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Abstract

The primary motivation of this thesis is to develop a control strategy for

eliminating persistent vibrations in all six spatial directions of the end effector

of a planar cable-driven parallel robotic manipulator.

By analysing the controllability of a cable-driven robot dynamic model,

the uncontrollable modes of the robot are identified. For such uncontrollable

modes, a new multi-axis reaction system (MARS) is developed. The new

MARS that is attached to the end effector is made of two identical pendulums

driven by two servo motors.

A decoupled PD controller strategy is developed for regulating control-

lable modes and a hierarchical sliding mode controller is developed for con-

trolling the remaining modes of the cable robot using MARS. The perfor-

mance of both controllers is studied and shown to be effective in simulation.

The controllers are then implemented on an experimental test setup of a

planar cable-driven manipulator. Both controllers are shown to completely

eliminate the end effector vibrations.
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Chapter 1

Introduction

1.1 Background

With the explosion of e-commerce in recent years, there is a strong need for

high throughput automated warehousing solutions. A relatively new concept

which has yet to be explored in industry is the use of large scale cable-driven

parallel robotic manipulators for high speed pick and place operations. Ca-

ble driven manipulators contain a lot of advantages over traditional rigid

link based alternatives. Cables are very light weight and flexible, allowing

the manipulator to produce high accelerations, span large workspaces, and

incur minimal setup and maintenance costs. The drawback of cable-driven

systems however is that the elastic nature of the cables and more importantly

their uni-directional load tolerance in only tensile forces results in low overall

manipulator stiffness. The effect of this is end effector vibrations become

a major obstacle for accurate positioning and control. This is perhaps the

greatest hindrance preventing cable-driven parallel manipulators from gain-

ing widespread use in industry. In particular for planar systems, where the

translational stiffness in the planar normal direction is extremely low, this

is a significant concern as any disturbances which excite the out of plane

modes can lead to very large displacements of the end effector that cannot
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be regulated by actuation of the cables.

For planar manipulators operating in confined spaces, such as a ware-

housing robot placed between two aisles, the consequences of unregulated

end effector vibrations can have potentially catastrophic consequences if the

displacements become large enough that a collision event occurs between the

end effector and adjacent structures.

1.2 Objective and Contribution

The objective of this thesis is to develop and implement an active multi-axis

vibration control system which is capable of attenuating undesired vibrations

in all six spatial degrees of freedom for a fully-constrained planar cable driven

parallel robot. All previous studies, that the author is aware of, on vibration

control for planar systems have completely neglected the out of plane dy-

namics. Hence, the theoretical and supporting experimental work presented

here is of significant value, especially in the applications of cable-driven or

otherwise flexible robot manipulators for which the effects of low manipulator

stiffness are a real hindrance for any practical industrial application.

The most significant contribution of this work is likely the theoretical

analysis on using a set of inertial actuators, mounted at the end effector, for

eliminating vibrations which occur along directions that are uncontrollable

via cable actuation alone. Equally important, and perhaps even more so, is

the actuator design presented in this work. It is shown that by using the

proposed design, vibrations along the three axes which are uncontrollable

via cable actuation can be eliminated with the addition of only two identical

pendulum actuators.
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1.3 Outline

Chapter 2 provides a survey of the existing literature in the field of cable

driven robotics with a specific focus on elements relevant to vibration control.

Chapter 3 begins by presenting a spatial dynamic model for a planar

cable-driven robot intended for warehousing type applications. A linearised

version of the warehousing robot model is then used to identify the set of un-

controllable modes. A design for a reaction based damping system using two

pendulum actuators is then presented and shown to make the system fully

controllable, using a modified version of the previously presented warehous-

ing robot model, updated to include the dynamics of the proposed damping

mechanism.

Chapter 4 presents the developed control strategy for controlling the mo-

tion of the mobile platform and eliminating vibrations which may persist in

any of the six spatial degrees of freedom. The effectiveness of the proposed

control strategy is investigated in simulation.

Chapter 5 introduces the experimental setup used for verifying the sim-

ulation results of chapter 4. It also describes the design and construction of

a pair of pendulum actuators and their necessary components.

In Chapter 6, experimental results are presented along with a related

discussion.

Finally, chapter 7 includes a final discussion of the results obtained in

this thesis. A brief summary of the work is presented and a set of final

concluding marks are presented. Also included are a list of recommendations

and suggestions for future works.

3



Chapter 2

Literature Review and

Background

2.1 Cable Driven Parallel Robots

Cable driven parallel robots (CDPR) generally consist of a rigid mobile plat-

form, which functions as the end effector, suspended by a number of elastic

cables. The mobile platform is able to move through its workspace in a

controlled maner by actuating the lengths of the individual cables. In re-

cent decades, CDPRs have gained a lot of attention from robotic researchers

[2, 3]. A likely reason for this is that CDPRs provide a number of significant

advantages over traditional robotic manipulators which are based solely on

rigid links.

In comparison to rigid links, cables are extremely light. This leads to CD-

PRs having very low inertia at the end effector, enabling them to command

high accelerations and require less energy to operate. An excellent example

for their potential in high-speed robotics is the FALCON robot which is able

to travel at 14m/s and produce accelerations in excess of 40g [4]. A more

industrial example is the DeltaBot, a cable based delta-robot, developed by

Dekker and Khajepour, capable of performing 120 pick and place operations
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per minute [5].

Because cables are light and their lengths are easily compactable by coil-

ing, this enables CDPRs to span very large workspaces which would be im-

possible or unfeasible with a traditional manipulator. One application in

which suspended CDPRs have been employed is large scale radio telescopes.

The Arecibo radio telescope uses a CDPR with a span of over 300 meters

to carry its 900 ton receiving platform 150m in the air [6]. The FAST radio

telescope, which is currently under construction in China, uses a CDPR for

the same purpose with a span of over 500m [7].

While the individual links of a traditional robotic manipulator typically

have to be carefully designed and manufactured, cables are readily available

and can be easily replaced or reconfigured. This enables the design of manip-

ulators which are of lower cost and much easier to maintain than traditional

manipulator designs.

Two main challenges inherent to CDPRs have been identified. First, and

perhaps most significantly, is the fact that cables are only able to transmit

force uniaxially and must be held under tension to do so. This makes the

task of controlling CDPRs fairly challenging and requires a lot of addition

considerations to ensure cable tensions are always maintained. Additionally,

because cables are only able to apply forces uniaxially, this leads to a ma-

nipulator stiffness far lower than comparable rigid mechanisms. As a result

of low manipulator stiffness, end effector vibrations are a serious hindrance

to performance.

In the literature, CDPRs are divided into two main categories: under-

constrained, and fully-constrained. Under-constrained CDPRs require an

additional external force, such as gravity, in order for the robots motion to

become fully constrained and produce the expected degrees of freedom. Fully-

constrained CDPRs are redundantly actuated such that the robots motion is

fully constrained using cable forces alone. Note: The redundancy condition is

necessary for a CDPR to be fully-constrained using only cable forces because
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of the fact that cables can only apply force uniaxially.

When modeling Cable driven mechanisms, typically the moving platform

is assumed to be perfectly rigid because of its high relative stiffness. The

interesting part of modeling comes when considering how to accurately in-

clude the effects of cables into both the kinematic and dynamic robot models.

In the simplest case, cables are assumed as massless, straight line segments

with no elongation. In more complicated studies, such effects as cable mass,

sagging, and stretching are considered. While including the effects of cable

mass and sagging does lead to a more realistic model, it also significantly

increases the model complexity. Depending on the particular application,

varying levels of model fidelity are applied successfully.

For fully constrained CDPRs, the cable internal tensile forces are typically

much higher than that of the cable weight. In these cases, the massless

and straight line assumptions work well and has been applied successfully

in studies such as [8, 9, 10]. Conversely, for large suspended CDPRs, such

as those used in large radio telescopes, cable mass and sagging has a much

more significant effect and must be considered .

For studies which aim to investigate manipulator stiffness and vibration

characteristics, cable elongation becomes necessary. This commonly involves

representing cables as massless linear or nonlinear springs [11, 12, 13]. The

effects of cable elongation are generally considered to be only significant in

the axial direction. This assumption has long been shown to be effective

in practical applications. Diao has provided theoretical support for this as-

sumption in [14] where he shows that the effects of cable vibrations in the

transversal direction do indeed contribute a negligible amount to overall cable

vibrations and can reasonably be ignored.

The stiffness of a parallel manipulator largely contributes to its perfor-

mance in terms of position control accuracy [15, 16]. This leads to one of

the major drawbacks of CDPRs as the overall manipulator stiffness is rel-

atively low due to the elastic nature of the cables. Comparatively, parallel
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mechanisms built from rigid links are generally praised for their high stiffness

relative to serial configurations.

Because of their high individual link stiffnesses, traditional parallel mech-

anisms can usually be assumed as perfectly rigid for purposes of control. Un-

der this assumption, the end effector pose is kinematicly determined if joint

positions are known. This leads to the first classification of position control

methods: joint-space control. This control strategy involves commanding the

manipulator joints to a particular desired configuration, determined by an

inverse kinematics model. This approach has been adopted for cable-driven

mechanisms in various studies [17, 18, 19]. It has been shown to work rea-

sonably well for certain applications and is a viable solution if accelerations

are low and the cables are relatively stiff.

As accelerations during a motion increase, the assumption of link rigidity

no longer holds well and the effects of cable elongation start to become sig-

nificant. In this state, the end effector is no longer kinematicly determinant,

leading to errors in position during joint-space control. This leads to the

requirement for a second method of position control: task-space control. In

task space control, the aim is to control the end effector position directly, us-

ing direct measurement, and adjust the required joint positions as necessary.

This approach has been applied to cable driven robots in several different

studies [20, 21].

Due to the uniaxial property of cable forces, this requires fully-constrained

CDPRs to be redundantly actuated. An n degree-of-freedom cable driven

mechanism requires ≥ n + 1 cables in order to be fully-constrained [22].

This leads to the condition where there are an infinite number of solutions

for cable tensions. A common approach has been to solve this optimisation

problem by the Jacobin pseudo-inverse method [23]. In [24], Hassan and

Khajepour present a new method for solving the optimisation which results

in a maximized manipulator stiffness.

Several studies have been performed to analyze the stiffness properties of
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CDPRs. In [1] Méndez and Khajepour have analyzed the optimal locations

of cables for maximising manipulator stiffness. In [16], Behzadipour and

Khajepour have shown that the stiffness of a CDPR can always be improved

by increasing the internal cable forces. While these efforts are valuable and

do have an appreciable effect on reducing the impact of undesired vibrations,

they are not a complete solution. Especially in the case of planar systems,

where the out of plane stiffness is inherently very low [25].

A large number of studies have looked at active vibration control via cable

actuation. For fully-constrained spatial mechanisms, where all six degrees of

freedom corresponding to spatial motion are directly controllable using only

internal forces, these efforts have proven to be an effective solution and can

perform well at eliminating undesired vibrations. While this approach works

well for fully-constrained spacial mechanisms, there remains two classes of

CDPRs which still require special attention: under-constrained, and planar

mechanisms.

Large scale suspended CDPRs are often subjected to external distur-

bances, such as wind, which combined with their scale, makes fine position

control very difficult. In [26] as well as [27], the use of a secondary parallel

mechanism, mounted at the mobile platform, is discussed as a method for

improving fine positioning control of these types of systems. Gexue et al., in

simulation, study the potential of using a 6-DOF Stewart platform attached

at the mobile platform for the purposes of improving stability and vibration

control in [28]. In [26], Sun et al. investigate the potential of using of a set

of tuned mass dampers for the FAST radio telescope in simulation. Their

initial results suggest that the adding of a set of tuned mass dampers to the

mobile platform of a large scale suspended spatial CDPR can indeed help

eliminate some of the effects of wind disturbances.

In most previous studies, such as [29, 30, 31], the effects of out of plane

motions in planar CDPRs have been ignored. However, unless the mech-

anism is constrained, such that out of plane motions become impossible,
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this assumption is not valid due to cable elongation. Méndez shows in [32]

that manipulator out of plane stiffness is indeed very low, leading to major

deflections in the face of disturbances.

For planar systems, control via cable acutation is an effective tool for elim-

inating spatial vibrations that lie within the plane. However, motions which

lead the mobile platform away from its equilibrium plane remain uncontro-

lable and cannot be affected by cables alone. In [33], Weber, et al. investigate

experimentally the use of reaction wheels for active damping of certain rota-

tional modes for a two cable planar CPDR. In their study, they demonstrate

that active inertia based damping techniques can produce positive results for

CDPRs. However, they fail to consider out of plane translational motions

which are by far the most significant problem for planar systems. The use

of reaction wheels alone is insufficient for translational damping as they are

not able to produce any force component to bring the mobile platform back

to its equilibrium plane.

In the previous study of [34], Rushton and Khajepour investigated the

optimal placement for an active sliding mass actuator to improve the con-

trollability of a planar cable-driven robot. In that work it was shown that

using an active sliding mass actuator oriented such that it is free to slide

in and out of the plane can greatly improve the controllability for some of

the out of plane modes and help regulate out of plane translational vibra-

tions. This thesis takes that work further and investigates ways in which the

problem of vibration control can be performed along all six spatial axes for

a fully-constrained planar CDPR.
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Chapter 3

Multi-Axis Reaction System for

Vibration Control

From the perspective of motion planning and control, a planar manipulator

consists of three degrees of freedom. Namely, translation about the two

planar axes and a single rotation about the planar normal. In reality, it is

possible for a manipulator to be displaced in all six spatial directions but this

fact is generally ignored as the displacements in nonplanar dimensions are

considered negligible. For many systems this assumption is fair and valid.

If a manipulator is sufficiently stiff or otherwise constrained, such that the

displacements caused by any anticipated disturbance forces are tolerable,

out of plane dynamics can be ignored without any appreciable effect on the

overall manipulator performance.

For systems that are not sufficiently stiff however, simply ignoring the out

of plane dynamics can have potentially disastrous consequences. Consider a

long span cable driven manipulator, intended for warehousing type applica-

tions. If the robot is installed between two aisles, there is a small tolerance

for how much displacement the mobile platform can endure in the planar

normal direction before there is a collision event with one of the adjacent

aisles, resulting in damage to not only the robot, but also the warehouse
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itself. In such cases, it is desirable or even necessary to have some method of

regulating the mobile platform to ensure that it remains along its equilibrium

plane.

This chapter begins by presenting a full spatial dynamic model for the

cable driven warehousing robot under study. The controllability is then an-

alyzed to identify the set of uncontrollable modes. Once this has been com-

pleted, a novel actuator design is presented which is capable of eliminating

any persistent excitation of the uncontrollable modes.

The dynamic warehousing robot model is then updated to include the

newly designed inertial actuators. Once again the controllability of the sys-

tem is analyzed to demonstrate that with the addition of the proposed actu-

ators, the system becomes fully controllable along all 6 spatial axes.

The chapter ends with a simulation study to demonstrate the capabilities

of the actuators at suppressing the uncontrollable modes and to provide some

insight into the system behavior.

3.1 Warehousing Robot Dynamic Model

The system consists of a mobile platform suspended by twelve cables. Figure

3.1 shows the geometric configuration of the robot and location of the cable

mount points. Though the system has twelve cables, it is driven by only four

actuators. A single motor is present in each of the four corners of the fixed

frame. Each motor is responsible for driving multiple cables. The locations

of the cable mount points are selected such that the unstretched lengths for

all cables driven by the same motor are equivalent. The justification for

adding the additional redundant cables is that it helps to improve the overall

manipulator stiffness without requiring any additional control complexity.

For more discussion on the details of the manipulator design and how those

particular mount point locations were obtained, the reader is referred to [32].

It is assumed in this model that the unstretched length of the cables are
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directly controllable by the motors. A full spatial dynamic model represent-

ing the dynamics of a cable driven manipulator, such as the one in Figure

3.1, will be developed in the proceeding sub sections.

Figure 3.1: Warehousing robot cable configuration [1]

3.1.1 Rotations and Frames

There exists a ground fixed inertial frame, g, and a body-fixed frame, b. The

ground fixed frame is oriented such the x axis is horizontal, the y axis points

in the positive vertical direction, and the z axis points out of the plane. The

origin is placed at the centre of the workspace. The body-fixed frame is

attached to the center of mass of the mobile platform and oriented along the

platform’s principal axes of inertia (see Figure 3.3) such that Ip, the inertia

tensor for the platform, becomes:

Ip =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.1)
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The orientation of the platform with respect to the ground is defined

using [1, 2, 3] body-fixed Euler angles. Using this convention, the rotation

matrix from the ground frame to the body-fixed frame is found as:

Rb
g = Rz(φ)Ry(θ)Rx(ψ) (3.2)

where ψ, θ, and φ are the rotations about the global x, y′, and z′′ axes

respectively. While the existence of singularities is an inherent problem with

the use of Euler angles, for the type of mechanism analyzed in this thesis, they

are deemed sufficient. The singularity is reached when θ = ±90◦. Given the

physical constraints, a singular configuration is not realistically achievable.

The pose of the platform at a particular point in time is defined by two

vectors, p and q, which track the position and orientation of the platform

respectively.

p =

xy
z

 , q =

ψθ
φ

 (3.3)

Since it is desired to eventually form the system equations in terms of

the Euler angles and Euler angle rates, it is necessary to provide a relation

between the Euler angle rates and the angular velocity of the platform. The

necessary transformation can be found by projecting q̇ onto the body-fixed

axes.

ω = ψ̇î+ θ̇ĵ′ + φ̇k̂′′ωxωy
ωz

 = Rb
g

ψ̇0
0

+Rb
′′R′′′

0

θ̇

0

+

0

0

φ̇

 (3.4)

Simplifying (3.4), the following transformation matrix, Rr can be ob-

tained for relating ω and q̇:
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ω = Rrq̇ =

 cos(φ) cos(θ) sin(φ) 0

− cos(θ) sin(φ) cos(φ) 0

sin(θ) 0 1


ψ̇θ̇
φ̇

 (3.5)

The relation between ω̇ and q̈ can be found by differentiating (3.5) with

respect to time.

3.1.2 Single Cable Model

bi

Ci

p
rc,i

Figure 3.2: Cable mount points and length vector

Each of the n cables have two mount points: one fixed to the frame

and one fixed to the body (see Figure 3.2). For a particular cable, i, and a

particular robot pose, {p, q}, the vector formed between the two mounts in

the ground frame, Ci, is determined by the following geometric relation:

Ci = bi − (p+Rg
brc,i) (3.6)

where rc,i is the location of the body-fixed mount in the body-fixed frame

and bi is the location of the ground fixed mount in the ground frame. The
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length of cable i is then simply the magnitude of vector Ci. Unit vector ĉi

points in the direction from the platform to the ground fixed mount along

the length of the cable.

ĉi =
Ci
‖Ci‖

, li = ‖Ci‖ (3.7)

Each cable is modelled as a massless linear spring with a particular stiff-

ness ki. Given the current length of a cable, li, and its unstretched length,

δli, the tension in the cable can be found as:

τi = ki(li − δli) (3.8)

3.1.3 Spatial Dynamics of the Mobile Platform

Using the cable force model defined in the previous section, it is possible to

define the complete spatial dynamics for the mobile platform. The resulting

force and moment produced by the ith cable from the perspective of the

platform is found as:

Fi = τiĉi, Mi = rc,i×(Rb
gFi) (3.9)

where Fi is in the ground frame and Mi is in the body-fixed frame. Note:

the transformation of Fi from the ground frame to the body-fixed frame is

necessary since the rotational accelerations are to be calculated in the body-

fixed frame.

Summing the forces and moments produced by the individual cables, the

total net force and moment applied to the platform are found to be:

Fc =
n∑
i=1

Fi, Mc =
n∑
i=1

Mi (3.10)
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Then, using the Newton-Euler equations of motion, the spatial dynamics

of the platform are defined as:

Mpp̈ = Fc +mp g,

Ipω̇ = Mc − ω × (Ipω)
(3.11)

where mp is the mass of the platform, g is the gravitational acceleration

vector, and Mp is the mass matrix associated with the mobile box and is

defined as:

Mp =

mp 0 0

0 mp 0

0 0 mp

 (3.12)

(3.11) can then be made in terms of Euler angles by using the transfor-

mations outlined in section 3.1.1. This results in the following alternative

representation:

Ip

(
Ṙrq̇ +Rrq̈

)
= Mc − (IbRrq̇)×(IbRrq̇)

Rrq̈ = I−1p [Mc − (Rrq̇)×(IbRrq̇)]− Ṙrq̇

q̈ = R−1r

[
I−1p (Mc − (Rrq̇)×(IbRrq̇))− Ṙrq̇

] (3.13)

3.2 Controllability Analysis

The dynamic equations of (3.11), derived in Section 3.1, can be rearranged

to fit the following form:

p̈ = M−1
p (Fc +mp g)

q̈ = R−1r

[
I−1p (Mc − (Rrq̇)×(IbRrq̇))− Ṙrq̇

] (3.14)

The state variables required to represent the system consist of the plat-

form position, orientation, and their first rates. The system inputs consist
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of the unstretched lengths of the driven cables. This leads to the following

definitions for the state and input vectors:

X =


p

ṗ

q

q̇

 , u =


δl1

δl2

δl3

δl4

 (3.15)

where X and u are the state and input vectors respectively. Using (3.14) and

(3.15), the following nonlinear state space model can is defined:

Ẋ =


ṗ

M−1
p (Fc +mp g)

q̇

R−1r

[
I−1p (Mc − (Rrq̇)×(IbRrq̇))− Ṙrq̇

]
 (3.16)

where Fc and Mc are functions of p, q, and u. Once the system has been put

into the form of (3.16), it can then be linearised using Taylor series expansion

about an equilibrium point. Any location within the plane can be used as a

potential equilibrium point so long as the elements of u are chosen such that

the cable tensions hold the platform in a state of static equilibrium.

The equations of (3.16) were generated symbolically using a Matlab script

which makes use of the Matlab symbolic toolbox. For the complete Matlab

code used to generate and linearise system (3.16), The reader can refer to

Appendix A

The locations for the cable mountpoints used in the model are the same

as those presented in Table 5.1 on page 60. The remaining parameters used

for generating the equations are presented in Table 3.1. Linearising about

the equilibrium point X = 012×1, u = [0.5924, 0.5924, 0.5686, 0.5686]T , the

following linear state space model is obtained:

Ẋ = A12×12X +B12×4u (3.17)
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Table 3.1: Warehousing robot model parameters

Parameter Value
mp 10 kg

Ip

0.0218 0 0
0 0.1187 0
0 0 0.1251

 Kg ·m2

kc 100 N /m

where matrices A and B are defined as:

A =

0 0 0 1.0 0 0 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0 0 0 0 0
0 0 0 0 0 1.0 0 0 0 0 0 0

−114.0 0 0 0 0 0 0 0 −1.35 0 0 0
0 −75.5 0 0 0 0 0 0 0 0 0 0
0 0 −70.2 0 0 0 0.416 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.0 0 0
0 0 0 0 0 0 0 0 0 0 1.0 0
0 0 0 0 0 0 0 0 0 0 0 1.0
0 0 191.0 0 0 0 −153.0 0 0 0 0 0
0 0 0 0 0 0 0 −1866.0 0 0 0 0

−108.0 0 0 0 0 0 0 0 −1799.0 0 0 0


(3.18)

B =



0 0 0 0
0 0 0 0
0 0 0 0

37.9 −37.9 18.7 −18.7
−12.7 −12.7 7.06 7.06

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

196.0 −196.0 −100.0 100.0


(3.19)
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The controllability of system (3.17) can be assessed by taking the rank of

the controllability matrix, Q, which is defined as:

Q =
[
B AB A2B · · · An−1B

]
(3.20)

Evaluating the rank of Q, it can be seen that six of the twelve modes

are uncontrollable and therefore, an additional set of actuators is required in

order to eliminate any persistent excitation of the uncontrollable modes. By

investigating the form of A and B, it is observed that the input has no effect

on the state variables corresponding to out of plane motions. Specifically:

ψ, ψ̇, θ, θ̇, z, and ż.

3.3 Inertial Actuator Design

One potential actuator design approach capable of producing the required set

of moments and forces to affect the uncontrollable modes, identified in Section

3.2, is the use of an inertia based reactionary mechanism. The basic concept

is to add an additional inertial load to the mobile platform. Any forces

applied to such a load will also generate and equal and opposite reaction

force on the platform. This concept has been employed widely in the form

of reaction wheels, an inertial disk used for attitude control of satellites, and

as well with tuned mass dampers, employed in skyscrapers for eliminating

structural vibrations induced by disturbances such as wind.

In order to dampen vibrations along the uncontrollable axes, such an

actuator would be need to be able to produce a moment along the body-fixed

x and y axes, as well as a force along the body-fixed z axis. Perhaps the most

obvious solution would be to add two reaction wheels, one along each of the x

and y axes, and a single tuned mass damper, aligned to oscillate along the z

axis. While this would solve the controllability problem, it is not necessarily

the best design solution in terms of cost or simplicity or performance.
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Consider instead, a rigid pendulum coupled to the shaft of a motor which

is mounted at some location on the mobile platform (see Figure 3.3). Due

to the unbalanced nature of the pendulum shaped load mass, an applied

torque along the motor shaft will produce a corresponding reaction torque,

as well as a reaction force which is tangential to the position of the pendulum

along its arc of motion. Depending on where the actuator is mounted on the

platform, the reaction force from the pendulum will also produce a secondary

set of reaction moments, due the displacement of the force from the various

rotational axes.

la

ra

p

z

xy

Figure 3.3: Pendulum load and defining geometry terms

A pendulum consists of a single rigid link which is free at one end and at

the other end, attached to another body via a revolute joint. The kinematics

of a pendulum mounted to the platform are defined by two vectors expressed

in the body-fixed frame: the position of the revolute joint relative to the

platform centre of mass, and the position of the pendulum centre of mass

relative to the revolute joint. These two vectors are labeled as ra and la
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respectively.

For a single pendulum added to the mobile platform and mounted such

that the pendulum is free to rotate along the x axis, any torque applied

along the motor shaft, τa, will also generate the following reaction force and

moments:

Fz = −τa× la

Mx = −τa +
[(
ra · ĵ

)
×Fz

]
My =

(
ra · î

)
×Fz

(3.21)

where î and ĵ are aligned with the x and y axes respectively. For the sake of

robustness, it can noted from observing (3.21) that as long as the centre of

mass remains above the pendulum mount point, the sign of the x moment

produced by Fz will remain the same.

It is worth mentioning at this time that there is an inherent coupling in

the dynamics of z and ψ. This coupling can be observed by examining the A

matrix of (3.17). With a single pendulum, assuming it is mounted along the

z axis such that My becomes zero, a coupled force moment pair is generated

by the applied torque, τa. Exploiting the inherent coupling between the z

and θx dynamics, both can be controlled simultaneously via the coupled Fz,

Mx reaction pair.

Adding a second equivalent pendulum and mounting the pair of actuators

such they are mirrored about z, y plane, it becomes possible to produce a

pure moment about the y axis while still maintaining the ability to produce

the coupled force moment pair of the single pendulum case.

If τa,1 and τa,2, the motor torques applied to the two respective pendu-

lums, are equal, the y moments generated by each pendulum will be equal

in magnitude but opposite in sign. Summing the two reaction y moments

will result in a net zero moment being applied to the platform. Additionally,
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the moment-force reaction pair generated by each pendulum will be equal in

both sign and magnitude, thus the resulting reaction pair will be twice that

of the reaction pair generated by a single pendulum.

If τa,1 and τa,2 are equal in magnitude but opposite in sign, the reaction

moment-force pairs will also be equal in magnitude but opposite in sign. In

this case, the signs of the two reaction moments in the y direction will be

equal in sign, thus leading to a nonzero net moment being applied to the

platform. At the same time, the x moment and z forces applied by the two

pendulums will cancel each other out.

Depending on the signs of the motor torques applied to pendulums, it is

therefore shown to be possible to generate a pure moment in the y direction

or a coupled force-moment pair independently. Thus with the addition of two

identical inertia based actuators, reaction forces can be generated to affect

the three uncontrollable modes of the platform spatial dynamics.

3.4 Pendulum Dynamic Modeling

For deriving the model of the warehousing robot with two attached pendu-

lum actuators, Lagrangian mechanics will be used as it simplifies the analysis

when confronted with the reactions of between the pendulums and the plat-

form. The kinetic energy and potential energy of the platform, Tp and Vp

respectively, are defined as:

Tp =
1

2
mp (ṗ · ṗ) +

1

2
ωT Ipω

Vp = mp~g
(
p · ĵ

) (3.22)

Using the cable model described in Section 3.1.2, the potential energy for

the ith cable can be found as:
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Vc,i =
1

2
ki(li − δli)2 (3.23)

The kinetic energy and gravitational potential energy terms for the cables

are zero since they are assumed to be massless. In order to define the kinetic

and potential energy terms for each of the i pendulum actuators, it is first

necessary to obtain an expression of their rotational and translation veloci-

ties. Consider the platform mounted pendulum of Figure 3.3. The location

of the centre of mass of the ith pendulum, with respect to the ground, is

found to be:

pa,i = p+Rg
b (ra,i + la,i) (3.24)

Taking the time derivative of (3.24), the pendulum velocity is then:

ṗa,i = ṗ+Rg
b [(ωp×ra,i) + (ωa,i× la,i)] (3.25)

The angular velocity is simply the sum of the angular velocity of the pen-

dulum about its revolute joint, θ̇a,i, with the angular velocity of the platform.

Namely:

ωa,i = ω + θ̇a,i (3.26)

With the use of (3.24), (3.25), and (3.26), the kinetic energy for the ith

pendulum is defined as:

Ta,i =
1

2
ma,i (ṗa,i · ṗa,i) +

1

2
ωTa,i Ia,i ωa,i (3.27)

and the potential energy for the ith pendulum:

Va,i = ma,i (g · pa,i) (3.28)

Now that all of the energy terms have been computed, the Lagrangian

can be formed as:
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L = (Tp + Ta,1 + Ta,2)−

(
Vp +

n∑
i=1

Vc,i + Va,1 + Va,2

)
(3.29)

The Euler-Lagrange equations for the state variables associated with the

mobile platform and the two pendulums become:

d

dt

{
∂L
∂ṗ

}
− ∂L
∂p

= 0

d

dt

{
∂L
∂q̇

}
− ∂L
∂q

= 0

d

dt

{
∂L
∂θ̇a,1

}
− ∂L
∂θa,1

= τa,1

d

dt

{
∂L
∂θ̇a,2

}
− ∂L
∂θa,2

= τa,2

(3.30)

where τa,1 and τa,2 are the applied torques for the two pendulums. As in

Section 3.1, the equations of (3.30) are solved for and linearised by the use

of a Matlab script. The code used for generating the model is provided

in Appendix A. The model parameters relevant to the warehousing robot

are the same as in Section 3.1. Table 3.2 contains the values used for the

additional parameters required to describe the pendulums.

To accommodate the states and control inputs added by the two pendu-

lums, the state and input vectors, X and u, must be updated as follows:
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Table 3.2: Pendulum model parameters

Parameter Value
ma,i 0.6 kg

Ia,i

655 0 0
0 483 0
0 0 191

 Kg ·mm2

ra,1
[
0.2325, −0.0480, 0

]T
m

ra,2
[
−0.2325,−0.0480, 0

]T
m

la,i
[
0,−0.05, 0

]T
m

X =



p

ṗ

q

q̇

θa,1

θ̇a,1

θa,2

θ̇a,2


, u =



δl1

δl2

δl3

δl4

τa,1

τa,2


(3.31)

After solving (3.30) for Ẋ, the dynamic equations can be linearised using

Taylor series expansion. Doing so about the equilibrium point X = 016×1, u =

[0.5461, 0.5461, 0.5686, 0.5686, 0, 0]T , the following linear state space model is

obtained:

Ẋ = A16×16X +B16×6u (3.32)

where matrices A and B are defined as:
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A1:16×1:9 =



0 0 0 1.0 0 0 0 0 0
0 0 0 0 1.0 0 0 0 0
0 0 0 0 0 1.0 0 0 0

−102.0 0 0 0 0 0 0 0 5.11
0 −69.5 0 0 0 0 0 0 0
0 0 −70.0 0 0 0 −0.982 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 66.0 0 0 0 −172.0 0 0
0 0 0 0 0 0 0 −1633.0 0

−31.9 0 0 0 0 0 0 0 −1200.0
0 0 0 0 0 0 0 0 0
0 0 999.0 0 0 0 87.5 −5299.0 0
0 0 0 0 0 0 0 0 0
0 0 999.0 0 0 0 87.5 5299.0 0



A1:16×10:16 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.423 0 0.423 0

1.0 0 0 0 0 0 0
0 1.0 0 0 0 0 0
0 0 1.0 0 0 0 0
0 0 0 8.0 0 8.0 0
0 0 0 −6.83 0 6.83 0
0 0 0 0 0 0 0
0 0 0 0 1.0 0 0
0 0 0 −162.0 0 19.1 0
0 0 0 0 0 0 1.0
0 0 0 19.1 0 −162.0 0


(3.33)

26



B =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

33.2 −33.2 17.0 −17.0 0 0
−11.3 −11.3 6.3 6.3 0 0

0 0 0 0 −1.44−1.44
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −27.2 −27.2
0 0 0 0 23.2 −23.2

117.0 −117.0 −70.0 70.0 0 0
0 0 0 0 0 0
0 0 0 0 549.0 −65.1
0 0 0 0 0 0
0 0 0 0 −65.1 549.0



(3.34)

Once again the system controllability is analyzed using the same method

as Section 3.2. After completing such analysis, it can be observed that by

adding two of pendulum actuators, proposed in Section 3.3, the controlla-

bility matrix Q becomes full rank and therefore, at least locally, the system

becomes fully controllable.

3.5 Simulation of Linearised Models

Using the linearised form of the models defined in Sections 3.1 and 3.4 a brief

simulation study has been performed to demonstrate the capabilities of using

a set of two pendulum actuators for eliminating persistent excitation of the

uncontrollable modes the analyzed warehousing robot.

Three different test cases are considered. In each case, the mobile plat-

form is given some initial condition and allowed to oscillate freely thereafter.

State space models of the warehousing robot with and without the duel

pendulum actuators are simulated side by side to demonstrate the regula-

tion performance of the proposed actuators. The pendulums are controlled
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through the use of a Linear Quadratic Regulator (LQR). The same designed

LQR is used for all three cases.

The simulated system response for test cases 1-3 are presented in Fig-

ures 3.4, 3.5, and 3.6 respectively. For the system without the pendulum

actuators, in all three test cases, the platform oscillates indefinably without

any attenuation. This result is expected since the model contains no natural

damping.

Figure 3.4 shows how the system is able to eliminate oscillations in the z

and θx directions simultaneously. The natural frequency of the θx dynamics

are significantly higher than that of z. Very quickly, the high frequency

oscillations of θx are eliminated leaving only the lower frequency content

resulting from the out of plane translational mode to be slowly attenuated

with time.

Figure 3.5 focuses fully on the potential for the duel pendulum system

at regulating θy. As predicated, by swinging the pendulums in opposite

directions, θy can be regulated without any undesired excitation of the z and

θx modes.

In Figure 3.6, It is demonstrated that the duel pendulum actuators are

capable of regulating z, θx, and θy simultaneously.
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Figure 3.4: Simulated response of the linearised models for test case 1
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Figure 3.5: Simulated response of the linearised models for test case 2
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Figure 3.6: Simulated response of the linearised models for test case 3
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Chapter 4

Multi-Axis Vibration

Controller Design

For the purposes of controller design, the mobile platform dynamics can be

divided into two independent subsystems corresponding to the in-plane and

out of plane dynamics. Each subsystem contains three degrees of freedom.

Such a design procedure can be performed because of the fact there is no

dynamic coupling between the two subsystems. Additionally the out of plane

modes are completely uncontrollable via cable actuation.

In this chapter, control methods are developed for persistent excitations

of the platform which may occur along any of the platform’s six spatial

degrees of freedom. Section 4.1 investigates vibration control of the in-plane

dynamics via cable actuation. Section 4.2 develops a control strategy for the

multi-axis reaction system (MARS) introduced in Chapter 3.

In Section 4.3, observers and state estimation procedures using available

sensor data are developed and presented.

In the final section of this chapter, the effectiveness of the controllers

developed in Sections 4.1 and 4.2 is demonstrated in simulation.
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4.1 In-Plane Control

A high level block diagram outlining the overall control topology for the in-

plane system can be found in Figure 4.1. In the proceeding subsections, the

elements of Figure 4.1 will be developed and described in detail.

Redundancy
Solver

τu

τeq τ

ë

r̈

r δl3

δl2

δl1

δl4

Cable Length

Analysis

+t

Trajectory

Planner

Vibration

Controller

Figure 4.1: High level in-plane control architecture

4.1.1 Trajectory Planner

From a motion planning perspective, a planar manipulator is simply a three

degree of freedom system. Because of the geometric constraints imposed by

the redundant cables, the rotation of the mobile platform about the planar

normal axis can be assumed fixed. This reduces the functional workspace

further to consist of merely two degrees of freedom: translation about the

planar horizontal and vertical axes. For the intended application of pick and

place operations in a warehouse, trajectory planning is fairly simple. There

are no obstacles to avoid and motion tasks generally consist of moving to

a location, stopping to pick up and object, moving to a second location,

and stopping to drop the object. To serve this purpose a simple waypoint

tracking controller was developed.
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Figure 4.2: Kinematic profile with cubic accelerations

The task of the waypoint tracking controller is as follows: given an ordered

set of n points, the platform must move from a given starting position and

pass through each point sequentially. In this particular implementation, the

platform must stop at each waypoint before proceeding to the next. Consider

wi, the ith waypoint, where i = 1 · · · n−1. A vector pointing from the current

waypoint to the next can be obtained as:

v = wi+1 − wi (4.1)

The unit vector pointing toward the next waypoint from the current is
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then simply v̂ = v
‖v‖ . A trajectory from the current to the next waypoint can

then be defined as:

vr = wi + s · v̂ (4.2)

where s is a time varying parameter such that 0 ≤ s ≤ ‖v‖. At the beginning

of the tracking sequence, i = 1 and w1 is the initial position of the platform.

The platform then follows the trajectory defined by (4.2). Upon reaching the

next waypoint, the value of i is iterated. This process continues until i = n,

at which point, the motion sequence is complete.

The time varying parameter s was designed to produce a cubic accelera-

tion profile. The benefit is such a kinematic profile is that the acceleration

and jerk are continuous. This is helpful for minising shocks and vibrations

in the system. Figure 4.2 shows an example of the form of kinematic profiles

used for designing the trajectory parameter s. For a detailed explanation of

how a cubic acceleration motion profile can be derived, the reader is refered

to [35].

4.1.2 Cable Length Analysis

If the position and orientation of the platform is known, the cable lengths

can be determined via the cable model of Section 3.1.2, specifically, (3.7).

If it is desired to produce a particular tension within a cable, the required

cable unstretched length to produce such a tension can be found by solving

(3.8) for δli.

4.1.3 Redundancy Solver

The redundancy solver is based on a slightly modified version of the ware-

housing robot dynamic model presented in Chapter 3. Since the twelve cables

of the robot are driven by only four actuators, it is beneficial for the sake of

clarity to restate the twelve cable system as an equivalent four cable system.
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The mounting points for the twelve cables are designed such that the length

of all cables in a single control group are the same. Exploiting this knowledge,

each of the four cable control groups can be collapsed to a single equivalent

cable. Effective cables 1, 2, 3, and 4 correspond to the cable groups driven

by the top-left, top-right, bottom-left, and bottom-right motors respectively.

Fx, Fy, and Mz, the combined forces and moment applied on the mobile

platform by the cables, are found to be:

Fx =
4∑
i=1

(
τiĉi · î

)
Fy =

4∑
i=1

(
τiĉi · ĵ

)
Mz =

4∑
i=1

(
(rc,i × τiĉi) · k̂

)
(4.3)

where τi is the tension of the ith equivalent cable. The coefficients of (4.3)

in terms of τ1−4 can be collected into a matrix, A, defined as:

A =

 ĉ1 · î ĉ2 · î ĉ3 · î ĉ4 · î
ĉ1 · ĵ ĉ2 · ĵ ĉ3 · ĵ ĉ4 · ĵ

(rc,1 × ĉ1) · k̂ (rc,2 × ĉ2) · k̂ (rc,3 × ĉ3) · k̂ (rc,4 × ĉ4) · k̂

 (4.4)

Using the matrix A defined above, the following linear relationship relat-

ing cable tensions to the forces applied on the box can be obtained:

A τ = u (4.5)

where τ =
[
τ1 τ2 τ3 τ4

]T
and u =

[
Fx Fy Mz

]T
. Since the system is redun-

dantly actuated, there are an infinite number of solutions for τ to produce a

desired u. In order to solve the redundancy issue, some sort of optimisation
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procedure is required in order to select a particular solution which is most

desirable. Perhaps the simplest approach is to set the cable tensions to their

maximum permissible values. The justification for using such an approach is

supported by the work of Behzadipour and Khajepour who, in [16], proved

that the stiffness of a cable driven manipulator can always be improved by

increasing the internal forces.

Maximum tension limits τtm and τbm are imposed on the tensions of the

top and bottom cables respectively. Expressed as a set of inequalities:

τ1, τ2 ≤ τtm
τ3, τ4 ≤ τbm

(4.6)

By restricting one of cable tensions to its maximum value, A can be

reduced to a 3x3 matrix, at which point the system is no longer redundantly

constrained and a solution for the remaining tensions can be found by solving

(4.5) for τ . Define τm,i as the set of tensions obtained by restricting the

tension of cable i to its maximum value, then for all j 6= i, if ‖τm,i‖ > ‖τm,j‖,
τopt = τm,i.

At static equilibrium, u = ueq =
[
0 mpg 0

]T
. Therefore, the optimal set

of cable tensions required to maintain a state of static equilibrium for the

mobile platform, τeq, is equivalent to τopt when u = ueq.

4.1.4 Decoupled PD Control

By linearising the platform dynamics about a static equilibrium point, the

following simplified model of the planar dynamics resulting from cable elon-

gation can be obtained:
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ẍ = −kxx+ Fx

ÿ = −kyy + Fy

φ̈ = −kφφ+Mz

(4.7)

where kx, ky, and kφ are equivalent stiffnesses resulting from the combined

stiffnesses of the individual cables. The three control inputs, Fx, Fy, and Mz,

represent the forces which can be applied by varying the unstretched cable

lengths from their equilibrium lengths. The problem then becomes how to

chose Fx, Fy, and Mz in order to adequately keep the platform along its

equilibrium trajectory and eliminate task space position errors caused by

cable elongation. One potential candidate is to use three independent PD

controllers, constraining the three inputs to the following form:

u =

FxFy
Mz

 =

Kp,x êx +Kd,x
ˆ̇ex

Kp,y êy +Kd,y
ˆ̇ey

Kp,φ êφ +Kd,φ
ˆ̇eφ

 (4.8)

where êx, êy, and êφ correspond to the estimates of the task space tracking

errors, as defined in Section 4.3.1. The requested command forces of u can

be converted to cable tensions using the following relationship:

τu = A+u (4.9)

where A+ is the Moore–Penrose pseudoinverse of matrix A which is defined

in (4.4). This results in a solution whose demand for the required change in

cable tensions is a minimum, in terms of the Euclidean norm. Combining the

control tensions with the static equilibrium tensions, which are determined

as defined in Section 4.1.3, the total required cable tension commands can

be obtained as:
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τ = τeq + τu (4.10)

4.1.5 Input Saturation

It is necessary to limit how much the tension in each cable can be varied

by any active vibration controller. Without such limitations, there is no

guarantee that cable tensions will remain within a range that is both safe for

operation and producible by the actuators.

Define τmax as the maximum change in tension that can be applied to

a single cable by the vibration controller. τu is a vector which contains

the requested change in tensions for the i cables and is defined as τu =[
τu,1 τu,2 τu,3 τu,4

]T
. If the components of τu are to be considered valid, for

i = 1 . . . 4, the following inequality must hold:

‖τu,i‖ ≤ τmax (4.11)

Consider ud as the unsaturated applied force request vector, generated

by the active vibration controller. From Section 4.1.3, the cable tensions

required to produce a given u can be found by solving τu = A+u. Simply

saturating the individual components of τu is inadequate as the forces ap-

plied to the mobile platform are not the tensions of individual cables but a

combination thereof. As a result, if tensions are saturated individually, the

resulting applied forces become skewed and no longer a proper representative

of ud. Consider, provided that ûd = ud/‖ud‖, ud can be restated as:

ud = ‖ud‖ · ûd (4.12)

In order for the directional integrity of ud to be maintained after satura-

tion, u must be expressible as α · ûd, where α is some real scalar. With this

in mind, (4.9) can be restated as:
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τu =
(
A+ûd

)
usat (4.13)

where usat ≤ ‖ud‖ is the largest possible positive scalar such that (4.11) is

satisfied. (4.13) can be simplified as:
τ1

τ2

τ3

τ4

 =


a1

a2

a3

a4

usat (4.14)

The maximum possible value for usat then can be found as:

usat = min

{
‖ud‖ ,

∣∣∣∣τmaxa1

∣∣∣∣ , ∣∣∣∣τmaxa2

∣∣∣∣ , ∣∣∣∣τmaxa3

∣∣∣∣ , ∣∣∣∣τmaxa4

∣∣∣∣} (4.15)

4.2 MARS Controller Design

It is important to consider the nonlinear dynamics of the pendulums when

designing a controller for the multi-axis reaction system (MARS) introduced

in Chapter 3. Close to the stable equilibrium point, when the pendulums are

aligned with the gravity vector, a linearised approximation of the dynamics

could be used and a controller designed using any of the many various linear

control design methods. However, when the amplitudes of the out of plane

oscillations become large, the angular positions of the pendulums as they

try to compensate the large position errors will become similarly large and

venture away from the region in which the local linear approximation is valid.

This poses a concern not only for potential degradation in performance, but

also for the stability of the system.

Another important consideration is the robustness features for the cho-

sen controller. Given that the intended application of the CDPR under

consideration is performing pick and place operations within a warehousing

environment, it is important that the MARS controller remains stable and
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effective in the presence of large variations in the platform mass. It is also

important that the controller can tolerate the changes in the out of plane

dynamics which result from varying the position of the platform within the

plane.

For the reasons mentioned above, a sliding mode control approach has

been pursued because of its excellent robustness features and ability to handle

the nonlinear pendulum dynamics. Since the subsystem governing the out of

plane and pendulum dynamics is underactuated, a hierarchical sliding surface

design is used.

This type of controller is based off of the work presented in [36] and [37].

The basic concepts and specific controller design relevant to this system are

presented in the proceeding subsections.

4.2.1 Hierarchical Sliding Surface Design

The out of plane dynamics of the mobile platform with a single pendulum

actuator can be divided into a set of subsystems corresponding to the dy-

namics of z, θx, θy, and θp. These four subsystems are driven by a single

input: the torque applied by the motor coupled to the pendulum. The dy-

namic equations of the system, derived in Chapter 3, can be arranged to fit

the following form:

z̈ = f1 + b1u+ d1

θ̈x = f2 + b2u+ d2

θ̈a = f3 + b3u+ d3

(4.16)

fi, and bi are nonlinear functions of X and time where X is the complete

state vector. The di terms represent lumped disturbances which account for

the effects of modeling errors, external disturbances, and unmodeled dynam-

ics (such as the coupled dynamics between θy and θa).
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Define a set of i sliding surfaces of (4.16), corresponding to the i subsys-

tems, where i = 1 . . . 3, as:

s1 = c1z + ż

s2 = c2θx + θ̇x

s3 = c3θa + θ̇a

(4.17)

where ci is a constant, chosen such that si is stable. After taking the deriva-

tive of surface si, with the knowledge that in the sliding phase, si = ṡi = 0,

the equivalent control required to keep the ith subsystem along its sliding

surface can be found as:

ueq,i = −fi + cixj
bi

(4.18)

A hierarchical sliding surface, S, can then be formed using a linear com-

bination of the subsystem surfaces, scaled using a set of i parameters.

S = α1s1 + α2s2 + α3s3 (4.19)

Now that a sliding surface has been designed, the control input, u, re-

quired to force the system to the sliding state in finite time can be found

using stability analysis.

4.2.2 Control Design

Consider the following candidate Lyapunov function:

V =
1

2
S2 (4.20)

Taking the time derivative of (4.20) and making some necessary sub-

stitutions and algebraic manipulations we can end up with the following

expression:
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V̇ = SṠ

= S [α1ṡ1 + α2ṡ2 + α3ṡ3]

= S
[
α1 (c1ż + z̈) + α2

(
c2θ̇x + θ̈x

)
+ α3

(
c2θ̇p + θ̈p

)]
= S

[
α1 (c1ż + f1 + b1u) + α2

(
c2θ̇x + f2 + b2u

)
+ α3

(
c2θ̇p + f3 + b3u

)]
= S [(α1b1 + α2b2 + α3b3)u− (α1b1 ueq,1 + α2b2 ueq,2 + α3b3 ueq,3)]

(4.21)

Assume that the value of Ṡ is as follows:

Ṡ = −η sign(S)− kS (4.22)

where η and k are positive constants. By rearranging the expression for Ṡ

contained in the last line of (4.21), the switching control signal, usw, can be

obtained as:

usw =
(α1b1 ueq,1 + α2b2 ueq,2 + α3b3 ueq,3)− η sign(S)− kS

(α1b1 + α2b2 + α3b3)
(4.23)

Substituting (4.23) for the u term of (4.21), the expression for V̇ reduces

to:

V̇ = −η|S| − kS2 (4.24)

Which is negative definite, therefore satisfying the Lyapunov condition

for asymptotic stability. Thus, it has been proven that with the applica-

tion of the switching control signal, usw, the system dynamics will converge

asymptotically to the Hierarchical sliding surface of (4.19). Reformulating

(4.21) to include the disturbance terms present in (4.16) and using the same

switching control of (4.23):
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V̇ = S [−η sign(S)− kS + (α1d1 + α2d2 + α3d3)]

= −η|S| − kS2 + S (α1d1 + α2d2 + α3d3)

≤ −η|S| − kS2 + |S| |α1d1 + α2d2 + α3d3|

(4.25)

Therefore, given a sufficiently large switching gain, η, such that η ≥
|α1d1 + α2d2 + α3d3|, the sliding surface dynamics are invariant to the com-

bined lumped disturbances.

4.3 Vibration Observer and State Estimation

Using the inverse kinematic model described in Section 4.1.2, the set of un-

stretched cable lengths required to bring the mobile platform to a particular

desired location can be determined. The required lengths can then be fed

into the cable reel motor’s controllers and the mobile platform’s new equilib-

rium position will be brought to the desired location. This is the functioning

procedure of a joint space controller.

Joint space control works well if the links connected to said joints do not

experience a significant degree of deformation. If deformation does occur,

such as in the form of bending, or more specifically in this case, elongation,

then the effectiveness of joint space control breaks down.

When cable elongation occurs between the cable spool and platform, the

resulting change in length of the cables is imperceptible with only knowledge

of the spool position. The effect of this is that any deviations in the position of

the platform resulting from cable elongations requires additional knowledge

in order to be observable. The proceeding subsections describe how this

problem has been addressed and incorporated within the overall controller

design.
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4.3.1 IMU Integration

Mounted aboard the mobile platform is a 6-axis Inertial Measurement Unit

(IMU). The IMU produces three acceleration measurements (ẍ, ÿ, z̈) and

three angular velocity measurements (ωx, ωy, ωz).

From the trajectory planner, the desired accelerations (ẍd, ÿd) in the x

and y directions are known. Subtracting the measured accelerations from

the desired accelerations, an estimation of the second rates of the tracking

errors can be obtained. Namely:

ëx = ẍd − ẍm
ëy = ÿd − ÿm
ëz = −z̈m

(4.26)

where ẍm and ÿm are the measured x and y accelerations respectively. By

integrating ë, an estimate of ė can be found and further integration produces

and estimate of e. However, due to the fact that IMU measurements are

not perfect and often contain considerable noise and constant bias, simply

integrating ë leads to a rapid deterioration of the estimates for ė and e as

they start to drift away from the result of accumulated errors.

It is known, due to the imposition of tracking error limits on the cable

lengths, that the tracking errors on the unstretched cable lengths are very

small. Because of this, it can be assumed that any measured tracking error

estimates obtained from the IMU are a result of effects such as cable elon-

gation which cannot be directly observed from the measured unstretched

lengths. Based on this assumption, an additional set of assumptions can be

made: for a large enough window, the moving averages of ë, ė, and e are

zero. Based on these assumptions, the estimates ê of e can be improved be

subtracting the computed moving averages from the measured estimates of ë,

ė, and e. This helps to remove the effects of accumulated noise and constant
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biases and prevents the computed estimates from diverging. The length of

a well performing window size for the moving averages are sensor dependent

and can be tuned experimentally until a satisfying result is obtained. A block

diagram representation of the complete IMU integration filter is provided in

Figure 4.3.

ẍm
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mean
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1
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êx

Figure 4.3: IMU based filter for obtaining estimates of tracking errors

A similar approach can be taken for obtaining estimates of ez, eψ, eθ

and eφ. Since the gyroscopes measure angular velocity rather than angular

acceleration, a slight modification is necessary as the first set of integrations

are no longer necessary, ė can be computed directly as:

ėψ = −ωx,

ėθ = −ωy,

ėφ = −ωz

(4.27)

4.3.2 Sliding Mode Differentiator

The angular position of the pendulums are directly measurable using en-

coders coupled to the motor shafts. The angular velocities however are not

available and so, some form of numerical differentiation is required. Numer-

ical differentiation of real life signals is notoriously difficult. The effects of

noise and discretization errors are greatly amplified through the act of differ-

entiation. In order to obtain estimates for the pendulum angular velocities,
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a 2nd order sliding mode exact robust differentiator was used. This type

of filter, originally presented in [38, 39], has been observed to perform very

well in terms of noise rejection and induced signal lag. It’s implementation is

simple and it is computationally inexpensive. The applied filter is presented

below:

ż0 = −λ2L1/3 |z0 − θa|2/3 sign(z0 − θa) + z1

ż1 = −λ1L1/2 |z1 − z0|1/2 sign(z1 − z0) + z2

ż2 = −λ0L sign(z2 − z1)

(4.28)

For the measured signal, θa, with proper parameter selection, it can be

shown that in finite time, and in the absence of noise, z0 = θa, and z1 = θ̇a.

In the filter presented above, λ0, λ1, λ2, and L are design parameters which

can be used to tune the performance of the filter. On suggestion from [39],

the following λ values were chosen: λ0 = 1.1, λ1 = 1.5, λ2 = 3. These values

were found to work well. L was tuned experimentally using data measured

from the pendulum encoders.

4.4 Simulated Controller Performance

In order to generate a realistic assessment for the performance of the con-

trollers of Section 4.1 and 4.2, it is important to consider the nonlinear dy-

namics of both the warehousing robot and the pendulum actuators. To do so,

a multi-body dynamic model of the warehousing robot system was developed

using MapleSim.

Since no cable model exists within the standard MapleSim block set,

instead the cables were modelled as a prismatic joint with a force that can

be applied along the joint axis. The magnitude of the applied force was

generated to replicate the behaviors of the single cable model presented in

Section 3.1.2. Each cable was mounted to the fixed frame and the mobile
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platform via spherical joints. Once the MapleSim had been developed, it was

then exported to Simulink where controller design and simulation tasks were

performed.

The results and a discussion of the insights gained from the simulation

study of the active vibration controllers of Sections 4.1 and 4.2 are sum-

marised and presented in Subsections 4.4.1 and 4.4.2 respectivly.

4.4.1 In-Plane Controller

For testing the decoupled PD control strategy, the platform was commanded

to track a rectangular shaped trajectory. The same trajectory tracking task

was repeated twice: once with no active vibration controller, and once with

the decoupled PD controller enabled. Figure 4.4 shows the position track-

ing performance of the platform with and without active vibration control

enabled. The controller signals generated by the decoupled PD controller

during the motion are presented in Figure 4.5.

It can be observed that in the natural damping case (when the active vi-

bration controller is disabled) the platform position in the y direction clearly

contains a large oscillatory component. However, with the active vibration

controller active, such persistent excitations are swiftly eliminated. In the

x and θz directions, the amplitudes of the natural oscillatory motions are

very small. This results from the fact that the stiffness of the cables used

in this model is fairly high. Although vibrations in the x and θz directions

are practically a non issue, it is still worth noting that the active damping

controller does a good job at eliminating persistent excitations.

4.4.2 MARS Controller

Three different test cases are considered. In each test case, the mobile plat-

form is given some initial condition and allowed to oscillate freely thereafter.

In all of the results presented below, the active damping data sets correspond-
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Figure 4.4: Simulated PD controller performance for rectangle trajectory

ing to the system response when the Hierarchical sliding mode controller is

enabled. The natural damping data sets were obtained by observing the

system response when the pendulums and platform are enabled to swing

freely,(i.e. no actuator torque is applied along the motor shafts).

The simulated system response for test cases 1-3 are presented in Figures

4.6, 4.8, and 4.10 respectively. The control signals and the sliding surfaces

of the hierarchical sliding mode controller are presented in Figures 4.7, 4.9,

and 4.11 for test cases 1-3 respectively

In all three cases, the hierarchical sliding mode controller is observed to

perform well and is a significant improvement over the natural damping case
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Figure 4.5: Simulated PD control signals for rectangle trajectory

of regulating any and all persistent excitations of the out of plane modes.

Especially interesting is the result of test case 2, the results of which are

presented in Figure 4.8. This test case clearly demonstrates that the hierar-

chical sliding mode controller is able to regulate persistent excitation of θy

using only the disturbance rejection properties of the controller.

50



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.01

0

0.01

z
[m

]

Natural Response
Active Damping

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.05

0

0.05

3 x
[r

a
d
]

Natural Response
Active Damping

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.05

0

0.05

3 y
[r

a
d
]

Natural Response
Active Damping

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.5

0

0.5

3 p
[r

a
d
]

3p;1
3p;2

Figure 4.6: Simulated HSMC performance for case 1
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Figure 4.7: Simulated HSMC Control Signals for case 1
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Figure 4.8: Simulated HSMC performance for case 2
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Figure 4.9: Simulated HSMC Control Signals for case 2
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Figure 4.10: Simulated HSMC performance for case 3
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Figure 4.11: Simulated HSMC Control Signals for case 3
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Chapter 5

Experimental Setup

The experimental test setup used for validating the work of Chapters 3 and 4

can be seen in Figure 5.1. It consists of three main elements: A cable driven

parallel robot, intended for warehousing applications; a pair of pendulum

actuators, designed and built based on the results of Chapter 3; and the

software and realtime control hardware used for implementing and testing

the control strategies of Chapter 4. In this chapter each of the three elements

will be described in detail.

The chapter begins with Section 5.1 which provides a background and

description of some of the mechanical properties for the cable-driven ware-

housing robot, inherited for this study.

Section 5.2 describes the realtime embedded control software design and

overall architecture.

Section 5.3 provides details about the sensors used by the test setup for

control and the necessary procedures that were taken to produce meaningful

measurements.

Section 5.4 discuss a set of low level motor controllers which have been de-

signed and implemented for directly controlling the unstretched cable lengths

and cable tensions.

Section 5.5 is devoted presenting the design, construction, and integra-
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tion of a pair of pendulum actuators into the preexisting warehousing robot

system.

The procedures required for homing the warehousing robot and tensioning

the cables are described in Section 5.6.

Figure 5.1: Experimental test setup

5.1 Warehousing Robot Prototype

The design for the CDPR was originally developed and presented by Mendez

in [32] and is a scaled down version of a large scale CDPR intended for

warehousing type applications. The mechanism consists of a rigid fixed frame

and a rigid mobile platform which is suspended by twelve steel cables.

The length of the twelve cables are controlled by four Identical DC Motors

attached to the fixed frame. The mechanism, despite having twelve cables,

is effectively a four cable planar robot. Each of the four motors, which are

placed in the four corners or the fixed frame, are responsible for actuating

multiple cables simultaneously. The top motors each drive four cables and

the bottom motors each drive two. The reason for the redundant cables is to
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increase the manipulator stiffness, especially in the uncontrollable directions.

A detailed discussion on the mechanical design and its merits can be found

by referring to [32].

The cables are wound on spools which are coupled to the motors via a

belt drive system. Figure 5.2 shows the power transmission system and cable

spools for one of the lower motors. It can be seen that the belt drive system

is also important for ensuring that the lengths of all the cable driven by a

single motor are varied consistently.

Figure 5.2: Motor-cable power transmission system

The specific locations of the mount points for the twelve cables are pre-

sented in Table 5.1 where rc,i and bi are respectively the platform and frame

mounts for the ith cable. This naming convention is consistent with the cable

model presented in Section 3.1.2. The dimensions of Table 5.1 originate from

the centre of the workspace which is considered to be the home position.

The cables used for the test setup are 1.6 mm diameter steel cables with

a modulus of elasticity equal to 55GPa. At the platform end, the cables are
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Table 5.1: Warehousing robot cable mount locations

Cable Index
rc,i [m] bi [m]

x y z x y z
1 0.152 0.048 0.065 1.50 0.500 0.000
2 0.232 −0.048 0.000 1.58 0.404 0.065
3 0.222 −0.017 0.087 1.50 −0.500 0.000
4 −0.222 −0.017 0.087 −1.50 −0.500 0.000
5 −0.232 −0.048 0.000 −1.58 0.404 0.065
6 −0.152 0.048 0.065 −1.50 0.500 0.000
7 0.152 0.048 −0.065 1.50 0.500 0.000
8 0.232 −0.048 0.000 1.58 0.404 −0.065
9 0.222 −0.017 −0.087 1.50 −0.500 0.000
10 −0.222 −0.017 −0.087 −1.50 −0.500 0.000
11 −0.232 −0.048 0.000 −1.58 0.404 −0.065
12 −0.152 0.048 −0.065 −1.50 0.500 0.000

attached with a spherical joint to allow for the rotational freedom required

during motions. At the frame end, a set of rollers are used to ensure that

the point and angle at which the cables are fed onto their respective spools is

consistent. Figure 5.3 shows an example of both the rollers and the platform

attached spherical joints.

For reasons that will be explained in Section 5.4, linear springs were added

between the end of the cables and the platform for all four bottom cables.

The stiffness constant for the added springs is equal to 753 N/m. Figure

5.3 (b) shows the bottom cable mount configuration with the series added

springs.

5.2 Realtime Control Software

The system is powered by a Beckhoff CX2040 embedded PC. All software for

the robot has been developed using a combination of Matlab and Simulink
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(a) (b)

Figure 5.3: (a) Cable rollers (b) Cable-platform spherical joints

code, compiled as a realtime executable and run on the Beckhoff controller. A

secondary control interface was also developed for communicating remotely

with the realtime executable. The sampling time which the controller is

operated at is 250µs.

A screenshot of the Simulink block diagram for the realtime executable

code is presented in Figure 5.4. There are five main subsystems which make

up the realtime executable: Input handling, output handling, fault manage-

ment, state management, and data collection.

The input handling block reads all of the raw sensor values, performs

any necessary scaling and filtering, and combines all processed signals into a

single input bus.

The state management block is where all high level control tasks are

performed and it is responsible for switching between the various modes of

operation. At any moment in time, the robot exists, uniquely, in one of the

following states: halted, calibrating, homing, idle, and running program. In

the halted state, all power and control is cut from the motors. The calibration

and homing states are where the procedures of Section 5.6 are performed. In

the idle state, the cable lengths are tensions are held constant. The running
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Figure 5.4: Realtime executable Simulink block diagram

program state is used to allow developers to implement their own experi-

mental controller test procedures and embed them within the larger realtime

executable. This simplifies the design for developers who only wish to test

their controllers and provides an overall more stable and secure architecture.

The output bus signals generated from the high level controllers inside

the state management block are then fed into the output handling block.

The output handling block is where all of the low level motor controllers of

Section 5.4 are contained. The position and tension commands contained

on the output bus are converted to a set of motor toques by the lower level

motor controllers and then sent to the motor drivers so the requested torques
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may be applied.

The fault detection system was added to ensure the safety of the test

setup and its operators. The fault management block is dependent on both

the input and output buses and monitors the bus signals for anything unusual

or concerning. If a fault is detected, a flag is raised by the fault manage-

ment block and fed into the state management block, forcing a transition

to a halted state. The fault detection system monitors for conditions such

as violation of cable tension or length limits, violation of tracking error lim-

its, sensor failure, and loss of communication with the control interface. In

practice, the fault detection system was found to perform very well and has

frequently saved the test setup from events which may have lead to catas-

trophic failure.

The data collection block simply logs all of the input and output bus

signals to a file during the duration of the execution of a test program.

In order for a human operator to interact with and command the real-

time executable to perform a desired set of tasks, a graphical user interface

has been developed within Matlab and communicates with the Beckhoff con-

troller over the Beckhoff hosted ADS bus. A screenshot of the user interface

is provided in Figure 5.5. The interface is used to perform a number of func-

tions for interacting with the robot: The buttons on the bottom left are used

for controlling the state of the robot, the fields and buttons on the top left

are used for setting up an automated build script which recompiles the real-

time executable with a user supplied sub program embedded within it, and

the text area on the right half of the interface is used to receive any diagnos-

tic information from the realtime executable (such as information about any

faults which have been triggered). In the background, the control interface

is also used to relay camera data to the realtime executable for purposes of

performing the calibration procedures discussed in Section 5.6.
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Figure 5.5: Graphical control interface for the realtime executable

5.3 Sensors and Instrumentation

Each of the four cable driving motors are equipped with high resolution re-

solvers. Since the motors used in this test setup are standard Beckhoff com-

ponents, all of the necessary scaling, filtering, and signal processing required

to produce a valid measure of the angular positions of the motors shafts is

performed automatically by the Beckhoff control software: TwinCat.

Consider θi as the angular position of the ith motor and δli as the un-

stretched length of the cables driven by motor i. There exists an affine

transformation δli = miθi + bi where mi can be found from analysis of the

known gearing ratios and spool diameter of the power transmission system,

shown in Figure 5.2. The offset bi is determined by the initial conditions

and must be calibrated for using the homing procedures described in Section
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5.6. With the above transformation, the measured angular positions of the

motor shafts can be transformed to a measure of the unstretched length of

the driven cables. The reasoning behind why the measured length is stated

as the unstretched length and not the true length of the cable comes from the

fact that the change in length resulting from elongation of the cable between

the spool and the platform is not accounted for. If you consider the cable

as a spring with two fixed ends, one at the platform and one at the point

where the cable exits the spool tangentially, any change in length of the cable

resulting from elongation is imperceptible based on information of the spool

position alone.

Since the effects of cable elongation are imperceptible directly from the

available length measurements, In order to gain a sense of the vibration

response of the platform, a 6-axis inertial measurement unit (IMU) has been

added to the system and mounted approximately at the CG of the platform.

The IMU consists of three orthogonal single axis accelerometers and three

orthogonal single axis gyroscopes. The IMU produces an analog voltage

output which is converted to a digital representation by an analog-digital

converter (ADC).

The necessary scaling and offset parameters required to convert the out-

put of the ADC to a more intuitive real-world unit representation were found

by fitting experimentally measured values against a set of known true val-

ues using a linear least squares regression. For the accelerometers, data was

collected using the gravitational acceleration vector as a known absolute ref-

erence. Static accelerometer data was recorded for a variety of poses such

that each accelerometer would be aligned with the gravity vector and its

inverse. Figure 5.6 shows the fitting results for the three accelerometers.

Fitting data for the gyroscopes was obtained by securing the IMU to

one of the pendulum actuators (shown in Section 5.5) and oscillating the

pendulum at a known rate. Figure 5.7 demonstrates how the system was

setup for collecting the gyroscope calibration setup.
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Figure 5.6: Accelerometer parameter identification data fitting

Similar tests were performed along the three rotational axes and for var-

ious excitation references to verify the identification calibration parameters

were consistent. Once all data had been collected, a least squares regression

was performed to identify the scaling parameters for each gyroscopic axis.

Figure 5.8 summarizes the results where w is the true angular velocity of

the motor shaft and ŵ is the angular velocity predicted by the calibrated

gyroscope model.

For purposes of measuring cable tensions, load cells were added in series

with each of the four bottom cables. The load cells were powered and their

output processed via a Beckhoff strain gauge interface card (EL3356-0010).

The Beckhoff TwinCat software contains procedures for automatically cali-

brating the signal output from the load cells given the manufacturer data,

specific to the individual load cells, and this procedure was applied for con-

verting the analog voltage outputs of the load cells to a force representation

in Newtons.

The motors used for the pendulum actuators make use of absolute en-

coders and so no special fitting or homing procedures were necessary for their

application. The absolute encoders produce a consistent measure of angular

position of the motor shafts.
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Figure 5.7: Gyroscope calibration apparatus

5.4 Motor Control

For the active vibration controllers of Chapter 4, it is assumed that the cable

unstretched lengths are directly controllable. Obviously this is not the case

in reality. Instead, an inner loop of low-level motor controllers are used to

track the cable unstretched length commands produced by the high-level task

space controller.

In total there are four motors: two in the top corners and two in the

bottom corners. Each motor is equipped with a high resolution resolver

which is used for measuring the angular position of the motor shaft. Given

that the gearing ratio of the transmission system is known and the diameter

of the cable spools are known, a change in angular position of the motor can

easily be transformed to the change in length of the cables.

The top motors are operated in position control mode and track a com-

manded unstretched length for the cables. The type of controller used for
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Figure 5.8: Gyroscope parameter identification data

controlling the upper motors is a simple PID controller with saturation where

the motor resolvers are used for position feedback. Figure 5.9 shows a block

diagram of the controller topology used for the upper motors where G(s)

represents the motor plant and the control signal u, which corresponds to

the applied motor torque, is saturated before it is applied.

ld l0u
G(s)PID

-

Figure 5.9: Upper motor control topology

The PID gains for the upper motors were tuned experimentally until an

acceptable level of performance was obtained. Figure 5.10 shows the typical

tracking performance of the upper motors while following a reference trajec-

tory. The tracking error for the cable lengths has generally been observed to
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be sub-millimeter. Based on the high-level of performance which has been

achieved for cable length tracking of the upper motors with the designed mo-

tor controllers, it can be argued that the assumption of direct cable length

controllability employed by the high-level task-space controllers is reasonable

and valid.
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Figure 5.10: Upper motor position tracking performance

The lower motors use the same high resolution resolvers as the upper mo-

tors. Additionally, each of the four bottom cables have a load cell attached

in series between the cable and the mobile platform which is used for mea-

suring the tensile forces in the axial direction of the cables. In contrast to

the upper motors, the lower motors are operated under force control. The

motivation behind using force control for the lower motors is to account for

any errors in the inverse kinematic model. Unless the inverse kinematic and

elastic properties of the cables are known perfectly, using only length control

for all cables provides no guarantee for the internal forces of the manipulator.
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Originally, a simple PID controller using cable tension information from

the load cells for feedback was developed. However, because the cables used

in this setup are fairly stiff, it is very difficult to obtain good force tracking

performance using this strategy. a position error of 1mm in the unstretched

length of the cables results in a difference in force of roughly 220N . This

requires the force controllers to be very aggressive and have very high gains.

Another issue is that the measured load cell signals are extremely noisy (see

Figure5.12), to the point where no useful level of derivative feedback could

be applied. The combination of these two factors makes it very difficult to

stabilise the system while still maintaining a high level of precision in control.

Another difficulty, or even danger, with using a simple pure force feedback

arises from the possibility of cables becoming slack. In such a state, the

measured tensions will be essentially zero and continue to read zero until all

of the slack has been pulled from the cable. Meanwhile, the force controller

will try to eliminate the large force tracking error, its integral terms will wind

up, and the cable will be wound up onto its spool very aggressively. As soon

as the cables run out of slack and are put under tension, it will result in a

vary large mechanical shock from the large resulting impulse.

To deal with the identified challenges of implementing a direct force feed-

back controller, two different approaches have been applied to ensure pre-

cise and stable tracking: linear springs with a known stiffness constant were

added in series with the cables to increase the compliance of the system, mak-

ing it less sensitive to disturbances and minor position errors, and a hybrid

position-force feedback control strategy was used.

The topology for the hybrid control strategy is presented, as a block

diagram, in Figure 5.11 where G(s) represents the motor plant dynamics

and ks is the stiffness constant for the linear springs added in series with the

cables.

The main idea behind the hybrid topology is to supply a position feedback

controller with a modified length reference which is predicted to produce a
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Figure 5.11: Lower motor control topology

desired cable tension. A secondary feedback loop based on the measured

force error from the load cells is added to correct for any tension errors

resulting from imperfections in the length predictions. The output of the

force feedback loop is added to the desired length reference before it is fed

into the position controller to act as a reference correction term.

Based on the known geometry of the robot, the cable lengths at a desired

platform position can be determined using the inverse kinematics procedure

of Section 4.1.2. Since the stiffness constant, ks, of the series added linear

springs is known, for a given cable tension, T , the elongation of the spring,

δx, is determined by Hook’s law:

T = ks δx (5.1)

The stiffness of each cable is far lower than that of the in series springs.

Accordingly, the elongation of the cables in comparison with the elongation

of the springs will similarly be far lower, to the point where for this system

it can be safely ignored. For a desired cable tension, Td, at a given platform

position, the modified length reference, ld, becomes:
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ld = l0 + δx

ld = l0 + (
Td
ks

)
(5.2)

where l0 is the length of the cable at the given position, assuming no elonga-

tion. The desired length reference is modified further by adding the correc-

tion term generated by the force feedback loop and then finally fed into the

position feedback loop.

A display of the typical tracking performance which has been observed for

the hybrid controller following a desired cable tension trajectory is presented

in Figure 5.12. Tracking errors have been generally found not to exceed 10N .

0 2 4 6 8 10 12
time [s]

50

60

70

80

90

T
en

si
on

[N
]

tm
td

0 2 4 6 8 10 12
time [s]

-4

-2

0

2

4

T
ra

ck
in

g
E
rr

or
[N

]

Figure 5.12: Lower motor force tracking performance
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5.5 Pendulum Actuator

Two identical pendulum actuators were designed and built as part of the

requirements of the multi-axis reaction system introduced in Chapter 3. Each

actuator consists of a direct drive DC motor with absolute encoders, a mount

plate, pendulum shaped load mass, and a coupler to fix the load mass to the

motor shaft. Each motor is capable of producing 1.3Nm of torque. Figure

5.13 provides a CAD model of the mobile platform with two of the pendulum

actuators attached. The dimensions and spacing present in the actuator

design was chosen to adapt to the size and shape of the motors which were

available. It was important for the sake of flexibility and safety that the

pendulum shaped load mass be able to swing fully without any chance of

collision with the mobile platform or cables.

Figure 5.13: Platform mounted pendulum actuator CAD Model

The load masses (shown in Figure 5.14) were fabricated out of steel, each

having a mass of 640g. The shape of the mass was designed to keep the

centre of mass as low as possible while still guaranteeing that there would be

no chance of a collision with the mobile platform.

Figure 5.15 provides a close up view of the warehousing robot mobile
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Figure 5.14: Pendulum load mass CAD Model

platform after fabrication and integration of the pendulum actuators was

performed.

5.6 Homing Procedures

Since the motors that drive the system lack any form of absolute position

reference, the zero reference for the resolvers must be recalibrated each time

the system is reset. For this purpose, two visions systems are employed.

When the system is turned off, all of the cables loose tension. When the

cables are slack, the resolver measurements used to estimate the unstretched

lengths of the cables cannot be assumed to be correct as the position of the

spool does not necessarily correspond to the length of the cable in that state.

In order for the zero reference of the resolvers to be reset, the slackness must

first be taken out of the cables. In order to do this safely, a camera is used

to track the position of the mobile platform within the workspace.

Four coloured markers are attached to the fixed frame and two are at-

tached to the mobile platform. Using colour thresholding and blob analysis,
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Figure 5.15: Platform mounted pendulum actuator prototype

the locations of the 6 markers within the image frame can be determined.

Figure 5.16 shows the robot with the 6 red markers and the resulting color

thresholded image. Since at all times the mobile platform is located within

the confines of its fixed frame, the markers which correspond the platform can

be identified by sorting the six markers in terms of their vertical components

and taking the middle two markers

Once the location of the four frame markers are known, the centre of

the workspace can be calculated by finding the geometric center of the four

points. Similarly, the location of the platform can be calculated by finding

the midpoint between the two corresponding markers.

Using the inverse kinematic model (Section 4.1.2), the cable lengths at

the workspace centre and current position can be calculated. The required

change in length can then be calculated by subtracting the centre point length
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(a) (b)

Figure 5.16: (a) Front view of setup with markers attached (b) color thresh-
olded image used for tracking

from the current length. This required change in length is used as a reference

for the motors which, based on this error, slowly work to tension the cables

and move the platform towards its homing position.

Once the platform is within a certain threshold distance from the workspace

centre and the cable tensions are within an acceptable range, calibration is

deemed complete and the resolver zero reference offsets are updated based

on the current known position. For additional refinement, a secondary high

precision vision system is used for fine tuning the calibrated zero reference

points.
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Chapter 6

Experimental Results

In order to investigate the effectiveness of the multi-axis vibration control

system designed in Chapter 4, a set of experiments were performed using the

experimental setup described in Chapter 5.

The primary motivation behind the design of the chosen test procedures is

to demonstrate the effectiveness of the controllers at eliminating end effector

vibrations. The robustness features of the controllers are also investigated

by varying the mass of the end effector and observing any resulting change

in performance.

The experiments were divided into two main categories which aim individ-

ually evaluate the in-plane and MARS controllers. The results obtained from

the performed experiments and related discussion of the results are presented

in sections 6.1 and 6.2 for the in-plane and MARS controllers respectively.

6.1 In-Plane Control

The maneuver chosen for testing the in-plane controllers is to trace a rect-

angle, centered at the home position, with a width of 30cm and height of

10cm. The maneuver is performed such that the platform both starts and

ends at the home position. Specifically, the sequence of motions to perform
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the maneuver are: start from the home position, move 5cm downwards, 15cm

to the right, 10cm upwards, 30cm to the left, 10cm downwards, 15cm to the

right, 5cm upwards to return to the home position, ending the motion. The

top speed for each of the motion segments is 15cm/s. The maneuver was

maintained constant across all tests performed to ensure the dynamic con-

ditions are consistent when comparing the system natural response with the

active damping performance of the vibration controller.

Two different testing conditions were considered: the case where no ad-

ditional load mass is added, and the case where a 6kg load mass is added to

the platform. Figures 6.1 and 6.2 show the traced position of the platform

during the maneuver for the no load and added load cases respectively. The

figures also demonstrate the tracking behavior of the system with the active

vibration controller active and disabled.
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Figure 6.1: Trajectory tracking performance with no load mass

In all cases, the platform does a good job at tracking the reference trajec-

tory. However, in the case where active vibration controller is disabled, it is

clearly observable that the platform experiences some oscillatory motion in

the vertical direction. With the added load, the amplitude of the oscillations

increases. By enabling the active vibration controller, in both the no load
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Figure 6.2: Trajectory tracking performance with added load mass

and added load cases, the observed oscillations are effectively eliminated.

The vertical acceleration of the platform during the motions along with

the control inputs corresponding to the desired cable tensions is presented

in Figures 6.3 and 6.4. It is interesting to note the amount of force com-

pensation required to solve the vibration problem is quite low (< 5N). It is

also interesting to note that the control signals are effectively saturated at

various points during the motion, demonstrating the procedure for limiting

cable tensions outlined in Section 4.1.5.

6.2 Out-Plane Control Using MARS

In order to fairly compare the natural system damping with the response of

the system using MARS, it is necessary to ensure that the initial conditions

are consistent between tests. To achieve this, each test consists of two phases:

a swing-up phase and a damping phase.

During the swing-up phase, both pendulums are operated in position

control mode and fed an equivalent sinusoidal reference. The frequency of

the sinusoidal reference was tuned to match the natural frequency of the
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Figure 6.3: Vertical acceleration during trajectory with no load mass

mobile platform in the out of plane translational direction. Swinging the

pendulums at the natural frequency causes the platform to similarly swing

in and out of its equilibrium plane.

For the natural response case, the pendulums are held at a constant of 0

degrees. For the active damping case, the Hierarchical sliding mode controller

presented in 4.2 was used. Figure 6.5 demonstrates the two phase motion

generated and confirms that the initial conditions at the beginning of the

natural and active damping cases are indeed identical. For the first three

seconds of the motion, the pendulums are operated in position control mode

to excite the platform in the out of plane direction. Then, after three seconds,

the controllers switch and the pendulums are either held at 0 degrees or the

active damping controllers are applied, depending on the test condition. To

highlight the damping phase, which is the area of primary interest, the swing

up phase has been discarded from the results presented in the remaining
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Figure 6.4: Vertical acceleration during trajectory with added load mass

figures and time is shifted such that the damping phase begins at time t = 0.

Figure 6.6 shows the effect of the Hierarchical sliding mode controller of

Section 4.2 for controller z, θx, and the angular position of the two pendu-

lums. Clearly the proposed active damping mechanism and controller work

very well at eliminating the out of plane oscillatory displacements. Exper-

imental results for the damping of vibrations in the θy direction could not

be obtained. Because of the high stiffness of the system and the presence of

unmodeled damping forces, any excitation of the vibratory modes in the θy

direction which could be generated would be very rapidly damped before the

controller could have any observable effect.

Insensitivity to variations in mass is in important property for the con-

troller, considering its intended application of pick and place operations.

Figure 6.7 shows the active damping performance with and without an addi-

tional 6kg load mass added to the platform. In both the loaded and unloaded
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Figure 6.5: Swingup phase used for generating out of plane excitations

cases, the controller produces similar performance, is stable, and provides a

significant improvement over the natural damping present within the system.

Since the out of plane dynamics of the platform are dependent on the

position of the platform within the plane, the tests were performed at var-

ious locations across the workspace. Figure 6.8 shows the active damping

performance for the mass loaded platform at various positions. Clearly the

out of plane response can vary significantly depending on the location of the

platform. However, in all cases tested, the system remains stable and the ac-

tive damping controller provides a significant improvement over the natural

response.
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Figure 6.6: Multi axis damping performance of MARS
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Figure 6.7: MARS performance with varied load
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Chapter 7

Conclusions and Future Work

Cable driven parallel robotic manipulators have great potential in applica-

tions where low cost or high accelerations are necessary. In order for cable

driven manipulators to become viable for industrial application however, the

issue of low manipulator stiffness and vibrations resulting from cable elonga-

tion and cable unidirectional load tolerance must be solved.

A planar cable driven manipulator design, intended for warehousing type

applications, has been studied and used as the focus for developing a com-

plete active vibration control system. Using a developed six degree of freedom

dynamic model, it was shown that planar cable driven robots are uncontrol-

lable in three of the six spatial degrees of freedom. The uncontrollable modes

correspond to the directions that cause the mobile platform to deviate from

its equilibrium plane. Specifically, rotation about the two planar axis and

translation along the planar normal axis cannot be controlled using cable

actuation alone.

In order to solve the problem of the existence of uncontrollable modes and

bring the system into a state of full controllability, a multi-axis reaction sys-

tem (MARS) has been developed. The proposed system consists of two rigid

pendulum actuators. By exploiting the inherent coupling in the platform

dynamics, it is possible, despite being underactuated, to eliminate vibrations
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in the three uncontrollable directions while requiring only an additional two

actuators.

A set of decoupled PD controllers are proposed for eliminating vibrations

within the plane resulting from cable elongation. The controllers use accel-

eration data, taken from an IMU mounted at the end effector, to modify the

desired tensions and length commands for the cables.

Due to the nonlinear nature of pendulum dynamics and desire for ro-

bustness in control, a hierarchical sliding mode controller is presented for

controlling the MARS and regulating the non-planar modes.

Using a multibody dynamic model, developed in MapleSim and exported

to Simulink, both the in plane and out of plane controllers were shown to

perform well.

Experimental results were presented which demonstrate the actual per-

formance of the MARS on a planar cable driven robotic manipulator. Both

the developed in plane and out of plane controllers were implemented and

shown to perform very well.

7.1 Future Work

An important next step for purposes of further validating the results of this

thesis is to build a full scale prototype of the studied cable driven warehousing

robot. Due to its small size and the relatively high stiffness of the cables used,

it was very difficult to induce any vibrations of a considerable amplitude in

certain directions. This limitation prevented the testing of the developed

vibration control system performance in certain directions.

Another consideration is the mass of the cables. In this study, because

the length of the cables was relatively short, the cables could be modeled

as massless straight line segments without much loss in performance. In a

warehousing application, cable lengths could possibly be on the order of 50-

100m. At such lengths, the weight of the cables relative to internal tension
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forces would become quite substantial. It is therefore important to study

what affect cable weight has on controller performance and design. At such

lengths as well, the magnitude of elongation in the cables would be far more

significant, making the proposed vibration control system more necessary

and valuable.

Limitations of the employed test setup aside, it is believed that the ac-

tuator design proposed in this thesis can be used as an effective, low cost,

and easily integrated solution for eliminating any induced vibrations in the

uncontrollable modes of planar systems.

While the scope of this study has been limited to fully-constrained ca-

ble driven parallel robotic manipulators, it is suspected that the actuator

and control method designed in this thesis likely have potential applications

extending far beyond the single class of systems investigated.
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Appendix A

Matlab Code for Model

Generation

Initialize Workspace

clear; clc;

totaltime = 0;

Mechanism Parameters

% number of cables

n = 12;

% Box Dimensions (meters)

w_b = 0.365 ;

h_b = 0.096 ;

d_b = 0.13 ;

% Frame Dimensions (meters)

w_f = 3.16 ;

h_f = 1 ;

d_f = 0.13 ;
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% % Box Anchor Points for Cables

r = zeros(3,n);

r(:,1) = [ 5 + 10.25, 4.8, 6.5] * 0.01;

r(:,2) = [ 5 + 18.25, -4.8, 0] * 0.01;

r(:,3) = [ 5 + 17.25, -1.7, 8.75] * 0.01;

r(:,4) = [ -5 - 17.25, -1.7, 8.75] * 0.01;

r(:,5) = [ -5 - 18.25, -4.8, 0] * 0.01;

r(:,6) = [ -5 - 10.25, 4.8, 6.5] * 0.01;

r(:,7:12) = r(:,1:6);

r(3,7:12) = r(3,1:6) * -1;

% Frame Anchor Points for Cables

b = zeros(3,n);

b(:,1) = [ 1.5, 0.5, 0];

b(:,2) = [ 1.58, 0.404, 0.065];

b(:,3) = [ 1.5, -0.5, 0];

b(:,4) = [ -1.5, -0.5, 0];

b(:,5) = [ -1.58, 0.404, 0.065];

b(:,6) = [ -1.5, 0.5, 0];

b(:,7:12) = b(:,1:6);

b(3,7:12) = b(3,1:6) * -1;

% Box Interial Properties

M_b = 13.7242 ; % kg

M_b = 10;

J_b = M_b/12* diag([(h_b^2+d_b^2), (w_b^2+h_b^2), (w_b^2+d_b^2)]);
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% Cable Stiffnesses (N/m)

kc = 110*1000;

kc = 100;

Kc = ones(n,1) * kc;

% Actuator Properties

PendulumCount = 2;

r_pn = [ 5 + 18.25, -4.8, 0;

-(5 + 18.25), -4.8, 0]’ * 0.01;

M_pn = 0.6;

J_pn = diag([655; 483; 191]) / 1000^2;

l_pn = 0.05;

Model Configuration

exportNonlinear = false;

nonlinearExportFile = ’Xd.m’;

linearise = true;

leaveLinearSymbolic = false;

exportLinear = true;

linearExportFile = ’models/SSModel_ctrb.mat’;

State and Control Input definitions

tic; fprintf(’Defining symbolic state variables...’);

% Robot State and Inputs

syms x xd y yd z zd psi psid theta thetad phi phid real

X = [x; y; z; xd; yd; zd; psi; theta; phi; psid; thetad; phid];
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syms l1 l2 l3 l4 real

u = [l1; l2; l3; l4];

% Pendulum States and Inputs

for i=1:PendulumCount,

X(end+1) = sym(strcat(’Thpn’,int2str(i)));

X(end+1) = sym(strcat(’Thpn’,int2str(i),’d’));

end

u = [u; sym(’tau’,[PendulumCount,1])];

% Final data manipulations

X = sym(X,’real’); u = sym(u,’real’);

Xd = sym(’Xd’,[length(X(:,1)),1]);

Xd = sym(Xd,’real’);

Fext = [0;0;0]; Mext = [0;0;0];

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Rotation Matrix generation

% - Frame 0: Global Frame

% - Frame 3: Body Fixed Frame

tic; fprintf(’Generating Rotation Matrices...’);

% First Rotation about X Axis

R01 = [1, 0, 0;

0, cos(psi), sin(psi);

0, -sin(psi), cos(psi)];

% Second Rotation about Y’ Axis
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R12 = [cos(theta), 0, -sin(theta);

0, 1, 0;

sin(theta), 0, cos(theta)];

% Third Rotation about Z’’ Axis

R23 = [ cos(phi), sin(phi), 0;

-sin(phi), cos(phi), 0;

0, 0, 1];

R03 = R23*R12*R01;

R30 = R03’;

% Relate Box Angular Velocities to Euler Angle Rates

Wd = R03*[psid;0;0] + R23*R12*[0;thetad;0] + [0;0;phid];

Rr = equationsToMatrix(Wd,[psid thetad phid]);

Rr_inv = simplify(inv(Rr));

% Time derivative of Rr

Rr_d = [ -cos(theta)*sin(phi)*phid - cos(phi)*sin(theta)*thetad,

cos(phi)*phid, 0;

sin(phi)*sin(theta)*thetad - cos(phi)*cos(theta)*phid, -

sin(phi)*phid, 0;

cos(theta)*thetad, 0, 0];

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Compute Cable Potential Energies

tic; fprintf(’Computing Cable Potential Energies...’);

% Compute Cable Lengths and Unit Vectors

for i=1:n,

C = b(:,i) - (X(1:3)+R30*r(:,i)) ;
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l(i,1) = sqrt(C’*C);

c(:,i) = C/l(i);

end

% Specify Initial Lengths

l0 = [u(2);u(2);u(4); u(3);u(1);u(1); u(2);u(2);u(4); u(3);u(1);u

(1)];

% Compute Cables Tensions

for i=1:n,

tau(i) = Kc(i).*(l(i)-l0(i)) ;

end

tau = tau’;

% Compute combined potential energy

Vc = 0.5*tau’*diag(1./Kc)*tau;

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Compute Pendulum Potential and Kinetic Energies

tic; fprintf(’Defining Pendulum Energies’);

v = [xd; yd; zd];

w = Rr * [psid; thetad; phid];

% Compute Actuator Kinetic Energies

Tpn = 0;

for i=1:PendulumCount,

j = 2*(i-1)+13;
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% Velocity of pendulum i in inertial frame

vpn = v + R30*( cross(w,r_pn(:,i)) + X(j+1)*l_pn*[0;sin(X(j));

cos(X(j))] );

% Angular Velocity of pendulum i in body frame

wpn = [X(j+1)+w(1);w(2);w(3)];

% Total Kinetic energy of pendulum i

Tpn = Tpn + 0.5*M_pn*(vpn’*vpn) + 0.5*wpn’*J_pn*wpn;

end

% Compute Actuator Potential Energies

Vpn = 0;

for i=1:PendulumCount,

j = 2*(i-1)+13;

% height of pendulum mass from gravitational ground

rpn = [x;y;z] + R30*( r_pn(:,i) + l_pn*[0;-cos(X(j));sin(X(j))]

);

hpn = rpn(2);

% Total Potential energy of Pendulum i

Vpn = Vpn + M_pn*9.81*hpn;

end

% Apply reactions to the Box

for i=1:PendulumCount,

j = 4 + i ;

Mext = Mext - [u(j);0;0];

end
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time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Compute the Lagrangian

tic; fprintf(’Computing Lagrangian...’);

v = [xd; yd; zd];

w = Rr * [psid; thetad; phid];

% Compute Kinetic and Potential Energies for the Box

Tb = 0.5*M_b*(v’*v) + 0.5*w’*J_b*w;

Vb = M_b*9.81*y;

% Compute Lagrangian

L = (Tb+Tpn) - (Vb+Vc+Vpn);

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Assemble the Nonlinear System State Equations

tic; fprintf(’Deriving Nonlinear State Equations...’);

% Translational Velocities

Xd(1:3) = [xd; yd; zd];

% Rotational Velocities

Xd(7:9) = [psid; thetad; phid];

% Actuator Velocities

NumberOfActuators = PendulumCount;

for i=1:NumberOfActuators,

j = 2*(i-1)+13;

Xd(j) = X(j+1);

end
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% Symbolic variable setup for complex differentiations

syms t

for i=1:length(X(:,1)),

qt(i,1) = sym([’q’,num2str(i),’(t)’]);

end

zero = sym(’zero’);

qdd = sym(’qdd’);

% Translational Accelerations

for i=1:3,

zero(i) = subs(subs(diff(subs(diff(L,X(i+3)),X,qt),t),diff(qt,t)

,Xd),qt,X) - diff(L,X(i)) - Fext(i);

qdd(i) = Xd(i+3);

end

% Rotational Accelerations

for i=1:3,

zero(end+1) = subs(subs(diff(subs(diff(L,X(i+9)),X,qt),t),diff(

qt,t),Xd),qt,X) - diff(L,X(i+6)) - Mext(i);

qdd(end+1) = Xd(i+9);

end

% Actuator Accelerations

for i=1:NumberOfActuators,

j = 2*(i-1)+13;

zero(end+1) = subs(subs(diff(subs(diff(L,X(j+1)),X,qt),t),diff(

qt,t),Xd),qt,X) - diff(L,X(j)) - u(4+i);

qdd(end+1) = Xd(j+1);

end
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% Collect and Order Equations for Second Rates

[M, F] = equationsToMatrix(zero,qdd);

M = simplify(M);

% qdd= linsolve(M,F);

qdd = inv(M)*F;

Xd(4:6) = qdd(1:3);

Xd(10:12) = qdd(4:6);

for i=1:NumberOfActuators,

j = 2*(i-1)+13;

Xd(j) = X(j+1);

Xd(j+1) = qdd(6+i);

end

if exportNonlinear,

matlabFunction(Xd,’file’,nonlinearExportFile,’vars’,{X,u},’

Optimize’,false);

end

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time);

Linearise Model

if linearise,

% Specify Equilibrium Point

X0 = zeros(length(X),1);

X0(1) = 0;
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X0(2) = 0.0;

tau0 = GenerateTensions(X0(1),X0(2),2*M_pn);

linit = subs(l,X,X0);

linit = [linit(6);linit(1);linit(4);linit(3)];

u0 = linit - tau0./kc;

u0 = [u0; zeros(NumberOfActuators,1)];

% Linearise Xd

tic; fprintf(’Linearising for A’);

A = jacobian(Xd,X);

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time

);

tic; fprintf(’Linearising for B’);

B = jacobian(Xd,u);

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,time

);

C = eye(length(X));

D = zeros(length(X),length(u));

if leaveLinearSymbolic == false,

tic; fprintf(’Making Final Substitutions...’);

A = subs(A,[X;u],[X0;u0]);

A = double(A);

B = subs(B,[X;u],[X0;u0]);

B = double(B);

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,

time);

end
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if exportLinear,

tic; fprintf(’Exporting Linear Model...’);

save(linearExportFile,’A’, ’B’, ’C’, ’D’);

time = toc; totaltime = totaltime + time; fprintf(’ %f s\n’,

time);

end

end

fprintf([’Done. Total Time: ’,num2str(totaltime),’\n’]);
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