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Summary

We consider survival or duration times associated with spells (sojourns in some state) or events ex-
perienced by individuals in a population over a specified time period. Duration distributions can be
estimated from data recorded during followup of panel members in longitudinal surveys, but adjust-
ments for the sample design, population structure and losses to followup are typically required. We
provided weighted Kaplan-Meier estimates that allow for these features and, in particular, adjust for
dependent loss to followup through the use of inverse probability of censoring weights.
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1 INTRODUCTION

Models in which individuals may spend time in various states are used in economics, medicine, sociology
and other areas. For example, in this paper we consider employment histories in which a person may be
unemployed, employed, or not in the labor force at any given time. We will use the term spell to denote
a period in which an individual is in some specific state; this terminology is common in economics and
the social sciences (e.g. see Kovacevic and Roberts 2007; Pyy-Martikainen and Rendtel 2009).

Survival or duration distributions associated with spells experienced by individuals in a finite pop-
ulation are of considerable interest as descriptive quantities. For example, Figure 1 shows weighted
Kaplan-Meier (KM) survival function estimates, obtained using methodology developed in this paper,
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for the durations of jobless spells starting in Ontario and Quebec, respectively, in 1999 and 2000, for per-
sons residing in Ontario and Quebec in 1999. These are based on data from Statistics Canada’s Survey
of Labour and Income Dynamics (SLID) and they estimate finite population duration distributions, de-
fined as follows. Let N spells with durations Y1, Y2, . . . , YN be experienced by individuals in a specified
population P , over a specified period of time. Then

SP (y) =
1

N

N∑
j=1

I (Yj ≥ y) (1)

gives the population duration distribution. Note that a given individual may have more than one spell (or
no spells), but the interest here is on the population aggregate number of spells and their durations and
not on the dynamics of jobless spells at the person level. One may also be interested in distributions for
the time to a specific event. For example, the U.K. Millennium Cohort Study (MCS) follows a cohort
sampled from children born in 2000 and 2001 (Plewis 2007), and variables such as the age at which a
child reaches a developmental milestone are of interest. In this case each individual has just one Yj .

Figure 1: Weighted KM estimates for jobless spells starting in 1999 and 2000, from 1999 residents in
(a) Ontario, 359 and 270 spells; (b) Quebec, 311 and 211 spells

The purpose of this paper is to consider estimation of finite population distributions (1) based on data
from cohorts or longitudinal surveys in which a small proportion of the population have been selected
for inclusion in a panel. Such data have features that standard survival analysis methods (e.g. Lawless
2003a) do not address. In particular, the populations considered are typically heterogeneous, and study
individuals are selected according to a survey design involving stratification and clustering. In addition,
data on duration variables are collected at intermittent visits or interviews scheduled over a long period
of time, and individuals may become lost to followup (LTF) before the final visit. For example, in SLID
the panel members are seen annually for six years, and LTF by year 6 is typically in the 20-30% range. In
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the MCS, children were seen over the first seven years at ages 9 months, 3, 5 and 7 years. Approximately
42% of the initial cohort were LTF by age 3 (Plewis 2007). Loss to followup is a serious issue when
estimating distributions (1), because it may depend on covariates or other factors that are also related to
spell durations Y .

A number of authors have considered estimation of (1) from survey data by developing KM estimates
incorporating survey sampling weights (Folsom et al. 1981; Kalton et al. 1992; Williams 1995). Korn
and Graubard (1999) consider alternative estimates based on the combination of stratum-specific survivor
functions. Aside from Lawless (2003b), previous work has disregarded the possibility of dependent loss
to followup, which arises because LTF is related to covariates or previous responses that are also related
to spell duration. This is a serious deficiency, since LTF is almost always related to spell duration when
adjustment for covariates is not made. We remedy this by developing weighted KM estimators that
combine survey design weights with inverse probability of censoring weights (IPCW), as proposed by
Robins (1993) and Satten et al. (2001). We provide variance estimates that account for the use of
a complex sampling design involving stratification and clustering as well as the estimation of loss to
followup probabilities. In addition, we discuss alternative estimators of (1) based on the use of regression
or “augmented” estimation in a finite population context.

The observational framework we consider is as follows. Individuals selected for a panel are seen at
times t = 0, 1, 2, . . . ,M over a period [0,M ]. At the initial visit (t = 0), baseline information about an
individual is collected; this may or may not include details of events or spells that started before t = 0.
At visit t (t = 1, . . . ,M), data Di(t) on the time period (t − 1, t] are collected. It is assumed that in
the case of spells, their exact start and end times can be obtained; cases with measurement error are
discussed briefly in the final section. An important consequence of the intermittent data collection and
LTF is that different weights should be applied to the data for different time periods. Since a spell or a
period involving a time to an event typically overlaps more than one interval (t − 1, t], this leads to a
weighted KM estimator with time-varying weights.

The remainder of the paper is organized as follows. Section 2 discusses duration distributions in a
finite population context, and Section 3 develops weighted KM estimation in the longitudinal survey set-
ting. Section 4 gives results of simulation studies, comparing our estimates and previous design-weighted
estimates. Section 5 applies the methodology to the estimation of jobless spell duration distributions,
based on data from SLID. Section 6 makes some concluding remarks, including discussion of competing
risks, alternative approaches to estimation based on regression and augmentation (e.g. Van der Laan et
al., 2002) and missing or mis-measured data.

2 DURATION DISTRIBUTIONS IN FINITE POPULATIONS

Duration variables are associated with the durations of spells, or with times to or between events. For the
sake of exposition we will treat a duration as the length of a spell or episode spent in some specific state.
Each spell has a calendar start date U and end date V and Y = V − U is the duration. In some contexts
each individual in a finite population may have a latent duration time associated with them. Such is the
case for the time to a developmental milestone for children in scope for the MCS, for example. Often,
however, only some individuals in a population or sample have a spell and an associated duration; for
example, in SLID only some individuals experience a jobless spell over a given period of time. Moreover,
in some contexts such as jobless spells, an individual may have more than one spell and corresponding
durations in a given time period. For example, the estimates in Figure 1 involve some individuals who
had more than one jobless spell in the years indicated.

Thus, it is necessary to be precise in defining a duration distribution (1). We assume that in the
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population of interest, the durations of spells that start during a specified time period are the focus of
estimation, and we will use the following notation. Let mi ≥ 0 denote the number of spells beginning in
the time period for individual i in the population P and if mi > 0 let Yij (j = 1, . . . ,mi) be the duration
of the jth spell. We then re-express (1) as

SP (y) =
1

N

∑
i∈P

mi∑
j=1

I (Yij ≥ y) , (2)

whereN =
∑
i∈P

mi is the total number of spells across the population and it is understood that terms in (2)

equal 0 for persons with mi = 0. Although the spells in question always refer to some specified calendar
time period, we will not indicate this explicitly except where necessary. In addition, we will in all cases
assume an upper limit has been placed on y in (2). For example, if (2) represents spells that begin in the
first two years of a six-year longitudinal survey, then we impose a limit of 4 years or less on y, in order
to make (2) estimable. Finally, note that no assumptions are made, or needed, concerning relationships
between multiple spells for individuals or for variations in spell lengths over time.We reiterate that the
object of interest here is a finite population quantity, given by (1) and (2), so it is a descriptive measure.
If one were interested in explanatory analysis involving covariates, then consideration of within and
between individual variation in spells would be important.

Although (2) is a finite population quantity, for prospective longitudinal surveys its components are
latent at the time a sample is selected, and the processes generating the spells and durations, as well as
losses to followup, are random. It is sometimes useful to consider a conceptual super-population survivor
function S(y) associated with (2), as follows. Let the size N∗ of P become arbitrarily large, while
keeping the same basic structure, and assume that as N∗ →∞, SP (y) converges in probability to a limit
distribution S(y). That is,

S(y) = plim SP (y) = plim
(
N∗

N

)
plim

(
1

N∗

∑
iεP

mi∑
j=1

I (Yij ≥ y)

)
. (3)

Here, N and the durations are random variables in the process generating the population and durations.
Finite populations are usually stratified for sampling, and there may be significant differences in

the duration distributions across strata. Differences across large strata (e.g. differences in jobless spell
duration distributions across certain provinces or states) are normally of substantive interest, so that
separate estimates are considered for each stratum. We assume for the development here that some
portion of the population has been specified and we consider estimation for it. Survey weights are used
to adjust for variation in sampling rates across design strata, and stratification will be recognized in
obtaining variance estimates.

3 WEIGHTED KAPLAN-MEIER ESTIMATION

3.1 WEIGHTED ESTIMATES

We consider a discrete time scale (e.g. days, weeks) for the timing of events, spells and durations. We
refer to S(y) of (3) as a probability distribution and for simplicity develop estimation in terms of it, but
the estimates also apply to the finite population distribution (2). We define for S(y) the associated hazard
function

h(y) = Pr (Y = y|Y ≥ y) =
f(y)

S(y)
, y = 1, 2, 3, . . . , T (4)
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where f(y) = S(y)−S(y+ 1) and similarly define hP (y) . In practice we place some upper limit on the
range of y, here taken as T + 1; by definition we then set h(T + 1) = 1.

We assume as in Section 2 that an individual may have mi ≥ 0 spells, and if mi > 0 for individual i
we let Uij and Vij denote the start and end date for their jth spell, with Yij = Vij − Uij (j = 1, . . . ,mi).
Multiple spells for the same individual are not assumed independent in the superpopulation model. The
observational framework described in Section 1 involves the collection of data Di(t) on spell durations
for panel (sample) members, for the calendar time interval (t−1, t] for t = 1, . . . ,M , along with baseline
data Di(0) collected at t = 0. To allow for premature LTF, we denote Ci ∈ {1, . . . ,M} as the last visit
at which panel individual i is seen; we consider only persons seen at t = 0, though sometimes there is
non-response at this initial visit (e.g. Plewis 2007, Pyy-Martikainen and Rendtel 2008). We also define
the indicator variables

Rit = I(individual i is seen at time t) = I(Ci ≥ t) (5)

for the individuals, denoted for convenience as i = 1, 2, . . . , n, selected for the panel in question.
The two key issues that we address are that (i) panel individuals are selected according to a survey

design, in which the probability individual i is selected is πi, and (ii) the probability a panel individ-
ual becomes LTF at a specific visit may depend on their previous event and duration history, as well as
covariates. These features can lead to substantial bias in naive (unweighted) KM estimators. We now
consider design and IPC weights, intended to produce consistent estimates. We apply the IPCW frame-
work of Robins et al. (1995) to estimation of S(y) from the duration data Di(t), 0 ≤ t ≤ Ci, for each
panel member. Such weighted KM estimation has been considered previously by Robins (1993), Robins
and Finkelstein (2000), Satten et al. (2001) and others, but the details of the present development are
somewhat different because of the complex sampling and intermittent data collection. Lawless (2003b)
noted the desirability of using both design and IPC weights but did not develop variance estimates or
explore the properties of the estimates.

We remark that an alternative way to estimate (2) or (3) is via regression models for Y . Such models
are also of interest in explanatory analytical studies of spell durations (e.g. Hajducek and Lawless 2012;
Kovacevic and Roberts 2007). The approach taken here is simpler to implement when estimation of (2) or
(3) is the objective, and is consistent with related work on design-weighted and on IPCW Kaplan-Meier
estimation. We discuss regression and related estimation methods briefly in Section 6.

The IPCW framework of Robins et al. (1995) applies when covariate vectors Zc
i (t) can be identified

for t = 1, . . . ,M such that Rit is independent of the data Di(s), s ≥ t, given Zc
i (t). We make this

important assumption, where Zc
i (t) can depend only on covariates or previous spell history up to time

t − 1; this assures that data at time t and later which are missing due to an individual being LTF at t are
missing at random (MAR) in the terminology of Rubin (1976). We further denote

pit = Pr (Rit = 1|Zc
i (t)) = Pr (Ci ≥ t|Zc

i (t)) . (6)

The pit are unknown, and the IPCW approach assumes satisfactorily specified parametric models, pit(αt).
As do many authors (e.g. Miller et al. 2001), we use logistic regression models,

logit (λit(αt)) = logit {Pr(Rit = 1|Ri,t−1 = 1, Zc
i (t))}

= α′tZ
c
i (t), (7)

where logit(x) = log(x/(1 − x)) and αt is a vector of regression coefficients. By convention we write
all vectors in column form. Note that pit(α) = λi1(α) . . . λit(α), where for notational convenience we let
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α denote (α′1, . . . , α
′
M)′. The model in (7) can be fitted with standard logistic regression or generalized

linear model software to give maximum likelihood estimates α̂t and estimated probabilities p̂it = pit(α̂t).
Sufficient variables should be included in Zc

i (t) to makeDi(t) conditionally independent ofRit, although
it is impossible to verify this on the basis of the data obtained. Since we consider estimation of marginal
duration distributions S(y) without conditioning on any covariates, Zc

i (t) should include, for example,
terms to reflect strata across which both LTF and duration distributions vary.

To obtain weighted KM estimators, we define interval-dependent indicators

dijt(y) = I (Yij = y, t− 1 < uij + y ≤ t)Rit,

δijt(y) = I (Yij ≥ y, t− 1 < uij + y ≤ t)Rit

for t = 1, . . . ,M and y = 1, . . . , T . For individual i we now consider the following estimating function
for h(y):

UW
i (y) =

mi∑
j=1

wij(y) [dij(y)− h(y)] , (8)

where

wij(y) =
M∑
t=1

δijt(y)

πipit(α)
, dij(y) =

M∑
t=1

dijt(y). (9)

It is shown in the Appendix that under the LTF assumptions above, E
{
RiU

W
i (y)

}
= 0 for a random

member of the population, where Ri = I
(
person i is in the sample

)
. Thus the solution of

UW (y) =
n∑
i=1

UW
i (y) = 0, y = 1, . . . , T (10)

gives a consistent estimator of h(y) and of hP (y). This is

ĥ(y) =
n∑
i=1

mi∑
j=1

ŵij(y)dij(y)/
n∑
i=1

mi∑
j=1

ŵij(y), (11)

where ŵij(y) is given by (9) with α replaced by a consistent estimator α̂. The weighted KM estimator of
S(y) is then given by

Ŝ(y) =

y−1∏
s=1

(
1− ĥ(s)

)
, y = 1, 2, . . . , T. (12)

The IPCW estimation theory relies on a correctly specified model for loss to followup. Of course, no
model is ever exactly “true” and in practice we use models that approximate a true process satisfactorily.
Mild misspecification of the censoring process has little adverse effect but in practice we should take
care to consider all variables that might be related to both durations and LTF, and to check the adequacy
of fitted models. This is discussed in Section 5 and in references such as Miller et al. (2001), where
it is noted that well established methods for checking the models used here exist. We also recommend
examining the weights associated with each observation, across the different intervals (t − 1, t], and
either trimming any very large (relative to the average) weights or assessing the effect of dropping that
individual on estimates. Finally, we note that nonparametric approaches to deal with dependent censoring
have been proposed (e.g. Stitelman and van der Laan 2010). We comment on other approaches in Section
6, but remark here that it is unclear how to adapt these methods to our exact setting.
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3.2 VARIANCE ESTIMATION

Variance estimation for θ̂ =
[
ĥ(1), . . . , ĥ(T )

]′
can be based on asymptotic theory for estimating func-

tions (e.g. White 1982). We want to recognize the sampling design, which involves stratification and
possible within-cluster association, and so we extend the notation of the preceding section along the lines
of Miller et al. (2001), Kovacevic and Roberts (2007) and others. In particular, let us assume that individ-
uals are sampled within R strata, with Kr clusters (primary sampling units) of sizes n∗rk(k = 1, . . . , Kr)
selected within stratum r (r = 1, . . . , R). We then let (r, k, i) indicate individual i within cluster k from
stratum r, and rewrite pit(α) in (9) as prkit(α), δijt(y) as δrkijt(y), and so on.

The solution of the estimating equation (10), based on (8) with ŵij(y) replacing wij(y), can be
viewed as arising from the simultaneous solution of estimating equations for θ and α, where θ =
[h(1), . . . , h(T )]′:

U(θ, α) =
R∑
r=1

Kr∑
k=1

n∗rk∑
i=1

Urki(θ, α) = 0 (13)

G(α) =
R∑
r=1

Kr∑
k=1

n∗rk∑
i=1

Grki(α) = 0. (14)

The terms in (13) are given by (8) as

Urki(θy, α) = I (mrki > 0)

mrki∑
j=1

wrkij(y) [drkij(y)− h(y)] , y = 1, . . . , T (15)

with U(θ, α) a T × 1 vector (U(θ1, α), . . . , U(θT , α))′, where θy = h(y) (y = 1, . . . , T ). The estimating
function G(α) in (14) is a q × 1 vector, where q = q1 + . . .+ qM and qt is the dimension of αt in (7). Its
components come from the separate logistic regression log likelihood functions for α1, . . . , αM . For αt
this is

`t(αt) =
R∑
r=1

kr∑
k=1

n∗rk∑
i=1

Rrki,t−1 log
{
λrkit(αt)

Rrkit [1− λrkit(αt)]1−Rrkit

}
.

With λrkit(αt) given by the logistic regression specification (7), the likelihood estimating function for αt
is the qt × 1 vector G(t)(αt) = ∂`t(αt)/∂αt, which is:

G(t)(αt) =
R∑
r=1

Kr∑
k=1

n∗rk∑
i=1

Rrki,t−1Z
c
rki(t) {Rrkit − λrkit(αt)}

=
R∑
r=1

Kr∑
k=1

n∗rk∑
i=1

G
(t)
rki(αt). (16)

The terms in (14) are then

Grki(α) =
(
G

(1)
rki(α1)

′, . . . , G
(M)
rki (αM)′

)′
. (17)

From an application of results in Robins et al. (1995) or White (1982), a consistent estimator of the
asymptotic covariance matrix for θ̂ is given by

V̂ ar(θ̂) = A11

(
θ̂, α̂
)−1 {

B11

(
θ̂, α̂
)
−B12

(
θ̂, α̂
)
B22(α̂)−1B21

(
θ̂, α̂
)}

A11

(
θ̂, α̂
)−1

, (18)
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where A11(θ, α), B11(θ, α), B12(θ, α), B21(θ, α) and B22(α) are as follows; details are given in the
Appendix. For r = 1, 2, . . . , R define

Ūr(θ, α) =
1

Kr

Kr∑
k=1

n∗rk∑
i=1

Urki(θ, α) =
1

Kr

Kr∑
k=1

Urk.(θ, α)

Ḡr(α) =
1

Kr

Kr∑
k=1

n∗rk∑
i=1

Grki(α) =
1

Kr

Kr∑
k=1

Grk,(α),

where dot subscripts are used to denote summation.
Then, we have

B11(θ, α) =
R∑
r=1

Kr

Kr − 1

Kr∑
k=1

[
Urk.(θ, α)− Ūr(θ, α)

] [
Urk.(θ, α)− Ūr(θ, α)

]′ (19)

B12(θ, α) = B21(θ, α)′ =
R∑
r=1

Kr

Kr − 1

Kr∑
k=1

[
Urk.(θ, α)− Ūr(θ, α)

] [
Grk.(α)− Ḡr(α)

]′ (20)

B22(α) =
R∑
r=1

Kr

Kr − 1

Kr∑
k=1

[
Grk.(α)− Ḡr(α)

] [
Grk.(α)− Ḡr(α)

]′ (21)

and A11(θ, α) is a diagonal T × T matrix with diagonal entries

A11(θ, α)yy =
R∑
r=1

Kr∑
k=1

n∗rk∑
i=1

I (mrki > 0)

mrki∑
j=1

wrkij(y), y = 1, . . . , T (22)

The dimensions of B11(θ, α), B12(θ, α) and B22(α) are T × T , T × q and q × q, respectively.
The matrices (19) - (21) estimate V ar

{
U(θ, α)

}
, Cov

{
U(θ, α), G(α)

}
and V ar

{
G(α)

}
and have been

defined to reflect possible stratum effects and the use of a stratified sampling plan. We reiterate, however,
that if LTF probabilities vary across strata then stratum effects should be incorporated in the covariates
Zc(t) for the LTF models (7). Alternative variance estimates to (18) are discussed in the Appendix.

An asymptotic variance estimate for Ŝ(y) in (12) is given by a straightforward application of the delta
theorem (Lawless 2003a, Appendix B.1), leading to

V̂ ar
{
Ŝ(y)

}
= Ŝ(y)2

y−1∑
s=1

y−1∑
s′=1

Ĉov
[
ĥ(s), ĥ(s′)

]
[
1− ĥ(s)

] [
1− ĥ(s′)

] , (23)

where Ĉov[ĥ(s), ĥ(s′)] is the (s, s′) element of (18).

4 SIMULATION STUDIES

We present here simulation results that demonstrate the properties of combined design - IPC weights for
survivor function estimation, and the inadequacy of using only design weights when LTF is duration-
related. We constructed several finite populations of size N = 100, 000, in which the individuals experi-
ence alternating “not jobless” and “jobless” spells over a 6-year period. Our objective is to estimate the
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finite population survivor function (1) for the durations of jobless spells. The population is constructed
with 10 strata of equal sizes (10,000), with jobless spell durations varying across strata as described be-
low. Estimation of SP (y) in (1) is based on panels obtained by simple random samples of sizes 100,
110, 120, . . ., 190 drawn from strata 1, 2, 3, . . . , 10 respectively, giving a total sample of n = 1, 450
individuals. Individuals in the panel are seen annually and are subject to a LTF process, specified below.
The performance of estimators discussed below is with respect to 1000 independent panels drawn by the
stratified random sampling plan described above.

Table 1: Scenarios for jobless spell durations, measured in weeks

EV ρ β1 β2

I 0.5 0.3 0.226 0.226
II 0.5 0.0 0.365 0.000
III 0.3 0.3 0.247 0.000
IV 0.3 0.3 0.1535 0.1535

For simplicity we consider two covariates (X1i, X2i) per individual, with values in the population
generated from a bivariate normal distribution with both means 0, variances 1, and correlation ρ. For
convenience we start each individual with a “not jobless” spell. Not jobless spells and jobless spells have
durations that are mutually independent, givenX1 andX2, and they are generated for the finite population
of individuals as follows.

(i) Durations Yrij for the jth jobless spell for person i in stratum r (r = 1, . . . , 10; i = 1, . . . , 10000;
j = 1, 2, . . .) follow a log-normal distribution where Y ∗rij = log Yrij is, given covariates x1ri and
x2ri, normal with mean

µ∗ri = α∗r + β0 + β1x1ri + β2x2ri (24)

and variance σ2. The values α∗r (r = 1, . . . , 10) in (24) were generated from a normal distribution
with mean 0 and variance 0.084 and then centred about their mean, giving α∗r = ( - 0.366, -0.125,
-0.119, -0.116, -0.055, -0.029, -0.006, 0.164, 0.318, 0.334) for r = 1, . . . , 10. These values were
chosen to represent a moderate amount (about 23%) of explained variation in the distribution of
log duration times. The values for β1, β2 in (24) and for σ were chosen so that X1, X2 explained
either 30% or 50% of the variation in log duration times, and β0 was chosen to give a median
jobless spell duration of 24 weeks. Choosing σ2

y∗ = V ar(Y ∗rij) = 0.36 and noting that (a) σ2
y∗ =

V ar(α∗) +β2
1 +β2

2 + 2ρβ1β2 +σ2 and (b) the variation explained by X1, X2 is EV = 1−σ2/σ2
y∗ ,

we arrived at four scenarios given in Table 1. Durations are measured in weeks.

(ii) Durations for “not jobless” spells were, conditional on x1ri and x2ri, exponential with mean γ1 exp(γ2x2ri),
with γ1 = 11.619, γ2 = 0.155 (durations measured in weeks). This results in about 40% of the
population experiencing at least one jobless spell over the six-year period.

(iii) Finally, LTF was generated for sampled individuals from a logistic regression model (7) in which

logit (λrit(α)) = α0t + α1t x2ri t = 1, . . . , 5, (25)

where α0t = 2.131 and α1t = −0.536 (t = 1, . . . , 5). This results in about 50% of individuals LTF
before year 6. We estimated the LTF probabilities pit(α) assuming (25) to be true.
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The finite population duration distribution in (2) is based on the jobless spells for the 100,000 popu-
lation members under each scenario. The distribution SP (y) uses data extending beyond the 6 years of
followup, for spells that were still ongoing at the 6 years. Because the duration distributions are stable
over time, this does not disadvantage the estimators, which are based only on data over the 6 years.

Table 2 shows bias, standard deviation, average standard error and nominal 0.95 confidence interval
coverage for the weighted KM estimators of (2) at selected durations y. In both scenarios I and IV the
fact that X2 affects both duration and LTF results in bias when only design weights are employed in
(11) and (12). For the combined design-IPC weighting, the average of the standard errors based on (18)
and (23) is slightly smaller than the standard deviation of Ŝ(y) across the 1000 samples in Scenario I.
This produces slight under-coverage for the nominal 0.95 confidence intervals, which were based on
treating log

{
− log Ŝ(y)

}
as approximately normal (Lawless 2003a, Sec. 3.2.3.1). There is also slight

under-coverage at shorter durations across other scenarios. Confidence interval coverage for the design-
weighted estimator is much less than 0.95, on the other hand, ranging from 0.70 to 0.80 for scenario I
and from 0.82 to 0.92 for Scenario IV (results not shown in Table 2).

In Scenario II, with β2 = 0 and ρ = 0, design weights on their own are satisfactory, but the inclusion
of IPC weights does not reduce performance. For Scenario II we see that both design and combined
design-IPC weighting performs well. In Scenario III with β2 = 0 and ρ = 0.3, design weights alone
are once again sufficient, but the simulation results show that the combined weights estimator performs
equally well.

On a final note we remark that the use of IPC weights alone in these scenarios is not satisfactory,
because of the variation in jobless spell duration distributions across the strata. Design weighting adjusts
for this, as does the use of stratified variance estimation.

5 APPLICATION: JOBLESS SPELL DURATIONS FROM SLID

We apply the weighted KM methodology to the estimation of jobless spell durations for residents of On-
tario and Quebec, based on the 1999 panel of Statistics Canada’s Survey of Labour and Income Dynamics
(SLID). Details concerning SLID are available from the Statistics Canada web site (www.statcan.gc.ca).
Panel members were followed from 1999 to 2004 if not LTF earlier and for illustration, we consider job-
less spells starting in 1999 and in 2000, for each province. It was necessary to drop some individuals for
whom the start date of a spell was missing due to non-response. This left 359, 170, 311 and 211 spells
for Ontario (1999, 2000) and Quebec (1999, 2000) respectively.

In SLID the top level strata are “economic units”, of which there are 11 in Ontario and 17 in Quebec.
The primary sampling units (PSUs) are geographic blocks known as dissemination areas and from each
stratum, dissemination areas are chosen and then households are sampled within these areas. In variance
estimation calculations we treated the economic units as the strata and PSUs as clusters. This allows
for association of spell durations within individuals, households and PSUs. The 1999 panel (across all
provinces) had 43,683 individuals in total, with about 28% LTF before year 6 (2004). Some individuals
were missing at one annual interview but reappeared later; in our procedures such persons are treated as
LTF from their first missed interview and the effective LTF rate is then about 42%.

Loss to followup was modelled separately for Ontario and Quebec using logistic regression models
(7). Models included covariates based on sex, age, education level, marital and immigration status,
household size and family composition. They were also based on whether the person was a student,
a renter, resided in a urban area, and on whether the person was employed as of the previous year’s
interview. The models were based on a process of variable selection and diagnostic checks (Hosmer
and Lemeshow 2000). Design weights for the weighted KM estimation were the 1999 SLID weights,
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Table 2: Estimation of SP (y) for simulated jobless spell durations

Bias Std. Dev. Aver. SE1 Cov2

y (weeks) SP (y) DES COMB COMB COMB COMB

Scenario I
9 0.914 -0.012 0.000 0.0137 0.0126 0.930

15 0.724 -0.025 0.002 0.0223 0.0207 0.932
21 0.523 -0.032 0.002 0.0248 0.0239 0.947
30 0.302 -0.029 0.002 0.0239 0.0228 0.932
47 0.106 -0.017 0.001 0.0174 0.0165 0.938

Scenario II
10 0.904 0.001 0.001 0.016 0.015 0.924
16 0.717 0.001 0.002 0.024 0.022 0.939
22 0.524 0.001 0.002 0.026 0.025 0.931
31 0.310 0.003 0.004 0.024 0.023 0.939
49 0.104 0.002 0.001 0.016 0.015 0.945

Scenario III
9 0.923 -0.003 0.000 0.014 0.013 0.928

16 0.706 -0.006 0.001 0.024 0.022 0.930
22 0.517 -0.007 0.002 0.025 0.025 0.948
31 0.303 -0.006 0.002 0.023 0.023 0.958
49 0.104 -0.003 0.001 0.015 0.015 0.949

Scenario IV
9 0.920 -0.008 0.000 0.0136 0.0138 0.934

15 0.732 -0.018 0.000 0.0222 0.0212 0.937
22 0.503 -0.021 0.002 0.0246 0.0245 0.948
30 0.311 -0.019 0.002 0.0230 0.0232 0.956
48 0.104 -0.010 0.001 0.0160 0.0160 0.944

Results from 1,000 stratified random samples of size 1,450
1 Average of estimated standard deviations for Ŝ(y) based on (18) and (23)
2 Coverage for nominal 0.95 confidence interval for SP (y)
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which reflect the sampling design plus some calibration. Figure 2 (top panels) shows unweighted KM
estimates and two weighted KM estimates for Ontario residents, based on (i) design weights only, and
(ii) combined design-IPC weights. The bottom panels show pointwise standard errors for Ŝ(y) for (i) and
(ii); for (ii) both the proper standard errors treating the IPC weights as estimates, and “naive” standard
errors, treating them as known, are shown. The latter are given by (18) and (23) with the second term
in the curly brackets in (18) set equal to zero. We see that the naive standard errors are very similar to
those for the “design weights only” estimator, for which the weights are also treated as known. As (18)
suggests, the proper standard errors for (ii) are smaller than the naive ones.

Figure 2: Weighted KM estimates for jobless spell duration probabilities and point-wise standard errors;
(a), (c) for spells starting in 1999 (359 spells and 283 clusters); (b), (d) for spells starting in 2000 (270
spells and 220 clusters), respectively

Although the two weighted estimates in Figure 2 are similar, confidence intervals differ somewhat
because of the differences in standard errors. A similar figure for Quebec residents shows slightly more
difference in the estimates Ŝ(y). As a summary, Table 3 shows estimated median jobless duration and
approximate 95% confidence intervals for each province and year. The confidence intervals were deter-
mined as the set of y-values satisfying -1.96 ≤ Z ≤ 1.96, where Z = {Ŝ(y)− 0.5}/se

(
Ŝ(y)

)
(Lawless

2003a, p. 93).
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Figure 1 and Table 3 indicate that jobless spells starting in 2000 tend to be shorter than those starting
in 1999, for each province. Some of this could be due to persons jobless in a given year being more likely
LTF at the next interview. This type of LTF is “not missing at random” (NMAR) and is not handled by
the IPC weights, which adjust only for the employment status at the preceding interview. We comment
further on this at the end of Section 6. A plot like Figure 1 that was based on separate random samples
of jobless spells starting in (a) 1999 and (b) 2000, and with perfect followup, would not necessarily show
that spells in 2000 tended to be shorter.

Table 3: Estimated median jobless duration, Ontario and Quebec

Ontario Quebec
Year Method Estimate1 CI Estimate CI

1999 DES 29 (21, 32) 25 (19, 31)
2000 DES 21 (19, 29) 21 (16,29)
1999 COMB 30 (25, 32) 25 (19, 30)
2000 COMB 25 (21, 30) 21 (17, 29)
1 Durations are in weeks

6 CONCLUDING REMARKS

This paper provides weighted KM estimates for finite-population survivor functions of spell durations.
In many contexts an individual who is in a particular state can make a transition to any of several other
states; for example, a jobless individual may obtain a job, become self-employed or leave the labor force.
In this case we may, if we wish, consider the duration Y in the competing risks sense, with a variable L
denoting which new state results from the transition. Suppose there are L0 other states that can be entered
from the current state and denote

h`(y) = Pr (Y = y, L = `|Y ≥ y) ` = 1, . . . , L0 (26)

as “cause-specific” hazard functions corresponding to (4). The sub-probability distribution for duration
Y when state ` is entered next is then (Lawless 2003a, Chap. 9)

f`(y) = Pr (Y = y, L = `) = h`(y)S(y), ` = 1, . . . , L0 (27)

where S(y) is the marginal survivor function in (3) without regard to the next state occupied. The sub-
distribution functions are

F`(y) = Pr (Y ≤ y, L = `) =

y∑
s=1

f`(s), ` = 1, . . . , L0. (28)

The discrete hazard functions h`(y) are estimated exactly as in Section 3, except with dijt(y) in (9)
and later expressions replaced by

d`ijt(y) = I (Yij = y, Lij = `, t− 1 < uij + y ≤ t)Rit, (29)
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where Lij is the state occupied following the jth occupation of the base state (e.g. jobless) for individual
i. Note that in estimating f`(y) in (27),

∑L0

`=1 ĥ`(y) = ĥ(y) in (11) and that (12) gives Ŝ(y).
Variance estimation is slightly more involved in this case since the vector θ consists of L0T compo-

nents h`(y) (` = 1, . . . , L0; y = 1, . . . , T ). Some simplification along lines indicated in Appendix 2 can
be made if we use the fact that the matrix A11(θ, α) is block diagonal, with the blocks corresponding to
the values ` = 1, . . . , L0. Variance estimation for F̂`(y), given by (28) with estimates for the h`(y) and
S(y) inserted, follows from the delta theorem, since

F̂`(y) =

y∑
s=1

ĥ`(s)
s−1∏
u=1

{
1−

L0∑
`′=1

ĥ`′(u)

}
. (30)

Other approaches to estimation of a duration distribution from survey data can be considered. One
is to use a regression model S(y|xi), which might possibly improve precision while adjusting for some
design factors and possibly dropout (e.g. Korn and Graubard 1999). For example, if each individual in a
population of size N has exactly one duration Yi, then S(y) could be estimated as

∑n
i=1 π

−1
i Ŝ(y|xi)/N .

It would generally be necessary, however, to adjust for time-varying factors related to loss to followup
(Hajducek and Lawless, 2012) in estimating S(y|x). In addition, it is not obvious how to deal with
settings where only some individuals experience a spell, and this approach is less easily adaptable to
settings where individuals can have multiple spells, where it might be unappealing to model different
spells with a single regression model. Regression estimation of finite population quantities (e.g. Lumley
et al. 2011) has not been applied to such settings.

Similarly, attempts to develop augmented estimators (e.g. Van der Laan et al. 2002; Rotnitzky 2009;
Stitelman and van der Laan 2010) could be undertaken. This would involve combining weighted KM
estimation and regression estimation. This is feasible if an individual can have exactly one spell. Then,
for example, we could consider the estimator

Ŝ(y) =
1

N

N∑
i=1

Ri

πi

{
I(Yi ≥ y)I(C̃i ≥ y)

G̃i(y)
+

1− I(C̃i ≥ y)

G̃i(y)
Ŝ(y|xi)

}
, (31)

where C̃i = Ci−Ui is the effective censoring time for Yi (corresponding to a spell starting at time Ui) and
Gi(y) = Pr(C̃ ≥ y|Zc

i ) is a model for C̃i conditional on covariate histories {Zc
i (t), t > 0}, as in Section

2. Once again, however, it is unclear how this approach can be applied when only some individuals have
spells, and when there can be multiple spells per individual. In addition, one would have to deal with the
sample design probabilities. Similar remarks apply to “enhanced” method of estimation such as those
in Stitelman and van der Laan (2010). In that paper the authors provide a number of ways to estimate
treatment specific survivor functions, but it is not clear how one could deal with the specific aspects of
the problem here. The weighted KM estimates we provide are simple to implement and very useful for
the types of applications considered here, and it is beyond our present scope to consider whether more
complicated approaches could be modified or adapted to this setting. However, future investigations in
this direction might be useful.

In many longitudinal surveys, including SLID, there may be missing information on certain variables
for an individual in a given year, due to non-response or insufficient knowledge for a proxy respondent.
In the case of jobless spells, start times Uij are sometimes missing. This poses a difficult challenge which
has not been addressed here or elsewhere in the literature. Imputation methods or likelihood methods
implemented using EM algorithms require a joint model for the durations of spells in all states, thus
involving much more detailed modeling. Another practical concern is measurement error in reported start
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and end times for spells. For example, with widely spaced interviews a “seam” effect may occur, in which
individuals tend to locate events closer to interview times than they actually are (Callegaro 2008). Missing
and mismeasured variables are data quality issues which are difficult to address methodologically, and
every effort should bemade to design data collection so as to minimize such problems. Pyy-Martikainen
and Rendtel (2008) provide a lucid discussion of measurement error issues and an empirical study based
on a comparison of survey data and Finnish administrative register data on unemployment spells. They
make a number of important suggestions concerning data collection.

It has been assumed that LTF at time t depends only on variables measured up to time t− 1. This is
necessary for the MAR assumption and application of IPCW methods, but when interviews are widely
spaced there is likely to be some dependence on events and other variables for the time interval (t− 1, t].
In some cases it may be possible to trace a random sample of persons LTF but, failing this, one can do
sensitivity analysis (Scharfstein and Robins, 2002) or run simulations to study the effect of non-MAR
factors. Another very important possibility is the use of administrative data to assess (and adjust) survey
data. Pyy-Martikainen and Rendtel (2009) carry out an empirical study of the effects of both initial
nonresponse and LTF, using the survey and administrative data mentioned above. They find that in their
setting, initial nonresponse and LTF are both significant sources of bias.

Finally, this paper deals with estimation of a finite population duration distribution. If we were instead
interested in the durations of successive spells (and the occurrence of such spells) for individuals, then a
different approach involving models for the multi-state processes generating the spells would be needed.
This is more complex; see Hajducek and Lawless (2012) and Pyy-Martikainen and Rendtel (2008) for
some comments and references. If we are interested in marginal duration distribution for spells in a given
state, then methods such as those in Satten and Datta (2002) may be useful.
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A APPENDIX

A.1 UNBIASEDNESS OF ESTIMATING EQUATIONS (10)

Consider a random member of the population P , and let Hi(M) denote the full duration history {Di(1),
. . ., Di(M)} for individual i over [0,M ]. Using (9), we rewrite (8) as

UW
i (y) =

M∑
t=1

mi∑
j=1

δijt(y)

πipit(α)
[dijt(y)− h(y)] , y = 1, 2, ...T (A1)
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and evaluate the expectation of the tth term of RiU
W
i (y) as

EHi(M),Zc
i (t),Z

D
i
E

{
Ri

mi∑
j=1

δijt(y)

πipit(α)
[dijt(y)− h(y)]

∣∣∣Zc
i (t), Z

D
i

}
,

where Ri = I(person i is in the panel sample) and ZD
i is the set of design factors (stratum information)

that specifies πi = Pr(Ri = 1|ZD
i ). It is assumed that Ri is independent of Hi(M) and Zc

i (t), given ZD
i

and that Rit = I(Ci ≥ t) is independent of Hi(M), given ZC
i (t) and Ri = 1. The latter is the MAR

assumption of Section 3. In addition, we consider Hi(M) as random in the superpopulation framework,
but comment below on the finite population case. The above expectation then equals

EHi(M)

{
mi∑
j=1

I (Yij ≥ y, t− 1 < uij + y ≤ t) [dijt(y)− h(y)]

}
,

and the expectation of (A1) is

EHi(M)

{
mi∑
j=1

M∑
t=1

I (Yij ≥ y) I (t− 1 < uij + y ≤ t) [dijt(y)− h(y)]

}

= EHi(M)

{
mi∑
j=1

I (Yij ≥ y) [dij(y)− h(y)]

}

where dij(y) = I(Yij = y). Note that mi ≥ 0 and the Yij (for j = 1, . . . ,mi) are random variables. The
expectation above is, according to the definitions for SP (y) and S(y) in Section 2,

EHi(M)

{
mi∑
j=1

I (Yij = y)− h(y)I (Yij ≥ y)

}
= EHi(M) {mif(y)−miS(y)h(y)} = 0.

More directly, in terms of the finite population SP (y) the Hi(M) (i = 1, 2, ..., N∗) are fixed finite popu-
lation quantities, and the expectation of

∑N∗

i=1RiU
W
i (θ) has terms

N∗∑
i=1

mi∑
j=1

{
I(Yij = y)− I(Yij ≥ y)hP (y)

}
which equals zero by the definition of SP (y) and hP (y). Thus, (8) has expectation 0 with respect to the
sampling plan giving Ri and random LTF process.

A.2 VARIANCE ESTIMATES FOR θ̂

Variance estimates for θ̂ follow directly from asymptotic theory for estimating functions (White 1982), as
we indicate below. For the case of longitudinal data with LTF, Robins et al. (1995) obtained an estimate
from first principles. Adapted to our survey sampling and duration distribution context, this results in
(18). Robins et al. and others (e.g. Miller et al. 2001) express it a little differently, with the center term
in (18) given as (in our case)

R∑
r=1

Kr

Kr − 1

Kr∑
k=1

[
Erk.

(
θ̂, α̂
)
− Ēr

(
θ̂, α̂
)] [

Erk.

(
θ̂, α̂
)
− Ēr

(
θ̂, α̂
)]′

,
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where Erk.
(
θ̂, α̂
)

and Ēr
(
θ̂, α̂
)

come from terms

Erki (θ, α) = Urki (θ, α)−B12 (θ, α)B22 (α)−1Grki (α) . (A2)

This results in a slightly different estimate than (18).
Alternatives to (18) also come from a direct application of the results of White (1982) to the estimating

functions in (13) and (14). The asymptotic covariance matrix for ψ̂ =
(
θ̂′, α̂′

)′
is consistently estimated

by

V̂ ar
(
ψ̂
)

= A
(
ψ̂
)−1

B
(
ψ̂
)−1

A
(
ψ̂
)−1

, (A3)

where, in partitioned form,

A(ψ) =

(
−∂U (θ, α) /∂θ′ −∂U (θ, α) /∂α′

−G(α)/∂θ′ −∂G(α)/∂α′

)
=

(
A11 (θ, α) A12 (θ, α)

0 A22(α)

)

B(ψ) =

(
V ar (U (θ, α)) Cov (U (θ, α) , G(α))

Cov (G(α), U (θ, α)) V ar (G(α))

)
=

(
B11 (θ, α) B12 (θ, α)
B21 (θ, α) B22(α)

)
.

Using the fact that

A(ψ)−1 =

(
A11 (θ, α)−1 −A11 (θ, α)−1A12 (θ, α)A22(α)−1

0 A22(α)−1

)
we obtain V̂ ar(θ̂) as the upper left block of (A2) evaluated at

(
θ̂, α̂
)

:

V̂ ar(θ̂) = A11

(
θ̂, α̂
)−1 {

B11

(
θ̂, α̂
)
− A12

(
θ̂, α̂
)
A22(α̂)−1B21

(
θ̂, α̂
)}

A11

(
θ̂, α̂
)−1

, (A4)

where B(ψ̂) is an estimate of B(ψ). The estimate (A4) differs from (18) in having A12(θ̂, α̂) and
A22(α̂) in place of B12(θ̂, α̂) and B22(α̂), respectively. The estimates are asymptotically equivalent.
This is shown by noting that (i) G(α) is a sum of likelihood estimating functions, and so it follows that
E{A22(α)} = {B22(α)}, and (ii) in the terms of G(θ, α) in (13), the conditional independence of the
random variables Rrkijt and {drkijt(y), I(Yrkij ≥ y, t − 1 < urkij + y ≤ t)} given Zc

rki(t) implies
that E{A12(θ, α)} = E{B12(θ, α)}. In particular regarding (ii), we note that (replacing rki with i for
convenience) the ith terms of A12(θ, α) are

(A12i)ys = −∂Ui(θ, α)y
∂αs

= I(mi > 0)
M∑
t=1

mi∑
j=1

wijt(y)
∂ log pit(α)

∂αs
[dijt(y)− h(y)]

for y = 1, . . . , T and s = 1, . . . ,M . Now,

∂ log (pit(α))

∂αs
=
∑
s′≤t

∂ log λis′(αs′)

∂αs
= I(s ≤ t)

∂ log λis(αs)

∂αs

= I(s ≤ t)Zc
i (s) [1− λis(αs)]
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under the logistic model (7). Thus

(A12i)y,s = I(mi > 0)

mi∑
j=1

M∑
t=1

I(s ≤ t)wijt(y)Zc
i (s) [1− λis(αs)] [dijt(y)− h(y)] (A5)

In addition, the ith terms in B12(θ, α) are

(B12i)y,s = Ui(θ, α)yGi(α)s

= I(mi > 0)

mi∑
j=1

M∑
t=1

wijt(y)Ri,s−1Z
c
i (s) {Ris − λis(αs)} {dijt(y)− h(y)} .

For s > t, the tth term inE{(B12i)y,s} = 0 sinceRis is independent of the entire duration historyHi(M),
conditional on Zc

i (s). For s ≤ t, we have E{Ris − λis(αs)|Ri,s−1 = 1, Rit = 1} = 1 − λis(αs), on the
other hand. Thus,

E {(B12i)y,s} = E

{
I(mi > 0)

mi∑
j=1

M∑
t=1

I(s ≤ t)wijt(y)Zc
i (s) [1− λis(αs)] [dijt(y)− h(y)]

}
= E {(A12i)y,s} .

Finally, we note that A22(α) is a block diagonal matrix with blocks (see (16))

A
(t)
22 (αt) = −∂G(t) (αt) /∂ (α′t) t = 1, . . . ,M

of dimensions qt (t = 1, . . . ,M). Correspondingly, we can use the fact that the estimating functions
G(t)(αt) are mutually independent for t = 1, . . . ,M under the assumptions in the paper, to replace
B22(α̂) in (18) with a block diagonal version.
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