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ABSTRACT

Two extensions of a geometry are compatible with

each other if they have a common extension., If the given
extensions are elementary, their compatibility can be
intrinsically described in terms of their corresponding
linear subclasses. Certain adjointness relation between
an extension of a geometry and the geometry itself is
also discussed.,

Any extension of a geometry G by a geometry F deter-

mines and is determined by a unique quotient bundle on G

indexed by F. As a study of the compatibility among
given quotients of a geometry, we look at the possibility
of completing to F-bundles a family'of quotients indexed
by a set I of flatg of F. If the indexing geometry F is
free and if the set I is a Boolean subalgebra or a sub-
lattice of F, for any family Q(I) of quotients of a geo-
metry G, there is a canonical construction which deter-
mines its completability and at the same time produces

the extremal completion if it is a partial bundle.

Geometries studied in this dissertation are furnished

with the weak order. Almost invariably, the Higgs' 1ift

construction, in a somewhat generalized sense, constitutes
a convenient and indispensable means in various of the

extremal constructions.

THESIS SUPERVISOR: Henry H. Crapo.
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0. INTRODUCTION

A new trend in the studies of combinatorial geometries
begaﬁ a decade ago with Crapo's famous work on single-element
extensions of geometries [5}. Higgs' work on factorizations
of strong maps [11], which appeared in 1968, made significant
contributions to the theory of extensions andlprovided a
setting in which rapid progress could be made by others.
Thereafter, a number of papers have appeared, building on the
work of Crapo and Higgs, which described geometric constructions
or proved that various classes of geometries can be obtained
by the judicious use of these constructions. Among the most
recent contributions, which focus upon the representation of .
quotients by extensions of geometries, are Brylawski's Modular
constructions [2], Dowling and Kelly's elementary strong map
factofizations [9], Kennedy's canonical major constructions
[1Z] and the relative position in extensions studed by the
author jointly with Crapo [4]. |

The purpose of our present work is to study the compat-
ibility of extensions of a geometry. Basically, a family of

extensions Gi of a geometry is said to be compatible if the

Gi's have a common extension. The original problem of com-
patibility can be traced back to Crapo's counter-example for
the existence of a pushout in the category of geometries and
strong maps [6]. In a quick response, Brylawski gave a

partial solution with a certain modularity assumption [2].



In this dissertation, we start with the problem of the
compatibility of a pair of elementary extensions of a geometry.
By making use of the correspondence between elementary exten-
sions and linear subclasses of é geometry, we obtained an
intrinsic description of the compatibility. For any two linear
subclasses, their compatibility.can be determined by observing
a sequence of sets of‘flats, recursively defined.

There is in fact a basic philosophy of gain and loss
which motivated our present study of compatibilities: by
adding more points to a geometry, we have a richer description
in terms of relative positions for the purpose cf further ex-
tensions, but certain extensions of the original geometry may -
have been destroyed. If we restrict ourselves to elementary
extensions, this situation can be appropriately. described. by
a Galois connection between the lattice of elementary exten-
sions of a geometry G and the lattice of elementary extensions
of any given extension of G. This adjointness relation does
not hold for more general extensions (vide chapter III)}, so we
have to invent some other techniques for our compatibility
studies.

Any extension of a geometry G by another geometry F can
be characterized by a family {Q(a)}agF of quotients of G
indexed by F, satisfying the following two properties:

1) Q(0) = G; if b covefs a in F, then Q(b) 1s an elementary

quotient of Q(a)

2) for any a,b ¢ F such that a,b cover aanb, if x ¢ Q(aab) and



rq(a)(x) = rq(b)(x) = rQ(aAb)(X)+1’ then

Tqavb) ) T Tq(aaby )2
(In chapter IV, the terminology of modular filters will be
used instead of the rank functions in 2)). Any such family
of quotients is called an F-bundle on G and determines a
unique extension of G by F. The concept of a quotient bundle

gives a new direction for compatibility studies—simultaneous

representations of quotients of a geometry.

For a single quotient Q of a geometry G, its represent-
ability is affirmative, as proved by Higgs [11]. Any such
representation is an extension R of G together with a flat
z of R such that

Quo(G - R =~ R/z)} = Q.
For two or more quotients Qi of‘a geoﬁetry G, their repre- -
sentability is still an unsettled problem. There are two possible
directions we can pursue: firstly, we can ask for a simultan- |
eous representation in the most general sense——an extension R
of G together with flats Zy of R such that

Quo(G » R +'R/zi) = Qi;
secondly, if we assume that the flats z; are (R-closures of)
preassigned flats of a geometry F, we come to the problem of

completing the quotients Qi to an F-bundle on G.

To illustrate the distinct nature between these two types

of problems, let us consider for example the quotients



Q

al)/Cd'/e/

£

and Q, ak_,sgr’g’“

of the plane geometry G of six points a,b,c,d,e,f in general

I

position. While Q1 and.Qz, as we shall show, are simultaneously

representable, however, if F is the line geometry of two points

x,y and we let Q(0)=G, Q(x)=Q1 and Q(y)=Q2, then the following

diagram of quotients

Qx) Qy)

N\

Q(0)

cannot be completed to any F-bundle on G (vide chapter IV).
With regard to the first directiéﬁ, we prove that any
pair of elementary quotients of a geometry is representable.
However, the second problem is our next goal, We call a
family Q(I) of quotients of a geometry G indexed by a set I of

flats of a geometry F a partial bundle if Q(I) can be completed

to an F-bundle on G. Our main concern then is to explore the
possible completions of a partial bundle.

Several partial orders can be defined for geometries (on
the same set of points) [4,10]. To facilitate our work in the

next stage we consider in particular the weak order, which is

the geometric analogue of specializations of classical alge-
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braic varieties. A geometry G is weaker then a geometry H if
and only if flats of G are in positions more general than flats
of H {(vide section 1.6).

In chapter V, completions of a partial bundle are discussed
with the consideration of the weak order. For an arbitrary
partial bundle Q(I), its completions need not form a A-semi-
lattice. Nor does a least completion of Q(I) necessarily exist.
In stages we develop'a sufficient condition on the indexing
set I sa as to guarantee that the completions of a partial
bundle Q(I) are A-closed ( and thus form a A-semilattice).

Ever since it was invented by Higgs, the lift construction
has demonstrated its indispensability and handiness as a con-
struction technique for quotients in most extremal problems of
combinatorial geometries. We give a thorough treatment (;hapters

IV,VI) of various 1ift sequences of quotients as preliminaries

for our completion constructions. In chapter VI, we consider
in detail a special class of partial bundles Q(I) where I is a
Boolean subalgebra of a free geometry. For any such partial
bundle, its least completion always exists, which can be can-
onically constructed by means of appropriate lift sequences.
In chapter VII we proceed to a more general class of

partial bundles Q(I) where I is a sublattice of a free geo-
metry. While a treatment as detailed as the previous one 1is
not allowed, we still prove that any such partial bundle has a
a least completion, which can be constructed with a special

1ifting scheme.



The importance of the above construction is two-fold.
Firstly, it 1links the concept of lifting of quotients to

certain principal extensions and thus exhibits the geometric

nature of the 1lift construction. Secondly, it serves as a
test for completability of an arbitrary family Q(I) of

quotients where I is a sublattice of a free geometry.

The author would like to take this opportunity to thank
Professor Henry Crapo for his kind guidance and generous help
during the various stages in the preparation of this dissert-

ation and during many other occasions.
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I. COMBINATORIAL GEOMETRIES: BASIC CONCEPTS

1.1 Combinatorial Geometries |
A geometry G(X) is a set X together with a closure

operator  satisfying the Steinitz-Maclane exchange property:

Vp,qéX, VAcX,péd Aand pe Ayg = qe Aup,

and the finite basis property:

V A C X, 3finite A; € A such that A7 = .

f.
With no essential loss of generality, we often assume that the
empty set and one-element sets are closed. Closed sets are
generically called flats. The complete lattice G of flats is

a geometric lattice, characterized as a semimodular atomistic

lattice without infinite chains. In such a lattice, each eleﬁent
x is the supremum of atoms and has a well-defined rank r(x),
equal to the length of any maximal chain from the 0-element to
x, satisfying the semimédular inequality:

rxay) + rixvy) £ r{x) + r(y).
The height of G is called the rank of the geometry G(X);
denoted by r(G). Flats of ranks 1,2,3 and r(G)-1, r(G)-2,

r{G)-3 are specifically called points, lines, planes and

copoints, colines, coplanes respectively. Two flats x,y form

a modular pair if r(xay) + vr(xvy) = 1(x) + r(y), a locally

modular pair if x,y cover xaAny. For any subset A & X, the

rank r(A) of A is defined to be the rank of A in G, and if
A is finite, the nullity n(A) of A is the non-negative

integer JA]-r(A). A subset A & X is said to be independent

if n(A) = 0, and dependent otherwise. A maximal

independent set 1s called a basis, and a

1.1



minimal dependent set is called a circuit. A geometry G(X) is
uniquely determined by its rank (and nullity) functions on
subsets of X, its independent sets, its bases, its circuits,

.., and most importantly, by its associated geometric lattice
(with the assumption that § and one-element subsets are closed).
If there is no confusion caused, we prefer to simply wfite G
for the geometry G(X).

If G is a geometry of rank r2> 1, then the flats of rank

not equal to r-1 form a geometry, called the truncation of G.

Recursively, the Kth truncation of G is also defined.

The free geometry B(X) on a set X is the geometry whose

flats are all subsets of X. 1Its geometric lattice is a Boolean
algebra. If k is a positive integer not greater than [XI,

then the rank-k geometry on X in general position is the

(]X]-k)th truncation of B(X), whose flats are subsets of X
of cardinality less than k together with X.

The direct sum G ® H of geometries G(X) and H(Y) is the

geometry on XVY whose flats are all of xvy with x € G and
y € H.

Two geometries are said to be equivalent or isomorphic

if their associated geometric lattices are isomorphic.
Whenever ﬁossible, we shall take the liberty to picture
geometries in the real affine.space. In such a diagram, only
non-trivial lines and planes together with the points are
drawn. For example, . in.the following rank three geometry on.

SiX points:



af, bd and ce are lines but are not drawn in the diagram.

If necessary, we will adapt the notation with subscripts
or the like to specify a particular geometry. TFor example,
instead of r(x) for the rank of a flat x of G, we may choose

to say rG(x) for the G-rank of a G-flat x.



1.2 Minors

Given a geometry G(X) and a subset S € X, the subgeometry

of G(X) on S is the geometry‘H(S) on the set S with the follow-
ing induced closure operator:
A ——>E s, VACS.

A subset A € X is H-closed if and only if A = A'F\S for some
G-flat A'. The associated geometric lattice H of the subgeo-
metry H(S) is isomorphic to the-sub~V—semi1attice of G generated
by the atoms of G contained in A,

If H(S) is a subgeometry of G(X), then G(X) is called an
extension of H(S).

Next, given a geometry G(X) and a subset C € X, the contraction

of G(X) by C is the geometry on the set X \C with the following
closure operator:

A ——s KGCC N\ C, v A ¢ x\C,
which is equivalent to the geometry on the set X. with the follow-
ing closure operator:

A —>KUTC, VACX.
The associated-éeometric lattice , denoted G/C, of the con-
traction is isomorphic to the interval [ﬁG, 1G] in the associated
geometric lattice G of G(X).  For any subsect A & X,

rG/C(A) = rG(A) - rG(C).

- A minor of a geometry G(X) is defined to be a contraction

of a subgeometry of G{X), which is always a subgeometry of a

contraction of G(X).



1.3 Elementary extensions

A modular filter of a geometry G is a set M of G-flats

satisfying the following two properties:
1) if x ¢ M and x € vy, then y € M,
and 2) if x,y ¢ M and x,y form a modular pair, then XAy € M.
With 1) given, 2) is equivalent to the following:
2') if x,y € M and x,y form a locally modular pair,
then x A v € M.
Given a modular filter M of G(X), we can always put a new

efément e "within" M and thus obtain an elementary extension

H{(X v e) of G(X) by the element e. There are three distinct
types of H-flats:
1) all G-flats A not in M,
2) A v e, where A ¢ M,
and 3) AWV e, where A is a G-flat not in M and covered
by no flats in M.
We write G—M—éﬂ to indicate that H is the elementary exten-

sion of G determined by the modular filter M. The rank of H is

related to that of G as follows:

g

[r(G) + 1  if M
1r(G) otherwise.

r(H) =
If H(X v e) is an elementary extension of G(X), then the
set {x ¢ G| =y R } is a modular filter of G, denoted by
Mod (G——sH). There is a precise correspondence between element-

ary extensions and modular filters of G. The elementary



extensions of G, ordered by containment of their respective
modular filters in G, form a lattice.
Given a modular filter M of G, the set L of copoints in
M satisfies the following property:
for any copoints x,y,z in G, if x,y ¢ L and x,y,z
cover xaAavyaz, then z ¢ L.

Any such set of copoints is called a linear subclass. Any linear

subclass L of G determines a non-empty modular filter
{x €eG Jx4y and y is a copoint bf G implies y¢€ L},
denoted by MF(L). This establishes a correspondence between
linear subclasses and non-empty modular filters of G.
Any set A of flats of G generates a modular filter of G,
namely, the intersection of all modular filters of G contain-
ing A. Similarly, any set A of copoints of G generates a

linear subclass of G, namely, the intersection of all linear

subclasses of G containing A.

1.6



1,4 Strong maps and quotients

A strong map from a geometry G to a geometry H is a function

from G to H which takes points of G to points of H or to the
zero flat of H, and preserves all suprema. Equivalently, £ :
G—-H is a strong map if and only if the inverse image of any
H-closed set of points is G-closed. Composites of strong maps
are also strong maps.

The following are examples of strong maps:

1) Injection (or embedding)_of a subgeometry into

a geometry.

2) Contraction by a flat z in a geometry G, ie. the

map x —> x v z from G onto the interval [z,1] in G.

3) The canonical surjection from a free geometry B(X)
onto any given geometry G(X): A——e-KG. |
1f G and Q are geometries on the same set X;sﬁth;that~any
Q-flat is a G-flat, then Q is a quotient of G. Equivalently,
Q is a quotient of G if and only if the identity map on X
extends to a strong map from G to Q.
Given any strong map f£:G = H, the f-nullity of a G-flat

x 1s the nonnegative integer rG(x)-rH[f(x)), denoted by nf(x)

or nG+H(X)' A G-flat x is said to be f-independent if nf(x)

= 0, and f-closed if x is a maximal G-flat with given image
in H. The set of all f-closed G-flats is a quotient of G,
called the quotient of the strong map f and denoted by Quo(G>H).

The quotient Quo(G-H) is isomorphic to the image £(G) of G.

1.7



so, if a strong map £:G » Q is onto, then without loss
of generality, we can assume that G and Q are geometries on
the same set and hence that Q is a quotient of G. The degree
of the quotient Q of G, denoted by deg(G»Q), is defined to
be the nonnegative integer r(G)-r(Q). The set

{xeG | nG+Q(X) = deg(CG-Q) 1,

denoted by M(G+Q), is a modular filter of G; in fact it 1s
the largest modular filter of G contained in Q. More gen-
erally, if k is an integer not less than deg(G+Q), we define

Mk(G+Q) = {xeG | nG+Q(x) = k}.

If Q is a quotient of G and if deg(G+Q) = 0 or 1, then
the quotient Q and the strohg map G » Q are said to be gle-
mentary. It is clear that Ml(G+Q) is non-empty if and only
if the elementary quotient Q is proper (ie, Q # G). If M

is a modular filter of G, then_the set
M U {x:e 6] x is covered by no flats in M}

is an elementary quotient of G. This establishes a one-to-one
correspondence between elementary quotients and proper (ie. # G)

modular fiiters of G.



1.5 Orthogonality
For any geometry G(X), there is a uniquely defined dual

(or orthogonal) geometyy G*(X) given by the following closure

operator: -
‘KG*=Au{peX\psémG} v AS X.
Duality of geometries is involutary, ie.(G*)®* = G, The rank
and-nullity functions in G and G¥ are related as follows:
rG(A) + nG*(X‘\A) = 1(G), ¥V AcC X,
If Q is a quotient of G, then G* is a quotient of Q% and

deg(6—> Q) = deg(Q*—>GH).

1.6 Weak order
Denote by %[X] the set of all geometries on X. The weak
(map) order on %%[X]is the partial order £ defined as follows:
G £ H if and only if any of the following equivalent
statements holds:
1) every independent set of H 1is independent in G
2) rG(A) P rH(A) VACX
3) rG(x) > rH(x) V G-flat x
4} nG(A) < nH(A) V¥V ACX
etc.
We say that G is weaker than Hif G & H. The weak ofder is

not a lattice order, as demonstrated in the following examples:

1.9



EXAMPLE 1.1 Let Gl’GZ’H H2 be geometries on the set {a,b,c,d}

1’

as shown in figure L.1. In the weak order, Gl,G2 cover Hl’Hz’

so neither Gy A G, mor Hy VvV H, exists,

EXAMPLE 1.2 Let Gl’GZ’Hl’HZ be rank four geometries on the

set [a,b,c,d,e,f} as shown in figure 1.2. Both H1 and I-I2 are
maximal geometries weaker then Gy and Gy, sO G1 n G, does mnot
exist.

If Q is a quotient of G, then G € §. Given elementary
quotients P,Q of G, P<€ Q if and only if Ml[G,P) c MI(G,Q).
The elementary quotients of G form a semilattice  under thé weak
order, which is isomorphic to the semilattice of proper modular
filters of G.
PROPOSITION 1.3 Let G(X) and H(X) be geometries of the same

rank. Then G £ H if and only if G* % H%,

Proof: Let r be the rank of G, Then

G < H&>r (A 3 ry(A) VACX
& ; nG*[XW\A) 2T - nH*(X\.A) VACX
g (A) € nyga(A) VYAcX
<> G* & H*, 0

The above proposition is definitely false without the

assumption that G and H have the same rank.

TThroughout this paper we use the term semilattice for what

should strictly be called a A-semilattice.



C d
bij ? bij f
I'I = H =
1 a d Z a -

figure 1.2



II. COMPATIBILITY OF TWO ELEMENTARY EXTENSIONS OF A GEOMETRY

2.1 Definitions and examples
A pair of elementary extensions
H(X v h)
G(X)
K(X u k)

of a geometry G(X)+ is compatible if there exists a geometry

R(X v h v k) together with the foliowing (commutative)
embedding diagram:
,aI{(X u h)
G(X) CJR(X v hou K.
K(X u k)

Otherwise, the pair 1is said to be incompatible.

Incompatible pairs exist. For example, let G be the geo-
metry of points a,b,c,d,e,f in general position on a plane and

let H and X be elementary extensions of G as shown in figure 2.1.

figure 2.1

There is no geometry on {a,b,c,d,e,f,h,k} which yields H and K

when restricted to {a,b,c,d,e,f,h} and {a,b,c,d,e,f,k} respect- -

?We assume that h # k.

2.1



ively. So the pair of extensions H and K of G is incompatible.
If two elementary extensions H and K of G are compatible

with each other, there may be more than one common elementary

exténsions of both H and K. As an example, consider the pair of

elementary extensions shown in figure 2.2

figure 2.2

There are two common elementary extensions of both H and K,

as shown in figure 2.3:

figure 2.3

where in R2 chk is a three-point line.



We'll see later (chapter III) that all such possible common
elementary extensions of both H and K form a semilattice (in

the weak order).

2.2 Compétibility of two modular filters.

Given two modular filters M and N of a geometry G, we
enquire if it is possible to put a point on precisely the flats
of G in M and at the same time anqther point on precisely the
flats of G in N. Consider for example the geometry G of six
points a,b,c,d,e,f in general positiqn on a plane and modular
filters M = {ab, cd, 1z} and N = {ab, cd, ef,15} . Putting a

point h on the lines ab and cd, we have the extension:

if in which a point k is put on the lines ab, cd and ef, then
h is forced to lie on ef, a contradiction. If in the geometry
G, a point k is put on the lines ab, cd.and ef, we have the

extension



in which it is impossible to put a point h on only the lines
ab and cd. |

Two modular filters of a geometry G are said to be com-
patible if their corresponding elementary extensions of G are
compatible. We will show in proposition 2.3 that compatibility
is indeed equivalent to the above geometric version of the pro-

blem,

" LEMMA 2.1 If G(X) is a subgeometry of H(Y), then for any
A € X and x ¢ X,

x € B if and only if x ¢ AS. 0

PROPOSITION 2.2 ' Given elementary extensions as shown in the

following diagram:
> H(X U h) M!
G (X)

:::EZ::gmxvhukj

K(Xuk)

where M,N,M' and N' are the corresponding modular filters,

'we have
K ..,
M = {xeG| X eN'}
and N = {xeGl| D—CHEM’}.
R
H . —R _= K
-Proof: If x ¢ M, then h ¢ it =3 xR = XK , so x ¢ N'. Con-
—=R
versely, if x ¢ G and EK ¢ N', then from EK = xR we obtain

=K
h e X by lemma 2.1, so that x ¢ M. 30 M = {xeG| x ¢ N'}.

Similarly, N = {xeG| X' e M'}. O

2.4



PROPOSITION 2.3 Given modular filters M and N of G(X), they

are compatible with each other if and only if there exists a
two-element extension

G(X) —> R(Xvhuk)
such that for any x ¢ G,

heXPe= x &M

and k € XN & x € N.
Proof: If modular filters M,N are compatible with each other,
then there exist extensions

M H(X < h)

G(X) R(Xuhwk)

K(Xuk)

where M = Mod(G—H) and N = Mod(G—XK). Let x & G(X). Then

—H R

x €M &3 he€ X &3 hegx 7R

and similarly xé N &= h € X .
Conversely, assume the condition of the proposition holds.

Let H(Xwvh) and K(Xuk) be the subgeometries of R{(Xvhwk) on

Xwh and Xuk respectively. If x€ G, then x&¢ M &= h < ER

& he Xl &> x¢ Mod(G—H), so M = Mod(G—H). Similarly

]

N = Mod(G-—X) and hence M,N are compatible. W

NOTATION: Given a geometry G(X), if M is a set of subsets

of X, then denote by MC the set {EG[ x€ M} .

PROPOSITION 2.4 Given elementary extensions:

2.5



H{X vh)}

M
G(X)
N
| KX v k)
if N' 1s the modular filter of H generated by NH and 1f M' is

the modular filter of K generated by MK, then the following

are equivalent:
1) M,N are compatible
2) {xec| Rle v} =n

3) {xeg| Femw} =M
Proof: If M,N are compatible, then there exist elementary

extensions as in the following diagram:

H(X wh)
P .
G(X \R(th Uk)
A T
By proposition 2.2, {x ¢ G | <L & P } = N. so '€ P and

therefore N' € P. Thus [x ¢6l e } S N. On the

other hand, N = {x < 6| & ¢ ®!} < {x ¢ G | Xl & N;} ,
so N = { x ¢ G e N'} .

Assumelnow that 2} holds. Let R{Xuhwk} be the elementary
extension of H(Xuh) corresponding to the modular filter N',
and let F(Xuv k) be the subgeometry of R[Xk/hqu) on Xwk. Then
X € Mod(G—TF) &= k € X' &= k ¢ X% &= e N' &=
X € N, So M,N avre combatible._

Hence we have established that 1) &= 2). By symmetry,

we also have 1) &= 3}, [
' 2.6



2.3 Principal modular filters
Given a geometry G, any flat E of G together with all

flats of G above it form a modular filter of G, called a principal

modular filter and denoted by [E] or [B]G. E — [E]G is an
(ordérq embedding from the inverted lattice of G into its
lattice of modular filters. This embedding is A-preserving

but not V-preserving [6].

PROPOSITION 2.5 A principal modular filter of G is compatible

with any modular filter of G.

Proof: Let E be any flat of G and let M be any modular filter
of G, Let H be the elementary extension of G corresponding to
M. [EH]H is the modular filter of H generated by TEjEH. For
% e (B

any x € G, &~ Y3 = x»E > x<(8)g

Ju

so by proposition 2.4, M is compatible with [E]G. O

2.4 Linear subclass generating sequences
It is clear that ‘the. empty modular filter is compatible

with every other modular filter. In the rest of this .-
chapter, we will exclude the empty modular filter in our dis-
cussion of compatibilities. There then 1s an exact
correspondence between the linear subclasses and the modular
filters of a geometry. For a set A of copoints of a geometry
G, there is a sequential construction for the linear subclass
of G generated by A, a construction which will prové useful

in later sections of this chapter.
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Given a geometry G, three distinct copoints a, b and ¢ of G

are sald to form a generating triple if aAbaAac is a coline,

ie, a, b and c cover anbac. For any set A of copoints of
G, we define a sequence

A=Ao - Al S A, € ...

2
of sets of copoints of G by the following:

X & Ay = x&A or.H a,b &€ A, ; such that
a,b,x form a generating triple, Vizl.

This sequence is called the generating sequence of A in G. The

linear subclass of G generated by A is easily constructed via
this sequence, as stated.in:the following:

PROPOSITION 2.6 If A is a set of copoints in a geometry G,

and if {Ai};zo is its generating sequence, then ngi is the
least linear subclass of G containing A. g

As a corollary of propositions 2.4 and 2.6, we now have
the following:

PROPOSITION 2.7 Given elementary extensions:

H(Xuvh)
G(X)

PK(Xvk),
let M,N be the linear subclasses of G corresponding to H,K
respectively. If M' is the linear subclass of K generated by
W with generaéing sequence {Mi}i=0 and 1f N' is the linear

subclass of H generated by N with generating sequence {Ni}i=0
3
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then the following are equivalent:

1) M,N are compatible
H

2) {x e G| X € N' } =N

N ixeG | X eM } =M

1) x G| X N } =N v i=0,1,2,...

5) (X e G | XX e M, } = M vi=0,1,2, 0

1

2.5 Compatibility theorems
For any linear subclasses M2 N of G(X), we define a sequence
P=Ko(M,N) € K LN € K, 00N) € . |
of sets of colines of G covered by no copoints in M by the
following:
xeKi(M,N]\Ki_l(M,N)

&> X is a coline of G covered by no copoints in M

[\
—

and 1 a,beNuKi_l(M,N) such that x covers aab, i

We denote the union iEOKi(M,N) by K(M,N).

LEMMA 2.8 Given linear subclasses M 2 N of G(X), if H(Xwvh)

is the elementéry extension of G(X) corresponding to M and if

H

{Ni)i=0 is the generating sequence of N° in H, then for any. i,

{xun | xe NU K MN} € N,.

§ and Ny = N =

Proof: By induction on i. Since KO(M,N)

{ xvuh | x G'N} , so induction starts when x = 0. Suppose

Y

{xx:h | x € N Ki—l(M’N)} - N; and let a Ki(M,N). There

-1
exist x,y € N bei_l(M,N) such that a covers xay. But then

avh, xvuh, yuh form a generating triple in H. By induction

hypothgsié, xvh, yvh « Ni 1 so awh G‘Ni. Thus {X\Jh 1

x € Nu Ki(M,N)} < N;- 0
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THEOREM 2.9 Two linear sﬁbclasses M2 N are incompatible if
and only if the following condition holds:
3 a,b € Nw K(M,N) and ¢ € M\ N such that anb
is a coplane not contained in MF(M) and c % a Aab.
Proof: Let H(Xwv h) Be the elementary extension of G(X)
corresponding to M and let [Ni} 1=0 be the generating sequence
of N in H. |
Assume the condition of the theorem holds, Then a,b &
N v Ki(M,N) for some i and so by lemma 2.8, auvh, buh € N;.
Since aaAb is a coplane of G not contained in MF(M), (aaAb)uh
is a coline in H. cwvh is a copoint in H and (awvh) aA(bwh) =
(g/\ b)vh < cwh, so cuh & Ni.' But then by proposition 2.7,
M,N are incompatible.
Conversely, assume the condition of the theorem does not
hold. We want to show that Ny < { x¢h| xe Nv Ki(M,N)}, v i.
By induction on i. When i = 0, Ki = f and N; = R = ,

{ xvh| x ¢ N}, so inclusion holds. Suppose N: 4 < {x vhl|

x € N UK, _; (M)} and let c ¢ N\N. ;.

There exist a,b € Ni.q
such that a,b,c form a generating triple in H. Consider now
the G-flats a\ h,b\h and ¢\h. By induction hypothesis, a\h,
bB\Nh € N v Ki-l(M’N)' (aNh) A (b\h) = (a b))\ h must be a
coplane of G not contained in MF(M) , for otherwise both a\h
and b\h are in N and so ¢\ h would also be in N. Now, c\h

can only be a coline of G covered by no copoint in M for others

wise if ¢\ h € M\N, then the condition of the theorem would
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hold. Thus c\h € Ki(M,N).
Since N, € { xuh| x eN uJKi(M,N)} implies {x ¢ G |
iﬂ G‘Ni } < N, so by proposition 2.7, M,N are compatible. {1

LEMMA 2.10 If M, N, P are linear subclasses of G such that

M2 N2 P, then for any i,
1) K;(M,P) € X. (N,P)
and 2) Ki(M,P) € K, (M,N).

Proof: 1) By induction on i. When i = 0, Ki(M,P) =

It

KfN,P). Suppose inclusion holds for i-1. Let x & Ki(M,P)\\
Ki_l(M,P). There exist a,b &€ P v Ki_l(M,P) such that x covers
aAb. Since x is covered by no copoint in N and since by
induction hypothesis a,b € P V Ki—l(N’P)’ SO X € Ki(N,PJ.

2) Again by induction on i. When 1 = 0, Ki(M,P) =f =
Ki(M,N). Suppose inclusion holds for i-1. Let x & Ki(M,P)\\
Ki_l[M,P). There exist a,b ¢ P bﬂKi_l(M,P) such that x covers
aAb. By induction hypothesis, a,b € N LIKiﬁICM’N)’ S0 X & Ki(M,N).

THEOREM 2.11 Let M, N, P be linear subclasses of G such that

M2 N 2 P. If M,N are compatible and N,P are compatible, then
M,P are compatible.

Proof: Suppose that M,P are not.compatible. There exist a,b
éP&&Ki(M,P} for some i and c¢c ¢ MNP such that aanb is a coplane
not contained in MF(M) and ¢ » anb. If ¢ € N, then N,P are
incompatible because a,b ¢ P U K. (N,P) and a Ab ¢ ME(N). 1If

c ¢ N, then M,N are incompatible because a,b & N’kiKi(M,N)

{ Lemma 2.9]. L)
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THEOREM 2.12 Two linear subclasses M,N of G(X) are compatible

with each other if and only if both M and N are compatible
with M N N.

Proof: If M,N are compatible, then there exists a two-element
extension R(Xwvhuk) of G(X) such that for any copoint x ¢ G,

x& M 4= he xR

and x e N & &k ¢ XX,
Let T(Xvhukut}) be the elementary extension of R(Xwvhuk)
corresponding to the linear subclass of R consisting of all
copoints of R above the flat HTTER. The subgeometry H(Xs+thuvt)
of T(Xwvhukvut) on Xvhut exhibits the compatibility between
M and M N N, because for any copoint x € G,
xeM €= hei 4= heXl <« hei,

and x ¢ MAN 4= h,k ¢ X &> Fuki¢ & &= te T,
Similarly, N is compatible with M N N.

Conversely, assume both linear subclasses M and N are
compatible with M n N. Let H(Xuvh) be the elementary extension
of G(X) corresponding to M. Let D be the set of colines of G
in MEF(N) covered by no copoint in M and let {Ni};jo be the

e

generating sequence of in H. For each i, let

= =H
L; = {x\h | x e N \F}.
To complete the proof, we show by induction on i that
1) Licontains no copoint of G,
together with
ZJrLi S D K, (M,M n'N),

and 3) L; € D UK, (N,M A N),
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Since N0 = N_H, so Ly = # and induction starts when i = 0.
Suppose 1),2),3) hold for i-1, and let ¢ & Ni\ Ni—l' There exist
a,b € N._; such that a,b,c form a generating triple in H.

Suppose h ¢ a say.aab must then be a coline of G. If h & b,
then either a,b\ h,c\h form a generating triple’in G ox c\h =
anb, ie, either c ¢ NH, a contradiction, or ¢\ h ¢ D, showing
that 1),2),3) hold for i. If h&€ b, then aab = b\Nh € Du K, (N,M A N)
If anb € D, then ¢ & NH, a contradiction, and if a Ab ¢ Ki_l(N,Mn N)
then anb is covered by a € N, again a contradiction.

) So we can now assume that h € a,b. (a\h) A (b\Nh) cannot
be a coline of G for othérwise a\Nh,b\Nh € M N and so c\h €
MM™N, a contradiction. Also, (aNh) A (b\h) ¢ MF(N) for
otherwise ¢ € NH, a contradiction.

Furthermore, a\h,b\h & D. Suppose a\h € D say. Then
a\h,b\h form a modular pair in G. But b\h & N, so b\h &
DUVK, ;(N,MnA N). If b\h €D, then (a\h) A (b\h) € ME(N),
a contradiction; and if b\h € Ki_l(N,M M N), then b\Nh is
covered the the copoint {a\Nh} Vv (b\h) in N, also a contradiction,

S50 we have shown that both a\h and b\ h are contained in both
M N)u Kiﬂl(M,Mf\ N) and (M A N) vV Ki_l(N,M ™ N) such that
(aNh) A (bN\h) is a coplane of G contained in neither MF(M) nor
ME(N). If c\h is a copoint of G, then ¢\h & M\N and so by
theorem-2.9, M,N are incompatible. Thus c¢\h is a coline of G
covered by no copoint in M. Thus c\ h ¢ Ki(M,M M N). Since

N,MMN N are compatible, so c\h is covered by' no copoint in N\M

and therefore c\ h ¢ Ki(N,M N N). Hence 1),2),3) hold for i. [
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ITI. ADJOINTNESS OF EXTENSIONS

In this chapter, we will discuss, for a given extension
G—>H, the adjointness relation between extensions of G and
extensions of H. To illustrate the idea, let us consider the
effect which.adding an extra point p to G. has on the existence
of further extensions of G; . First of all, it is clear that
the elements or objects defining relative positions for further
extensions are increased. On the other hand, the possibility
of exfensions originally definable in G may be cut down.

For example, let G be the planec geometry of six points a,b,c,d,e,f
in general position and suppose a point p is added to G on the

lines ab and cd, as shown in the following diagram:

fo

In the extension H, there are more definable positions for
putting points, e.g., we can put a point on the lines ac and
ep, or on the lines ac and fp; but it is impossible to put
a point ‘'on the lines ab, cd and ef which do in G define a

relative position for a point extension.

- LEMMA' 3.1 Gilven extensions as shown in the following diagram:
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K{(Xyve)—————> R(Yue)

MT i T N

G(X) > H(Y)
if M, N are modular filters corresponding to the elementary
extensions G— K and H— R respectively, then M = i;l(N).

Proof: Let x ¢ G. Then

X €M &= e € XN

&> e ¢ =

> i(x) € N.
soM=itmay. [

COROLLARY 3.2 Given any extension G—»H, if M is a modular

filter of H, then i_l(M) is a modular filter of G. [

In what follows, we will assume some familiarity with Galois
connections between two ordered sets.

Given an extension G—E%H, let E{(G) and E(H) denote the

lattices of modular filters of G and H respectively. Two functions

E(G) ;—%’—;} E(H)

are defined as follows:
¢-(M) = the modular filter of H generated

by i(M) Vv M€ E(G)

1

and v(N) = i ~(N) VN € E(H).

It is immediate that both ¢ and 7 are order-preserving; moreover,

for any M ¢ E{(G), N ¢ E(N),
M CoN) &= M < it
& i(M) &€ N

.

&= (M) € 1
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Thus @ ,T form a Galois connection between the latices E(G)
and E(H). As a consequence, M—>7T@(M) is a closure operator
on E(G). M =To(M) if and only if M = T(N) for some N € E(H)};

such a modular filter is said to be Galois-closed with respect

to the extension G—>H. The Galois-closed modular filters
form a sublattice of E(G). For any modular filter M € E(G),
the set {N € E(H) | @(N) = M} is a sub-semilattice of E(H).

The following theorem links this Galols connection treat-
ment to the compatibility of extensions.

THEOREM 3.3 Given extensions as shown in the following diagram:

K(Xwe)
M -
G(X) —— H(Y)

where G—> K is elementary with modular filter M, the extensions
H, K are compatible with each other if and only if M is Galois-
closed with respect to the extension G—>H.

Proof: If the extensions H, K are compatible with each other,
we have the following extension diagram:

K&Xk;e) —— > R(Ywe)

GX) ——E s H(Y)
Let N = Mod(H~>R). By proposition 3.1, M = i—l(N), i.e.,
M =7(N). Thus M is Galois-closed.

Conversely, if M is'Galois—closed, then M = inl(N) for
some modular filter N of H. Let R(Ywe) be the elementary
extension of H corresponding to the modular filter N. By
proposition 3.1 again, K(Xwe) is the subgeometry of R(Ywe)

on Xve. Hence H(Y¥) and XK(Xwe) are compatible with each other.[d
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If in the above discussion, the extension G—>H is elementary
with modular filter N, then for any modular filter M of G,

- To(M) is called the N-closure of M, and denoted bt Rl

The
following two theorems are immediate from the previous dis-
Ccussions.

THEOREM 3.4 Given a modular filter N of a geometry G,

1) for any modular filter M of G, there is a least modular

filter ﬁN of G such that w is compatible with N;
2) M~u>ﬂN is a closure operator on the lattice of modular

filters of G;
3} the modular filters of G which are compatible with N
form a closure system in E{G). O,

THEOREM 3.5 Given two elementary extensions

K
| I
G

the common elementary extensions of both H and K form a semi-

__'_%.H’

lattice (in the weak order). []

Any partially ordered set is also a category if we take
its elements to be the objects of the.categofy, its ordered
pairs to be the morphisms of the category. For any extension
G(X)—> H(Y) and a set Z, we consider two categories: 1}, the
category EZ(G) of extensions of G by Z, in the weak order, 2),

the category EZ(H) of extensions of H by Z, in the weak order.

The retraction functory Ret

B, (H) — 25—, (G)
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is defined as follows:
for any R(Y v Z) « EZ(H), Ret(R) = the subgeometry
of R on X v Z (which is an extension of G by Z).
If Z 1s a one-element set, the functor Ret has an adjoint, as
we discussed above. In general, the adjoint of Ret fails to

exist.

EXAMPLE 3.6 Let G be the rank-four geometry on nine points

1,2,3,...,9 in general position. Let H, K, K' be extensions
of G and let R, R' be extensions of H as shown in figure 3.1.

If the functor EZ(H) Ret

EZ(G) were to have an adjoint, say
o, for Z = {a,b}, then the extension R'"=c¢(K) of H would have
to satisfy R"=o0(K)<R,R' because K=2Ret(R),Ret(R'), and Ret(R")
=Ret(o(K)) =K. But there is no object R" in E,(H) satisfying

R"<R, R"s<R' and Ret(R"):2K.



rank-four geometry

Som 1.2,3,.0 039 in

general position

v

figure 3.1



Iv. REPRESENTATIONS OF QUOTIENTS

4.1 Quotient bundles

The quotient bundle was introduced and studied extensively

in [ 4] by the author jointly with H. Crapo; it provides a
complete description of extensions (up to isomorphisms) of any
given geometry. A concise exposition of the theory is given |
in this section;the omitted proofs could be found in [ 41].

We shall consider geometries G and F together with G-
quotients d(a) indexed by flits a € F. For any F-flats a £ b,
we shall require that Q(b) is a quotient of Q(a), and also,
we shall have the inequality

(*) deg(Q{a)—Q(d)) & x(b) - r(a);
a modular filter M(a,b) of Q(a) is defined by the following:
M(a,b) = My (1) _p(a) (QG2)—>Q(b))
= { x ¢ Q(a) ] nQ(a)—eQ(b)(x) = r(b) - r(a)}.
Note that if equality holds in (%), then M{a,b) is just the
‘modular filter M(Q(a)—>Q(b)); otherwise M(a,b) = 6.

THEOREM 4.1 If R is an extension of a geometry G by a

geometry E, the family { Q(a) I a & F} of quotients defined by
Q(a) = Quo(G—sR—>R/2a)
satisfies the following two properties:
1) Q(0) = G; and if a flat b covers a flat a in F, then Q(b)
is’ an elementary quotient of Q(a).
2} For any locally modular pair of £flats a,b in 7,

M(aAb,a)n M(aab,b) = M(aanb,avb). L]



We use these properties to define a quotient bundle.

Specifically, we define an F-indexed bundle of quotients of

a geometry G to be a family {Q(a) | ae F}of quotients of G,
satisfying conditions 1) and 2) of theorem 4.1. Abbreviations

such as F-bundles on G are also appropriate.

THEOREM 4.2 Any quotient bundle on a geometry G, indexed by
the flats of a geometry F, is the bundle of a unique extension
of G by FE. O

The following theorem shows how the rank-function as well
as the flats of the corresponding extension are determined by
a quotient bundle.
THEOREM 4.3 Any extension R(XuY) of a geometry G(X) by a

ey

geometry F(Y) is a quotient of the direct sum G & L. Assume

that {Q(a) | a€ F } is the quotient bundle for. an extension

R of G by F. Then for any (x,a) € G ®& F,
1) rplx,a) = 1y () + Tg(a)

2) TETETR = (y,b), where y is the least flat in Q(a) above x,
and b is the greatest.among those flats
¢ € F with the property that ye M(a,c). []

An F-bundle { Q(a) | ac¢ F ] on G is said to be strict
if and only if any one of the following equivalent statements
holds,
1) deg(G—Q(a)) = r(a) for all a € F

| 2) for any a,b € F, if a<b, then deg(Q(a)—Q(b}) = r(b)-r(a)

3} M{a,b) # # for all agb ¢ F

4) . the extension of G determined by the F-bundle has the same

rank as G. 4.2



In concluding this section, we look at T. Brylawski's

pushout theorem [ 2 ]: given any pair of extensions

H(X U Y)

G{X) /
\K(X VEA

such that X is a modular flat of H, the pushout of H and K
relative to G (in the category of geometries and strong maps)
exists. If we let R(Xw Y U Z) be the pushout and let F(Y)
be the subgecometry of H on Y; then R is an extension of K by
F. The F-bundle {Q(a)}ae g on K corresponding to this ex-
tension is given by the following:

Q(a) = K/zH x.



4.2 Lift and drop sequences
In this section, we introduce the concept of quotient
sequences as well as the‘;gﬁg and drop constructions as studied
in [ 4] and develop the mathematical background for the repre-
sentation theory of quotients later on.
For any F-bundle { Qa) | a ¢ F} on a geometry G, any
chain of F-flats
C:
give a sequence {(=chain) of quotients of G:
QO): Qag) = Qla) = Qla) = ... —Qla).
If the F-bundle is strict, then any maximal chain will give
a sequence of proper elementary quotients.

The 1ift construction of quotients was first invented

by D. Higgs in order to prove Edmonds' strong map factorization

theorem: every strong map can be factored as an injection

followed by a surjection. If Q is a quotient of a geometry G,

the 1ift of §Q toward G,_ﬁritten
| L = L(6—3Q),
consists of precisely those flats x ¢ G such that
X & Q or nG—eQ(X) =0
that is, the Q-flats together with all (G—Q)-independent
flats of G. The lift L is a quotient of G, so we have a

sequence of quotients:

G—sL—>Q,

with r(L) = r(Q) + 1 unless G = Q. Since L is a quotient of
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G, we may iterate the 1ift. Thus the k'P 1ift LX(6—Q) of
Q toward G can be defined by

1X(6—q) = L(c—1X1

along with LO(Q—éQ) = Q.

Most proofs in this section are omitted,and the reader 1is

(6—Q))

refered to [ 4 1.

PROPOSITION 4.4 For any quotient sequence

G—>H—>L—Q,
if L is the 1ift of Q toward G, then L is also the lift of Q
toward U, [J
If Q is a quotient of G and deg(G—Q) = k say, then by
1ifting Q toward G k-1 times, we obtained a sequence of proper

elementary quotients.

G=QO }Ql }Qz Fe e """—>Qk=Q,

called the strict lift sequerice from G to 0, where
‘Qi-l = L(G——%Qi) for any 1£ i £ k.

The 1lift sequence will be used very frequently in this paper;
it provides a standard construction for quotient bundles in
certain interesting cases.

PROPOSITION 4.5 In any quotient sequence

M(G—Q) = M(G—P) A M(P—Q). LI
THEOREM 4.6 A sequence

of proper elementary quotients is a strict 1ift. sequence if-and only

if any of the following equivalent statements holds,
4.5



1) M(Qy_;—>Q;) € M(Q;—Q;,,) for any 1 <1< k,

2) M(Q;_;—Q;) = M(Q;_;—>Q,,) for any 1 €1 <Kk,

3) M(Qi_1~—+Qi) = M(Qi_lu—an) for any 1 £ i < k.
THEOREM 4.7 Any interval of a strict 1ift sequence is also

a-strict lift sequence X
Every Strict 1lift sequence
G=Q0—9 Qi—% Q—> ...-é'Qk=Q
is completely determined by its terminal members G and Q.
As we are now going to show, the same sequence can be produced
by another construction which proceeds from left to fight,
beginning from G. For any quotient Q of a geométry G, the

drop of G toward the quotient Q, denoted D{(G—> Q) is defined

to be the unique elementary quotient of G with modular filter
M(G—>Q), that is,
D(G—=>Q) = { xe 6] ng  (x) # deg(6—>Q - 1} .

For any positive integer k, the kth drop of G toward Q,

denoted DX(G—> Q), is defined by
DX(6—>Q) = DO (6= QY—=>Q)
along with DO(G—%>Q) = G. The following is an analogue of

proposition 4.4:

PROPOSITION 4.8 For any quotient sequence
| G—> D—3 H— Q
if D is the drop of G toward Q, D is also the drop of G
toward H. [] |



A strict drop sequence from G to a quotient Q is a sequence

of proper elementary quotients
G=Qy » Qp * -+ * Q=Q
such that Qi = Dl(G + D) for all 1 £ i < k.

THEOREM 4.9 Every strict 1ift sequence is a strict drop

sequence, and vice versa. 0

We call an order-preserving function from a partially ordered
set I to .%{X) (with the strong map order) a quotient diagram,
which can be indicated by labelling the elements of I with their
images in ‘%(X). For example, the following diagram of element-

ary quotients, indexed by the free geometry on two points.

/\
\/

represents a quotient bundle if and only if

M, (G+P) n M, (G+Q) = M,(G-R).

PROPOSITION 4.10 Given quotients as shown in the following

diagram

/\
\/

with deg(G+Q) = deg(P»R) = 1, D(Q»R)} is a (proper elementary)
quotient of D(G+P) if the following condition is satisfied:

M(G+P) n M(G-Q) = M(G»R).



Proof: Let x ¢ D{(Q—R). If x& M(Q—R), then x € R &
D(G-—=P). So we assume X & M(Q—>R). Let n = deg(G—>P).
If x ¢ M(G—=Q), then nG—)P(X3 < nG—->R(X) & n-2 and so x €

D(G—>P). 1If otherwise x € M(G—>Q), then n n-1,

Gsu(X) €
Suppose x ¢ D(G—>P). x is then covered by some x' <& M{G—>P).
But then x'€ M(G— Q) and so x'€ M(G— R), ie, nG—‘;R(X) =
n-1, and therefore nG-——s«R(x) > n, a contradiction. Thus

D(Q—>R} € D(G—>P) and so D(Q—>R) is a quotient of D(G—>P). [
REMARK 4.11 In the above proposition, although T = D{Q—>R)

is a quotient of § = D(G—>P), as shown in the following

P/R\
N
N

the intersection M(S— P) m M(S—>T) may not be equal to

diagram

M(S—>R) and so D{(T—> R) may not be a quotient of D(S5—P),
ie, DZ(Q—-——> R)-may not be a quotient of Dz(G——} P). Also,.
L{Q—»R) may not be a quotient of L(G—> P). For example,
consider the quotient diagram in figure 4,1,

figure 4.1
Since M(S—> P) = [ab), M(S—>T) = [a}, M(S—R) = {abcd}, so
M(S—>P) n M(S—> T) = [ab] # M(S—R). Thus L(Q—>R) =
DZ(Q-—> R) is not a quotient of L{G—>P) = DZ(G% P).

#



\L(Q—R) = D?(Q—sR) = bfd (D

d
aéﬁf,f»f"
d
T = D{(Q—R) = Ef’i”‘C:)
a
S = D(G—P) =

figure 4.1



As a particular case of proposition 4.10, we have the

following:

PROPOSITION 4.12 Given a quotient sequence

G—>Q—>R

with deg(G-—>Q) = 1, Dk(Q—%vR) is a proper elementary quotient
of Dk(G———éR) for any 0 € k < deg(Q—>R).

Proof: By induction on k. Since DO(Q—%aRJ = Q, DO(G—%-R) =
G, so DO(Q—%-R) is a proper elementary quotient of DO(G—%»R).

Assume that Dk‘1

Dk—l

(— R) is a proper elementary quotient of

(G—> R).Consider the following quotient diagram

Y

L

R

p*"1(g—s R)

Dk‘l(G—% R)

where L L(G—>R). Since

MooX = my— 1) A M¥ e— r)— DX e r)).
< M* e rn— 1)
< M¥ ey 1),
so by proposition 4.10, D(Dk_l(Q—%>R)—%>R) is a proper ele-
mentary quotient of D(DX™1(6—» R)—> L), that is, DX(Q—>R)

is a proper elementary quotient of Dk(G—%IQ. [j
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4.3 Representations of a single quotient of a geometry

. . A representation of a quotient Q of a geometry G(X) 1is

an extension R(Xw Y) of G together with a flat z of R, called

the representing flat, such that

Quo (6—» R—R/2z} = Q.
R.

Without loss of generality, We can assume that z =y

As a result of theorem 4.3, we know that in such a re-
presentation, the flat z is in a positicn relative to all
flatslx ¢ G prescribed by thé following equation:

r(xyz) = rQ(x) + 1{z).
In particular, the inequality
(*) deg(G—Q) ¢ r(2)

is always satisfied. If equality holds in (¥), then the‘re—
presentation is said to be strict. D. Higgs first proved
that any quotient of a geometry has a strict representation [l

Let Q be a quotient of a geometry G and let F be any

geometry of rank r 2 deg(G—>Q). The 1ift F-bundle of Q toward

G is the F-bundle {Q(2)},.p on G defined by

Q(a) = LY@ (g 5Q) v aeF.
The extension R determined by this bundle is a representation
of the quotient Q. If r = deg(G—>Q), then R is the Higgs

representation [ 4 ).

4.11



4.4 Simultaneous representations of quotients of a geometry

A representation of a family {Qi}ieI of quotients of

a geometry G is an extension R of G together with a family

{Zi}iel of flats of R, called the representing flats of the

representation, such that for any i € I,

Quo(G—> R—>R/z:) = Q.

In such a representation, the following equation holds for
each i € I:

r(X\fzi) = rQ_(x) + r(zi) ¥ x &€ G.
i

Also, for each i &€ I, the inequality

(%) deg(G—»Q;) € r(z;)
is satisfied. If equality holds in (*)} for all i ¢ I, then
the representation 1s said to be strict.

.1f P, Q are elementary quotients of a geometry G, they
are strictly representable if and only if their corresponding
elementary extensions are compatible. It is possiﬁle that
two elementary quotients of a geometry are representable
even though they are not strictly, representable.

EXAMPLE 4.13 Let P, Q be elementary quotients of G as shown

in Eigure 4;2. The elementary extensions corresponding to

P, Q are incompatible ( page 2.1). Consider the geometry
in figure 4.3, where the non-trivial planes are abcdef, abgh,
abij, cdgh, cdij, efij and ghij. R is an extension of G and
Quo (6G—> R—> R/gh) = P, Quo(G—> R—»R/ij) = Q. So the pair

of extensions P, Q are representable,.
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aP/,Eg,,r—‘ | Qzalz/_f:d—/”

G = rank-three geometry on’{a,b,c,d,e,f}

s

in general position

figure 4.2
i
e, /
wt
cri__,_ e
A
£ dk
1
figure 4.3

4.13



While the general representation problem has still been
unsettled, there is a positive result for representing ele-
mentary quotients. In the proof of the following theorem,
we construct a suitable quotient bundle to guarantee the
existence of a representation.

THEOREM 4.14 Any pair of elementary quotients P, Q of G

is representable.

Proof: ' Without loss of generality, we assume that neither
P nor‘Q is equal to G. There is some quotient R of both P
and Q. Let n = deg(G—>R) and let F be the truncation of

the free geometry on points a;,a 'an;bl’bZ"\‘bn' Denote

2,|l

the flats aqdge.dy and ble"‘bn by A and B respectively.

For each a ¢ F, define

i

p?r-l-rla)p s py ifa A
Q(a) = (1?1 @ g sr) ifay B
LG"l_r(a)(G—a-R) otherwise.

Tt is clear that Q(A) = P and Q(B) = Q. We claim that {Q(aﬁ%ep

ris an F-bundle on G.

Let a,b & F be such that b covers a. It is obvious that
if a3 A or a 2 B, or if B £ A,B, Q(b) is an elementary
quotient of Q(a). If otherwise a # A,B and b = A say, then
Qa) = 1L221T(@) (g5 Ry and Q) = T (p5 R) and so
by proposition 4.12 Q(b) is an elementary quotient of Q(a).

Next, let a, b be a locally modular pair in F, We waﬁt

to show that in the quotient diagram:
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1

/Q(a AV, b)\
\Q(a/\b)

(*) M(anb,a) " M(anb,b) = M(anb,avb).

C = Q(a) Q(b)

It is not possible that a » A and b 2 B. If this happens,

avb = lF and so a, b are copoints of F. But then r(anb) =
IaAbl < Zn-2 and thus a Ab cannot be a coplane of E, a contrar
diction. Similarly, it is not possible that a > B and b 2 A,
If aab > A(or B), then the quotient diagram C lies in a 1lift
bundie from R toward P (Q respctively) and so (®*) is satisfied.
Finally, consider the case when anb, a, b #A,B. If avb # A,B,
the quotient diagram C lies in the 1ift bundle from R toward

G and so (*) is satisfied. If otherwise ayb 2 A (or B), then
M(anb,a) n M(anb,b) = M(a/\_b,a) = M(a/\b,lF) ¢ M(anb,aVvb)
and so {*) is satisfied.

. In the extension R of’ G determined by the F-bundle
{Q(a)} ael,

Quo (G— R—> R/A)

[H
Il

Qa) =P
Q(B) = Q.

Thus the pair of elementary quotients P, Q is representable. [

1
1]

and Quo (G—>R—> R/B)
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4.5 Partial Bundles

This section introduces a new manner of representing
quotients of a geometry, and lays the groundwork for the
remaining chapters. This idea is most clearly expressed in
the language of "relative position', as follows. If a quotient
Q of a geometry G is represented by a flat z in an extension |
of G, we say the quotient Q determines ''the position of z
relative to, the geometry G". It frequently happens that we
have two geometries G and F, and wish to find a common exten-
sion of G and F in which certain flats Zs of F have certain
positions relative to G, given by quotients Qi of G. Such an
extension of G by F exists if and only if the correspondence

z; 7 Q4
can be completed to an F-indexed bundle of quotients of G.
It is impossible that there are flats z; < zj in F for which
Qj is not a quotient of Qi’ so we may as well assume that
z; % Zj implies Qj is a quotient of Qi'

Let us recall that a diagram of quotients (indexed by an
ordered set I) is an order-preserving assignment of quotients
of G to the elements of I. We are thus led naturally to the
problem: '"given a geometry F and a diagram of Quotients of G
indexed by a subset I of the set of flats of F, when can the
diagram be extended to an F-indeXed bundle of quotients of G?"

Think, for example, what happens if for each flat zel,

the quotient Q, has degree equal to the rank of z. Then any

completion to an F-bundle will be a strict representation of
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these quotients, as discussed in the preceeding section. The
present formulation of the problem will also guarantee that
the representing flats have given positions relative to one
another, a property not guaranteced in an arbitrary strict
representation. For instance, three elementary quotients may
be strictly represented by three independent points, or: by
three colinear points.

Given geometries G and F, a family of quotients of G
{Q(a)}aEI

indexed by a set I of F-flats is called a partial bundle [4]

on G if it can be completed to an F-bundle on G. Here we
give a non-trivial example of an I-indexed family of quotients

which is not a partial bundle.

EXAMPLE 4.15 Let F be the free geometry on three points

1,2,3 and let I = {0,12,23,123}. Consider the quotients
shown in figure 4.4.
figure 4.4
If Q(I) is completable to an F-bundle {Q(a)}aEF on G, then
the quotient Q(2) would be equal to one of the three quotients
in figure 4.5
figure 4.5
But for each i = 1,2,3,
M(P; > Q(12)) n M(P; - Q(23)) # M(P; » Q(123)),

a contradiction. Thus Q(I) is not a partial bundle.
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Q(J.ZS) = ab'Cd

cd

Q(1z) =, — Qres) =, ¢

a
G = Q(0) =
b c
figure 4.4
cd
a
P = P = P =
1 2 3
C d b c
figure 4.5 -
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V. COMPLETIONS OF PARTIAL BUNDLES

5.1 Weak Order on Partial Bundles

Given any set I of flats of a geometry F, a family of
geometries on X {Q(a)}aEI will simply be denoted by Q(I).
Further, by an F-bundle on X, or just an F-bundle, we under-
stand an F-bundle on G(X), where G(X) is some geometry on X.
Recall that we denoté by'.%(x) fhe set of all geometries on
X together with the weak order. Each F-bundle is naturally
an element of %F, the F-fold product of {?(X) together with
the component-wise order. Thus any possible completion of
Q(I) to an F-bundle is an element of %F.

The weak order on bundles is consistent with that on the

corresponding extensions, as we now show in the following:

PROPOSITION 5.1  Given geometries G(X) and F(Y), let Q;(F)

be F-bundles on G and Ri(XuY) be the corresponding extensions,
i = 1,2. Then

Ry < R, <= Ql(a) < Qz(a) for all a ¢ F. |
" Proof: The rank equqtion in theorem 4.3 says that for each 1

rRi(xua) = TQi(a](X) + rF(a) YV x e G, a ¢ F.
Thus Ry < R2 L= rRl(xua) < rRz(xua) VxeG, aeF

Gy Ql(a) < Qz(a) ¥V a e F. 0
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Given a set I of F-flats and a partial bundle Q(I) on
X, the completions of Q(I) to F-bundles need not form a
semilattice under the induced weak order in ,@(X)F

EXAMPLE 5.2 Let F be the geometry of a two-point line and

let I ={0} consist of only the zero-flat of E. Let Q(0) = G
be the free geometry on four points a,b,c,d. Consider the

geometries Gi, GZ’ Hl’ H2 in example 1.1:

e A A

Hy

G1 G2 H1
Let L = L(Gw—Gl). The following F-bundles are completions

of Q(I):

N, AN
S N

N
e

Both C and D are maximal completions weaker than A and B; so

G

the meet of A,B does mnot exist.



5.2 Duality of strict 2-bundles

If F is the geometry of a two-peint line, then an F-bundle

is called a Z-bundle. A strict 2-bundle corresponds . to an

extension by a two-point line without increasing the rank of

the geometry.

In order to prove the duality proposition, we need the

following:

LEMMA 5.3 Let Q:be a quotient of a geometry G(X).

subset A of X,
ng_q(A) * ngu_gr(X\A) = deg(6—>0Q).

Proof: nG—aQ(A) + nQ*—éG*(X\‘A)

= rg(d) - Ay ¢+ no. (X\A) - nQ*(X\A)

=Tg(A) + ngu (XN ) = (rg(A) + g (X\ A))
r(G) - r(Q)
deg (G—>Q). 0
PROPOSITION 5.4 Given any strict 2-bundle

/\
\/

on X, its inverted dual

n

G*

B'= P< \Q*
is also a strict 2-bundie.
Proof: Let A € X. Then

Ae M(R*—> P*) A M(R*—>Q*)

5.3
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TP*(A) = rR*(A) -1
rP(X\A) = rR(X\A)
rR(X\A) = rG(X\A)
== A = KN € MRPDGH).

TQ* (A)
T (X\ A)

il

I

Thus B' satisfies the two bundle properties. []

If in the above proposition the 2-bundle B is not strict,
then its inverted dual B' may not be a 2-bundle. ' For example,
let Q be a proper elementary quotient of G and we have a

2-bundle

/\
\/

But its inverted dual

G*

o N
ot

is not a 2-bundle because M(Q*—> G¥*) # @ while the modular

filter {x € Q-}:' nQ*_)G*Fx) = 2} is empty.

5;3 Completions to 2-bundles

As we mentioned earlier in 1.4, for any geometry G, the
semilattice of its elementary quotients is isomorphilc to the
semilattice of its proper modular filters. The modular
filter corresponding to an elementary quotient Q of G is
M (6—>Q) = {x € G| ng_q() = 1} 5 M (G—>Q) = § if and
only if Q

G. We are now going to show that the elementary

quotients of a geometry G(X) are actually A-closed in ,Qj()()]
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PROPOSITION 5.5 Given a non-empty set {Q of elementary

i}ieI
quotients of a geometry G(X), fQIQi exists and is equal to

the elementary quotient of G with modular filter iQ&Mi(G——eQi).
Proof: If there is some j € I such that Qj = G, then ijé Qi
for any 1 &€ I, so {QEQi = G which is the elementary quotient

of G corresponding to the modular filter @ = {QIMl(G—eQi).
So we assume that Q; # G for all i € I, The modular filter
M = fglMl(Gh%Qi) is non-empty and we let Q be the elementary
quotient of G with modular filter M. We want to show that
AT

Suppose T(X) is a geometry such that T £ Q; for all i € I,

To complete the proof, we need to show that for any flat x € G,

rT(x) p rQ(X). Since rT(x) 2 rQ.(x) For all i ¢ I, so if x& M,
i
then rT(x) > rG(x) -1 = rQ(x), and if otherwise x & Mj for some
j € I, then 1.(x) » er(x) = ro(x) = rQ(x). [1
Next, ihstead of elementary quotients of a gcometry, we

look at geometries which have a common elementary quotient.

PROPOSITION 5.6 If iQikieI is a non-empty set of geometries

(on the same set X) with a common elementary quotient G(X),

then f?&Qi'exists'and G is. an elementary quotient of it.

Proof: Let I' = {i €1 l Q; # G} . If I' = @, then {}IQi
- | e N VAN
= G, So we now assume I' # ¢ and whence iQIQi iéI'Qi.

For each i € I', Qi is a proper elementary quotient of G*,
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so by the preceeding proposition ié},Qi exists and equals Q
say.We claim that Q% = iGI'Qi'

For each i € I', since Q £ Q% and both Q and Qg have the
same rank, by proposition 1.3 Q% £ Qi' Suppose T(X) is a
geometry such that T £ Q; for all i € I', To complete the
proof; we need to show that for any subset A of X, nT(x)é.
nqe(x). Let A" = X\A and let r be the rank of Q. If A%

iﬁ},Ml(G*—+Q§), then n.(A) & nQi(A) =1 - rQ§(A').for all i€

I'. But rQ$(A) = rG*(A') -1 = rQ(A') for all 1 € 1!, so
g . —G* .
nT(A) <r - rQ(A') = nQ*(A). If otherwise A' & Ml(G*—-9Q§)
for some j € I', then nT(A) £ an(A) =1 - rQﬁtA') = 1 - rG*(A‘)
=T - r(A") = nga(A). H '
The following two propositions will be used in proving

the completion theorem in the next section.

PROPOSITION 5.7 Let P, Q be elementary quotients of G and

let {Ri}iel be a non-empty set of elementary quotients of P, Q

such that for each i € I,

R.
P /////Q
G .
is a 2-bundle. Then {gIRi exists and
VA
ferRi

P

AN
\\\\G‘///
is also a 2-bundle.
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Proof: By proposition 5.5, fgﬁRi exists and is an elementary

quotient of both P and Q. For each i € 1, Ml(GﬁﬁP]aﬁ MI(G—eQ)
= 3 = N\
MI(G—éP)(\ Ml(PvéRi). Let R iGIRi; then
My (G—P) A M (6—Q) = M, (6-P) ) (feM; (P—R;))

M, (G—P) N My (P—R)

i

M, (6—R) . [l

PROPOSITION 5.8 Given an elementary quotient G of geometries

P and Q, If {Ri}iéI is a non-empty set of geometries such

that for each i € 1,

is a Z2-bnudle, then JA\R. exists and
1€l

is also a 2-bﬁnd1e.

. C . AN . VAN
Proof: By proposition 5'6"1&1Ri exists. Let R = fANR.

Both P, Q are elementary quotients of R, If R = P say, then

Ml(R—aP) = @ and so B is a 2-bundle. So we noﬁ assume that R
is equal to neither P nor Q. The set I' ={i € I \ Ry 7 p} =
fie1 | R; # Q} is non-empty and G is equal to neither P nor

Q. By proposition 5.4, for each i € I',



is a 2-bundle. Since /e\I,R* = (AN RDE = (DRO* = RE, so

/R"\
\ /

is a 2-bundle. By proposition 5.4 again, B is a 2-bundle. []

5.4- A completion theorem

Given a set I of F-flats and a partial bundle Q(I) on
X, the completions of Q(I) to F-bundles may not form a semi-
lattice. The purpose of this section is to give a sufficient

condltlon on I under Wthh the completions are A closed 1n‘9(x)
and thus form a semllattlce
THEOREM 5.10 Let F be a geometry and let I be a set of

F-flats such that

x<y€F\NI = r(y) - r(x)> 2.
If Q(I) is a partial bundle on X, then the completions of
Q(I) to F-bundles form a sub-A-semilattice of %X)F
Proof: Let {Qj(F) l j € J} be any non-empty set of com-
pletions of Q(I) to F-bundles. For each a ¢ I, Qj(a) = Q(a)
for all j € J, so ;gJQj[a) = Q(a). For any flat a € F\I,
there exists a flat b € I such thgt either a covers b or b
VCOVGTSEL If a covers b, then Qj(a) is an elementary quotient
o§ Q(b) for all j € J , and so by proposition 5.5, {QJQj(a)
exists. Similarly, if b covers a, then Q(b) is an elementary
quotient of Qj(a) for all j € J, and so by proposition 5.6,
jQ\JQj(a) eﬁists. Define Q(a) to be {Qth(a] for each a¢F,
Claim that {Q(a) f aeé F} is indeed an F-bundle on X.
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First of all, by propositions 5.5 and 5.6, for any flats
a,b ¢ F, if b covers a, then Q(b) is an elementary quotient
of Q(a). So the first property of a quotient bundle is
‘satisfied. | —

Next, let a, b be a locally modular pair in F, We want
to show that

(%) M(aAb, a} n M(aab, b) = M(anb, avb).
If all of a, b, aanb, avb are in I, then it is clear that
(*) is satisfied. Otherwise, we have the following three
cases to consider:
1) a,b,aAnb ¢ I, proposition 5.7 shows that (*) holds.
2) a,b,avb € I; proposition 5.8 shows that (*) holds.,
3) aanb, avb € I; M{(anb, a) ™ M(aAb, b)
(JQJMcaab a) N fOpand, b))
JCJ(M (Q(an b), Q;(a) A My (Q(af\b), Q; (b))
QJM(aAb, avhb)

I

il

M(aab, avb).
Thus {Q(a) | ace¢ F} is a completion of Q(I) to an F-

bundle on X and this completes the proof. []
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5.5 A counter-example for the existence of a least

completion of a partial bundle

We have shown earlier in this chapter that the com-
pletions of a partial bundle need not form a semilattice.
As a matter of fact, a partial bundle may not even have

a least completion.

EXAMPLE 5.11 Let F be the plane geometry of three points
1,2,3 and let I = {0, 12, 13}. Let
Q(0) = the rank-five geometry of nine points a,b,

C,e.0.,1 in general position

Q(12) = Q(13) =
LR
g
The two completions of Q(I) shown in figure 5.1 are minimal.

Thus Q(I) has no least completion.

We shall see in the next two chapters that if I is a
sublattice of a free geometry F,  then any partial bundle
Q(I) has a least completion,a.canonical construction for

which will be given.
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Q(12)

Q(12)

Q(0)

T = truncation of G.

figute 5.1
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VI. EXTREMAL COMPLETIONS OF PARTIAL BUNDLES I

The purpose of this chapter is to develop a canonical
construction scheme for completions of partial bundles. The
partial bundles we consider will be indexed by a Boolean
subalgebra of a free geometry. For this class of partial
bundles, there is always a least completion achieved by
successively lifting quotients along certain paths which
eventually £il11l up the indexing geometry F.

In the first three sectiéns of_this chapter, we will
give the materials necessary for the development of the con-
struction scheme.

6.1 Commutative and totally compatible extensions

Let M Mz,..., Mhbe modular filters of a geometry G(X).

1°?
For each i =1, 2, ..., n, let Hi(XkJei) be the elementary
extension of G(X) corresponding to Mi' The elementary ex-
tensions G—-)f%_are said to be totally compatible if there
exists an extension G—9~H(Xx;efJezu...uen) such that for each
i, H is an extension of Hi’ or equivalently,

—H
x€ M &> e, € x, Vxe G

Consider a geometry G(X) and a list of modular filters

Ml’ M R Mn (with repetition allowed) of G. Let E =

IREE
{el,ez,...,en} be an n-element set. For any permutation Tt
on {1,2,...,n}, there is a sequence

GUXY=6y (X)—> Gy (X egeyy)=> G (XU e qyVerpy)—

e > Gn(K\JE]



of elementary extensions, called a minimal extension sequence,

defined by the prescription:

Mod(Gi_l—%>Gi) = the modular filter of G;_q

generated by Misi—l V1s<ic<n.

The modular filters Ml’MZ""Mn are said to be commutative if

the extension Gn(X\J E)} does not depend on the choice of the
permutation T.

PROPOSITION 6.1  If modular filters M;,M,,.
commute, then their corresponding elementary extensions

e ea M of G(X)

Hl(X\)elj,Hz(XLJez),..., Hn(X\Jen) are totally compatible.

Proof: Let H(XL}efJezu...uen) be the extension of G(X)

determined by the commutative modular filters Ml’MZ""’Mn'

For any. i = 1,2,...,n, there exists a permutation T  on
{1,2,...n} such that 77(i) = 1 and so the minimal extension
sequence defined with respect to I has a subsequence

G(X)— Hi Xu ei)——> H({X veve,u. . :uen) .

Thus the elemenfary extensions Hi(XL)ei), i=1,2,...,n, are
totally compatible. [J

PROPOSITION 6.2 Two modular filters M, N of G(X) commute

if and only if their corresponding elementary extensions H(Xuzel)

and K(X\Jez) are compatible (= totally compatible),

Proof: If M, N are commutative, by proposition 6.1,H, K are
compatible. Conversely, if H, X are coﬁpatible, there exists

a least elementary extension R of H, K as shéwn in the ftvllowing
diagram:
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//,/,/;?H(Xxxel)

G(X) BR(Xwve

\

2K (X veZ]

1Lle2).

By proposition 2.4, Mod(H—>R) the modular filter of H

generated by N1 and Mod (K—> R) = the modular filter of K

ganerated by MK,

Thus M, N are commutative, N
The converse of proposition 6.1 is not true. There are
totally compatible modular filters which are not commutative.

EXAMPLE 6.3 Let G be the rank-four geometry on eight points

a,b,...,h in general position. Let M =M2={abc,def,1G} and M,=

1 3

{abc,def,agh,bgh,...,fgh,lG}. - The modular filters Ml’MZ’MS

are totally compatible, as exhibited in the extension shown

in figure 6.1.
figure 6.1

But for different orders Ml,MZ,M3 and Ml’MS’MZ of the modular

- filters, the minimal extension sequences give different ex-

tensions, as shown in figure 6.2.

figyre 6.2



figure 6.1

M., M,, M

G(x) — 2 3
M,, M,, M

GX) ——3 %

figure 6.2
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6.2 Principal extensions
Given a geometry G(X) together with a flat E in G, by

putting an extra point e in general position on E, we mean

the elementary extension
G(X)— H(X v e)

corresponding to the principal modular filter [E] of G.

Crapo and Roulet [8 ] first dbserved that for any list
of flats {Ei} of a geometry G, an extension of G can be cons-
structed by putting, for each i, one extra point e in general
position on the flat E,.

A theorem of Rrown [1 ] on exchange closures showed, as
noted by Crapo and Roulet [8 ], that any two such elementaty
extensions of a geometry commute:

THEOREM 6.4 Given two flats E, F of a geometry G(X), there

exist elementary extensions as shown in the following diagram:

G, (Xvey)
G(X)/////,;? ~\\%\\\$
— ~\\\\\\s H}f’,,,a

H(X\Jelk}ez)

GZCX\JeZ)
where Mod(G—%>G1) = [E]G
Mod (6—>G,) = [13]G
Mod(G,—> H) = [FC1)
1 6,
and Mod(G,—>H) = [E‘GZ]G 0

In order to prove the next theorem on commutativity, we

recall a fundamental result on permutations of integers:
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LEMMA 6.5 Let Tt and O be permutations on {1,2,...n}. There
exists a sequence

R PP | AP W

of k permutations on {1,2,...x} for some integer k, such that
for any 0 < j £k
(*) ﬂ}_l(i) = ﬁj(i) for all i=1,2,...,n except some

two consecutive integers. []

THEOREM 6.6 For any flats El, EZ’ e En of a geometry G(X),
the principal modular filters [El] 5 [122] s ey [En] are
commutative.

Proof: Let {el,ez,...,en} = E be an n-element set and let

T, be any two permutations on {1,2,...,n}. There exists a

sequence of permutations

T=Ty, Tps vvns =0

satisfying.condition (*) in lemma 6.5. By theorem.6.4, for

any 0 £ i € k, the minimal extension sequences of Ml’MZ""’Mn

defined with respect to the permutations‘ﬂ'i_1 and ﬂ} give the
same extension R{(X v E) of G(X). Thus the modular filters

[Eﬂ yJ[E)],...,[E] are commutative. W

Given flats El, EZ’ v En of a geometry G, the extension

of G determined by the commutative modular filters [Eﬂ , [EZ]’

...,[B lis called a principal extension, which is often des-
cribed as the extension of G obtained by adding, for each i =

1,2,...n, a point eiin general position on the flat Ei'
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LEMMA 6.7 Given a principal extension G(X}—> R(X w E) in
which among others a point a &€ E is put in general position
on a flat C of G, for any subset A € E not containing a,

a ¢ KR if and only if tR ¢ AR,
Proof: Consider the extension sequence

GX)—>HX VA —=KXwv Ava)—R(XwvE)
where H and X are subgeometries of R on Xwv A and XV A wva
respectively. By theorem 6.6, Mod(H-— K) =[CI]H. But then

R =K “H o A

a € AR & a4 ¢R el =R R, g

PROPOSITION 6.8 Let C be a flat of rank r > 0 in a geometry

G(X). If R is the extension obtained by putting points a158,,

.,a_ in general position on C, then d15895...,3, are indep-

T
endent in R.

Proof: Consider the minimal extension sequence

G=GO(X)—4 Gl(Xual)*+ G(XUalugz)-+ R R(Xualuazq...Uar)
from G to R, where for each 1£ig v, Mod(Gi_l——bGi) = [CGi-l]G .
i-1
Suppose there is some isr such that a, depends on {ai,az,...,ai_l}l

=G

Then by lemma 6.7, {al,az,...ai_l}si-l 2 C'i-1 and so i-1 2 T,

a contradiction. Thus 81585, ..,3, are independent. [

PROPOSITION 6.9 Let Cl’CZ""’Cn be flats of ranks T T r

g3ty

respectively and be skew to each other (i.e., r(Clw’sz...a/Cn)

= r1+r2+...+rn) in a geometry G(X}. If for each i=1,2,...n,

. i i i
points al,az,..,ari

set C of added points is independent in the extension R thus

defined.

are put in general position on Ci’ then the
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Proof: Let a ¢ C and A € C be such that a £ A. We want to
show that a does not depend on A in the extensiom R. Suppose

not. Let a be put on the flat C, say. Then Ei'é A. For

. i 2 i ..
each i = 1,2,...,n, let Ci = {al,az,...,ari}. By proposition

v ——

P T M =' ! I o
6.8; CI = C; . Let B (#kci)\’“‘“ck)' Then B 2 5.4 % .. wCi

But this is impossible because [B] < |C]. 3
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6.3 Extremal sequences of elementary quotients
As we have pointed out in 4.2, given a quotient bundle
Q{F), any maximal chain
cg € €< vn Ly
in F gives a sequence
Qlegd— Qe )= ... —>Q(cn)
of elementary quotients. The purpcse of this section is to
study these sequences with the consideration of the weak order.

If S: Po—é'PI—a N ——%Pn

and T: Q,—> Q—> ... %Qn

are Sequences of elementary quotients of equal length, define
S&T
if and only if

< i =
Pi" Qi vV i 0,1,...,n. .

Sequences of proper elementary quotients with the weak order
were studied in [4 ]. The treatment there is now generalized
in our presenf discussion.

To start with, let Q be a quotient of a geometry G and
look at sequences of elementary quotients from G to Q of
length n for somé integer n » deg(G—>Q). There is no surprise-
that such sequences need not form a semilattice although there
is a least such.

EXAMPLE 6.10 Let Q be a quotient of a geometry G as shown

in figure 6.3. Consider sequences S S S, and S4 as shown

12 722 73
in figure 6.4, 1In the ordered set of sequences of elementary

quotients from G to Q of length 3, Sl’SZ cover 83, 84. Thus
' 6.9



@
] d
G =
c
figure 6.3
Q Q
1 ql
b__S b, —%
bM@ 0&/0"@
g = a
d b <
La
G G
qQ vQ
C ¢ /ba/uc
h?hr”;4 E @

figure 6.4
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S1 N S2 does not exist.

figure 6.3

figure 6.4

Given a 1ift bundle Q(F) of Q toward G, any maximal chain
C: 0F=c0<c1< (cn'—'lF
in F gives a sequence

Q(CY: 6=Q(cy)—>Qlcy)—> ... —>Q(c,)=Q

of elementary quotients. Q(C) may not be the strict 1lift-
sequence from G to Q unless the bundle Q(F) is strict, i.e.,
"T(F) o= deg(G—>Q) -

The 1ift sequence from G to Q of length n is defined to

be the sequence
G=Q0——> Ql—-> e e —> Qn=Q
of elementary quotients such that

Q; ¢ = L(G—>Q;) Vi=1,2,...,n.

It is clear that if kX = n - deg(G—>Q), then
Q=6 Vigk
and the subsequence

Qk——>Qk+1—> —~>Qn

is the strict 1ift sequence from G to the quotient Q.
The following is a slight modification of proposition 4.5:

PROPOSITION 6.11 Given any sequence of quotients

G—P—>Q
and integers m, n such that m » deg(G—> P) and n » deg(P—>Q),

M (G—=>P)y M (P—>Q) = M (6—>Q).
6.11



Proof: Tfm = deg(G—>P) and n = deg(P—>Q), then m + n =
deg(G—>Q) and so |

M (G—=P) " M (P—>Q) = M(CG—>P) n M(P—>Q)

11

M(G—> Q)

Mo, (6—>Q).

I

If otherwise m > deg(G——%P) say, -then m+nd deg(G-»Q) and so
..._.;. = =
M (G—>P) A M(P—>Q) = # = M, (C—>Q). ]
As a corollary of proposition 6.11 and theorem 4.6, we

have the following characterization of 1ift sequences:

THEQREM 6.12 For any sequence

§: G=Gp—>G,~>... 3G _=Q

of elementary quotients, the followihgs are equivalent:
1) S is the 1lift sequence from G to Q of length n

2) M (6, ;~G;) € M (6, —>C,, vi=1,2,...,n-1

1)

3) M (G;_;—>C;) = M

n-i-183.07>6) Vi

oot
U
[y
-
[\&]
bl
a
=
1

Finally, we have the extremal property of lift sequences:

THEOREM 6.13 - Given a 1lift sequence

S: G=Ly~> L;—> ...—>L =Q

from G to Q, if

T: H=Qy—>Q—> ...—>Q =P
is any sequence of elementary quotients such that G & H and
Q £ P, then S & T.
Proof: Let k = n-deg(G—>Q). Tor any 1 & k,

= <. <
L; =G &£HELQ,.

To complete the proof, we want to show that for any k<isn,
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Ly 08 Q.

]. ’ j. i * i * [ j — I ])

I‘Li(x_) = T 1(:() P T, 1(2{) > rQi(x).

i- i-

If x ¢ M(Li_l——>Li] , then by theorem 4.6 x € M(_Li_l—-—aQ) and so
rLi(x) = rQ(x) +n-132 rP(x) +n ~ 13 rQi(x).

ThusLiéQiforalloéisnandsos-{-T. [
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6.4 The weakest completion of a partial bundle

For the rest of this chapter, F(E) will be the free geometry
on a (finite) set E and I will be a set of flats of F such that:

1) a,b ¢ I = asb(=anb),avb(=aub) ¢ I
and 2) a ¢ I = E\a ¢ I,

that 1is, I is a Boolean subalgebra of F.

As subsets of E, the atoms El’EZ""’En of I partition
the set E, where n equals the order of 1. For each a ¢ F, let

E(a)

{E;] 8 # anB; # E;}
[E(a) |.

For any flat a<¢F and any atom Ei of I, if Ei ¢ E(a), themn

and 1(a)

1(avE;) = 1(a), and if E; e E(a), then l(a\\Ei) = 1(aVEi) = 1(a)-1.

For any 0 < i £ n, let

I.

i {a ¢ F | 1(a) < i}.

Then we have a sequence
I=I, - Il & ... €I =F
of subsets from I to F.

Let Q(I)={Q(a)}aeI be an arbitrary partial bundle of quot-
ients of a geometry G(X) indexed by I. The purpose of this
section is to show that the weakest completion of Q(I) always
exists.

Let Q(F) be any completion of Q{I) to an F-bundle, and
let R(XuE) be the extension of G(X) determined by Q(F). For
notational convenience, we produce an extra copy of E:

E' = {a'] a ¢ E}.
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Consider the flats EIR,EER,...,E;R of R. For each i = 1,2,.4.,0,

we put in general position on E;R the points p', with p € E;.
This gives an extension

R(XVE)—HXVEWVE').
By proposition 6.8, the set E' is independent in H, and so
the subgeometry F'(E') of H on E' is free and isomorphic to
F(E). For each flat a € F, let

at = {p'| »¢ a}
be the corresponding flat in ¥'. The subgeometty R' (XUE')of
H on XU E' is an extension of béth G(X) and F'(E'). and so
determines an E'-bundle Q'(F') on G(X). I1f we let Q'(a) =
Q'(a').for all a € F, then Q'(F) = {Ql(a)}asF is an F-bundle
on G(X).
" LEMMA 6.14 For each a € I, Q'(a) = Q(a), ie., Q' (F)

is a completion of Q(I).
. '_'R' = ?"R'
Proof: If a¢ I, then a

Q'(a)

and so

i

Quo (G—>R'—> R'/a’)

1

Quo (G—> H—>H/a')

1

Quo (G—> H—> H/a)
Quo(G—w;It—a-R/a)
Q(a). O
If a<b & F,‘we denote the modular filter
My by -z (a) (@ (@D Q (1)
by M(a,b).

n

LEMMA 6.15 Given an F-flat a and an atom Ei of I disjoint

from a, if
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a=ao < al<. . <ak=ain

is a maximal chain in F from a to avE, (k=fEi|), then for
any 0 < j < k,
M(a.

(as_

:aj) = M(aj :aVEi)’

1 -1
that is, the sequence of elementary quotients

Q' (2)=Q' (2,) —>Q' (a;) = ...—Q' (3, )=Q' (a VE;)
is a 1ift sequence from Q'(a) to Q’(ain).

Proof: Let Rj_l‘(XuE uaj_l')' and Rj (X~vE uaj ') be subgeometries

of H(XVEWE'") on XuEuaj_ ' and XwE uaj' respectively.

1
Since aj\aj_1 € E;, by theorem 6.6, the modular filter of

Rj—l corresponding to the elementary extension Rj_1~—> Rj is
—R. : .
[Ei Jnl]Rj—l Let x € M(aj_l,aj). Then
TR ——R.. _
Ei j-1 < xuaj_l j-1
and so
. _'TI-I - ""_"H & |H
Ei _ Ei £ Xuaj_l
Thus
; rH _ 3
xwva uEi xuaj_l .

It follows that

n I )
;_cua'uEi"‘j-l = Xwa, ?1'Rj—1

and so x € M(aj_l,auEi). Hence M(aj_l,aj) = M(_aj_l,ain). (]

THEOREM 6.16 The F-bundle Q'(F) defined above is the weakest

possible completion of the partial bundle Q(I).
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Proof: Let P(F) be any completion of Q(I). We are going
to show by induction on 1(a) that Q'(a) £ P(a) for all a € F.
If 1(a) = 0, then Q'(a) = Q(a) = P(a). Suppose Q'(a) &
P(a) for all a € F such that 1(a) < i. Let b € F be such
that 1(b) = i. Then there exist a € F and atom Ei of I such
that
a<l)<aVEi

and 1(a) = l(a\fEi) = i-1,
By induction hypothesis, Q'(a) ¢ P(a) and Q'(a\fEi) < P(a\JEi).
By lemma 6.15 and theorem 6.13, Q'(b) £ P(b). ]

Combining lemma 6.15 and theorem 6.16, we have the

following construction theorem:

THEOREM 6.17 Given a partial bundle Q(I), its least :coi-

pletion Q'(F) is constructable via the sequence
QUIN=Q'(Tg) » Q'(I)» ... Q'(I)=Q'(F)>
where-for any 1 > 0, Q'(Ii) is definable from Q'(Ii_l) as follows:

Vac I, VE € E(a),

o' (a) = LN @ a\Ep— @t avE)).
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‘ 6.5' Some preliminary completion constructions

The purpose of this section is to prove some results
related to 1ift sequences, which will be needed in the next
section for completion testings.

We start with a slight modification of proposition 4.10:

PROPOSITION 6.18 Suppose in the following diagram of quotients

R

~

P

/Q

G
G—> Q and P—> R are elementary. For any integer k not less
than deg(G—> P) or deg(Q—>R), Lk—l(Q—%>R) is an elementary

k-1

quotient of L (G—>P) if the following condition is satisified:

M (G—=>Q N M, (G—>P) = My .q (G—>R).

Proof: Consider first the case when k > deg(G—>P). If G = Q,

then LX T(q—>r) = k1

(G—>R) is an elementary quotient of

¢ = X" (6—P). 1f G # Q, then deg(Q—> R)= deg(G—>R)-1 <
deg(G—>P) ¢ k, so Lk"l(Q—$>R) = Q is an elementary quotient of
X" 13 py.

Next, assume that k = deg(G—>P). If G # Q then condition
of the proposition implies that deg(P—>R) = 1 and deg(Q—> R) =
k, and so by proposition 4.10 Lkil(Qw%>R) = D(Q—>R) is an
elementary quotient of D(G—>P) = Lkﬁl(G——>P). If G =Q, it
is impossible that P # R for otherwise deg(Q—>R) = deg (G—> R)
= k+1, a contradiction. If G = Q and P = R, the propositioh is

trivially true. [] 6.18



Given quotients P, Q, R of a geometry G as shown in the

following diagram

G

Q—> R is said to be elementary to G—> P if the following two
conditions are satisfied:
1) Li(Q—%>R) is an elementary quotient of Li(G——aP)
for any 1 = 0,1,2,...
and 2) M, (L1 (6= P)—> LT (@ R)DA Mi(Li, (6—> P)—> P)

= Mi+l(L1(G——> P)—> R) for any i = 0,1,2,...
Note that Q—> R is elementary to G—> P if and only if for any
1ift sequences of equal length

Q=Q0%' Ql“""‘%‘ 4 Qn‘_‘R

and G=G0'—> 6> ...—> G =P,

Q; is an glementary quotient of Gi and Ml(Gi—9 Qi)(\ Mi(Gi—% P)
= Mi+l(Gi——>RJ for any i = 0,1,2, ...,n. As pointed out in
remark 4.11, in order that Q—> R is elementary to G—> P, it

is not sufficient to assume Ml(G—$>Q)r\ Mn(G—evP) = Mn+1(G~é-P).

PROPOSITION 6.19  Let 1ift sequences

PO—%-P1—+ Pz—é 4 Ph .

Q> Q> Q> .. S~ Q‘h
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and SO——> Sl—> 82% e a— Sk

be -given as shown in the following diagram:

and suppose that they have the following two properties:
1 Q

Sj is a quotient.of Rj, V j=1,2,...,K;

2} Pi—--)oQi is elementary to Pi_l———}Qi_l, ¥ i=1,2,...h

is a 'quotient of P.y ¥V i=1,2,...,h,

—> S

R.—> 8. 15 elementarv to R.
3 3 elemen y j-1°

j-1 vV j=1,2,...k.,

Then for any 0 < i < h and 0 < j < k, we have

k-] _ (h-1 s
Proof: For any 0< 14 hand 0<% j £ k, Lk'j (P Qi) is an
elementary quotient of Lk-J(Pi_l—-} Qi_l). For each 0 £ j £ k,
by comparing the sequence of elementavry quotients
ki . k-3
Rj L (P0—-> QO)——-;- L (P1--9r Ql)—-—> .
k-j _
—> L (Pn—} Qn) Sj
to the 1ift sequence of length h from Rj to Sj’ we have
h-i k-j <
L (Rj—ésj)-g_ L (Pi——> Qi) V0<£1i4&h.
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-

Similarly, we also have LXT(p.—q.) ¢ Lh'i(nj—> 5;) for
any 0 €1 € hand 0 £j € k. O

Note that in the above proposition, condition 2) could
be replaced by the following weaker one:

Jep. —s : ; j s
2 L (P;—Q;) is an elementary quotient of L’ (P, ;—>Q; ) and
Ll(Rj-—-)" Sj) is an elementary quotient of Ll(Rj_:L-—.b Sj~1)

for any o < i hand o £j € k.
Condition 2) is used in the proposition mainly because of

convenience, as we can see in the next section.
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6.6 Completabilities and Examples
Given a family of quotients Q(I) of G, theorem 6.17
suggests a standard test for its completability to an F-bundle;

such a test we will obtain in this section,

LEMMA 6.20 For any 0 < k < n, if a family of quotients Q[Ik)-

of G satisfies the follbwing properties:

0} for any aeIk_1 and for any EiéE(a) together with a maximal
chain

a=ag < a; < ... < a£=aYEi (h=1[E. )

from a to ain in F, the quotients Q(ao),Q(al),...,Q(ah)
form a 1lift sequence from Q{a) to Q(ain)

1} for any aeIk and for any EigE(a), Q(ain) is a quotient
of Q(a)

2} for any a,beIk such that b covers a and for any EifE(a)uE(b),
Q(b) - Q(vai) is elementary to Q(a) - Q(ain),

then for ‘any aeIkﬂ\Ik and for any distinct Ei,EjeE[a),

LB qrane )oacave;)) = 1% can)~acave,))

Proof: Let aeIk+1\Ik and let Ei#EjeE(a). Consider the F-flats
in T, ., as shown in figure 6.5
figure 6.5

Let

a\(Eiij)=p0< Py .- <p[aAEj[=a\Ei< N (p]Ej]=aij\Ei

and a\(Eiij)=q0<_q1<...‘gqlaAEi|=a\Ej< "”<q]Ei|=aVEi\Ej

be maximal chains in T. The 1ift sequences
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Qpy)—>Q(p)— 1..—> Q(plEj])
Q(pyvE;)—> Q(pvE ) —> ... — Q(pIEleEi)

Qlag)— Qa1 )— ...— Q(qIEiI)
and Q(qoij)——> Q(qlvEJ.)—-;» o> Q(qIEi]ij)
satisfy the conditions of proposition 6.19. Thus
L0 eane— acavey)) = 11BN orane— qcav ).

Next, given a family of quotients Q(I) of G, for various
1 &£ k £ n, we define its k-completabilities recursively as

follows: Q(I) is l-completable if

for any a,b € I such that b > a, Q(b) is_al
quotient of Q(a).

Q(I) is (k+1l)-completable, k < n, if

Q(I) is k-completable and the famiiy of. quotients
Q(ik) satisfies conditions 1) -and 2) of lemma 6.20.

If Q(I) is (k+l)-completable, then by iemma 6.20, a family of
quotients Q(Ik+1) of G is uniquely determined, viz.,

for any a & Ik+1\\Ik’ let Ei € E(a), then
Q) = LB qrang;)— qravE;)).

(Note that if Q(I) is k-completable, condition 0) of lemma 6.20

is automatically satisfied by Q(Ik).)

THEOREM 6.21 A family of quotients Q(I) of G is completable

to an F-bundle if and only if it is n-completable.
Proof: If Q(I) is completable to an F-bundle, let Q(F) be
the least completion. For each k = 1,2,,...,n, by lemma 6.15
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and theorem 6.17, the subfamily Q(Ik) satisfies the conditions
of lemma 6.20. Thus Q(I) is k-completable for k = 1,2,...,0n.
Conversely, if Q(I) is n-completable, there is a family
of quotients Q(F) defined accordingly. We want to show that
Q(F) satisfies the two properties of a quotient bundle.
Let a,b € F be such that b covers a. If b\a € E; say,

then

LBl (qeang)— qeave;))
LB

Q(a)

1

and Q(b) (Q(b\E; ) —> Q(bVE;))

Thus Q(b) is an elementary quotient of Q(a).
If a,b is a locally modular pair of flats in F, let

a\b €& E. and b\ a ¢ Ej. For any flats c¢,d € F, if ¢ £ d,
we denote by M(c,d) the modular fiiter Mld\c'(Q(c)nerQ(d)).

If Ei = Ej, then all M(anb,a), M(arb,b) and M{aab,avb) are
equal to M(aﬁb,ain). If Ei # Ej, then

M{anb,a) N M(anb,b) M{anb,a) A M[anb,vaj)

M(aﬁb,aij)
< M{apb,avb).
Thus Q(F) is a completion of Q(I). [
To conclude this section, we give some examples:

EXAMPLE 6.22 Let F be the free geometry of four points 1,2,3,4,

and let I = {0,12,34,1234}. Consider the family of quotients

Q(I) as shown in figure 6.6

figure 6.6



Q(1234) =

Q(1z) = /‘

ab

®

A\,

becd
L(Q(34)—Q(1234)) = . @

L(Q{0)—>Q(12))=

Cc

figure 6.6
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L(Q(34)—>Q(1234)) is not a quotient of L(Q(0)—> Q(12))},.
so Q(I) is not completable.

EXAMBLE 6.23 Let T be the free geometry of four points 1,2.3.4,

and let I = {0,12,34,1234}. Consider the family of quotients

Q(I) as shown in figure 6.7.
figure 6.7

Let H = L(Q(0)—>Q(34)) and K = L(Q(12)—> Q(1234)). Since
{ab,abcd} f\{éb,cd,abcd}
fab,abcd}

I}

MH—K) N M(H—>Q(34))

#  M(H— Q(1234)),
SO Q{(I) in not completable.

EXAMPLE 6.24 Let F be the free geometry of four points 1,2,3,4,

and let I = {0,12,34,1234}. Let Q(I) be a family of quotients

of a geometry G as shown in figure 6.8

figure 6.8

Q(I) is l-completable; the family of quotients Q(Il) is shown

in tigure 6.9
figure 6.9

Q(I) is also 2-completable and the least completion Q(F) of

Q(I) is shown in figure 6.10,

figure 6.10
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d
Q(1z) i////ﬁ Q(34) = d

L(Q(0)—>Q(34))

L(Q(12)—> Q(1234))

figure 6.7
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g}
cr
i

Q(1234) = (&

\

Q(12) j/g/d‘ Q(34) =
ad

ab

©

G = Qo) 3 a

figure 6.8
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Q(1234)

Q(123) = Q(124)
abcd

Q(134) = Q(234)
aqd

&)
Q(lz) Q(34)
Q(1) = Q(2) /Q(3) = Q(4)

ZAN

figure 6.9
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Q(1234)

Q(123) = Q(124) Q(134) = Q(234)

Q(34)

Q(1) = Q(Z) = Q(q-)
G
Q = Q(13) = Q(14) = Q(23) = Q(24) = L oc d
. a
figure 6.10
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Given a Boolean subalgebra I of a free geometry, the
completions of a partial bundle Q(I) need not form a semi-

lattice.

EXAMPLE 6.25 Let F be the plane geometry of three points

1,2,3 and let I={0, 123}. Consider the following partial

bundle:
Qe123) = 2P
o,
Q(I) =
d
Q(0) = é&
a i C

The two completions of Q(I) shown in figure 6.11 have no

infimum.
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Q(0)

Q(123)

. d
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Al Al
2 b a b
Q(0)

figure 6.11
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VII. EXTREMAL COMPLETIONS QF PARTIAL BUNDLES 1T

7.1 Some lattice-theoretic preliminaries
Throughout this chapter, we let F(E) be the free geometry
on a (finite) set E and let I be a complete sublattice of F,
i.e., a sublattice of F containing 0 and 1.
For -any flat a € F, let
I(a) = /\{x.é Il x> a};
and for any point a ¢ E, let
a={beE |1(a) = 1M}.

Thus E = [g_l a ¢ E} is a partition of the set E of points.

As an illustration, consider the free geometry F.on Six. points

a,b,c,d,e,f and a sublattice I of F as shown in figure 7.1.
figure 7.1

The set {a,b,c,d,e,f} is partitiomed into {{a},{b,c},gd},{e,f}}.

PROPOSITION 7.1 For any subset A € E, A &€ E if and only if
A = y\ x for some covering pair %,y in I (such that y is v-
irreducible).
Procof: 1If y covers x in I, we let a € y\x.and claim that
y\x = a. Since I(a) € y, I{a) % x and y covers x, so I(a)vx
= y and therefore y\x £ I(a). Thus y\x ¢ a. For any b € a,
b £ I(b) = I(a) £y, and since I(b) = I(a) & x, so b £ x aﬂd
therefore b € y~\x. Hence y\x = a.

On the other hand, if A = a for some a € E, let y = I(a).
y must be v-irreducible for if otherwise Xy # X, are covered

by vy in I, then either a £ x; or a < Xy, contradicting the

fact that I(a) = y. Thus y covers a unique element x in I.

7.1
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Since a #4 x, s0 a € y\x and hence a = y\x. []

Define a sequence

0=u0 rd uy <, . . < un=1

"in I recursively by the following prescription:

u; = \/(x €I | x covers U g in I}, 1 €1i € n.

Also, for each i=1,2,...,n, define

P,
1

{x\\ui_l | x covers u; 1 in I}
and Ai = [0, ui\ui_l]F (=l{x ¢ F | 0 €£x & ui\\ui_l}).
It is immediate that for any i=1,2,...n,
Pi = {y\\x | v covers x in [ui—l’ ui]I}

and u; = ui_l\/(\/Pi) = ﬁgi(\/Pk)‘

PROPOSITION 7.2 E is partitioned by Pl’PZ""’Pn'

Proof: It is clear that by proposition 7.1, Pi € E for any

1<i<n. Ifx¢€P;, then x < u; and X & u; _ It follows

1
that the P.'s are pairwise disjoint.
If a € E, then by proposition 7.1, a = I{a)\b for some
b € I. Let i be the least integer such that I(a) £ u;. But
then
a= (I@)vu, I\ (bvu, ;)

‘and so a € P 1§

A sequence of sublattices from I to F:

= < ' =F
I IO Il <. L. C.In F



is defined recursively by the following:

Ii= Ii-l VAi (={s valsce Ii-l’ cf;_leAi}]..
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7.2 An extremal completion construction
Let Q{I) be a partial bundle of quotients of a geometry G,
where the indexing set I is a complete sublattice of a free geo-
metry. The purpose of this section is to show that the least com-
pletion of Q(I) always exists and to give a direct construction.
Let Q(F) be any completion of Q(I) and let R(X W E) be
the corresponding extemsion. As in the previous chapter, we
produce an extra copy of E:
Et = {a'l a € E}.
Putting each point a' ¢ E' in general position on the flat
iTETR in R(X WV E), we have a further extension
RIXWE)—>H(XWV EWVE").
We are going to show that E' is an.independent set in H., If
x is a subset of E, we denote by x' the corresponding subset
fav | a ¢ x} of EB'.

LY

LEMMA 7.3 let a€ P,, 1'< i <n. If o, .78 = U, 21 | then
LEMMA 7.9 ae’®y i-1 i-1

ui_l'Lj a' is an independent set in H(X WV E W E").

Proof: We want to show that for any b¢ a and B < a such

that b € B, b' & ui_l'\J g, Suppose otherwise. By lemma 6.7,

U, ;OB > T(6) and so
H

ui_l V v I( ) U.i_l

H

= I(a)H Vou,

o =

=

3

= I(a) v Us



But then rH(ui_l‘) + TH(B') > rH(ui_l' v B')

> tyla vu, )

i}

|a] *lug 41
and so rH(B’) P [g[which is_a contradiction. ]

PROPOSITION 7.4  The set E' is independent in H(Xw E W E").

M: We show by induction on k that uk‘-(= igk(\JP:!L)) is
independent in H for any k = 1,2,...n.

For any a & Pl’ I{a) = a, 50 by proposition 6.9, the
set UPl' is independent. Suppo'se uk-,.lt is independent and
let a ¢ P and B & P, be such that a & B. To complete the

k k
proof, we need to show that a' & Uy g’ WV B, Suppose otherwise,

let ¢ = (Uf{p €P | b¢# a})ws. By lemma 6.7,

B Uy OBy Tay,

and by lemma 7.3,

pri v bH, for any b ¢ P

T =
Ug-1 YV 2 Yk-1 k’
Thus
u Y] C‘:H ) : ; H
k-1 7 (U{uk_l ub' | beP,, b#a}) v (uk_lul(a))
= (u{uk_lul_a_l bePy, bfal) v (u _qua)”
= ufuy _,ub] bePy 1
r - 1 ] - —_ .
But then luk—l v C i z ryluy 'V 2 IrH(uk)| = Iukl, a
contradiction., []
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Since E' is independent in H(XUEWVE'), the subgeometry
F'(B') of HX W E UE') on E' is free and isomorphic to F(E).
The subgeometry R'(X v E') of H(XV E “wE') on X VE' is an
extension of both G(X) and F'(E') and so determines an F'-
bundle Q' (F") on G(X). If we let Q'(a) = Q'(a') for all a<¢F,
then Q'(F) is an F-bundle on G(X).

PROPOSITION 7.5 Q'(F) is a completion of Q(I).

Proof: TFor each a<lI, art ¢ atl and rH(a') = la']’ so 2t = EH.

Thus = Q'(a) Quo(G— R'— R'/al)

I

Quo (G— H— H/'a')

I}

Quo (G— H— H/a)

1

Quo (G— R—» R/a)
Q(a). g

For any a £ b € F, we let M'{a,b) dénote the modular

filter M|b\a,(Q'(a)—$ Q' (b)).

PROPOSITION 7.6 Let s € I, ., and let b cover a in A,.

If sva # svb, then

M'{sva,svb) =M {(sva,svavI(b\a)).

Proof: Let xeM'(sva,svb). Then XuJs's’ aTH = I(b\a)H =T(BH' \a'TH

and so xus'ua‘HZ s‘u'a'uI(b'\a')H. Thus
X ¢ M'(sva,svavyI(bva)). 0O
THEOREM 7.7 The F-bundle Q'(F) defined above is the weakest

completion of the partial bundle Q(I).
Proof: Let P(F) be any completion of Q(I). We show by in-

duction on i that Q'(Ii) < P(Ii) for all 0 £ 1 £ n.
I£ i = 0, Q'(I) = Q(I) = P(I). Suppose Q'(Ii_1)~€ P(Ii-l)'
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For each 0 £ j ¢ r(ui\ui_l), we let

A:ij = {xea, |t s]),
Cand 3y = 1, VAL

We want to show by.induction on j that Q'(Jj) S.P(Jj) for all

0 £3 £ r(ui\\ui_l).
When j = 0, Q'(JO) = Q'(Ii_l) = P(JO). Suppose Q'(Jj_l)

1 and b GA;{. Let a be any element in

& PEJj_l) and let s €I,
Ag covered by b, Then sva, I(bva)vsva éJj_l, so by in-
duction hypothesis,
Q'(swva) & P(sva)

and Q'(I(bNa)vsva)€P(I(b\Na)wvsva).
If sva = svb, then Q'(svb)<P(svb). Otherwise, by pro-
position 7.6 and theorem 6.13, Q'(svb)<P(svb) []

For every i=1,2,,..,n and every j = 0,1,...,r(ui\.ui_1),

we define

Ii =1, VixeA, [t}

Thus we have a super-sequence

I=I,.€... ¢1I

0 1 rl{uNu, 4) -0
<..& =T, € 1. . -1/=1.=1.
A €I, =1 €1; ... ¢TI MiNti-1)=T,

1

of the sequence

= < d < =
I IO ﬁIlgz...AﬂIn F

we defined earlier.

If a family Q(I) of quotients of a geometry G is completable
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to an F-bundle, its least completion Q(F) gives subfamilies
Q(I{) in such a way that if i # 0, Q[I%) {(we can assume that
j # 0) is definable from the preceding Q(Ig—lj as follows:

for any se€l, ; and bczAi such that r(b) = j,

Q(swva), if svb = sva for some a covered
by b in Ai
Qls™V )=

the elementary quotient of Q(swva) correspond-
ing to the modular filter M(sva,I(b\a)vsva),

wheére a is any element in Ai covered_by b,

'1f otherwise,
The above sequential construction provides a standard
prdcedure to determine the completability of a family Q(I)
of quotients of a geometry G, Having constructed Q(Ig—lj,
for any s éIi_l and for any b'EAi of rank j such that sva # svb,
the quotient Q(swv b) should not depend on the choice of the
element in Ai covered by b. It is necessarily true that the
following two properties are satisfied by all the Q(Ig);s: _
1) if b 2 a in Ii, then Q(b) is a quotient of Q(a},
and 2) if a,b,anb,avb éIi and a,b cover a b, then
M{aab,a)nM(avb,b) = M(anb,avb).
The family Q(I) is completable to an F-bundle if and only if
each Q(Ig) is constructable from Q(Ig_l) in the above manner,

and if so, the construction gives the least completion.

7.9



EXAMPLE 7.8 Let I be the sublattice of the free geometry

F of four points 1,2,3,4 as shown below:
1234

12
I = 12 34

0

In accordance with the notations developed in this chapter,

the sequence of sublattices from I to F is:
I=I, C I1 C I2=F

where

We want to discuss the completability of a family of quoti-
ents Q(I), which is shown in figure 7.2
figure 7.2
The first step of the completion construction gives
the family of quotients Q(Il] as shown in figure 7.3.

figure 7.3
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Q(1234) =

figure 7.2
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Q(123) Q(134}=Q(234)

Q(1)=Q(2) 'Q(3)

Qo)
, ) d
C
Q(1) = Q(2) = D(Q(0) - Q(12)) =
. aﬁ é
. _a
Q(13) = Q(23) = D(Q(3) ~ Q(123)) =ab,,a~"””

Q(134) = Q(234) = D(Q(34) + Q(1234)) = C?@
a

figure 7.3
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If the least completion Q(F) of Q(I)} exists, then

d

Q(4) = D(Q(0) ~ Q(34)) = A
C

ab

and Q(124) = D(Q(12) - Q(1234)) = PS

and so Q(124) is net a quotient of Q(4), a contradiction.

Thus Q(I) is not a partial bundle,

Finally, we want to remark that if I is a Boolean sub-
algebra of a free geometry F, then for any partial bundle
Q(I), the construction for the least completion of Q(I}
given.in this chapter 1s not necessarily the same as that

in the previous chapter.

EXAMPLE 7.9 Let F be the free geometry of five points 1,2,

3,4,5, and let I be the sublattice of F shown below:

12345

345

12

Let Q(I} be a partial bundle as shown in figure 7.4,

figure 7.4
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Q(12345)

= ab

Q(0) = the free geometry on
{a,b,c,d,e}

figure 7.4
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Q(12345)

Q(1234)=Q(1235)=Q(1245) Q(1345)=Q(2345)

_ abde
-]

Q(345)

Q(34)=Q(35)=Q(45)

a d

(3}=Q(4)=Q(5)
T

T = truncation of Q(0)
Q(13)=Q(14)=Q(15)=Q(23)=Q(24)=Q(25)
;TZ = second truncation of Q(0)

Q(134)=Q(135)=Q(145)=Q(234)=Q(235)=Q(245)

T3 = third truncation of Q(0).

i

figure 7.5
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Q(12345)

Q(1345)=Q(2345)

Q(123)=Q(124)

= »Q(345)
Q(12)
Q(17) =
Q1) %5
Q(0)
Q(12345)
0(1345)=Q(2345)
Q(123)=0(124
i »Q(345)
Q(12)
Q1)

Q(1)=Q(2) Q(3)=Q(4)=Q(5)

Q(0)

figure 7.6
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The least completion Q(F) of Q(I), as shown in figure 7.5
figure 7.5

is constructed via the sequence
0 1 2
QI)=Q(I}) + QCI}) » Q(IZ) > Q(I})=Q(F)
where Q(Ii) and Q[Ii) are shown in figure 7.6.

But, with the construction given in the last chapter,

Q(F) is obtained via the following sequence:

Q(I)=Q(Iy) » Q(I{) ~ QI,)=Q(F)

where Q(12345)

Q(1234)=Q(1235)

=Q(1245) (1345)=Q(2345)

Q1) = )
Q(123)=Q(124 Q(345)

=Q(125)
Q(12) ~Q(35)
=Q(45)
Q(1) Qs

Q(0)
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