
Score Tests for Association Under Response-dependent Sampling
Designs for Expensive Covariates

ANDRIY DERKACH
Department of Statistical Sciences,

University of Toronto, Toronto, ON, M5S 3G3, Canada

E-mail: derkach@utstat.toronto.edu

JERALD F. LAWLESS
Department of Statistics and Actuarial Science,

University of Waterloo, Waterloo, ON, N2L 3G1, Canada

E-mail: jlawless@uwaterloo.ca

LEI SUN
Department of Statistical Sciences,

University of Toronto, Toronto, ON, M5S 3G3, Canada

E-mail: sun@utstat.toronto.edu

Summary

Response-dependent sampling is widely used in settings where certain variables are expensive to ob-
tain. Estimation has been thoroughly investigated but recent applications have emphasized tests of
association for expensive covariates and a response variable. We consider testing and provide easily
implemented likelihood score tests for generalized linear models under a broad range of sampling
plans. We show that when there are no additional covariates, the score statistics are identical for con-
ditional and full likelihood approaches, and are of the same form as for ordinary random sampling.
Applications in genetics are discussed briefly.
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1 INTRODUCTION

Tests of a null hypothesis H0 of no association between a response variable Y and a p × 1 vector of
covariates X in a population of independent units are of interest in many settings. With either simple
random samples of size n or sampling conditional on X , test statistics are often based on the vector
S =

∑n
i=1(Yi − Ȳ )Xi, which arises as a likelihood score statistic in several linear or generalized linear

models, including Gaussian, binary logistic and Poisson log-linear models. Recently, response-dependent
sampling designs have become of much interest in contexts where the covariatesX are expensive to mea-
sure (Lawless et al., 1999, Scott and Wild, 2011). An important application in genetics is in connection
with tests for association between genetic variants X and a specific quantitative trait Y (Barnett et al.,
2013, Lin et al., 2013, Lee et al., 2014). Two-phase studies are frequently used in such cases (Chatterjee
et al., 2003, Breslow et al., 2009). In particular, phase 1 data on Y and additional covariates Z are avail-
able for all individuals in a cohort or population, and then in phase 2 information on X is obtained for a
subset of individuals whose probability of selection may depend on their (Y, Z) values.

When there are no additional covariates Z, the statistic S can be used to test the null hypothesis H0

under Y -dependent phase 2 sampling, and a permutation distribution can be used to obtain p-values.
However, a model relating Y and X is often proposed, and then model-based likelihood or estimating
function methods can be used (Lawless et al., 1999, Scott and Wild, 2011). Moreover, a model is needed if
estimation of the effect ofX is also of interest or if it is necessary to adjust forZ. Although there is a large
literature on estimation under Y -dependent two-phase sampling, testing has received little attention. The
purpose of this note is to address testing. We show that score tests based on a semiparametric likelihood
take a simple form for a wide range of generalized linear models and sampling plans; this occurs because
the test statistics are specified, and their variances estimated, under H0. We also show that conditional
and full likelihood approaches produce the same score statistic when there are no additional covariates.
This explains previously reported simulation results where tests based on conditional and full likelihoods
have similar power. The full likelihood approach can be applied for many sampling plans for which the
conditional likelihood approach is unavailable, such as sampling designs based on ranks or on residuals
from fitted models of Y given Z. Previous articles have not provided universally valid variance estimates
for statistics based on full likelihood and we give them here.

2 Y -DEPENDENT SAMPLING

We assume that the distribution of Y , given observed covariate vectors X and Z, has probability density
or mass function of the form

f(y | x, z; θ) = f0{y | µ(x, z); θ}, (1)

where f0 is a known function, θ = (β0, β
′, γ′, σ)′, µ(x, z) = β0 + β′x + γ′z and σ may be a scalar

or vector containing scale and shape parameters. This form covers location-scale models, exponential
family generalized linear models, proportional hazards models and other families of distributions. The
probability density or mass function for (X,Z) is written as g(x, z). Following the general framework
of (Lawless et al., 1999), we assume that a cohort or population of units (Yi, Xi, Zi)( i = 1, ..., N ) is
generated from f(y | x, z; θ)g(x, z), and that Yi and Zi are observed for all units. Covariate Xi, however,
is ascertained only for certain individuals and we define the binary indicator Ri = I(Xi is ascertained).
The selection of units for measurement of X can depend on the observed Y and Z; thus, the Xi are
missing at random (Rubin, 1976): pr(R | Y, Z,X) = pr(R | Y, Z). Studies that employ specified
selection probabilities are termed two-phase studies (Chatterjee et al., 2003, Breslow et al., 2009); phase
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1 refers to the collection of data on (Y, Z) and phase 2 to the collection of data on X . We focus on this
setting here, but the methodology extends to situations where X values are missing at random for certain
units, and missingness probabilities have to be estimated.

Two types of sampling that use specified selection probabilities are seen in many applications (Law-
less et al., 1999). Both are based on partitioning the range of (Y, Z) into strata S1, . . . , SK :

(i) Basic stratified sampling, in which the known (Y, Z) for each of the N cohort units are assigned to
their appropriate strata; then simple random samples of specified sizes nj (j = 1, ..., K) are taken
from the units in each stratum j, and their X values are obtained. The stratum sizes Nj are known
and the sampling fractions are therefore pj = nj/Nj .

(ii) variable probability sampling, in which units from the cohort or population are considered as their
(Y, Z) values are generated. Then, if a unit’s (Y, Z) lies in stratum j, it is selected with specified
probability pj . In some contexts variable probability sampling is termed preferential sampling
(Diggle et al., 2010). In this case the total phase 2 sample size and the number of units selected
from each stratum are random variables.

Usually basic stratified sampling is used when a cohort of N units exists at the time when sampling
begins; variable probability sampling is used in settings where units are generated over time. These
sampling designs can be extended to allow selection probabilities π(y, z) = pr(R = 1 | Y = y, Z = z)
that are arbitrary functions of y and z. Forms of quota sampling (McCullagh, 2008) can also be handled
(Lawless et al. (1999), Section 2). It is also possible to base the strata on residuals r from the fit of a
regression model for Y given Z; the missing X remain missing at random in this case. A third type of
sampling used in some areas is what we term rank-based sampling. In this case individuals are selected
according to their Y ranks or their residual r ranks. In many studies units with large and/or small values
of Y or r are over-sampled or, in some cases, sampled exclusively.

Many methods of estimation have been proposed for two-phase studies or missing data more gener-
ally; these include estimating functions that incorporate weights based on the selection probabilities or
calibration (Robins et al., 1994, Lipsitz et al., 1999, Chatterjee et al., 2003, Breslow et al., 2009, Scott
and Wild, 2011) and maximum likelihood methods (Lawless et al., 1999, Little and Rubin, 2002, Ibrahim
et al., 2005, Zhao et al., 2009). For the testing context, likelihood methods are preferred because of their
efficiency and generality. Unlike weighted estimating function methods, they can be applied to situations
where some units have zero probability of selection in phase 2. Both full and conditional likelihood
methods are widely used. Full likelihood estimation (Lawless et al., 1999) is based on the fact that

L(θ, g) =
∏
Ri=1

f(yi | zi, xi; θ)g(xi | zi)
∏
Ri=0

f1(yi | zi; θ, g) (2)

is the likelihood function for the observed data under a wide range of sampling plans for which Xi values
for units with Ri = 0 are missing at random. Each of basic stratified, variable probability and rank
based sampling formed on (Y, Z) or on regression residuals from (Y | Z) satisfy the missing at random
condition (Rubin, 1976). In (2), we redefine g for simplicity to denote the unknown distribution of X
given Z; it is treated as an unknown parameter since it is needed for f1(y | z) =

∫
f(y | z, x)g(x | z)dx,

which denotes the distribution of Y given Z.
Conditional likelihoods can also be used in some settings. The likelihoods can vary according to the

exact sampling plan, but are based on the distribution of Yi for units withRi = 1, given Zi, Xi and the fact
that the units were sampled. For example, in extreme Y sampling there are values Cl, Cu and individuals
sampled come from either stratum S1 consisting of observations with Y ≤ Cl or S2 consisting of those
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with Y ≥ Cu. In recent genetics-related work, Lin et al. (2013) have used full likelihood, whereas
a number of other authors (Huang and Lin, 2007, Li et al., 2011, Barnett et al., 2013) have used the
conditional likelihood

LC(θ) =
∏
Ri=1

f(yi | zi, xi; θ)
pr(Yi ≤ Cl | zi, xi; θ) + pr(Yi ≥ Cu | zi, xi; θ)

. (3)

This is based on the conditional distribution of Yi givenXi, Zi andRi = 1; a general formulation is given
in Section 3.2. Strictly speaking, (3) only applies for variable probability sampling, but Lawless et al.
(1999) show that (3) can be extended to deal with basic stratified sampling by placing terms p1 = n1/N1

and p2 = n2/N2 in front of the two terms in the denominator; in this case LC(θ) is a pseudo-likelihood. It
is an advantage that g(x | z) does not appear in the conditional likelihood and so need not be estimated.
On the other hand, conditional likelihood may be less efficient than full likelihood, and for sampling
designs that are residual-based or rank-based, conditional likelihoods that are independent of g(x | z) do
not exist.

3 LIKELIHOOD-BASED TESTS FOR ASSOCIATION

3.1 FULL LIKELIHOOD

We assume that interest centres on f(y | x, z) for a model of the form (1) and in particular, on testing
H0 : β = 0. We let µi = β0 + β′xi + γ′zi, with xi and zi p × 1 and q × 1 vectors, respectively, and
β = (β1, ...., βp)

′, γ = (γ1, ..., γq)
′. The full likelihood function (2) under missing at random sampling

schemes has response model parameters θ = (β0, β
′, γ′, σ)′. We seek to avoid parametric modelling

assumptions for g and as is conventional (Zhao et al., 2009, Lin et al., 2013), we treat g as a discrete
distribution with support determined by the distinct pairs (xi, zi) in the observed data. For asymptotic
properties, however, we require that Z be discrete.

We let φ0(y | µ, σ) = log{f0(y | µ, σ)} and φ′0(y | µ, σ) = ∂φ0(y | µ, σ)/∂µ. The likelihood (2)
gives a score function for β whose components may then be expressed

Ur(θ, g) =
∂logL(θ, g)

∂βr
=
∑
i∈V

φ′0 (yi | µi, σ)xir +
∑
i 6∈V

E{φ′0 (yi | µi, σ)Xir | yi, zi} (r = 0, 1, ..., p),

where xi0 = 1 and for convenience we let V denote as the set of units with Ri = 1. Under the null
hypothesis H0 : β = 0, the partial score test statistic is the vector

U(θ̂, ĝ) =
∑
i∈V

φ′0 (yi | µ̂i, σ̂)xi +
∑
i 6∈V

φ′0 (yi | µ̂i, σ̂) Ê(Xi | zi), (4)

where θ̂ = (β̂0, 0, γ̂, σ̂) and ĝ are the maximum likelihood estimates under H0, and µ̂i = β̂0 + γ̂′zi.
The expectation in (4) is based on the estimate ĝ, and we consider two cases. First, if X and Z are
independent, then g(x | z) becomes just g(x), and it can be shown that ĝ(x) =

∑
i∈V I(Xi = x)/n and

Ê(Xi | yi, zi) = Ê(Xi) = x̄n, where n is the size of the phase 2 sample V . The first component of (4)
with r = 0 and xi0 = 1 equals zero and this implies that

U0(θ̂, ĝ) =
∑
i∈V

φ′0 (yi | µ̂i, σ̂) +
∑
i 6∈V

φ′0 (yi | µ̂i, σ̂) = 0,
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so the test statistic can be rewritten as

U =
∑
i∈V

φ′0 (yi | µ̂i, σ̂) (xi − x̄n). (5)

We note that ri = φ′0 (yi | µ̂i, σ̂) is a generalized score residual for the fitted model (1) under H0, and that
(5) can also be written as

U =
∑
i∈V

(ri − r̄n)xi, (6)

where r̄n is the average of the residuals for i ∈ V . This statistic has the same form as if the response-
dependent sample V were a random sample.

In the case whereX and Z are not independent, it can be shown from equations (12) and (13) of Zhao
et al. (2009) that Ê(Xi | zi) = x̄n(zi), the mean value of X for individuals in V having Z = zi. This
gives, from (4), that

U(θ̂, ĝ) =
∑
i∈V

φ′0 (yi | µ̂i, σ̂)xi +
∑
i 6∈V

φ′0 (yi | µ̂i, σ̂) x̄n(zi), (7)

and there is no further simplification. A problem in this case is that a zi value observed for a unit i 6∈ V
might not occur in V , and then x̄n(zi) in (7) is undefined. Purely nonparametric estimation of g requires
for asymptotic results, see Section 3.4, that Z be discrete in any case, but for specific samples we may
need to discretize Z further so that an undefined x̄n(zi) does not occur.

Various test statistics forH0 can be based on U , for example linear statistics 1′U or quadratic statistics
such as Hotelling’s U ′var(U)−1U (Derkach et al., 2014). The choice of statistic, and its potential power,
depends on consideration of plausible alternatives to H0. For estimation of var(U) under H0, if X and
Z are independent we can employ the permutation variance estimate X ′cXc

∑
i∈V (ri − r̄n)2/(n − 1),

where Xc denotes the n × p centred X matrix. This can be used along with asymptotic normal or chi-
squared approximations to obtain p-values for tests, or in small to moderate size samples we could obtain
p-values by sampling from the permutation distribution for the test statistic, which arises from randomly
permuting the Xi across the units in V . If X and Z are dependent, a permutation distribution does not
apply, although when dependence is weak Type 1 errors are not distorted much (Anderson and Robinson,
2001). A model-based variance estimate can be used in this case; we discuss this in Section 3.4.

3.2 CONDITIONAL LIKELIHOOD

Consider a variable probability sampling scheme where pr(R = 1 | Y = y, Z = z,X = x) = pr(R =
1 | Y = y, Z = z) = π(y, z) is a known function. A conditional likelihood for θ is based on pr(Y | X =
x, Z = z,R = 1),

Lc(θ) =
∏
i∈V

f(yi | xi, zi; θ)
B(µi, σ)

, (8)

where B(µ, σ) =
∫
f(y | x, z; θ)π(y, z)dy =

∫
f0 (y | µ, σ) π(y, z)dy. Then,

Ur(θ) =
∂logLc(θ)

∂βr
=
∑
i∈V

{φ′0 (yi | µi, σ)− A (µi, σ)}xir, for r = 0, 1, ..., p, (9)

where A(µ, σ) = ∂logB(µ, σ)/∂µ. Under H0 : β = 0, the statistic U =
(
U1(θ̂), ..., Up(θ̂)

)′
is then

U =
∑
i∈V

{φ′0 (yi | µ̂i, σ̂)− A (µ̂i, σ̂)}xi,



Score Tests for Association Under Response-dependent Sampling Designs for Expensive Covariates 6

where µ̂i = β̂0 + γ̂′zi.
Variance estimation for U can be based on observed or expected information from the conditional

likelihood in the case of variable probability sampling. Conditional likelihood can be extended to basic
stratified sampling, in which case the likelihood becomes a pseudo likelihood, and a sandwich variance
estimator should be used. Lawless et al. (1999) provide results for conditional likelihood and pseudo
likelihood.

3.3 CASE WITH NO COVARIATES Z

When there are no supplementary covariates Z, γ disappears in Section 3.2 and we note that with r = 0

and xi0 = 1 the statisticU0(θ) equals zero at β̂0, σ̂. This implies thatA(β̂0, σ̂) = n−1
∑

i∈V φ
′
0

(
yi | β̂0, σ̂

)
and therefore U is exactly the same as the statistic (5) based on full likelihood when γ is dropped.

In the Gaussian case, the test statistic (5) is proportional to S =
∑n

i=1(Yi− Ȳ )Xi, and the equality of
the conditional and full likelihood statistics has previously been shown by (Tang, 2010). Our result shows
this equivalence holds for the very general model of form (1). This indicates that tests of H0 based on
full or conditional likelihood will have the same local power within family (1), and explains why in some
simulation studies (Huang and Lin, 2007) Wald or score statistics based on the two likelihoods have had
similar power. It can also be shown that asymptotic model-based variance estimates for U are equivalent
under the general model (1); a proof for this is given in the 2014 University of Toronto PhD thesis of the
first author. Variance estimation is outlined in the following section.

3.4 VARIANCE ESTIMATES

The model-based covariance matrix of the full likelihood score statistic (7) is described here; the deriva-
tion is outlined in the Supplementary Material. Variance estimation has not previously been addressed
in the full generality of the sampling plans considered here. We assume Z is discrete and with a slight
abuse of notation we denote the distinct values of Z by z(1), ...., z(K); we also let ∆ik = I{zi = z(k)}
and εi = φ′0(yi | µi, σ). In the Supplementary Material, see equation (S.7), we show how the asymptotic
covariance matrix for U can be obtained:

var(U) = var1(U) +
K∑
k=1

[
E

(∑
i∈V

ε2i∆ik

)
−
{E
(∑

i∈V εi∆ik

)
}2

E(nk)

]
var{X | z(k)}, (10)

where the first term in this expression is the covariance matrix of U when values of X for all individuals
i = 1, ..., N are set equal to E(X | Z = zi) and treated as known. Also, nk =

∑N
i=1 I{zi = z(k)}I(Ri =

1) is the number of occurrences of Z = z(k) among units in V . We estimate the first term in (10) by
replacing expected values such asE{φ′′µµ(yi | µi, σ)}with corresponding observed values φ′′µµ(yi | µ̂i, σ̂),
and by replacingE(Xi | zi) with Ê(Xi | zi) = x̄n(zi). Conditional variance var{X | z(k)} is replaced by
the sample covariance matrix based on {xi, i ∈ V : zi = z(k)}. With ri = φ

′
0(yi | µ̂i, σ̂), the remaining

second terms in (10) are estimated by
∑

i∈V

(
ri∆ik −

∑
i∈V

ri∆ik/nk

)2

for k = 1, . . . , K.

In the Supplementary Material, we also show that when there are no covariates Z, the estimate of
(10) is equivalent to the permutation covariance matrix: var(U) = X ′cXcs

2
r . When additional covariates

Z are present then provided they are independent of X , the permutation covariance matrix can still be
used, with ri now the residuals from the fit of Y on Z for the full phase 1 sample of size N .
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4 CONCLUDING REMARKS

The equivalence of score test statistics based on full and conditional likelihoods explains simulation re-
sults in the literature that demonstrate their near equivalence under Y -dependent sampling in the Gaussian
case. Similar results will occur for a broad range of models (1). This note shows that tests of associa-
tion between expensive covariates X and a response variable Y based on two-phase, response-dependent
samples can be derived from full semiparametric maximum likelihood across the family of models. Our
approach assumes that any additional covariates Z are categorical, and continuous covariates are handled
by discretizing them. Simulation results presented in Supplementary Material and in the 2014 University
of Toronto PhD thesis of the first author show that for many practical testing scenarios, the effect of
doing this is slight. Alternative methods that seek to estimate the conditional probabilities g(x | z) for
continuous z by smoothing can be developed (Zeng and Lin, 2014) but they also involve approximations
where finite samples are concerned. We also showed that when additional covariates Z are absent, the
full likelihood score statistics are identical to conditional likelihood score statistics. When covariates Z
are present, conditional likelihood tests do not require estimation of g(x | z); however, they do not apply
to certain types of sampling plans and are less powerful than tests based on full likelihood, which we have
shown are easy to apply. Finally, we note that the statistic (7) has mean zero under the null hypothesis
when (Y, Z) and X are independent, whether or not (1) is the correct distribution for Y given X and Z.
The tests are thus robust with respect to Type 1 error, but there will be some power loss under model
misspecification.

We remark that family (1) includes many models used in dealing with survival or event times, includ-
ing proportional hazards, accelerated failure time, proportional odds, and more general transformation
family models (Kalbfleisch and Prentice, 2002, Lawless, 2003). Survival time data are typically subject
to right censoring, but it is easily seen that the methods and results in this paper apply to censored data
likelihood functions, the main effect being that the score residuals in our test statistics have a slightly
more complex form. Mendolia et al. (2014) and Chen et al. (2014) have considered genetic associa-
tion testing with survival time outcomes for the case of proportional hazards models; our treatment here
greatly expands the scenarios and models that can conveniently be considered. Although we have con-
sidered fully parametric models, it is possible to extend the discussion to semi-parametric generalized
linear models by the use of semi-parametric maximum likelihood (Zeng and Lin, 2007).

We reiterate that since H0 involves a p-dimensional covariate X , various test statistics could be based
on the score vectors (7) or (4); see for example Li and Lagakos (2006) and Derkach et al. (2014). The
choice of statistic as well as the precise type of Y -dependent sampling can have a major effect on power;
see, Li and Lagakos (2006). Basu and Pan (2011) and Derkach et al. (2014) provide extensive simulation
results for genetic association studies of rare variants based on random or covariate stratified samples,
and Lee et al. (2014) summarize current methodology and related issues.

Finally, we remark that inverse probability-weighted, Horvitz–Thompson estimating functions are
sometimes used with biased sampling plans (Lawless et al., 1999, Scott and Wild, 2011). These methods
do not apply when some individuals have zero probability of selection, as in the case of extreme Y
sampling plans, so they have not been considered in this paper. They also tend to be less efficient than the
likelihood-based methods discussed here, although augmented inverse probability-weighted estimating
functions that have efficiencies closer to those of maximum likelihood can be found (Scott and Wild,
2011).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes derivation of model-based variance esti-
mates for full likelihood presented in Section 3.4. We also present simulation results for genetic associa-
tion studies with rare variants, to evaluate these variance estimates.
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