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ABSTRACT 

Two extensions of a geometry are compatible with 

each other if they have a common extension. If the given 

extensions are elementary, their compatibility can be 

intrinsically described in terms of their corresponding 

linear subclasses. Certain adjointness relation between 

an extension of a geometry and the geometry itself is 

also discussed. 

Any extension of a geometry G by a geometry F deter­

mines and is determined by a unique quotient bundle on G 

indexed by F. As a study of the compatibility among 

given quotients of a geometry, we look at the possibility 

of completing to F-bundles a family of quotients indexed 

by a set I of flats of F. If the indexing geometry Fis 

free and if the set I is a Boolean subalgebra or a sub­

lattice of F, for any family Q(I) of quotients of a geo­

metry G, ther.e is a canonical construction which deter­

mines its completability and at the same time produces 

the extremal completion if it is a partial bundle. 

Geometries studied in this dissertation are furnished 

with the weak order. Almost invariably, the Higgs' lift 

construction, in a somewhat generalized sense, constitutes 

a convenient and indispensable means in various of the 

extremal constructions. 

THESIS SUPERVISOR: Henry H. Crapo. 
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0. INTRODUCTION 

A new trend in the studies of combinatorial geometries 

began a decade ago with Crapo's famous work on single-element 

extensions of geometries [5]. Higgs' work on factorizations 

of strong maps [11], which appeared in 1968, made significant 

contributions to the theory of extensions and provided a 

setting in which rapid progress could be made by others. 

Thereafter, a number of papers have appeared, building on the 

work of Crapo and Higgs, which described geometric constructions 

or proved that various classes of geometries can be obtained 

by the judicious use of these constructions. Among the most 

recent contributions, which focus upon the representation of. 

quotients by extensions of geometries, are Brylawski's Modular 

constructions [2], Dowling and Kelly's elementary strong map 

factorizations [9], Kennedy's canonical major constructions 

[12] and the relative position in extensions studed by the 

author jointly with Crapo [4]. 

The purpose of our present work is to study the compat­

ibility of extensions of a geometry. Basically, a family of 

extensions G. of a geometry is said to be compatible if the 
l 

G. 'shave a common extension. The original problem of com-
1 

patibility can be traced back to Crapo's counter-example for 

the existence of a pushout in the category of geometries and 

strong maps [6]. In a quick response, Brylawski gave a 

partial solution with a certain modularity assumption [2]. 
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In this dissertation, we start with the problem of the . 

compatibility of a pair of elementary extensions of a geometry. 

By making use of the correspondence between elementary exten­

sions and linear subclasses of a geometry, we obtained an 

intrinsic description of the compatibility. For any two linear 

subclasses, their compatibility can be determined by observing 

a sequence of sets of flats, recursively defined. 

There is in fact a basic philosophy of gain and loss 

which motivated our present study of compatibilities: by 

adding more points to a geometry, we have a richer description 

in terms of relative positions for the purpose cf further ex­

tensions, but certain extensions of the original geometry may 

have been destroyed. If we restrict ourselves to elementary 

extensions, this situation can be appropriate!~ described. by 

a Galois connection between the lattice of elementary exten­

sions of a geometry G and the lattice of elementary extensions 

of any given extension of G. This adjointness relation does 

not hold for more general extensions (vide chapter III), so we 

have to invent some other techniques for our compatibility 

studies. 

Any extension of a geometry G by another geometry F can 

be characterized by a family {Q(a)} F of quotients of G 
B£ 

indexed by F, satisfying the following two properties: 

1) Q(O) = G; if b covers a in F, then Q(b) is an elementary 

quotient of Q(a) 

2) for any a,b £ F such that a,b cover aAb, if x £ Q(aAb) and 

0. 2 



rQ(a) (x) = rQ(b) (x) = rQ(aAb) (x)+l, then 

rQ(avb) (x) = rQ (aAb) (x) +2. 

(In chapter IV, the terminology of modular filters will be 

used instead of the rank functions in 2)) . Any such family 

of quotients is called an F-bundle .Q1l ,!i.and determines a 

unique extension of G by F. The concept of a quotient bundle 

gives a new direction for compatibility studies~simultaneous 

representations of quotients of a geometry. 

For a single quotient Q of a geometry G, its represent­

ability is affirmative, as proved by Higgs [11]. Any such 

representation is an extension R of G together with a flat 

z of R such that 

Quo(G + R + R/z) = Q. 

For two or more quotients Q. of a geometry G, their repre-
1 

sentability is still an unsettled problem. There are two possible 

directions we can pursue: firstly, we can ask for a simultan-

eous representation in the most ge:q,eral sense-an extension R 

of G together with flats zi 

Quo(G + R ~ R/z.) 
l 

secondly, if we assume that 

of R such that 

= Q . 
i' 

the flats z. are CR-closures of) 
l 

preassigned flats of a geometry F, we come to the problem of 

completing the quotients Qi to an F-bundle on G. 

To illustrate the distinct nature between these two types 

of problems, let us consider for example the quotients 

0.3 
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e f 
a~ 

i. c~ 
a~· 

of the plane geometry G of six points a,b,c,d,e,f in general 

position. While Q1 and Q2 , as we shall.show, are simultaneously 

representable, however, if F ii the line geometry of two points 

x,y and we let Q(O)=G, Q(x)=Q1 and Q(y)=Q 2 , then the following 

diagram of quotients 

Q(x) Q(y) 

~/ 
Q(O) 

cannot be completed to any F-bundle on G (vide chapter IV). 

With regard to the first direction, we prove that any 

pair of elementary quotients of a geometry is representable. 

However, the second problem is our next goal. We call a 

family Q(I) of quotients of a geometry G indexed by a set I of 

flats of a geometry Fa partial bundle if Q(I) can be completed 

to an F-bundle on G. Our main concern then is to explore the 

possible completions of a partial bundle. 

Several partial orders can be defined for geometries (on 

the same set of points) [4,10]. To facilitate our work in the 

next stage we consider in particular the weak order, which is 

the geometric analogue of specializations of classical alge-

0.4 



braic varieties. A geometry G is weaker then a geometry H if 

and only if flats of Gare in positions more general than flats 

of H (vide section 1.6). 

In chapter V, completions of a partial bundle are discussed 

with the consideration of the weak order. For an arbitrary 

partial bundle Q(I), its completions need not form a A-semi­

lattice. Nor does a least completion of Q(I) necessarily exist. 

In stages we develop a sufficient condition on the indexing 

set I so as to guarantee that the completions of a partial 

bundle Q(I) are A-closed ( and thus form a A-semilattice). 

Ever since it was invented by Higgs, the lift construction 

has demonstrated its indispensability and handiness as a con­

struction technique for quotients in most extremal problems bf 

combinatorial geometries. We give a thorough treatment (chapters 

IV,VI) of various lift sequences of quotients as preliminaries 

for our completion constructions. In chapter VI, we consider 

in detail a special class of partial bundles Q(I) where I is a 

Boolean subalgebra of a free geometry. For any such partial 

bundle, its least completion always exists, which can be can­

onically constructed by means of appropriate lift sequences. 

In chapter VII we proceed to a more general class of 

partial bundles Q(I) where I is a sublattice of a free geo­

metry. While a treatment as detailed as the previous one is 

not allowed, we still prove that any such partial bundle has a 

a least completion, which can be constructed with a special 

lifting scheme. 
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The importance of the above construction is two-fold. 

Firstly, it links the concept of lifting of quotients to 

certain principal extensions and thus exhibits the geometric 

nature of the lift construction. Secondly, it serves as a 

test for completability of an arbitrary family Q(I) of 

quotients where I is a sublattice of a free geometry. 

The author would like to take this opportunity to thank 

Professor Henry Crapo for his kind guidance and generous help 

during the various stages in the preparation of this dissert­

ation and during many other occasions. 
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I. COMBINATORIAL GEO~ffiTRIES: BASIC CONCEPTS 

1,1 Combinatorial Geometries 

A geometry G(X) is a set X together with a closure 

operator satisfying the Steinitz-MacLane exchange property: 

V p, q E X, V A ~ X, p if. A and p E Au q q E Av p, 

and the finite basis property: 

V A <:; X, :3finite Af s A such that Af = A. 

With no essential loss of generality, we often assume that the 

empty set and one-element sets are closed. Closed sets are 

generically called flats. The complete lattice G of flats is 

a geometric lattice, characterized as a semimodular atomistic 

lattice without infinite chains. In such a lattice, each element 

xis the supremum of atoms and has a well-defined rank r(x), 

equal to the length of any maximal chain from the 0-element to 

x, satisfying the semimodular inequality: 

r(xAy) + r(xvy) ~ r(x) + r(y). 

The height of G is called the rank of the geometry G(X), 

denoted by r(G). Flats of ranks 1,2,3 an~ r(G)-1, r(G)-2, 

r(G)-3 are specifically called points, lines, planes and 

copoints, colines, coplanes respectively. Two flats x,y form 

a modular pair if r (x /\ y) + r (xv y) = r (x) + r (y) , a locally 

modular pair if x, y cover x /\ y. For any subset A f, X, the 

rank r(A) of A is defined to be the rank of A in G, and if 

A is finite, the null:iJJ:'. n(A) of A is the non-negative 

integer IA!-r(A). A subset A~ Xis said to be independent 

if n(A) = 0, and dependent otherwise. 

independent set is called a basi_§,, and a 
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minimal dependent set is called a circuit. A geometry G(X) is 

uniquely determined by its rank (and nullity) functions on 

subsets of X, its independent sets, its bases, its circuits, 

... , and most importantly, by its associated geometric lattice 

(with the assumption that¢ and one-element subsets are closed), 

If there is no confusion caused, we prefer to simply write G 

for the geometry G(X). 

If G is a geometry of rank r ;?;- 1, then the flats of rank 

not equal to r-1 form a geometry, called the truncaeion of G. 

Recursively, the kth truncation of G is also defined. 

The free geometry B(X) on a set Xis the geometry whose 

flats are all subsets of X. Its geometric lattice is a Boolean 

algebra. If k is a positive integer not greater than !xi, 
then the rank-k geometry on X in general position is the 

C!XI -k)th truncation of B(X), whose flats are subsets of X 

of cardinality less thank together with X. 

The direct sum G (i) Hof geometries G(X) and H(Y) is the 

geometry on X VY whose flats are all of x vy with x E G and 

y E H. 

Two geometries are said to be equivalent or isomorphic 

if their associated geometric lattices are isomorphic. 

Whenever possible, we shall take the liberty to picture 

geometries in the real aff).ne. space. In such a diagram, only 

non-trivial lines and planes together with the points are 

drawn. For examp1e, .in the following rank three geometry on 

six points: 
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e 

af, bd and ce are lines but are not drawn in the diagram. 

If necessary, we will adapt the notation with subscripts 

or the like to specify a particular geometry. For example, 

instead of r(x) for the rank of a flat x of G, we may choose 

to say rG(x) for the G-rank of a G-flat x. 

1.3 
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1.2 Minors 

Given a geometry G(X) and a subset S ~ X, the subgeometry 

of G(X) on Sis the geometry H(S) on the set S with the follow­

ing induced closure operator: 

A "I'ns, VA<;,S .. 
I 

A subset A~ Xis H-closed if and only if A= An S for some 
I 

G-flat A. The associated geometric lattice Hof the subgeo-

metry H(S) is isomorphic to the sub-V-semilattice of G generated 

by the atoms of G contained in A. 

If H(S) is a subgeometry of G(X), then G(X) is called an 

extension of H(S). 

Next,given a geometry G(X) and a subset C ~ X, the contraction 

of G(X) by C is the geometry on the set X "-,C with the following 

closure operator: 

A VA<;;;X'\C, 

which is equivalent to the geometry on the set .X. with the.follow-

ing closure operator: 

A A U CG, V A<;; X. 

The associated geometric lattice , denoted G/C, of the con­

traction is isomorphic to the interval (CG, lG] in the associated 

geometric lattice G _ of. G(X). - For any subset A ~ X, 

rG/C(A) = rG(A) - rG(C). 

A minor of a geometry G(X) is defined to be a contraction 

of a subgeometry of G(X), which is always a subgeometry of a 

contraction of G(X). 
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1.3 Elementary extensions 

A modular filter of a geometry G is a set M of G-flats 

satisfying the following two properties: 

1) if x EN and x 'y, then y EM, 

and 2) if x,y EM and x,y form a modular pair, then xAy EM. 

With 1) given, 2) is equivalent to the following: 

2') if x,y EM and x,y form a locally modular pair, 

then X /I y EM. 

G~.ven a modular filter M of G (X), we can always put a new 

element e "within" Mand thus obtain an elementary extension 

H(X u e) of G(X) by the element e. There are three distinct 

types of H-flats: 

1) all G-flats A not in M, 

2) A v e, where A E M, 

and 3) Aue, where A is a G-flat not in Mand covered 

by no flats in M. 
M· 

We write G~ to indicate that His the elementary exten-

sion of G determined by the modular filter M. The rank of I-I is 

related to that of Gas follows: 

f r (G) 
r (H) = l 

r(G) 

-I 1 if M = 0 

otherwise. 

If H(X v e) is an elementary extension of G(X), then the 

set ( x E G I xR ~ eR } is a modular filter of G, denoted by 

Mod(G-m). There is a precise correspondence between element­

ary extensions and modular filters of G. The elementary 
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extensions of G, ordered by containment of their respective 

modular filters in G, form a lattice. 

Given a modular filter M of G, the set L of copoints in 

M satisfies the following property: 

for any copoints x,y,z in G, if x,y EL and x,y,z 

cover x" Y./\ z, then z E L. 

Any such set of copoints is called a linear subclass. Any linear 

subclass L of G determines a non-empty modular filter 

(x E G j.x" y and y is a copoint ·of G implies y E L}, 

denoted by MF(L). This establishes a correspondence between 

linear subclasses and non-empty modular filters of G. 

Any set A of flats of G generates a modular filter of G, 

namely, the intersection of all modular filters of G contain­

ing A. Similarly, any set A of copoints of G generates a 

linear subclass of G, namely, the intersection of all linear 

subclasses of G containing A. 

1. 6 



1.4 Strong maps and quotients 

A strong map from a geometry G to a geometry His a function 

from G to H which takes points of G to points of Hor to the 

zero flat of H, and preserves all suprema. Equivalently, f: 

G---H-1 is a strong map if and only if the inverse image of any 

H-closed set of points is G-closed. Composites of strong maps 

are also strong maps. 

The following are examples of strong maps: 

1) Injection (or embedding) of a subgeometry into 

a geometry. 

2) Contraction by a flat z in a geometry G, ie. the 

map x - xv z from G onto the interval (z,1] in G. 

3) The canonical surjection from a free geometry B(X) 

onto any given geometry G(X): A- ""f.:'. 
If G and Q are geometries on the same set X., such~ that, any 

Q-flat is a G-flat, then Q is a quotient of G. Equivalently, 

Q is a quotient of G if and only if the identity map on X 

extends to a strong map from G to Q. 

Given any strong map f:G + H, the £-nullity of a G-flat 

xis the nonnegative integer rG(x)-rH(f(x)), denoted by nf(x) 

or nG+H(x). AG-flat xis said to be £-independent if nf(x) 

= O, and £-closed if xis a maximal G-flat with given image 

in H. The set of all £-closed G-flats is a quotient of G, 

called the quotient of the strong map f and denoted by Quo(G->H). 

The quotient Quo(G~H) is isomorphic to the image f(G) of G. 
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S6, if a strong map f:G + Q is onto, then without loss 

of generality, we can assume that G and Qare geometries on 

the same set and hence that Q is a quotient of G. The degree 

of the quotient Q of G, denoted by deg(G+Q), is defined to 

be the nonnegative integer r(G)-r(Q). The set 

{xEG I nG+Q(x) = deg(G+Q)}, 

denoted by M(G+Q), is a modular filter of G; in fact it is 

the largest modular filter of G contained in Q. More gen­

erally, if k is an integer not less than deg(G+Q), we define 

Mk(G+Q) = {xEG I nG->Q(x) = k}. 

If Q is a quotient of G and if deg(G->Q) = 0 or 1, then 

the quotient Q and the strong map G +Qare said to be ele­

mentary. It is clear that M1 (G+Q) is non-empty if and only 

if the elementary quotient Q is proper (ie, Q f G). If M 

is a modular filter of G, then_the set 

M V f x <: G / x is covered by no flats in M} 

is an elementary quotient of G. This establishes a one-to-one 

correspondence between elementary quotients arid proper (ie. f G) 

modular filters of G. 

1. 8 
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1.5 Orthogonality 

For any geometry G(X), there is a uniquely defined dual 

(or orthogonal) geometry G*(X) given by the following closure 

operator: 

""f!"* = Av {PE X \ p rt X\(Avp)G} VA5". x. 
Duality of geometries is involutary, ie.(G*)* = G. The rank 

and·:nullity functions in G and G* are related as follows: 

VA~ X. 

If Q is a quotient of G, then G* is a quotient of Q* and 

deg(G~}Q) = deg(Q*~}G*). 

1.6 Weak order 

Denote by ~(X) the set of all geometries on X. The weak 

(map) order on 1f(X)is the partial order { defined as follows: 

G ~ H if and only if any of the following equivalent 

statements holds: 

1) every independent set of His independent in G 

2) rG(A) ~ rH(A) VA<;X 

3) rG(x) ~ rH(x) V G-flat X 

4) nG(A) < - nH(A) V A c; X 

etc. 

We say that G is weaker than H if GS H. The weak order is 

not a 1·attice ·order, as demonstrated in the following examples: 

1. 9 
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EXAMPLE 1.1 Let G1 ,G 2 ,H1 ,H2 be geometries on the set [a,b,c,d} 

as shown in figure 1.1. In the weak order, G1 ,G2 cover H
1

,H
2

, 

so nE,i ther G
1 

A G
2 

nor H1 V H2 exists. 

EXAMPLE 1.2 Let G1 ,G 2 ,H1 ,H2 be rank four geometries on the 

set f a,b,c,d,e,f} as shown in figure 1.2. Both H1 and H2 are 

maximal geometries weaker then G1 and G2 , so G1 f\ G2 does not 

exist. 

If Q is a quotient of G, then G ~ q. Given elementary 

quotients P,Q of G, P ~ Q if and only if M1 eG,P) ~ M1 eG,Q). 

The elementary quotients of G form a semilatticet udder th~ weak 

order, which is isomorphic to the semi lattice. of. proper 1nodular 

filters of G. 

PROPOSITION 1. 3 Let Gex) and Hex) be geometries of the same 

rank. Then G ~ H if and only if G* f, H*. 

Proof: Let r be the rank of G. Then 

G ~ H ~ r G (A) ~ r H eA) V A <; X 

~ r - nG* ex\ A) ~ r - nH* ex\ A) 

{=::'} nG* eA) ~ nH* eA) VA~X 

~ G* ~ H*. 0 

VA C X 

The above proposition is definitely false without the 

assumption that G and H have the same rank. 

tThroughout this paper we use the term semilattice for what 

should strictly be called a /\-semilattice. 

1.10 
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G1=aY 

C 

H1 .=a~d ","~ a C 

figure 1.1 

e 

b 

C 

d. • f 

Hz=~ 

b 

figui·e 1. 2 
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II. COMPATIBILITY OF TWO ELEMENTARY EXTENSIONS OF A GEOMETRY 

2.1 Definitions and examples 

A pair of elementary extensions 

.......-----'Hex 
G(X) 
~ 

K(X 

u h) 

u k) 

of a geometry G(X)t is compatible if there exists a geometry 

R(X uh u k) together with the following (commutative) 

embedding diagram: 

G(X) 

H(X u 
/?I 

h) 
'-..._, 

"R(X __.,,...-, 
~K(X u k) 

uh u k). 

Otherwise, the pair is said to be incompatible. 

Incompatible pairs exist. For example, let G be the geo­

metry of points a,b,c,d,e,f in general position on a plane and 

let Hand K be elementary extensions of Gas shown in figure 2.1. 

h k 

b e 

H = b .. 
e 

C • 
K = C 

f 
a f a 

d d 

figure 2.1 

There is no geometry on {a,b,c,d,e,f,h,k} which yields Hand K 

when restricted to {a,b,c,d,e,f,h} and {a,b,c,d,e,f,k} respect-

twe assume that hf k. 
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ively. So the pair of extensions Hand K of G is incompatible. 

If two elementary extensions Hand K of Gare compatible 

with each other, there may be more than one common elementary 

extcinsions of both Hand K. As an example, consider the pair of 

elementary extensions shown in figure 2.2 

a 

H=~ 
b C d 

a 

G=D 
b C .d 

K-~ 
b C d 

figure 2.2 

There are two common elementary extensions of both Hand K, 

as shown in figure 2.3: 

a 
a 

h k 
R = 

2 

b C d b C d 

figure 2.3 

where in R2 chk is a three-point line. 
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We'll see later (chapter III) that all such possible common 

elementary extensions of both Hand K fbrm a semilattice (in 

the weak order) . 

2.2 Compatibility of two modular filters. 

Given two modular filters Mand N of a geometry G, we 

enquire if it is possible to put a point on precisely the flats 

of Gin Mand at the same time another point on precisely the 

flats of Gin N. Consider for exa~ple the geometry G of six 

points a,b,c,d,e,f in general position on a plane and modular 

filters M = [ab, cd, lG} and N = {ab, cd, ef,lG\ Putting a 

point hon the lines ab and cd, we have the extension: 

h 

b 
d 

f .. 
a 

C 

if in which a point k is put on the lines ab, cd and ef, then 

his forced to lie on ef, a contradiction. If in the geometry 

G, a point k is put on the lines ab, cd.and ef, we have the 

extension 

b 

~£ 

d ~e 

a 

C 

2.3 
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in which it is impossible to put a point hon only the lines 

ab and ed. 

Two modular filters of a geometry Gare said to b~ com­

patible if their corresponding elementary extensions of Gare 

compatible. We will show in proposition 2.3 that compatibility 

is indeed equivalent to the above geometric version of the pro­

blem. 

LEMMA 2.1 If G(X) is a subgeometry of H(Y), then for ari.y 

A ~ X and X E X, 

x E AI-I if and only if x E: p;:G. D 

PROPOSITION 2.2 

following diagram: 

Given elementary extensions as shown in the 

G(X) 

H(Xuh)~ 

~R(Xvhvk). 

K(X u k) 

where M,N,M' and N' are the corresponding modular filters, 

we have 

and N 
--H ; {xeGI x eM'}. 

I-I -R -KR -K 
·Proof: I :f x e M, then h E x !:: x ; x , so x e N' . Con-

-K NI' then from 
KR -R we obtain j_:f X G and X ; X versely, . E X E 

h E 
-H 
X by lemma 2.1, so that X E M. So M ; {xeG\ -K 

X E NI}. 

Similarly, N ; {xeG\ 71 
E M'}. D 
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PROPOSITION 2.3 Given modular filters Mand N of G(X), they 

are compatible with each other if and only if there exists a 

two-;lement extension 

G(X) ~ R(Xvhvk) 
such that for any x E: G, 

h If XR~ X E M 

and k E: 
-R 
X ~ X E. N. 

Proof: If modular filters M,N are compatible with each other, 

then there exist extensions 

/H(X<--·h)~ 

G(X) /R(Xvhvk) 

~ ·~ 

K(Xvk) 

where M = Mod(G---*l) and N = Mod(G.-K). Let x E G(X). Then 

x E M ~ h E x1f ~ h E xR and similarly x E N -!a=9 h E xR 
Conversely, assume the condition of the proposition holds. 

Let H(Xuh) and K(Xvk) be the subgeometries of R(Xuhvk) on 

Xuh and Xvk respectively. If x E G, then x E M ~ h E xR 
~ h E ? . x E Mod (G-,f!) , so M = Mod (G~) , Similarly 

N = Mod(G-;>-K) and hence M,N are compatible. 0 

NOTATION: Given a geometry G(X), if Mis a set of subsets 

of X, then denote by MG the set l ~ [ x E M} , 

PROPOSITION 2.4 Given elementary extensions: 
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H(X v h) 

G(X)~ 

~ 
;IC(Xvk) 

if N' is the modular filter of H generated by W1 and if M' is 

-K the modular filter of IC generated by M, then the following 

are equivalent: 

1) M,N are compatible 

2) { X E: G x1f E N' } = N 

3) f X '°' G -K 
X E M'} = M. 

Proof: If M,N are compatible, then there exist elementary 

extensions as in the following diagram: 

H(X vh) 
~· 

G(X /oR(Xvhvk) 

N :,;IC(X v k) Q 

By proposition 2.2, {x E. G \ ?"1 
E. P} = N. so W1 ~ P and 

therefore N' ~ P. Thus [x E G [ xH EN'} £; N. On the 

other hand, N = ( x '= G \ x1f <;; NH } ~ lx er. G I xH E N; } 

so N = f X (; G I XH (: NI } • 

Assume now that 2) holds. Let R(X vh vk) be the elementary 

extension of H(X uh) corresponding to the modular filter N', 

and let F(Xuk) be the subgeometry of R(Xvhvk) on Xvk. Then 

x E Mod(G-+F) ~ k <ic xF ~ k <:: xR ~ xH (;: N' ~ 

x E: N. So M,N are compatible. 

Hence we have established that 1) ~ 2). By symmetry, 

we also have 1) ~ 3) . 0 
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2.3 Principal modular filters 

Given a geometry G, any flat E of G together with all 

flats of G above it form a modular filter of G, called~ principal 

modular filter and de11oted by (E) or [E JG. E - (E }G is an 

( order-) embedding from the inverted lattice of G into its 

lattice of modular filters. This embedding is /\-preserving 

but not \/-preserving [ 6 J . 
PROPOSITION 2.5 A principal modular filter of G is compatible 

with any modular filter of G. 

Proof: Let Ebe any flat of G and let M be any modular filter 

of G. Let H be the elementary extension of G corresponding to 

M. [F1]H is the modular filter of H generated by~- For 

any X E G' f-I € [if1J H ~ x1-l ;;:: if1 ~ X ?!- E 4==} X E [E) G, 

so by proposition 2.4, Mis compatible with (E)G. 0 

2.4 Linear subclass generating sequences 

It is cl~ar that the.empty modular filter is compatible 

with every other modular filter. In the rest of this 

chapter, we will exclude the empty modular filter in our dis-

cussion of compatibilities. There then is an exact 

correspondence between the linear subclasses and the modular 

filters of a geometry. For a set A of copoints of a geometry 

G, there is a sequential construction for the linear subclass 

of G generated by A, a construction which will prove useful 

in later sections of this chapter. 
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Given a geometry G, three distinct copoints a, band c of G 

are said to form a genera ting triple if a" b "c is a co line, 

ie, a, b and c cover a(\ b" c. For any set A of copoints of 

G, we define a sequence 

A=Ao ~ Al ,; Az ,; ... 

of sets of copoints of G by the following: 

x ~ A. ~ x ~ A. 1 or 3 a,b ~ A. 1 such that 
1 1- 1-

a,b,x form a generating triple, V i ?!> 1. 

This sequence is called the generating sequence of A in G. The 

linear subclass of G generated by A is easily constructed via 

this sequence, as stated:in:the following: 

PROPOSITION 2.6 If A is a set of copoints in a geometry G, 
~ ~ 

and if {A) i=O is its generating sequence, then ~Ai is the 

least linear subclass of G containing A. 0 

As a corollary of propositions 2.4 and 2.6, we now have 

the following: 

PROPOSITION 2.7 Given elementary extensions: 

.~ 

H(Xuh) 

G(X)~ 

~K(Xvk), 

let M,N be the linear subclasses of G corresponding to H,K 

respectively. If M' is the linear subclass of K ·generated by 

MK with generating sequence {l\l i=O and if N' is the linear 

subclass of H generated by w1 with generating sequence {N) i=O, 
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then the following are equivalent: 

1) M,N are compatible 

2) {x G -I-I N' } N E X E = 

3) {x G -K M' } = M E X E 

4) {x E G :xf1 € N. 
1 

} = N V i = 0 , 1 , 2 , . . . 

5) {x G -K M. } = M V i 0 , 1 , 2 , . . . D E X € = 
1 

2.5 Compatibility theorems 

For any linear subclasses M2N of G(X), we define a sequence 

0=Ko(M,N) ~ Kl(M,N) ~ K2CM,N) s ... 
of sets of colines of G covered by no copoints in M by the 

following: 

XEK-(M,N)\K. 1CM,N) 
1 1-

{=::c> xis a coline of G covered by no copoints in M 

and 3 a,bENuKi_ 1 (M,N) such that x covers aAb, 
00 

We denote the union i~OKi(M,N) by K(M,N). 

i ;, 1 . 

LEMMA 2. 8 Given linear subclasses M 2 N bf G(X), if H(XVh) 

is the elementary extension of G(X) corresponding to Mand if 

(NJ i=O is the generating sequence of NH in H, then for any. i, 

/xvh Ix~ NV Ki(M,N)/ C Ni. 

Proof: By induction i. Since K
0

(M,N) 0 and NO 
-H on = = N = 

fxvh XE N ) ' 
so induction starts when X = 0. Suppose 

{ xvh r X E NU Ki-l (M,N)} s N. 1 and let a C: Ki (M,N) . There 1-

exist x,y G, N v Ki-l (M,N) such that a covers x ,.., y. But then 

a vh, xv h, yv h form a generating triple in H. By induction 

hypothesis, xvh, yvh <::: N. , so a vh 0 N.. Thus { x vh I 
1-l 1 I 

X E: N u Ki (M,N) } ( Ni. D 

2 . 9 
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THEOREM 2.9 Two linear subclasses M J N are incompatible if 

and only if the following condition holds: 

3 a,b E NU K(M,N) and c E M\.N such that a f'.b 

is a cop lane not contained in MF (M) and c > a" b. 

Proof: Let H (Xv h) be the elementary ex tens ion of G (X) 

corresponding to Mand let (Ni}i=O be the generating sequence 

of w1 in H. 

Assume the condition of the theorem holds. Then a,b (: 

N v Ki(M,N) for some i and so by lemma 2.8, auh, bvh E Ni. 

Since a/\ b is a coplane of G not contained in MF(M), (a /\b) v h 

is a coline in H. cvh is a copoint in I-I and (avh)A(bvh) = 

(at\ b) vh < c vh, so cvh E. N .. But then by proposition 2.7, 
l. 

M,N are incompatible. 

hold. 

Conversely, assume the condition of the theorem does not 

We want to show that Ni ~ { x E h I x EN V Ki(M,N)}, Vi. 

By induction on i. When i = 0, K. = .0 and N
1
. 

l 
= w1 = 

{ xvh I x ~ N}, so inclusion holds. Suppose Ni-l ~ {xvh \ 

x <: N v l\_ 1 (M,N)) and let c <= Ni"-Ni_ 1 . There exist a,b E Ni-l 

such that a,b,c form a generating triple in H. Consider now 

the G-flats a\h,b\h and c\h. By induction hypothesis, a'.h, 

b \ h E N v Ki-l (M,N). (a\ h) /\ (b \ h) = (a l'b) \ h must be a 

cop lane· of G not contained in MF (M) , for otherwise both a\ h 

and b \ h are in N and so c \ h would also be in N. Now, c \ h 

can only be a coline of G covered by no copoint in M for other~ 

wise if c \ h <:: M '\ N, then the condition of the theorem would 

2.10 
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hold. Thus c \ h E Ki (M,N). 

Since Ni.;;; { x uh I x <:: N v Ki (M,N)} implies {x E: G 

?1<::·Ni} ~ N, so by proposition 2.7, M,N are compatible. 0 

LEMMA 2.10 If M, N, Pare linear subclasses of G such that 

M~N;;J P, then for any i, 

1) Ki(M,P) .;;; K0 (N ,P) 
.L 

and 2) Ki(M,P) C Ki(M,N). 

Proof: 1) By induction on i. When i = O, Ki(M,P) = ¢ = 
Kiq-l,P). Suppose inclusion holds for i-1. Let x EI\ (M,P) "-

K. 1 (M,P). There exist a,b ~ P v K. 1 (M,P) such that x covers 
1- 1-

a /\ b. Since x is covered by no copoint in N and since by 

induction hypothesis a,b E P V Ki_ 1 (N,P), so x E Ki(N,P). 

2) Again by induction on i. When i = O, Ki(M,P) = ¢ 

Ki(M,N). Suppose inclusion holds for i-1. Let x E Ki(M,P)" 

K. 1 (M,P). There exist a,b E P v K. 1 (M,P) such that x covers 
1- 1-

a Ab. By induction hypothesis, a, b Ee N v Ki.,. l (M, N) , so x E: Ki (M,N) . D 

THEOREM 2.11 Let M, N, P be linear subclasses of G such that 

M 2 N 2 P. If M,N are compatible and N,P are compatible, then 

M,P are compatible. 

Proof: Suppose that M,P are not,compatible. There exist a,b 

E P \J'Ki (M, P) for some i and c E M "- P such that a/\ b is a cop lane 

not contained in MF (M) and c > a Ab. If CE N, then N,P are 

incompatible because a,b 0 Pu K.(N,P) and a Ab 1 MF(N). If 
1 

c - N, then M,N are incompatible because a,b EN u K.(M,N) 
1 

( Lemma 2 . 9) . D 
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THEOREM 2.12 Two linear subclasses M,N of G(X) are compatible 

with each other if and only if both Mand N are compatible 

with Mr, N. 

Proof: If M,N are compatible, then there exists a two-element 

extension R(X vh vk) of G(X) such that for any copoint x E: G, 

X E: M 4=} h E- XR 

and x E: N ~ k E: xR. 
Let T(X uh vk vt) be the elementary extension of R(X vh vk) 

corresponding to the linear subclass of R consisting of all 

copoints of R above the flat livKR. The sub geometry H(X v h v t) 

of T(Xvhvkvt) on Xvhvt exhibits the compatibility between 

Mand M f'\ N, because for any copoint x E: G, 

X E: M ~ h E: XR -(=} h E XT {=? h (: x8' 
and X E- M /'"'\ N 

Similarly, N is compatible with Mr"\ N. 

--R -R 
h vk ~ X 

-H t E: X • 

Conversely, assume both linear subclasses Mand N are 

compatible with Mr\ N. Let H(X v h) be the elementary extension 

of G(X) corresponding to M. Let D be the set of colines of G 

in MF(N) covered by no copoint in Mand let \Ni}i°:':o be the 

generating sequence of w1 in H. For each i, let 

Li = f x'\.h I x E: Ni"-.w1}. 

To complete the proof, we show by induction on i that 

1) Licontains no copoint of G, 

together with 

2) L. t;;; 
,,. 1 

and 3) Li<;:, 

D i....' Ki (M,M f\ N), 

D vK.(N,MAN). 
1 
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S . N di rA 1nce O = N, so 1 0 = P and induction starts when i = O. 

Suppose 1),2),3) hold for i-1, and let c ~ N.\N. 
1

. There exist 
1 1-

a,b E. Ni~l such that a,b,c form a generating triple in H. 

Suppose h ¢. a say. a/\ b must then be a co line of G. If h ,t b, 

then either a, b \ h, c \ h form a generating triple:· in G 07: c '-. h = 

b . . l .-.ti d a" , 1e, e1tier c EN, a contra iction, or c\h ED, showing 

that 1),2),3) hold for i. If h <:: b, then a t.. b = b '-. h E D u K. (N, M /'\ N) . 
1· 

If a 1,b ED, then c E: #, a contradiction, and if a t..b EK. 
1

(N,M n N), 
1-

then a/\ b is covered by a E N, again a contradiction. 

•.> So we can now assume that h E: a, b. (a'\ h) /\ (b '\ h) cannot 

be a coline of G for otherwise a'\ h,b\ h EM r\ N and so c\ h E 

M /\ N, a contradiction. Also, (a'\ h) /\ (b \.. h) cf. MF(N) for 

otherwise c E NH, a contradiction. 

Furthermore, a\ h, b \ h rt D. Suppose a\.. h E D say. Then 

a \h,b\ h form a modular pair in G. But b\h Ff: N, so b\h ~ 

D \.J l\_1 (N,Mf\ N). If b\h ED, then (a\..h) /\ (b\h) E MF(N), 

a contradiction; and if b '.. h E Ki-l (N ,M r,.. N), then b \ h is 

covered the the copoint (a\ h) V (b \ h) in N, also a contradict.ion. 

So we have shown that both a\ h and b \ h are contained in both 

(M f'\ N) U Ki_ 1 (M,M/"\ N) and (M (\ N) V Ki_ 1 (N,M r, N) such that 

(a\ h) /\. (b \ h) is a cop lane of G contained in neither MF (M) nor 

MF(N). If c \ h is a copoint of G, then c \ h E M\.N and so by 

theorem· 2. 9, M, N are incompatible. Thus c \ h is a co line of G 

covered by no copoint in M. Thus c \ h E. Ki (M,M ('\ N), Since 

N,M/"\N are compatible, so c\h is covered by no copoint in N'\M 

and therefore c \ h ~ K. (N,M r, N). Hence 1) ,2) ,3) hold for i. 0 
1 
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III. ADJOINTNESS OF EXTENSIONS 

In this chapter, we will discuss, for a given extension 

G~H, the adjointness relation between extensions of G and 

extensions of H. To illustrate the idea, let us consider the 

effect which adding an extra point p to G.has on the existence. 

of further ~xtensions of G. First of all, it is clear that 

the elements or objects defining relative positions for further 

extensions are increased. On the other hand, the possibility 

of extensions originally definable in G may be cut down. 

For example, let G be the plane geometry of six points a,b,c,d,e,f 

in general position and suppose a point pis added to G on the 

lines ab and cd, as shown in the following diagram: 

P. 

b 

G-)H = 
a 

In the extension H, there are more definable positions for 

putting points, e.g., we can put a point on the lines ac and 

ep, or on the lines ac and fp; but it is impossible to put 

a point ·on the lines ab, cd and ef which do in G define a 

relative position for a point extension. 

LEMMA 3.1 Given extensions as sho1m in the fol;l.owing diagrall\: 
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K(X ve)----'> R(Yue) 

Mr r N 
G(X) i H(Y) 

if M, N are modular filters corresponding to the elementary 

extensions G~ Kand H~ R respectively, then M = i-l(N). 

Proof: Let x ~ G. Then 

X E M ~e E -K 
X 

<===} e € -R 
X 

~ i(x) E N. 

So M = i-l(N). IJ 
COROLLARY 3.2 Given any extension G--4H, if Mis a modular 

filter of H, then i-l(M) is a modular filter of G. tl 

In what follows, we will assume some familiarity with Galois 

connections between two ordered sets. 

Given an extension G~H, let E(G) and E(H) denote the 

lattices of modular filters of G and H respectively. Two functions 

E (G) 
<r 

E(H) 

are defined as follows: 

a-(M) = the modular filter of H generated 

by i(M) 

and r(N) = i- 1{N) 

V M E:. E(G) 

V N E E(H). 

It is immediate that both o- and 7: are order-preserving; moreover, 

for any.Me: E(G), NE E (N), 

M ~ ·r(N) ~ M <;; i- 1 (N) 

~ i(M) ~ N 

~ o-(M) ~ N. 
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Thus er, Z: form a Galois connection between the latices E (G) 

and ~CH). As a consequence, M-'ra-{M) is a closure operator 

on E(G). M =Z:o-(M) if and only if M ='C(N) for some NE E(H); 

such a modular filter is said to be Galois-closed with respect 

to the extension G-...+H. The Galois-closed modular filters 

form a sublattice of E(G). For any modular filter ME: E(G), 

the set {NE E(H) I Z-(N) = M} is a sub-semilattice of E(H). 

The following theorem links this Galois connection treat­

ment to the compatibility of extensions. 

THEOREM 3.3 Given extensions as shown in the following .diagram: 

K(X Ve) 

Mi 
G (X) i ) H (Y) 

where G-~ K is elementary with modular filter M, the extensions 

H, Kare compatible with each other if and only if Mis Galois­

closed with respect to the extension G-~H. 

Proof: If the extensions H, Kare compatible with each other, 

we have the following extension diagram: 

K(X v e) --- R(Yv e) 

' J G(X) ___ i_~H(Y) 

Let N = Mod(H~R). By proposition 3.1, M = i- 1 (N), i.e., 

M = 7:: (N). Thus M is Galois-closed. 

Conversely, if Mis Galois-closed, then M = i- 1 (N) for 

some modular filter N of H. Let R(Yv e) be the elementary 

extension of H corresponding to the modular filter N. By 

proposition 3.1 again, K(Xve) is the subgeometry of R(Yve) 

on Xve. Hence HO') and K(X1.;e) are compatible with each other.ti 
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If in the above discussion, the extension G-)- H is elementary 

with modular filter N, then for any modular filter M of G, 

't<r(M) is called the N-closure of M, and denoted bt ~. The 

following two theorems are immediate from the previous dis­

cussions. 

THEOREM 3. 4 Given a modular filter N of a geometry G, 

1) for any modular filter M of G, there is a least modular 

filter gN of G such that gN is compatible with N; 

2) M--}~ is a closure operator on the lattice of modular 

filters of G; 

3) the modular filters of G which are compatible with N 

form a closure system in E(G). O-. 

THEOREM 3.5 Given two elementary extensions 

K 

i 
G ---H, 

the common elementary extensions of both Hand K form a semi­

lattice (in the weak order). D 

Any partially ordered set is also a category if we take 

its elements to be the objects of the.category, its ordered 

pairs to be the morphisms of the category. For any extension 

G(X)->B(Y) and a set Z, we consider two categories: 1), the 

category Ez(G) of extensions of G by Z, in the weak order, 2), 

the category E (H) of extensions of H by Z, in the weak order. 
z 

The retiaction·functor Ret 

E (I-!) 
z 

Ret ---0) E
2

(G) 
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is defined as follows: 

for any R(Y u Z) E E2 (H), Ret(R) = the subgeometry 

of Ron Xu Z (which is an extension of G by Z). 

If Z is a one-element set, the functor Ret has an adjoint, as 

we discussed above. In general, the adjoint of Ret fails to 

exist. 

EXAMPLE 3. 6 Let G be the rank-four geometry on nine points 

1 , 2 , 3 , . . . , 9 in general position. Let H, K, K' be extensions 

of G and let R, R' be extensions of H as shown in figure 3 .1. 

If the functor Ez (H) Ret 
Ez (G) to have adjoint, were an say 

a' for z = {a,b}, then the extension R"=a (K) of H would have 

to satisfy R"=cr(K),;R,R' because [,;Ret(R),Ret(R'), and Ret(R") 

=Ret(cr(K));,K. But there is no object R" in E2 (H) satisfying 

R""R, R",;R' and Ret(R") ;,[. 
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IV. REPRESENTATIONS OF QUOTIENTS 

4.1 Quotient bundles 

The quotient bundle was introduced and studied extensively 

in [ 4 J by the author jointly with H. Crapo; it provides a 

complete description of extensions (up to isomorphisms) of any 

given geometry. A concise exposition of the theory is given 

in this section;the omitted proofs could be found in [ 4 ]. 

We shall consider geometries G and F together with G­

quotients Q(a) indexed by fla.ts a E F. For any F-flats a~ b, 

we shall require that Q(b) is a quotient of Q(a), and also, 

we shall have the inequality 

(*) deg(Q(a)-;, Q(b)) ~ r(b) - r(a); 

a modular filter M(a,b) of Q(a) is defined by the following: 

M(a,b) = Mr(b)-r(a) (Q(a)--;,Q(b)) 

= { x f Q(a) I nQ(a)~(b) (x) = r(b) - r(a)}. 

Note that if equality holds in(*), then M(a,b) is just the 

· modular filter M(Q(a)-~Q(b)); otherwise M(a,b) = 0. 

THEOREM 4.1 If R is an extension of a geometry G by a 

geometry F, the family { Q(a) J a f F} of quotients defined by 

Q(a) = Quo(G--;,R---,>R/a) 

satisfies the following two properties: 

1) Q(O) = G; and if a flat b covers a flat a in F, then Q(b) 

is· an elementary quotient of Q(a). 

2) For any locally modular pair of flats a,b int, 

M(ai\b,a)n M(a1'b,b) = M(aAb,avb). 0 
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We use these properties to define a quotient bundle. 

Specifically, we define an F-indexed bundle of quotients of 

a geometry G to be a family {Q(a) I a E F)of quotients of G, 

satisfying conditions 1) and 2) of theorem 4.1. Abbreviations 

such as F-bundles on Gare also appropriate, 

THEOREM 4.2 Any quotient bundle on a geometry G, indexed by 

the flats of a geometry F, is the bundle of a unique extension 

of G by F. 0 
The following theorem shows.how the rank-function as well 

as the flats of the.corresponding extension are determined by 

a quotient bundle. 

THEOREM 4.3 Any extension R (Xv Y) of a geometry G (X) by a 
... 

geometry F(Y) is a quotient of the direct sum G © fo. Assume 

that f Q(a) I a I: ·F} is the quotient bundle for an extension 

R of G by F. Then for any (x,a) E G (iJ F, 

1) 

2) 

rR(x,a) = rQ(a)(x) + rp(a) 

-cx~,-a~)R = (y,b), where y is the least flat in Q(a) above x, 

and bis the greatest among those flats 

c E F with the property that y E M(a,c). D 
An F-bundle { Q(a) a E F ) on G is said to be strict 

if and only if any one of the following equivalent statements 

holds, 

1) deg(G~(a)) = r(a) for all a E F 

2) for any a,b E. F, if a~ b, then deg(Q(a)--';Q(b)) = r(b)-r(a) 

3) M(a,p) cf 0 for all a~b E F 

4) the extension of G determined by the F-bundle has the same 

rank as G. 4. 2 



In concluding this section, we look at T. Brylawski's 

pushout theorem [ 2 ) : given any pair of extensions 

~H(XVY) 

G ( X) ...________ . 

~K(X V Z) 

such that Xis a modular flat of H, the pushout of 1-1 and K 

relative to G (in the category of geometries and strong maps) 

exists. If we let R(X v Y V Z) be the pushout and let F (Y) 

be the subgeometry of Hon Y, then R is an extension of K by 

F. The F-bundle { Q (a)} a E F on K corresponding to this ex­

tension is given by the following: 

Q(a) = K/~1'1 X. 
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4.2 Lift and drop sequences 

In this section, we introduce the concept of ~uotient 

sequences as well as the lift and drop constructions as studied 

in [ 4j and develop the mathematical background for the repre­

sentation theory of quotients later on. 

For any F-bundle { Q(a) I a E F) on a geom~try G, any 

chain of F-flats 

c: a 0 s a1 ~ a 2 fs • • • ~ ak 

give a sequence (=chain) of quotients of G: 

If the F-bundle is strict, then any maximal chain will give 

a sequence of proper elementary quotients. 

The lift construction of quotients was first invented 

by D. Higgs in order to prove Edmonds' strong map factorization 

theorem: every strong map can be factored as an injection 

followed by a surjection. If Q is a quotient of a geometry G, 

the lift of Q toward G,. written 

L = L(G~), 

consists of precisely those flats X E G suc.h that 

X E Q or n.G-Q(x) = 0 

that is, the Q-flats together with all (G-;Q)-independent 

flats of G. The lift L is a quotient of G, so we have a 

- sequence of quotients: 

G~L~, 

with r(L) = r(Q) + 1 unless G = Q. Since Lis a quotient of 
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G, we may iterate the lift. Thus the kth lift Lk(G4Q) of 

Q toward G can be defined by 

Lk(G~) = L(G-;,Lk-l(G4Q)) 

along with 1°(Q4Q) = Q. 

Mo~t p~oofi in this section are omitted,and the reader is 

refered to [ 4 J. 

PROPOSITION 4.4 For any quotient sequence 

G--+H--;.L~, 

if Lis the lift of Q toward G, then Lis also the lift of Q 

toward H. 0 
If Q is a quotient of G and deg(G~) = k say, then by 

lifting Q toward G k-1 times, we obtained a sequence df proper 

elementary quotientsc' 

called the. strict lift_ sequence from Ji ii, ..Q.., where 

Q. 1 = L(G~.) for any 1 ~ i s k. 
1- l 

The lift sequence will be used very frequently in this paper; 

it provides a standard construction for quotient bundles in 

certain interesting cases. 

PROPOSITION 4.5 In any quotient sequence 

G---+P~-Q, 

M(G~) = M(G~P) (\ M(P~). D 
THEOREM 4.6 A sequence 

Qp~l ~2--,,: ' ; ~k 

of proper elementary quotients is a strict_lif\. sequence if·and ~nly 

if any of the following equivalent s·tatements holds, 
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1) M(Q. 1-~.) f, M(Qi-~<\+1) for any 1 ~ i - i 

2) M(Q. 1~-) = M(Qi-l~i+l) for any 1 
i - i 

3) M(Q. 1~-) = M(Qi-l~k) i - i 
THEOREM 4.7 Any interval of a 

a:stric1;: lift sequence D 

Every·strict lift sequence 

for any 

strict 

G=Qo"""""? Qi___,,. Qz-:> ... -~Qk=Q 

1 ~ 

lift 

i < k, 

~ i < k, 

i <. k. 

sequence is also 

is completely determined by its terminal members G and Q. 

As we are now going to show, the same sequence can be produced 

by another construction which proceeds from left to right, 

beginning from G. For any quotient Q of a geometry G, the 

drop of G toward the quotient Q, denoted D(G-;} Q) is defined 

to be the unique elementary quotient of G with modular filter 

M(G~Q), that is, 

D(G~Q) = \ x E: G \ nG~(x) 'f deg(G~ Q) - 1} 
· · . k h kth d f Gt d Q For any positive integer , t e , rop o owar , 

denoted Dk(G--;}Q), is defined by 

Dk(G--;} Q) = D(Dk-l(G--;} Q)~Q) 

along with DO (G~ Q) = G. The following is an analogue of 

proposition 4.4: 

PROPOSITION 4.8 For any quotient sequence 

G~ D---'7 !-I--;} Q 

if Dis the drop of G toward Q, Dis also the drop of G 

toward !-1. 0 
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A strict drop sequence from G to a quotient Q is a sequence 

of proper elementary quotients 

G=Qo + Ql + ••• + Qk=Q 

such that Q. = Di(G + D) for all 1 $ i $ k. 
l 

THEOREM 4. 9 Every strict lift sequence is a strict drop 

sequence, and vice versa. D 

We call an order-preserving function from a partially ordered 

set I to i(X) (with the strong map order) a quotient diagram, 

which can be indicated by labelling the elements of I with their 

images in ~(X). For example, the following diagram of element­

ary quotients, indexed by the free geometry on two points. 

represents a quotient bundle if and only if 

PROPOSITION 4.10 Given quotients as shown in the following 

diagram 

with deg(G+Q) = deg(P->R) = 1, D(Q+R) is a (proper elementary) 

~ quotient of D(G+P) if the following condition is satisfied: 

M(G+P) n M(G->Q) = M(G+R). 

4.7 
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Proof: Let X E D (Q-') R). If X ~ M(Q---',- R)' then X E R ~ 

D(G-~P). So we assume x ,t_ M(Q-;3> R). Let n = deg (G---';> P). 

If x </:: M(G~Q), then nG.....,..p(x) i:,-; nG-;..RCx) ~ n-2 and so x E 

D(G~P). If otherwise x E M(G-',>Q), then nG"-71-l(x),,; n-1. 

Suppose x ,t. D (G-;,. P). x is then covered by some x' E M(G---',> P). 

But then x' E: M(G--';> Q) and so x' E M(G~ R), ie, nG-,,R(x) = 

n-1, and therefore nG~R (x) ) n, a contradiction. Thus 

D (Q-? R) <; D (G7. P) and so D (Q--';> R) is a quotient of D (G--';> P). 0 

REMARK 4.11 In the above proposition, although T = D(Q~R) 

is a quotient of S = D(G-~P), as shown in the following 

diagram 

the intersection M (S~ P) (') M (S-;> T) may not be equal to 

M(S~ R) and so D (T--+ R) may not be a quotient of D (S-~ P), 

ie, D2 (Q--+ R) may not be a quotient of D2 (G--+ P) . Also, 

L(Q-~,R) may not be a quotient of L(G--+P). For example, 

consider the quotient diagram in figure 4.1. 

figure 4.1 

Since M(S--+ P) = [ab), M(S---) T) = [a), M(S--r R) = {abed}, so 

M(S-;)> P) n M(S-') T) = [ab} t- M(S-;,, R). 

D2 (Q-----;> R) is not a quotient of L(G--+ P) 

4.8 

Thus L (Q-'? R) = 

= D2 (G~ P). 



L(G-;.P) = D2(G---l-P) = 

d 
a~ 

s = D (G-ryP) 

L(Q-*) = Dz (Q-;.R) bed 
= • (v 

d 
T = D(Q---crR) = ~ {§) 

a G=4 - d b --
c 

figure 4.1 
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As a particular case of proposition 4.10, we have the 

following: 

PROPOSITION 4.12 Given a quotient sequence 

G--;, Q-7 R 

with deg(G~Q) = 1, Dk(Q~R) is a proper elementary quotient 

of Dk (G~ R) for any O ~. k "' deg (Q~ R) , 

Proof: By induction on k. Since DO(Q--;,R) = Q, DO(G~R) = 

G, so DO (Q~ R) is a proper elementary quotient of DO (G~ R). 

Assume that Dk-l (Q-:). R) is a proper elementary quotient of 

Dk-l(G~R).Consider the following quotient diagram 

where L = L (G~ R) . Since 

M(Dk-l (G~ R)~ L) (') M(Dk-l (G~ R) ~ Dk-l (Q~ R)). 

<;; M(Dk-l (G-;, R)~ L) 

S', M (Dk- l ( G-'7 R)---'? R) , 

so by proposition 4.10, D(Dk-l(Q---3>R)-',,R) is a proper ele­

mentary quotient of D(Dk-l(G~R)-3>1), that is, Dk(Q--;,R) 

is a proper elementary quotient of Dk(G-f R). 0 
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4.3 Representations of a single quotient of a geometry 

A representation of a quotient Q of a geometry G(X) is 

an extension R(XV Y) of G together with a flat z of R,:·called 

the representing flat, such that 

Quo(G-+ R-.R/z) = Q. 

Without loss of generality, We can assume that z = yR. 
As a result of theorem 4.3, we know that in such a re-

presentation, the flat z is in a position relative to all 

flats x E G prescribed by the following equation: 

r (xv z) = r Q (x) + r ( z) . 

In particular, the inequality 

(*) deg(G~ Q) , r(z) 

is always satisfied. If equality holds in(*), then the re­

presentation is said to be strict. D. Higgs first proved 

that any quotient of a geometry has a strict representation lil). 

Let Q be a quotient of a geometry G and let F be any 

geometry of rank r ~ deg(G----c),Q). The lift F-bundle of Q toward 

G is the F,bundle {Q(~)}a&F on G defined by 

Q(a) = Lr-r(a)(G~) VaE F. 

The extension R determined by this bundle is a representation 

of the quotient Q. If r = deg(G-.Q), then R is the Higgs 

representation [ 4 J. 
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4.4 Simultaneous representations of quotients of a geometry 

A representation of a family {Qili~I of quotients of 

a geometry G is an extension R of G together with a family 

{zJ iEI of flats of R, called the representing flats of the 

representation, such that for any i ~ I, 

In such a representation, the fDllowing equation holds for 

each i E: I: 

r(xvzi) = rq_Cx) + r(z1) 
l 

Also, for each i ~ I, the inequality 

(*) deg(G~>Qi) ~ r(zi) 

V x E G. 

is satisfied. If equality holds in(*) for all i GI, then 

the representation is said to be strict. 

If P, Qare elementary quotients of a geometry G, they 

are strictly representable if and only if their corresponding 

elementary extensions are compatible. It is possible that 

t~o elementary quotients of a geometry are representable 

even though they are not strictl~representable. 

EXAMPLE 4.13 Let P, Q be elementary quotients of Gas shown 

in figure 4.2. The elementary extensions corresponding to 

P, Qare incompatible ( page 2.1). Consider the geometry 

in figure 4.3, where the non-trivial planes are abcdef, abgh, 

abij, cclgh, cdij, efij and ghij. R is an extension of G and 

Quo(G-)R-----:>'R/gh) = P, Quo(G--;,R~R/ij) = Q. So the pair 

of extensions P, Qare representable. 
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P = h c.9-__ ;_/ 
a~ 

ef 
Q=a~ 

\ 

G = rank-three geometry on_ ta,b,c,d,e,fJ 

in general position 
/ 

figure 4.2 

i 

e 

f 

figure 4.3 
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While the general representation problem has still been 

unsettled, there is a positive result for representing ele­

mentary quotients. In the proof of the followi~g theorem, 

we construct a suitable quotient bundle to guarantee the 

existence of a representation. 

THEOREM 4.14 Any pair of elementary quotients P, Q of G 

is representable. 

Proof: · Without loss of generality, we assume that neither 

P nor Q is equal to G. There is some quotient R of both P 

and Q. Let n = deg(G~ R) and let F be the truncation of 

the free geometry on points a1 ,a2 , ... ah;b1 ,b 2,.,.bn. Denote 

the flats a 1a 2 ... an and b1b2 ... bn by A and B respectively. 

For each a f F, define 

LZn-1-r(a) (P~ R) if a) A 

Q (a) = { L Zn-H (a\Q---+ R) if a ;,, B 

L Zn-1-r(a) (G---:> R) otherwise. 

It is clear that Q(A) = P and Q(B) = Q. We claim that (Q(a)t<=F 

is an F-bundle on G. 

Let a,b ~ F be such that b covers a. It is obvious that 

if a~ A or a~ B, or if B "j: A,B, Q(b) is an elementary 

quotient of Q(a). If otherwise a/ A,B and b~ A say, then 

Q(a) = LZn-l-r(a)(G~> R) and Q(b) = LZn-l-r(b)(P-,, R) and so 

by proposition 4.12 Q(b) is an elementary quotient of Q(a). 

Next, let a, b be a locally modular pair in F. We want 

to show that in the quotient diagram: 
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C = 

Q(avb) 

Q(a)/ ~Q(b) 

~Q(ar,b)/ 

(*) M(a/\b,a) f\ M(af\b,b) = M(a/\b,avb). 

It is not possible that a } A and b) B. If this happens, 

av b = lF and so a, bare copoints of F. But then r(a/\b) -

I a" JJ I ~ Zn-2 and thus a/\ b cannot be a coplane of F, a contra,: 

diction. Similarly, it is not possible that a): B and b ~ A. 

If aAb ~ A(or B), then the quotient diagram C lies in a lift 

bundle from R toward P (Q respctively) and so (*) is satisfied. 

Finally, consider the case when aA b, a, b ~ A,B. If av b 'j A,B, 

the quotient diagram C lies in the lift bundle from R toward 

G and so (*) is satisfied. If otherwise a Vb ~ A (or B), then 

M(a/\b,a) /'\ M(a/\ b,b) = M(a1' b,a) = M(af'b,lp) c; M(a1'b,aVb) 

and so (*) is satisfied. 

In the extension R of G determined by the F-bundle 

Quo (G-;. R~ R/ A) = Q (A) = P 

and Quo(G~R~ R/B) = Q(B) = Q. 

Thus the pair of elementary quotients P, Q is representable. D 

4.15 



4.5 Partial Bundles 

This section introduces a new manner of representing 

quotients of a geometry, and lays the groundwork for the 

remaining chapters. This idea is most clearly expressed in 

the language of "relative position", as follows. If a quotient 

Q of a geometry G is represented by a flat z in an extension 

of G, we· say the quotient Q determines "the position of z 

relative to. the geometry G". It frequently happens that we 

have two geometries G and F, and wish to find a common exten­

sion of G and Fin which certain flats zi of F have certain 

positions relative to G, given by quotients Qi of G. Such an 

extension of G by F exists if and only if the correspondence 

z. -> Q. 
l l 

can be completed to an F-indexed bundle of quotients of G. 

It is impossible that there are flats z. ~ z. in F for which 
l J 

Q. is not a quotient of Q., so we may as well assume that 
J l 

z. ~ z. implies Q. is a quotient of Q .. 
l J J l 

Let us recall that a diagram of quotients (indexed by an 

ordered set I) is an order-preserving assignment of quotients 

of G to the elements of I. We are thus led naturally to the 

problem: "given a geometry F and a diagram of quotients of G 

indexed by a subset I of the set of flats of F, when can the 

diagram be extended to an F-indexed bundle of quotients of G?" 

Think, for example, what happens if for each flat z d, 

the quotient Qz has degree equal to the rank.of z. Then any 

completion to an F-bundle will be a strict representation of 
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these quotients, as discussed in the preceeding section. The 

present formulation of the problem will also guarantee that 

the representing flats have given positions relative to one 

another, a property not guaranteed in an arbitrary strict 

representation. For instance, three elementary quotients may 

be strictly represented by three independent points, or, by 

three colinear points. 

Given geometries G and F, a family of quotients of G 

{Q(a)} I aE 

indexed by a set I of F-flats is called a partial bundle [4] 

on G if it can be completed to an F-bundle on G. Here we 

give a non-trivial example of an I-indexed family of quotients 

which is not a partial bundle. 

EXAMPLE 4.15 Let F be the free geometry on three points 

1,2,3 and let I= {0,12,23,123}. Consider the quotients 

shown in figure 4.4. 

figure 4.4 

If Q(I) is completable to an F-bundle {Q(a)} Fon G, then BE 

the quotient Q(2) would be equal to one of the three quotients 

in figure 4.5 

figure 4.5 

But for each i = 1,2,3, 

M(Pi + Q(l2)) n M(Pi + Q(23)) f M(Pi + Q(l23)), 

a contradiction. Thus Q(I) is not a partial bundle. 
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cd 
Q(12) = aiv---

Q(123) = abed 
• 

a 

G = Q(O) = I\\ bk::fc 
figure 4 .4. 

figure 4.5 
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V. COMPLETIONS OF PARTIAL BUNDLES 

5.1 Weak Order on Partial Bundles 

Given any set I of flats of a geometry F, a family of 

geometries on X {Q(a)} I will simply be denoted by Q(I). 
BE. 

Further, by an F-bundle on X, or just an F-bundle, we under-

stand an F-bundle on G(X), where G(X) is some geometry on X. 

Recall that we denote by j(X) the set of all geometries on 

X together with the weak order. Each F-bundle is naturally 

an element of 'JF, the F-fold product of 1'CX) together with 

the component-wise order. Thus any possible completion of 

Q(I) to an F-bundle is an element of .J/· 
The weak order on bundles is consistent with that on the 

corresponding extensions, as we now show in the following: 

PROPOSITION 5.1 Given geometries G(X) and F(Y), let Qi(F) 

be F-bundles on G and R.(XuY) be the corresponding extensions, 
l 

i = 1, 2. Then 

R1 ~ R2 <=* Q1 (a) ~ Q2(a) for all a e F. 

Proof: The rank equqtion in theorem 4.3 says that for each i 

rR. (xua) = rQ _ (a) (x) + rF(a) 
l l 

V x e G, a E F. 

~ R2 ~ rR (xua) ~ rR (xua) 
1 2 

V x e G, a e F 

rQ
1

(a)(x) ~ rQ
2

(a)(x) V x e G, a e F 

Q1 (a) ~ Q2(a) Va e F. D 
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Given a set I of F-flats and a partial bundle Q(I) on 

X, the completions of Q(I) to F-bundles need not form a 

semilattice under the induced weak order in 1cx)F. 

EXAMPLE 5.2 Let F be the geometry of a two-point line and 

let I ={aj consist of only the zero-flat of·.B. Let Q(O) = G 

be the free geometry on four points a,b,c,d. Consider the 

geometries Gi, G2 , H1 , H2 in example 1.1: 

Let L = L(G--G1). The following F-bundles are completions 

of Q(I): 

Both C and Dare maximal completions weaker than A and B; so 

the meet of A,B does not exist. 
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5 .. 2 Duality of strict 2-bundles 

If Fis the geometry of a two-point line, then an F-bundle 

is called a 2-bundle. A strict 2-bundle corresponds·to an 

extension by a two-point line without increasing the rank of 

the geometry. 

In order to prove the duality proposition, we need the 

following: 

LE:MMA 5.3 Let Q:be a quoti~nt of a geometry G(X). For any 

subset A of X, 

nG~ (A) + nQ*-C* (X \ A) = deg(G-;>Q), 

Proof: nG~(A) + nQ*-+G*ex\ A) 

= rG(A) - rQeA) + nG*ex\A) 

=r G eA) + nG* ex\ A) - er Q eA) 

= r(G) - reQ) 

= degeG~Q). Q 

nQ*ex\A) 

+ nQ* ex\ A)) 

PROPOSITION 5.4 Given any strict 2-bundle 

on X, its inverted dual 

B'= 

is also a strict 2-bundle. 

Proof: Let A~ X. Then 

A ~ MeR*-~ P*) r:,. MeR*-)Q*) 
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~ r P* (A) = r R'~ (A) - 1 = r Q* (A) 

===> rp(X'\ A) = rR (X \ A) = rQ(X\ A) 

==;> rR (X \A) = rG(X\A) 

. R* 
A = A E M(R*-;:> G*) . 

Thus B' satisfies the two bundle properties. 0 
If in the above proposition the 2-bundle Bis not strict, 

then its inverted dual B' may not be a 2-bundle. · For example, 

let Q be a proper elementary quotient of G and we have a 

2-bundle 

But its inverted dual 

G* 
/·". 

G* G* 

"-Q/ 
is not a 2-bundle because M(Q*~ G*) f- iil while the modular 

filter { x E Q* I nQ*~* (x) = 2 } is empty. 

5,3 Completions to 2-bundles 

As we mentioned earlier in 1.4, for any geometry G, the 

semilattice of its elementary quotients is isomorphic to the 

semilattice of its proper modular filters. The modular 

filter corresponding to an elementary quotient Q of G is 

only if Q = G. We are now going to show that the elementary 

quotients of a geometry G(X) are actually /\-closed in .Qj(X). 
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PROPOSITION 5.5 Given a non-empty set \QJ if I of elementary 

quotients of a geometry G(X), i~IQi exists and is equal to 

the elementary quotient of G with modular filter i~\~\CG~i). 

Proof: If there is some j E I such that Q. = G, then Q.,,;; Q. 
J J l 

for any i c I, so fiIQi = G which is the elementary quotient 

of G corresponding to the modular filter 0 = {dIM1 (G---?Qi). 

So we assume that Qi f G for all i EI. The modular filter 

M = {.;I~1r (G-,Qi) is non-empty and we let Q be the elementary 

quotient of G with modular filter M. We want to show that 

Q = t'rQt. 

Suppose T(X) is a geometry such that T, Qi for all i EI. 

To complete the proof, we need to show that for any flat x E G, 

Since rT(x) :;, rQ. (x) For all i E I, so if x <: M, 
l 

then rT(x)) rG(x) - 1 = rQ(x), and if otherwise x l Mj for some 

j EI, then rT(x) ~ rQ. (x) = rG(x) = rQ(x). 0 
J 

Next, instead of elementary quotients of a geometry, we 

look at geometries which have a common elementary quotient. 

PROPOSITION 5.6 If \QJ i~I is a non-empty set of geometries 

(on the same set X) with a common elementary quotient G(X), 

then /\IQ. · exists and G is. an elementary quotient of it. 
lE l 

Proof: Let I'= (i EI l Qi f Gl. If I'= 0, then /)IQi 

= G. So we now assume I' f r/J and whence {::\Qi = i~, Qi. 

For each if I', Qi is a proper elementary quotient of G*, 
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so by the preceeding proposition i'~i',Qi exists and equals Q 

say. We claim that Q* = i~'r, Qi. 

For each i EI', since Q ,,s; Qi and both Q and Qi have the 

same rank, by proposition 1.3 Q* ~ Qi. Suppose T(X) is a 

geometry such that T !SQ. for all i EI'. To complete the 
]_ 

proof; we need to show that for any subset A of X, 

nQ*(x). Let A' = X \A and let r be the rank of Q. 

nT(x) ~ 

If ~*E 

if\ 1 Ml (G*----tQi) ' then nT (A) ~ nQ. (A) 
]_ 

= r - rQ,(A') .for all i E 
]_ 

I'. But rQi(A) = rG*(A') - 1 = rQ(A') for all i EI', so 

nT(A) ~ r - rQ(A') = nQ*(A). If otherwise ~* r/:. M1 (G*~j) 

for some j E I I then nT(A) ~ nQ. (A) = r - rQ,(A') = r - r 8*(A') 
' J J 

= r - rQ (A') = nQ*(A). D 

The following two propositions will be used in proving 

the completion theorem in the next section. 

PROPOSITION 5.7 Let P, Q be elementary quotients of G and 

let { Ri} i<H be a non-empty set of elementary quotients of P, Q 

such that for· each i EI ' 

,60 
G 

is a 2-bundle. Then i~IRi exists and 

i'iIRi 

is also a 2-bundle. 

p/ ~Q 

~G/ 
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Proof: By proposition 5. 5, /E\IR. exists and is an elementary 
l l . 

quotient of both P and Q. For each i EI, M
1

(G-;,P) ('\ M1 (G--}Q) 

= M1 (G-P) f'\ Ml (P-4Ri), Let R 

~\ (G-;,P) n M1 (G--}Q) 

= /\ R iGI i; then 
(\ 

= M1 (G-e,.P) (\ (i~IMl(P-Ri)) 

= M1 (G-+P) (\ Ml (P--:,R) 

= M2 (G-11.). 0 

PROPOSITION 5.8 Given an elementary quotient G of geometries 

P and Q, If { R J is a non-empty set of geometries such 
i i<= I 

that for each i E I, 

G 

p/~Q 
~R~ 

l 

is a 2-bnudle, then ./)1R. exists and 
l-c l 

B = 

is also a 2-bundle. 

Proof: By proposition 5. P, /)IR. exists. 
l"' l 

- /\ . Let R - . '-IR. l<= l, 

Both P, Qare elementary quotients of R. If R = P say, then 

M1 (R~) = 0 and so Bis a 2-bundle. So we now assume that R 

is equal to neither p nor Q. The set I I = { i E I \ R. 'f p I = 
l 

(i E I R. 'f Q} is non-empty and G is equal to neither P nor 
l 

Q. By proposition 5. 4, for each i G I I 
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is a 2-bundle. Since /\ R* 
iE I I i 

-,(/\ R )*iEI I i 

R* 

p•< )Q•G* 

is a 2-bundle. By proposition 5.4 again, 

5.4 A completion theorem 

= ( J\ R.) * = R*, 
1E I 1 

B is a 2-bundle. 

Given a set I of F-flats and a partial bundle Q(I) on 

so 

D 

X, the completions of Q(I) to F-bundles may not form a semi­

lattice. The purpose of this section is to give a sufficient 

condition on I under which the completions are.A-closed in i(X) 
and thus form a semilattice. 

THEOREM 5.10 Let F be a geometry and let I be a set of 

F-flats such that

x < y E F " I · ) r (y) - r (x) ) 2. 

If Q(I) is a partial bundle on X, then the ·completions of 

Q(I) to F-bundles form a sub-/\-semilattice of J.;,(X)F . 

Proof: Let [ Qj (F) I j E J} be any non- empty set of com­

p let ions of Q(I) to F-bundles. For each a EI, Q.(a) = Q(a) 

for all j E J, so j�JQj (a) = Q(a). For any flat a E F\.I,

there exists a flat b E I such that either a covers b orb 

covers a. If a covers b-, then Qj (a) is an elementary quotient

oJ Q(b) for all j E J, and so by proposition 5.5, f}3Qj(a)

exists. Similarly, if b covers a, then Q(b) is an elementary 

quotient of Q.(a) for all j E J, and so by proposition 5.�,
. J 

j�Qj (a) exists. Define Q (a) to be j;;;.JQj (a) for each a E F.

Claim that { Q(a) / a� F} is indeed an F-bundle on X. 
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First of all, by propositions 5.5 and 5.6, for any flats 

a,b E F, if b covers a, then Q(b) is an elementary quotient 

of Q(a). So the first property of a quotient bundle is 

satisfied. 

Next, let a, b be a locally modular pair in F. We want 

to show that 

(*) M(ai\b, a) ri M(a1\b, b) = M(ar-b, avb). 

If all of a, bi a/\b, avb are in I, then it is clear that 

(*) is satisfied. Otherwise, we have the following three 

cases to consider: 

1) a,b,a/\ b E I . 
' 

2) a,b,av b E I· 
' 

3) a I\ b, av b E. 

Thus {Q(a) 

I. 
' 

proposition 5 .7 shows that (*) holds. 

proposition 5.8 shows that(*) holds. 

:M(ai\b, a)r'IM(ar-b, b) 

= Cfi3M(a/\ b, a)){') ( j~\M(a i"-b, b)) 

= jrJU·\CQ(ar-b), Qj(a) r,M1 (Q(ar-b), Qj(b))) 

= j03M(a /\ b, av b) 

- M(a11 b, avb). 

a E F} is a comp;I.etion of Q(I) to an F-

bundle on X and this completes the proof. 0 
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5.5 A counter-example for the existence of a lelst 

completion of a partial bundle 

We have shown earlier in this chapter that the com­

pletions of a partial bundle need not form a semilattice. 

As a matter of fact, a partial bundle may not even have 

a least completion. 

EXAMPLE 5 .11 Let F be the plane geometry of three points 

1,2,3 and let I= {O, 12, 13}. Let 

Q(O) = the rank-five geometry of nine points a,b, 

c, ... ,i in general position 

Q(l2) = Q(l3) = 
f 

The two completions of Q(I) shown in figure 5.1 are minimal. 

Thus Q(I) has no least completion. 

We shall see in the next two chapters that if I is a 

sublattice of a free geometry F,- then any partial bundle 

Q(I) has a least completion, a canonical construction for 

which will be given. 
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VI. EXTREMAL COMPLETIONS OF PARTIAL BUNDLES I 

The purpose of this chapter is to develop a canonical 

construction scheme for completions of partial bundles. The 

partial bundles we consider will be indexed by a Boolean 

subalgebra of a free geometry. For this class of partial 

bundles, there is always a least completion achieved by 

successively lifting quotients along certain paths which 

eventually fill up the indexing geometry F. 

In the first three sections of this chapter, we will 

give the materials necessary for the development of the con­

struction scheme. 

6.1 Commutative and totally compatible extensions 

Let M1 , 

For each i = 

extension of 

M2 , ... , Mnbe modular filters of a geometry G(X). 

1, 2, ... , n, let H. (Xv e.) be the elementary 
l l 

G(X) corresponding to M.. The elementary ex-
1 

tensions G~ H. are said to be totally compatible if there 
l 

exists an extension G---? H (Xv e
1
v e

2
v ... ven) such that for each 

i, His an extension 

xE M.~ 
l 

of H., or equivalently, 
l 

:-cl-! ei E X , V X E G. 

Consider a geometry G(X) and a list of modular filters 

M1 , M2 , ... , Mn (with repetition allowed) of G. Let E = 

{e1 ,e2 , ... ,en} be an n-element set. For any permutation n 

on {1,2, ... ,n}, there is a sequence 

G(Xl=Go(X)--? Gl (XV e'!T(l))~ Gz(Xv e1r(l)ve'fr(Z))~ 

••. -:?,G(XvE) 
n 
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of elementary extensions, called a minimal extension sequence, 

defined by the prescription: 

Mod (G. 1~ G.) = the modular filter of G. 1 1- 1 1-

generated by MiGi-1 Vl,;i,;_n. 

The modular filters M1 ,M2 , ... Mn are said to be commutative if 

the extension G (XV E) does not depend on the choice of the 
n 

permutation 'TT, 

PROPOSITION 6.1 If modular filters M1 ,M2 , ... ,Mn of G(X) 

commute, then their corresponding elementary extensions 

Proof: Let H(Xv e1ve 2v ... ven) be the extension of G(X) 

determined by the commutative modular filters M1 ,M2 , ... ,Mn. 

For any. i = 1,2, ... ,n, there exists a permutation 1fon 

{1,2, ... n} such that 7T(i) = 1 and so the minimal extension 

sequence defined with respect to~ has a subsequence 

G(X)~H.(Xve.)-~H(Xve 1ve 2v ... ve ). 
1 1 . . n 

Thus the elementary extensions Hi(Xuei)' i = 1,2, ... ,n, are 

totally compatible. D 
PROPOSITION 6.2 Two modular filters M, N of G(X) commute 

if and only if their corresponding elementary extensions H(X v e1) 

and K(Xve 2) are compatible (= totally compatible). 

Proof: If M, N are commutative, by proposition 6 .1, H, K are 

compatible. Conversely, if H, Kare compatible, there exists 

a least elementary extension R of H, K as shown in the fbllowing 

diagram: 
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By proposition 2. 4, Mod (H~ R) = the modular filter of H 

generated by NH and Mod (K~ R) = the modular filter of K 

ganerated by MK. Thus M, N are commutative. D 
The converse of proposition 6.1 is not true. There are 

totally compatible modular filters which are not commutative. 

EXAMPLE 6.3 Let G be the rank-four geometry on eight points 

a,b, ... ,h in general position. let ~t1=M
2
={abc,def,1G} and M3= 

{abc,def,agh,bgh, ... ,fgh,lG}. The modular filters M1 ,M2 ,M3 

are totally compatible, as exhibited in the extension shown 

in figure 6.1. 

figure 6.1 

But for different orders M1 ,M 2 ,N3 and M1 ,M3 ,M 2 of the modular 

· filters, the minimal extension sequences give different ex­

tensions, as shown in figure 6.2. 

figyre 6.2 
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6.2 Principal extensions 

Given a geometry G(X) together with a flat E in G, by 

putt~ng an extra point e in general position on E, we mean 

the elementary extension 

G (X)~ H(X u e) 

corresponding to the principal modula·r filter [E] of G. 

Crapo and Roulet [8 J first observed that for any list 

of flats fEil of a geometry G, an extension of G can be cons­

structed by putting, for each i, one extra point ei in general 

position on the flat Ei. 

A theorem of Rrown (1 ) on exchange closures showed, as 

noted by Crapo and Roulet [8 ) , that any two such elementary 

extensions of a geometry commute: 

THEOREM 6.4 Given two flats E, F of a geometry G(X), there 

exist elementary extensions as shown in the following diagram: 

~G1 (Xve1) 

G(X) ~H(Xve1 ve2) 

. ~ ------Gz (X ve2) . 

where Mod ( G~ G1) = (E) G 

and 

Mod(G-,:,Gz) = [F)G 

Mod(G1--;. H) 

Mod(Gz~ H) D 

In order to prove the next theorem on commutativity, we 

recall a fundamental result on permutations of integers: 
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LEMMA 6.5 Let n and~ be permutations on (1,2,'. .. nJ. There 

exists a sequence 

· Tr="il'o, 'iT1, TTz, • • • • 11k=O-

of k permutations on {1,2, ... k} for some integer k, such that 

for any O < j ~ k 

(*) Tt'-
1

(i) = ~-Ci) for all i=l,2, ... ,n except some 
J - J 

two consecutive integers. D 

THEOREM 6.6 For any flats E1 , E2 , ... ' E of a geometry G(X), n 

the principal modular filters .[EJ ·, [E 2J , · ..• , [En1 are 

commutative. 

Proof: Let te1 ,e 2 , ... ,en} =Ebe an n-element set and let 

'ii, Cf"be any two permutations on {1,2, ... ,n}. There exists a 

sequence of permutations 

satisfying· .. condition (*) in lemma 6.5. By theorem.6.4, for 

any O <. i ~ k, the minimal extension sequences of M1 ,M2 , ••• ,Mn 

defined with respect to the permutations 11'- 1 and 'Tf'. give the 
1- l 

same extension R(X u E) of G(X). Thus the modular filters 

[E~ , [E
2
] , ••• , [En] are commutative. 0 

Given flats E1 , E2 , ... , En of a geometry G, the extension 

of G determined by the commutative modular filters [E~ , [E 2] , 

... ,[E ]is called a principal extension, which is often des-
n 

cribed as the extension of G. obtained by adding, for each i = 

1,2, ... n, a point eiin general position on the flat Ei. 
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LEMMA 6.7 Given a principal extension G(X)~R(X v E) in 

which among others a point a E E i5 put in general position 

on a flat C of G, for any subset A~ E not containing a, 

a EAR if and only if CR~ AR. 

Proof: Consider the extension sequence 

G(X)-:a>H(X VA)~ K(X v AV a)-,,. R(X VE) 

where Hand Kare subgeometries of Ron Xv A and Xu Av a 

respectively. 

a E. AR {=:} a G 

PROPOSITION 6.8 

By theorem 6.6, Mod(H~K) =[cf"1JH. 

AK ~ cf"I ,,;; Ji:'"! ~ CR :S AR. 0 

But then 

Let C be a flat of rank r > 0 in a geometry 

G(X). If R is the extension obtained by putting points a1 ,a2 , 

... ,ar in general position on C, then a1 ,a2 , ... ,ar are indep­

endent in R. 

Proof: Consider the minimal extension sequence 

G=G
0 

(X) -,; G
1 

(Xua1) -> 

from G to R, where for each 

G(Xua1 ua 2)-+ ... -> R(Xua
1

ua 2~ ... uar) 

1,,; i ~ r, Mod(G. l~G.) = [ ~i-l]G . 
i- l i-1 

Suppose there is some is~ such that a1 de~ends ·on {a~,a2 , ... ,ai-l}. 

Then by lemma 6.7, {a1 ,a2 , ... ai_ 1} i-1 ~ ~i-1 and so i-1 ~ r, 

a contradiction. Thus a1 ,a2 , ... ,ar are independent. 0 

respectively and be skew to each other (i.e., r (C1 v c2 v ... v Cn) 

= r
1

+r
2

+ ... +rn) in a geometry G(X). If for each i=l,2, ... n, 

points ai
1
·,ai

2
·, .. ,ai are put in general position on C., then the r. i 

l 

set C of added points is independent in the extension R thus 

defined. 
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Proof: Let a e C and A~ C be such that a i A. We want to 

show that a does not depend on A in the extension R. Suppose 

not. Let a be put on the flat Ck say. Then Ck ;S A. For 

h . 1 2 1 C' - { i 2 i } B · · eac i = , , ... ,n, et . - a 1 ,a2 , ... ,a . y proposition 
i r. 

i 

6.8; C! = C.. 
i i 

Then B ?- ._ 1 VZ C.. 
1- , , ... ,n 1 

But this is impossible because !BI < !Cl . O 
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6.3 Extremal sequences of elementary quotients 

As we have pointed out in 4.2, given a quotient bundle 

Q(F), any maximal chain 

in F gives a sequence 

QC co)-} Q(cl)--7 -? Q(cn) 

of elementary quotients. The purpose of this section is to 

study these sequences with the consideration of the weak order. 

If. S: PO-:) Pl~ 

and T: Q0--? Q1---} 

---+P n 

are sequences of elementary quotients of equal length, define 

S {, T 

if and only if 

P.~Q. Vi=O,l, ... ,n. 
1 1 

Sequences of proper elementary quotients with the weak order 

were studied in (4]. The treatment there is now generalized 

in our present discussion. 

To start with, let Q be a quotient of a geometry G and 

look at sequences of elementary quotients from G to Q of 

length n for some integer n; deg(G~~Q). There is no surprise 

that such sequences need not form a semilattice although there 

is a least such. 

EXAMPLE 6.10 Let Q be a quotient of a geometry Gas shown 

in figure 6.3. Consider sequences s1 , s2 , s3 and s4 as shown 

in figure 6. 4. In the ordered set of sequences __ of element(lry 

qu.otients from G to Q of length 3, s1 ,s 2 cover s3 , s4 . Thus 
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s1 /\ s2 does not exist. 

figure 6.3 

figure 6.4 

Given a lift bundle Q(F) of Q toward G, any maximal chain 

in F gives a sequence 

of elementary quotients. Q(C) may not be the stiict lift· 

sequence from G to Q unless the bundle Q(F) is strict, i.e., 

· r(F) _; ·deg(G~Q). 

The lift sequence from G to Q of length n is defined to 

be the sequence 

' of elementary quotients such that 

Q. l ; L ( G~ Q. ) 
1- 1 

Vi; 1,2, ... ,n. 

It is clear that if k; n - deg(G~Q), then 

Q. = G 
1 

V i ~ k 

and the subsequence 

is the strict lift sequence from G to the quotient Q. 

The following is a slight modification of proposition 4.5: 

PROPOSITION 6.11 Given any sequence of quotients 

G~P~Q 

and integers m, n such that m} deg(G--:,>P) and n ;;i, deg(P-',>Q), 

Mn (G-;, p) r, Mn (P-=,,. Q) 

6.11 
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Proof: If m = deg(G~P) and n = deg(P~~Q), then m + n = 

deg(G-pQ) and so 

"\n (G-l> P) n Mn (P---,, Q) = M(G~ P) " M(P-l> Q) 

= M(G-'l> Q) 

= Mm+n (G-;, Q) . 

If otherwise m > deg (G-P) say, _then m+n > deg(.G-'->Q) and so 

Mm (G-"7'P) (\ MJP-,)-Q) = 0 = Mm+n (G ~Q). 

As a corollary of proposition 6.11 and theorem 4.6, we 

have the following characterization of lift sequences: 

THEOREM 6.12 For any sequence 

of elementary quotients, the followings are equivalent: 

1) Sis the lift sequence from G to Q of length n 

Vi= 1,2, ... ,n-l 

3) M1 (G. 1---:).G.) = M . 1 (G. 1~G) 
1- 1 n-1- 1- n 

Vi= 1,2, ... ,n-1. 

D 

D 
Finally, we have the extremal property of lift sequences: 

THEOREM 6.13 Given a lift sequence 

from G to Q, if 

is any sequence of elementary quotients such that G, Hand 

Q ~ P, then S ~ T. 

Proof: Let k = n-deg(G~Q). For any i ,;, k, 

Li = G :S H ~ Qi. 

To complete the proof, we want to show that for any k <. i ~ n, 
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if L. l ~ Q. l' then L. ,,'., Q.. Let x E L.. If x 1: M(L. 1--;,L.) 
1- 1-. 1 1 1 1- 1 

then 

r 1 _ (x) = r 1 _ (x) ~ rQ (x) ;;i rQ. (x). 
1 1-l i-1 1 

If x E M(L. 
1
~7L.), then by theorem 4.6 x E M(L. 1~7Q) and so 

1- 1 1-

+ n - 1 ~ r Q. (x) . 
1 

Thus L. ,;; Q. for all O ~ i ~ n and so S ,,; T. D 
1 1 
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6.4 The weakest completion of a partial bundle 

For the rest of this chapter, F(E) will be the free geometry 

on a (finite) set E and I will be a set of flats of F such that: 

1) a,b E I ==} aAb(=anb) ,avb(=aub) E I 

and 2) a E I ) E '-s a E I , 

that is, I is a Boolean subalgebra of F. 

As subsets of E, the atoms E1 ,E 2, ... ,En of I partition 

the set E, where n equals the order of I. For each a E F, let 

E (a) 

and 1 (a) 

= mi I 0 r 
= IE(a) 1-

BAE. 'f E.} 
l l 

For any flat aEF and any atom Ei of I, 

l(avE.) = l(a), and if E. E E(a), then 
l l 

For any O $ i $ n, let 

Ii = {a E F I 1 (a) $ i}. 

Then we have a sequence 

I=Io f: Il s;. ... C. In=F 

of subsets from I to F. 

if E. i 
l 

1 (a °\Ei) 

E(a), then 

= 1 ( a vE . ) = 1 (a) -1. 
l 

Let Q(I)={Q(a) }a EI be an arbitrary partial bundle of quot­

ients of a geometry G(X) indexed by I. The purpose of this 

section is to show that the weakest completion of Q(I) always 

exists. 

Let Q(F) be any completion of Q(I) to an F-bundle, and 

let R(XuE) be the extension of G(X) determined by Q(F). For 

notational convenience, we produce an extra copy of E: 

E' = {a' I a E E}. 
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. -R-R -R Consider the flats E
1 

,E 2 , ... ,En of R. For each i = 1,2, ••• ,n, 

we put in general position on r.R the points p', with p E E .. 1 1 

This gives an extension 

R(XvE)~H(XvE VE'). 

By proposition 6.8, the set E' is independent in H, and so 

the subgeometry F'(E1 ) of Hon E' is free and isomorphic to 

F(E). For each flat a~ F, let 

a' = {p' I p E a} 
be the corresponding flat in F'. The subgeometi:'y R' (X"i..iE')~of 

H on Xv E' is an extension of both G (X) and F' (E ') and so 

determines an F'-bundle Q'(F') on G(X). If we let Q'(a) = 

Q'(a') for all a E F, then Q'(F) = {Q'(a)}aGF is an F-bundle 

on G(X). 

LEW.IA 6.14 For each a EI, Q'(a) = 

is a completion of Q(I). 
-R' 

Proof: If a E I th -R' = a' and so , en a 

Q' (a) = Quo ( G-0 R'---'? R' I a') 

= Quo CG-? H--:'> H/ a' ) 

= Quo ( G-'r H-"7 H/ a) 

= Quo (G- R~ R/a) 

= Q(a). D 

Q (a)' 

If a~ b ~ F we denote the modular filter 
' 

Mr(b)-r(a) (Q' (a')-"?Q' (b')) 

by M(a,b). 

ie. , QI (F) 

LEMMA 6 .15 

from a, if 

Given an F-flat a and an atom E. of I disjoint 
1 
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a=a 0 < a 1 <. .. <. ak =av Ei 

is a maximal chain in F from a to av E. (k=/ Ei. /), then for 
]. 

any O < j <. k, 

M(a. 
1
,a.) = M(a. 1 ,avE.), 

J - 'J J - ]. 

that is, the sequence of elementary quotients 

is a lift sequence from Q' (a) to Q' (avEi). 

Proof: Let R. 1 (XvE va. 1
1

) and RJ. (XvE vaJ. ') be subgeometrj.es 
J C J - • 

of .H(XvE vE') on Xv Eva. 1 • and XvE va.' respectively. 
J - J 

Since a.\a. 1 EE., by theorem 6.6, the modular filter of 
J J-~ ]. 

R. 
1 

corresponding to the elementary extension R. 1---,,R. is 
J- . J- J 

[ -R. ] 
Ei J-1 R. 1' 

J -
Let x E M(a. 1 ,a.). Then 

J - J 

and so 

Thus 

-E • RJ. -1 { IR. 1 
1. _ xvaj·l J-

-E H < ,H 
].. , xva. 

1 J - ·' 

xva'vE.'H= 
]. 

x va. 1 J -
' I 

It follows that 

x v a ' v E . ' Rj -1 = 
]. 

---~,R. 1 x va .. 1 J -
. J -

and so x E M(a. 
1
,avE.). Hence M(a. 1 ,a.) = M(a. 1 ,avE.). 0 

J- ]. J- J J- ]. 

THEOREM 6.16 The F-bundle Q'(F) defined above is the weakest 

possible completion of th~ partial bundle Q(t). 
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Proof: Let P (F) be any comp let ion of Q (I) . We are going 

to show by induction on l(a) that Q'(a), P(a) for all a E F. 

If l(a) = O, then Q'{a) = Q(a) = P(a). Suppose Q'(a) $ 

P(a) for all a E F such that l(a) < i. Let b E F be such 

that l(b) = i. 

that 

Then there exist a E F and atom E. of I such 
1. 

a<b<avE. 
1. 

and l(a) = l(aVEi) = i-1. 

By induction hypothesis, Q'(a), P(a) and Q'(avEi) ( P(avEi). 

By lemma 6.15 and theorem 6.13, Q'(b) ~ P(b). 0 
Combining lemma 6.15 and theorem 6.16, we have the 

following construction theorem: 

THEOREM 6.17 Given a partial bundle Q(I), its lea~t:Co~-

pletion Q' (F) is constructable via the sequence 

... , Q'(I )=Q'(F), n 

where·for any i > O, Q'(Ii) is definable from Q'(Ii~l) as follows: 

Va E I., VE. E E(a), 
1. J 

QI (a) = LIEj\,alcq•(a\E.)~Q'(avE.)). 
J J 0 
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6.5 Some preliminary completion constructions 

The purpose of this section is to prove some results 

related to lift sequences, which will be needed in the next 

section for completion testings. 

We start with a slight modification of proposition 4.10: 

PROPOSITION 6.18 Suppose in the.following diagram of quotients 

G~ Q and P~} Rare elementary. For any integer knot less 

k-1 than deg (G~ P) or deg (Q-l> R), L (Q~ R) is an elementary 

quotient of Lk-l(G-l>P) if the following condition is satisified: 

Proof: Consider first the case when k > deg(G~P). If G = Q, 

then Lk-l(Q~ R) 

G = L k - l ( G~ P) . 

= Lk-l(G~R) is an elementary quotient of 

deg(Q~R)= deg(G~R)-1 ~ 

deg (G-;)> P) <'.. 

Lk-l(G-~P). 

If G ,f Q, then 
k-1 

k, so L (Q~R) = Q is an elementary quotient of 

Next, assume that k = deg(G~ P). If G ,f Q then condition 

of the proposition implies that deg (P~ R) = 1 and deg (Q~ R) = 

k, and so by proposition 4.10 Lk
01

(Q---;,R) = D(Q-~R) is an 

elementary quotient of D(G-~P) = Lk-l(G-~P). If G = Q, it 

is impossible that P ,f R for otherwise deg (Q~ R) = deg (G~ R) 

= k+l, a contradiction. If G = Q and P = R, the proposition is 

trivially true. D 6.18 



Given quotients P, Q, R of a geometry Gas shown in the 

following diagram 

Q-~R is said to be elementary tp G~P if the following two 

conditions are satisfied: 

1) Li (Q-',> R) is an elementary quotient of Li (G-';> P) 

for any i = 0,1,2, ... 

and 2) M
1 

(Li (G-'> P) ~ Li (Q~ R) )I'\ Mi (Li (G~ P)--,, P) 

for any i = 0,1,2, ..• 

Note that Q~R is elementary to G-----,,.P if and only if for any 

lift sequences of equal length 

and G=G 0~ G1~ ... ~ Gn=P, 

Q
1
. is an elementary quotient of G. and M1 (G.~ Q.) (\ M. (G.--=,, P) 

1 1 1 1 1 

= Mi+l(Gi~R) for any i = 0,1,2, ... ,n. As pointed out in 

remark 4 .11, in order that Q~ R is elementary to G~ P, it 

is not sufficient to assume M1 (G~ Q) (\ Mn (G~ P) = Mn+l (G-----;,. P). 

PROPOSITION 6.19 Let lift sequences 
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be given as shown in the following diagram: 

and suppose that they have the following two properties: 

1) Q. is a quotient of P. ,- V i"'l,2, ... ,h,, 
l - l 

s. is a quotient,pf R., V j=l,2, , ... ,k; 
J J 

2) P.~Q. is elementary to P. 1-;,.Q. 1' V 
l l 1- 1-

R.~S. 
J J 

is elementary to R. 1~ s. 1' J - J -
V 

Then for any Os is hand Os j s k, we have 

Lk-j(P.---;)>Q.) = Lh-i(R.-;>S.). 
l l J J 

i=l,2, ... h, 

j = 1 , 2 , ••• k_ . 

Proof: For any O < i ~ h and O ~ j ~ k, Lk-j (Pi-,,. Qi) is an 

k-j elementary quotient of L (P. 1-~Q. 1). For each O ~ j ~ k, 
1- 1-

by comparing the sequence of elementary quotients 

- k-j ' k-j Rj-L (Po~ Qo)-,,- L (Pl-:> Ql)~ ... 

-3' Lk-j (P --,,. Q )=S. 
n n J 

to the lift sequence of length h from Rj to Sj, we have 

L h- i (Rf---} S j ) ~ L k- j ( P i-3' Qi) V O ~ i ~ h. 

6.20 



Similarly, we also have Lk-j (P.~ Q.) ~ Lh-i(R.4 s.) for 
]. ]. J J 

any o ~ i ~ h and O ~ j ,;; k. 0 
Note that in the above proposition, condition 2) could 

be replaced by the following weaker one: 

2~ Lj (P.-~.) is an elementary quotient of Lj (P. 1---;) Q. 1) and 
]. ]. ].- ].-

Li (R.---'> S.) is elementary quotient i an of L (R. l ~ S. l) 
J J J - J -

for any 0 < i ~ h and 0 < j < k. 

Condition 2) is used in the proposition mainly because of 

convenience, as we can see in the next section. 
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6.6 Completabilities and Examples 

Given a family of quotients Q(I) of G, theorem 6.17 

suggests a standard test for its completability to an F-bundle; 

such a test we will obtain in this section. 

LE~!iv!A 6. 20 For any O < k < n, if a family of quotients Q(Ik). 

of G satisfies the following properties: 

0) for any aEik-l and for any EilE(a) together with a maximal 

chain 

(h= [E. I) 
l 

from a to avE. in F, the quotients Q(a0),Q(a1), ... ,Q(ah) 
l 

form a lift sequence from Q(a) to Q ( a vE.) 
l 

1) for any aeik and for any E. iE(a), Q ( a vE.) is a quotient 
l l 

of Q(a) 

2) for any a,bEik such that b covers a and for any Ei·,tE(a)uE(b), 

Q(b) + Q(bvE.) is elementary to Q(a) + Q(avE.), 
l l 

then for any aEik+l\Ik and for any distinct Ei,EjEE(a), 

L[Ei\a[(Q(a\E.)+Q(avE.)) = L[Ej\a[(Q(a\E.)+Q(avE.)). 
. l l . J J 

Proof: Let adk+l \Ik and let Ei;IEj•E(a). Consider the F-flats 

in Ik+l as shown in figure 6.5 

figure 6.5 

Let 

a\(E.vE.)=Po<Pi<"·<P[ E 
1
=a\E.<,.,<p[E 

1
=avE.\E. 

l J aA j l j J l 

and a\(E.vE.)=q 0 <.q1 <···<ql E 
1
=a\E.< ... (q[E 

1
=avE.\E. 

l J aA i J i l ] 

be maximal chains in F. The lift sequences 
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avE ,',_E. 
1 J 

avE. 

avE.vE. 
1 J 

a\E. 
J 

a \(E .vE ·) 
1 J 

figure 6.5 

6.23 

. avE. 

a\E. 
1 

J 

avE .\.E. 
J 1 



Q(pO)~Q(pl)~ : .. -,.Q(pfEjj) 

Q(povEi)-,. Q(plvEi)-,> ... -:)- Q(pJE.JVEi) 
J 

Q(qO)~Q(ql)~ ... -,,Q(qJE.J) 
l. 

and Q(q0vEj)-:, Q(q1vEj)--,,. ... ~ Q(qlEi]vEj) 

satisfy the conditions of proposition 6.19. Thus 

1IEi\al (Q(a\E.)-+ Q(avE.)) = 1IEj'\.al (Q(a\E.)-~ Q(avE.)). D · 
l. l. J J 

Next, given a family of quotients Q(I) of G, for various 

1 ~ k ~ n, we define its k-completabilit;res recursively as 

follows: Q(I) is I-completable if 

for any a,b EI such that b > a, Q(b) is a. 

quotient of Q(a). 

Q(I) .is (k+l)-compl~table; k < n, if 

Q(I) is k-completable and the family of. quotients 

Q(Ik) satisfies conditions 1) and 2) ·of lemma 6.20. 

If Q(I) is (k+l)-completable, then by lemma 6.20, a family of 

quotients Q(Ik+l) of G is uniquely determined, viz., 

for any a C:::. Ik+l \ Ik' let Ei E E(a), then 

Q(a) = LjEi\al (Q(a\Ei)---} Q(avEi)). 

(Note that if Q(I) is k-completable, condition 0) of lemma 6.20 

is automatically satisfied by Q(Ik).) 

THEOREM 6.21 A family of quotients Q(I) of G is completable 

to an F-bundle if and only if it is n-completable. 

Proof: If Q(I) is completable to an F-bundle, let Q(F) be 

the least completion. For each k = 1,2,, ... ,n, by lemma 6.15 

6.24 

' . ' 



and theorem 6.17, the subfamily Q(Ik) satisfies the conditions 

of lemma 6.20. Thus Q(I) is k-completable fork= 1,2, ... ,n. 

Conversely, if Q(I) is n-completable, there is a family 

of quotients Q(F) defined accordingly. We want to show that 

Q(F) satisfies the two properties of a quotient bundle. 

then 

Let a,b ( F be such that b covers a. 

= 1IE:L'al (Q(a'\E.)~ Q(avE.)) 
l. l. 

Ifb\aEE.say, 
l. 

Q (a) 

and Q (b) = 11E0bl (Q(b\E.)~ Q(bvE.)). 
. l. l. 

Thus Q(b) is an elementary quotient of Q(a). 

If a,b is a locally modular pair of flats in F, let 

a'\b E. Ei and b'\_a E- Ej. For any flats c,d E F, if c ~ d, 

we denote by M(c,d) the modular filter Mld\cl (Q(c)-:), Q(d)). 

If Ei = Ej, then all M(aAb,a), M(a;,b,b) and M(a/\b,avb) are 

equal to M(aAb,avE.). If E. I E., then 
l. l. J 

M(aAb,a) (\ M(a/\b,b) = M(aAb,a) ("\ M(aAb,bvEj) 

= M(a/\b,avE.) 
J 

S M(a/\b ,avb). 

Thus Q(F) is a completion of Q(I). D 
To conclude this section, we give some examples: 

EXAMPLE 6. 22 Let F be the free geometry of four points 1,2,3,4, 

and let I= f o,12,34,1234). Consider the family of quotients 

Q(I) as shown in figure 6.6 

figure 6.6 
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Q(l234) = (ab\ 
~ 

Q(lZ) (34) 

Q (0) 
~c 

b 

L(Q(o)->Q[12))• cDd 
L(Q(34)-}Q(l234)) = 

bed 
• €) 

figure 6.6 
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L(Q(34)~Q(1234)) is not a quotient of L(Q(O)~ Q(12)),. 

so Q(I) is not completable. 

EXAMPLE 6.23 Let F be the free geometry of four points 1,2.3.4, 

and let I= {o,12,34,1234}. Consider the family of quotients 

Q(I) as shown in figure 6.7. 

figure 6.7 

Let H = L(Q(O)-}Q(34)) and K = L(Q(l2)~ Q(l234)). Since 

M(fj---:l>K) (\ M(H--=;,Q(34)) = {ab,abcd} (\ fab,cd,abcd} 

= f ab,abcd} 

f M(H~ Q(1234)), 

so Q (I) in not completable. 

EXAi~PLE 6.24 Let F be the free geometry of four points 1,2,3,4, 

and let I= {0,12,34,1234}. Let Q(I) be a family of quotients 

of a geometry Gas shown in figure 6.8 

figure 6.8 

Q(I) is 1-completable; the family of quotients Q(I 1) is shown 

in figure 6.9 

figure 6.9 

Q(I) is also 2-completable and the least completion Q(F) of 

Q(I) is shown in figure 6.10. 

figure 6.10 
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Q(1234) = @ 

=• /d Q ( 1 2 ) ,,,.,,., 

c@ 

Q(O) = )\\ 
b~d 

C 

L(Q(O)-->Q(34)) D 
L(Q(l2)~~Q(1234)) = 

figure 6.7 
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Q(12) / 

ab 

Q(l234) 

G • Q(O) b~d 

C 

figure 6.8 
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Q(l234) 

Q(l23) = Q(l24) 

abed 
• 

Q (12) 

Q(l) = Q(Z) 

G 

figure 6.9 
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Q(l34) = Q(234) 

a b d I'.'."'\ 
• \.SJ 

Q (34) 

Q(3) = Q(4) 

b~ 



Q(l234) 

I 

Q(l23) = = Q(234) 

Q (12) Q (34) 

Q(l) = Q(Z) Q(3) = Q(4) 

G 

Q = Q(13) = Q(14) = Q(23) = Q(24) = 

figure 6.10 
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Given a Boolean subalgebra I of a free geometry, the 

completions of a partial bundle Q(I) need not form a semi­

lattice. 

EXAMPLE 6.25 Let F be the plane geometry of three points 

1,2,3 and let I={O, 123}. Consider the following partial 

bundle: 

Q(123) = 
abc 
• @I 

Q(I) = 

Q(O) "~c 

The two completions of Q(I) shown in figure 6.11 have no 

infimum. 
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Q(l23) 

C b C 

. C d 
~ ~ 
~ 

a>@ 
~ 

,</~ dLl 
a b 

Q (0) 

Q(l23) 

d 
C aY a~ 

@ 

C 

~d fl 
b at1b 

Q (0) 

figure 6.11 
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VII. EXTREMAL GQMPJ.EIIONS OF PARTIAL BUNDLES II 

7.1 Some lattice-theoretic preliminaries 

Throughout this chapter, we let F(E) be the free geometry 

on a (finite) set.E and let I be a cofuplete sublattite of F, 

i.e., a sublattice of F containing O and 1. 

For ·any flat a~ F, let 

I(a)=/\{xc::I X ~ a}; 
and for any point a~ E, let 

a = ( b ~ E I I (a) = I (b) } . 

Thus E = f ~ I a E E ~ is a partition of the set E of points, 

As an illustration, consider the free geometry P-.op. six.points 

a,b,c,d,e,f.and a sublattice I of Fas shown in figure 7.1. 

figure 7.1 

The set {a,b,c,d,e,f} is partitioned into {(a}, {b,c), \d\, {e,f}}. 

PROPOSITION 7.1 For any subset A~ E, A~ E if and only if 

A = y" x for some covering pair x,y in I (such that y is v­

irreducible). 

Proof: If y covers x in I, we let a E y '-sx . and claim that 

y\x = a. Since I(a) (. y, I(a)-/; x and y covers x, so I(a)vx 

= y and therefore y 's.X ::; I (a), Thus y "-x ~ ~- For any b E ~' 

b ~ I(b) = I(a) ~ y, and since I(b) = I(a) :/; x, sob { x and 

therefore b E y "-.X. Hence y "-x = ~· 

On the other hand, if A= a for some a E E, let y = I(a), 

y must be v-irreducible for if otherwise x1 f x2 are covered 

by yin I, then either a, x1 or a, x2 , contradicting the 

fact that I(a) = y. Thus y covers a unique element x in I. 
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beef 
abed 

I = 

be 

a 

0 

figure 7.1 

7 . 2 

eef 
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1! 

I ! 

, , 
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I, 
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Since a ,/; x, so a E Y'-.,.X and hence a = y".x. D 

Define a sequence 

·in I recursively by the following prescription: 

ui =Vfx i;: I! x covers ui-l in r}, 1,;;; i,:;; n. 

Also, for each i=l,2, ... ,n, define 

Pi = (x\ui-l I x covers ui-l in I} 

It is immediate that for any i=l,2, ... n, 

Pi= {y\x I y covers x in [ui-l' u)I} 

PROPOSITION 7.2 Eis partitioned by P1 ,P 2 , •.• ,Pn. 

Proof: It is clear that by proposition 7.1, P. ~ E for any 
1 -

1 ~ i ~ n. If x E Pi' then x ( ui and x ~ ui-l" It follows 

that the P.'s are pairwise disjoint. 
1 

If a E ~' then by proposition 7.1, ~ = I(a)".b for some 

b EI. Let i be the least integer such that I(a) ~ u .. But 
1 

then 

and so a E P.. 0 
1 

A sequence of sublattices from I to F: 

. CI =F n 

7.3 
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is defined recursively by the following: 

Ii= Ii-l v Ai (= {s v a I s • Ii-l', • Ai}) .. 
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7.2 An extremal completion construction 

Let Q(I) be a partial bundle of quotients of a geometry G, 

where the indexing set I is a complete sublattice of a free geo­

metry. The purpose of this section is to show that the least com~ 

pletion of Q(I) always ~xists and to give a direct construction. 

Let Q(F) be any completion of Q(I) and let R(X VE) be 

the corresponding extension. As in the previous chapter, we 

produce an extra copy of E: 

E'={a'ia.::E}. 

Putting each point a' E E' in general position on the flat 

rla)R in R(XV E), we have a further extension 

R(XV E)-~H(Xv EVE'). 

We are going to show that E' is an independent set in H. If 

xis a subset of E, we denote by x' the corresponding subset 

la' I a E x} of E' • 

LEMMA 7.3 Let a f. P., 1 <. i < n. If u. 
1

•H = u. lll, then 
- l 1- 1-

u. 1 • v a' is an independent set in H(X v Ev E'). 
1-

Proof: We want to show that for any b E !!:. and B ,; !!:_ such 

that b d,;. B, b' i ui_ 1
1 v B'II. Suppose otherwise. By lemma 6.7, 

u. l I V B, l! :;,, I (b) II and so 
1-

u. 
1

• VB' I~ I(b)IIV u. 
1

• 1 
1- 1-

= I (a)Il V u. lll 
1-

= I(a) Vu. lll 
1-

= !!:. V ui-1 

=avu. 1
1 

1-
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But then rH(ui_ 1
1

) + rH(B')) rH(ui_ 1 • v B') 

~ rH(~ v ui-1) 

and so rH(B') 9 la!which is a contradiction. 0 
PROPOSITION 7.4 The set E' is independent in H(Xv Ev E'). 

Proof: We show by induction on k that uk'-(= .yk(VP!)) is 
1~ 1 

independent in H for any k = 1,2, ... n. 

For any a E P1 , I(a) = a, so by proposition 6.9, the 

set VP 1 • is independent. Suppose ukc 1 • is independent and 

let a ce: Pk and B ~ Pk be such that a i. B. To complete the 

proof, we need to show that a' ,t. u ' v B 'II Suppose otherwise. k-1 

Let C = CV\E- E. Pk I b <f. ~})VB. By lemma 6.7, 

uk-1 ' V C 'II -~ uk-1 , U B 'H ~ I (a) H' 

and by lemma 7 . 3 , 

Thus 

But then ju 'v C'j k-1 

contradiction. 0 

H 
= uk-l vb , for any E_ G Pk. 

"7""-.,----,,-,-1 -:--::----,-,:-:-.,,----,----,--H 
= (u{uk-l u~ E_EPk, b;I~}) u (uk-l u~) 

= u{uk-luE_I ~ePk}H 

= u:-:-+l. 
k • 
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Since E' is independent in. Hex v Ev E') , the subgeometry 

F'eE') of Hex VE VE') on E' is free and isomorphic to FeE). 

The subgeometry R' ex VE') of Hex VE VE') on XV E' is an 

extension of both GeX) and F'eE') and so determines an F'­

bundle Q'eF'1') on Gex). If we let Q'ea) = Q'ea') for all a<:F, 

then Q'eF) is an F-bundle on GeX). 

PROPOSITION 7.5 Q' eF) is a 

Proof: For each a<'.:: I, ~ ,;;; 

completion of 

~ and rHea ') 

Thus QI ea) = Quo eG--:, R ,_,. R' /a') 

= QuoeG--'> H--,. H/a') 

= QuoeG--'> H---:,. H/a) 

= QuoeG--'> R--'> R/a) 

= Qea). D 

Q eI) . 

= [ a , I ' so~ 

For any a f b E F, we let M' ea,b) denote the modular 

filter Mlb~al eq•ea)--'> Q'eb)). 

PROPOSITION 7.6 Lets EI. 1 , and let b cover a in A .. 
i- 1 

If s v a f s vb, then 

M'esva,svb) = M'esva,svavieb"a)). 

-H 
= a . 

Proof: Let XEM'esva,svb). Then xvs'var8 2cnb\a)H=n'.b'\a'JH 

and so x vs' v a' H ~ s' v a' v I (b 1 '-.a') H. Thus 

x <: M'esva,svaviebva)). D 

THEOREM 7.7 The F-bundle Q'eF) defined above is the weakest 

completion of the partial bundle QeI). 

Proof: Let PeF) be any completion of QeI). We show by in-

duction on i that Q'eii) ~ Peii) for all O ~ i ~ n. 

If i = 0, Q' el) = Q(I) = PeI). Suppose Q' (Ii-l)~ Peii-l). 
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For each 0 ~ j ~ r(u. ,u. 
1
), 

]. ]. - we let 

A~ = (x E Ai \ r (x) $ j } , 
]. 

and J. = I; l Y AL 
J ]. - ]. 

We want to show bj_induction on j that Q'(J.) ~ P(J.) for all 
J J 

0 ~ j ~ r(u.,u. 1 ). 
]. ].-

Suppose Q'(J. 1) 
J -

~ P (J. 
1

) and let s E I. 1 and b '=. A~ . Let a be any element in J- ].- ]. 

Ai covered by b. Then sva, I(bva)vsva ',Jj-l' so by in­

duction hypothesis, 

Q' (s va) ~ P(s va) 

and Q'(I(b'-a)vsva)~P(I(b\.a)vsva). 

If sva = svb, then Q'(svb)~P(svb). Otherwise, by pro-

position 7.6 and theorem 6.13, Q'(svb):SP(svb) Q 
For every 1 = 1,2, .•. ,n and every j = 0,1, ... ,r(u.,u. 1), 

]. ]. -
we define 

Thus we have a super-sequence 

I=I 0 ~ ... <;; I 1 C .fii-l =I~~ 1! _c:;: ••• 

of the sequence 

I =I c I C CI =F 0-1·-···-n 

we defined earlier. 

Cir(u.\u. 1)_ 1 =Io · . ]. ].- - . . 1 
- ]. ]. i+ 

If a family Q(I) of quotients of a geometry G is completable 
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) 

to an F-bundle, its least completion Q(F) gives subfamilies 

Q(I1) in such a way that if if O, Q(I~) (we can assume that 
l l 

j f 0) is definable from the preceding Q(I~-l) as follows: 
,l 

for any s E Ii-l and b E Ai such that r(b) = j, 

Q(sva), if svb = s va for some a covered 

by bin A. 
l 

Q(svb)= the elementary quotient of Q(sva) correspond­

_ing to the 'modular filter M(sva, I (b\a) vsva), 

where a is any' element in A. covered by b, 
l . 

if_ otherwise_, 

The above sequential construction provides a standard 

procedure to determine the completability of a family Q(I) 

of quotients of a geometry G. Having constructed Q(I~- 1), 
1 

for any s E!i-l and for any b1=Ai of rank j such that sva f svb, 

the quotient Q(svb) should not depend on the choice of the 

element in A. covered by b. It is necessarily true that the 
l 

following two properties are satisfied by all the Q(I~)'s: 
l 

1) if b ~ a in I~, then Q(b) is a quotient of Q(a), 
1 

and 2) if a,b,aAb,avb EI~ and a,b cover ab, then 
l 

M(aAb,a)/"\M(avb,b) = M(aAb,avb), 

The family Q(I) is completable to an F-bundle if and only if 
. . -1 

each Q(Ii) is constructable from Q(I{ ) in the above manner, 

and if so, the construction gives the least completion. 
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EXAMPLE 7.8 Let I be the sublattice of the free geometry 

F of four points 1,2,3,4.as shown below: 

1234 

I= 12 34 

3 

0 

In accordance with the notations developed in this chapter, 

the sequence of sublattices from I to Fis: 

where 

I = 
1 

0 

1234 

234 

34 

We want to discuss the completability of a family of quoti­

ents Q(I)_. which .is shown in figure 7. 2 

figure 7.2 

The first step of the completion construction gives 

the family of quotients Q(I 1) as shown in figure 7.3. 

figure 7.3 
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Q (12) 

cd 
Q(l23) = ·@ 

(ab\ 
Q(1234) = ~ 

Q (3) = 

Q (0) 

figure 7.2 

7.11 

cl 
= ~/ab'> Q(34) ~ 

[, 
" 

I ,, 
I,, 
1,,1 

I 
I 
i 

i I 
11, 

! 

I 

II 
I 

I 



Q(l23) 

Q(l2) (34) 

Q(l)=Q(2) Q(3) 

Q(O) 

Q(l) = Q(2) = D(Q(O) -->- Q(12)) -d 
a b 

C d 
Q(13) = Q(23) = D(Q(3)-->- Q(l23)) =ab~ 

Q(l34) = Q(234) = D(Q(34) --,. Q(l234)) = c~ L';::'\ 

~/ 

figure 7.3 
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If the least completion Q(F} of Q(I} exists, then 

Q(4} = D(Q(O) + Q(34}} A 
= ab~c 

and Q(l24} = D(Q(l2} + Q(l234}} = bed . {) 

and so Q(l24) is not a quotient of Q(4}, a contradiction. 

Thus Q(I} is not a partial bundle. 

Finally, we want to remark that if I is a Boolean sub­

algebra of a free geometry F, then for any partial bundle 

Q(I}, the construction for the least completion of Q(I) 

given_in this (:hapter is not necessarily the same as that 

in the previous chapter. 

EXAMPLE 7.9 Let F be the free geometry of five points 1,2, 

3,4,S, and let I be the sublattice of F shown belo~: 

12345 

345 

12 

0 

Let Q(I} be a partial bundle as shown in figure 7.4. 

figure 7.4 
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Q (12) 

Q(l2345) = @ 

Q(345) 

Q(O) = the free geometry on 

{a,b,c,d,e} 

figure 7.4 
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Q(l2345) 

Q(1234)=Q(l235)=Q(1245) 

_ abcde 
Q(l345)=Q(2345) 

abde - . = • €) 

Q(123)=Q(124)=Q(125) 
f 

= Cd~ 
ab~/ 

Q(345) 

Q(34)=Q(35)=Q(45) 
Q (12) 

=a~d 

Q(l)=Q(Z) (3)=Q(4)=Q(5) 
= T = T 

Q (0) 

T· = truncation of Q(O) 

Q(13)=Q(l4)=Q(15)=Q(23)=Q(24)=Q(25) 

=,T2 = second truncation of Q(O) 

Q(134)=Q(l35)=Q(145)=Q(234)=Q(235)=Q(24S) 

= 1 3 ~ third truncation of Q(O). 

figure 7.5 
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Q(l23)=Q(l24) 

=Q(l25) 

Q (12) 

Q(l)=Q(Z) 

Q (12) 

Q (1) =Q (2) 

Q (0) 

j= 

Q (0) 

Q(12345) 

Q'(345) 

Q(12345) 

Q(345) 

Q(3) =Q(4} =Q(S} 

figure 7.6 
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The least completion Q(F) of Q(I), as shown in figure 7.5 

figure 7.5 

is constructed via the sequence 

Q(I)=Q(IfJ +. Q(Ii) + Q(Ii) + Q(Ii)=Q(F} 

1 2 where Q(I 1J and Q(I1) are shown in figure 7 .6. 

But, with the construction given in the last chapter, 

Q(F) is obtained via the following sequence: 

where 

Q(I)=QCial _,_ Q(Il) _,_ Q(Iz)=Q(F) 

Q(l234)=Q(l235) 
=Q(l245) 

Q(l23)=Q(124 
=Q(lZS) 

Q (12) 

7.17 

Q (0) 

Q(l2345) 

(1345)=Q(2345) 

Q(345) 

=Q(45) 

·, 
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