
Fast Intra-frame Coding Algorithm
for HEVC Based on TCM and

Machine Learning

by

Yi Shan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Yi Shan 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

High Efficiency Video Coding (HEVC) is the latest video coding standard. Compared
with the previous standard H.264/AVC, it can reduce the bit-rate by around 50% while
maintaining the same perceptual quality. This performance gain on compression is achieved
mainly by supporting larger Coding Unit (CU) size and more prediction modes. However,
since the encoder needs to traverse all possible choices to mine out the best way of encoding
data, this large flexibility on block size and prediction modes has caused a tremendous
increase in encoding time. In HEVC, intra-frame coding is an important basis, and it is
widely used in all configurations. Therefore, fast algorithms are always required to alleviate
the computational complexity of HEVC intra-frame coding.

In this thesis, a fast intra coding algorithm based on machine learning is proposed to
predict CU decisions. Hence the computational complexity can be significantly reduced
with negligible loss in the coding efficiency. Machine learning models like Bayes decision,
Support Vector Machine (SVM) are used as decision makers while the Laplacian Transpar-
ent Composite Model (LPTCM) is selected as a feature extraction tool. In the main version
of the proposed algorithm, a set of features named with Summation of Binarized Outlier
Coefficients (SBOC) is extracted to train SVM models. An online training structure and a
performance control method are introduced to enhance the robustness of decision makers.

When applied on All Intra Main (AIM) full test and compared with HM 16.3, the main
version of the proposed algorithm can achieve, on average, 48% time reduction with 0.78%
BD-rate increase. Through adjusting parameter settings, the algorithm can change the
trade-off between encoding time and coding efficiency, which can generate a performance
curve to meet different requirements. The maximum average time reduction in the test
can be 51.37% with 1.07% BD-rate increase while the minimum BD-rate increase could
be 0.14% with 29.88% time reduction. By testing different methods on the same machine,
the performance of proposed method has outperformed all CU decision based HEVC fast
intra algorithm in the benchmarks.

In addition, experiments and explorations are carried out to provide useful insights for
fast intra algorithm design, like the composition of encoding time and the experimental
lower bound of time reduction. To obtain the lower bound for time reduction, we have
output the optimal CU decisions in a file by encoding a sequence by one pass. When
encoding the sequence again, the encoder can utilize that file to decide the best CU partition
without any trial. Through this two-pass test, the encoding time can be reduced by around
70%, which shows the time reduction potential of CU decision based fast algorithms.

iii

Acknowledgements

First of all, I need to express my prior gratitude to my supervisor, Prof. En-hui Yang,
for his insightful guidance and enduring support every step of the way. It is him who
inspires me with new ideas and encourages me when I am thinking of giving up. I have
learned a lot from his spirit of research and knowledge of the field.

I would like to thank other professors who teach my courses: Mohamed Kamel, Weihua
Zhuang, Amir Keyvan Khandani. They have given excellent lectures, and provided me
with extensive knowledge, which forms the foundation of my current research.

I would like to thank Prof. Zhou Wang and Prof. Alfred C.H. Yu for being readers of
my thesis and providing valuable comments and suggestions.

I would also like to thank my labmates in the multimedia communications lab for their
helps and companionship: Jingyun Bian, Nan Hu, Jeffrey Erbrecht, Jiasen Xu, Hossam
Amer, Jin Meng, and Xiang Yu. I would like to thank visiting scholars Xiangwen Wang
and Jing He. I have obtained a lot of new knowledge and useful advises through discussions
with them.

Last but not least, I would like to thank my family and friends for their endless support
and encouragement.

iv

Table of Contents

List of Tables viii

List of Figures x

List of Abbreviations xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Organization . 4

2 Background 5

2.1 Overview of HEVC . 5

2.2 HEVC Intra Frame Coding . 6

2.2.1 Quad-tree Structure in HEVC . 6

2.2.2 Spatial Sample Prediction . 7

2.2.3 Transform in HEVC . 11

2.3 Recursive Compression Structure . 14

2.4 State of the Art . 15

2.4.1 Rough Mode Decision . 15

2.4.2 Latest Innovations . 17

2.5 Summary . 20

v

3 ML Based Fast HEVC Intra Algorithm 21

3.1 Algorithm Structure . 21

3.1.1 General Model . 21

3.1.2 Specific Logic . 23

3.2 Performance Measure . 24

3.2.1 Measure for Classification Performance 24

3.2.2 Measure for Encoding Performance 25

3.3 Feature extraction . 27

3.3.1 Transparent Composite Model . 27

3.3.2 Summation of Binarized Outlier Coefficients 28

3.4 Training of Classification Models . 30

3.4.1 Bayes Decision . 30

3.4.2 Support Vector Machine . 31

3.5 Flexible Train-Test Period . 36

3.6 Validation Frame and Model Switch . 38

3.7 Summary . 39

4 Experiments and Analysis 40

4.1 Observations on Encoding Time . 40

4.1.1 Potential of Time Reduction . 40

4.1.2 Encoding Time Distribution . 41

4.2 Observations on Classification Model . 43

4.2.1 Result of Bayes Decision . 43

4.2.2 Result of SVM . 46

4.3 Full Test and Comparison . 49

4.3.1 Test Conditions . 49

4.3.2 Full Test Result . 49

4.3.3 Comparison with Benchmarks . 52

4.4 Summary . 54

vi

5 Conclusion and Future Work 55

5.1 Conclusion . 55

5.2 Application and Future Work . 56

References 57

APPENDICES 61

A Detailed Experimental Result 62

A.1 Time Reduction Lower Bound Given CU Size Decision 62

A.2 600 Frame Full Test Result of Proposed Main Version 62

A.3 600 Frame Full Test Result of Benchmarks 62

A.4 Data in Figure 4.6 . 62

vii

List of Tables

2.1 Indexes of intra prediction modes . 8

2.2 Value of N in different RMD . 17

3.1 Four Classification Results . 25

3.2 An example of encoding result, 60 Frame Test 26

3.3 Number of sample per frame for different video resolution 37

4.1 Encoding time reduction in each class when CU decisions are given 41

4.2 Encoding time spent in different Depths and Functions 41

4.3 Performance Example of Bayes Decision 44

4.4 Performance Example of Weighted Bayes Decision 45

4.5 Performance Example of SVM1 . 47

4.6 Performance Example of SVM2 . 48

4.7 Encoding Performance of Class A and Class B 50

4.8 Encoding Performance of Class C and Class D 51

4.9 Encoding Performance of Class E and Class F 51

4.10 Performance comparison with benchmarks, 600-frames full test 52

A.1 Experimental Lower Bound for Encoding Time Reduction 63

A.2 600 Frame Full Test Result of Proposed Main Version 64

A.3 600 Frame Full Test Result of Hao Zhang TCSVT2014[37] 65

A.4 600 Frame Full Test Result of Min Biao TCSVT2015[27] 66

viii

A.5 600 Frame Full Test Result of Nan Hu TCSVT2015[15] 67

A.6 600 Frame Full Test Result of Tao Zhang TCSVT2016[38] 68

A.7 Data in Figure 4.6, Full Test Result of Proposed Method 69

ix

List of Figures

2.1 Quad-tree in HEVC . 7

2.2 Intra Prediction Modes in HEVC . 9

2.3 Example of Prediction and Residual . 10

2.4 Basis Functions of 8× 8 Discrete Cosine Transform (DCT)[26] 13

2.5 Recursive Process of CTU Encoding (intra) in HM 16.0 14

2.6 Three-stage Mode Selection Algorithm . 16

3.1 General Model of Fast Intra Algorithm . 22

3.2 Flowchart Diagram of Proposed Algorithm 23

3.3 RD-curve of original HM16.3 and proposed method. Input video sequence:
PeopleOnStreet 2560×1600 30 crop.yuv . 27

3.4 How SBOC is generated from a 4× 4 matrix of DCT coefficients 29

3.5 A example of extracting SBOC vector from a 16× 16 CU 30

3.6 Demonstration of Support Vector Machine 32

3.7 Demonstratiion of Train-Test Period . 36

3.8 Flexible Train-Test Period . 38

4.1 Conditional Probability in Bayes Model . 43

4.2 CU decision comparison between original HM and Weighted Bayes Model . 45

4.3 Demonstratiion of Weighted SVM1 . 46

4.4 Demonstratiion of Weighted SVM2 . 47

x

4.5 CU decision comparison between original HM and SVM 48

4.6 Performance Comparison With Benchmarks, Curve of different Trade-off . 53

xi

List of Frequent Abbreviations

AC Alternating Current.

AIM All Intra Main.

BD-rate Bjntegaard-Delta Bit-Rate.

CTU Coding Tree Unit.

CU Coding Unit.

CDM CU Decision Map.

DCT Discrete Cosine Transform.

DST Discrete Sine Transform.

DC Direct Current.

DM Decision Maker.

DCC Data Compression Conference.

FP False Positive.

FN False Negative.

HEVC High Efficiency Video Coding.

xii

HM HEVC Test Model.

HD High Definition.

ICIP International Conference on Image Process-
ing.

IPM Intra Prediction Mode.

JCT-VC Joint Collaborative Team on Video Coding.

LPTCM Laplacian Transparent Composite Model.

OBF Outlier Block Flag.

PU Prediction Unit.

PDF Probability Density Function.

PSNR Peak Signal-to-noise Ratio.

QP Quantization Parameter.

RMD Rough Mode Decision.

RD Rate Distortion.

RDO Rate Distortion Optimization.

SBOC Summation of Binarized Outlier Coefficients.

SVM Support Vector Machine.

xiii

SATD Summation of Hadamard Transformed Coeffi-
cients.

TU Transform Unit.

TCSVT IEEE Transaction on Circuits and Systems for
Video Technology.

TP True Positive.

TN True Negative.

MPM Most Probable Mode.

MPEG ISO/IEC Moving Picture Expert Group.

VCEG ITU-T Video Coding Experts Group.

WVGA Wide Video Graphics Array.

WQVGA Wide Quarter Video Graphics Array.

xiv

Chapter 1

Introduction

1.1 Motivation

High Efficiency Video Coding (HEVC) is the latest video coding standard. It is finalized
by Joint Collaborative Team on Video Coding (JCT-VC) in January 2013 [33]. Compared
with the previous video standard H.264/AVC, HEVC can reduce the bit-rate by around
50% while maintaining the same perceptual quality. This performance gain on coding
efficiency is mainly achieved by supporting larger block sizes and more prediction modes.
However, since the encoder needs to traverse all possible choices to mine out the best
way to encode the data, this large flexibility on block size and prediction modes causes
a tremendous increase in the encoding time and energy consumption of HEVC encoders.
Based on our experiment, the encoding time of HEVC intra-frame coding has increased by
around 5 times, which is very significant.

The trade-off in data compression is not only made between rate and distortion, but
also with the complexity. Sacrificing too much in computational cost may make HEVC less
practical for some applications like energy-limited system and real-time cases. Therefore,
how to reduce the encoding complexity of HEVC becomes a crucial problem. Currently, a
fast HEVC encoder x.265 based on parallel computing and highly simplification can achieve
real time encoding [1]. While compared with the HEVC Test Model (HM), the x.265 has
sacrificed the coding efficiency by around 25% in average, which is too much. Hence, there
is an urgent need for fast HEVC encoding algorithms that can achieve more time reduction
while maintain the coding efficiency. For real-time applications, better coding efficiency
is desired when real-time encoding can be achieved. For non-real-time applications, faster

1

coding algorithm with the same level of coding efficiency is also needed to save energy and
computational resources.

In our research, the fast coding algorithm is only focused on intra-frame coding. Intra-
frame coding is an important basis of video coding, which is widely used in all configurations
of HEVC. In HEVC intra coding, a frame is processed as squared blocks and predicted by
numbers of prediction modes. This is the main reason for the high complexity of HEVC.
The largest block size in HEVC is 64×64 while the smallest block size is 4×4 [34]. Unlike
the 16 × 16 largest block in H.264/AVC, this promoted flexibility allows HEVC to have
a better adaptation to different video content. In addition, each block for prediction can
support 35 Intra Prediction Mode (IPM). While, how to select the best Coding Unit (CU)
size and IPM is a problem for all HEVC encoders. In the HM, the best choices of CU
size and IPM are selected through full Rate Distortion Optimization (RDO), where the
encoder has to apply a full encoding process for all possible combinations of partition and
IPM. Therefore, to reduce the complexity, the strategy is to predict those decisions by
using less computationally expensive methods. These decisions based fast algorithm can
be further combined with parallel computing and application-specific hardware to fit in
real applications.

There are already many fast algorithms for HEVC intra-frame coding in the current
literature. However, most of them are traditional algorithms that are fixed designs through
experimental observation. Therefore, many improvements could be made for those algo-
rithms. On the one hand, video data can have huge variety. Those traditional algorithms
may be effective for test sequences, but there is no guarantee that they can work well in
real applications. To achieve better performance and adaptivity, one solution is to use
machine learning in fast intra-frame coding. However, different machine learning models
may have different characteristics. A problem in the design of machine learning based
fast coding algorithms could be how to select models. Moreover, variety of features can
be extracted from the video data to train machine learning models. The feature extrac-
tion methods are crucial since they may directly decide the bound of performance. Besides,
some meta-algorithms are also needed to ensure robustness and boost performance. There-
fore, for machine learning based fast algorithms, lots of innovations can be made in feature
extraction methods, model training, and framework design.

1.2 Contributions

In this thesis, we have proposed a fast algorithm to reduce the computational complexity
of HEVC intra-frame coding and maintain the coding efficiency. The proposed algorithm

2

is based on a machine learning framework. The Laplacian Transparent Composite Model
(LPTCM) is utilized as a feature extraction tool. Machine learning models like Bayes
Decision, Support Vector Machine (SVM) are used as decision makers. When applied on All
Intra Main (AIM) full test, the algorithm can achieve, on average, 48% time reduction with
0.78% BD-rate increase. Also, through adjusting the setting, the algorithm can change the
trade-off between encoding time and BD-rate, which can generate a performance curve for
different requirements. The maximum time reduction can be 51.37% with 1.07% BD-rate
increase while the minimum BD-rate increase could be 0.14% with 29.88% time reduction.

Since the proposed algorithm is implemented on the base of HM, the encoder currently
can’t achieve real-time coding. However, intra coding is widely used in all configurations
and how to select the CU size is a problem for all HEVC implementations. Therefore, a
fast and precise CU size decision method can benefit any HEVC encoder. For those real-
time implementation that based on parallel computing and application-specific hardware,
if assisted by our algorithm, they are expected to achieve better performance.

To compare the performance with the state of the art, we have chosen wide range of
recent works as our benchmarks. Because the coding time highly depends on the machine,
to make a fair comparison, we have regenerated the result of some top papers on the
same machine with our test. The results show that our algorithm not only can adjust the
trade-off but also outperforms the state of the art in both time reduction and BD-rate.
What’s more, in the hope of achieving good performance not only for the test sequences
but also in real application, the proposed algorithm chooses to use on-line learning with
the performance control that have made the decision model more robust.

Besides the performance, we have summarized a general model of designing fast video
coding algorithm which can be followed by video coding of the similar framework or even
the next generation of video standard.

In addition, some experiments and explorations have been carried out to provide useful
insights for fast intra algorithm design, like the compositions of encoding time and the
experimental lower bound of time reduction. To obtain the lower bound for time reduction,
we have output the optimal CU decisions in a file by encoding a sequence by one pass.
When encoding the sequence again, the encoder can utilize that file to decide the best
CU partition without any trials. Through this two-pass test, the encoding time has been
reduced by around 70%, which has clearly shown the potential of time reduction.

3

1.3 Thesis Organization

Our thesis is organized as follow:

Chapter 2 are some background knowledges. Firstly, we will give a brief overview of
HEVC standard. Then some important techniques in intra-frame coding that are highly
relevant to our fast algorithm will be introduced. Those techniques are novel quad-tree
structure, spatial sample prediction, and the transformation in HEVC. After that, it comes
to the state of the art that will include the adopted rough mode decision methods and many
latest innovations.

In chapter 3, the proposed machine learning based fast HEVC intra-frame algorithm
will be introduced in detail, which includes the logic structure of the proposed algorithm,
how the performance is measured, how the features are extracted, and how the models
are trained. Furthermore, some meta-algorithms like flexible train-test period and model
switch are proposed.

In chapter 4, experimental result will be demonstrated. A professional test will be done
to test the effectiveness of our algorithm. To make fair comparison, we have regenerated
the results of some top papers on the same computer. By adjusting the parameters, a per-
formance curve with different trade-off points will be generated to compare our algorithm
with wide range of benchmarks. In addition, some valuable experimental results was given
as insights for our design.

At last, in chapter 5, we will make a conclusion and further discuss some potential
application as well as future works.

4

Chapter 2

Background

2.1 Overview of HEVC

HEVC is the latest video coding standard. Its first edition is finalized in January 2013
by JCT-VC, which is a partnership of the ITU-T Video Coding Experts Group (VCEG)
and the ISO/IEC Moving Picture Expert Group (MPEG) [33]. Two main requirements
has been emphasised in this standard, one is to attain large coding efficiency enhancement
in contrast to its predecessor, H.264/AVC. Another requirement is to achieve relatively
low complexity to enable high-resolution and high-quality video applications in different
scenarios, including wireless transmission and mobile devices [6].

Similar with previous video coding standards, the HEVC intra coding follows the famous
hybrid coding architecture, which bases on spatial sample prediction, transform coding,
and some post-processing. As a fixed framework, frames are normally partitioned into
image blocks before being processed and encoded. But unlike the 16 × 16 macroblock in
H.264/AVC, HEVC has utilized a novel quad-tree structure to enable far more variable
block sizes to handle more complex video content and higher resolution data. Since the
largest coding unit increase to 64×64, flexible transform size (from 4×4 to 32×32) has also
been adopted in HEVC to allow strong energy compaction and smaller quantization errors.
In terms of intra prediction, where image blocks are firstly extrapolated by restructured
pixels from their spatial neighbors, H.264/AVC only support 9 ways for extrapolation.
Whereas, to effectively capture more directional patterns in image texture, HEVC have
introduced 35 prediction modes. Since the intra prediction are performed on blocks of size
ranging from 4 × 4 to 32 × 32, there are 140 combinations of block sizes and prediction
modes for the codec to address [34]. The best combination is selected by RDO [33].

5

The coding efficiency achieved by HEVC intra coding, compared with H.264/AVC, is
reported to be up to 36% and 20% on average [30]. This significant performance increase
mainly come from its novel quad-tree structure and rich prediction modes. However, the
success of HEVC consists of many small contributions from detailed designs.

2.2 HEVC Intra Frame Coding

In this section, a brief introduction of the HEVC intra-frame coding techniques is given.
The content will mainly focus on relevant architectures and algorithms in intra frame
coding, including the quad-tree-based blocks partition scheme, spatial sample prediction,
transform coding, and some basic concepts in HEVC standard. These background knowl-
edge forms the basic materials for us to analyze and design fast intra algorithms.

2.2.1 Quad-tree Structure in HEVC

Since video data are highly unstationary, encoder should process data adaptively based
on different contents. HEVC handles various video contents by partitioning each frame
into blocks of various sizes. These image blocks are then processed as basic units in core
encoding processes: prediction, transformation, and entropy coding. Since the hybrid
coding structure consist of those three main steps, there are also three concepts of basic
units: CU, Prediction Unit (PU), and Transform Unit (TU) [19].

In HEVC intra coding, even the prediction and transformation can be done indepen-
dently, TU is defined under PU while PU is defined under CU, which means the size of
TU is less than or equal to its PU and the size of PU is less than or equal to its CU.
Due to this hierarchical relationship, decision of CU partition has the largest flexibility
and also causes the main load of computational complexity. The size of a CU can vary
from 64× 64 to 8× 8. When recursively partitioning a large CU into smaller sub-CUs, the
process naturally forms a novel quad-tree structure. The largest coding block at the root
of a quad-tree is defined as Coding Tree Unit (CTU) and it is at depth 0. Each CTU is
of fixed size as large as 64 × 64 or smaller based on the configuration; it can be encoded
either as a single large CU when the video content is simple or as small sub-CUs when the
video content is complex.

6

Figure 2.1: Quad-tree in HEVC

The quad-tree describes the recursive partition process via which every CU, represented
as a node of the tree, can be split into four sub-CUs within the maximum depth. Figure
2.1 shows an example of quad-tree when the size of CTU is 64 × 64. The data in this
example comes from the 8th frame of standard test sequence BasketballPass 416 × 240.
The quad-tree decision is made under the quantization parameter 32, which is a neutral
trade-off between quantization error and bitrate. As shown in this example, the 64 × 64
image block contains inhomogenous content and can not be properly modelled as a large
block. Therefore it is partitioned into sub-blocks. For those sub-blocks which can be
predicted well, they will terminate as leaf nodes of the quad-tree. However, for those
blocks that still contain enough complex textures, to achieve better coding efficiency, they
may keep partitioning into smaller blocks until they can be effectively predicted or reach
the maximum depth.

2.2.2 Spatial Sample Prediction

The essence of intra coding is to remove the redundancy of data in spatial domain. There-
fore, intra prediction is also called spatial sample prediction. The core algorithms of spatial

7

sample prediction can be summarized into three stages. The first stage is to construct
reference sample array as the base materials for prediction. Then, in the second stage,
prediction blocks can be generated by applying different prediction modes. To achieve a
better prediction result, the last stage is post-processing, which will conditionally filter the
prediction blocks to reduce discontinuities on the block boundaries [34].

Table 2.1: Indexes of intra prediction modes

Mode Type Mode Index Target Content

Angular 2-34 Directional
Planar 1 Gradually Changing
DC 0 Honogenous

As mentioned before, there are 35 intra prediction modes in HEVC. In H.264/AVC, the
codec provides only nine intra prediction modes. While this number become insufficient for
HEVC since larger block sizes are now utilized. Based on their characters, 35 modes can be
categorized into 3 sets, planar, Direct Current (DC), and angular (33 directional modes).
Those modes are designed with intentions to handle various types of content that typically
appear in video data and also to achieve fine trade off between computational complexity
and coding efficiency [23]. To be specific, angular modes, as the largest category, are
defined to capture directional pattern or edges in image blocks. DC mode is useful when
predicting homogeneous blocks and planar can effectively model image contents that are
gradually changing with the space. It need to be noticed that DC and Planar also can be
applied to complex texture that cannot be effectively predicted by any simple directional
mode.

Although large number of modes have been introduced in HEVC intra coding, essen-
tially, all intra prediction modes can be treated as mapping functions. Since the redundancy
lays in the correlation between spatially neighboring pixels, these functions take restruc-
tured pixels from neighboring boundary as input, and generate prediction data for current
PU as output. Just as equation 2.1 shows, M is prediction mode, R is an array of reference
samples. Prediction function F (M,R) processes R based on type of M and output PM as
the prediction data. For more details about how the function F (M,R) is designed, please
see reference[34].

PM = F (M,R) (2.1)

The left side of figure 2.2 shows 33 directions defined in HEVC. The maximum sample
accuracy of each direction is 1/32 pixel [34], and each direction has an angular parameter.

8

The angular parameters and their corresponding modes are shown on the top and left
boundary of the figure. Particularly, mode 10 is horizontal mode and 26 is vertical mode.
It is found, from the statistical result, that vertical and horizontal patterns present more
frequently in natural images than other directional patterns. Based on this observation,
33 modes are intentionally deigned to achieve more prediction accuracy on vertical and
horizontal modes. Reflected from the figure 2.2, the arrows near mode 10 and mode 26 are
more dense than that of diagonal arrows.

Figure 2.2: Intra Prediction Modes in HEVC

The right part of figure 2.2 shows 35 predicted image blocks generated by different
prediction modes when given the same reference samples. It can be noticed that, for
mode 10, mode 26 and DC mode, some boundaries of prediction blocks are conditionally
processed by filters to provide better continuity of image block. These filtering operations
are named with post-processing for predicted samples.

Apart from applying prediction modes, there are two unusual modes to encode a CU,
I PCM and transform skipping mode. However, they are not treated as prediction modes
since they don’t involve prediction. The main application scenario for I PCM mode is
when the CU data is too complex that no other mode can handle it well. Unlike I PCM,
transform skipping mode will skip the transformation and encode the residual data directly.
It is especially effective when encoding the videos that generated by computers.

All the prediction methods introduced above are performed within PU. As the name

9

implies, PU is the smallest unit for prediction, which means that all pixels in one PU
should be predicted by using the same prediction mode. Usually, the size of PU is smaller
than the size of its corresponding CU. In inter coding, PU is even not necessary to be
a square block. While in intra coding, they are strictly square and have little flexibility
for partition under its CU. Experiments have proved that the efficiency gain from various
PU sizes within a large CU is minor in intra coding [34]. To reduce the mode selection
complexity, HEVC intra coding has restricted PU size to be the same with CU size from
depth 0 to depth 2. Only in depth 3, where CU size is 8× 8, a PU can be partitioned into
four 4× 4 PUs [20].

Even though PU is defined as the unit of prediction, it only restricts that data within a
PU should be predicted by the same IPM. However, the prediction method can be applied
in TU level if available TU sizes are smaller than the size of current PU. This flexible scheme
allow the intra prediction algorithm to always take the nearest reference samples as input,
which makes full use of spatial correlation within a PU. According to the experiments, the
performance gain from TU-based intra prediction is 1.2% in comparison with the method
that applies prediction for a whole PU [33].

Figure 2.3: Example of Prediction and Residual

Figure 2.3 illustrates an image of predicted data and an image of residual data. It is a

10

CTU of size 64 × 64. The block partition decision and mode decision can be clearly seen
from this example. Because the block can not be well predicted as a whole 64× 64 CU, it
is recursively partitioned into multiple small blocks. Each block can use its own prediction
mode to generate the prediction. For blocks contain vertical pattern, like the background
in the right-bottom corner of the CTU, the best mode is 26. While for blocks that are
very homoneneous, like the CU in the left-top corner of the CTU, DC mode could be
more effective in this case. After the prediction been generated, it will be subtracted from
original image to generate residual image, which will be further transformed, quantized and
encoded. It can be noticed that the energy of residual become much smaller. However,
most of the content are noise-like pattern that can not be removed by intra prediction.
Those content are related to high frequency component in DCT coefficients. Later on, this
will become one of our inspirations to find good features for the fast intra algorithm.

2.2.3 Transform in HEVC

After intra prediction, there are still data left in the residual image. To further remove
the spatial correlation of residual image, DCT or Discrete Sine Transform (DST) will be
applied to transform the data from spatial domain into frequency domain. In HEVC,
DST is only applied for 4 × 4 luma blocks, while DCT is applied in all other situations.
Because we are going to extract feature from DCT coefficients, we will introduce more
about DCT in our thesis. Let X represent N × N residual matrix, transform matrix D
is used to project the residual matrix on several orthogonal basis matrices. And Y is the
transformed coefficient matrix.

Y = DXDT (2.2)

Transform matrix D, based on its size N , has its mathematical expression as

D =

√
1
N

√
1
N

· · ·
√

1
N√

2
N

cos π
2N

√
2
N

cos 3π
2N

...
√

2
N

cos (2N−1)π
2N

...
...

. . .
...√

2
N

cos (N−1)π
2N

√
2
N

cos 3(N−1)π
2N

· · ·
√

2
N

cos (2N−1)(N−1)π
2N

. (2.3)

However, in HEVC, the calculation of Y is based on integer. Elements in matrix D are
also approximated by integers. Treating 4×4 as en example, the transform matrix defined

11

in the standard document is:

D =
1

128

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

 . (2.4)

Then the coefficient matrix Y can be calculated as

Y =
1

128× 128

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

X

64 83 64 36
64 36 −64 −83
64 −36 −64 83
64 −83 64 −36

 . (2.5)

In terms of DST, it is following the similar principle but using different transform matrix.
In HEVC, the transform matrix S of 4× 4 DST is

S =
1

128

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

 . (2.6)

In the real implementation, transforms can be calculated by butterfly algorithm to achieve
a faster speed. After the transform process, coefficients will be quantized and scanned into
symbol sequences. Together with the symbols about the mode information, entropy coder
will encode all symbols into binary bits. To have a better understanding of DCT, let’s
explore the meaning of each coefficient. Linear transform actually represents the object
to be transformed into a linear combination of basis functions. The example in figure 2.4
shows 64 basis functions of 8×8 DCT. In a N ×N DCT, basis functions are orthogonal to
each other and form a complete description of N ×N matrix. In other words, any N ×N
images can be represented by the summation of those basis matrix Bi,j times with the
corresponding coefficient Yi,j.

X =
N∑
i=1

N∑
j=1

Bi,jYi,j (2.7)

12

Figure 2.4: Basis Functions of 8× 8 DCT[26]

For the coefficient matrix Y, value of Y1,1 is called DC coefficient, which is associated
with the average value. Besides DC, other coefficients are called AC coefficients. From
the figure 2.4, AC coefficients on the first row Y1,j are associated with vertical pattern
while value of Yi,1 are corresponded to horizontal patterns of the image. The frequency
in image sense reflects the changing behaviour on space. For example, if the content of
image is rapidly changing on a short distance, like edges, its coefficient matrix tends to
have large value on high frequency component. Therefore, from result of DCT, we can gain
an intuitive understanding of the property of images. For images contain homogeneous or
gradually changing content, most of the energy will be concentrated on low frequency area.
For those complex pattern in images, they may result in large efficients which are closer to
the right-bottom corner of the Y.

13

2.3 Recursive Compression Structure

Our thesis focuses on fast intra algorithms, in other word, reducing the complexity of intra
encoder. Therefore it is necessary to introduce some core functions of the current imple-
mentation of intra encoder. Only by a deep understanding of standard implementation
can we find clues to come up with better solution. Since large CU can be partitioned into
sub-CUs in the quad-tree, to make methods consistent across different block size, the CU
compression process is implemented through recursion.

Figure 2.5: Recursive Process of CTU Encoding (intra) in HM 16.0

Figure 2.5 shows the core function CompressCU in HM16.3. At the first level of
recursion, the program starts with the largest CU with size 64×64. To explore the best way
to encode the CU at current depth, it will call a function named with CheckRDcost2Nx2N
which will try to predict and encode the data as a whole block by using different IPMs.
After that, CheckRDcost2Nx2N will return the best CU data including best IPM, best RD-
cost, and other information. While those best CU data are derived just from current level,
if partition CU into smaller CUs, better CU data could be obtained. Hence the program

14

will call the same function CompressCU on four sub-CUs and further explore the best CU
data. The definition of RD-cost is shown in equation 2.8. SSE denotes the summation of
square error between original image I(x, y) and reconstructed image I ′(x, y). RTotal is the
total number of bits used to encode current CU, and λ is the Lagrange multiplier that is
decided by Quantization Parameter (QP) and frame type.

JRDO = SSE + λ ∗RTotal (2.8)

SSE =
∑
x,y

|I(x, y)− I ′(x, y)|2 (2.9)

When the quad-tree reach the maximum depth, where CU size is 8 × 8, the program
reach the last level of recursion. Then the function CheckRDCostNxN will be called to
split 8 × 8 PU into four 4 × 4 PUs and check the possibly better RD-cost. After that, at
the end of recursion, the best CU data among all choices will be returned to the top, level
by level, and the compression of current CTU is finished. The program then turns to next
CTU and call the same function CompressCU.

2.4 State of the Art

2.4.1 Rough Mode Decision

Because the high computational complexity of HEVC intra frame coding mainly comes
from its quad-tree structure and large number of prediction modes, nearly all fast intra
coding algorithms can be categorized into two types: quad-tree decision algorithms and
IPM decision algorithms. To achieve better encoding time reduction, some papers choose
to combine these two. But those are still following the similar categorization. In intra
coding, PU is the same with its CU until the last depth (depth 3). Therefore, quad-tree
decision is mainly focused on CU size decision. For IPM based method, the main strategy
for accelerating IPM selection is to reduce the number of candidates for its internal stages.

In terms of prediction modes, HEVC has already adopted some fast algorithms. In the
early stage of HEVC, a Rough Mode Decision (RMD) was first proposed and adopted by
HM1.0 in 2010 [28]. To reduce the high computational cost of RDO, the unified intra mode
decision method was proposed to select a smaller RDO-candidate set from 35-modes full
set based on an approximated value of RD-cost. This approximation, denoted as JRMD, is

15

chosen as absolute Summation of Hadamard Transformed Coefficients (SATD) of residual
data plus the estimated rate cost REst. In this algorithm, 35 modes are first applied to the
image block to obtain 35 SATD values. After that, only N modes with minimum SATD
are selected for further RDO. Since the RDO is much more time consuming thanSATD
calculation, encoding time can be saved by this two stage algorithm.

JRMD = SATD + λ ∗REst (2.10)

After that, L. Zhao and L. Zhang introduced a three-stage method in 2011 that further
improved the RMD [39]. This innovation is later adopted and implemented in the current
HM. The three stages are RMD, Most Probable Mode (MPM) generation and RDO. This
process is illustrated in figure 2.6.

Figure 2.6: Three-stage Mode Selection Algorithm

Besides N IPMs with minimum JRMD, three MPMs decided from the best IPM of
neighbour CUs are also added in RDO-candidate set. The detail logic to find MPMs is
shown in right side of figure 2.6. The value of N in different versions are compared in

16

2.2. It can be seen that the N in [39] is much smaller than that in [28]. Therefore, the
computational cost in the RDO can be further reduced by [39].

Table 2.2: Value of N in different RMD

PU size N in [28] N in [39]

64× 64 5 1
32× 32 4 2
16× 16 4 2
8× 8 9 4
4× 4 9 4

2.4.2 Latest Innovations

In 2012, a gradient based fast mode decision algorithm for HEVC intra prediction is pro-
posed by W. Jiang[16]. Gradient vectors are extracted by applying Sobel masks on original
image. Intra prediction modes are decided by amplitude and angle of gradient vectors. The
encoding time reduction is reported to be 20% while the BD-rate increase is relatively large.
However, the idea of using gradient features has widely inspired other papers. In 2014,
H.Zhang and Z.Ma proposed a hybrid intra mode decision algorithm[37]. The proposed
method consisted of two levels: micro-level and macro-level. The micro-level method fo-
cused on IPM selection while the macro-level focused on CU size decision. The micro-level
method only reduced the number of modes to be tested in RMD and follow the same RDO
process in default HM. To reduce number of modes in the RMD, a progressive rough mode
decision(pRMD) was utilized. In pRMD, a smaller set of modes, as a sub-sampled set of
35 modes, was first tested, where the SATDs of each mode in the subset would be calcu-
lated as the rough cost. Then another RMD would be applied to the neighbour modes of
the mode with the smallest SATD and add the mode with lowest SATD to the result set.
Later, MPM would also be added into the result set. When the result set contained the
specific number of modes, the candidate set for RDO was finally locked down. In terms
of the macro-level method, the CU splitting process was early terminated if the predicted
RDcost of split CUs was larger than that of current CU. The algorithm proposed in this
paper had some drawbacks. For example, the progressive RMD proposed in the paper was
not suitable for parallel computation. For a computer of strong parallel-computing ability,
because different modes are independent, test 35 modes and obtain the SATDs can be very
fast while follow a progressive method to test them sequentially could be even slower.

17

In April 2015, G. Correa proposed a fast encoding decision algorithm for HEVC by us-
ing data mining methods [9]. Several Decision trees were introduced as decision maker to
accelerate both intra and inter encoding process. The Waikato Environment for Knowledge
Analysis(WEKA), a famous open-source data mining package, was used in this paper to
train offline models and fulfill classification tasks. Features include RD-cost, depth of neigh-
bour CUs, Because some video sequences are used as training data and only ten sequences
are tested, the paper didn’t provide a full-test result as the official HEVC documents of
test conditions required [5].

Similarly, in May 2015, Biao Min and Ray C.C.Cheung proposed a fast CU size algo-
rithm, which utilized the gradient and variance of luminance pixels[27]. Multiple features,
including global edge complexities and local edge complexities, are retrieved from the CU
data. Global edge complexities are variances calculated from different partition styles while
local edge complexities are variances of outputs from four local edge filters. After feature
extraction, a manually designed decision tree was used to generate three kinds of flags,
which controlled the decision of CU size. In the decision tree, there are only two parame-
ters: local threshold and global threshold. Both of these two parameters are trained offline,
using part of test sequences. The paper provides a full test result and source code. As
a general method, the algorithm proposed in that paper is concise and effective. How-
ever,from the stand of statistics or machine learning, a little drawback of their algorithm
is that they have applied the model in a testing set which contains data overlapping with
its training set.

In September 2015, Nan Hu proposed a fast mode selection algorithm for HEVC intra-
frame coding based on Bayes Decision method[15]. This paper have also used LPTCM
as feature extraction method. The feature used in this paper is the number of Outlier
Block Flag (OBF). The first 2 frames of 20-frame period are used to collect statistics and
a Bayes Decision model can be trained. Since only 2 frames are used for the training, the
Bayes model may not converge well. Also, because the feature is only a single number,
the information utilized is not sufficient for accurate prediction. Through our test, the
performance is not very satisfactory.

In April 2016, T. Zhang proposed a fast algorithm to decide both intra prediction modes
and CU size [38]. Apart from SATD, RD-cost and depth of neighbour CUs, the paper also
extracted average gradients in the horizontal direction (AGH) and vertical direction (AGV)
as features. Equations 2.11 show the mathematical expression of Zhang’s features.

18

Gx(i, j) = p(i, j − 1)− p(i, j + 1)

Gy(i, j) = p(i− 1, j)− p(i+ 1, j)

AGH = 1
N∗N

∑N−1
i=0

∑N−1
j=0 |Gx(i, j)|

AGV = 1
N∗N

∑N−1
i=0

∑N−1
j=0 |Gy(i, j)|

(2.11)

Then the features are processed and utilized to make encoding decisions. In terms
of CU size decision, CUs are first classified as homogeneous CUs and non-homogeneous
CUs by comparing the maximum value of AGH and AGV with a threshold. The CU
splitting of homogeneous CUs were terminated at this stage, while non-homogeneous CU
were further processed to obtain more features and passed into two offline-trained SVMs
for CU decision. In terms of intra prediction modes, the mode set for RMD was narrowed
down into smaller subsets of original 35 modes by comparing AGH/AGV (ratio of AGH
and AHV) with a series of thresholds. Hence, the complexity for checking all modes in the
RMD can be reduced.

So far, numbers of fast intra algorithms have been introduced. But there are still several
problems that haven’t been effectively solved yet. Firstly, most of the current methods are
using single-dimensional feature with offline trained thresholds. As we know, video data are
highly unstationary, offline trained parameters may works well for standard test sequences
while it may not be effective for general video data. What’s more, off-line models have
lost the flexibility to achieve more accurate prediction. Therefore, self-adaptive and on-line
trained algorithms are more desirable than fixed design.

Secondly, most algorithms are trying to predict the encoding decisions by utilizing
correlation between features and decisions. To train a robust threshold-based model from
experimental insights, the feature should be as simple as possible. Ideally, it is expected to
be a single number. However, through our observations, the encoding process is complex
and there are not too many strong features that can highly correlate to encoding decision.
Instead, numbers of weak features can be generated in the encoding process. Each of them
may partially contains the information about the encoding decisions. The two crucial
conditions for us to make good prediction are that we must take enough information as
input and we should process it with right methods. Therefore, the problem is how to utilize
high dimensional data to predict the encoding decisions as accurate as possible under the
trade-off between complexity and coding efficiency.

19

Another problem is that, if we want to further achieve better results based on current
encoding framework, the design of codec could be more and more complex. Despite of
whether we could afford the tough work to manually mine out those decision rules, as
engineers, we should always think about how to simplify the problem and automate the
work. Hence, machine learning is the trend and also could be the best choice for future
video coding.

2.5 Summary

In this chapter, we have given an brief overview of HEVC. As the basics for designing
fast intra algorithms, some crucial contents of HEVC intra frame coding that relate to our
algorithm, like quad-tree structure, spatial sample prediction, and recursive implementa-
tion are discussed in detail. It is pointed out that the coding efficiency enhancement of
HEVC is achieved at the cost of tremendous increase in computational complexity. This
computational cost, in intra coding, mainly comes from exhaustive search on large amount
of quad-tree structures and IPMs. To look for more inspirations for fast algorithms, typi-
cal methodologies and some recent innovations on this topic are introduced and analyzed.
We have known that the current HEVC has already adopted a three-stage RMD in the
standard test model. To reduce the encoding complexity, a fast algorithm should focus on
accurately predicting CU size. What’s more, to achieve good prediction, feature extraction
is the key. In the literature, various information like gradient, variance, depth differences,
RMD-cost, RD-cost, OBF have been used as features.

20

Chapter 3

ML Based Fast HEVC Intra
Algorithm

3.1 Algorithm Structure

3.1.1 General Model

Since the HEVC been released, there are many HEVC fast intra algorithms coming up.
However, most of them are focusing on specific methods and processes, and nearly no
paper has summarized a high-level model or methodology that can be followed to design
fast algorithms more efficiently. Through comprehensive reading and analyzing, we are
trying to describe the problem more concisely and summarize some methodologies that
can be generally applied for HEVC or even next generation of video coding.

Therefore, in this section, we will introduce a machine learning framework for fast intra
algorithm that is applicable for any models and features. As shown in the 3.1, the encoding
process of one CTU can be shown as a progress bar. To accelerate the encoding without
changing the high level structure of encoder, the strategy is to skip some unnecessary steps
and jump from one point of the progress bar to another point. Figure 3.1 has compared
the coding progress bar of normal HM with that of fast algorithm. For the functional
blocks to help making those decisions, we name them with Decision Maker (DM). DMs are
different in three aspects: what decision the a DM makes, what type of decision model a
DM uses, and what kind of features or information inputs a DM takes.

21

Figure 3.1: General Model of Fast Intra Algorithm

Theoretically, decisions of a DM could be jumps from one point to any point in the
progress bar. However, our purpose is to reduce encoding time and maintain the coding
efficiency. Therefore, not all jumps are meaningful or effective. On one hand, we encourage
a DM to jump to points after it as far as possible so that we can skip more operations and
save encoding time. On the other hand, we may limit this stride to ensure that a DM can
make precise decision, otherwise the coding performance will suffer. Hence, the first step is
to design reasonable decisions that can easily achieve high time reduction as well as good
coding performance.

As mentioned before, the encoding of HEVC is following a quad-tree from depth zero
to the maximum depth and the effectiveness of intra sample prediction depends on the
content of current CU image. Homogeneous content may tend to be encoded into large
blocks while complex content are more often encoded into small blocks. If a CU is found
to be homogeneous, a possible decision is to finish the encoding on current depth and stop
any further exploration. This decision is called CU termination. While, if a DM finds the
CU on current depth is very complex, as a rule of thumb, a decision could be to skip the
encoding trials on current depth and directly jump to the next depth of the quad-tree.
This decision is called CU skip.

CU skip is to skip the whole depth at the beginning of the function CompressCU.
However, within one depth, with the encoding process going on, many intermediate data
will be generated. Those data provide more information that could allow DMs to make
more precise decisions. For example. after the RMD, new data like the SATDs and

22

residuals are available. If a DM think the CU can’t be encoded efficiently in current depth
after added those new information to the input. An available choice is to skip the following
RDO and jump to the next depth. This decision is called RDO skip. Because RDO is the
most time-consuming part in CompressCU, encoding time can still be effectively saved by
this half-way decision.

3.1.2 Specific Logic

Figure 3.2: Flowchart Diagram of Proposed Algorithm

23

Here we give a specific logic of our algorithm. The flowchart diagram is illustrated in
figure 3.2. The first DM(DM1) is inserted at the begin of CompressCU since at this
point it has the maximum potential for time reduction. Since the encoding of CU just
starts, the features utilized by the DM1 are all from the original image. Let F (CU)
represent the general feature extraction method that take CU as input and output a N
dimensional feature vector x . One example of F (CU) is using LPTCM to detect outlier
DCT coefficients.

x = F (CU) (3.1)

When the feature vector is extracted from the CU, it will be fed into DM1.

y = fDM(x) (3.2)

At this point, we first suppose that the decision models are already available and the
training method of those decision models will be introduced later. When DM1 takes x as
input, it could have two possible value of output y. If the y is +1, it means CU skip; if the
y is -1, it means CU termination. In our design, rather than trust those decisions directly,
the output need to pass the performance control block to make sure the effectiveness of
the decision. Inside the DM1, there may be several models. The performance of each
model will be evaluated in the validation stage. The model with the best performance will
be chosen to make the decision. Also, there is a performance threshold as the minimum
requirement. If none of the models can meet the requirement. The corresponding decision
will be switched off. In this case, the encoding process will not be affected by the inactive
DM so that the coding performance can be ensured.

3.2 Performance Measure

3.2.1 Measure for Classification Performance

Here we give some definitions of performance measure for our machine learning framework.
Models for classification, in our application scenario, are considered as decision makers. A
decision maker can have a targeted decision, like terminating or skip some process. If
the predicted output or the ground-truth label is the same with the targeted decision, we
denote it with +1, otherwise with -1. When passing a sample into a models in the testing
process, there are four possible results, as shown in table 3.1. If prediction is +1 and label

24

is also +1, the result is called True Positive (TP). If prediction is +1 while label is -1,
the result is False Positive (FP). Similarly, when prediction is -1, based on different label
values, another two results are called False Negative (FN) and True Negative (TN).

Table 3.1: Four Classification Results

Prediction +1 -1

Label
+1 True Positive(TP) False Negative(FN)
-1 False Positive(FP) True Negative(TN)

Based on four results we defined above, accuracy, expressed as 3.3, can be calculated
to measure the general performance for a classification model. However, the precision to
make targeted decision is more important in our framework. It defines as number of right
positive decision divided by the number of all samples predicted as positive 3.4. On the
other hand, sensitivity of the model also matters. It is the percentage of real positive
samples that a classification model can successfully catch 3.5.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

Precision =
TP

TP + FP
(3.4)

Sensitivity =
TP

TP + FN
(3.5)

3.2.2 Measure for Encoding Performance

Since accuracy and precision are only used to measure the effectiveness of classification
models, we still need a measure that can directly evaluate the computational complexity
and coding efficiency. In terms of computational complexity, it is measured by encoding
time reduction. The calculation of time saving strictly follows the equation 3.6. To always
make fair comparisons, all results of fast algorithms are compared with its corresponding
HM with same version. For example, our proposed algorithm is implemented in HM16.3,
hence the result is compared with default HM16.3. We also run others’ encoders on the
same machine. Since we only have their executable files. Defined as a general rule, for

25

encoders which are implemented based on HMX, their results are compared with default
HMX.

TS =
TimeHMX − Timeproposed

TimeHMX

× 100% (3.6)

Bjntegaard-Delta Bit-Rate (BD-rate), proposed by Erlend Bjntegaard, is widely ac-
cepted as a standard way to assess the video coding efficiency. It is generated through
fitting of Rate Distortion (RD) curve [3]. Treating the result of original HM as bench-
mark, if the BD-rate is negative, the proposed encoder achieves smaller bit-rate when
given the same level of distortion. Otherwise, if the BD-rate is positive, it means that
the proposed method has introduced degradation in coding efficiency. The RD curve typ-
ically contains four points with different QP. As a standard practice, the four QP values
are set to be 22, 27, 32, and 37. In our thesis, without additional remarks, BD-rate is
calculated follow this standard way. Table 3.2 ,as an example, shows the encoding result
of HM16.3 and proposed algorithm. The result is from the first 60 frames of sequence
PeopleOnStreet 2560x1600 30 crop.yuv.

Table 3.2: An example of encoding result, 60 Frame Test

Sequence: PeopleOnStreet 2560x1600 30 crop.yuv

Original HM16.3 x64
QP Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR Enc-Time/s
22 173807.20 43.243618 45.600892 45.354502 43.868260 1590
27 100790.82 39.801365 43.216357 43.536167 40.699809 1354
32 57310.10 36.675014 41.224019 41.878033 37.779509 1198
37 33371.34 33.825296 39.743744 40.602537 35.107585 1087

Proposed HM16.3 x64
QP Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR Enc-Time/s
22 174003.53 43.215166 45.601975 45.358991 43.846989 899
27 101192.92 39.778306 43.220455 43.548244 40.682313 681
32 57531.78 36.650874 41.222478 41.876591 37.758535 600
37 33568.82 33.817566 39.695861 40.540127 35.094960 531

26

Figure 3.3: RD-curve of original HM16.3 and proposed method. Input video sequence:
PeopleOnStreet 2560×1600 30 crop.yuv

3.3 Feature extraction

3.3.1 Transparent Composite Model

The feature extraction methods in the literature mostly focus on pixel domain, like methods
based on variance and gradient. However, gradient and variance in pixel domain may not
be effective since the RD-cost more depends on residual image rather than original image.
To be exact, if an image can be well predicted by intra prediction, even with large variance
and gradient, it still tends to be non-split case. Therefore, we are trying to find some new
aspects of feature extraction.

As we discussed in the spatial sample prediction, for complex CU, it may not be mod-
eled well by a single directional predictor. That will result in large energy in residual
image. Since DC and low frequency components are relatively easy to be removed through
intra prediction. The residual will mainly contain large coefficients of high frequency com-
ponents. On the other hand, if a CU is homogeneous, most energy are focused in low
frequency component, which will show low energy in high frequency components.

27

This shows us a rationale to capture the information about image texture and com-
plexity in the frequency domain. Therefore, to achieve image understanding from this
aspect, one basic question is how DCT coefficients are distributed. Many statistical mod-
els have been used in the literature to model the distribution of DCT coefficients[29][31][10].
They includes Laplacian distribution, Cauchy distribution, Gaussian distribution, mixtures
thereof, and generalized Gaussian(GG) distribution. Based on the observation of [36], the
histogram of DCT coefficients tends to have a heavy tail. Those large value on the tail
usually contain important information about the image. However, the probability density
functions of Laplacian, Gaussian and GG distributions all decrease too fast and can’t have
a good model accuracy on the tail. Therefore, (TCM), which uses a parametric distribu-
tion to model the main-body while uses uniform distribution to model the tail, has been
proposed in [36]. If the parametric distribution is chosen as Laplacian, the TCM is called
LPTCM. LPTCM turns out to be a good balance between the estimation complexity and
model accuracy. Because we are designing fast algorithm and complexity is always taken
into consideration, we have chosen LPTCM to model DCT coefficients of Alternating Cur-
rent (AC) frequencies. The probability density function of LPTCM [36] is given in (3.7)

p(y|yc, b, λ) ,
b

1−e−yc/λ
1

2λ
e−|y|/λ if |y| < yc

1−b
2(a−yc) if yc < |y| ≤ a

max{ b
1−e−yc/λ

1
2λ
e−|y|/λ, 1−b

2(a−yc)} if |y| = yc
0 otherwise,

(3.7)

where 0 ≤ b ≤ 1, 0 < yc < a, and a represents the largest magnitude a sample DCT coeffi-
cient y can take. The parameters yc, b, λ of the LPTCM are derived online via maximum
likelihood estimation. DCT coefficients in the tail (yc < |y| ≤ a), which are modeled by
the uniform distribution, are called outliers. In terms of energy, outliers account for a very
small percentage of AC coefficient (about 1.2%). However, they contain very important
information about the content of images.

3.3.2 Summation of Binarized Outlier Coefficients

As we mentioned before, the feature used in [15] is only a flag that indicates whether a
4× 4 DCT block contain outlier or not. To achieve better performance, we need to retain
more information. Therefore, a set of features called Summation of Binarized Outlier
Coefficients (SBOC) is defined. As a better reflection of image complexity and property,
it has contained not only the number of the outliers but also the information about the

28

position of outliers. Then we will introduce how features are extracted from the image data.
Firstly, the original frame is segmented into 4 × 4 blocks and processed by 4 × 4 DCT.
After that, a map of DCT coefficients can be obtained. Those coefficients can be used to
estimate the parameters of LPTCM. Given the PDF of LPTCM, we are able to detect AC
coefficients with significantly large magnitudes. If a AC coefficient is larger than yc, it will
be marked as outlier coefficient. After that, the DCT coefficient map will be processed into
a binarized outlier map, where outliers will be quantized into 1 and normal coefficients will
be suppressed to 0. Meanwhile, all DC coefficient will be set to zero. Within each 4 × 4
block, the binarized outlier will be summed up to form a single number called SBOC.

Figure 3.4: How SBOC is generated from a 4× 4 matrix of DCT coefficients

Figure 3.4 has shown a example of how the SBOC is generated from a 4×4 DCT block.
Trough this process, the map of SBOC can be generated. Since a CU will contain multiple
4× 4 blocks, the SBOC map of a CU will be raster scanned into a vector, which is called
SBOC vector. An example of extracting a SBOC vector from a 16 × 16 CU is shown in
figure 3.5

29

Figure 3.5: A example of extracting SBOC vector from a 16× 16 CU

3.4 Training of Classification Models

3.4.1 Bayes Decision

In this section, we will introduce classification model that is available for our algorithm
and the how those model are trained. The first one is Bayes decision. It is very effective
for classification when the relation between feature and label fit well with the probabilistic
assumption. Also it is intuitively understandable which can serve as an useful tool for us
to find some insights about how to design the fast algorithm.

Let X denotes the feature variable and Y is used as label variable. In our application,
the feature X is usually an one-dimensional value. In gerneral, it can be a N-dimensional
vector, but for Bayes methods, that may need more training data to make the model
converged. In terms of Y, it is always one-dimensional discrete variable. Generally, we
assume that we have M labels:

Y ∈ {y1, y2, y3, ...yM} . (3.8)

If X is discrete, from the training set, the probability mass function(PMF) can be estimated
by empirical probability. Given the value of X, we have the conditional probability of Y

30

calculated by Bayes formula. Then the prediction Ŷ should equal to the yi that maximize
this conditional probability

P (Y = yi|X = x) =
P (X = x|Y = yi)P (Y = yi)

P (X = x)
(3.9)

Ŷ = arg max
yi∈{y1,y2,y3,...,yM}

P (Y = yi|X = x). (3.10)

If X is continuous, there are two practical options. One is to quantize the X into
discrete variable X̃ and follow the same way with discrete case. Another is to model the
of X with parametric distributions and get its Probability Density Function (PDF). Then
the conditional probability become:

P (Y = yi|X = x) =
fX(x|Y = yi)P (Y = yi)

fX(x)
. (3.11)

Since the classification may have error and different error could have different penalty, to
reflect the cost of each decision on the optimization target, a more general formulation is
weighted Bayes decision. We can define Wj,i as the weight for the case that real label is
yj while the prediction is yi. Usually, when i = j, Wj,i is positive, which means reward.
When i 6= j, Wj,i is negative, which means penalty. Therefore, the best prediction is the
yi that maximize the expected reward or minimize the expected penalty.

Ŷ = arg max
yi∈{y1,y2,y3,...,yM}

M∑
j=1

P (Y = yi|X = x)Wj,i (3.12)

In our application, four very useful value of Ŷ are CU skip, CU termination, RDO skip and
unsure decision. The weight could be the average RD-cost loss due to errors. However,
selection of those design should depend on the actual effectiveness in the test. What’s
more, if we use multiple DMs, for a single DM, there may be only one decision with very
high precision will be targeted.

3.4.2 Support Vector Machine

In most cases, it is hard to find a strong feature that can effectively discriminate the data.
What is more common is that numbers of weak features are available [35]. Each feature
only contains small part of information about the decision. If their information are not

31

totally overlapped, they all have value to contribute to the classification. In this case, the
difficulty is how to combine those weak features to form a strong classifier, knowing that
an improper processing of extra information can make the result even worse. As the most
direct way, one solution is to keep the dimensionality and represent each data sample as a
point in a N-dimensional space. Then a decision boundary can be trained as the classifier
[22]. If this is the case, Bayes model may show its limitation. Even though it is a nice
theory, it may need large amount of data to support the convergence of high-dimensional
probabilistic model [2].

Figure 3.6: Demonstration of Support Vector Machine

To handle multidimensional data, Support Vector Machine(SVM) is an reasonable op-
tion. It is boundary-based, which uses hyperplanes to separate the data points in the
space. The best hyperplane is chosen as the one that minimized the systemic error. To
be exact, if one hyperplane is used to separate two classes of data points, the optimal
one should stand in the middle of two classes and keep the same distance with the closest
points. Those points that are closest to the decision boundary are called support vectors.
Also the hyperplane can be uniquely decided by support vectors chosen from two classes.

To introduce the formulation of SVM, we first consider the two-class classification

32

where label y ∈ {−1,+1}. Let x ∈ RN denote feature point in N-dimensional space. The
hyperplane can be represented as equation 3.13, where w is the hyperplane’s coefficient
vector and b is the offset.

wTx + b = 0 (3.13)

Because w can has arbitrary magnitude, we normalize this expression by{
wTx+ + b = +1
wTx− + b = −1

(3.14)

x+ denotes the positive support vector and x− is the negative support vector. If we use
m to represent the distance from one support vector to the hyperplane. The optimization
target is to maximize the decision margin 2m.

2m = wT (x+ − x−)/ ‖w‖ (3.15)

from the normalization, we have

2m =
2

‖w‖
(3.16)

To maximize 2m is equivalent to minimize ‖w‖ /2. What’s more, minimizing ‖w‖ /2 has
same result with minimizing ‖w‖2 /2. Hence, the optimization problem can be expressed
as

min
w,b

1

2
wTw (3.17)

subject to
yi(w

Txi + b)− 1 ≥ 0 ∀(xi, yi) ∈ St (3.18)

, where St is the training set that contains feature-label pairs. When the yi(w
Txi + b)− 1

equal to 0, it means the current xi is support vector. Then Lagrange multiplier can be
used to combine the constraint into the minimization[4].

min
w,b,λ
{1

2
wTw−

|St|∑
i=1

λi[yi(w
Txi + b)− 1]} (3.19)

Since yi(w
Txi + b)−1 ≥ 0, one special case is to set λi to infinity and the minimization

is achieved. To avoid this meaningless result, the problem should be reformed as

min
w,b

max
λ≥0
{1

2
wTw−

|St|∑
i=1

λi[yi(w
Txi + b)− 1]} (3.20)

33

Then one solution is to set λi = 0 for those (xi, yi) that meet yi(w
Txi + b) − 1 > 0.

Therefore λi > 0 only when the xi is support vector. The problem can be solved by
Karush-Kuhn Tucker, and w can be represent as

w =

|St|∑
i=1

λiyixi (3.21)

This solution of w can be substituted into objective function 3.20 and we have

max
λ
{
|St|∑
i=1

λi −
1

2

|St|∑
i=1

|St|∑
j=1

λiλjyiyjx
T
i xj} (3.22)

subjected to
|St|∑
i=1

λiyi = 0, λi ≥ 0 (3.23)

After the best λ been decided, the w is calculated by equation 3.21, and the b can be
calculated as

b = ys −wTxs (3.24)

where xs is the support vector with label ys. So far, the hyperplane can be decided. While
for new feature vector xnew in the testing set, the rule for classification is{

f(x) = wTx + b
ynew = sign(f(xnew)).

(3.25)

The formulation above is the simplest case of SVM. In most application, the data can not
be perfectly separated by a linear boundary. One solution for non-separable cases is soft-
margin SVM that allows some errors in the training. Also introducing of soft-margin can
enlarge the decision margin and make the model more robust to noise. Another solution is
to map the data point x into higher-dimensional space by using nonlinear mapping function
φ(x), which can make SVM a non-linear classifier. What’s more, similar with what we
mentioned in the Bayes decision, different error may have different penalty. Therefore, in
a more versatile case, the classification function becomes

f(x) = wTφ(x) + b (3.26)

and the optimization becomes

min
w,b
{1

2
wTw + C(W+

|S+
t |∑

i=1

ξi +W−
|S−
t |∑

j=1

ξj)} (3.27)

34

subject to
yi(w

Tφ(xi) + b) ≥ 1− ξi, and ξi ≥ 0 ∀(xi, yi) ∈ St (3.28)

where C is the penalty parameter and ξi is the slack variable. There are several definition
for ξi in current SVM algorithms [12][7]. A typical definition is

ξi = max(1−wTφ(x), 0) (3.29)

After solved the optimization problem, the w is

w =

|St|∑
i=1

λiyiφ(xi) (3.30)

Because the calculation of φ(x) is usually computational expensive, a more practical way
is to use kernel trick to meet the same purpose. From the optimization process, we can
find that only φ(xi)

Tφ(xj) need to be calculated, while it is not necessary to calculate
φ(xi)

T and φ(xj) individually. For some nonlinear mapping function φ(xi), the calculation
of φ(xi)

Tφ(xj) can be much more efficient than that of φ(xj). Therefore, kernel functions,

k(x1,x2) =< φ(x1), φ(x2) > (3.31)

,are defined as an equivalent solution for nonlinear mapping. There are many choices for
the kernel. A popular one is radial basis function(RBF), which is suitable for data that is
Gaussian distributed[17].

kRBF (x1,x2) = e−γ(x1−x2)2 (3.32)

And the decision function for nonlinear SVM becomes:{
f(x) =

∑|St|
i=1 λiyik(xi,x) + b

ynew = sign(f(xnew)).
(3.33)

35

3.5 Flexible Train-Test Period

Figure 3.7: Demonstratiion of Train-Test Period

After known how to assess the performance, we then discuss the periodical structure that
classification models are trained and applied. Data extracted from the video sequences
are divided into 3 subsets: training set, validation set and testing set. Machine learning
models are generated from training set to predict testing set, and validation set is used to
tuning parameters and switch models so that effectiveness and robustness of the algorithm
can be ensured.

Because the property of video data can change with time, it may not be suitable to train
a model and use it for a long time. To avoid error propagation and performance degradation
caused by motion and scene changes, models are trained, validated, and tested periodical.
This periodical structure is illustrated in figure 3.7.

As shown in the figure 3.7, the period is defined as P frames. The first T frames,
filled with grey, are used for extracting training data. Features needed by all models and
the labels will be saved, while the encoding process is not affected. After that, another
V frames will be used to validate effectiveness of each model. In the validation stage,
all models trained from training stage will be applied to predict the label. But their
decisions are only used to calculate their performance measures rather than adopted by
the encoder. Since some models may have bad performance due to ineffective features,

36

sample-insufficiency or over-fitting, those decisions with unsatisfactory performance will
be disable in the testing stage until a new period begin. At the rest P − T − V frames,
the encoding will enter the testing stage, where effective decision predicted models will be
used to guide the encoder to achieve a faster coding speed. After that, at the beginning of
another P frames, the encoder will clear all the models and repeat the same process. In
the main version of our algorithm, the P is set to be 60 while the T and V are set to be 2
and 1 respectly.

Another design is to flexibly balance the number of sample for the training. Table 3.3
has shown the number of sample per frame for different video resolution. For low resolution
data, the number of sample is very small. For example, when the resolution is 416× 240,
there is only 18 samples available for depth 0. While for high resolution data, the number
of sample can be too large for large depth. For 2560×1600 videos, there are 64000 samples
on depth 3.

Table 3.3: Number of sample per frame for different video resolution

Resolution Depth 0 Depth 1 Depth 2 Depth 3

2560× 1600 1000 4000 16000 64000
1920× 1080 480 1980 8040 32400
1024× 768 192 768 3072 12288
832× 480 91 390 1560 6240
416× 240 18 91 390 1560

If there is not enough data for the training, the model can not be effective. This problem
is especially important for Bayes Decision. Later on , we will show the experimental result
that the Bayes decision totally lose its effectiveness when applied to low resolution data.
On the other hand, if there is too much data for the training, the training time will increase,
which is desired in our application.

37

Figure 3.8: Flexible Train-Test Period

Therefore, the train-test period are setting separately for different depth. For depth 0
and depth 1, because the number of sample is relatively small, the the number of training
frames could be more than that of depth 2 and depth 3. This flexible train-test period
design has been shown in figure 3.8. In this example, the is number of training frames
for depth 0 and depth 1 are set to be 6 and 3 respectively. While the number of training
frames for depth 2 and depth 3 are only 2 and 1.

3.6 Validation Frame and Model Switch

The periodical learning structure have solved the problem of performance degradation along
with the changing of input data. The purpose of validation frame is to keep the performance
under control and also choose the best model for current data input. Since we have
introduced different ML models, like Bayes Model and SVM , each of them with different
parameters may have a possibility to be the best for particular input data. Therefore, to
achieve better classification performance, one reasonable strategy is model switch. In the
first stage of validation, multiple models will be applied in prediction and their performance
will be calculated. After that, the model with the best performance will be chosen to be
the dominated decision maker. On the other hand, for those models that can’t predict
the decision well in the validation frame, we have defined a threshold as the minimum
requirement for performance. If the performance of a model is less than the threshold,
their prediction will not be adopted in the following testing frames.

38

3.7 Summary

In this chapter, the proposed machine learning based HEVC fast intra algorithm is intro-
duced. We have summarised a general model of fast algorithm and then given a specific
logic structure of our algorithm. The performance measure of classification like accuracy,
precision, and sensitivity are defined to judge the effectiveness of classification models.
While encoding time reduction and BD-rate are introduced to measure the overall per-
formance. LPTCM is used as an image understanding method to detect the significantly
large value of DCT coefficient. Those outliers are then processed to form the feature vector
that used to train the classification models and make CU decision. One typical feature
SBOC that used in our method is intoduced in detail. In the section of model training, we
have discussed the Bayes Decision and SVM. Furthermore, to ensure the robustness of the
algorithm, we have meta-algorithm like flexible train-test period and model switch.

39

Chapter 4

Experiments and Analysis

4.1 Observations on Encoding Time

4.1.1 Potential of Time Reduction

Before starting designing the algorithm to decide the CU partition, we have a strong wish of
knowing the potential of this CU decision based fast algorithms and we have been curious
about one question. The question is how much computational cost the encoder has spent
on exploring the best CU decision. In other word, if a DM can achieve 100% precision as
well as sensitivity, how much time reduction can it achieves.

Therefore, an experiment has been done to answer this question. Through encoding the
video sequences by the normal encoder, all information about the CU partition has been
stored in a file called CU Decision Map (CDM). Then, assisted by the CDM, the sequences
will be encoded in the second pass. In the second pass, rather than exploring the best
CU partition by exhaustive search, the encoder will read the best CU decision directly
from the CDM. Therefore, the time of the second pass encoding has shown the minimum
computational cost when the best quad-tree is given in advance. The result of the this
experiment has been shown in table 4.1. The result is generated from encoding result of
standard video sequences provided by HEVC document. The encoder version is HM16.3.
Depends on the application and property, those sequences has been categorized into six
classes. Class A are down-sampled 4K×2K video sequences with resolution 2560 × 1600.
Class B are the traditional High Definition (HD) 1080P videos with resolution 1920×1080.
Class C and class D are videos with size 832 × 480 and 416 × 240 respectively, which are
resolutions standardized by Wide Video Graphics Array (WVGA) and Wide Quarter Video

40

Table 4.1: Encoding time reduction in each class when CU decisions are given

Class Resolution TS LowerBound

Class A 2560 × 1600 73.76%
Class B 1920 × 1080 69.36%
Class C 832 × 480 56.68%
Class D 416 × 240 52.28%
Class E 1280 × 720 72.08%
Class F mixed 61.86%

Graphics Array (WQVGA). Class E are 720P video conference records while class F are
screen content videos. In this experiment, the time reduction compared with the normal
HM has been calculated for each class. It can be noticed that, the time saving is around
70% for high resolution video, like class A, B, and E. However, it is only 50% time can be
saved for low resolution data like class D.

4.1.2 Encoding Time Distribution

Because the number of CU candidates for searching in the recursion is increasing expo-
nentially with depth while the size of CU are decreasing with depth, CU skip and CU
termination in different depths may have different potential for time reduction. To focus
our efforts on the most promising parts, we has done an experiment to explore how much
time the encoder spends on different depths and functions. This result is illustrated in
table 4.2, where the numbers are generated by averaging the percentages of encoding time
over 24 standard test sequences. The encoder version used to run the test is HM16.3.

Table 4.2: Encoding time spent in different Depths and Functions

Functions Encoding Time

CompressCU on Depth 0 + Other Overhead 13%
CompressCU on Depth 1 11%
CompressCU on Depth 2 14%
CheckRDcost2Nx2N on Depth 3 21%
CheckRDcostNxN on Depth 3 41%

From the table, it can be seen that time spent on depth 0 , 1, and 2 are very similar,
around 10% on each depth. However, encoding time on depth 3 is over 60% and about

41

40% is used to run function CheckRDCostNxN. Function CheckRDCostNxN is called only
when the CU reaches the minimum size (8 × 8), where the 8 × 8 PU is still allowed to
split into four 4 × 4 PUs. However, except for videos with very complex content, only
the minority of video data will be encoded into smallest block size. If those minority CUs
can effectively detected be DMs, significant time reduction can be achieved. Therefore,
decisions on depth 3 could be more important than that on other depths.

Another observation is that CU termination, in all depths, will achieve much more time
reduction than the CU skip. For example, if a homogeneous CU on depth 0 is terminated,
up to 87% time can be saved. While, if a complex CU is skipped on depth 0, this decision
can only save less than 13% of the time. Later on, we will show that these observations
work as important inspiration for us to improve fast intra algorithms.

42

4.2 Observations on Classification Model

4.2.1 Result of Bayes Decision

Figure 4.1: Conditional Probability in Bayes Model

In this subsection, we will first provide the classification result of Bayes method to get
some insight about the decision maker. Figure 4.1 shows the conditional probability of
Bayes Model in each depth, and the feature is chosen as NOBF , which is the number of
SBOC [15]. It is a single number that equals to the summation of all OBF within a CU.

43

The green line shows the estimated probability of CU skip(+1) when the NOBF = x

P (Y = +1|NOBF = x) =
N(Y = +1, NOBF = x)

N(NOBF = x)
(4.1)

The red line shows, given the NOBF , the probability of CU termination.

P (Y = −1|NOBF = x) =
N(Y = −1, NOBF = x)

N(NOBF = x)
(4.2)

Because Bayes method need relatively more training sample, to provide enough training
sample for the Bayes model, the data we choose is extracted from the first two frame of
high resolution sequence BasketballDrive1920 × 1080. It can be seen from the figure 4.1
that, for depth 0, the the green line is always above the red line. In this case, all CU in
depth 0 will be classified as CU skip. The same thing happened in depth 3, where all CU
are classified as CU termination and the decisions have lost the diversity. In terms of the
classification performance, the precision and sensitivity of Bayes method are given in table
4.3. The sensitivity of CU skip in depth 0 and the sensitivity of CU termination in depth
3 are all zero, which is consistent with that showing in figure 4.1. As we mentioned in the
introduction of validation frame, to control the BD-rate increase, all decisions are managed
by a precision threshold. In our main version, this threchold is set to be 80%. In this case,
only CU skip in depth 0 and CU termination in depth 1,2,3 will be switched on because
their precision is larger than 80%.

Table 4.3: Performance Example of Bayes Decision

Model:Bayes Sequence:BasketballDrive QP:32

CU Skip CU Termination
Depth Precision Sensitivity Precision Sensitivity

0 84.4 100 0 0
1 71.3 70.1 82.1 82.9
2 57.8 23.3 90.6 97.7
3 0 0 97.7 100

When we set period parameter to be T = 2, V = 1, P = 60 and encode the first 60
frames of BasketballDrive1920 × 1080 by this Bayes method, the time reduction is 67%
while the BD-rate increases by 3.75%. From the result in this example, it shows that,
when quantizing the outliers into flags and summing them up, many information has been
lost and the NOBF itself don’t have enough discriminative power to separate two classes.

44

If without the validation frame, the encoder will suffer more BD-rate increase and this
problem can be more significant for low resolution videos, like class D (416× 240), where
the training sample are insufficient.

In [15], the author has used the RD-cost loss due to miss-classification as the weight
for the Bayes model. Therefore the decision function becomes

Ŷ = arg min
i
P (Y = ī|NOBF = x)Wx,i,̄i (4.3)

, where Wx,i,̄i is the average RD-cost loss when the prediction is i while the true label
is ī given NOBF = x. In [15], this weight Wx,i,̄i is learned from the first two frames of
the input sequence. Table 4.4 has shown the classification result of this weighted Bayes
method. In depth 1 and 2, the precision of CU termination has increased slightly. But for
the depth 0 and 3, the decision maker still loses the diversity of decisions.

Table 4.4: Performance Example of Weighted Bayes Decision

Model:Weighted Bayes Sequence:BasketballDrive QP:32

CU Skip CU Termination
Depth Precision Sensitivity Precision Sensitivity

0 84.4 100 0 0
1 68.6 74.7 83.6 79
2 50.5 42.3 92.5 94.5
3 0 0 97.7 100

Figure 4.2: CU decision comparison between original HM and Weighted Bayes Model

45

In figure 4.2, we have made a comparison about the CU partition between original
HM and the weighted Bayes method. For result of original HM, it contains blocks of all
size from 64 × 64 to 4 × 4. However, on the right-hand side, since the Bayes method has
classified all CU in depth 0 into +1 and all CU in depth 3 into -1, there is no 64× 64 and
4× 4 block in the encoding result.

4.2.2 Result of SVM

From the result of Bayes method, we can find out that classifying the CU decision is not
a nice and clean problem that can be solved perfectly. Under the constrain of information
limitation and computational complexity, the target of the decision makers is to catch those
precise decisions as many as they can. Hence, two linear SVM with different purposes have
been trained to fulfill this task.

Figure 4.3: Demonstratiion of Weighted SVM1

By setting the W− larger than W+, SVM1 can be trained to have high precision of
decision +1. This rationale has been illustrated in figure 4.3. When the W− is large, the
false positive error will cause more penalty in the objective function. Hence the decision
boundary will more close to the positive class to alleviate the penalty. Usually, the sensi-
tivity of positive decision will decrease in this case. But, in out application, the precision

46

should be put in the first place. If the precision can’t meet the requirement, even the sen-
sitivity is high, the corresponding decision will be switched off by the performance control
and will not make contribution for the time reduction. In the main version of our proposed

Table 4.5: Performance Example of SVM1

Model:SVM1 Sequence:BasketballDrive QP:32

CU Skip CU Termination
Depth Precision Sensitivity Precision Sensitivity

0 95 65.4 29.5 80.8
1 100 0.4 61.9 100
2 0 0 88.3 100
3 0 0 97.7 100

algorithm, the parameter setting for SVM1 is C = 0.000002, W+ = 1, W− = 20. The
feature used in SVM is the SBOC we introduced in chapter 3. The classification perfor-
mance of SVM1 is given in 4.5. Another model, SVM2, is trained with same feature but
to achieve high precision for CU termination. This has been demonstrated in figure 4.4

Figure 4.4: Demonstratiion of Weighted SVM2

For SVM2, the W+ is larger than W− to avoid too many false negative errors. The

47

parameter setting for SVM2 is C = 0.000002, W+ = 50, W− = 1. And the classification
performance has been shown in table 4.6.

Table 4.6: Performance Example of SVM2

Model:SVM2 Sequence:BasketballDrive QP:32

CU Skip CU Termination
Depth Precision Sensitivity Precision Sensitivity

0 93.7 69 30 74
1 68.8 74.9 83.6 79
2 38.8 84.9 97.6 82.3
3 13.6 83.9 99.6 87.5

It can be seen from the result that, SVM1 have better CU skip precision than that
of SVM2 while SVM2 have higher CU termination precision than SVM1. Typically, the
decison maker will trust the SVM1 about CU skip decision and trust the SVM2 about the
CU termination decision. For general video sequences, the situation can be more complex.
Therefore, in our algorithm, the strategy is to switch between SVM1 and SVM2 based on
their performance in validation frame.

Figure 4.5: CU decision comparison between original HM and SVM

Similar as what we do for Bayes method, we have compared the CU decision result of the
proposed SVM based method with that of original HM. It can be seen that the predicted
partition result is very close to that of normal encoder. Unlike the Bayes method, the

48

proposed method can well retain the diversity of different block size and achieve better
precision.

4.3 Full Test and Comparison

4.3.1 Test Conditions

In this section, we will test the proposed algorithm from the perspective of encoding. A
professional experiment has been done to test the performance of several fast algorithms
which includes our proposed method and some high-performance benchmarks. The result
of normal HM is first generated as reference. Then encoding results of fast algorithms
are compared with the reference in terms of BD-rate and encoding time reduction. To
make a more fair comparison, each fast algorithm is compared with its base version of
HM . For example, our fast algorithm is implemented on HM16.3, so it will be compared
with normal HM16.3. The configuration of encoders is chosen as AIM that follows the
common test condition provided by official HEVC document [5]. Four QP values in the test
condition are chosen as 22, 27, 32, and 37.By default, our standard results are generated
from the whole test sequences.

In terms of test environment, the computer that is used to generate our experimental
results is of Intel(R) Core(TM) i7-4790 3.60GHz CPU, and 8GB RAM. The operation
system is 64 bits Windows 7 Enterprise.

4.3.2 Full Test Result

In the HEVC’s official document, there are totally 24 test sequences, which are catego-
rized into 6 classes. They are selected to cover different video resolutions and contents in
wide range of applications. Since the time reduction and BD-rate are showing the similar
property within each class, the full test result will be analyzed in the order of classes.

The result of Class A and class B are illustrated in table 4.7. Class A are down-
sampled 4K×2K video sequences with resolution 2560× 1600. Class B are the traditional
high-definition(HD) 1080P videos with resolution 1920 × 1080. From the table 4.7, we
can see that the proposed algorithm can achieve very significant time reduction for high
resolution video. The average time reduction for class A is 54.76% with only 0.53% BE-rate
increase. For class B, the TS is 48.90% while the BD-rate increase is 0.78%. The maximum
time reduction is from NebutaFestival, which is 64.05% with only 0.24% BD-rate increase.

49

This may because the edges pattern in this video is relatively simple and the motion is very
slow. Besides the BD-rate, it also can be seen that the Peak Signal-to-noise Ratio (PSNR)
loss caused by the fast algorithm is very small, which is only 0.01 dB. This property make
our algorithm more suitable for the application that requires fast speed and high video
resolution or quality.

Table 4.7: Encoding Performance of Class A and Class B

Class Sequence ∆ Bitrate(%) ∆ PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.40% -0.0181 0.73% 48.23%
Traffic 0.47% -0.0144 0.90% 49.06%

SteamLocomotiveTrain 0.00% -0.0099 0.26% 57.70%
NebutaFestival 0.28% 0.0021 0.24% 64.05%

Class Average 0.29% -0.0101 0.53% 54.76%

Class B

Kimono1 0.19% -0.0169 0.73% 57.84%
ParkScene 0.16% -0.0157 0.63% 37.43%

Cactus 0.41% -0.0115 0.88% 45.22%
BascketballDrive 0.32% -0.0125 0.81% 52.08%

BQTerrace 0.58% -0.0059 0.87% 51.94%

Class Average 0.33% -0.0125 0.78% 48.90%

Class C and class D are videos with size 832 × 480 and 416 × 240 respectively, which
are resolutions standardized by WVGA and WQVGA. The encoding performance of class
C and class D are given in table 4.8.

50

Table 4.8: Encoding Performance of Class C and Class D

Class Sequence ∆ Bitrate(%) ∆ PSNR(dB) BD-Rate TS

Class C

BasketballDrill 0.31% -0.0256 0.90% 43.49%
BQMall 0.68% -0.0199 1.14% 43.64%

PartyScene 0.36% -0.0094 0.40% 38.93%
RaceHorsesC 0.58% -0.0102 0.86% 43.03%

Class Average 0.48% -0.0163 0.83% 42.27%

Class D

BasketballPass 0.46% -0.0216 0.97% 43.96%
BQSquare 0.91% -0.0121 1.23% 47.90%

BlowingBubbles 0.20% -0.0113 0.32% 35.73%
RaceHorsesD 0.60% -0.0093 0.82% 41.00%

Class Average 0.54% -0.0136 0.83% 42.15%

In our observation on the time reduction lower bound, the time reduction potential is
relatively smaller than that of high resolution video. This is also shown in our test result.
The average time reduction in class C is only 42.27% and the BD-rate is 0.83%. Class D
has shown a very similar result: 42.15% TS and 0.83% BD-rate increase.

Table 4.9: Encoding Performance of Class E and Class F

Class Sequence ∆ Bitrate(%) ∆ PSNR(dB) BD-Rate TS

Class E

Johnny 0.30% -0.0081 0.53% 52.37%
KristenAndSara 0.54% -0.0112 0.88% 55.39%

FourPeople 0.27% -0.0237 0.81% 47.59%

Class Average 0.37% -0.0143 0.74% 51.78%

Class F

BasketballDrillText 0.22% -0.0316 0.85% 43.88%
ChinaSpeed 0.65% -0.0196 0.84% 54.17%
SlideEditing 0.90% -0.1364 1.91% 45.08%
SlideShow 0.17% -0.0146 0.31% 52.96%

Class Average 0.49% -0.0505 0.98% 49.02%

Class E are 720P video conference records while class F are screen content videos. The
result of class E and class F have been shown in 4.9. Screen content can be very challenging

51

since the edges in the this kind of video is very sharp and the pattern can be very complex,
like text. For example, SlideEditing is the screen record of editing PowerPoint slides. In
this video there are some all-blank frames, which may cause some risks for online model.
Also it can be seen that the PSNR loss in class F is very significant which up to 0.05.

4.3.3 Comparison with Benchmarks

To compare our algorithm with top methods, we have chosen many papers of high quality
as our benchmarks. It is no exaggeration to say that IEEE Transaction on Circuits and
Systems for Video Technology (TCSVT) has represented the highest level of video cod-
ing technology. Therefore we have chosen some relevant works that recently published in
TCSVT. Also our benchmarks have included some top conferences like International Con-
ference on Image Processing (ICIP) and Data Compression Conference (DCC). Because,
in different papers, results are generated on different machines. To make a fair comparison,
we have regenerated some of their results in our computer. However, for those benchmarks
that we can’t obtain their encoders, we have no choice but to directly refer the results that
are reported in their papers. Here, I would like to thank Tao Zhang, Hao Zhang, Biao Min
for their sharing the source code or executable files.

Table 4.10: Performance comparison with benchmarks, 600-frames full test

Encoder Version Time Saving BD-rate Source of data

Proposed(MainVersion) 48.03% 0.78% Through test
[37]H. Zhang, TCSVT 2014(Overall) 58.83% 1.33% Through test
[37]H. Zhang, TCSVT 2014(CU Size) 45% 0.8% From paper
[27]B. Min, TCSVT 2015 43.97% 1.16% Through test
[15]N. Hu, TCSVT 2015 39.42% 0.46% Through test
[38]T. Zhang, TCSVT 2016 48.15% 0.92% Through test
[18]M. Khan, ICIP 2013 44.00% 1.27% From paper
[32]X. Shang, ICIP 2015 37.91% 0.66% From paper
[11]F. Duanmu, ICIP 2015 36.80% 3.00% From paper
[25]Y. Liu, DCC 2015 46.50% 2.20% From paper

Together with our main version algorithm, the full test results of benchmarks has
been shown in table 4.10. Our overall result is 48.03% time reduction with 0.78% BD-
rate increase. Compared with others’ work, the proposed algorithm has outperformed the

52

algorithms in [28], [18], [32], [11] by both BD-rate and time reduction. Since the overall
version in [37] has combined both fast CU size decision and fast IPM selection, it achieves
the best time reduction performance. However, in their paper, they also reported the result
of micro-version that only fast CU size decision is switched on. The time reduction of their
macro-version is 45% TS and 0.8% BD-rate increase.

Figure 4.6: Performance Comparison With Benchmarks, Curve of different Trade-off

Because most of the results provided in the literature are only single TS BD-rate points,
to make a better comparison, we have generated a performance curve by adjusting the
precision threshold. The figure 4.6 has shown the comparison between our performance
curve and benchmarks. 10 points are tested to generate this curve, where the precision
threshold is changing from 0.76 to 0.94. Each point is obtained from the overall average
result of 24 test sequences and the curve is generated by cubic spline data interpolation to
form a smooth shape. With the changing of precision threshold, the TS is changing from
51.37% to 29.88% while the BD-rate is changing from 1.07% to 0.14%. For benchmarks,

53

the red points are full test result that regenerated on our computer, and the blue points
are data reported in the literature.

From this curve, we can clearly see that all the benchmark points are above the curve,
which means, given the same TS, the point on curve has a smaller BD-rate. For points
that are close to the curve, we can always find a black point that have both larger TS
and smaller BD-rate. Specific data in figure 4.6 is attached in the appendix. Because the
overall result of [37] has combined two fast algorithms and achieved a TS that we can not
achieve, it is not plotted in the figure. But, in terms of their CU decision based part, our
test result is still better than the performance reported in [37].

4.4 Summary

In this chapter, we have first done an observation on potential time reduction and encoding
time distribution. The time reduction potential in CU size decision is very promising, which
can be around 70%. In the HM , most of the encoding time has been spent on a function
called CompressCU. While, within this CompressCU, encoding time on each depth are
different. About 60% encoding time has been spent on the depth 3. Therefore, we have
concluded that the focus of the fast CU size decision algorithm should be focused on depth
3.

After that, we have done an experiment to observe the performance of classification
model. For Bayes model, the result is unsatisfactory. Due to the lack of training samples,
the Bayes Model can’t utilize high dimensional data with large variety. However, even
when applying single dimensional feature OBF in high resolution video, the Bayes have
lost the effectiveness in depth 0 and depth 3. And the classification result in depth 1 and
depth 2 are also not good. For SVM, two linear SVMs has been trained to handle different
decisions. One is trained to achieve highl precision of CU skip, another is designed to
better predict CU termination. By switching between two models, the classification result
has increased significantly.

A professional full test has been done to verify the encoding performance of the proposed
algorithm and some benchmarks. By generating a curve with different TS BD-rate trade-
off, we have clearly shown that our algorithm has out performed all benchmarks in terms
of both time reduction and BD-rate. Another advantage of current design is that, the
proposed algorithm is only based the original image and CU decision. Therefore is can be
easily combined with other fast algorithm like fast IPM selection methods to achieve more
time redcuction.

54

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have proposed a fast algorithm to reduce the computational complexity
of HEVC intra-frame coding and maintain the coding efficiency. The proposed algorithm
is based on a machine learning framework. The LPTCM is utilized as a feature extraction
tool. When applied on AIM full test, the main version algorithm have achieved, on average,
48% time reduction with 0.8% BD-rate increase. Also, through adjusting the setting, the
algorithm can change the trade-off between encoding time and BD-rate, which can generate
a performance curve for different requirements. The maximum time reduction can be
51.37% with 1.07% BD-rate increase while the minimum BD-rate increase could be 0.14%
with 29.88% time reduction. While for Bayes Decision, through our observation, it can be
concluded that Bayes Decision is not very suitable for this kind of algorithm. Generally
speaking, the Bayes Decision requires more training data than other models. If we extend
the training period to obtain more samples, the potential for encoding time reduction will
been squeezed. Also the encoding decision is relatively complex that can’t be effectively
predicted through one-dimensional feature. If the dimensionality increase, the requirement
for training sample will also increase, which makes Bayes Decision less effective. Even
we can come up with an effective way to combine many information into one dimension,
the processing itself will also introduce extra computational cost. Therefore, the Support
Vector Machine is chosen as the main decision maker and has achieved a good performance
in the test result.

55

5.2 Application and Future Work

Since the HEVC becomes the newest video standard, our algorithm will have a wide range of
application. As one basis of video compression, intra-frame coding has been widely used in
all configuration of HEVC. Since the proposed method is all on the software level, assisted
by parallel computing and application-specific hardware, the HEVC encoder using our
algorithm can achieve more significant time reduction. In some application, the video can
even be encoded into all-intra configuration, where the whole video is compressed by intra
coding. An typical application of all-intra coding is the rear camera in parking aid systems,
where the requirement for real-time display is strict and there is almost not limitation on
transmission bandwidth. Another example is the lunar rover. For a lunar rover, because
the information collected are very precious while the computational resources are quite
limited, video must be recorded with high quality and low energy consumption. In this
case, all-intra video coding may be used and a fast intra algorithm is very important.

For fast video coding algorithm, one of our future work could be applying the machine
learning methods in inter frame coding, where may have more potential for encoding time
reduction. On the other hand, machine learning method can also be used for better pre-
diction, quantization and entropy coding to improve the coding efficiency. Another furture
work could be provide more insights and data visualization so that we can understand the
property of machine learning better.

In current machine learning methods we used, the training and testing are separated
while the models are updated periodically. However, even we don’t have a specific solution,
the most desirable algorithm should be incremental and semi-supervised learning methods.
In that kind of method, as the data keep coming in, the model can be continually updated
when partially given some labels. In this case, the model can be more self-adaptive and
the training and predicting are progressing at the same time.

56

References

[1] x.265. In https://bitbucket.org/multicoreware/x265/wiki/Home. Web Link, retrieved
2016 Sep.

[2] R Bellman. Dynamic programming: Princeton univ. press, 1957.

[3] Gisle Bjontegaard. Calcuation of average psnr differences between rd-curves. Doc.
VCEG-M33 ITU-T Q6/16, Austin, TX, USA, 2-4 April 2001, 2001.

[4] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152. ACM, 1992.

[5] F Bossen and HM Common. test conditions and software reference configurations,
jct-vc doc. L1100, Jan, 2013.

[6] Frank Bossen, Benjamin Bross, Karsten Suhring, and David Flynn. Hevc complexity
and implementation analysis. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1685–1696, 2012.

[7] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[8] Seunghyun Cho and Munchurl Kim. Fast cu splitting and pruning for suboptimal
cu partitioning in hevc intra coding. IEEE Transactions on Circuits and Systems for
Video Technology, 23(9):1555–1564, 2013.

[9] Guilherme Correa, Pedro A Assuncao, Luciano Volcan Agostini, and Luis A
da Silva Cruz. Fast hevc encoding decisions using data mining. IEEE Transactions
on Circuits and Systems for Video Technology, 25(4):660–673, 2015.

57

[10] Minh N Do and Martin Vetterli. Wavelet-based texture retrieval using generalized
gaussian density and kullback-leibler distance. IEEE transactions on image processing,
11(2):146–158, 2002.

[11] Fanyi Duanmu, Zhan Ma, and Yao Wang. Fast cu partition decision using machine
learning for screen content compression. In Image Processing (ICIP), 2015 IEEE
International Conference on, pages 4972–4976. IEEE, 2015.

[12] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

[13] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[14] Nan Hu and En-Hui Yang. Erratum to fast mode selection for hevc intra-frame coding
with entropy coding refinement based on a transparent composite model.

[15] Nan Hu and En-Hui Yang. Fast mode selection for hevc intra-frame coding with en-
tropy coding refinement based on a transparent composite model. IEEE Transactions
on Circuits and Systems for Video Technology, 25(9):1521–1532, 2015.

[16] Wei Jiang, Hanjie Ma, and Yaowu Chen. Gradient based fast mode decision algorithm
for intra prediction in hevc. In Consumer Electronics, Communications and Networks
(CECNet), 2012 2nd International Conference on, pages 1836–1840. IEEE, 2012.

[17] S Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines
with gaussian kernel. Neural computation, 15(7):1667–1689, 2003.

[18] Muhammad Usman Karim Khan, Muhammad Shafique, and Jorg Henkel. An adap-
tive complexity reduction scheme with fast prediction unit decision for hevc intra
encoding. In Image Processing (ICIP), 2013 20th IEEE International Conference on,
pages 1578–1582. IEEE, 2013.

[19] Il-Koo Kim, Junghye Min, Tammy Lee, Woo-Jin Han, and JeongHoon Park. Block
partitioning structure in the hevc standard. IEEE transactions on circuits and systems
for video technology, 22(12):1697–1706, 2012.

[20] J Kim and B Jeon. Encoding complexity reduction by removal of n× n partition type.
In Document JCTVC-D087, 4th JCT-VC Meeting, Daegu, Korea (January 2011),
2011.

58

[21] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[22] Ludmila I Kuncheva. Combining pattern classifiers: methods and algorithms. John
Wiley & Sons, 2004.

[23] Jani Lainema, Frank Bossen, Woo-Jin Han, Junghye Min, and Kemal Ugur. Intra
coding of the hevc standard. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1792–1801, 2012.

[24] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[25] Yen-Chun Liu, Zong-Yi Chen, Jiunn-Tsair Fang, and Pao-Chi Chang. Svm-based fast
intra cu depth decision for hevc. In Data Compression Conference (DCC), 2015, pages
458–458. IEEE, 2015.

[26] Dave Marshall. https://www.cs.cf.ac.uk/dave/multimedia/node231.html, relationship
between dct and fft. 2001.

[27] Biao Min and Ray CC Cheung. A fast cu size decision algorithm for the hevc intra
encoder. IEEE Transactions on Circuits and Systems for Video Technology, 25(5):892–
896, 2015.

[28] JH Min, S Lee, IK Kim, WJ Han, J Lainema, and K Ugur. Te4: Results for simplifi-
cation of unified intra prediction. JCTVC-C042, Guangzhou, China, 2010.

[29] F Muller. Distribution shape of two-dimensional dct coefficients of natural images.
Electronics Letters, 29(22):1935–1936, 1993.

[30] Jens-Rainer Ohm, Gary J Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas
Wiegand. Comparison of the coding efficiency of video coding standardsincluding
high efficiency video coding (hevc). IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1669–1684, 2012.

[31] I-Ming Pao and Ming-Ting Sun. Modeling dct coefficients for fast video encoding.
IEEE Transactions on Circuits and Systems for Video Technology, 9(4):608–616, 1999.

[32] Xiwu Shang, Guozhong Wang, Tao Fan, and Yan Li. Fast cu size decision and pu
mode decision algorithm in hevc intra coding. In Image Processing (ICIP), 2015 IEEE
International Conference on, pages 1593–1597. IEEE, 2015.

59

[33] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of
the high efficiency video coding (hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22(12):1649–1668, 2012.

[34] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency video coding
(hevc). In Integrated Circuit and Systems, Algorithms and Architectures, pages 1–375.
Springer, 2014.

[35] Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business
Media, 2013.

[36] En-Hui Yang, Xiang Yu, Jin Meng, and Chang Sun. Transparent composite model for
dct coefficients: Design and analysis. IEEE Trans. Image Process., 23(3):1303–1316,
2014.

[37] Hao Zhang and Zhan Ma. Fast intra mode decision for high efficiency video coding
(hevc). IEEE Transactions on circuits and systems for video technology, 24(4):660–
668, 2014.

[38] Tao Zhang, Ming-Ting Sun, Debin Zhao, and Wen Gao. Fast intra mode and cu size
decision for hevc. 2016.

[39] Liang Zhao, Li Zhang, Siwei Ma, and Debin Zhao. Fast mode decision algorithm for
intra prediction in hevc. In Visual Communications and Image Processing (VCIP),
2011 IEEE, pages 1–4. IEEE, 2011.

60

APPENDICES

61

Appendix A

Detailed Experimental Result

A.1 Time Reduction Lower Bound Given CU Size De-

cision

A.2 600 Frame Full Test Result of Proposed Main

Version

A.3 600 Frame Full Test Result of Benchmarks

A.4 Data in Figure 4.6

62

Table A.1: Experimental Lower Bound for Encoding Time Reduction

Class Sequence TS LowerBound Class Average

Class A

PeopleOnStreet 62.69%

73.76%
Traffic 67.07%

SteamLocomotiveTrain 83.67%
NebutaFestival 81.61%

Class B

Kimono1 81.12%

69.36%
ParkScene 66.77%

Cactus 66.54%
BascketballDrive 71.45%

BQTerrace 60.94%

Class C

BasketballDrill 56.75%

56.68%
BQMall 59.21%

PartyScene 46.11%
RaceHorsesC 64.66%

Class D

BasketballPass 60.08%

52.28%
BQSquare 48.61%

BlowingBubbles 43.87%
RaceHorsesD 56.54%

Class E
Johnny 75.88%

72.08%KristenAndSara 73.78%
FourPeople 66.57%

Class F

BasketballDrillText 55.03%

61.86%
ChinaSpeed 60.95%
SlideEditing 54.59%
SlideShow 76.85%

63

Table A.2: 600 Frame Full Test Result of Proposed Main Version

Class Sequence ∆Rate(%) ∆PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.40% -0.0181 0.73% 48.23%
Traffic 0.47% -0.0144 0.90% 49.06%

SteamLocomotiveTrain 0.00% -0.0099 0.26% 57.70%
NebutaFestival 0.28% 0.0021 0.24% 64.05%

Class B

Kimono1 0.19% -0.0169 0.73% 57.84%
ParkScene 0.16% -0.0157 0.63% 37.43%

Cactus 0.41% -0.0115 0.88% 45.22%
BascketballDrive 0.32% -0.0125 0.81% 52.08%

BQTerrace 0.58% -0.0059 0.87% 51.94%

Class C

BasketballDrill 0.31% -0.0256 0.90% 43.49%
BQMall 0.68% -0.0199 1.14% 43.64%

PartyScene 0.36% -0.0094 0.40% 38.93%
RaceHorsesC 0.58% -0.0102 0.86% 43.03%

Class D

BasketballPass 0.46% -0.0216 0.97% 43.96%
BQSquare 0.91% -0.0121 1.23% 47.90%

BlowingBubbles 0.20% -0.0113 0.32% 35.73%
RaceHorsesD 0.60% -0.0093 0.82% 41.00%

Class E

Johnny 0.30% -0.0081 0.53% 52.37%
KristenAndSara 0.54% -0.0112 0.88% 55.39%

FourPeople 0.27% -0.0237 0.81% 47.59%

Class F

BasketballDrillText 0.22% -0.0316 0.85% 43.88%
ChinaSpeed 0.65% -0.0196 0.84% 54.17%
SlideEditing 0.90% -0.1364 1.91% 45.08%
SlideShow 0.17% -0.0146 0.31% 52.96%

Overoll Average 0.41% -0.0195 0.78% 48.03%

64

Table A.3: 600 Frame Full Test Result of Hao Zhang TCSVT2014[37]

Class Sequence ∆Rate(%) ∆PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.35% -0.0365 1.02% 56.98%
Traffic 0.37% -0.0339 1.05% 59.07%

SteamLocomotiveTrain 0.03% -0.0174 0.67% 67.19%
NebutaFestival 0.08% -0.0116 0.25% 59.03%

Class B

Kimono1 -0.13% -0.0252 0.63% 65.57%
ParkScene -0.40% -0.0412 0.61% 58.55%

Cactus 0.09% -0.0370 1.17% 58.29%
BascketballDrive 0.34% -0.0308 1.36% 61.93%

BQTerrace 0.60% -0.0359 1.18% 58.41%

Class C

BasketballDrill 0.81% -0.0405 1.70% 54.49%
BQMall 0.17% -0.0500 1.16% 56.78%

PartyScene -0.30% -0.0827 0.96% 50.81%
RaceHorsesC 0.03% -0.0501 0.99% 57.22%

Class D

BasketballPass 0.19% -0.0614 1.28% 57.55%
BQSquare -0.02% -0.0712 0.96% 50.31%

BlowingBubbles -0.31% -0.0837 1.05% 50.67%
RaceHorsesD -0.04% -0.0638 1.11% 54.79%

Class E

Johnny 1.00% -0.0387 2.02% 67.04%
KristenAndSara 0.78% -0.0403 1.67% 64.99%

FourPeople 0.49% -0.0416 1.31% 60.86%

Class F

BasketballDrillText 0.71% -0.0512 1.66% 53.96%
ChinaSpeed 1.22% -0.0881 2.29% 57.94%
SlideEditing 2.49% -0.1676 3.79% 55.51%
SlideShow 1.02% -0.0818 2.01% 73.91%

Overoll Average 0.40% -0.0534 1.33% 58.83%

65

Table A.4: 600 Frame Full Test Result of Min Biao TCSVT2015[27]

Class Sequence ∆Rate(%) ∆PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.28% -0.0193 0.62% 45.40%
Traffic 0.69% -0.0091 0.84% 46.74%

SteamLocomotiveTrain 1.63% -0.0325 3.17% 53.94%
NebutaFestival 1.86% -0.1596 4.83% 22.94%

Class B

Kimono1 2.13% -0.0198 2.71% 50.21%
ParkScene 0.78% -0.0066 0.74% 38.75%

Cactus 0.64% -0.0085 0.82% 39.42%
BascketballDrive 0.62% -0.0173 1.16% 43.19%

BQTerrace 0.66% -0.0137 0.82% 34.99%

Class C

BasketballDrill 0.42% -0.0341 0.98% 44.01%
BQMall 0.60% -0.0186 0.89% 44.57%

PartyScene 0.05% -0.0102 0.14% 31.66%
RaceHorsesC 0.62% -0.0022 0.64% 41.02%

Class D

BasketballPass 0.20% -0.0230 0.53% 42.14%
BQSquare 0.19% -0.0177 0.42% 29.08%

BlowingBubbles 0.04% -0.0092 0.11% 27.75%
RaceHorsesD 0.43% -0.0162 0.65% 36.61%

Class E

Johnny 1.02% -0.0357 1.94% 62.04%
KristenAndSara 0.64% -0.0320 1.32% 59.42%

FourPeople 0.39% -0.0246 0.81% 53.66%

Class F

BasketballDrillText 0.30% -0.0329 0.77% 43.25%
ChinaSpeed 0.30% -0.0517 0.88% 47.19%
SlideEditing 0.57% -0.0554 0.94% 47.87%
SlideShow 0.46% -0.0595 1.12% 69.43%

Overoll Average 0.65% -0.0296 1.16% 43.97%

66

Table A.5: 600 Frame Full Test Result of Nan Hu TCSVT2015[15]

Class Sequence ∆ RD(%) ∆ PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.34% -0.0079 0.50% 33.37%
Traffic 0.25% -0.0055 0.38% 33.20%

SteamLocomotiveTrain 0.01% -0.0093 0.27% 46.63%
NebutaFestival 0.21% 0.0011 0.18% 50.84%

Class B

Kimono1 0.19% -0.0103 0.52% 45.22%
ParkScene -0.01% -0.0136 0.32% 32.26%

Cactus 0.15% -0.0095 0.46% 36.40%
BascketballDrive 0.23% -0.0086 0.54% 42.09%

BQTerrace 0.26% -0.0031 0.32% 36.05%

Class C

BasketballDrill 0.07% -0.0181 0.38% 36.78%
BQMall 0.40% -0.0044 0.50% 31.50%

PartyScene 0.09% -0.0153 0.25% 33.49%
RaceHorsesC 0.22% -0.0103 0.45% 35.13%

Class D

BasketballPass 0.27% -0.0079 0.39% 37.02%
BQSquare 0.13% -0.0113 0.24% 34.24%

BlowingBubbles 0.10% -0.0221 0.37% 32.17%
RaceHorsesD 0.18% -0.0130 0.37% 31.26%

Class E

Johnny 0.51% -0.0076 0.72% 43.20%
KristenAndSara 0.43% -0.0149 0.81% 44.72%

FourPeople 0.25% -0.0120 0.45% 35.93%

Class F

BasketballDrillText 0.15% -0.0173 0.40% 36.10%
ChinaSpeed 0.40% -0.0181 0.57% 47.20%
SlideEditing 0.36% -0.0137 0.46% 50.60%
SlideShow 0.76% -0.0267 1.06% 57.62%

Overoll Average 0.25% -0.0116 0.46% 39.29%

67

Table A.6: 600 Frame Full Test Result of Tao Zhang TCSVT2016[38]

Class Sequence ∆ Rate(%) ∆ PSNR(dB) BD-Rate TS

Class A

PeopleOnStreet 0.29% -0.0306 0.86% 45.72%
Traffic 0.26% -0.0244 0.75% 48.12%

SteamLocomotiveTrain 0.22% -0.0171 0.83% 59.14%
NebutaFestival 0.32% -0.0102 0.47% 53.82%

Class B

Kimono1 0.34% -0.0124 0.71% 55.75%
ParkScene -0.04% -0.0267 0.58% 44.75%

Cactus -0.07% -0.0237 0.61% 49.03%
BascketballDrive 0.13% -0.0186 0.75% 53.95%

BQTerrace 0.07% -0.0212 0.49% 46.24%

Class C

BasketballDrill 0.07% -0.0265 0.63% 37.65%
BQMall 0.24% -0.0275 0.76% 46.47%

PartyScene -0.02% -0.0389 0.57% 34.63%
RaceHorsesC -0.05% -0.0299 0.51% 46.04%

Class D

BasketballPass 0.19% -0.0300 0.69% 43.97%
BQSquare -0.06% -0.0409 0.52% 37.07%

BlowingBubbles -0.17% -0.0366 0.41% 30.31%
RaceHorsesD 0.06% -0.0299 0.55% 40.46%

Class E

Johnny 0.60% -0.0253 1.26% 60.08%
KristenAndSara 0.48% -0.0318 1.12% 58.41%

FourPeople 0.28% -0.0340 0.91% 51.80%

Class F

BasketballDrillText 0.25% -0.0344 0.88% 38.72%
ChinaSpeed 0.58% -0.0723 1.46% 51.04%
SlideEditing 1.35% -0.1414 2.34% 51.68%
SlideShow 1.55% -0.1601 3.44% 70.77%

Overoll Average 0.29% -0.0393 0.92% 48.15%

68

Table A.7: Data in Figure 4.6, Full Test Result of Proposed Method

Precision Threshold TS BD-rate

0.76 51.37% 1.07%
0.78 49.83% 0.92%
0.80 48.03% 0.78%
0.82 45.60% 0.66%
0.84 43.45% 0.55%
0.86 41.53% 0.44%
0.88 39.26% 0.37%
0.90 36.24% 0.28%
0.92 33.16% 0.22%
0.94 29.88% 0.14%

69

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	Overview of HEVC
	HEVC Intra Frame Coding
	Quad-tree Structure in HEVC
	Spatial Sample Prediction
	Transform in HEVC

	Recursive Compression Structure
	State of the Art
	Rough Mode Decision
	Latest Innovations

	Summary

	ML Based Fast HEVC Intra Algorithm
	Algorithm Structure
	General Model
	Specific Logic

	Performance Measure
	Measure for Classification Performance
	Measure for Encoding Performance

	Feature extraction
	Transparent Composite Model
	Summation of Binarized Outlier Coefficients

	Training of Classification Models
	Bayes Decision
	Support Vector Machine

	Flexible Train-Test Period
	Validation Frame and Model Switch
	Summary

	Experiments and Analysis
	Observations on Encoding Time
	Potential of Time Reduction
	Encoding Time Distribution

	Observations on Classification Model
	Result of Bayes Decision
	Result of SVM

	Full Test and Comparison
	Test Conditions
	Full Test Result
	Comparison with Benchmarks

	Summary

	Conclusion and Future Work
	Conclusion
	Application and Future Work

	References
	APPENDICES
	Detailed Experimental Result
	Time Reduction Lower Bound Given CU Size Decision
	600 Frame Full Test Result of Proposed Main Version
	600 Frame Full Test Result of Benchmarks
	Data in Figure 4.6

