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Summary

Multistate models provide important methods of analysis for many life history processes, and this
is an area where John Klein made numerous contributions. When individuals in a study group are
observed continuously so that all transitions between states, and their times, are known, estimation
and model checking is fairly straightforward. However, individuals in many studies are observed in-
termittently, and only the states occupied at the observation times are known. We review methods
of estimation and assessment for Markov models in this situation. Numerical studies that show the
effects of inter-observation times are provided, and new methods for assessing fit are given. An illus-
tration involving viral load dynamics for HIV-positive persons is presented.
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1 INTRODUCTION

Multistate (MS) models are widely used to represent and analyze life history processes. In medicine, for
example, they have been used to model disease progression in persons with psoriatic arthritis (O’Keeffe
et al. 2011), the development of diabetic retinopathy (Cook and Lawless 2014), and patient outcomes
following bone marrow transplantation (Klein and Shu 2002). In the MS framework individuals are in
one of a set ofK defined states at any point in time. We let Y (t) denote the state at time t for an individual,
and consider processes {Y (t), t ≥ 0}, where t = 0 denotes a specified time origin. Process features of
interest include transitions between states, sojourn times in states and the times to (first) entry to specific
states, along with their relationship to covariates or other processes.
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Continuous-time MS models can be specified under mild conditions in terms of transition intensity
functions,

λrs(t|H(t)) = lim
∆t→0

P (Y (t+ ∆t) = s|Y (t−) = r,H(t))

∆t
r 6= s (1)

where H(t) denotes the history {Y (s), 0 ≤ s < t} of the process and relevant covariates. Markov
models have λrs(t|H(t)) = αrs(t) and semi-Markov models have λrs(t|H(t)) = αrs(B(t)), where
B(t) is the elapsed time since entry to the current state (r). These models and extensions involving
covariates are readily fitted and assessed when continuous histories {Yi(t), 0 ≤ t < bi} are observed for
a random selection of individuals i = 1, . . . , n (Andersen et al. 1993; Cook and Lawless 2007; Aalen
et al. 2008). However, in many studies data on individuals are collected intermittently, at visit times
t0 < t1 < · · · < tm, and only the states Yi(tj) occupied at these observation times are known; exact
transition times, and in some cases the states visited between observation times tj−1 and tj , are unknown.
This is often termed panel data (e.g. Kalbfleisch and Lawless 1985; Hwang and Brookmeyer 2003).

Our objective in this paper is to consider the effects of intermittent observation on estimation and
assessment of Markov models. Rather little has been written about this. Kalbfleisch and Lawless (1985)
made general remarks and Hwang and Brookmeyer (2003) presented some numerical results on esti-
mation for “progressive” models, in which the only transition permitted from state k is to state k + 1
(k = 1, . . . , K − 1). However, models with bi-directional transitions between certain states are needed
in many applications. Examples include relapse-remitting conditions like repeated infections (Cook and
Lawless 2007, Sect. 6.7.2), recurrent hospitalization spells (e.g. Kvist et al. 2010) and progression of
diseases such as Type 1 diabetes (Cook and Lawless 2014) and multiple sclerosis (Mandel and Betensky
2008). Cook (2000) and Mehtala et al. (2011) have considered time homogeneous two-state Markov
models. The former compares the efficiency of estimation of transition intensities based on intermittent
observation relative to continuous observation, and considers study design for relapse-remitting condi-
tions. Mehtala et al. (2011) focus mainly on estimation of transition intensities and the optimal choice of
initial distribution for different ratios of the intensities for state 1 to 2 and state 2 to 1. They also consider
two-phase designs, where a phase 1 study provides preliminary parameter estimates that can be used to
choose an optimal design for a phase 2 study. In the present paper we consider both two- and three-state
models in our numerical studies, and we compare uni-directional and bi-directional models. We consider
efficiency of both transition intensity and transition probability estimates for Markov models, and also
discuss goodness of fit procedures when observation times vary substantially between and within indi-
viduals. As we show, the effects of intermittent observation are much more severe for models allowing
bi-directional transitions. Consider, for example, the two multi-state diagrams in Figure 1, which are
considered in subsequent sections. In each case transitions in both directions can occur between states
1 and 2, and we might not even know the number of transitions between two consecutive observation
times. Models (a) and (b) are compared in Section 3 with the corresponding three-state models in which
transitions from state 2 to state 1 cannot occur.

In the following sections we review and extend methodology for Markov models. The extensions
include a numerical study of the loss of information due to intermittent observation, improved methods
for assessing goodness of fit when times between observations are variable, and a method for estimating
power for likelihood ratio tests of fit. Section 2 reviews estimation of Markov model parameters based
on intermittent observation of individuals and outlines a procedure for obtaining asymptotic covariance
matrices. Section 3 presents a numerical study of the effects of inter-visit gap times on estimation in
progressive and bi-directional models. Section 4 discusses model assessment and gives a method of
estimating the power of likelihood ratio tests of fit. Section 5 applies the methodology here to the study
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Figure 1: Two multi-state models

of viral load dynamics in a cohort of HIV-positive persons. We also describe and illustrate a method
of obtaining empirical state occupancy probability (prevalence) estimates when observation times are
related to an individual’s previous process history. Section 6 contains some concluding remarks.

2 ESTIMATION AND EFFICIENCY WITH PANEL DATA

2.1 MAXIMUM LIKELIHOOD ESTIMATION

We consider a K-state Markov model with transition intensities (1) of the form qrs(t). The corre-
sponding transition intensity matrix Q(t) has off-diagnonal entries qrs(t), r 6= s and diagonal entries
qrr(t) = −Σs 6=rqrs(t). Estimation of time-dependent intensities from panel data can be computationally
challenging for many models (e.g. see Titman 2011; Cook and Lawless 2014) and in practice, models
with piecewise-constant intensities are widely used. In this case it is assumed that for a set of specified
cut-points 0 = a0 < a1 < · · · < aR =∞ we have

qrs(t) = q(l)
rs al−1 ≤ t < al. (2)

We will focus here on time-homogeneous models for which qrs(t) = qrs for some interval 0 ≤ t < T ,
and consider a cohort of individuals observed over (0, T ) at common times 0 = t0 < t1 < · · · < tm = T .
Piecewise-constant models are handled by summing log-likelihood functions and information matrices
discussed below over the separate time intervals [al−1, al) in (2). In observational studies individuals
i = 1, . . . , n may be seen at varying sets of times tij (j = 1, . . . ,mi), and the norm is for the times
between visits to vary substantially within and between individuals. We discuss this situation in Sections
4 and 5.

Let θ be a parameter vector specifying the unknown transition intensities qrs and any regression
coefficients (see below). The likelihood function based on n independent individuals who are all seen at
times 0 = t0 < t1 < · · · < tm = T is (Kalbfleisch and Lawless 1985)

L(θ) =
n∏
i=1

m∏
j=1

Pyi(tj−1)yi(tj)(wj; θ), (3)

where Prs(w; θ) = P (Yi(t + w) = s|Yi(t) = r; θ) and wj = tj − tj−1 (j = 1, . . . ,m). In some
special models (e.g. Hwang and Brookmeyer 2003; Jackson 2011) there are algebraic expressions for the
transition probabilities Prs(w; θ) but in general they can be obtained numerically for specified w and θ
from the matrix exponential expression

P (w) = exp(wQ). (4)
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This can be computed by methods described by Moler and Van Loan (2003); Kalbfleisch and Lawless
(1985) and Jackson (2011) discuss algorithms for the computation and maximization of (3). The msm
package in R (Jackson 2011) is one of several that will do this, and it also handles piecewise-constant
models. Fixed covariates x may also be added via multiplicative specifications qrs(x) = qrs0 exp(β

′
rsx),

r 6= s, where x is a vector of covariates and β is a corresponding vector of regression coefficients.
Covariates are also allowed to be time-varying in msm, provided they are piecewise-constant.

2.2 ASYMPTOTIC COVARIANCE MATRICES

The expected (Fisher) information matrix I(θ) for θ for a cohort of n independent individuals (Kalbfleisch
and Lawless 1985, Sect. 3.1) has entries

Iuv(θ) = E(
−∂2logL(θ)

∂θu∂θv
)

= Σm
j=1ΣK

r,s=1

Er(tj−1; θ)

Prs(wj; θ)

∂Prs(wj; θ)

∂θu

∂Prs(wj; θ)

∂θv
, (5)

where

Er(tj−1; θ) = Σn
i=1P{Yi(tj−1) = r|Yi(t0); θ} (6)

is the expected number of individuals in state r at time tj−1. This assumes that all individuals are seen
at each of the times t1, . . . , tm. In many studies there is attrition (loss to followup, LTF) and in that case
we multiply the ith term in (6) by πi(tj−1), the probability that individual i will not be LTF at time tj−1.
Kalbfleisch and Lawless (1985, Eq. 3.4) give an expression for the computation of derivatives in (5), but
numerical differentiation is often simpler and accurate. This uses the approximation

∂Prs(w; θ)

∂θu

.
=
Prs(w; θ + ∆u)− Prs(w; θ −∆u)

2δu
, (7)

where ∆u is a vector with a small value δu in the position corresponding to θu and 0 elsewhere.
The asymptotic covariance matrix V (θ) for

√
n(θ̂ − θ) is the limit of nI(θ)−1, assuming some initial

distribution of individuals at time t0 and assuming the Markov model is correct and that θ is the true
parameter vector. It is also the asymptotic covariance matrix when the model is misspecified, with θ then
representing the probability limit of θ̂ as n → ∞ (White 1982). Our interest in V (θ) is two-fold: (i) for
studying the effect of the inter-visit times wj on the information about various model parameters, and (ii)
for study planning decisions concerning the length and frequency of followup. A third use of V (θ) is for
assessing when software such as msm may encounter convergence problems when trying to maximize
L(θ); this occurs frequently when models have numerous states or covariates. For some models the
likelihood function may be nearly flat in certain directions when the wj are too large.

3 NUMERICAL STUDIES

Hwang and Brookmeyer (2003) studied the effects of the number of visits and the distance between them
on estimation of the transition intensities qk,k+1 in a progressive, time-homogeneous Markov model.
Numerical results were given for a three-state model and they show that for a fixed study length, the loss
of efficiency for qk,k+1 compared to continuous observation is small when the gap time w between visits
is less than the average sojourn time q−1

k,k+1 in state k, and is moderate when w ≤ 1.5 q−1
kk+1. However,
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the situation is much different for models in which transitions in both directions between a pair of states
are possible. Some insight into this can be gained from the two-state model with transition intensities q12

and q21, for which the transition probability matrix P (t, t + w) is (Kalbfleisch and Lawless 1985, Sect.
4) (

1− π(1− exp(−αw)) π(1− exp(−αw))
(1− π)(1− exp(−αw)) π + (1− π)exp(−αw)

)
(8)

where α = q12 + q21 and π = q12α
−1. As w increases, both rows of (8) approach the limiting distribution

(1−π, π). This suggests that if the gap time w between visits is large, we will be able to estimate π well,
but estimates of q12 and q21 will be very imprecise.

We consider below the efficiency of maximum likelihood estimates of transition intensities qrs and
of transition probabilities Prs(t) based on panel data, relative to a study of the same size with continu-
ous observation of individuals. The bi-directional two-state model was considered previously by Cook
(2000), who showed that the relative efficiency for q12 and q21 dropped drastically as the gap between
successive observation times increased. For a specific parameter ψ we define the relative efficiency of
ψ̂(w) based on a panel study with individuals seen every w units of time as

reff(ψ̂(w)) =
asvar(ψ̂(0))1/2

asvar(ψ̂(w))1/2
(9)

where ψ̂(0) is the estimate for a study in which observation is continuous (i.e. w = 0), so that exact tran-
sition times are recorded. In (9) we use asvar(ψ̂(w)), the asymptotic variance of ψ̂(w); this is obtained
from the asymptotic covariance matrix V (θ) as described in Section 2.2. The ratios of asymptotic stan-
dard deviations in (9) reflect the relative lengths of confidence intervals for parameters. The asymptotic
covariance matrix for the case of continuous observation is described for general counting processes by
Andersen et al. (1993, Chap. 6). For a time-homogeneous Markov model the covariance matrix for the
transition intensity estimates is diagonal, with

asvar(
√
n(q̂(0)

rs − qrs)) =
qrs

E
(0)
r (T ; θ)

, (10)

where

E(0)
r (T ; θ) = lim(

1

n
Σn
i=1

∫ T

0

P{Yi(t) = r|Yi(0)}dt) (11)

is the average time spent in state r across all individuals over the time period (0, T ). The limit in (11) is
taken by assigning some initial distribution of states at t = 0. As in Section 2.2, (11) can be adjusted for
attrition by multiplying the integrands by πi(t), the probability that individual i is still under observation
(not LTF) at time t.

3.1 TWO-STATE MODELS

We compare the bi-directional two-state model with the progressive two-state model, which is equivalent
to a survival model. We denote models M1a with q12 > 0, q21 > 0 and M1b with q12 > 0, q21 = 0.
For M1a we consider two cases, (i) q12 = 1, q21 = 1, (ii) q12 = 1, q21 = 4. In case (i) the states
have the same average sojourn times whereas in case (ii) the sojourns in state 2 are much shorter, as
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would occur when it represents a transient adverse condition. Two followup times T = 4 and T = 10
are considered, along with different fixed times wj = ∆t between visits. All individuals are in state
1 at t = 0. The ratios (9) of asymptotic standard deviations for estimators of transition intensities and
probabilities are given in Table 1. They show that the relative precision of transition intensity estimators
falls off rapidly with increasing inter-visit times for bi-directional models M1a, but much more slowly for
transition probabilities, especially for larger t. Loss of efficiency is small for the progressive model M1b,
until the inter-visit time is about twice the average sojourn time in state 1. Relative efficiencies for q12 and
q21 are higher for model M1a(i) than for M1a(ii), but the opposite is true for the transition probabilities.
For transition intensities the lower relative efficiency for M1a(ii) is due to the fact that on average more
transitions occur over an inter-visit interval than for model M1a(i). Comparison of Table 1 with similar
results when T = 10 indicate no substantial change in relative efficiency for intensity estimators, but
there can be significant gains for transition probability estimators; this is related to the speed with which
the rows of (8) approach the limiting distribution as w increases. The results in Table 1 are consistent
with earlier comments on Model M1a. They are also consistent with the results of Cook (2000) as far as
the efficiency of q12 and q21 are concerned.

Table 1: Ratios of asymptotic standard deviations for estimators of transition intensities and probabilities
in two-state Markov models with (1) q12 = q21 = 1 (M1a(i)), (2) q12 = 1, q21 = 4 (M1a(ii)), and (3)
q12 = 1, q21 = 0 (M1b)

∆t q12 q21 P11(1) P11(2) P11(4)

M1a(i) 0.25 0.89 0.87 0.64 0.64 0.64
0.5 0.73 0.71 0.62 0.64 0.64
1 0.40 0.40 0.50 0.62 0.60
2 0.08 0.09 0.13 0.44 0.51

M1a(ii) 0.25 0.63 0.64 0.97 0.97 0.97
0.5 0.30 0.30 0.87 0.88 0.88
1 0.04 0.04 0.64 0.70 0.70
2 4.2e-04 4.4e-04 0.01 0.52 0.54

M1b 0.25 0.99 - 0.99 0.99 0.99
0.5 0.99 - 0.99 0.99 0.99
1 0.96 - 0.96 0.96 0.96
2 0.86 - 0.86 0.86 0.86

Values of P11(t) in M1a(i) are P11(1) = 0.568, P11(2) = 0.509, P11(4) = 0.500, in M1a(ii)
P11(1) = 0.801, P11(2) = 0.800, P11(4) = 0.800, and in M1b P11(1) = 0.368, P11(2) = 0.135,
P11(4) = 0.018. The total followup time is 4 years.
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3.2 THREE-STATE MODELS

We first consider the multistate diagram (b) in Figure 1, and each of the cases q21 > 0 and q21 = 0; we
also consider a binary covariate x, with half of the individuals having x = 0 and half x = 1. Models
M2a and M2b have no covariates and transition intensities q12 = 1, q21 = 2, q23 = 1 and q12 = 1,
q21 = 0, q23 = 1 respectively. Models M3a and M3b are the corresponding models with covariate x, and
intensities qrs exp(βrsx), with β12 = −0.2, β21 = −0.5, and β23 = −0.9. Finally, we investigated models
M4a and M4b which are as in Figure 1(a), with transition intensities q12 = 1, q21 = 2, q13 = 0.25 and
q23 = 0.5 for M4a, and q12 = 0.5, q21 = 0, q13 = 0.25, q23 = 0.5 for M4b. In each case, all individuals
were in state 1 at t = 0.

Selected results are shown in Tables 2, 3, and 4. We investigated the same inter-visit and followup
times as in Table 1. We once again give results only for scenarios with T = 4; relative efficiencies with
T = 10 were broadly similar. Table 2 shows results for models M2a and M2b; as with the two-state
models, for bi-directional model M2a there is substantial loss of efficiency for transition intensities as ∆t
increases, though as we would expect, this is much less for q23. Except for P13(1), the loss of efficiency
for transition probability estimators is negligible. Except when ∆t = 2, the relative efficiency is near one
for estimators in the uni-directional model M2b. Table 3 shows the relative efficiencies for estimators of
baseline transition intensities and covariate effects for models M3a and M3b. For model M3a the loss of
efficiency for covariate effects is slightly less than for the qrs as ∆t increases; the relative efficiencies for
the qrs are exactly the same as in Table 2. We note that there is almost no loss of efficiency for β23. For
model M3b there is negligible loss of efficiency for covariate effects, except for β12 when ∆t = 2. We
also compared results for transition probability estimators for individuals with x = 1 for models M3a
and M3b; results for those with x = 0 are exactly as in Table 3. There is virtually no loss of efficiency
relative to continuous observation for either the bi-directional or uni-directional cases.

Table 4 shows results for models M4a and M4b, based on Figure 1(a). The patterns seen here are
qualitatively similar to those in Table 2: there are very substantial drops in relative efficiency for esti-
mators of transition intensities in M4a, but aside from when ∆t = 2 the drops are small for transition
probability estimators. As might be expected, estimators for transitions to the absorbing state 3 show
smaller drops than for q12 and q21. For the uni-directional model M4b there is a more substantial drop in
relative efficiency for the transition intensity estimators than there was for model M2b in Table 2; this is
because observed transitions from state 1 to state 3 over successive observation times have two possible
paths.

Results for prevalence probabilities P1r(t) have been shown in Tables 2, 3, and 4; they are often of
main interest. Relative efficiencies for other transition probabilities are more similar to those for transition
intensities. For example, for model M4a the relative efficiencies for P23(2) are 0.86, 0.70, 0.38 and 0.03
for ∆t = 0.25, 0.50, 1.0, 2.0 respectively.

4 MODEL ASSESSMENT

Intermittent observation also affects our ability to check model assumptions. Kalbfleisch and Lawless
(1985) discussed tests of fit for Markov models when inter-observation times are equi-spaced, but the
assessment of models is much more challenging when observation times vary across individuals. Tit-
man and Sharples (2010a) give a comprehensive review in this case and the R software msm provides
procedures for models with piecewise-constant intensities. The methods in msm involve the compar-
ison of model-based and empirical counts or estimates related to prevalence probabilities, defined as
Pr(t) = P (Y (t) = r), and transition probabilities Prs(t1, t2). For specified values of t, t1 and t2, “em-
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Table 2: Ratios of asymptotic standard deviations for estimators of transition intensities and probabilities
in three-state Markov models with (1) q12 = 1, q21 = 2, q23 = 1 (M2a) and (2) q12 = 1, q21 = 0, q23 = 1
(M2b)

∆t q12 q21 q23 P11(1) P11(2) P11(4) P13(1) P13(2) P13(4)

M2a 0.25 0.80 0.74 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.5 0.56 0.49 0.98 0.97 1.0 1.0 1.0 1.0 1.0
1 0.27 0.23 0.90 0.85 0.99 1.0 0.91 1.0 1.0
2 0.13 0.11 0.72 0.58 0.89 1.0 0.67 0.99 1.0

M2b 0.25 0.99 - 1.0 0.99 0.99 0.99 1.0 1.0 1.0
0.5 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1 0.97 - 0.96 0.97 0.97 0.97 0.99 0.99 0.99
2 0.87 - 0.84 0.87 0.87 0.87 0.95 0.95 0.95

Values of P11(t) and P13(t) in M2a are P11(1) = 0.608, P11(2) = 0.462, P11(4) = 0.270,
P13(1) = 0.178, P13(2) = 0.369, P13(4) = 0.631, and in M2b P11(1) = 0.368, P11(2) = 0.135,
P11(4) = 0.018, P13(1) = 0.264, P13(2) = 0.594, P13(4) = 0.908. The total followup time is 4 years. A
table entry of 1.0 denotes a relative efficiency of 0.995 or greater.

Table 3: Ratios of asymptotic standard deviations for estimators of transition intensities and covariate
effects in three-state Markov models with (1) q12 = 1, q21 = 2, q23 = 1, β12 = −0.2, β21 = −0.5,
β23 = −0.9 (M3a) and (2) q12 = 1, q21 = 0, q23 = 1, β12 = −0.2, β21 = 0, β23 = −0.9 (M3b)

∆t q12 q21 q23 β12 β21 β23

M3a 0.25 0.80 0.74 1.0 0.85 0.80 1.0
0.5 0.56 0.49 0.98 0.66 0.59 1.0
1 0.27 0.23 0.90 0.35 0.30 1.0
2 0.13 0.11 0.72 0.15 0.14 0.90

M3b 0.25 0.99 - 1.0 1.0 - 1.0
0.5 0.99 - 0.99 0.99 - 1.0
1 0.97 - 0.96 0.98 - 1.0
2 0.87 - 0.84 0.90 - 0.99

The total followup time is 4 years. A table entry of 1.0 denotes a relative efficiency of 0.995 or greater.
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Table 4: Ratios of asymptotic standard deviations for estimators of transition intensities and probabilities
in three-state Markov models with (1) q12 = 1, q21 = 2, q13 = 0.25, q23 = 0.5 (M4a) and (2) q12 =
0.5, q21 = 0, q13 = 0.25, q23 = 0.5 (M4b)

∆t q12 q21 q13 q23 P11(1) P11(2) P11(4) P13(1) P13(2) P13(4)

M4a 0.25 0.75 0.74 0.83 0.80 0.99 1.0 1.0 1.0 1.0 1.0
0.5 0.48 0.48 0.66 0.62 0.97 1.0 1.0 0.99 1.0 1.0
1 0.14 0.15 0.40 0.37 0.80 0.96 1.0 0.93 1.0 1.0
2 7e-03 8e-03 0.04 0.05 0.08 0.80 0.97 0.56 0.99 1.0

M4b 0.25 0.97 - 0.94 0.98 1.0 1.0 1.0 0.98 1.0 1.0
0.5 0.93 - 0.88 0.95 1.0 1.0 1.0 0.96 1.0 1.0
1 0.83 - 0.75 0.90 0.99 0.99 0.99 0.90 0.99 1.0
2 0.60 - 0.51 0.76 0.93 0.93 0.93 0.70 0.90 1.0

Values of P11(t) and P13(t) in M4a are P11(1) = 0.515, P11(2) = 0.364, P11(4) = 0.188,
P13(1) = 0.263, P13(2) = 0.469, P13(4) = 0.725 and in M4b are P11(1) = 0.472, P11(2) = 0.223,
P11(4) = 0.045, P13(1) = 0.259, P13(2) = 0.487, P13(4) = 0.779. The total followup time is 4 years. A
table entry of 1.0 denotes a relative efficiency of 0.995 or greater.

pirical” estimates based on the raw data require imputation, since we usually do not know what state an
individual is in at a given time. Pearson-type tests of fit (e.g. Titman 2009, 2010; Titman and Sharples
2010a) are also included in msm.

There are several difficulties with methods that compare model-based and empirical counts or esti-
mates. First, nonparametric Markov estimates of prevalence based on continuous observation are robust
for non-Markov processes, assuming that loss to followup is not related to process history (Aalen et
al. 2001; Datta and Satten 2001). It is plausible that flexible parametric models fitted to intermittently
observed data would also be fairly robust in the case where the observation times are independent of
process history. We examined this in a small simulation study based on the three-state model in Figure
1(b): we assumed the true model was semi-Markov with transition intensities of Weibull form, but fitted
piecewise-constant Markov models. The study is reported in the University of Waterloo PhD thesis of the
second author; briefly, Markov models with several pieces gave accurate estimates of the true prevalence
probabilities P1r(0, t). Because of this robustness, tests of fit based on prevalence can detect departures
from assumed parametric forms for Markov transition intensities, but they may not be able to detect
non-Markov behavior.

A second problem is the need for imputation with empirical prevalence estimates, and the fact this
is not accounted for in formal tests. In addition, prevalence or transition counts involve mixtures of
multinomial variables, and limiting distributions of test statistics depend on unknown parameter values.
To investigate these matters and develop procedures for obtaining honest p-values is difficult. Paramet-
ric bootstrap methods are exceedingly time-consuming except in very simple cases. Titman (2009) has
obtained the limiting distribution of Pearson-type statistics based on transition counts as a linear combi-
nation of independent, single degree of freedom chi-squared variables, but this is complicated to apply
and its adequacy for p-value calculation in finite samples was checked only for three and four state pro-
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gressive models. A third problem is that the empirical estimates of prevalence or transition probabilities
used by current methods may be biased when the times between successive visits for an individual are
related to their process history. In the case of continuously observed processes, inverse probability of
censoring weighted (IPCW) estimation can be introduced for Markov model estimation (e.g. Datta and
Satten 2002; Cook et al. 2009) or empirical prevalence estimation. This does not handle dependent
intermittent observation times. Nonparametric estimates that adjust for dependent visit times can be de-
veloped, as long as they depend only on observed process history up to the preceding visit. We describe
such estimates of prevalence and illustrate their use in Section 5. However, this affects the distributions
of test statistics and it is not currently clear how to obtain reliable p-values with a moderate computing
burden if we want formal tests of fit.

In view of these difficulties, we advocate formal model assessment within the Markov process family
through likelihood ratio tests or local score tests. The latter have been considered by Stavola (1988);
Kalbfleisch and Lawless (1989) and Gentleman et al. (1994); they have the advantage of not requiring
the fitting of alternative models but for relative simplicity they require strong model assumptions. In
the remainder of this section we consider likelihood ratio tests. These are easily implemented and are
asymptotically equivalent to Pearson tests based on transition counts in cases where individuals are seen
at a common set of visit times (Kalbfleisch and Lawless 1985; Titman 2009). Asymptotic chi-squared
approximations for likelihood ratio statistics are reliable for obtaining p-values, provided samples are
moderately large. We show below how the power of tests, and the effect of the gaps between visit times,
can be assessed. The main remaining difficulty is in recognizing non-Markov behavior; simple nonpara-
metric methods are unavailable and non-Markov models are difficult to fit in many settings involving
intermittent observation, aside from certain simple uni-directional models (e.g. see Satten and Sternberg
1999). Titman and Sharples (2010b) have considered bi-directional semi-Markov models with phase-type
state sojourn distributions, though they are unwieldy except in simple situations.

A MS model M0 can be tested against an expanded model M1 that includes it via a likelihood ratio
statistic Λ = 2 logL(θ̂1) − 2 logL(θ̂0), where θ0 and θ1 parameterize M0 and M1, and L(θ) is given by
(3). Under the null model M0, Λ is asymptotically chi-squared under mild conditions, assuming that the
observation times for individuals are independent of process history, conditional on observed history up to
the immediately preceding observation time. In addition to considering the precision of estimation under
specific models and observation plans, it is of interest when planning a study to consider the power for
discriminating among different Markov models. We describe briefly how this may be done for likelihood
ratio tests.

Under standard conditions, Λ is asymptotically χ2(d) under modelM0, where d is dim(θ1)−dim(θ0).
Under a sequence of alternative models M1 that approach the null model at rate 1/

√
n, Λ converges in

distribution to non-central χ2(d, δ) with degrees of freedom d and non-centrality parameter δ. This
can be used to approximate the power for a given alternative model by assuming that for a sample of n
individuals, the likelihood ratio statistic Λn is approximately non-central χ2 with non-centrality parameter
δn = nγ. We can estimate γ for a specific model M1 by using the fact that E(Λn)

.
= E(χ2(d, δn)) =

d + δn. One way is to generate replicate samples with n individuals under M1, and to obtain Λ for each,
and then estimate E(Λn) by the mean Λ̄n. An alternative that involves less computation is to generate
a single sample of large size N and obtain the observed value ΛN . We can then estimate γ = δN/N as
γ̂ = (ΛN − d)/N . Then, δn for an arbitrary sample size is estimated by δ̂n = nγ̂.

Since the non-central chi-squared is for finite samples an approximation to the distribution of Λ based
on asymptotic local power, our recommendation for study planning purposes when sample sizes are not
very large is to use the procedure illustrated for preliminary estimates of power. Once approximate sample
sizes and inter-visit times for a study have been identified, more accurate estimates (and confidence
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intervals) for power can be obtained by simulating replicate samples.

5 APPLICATION: VIRAL LOAD VARIATION IN AN HIV COHORT

The Canadian observational cohort on HIV (CANOC) consists of HIV-positive individuals who initiated
combination anti-retroviral therapy (cART) on or after January 1, 2000. Individuals in the cohort who
achieved viral suppression (non-detectable presence of virus in the blood) were then seen at periodic visits
that are nominally about 3 or 4 months apart, but can vary considerably between and within individuals
(Raboud et al. 2010). At the visits, numerous measurements are taken, including biomarkers and clinical
variables related to disease activity. The ability of patients to maintain a low viral load and avoid viral
rebound is a key issue. R ecent studies have examined factors related to viral rebounds (Grennan et al.
2012), and we address this here; the definition of viral rebound used is a viral load of over 1000 copies
per mL. We examine variations in viral load and the occurrence of a first viral rebound by considering the
multistate model shown in Figure 1(b), with states 1-3 defined as follows: state 1 is viral load (VL) 50 or
less, state 2 is VL between 51 and 999, and state 3 is VL 1000 or more. State 3 is absorbing; when a VR
occurs, treatment is typically adjusted so as to achieve viral suppression once again. It is assumed that
the visit process is independent of the multistate process, conditional on observed data up to the previous
visit time; this could be violated in some cases but is unavoidable without further assumptions that would
be uncheckable.

There are systematic differences across the regions contributing to CANOC, and we focus here on
the British Columbia cohort. Anti-retroviral therapy has evolved over time, and we consider the group of
1035 males who initiated cART in 2005 or later. Based on earlier work (Grennan et al. 2012), factors that
will be considered as covariates include age at baseline, indication of injection drug use (IDU) at baseline,
indication of men having sex with men (MSM) at baseline, and type of cART treatment (nonnucleoside
reverse transcriptase inhibitor, NNRTI or protease inhibitor, PI). Table 5 summarizes features of the 1035
individuals and their followup visits; MSM or IDU status is missing for many individuals and we have
chosen to treat missing (NA) as a separate category. We remark that there were 33 deaths among the 1035
individuals. Given the covariates considered, death is not significantly related to the viral load states, and
for simplicity of presentation we do not include it in our model, except that the viral load process is
terminated by death. If death were related to the viral load process, we could include it explicitly as a
fourth state. We also note that for persons who did not die, end of followup terminated on February 28,
2010.

We fit Markov regression models with transition intensities qrs(t|x) = q0rs(t)exp(βrsx), for rs =
12, 21, 23. We consider piecewise-constant baseline intensities as in (2), and utilize the msm package
in R (Jackson 2011). Table 6 shows estimates and standard errors for the baseline transition intensities
and covariate effects for a two-piece model with a change in baseline intensities at t = 2; the time units
are years since initial viral suppression. The baseline intensities are for t < 2; the Time regression
coefficients represent the log ratios of the intensities for t ≥ 2 to those for t < 2. The covariate MSM
is not included, and age is dichotomized, following initial fits and model assessment. Table 6 indicates
that the 2 → 1 transition intensity is much larger than the 1 → 2 and 2 → 3 intensities for all types
of individuals. This is in part due to measurement error; a recorded measurement of less than 50 copies
per mL usually means that no VL was detected, and measured viral loads over 50 may occur when no
virus is actually present. In terms of covariate effects, older ages are associated with smaller 2 → 3
transition intensity, and also with a smaller 2 → 1 intensity. Injection drug users have a substantially
higher intensity of transition to the viral rebound state than do non-users. Persons for whom IDU status
is unknown are more similar to non-users. Those taking PI treatment have a higher 1→ 2 intensity but a
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Table 5: Characteristics of HIV cohort members

Age 18-45 > 45 MSM No Yes NA
576 459 318 292 425

cART NNRTI PI IDU No Yes NA
402 633 323 287 425

Length of FU Q25 Q50 Q75 Gap times Q25 Q50 Q75

0.986 1.863 2.973 0.112 0.189 0.255

FU stands for length of followup, in years; gap times are inter-visit times, in years; Qp is the pth
percentile. NA means not known.

smaller 2→ 3 intensity. Finally, the 1→ 2 transition intensity after two years is smaller than before two
years; this may be a reflection of unobserved heterogeneity, with higher risk individuals tending to reach
the VR state before two years. A likelihood ratio test of the piecewise constant model against the time-
homogeneous model gives an observed log-likelihood difference of 28.4 on 3 degrees of freedom; most
of the evidence for a difference is due to the 1→ 2 intensity. Finally, the fitted model provides estimates
of P13(t|x), the probability of a viral rebound by time t. The estimated probabilities vary considerably
across covariate groups; for example, two-year probabilities for persons on NNRTI range from 0.11 for
persons with age > 45 and IDU = 0 to 0.31 for persons with age ≤ 45 and IDU = 1.

Table 6: The estimated regression coefficients and standard errors (in brackets) of piecewise constant
Markov MS model

Transition log(q̂0rs) Age> 45 IDU=Yes IDU=NA cART=PI Time
vs Age≤ 45 vs No vs No vs NNRTI

1→ 2 -0.265 (0.214) -0.085 (0.139) 0.003 (0.160) 0.112 (0.173) 0.426* (0.180) -0.860* (0.180)
2→ 1 2.653 (0.242) -0.338* (0.144) -0.258 (0.177) 0.201 (0.171) -0.068 (0.201) -0.222 (0.173)
2→ 3 0.523 (0.257) -0.555* (0.196) 0.808* (0.236) -0.214 (0.264) -0.781* (0.204) 0.137 (0.268)

∗| β̂

se(β̂)
| > 1.96

The msm software package provides model checks based on transition counts and prevalence counts.
The examination of state prevalence probabilities is widely used in assessing multistate models and in
addition, the probability of being in state 3 is of special interest in the present context. We now discuss
briefly the determination of empirical prevalence estimates that can be compared with model-based esti-
mates, and consider the bias issue mentioned in Section 4. The msm software (function prevalence.msm,
see also Titman and Sharples 2010a, Sect. 2.2) uses empirical estimates

P̃1r(tl) =
n∑
i=1

δi(tl)I(Yi(tl) = r)/
n∑
i=1

δi(tl), (12)

for a specified set of times tl (l = 1, . . . ,m), where Ci is a censoring time, assumed independent of the
MS process, and δi(tl) = I(Ci ≥ tl) indicates whether a person is still under followup at tl. The state
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occupied at tl is typically unknown when observation times are irregular, and then it is imputed according
to the states occupied before and after tl. In the following discussion, we assume the “mid-point” option
is used; in this case the state is imputed when there are observation times before and after tl, and the state
is taken to be that occupied at the closest visit time. In addition, an individual who entered an absorbing
state prior to tl ≤ Ci is taken to be in that state at tl.

The estimator (12) is in general biased because of the imputation; the determination of bias is mathe-
matically intractable but can be studied by simulation. If visit times tij are related to previous event his-
tory or covariates, then it seems likely that bias could be more severe. We consider briefly an alternative
empirical approach that allows adjustment for process-related observation times; this will be developed
and studied in more detail elsewhere. The approach employs so-called inverse intensity weighted (IIW)
estimating functions introduced by Lin et al. (2004). Let the counting process {Ni(t), t > 0} represent
visit times for person i, with Ni(t) equal to the number of times tij ≤ t. Let Hi(t) represent the history
of visits, the MS process and covariates up to time t−, and λi(t|H(t)) denote the visit intensity function.
A crucial required assumption is that λi(t|Hi(t)) = λi(t|H̃i(t)), where H̃i(t) represents the observed
history up to t−. To estimate P1r(t; θ), where θ represents unknown parameters, we consider estimating
function of the form (Lin et al. 2004)

Uw(θ) =
n∑
i=1

∫ τ

0

gi(t; θ)

λi(t|H̃i(t))
{Yir(t)− P1r(t; θ)}dNi(t), (13)

where τ is an upper limit on observation, Yir(t) = I(Yi(t) = r) and gi(t; θ) is a specified function. It is
readily seen that E{Uw(θ)}=0 under the assumption that E{Yir(t)} = P1r(t; θ). Moreover, if λi(t|H̃i(t))
is dropped from (13), the resulting estimating function does not have expectation zero in general and can
be expected to produce biased parameter estimates. For model checking we would like nonparametric
(empirical) prevalence estimates. If tl (l = 1, . . . ,m) is actually the set of distinct observation times tij
across individuals, then we can let θ consist of elements θl = P1r(tl), and with gi(t; θ) in (13) an m × 1
unit vector, the estimating equation Uw(θ) = 0 gives estimates

P̃1r(tl) =

∑n
i=1

∑mi

j=1 I(tij = tl)wi(tij)Yir(tij)∑n
i=1

∑mi

j=1 I(tij = tl)wi(tij)
, (14)

where wi(tij) = λi(tij|H̃i(tij))
−1 and the visit process is considered to be in discrete time. Since the

visit intensity is unknown in general we have to estimate it, so that wi(tij) is replaced by an estimated
value ŵi(tij). Consistency for the estimates P̃1r(tl) can be achieved if we have consistent estimation of
the visit intensity; this is of theoretical interest but for practical purposes suggests that with a satisfactory
model for the intensity the prevalence estimate should have little bias in large samples.

In many observational studies the number of distinct observation times tij is very large, and few
(perhaps only one) times equal a given tl. In this case the estimates (14) are highly discrete, so some type
of smoothing is needed. Kernel methods are one option, and a simple approach that works quite well is
to partition the time axis into m intervals Il = (al−1, al] where a0 = 0 and am is an upper limit, and let tl
be the mid-point of Il. We then use estimates

P̃1r(tl) =

∑n
i=1

∑mi

j=1 I(tij ∈ Il)ŵi(tij)Yir(tij)∑n
i=1

∑mi

j=1 I(tij ∈ Il)ŵi(tij)
(15)

where ŵi(tij)−1 is the estimated conditional probability that tij is in Il, given prior process and visit
history, when Yi(tij) is a non-absorbing state. When an individual enters an absorbing state, it is assumed
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that they are seen in all subsequent intervals up to Ci, and their component of the sum in the denominator
of (15) is set equal to one for all subsequent Il.

In the case where the visit process is completely independent of the MS process, we could use all
weights equal to one in (15), and it and (12) then give alternative prevalence estimators. We reiterate
that individuals must not be censored when they enter an absorbing state; rather, they should be retained
up to their independent censoring times Ci. This must be done with all of the estimators (12), (14) and
(15), otherwise state-dependent censoring is introduced. (We thank an anonymous referee for pointing
this out for (12) and for noting that prevalence.msm has an option for doing this.) In the case of (14)
and (15), we need either to model the visit intensity following entry to an absorbing state or to assume
that after entry an individual is seen at all subsequent times tl up to their censoring time, and to set the
corresponding weights equal to one. In the CANOC illustration, the former is challenging because an
individual’s treatment is adjusted following a viral rebound, and the viral load process usually begins
again in state 1. Thus we have adopted the second approach in describing (15).

We now return to the CANOC data, and our three-state model. The administrative censoring times
Ci for each person are known, since followup in our data ended on February 28, 2010. The visit process
and prevalence estimates take the end of followup to be the minimum of Ci and a person’s time to death.
We based weights ŵi(tij) on a Cox model fitted to the gap times between successive observations. The
key covariates in the model are age, injection drug use, type of cART, and state at the last visit. Older
persons, injection drug use, and being in state 1 at the last visit are associated with longer times between
visits. We chose intervals Il using values al = 0, 0.25, 0.50, . . . , 4.0; this gave a substantial number of
observation times in each interval without being too severe a discretization of the visit process. Figure 2
shows marginal prevalence estimates for states 1, 2, and 3 obtained (i) using the fitted Markov multistate
model (“Multistate Model Prevalence”), (ii) using the estimates (15) (“IIW Prevalence”), and (iii) using
the R msm.prevalence function (“Empirical-msm Prevalence”). We also computed estimates using (15)
with all weights set equal to one; they were very close to the estimates given by (12). We see from Figure
2 that the empirical msm estimates and the IIW estimates are both close to the Markov model estimates,
although they lie on opposite sides of the Markov estimates for states 1 and 3. The fact that the msm
and IIW estimates are similar likely reflects the fact that although visit times are significantly related to
the previous state and to covariates, the estimated weights do not vary a great deal, with most between
1.0 and 1.5. Simulations conducted to assess the variability of the estimators, which will be reported
elsewhere, do not suggest lack of fit.

Finally, we provide a brief assessment of the effect of inter-visit times on estimation efficiency and on
the power to detect non-homogeneity of the transition intensities. Individuals are nominally seen every
three months, and we first examine the effect of visits every 6 months versus every 3 months. Many
individuals do not adhere closely to the scheduled visits, but this will indicate the approximate effect if
median inter-visit times were closer to 6 months than to three. We consider the estimated model in Table
6 as the true process, except that for simplicity we assume there is no change in transition intensities after
two years. The total followup time for each individual was adjusted to the nearest quarter-year value.
We used the procedures in Section 2.2 to get the asymptotic covariance matrix for baseline intensities
and covariate effects, and Table 7 shows the results. The standard errors for transition intensities and
covariate effects are substantially larger when ∆t = 0.5 years than when it is 0.25 years. The median
inter-visit time in the actual data (see Table 5) is a little over 2 months, and the standard errors in Table
6 are a little smaller than those in Table 7 for ∆t = 0.25 in most cases. Estimates of baseline prevalence
probabilities are essentially the same in each case, but estimates of other transition probabilities such as
P23(1) are much less precise when ∆t = 0.5. Aside from issues of patient care, insights into viral load
dynamics would be reduced if a 6 month visit schedule were used.
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Figure 2: Comparison of MSM, empirical-msm, and IIW prevalences across all individuals.

We also considered the power of the likelihood ratio test to detect non-homogeneity under the two
observation schemes. To reduce computation time we rounded up the total followup time for each person
to the nearest year. We took the fitted model in Table 6 as the alternative model M1 and generated sample
paths for 10,000 individuals under M1 and the distribution of total followup times. We then estimated
the power of likelihood ratio tests of the time homogeneous null model M0 against M1, when inter-visit
times were ∆t = 0.25 and 0.5 years. With n = 1035 (the sample size for the cohort) the power for a test
of size 0.05 was estimated as described at the end of Section 4 to be 0.91 and 0.90 when ∆t was 0.25 and
0.5 respectively. If visits are one year apart, the power is reduced to 0.66.

6 CONCLUDING REMARKS

Transition intensities in a bi-directional Markov model cannot be estimated precisely when the obser-
vation times at which state occupancy is observed are too far apart. Therefore, when followup studies
are planned the relative importance of intensity estimation should be considered; the methods in this
paper can be used to assess precision and power to detect lack of fit, given a proposed set of followup
times. In observational cohorts where times between visits vary widely, the possible dependence of visit
times on previous observed state history should also be assessed; such dependence can bias some model
assessment procedures. We have introduced a form of inverse intensity weighted estimation for state
prevalence functions in Section 5; these procedures are analogous to, but distinct from, inverse proba-
bility of censoring (IPC) weighted estimation that has been used to deal with state-dependent censoring
when individuals are observed continuously over time (e.g. see Cook et al. 2009 and references therein).
A more thorough development and investigation of the IIW estimators will be given elsewhere, along
with a comparison with unweighted estimators.

There are other issues, not addressed here, that deserve study. One is the assessment of models with
time-varying covariates. A second is the potential presence of unobserved heterogeneity in the processes
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Table 7: Standard errors for estimators of baseline transition intensities, covariate effects, and transition
probabilities if all gap times were 3 months (∆t = 0.25), or 6 months (∆t = 0.5).

∆t log(q012) log(q021) log(q023) β12.age β21.age β23.age

0.25 0.248 0.281 0.210 0.185 0.205 0.171
0.5 0.548 0.623 0.226 0.430 0.479 0.179

∆t β12.cART β21.cART β23.cART β12.IDU1 β21.IDU1 β23.IDU1

0.25 0.208 0.236 0.174 0.199 0.224 0.199
0.5 0.442 0.505 0.189 0.507 0.578 0.211

∆t β12.IDU2 β21.IDU2 β23.IDU2 P11(1) P11(2) P13(1)

0.25 0.286 0.302 0.231 0.012 0.021 0.011
0.5 0.709 0.758 0.238 0.013 0.020 0.011

∆t P13(2) P23(1)

0.25 0.021 0.024
0.5 0.020 0.037

of individuals, and the effect of inter-visit times on its detection. A third issue concerns settings where
certain transition times can be observed; this occurs, in particular, when death is one of the states. The
broad conclusions here should still apply for transitions whose exact times cannot be observed, but some
investigation would be useful. Finally, various authors have noted that models for which the covariates
affect the transition intensities in simple ways (such as the multiplicative models used in this paper) do not
provide simple interpretations of covariate effects on transition or prevalence probabilities. Andersen and
Klein (2007) consider “pseudo-observation” methods for prevalence probabilities; we note that another
direct method would be to use marginal models for prevalence functions in conjunction with estimating
functions like (13), and a comparison of approaches would be worthwhile.
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