SA, Griffith LE, Oremus M, Patterson C, Tuokko H, Penning M,
Ballion CM, Hogan D, Wister A, Payette H, Shannon H, Brazil K. The Canadian Longitudinal
Study on Aging (CLSA). Canadian Journal on Aging 2009; 28: 221–229.

[6] Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for
progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology 1991; 98 (Suppl):
823–833.

[7] Al-Kateb H, Boright AP, Mirea L, Xie X, Sutradhar R, Mowjoodi A, Bharaj B, Liu M, Bucksa JM,
Arends VL, Steffes MW, Cleary PA, Sun W, Lachin JM, Thorner PS, Ho M, McKnight AJ, Maxwell
AP, Savage DA, Kidd KK, Kidd JR, Speed WC, Orchard TJ, Miller RG, Sun L, Bull SB, Paterson
AD and the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and
Complications Research Group. Multiple superoxide dismutase 1/splicing factor serine alanine 15
variants are associated with the development and progression of diabetic nephropathy: The diabetes
control and complications trial/epidemiology of diabetes interventions and complications genetics
study. Diabetes 2008; 57: 218–228.

[8] The Diabetes Control and Complications Trial Research Group. Progression of retinopathy with
intensive versus conventional treatment in the Diabetes Control and Complications Trial. Opthal-
mology 1995; 102: 647–661.

[9] The Diabetes Control and Complications Trial Research Group. Early worsening of diabetic
retinopathy in the Diabetes Control and Complications Trial. Archives of Opthalmology 1998; 116:
874–887.

[10] Cook RJ, Lawless JF. Statistical issues in modeling chronic disease in cohort studies. To appear in
Statistics in Biosciences 2013.

[11] Raboud JM, Loutfy MR, Su D, Bayoumi AM, Klein MB, Cooper C, Machouf N, Rourke S, Walsm-
ley S, Rachilis A, Harrigan PR, Smieja M, Tsoukas C, Montaner JS, Hogg RS, CANOC Collabora-
tion. Regional differences in rates of HIV-1 viral load monitoring in Canada: Insights and implica-
tions for antiretroviral care in high income countries. BMC Infectious Diseases 2010; 10: 1–9. DOI:
10.1186/1471-2334-10-40.

[12] Andersen PK, Borgan O, Gill RD, Keiding N. Statistical Models Based on Counting Processes.
Springer-Verlag: New York, 1993.



Lawless JF 21

[13] Grennan JT, Loutfy MR, Su D, Harrigan PR, Cooper C, Klein M, Machouf N, Montaner JS, Rourke
S, Tsoukas C, Hogg RS, Raboud J, CANOC Collaboration. Magnitude of virologic blips is as-
sociated with a higher risk for virologic rebound in HIV-infected individuals: a recurrent events
analysis. Journal of Infectious Diseases 2012; 205: 1230–1238.

[14] Cook RJ, Lawless JF. The Statistical Analysis of Recurrent Events. Springer Science + Business
Media, LLC: New York, 2007.

[15] Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee K-A. Robust estimation of mean functions and treat-
ment effects for recurrent events under event-dependent censoring and termination: application to
skeletal complications in cancer metastatic to bone. Journal of the American Statistical Association
2009; 104: 60–75.

[16] Bellhouse DR. A new look at Halley’s life table. Journal of the Royal Statistical Society A 2011;
174: 823–832.

[17] Fix E, Neyman J. A simple stochastic model of recovery, relapse, death and loss of patients. Human
Biology 1951; 23: 205–241.

[18] Blumen L, Kagan M, McCarthy PJ . The Industrial Mobility of Labor as a Probability Process.
Cornell University Press: Ithaca NY, 1955.

[19] Coleman JS. Introduction to Mathematical Sociology. Free Press of Glencoe: New York, 1964.

[20] Aalen OO, Borgan O, Gjessing HK. Survival and Event History Analysis: A Process Point of View.
Springer Science + Business Media, LLC: New York, 2008.

[21] Cox DR, Isham V. Point Processes. Chapman and Hall: London, 1980.

[22] Daley DJ, Vere-Jones D. An Introduction to the Theory of Point Processes. Springer: New York,
1988.

[23] Mandel M. Estimating disease progression using panel data. Biometrics 2010; 66: 304–316.

[24] Farewell VT, Su L. A multi-state model for events defined by prolonged observation. Biostatistics
2011; 12: 102–111.

[25] Callegaro M. Seam effects in longitudinal surveys. Journal of Official Statistics 2008; 24: 387–409.

[26] McKeown K, Jewell NP. Current status observation of a three-state counting process with applica-
tions to simultaneous accurate and diluted HIV test data. Canadian Journal of Statistics 2011; 39:
475–487.

[27] Prentice RL. Chronic disease prevention research methods and their reliability, with illustrations
from the Women’s Health Initiative. Journal of the American Statistical Association 2010; 105:
1431–1443.

[28] Prentice RL, Huang Y. Measurement error modeling and nutritional epidemiology association anal-
yses. Canadian Journal of Statistics 2011; 39: 498–509.

[29] Farewell VT, Lawless JF, Gladman DD, Urowitz MB. Analysis of the effect of lost-to-followup on
the estimation of mortality from patient registry data. Applied Statistics 2003; 52: 445–456.



Armitage Lecture 2011: the design and analysis of life history studies 22

[30] Chen B, Yi GY, Cook RJ. Analysis of interval-censored disease progression data via multi-state
models under a nonignorable inspection process. Statistics in Medicine 2010; 29 (11): 1175–1189.

[31] Sweeting MJ, Farewell VT, De Angelis D. Muliti-state Markov models for disease progression in
the presence of informative examination times. Statistics in Medicine 2010; 29: 1161–1174.

[32] Glymour MM. When bad genes look good - APOE*E4, cognitive decline and diagnosis thresholds.
American Journal of Epidemiology 2007; 165: 1239–1246.

[33] Pyy-Martikainen M, Rendtel U. Assessing the impact of initial nonresponse and attrition in the
analysis of unemployment duration with panel surveys. Advances in Statistical Analysis 2008; 92:
293–318.

[34] Steele F, Durrant GB. Alternative approaches to multilevel modelling of survey non-contact and
refusal. International Statistical Review 2011; 79: 79–91.

[35] Jiang Y, Scott AJ, Wild CJ. Adjusting for non-response in population-based case-control studies.
International Statistical Review 2011; 79: 145–159.

[36] Kalbfleisch JD, Lawless JF. The analysis of panel data under a Markov assumption. Journal of the
American Statistical Association 1985; 80 (392): 863–871.

[37] Titman AC. Flexible nonhomogeneous Markov models for panel observed data. Biometrics 2011;
67: 780–787.

[38] Jackson CH. Multi-state models for panel data: the msm package for R. Journal of Statistical
Software 2011; 38 (8): 1–28.

[39] Tom BDM, Farewell VT. Intermittent observation of time-dependent explanatory variables: a mul-
tistate modelling approach. Statistics in Medicine 2011; 30 (30): 3520–3531.

[40] Andersen PK, Klein JP, Rosthoj S. Generalized linear models for correlated pseudo-observations,
with applications to multi-state models. Biometrika 2003; 90: 15–27.

[41] Titman AC, Sharples LD. Model diagnostics for multi-state models. Statistical Methods in Medical
Research 2010; 19: 621–651.

[42] Hwang W and Brookmeyer R. Design of panel studies for disease progression with multiple stages.
Lifetime Data Analysis 2003; 9: 261–274.

[43] Lawless JF, Nazeri Rad N. Estimation and assessment of Markov multistate models with intermit-
tent observations on individuals, 2013. Manuscript.

[44] Aalen OO, Borgan O, Fekjaer H. Covariate adjustment of event histories estimated with Markov
chains: The additive approach. Biometrics 2001; 57: 993–1001.

[45] Datta S, Satten GA. Validity of the Aalen-Johansen estimators of stage occupation probabilities and
Nelson-Aalen estimators of integrated transition hazards for non-Markov models. Statistics and
Probability Letters, 2001; 55: 403–411.

[46] Datta S, Satten GA. Estimation of integrated transition probabilities for non-Markov systems under
dependent censoring. Biometrics 2002; 58: 792–802.



Lawless JF 23

[47] Satten GS, Sternberg MR. Fitting semi-Markov models to interval-censored data with unknown
initiation times. Biometrics 1999; 53: 507–513.

[48] Titman AC, Sharples LD. Semi-Markov models with phase-type sojourn distributions. Biometrics
2010; 66 (3): 742–752.

[49] Lawless JF, Nazeri Rad N. Multistate modelling and predictive model assessment, with application
to viral rebounds in an HIV-positive cohort, 2013. Manuscript.

[50] Hogan JW, Roy J, Korkontzelou C. Tutorial in Biostatistics: Handling drop-out in longitudinal
studies. Statistics in Medicine 2004; 23: 1455–1497.

[51] Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated out-
comes in the presence of missing data. Journal of the American Statistical Association 1995; 90
(429): 106–121.

[52] Brookmeyer R, Gail MH. AIDS Epidemiology: A Quantitative Approach. Oxford University Press:
Oxford, 1994.

[53] O’Keeffe AG, Tom BDM, Farewell VT. Mixture distributions in multi-state modelling- What to
choose? How to choose? Some considerations in a study of psoriatic arthritis. Statistics in Medicine,
2012; 32: 600–619.

[54] Lawless JF, Fong DYT. State duration models in clinical and observational studies. Statistics in
Medicine 1999; 18: 2365–2376.

[55] Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Al-
heimer’s Disease. Alzheimers and Dementia 2007; 3: 186–191.

[56] Tyas SL, Salazar JC, Snowdon DA, Desrosiers MF, Riley KP, Mendiondo MS, Kryscio RJ. Tran-
sitions to mild cognitive impairments, dementia, and death: findings from the nun study. American
Journal of Epidemiology 2007; 165 (11): 1231–1238.

[57] Cook RJ, Lawless JF, Lee K-A. Cumulative processes related to event histories. Statistics and Op-
erations Research Transactions 2003; 27: 13–29.

[58] Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Using the whole cohort in the
analysis of case-cohort data. American Journal of Epidemiology 2009; 169: 1398–1405.

[59] Mueller PW, Rogus JJ, Clearly PA, Zhao Y, Smiles AM, Steffes MW, Bucksa J, Gibson TB, Cor-
dovado SK, Krolewski AS, Nierras CR, Warram JH. Genetics of Kidneys in Diabetes (GoKinD)
study: a genetics collection available for identifying genetic susceptibility factors in diabetic
nephropathy in Type 1 diabetes. Journal of the American Society of Nephrology 2006; 17: 1782–
1790.

[60] Sun J. The Statistical Analysis of Interval-Censored Failure Time Data. Springer: New York, 2006.


	Introduction
	Statistical Framework
	Models for life history analysis
	Multistate models
	An Illustration

	Some Design and Analysis Issues
	Definitions of States and Events
	Measurement Error
	Follow-up of panel members
	Panel selection and initial conditions

	Some Technical Issues
	Models Fitting and Analysis
	Effects of Intermittent Observation in Markov Models
	Precision of estimation
	Robustness and model assessment

	Losses to Follow-up
	Initial Conditions and Heterogeneity

	Concluding Remarks

