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Abstract

Noncommutative rings appear in several areas of mathematics. Most promi-
nently, they can be used to model operator equations, such as differential or differ-
ence equations.

In the Ph.D. studies leading to this thesis, the focus was mainly on two areas:
Factorization in certain noncommutative domains and matrix normal forms over
noncommutative principal ideal domains.

Regarding the area of factorization, we initialize in this thesis a classification
of noncommutative domains with respect to the factorization properties of their el-
ements. Such a classification is well established in the area of commutative integral
domains. Specifically, we define conditions to identify so-called finite factorization
domains, and discover that the ubiquitous G-algebras are finite factorization do-
mains. We furthermore realize a practical factorization algorithm applicable to
G-algebras, with minor assumptions on the underlying field. Since the generality
of our algorithm comes with the price of performance, we also study how it can be
optimized for specific domains. Moreover, all of these factorization algorithms are
implemented.

However, it turns out that factorization is difficult for many types of noncommu-
tative rings. This observation leads to the adjunct examination of noncommutative
rings in the context of cryptography. In particular, we develop a Diffie-Hellman-like
key exchange protocol based on certain noncommutative rings.

Regarding the matrix normal forms, we present a polynomial-time algorithm
of Las Vegas type to compute the Jacobson normal form of matrices over specific
domains. We will study the flexibility, as well as the limitations of our proposal.

Another core contribution of this thesis consists of various implementations to
assist future researchers working with noncommutative algebras. Detailed reports
on all these programs and software-libraries are provided. We furthermore develop
a benchmarking tool called SDEval, tailored to the needs of the computer algebra
community. A description of this tool is also included in this thesis.
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CHAPTER 1

Introduction

1.1. Overview of this Thesis

In this thesis, we study several problems regarding noncommutative algebras.
In this chapter, we provide basic definitions and results that are needed throughout
the chapters.

However, we assume that the reader is familiar with the fundamental terminol-
ogy and results in the field of commutative algebra (as presented e.g. in Atiyah and
Macdonald [1969], Becker et al. [1993]). Nonetheless, clarifications on basic terms
may still appear in this chapter, if either the definitions vary throughout different
books/articles, or if we settle for a specific notation.

Chapter 2 deals with the problem of factoring elements in certain noncommu-
tative rings. We generalize the notion of a finite factorization domain, as studied
in the context of commutative integral domains, to noncommutative domains. Us-
ing conditions to identify finite factorization domains, we will discover that the
practically relevant G-algebras are members of this class of domains. We develop
a very general algorithm to factor elements in G-algebras, and show how it can
be refined for particular rings. Furthermore, a case-study is provided on how our
approaches can be used to determine if all factorizations of a parametric poly-
nomial are found or not. All methods are implemented in the computer algebra
system Singular [Decker et al., 2015], using its noncommutative subsystem Sin-
gular:Plural [Greuel et al., 2010]. We compare its functionality and effectiveness
to implementations in other commodity computer algebra systems.

In chapter 3, we identify rings, whose elements are currently hard to factor. Out
of these rings, we pick those having feasible complexity with respect to arithmetic
operations, and use them as a paradigm for a Diffie-Hellman-like key exchange
protocol. A custom implementation for these rings had to be developed. We discuss
the security of the protocol, and the performance of our code in realistic scenarios.

There is a noncommutative equivalent to the well-known Smith normal form of
matrices over commutative principal ideal domains, namely the Jacobson normal
form. In chapter 4, we present a polynomial time algorithm of Las Vegas type to
compute the Jacobson normal form for various types of noncommutative principal
ideal domains. We report on our implementation of this algorithm and compare it
to other available implementations.

Chapter 5 provides detailed overviews of all software written for this thesis.
In particular, we discuss our Singular library ncfactor.lib, which contains all
the algorithms described in chapter 2. Furthermore, we show how our custom im-
plementation for our cryptographic protocol in chapter 3 can be used for other
circumstances and how it complements currently available software implementing
arithmetics in noncommutative extensions of finite fields. The chapter ends with
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a description of a tool called SDEval, which is utilized to obtain all the compu-
tational timings in this thesis. SDEval is flexible to be employed across different
communities in computer algebra to create transparent, easy-to-verify benchmarks.

1.2. Denotations and Notational Conveniences

We make use of the following notational conveniences and basic denotations.

• A ring R will always mean a not necessarily commutative ring with 1.
• Unless defined otherwise in a context, we will use F to denote a field of

positive characteristic, and K to denote a field of characteristic zero.
• Underlined expressions can have different meanings in this thesis, which

are clear in their respective contexts:
– Given n ∈ N. Then we write n for the set {1, . . . , n}.
– Given an indexed set of n variables, say x1, . . . , xn. We may abbre-

viate x1, . . . , xn by X. Generally, an underlined upper-case letter
represents an indexed list of variables represented by the same letter
in lower-case. As a special case, we abbreviate ∂1, . . . , ∂n with D.

– Given an indexed set of n variables, say x1, . . . , xn, and let e ∈ Nn0 .
Then we abbreviate the product xe11 · · ·xenn by Xe. As before, this
abbreviation applies analogously to any letters chosen for represent-
ing the variables (e.g. Y e for ye11 · · · yenn ). As a special case, we
abbreviate ∂e11 , . . . , ∂enn by De.

1.3. Basic Terminology for Noncommutative Rings

Surprisingly, the term integral domain seems to appear only in combination
with the commutativity property for a ring in many pieces of literature (e.g. in
[Becker et al., 1993, Definition 1.16], in [Anderson, 1997], in [Hartshorne, 2013],
and even in the Springer Enzyclopedia of Mathematics1). Therefore, we clarify its
meaning for this thesis in the following definition.

Definition 1.1. We call a not necessarily commutative ring R an integral
domain or simply a domain, if for every a, b ∈ R we have the implication

ab = 0⇒ a = 0 or b = 0.

In noncommutative rings, commuting subsets play an important role for prac-
tical applications, as we will see in chapter 3.

Definition 1.2. Let R be a ring. We call an element c ∈ R central, if
a · c = c · a for all a ∈ R. The set of all central elements of a ring R is called the
center of R.

However, unless we are dealing with central elements, we need to be very specific
when talking about the concept of divisor/divisibility, since an element a in a ring
R may divide b ∈ R from the left, but not from the right.

Definition 1.3. Let R be a ring, and let a, b ∈ R. We say that a is a left
divisor of b, if there exists an element b̃ ∈ R, such that b = ab̃. Analogously, we
say that a is a right divisor of b, if there exists b̃ ∈ R such that b = b̃a.

1http://www.encyclopediaofmath.org/index.php?title=Integral_domain&oldid=35071
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Furthermore, refinements of the concepts of (least) common multiples and
(greatest) common divisors are also necessary for our purposes.

Definition 1.4. Let R be a ring, and let a, b ∈ R. An element m ∈ R is called
a common left multiple of a and b, if there exist ã, b̃ ∈ R such that ãa = b̃b =
m. The element m is moreover a least common left multiple, if m divides m̃
from the right for every other common left multiple m̃ of a and b. We denote the
least common left multiple of a and b – if existent – by LCLM(a, b). The (least)
common right multiple is defined analogously and denoted by LCRM(a, b).

If R is commutative, we do not distinguish between (least) common left or right
multiple, but only call it a (least) common multiple. For the least common
multiple – if existent – we write LCM(a, b).

Definition 1.5. Let R be a ring, and let a, b ∈ R. An element m ∈ R is
called a common right divisor of a and b if there exist ã, b̃ ∈ R, such that
a = ãm and b = b̃m. The element m is further called a greatest common right
divisor, if m̃ ∈ R is a right divisor of m for every other common right divisor m̃
of a and b. We denote the greatest common right divisor of a and b – if existent
– by GCRD(a, b). The (greatest) common left divisor of a and b is defined
analogously and denoted by GCLD(a, b).

If R is commutative, we do not distinguish between (greatest) common left or
right divisor, but only call it the (greatest) common divisor. For the greatest
common divisor of a and b – if existent – we write GCD(a, b).

The next fundamental concept in ring theory that needs a refined notation when
dealing with noncommutativity, is the definition of an ideal and its properties.

Definition 1.6. Let R be a ring. An additive subgroup I of R is said to be a
left ideal of R, if the following condition holds:

∀r ∈ R, x ∈ I : rx ∈ I.
Analogously, we define a right ideal. If I is both a left and a right R-ideal, then
we call I a two-sided ideal of R. If a left ideal I in R is generated by elements
e1, . . . , en ∈ R,n ∈ N, we denote that by

I =: R〈e1, . . . , en〉
for notational convenience. Analogously, if a right ideal I in R is generated by
those elements, we denote that by

I =: 〈e1, . . . , en〉R.
If I is a two-sided ideal generated by e1, . . . , en, we denote this simply by

I =: 〈e1, . . . , en〉.
We call a left, resp. right, ideal a proper ideal if it is not equal to R itself. We
call a left, resp. right, ideal principal, if it is generated by one single element.

Definition 1.7. Let R be a ring. If the only two-sided ideals in R are {0}
and R itself, then we call R simple. If every (left/right/two-sided) ideal in R is
principal, we call R a (left/right) principal ideal ring. If R is furthermore a
domain, we call R a (left/right) principal ideal domain.

Definition 1.8. Let R be a domain. We define a left Euclidean function
to be a function f : R \ {0} → N0 having the following two following properties:
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• If a, b ∈ R, and b 6= 0, then there exist q, r ∈ R such that a = qb + r and
either r = 0 or f(r) < f(b).

• For all non-zero a, b ∈ R \ {0}: f(a) ≤ f(ab).

Similarly, we can define a right Euclidean function (in particular, the first item
above changes to: if a, b ∈ R, and b 6= 0, then there exist q, r ∈ R such that a = bq+r
and either r = 0 or f(r) < f(b)). If f is both a left and a right Euclidean function,
we simply call it Euclidean function.

If R has at least one left Euclidean function, then we call R a left Euclidean
domain. Similarly, if R has at least one right Euclidean function, then we call R
a right Euclidean domain. If R has either a Euclidean function or both a left
and a right Euclidean function, we call R a Euclidean domain.

Similar to the commutative case, one can deduce that any left/right Euclidean
domain is a left/right principal ideal domain.

The last definitions in this section will be specifically needed for chapters 2 and
4. However, these concepts are ubiquitous and are thus mentioned in this general
overview.

Definition 1.9 (cf. Jacobson [1943], Chapter 3). Let R be a left and a right
principal ideal domain. We call a ∈ R \ {0} a total divisor of b ∈ R, if there
exists a two-sided ideal I in R, such that 〈b〉R ⊆ I ⊆ 〈a〉R. (In this definition, we
can also work with left ideals instead of right ideals).

Lemma 1.1. In simple rings, the only possible total divisor for any non-zero
element is a unit.

Proof. Let R be a simple ring, and b ∈ R \ {0}. Then any two-sided ideal,
which contains b, must already be equal to R. Hence, the left ideal generated by a
total divisor of b has to be equal to R, which shows that the total divisor has to be
a unit. �

Lemma 1.1 reveals a very counter-intuitive fact about total divisors, namely
that in a simple ring R, an element b ∈ R is not necessarily a total divisor of
itself. Hence, there is little connection to the original meaning of the word divisor.
We adapted this terminology, since it is standard in the literature on matrices
over noncommutative principal ideal domains. We will see the importance of total
divisors in chapter 4.

The following definition is important to form a link between factors of different
factorizations of elements in noncommutative rings. But it also appears in the
construction of equivalence classes for matrix normal forms of matrices with entries
in noncommutative principal ideal domains.

Definition 1.10. Let R be a domain and let 0 6= f, g ∈ R. We call f and g
similar, if one of the following equivalent conditions is fulfilled.

(a) R/R〈f〉 ∼= R/R〈g〉
(b) R/〈f〉R ∼= R/〈g〉R (cf. Bueso et al. [2003, Definition 4.9 and Lemma

4.11])
(c) There exist elements a, b ∈ R, such that af = gb and R〈f, b〉 = 〈a, g〉R =

R. (see Jacobson [1943, Theorem 31])

If R is furthermore a principal ideal domain, then those conditions are also equiv-
alent to

4



(d) There exists a u ∈ R, such that g = LCLM(f, u)u−1 (also due to Jacobson
[1943, Chapter 3]).

Remark 1.1. In condition (d) in Definition 1.10, the u−1 does not mean that
u is a unit in R. One has to read it in the way that LCLM(f, u) = ãu for some
a ∈ R, and then the u−1 from the right means to disregard u as a right divisor, i.e.
LCLM(f, u)u−1 = ã.

1.4. Ore Extensions and Polynomials

Arguably, the most comprehensive construction of noncommutative algebras is
by considering quotient rings of a free associative algebra over a field K. However,
this methodology generally provides very little information about the algebraic
structure of the resulting ring.

In this section, we will present a less comprehensive, but still quite general
technique of constructing noncommutative algebras. In section 1.8, we will see that
one can construct many practical rings, like e.g. abstractions of operator algebras,
in this way.

The main idea in its full generality appeared first in a celebrated paper by
Øystein Ore [Ore, 1933]. Ever since, the theory was refined and further studies on
rings constructed this way were conducted.

A central concept in the construction is a so-called quasi-derivation.

Definition 1.11 (Bueso et al. [2003], Definition 3.1). Let σ be a ring endo-
morphism of R. A σ-derivation of R is an additive endomorphism δ : R → R
with the property that δ(rs) = σ(r)δ(s) + δ(r)s for all r, s ∈ R. We call the pair
(σ, δ) a quasi-derivation .

When looking at the defining condition of a σ-derivation, one might be re-
minded of the Leibnitz rule for differentiating products of differentiable functions.
In fact, this is exactly the equation one gets when choosing σ to be the identity
function.

Example 1.1. Consider the ring K[x] over univariate polynomials over a ring
K, and we set σ to be the identity function. Let us pick δ : K[x]→ K[x],

∑n
i=0 pix

i 7→∑n−1
i=0 (i + 1)pix

i, i.e. the formal derivation function on K[x]. Due to the validity
of the Leibnitz rule for δ, the pair (σ, δ) is a quasi-derivation.

Remark 1.2. The question may arise if the construction of a quasi-derivation
is always possible. In fact, for any choice of σ, we can pick δ to be the function
that maps all values to zero. Then it naturally fulfills the multiplicity condition.

Proposition 1.1 (Bueso et al. [2003], Proposition 3.3.). Let (σ, δ) be a quasi-
derivation on R. Then there exists a ring S with the following properties:

(1) R is a subring of S;
(2) there exists an element ∂ ∈ S such that S is freely generated as a left

R-module by the positive powers 1, ∂, ∂2, . . . of ∂;
(3) for every r ∈ R, we have ∂r = σ(r)∂ + δ(r).

Definition 1.12 (cf. Bueso et al. [2003], Definition 3.4). The ring S defined
by the previous result, denoted by R[∂ ;σ, δ], is referred to as an Ore extension
of R. In what follows, we will address these rings also as Ore polynomial rings
and its elements as Ore polynomials.
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Definition 1.13. With slight abuse of notation, we may write R[∂;σ], if the
σ-derivation δ is equal to the zero-function, and may refer to the resulting Ore
polynomial ring as skew Ore extension. In an analogue way, if σ is chosen to be
the identity map, we may just write R[∂; δ] and call it an Ore extension of Lie
type.

The process of generating an Ore extension can be iterated, i.e. one can form
multivariate Ore polynomial rings.

The ring theoretic properties of an Ore extension S of a ring R highly depend
on R, σ and δ. The following Proposition gives conditions for which S inherits
characteristics from R.

Proposition 1.2 (cf. Bueso et al. [2003], Proposition 3.10). Consider a quasi-
derivation (σ, δ) on R and let S = R[∂;σ, δ] be the associated Ore extension.

(1) If σ is injective and if R is a domain, then so is S;
(2) If σ is an automorphism and if R is prime, then so is S;
(3) If σ is an automorphism and if R is left (resp. right) Noetherian, then so

is S.

Remark 1.3. An example of a practical ring, which cannot directly be con-
structed via Ore extensions, is the ring of so-called integro-differential operators
[Lakshmikantham, 1995]. However, if one would allow quotients by two-sided ideals
in the construction process, then an algebraic abstraction of integro-differential op-
erators can be achieved, as presented by Regensburger et al. [2009].

A more powerful construction method that has been intensively studied in re-
cent years are the so-called generalized Weyl algebras [Bavula, 1992, 1993, 1994,
Bavula and Jordan, 2001]. The integro-differential operators can be directly built
as generalized Weyl algebras [Bavula, 2011, 2012].

1.5. Ore Extensions of Fields

A special case occurs when the ring R which we extend using Proposition 1.1
is a field.

1.5.1. General properties of Ore Extensions of Fields. Similar to K[x]
being a Euclidean domain in the commutative case, we can achieve that K[x;σ, δ]
is a Euclidean domain with very little assumptions on σ.

Lemma 1.2. Consider a quasi-derivation (σ, δ) on a field K and let S = K[∂;σ, δ]
be the associated Ore extension. If σ is an automorphism, then S is a left and right
Euclidean domain.

Proof. Proof of this can be found in [Bueso et al., 2003, Corollary 4.35]. The
authors prove it for the more general case R[x;σ, δ], where R is a so called division
ring. �

Since we have a Euclidean domain structure, extensions of the form K[x;σ, δ]
become interesting rings to study, especially in the context of matrix normal forms.
We will discuss matrix normal forms of classes of noncommutative Euclidean do-
mains in chapter 4.

Naturally, it occurs that Ore polynomials constructed with different quasi-
derivations are isomorphic. In the case where we extend a field K, there are in fact
two large isomorphism classes, as the following proposition shows.
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Proposition 1.3 (cf. Cohn [1985], Proposition 8.3.1). Let K be a field and let
S = K[∂;σ, δ] be an Ore extension of K with respect to some quasi-derivation (σ, δ).
Then we can assume – up to isomorphism – that either σ is the identity, or that δ
is the zero-mapping.

In other words, Proposition 1.3 states that any Ore extension K[x;σ, δ] is either
isomorphic to an extension of Lie type, or to a skew Ore extension.

1.5.2. Ore Extensions of Finite Fields. For Ore extensions of finite fields,
one can even observe more structure, especially for skew Ore extensions. We will
summarize what is known about the automorphism group of finite fields. For that,
we need a bit more preparation.

Definition 1.14. Given a field F with characteristic p 6= 0. The map φ : F→
F, α 7→ αp is a monomorphism, which we call Frobenius monomorphism.

Obviously, the set of elements which remain fixed under φ are exactly the
elements in the prime subfield.

Proposition 1.4 (cf. Garling [1986], Corollary of Theorem 10.7 ). If the
characteristic of a field F is p 6= 0, and F is algebraic over its subfield, then the
Frobenius monomorphism is an automorphism.

Since, we are mainly dealing with algebraic extensions of finite fields in this
thesis, we will refer to the Frobenius monomorphism as the Frobenius automor-
phism.

Theorem 1.1 (cf. Garling [1986], Theorem 12.4). Suppose that F is a finite
field with pn elements, where p, n ∈ N, and p being a prime integer. Then the group
of all automorphisms of F is cyclic of order n, and is generated by the Frobenius
automorphism φ.

Thus, when considering skew Ore extensions of Lie type, there are only finitely
many automorphisms one can choose from. Furthermore, all of these automor-
phisms are powers of the Frobenius automorphism.

1.6. Monomial Orderings and G-Algebras

In the last section, we discussed Euclidean domains obtained by Ore extensions.
These constructions were very similar to commutative univariate polynomial rings
over fields.

The next step is to discuss iterated Ore extensions as an analogue to commuta-
tive multivariate polynomial rings. These are not Euclidean, but Noetherian. One
moves from principal ideals to finitely generated ideals. With reasonable conditions
on the individual extensions, one can apply Gröbner theory to iterated Ore exten-
sions. A very general class of such extensions is given by G-algebras, which we will
discuss in this section.

We will begin by introducing an important tool, namely the notion of an or-
dering, whose various types we introduce next.

Definition 1.15. Let (Γ,+, e) be a finitely generated monoid, where e is the
neutral element with respect to +. We call a binary relation ≺ on the elements of
Γ a total ordering if the following three conditions hold for all a, b, c ∈ Γ:

(1) If a ≺ b and b ≺ a, then a = b.
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(2) If a ≺ b and b ≺ c, then a ≺ c.
(3) We always have either a ≺ b or b ≺ a.

We call a total ordering ≺ a well-ordering, if every non-empty subset of Γ
has a minimal element with respect to ≺.

A well-ordering on Γ is called finitely supported, if for all a ∈ Γ, there exist
finitely many b ∈ Γ, such that b ≺ a.

We call Γ ordered if it is endowed with a total ordering ≺ and for all α, β, γ ∈
Γ: if α ≺ β, then α+ γ ≺ β + γ and γ + α ≺ γ + β.

We call ≺ admissible, if Γ is ordered with respect to ≺ and e ≺ α for all
α ∈ Γ.

Example 1.2. Pick for example the monoid Γ := Nn0 for some n ∈ N. Then
this monoid is finitely generated, and the neutral element is [0, . . . , 0]. There are
different ways to define an ordering on Γ. We show the most priminent ones here.

• The lexicographic ordering: For two elements a := [a1, . . . , an], b :=
[b1, . . . , bn], let a ≺ b if and only if there exists an 1 ≤ i ≤ n, such that
ai < bi and aj = bj for all 1 ≤ j < i. This ordering creates a preference
to certain coordinates of elements in Nn0 .

• The degree lexicographic ordering: For two elements a := [a1, . . . , an],
b := [b1, . . . , bn], let a ≺ b if and only if either

∑n
i=1 ai <

∑n
i=1 bi, or

a is smaller than b with respect to the lexicographic ordering. In other
words, this ordering takes the sum of two sequences into account, and
only falls back to lexicographic ordering if the respective sums are equal
(again, one can pick any permutation of {1, . . . , n} to express a preference
of coordinates).

• The weight ordering: Fix w := [w1, . . . , wn] ∈ Rn, which we refer to as
the weight vector. For two elements a := [a1, . . . , an], b := [b1, . . . , bn]
in Nn0 , let a ≺ b if and only if either

∑n
i=1 wi · ai <

∑n
i=1 wi · bi, or a is

smaller than b with respect to some other fixed ordering on Nn0 . The de-
gree lexicographic ordering is a special case of the weight ordering (weight
vector w = [1, . . . , 1]). For weight orderings, we usually include w in the
denotation and write ≺w instead of just ≺.

Both the lexicographic and the degree lexicographic orderings are total orderings,
well-orderings and admissible orderings. Depending on the weight vector, this also
applies to the weight ordering. Furthermore, Nn0 is ordered for these choices of
ordering. The only big difference is that lexicographic ordering is not finitely sup-
ported, since e.g. the element [1, 0, . . . , 0] has for n > 1 infinitely many smaller
elements (given by [0, a2, . . . , an] for all a2, . . . , an ∈ N0. However, the degree lexi-
cographic ordering is finitely supported, since there are only finitely many elements
in Nn0 , whose coordinate sum is smaller or equal to a fixed k ∈ N.

Example 1.3. Similar to Example 1.2, one can pick the monoid Γ := Zn. Then
the degree lexicographic and the lexicographic ordering define a total ordering on Γ.
However, both orderings are neither well-oderings, nor are they finitely supported,
nor are they admissible. The only other property that remains is that Γ is ordered.

Definition 1.16. Let R be a K algebra, finitely generated by x1, . . . , xn ∈ R.
We call the set of monomials in R the set of all words in {x1, . . . , xn}, i.e.

Mon(R) = {xα1
i1
· · ·xαmim | 1 ≤ i1, . . . , im ≤ n,m ≥ n, αk ≥ 0 for 1 ≤ k ≤ n}.
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Definition 1.16 is stated in a very general way (e.g. definition also applies to free
associative algebras). All of the rings that we will be dealing with in this dissertation
are Ore extensions of either a field, or a polynomial ring. We can assume that the
commutation rules allow us to have a fixed position of each variable in a monomial.
Hence, unless specified otherwise, we may assume that Mon(R) is given by

Mon(R) = {xα1
1 · · ·xαnn | αk ≥ 0 for 1 ≤ k ≤ n}.

One can associate every monomial with an element in Nn0 . As we have seen
in Example 1.2, one can pick from different orderings for Nn0 , depending on the
application. It is to be emphasized that one can also find other ordered monoids
that can be associated to Mon(R). However, monomials can be multiplied together,
and our current definition of ordering does not take this into account. Therefore,
we need to add additional structure for an ordering on Mon(R).

Definition 1.17. Let R be defined as in Definition 1.16. We call a total
odering ≺ on Mon(R) a monomial ordering if the following conditions hold:

(1) ≺ is a well-ordering on Mon(R),
(2) for all p, q, s, t ∈ Mon(R), if s ≺ t, then p · s · q ≺ p · t · q,
(3) for all p, q, s, t ∈ Mon(R), if s = p · t · q and s 6= t, then t ≺ s.

Without loss of generality, assume x1 � . . . � xn. For two monomials m1,m2 ∈
Mon(R), let 1 ≤ i ≤ n be the lowest index for which the power of xi differs in
m1 and m2. Let k1 be the power of xi in m1 and k2 be the power of xi in m2.
We call ≺ an elimination ordering, if for any two such monomials we have
m1 ≺ m2 ⇔ k1 ≤ k2.

Example 1.4. In the commutative polynomial ring K[x1, . . . , xn], the monomial
orderings induced by the (degree) lexicographic ordering are monomial orderings.
The lexicographic ordering is furthermore an elimination ordering in this case.

Example 1.5. Let us define a K-algebra, for which the ordering associated to
the lexicographic ordering is not a monomial ordering.

Let K be any field, and let R := K〈x1, x2 | x1x2 = 1〉. I.e., we have that x1 is
the left-inverse of x2 (resp. x2 is the right inverse of x1), but x2x1 can appear in
a monomial of an element in R. Define ≺ to be the degree lexicographic ordering,
where x1 ≺ x2. Then we have that x1x1x1 � x1x2x1 = x1, a violation of the
defining conditions of a monomial ordering.

Definition 1.18. Let R be defined as in Definition 1.16, and let ≺ be a total
ordering on Mon(R). Then we can write every g ∈ R \ {0} as g = c · f + tg, where
c ∈ K, f ∈ Mon(R), and tg ∈ R with the property, that for every monomial h in
tg, we have h ≺ f . Then lm(g) = f is the leading monomial of g and lc(g) = c
is the leading coefficient of g. Finally, the leading term lt(g) of g is defined as
lt(g) := lc(g) · lm(g). A polynomial g 6= 0 with lc(g) = 1 is called monic .

At this point, we can define the noncommutative counterpart of a multivariate
commutative polynomial ring.

Definition 1.19. For n ∈ N and 1 ≤ i < j ≤ n consider the units cij ∈ K∗
and polynomials dij ∈ K[x1, . . . , xn]. Suppose, that there exists a monomial total
well-ordering ≺ on K[X], such that for any 1 ≤ i < j ≤ n either dij = 0 or the
leading monomial of dij is smaller than xixj with respect to ≺. The K-algebra
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A := K〈X | {xjxi = cijxixj + dij : 1 ≤ i < j ≤ n}〉 is called a G-algebra, if
{xα : α ∈ Nn} is a K-basis of A.

G-algebras [Apel, 1988, Levandovskyy and Schönemann, 2003, Levandovskyy,
2005] are also known as algebras of solvable type [Kandri-Rody and Weispfenning,
1990, Li, 2002] and as Poincaré-Birkhoff-Witt algebras (abbrv. PBW algebras)
[Bueso et al., 2001, 2003]. See [Gómez-Torrecillas, 2014] for a comprehensive source
on these algebras.

The most important property of G-algebras is that the concept of Gröbner
bases generalizes to these algebras.

1.7. Filtration and Grading

Two related concepts that are needed in order to characterize certain factor-
ization properties of G-algebras in chapter 2 are filtrations and gradings.

Definition 1.20. Let A be a K-algebra and let (Γ,+, e,≺) be an ordered
monoid. We say that A has a Γ-filtration if A is a union of K-vector subspaces
V = {Vγ : γ ∈ Γ} such that for all γ1, γ2 ∈ Γ we have:

(i) Vγ1 ⊆ Vγ2 whenever γ1 � γ2;
(ii) Vγ1Vγ2 ⊆ Vγ1+γ2 .

If for all γ ∈ Γ, the K-vector space Vγ is finite-dimensional, then we call V a
finite-dimensional filtration.

We call an algebra A with a filtration a filtered algebra.
For f ∈ A \ {0}, let γ ∈ Γ be the minimal element, for which f lies in

Vγ \ (
⋃
γ̃≺γ Vγ̃). Then we call γ the degree of f and denote it by deg(f). By

convention, we set deg(0) = e. If every non-zero summand in f has degree γ, we
call f homogeneous or graded.

Definition 1.21. Let A and (Γ,+) be as in Definition 1.20. We say that A
has a Γ-grading , if A is a direct sum of K-vector subspaces V = {Vγ : γ ∈ Γ} such
that for all γ1, γ2 ∈ Γ item (ii) from Definition 1.20 is fulfilled. A K-algebra A with
a grading is called graded.

The definitions of the degree of an element f ∈ A and the condition for f being
homogeneous are analogous.

The existence of a filtration and/or grading reveal more information about a
given K-algebra. Quite often one can also derive certain properties from related
structures, such as the associated graded ring of a filtration.

Definition 1.22. Let a K-algebra A have a Γ-filtration V = {Vγ : γ ∈ Γ} for
some ordered monoid Γ. Then we define the associated graded algebra grV (A)
as

grV (A) :=
⊕
γ∈Γ

Vγ/

(⋃
γ̃≺γ

Vγ̃

)
.

Example 1.6. For G-algebras, the ordering ≺ induces a filtration. The asso-
ciated graded algebra of a G-algebra A – using the notation from Definition 1.19 –
is given by

grV (A) := K〈X | {xjxi = cijxixj : 1 ≤ i < j ≤ n}〉.
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1.8. Practical Examples of Noncommutative Algebras

In this section we will introduce certain G-algebras. Most of them will be
abstractions of well known operator algebras. We will also provide insight into
some of their algebraic properties, and revisit previously introduced concepts in
the context of these rings.

Definition 1.23. The nth q-Weyl algebra Qn is defined as

Qn := K
〈

x1, . . . , xn, ∂1, . . . , ∂n | for (i, j) ∈ n× n :

∂ixj =

{
xj∂i, if i 6= j

qixj∂i + 1, if i = j
, ∂i∂j − ∂j∂i = xixj − xjxi = 0

〉
,

where q1, . . . , qn are units in K. For the special case where q1 = · · · = qn = 1
we have the nth Weyl algebra, which is denoted by An. Because of the strong
relation between Weyl algebras and differential operators, we may also refer to a
Weyl algebra as a ring of differential polynomials.

Lemma 1.3 (cf. McConnell and Robson [2001], Theorem 3.5). Weyl algebras
are simple rings, if K has characteristic zero.

The next example shows that similarity might appear in practice as a vacuous
concept by showing that the two non-commuting variables in the first Weyl algebra
are related through similarity.

Example 1.7. Let us consider the first Weyl algebra A1. Then the elements
f := x1 and g := ∂1 are similar. This can easily be seen by using item (a) of
Definition 1.10, as A1/A1〈f〉 ∼= K[x1] ∼= K[∂1] ∼= A1/A1〈g〉. It is to be remarked
that K[∂1] resp. K[x1] are viewed as left A1 modules.

Example 1.8. One cannot define a non-trivial N0-grading on the Weyl alge-
bras, if the elements in K are considered having degree zero. This is due to the
commutation rule of ∂ixi = xi∂i + 1. I.e., one obtains summands in K when mul-
tiplying the generators of the algebra.

Definition 1.24. The nth q-shift algebra Sn is defined as

Sn,q := K
〈

x1, . . . , xn, s1, . . . , sn | for (i, j) ∈ n× n :

sixj =

{
xjsi, if i 6= j

qi(xj + 1)si, if i = j
, sisj − sjsi = xixj − xjxi = 0

〉
,

where q1, . . . , qn are units in K. For the special case where q1 = · · · = qn = 1 we
have the nth shift algebra, which is denoted by Sn. Because of the strong relation
between shift algebras and difference operators, we may also refer to a shift algebra
as ring of difference polynomials.

Example 1.9. In the case of the shift algebras, one is able to define an N0

grading. This is done by setting the weight of all the variables xi, i ∈ n, to zero,
and the weight of all si to one.
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Definition 1.25. A coordinate ring of the quantum affine n-space Oq(Kn)
for n ∈ N is defined as

Oq(Kn) := K
〈

x1, . . . , xn | for (i, j) ∈ n× n : xixj = qijxjxi

〉
,

where qij are units in K satisfying qi,jqj,i = 1 for i 6= j and qi,i = 1.

The definition of the last class of algebras that are known to be G-algebras,
namely enveloping algebras of finite dimensional Lie algebras, requires a bit more
preparation.

Definition 1.26 (cf. Dixmier [1977], Section 1.1.1.). A Lie algebra is a vector
space g over a field K together with a multiplication (usually termed a bracket and
denoted by [·, ·] : g × g → g, (x, y) 7→ [x, y]) such that for all x, y, z ∈ g:

(1) [·, ·] is a bilinear homomorphism;
(2) [x, x] = 0 for all x ∈ g (alternativity);
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Definition 1.27 (cf. Dixmier [1977], Section 2.1.1.). Let g be a Lie algebra
over a field K. The tensor algebra T (g) of g is defined as

T = T 0 ⊕ T 1 ⊕ · · · ⊕ Tn ⊕ · · · ,
where

Tn = g ⊗ · · · ⊗ g︸ ︷︷ ︸
n times

for n ∈ N and T 0 := K. Multiplication in T (g) is the tensor product.

Definition 1.28 (cf. Dixmier [1977], Section 2.1.1.). Let T be the tensor
algebra of a Lie algebra g over K. Let J be the two-sided ideal of T generated by
the tensors

x⊗ y − y ⊗ x− [x, y],

where x, y ∈ g. The associative algebra T/J is termed the enveloping algebra of
g, and is denoted by U(g).

Theorem 1.2 (Poincaré-Birkhoff-Witt Theorem, cf. Dixmier [1977], Theorem
2.1.11.). Let (x1, . . . , xn), n ∈ N, be a basis for the a K vector space g. Then the
monomials xv11 x

v2
2 · · ·xvnn , where v1, . . . , vn ∈ N0, form a basis for U(g).

Corollary 1.1. The enveloping algebra of a finite dimensional Lie algebra g
is a G-algebra.

Proof. This follows from Theorem 1.2 and from the canonical filtration of
U(g) as described by Dixmier [1977, Section 2.3.2]. �

Example 1.10. Consider the four-dimensional vector space K2×2 of 2 by 2
matrices over K. The subspace sl2 of all matrices in K2×2, whose trace is equal to
zero, has dimension three and is generated by the elements

e :=

[
0 1
0 0

]
, f :=

[
0 0
1 0

]
, h :=

[
1 0
0 −1

]
.

One can define a Lie-algebra structure on sl2 using the multiplication [·, ·] : sl2 ×
sl2 → sl2, (x, y) 7→ xy − yx. According to the Poincaré-Birkhoff-Witt theorem,
U(sl2) is generated by e, f and h. Hence, U(sl2) can be viewed as a K algebra,
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which is finitely generated by three symbolic generators e, f and h. The commuting
relations between e, f and h are

fe = ef − h, he = eh+ 2e, hf = fh− 2f.

The necessary ordering mentioned in the definition of G-algebras can be chosen to
be the degree lexicographic ordering.

1.9. Localization in Noncommutative Rings

G-algebras, as we introduced them, have a polynomial structure. Often, one is
interested in inverting generators. In this section, we will discuss how to generalize
the concept of localization in the noncommutative setup.

Theorem 1.3 (cf. Bueso et al. [2003], Chapter 8, Theorem 1.3). Let 1 ∈ S ⊆
R \ {0} be a multiplicatively closed subset of a ring R. The following assertions are
equivalent:

(1) R admits a left ring of fractions S−1R with respect to S.
(2) S satisfies the following properties:

(a) (left Ore condition) for any s ∈ S and r ∈ R there exists s′ ∈ S and
r′ ∈ R with s′r = r′s;

(b) (left reversibility) if rs = 0 for some s ∈ S and r ∈ R, then there
exists some s′ ∈ S with s′r = 0.

Definition 1.29. A multiplicatively closed subset 1 ∈ S ⊆ R is called a left
Ore set if it satisfies the left Ore condition introduced in the theorem above. If it
furthermore satisfies the left reversibility, we call it a left denominator set.

Remark 1.4. One might think about what happens to σ and δ, if we localize
an Ore extension of a ring R with the quasi-derivation (σ, δ). Bueso et al. [2003],
Chapter 8, Lemma 1.10 states that if σ(S) ⊆ S, our pair (σ, δ) canonically extends
to a quasi-derivation (σ, δ) on the ring of fractions S−1R.

Example 1.11. We are going to show that S := K[x] \ {0} can be chosen as a
left denominator set for the first Weyl algebra A1.

Left Ore condition: Let s ∈ S and r ∈ A1 \ {0} be arbitrarily chosen elements.
We need to find an element s′, such that s |r s′r. If s (respectively r) is a constant
or already a right divisor of r (respectively r a left divisor of s), this is trivial. If
neither of these properties is given, we can choose s′ := sn+1, where n = deg∂(r).
Then s |r s′r, because we know that

• s | didxs′ = di

dxs
n+1 for every 0 ≤ i ≤ n and we can apply that knowledge to

• s′∂m =
∑m
i=0(−1)i

(
m
i

)
∂m−i( d

i

dxs
′), m ∈ N, which means that s |r s′∂m if

m ≤ n.

Those formulas – in a more general fashion – can be found in Levandovskyy
and Schindelar [2012].

Left reversibility: As A1 is a domain, there is no s ∈ S \ {0} such that rs = 0.
Therefore this condition holds.

Example 1.11 introduces a very important variant of the ring of differential
polynomials, namely the one modelling differential operators equations with ratio-
nal function coefficients. The next definition coins a term of this special localization
for the (q-)shift algebras and coordinate rings of quantum affine spaces.
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Definition 1.30. The localization as constructed in Example 1.11 can also be
extended to n variables, n ∈ N, and will be referred to as rational Weyl algebra.
In a similar way, one can construct and define the rational q-Weyl algebra, the
rational shift algebra, the rational q-shift algebra, and the rational coordi-
nate ring of the quantum affine n-space .

1.10. Commutative Algebra Necessities

The rest of the chapter is devoted to some results in commutative algebra. We
will be dealing with sets of polynomial equations, whose joint solutions consist of
finitely many elements. The ideal-theoretic notion for such systems are so-called
zero-dimensional ideals. We will introduce their meaning and some known results
about how to obtain all solutions of the polynomial systems associated to these
ideals.

Definition 1.31 (cf. Becker et al. [1993], Definition 6.46). Let I be a proper
ideal of the commutative polynomial ring K[x1, . . . , xn], n ∈ N, and {u1, . . . , ur},
r ∈ N, a subset of {X}. Then {u1, . . . , ur} is called independent modulo I if
I ∩K[U ] = {0}. Moreover, {U} is called maximally independent modulo I if it
is independent modulo I and not contained in any other independent set modulo I.

Definition 1.32 (cf. Becker et al. [1993], Definition 6.46). Let I be a proper
ideal of the commutative polynomial ring K[x1, . . . , xn], n ∈ N. The dimension
dim(I) of I is defined as

dim(I) := max{|U | | U ⊆ {X} independent modulo I}.
We call I zero-dimensional, if it is proper and dim(I) = 0.

Remark 1.5. The dimension as we have defined here and the so called Krull-
dimension coincide for ideals in K[X]. For our purposes, this simpler definition
suffices.

Definition 1.33. Let f :=
∑
α∈Nn0

fαX
α ∈ K[x1, . . . , xn], n ∈ N, fα ∈ K, and

let K ⊆ K′ for some algebraic extension K′ of K. An element z = [z1, . . . , zn] ∈
(K′)n is called a zero of f if

∑
α∈Nn0

fαc
α1
1 · · · cαnn = 0. Similarly, given an ideal I

in K[X], we call z ∈ (K′)n a zero of I, if z is a zero for all f ∈ I. The set of zeros
of I is called the variety of I, denoted by V(I).

Proposition 1.5 (cf. Becker et al. [1993], Proposition 8.27). Let I be a proper
ideal of the commutative polynomial ring K[x1, . . . , xn], n ∈ N. The following are
equivalent:

(1) dim(I) = 0.
(2) There exists an algebraically closed extension K of K such that I has only

finitely many different zeroes in Kn.
(3) For every algebraically closed extension K of K, the ideal I has only finitely

many different zeroes in Kn.

Theorem 1.4 (cf. Becker et al. [1993], Theorem 6.54). Let I be a proper ideal
of K[x1, . . . , xn]. Then the following assertions are equivalent:

(1) dim(I) = 0.
(2) K[X]/I is finite-dimensional as a K-vector space.
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(3) There exists a monomial ordering ≺ on Mon(K[X]) and a Gröbner basis
G of I w.r.t. ≺ such that for each 1 ≤ i ≤ n, there is gi ∈ G with
lt(gi) = xνii for some νi ∈ N.

(4) For every monomial ordering ≺ on Mon(K[X]) and every Gröbner basis
G of I w.r.t. ≺ there exists, for each 1 ≤ i ≤ n, gi ∈ G with lt(gi) = xνii
for some νi ∈ N.

Theorem 1.4 can be used, as also outlined in von zur Gathen and Gerhard [2013,
Section 21.6], to construct a method to find the variety of a zero-dimensional ideal
I in K[X], given we can calculate roots of univariate polynomials over K: Calculate
a Gröbner basis G of I with respect to an elimination ordering. Then we know that
at least one polynomial g in G must be univariate. We compute all zeros of g, and
substitute the respective variable in all other polynomials. However, this approach
is generally not very efficient, since we might have multiple univariate polynomials
and the selection of the “right” roots, i.e. those which appear in a coordinate of at
least one element in the variety of I, might be difficult.

However, there is an improved method, based on so-called triangular sets.

Definition 1.34. Let S := K[x1, . . . , xn] be the commutative multivariate poly-
nomial ring over K and let ≺ be an elimination ordering in S with x1 � . . . � xn.
We call a set G of generators of an ideal I in S triangular, if |G| = n and for all
i ∈ n, there exists a pi ∈ G with lm(pi) = xti, where t ∈ N.

According to Lazard [1992], Möller [1993], there exists a method to compute a
finite set of triangular systems T1, . . . , Tκ, κ ∈ N, in S, such that the variety of I is
the union of the varieties of these triangular systems. These Ti for i ∈ {1, . . . , κ}
are Gröbner bases of the respective ideals 〈Ti〉 with respect to the lexicographic
ordering, and have the property that they consist of exactly n elements. Since all
the 〈Ti〉 are zero-dimensional ideals and the elements in each Ti form Gröbner bases,
Theorem 1.4 applies. Thus, for any variable x ∈ {x1, . . . , xn}, there exists t ∈ N0,
such that xt = lm(f) for f ∈ Ti. Therefore, we can use the technique as described
above to calculate the variety of each 〈Ti〉, and we have in each step exactly one
univariate polynomial, whose zeros are potentially leading to a zero of 〈Ti〉.

Remark 1.6. As one can see, the calculation of a Gröbner basis with respect to
the lexicographic ordering is necessary to obtain the variety of a zero-dimensional
ideal using Lazard’s and Möller’s techniques. This choice of ordering is generally
more expensive than for example degree-reverse lexicographic ordering (cf. Caniglia
et al. [1988, 1991]). There are methods available to map calculated Gröbner bases
from one term ordering to Gröbner bases in a different ordering (e.g. Faugere
et al. [1993]). Gräbe [1995a,b] presents a modification of Lazard’s and Möller’s
techniques, where the computation of Gröbner bases with respect to the lexicographic
ordering is minimized.
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CHAPTER 2

Factorization in Noncommutative Domains

In this chapter, we are going to study factorization in different classes of non-
commutative domains.

Factorization in noncommutative rings is unique up to similarity. Similar fac-
tors can look quite different, as the next example demonstrates.

Example 2.1. Let us look at an example for distinct factorizations in a concrete
ring of Ore polynomials. Consider the first shift algebra over Q. The element
h := x2

1s1x
2
1 + 3x1s1x

2
1 − x2

1 + 2s1x
2
1 − 3x1 − 2 has six distinct factorizations up to

multiplication by elements in Q, namely

h =(x1 + 1)(x1 + 2)(s1 − 1)(s1 + 1)

=(x1 + 1)(x1 + 2)(s1 + 1)(s1 − 1)

=(x1 + 2)(x1 + 1)(s1 − 1)(s1 + 1)

=(x1 + 2)(x1 + 1)(s1 + 1)(s1 − 1)

=(x1s1 − x1 + s1 − 2)(x1 + 1)(s1 + 1)

=(x1s1 + x1 + s1 + 2)(x1 + 1)(s1 − 1).

Up to permutation of commuting factors, one can identify three distinct factoriza-
tions (the first four factorizations are the same factorization up to permutation; the
last two are the identical up to certain sign differences of the summands).

Two quite distinct polynomials in a domain might be related via similarity, as
the above example and Example 1.7 depicts. Hence, we will avoid the notion of
similarity when talking about distinct factorizations, as each possible discovered,
say, left hand factor may be interesting on its own.

Thus, unless stated otherwise, we will use the following definition to distinguish
factorizations in a domain A.

Definition 2.1. Let f = f1 · · · fn = f̃1 · · · f̃m, m,n ∈ N, two factorizations of
an element f in a domain A. We further assume that fi, f̃j are irreducible elements

in A for (i, j) ∈ n×m. We call the factorizations f1 · · · fn and f̃1 · · · f̃m distinct,
if either n 6= m or if m = n, there exist no central units c1, . . . , cn ∈ A, such that
f1 = c1f̃1, . . . , fn = cnf̃n.

Given Definition 2.1, we can now formulate the two main problems that we are
aiming to address.

Problem 2.1. Given an element f in a domain A. Find one factorization
f = f1 · · · fn, n ∈ N, with the fi ∈ A being irreducible and non-units.

Problem 2.2. Given an element f in a domain A. Find all distinct factoriza-
tions f1 · · · fn, n ∈ N, of f with the fi ∈ A being irreducible and non-units.
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Naturally, Problem 2.2 may not be decidable, as infinitely many distinct fac-
torizations are possible for particular choices of elements in a certain domain A.
The next example is classical and illustrates infinitely many distinct factorizations
in the rational Weyl algebras.

Example 2.2. Consider e.g. the first rational Weyl algebra over a field of
characteristic zero. Then ∂2

1 has infinitely many distinct factorizations of the form

∂2
1 =

(
∂1 +

b

bx1 − c

)(
∂1 −

b

bx1 − c

)
for b, c ∈ K. In fact, one has a complete description of the form of all possible fac-
torizations of ∂2 in the equation above. To prove this, one considers a factorization
∂2 = φ · ψ, where φ, ψ are not units. Then φ and ψ are of degree one in ∂, and
without loss of generality one can assume that they are normalized, i.e. they have
the form φ = ∂ + f and ψ = ∂ + g for f, g ∈ K(x). Using a coefficient comparison
of the product φ · ψ, one can derive that f = −g and that f has to be a rational
function solution of the ordinary differential equation ∂f

∂x = −f2. Besides the trivial

solution f ≡ 0, the only possible other solution is given by f(x) = b
bx−c for some

constants (b, c) ∈ K2 \ {(0, 0)}.
If all elements in a domain A have only finitely many distinct factorizations,

then one can study Problem 2.2 for elements in A. We coin these kinds of domains
in the next definition.

Definition 2.2. Let A be a (not necessarily commutative) domain. We say
that A is a finite factorization domain (FFD, for short), if every nonzero,
non-unit element of A has at least one factorization into irreducible elements and
there are at most finitely many distinct factorizations into irreducible elements up
to multiplication of the irreducible factors by central units in A.

In the following section, we will describe criteria to identify finite factorization
domains.

2.1. Identifying Finite Factorization Domains

The results presented in this section are originally published in [Bell, Heinle,
and Levandovskyy, 2014], where the interested reader can find the respective proofs.
We will omit the proofs to the results here, since they require specific background
in the field of algebraic geometry. This background would be exclusively needed
for these proofs.

The developed criteria to identify a finite factorization domain are applicable
to – not necessarily commutative – algebras over a field K. These cover, as we will
see soon, all G-algebras.

At first, we assume that the field K is algebraically closed. Then the following
theorem holds.

Theorem 2.1. Let K be an algebraically closed field and let A be a K-algebra.
If there exists a finite-dimensional filtration {Vn : n ∈ N0} on A such that the
associated graded algebra grV (A) is a (not necessarily commutative) domain over
K, then A is a finite factorization domain over K.

Of course, the condition that K is algebraically closed is very restrictive. In
general, one cannot ignore this assumption, as the following example shows.
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Example 2.3. Let K = R and A = R+C[t]·t ⊆ C[t]. We consider the filtration
induced by the degree in t on this algebra. Then the associated graded algebra of A
is A itself again, i.e. a domain. But we have infinitely many factorizations of t2 of
the form

t2 = (cos(θ) + i sin(θ))t · (cos(θ)− i sin(θ))t

for any θ ∈ [0, 2π). Notice that the units of A are precisely the nonzero real numbers
and hence for θ ∈ [0, π) these factorizations are distinct.

Fortunately, by using an additional condition on the associated graded algebra,
one can formulate Theorem 2.1 without the requirement of K being algebraically
closed.

Corollary 2.1. Let K be a field and let A be a K-algebra. If there exists
a finite-dimensional filtration {Vn : n ∈ N0} on A such that the associated graded
algebra B = grV (A) has the property that B⊗KK̄ is a (not necessarily commutative)
domain, then A is a finite factorization domain.

This observation lets us derive that G-algebras – and hence e.g. Weyl and shift
algebras – are finite factorization domains. This result is stated by the following
theorem.

Theorem 2.2. Let K be a field. Then G-algebras over K and their subalgebras
are finite factorization domains. In particular, so are

(1) the Weyl algebras and the shift algebras;
(2) enveloping algebras of finite-dimensional Lie algebras;
(3) coordinate rings of quantum affine spaces;
(4) q-shift algebras and q-Weyl algebras;

as well as polynomial rings over the algebras listed in items (1)–(4).

For practical applications, like e.g. estimating the complexity of an algorithm
solving Problem 2.2 for an FFD A, upper bounds for the number of distinct factor-
izations are useful. The following theorem states an upper bound, which may be
improved for certain choices of A.

Theorem 2.3. Let K be an algebraically closed field and let A be a K-algebra
with an associated filtration V = {Vn : n ∈ N0} such that the associated graded
algebra of A with respect to V is a domain. Define further

gV (n) := dimK(Vn).

Then an element a ∈ Vn has at most
n

4
· 4gV (n)

distinct factorizations into two elements and at most

2n·gV (n)

total distinct factorizations up to multiplication of factors by central units.

Example 2.4. One might be led to the conjecture that this exponential amount
of factorizations appears since K is algebraically closed in Theorem 2.3. But quite
a large number of factorizations – compared to the total degree – can also appear
when choosing K = Q. Let

f := x6
1∂

6
1 + 40x5

1∂
5
1 + 550x4

1∂
4
1 + 3200x3

1∂
3
1 + 7800x2

1∂
2
1 + 6720x1∂1 + 1200 ∈ A1.

19



Then f has 3547 distinct factorizations (one can obtain all of them using
ncfactor.lib in Singular , which we will present in section 5.1).

In general, the property of not being an FFD does not pass to localizations,
even in the commutative case. In the noncommutative case, the property of being
an FFD does also not pass to localizations in general. As an example, consider the
first polynomial Weyl algebra A1 over a field K, which is an FFD. However, the
rational first Weyl algebra , denoted by B1, is not an FFD. It is straightforward
to check that the central units of B1 are precisely the elements of K∗ when K
has characteristic zero and are K∗xpZ if K has characteristic p > 0. Also, B1 is
generated by ∂ over the transcendental field extension C(x) subject to the relation

∂g(x) = g(x)∂ + ∂g(x)
∂x for g ∈ C(x). Example 2.2 shows, that there are infinitely

many distinct factorizations in B1 up to multiplication by central units.
Also over the first rational shift algebra one encounters a phenomenon as with

the rational Weyl algebra. The following example was communicated to us by
Michael Singer: Let (c1, c2) ∈ K2 \ {(0, 0)}. Then

s2 − 2(n+ 2)s+ (n+ 2)(n+ 1)

=

(
s− (n+ 2)

c1n+ c2
c1(n+ 1) + c2

)
·
(
s− (n+ 1)

c1(n+ 1) + c2
c1n+ c2

)
.

The construction of an element with infinitely many factorizations in the first
rational q-shift algebra is similar. Namely, let (c1, c2) ∈ K2 \ {(0, 0)}. Then

s2
q − (1 + q)sq + q

=

(
sq −

(
1− c2(1− q)

c1x+ c2(n+ 1)

))
·
(
sq −

(
q +

c2(1− q)
c1x+ c2(n+ 1)

))
.

2.2. Factorization in G-algebras

Since we have established in Theorem 2.2 thatG-algebras are finite factorization
domains, one can attempt to solve Problem 2.2 for certain classes of G-algebras.
With a minor assumption on the underlying field K, we solved Problem 2.2 for
G-algebras in a practically applicable way in Heinle and Levandovskyy [2016], and
in this section we will explain the method.

The necessary assumption on the underlying field K can be stated as follows.

Assumption 2.1. There exists an algorithm to determine if a polynomial p in
K[x] has roots in K. If p has roots in K, then this algorithm can produce all K-roots
of p.

This assumption is true for several practical fields, like e.g. Q or finite fields F.
It is to be remarked that we are not requiring the existence of an efficient algorithm
to find all roots of univariate polynomials over K; it suffices that there exists a
method that terminates and is correct.

Assumption 2.1 will hold until the end of this section, unless specified otherwise.

2.2.1. Preliminaries.

Lemma 2.1. Let G be a G-algebra. Then there exists a weighted degree mono-
mial ordering ≺w on G with strictly positive weights for each variable.

Proof. This follows directly from [Bueso et al., 2001, Theorem 2.3]. �
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We will assume that we are working with such an ordering ≺:=≺w for a weight
vector w. Let g ∈ G, where G is some fixed G-algebra as in Definition 1.19, be the
polynomial that we try to factorize into the form g := a · b, where a, b ∈ G \K. We
can assume without loss of generality that g and a are monic.

Then lt(g) = lm(g) = lt(a) · lt(b). Define the finite set

M := {(p1, . . . , pν) | ν ∈ N, pi ∈ {x1, . . . , xn}, lm(p1 · . . . · pν) = lm(g)}.
Then the tuple of possible leading monomials for a and b lies in a finite set, namely

(lm(a), lm(b)) ∈ {(p1 · · · pi, pi+1 · · · pν) | (p1, . . . , pν) ∈M, 1 ≤ i ≤ ν}.
Hence, in combination with our assumption that g and a are monic, we know

that the leading terms of all factorizations of g into two non-trivial factors a and b
can be found in this finite set. Fortunately, given a fixed tuple of leading monomials
for a and b, there are only finitely many other monomials that can appear as
summands in a and b, as the next lemma depicts.

Lemma 2.2. Let (lm(a), lm(b)) be a possible tuple of leading monomials of two
factors a and b of g. Then for both a and b, there are only finitely many monomials
that are smaller than lm(a) resp. lm(b) with respect to ≺, which can appear as
summands in a and b.

Proof. For each i ∈ n, let degxi(f) be the degree of a polynomial f ∈ G in
the variable xi. We claim that degxi(a) and degxi(b) are always smaller or equal
than degxi(g). Assume that there exists an i ∈ n with degxi(a) > degxi(g) or
degxi(b) > degxi(g). Due to the definition of G-algebras, we would then have

degxi(a · b︸︷︷︸
=g

) > degxi(g),

a contradiction. Hence, the degree of each variable xi in each monomial of a and b
is bounded by degxi(g), i.e. there are only finitely many possible monomials that
can appear as summands in a and b, as claimed. �

The main idea can therefore be summarized as follows: For each possible combi-
nation of leading terms for a and b, view the K-coefficients of the remaining possible
monomials in a and b as unknowns. In particular, assume there are k, l ∈ N0, such
that there are exactly k possible monomials smaller than lm(a), and l monomials
smaller than lm(b). I.e, we assume that a and b have the form

a =

k∑
i=0

ai ·m(i)
a , b =

l∑
i=0

bi ·m(i)
b ,

wherem
(0)
a , . . . ,m

(k−1)
a are the monomials smaller thanm

(k)
a := lm(a), m

(0)
b , . . . ,m

(l−1)
b

are the monomials smaller than m
(l)
b := lm(b), and a0, . . . , ak, b0, . . . , bl ∈ K. Due

to our assumption we have ak := 1 and bl := lc(p1 · · · pν)−1. It remains to solve for
the unknown coefficients a0, . . . , ak−1, b0, . . . , bl−1.
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Lemma 2.3. Let a and b be defined as above. Then we can symbolically compute

ab− g =

(
k∑
i=0

ai ·m(i)
a

)
·
(

l∑
i=0

bi ·m(i)
b

)
− g.

The coefficients of the different products m
(i)
a ·m(j)

b , i, j ∈ N0, in ab−g are elements
in the commutative polynomial ring S := K[a0, . . . , ak−1, b0, . . . , bl−1]. The set C
of these coefficients generates a zero-dimensional ideal 〈C〉 in S.

Proof. If 〈C〉 was not zero-dimensional , the variety Ṽ ⊂ Kl+k over the
algebraic closure of K ⊂ K of 〈C〉 would be an infinite set. As each element in V
represents a distinct factorization of g, we obtain infinitely many factorizations of
g, contradicting that G is an FFD by Theorem 2.2, independent of the choice of the
underlying field. �

Since 〈C〉 from Lemma 2.3 is zero-dimensional, and we assume that we are able
to calculate roots of univariate polynomials over K, we can retrieve the variety of
〈C〉 using the methods described in section 1.10. Each computed element in this
variety will lead to a factorization.

2.2.2. Algorithm Formulation, Proof and Examples. The methodology
illustrated in the previous subsection can be used to formulate an algorithm that
solves Problem 2.2, namely Algorithm 2.1.

Proof of Algorithm 2.1. Every iteration in the algorithm is performed
over finite sets, and there exists a terminating and correct algorithm to perform the
computation of V in line 8. Hence, Algorithm 2.1 will terminate.

The correctness follows from the preliminary work in subsection 2.2.1. �

Example 2.5. Let us consider the universal enveloping algebra U(sl2) of sl2,
as constructed in Example 1.10. Recall, that U(sl2) is represented by

K〈e, f, h | fe = ef − h, he = eh+ 2e, hf = fh− 2f〉.
In U(sl2), we want to factorize the element

p :=e3f + e2f2 − e3 + e2f + 2ef2 − 3e2h− 2efh− 8e2

+ ef + f2 − 4eh− 2fh− 7e+ f − h.
We fix the degree lexicographic ordering on U(sl2), i.e. the leading term of p is e3f .

Therefore the set M in line 2 is given as

M := {(e, e, e, f), (e, e, f, e), (e, f, e, e), (f, e, e, e)}.
When choosing (e, e, e, f), for i = 1 one can set up the ansatz

p =a · b = (e+ a2f + a1h+ a0)·
(e2f + b12ef

2 + b11e
2h+ b10efh+ b9f

2h+ b8e
2 + b7ef

+ b6f
2 + b5eh+ b4fh+ b3e+ b2f + b1h+ b0).

When calculating the variety of the ideal in K[a0, a1, a2, b0, . . . , b12], generated
by the coefficients of ab − p, one obtains one solution, which corresponds to the
factorization

p = (e+ 1) · (e2f + ef2 − 3eh− 2fh− e2 + f2 − 7e+ f − h).
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Algorithm 2.1 Factoring an element g in a G-algebra G
Input: g ∈ G \K.
Output: {(g1, . . . , gm) | m ∈ N, gi ∈ G \K for i ∈ {1, . . . ,m}, g1 · · · gm = g} (up to
multiplication of each factor by a central unit).
Assumption: An admissible monomial ordering ≺ on G is fixed and g is monic
with respect to it.

1: R := {}
2:

M := {(p1, . . . , pν) | ν ∈ N, pi ∈ {x1, . . . , xn}, lm(p1 · . . . · pν) = lm(g)}

3: for (p1, . . . , pν) ∈M do
4: for i := 1 to ν − 1 do
5: Set up an ansatz for the K-coefficients of a · b = g with lm(a) = p1 · · · pi,

lm(b) = pi+1 · · · pν , lc(a) = 1 and lc(b) = lc(p1 · · · pν)−1.
6: F := the reduced Gröbner basis w.r.t. an elimination ordering of the ideal

generated by the coefficients of a · b− g.
7: if F 6= {1} then
8: V := Variety of 〈F 〉 in an affine space over K.
9: R := R ∪ {(a, b) | a, b ∈ G, a · b = g, where the coefficients of a, b are

given by v ∈ V }
10: end if
11: end for
12: end for
13: if R = {} then
14: return {(g)}
15: else
16: Recursively factor a and b for each (a, b) ∈ R.
17: end if
18: return R

By picking (e, e, f, e) for i = 3 and setting up an ansatz, one discovers two more
factorizations, namely

p = (e2f + 2ef − 2eh− e2 − 4e+ f − 2h− 3) · (e+ f)

and

p = (e2f + ef2 − 2eh− e2 + f2 − 3e− f − 2h) · (e+ 1).

All the other combinations either produce the same factorizations or none.
When recursively calling the algorithm for each factor in the found factoriza-

tions, we discover that the first two factorizations have a reducible factor. In the
end, one obtains the following two distinct factorizations of p into irreducible fac-
tors:

p =(e2f + ef2 − 2eh− e2 + f2 − 3e− f − 2h) · (e+ 1)

=(e+ 1) · (ef − e+ f − 2h− 3) · (e+ f).

We have implemented Algorithm 2.1 in the library ncfactor.lib in Singular.
The presentation of all functions in this library will be subject of section 5.1.
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2.3. Improvements by Leveraging Graded Structure

Algorithm 2.1 solves Problem 2.2, i.e. finding all possible factorizations of
an element in a G-algebra for which Assumption 2.1 holds, but it will not be
very efficient in general. This is not only due to the complexity of the necessary
calculation of a Gröbner basis [Mayr and Meyer, 1982], but also the size of the set
M in line 2 of Algorithm 2.1 is a significant bottleneck. In this section we will
discuss possible improvements to Algorithm 2.1 that generically reduce the size of
M . Subsequently, in section 2.4, we will apply these ideas to factor elements in the
nth (q-)Weyl and shift algebras, as done by Giesbrecht, Heinle, and Levandovskyy
[2014, 2016].

The set M contains all different permutations of the variables in the leading
monomial of the polynomial one wants to factorize. As the number of different
variables and their degree increases, this set grows in a factorial fashion in the
worst case.

Example 2.6. Consider e.g. the monomial x2
1x

2
2∂

2
1∂

2
2 in the second Weyl alge-

bra A2. Then the set M would consist of 2520 elements, leading to 2520 ·7 = 17640
possibilities for leading monomials of a and b which need to be examined individu-
ally.

One alternative strategy is to consider an ordering on a G-algebra G, for which
different monomials are regarded as equal. This means that we soften our assump-
tions on the ordering ≺ on G, which was set to be a monomial ordering with positive
weights for each variable before.

For this subsection, we assume that there exists a monoid (Γ,+, e,≺), such
that Γ is an ordered monoid and there exist subspaces Gγ ⊆ G for all γ ∈ Γ that
form a grading on G. Furthermore, we require that the homogeneous subspaces
contain also polynomials, rather than just monomials.

With this, we have the following additional structure which we can leverage for
factorization.

(1) For γ ∈ Γ, we have that Gγ is a K-vector space. Moreover, ⊕γGγ = G and
GiGj ⊆ Gi+j for all i, j ∈ Γ.

(2) Ge, the graded part with respect to the neutral element in Γ, is a K-algebra
itself (since GeGe ⊆ Ge).

(3) For γ ∈ Γ \ {e}, the γ-th graded part Gγ is an Ge-bimodule (since
GeGγ , GγGe ⊆ Gγ).

When applying the same strategy as in Algorithm 2.1 to find factors of a g ∈ G,
we need to be able to factorize the degree-wise highest summand of g. Furthermore,
as mentioned above, it is desirable that the number of factorizations of a randomly
chosen homogeneous element is expected to be low. Granted this property, one also
has to be able to subsequently set up a proper ansatz to solve for the remaining
summands. In order to achieve this goal, we formulated the following additional
requirements for the grading.

(4) The graded part of degree e, Ge, which is a K-algebra and an FFD, should
be endowed with an “easy” factorization method; preferably it is a commu-
tative polynomial ring. Furthermore, for keeping the set M in Algorithm
2.1 small, it would be desirable that in Ge, a randomly chosen polynomial
is irreducible with high probability.
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(5) The irreducible elements in Ge, that are reducible in G, can be identified
and factorized in an efficient manner. Preferably, one has a finite number
of monic elements of such type.

(6) For γ ∈ Γ\{e}, the γ-th graded part Gγ is a finitely generated Ge-bimodule,
preferably a cyclic bimodule.

Then Algorithm 2.1 can be modified to utilize this grading. Furthermore, in
case there are elements γ ∈ Γ with γ ≺ e, one can also consider factorizations of
the lowest homogeneous summand in addition to the factorizations of the highest
homogeneous summand. This approach will be applied to the (q-)Weyl algebras in
the next section. Let us illustrate the benefits using a concrete but more simple
example here.

Example 2.7. As in Example 2.5, let A = U(sl2), that is

A := K〈e, f, h | fe = ef − h, he = eh+ 2e, hf = fh− 2f〉.
At first, let us determine which gradings are possible. Let we, wf and wh be the
weights of the variables, not all zero. The two last relations of A imply that wh = 0,
and the first one implies we +wf = wh = 0, that is wf = −we. Hence we can pick
Z-grading induced by the weighted ordering using the weight vector (we, wf , wh) =
(1,−1, 0). We can see that this choice also fulfills all the other properties that we
required above. First of all, A0 = K[ef, h] is commutative and the z-th graded part is
a cyclic A0-bimodule, generated by ez if z > 0 and by f |z| otherwise. This property
guarantees, that ∀r ∈ K[ef, h] and ∀z ∈ N there exists q1, q2 ∈ K[ef, h], such that
rez = ezq1 and ezr = q2e

z and the same holds for the multiplication by fz. Note,
that deg(qi) = deg(r).

We claim that the only monic irreducible elements in A0, which are reducible
in A, are given by ef and ef − h. The proof to this claim is similar to the one
we will present later in Lemma 2.6 for the nth (q-)Weyl algebra; for completeness
sake, we outline the main idea here: Let p be an irreducible element in A0, which
reduces into p = ϕ ·ψ in A, where ϕ,ψ ∈ A\K are monic. Since A is a domain, the
factors ϕ,ψ are homogeneous with deg(ϕ) = k and deg(ψ) = −k for some k ∈ Z.
If |k| > 1 or k = 0, p would be reducible in A0, which violates our assumption.
Hence only k = 1 is possible. If any of ϕ or ψ would have a non-trivial A0 factor,
we would obtain again that p is reducible in A0. This leaves as only options p = ef
or p = fe = ef − h, as claimed. Thus, we have shown that irreducible elements in
A0, which are reducible in A, can be easily identified and factored.

Now consider the same polynomial p as in Example 2.5. With respect to the
(1,−1, 0)-grading it decomposes into the following graded parts: α(p) = −e3, which
denotes the homogeneous summand of the highest degree, and ω(p) = f2, the homo-
geneous summand of lowest degree (as we see, in this case we have monomials in
graded parts, while in general rather polynomials appear). The intermediate parts
are

e3f − 3e2h− 8e2︸ ︷︷ ︸
deg:2

+ e2f − 4eh− 7e︸ ︷︷ ︸
deg:1

+ e2f2 − 2efh+ ef − h︸ ︷︷ ︸
deg:0

+ 2ef2 − 2fh+ f︸ ︷︷ ︸
deg:−1

.

Among the factorizations of α(p) = −e3 and ω(p) = f2 into two factors, consider
the case (−e2) ·e and f ·f . Thus, we are looking for a, b ∈ A with α(a) = e2, ω(a) =
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f and α(b) = e, ω(b) = f and p = ab holds. In b we have only one possible
intermediate graded part b0(ef, h), namely of degree 0 since deg(α(b)) = 1 and
deg(ω(b)) = −1. In a we have to specify the parts of degrees 1 resp. 0, that is
a1(ef, h) ·e resp. a0(ef, h). After the multiplication, we obtain the following graded
decomposition of intermediate graded terms of ab:

−e2b0 + a1e
2︸ ︷︷ ︸

deg:2

+ a1eb0 + a0e− e2f︸ ︷︷ ︸
deg:1

+ a1ef + a0b0 + ef − h︸ ︷︷ ︸
deg:0

+ fb0 + a0f︸ ︷︷ ︸
deg:−1

.

By fixing the maximal possible degree of a0, a1, b0 ∈ K[ef, h], we can create and
solve a system of equations which the coefficients of a0, a1, b0 have to satisfy. In
this example an ansatz in terms of 1, h, ef , i.e. 9 unknown coefficients, leads to
the system of 18 at most quadratic equations, which leads to the unique solution:
b0(ef, h) = 0, a0(ef, h) = 2ef − 2h − 3 and a1(ef, h) = ef − h − 2. Substituting
the polynomials, we arrive at the following factorization with polynomials sorted
according to the grading:

p = (−e2 + e2f − 2eh− 4e+ 2ef − 2h− 3 + f) · (e+ f)

This is already known to us from the Example 2.5. In an analogous way one can
address other factorizations. Note, that in the ansatz we made, significantly less
variables for unknown coefficients and a system of less equations of smaller total
degree were used, compared to the general algorithm.

2.4. Factorization in the nth (q-)Weyl algebra

Using Algorithm 2.1 and the improvements presented in section 2.3, we develop
in this section a factorization algorithm for the nth (q-)Weyl algebra that solves
Problem 2.2. This is a summary and extension of the publications [Heinle and
Levandovskyy, 2013, Giesbrecht, Heinle, and Levandovskyy, 2014, 2016].

Many results that we are going to present in this section hold in an analogous
way for both the Weyl and the q-Weyl algebras. Hence, in order to avoid unnec-
essary case distinction, we include the Weyl algebras when we are talking about
q-Weyl algebras (unless specifically stated otherwise).

What makes Qn a special case is its Zn-grading induced by the weighted or-
dering using the weight vector [−w,w] for 0 6= w ∈ Zn on the elements x1, . . . , xn,
∂1, . . . , ∂n. For simplicity, we choose w := [1, . . . , 1]. In what follows, deg denotes

the degree induced by this weight vector, that is deg(XaDb) := [b1−a1, . . . , bn−an]
for a, b ∈ Nn0 .

Remark 2.1. For n = 1, this grading coincides with the V -filtration introduced
in [Kashiwara, 1983, Malgrange, 1983]. For n > 1, note that a Z-grading, arising

from the V -filtration, prescribes to XaDb the grade
∑n
i=1(bi − ai) ∈ Z.

Definition 2.3. We define the zth graded part for z ∈ Zn of Qn to be the
K-vector space

Q(z)
n := K {Xn1Dn2 : n1, n2 ∈ Nn0 , n2 − n1 = z} ,

i.e., the degree of a monomial is determined by the difference of its powers in the
xi and the ∂i.
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As one can see in the definition, homogeneous elements with repect to this grad-
ing are not just given by monomials. As we will see soon, factoring them remains a
feasible task since it can be reduced to factoring in a commutative polynomial ring.
Finding all factorizations requires some minor additional steps of combinatorial
nature.

2.4.1. Homogeneous Polynomials of Degree [0, . . . , 0]. Let us first deal

with homogeneous polynomials of degree 0 := [0, . . . , 0]. As Q
(0)
n ·Q(0)

n = Q
(0)
n , we

know that the Q
(0)
n is a subring of Qn. We will examine the exact structure of this

subring here.

Definition 2.4. In the nth q-Weyl algebra, we define the so called Euler op-
erators θi := xi∂i for i ∈ N.

Definition 2.5. For n ∈ N and q ∈ K \ {0}, the q-bracket of n is defined as

[n]q := 1−qn
1−q =

∑n−1
i=0 q

i.

Lemma 2.4 (Compare with [Saito et al., 2000], Lemma 1.3.1). In An, we have
the identities

xmi ∂
m
i =

m−1∏
j=0

(θi − j), ∂mi x
m =

m∏
j=1

(θ + j)

for m ∈ N and i ∈ n. In Qn, one can rewrite xmi ∂
m
i and ∂mi x

m
i as elements in K[θ]

and they are equal to

xmi ∂
m
i =

1

q
Tm−1

i

m−1∏
j=0

(θi − [j]qi), ∂mi x
m
i =

m∏
j=1

(
qji θi +

j−1∑
k=0

qki

)
,

where Tj := j(j + 1)/2 for j ∈ N0 denotes the jth triangular number.

Lemma 2.4 shows us, that we can rewrite every monomial in the nth (q-)Weyl
algebra in terms of Euler operators. This leads to the following conclusion.

Corollary 2.2. The 0th graded part of Qn is K[θ1, . . . , θn].

Example 2.8. Let us consider the polynomial

f := x2
2∂

2
2x1∂1 + x2∂2x

2
1∂

2
1 + x1∂1 + 1 ∈ An,

where n ≥ 2.
Then, by applying Lemma 2.4, we obtain

f = (θ2 − 1) · θ2 · θ1 + θ2 · (θ1 − 1) · θ1 + θ1 + 1

= θ2
2θ1 + θ2θ

2
1 − 2θ2θ1 + θ1 + 1.

2.4.2. Homogeneous Polynomials of Arbitrary Degree. Since in a grad-

ing Q
(z1)
n ·Q(z2)

n ⊆ Q(z1+z2)
n holds for all z1, z2 ∈ Zn, Q

(z)
n is naturally a Q

(0)
n -module.

The next lemma depicts the special commutation rules between the Euler operators
and the variables in Qn.

Lemma 2.5 (Compare with [Saito et al., 2000]). In An, the following commu-
tation rules hold for m ∈ N and i ∈ n:

θix
m
i = xmi (θi +m), xmi θi = (θi −m)xmi ,

θi∂
m
i = ∂mi (θi −m), ∂mi θi = (θi +m)∂mi .
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More generally, in Qn, the following commutation rules hold for m ∈ N and i ∈ n:

θix
m
i = xmi (qmi θi + [m]qi), xmi θi =

(
1

qmi
θi − [m]qi

)
xmi ,

θi∂
m
i =

∂mi
qi

(
θi − 1

qm−1
i

− q−m+2
i − qi

1− qi

)
, ∂mi θi =qm−1

i

(
qiθi + 1 +

q−m+1
i − 1

1− qi

)
∂mi .

Lemma 2.5 contains rather non-trivial transformations of θi when describing
the commutation rules with xi resp. ∂i, i ∈ n. However, there is a case distinction
necessary for An and Qn. With the help of the next definition, we will be able to
avoid case distinction and keep formulae short.

Definition 2.6. Let i ∈ n. For An, we define the two maps

Tir : (K[θi],Z)→ K[θi], (f(θi),m) 7→ f(θi +m),

Til : (K[θi],Z)→ K[θi], (f(θi),m) 7→ f(θi −m).

Similarly, in the context of Qn, these maps are defined as

Tir : (K[θi],Z)→ K[θi],(f(θi),m) 7→
{
f(θi − [|m|]qi), if m < 0,

f
(
qm−1
i

(
qiθi +

q−m+1
i −qi

1−qi

))
, otherwise.

Til : (K[θi],Z)→ K[θi],(f(θi),m) 7→

f(θi + [|m|])j , if m < 0,

f
(

1
qi

(
θi−1

qm−1
i

− q−m+2
i −qi

1−qi

))
, otherwise.

This means, in what follows, the definition of Tir resp. Til for i ∈ n is dependent
on the context where it appears, where the two possible contexts are the Weyl and
the q-Weyl algebras.

Corollary 2.3. Consider f(θ) ∈ K[θ]. Then, in Qn, we have

f(θ)Xe = Xef(T1
l (θ1,−e1), . . . ,Tnl (θn,−en)),

f(θ)De = Def
(
T1
l (θ1, e1), . . . ,Tnl (θn, en)

)
.

Corollary 2.4. The nth shift algebra Snis isomorphic to a subalgebra of An.

Proof. Consider the sub-algebra K[θ,D] ⊂ An. Then the isomorphism is
naturally given by the map

ϕ : Sn → K[θ, ∂],
∑

e,w∈Nn0

XeSw 7→
∑

e,w∈Nn0

θeDw.

�

With the help of Lemma 2.5, we can actually reveal more about the structure
of homogeneous elements in Qn.

Proposition 2.1. For z ∈ Zn \ {0}, the zth graded part Q
(z)
n is a cyclic K[θ]-

bimodule, generated by the element Xe(z)Dw(z), exponent vectors of which are, for
i ∈ n, as follows:

ei(z) :=

{
−zi, if zi < 0,

0, otherwise,
, wi(z) :=

{
zi, if zi > 0,

0, otherwise.
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Proof. A polynomial p ∈ Q(z)
n is homogeneous of degree z ∈ Zn if and only

if every monomial of p is of the form Xk+e(z)Dk+w(z), where k ∈ N0 and k :=
[k, . . . , k]. By doing a rewriting, similar to the above, we obtain

Xk+e(z)Dk+w(z) = Xe(z)XkDkDw(z) = Xe(z)fk(θ)Dw(z),

where fk(θ) is computed utilizing Lemma 2.4. Moreover, by Corollary 2.3, we
conclude that we have

Xe(z)fk(θ)Dw(z) = fk(T1
r(θ1,−e1(z)), . . . ,Tnr (θn,−en(z)))Xe(z)Dw(z)

or, equivalently, Xe(z)Dw(z)fk(T1
l (θ1, w1(z)), . . . ,Tnl (θn, wn(z))). This shows the

cyclic bimodule property. �

With this knowledge we can start thinking about our factorization problems
again. In order to solve Problem 2.1 for homogeneous polynomials in Qn, a pos-

sible first step would be to view an element f ∈ Q
(z)
n for z ∈ Zn in the light of

Proposition 2.1: we know that f has the form f = f̃ ·Xe(z)Dw(z), where f̃ ∈ K[θ].

The factorization of the monomial Xe(z)Dw(z) into irreducible factors is given in a
canonical way. The element f̃ can be factored as element in K[θ]. This will unfor-
tunately not lead to a factorization into irreducibles, as there are elements, which
are irreducible in K[θ], but are reducible when viewed as element in Qn. The most
trivial example is θi itself for each i ∈ n. Fortunately, only 2n monic polynomials
in K[θ] have this property, as the following lemma shows.

Lemma 2.6. Let i ∈ n. The polynomials θi and θi + 1
qi

are the only irreducible

monic elements in K[θ] that are reducible in Qn.

Proof. Let f ∈ K[θ] be a monic polynomial. Assume that it is irreducible in
K[θ], but reducible in Qn. Let ϕ,ψ be elements in Qn with ϕψ = f . Then ϕ and

ψ are homogeneous and ϕ ∈ Q(−z)
n , ψ ∈ Q(z)

n for a z ∈ Zn. Let [e, w] := [e(z), w(z)]
be as in Proposition 2.1. Note, that then w(−z) = e(z) = e and e(−z) = w(z) = w

holds. That is, Q
(z)
n = K[θ]XeDw whereas Q

(−z)
n = K[θ]XwDe. Then for ϕ̃, ψ̃ ∈

K[θ], we have ϕ = ϕ̃(θ)XeDw and ψ = ψ̃(θ)XwDe. Using Corollary 2.3, we obtain

f =ϕ̃(θ)XeDwψ̃(θ)XwDe

=ϕ̃(θ)XeDwXwDeψ̃(T1
r(θ1, w1(z)− e1(z)), . . . ,Tnr (θn, wn(z)− en(z))),

where, by Lemma 2.4, XeDwXwDe = g(θ) ∈ K[θ] \ {K}. Since the vectors e and
w have disjoint support and e+ w = [|z1|, . . . , |zn|], g is irreducible by Lemma 2.4
only if there is at most one nonzero zi. If z = 0, then e = w = 0, hence g = 1 and
φ, ψ ∈ K[θ]. Because f has been assumed to be monic irreducible in K[θ], this is a
contradiction.

Now, suppose there exists exactly one i such that zi > 0. Then e(z) = 0 and
w(z) = z is zero on all but ith place. By the irreducibility assumption on f ∈ K[θ]

we must have ϕ̃, ψ̃ ∈ K; since f is monic, we must also have ϕ̃ = ψ̃−1. By Lemma
2.4 we obtain zi = 1. As a result, the only possible f in this case is f = θi + 1

qi
.

For analogous reasons for the case when zi < 0, we conclude, that the only possible
f in that case is f = θi. �

This finalizes the discussion about how Problem 2.1 can be solved for homoge-
neous polynomials in Qn. We summarize our results in Algorithm 2.2.
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Algorithm 2.2 Factor a homogeneous element in Qn.

Input: f ∈ Q(z)
n for z ∈ Zn.

Output: (c, f1, . . . , fm) ∈ Qm+1
n , m ∈ N and c ∈ K, such that f = c · f1 · · · fm and

fi are monic and irreducible.
Assumption: There exists an algorithm that factors commutative multivariate
polynomials over K.

1: View f = f̃ ·Xe(z)Dw(z), where f̃ ∈ Q(0)
n .

2: Factor f̃ = c · f̃1 · · · f̃κ, where κ ∈ N and c ∈ K, into irreducible monic elements
f̃i ∈ K[θ], i ∈ κ.

3: result := (c).
4: for i = 1 to κ do
5: if f̃i = θj for some j ∈ n then
6: Append xj and ∂j in this order to result.
7: else
8: if f̃i = θj + 1

qj
then

9: Append ∂j and xj in this order to result.
10: else
11: Append f̃i to result.
12: end if
13: end if
14: end for
15: Append x

e1(z)
1 , . . . , x

en(z)
n , ∂

w1(z)
1 , . . . , ∂

wn(z)
n in this order to result.

16: return result.

The correctness of this algorithm follows from our preliminary results and the
termination follows since the only present loop iterates over a finite set.

Example 2.9. Let p := x2
1x2∂

2
1∂2+2x1x2∂1∂2+x1∂1+1 ∈ A2. The polynomial p

is homogeneous of degree 0, and hence belongs to K[θ] as θ1(θ1−1)θ2+2θ1θ2+θ1+1.
This polynomial factorizes in K[θ] into (θ1θ2 + 1)(θ1 + 1). Since θ1 + 1 factorizes
as ∂1 · x1, we obtain the following list of factors when applying Algorithm 2.2:

(1, θ1θ2 + 1, ∂1, x1).

Furthermore, due to the commutation rules presented in Lemma 2.5, there are
the following other different possible nontrivial factorizations of p:

(θ1θ2 + 1) · ∂1 · x1 = ∂1 · ((θ1 − 1)θ2 + 1) · x1 = ∂1 · x1 · (θ1θ2 + 1).

Note that x1∂1 + 1 is not irreducible, since it factorizes nontrivially as ∂1 · x1.

It remains to deal with solving Problem 2.2 for homogeneous polynomials in
Qn. The following Lemma shows that applying the commutation and rewrite rules
is enough to obtain all possible factorizations, i.e. solving Problem 2.2 consists of
solving Problem 2.1 and additional steps of combinatorial nature.

Lemma 2.7. Let z ∈ Zn and let p ∈ Q(z)
n be a monic element. Suppose, that one

factorization of p has been constructed using Algorithm 2.2 and has the form W (θ) ·
T (θ) ·XeDw, where T (θ) =

∏n
i=1(xi∂i)

ti(∂jxj)
si is a product of irreducible factors

in K[θ], which are reducible in Qn, and W (θ) is the product of irreducible factors
in both K[θ] and Qn. Let p1 · · · pm for m ∈ N be another nontrivial factorization
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of p. Then this factorization can be derived from W (θ) · T (θ) · XeDw by using
two operations, namely (i) “swapping”, that is interchanging two adjacent factors
according to the commutation rules and (ii) “rewriting” of occurring θi resp. θi+

1
qi

by xi · ∂i, resp. ∂i · xi.

Proof. Since p is homogeneous, all pi for i ∈ m are homogeneous, thus each

of them can be written in the form pi = p̃i(θ) · Xe(i)Dw(i)

, where e(i), w(i) ∈ Nn0 .
With respect to the commutation rules as stated in Corollary 2.3, we can swap
the p̃i(θ) to the left for any 2 ≤ i ≤ m. Note that it is possible for them to be
transformed to the form θj resp. θj + 1

q , j ∈ n, after performing these swapping

steps. I.e., we have commuting factors, both belonging to W (θ), as well as to T (θ)

at the left. Our resulting product is thus W̃ (θ)T̃ (θ)
∏m
j=1X

e(j)Dw(j)

, where the

factors in W̃ (θ), resp. T̃ (θ), contain a subset of the factors of W (θ) resp. T (θ).
By our assumption of p having degree z, we are able to swap XeDw to the right

in F :=
∏m
j=1X

e(j)Dw(j)

, i.e., F = F̃XeDw for F̃ ∈ Q(0)
n . This step may involve

combining some xj and ∂j to θj resp. θj +1, j ∈ n. Afterwards, this is also done to

the remaining factors in F̃ that are not yet polynomials in K[θ] using the swapping
operation. These polynomials are the factors that belong to W (θ), resp. T (θ),
and can be swapped commutatively to their respective positions. Since reverse
engineering of those steps is possible, we can derive the factorization p1 · · · pm from
W (θ) · T (θ) ·XeDw as claimed. �

Another merit of our discussion here is that we can now state an upper bound
for the number of distinct factorizations that are possible for a homogeneous ele-
ment, which is generally lower than the one given in Theorem 2.3.

Theorem 2.4. Let f = f̃ ·xe1(z)
1 · · ·xen(z)

n ·∂w1(z)
1 · · · ∂wn(z)

n ∈ A(z)
n (resp. Q

(z)
n ),

where z ∈ Zn and f̃ ∈ A(0)
n (resp. Q

(0)
n ). Let k :=

∑n
i=1(ei(z) +wi(z)) and let ρ be

the total degree of f̃ as element in K[θ]. Then the number of distinct factorizations
of f will be at most

ρ · ρ! · k! ·
(
k + ρ

ρ

)
.

Proof. In the worst case f̃ decomposes in K[θ] into linear factors. As all of
these factors commute, there are ρ! different possibilities to rearrange them. Simi-

larly, we can reorganize the x
e1(z)
1 , . . . x

en(z)
n , ∂

w1(z)
1 , . . . , ∂

wn(z)
n in up to k! ways. For

every such arrangement of the factors of f̃ and of x
e1(z)
1 , . . . x

en(z)
n , ∂

w1(z)
1 , . . . , ∂

wn(z)
n ,

we can place the k available xi resp. ∂i for i ∈ n at any position between the factors
of f̃ (with commutation rules applied), which leads to

(
ρ+k
k

)
possibilities each time.

Finally, the linear factors of f̃ might split into xj∂j resp. ∂jxj for some j ∈ n. This
will lead to at most ρ more factorizations for each instance. �

Example 2.10. Let us consider f from Example 2.4. We know that f has 3547
distinct factorizations. We have k = 0 and ρ = 12 in this case. Hence, the upper
bound here is given by

12 · 12! · 0! ·
(

12

12

)
= 12 · 12! = 5748019200.
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Algorithm 2.3 Find all distinct factorizations of a homogeneous element in An
resp. Qn.

Input: f ∈ Q(z)
n for z ∈ Zn.

Output: The set

{(c, f1, . . . , fm) ∈ Qm+1
n | m ∈ N, c ∈ K, f = c · f1 · · · fm, fi are monic and irreducible}

of all possible distinct factorizations of f .
Assumption: There exists an algorithm that factors commutative multivariate
polynomials over K.

1: (c, f1, . . . , fm, x
e1(z)
1 , . . . , x

en(z)
n , ∂

w1(z)
1 , . . . , ∂

wn(z)
n ) := Output of Algorithm 2.2

for input f .
2: (g1, . . . , gl) := Rewrite each fi for i ∈ m as element in K[θ] and multiply

subsequent fi, fi+1 where deg(fi) 6= 0 and deg(fi+1) 6= 0.
3:

result := [Permutations of g1, . . . , gl, x
e1(z)
1 , . . . , xen(z)

n , ∂
w1(z)
1 , . . . , ∂wn(z)

n

with respect to the commutation rules]

4: for ζ := (µ1, . . . , µk) ∈ result do
5: for i := 1 to k do
6: if µi = θj or µi = θj + 1

q for some j ∈ n then

7: if µi = θj then
8: Insert xj , ∂j in this order into position i, i+ 1 in ζ and remove µi.
9: else

10: Insert ∂j , xj in this order into position i, i+ 1 in ζ and remove µi.
11: end if
12: s := i− 1
13: while deg(µs) = 0 and s > 0 do
14: r := i+ 2
15: while deg(µr) = 0 and r ≤ k do
16: Append the element

ζ̃ := (µ1, . . . , µs−1, µi, µ̃s, µ̃s+1, . . . , µ̃i−1, µ̃i+2, . . . , µ̃r−1, µi+1, µr, . . . , µk)

to the end of result, where µ̃κ for κ ∈ {s, . . . , r − 1} \ {i, i + 1}
corresponds to µκ after the commutation rules wit xj resp. ∂j are
applied.

17: r := r + 1
18: end while
19: s := s− 1
20: end while
21: end if
22: end for
23: end for
24: Append c to the beginning of each tuple in result.
25: return result.
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Hence, we can see that our bound can probably still be improved, but in this case it
is much lower than the bound we would get by using Theorem 2.3, which is 212·49,
a number with 178 digits.

2.4.3. Arbitrary Polynomials in Qn. We aim to solve Problem 2.2 – and
hence Problem 2.1 – for arbitrary polynomials in Qn now by providing a concrete
algorithm. Due to Corollary 2.4, we can use this algorithm to solve Problem 2.1
and 2.2 also for Sn.

We begin by fixing some notation used throughout this section. Let h ∈ Qn
be the polynomial we want to factorize. Since we are deducing information from
the graded summands of h, let furthermore M := {z(1), . . . , z(m)}, where m ∈ N
and z(1) > . . . > z(m), be a finite subset of Zn containing the degrees of those
graded summands. Hence, h can be written in the form h =

∑
z∈M hz ∈ Qn, where

hz ∈ Q
(z)
n for z ∈ M . Let us assume that h possesses a nontrivial factorization

of at least two factors, which are not necessary irreducible. Moreover, we assume
that m > 1, which means that h is not graded, since we have dealt with graded
polynomials in Qn already. Let us denote the factors by

h =
∑
z∈M

hz := (pη1 + . . .+ pηk)︸ ︷︷ ︸
:=p

(qµ1
+ . . .+ qµl)︸ ︷︷ ︸

:=q

,(1)

where η1 > η2 > . . . > ηk and µ1 > µ2 > . . . > µl ∈ Zn, pηi ∈ Q
(ηi)
n for all

i ∈ k, qµj ∈ Q
(µj)
n for all j ∈ l. We assume that p and q are not graded, since

we could easily obtain those factors by simply comparing all factorizations of the
graded summands in h. In general, while trying to find a factorization of h, we
assume that the values of k and l are not known to us beforehand. We will soon see
how we can compute them. One can see without difficulty that hz(1) = pη1qµ1 and
hz(m) = pηkqµl , as the degree-wise biggest summand of h can only be combined by
multiplication of the highest summands of p and q; analogously, this holds for the
degree-wise lowest summand.

A finite set of candidates for pη1 , qµ1 , pηk and qµl can be obtained by factoring
hz(1) and hz(m) using the technique described in the previous section. Since the set of
candidates is finite, we can assume that the correct representatives for pη1 , qµ1

, pηk
and qµl are known to us. In practice, we would apply our method to all candidates
and would succeed in at least one case to factorize the polynomial due to our
assumption of h being reducible.

One may ask now how many valid degrees could occur in summands of such
factors p and q, i.e., what are the values of l and k. An upper bound can be achieved
using the same argumentation as for the proof of Lemma 2.2, because the degrees
in each variable is bounded by the degree of the respective variable in h.

Example 2.11. Let us consider

h = x2∂1∂2 + ∂1︸ ︷︷ ︸
degree: [1,0]

+ x1x2∂
2
1︸ ︷︷ ︸

degree: [1,−1]

+ 4∂2︸︷︷︸
degree: [0,1]

+ 4x1∂1︸ ︷︷ ︸
degree: [0,0]

∈ A2.

One possible factorization of x2∂1∂2 + ∂1 is ∂2 · x2∂1 =: pη1 · qµ1
and, on the other

end, one possible factorization of 4x1∂1 is x1∂1 · 4 =: pηk · qµl . Concerning p, there
are no elements in Zn that can occur between deg(pη1) = [0, 1] and deg(pηk) =
[0, 0]; therefore we can set k = 2. For q, the only degree that can occur between
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deg(qµ1
) = [1,−1] and deg(qµl) = [0, 0] is [0, 1], as every variable except ∂1 appears

with maximal degree 1 in h. We have l = 3 in this case.

Now that we know l, k and the degrees that can appear between η1 and ηk and
µ1 and µl, our next step is to calculate the remaining homogeneous summands, i.e.
the pµi and qµj for (i, j) ∈ {2, . . . , k − 1} × {2, . . . , l − 1}. By Proposition 2.1, we

are only interested in the Q
(0)
n -factor of the pηi , qµj . In what follows, we denote

these factors by p̃ηi , q̃µj . The next lemma provides us with an upper bound on the
degree of each p̃ηi , q̃µj in K[θt], t ∈ N0.

Lemma 2.8. The degree of the p̃ηi and the q̃µj , (i, j) ∈ k × l, in θt, t ∈ n, is
bounded by min{degxt(h),deg∂t(h)}, where degv(f) denotes the degree of f ∈ Qn
in the variable v.

Proof. This follows by the property that for all p, q ∈ Qn we have degv(p) +
degv(q) = degv(pq) = degv(h), where v represents either ∂t or xt. Hence degv(p) ≤
degv(h) and degv(q) ≤ degv(h). Since for all elements in A

(0)
n and Q

(0)
n the exponent

of xt coincides with the exponent of ∂t in each monomial, we obtain as upper bound
min{degxt(h),deg∂t(h)} for the degree of the p̃ηi and the q̃µj in θt. �

We now study the form each homogeneous summand of pq = h in terms of
these p̃ηi , q̃µj . Some preliminary work is required.

Definition 2.7. For α, β ∈ Zn we define γα,β =
∏n
κ=1 γ̃

(κ)
ακ,βκ

. The latter
expression is dependent on whether we consider elements in An or Qn. In the case
of the nth Weyl algebra, we define for a, b ∈ Z and κ ∈ n:

γ̃
(κ)
a,b :=



1, if a, b ≥ 0 ∨ a, b ≤ 0,∏|a|−1
τ=0 (θκ − τ), if a < 0 < b, |a| ≤ |b|,∏|b|−1
τ=0 (θκ − τ − |a|+ |b|), if a < 0 < b, |a| > |b|,∏a
τ=1(θκ + τ), if a > 0 > b, |a| ≤ |b|,∏|b|
τ=1(θκ + τ + |a| − |b|), if a > 0 > b, |a| > |b|.

In the case of the nth q-Weyl algebra, we define – using the notations from Lemma
2.4 – for a, b ∈ Z and κ ∈ n:

γ̃
(κ)
a,b :=



1, if a, b ≥ 0 ∨ a, b ≤ 0,
1

q
T|a|−1
κ

∏|a|−1
τ=0 (θκ − [τ ]), if a < 0 < b, |a| ≤ |b|,

1

q
T|b|−1
κ

∏|b|−1
τ=0 (θκ − [τ + |a| − |b|]), if a < 0 < b, |a| > |b|,∏a

τ=1(qτκθκ +
∑τ−1
ρ=0 q

ρ
κ), if a > 0 > b, |a| ≤ |b|,∏a

τ=1(q
τ+|a|−|b|−1
κ (qκθκ + 1 +

q−|a|+|b|+1
κ −1

1−qκ ) +
∑τ−1
ρ=0 q

ρ
κ), if a > 0 > b, |a| > |b|.

Lemma 2.9. Let z1, z2 ∈ Zn. Then the factor of degree 0 of the product of two
monomials

Xe(z1)Dw(z1) ·Xe(z2)Dw(z2),

where e(zi) and w(zi) for i ∈ {1, 2} are defined as in Proposition 2.1, is equal to
γz1,z2 .

Proof. This is an extension of the result in Lemma 2.5 to the case of multiple

variables. We want to bring the product Xe(z1)Dw(z1) ·Xe(z2)Dw(z2) into the form
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p(θ) ·Xe(z1+z2)Dw(z1+z2) (cf. Proposition 2.1) and prove that p(θ) is equal to γz1,z2 .
First, observe

Xe(z1)Dw(z1) ·Xe(z2)Dw(z2) =

n∏
κ=1

xeκ(z1)
κ ∂wκ(z1)

κ · xeκ(z2)
κ ∂wκ(z2)

κ .

Hence, we can prove that p(θ) is equal to γz1,z2 by showing x
eκ(z1)
κ ∂

wκ(z1)
κ ·xeκ(z2)

κ ∂
wκ(z2)
κ

being equal to γ̃
(κ)
ακ,βκ

for all κ ∈ n. Observe that, due to the definition of e(zi) and

w(zi), we have

xeκ(z1)
κ ∂wκ(z1)

κ · xeκ(z2)
κ ∂wκ(z2)

κ =


x
eκ(z1)
κ x

eκ(z2)
κ , if (z1)κ, (z2)κ ≤ 0,

∂
wκ(z1)
κ ∂

wκ(z2)
κ , if (z1)κ, (z2)κ ≥ 0,

x
eκ(z1)
κ ∂

wκ(z2)
κ , if (z1)κ < 0, (z2)κ > 0,

∂
wκ(z1)
κ x

eκ(z2)
κ , if (z1)κ > 0, (z1)κ < 0.

The first two cases capture the situation where γ̃z1,z2 = 1, and the respective
conditions on z1 and z2 coincide. Since the the third and the fourth case can be dealt

with in an analogue way, we will only consider the third case, i.e. x
eκ(z1)
κ ∂

wκ(z1)
κ ·

x
eκ(z2)
κ ∂

wκ(z2)
κ = x

eκ(z1)
κ ∂

wκ(z2)
κ , where (z1)κ < 0, (z2)κ > 0. This part can be split

into two subcases:
Subcase 1: |(z1)κ| ≤ |(z2)κ|. Then we have for An due to Lemma 2.4 that

xeκ(z1)
κ ∂wκ(z2)

κ =

|(z1)κ|∏
τ=0

(θκ − τ)

 ∂|(z2)κ|−|(z1)κ|
κ ,

and for Qn the identity

xeκ(z1)
κ ∂wκ(z2)

κ =

|(z1)κ|∏
τ=1

(
qτκθκ +

τ−1∑
ρ=0

qρκ

)
∂|(z2)κ|−|(z1)κ|
κ

holds. As γ̃
(κ)
z1,z2 =

∏|(z1)κ|
τ=0 (θκ − τ) for An and γ̃

(κ)
z1,z2 =

∏|(z1)κ|
τ=1

(
qτκθκ +

∑τ−1
ρ=0 q

ρ
κ

)
for Qn, our claim holds for this subcase.
Subcase 2: |(z1)κ| ≥ |(z2)κ|. Using Lemma 2.4 as in the last subcase and com-
bining it with Corollary 2.3, we obtain for An

xeκ(z1)
κ ∂wκ(z2)

κ = x|(z1)κ|−|(z2)κ|
κ

|(z2)κ|∏
τ=0

(θκ − τ)

=

(z2)κ∏
τ=0

(θκ − τ − |(z1)κ|+ |(z2)κ|)

x|(z1)κ|−|(z2)κ|
κ ,

and for Qn we get

xeκ(z1)
κ ∂wκ(z2)

κ

=x|(z1)κ|−|(z2)κ|
κ

|(z2)κ|∏
τ=1

(
qτκθκ +

τ−1∑
ρ=0

qρκ

)

=

(z1)κ∏
τ=1

(
qτ+|(z1)κ|−|(z2)κ|−1
κ

(
qκθκ + 1 +

q
−|(z1)κ|+|(z2)κ|+1
κ − 1

1− qκ

)
+

τ−1∑
ρ=0

qρκ

)
x|(z1)κ|−|(z2)κ|
κ .
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Again, we have the equality γ̃
(κ)
z1,z2 =

∏(z2)κ
τ=0 (θκ − τ − |(z1)κ| + |(z2)κ|) in An and

γ̃
(κ)
z1,z2 =

∏(z1)κ
τ=1

(
q
τ+|(z1)κ|−|(z2)κ|−1
κ

(
qκθκ + 1 +

q−|(z1)κ|+|(z2)κ|+1
κ −1

1−qκ

)
+
∑τ−1
ρ=0 q

ρ
κ

)
in

Qn for this subcase. Thus, our claim holds. �

With this knowledge, we can establish our main theorem, which describes the
exact equations that the factors p̃ηi , q̃µj , (i, j) ∈ {2, . . . , k−1}×{2, . . . , l−1}, have
to fulfill, such that pq = h.

Theorem 2.5. With notations as above, suppose that h = pq and p̃η1 , q̃µ1 , p̃ηk , q̃µl ,

h̃z(1) , . . . , h̃z(m) are known. Define h̃z := 0 for z(1) > z > z(m) and z 6∈ M . Then
the remaining unknown p̃η2 , . . . , p̃ηk−1

, q̃µ2
, . . . , q̃µl−1

are solutions of the following
finite set of equations:{ ∑

λ,%∈k×l
ηλ+µ%=z

p̃ηλ(θ)q̃µ%(T
1
r(θ1, (ηλ)1), . . . ,Tnr (θn, (ηλ)n))γηλ,µ% = h̃z

| z ∈ Zn, z(1) ≥ z ≥ z(m)

}
.(2)

Moreover, a factorization of h in Qn corresponds to q̃µi and p̃ηj for (i, j) ∈ k × l
being polynomial solutions with bounds as stated in Lemma 2.8.

Proof. The set of equations is obtained via setting up an ansatz for the un-
known coefficients p̃η2 , . . . , p̃ηk−1

, q̃µ2
, . . . , q̃µl−1

in the product pq = h, considering

each homogeneous summand separately. For every z(1) ≥ z ≥ z(m), the product

p̃ηλ(θ)Xe(ηλ)Dw(ηλ)q̃µ%(θ)X
e(µ%)Dw(µ%) appears as summand if ηλ + µ% = z. Due

to Lemma 2.9 and Corollary 2.3, we have

p̃ηλ(θ)Xe(ηλ)Dw(ηλ)q̃µ%(θ)X
e(µ%)Dw(µ%)

= p̃ηλ(θ)q̃µ%(T
1
r(θ1, (ηλ)1), . . . ,Tnr (θn, (ηλ)n))Xe(ηλ)Dw(ηλ)Xe(µ%)Dw(µ%)

= p̃ηλ(θ)q̃µ%(T
1
r(θ1, (ηλ)1), . . . ,Tnr (θn, (ηλ)n))γηλ,µ%X

e(ηλ+µ%)Dw(ηλ+µ%)

Therefore, we have∑
λ,%∈k×l
ηλ+µ%=z

p̃ηλ(θ)q̃µ%(T
1
r(θ1, (ηλ)1), . . . ,Tnr (θn, (ηλ)n))γηλ,µ% = h̃z

as requested.
The degree bound is established in Lemma 2.8 above. �

Corollary 2.5. The problem of factorizing a polynomial in the nth Weyl alge-
bra can be solved via finding polynomial solutions of degree at most 2·∑n

i=0 |deg(h)i|
for a system of difference equations with polynomial coefficients, involving linear and
quadratic nonlinear inhomogeneous equations.

Example 2.12. Let

p := θ1∂2︸︷︷︸
=p[0,1]

+ (θ1 + 3)θ2︸ ︷︷ ︸
=p[0,0]

+ x2︸︷︷︸
=p[0,−1]

,

q := (θ1 + 4)x1∂2︸ ︷︷ ︸
=q[−1,1]

+ x1︸︷︷︸
=q[−1,0]

+ (θ1 + 1)x1x2︸ ︷︷ ︸
=q[−1,−1]

∈ A2 and
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h := pq = θ1(θ1 + 4)x1∂
2
2(3)

+ (θ1(θ1 − 1)θ2 + 8θ1θ2 + θ1 + 12θ2)x1∂2(4)

+ (θ1(θ1 − 1)θ2 + θ2
1 − θ1 + 4θ1θ2 + 2θ1 + 7θ2)x1(5)

+ (θ1(θ1 − 1)θ2 + 5θ1θ2 + 3θ2 + 1)x1x2(6)

+ (θ1 + 1)x1x
2
2.(7)

Every coefficient is written in terms of the θi for better readability.
By assumption, the only information we have about p and q are the values of

p[0,1] =: pη1 , p[0,−1] =: pη3 , q[−1,1] =: qµ1
and q[−1,−1] =: qµl . Thus we have, using

the above notation, p̃η1 = θ1, p̃ηk = 1, q̃µ1
= (θ1 + 4) and q̃µl = (θ1 + 1). We set

k := l := 3, and it remains to solve for q̃[−1,0] and p̃[0,0].
In h, every variable appears in degree 2, except from x1, which appears in degree

3. This means that the degree bounds for θ1 and θ2 in q̃µi can be set to be two. The
product of (pη1 + pη2 + pη3)(qµ1 + qµ2 + qµ3) with known values inserted is

θ1(θ1+4)x1∂
2
2(8)

+ (θ1q̃µ2(θ1, θ2 + 1) + p̃η2(θ1 + 4))x1∂2(9)

+ (θ1(θ1 + 1)(θ2 + 1) + (θ1 + 4)θ2 + p̃η2 q̃µ2)x1(10)

+ (q̃µ2(θ1, θ2 − 1) + p̃η2(θ1 + 1))x1x2(11)

+ (θ1 + 1)x1x
2
2.(12)

The coefficients in K[θ] in the terms (8)-(12) must coincide with the respective
coefficients in the terms (3)-(7) for the factorization to be correct. The equations
with respect to those coefficients are exactly the ones given in (2).

We are now interested in determining the p̃ηi and the q̃µj ∈ K[θ], (i, j) ∈
{2, . . . , k− 1}× {2, . . . , l− 1}, with the help of Theorem 2.5. One way would be to
solve the difference equations directly, as Corollary 2.5 suggests.

Another approach, which we chose in our implementation, is to view the co-
efficients of p̃ηi , q̃µj as indeterminates. Then we can set up a non-linear system of
equations – based on coefficient comparison of the equation h = pq and our knowl-
edge from Theorem 2.5 – and compute its Gröbner basis [Buchberger, 1997]. In
fact, this ideal will always turn out to be zero-dimensional, as we can show via the
following lemma.

Lemma 2.10. With notations as in Theorem 2.5, fix a field K as well as p̃η1 ,
q̃µ1

, p̃ηk , q̃µl , i.e. concrete factorizations of the highest resp. the lowest graded parts
of h. Consider the ideal I, generated by the elements∑

λ,%∈k×l
ηλ+µ%=z

p̃ηλ(θ)q̃µ%(T
1
r(θ1, (ηλ)1), . . . ,Tnr (θn, (ηλ)n))γηλ,µ% − h̃z,

from the set in (2). Moreover, let J denote the ideal in the r coefficients, r ∈ N,
of the p̃ηλ(θ), q̃µ%(θ) in K, obtained from I after performing an ansatz by using the
degree bounds from Lemma 2.8. Then J is a zero-dimensional ideal. Furthermore,
if J 6= 〈1〉, we obtain a valid factorization h = pq for every point in the variety of
J that lies in Kr.

Proof. A solution for the p̃ηλ and the q̃µ% corresponds to a factorization of
the associated polynomial h. There are only finitely many factorizations possible
due to Theorem 2.2 for Weyl algebras over any field K of characteristic zero. Hence,
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each system under consideration has only finitely many solutions in the algebraic
closure of K, as we otherwise get a contradiction to An being a finite factorization
domain. Thus J is a zero-dimensional ideal . If K is not algebraically closed, only
solutions in Kξ would lead to a valid factorization. �

Remark 2.2. The result as stated in Lemma 2.10 is actually interesting on a
different level. It utilizes the finite factorization domain property of Qn. Consider
the scenario where one is given an ideal I in R := K[x1, . . . , xn], and we are inter-
ested in the question if I is a zero-dimensional ideal or not. One way to determine
this is to calculate a Gröbner basis of I for a total ordering on R, which may require
a long time due to the complexity of calculating Gröbner bases [Mayr and Meyer,
1982]. Another way could be to observe the structure of the given generators of I:
If there is a K-algebra A, which is fulfilling the condition to be a finite factorization
domain as stated by Corollary 2.1, one can check if the generators of I coincide
with equations appearing from a coefficient comparison of an equation of the form
pq = h ∈ Qn, where the degree-wise highest coefficients of p and q are fixed. If this
is the case, the ideal I must be zero-dimensional . The feasibility of this approach
has to be examined in future research.

The remainder of this subsection deals with the possible, optional, simplifica-
tion of the generators of the ideal I, resp. J , from Lemma 2.10, so that we can
assist the Gröbner basis computations. The next lemma establishes the number of
unknowns that can be found in each homogeneous summand of the product pq.

Lemma 2.11. Sort the equations in the set (2) above by the degree of the graded
part they represent, from highest to lowest. Let ν ∈ N be the number of those
equations, and κ be the number of all unknowns. We define χi for i ∈ ν to be the
number of p̃ηκ and q̃µι , (κ, ι) ∈ l × k, appearing in equations 1, . . . , i. Then, for
i ≤ dκ/2e, χi = 2 · (i− 1). The same holds if we sort the equations from lowest to
highest.

Proof. The proof of this statement can be obtained using induction on i. We
outline the main idea here. For i = 1, we have the known equation h̃z(1) = pη1qµ1

=
p̃η1 q̃µ1

(θ1 + (η1)1, . . . , θn + (η1)n)γη1,µ1
, i.e. χ1 = 0. For the next equation, as we

regard the directly next lower homogeneous summand, only the directly next lower
unknowns p̃η2 and q̃µ2 appear, multiplied by q̃µ1 resp. p̃η1 . Hence, we get χ2 = 2.
This process can be iterated until χdκ/2e = κ. An analogous argument can be used
when the equations are sorted from lowest to highest. �

With the observation in Lemma 2.11, we can deduce that we can find formulae
for the pηi , i ∈ k, which only depend on the qµj , j ∈ l. Moreover, for each pηi ,
we can find two different identities in the qµj , namely one when sorting the set of
equations in (2) from highest to lowest, and one when sorting them from lowest
to highest. Hence, we obtain a new set of equations only dependent on the q̃µj
that we have to solve to discover a factorization. In this way, we have reduced our
number of variables for the Gröbner basis computation by the factor of two. We
will illustrate this process by finishing Example 2.12.

Example 2.13. Let us consider h = pq from Example 2.12, using all notations
were introduced there.

38



We assume that the given form of p̃η2 is

p̃η2 = p̃(0)
η2 + p̃(1)

η2 θ1 + p̃(2)
η2 θ

2
1 + p̃(3)

η2 θ2 + p̃(4)
η2 θ1θ2

+ p̃(5)
η2 θ

2
1θ2 + p̃(6)

η2 θ
2
2 + p̃(7)

η2 θ1θ
2
2 + p̃(8)

η2 θ
2
1θ

2
2,

and that q̃µ2 has an analogous shape with coefficients q
(i)
µ2 , where p̃

(i)
η2 , q̃

(i)
µ2 ∈ K for

i ∈ 8 ∪ {0}.
We use our knowledge of the form of h and the product of pq with unknowns as

depicted (8)-(12). Therefore, starting from the top and from the bottom, we obtain
two expressions of p̃η2 , namely

p̃η2 =
θ1(θ1 − 1)θ2 + 8θ1θ2 + θ1 + 12θ2 − θ1q̃µ2(θ1, θ2 + 1)

θ1 + 4

=
θ1(θ1 − 1)θ2 + 5θ1θ2 + 3θ2 + 1− q̃µ2(θ1, θ2 − 1)

θ1 + 1
.

Thus, q̃µ2
has to fulfill the equation

(θ1(θ1 − 1)θ2 + 8θ1θ2 + θ1 + 12θ2 − θ1q̃µ2
(θ1, θ2 + 1))(θ1 + 1)

= (θ1(θ1 − 1)θ2 + 5θ1θ2 + 3θ2 + 1− q̃µ2
(θ1, θ2 − 1))(θ1 + 4).

Note that we could consider more equations which q̃µ2
must fulfill, but we re-

frained from it in this example for the sake of brevity.
Using coefficient comparison, one can form from this equation a nonlinear sys-

tem of equations with the q̃
(i)
µ2 , i ∈ 8 ∪ {0}, as indeterminates. The concrete sys-

tem can be found in Appendix A, section A.1. The reduced Gröbner basis of this

system is {q̃(0)
µ2 − 1, q̃

(1)
µ2 , q̃

(2)
µ2 , . . . , q̃

(8)
µ2 }, which tells us, that q̃µ2

= 1 and hence,
p̃η2 = (θ1 + 3)θ2. Thus, we have exactly recovered both p and q in the factorization
of h.

2.4.4. Application to Parametric Linear Differential Operators. In
Hattori and Takayama [2014], we encounter an interesting family of parametric
linear differential operators in the nth Weyl algebra. In particular, these appear
as generators of an ideal in An. In this subsection, we are going to study their
factorizations, dependent on parameters. This is a demonstration of an application
of our methodology to a whole family of polynomials.

The polynomials are given as follows. Let n ∈ N, and let for i ∈ n, ci, a, b ∈ C

li = θi(θi + ci − 1)− xi

 n∑
j=1

θj

+ a

 n∑
j=1

θj

+ b

 .

Obviously, xi is a left factor for li. Due to the identity ∂ixi = xi∂i + 1 and
Proposition 2.1, the monomial xi will also be a right divisor if ci = 2.

Our goal is to prove the following theorem. The proof will turn out to heavily
use the knowledge gained in section 2.4.

Theorem 2.6. For n > 1 and ci 6= 2, the only possible factorization of li for
i ∈ n is

li = xi ·

∂i(θi + ci − 1)−

 n∑
j=1

θj

+ a

 n∑
j=1

θj

+ b

 .
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If ci = 2, then there is additionally the factorization

li =

θi · ∂i −
 n∑

j=1

θj

+ a− 1

 n∑
j=1

θj

+ b− 1

 · xi.
The below example shows that the theorem does not necessarily hold for n = 1.

Example 2.14. In fact, for n = 1, there are different scenarios. If c1 = 4,
a = 5 and b = 6, we have

l1 = x1 · (x2
1∂

2
1 − x1∂

2
1 + 12x1∂1 − 4∂1 + 30)

as the only possible factorization of l1. On the other hand, if one chooses c1 = −1,
a = 1 and b = 0, then l1 will have eight distinct factorizations, which are given by

l1 = −x1 · (x1 − 1) · ∂2
1 · x1

= −x1 · ∂1 · (x1∂1 − ∂1 − 1) · x1

= −x1 · (x1 − 1) · (x1∂1 + 2) · ∂1

= −x1 · ∂1 · (x2
1∂1 − x1∂1 − 1)

= −(x1 − 1) · x1 · (x1∂1 + 2) · ∂1

= −(x1 − 1) · ∂1 · x2
1 · ∂1

= −(x1 − 1) · ∂1 · (x1∂1 − 1) · x1

= −(x1 − 1) · x1 · ∂2
1 · x1.

Lemma 2.12. Let h1 := θi(θi + ci − 1) be the homogeneous summand with the
highest Zn-degree in li.

(1) If ci 6∈ {0, 1, 2}, then the only complete factorizations of h1 up to multi-
plication by units are

h1 = xi · ∂i · (θi + ci − 1)

= xi · (θi + ci) · ∂i
= (θi + ci − 1) · xi · ∂i.

(2) If ci = 0, then the only complete factorizations of h1 up to multiplication
by units are

h1 = xi · ∂i · (θi − 1)

= (θi − 1) · xi · ∂i
= x2

i · ∂2
i .

(3) If ci = 1, then the only complete factorization of h1 up to multiplication
by units is

h1 = xi · ∂i · xi · ∂i.
(4) If ci = 2, then the only complete factorizations of h1 up to multiplication

by units are

h1 = xi · ∂i · ∂i · xi
= ∂i · xi · xi · ∂i
= xi · (θi + 2) · ∂i
= ∂i · (θi − 1) · xi.
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Proof. As h1 is homogeneous of degree 0 in An, we can start with factoring
in K[θ] due to Corollary 2.2. The other possible factorizations are obtained by
applying Lemma 2.5 and Lemma 2.6, which is depending on the value of ci. �

Lemma 2.13. Let h2 := xi

((∑n
j=1 θj

)
+ a
)((∑n

j=1 θj

)
+ b
)

be the homo-

geneous summand of lowest degree in li. Then, independent from the values of
a, b ∈ C, the only possible factorizations of h2 are

h2 = xi ·

 n∑
j=1

θj

+ a

 ·
 n∑

j=1

θj

+ b


=

 n∑
j=1

θj

+ a− 1

 · xi ·
 n∑

j=1

θj

+ b


=

 n∑
j=1

θj

+ a− 1

 ·
 n∑

j=1

θj

+ b− 1

 · xi
Proof. The polynomial h2 is homogeneous of degree [0, . . . , 0,−1, 0, . . . , 0],

where the non-zero entry is at position i. For degree reasons,
((∑n

j=1 θj

)
+ k
)

is

irreducible in K[θ] for any k ∈ C. As n > 1, it can also not be further refined due
to Lemma 2.6. Therefore, the swaps of the degree 0 factors with xi are the only
possible factorizations for h2. �

At this point, we completely understood the factorizations of the highest and
lowest homogeneous summands of the li for i ∈ n. With this information, we can
now prove Theorem 2.6.

Proof of Theorem 2.6. We apply our algorithm to factor li. Lemmata 2.12
and 2.13 give us all factorizations of the degree-wise highest homogeneous summand
h1 and the degree-wise lowest homogeneous summand h2 of li.

From these factorizations, we can derive that the only possible homogeneous
factor which we can extract is xi. Hence, we can deduce that any other possible
factorization must consist of at least two inhomogeneous polynomials.

Assume that such a factorization of li exists, i.e.

li = (pη1 + . . .+ pηk) · (qµ1
+ . . .+ qµl),

where η1 > η2 > . . . > ηk and µ1 > µ2 > . . . > µl ∈ Zn, pηi ∈ A(ηi)
n for all i ∈ k,

qµj ∈ A
(µj)
n for all j ∈ l.

Then we have h1 = pη1 ·qµ1
and h2 = pηk ·qµl . Note, that the homogeneous de-

gree of any factor of h1 and h2 in any position but position i is zero. Therefore, let
us denote just for this proof degi(f) for f ∈ An being the ith entry in deg(f). Fol-
lowing Lemmata 2.12 and 2.13, the possibilities for the tuple (degi(pη1),degi(qµ1

))
are, depending on ci, (0, 0), (−1, 1), (−2, 2), (1,−1). On the other hand, the pos-
sibilities for the tuple (degi(pηk),degi(qµl)) are, independent of the parameters,
(0,−1) and (−1, 0).
Case 1: (degi(pηk),degi(qµl)) = (0,−1). In this case, (degi(pη1),degi(qµ1)) cannot
be equal to (0, 0) resp. (1,−1), as this would result in a homogeneous left resp.
right factor and therefore violate our assumption. On the other hand, the tuple

41



also cannot be equal to (−1, 1) and (−2, 2), as this would violate the assumption
that µ1 > µk or η1 > ηk, respectively. Hence, (degi(pηk),degi(qµl)) cannot be equal
to (0,−1) in a valid factorization of li.
Case 2: (degi(pηk),degi(qµl)) = (−1, 0). Similar to the last case, we can also lead
all possibilities for (degi(pη1),degi(qµ1

)) to a contradiction. If the tuple is equal
to (0, 0) or (−1, 1), it would result in a homogeneous factor, and being equal to
(1,−1) or (−2, 2) would lead to a violation of the assumption µ1 > µk or η1 > ηk,
respectively. Also for this case, we can conclude that (degi(pηk),degi(qµl)) cannot
be equal to (−1, 0) in a valid factorization of li.

As any combination of the factors of h1 and h2 cannot be summands of a valid
factorization into non-homogeneous factors of li, the stated factorization of the li
are the only possible ones. �

2.4.5. Timings of the Implementation. As mentioned before, we imple-
mented algorithms to factor G-algebras in the Singular library ncfactor.lib. In
this subsection, we will specifically state the timings for factoring elements in the
n-th Weyl algebra, where an improved version of our Algorithm 2.1 is available. In
the following examples, we consider different polynomials and present the resulting
factorizations and timings. All computations were done using Singular version
3-1-6. We compare our performance and our outputs to REDUCE version 3.8.
There, we use the function nc factorize all in the library NCPOLY. The calcula-
tions were run on a on a computer with a 4-core Intel CPU (Intel R©CoreTMi7-3520M
CPU with 2.90GHz, 2 physical cores, 2 hardware threads, 32K L1[i,d], 256K L2,
4MB L3 cache) and 16GB RAM.

In order to make the tests reproducible, we used the SDEval, which will be
discussed in section 5.3. If the reader is interested in seeing the computational
results in detail, he or she can obtain the respective files at the author’s website1.

Our set of examples is given by

h1 := (∂1 + 1)2(∂1 + x1∂2) ∈ A2,

h2 := (θ1∂2 + (θ1 + 3)θ2 + x2) ·
((θ1 + 4)x1∂2 + x1 + (θ1 + 1)x1x2) ∈ A2,

h3 := x1x
2
2x

3
3∂1∂

2
2 + x2x

3
3∂2 ∈ A3,

h4 := (x2
1∂1 + x1x2∂2)(∂1∂2 + ∂2

1∂
2
2x1x2) ∈ A2.

The polynomial h1 can be found in Landau [1902], the polynomial h2 is the poly-
nomial from Example 2.13 and the last two polynomials are graded polynomials.

The timings and the amount of factorizations found by Singular and RE-
DUCE can be found in Table 2.1. The abbreviation –NT– indicates that after two
hours of computation, the system did not produce a result yet.

Factoring Z-graded polynomials in the first Weyl algebra was already timed
and compared with several implementations on various examples in [Heinle and
Levandovskyy, 2013]. The comparison there also included the functionality in the
computer algebra system Maple for factoring polynomials in the first Weyl algebra
with rational coefficients.

The next example shows the performance of our implementation for the first
Weyl algebra.

1https://cs.uwaterloo.ca/~aheinle/software_projects.html
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Singular REDUCE Remarks
h1 2.83s; 2 fctns. 0.1s; 3 fctns. found in Landau [1902];

REDUCE’s output has re-
ducible factors

h2 23.48s; 3 fctns. –NT– from Example 2.13
h3 0.46s; 60 fctns. –NT–
h4 0.32s; 60 fctns. –NT–

Table 2.1. Timings and results of REDUCE and Singular to
factor h1, . . . , h4.

Example 2.15. This example is taken from Koepf [1998], page 200. We con-
sider h := (x4

1−1)x1∂
2
1 +(1+7x4

1)∂1 +8x3
1. Our implementation takes 0.75 seconds

to find 12 distinct factorizations in the algebra A1. Maple 17, using DFactor from
the DETools package, takes the same amount of time and reveals one factorization
in the first Weyl algebra with rational coefficients. REDUCE outputs 60 factoriza-
tions in A1 after 3.27s. However, these factorizations contain factorizations with
reducible factors. After factoring such cases and removing duplicates from the list,
the number of different factorizations reduced to 12.

Example 2.16. We also made experiments with the polynomials studied in
section 2.4.4. We chose n > 1, as we know all factorizations for this case by
applying Theorem 2.6. By randomly choosing the parameters a, b, ci ∈ C, i ∈ n,
we created the respective li for all 1 < n < 20. We let Singular and REDUCE
factor these and measured the timings. As a time-limit before cancelling the process,
we set two hours.

Our implementation in Singular behaved as expected. With seemingly linear
growth in time with respect to n, it factored all our generated polynomials. The
average time to factor each li for a given n ∈ {2, . . . , 19} varies from 0.5s (n = 2)
to 174.24s (n = 19) .

REDUCE was able to factor all the polynomials up to n = 4 within the given
time frame. For n > 4, the calculation in REDUCE resulted in a segmentation
fault in several cases. With increasing n, the deviation of the calculation times for
the different li grew rapidly (0.33s for n = 2, 131.1s for n = 3 and 2171.93s for
n = 4). The average time to factor each li for a given n ∈ {2, 3, 4} increased from
1.21s for n = 2 to 3667.87s for n = 4.

An illustration of these results is presented in Figure 2.1.
We can conclude that our algorithm and its implementation utilize the special

structure of the polynomials discussed in section 2.4.4, and therefore return even for
larger n ∈ N a factorization within a reasonable time. The algorithm in REDUCE
on the other hand seems not to take the structure under consideration.

2.5. Application: Factorized Gröbner Bases

In this subsection, we will present a generalization of the factorized Gröbner
basis algorithm to the noncommutative case, particularly for G-algebras. The gen-
eralization only became possible due to Theorem 2.2 and Algorithm 2.1. For moti-
vation purposes, we will first reflect in the next subsection on the factorized Gröbner
basis algorithm as constructed for the commutative case.
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Figure 2.1. Average computation times and deviation to factor
each li, as defined in section 2.4.4, for i ∈ {1, . . . , n} and 1 < n <
20.

2.5.1. Factorized Gröbner Bases over Multivariate Polynomial Rings.
The factorized Gröbner basis algorithm has been studied in the context of finding
points in a variety of an ideal over a commutative polynomial ring over a field K
[Czapor, 1989a,b, Davenport, 1987, Gräbe, 1995a,b]. Implementations are e.g. pro-
vided in the computer algebra systems Singular [Decker et al., 2015] and Reduce
[Hearn, 2004].

First, let us formulate the problem that the factorized Gröbner algorithm solves
in the commutative case.

Problem 2.3 (cf. Gräbe [1995b], page 250). Given a system B = {f1, . . . , fn} ⊂
S := K[x1, . . . , xn], n ∈ N, of polynomials and a set of side conditions C =
{g1, . . . , gm} ⊂ S, m ∈ N, find a collection (Bα, Cα) of triangular polynomial sys-
tems Bα and side conditions Cα, such that

V(B,C) =
⋃
α

V(Bα, Cα).

The key idea is a variation of the Buchberger algorithm, which can be summa-
rized as follows.

• Let (B,C) be given as in Problem 2.3. If there is a g ∈ B which factors
as g = g1 · · · gk for some k ∈ N \ {1}, call the algorithm recursively with
((Bi \ g) ∪ {gi}, C ∪ {g1, . . . , gi−1, gi+1, . . . gk}) for every i ∈ k and return
the union of all the outputs of the recursive calls.

• Perform the Buchberger algorithm on B. If at any point the normal form
of an element in C is zero, return the empty set. If an S-polynomial is
reducible, split the computation again by performing recursive calls for
each factor and return the union of the outputs of these calls.

• Return {(G,C)}, where G is the Gröbner basis of B.
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The proof that the set of tuples computed by the factorized Gröbner basis
algorithm is indeed solving Problem 2.3 is provided in the aforementioned literature,
and we omit it here.

2.5.2. Generalization to G-algebras. The concept of a variety of an ideal
in the commutative case does not translate directly into the noncommutative case.
For Weyl or shift algebras, the motivation to compute left (resp. right) Gröbner
bases is the search for solutions of the associated differential or difference equation.
Generally, elements in G-Algebras can be seen as algebraic abstractions of operator
equations. Hence, our motivation for computing Gröbner bases in the G-algebra
case is to assist the search for common solutions of a set of polynomials in a G-
algebra G.

First, let us develop a proper notion for solutions resp. solution space.

Definition 2.8. Let A be a K-algebra and let F be a left A-module. Suppose
that a left A-module M is finitely presented by an n×m matrix P . Then we define

SolA(P,F) = {f ∈ Fm×1 : Pf = 0}
as the set of solutions to a linear functional system in a solution space F .

Remark 2.3. The set of solutions in Definition 2.8 does not depend on the
choice of P , but on M . Therefore one can also write Sol(M,F) := SolA(P,F),
where P is some presentation matrix for M . By the Noether-Malgrange isomor-
phism [Seiler, 2010], there is an isomorphism of K-vector spaces Sol(M,F) and
HomA(M,F), where the latter is also a right EndA(M)-module.

All G-algebras are finite factorization domains and a general factorization al-
gorithm via Algorithm 2.1 is given. Right hand factors of elements correspond to
partial solutions, and hence a split similar to the commutative case is helpful in
obtaining these partial solutions.

In the commutative case, we have a 1-to-1 correspondence between the radical
of an ideal and its variety. Furthermore, the variety of intersections of ideals is
equal to the union of the varieties of the individual ideals in the intersection. For
the noncommutative case, we unfortunately cannot use this helpful property, as the
following example illustrates.

Example 2.17. In the commutative case, one has the property that the radical
of the input ideal will be equal to the intersection of the radicals of all ideals computed
by the factorized Gröbner basis algorithm.

Here we present an example, showing that this does not hold in general for
G-algebras. Consider

p =(x6 + 2x4 − 3x2)∂2 − (4x5 − 4x4 − 12x2 − 12x)∂

+ (6x4 − 12x3 − 6x2 − 24x− 12) ∈ A1.

This polynomial appears in [Tsai, 2000, Example 5.7] and has two different factor-
izations, namely

p =(x4∂ − x3∂ − 3x3 + 3x2∂ + 6x2 − 3x∂ − 3x+ 12)·
(x2∂ + x∂ − 3x− 1)

=(x4∂ + x3∂ − 4x3 + 3x2∂ − 3x2 + 3x∂ − 6x− 3)·
(x2∂ − x∂ − 2x+ 4).
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A reduced Gröbner basis of An〈x2∂+x∂−3x−1〉∩An〈x2∂−x∂−2x+4〉, computed
with Singular:Plural [Greuel et al., 2010], is given by

{3x5∂2 + 2x4∂3 − x4∂2 − 12x4∂ + x3∂2 − 2x2∂3 + 16x3∂

+ 9x2∂2 + 18x3 + 4x2∂ + 4x∂2 − 42x2 − 4x∂ − 12x− 12,

2x4∂4 − 2x4∂3 + 11x4∂2 + 12x3∂3 − 2x2∂4 − 2x3∂2

+ 10x2∂3 − 44x3∂ − 17x2∂2 + 64x2∂ + 12x∂2 + 66x2

+ 52x∂ + 4∂2 − 168x− 16∂ − 60}.
The example above teaches us the following. Let a be an element in some

G-algebra G, and let L := {(a1, a2) | a1 · a2 = a, a1 is irreducible}. Then we
generally do not have

⋂
(a1,a2)∈L ∩G〈a2〉 = ∩G〈a〉. However, the set of solutions

of a may still coincide with the union of all solutions of its right hand factors.
Identifying conditions for when exactly

⋂
(a1,a2)∈L ∩G〈a2〉 = ∩G〈a〉 or Sol(Ga,F) =∑

(a1,a2)∈L Sol(Ga2,F) holds is an interesting future direction.

For now, to preserve generality of our algorithm, we do not claim that the union
of all solutions of our smaller pieces in the factorizing Gröbner basis algorithm will
always be equal to all common solutions of the initial set of polynomials. In general,
we solely claim to find a subset of all solutions using our method, which might be
the whole set in some cases.

The next question that we need to ask ourselves is about the strategy with
which we split up our Gröbner computation. We have the following options if an
element a in the generator list is reducible.

(1) Split the computation with respect to all irreducible right factors of a.
(2) Split the computation with respect to all maximal right factors of a (max-

imal in the sense that one can recover a via left multiplication by an
irreducible element).

(3) Split the computation with respect to all maximal non-unique right divi-
sors.

The choice of each strategy might depend on the individual application.
The benefit of strategy (1) is that we will be dealing with irreducible elements

in our Gröbner computations and possess generally smaller degrees. The downside
of this strategy is that we might lose many additional solutions of our system on
the way.

Strategy (2) comes with an expected smaller loss of possible solutions, but we
might end up calculating the same results as in strategy (1) with more overhead.

Strategy (3) does not make us lose as many solutions, and it contains the
possible overhead. In our algorithm, we decide to follow this strategy.

Remark 2.4. This methodology also appears in the context of semifirs, where
the concept of so called block factorizations or cleavages is introduced to study
the reducibility of a principal ideal [Cohn, 2006, Chapter 3.5].

Now we are ready to have a clear definition of what output we desire from a fac-
torized Gröbner basis algorithm for G-algebras, namely the factorized constrained
Gröbner tuple.

Definition 2.9. Let B,C be finite subsets in G. We call the tuple (B,C) a
constrained Gröbner tuple , if B is a Gröbner basis of G〈B〉, and NF(g,B) 6= 0

46



Algorithm 2.4 Factorized Gröbner bases Algorithm for G-Algebras (FGBG)

Input: B := {f1, . . . , fk} ⊂ G, C := {g1, . . . , gl} ⊂ G.

Output: R := {(B̃, C̃) | (B̃, C̃) is factorized constrained Gröbner tuple} with

∩G〈B〉 ⊆
⋂

(B̃,C̃)∈R G〈B̃〉
Assumption: All elements in B and C are monic.

1: for i = 1 to k do
2: if fi is reducible then

3: M := {(f (1)
i , f

(2)
i | f (1)

i , f
(2)
i ∈ G \ K, lc(f

(1)
i ) = lc(f

(2)
i ) = 1, f

(1)
i · f (2)

i =

fi, f
(1)
i is irreducible}

4: if there exists (a, b), (ã, b̃) ∈M with ã 6= a then
5: return

⋃
(a,b)∈M

FGBG

(B \ {fi}) ∪ {b}, C ∪
⋃

(ã,b̃)∈M
b 6=b̃

{b̃}


6: end if
7: end if
8: end for
9: P := {(fi, fj) | i, j ∈ {1, . . . , k}, i < j}

10: while P 6= ∅ do
11: Pick (f, g) ∈ P
12: P := P \ {(f, g)}
13: s := S-polynomial of f and g
14: h := NF(s,B)
15: if h 6= 0 then
16: if h is reducible then
17: return FGBG(B ∪ {h}, C)
18: end if
19: P := P ∪ {(h, f) | f ∈ B}
20: B := B ∪ {h}
21: end if
22: if there exists i ∈ {1, . . . , l} with NF(gi, B) = 0 then
23: return ∅
24: end if
25: end while
26: return {(B,C)}

for every g ∈ C. We call a constrained Gröbner tuple factorized, if every f ∈ B
is either irreducible or has a unique irreducible left divisor.

Proof of Algorithm 2.4. We will first discuss the termination aspect of
Algorithm 2.4. Since M , as calculated in line 3, is of finite cardinality, the existence
check in line 4 can be done in a finite number of steps. Line 5 consists of a finite
number of recursive calls to FGBG. The algorithm reaches this line if there is an
element f in B, which is reducible and has a non-unique irreducible left divisor.
In each recursive call, the algorithm is called with an altered version of the set B,
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where f is being replaced in B by b ∈ G, where b is chosen such that there exists
an irreducible a in G with f = ab. Therefore, after a finite depth of recursion,
FGBG will be called with a set B containing elements that are either irreducible
or have a unique irreducible left divisor. We can make this assumption on B when
FGBG reaches line 9. Lines 10–25 describe the Buchberger algorithm to compute
a Gröbner basis, with two differences:

(1) If the normal form h of an S-polynomial with respect to B is not 0, we
check h for reducibility. If h is reducible, we call FGBG recursively, adding
h to B.

(2) We check the system for consistency, i.e. if there is an element in C that
reduces with respect to B, we return the empty set.

Each recursive call will terminate, since we add an element to B that will reduce
an S-polynomial to zero, which could not be reduced to zero before.

For the correctness discussion, one observes that lines 1–8 serve the purpose
to split the computation based on the reducibility of the elements in the initial set
B. If an element f ∈ B factorizes in more than one way, we recursively call FGBG
with (B \ {f}) ∪ {b} as the generator set for each maximal right hand factor b of
f . Hence, the left ideal generated by (B \ {f}) ∪ {b} will contain G〈B〉, and thus

G〈B〉 is contained in the intersection of all of them, as required.
As already mentioned in the termination discussion, lines 10–25 describe the

Buchberger algorithm. After computing an S-polynomial h, we check for its re-
ducibility. If there is more than one maximal right factor r of h, we call FGBG
recursively and add h to our set B. Here, we have again a guarantee that the left
ideal generated by B is a subset of the left ideal generated by B ∪ {h}.

The additional constraints that we impose on each recursive call enable us to
minimize our computations, but do not violate the subset property. In the end, it
is ensured that in all computed constrained Gröbner tuples (B̃, C̃), no element in

C lies in the left ideal generated by B̃. �

Example 2.18. Let us execute FGBG on an example. Let

B := {∂4 + x∂2 − 2∂3 − 2x∂ + ∂2 + x+ 2∂ − 2,

x∂3 + x2∂ − x∂2 + ∂3 − x2 + x∂ − 2∂2 − x+ 1}
be a subset of the first Weyl algebra A1. We assume C := {∂ − 1}, and that our
ordering is the degree reverse lexicographic one with ∂ > x. This example is taken
from the Singular:Plural manual [Greuel et al., 2010] (and it is a Gröbner basis
for the left ideal An〈∂2 + x〉 ∩An〈∂− 1〉; hence we would expect the output with our
chosen C to be An〈∂2 + x〉). Each element factors separately as

f1 :=∂4 + x∂2 − 2∂3 − 2x∂ + ∂2 + x+ 2∂ − 2

=(∂3 + x∂ − ∂2 − x+ 2) · (∂ − 1)

=(∂ − 1) · (∂3 + x∂ − ∂2 − x+ 1),

respectively

f2 :=x∂3 + x2∂ − x∂2 + ∂3 − x2 + x∂ − 2∂2 − x+ 1

=(x∂2 + x2 + ∂2 + x− ∂ − 1) · (∂ − 1)

=(x∂ − x+ ∂ − 2) · (∂2 + x).
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Hence, in line 5, FGBG will return the union of the outputs of two recursive calls
of itself, namely

• FGBG({∂ − 1, f2}, {∂ − 1, ∂3 + x∂ − ∂2 − x+ 1}) and
• FGBG({∂3 + x∂ − ∂2 − x+ 1, f2}, C).

The first call will not produce anything, as C contains ∂ − 1, which also appears in
the generator list. Hence, we ignore this call.

The new element b1 := ∂3 +x∂−∂2−x+ 1 has only one possible factorization.
Therefore, we consider now the factorizations of f2. This leads again in line 5 to
two recursive calls:

• FGBG({b1, ∂ − 1}, {∂ − 1, ∂2 + x})
• FGBG({b1, ∂2 + x}, C)

As above, the first recursive call will not return anything. Thus, we are left with
({b1, ∂2 + x}, C) to proceed on line 9.

The normal form of the S-polynomial of b1 and ∂2 +x is equal to zero. Further,
the normal form of b1, with respect to An〈∂2 + x〉, is equal to zero, i.e. ∂2 + x is a
right divisor of b1. Hence, we can omit b1 and our complete Gröbner basis is given
by {∂2 +x}. Since NF(∂−1,An〈∂2 +x〉) 6= 0, our algorithm returns {({∂2 +x}, C)}
as final output.

If we would have C = ∅ in this example, the output of our algorithm – omitting
details – will be

{({∂ − 1}, {b1}), ({∂2 + x}, {∂ − 1})},
i.e. we recover An〈B〉 = An〈∂2 + x〉 ∩ An〈∂ − 1〉 in this case.

Remark 2.5. One can also insert an early termination criterion inside Algo-
rithm 2.4, namely after at least one factorized constrained Gröbner tuple has been
found. This is in the commutative case motivated by the fact that in practice users
are often not interested in all the elements in a variety but would be content with at
least one. For example, the computer algebra system Reduce can be instructed to
stop after finding one factorized Gröbner basis (see Hearn [2004]). In the noncom-
mutative case, we can only hope for partial solutions in general, but a mechanism
to stop a computation once at least one is found is also desirable.

2.6. Non-Finite Factorization Domains

Lemma 2.14 (cf. [Heinle and Levandovskyy, 2013], Lemma 2.11). Let R be
a G-algebra and S ⊂ R be an Ore set in R. Moreover, let h be an element in
S−1R \ {0}. Suppose, that h = h1 · · ·hm, m ∈ N, hi ∈ S−1R for i ∈ m. Then there

exists q ∈ S and h̃1, . . . , h̃m ∈ R, such that qh = h̃1 · · · h̃m.
Example 2.19. Consider the polynomial h := ∂3

1 − x1∂1 − 2 ∈ A1. In A1, the
element h is irreducible. But in the first rational Weyl algebra B1, we obtain a
factorization given by (∂1 + 1

x1
)(∂2

1 − 1
x1
∂1−x1). Let us lift this factorization to A1:

h = x−1
1 (x1∂1 + 1)x−1

1 (x1∂
2
1 − ∂1 − x2

1) = x−1
1 ∂1(x1∂

2
1 − ∂1 − x2

1).

Thus, in the notation of the Lemma above, we have q = x1, h̃1 = ∂1, h̃2 = x1∂
2
1 −

∂1 − x2
1.

Our factorization method, applied to x1h ∈ A1 reveals two different factoriza-
tions. The first one is x1 ·h itself, and the second one is given by ∂1 ·(x1∂

2
1−∂1−x2

1),
which represents the rational factorization.

49



Theorem 2.7. Let p be an irreducible Zn-homogeneous polynomial in An.
Then, considered as an element 1−1p in the rational nth Weyl algebra, it is ir-
reducible up to an invertible factor.

Proof. The following Zn-homogeneous polynomials are irreducible in An:

(1) ∂1, . . . , ∂n, which are also irreducible over Bn,
(2) x1, . . . , xn, which are units in Bn,
(3) a monic irreducible p over K[θ], p /∈ {θi, θi + 1}.

Therefore, the only interesting case is the third one. Now let p ∈ K[θ] be irreducible
as element in An. In order to be factorizable in at least two noninvertible elements
in Bn, the degree of p in ∂i and thus the degree in θ must be at least two.

If p ∈ F is reducible over Bn, say p = p1 ·p2 for p1, p2 ∈ Bn\An, both non-units,
then there exists due to Lemma 2.14 a q ∈ K[X], p̃1, p̃2 ∈ An \ K[X], such that
qp = p̃1p̃2.

Case 1: q = Xe, e ∈ Nn (homogeneous attempt).
Then all possible factorizations of Xe · p in An are of the form

Xe−lp(θ1 − l1, . . . , θn − ln)X l, l ∈ Nn0 , li ≤ ei for i ∈ n.
Now, degθ(p) ≥ 2 and p is irreducible in K[θ]. Note, that for any l ∈ Nn0 σl :

K[θ] → K[θ], θi 7→ θi + li is an automorphism of K[θ]. Thus σl(K[θ]/An〈p(θ)〉) =
K[θ]/An〈p(θ1 − l1, . . . , θn − ln)〉 holds. Since the former ring is a domain, so is the
latter. Thus, for any l ∈ Nn0 , the shift p(θ1 − l1, . . . , θn − ln) of p is irreducible.

Hence, in the factorization above, one of p̃1 and p̃2 has to be from K[X], so
there is no valid factorization.

Case 2: q =
∑
e∈S⊂Nn0

qeX
e; |S| ≥ 2.

Note, that the product qp in this case is not homogeneous with respect to the Zn-
grading. However, the sum

∑
e∈S qe(X

ep) coincides with the graded decomposition
of qp. Let us fix a monomial ordering < compatible with the Zn-grading. Moreover,
let ε ∈ S ⊂ Nn0 be maximal with respect to that ordering and satisfy qε 6= 0.

Now let η1 > η2 > . . . > ηk ∈ Zn, k ∈ N and µ1 > . . . > µl ∈ Zn, l ∈ N, be the
degrees of the homogeneous summands of p̃1 resp. p̃2. Then we can write

qεX
εp = p̃

(η1)
1 p̃

(µ1)
2 ,

which is a graded element. As in Case 1, we conclude that two kinds of factorizations

are possible. Let us first write p̃
(η1)
1 = Xε−κp(θ − κ) for some κ ∈ Nn0 and p̃

(µ1)
2 =

qεX
κ.

Then deg∂(p̃1) ≥ deg∂(p
(η1)
1 ) = deg∂(p) = deg∂(qp) = deg∂(p̃1p̃2) = deg∂(p̃1)+

deg∂(p̃2), indicating that deg∂(p̃2) = 0 and deg∂(p̃1) = deg∂(p). That is, p̃2 must
be in K[X] and therefore violates our assumption.

An analogous argument holds when p appears shifted in p̃
(µ1)
2 . �

2.7. Related Work and Future Research Directions

In this section, we dealt with factorization of G-algebras and some applica-
tions. We learned also about theoretical properties, which enable an ansatz-driven
factorization method.

In particular, with the definition of an FFD, we have seen a characterization of
a domain with respect to the factorization of its elements. For commutative integral
domains, a more refined characterization with respect to factorization properties
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has been developed, and relations with respect to implications have been stud-
ied. The most prominent works are given in [Anderson et al., 1990, Anderson and
Anderson, 1992, Anderson and Mullins, 1996, Anderson, 1997]. The involved re-
search group has further definitions like Bi-factorization domain (BFD), idf-domain,
half-factorization domain (HFD), and many more. It would be interesting to also
generalize these concepts to noncommutative rings, and maybe gain further struc-
tural knowledge through this work. Besides Bell, Heinle, and Levandovskyy [2014],
Baeth and Smertnig [2015] also initialized the process of generalizing the concepts
coming from the commutative to the noncommutative world, while mainly consid-
ering matrix rings over certain domains.

Best to our knowledge, there is currently no algorithm and implementation
available which factors G-algebras in the generality as presented in Algorithm 2.1.
However, great work has been done for specific choices of rings.

A number of papers and implementations are published on the topic of fac-
torization in algebras of operators over the past few decades. Most of them con-
centrated on the rational first Weyl algebra. Tsarev [1994, 1996] studies the form,
number and properties of the factors of a differential operator, extending [Loewy,
1903] and [Loewy, 1906]. For differential operators with rational coefficients in
more than one variable, Cassidy and Singer [2011] have formulated relations be-
tween different factorizations of one operator in terms of differential modules. A
general approach to noncommutative algebras and their properties, including fac-
torization, is also presented in the book of Bueso et al. [2003]. The authors provide
algorithms and introduce various points of view when dealing with noncommutative
polynomial algebras.

In his dissertation, van Hoeij [1996] develops an algorithm to factorize a uni-
variate differential operator. Several papers following his dissertation extend these
techniques [van Hoeij, 1997a,b, van Hoeij and Yuan, 2010], and this algorithm is im-
plemented in the DETools package of Maple [Monagan et al., 2008] as the standard
algorithm for factorization of these operators.

In the REDUCE-based computer algebra system ALLTYPES [Schwarz, 2009],
Grigoriev and Schwarz have implemented the algorithm for factoring differential
operators they introduced in [Grigoriev and Schwarz, 2004], which extends the au-
thors’ earlier works [Schwarz, 1989] and [Grigoriev, 1990]. As far as we know, this
implementation is solely accessible as a web service.

Beals and Kartashova [2005] consider the problem of finding a first-order left
factor of an element from the second Weyl algebra over a computable differential
field, where they are able to deduce parametric factors. Similarly, Shemyakova
[2007, 2009, 2010] studies factorization properties of linear partial differential op-
erators.

For special classes of polynomials in algebras of operators, Foupouagnigni et al.
[2004] show interesting results about factorizations of fourth-order differential equa-
tions satisfied by certain Laguerre-Hahn orthogonal polynomials.

From a more algebraic point of view, and dealing with G-algebras of Lie type,
Melenk and Apel [1994] developed a package for the computer algebra system RE-
DUCE. This package also contains a factorization algorithm for the supported
algebras. Unfortunately, there are no further publications about how the imple-
mentation works besides the available code.
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Remark 2.6. There are other implementations that enable a user to define
very general Ore extensions, but which currently do not provide factorization func-
tionality. The two most prominent ones are

• the package ore algebra described by Kauers et al. [2014] and
• the Mathematica [Wolfram, 1999] package HolonomicFunctions pre-

sented by Koutschan [2013].

The aforementioned algorithms and implementations are very well written and
they are able to factorize a large number of polynomials. Nonetheless, as pointed
out by [Heinle and Levandovskyy, 2011, 2013], homogeneous polynomials in the nth

Weyl algebra with respect to the Zn-graded structure seem to lie in the worst case
for these algorithms, while the implementation in Singular , using Algorithms 2.2
and 2.3, perform well in these cases.

For the special case of single extensions of finite fields (discussed in section
1.5.2), there even exist polynomial time factorization algorithms. These were pre-
sented by Giesbrecht [1998], Giesbrecht and Zhang [2003], and implemented in
Sage by Caruso and Borgne [2012]. These techniques heavily utilize the Euclidean
domain structure, and hence do not generalize to the case of more than one exten-
sion. A generalized method for factoring multivariate Ore polynomials over finite
fields is subject of on-going research.

For the case where the characteristic of the underlying field is zero, it would
be desirable to obtain more and more improved methods. These do not necessar-
ily have to be generally applicable to any G-algebra; custom designed algorithms
for specific choices of algebras are as helpful. We have seen a slight step in this
direction here for Weyl and shift algebras. However, these still rely on expensive
Gröbner computations. Since certain Ore polynomial rings are used to model op-
erator equations, one also has to keep in mind that a significant improvement in
the way we are able to factor these operators may have severe consequences to the
study of the respective operator equations themselves. Especially for differential
operators, this is a well-studied field, and it would come as a surprise if one can
come up with a polynomial time algorithm to factor differential polynomials.

The last future research direction which we would like to mention here is
the connection between factorized Gröbner bases and solutions to elements in G-
algebras, viewed as operator equations, as discussed in section 2.5.
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CHAPTER 3

Ore Polynomials as a Paradigm for Cryptographic
Protocols

3.1. Introduction

In Chapter 2, we presented a very general factorization algorithm and discussed
factorization properties for several possible rings.

However, all examined factorization algorithms do not run in polynomial time
(except – given certain choices for an underlying field K – the ones dealing with
special types of polynomials like Algorithm 2.2), and with increasing degree, they
become generally impractical.

The natural question that arises is: Can we hope for – or are there already
– improvements, in the form of e.g. a polynomial-time algorithm which can be
applied to a large class of Ore polynomials? Considering Problem 2.2, we are also
facing an exponentially large output in many cases. Unless we can group different
factorizations in a way that allows us to compute a posteriori all elements in a
group, a polynomial-time algorithm solving Problem 2.2 can not exist for many
algebras.

In some cases, enhancements are achievable. As an example one can state
univariate Ore extensions of finite fields. Giesbrecht [1998], Giesbrecht and Zhang
[2003] have presented a polynomial-time factorization algorithm for these rings.
Nonetheless, their algorithm makes great use of the Euclidean domain property,
which is lost once at least one more variable is added.

Taking into account that Ore polynomials are also algebraic abstractions of
operator algebras, an improvement in the form of a general, efficient factorization
algorithm for a large class of Ore polynomials would have impact on the study of
the associated operator equations, and may even lead to significant improvements
for techniques obtaining partial solutions.

Given the current state of research and the mentioned correlation to operator
equations, we assume that Problems 2.1 and 2.2 are difficult.

This makes Ore extensions interesting objects to study in the context of cryp-
tography. As one can expect, the idea to leverage the beneficial properties of Ore
polynomial rings for cryptography has been examined before [Boucher et al., 2010].
We will outline their ideas in the subsequent section. Unfortunately, the approach
of Boucher et al. had weaknesses, which lead for a successful attack [Dubois and
Kammerer, 2011]. The main weakness was their choice of ring. In this chapter, we
will present

(a) a collection of conditions on selected Ore polynomial rings, which makes
them useful in cryptographic protocols and not subject to the attacks by
Dubois et al. (the difficulty of factorization is taken into account, as well
as the cost of performing arithmetic operations on the elements);
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(b) a Diffie-Hellman-like key exchange protocol [Diffie and Hellman, 1976] us-
ing Ore polynomial rings, which is similar to the one presented in [Boucher
et al., 2010] and addresses the main critiques as given by Dubois and Kam-
merer.

This is based on joint work with Reinhold F. Burger [Burger and Heinle, 2014].

3.2. Previous Work

In 2010, Boucher et al. [Boucher et al., 2010] proposed a novel Diffie-Hellman-
like key exchange protocol [Diffie and Hellman, 1976] based on skew polynomial
rings. The rings that they chose for their protocol were of the form Fq[X; θ], where
Fq is a finite field and θ is an automorphism on Fq (which means some power of the
Frobenius automorphism). The difficult problem which Boucher et al. are using
to argue the security of their protocol is the factorization in Fq[X; θ]. In fact, as
the authors also acknowledge, finding one factorization in this ring can be done in
polynomial time using the algorithm from [Giesbrecht, 1998]; however, an attacker
needs to find the correct factorization among all possible factorizations, which can
be – with respect to the degree in X, exponentially many (cf. Caruso and Le Borgne
[2016, Proposition 2.2.2.]).

Another important set which they need for their proposed protocol is a set
S ⊂ Fq[X; θ], which contains pairwise commuting elements. In their publication,
the authors do not describe a specific strategy other than random search to obtain
this set.

Their protocol can be described using the following steps (we denote the two
communicating parties with Alice and Bob, which we may abbreviate with A resp.
B):

• Alice and Bob publicly agree on an element L in Fq[X; θ], and on a subset
S of commuting elements in this ring.

• Alice chooses two private keys PA, QA from S and sends Bob the product
PA · L ·QA.

• Bob similarly chooses PB , QB from S and sends Alice PB · L ·QB .
• Alice computes PA · PB · L ·QB ·QA.
• Bob computes PB · PA · L ·QA ·QB .

Since PA ·PB = PB ·PA, and QA ·QB = QB ·QA, Alice and Bob have computed
the same final element, which can be used as a secret key, either directly or by
hashing. Boucher et al. claimed that it would be intractable for an eavesdropper,
denoted by Eve and abbreviated by E, to compute this secret key with knowledge
only of L, S, PA · L · QA and PB · L · QB . The authors base their claim on the
difficult problem of identifying the correct factorization among exponentially many,
as described above.

However, in 2011, Dubois and Kammerer exploited the fact that the concrete
skew polynomial ring chosen by Boucher et al. is a Euclidean domain to successfully
attack their protocol [Dubois and Kammerer, 2011]. Following their approach, an
eavesdropper Eve chooses a random element e ∈ S, since S is publicly agreed upon,
and computes the greatest common right divisor of PA · L ·QA · e = PA · L · e ·QA
with PA · L ·QA, which is with high probability equal to QA. From this point on,
Eve can easily recover the secret key between Alice and Bob.

Moreover, the paper by Dubois and Kammerer also criticizes the suggested
brute-force method for Alice and Bob to generate commuting polynomials, since
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most of the commuting polynomials turn out to be central and thus the possible
choices for private keys becomes fairly small.

3.3. Ore Polynomial Rings Suitable for Cryptographic Purposes

In this section we discuss conditions on Ore polynomial rings which make them
useful for cryptographic purposes. We generally assume that our rings have the
form

S := R[∂1;σ1, δ1][∂2;σ2, δ2] · · · [∂n;σn, δn].

Furthermore, since we intend to solely work with domains, we require R to be
a domain and σi to be injective for all i ∈ n (cf. Proposition 1.2). We define

R̃ := {r ∈ R | ∀i ∈ n : ∂ir = r∂i} to be the subring of constants of R.
As indicated before, we aim to use factorization in Ore polynomial rings as

our difficult problem. Hence, we can summarize our desired properties for an Ore
polynomial ring S as follows.

(i) Problem 2.1 and Problem 2.2 are difficult to solve for general elements. In
particular, we demand that currently either no algorithm exists, or that
if an algorithm exists, it does not run in polynomial time with respect
to the bit-size of the input-element. This should also hold if R is chosen
finite.

(ii) We are expecting to manipulate elements in R. Since these manipulations
are needed to run fast in practical applications, we require that arithmetic
operations in R are possible to be performed in polynomial time.

We will begin discussing necessary conditions to achieve (ii).

3.3.1. Conditions to Achieve Efficiency for Arithmetic Operations.
The first canonical condition we require is that for each quasi-derivation (σi, δi) in
the definition of S, the mappings σ(r) and δ(r) can be computed in polynomial
time for all r ∈ R.

A less obvious condition can be derived using the following lemma.

Lemma 3.1. Let R[∂ ;σ, δ] be an Ore extension of R, and let f be an arbitrary
element in R. Then we have the following identity for n ∈ N:

∂nf = σn(f)∂n +

( ∑
θ∈Sn•[σ, . . . , σ︸ ︷︷ ︸

n−1 times

,δ]

θ1 ◦ . . . ◦ θn ◦ f
)
∂n−1 + . . .

+

( ∑
θ∈Sn•[σ,δ,...,δ]

θ1 ◦ . . . ◦ θn ◦ f
)
∂ + δn(f),

where Sn denotes the permutation group on n elements and • the canonical action
of the group on a list with n elements.

Proof. Using induction by n.
For n = 1 the statement follows from the definition of a quasi-derivation.
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Now assume that the statement holds for an arbitrary, but fixed n ∈ N. Then

∂n+1f = ∂(∂nf)

= ∂

(
σn(f)∂n +

( ∑
θ∈Sn•[σ, . . . , σ︸ ︷︷ ︸

n−1 times

,δ]

θ1 ◦ . . . ◦ θn ◦ f
)
∂n−1 + . . .

. . . +

( ∑
θ∈Sn•[σ,δ,...,δ]

θ1 ◦ . . . ◦ θn ◦ f
)
∂ + δn(f)

)
by IH

Since σ and δ are maps on R, any composition of these maps stays in R. In the
next step we would switch the position of the remaining ∂ to the right in every
summand. We get

σn+1(f)∂n+1 +

( ∑
θ∈Sn•[σ, . . . , σ︸ ︷︷ ︸

n times

,δ]

σ ◦ θ1 ◦ . . . ◦ θn ◦ f + δ ◦σn ◦ f
)
∂n + . . .+ δn+1(f).

What one can observe here: We are using the Ore algebra commutation rule. That
means that we apply σ to every summand from the left and for i ∈ n the coefficient
of ∂i is added to the coefficient of ∂i−1 with an application of δ from the left. Thus
the coefficient of ∂i consists on the one hand of all permutations of a list containing
n− i σs and i δs with an additional application of σ from the left applied to f and
all permutations of a list containing n − i + 1 σs and i − 1 δs with an additional
application of δ from the left applied to f . These are exactly all permutations of a
list with n+ 1 entries containing n+ 1− i σs and i δs applied to f , which is what
we intend to show. �

Hence, when multiplying elements in S, we have to compute, for each i ∈ n,
up to 2n images of an element r ∈ R resulting from all different ways of applying
n times functions chosen from the set {σi, δi}. This is far from being efficient. The
most simple way to resolve this problem is by demanding an additional assumption,
that for each quasi-derivation (σi, δi), either σi is the identity function, or δi is the
zero-mapping. This means that each extension of R is either a skew extension, or
an extension of Lie type.

We can summarize the findings of this subsection in the following assumption
on S, which we assume for the rest of the chapter (unless otherwise specified).

Assumption 3.1. All arithmetic operations in R can be performed in polyno-
mial time. For each quasi-derivation (σi, δi) in the definition of S, the mappings
σ(r) and δ(r) can be computed in polynomial time for all r ∈ R. Furthermore,
for all i ∈ n, we either have that σi is the identity function, or that δi is the
zero-mapping.

3.3.2. Conditions to Achieve Difficulty of Factorization. For practical
purposes, we would assume R to be a finite field. If we choose n = 1, then [Gies-
brecht, 1998, Giesbrecht and Zhang, 2003] provide us with a polynomial time fac-
torization methods. There exists an implementation in Sage [Caruso and Borgne,
2012] that solves Problems 2.1 and 2.2 for a skew extension of a finite field.

As Dubois and Kammerer have shown, the case n = 1 and the resulting Eu-
clidean domain structure can be heavily exploited. Therefore, we assume n > 1 to
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obtain a ring that is not Euclidean any more. Furthermore, the techniques of Gies-
brecht and Zhang do not work in this setup any more, i.e. we have no factorization
algorithm on hand other than factoring via ansatz or trying out all possibilities for
certain fixed degree factors.

Furthermore, we assume that each (σi, ∂i) does not to lead to a commutative
extension, since we intend that commutative techniques should not be applicable.

Assumption 3.2. We require that Assumption 3.1 holds. Furthermore, we
insist on n > 1 and that none of the quasi-derivations used for the Ore extensions
that lead to S are commutative extensions.

3.3.3. Summary and Examples. Due to the discussion in the subsections
above, we constructed a set of conditions on the ring S which makes it suitable
for use in cryptographic protocols. The conditions made in Assumption 3.1 lead to
fast arithmetics, while the requirements stated in Assumption 3.2 make sure that
factorization is – at least generically and with respect to the status quo in the area
of noncommutative factorization – difficult and attacks as presented by Dubois and
Kammerer [2011] do not apply.

In this subsection, we will discuss which rings (or extension types) that we
know do fulfill both assumptions, and we introduce some new rings.

Example 3.1. If in one of the extensions that appear in S is a q-Weyl algebra
extension with a non-trivial q, the ring S will not fulfill Assumption 3.1, since the
associated quasi-derivation (σ, δ) has both σ not being the identity function and δ
not being the zero-mapping.

Example 3.2. Any noncommutative extension that is of Lie type fulfills As-
sumption 3.1. If S is constructed with an iteration of at least two of these exten-
sions, then S would also fulfill Assumption 3.2 and is therefore suitable for crypto-
graphic use. This includes Weyl algebra extensions and shift algebra extensions.

Example 3.3. The rings used by Boucher et al. [2010], as presented in section
3.2, violate Assumption 3.2. However, if one considers an iterated extension of
these rings with different automorphisms (i.e. different powers of the Frobenius
automorphism), then Assumption 3.2 will be fulfilled and according to our study,
they are suitable for cryptographic purposes.

Example 3.4. Any noncommutative skew extension fulfills Assumption 3.1. If
S is constructed with an iteration of at least two of these extensions, then S would
also fulfill Assumption 3.2 and is therefore suitable for cryptographic use. This
includes coordinate rings of quantum affine n-spaces and shift algebras.

Example 3.5. In all the examples presented so far, the mapping σ has always
been an automorphism. But our construction rule only required us to have σ being
injective, so that S is a domain.

Choosing σ not to be an automorphism has the benefit that our constructed ring
is not necessarily Noetherian, which makes the general factorization problem even
harder to solve. An example of a non-Noetherian Ore extension is the following:
Let K be a field. Set R := K[y], the univariate polynomial ring over K. Define
σ : R → R, f(y) 7→ f(y2) and set δ to be the zero map. Then (σ, δ) is a quasi-
derivation, and the ring R[∂;σ, δ] is not Noetherian. A proof of this, and a more
thorough discussion, can be found in [McConnell and Robson, 2001], section 1.3.2.
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An extension of this form would also fulfill Assumption 3.1 and hence can
appear in the iterated extensions of S.

Within all the examples above, one still has to carefully check which elements
are being picked. While Weyl algebras are possible choices for S, one has to re-
member that homogeneous elements with respect to the Zn-grading can be easily
factorized using Algorithms 2.2 and 2.3.

3.4. A Diffie-Hellman-like Key Exchange Protocol

3.4.1. Construction of Commuting Subsets. Before proposing the key
exchange protocol, we address the feasible construction of a (large) subset C ⊂ S.
Boucher et al. [2010] have proposed to construct such a set completely before ap-
plying their protocol, and then letting the communicating parties pick random
elements from it during execution. The proposed construction method was via
brute-force. Dubois and Kammerer [2011] have criticized this approach, since al-
most all commuting elements are in fact coming from the center of the type of ring
they chose.

Since the rings that we choose are less specialized than the ones used by Boucher
et al. [2010], we need a method applicable to any choice of S fulfilling Assumptions
3.1 and 3.2, while in the same time addressing the concerns by Dubois and Kam-
merer [2011].

The technique that we propose is based on the following observation. For a
fixed element P ∈ S, we have that for any elements c1, c2 ∈ S, which commute
with P , and (i, j) ∈ N2, the relation

c1P
i · c2P j = c2P

j · c1P i

holds. This means, the elements c1P
i and c2P

j commute. More generally, any two
sums of different powers of P with commuting coefficients will commute. For the
commuting coefficients, we are going to choose elements in the subring of constants
R̃.

Now, if two communicating parties intend to use a common set of commuting
elements, they fix an element P ∈ S. Define

C :=

{
f(P ) | f =

m∑
i=0

fiX
i ∈ R̃[X],m ∈ N, f0 6= 0

}
,(13)

where R̃ is the subring of constants of S, and R̃[X] is the univariate commutative

polynomial ring over R̃. For an element f ∈ R̃[X], we let f(P ) denote the sub-
stitution of X in the terms of f by P . By this construction, all the elements in C
commute. The communicating parties can now create a random element in C by
picking random elements in R̃ and creating polynomials with different powers of P .

What may not be directly obvious in the set definition (13) is the choice of
f0. This is motivated by the following fact: If f0 is allowed to be zero, an eaves-
dropper (called Eve) could find that out by simply trying to divide the resulting
polynomial by P on the left or right. If she succeeds, one of the coefficients is
revealed. Moreover, Eve could iterate this process for increasing indices, until an
fi for i ∈ {0, . . . ,m} is reached, which is not equal to zero. This could lead to a
decrease of the amount of coefficients Eve has to figure out for certain choices of
keys. By the additional condition of having f0 6= 0, Eve cannot retrieve any further
information in the described way.
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3.4.2. Description of the Protocol. We refer to our communicating parties
as Alice (abbreviated A) and Bob (abbreviated B). Alice and Bob wish to agree
on a common secret key using a Diffie-Hellmann-like cryptosystem.

The main idea is similar to the key exchange protocol presented in Boucher
et al. [2010]. The main differences are that (i) the ring S and (ii) the commuting
subsets are not fixed, but agreed upon as part of the key-exchange protocol. It is
summarized by the following algorithm.

Algorithm 3.1 DH-like protocol with suitable rings for cryptographic protocols

1: A and B publicly agree on a ring S, a security parameter ν ∈ N representing the
size of the elements to be picked from S in terms of total degree and coefficients,
a non-central element L ∈ S, and two multiplicatively closed, commutative
subsets of Cl, Cr ⊂ S, whose elements do not commute with L.

2: A chooses a tuple (PA, QA) ∈ Cl × Cr.
3: B chooses a tuple (PB , QB) ∈ Cl × Cr.
4: A sends the product Apart := PA · L ·QA to B.
5: B sends the product Bpart := PB · L ·QB to A.
6: A computes PA ·Bpart ·QA.
7: B computes PB ·Apart ·QB .
8: PA ·PB ·L ·QB ·QA = PB ·PA ·L ·QA ·QB is the shared secret key of A and B.

Correctness of Algorithm 3.1. As PA, PB ∈ Cl and QA, QB ∈ Cr, we
have the identity in step 8. Therefore, by the end of the key exchange, both A and
B are in possession of the same secret key. �

Note that the described protocol does not force any specific construction method
of commuting subsets Cl, Cr on Alice or Bob. However, for the rest of the section,
we assume the method of choice being the one presented in subsection 3.4.1.

Example 3.6. Let S be the third Weyl algebra A3 over the finite field F71, upon
which A and B agree. Let

L := 3x2
2 − 5∂2

2 − x2∂3 − x3 − ∂2,

P := −5x2
3 − 2x1∂3 + 34, and

Q := x2
2 + x1x3 − ∂2

3 + ∂3,

where L is the public polynomial as required in Algorithm 1, and P,Q, such that
they define the sets Cl and Cr as in (13).

Suppose A chooses polynomials fA(X) = 48X2 + 22X + 27, gA(X) = 58X2 +
5X+52, while B chooses fB(X) = 3X2 +X+31, gB(X) = 24X2 +4X+11. Then
the tuples are (PA, QA) = (48P 2 + 22P + 27, 58Q2 + 5Q + 52), and (PB , QB) =
(3P 2 + P + 31, 24Q2 + 4Q+ 11).

As described in the protocol, A subsequently sends the product Apart := PA ·
L · QA to B, while B sends Bpart := PB · L · QB to A, and their secret key is
PA ·PB ·L ·QB ·QA = PB ·PA ·L ·QA ·QB. (For brevity, the final expanded product
is not shown here.)

Remark 3.1. For practical purposes, the degree of L should be chosen to be
of a sufficiently large degree in order to perturb the product QB · QA well enough
before it is multiplied to PA ·PB. An examination of the best choices for the degree
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of L is a subject of future work that includes practical applications of our primitive
for a Diffie-Hellman-like key exchange protocol.

Remark 3.2. As mentioned before with the example of homogeneous elements
in the Weyl algebras, there are insecure choices of keys for certain rings S. These
choices are exactly those for which there exists an efficient algorithm to factor com-
mutative multivariate polynomials over K.

Obviously, in a practical implementation, one has to check for insecure key
choices and avoid them.

3.4.3. Complexity of the Protocol. Of course, as our definition of the rings
we consider in Algorithm 3.1 is chosen to be as general as possible, a complexity
discussion is highly dependent on the choice of the specific algebra. In practice,
we envision that a certain finite subset of those algebras (such as, for example, the
Weyl algebras, or iterated extensions of the rings used by Boucher et al. [2010])
will be studied for practical applications. Our complexity discussion here focuses
rather on a broad range than on concrete examples.

As we generally assume, all arithmetics in R, and therefore also in its subring
of constants R̃, can be computed in polynomial time with respect to the bit-size of
the considered elements. We suppose the same holds for the application of σi and
δi, for i ∈ {1, . . . , n}, to the elements of R, and that the time needed to choose a
random element in R is polynomial in the desired bit length of this element. Thus,
the choice of a random element in S is just a finitely iterated application of the
choice of coefficients, which lie in R. Let ωi(k) denote the cost of applying σi (or δi,
depending on which one of them is non-trivial) to an element f ∈ R of bit-length
k ∈ N. For two elements f, g ∈ R of bit-sizes k1, k2 ∈ N, we denote the cost of
multiplying them in R by θ(k1, k2), and the cost of adding them by ρ(k1, k2).

For the key exchange protocol, the main cost that we need to address is the cost
of multiplying two polynomials in S. For a monomial m := ∂e11 · · · ∂enn , where e ∈
Nn0 , one can generalize Lemma 3.1 to the multivariate case and find that multiplying
m and f , where f has bit-size k, requires O(

∏n
i=1 ei · ωi(k)) bit-operations. For

general polynomials in S, we obtain therefore the following property:

Lemma 3.2. Let n be the number of Ore extensions of R in S. For two poly-
nomials h1, h2 ∈ S, let d ∈ N0 be the maximal degree among the ∂i which appears
in h1 and h2, and let k1, k2 ∈ N be the maximal bit-length among the coefficients
of h1 and h2, respectively. For notational convenience, we define ζ :=

∏n
i=1 ωi(k2).

Then the cost of computing the product h1 · h2 is in

O
(
d2n · ζ · θ(k1, ζ) · ρ(θ(k1, ζ), θ(k1, ζ))

)
.

Proof. We have at most dn terms in h1. When we multiply h1 and h2,
we must regard each term separately, and compute the noncommutative relations.
This results in the d2n different computations of size ζ. Then, for every one of those
results, we need to apply a multiplication in R with the coefficients of h1. In the
end, the results of those multiplications have to be added together appropriately,
which produces the above complexity. �

This lemma shows that multiplying two elements in S has polynomial time
complexity in the size of the elements, since the value of n is fixed for a chosen S.

Remark 3.3. The cost in Lemma 3.2 assumes the worst case, where every Ore
extension of R has a non-trivial δi. If for one of the extensions δi is equal to the
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zero map, then the worst case complexity in this variable is lower, as the term-wise
multiplication does not result each time in a sum of different terms in ∂i. One can
see here, that in general, when the cost of the protocol is crucial for a resource-
limited practical implementation, one should prefer Ore extensions where δ is the
zero map, i.e. skew Ore extensions.

3.4.4. Security Analysis.
3.4.4.1. The Attacker’s Problem. The security of our scheme relies on the diffi-

culty of the following problem, which is similar to the computational Diffie-Hellman
problem (CDH) [Maurer, 1994].

Given a ring S, a security parameter ν, two sets Cl, Cr of multiplicatively closed,
commutative subsets of S, whose elements do not commute with a certain given
L ∈ S. Furthermore, let the products PA ·L ·QA and PB ·L ·QB for some (PA, QA),
(PB , QB) ∈ Cl × Cr also be known.

Problem 3.1 (Ore Diffie Hellman (ODH)). Compute PB · PA ·L ·QA ·QB (=
PA · PB · L ·QB ·QA) with the given information.

One way to solve this problem would be to recover one of the elements PA, QA, PB
or QB . This can be done via factoring PA · L · QA or PB · L · QB which appears
in general to be difficult. Furthermore, even if one is able to factor an intercepted
product, the factorization may not be the correct one due to the non-uniqueness of
the factorization in Ore extensions.

Another attack for the potential eavesdropper is to guess the degrees of (PA, QA)
(or (PB , QB)) and to create an ansatz with the coefficients as unknowns, to form a
system of multivariate polynomial equations to solve. This type of attack and its
infeasibility was discussed already in [Boucher et al., 2010], Section 5.2., and the
argumentation of the authors translates analogously to our setup. Finally, another
attempt, which seems natural, is to generalize the attack of Dubois and Kammerer
to the multivariate setup. We will discuss such a possible generalization for certain
rings constructed with our method and show that it is impractical in the following
subsection.

We are not aware of any other way to obtain the common key of A and B
while eavesdropping on their communication channel in Algorithm 3.1 other than
trying to recover the correct factorization from the exchanged products of the form
P · L ·Q.

Remark 3.4. Concerning the attack where Eve forms an ansatz and tries to
solve multivariate polynomial systems of equations: In fact, each element in our
system has total degree at most two. There exist attempts to improve the Gröbner
computations for these kinds of systems [Courtois et al., 2000, Kipnis and Shamir,
1999], but the assumptions are quite restrictive. Besides the assumption that the
given ideal must be zero-dimensional (which is only guaranteed in the case when
the subring of constants is finite), there are certain relations between the number of
generators and variables necessary to apply these improvements. We are not aware
of any further progress on the techniques presented in Courtois et al. [2000], Kipnis
and Shamir [1999] since 2000, which have fewer restrictions on the system to be
solved.

Remark 3.5. Note that there is a corresponding decision problem related to
ODH: Given a candidate for the final secret key, determine if it is consistent with
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the public information exchanged by Alice and Bob. To the best of our knowledge,
this is also currently intractable.

3.4.4.2. Generalization of the attack by Dubois and Kammerer. In this subsec-
tion, we assume that our ring S is Noetherian, and that there exists a notion of a
left or right Gröbner basis. Alice and Bob have applied Algorithm 3.1 and their
communication channel has been eavesdropped by Eve. Now Eve knows about the
chosen ring S, the commuting subsets Cl, Cr and the exchanged products PA ·L ·QA
and PB ·L ·QB for some (PA, QA), (PB , QB) ∈ Cl×Cr. Let us assume without loss
of generality that Eve wants to compute QA.

Eve does not have a way to calculate greatest common right divisors, but she
can utilize Gröbner basis theory. For this, she picks a finite family {Ei}mi=1, m ∈ N,
of elements in Cr. After that, she computes the set G := {PA · L · QA · Ei | i ∈
{1, . . . , n}}.

All elements in G (along with PA ·L·QA) have QA as a right divisor in common,
since Ei commutes with QA for all i ∈ {1, . . . ,m}. This means, the left ideal I in
S generated by the elements in G∪ {PA · L ·QA} lies in – or is even equal to – the
left ideal generated by QA. Hence, a Gröbner basis computation of I might reveal
QA. If not, a set of polynomials of possibly smaller degree than the ones given in
G that have QA as a right divisor will be the result of such a computation.

Besides having no guarantee that Eve obtains QA from the computations de-
scribed above, the calculation of a Gröbner basis is an exponential space hard
problem [Mayr and Meyer, 1982] in general. We tried to attack our protocol using
this idea. We chose the second Weyl algebra as a possible ring, as there is a notion
of a Gröbner basis and there are implementations available. It turned out that our
computer ran out of memory after days of computation on several examples where
L, QA, QB , PA and PB each exceed a total degree of ten. For practical choices,
of course, one must choose degrees which are higher (dependent on the choice of
the ring S). Hence, we consider our proposal secure from this generalization of the
attack by Dubois and Kammerer.

3.4.4.3. Recommended Key Lengths. The question of recommended key lengths
has to be discussed for each ring choice separately. With lengths, one means in the
context of this section the degree of the chosen public polynomials L, P and Q
in the ∂i for i ∈ {1, . . . , n} and the size of their respective coefficients in R. We
cannot state a general recommendation for key-lengths that lead to secure keys
for arbitrary choices of S. For the Weyl algebra, where some implementations
of factoring algorithms are available, we could observe through experiments that
generic choices of P and Q in Cl and Cr, respectively, each of total degree 20, lead
to products P · L ·Q which cannot be factored after a feasible amount of time. If
one chooses our approach (13) to find commuting elements, the choice of the degree

of the polynomials in R̃[X] is the critical part, and the polynomials P and Q – as
they are publicly known – can be chosen to be of small degree for performance’s
sake.

In general, for efficiency, we recommend choosing n = 2 for the ring S, as it
already ensures that S is not a principal ideal domain and keeps multiplication
costs low.

For the case where our underlying ring is a finite field, we are able to present
in Table 3.1 a more detailed cost estimate on the hardness to attack our protocol
by using brute-force. There, we set R = Fq, where q = pk for a prime p and k > 2.
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For efficiency, as outlined above, we pick n = 2 and further k = 3. Then we de-
fine S as being R[∂1;σ1][∂2;σ2], where σ1, σ2 are different powers of the Frobenius
automorphism on Fq. We assume that the polynomials are stored in dense rep-
resentation in memory. The two commuting subsets Cl, Cr are defined as in (13).
We will measure the time in computation steps. We expect that any arithmetic
operation on Fq, as well as the application of σ1 resp. σ2, takes one step. Then, the
cost formula as presented in Lemma 3.2 will be in the worst case d4 · 2, as addition
and multiplication are assumed to take one computation step, and ζ ≤ 3 (due to
the automorphism group of R having order 3). The security parameter is given as
a tuple (dL, dPQ, ν), where dL is the total degree of L, dPQ is the total degree of
each of P and Q, and ν is the maximal degree of the polynomials in Fp[X] chosen
to compute each of PA, PB , QA and QB . To simplify the analysis, we assume for
our estimates that the degree in each ∂1 and ∂2 will be half of the total degree of
L,P and Q. As for the cost of Alice resp. Bob to compute the messages they are
sending, and to calculate the final key, we used the following formulas to make a
prudent estimation:

• Computing all powers of P and Q: The cost c(ν) to compute all
these powers up to a certain exponent ν can be estimated by the following
recursive formula:

c(1) = 0, (P or Q are given, no need to compute)

c(j + 1) =
(j · dPQ)4

8
+ c(j).

As a closed formula, we can we can write it as

c(ν) =

ν∑
j=0

(j · dPQ)4

8
=
d4
PQ

8
·
ν∑
j=0

j4

=
d4
PQ

8
·
(

5 · (ν + 1)5 − 1

2
· (ν + 1)4 +

1

3
· (ν + 1)3 − 1

30
· ν − 1

30

)
.

• Generating private polynomials: Both Alice and Bob have to com-
pute PA and QA resp. PB and QB . In order to do so, each power of P and
Q has to be computed and multiplied by an element in Fp, which results
in

2 ·
ν∑
j=0

j2 · d2
PQ

4
=

ν∑
j=0

j2 · d2
PQ

2

=
d2
PQ

2
· 3 ·

(
(ν + 1)3 − 1

2
· (ν + 1)2 +

1

6
· ν +

1

6

)
operations. Adding all these together adds another 2 · ν

2·d2PQ
4 operations

for Alice resp. Bob.
• Computing initial message: We assume that we have the private poly-

nomials for A and B already computed, and their respective degree is

dPQ · ν. Then, in order to compute the initial message, we need
(dPQ·ν)4

8
steps to compute PA · L, assuming that the degree of L is smaller. Af-

terwards, to obtain PA · L · QA, we have to do
(dPQ·ν+

dL
2 )4

8 additional
steps.
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Security Tuple
Computation Costs for Alice and Bob Final Key

Size in KB
Brute-Force

CostSecret Parameter Initial Message Shared Secret

(30, 5, 10) 1.247955E + 08 3.012579E + 06 1.145127E + 08 46 2.066009E + 16
(30, 5, 15) 8.144450E + 08 1.215633E + 07 5.073701E + 08 97 9.616857E + 18
(30, 5, 20) 3.176336E + 09 3.436258E + 07 1.497794E + 09 169 2.237607E + 21
(30, 5, 25) 9.248193E + 09 7.853758E + 07 3.508245E + 09 260 3.467317E + 23
(30, 5, 30) 2.229704E + 10 1.559313E + 08 7.074856E + 09 370 4.110897E + 25
(50, 5, 35) 4.711215E + 10 3.172363E + 08 1.391021E + 10 514 5.144021E + 27
(50, 5, 40) 9.029806E + 10 5.203613E + 08 2.315166E + 10 665 4.258507E + 29
(50, 5, 45) 1.605675E + 11 8.086426E + 08 3.637583E + 10 836 3.176783E + 31
(50, 5, 50) 2.690343E + 11 1.203174E + 09 5.458994E + 10 1027 2.179949E + 33

Table 3.1. Computation costs (given as number of primitive com-
putation steps) for Alice and Bob to perform Algorithm 3.1 with
R = Fq, p = 2 and S = R[∂1;σ1][∂2;σ2] and costs for Eve to
perform a brute-force attack.

• Computing the shared secret key: The shared secret takes then
(2·dPQ·ν+dL/2)4

8 +
(3·dPQ·ν+dL/2)4

8 steps to compute by directly applying
the cost estimate for multiplication.

The worst case for the size in bits of the shared key in the end can be estimated by
adding the degrees of the computed L, PA, QA, QB and PB together. This results
in the formula (

dL + 8 · ν · dPQ
2

)2

· dlog(p)e,

where we assume that the partial degree in ∂1 and ∂2 is about half of the total
degree of the final polynomial. In practice, one would probably prefer to use a
sparse representation, which on average lead to smaller final key sizes.

As for the cost for an attacker to do a brute-force attack, i.e. trying to determine
the shared secret of Alice and Bob, we assume that he or she tries all possibilities
for one of the polynomials PA, PB , QA or QB and checks, for each possibility, if the
computed polynomial divides one of the messages between Alice and Bob. Hence,
for every possibility, Eve must solve a linear system of equations of size d2

m, where
dm is the maximal total degree of one of the messages (usually 2 ·ν ·dPQ+dL). I.e.

there arise (dm2 )2ω additional computation steps for each possibility, where ω is the
matrix multiplication constant (currently ω ≈ 2.373). Initially, the attacker has
to also compute all powers of P resp. Q, and then the additions, as listed above.
Table 3.1 lists our computed costs for different security parameters.

Remark 3.6. We tried to factor the exchanged products PA·L·QA and PA·L·QB
from the small Example 3.6 in section 3.4.2 using Singular and REDUCE, and
it turned out that both were not able to provide us with one factorization after 48
hours of computation on an iMac with 2.8Ghz (4 cores) and 8GB RAM available.
This means that even for rather small choices of keys, the recovery of P and Q via
factoring appears already to be hard using current tools. Of course, for this small
key-choice, a brute-force ansatz attack (as described above in Remark 3.4) would
succeed fairly quickly. We also tried 150 examples with different degrees for P,Q,L
and the respective polynomials in Cl and Cr. In particular, we let the degree of L
range from 5 to degree 50, the degree of P and Q respectively between 5 and 10,
and the degrees of the elements in Cl and Cr – which are created with the help of P
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and Q – are having degrees ranging between 25 and 50. We gave each factorization
process a time limit of 4 hours to be finished. None of the polynomials has been
factored within that time-frame. The examples can be downloaded from the author’s
website1.

3.4.4.4. Attacks On Similar Systems. Here, we discuss why known attacks on
protocols similar to Algorithm 3.1 do not apply to our contexts.

As emphasized before, the attack developed by Dubois and Kammerer on the
protocol by Boucher et al. is prevented by choosing rings that are not principal ideal
domains. Thus, there is no general algorithmic way to compute greatest common
right divisors.

When applying rings S using our construction principle to exchange keys, one
does in fact not utilize the whole ring structure, but only the multiplicative monoid
structure. Therefore it appears to be reasonable to consider also attacks developed
for protocols based on non-abelian groups (albeit they contain more structure than
just monoids, the latter being the correct description of our setup). The most
famous protocol is given by Ko et al. [2000]. The attack developed by Cheon and
Jun [2003] exploits the fact that braid groups are linear. However, there is currently
no linear representation known for our rings (though it would be an interesting
subject of future research), so there is at present no analogous attack on protocols
based on our primitive. Furthermore, even if a linear representation for our rings
were discovered, it is not clear whether Jun and Cheon’s attack could be extended
to our case, as the authors make use of invertible elements in their algorithm (which
our structures, only being monoids, do not possess).

3.5. Implementation and Experiments

We developed an experimental implementation of the key exchange protocol
as presented in Algorithm 3.1 in the programming language C2. We decided for
such a low-level implementation after we found that commodity computer algebra
systems appear to be too slow to make experiments with reasonably large elements.
This may be due to the fact that their implemented algorithms are designed to be
generally applicable to several classes of rings and therefore come with a large
amount of computational overhead. Our goal is to examine key-lengths and the
time it takes for computing the secret keys. It is to be emphasized that our code
leaves considerable room for improvement. A detailed survey on the implementation
and how it can be used for different purposes is provided in section 5.2.

For the implementation, we chose our ring S to be two extensions of a finite
field Fq, where each single extension is similar to the one presented by Boucher et al.
[2010]. In particular, our ring for the coefficients R is chosen to be F125, and we
fixed n := 2. Internally, we view F125 isomorphically as F5(α) := F5[x]/〈x3+3x+3〉.
Our noncommutative polynomial ring S is R[∂1;σ1][∂2;σ2], where

σ1 : F5(α)→ F5(α), a0 + a1α+ a2α
2 7→ a0 + a1 + a2 + 3a2α+ (3a1 + 4a2)α2

σ2 : F5(α)→ F5(α), a0 + a1α+ a2α
2 7→ a0 + 4a1 + 3a2 + (4a1 + 2a2)α+ 2a1α

2.

1https://cs.uwaterloo.ca/~aheinle/software_projects.html
2One can download the implementation on GitHub at https://github.com/ioah86/

diffieHellmanNonCommutative
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Figure 3.1. Timings and file sizes for different degrees of elements
in R̃[X]

The ring of constants is therefore R̃ := F5 ⊂ R. These two automorphisms are
given by different powers of the Frobenius automorphism, and they are the only
two distinct non-trivial automorphisms on F5(α) according to Theorem 1.1.

Note, that the multiplication of two elements f and g in this ring requires O(n4)
integer multiplications, where n = max{deg(f),deg(g)}. Recently, we modified the
implementation of the multiplication to leverage parallelism, where possible and
feasible. This resulted in a decrease of calculation time of up to 40% compared to
the subsequent implementation. More details on that can be found in section 5.2.2.

Following the notation as in Algorithm 3.1, our implementation generates ran-
dom polynomials L, P and Q in S. Our element L is chosen to have total degree
50, and P , Q each have total degree 5. Afterwards, it generates four polynomials
in R̃[X] to obtain (PA, QA), (PB , QB) in the fashion of (13).

Subsequently, the program computes the products PA ·L ·QA, PB ·L ·QB and
the secret key PA ·PB ·L ·QB ·QA = PB ·PA ·L ·QA ·QB . Naturally, some of those
computations would be performed in parallel when the protocol is applied, but we
ran the steps of the algorithm in a subsequent manner for our experimental setup.
At runtime, all computed values are printed out to the user.

We experimented with different degrees for the polynomials in R̃[X] to generate
the private keys, namely 10, 20, 30, 40 and 50. This leads to respectively 20, 40, 60,
80 and 100 indeterminates for Eve to solve for if she eavesdrops the channel between
Alice and Bob and tries to attack the protocol using an ansatz by viewing the
coefficients as unknown parameters. Even if she decides to attack the protocol using
brute-force, she has to go through 510, 520, 530, 540 and 550 possibilities respectively
(note here, that for a brute-force attack, Eve only needs to extract a right or left
hand factor of the products PA ·L·QA and PB ·L·QB that Bob and Alice exchange).
The file sizes and the timings for the experiments are illustrated in Figure 3.1.

Note, that the file sizes are not indicative of the actual bit-size of the keys, as the
files we produced are made to be human-readable. Allowing for this fact, the bit-
sizes of our keys are comparable to those found necessary for secure implementations
of the McEliece cryptosystem McEliece [1978], Bernstein et al. [2008], which is a
well-studied post-quantum encryption scheme.

In our experimental setup, we can see that one can generate a reasonably secure
key (degree 30 for the elements in R̃[X]) in less than five minutes at the current
stage of the implementation. For larger degrees, we believe that machine-optimized
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code would decrease the computation time significantly. An interesting question is
whether arithmetics in our class of noncommutative rings can be implemented in a
smart way on a quantum computer.

3.5.1. Challenge Problems. For readers who would like to try to attack the
keys generated by this particular implementation, we have created a set of challenge
problems. They can be found, with description, on the author’s website3.

3.6. Future Work

The main subjects that need to be studied now are the best choices of rings.
For practical purposes, our underlying ring R needs to be some sort of a finite
domain, since otherwise it would be challenging to achieve fast key-generation.

After that, one has to carefully check these rings for classes of weak keys. This
means keys where Problem 3.1 can be solved efficiently. By the nature of this work,
it will be an ongoing process which may reveal not so obvious choices over time.

As far as protocols other than the Diffie-Hellman key-exchange are concerned,
my colleague Reinhold F. Burger has successfully designed and studied ways to ap-
ply our choices of rings to other cryptographic paradigms, like e.g. zero-knowledge-
proof and three-pass protocols. Details are given in [Burger and Heinle, 2014].

3https://cs.uwaterloo.ca/~aheinle/miscellaneous.html#challenges
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CHAPTER 4

On Computing the Jacobson Form of a Matrix of
Ore Polynomials

In [Giesbrecht and Heinle, 2012, Heinle, 2012], we present a polynomial-time
algorithm of Las Vegas type to compute the so-called Jacobson normal form of a
matrix of Ore polynomials. In the paper [Giesbrecht and Heinle, 2012], the algo-
rithm was specifically designed for matrices with entries coming from the rational
Weyl algebra. In [Heinle, 2012], we additionally gave an outline how the techniques
could be extended to various skew polynomial rings. This chapter deals with pre-
senting this algorithm, concretely extending it to certain skew polynomial rings,
and a proof that similar complexity bounds as for matrices over the rational first
Weyl algebra do hold for skew polynomial rings. In particular, we show properties
which skew polynomial rings have to fulfill to ensure that the techniques generalize.

4.1. Introduction and Definitions

There are two types of Ore polynomials that we consider in this chapter. They
both are extensions of a function field K(z), where z is some transcendental inde-
terminate.

(1) K(z)[x;σ], where σ is an automorphism of K(z). Furthermore, for our
algorithmic approach and to establish the strong Jacobson normal form as
presented later, σ has to have a certain lower bound of its order depending
on the size of the matrix and the maximal degree in x among the entries.

(2) δ(z) = 1 and σ(z) = z, so δ(h(z)) = h′(z) for any h ∈ K(z) with h′ its
usual derivative. For simplicity, write K(z)[x; ′] for this ring.

According to Proposition 1.3, items (1) and (2) represent – up to isomorphism
– all possible Ore extensions K(z)[x;σ, δ]. The only restriction that we have is the
lower bound of σ in item (1).

Now we will introduce the noncommutative equivalent of the Smith normal form
[Smith, 1861] for matrices over commutative principal ideal domains. Naturally, this
form can be established for rings much more general than the ones we are dealing
with in this thesis.

Definition 4.1 (cf. Jacobson [1943], Theorem 3.16). Let R be a (not necessar-
ily commutative) principal ideal domain. For every rectangular matrix A ∈ Rn×m
one can find unimodular matrices U ∈ Rn×n, V ∈ Rm×m, such that UAV is asso-
ciated to a matrix in diagonal form

diag(e1, . . . , es, 0, . . . , 0).

Each element ei is a total divisor of ej if j > i. This is called the Jacobson
normal form of A. The diagonal elements are unique up to similarity.
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Corollary 4.1. Let R = K(z)[x; ′]. Then for every rectangular matrix A ∈
Rn×m, one can find f ∈ R and unimodular matrices U ∈ Rn×n, V ∈ Rm×m, such
that UAV is associated to a matrix in diagonal form

diag(1, . . . , 1, f, 0, . . . , 0).

Proof. This follows from Lemmas 1.1 and 1.3. �

Example 4.1. Let K = Q and A ∈ K(z)[x; ′]3×3 given as follows:

A :=

 1 + (z + 2)x+ x2 2 + (2z + 1)x 1 + (1 + z)x

2z + z2 + zx 2 + 2z + 2z2 + x 4z + z2

3 + z + (3 + z)x+ x2 8 + 4z + (5 + 3z)x+ x2 7 + 8z + (2 + 4z)x


There exist unimodular matrices U, V ∈ K(z)[x; ′]n×n with

UAV =


1 0 0
0 1 0

0 0
(
−2(z+2)2

z

)
+

(
11 z2+6 z3+z4−12

z

)
x+

+

(
12 z2+3 z3+10 z−6

z

)
x2 +

(
3 z2+6 z−1

z

)
x3 + x4

,
which is a Jacobson normal form for A. As mentioned before, the nontrivial entry
is only unique up to similarity.

For matrices with entries in a commutative ring there has been impressive
progress in computing the Smith normal form, and the improvements in complex-
ity have resulted directly in the best implementations. As mentioned earlier, the
Jacobson form is the natural generalization of the Smith form in a noncommutative
(left) principal ideal domain. Commutative techniques do not directly generalize
(for one thing there is no straightforward determinant), but our goal is to transfer
some of this algorithmic technology to the noncommutative case.

Over the past few years, a number of algorithms and implementations have
been developed for computing the Jacobson form. The initial definition of the
Jacobson form [Jacobson, 1943] was essentially algorithmic, reducing the problem
to computing diagonalizations of 2× 2 matrices, which can be done using GCRDs
and LCLMs. Unfortunately, this approach lacks not only efficiency in terms of ring
operations, but also results in extreme coefficient growth.

Recent methods of [Levandovskyy and Schindelar, 2011, 2012] have resulted in
an algorithm based on Gröbner basis theory. An implementation of it is available
in the computer algebra system Singular. A second approach by Robertz et al.
implementing the algorithm described in [Cohn, 1985] can be found in the Janet li-
brary for Maple [Robertz, 2007]. Another approach is proposed by Middeke [2008]
for differential polynomials, making use of a cyclic vector computation. This algo-
rithm requires time polynomial in the system dimension and order, but coefficient
growth is not accounted for. Finally, the dissertation of Middeke [2011] considers
an FGLM-like approach [Faugere et al., 1993] by converting a matrix of differential
polynomials from the Popov to the Jacobson form.

Our goal in this paper is to establish rigorous polynomial time bounds on
the cost of computing the Jacobson form, in terms of the dimension, degree and
coefficient bound of the input. We tried to avoid Gröbner bases and cyclic vectors,
because we do not have sufficiently strong statements about their size or complexity.
Our primary tool is the polynomial-time algorithm for computing the Hermite
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normal form of a matrix of Ore polynomials, introduced by Giesbrecht and Kim
[2009, 2013].

Definition 4.2. Let R = K(z)[x;σ, δ] be an Ore polynomial ring and A ∈ Rn×n
with full row rank. There exists a unimodular matrix Q ∈ Rn×n, such that H = QA
is an upper triangular matrix with the property that

• The diagonal entries of H are monic;
• Each superdiagonal entry is of degree (in x) lower than the diagonal in
its column (i.e., degxHji < degxHii for 1 ≤ j < i ≤ n)

We call H the Hermite normal form of A, which is (with monic diagonals)
unique.

Giesbrecht and Kim [2009, 2013] establish the following (polynomial time) cost
and degree bounds for computing the Hermite form:

Lemma 4.1. Let A ∈ K[z][x;σ, δ] have full row rank with entries of degree at
most d in x, and of degree at most e in z. Let H ∈ K(z)[x;σ, δ]n×n be the Hermite
form of A and U ∈ K(z)[x;σ, δ]n×n such that UA = H. Then

(a) We can compute the Hermite form H ∈ K(z)[x;σ, δ]n×n of A, and U ∈
K(z)[x;σ, δ]n×n such that UA = H with a deterministic algorithm that
requires O(n9d4e) operations in K;

(b) degx(Hij) ≤ nd, degz(Hij) ∈ O(n2de) and degz(Uij) ∈ O(n2de) for 1 ≤
i, j ≤ n.

Our approach to calculate the Jacobson normal form follows the method of
[Kaltofen et al., 1990] for computing the Smith normal form of a polynomial matrix.
This algorithm randomly preconditions the input matrix by multiplying random
unimodular matrices on the left and the right, and then computes a left and right
echelon/Hermite form. The resulting matrix is shown to be in diagonal Smith form
with high probability.

Our algorithm follows a similar path, but the unimodular preconditioner must
be somewhat more powerful to attain the desired Jacobson form.

4.2. Strong Jacobson Form for Skew Polynomials

The Jacobson normal form of a matrix over a ring of the form K(z)[x;σ] has in
general the form diag(xe1c1, . . . , x

en−1cn−1, ϕ), where ei ≤ ei+1 ∈ N0, ϕ ∈ R and
the ci are elements in the center of R, i ∈ n− 1. Dependent on the order of σ, we
show that we can choose the ci to be in K(z) in the diagonal form. For that, some
preliminary studies are required.

Lemma 4.2. Let a, b ∈ R := K(z)[x;σ], b :=
∑n
i=0 bix

i, bi ∈ K(z) and ord(σ) >
n. Then a is a total divisor of b if and only if a = âxk, where â ∈ K(z) and
k ≤ min{i = 0, . . . , n | bi 6= 0}.

Proof. Let us recall the definition of total divisibility. It means, that there
exists a two-sided ideal I, such that 〈b〉R ⊆ I ⊆ 〈a〉R. That a is a total divisor of b
if it has the form as given in the statement is trivial. The more interesting part is
the other direction.

Let us study the structure of a two sided ideal containing b. It is principal,
and it is generated by xl, l ≤ k as we will see next. According to Jacobson [2010,
Theorem 1.1.22], the two sided ideals have a generator the form ac(x)xm, m ∈ N0,
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where a ∈ K(z) and c(x) is an element of the center of R. In the same theorem,
Jacobson states that the elements in the center are polynomials of the form

γ0 + γ1x
r + γ2x

2r + . . .+ γsx
sr,

where s ∈ N0, γi ∈ K(z), r = ord(σ). As we assume ord(σ) > n, the generator of I
has to have a degree in x smaller than n in order to contain b. That leaves only a
polynomial in K(z) for c(x). Therefore, our two-sided ideal is generated by solely
a power of x as desired. The statement l ≤ k follows from the fact that every term
of b must be a multiple of xl.

Hence, we have I = 〈xk〉 and k ≤ min{i = 0, . . . , n | bi 6= 0} in order to obtain
〈b〉R ⊆ I. Since we need I ⊆ 〈a〉R, we see that xk ∈ 〈a〉R. There is a grading on
R defined by the weights 0 for z and 1 for x and hence, because R is a domain,
the element a has to be homogeneous in order to generate xk. Thus a = âxk as
desired. �

Now we can establish what we refer to as the strong Jacobson form for skew
polynomial extensions.

Theorem 4.1. Let R = K(z)[x;σ] be an Ore extension of K(z), where σ is an
automorphism, and let A ∈ Rn×n. Let J := diag(s1, . . . , sm, 0, . . . , 0), m ≤ n ∈ N,
be the Jacobson normal form of A and let U, V ∈ Rn×n, unimodular, such that
J = UAV . If ord(σ) > degx(sm), then we have

(14) J = UAV = diag(1, . . . , 1, x, . . . , x, . . . , xk, . . . , xk, ϕxk̃, 0, . . . , 0),

where ϕ ∈ R, k̃ ≥ k ∈ N0.

Proof. As the diagonal entries of the Jacobson normal form (we assume the
diagonal entries to be normalized) are total divisors in an ascending order and the
degree in x of them does not exceed degx(sm), all entries have to be a power of
x according to Lemma 4.2, except for the last entry before the 0-sequence starts.
The ascending degree of x on the diagonal results also from the total divisibility
criterion. �

Corollary 4.2. Let R = K(z)[x;σ] be the ring of shift polynomials, i.e.
σ(z) = z + 1, let K have characteristic zero and A ∈ Rn×n. Then there exist
unimodular matrices U, V ∈ Rn×n such that

(15) J = UAV = diag(1, . . . , 1, x, . . . , x, . . . , xk, . . . , xk, ϕxk̃, 0, . . . , 0),

where ϕ ∈ R, k̃ ≥ k ∈ N0.

Proof. As the order of σ in the case of the shift algebra is infinite, we have
no restrictions on the degrees that can appear in the Jacobson normal form of A.
Therefore our corollary holds. �

4.3. Reduction of the Jacobson Form Computation to Hermite Form
Computation

In this section we present our technique for computing the Jacobson form of a
matrix of Ore polynomials. Ultimately, it is a simple reduction to calculating the
Hermite form of a preconditioned matrix. We present it for the rings R = K(z)[x; ′]
and R = K(z)[x;σ], where σ is an automorphism and we might add some extra
conditions on its order.
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4.3.1. On divisibility. We will begin with a statement which is true for the
differential algebra, as well as for K(z)[x;σ]. It is a non commutative generalization
of the methods shown by Kaltofen et al. [1990].

Lemma 4.3. Let h1, . . . , hn ∈ R, for n ∈ N, n ≥ 2, where R is either the
differential algebra or equal to K(z)[x;σ], and let GCRD(h1, . . . , hn) = g for g ∈ R.
Let S ⊂ K \ {0} be a finite subset. Then, for randomly chosen a2, . . . , an ∈ S we
have that

Prob

{
GCRD

(
h1,

n∑
i=2

aihi

)
= g

}
> 1− 1

|S| .

Proof. We will prove this statement using induction by n.
For n = 2, the probability is even 1, since GCRD(h1, a2h2) = GCRD(h1, h2) =

g.
For n = 3, suppose that GCRD(h1, a2h2 +a3h3) = u ∈ R, deg(u) > deg(g). By

assumption we have a2, a3 6= 0, and thus we can consider equivalently GCRD(h1, h2+
yh3) = u, where y = a3

a2
.

We deduce that then h1 ∈ Ru and h2 + yh3 ∈ Ru. Neither h2 nor h3 can be
in Ru, as otherwise we would have GCRD(h1, h2, h3) = u 6= g, which contradicts
to our requirement of this GCRD being equal to g. Thus, the elements −h2 and
yh3 are in the same equivalence class in the left module R/Ru. Due to coefficient
comparison, this is possible for at most one y ∈ K, which we denote as y. Therefore,
a2 and a3 must fulfill a3−ya2 = 0. With the help of the Schwartz-Zippel lemma, we
can deduce that this is the case with probability smaller or equal to 1

|S| . Therefore,

the probability that GCRD(h1, a2h2 + a3h3) = g is greater than (1− 1
|S| ).

For the induction step, let us assume n > 3 and that the statement holds for
all l ∈ N with 2 ≤ l < n. We want to show it for n.

Assume that GCRD(h2, . . . , hn) = u for some u ∈ R, deg(u) ≥ deg(g). Then
GCRD(h1, u) = g. By induction hypothesis, with probability greater than (1− 1

|S| ),

we have GCRD(a2h2,
∑n
i=3 aihi) = GCRD(h2,

∑n
i=3 aihi) = u. Hence, with that

probability we have

GCRD(h1, a2h2,

n∑
i=3

aihi)

=GCRD(h1,GCRD(a2h2,

n∑
i=3

aihi))

=GCRD(h1, u) = g.

We can also deduce that GCRD(h1,
∑n
i=2 aihi) = g, since otherwise we would get

a contradiction to the indentity GCRD(h1, a2h2,
∑n
i=3 aihi) = g from above.

�

4.3.1.1. Differential Algebra. Until stated otherwise, let R denote the differen-
tial algebra. We first demonstrate that right multiplication by an element of K[z],
i.e., by a unit in R, transforms a polynomial to be relatively prime to the original.
For that, we need some preparatory work.

Proposition 4.1. Given h ∈ R, nontrivial in x of degree n ∈ N. Then we
have

GCRD(h, hz, . . . , hzn) = 1.
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Proof. Let h =
∑n
i=0 hix

i, where hi ∈ K(z) for i ∈ n ∪ {0}. Then we can
make the following observation:

h(1) := hz − zh =

n∑
i=1

ihix
i−1.

This means that the transformation hz − zh lowers the degree of h without an-
nihilating it. Iterating this transformation, we obtain a non-zero sequence h(1),
h(2), . . . , h(n), where h(i+1) = h(i)z − zh(i) and deg(h(i)) = n − i. In fact, h(n) =
n!hn ∈ K(z)\{0}.

The final element h(n) is due to its construction obtained by an K(z)-linear
combination of h, hz, hz2, . . . , hzn, which proves that R = Rh+Rhz + . . .+Rhzn

and thus GCRD(h, hz, . . . , hzn) = 1. �

Lemma 4.4. Given h ∈ R := K(z)[x; ′], nontrivial in x of degree n ∈ N, there
exists a w ∈ K[z] of degree n, such that

GCRD(h, hw) = 1.

Proof. We know from Proposition 4.1 that GCRD(h, hz, . . . , hzn) = 1.
Lemma 4.3 shows the existence of a1, . . . , an ∈ K, such that GCRD(h,

∑n
i=1 aihz

i) =
1 = GCRD(h, h

∑n
i=1 aiz

i), as the ai commute with h. Thus w :=
∑n
i=1 aiz

i fulfills
the desired condition. �

It was not necessary that we are just looking at h, because we can regard any
left multiple of h and get the same result.

Corollary 4.3. For any f, g ∈ R, n := deg(f) ≥ deg(g), there exists a
w ∈ F [z] of degree n, such that GCRD(fw, g) = 1.

As a next step, we provide a probability statement that for a randomly chosen
w ∈ K[z] of appropriate degree, the identity GCRD(h, hw) = 1 holds with high
probability. For that, we need some background in subresultant theory in Ore
domains. This was established e.g. by Li [1998]. We sketch the main definitions
and results here.

Definition 4.3 (cf. Li [1998], Def. 2.3). Let M be a r × c, r ≤ c ∈ N matrix
over K[z] given by

M :=


m11 · · · m1,r−1 m1r · · · m1c

m21 · · · m2,r−1 m2r · · · m2c

...
...

...
...

mr1 · · · mr,r−1 mrr · · · mrc

 .
We define the determinant polynomial of M by

|M | :=
c−r∑
i=0

det(Mi)x
i,

where Mi is the r × r matrix with

• (Mi)−,k := (M)−,k for k ∈ r − 1, i.e. the first r−1 columns coincide with
M .

• (Mi)−,r := (M)−,c−i.
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Now let A1, . . . , Ar be a finite sequence of polynomials in R and let d :=
max{degx(Ai) | i ∈ r}. Then we define mat(A1, . . . , Ar) ∈ Rr×d+1 as the matrix,
where mat(A1, . . . , Ar)ij is the coefficient of xd+1−j in Ai, 1 ≤ i ≤ r, 1 ≤ j ≤
d + 1. If r ≤ d + 1, the determinant polynomial of A1, . . . , Ar is defined to be
|mat(A1, . . . , Ar)|, which is further denoted by |A1, . . . , Ar|.

Definition 4.4 (cf. Li [1998], Def. 2.4). Let p1, p2 ∈ R with degx(p1) = m
and degx(p2) = n, m ≥ n. The nth subresultant of p1 and p2 is p2. For j ∈
{n− 1, . . . , 0}, the jth subresultant of p1 and p2, sresj(p1, p2), is

|xn−j−1p1, . . . , xp1, p1, x
m−j−1p2, . . . , xp2, p2|.

The sequence S(p1, p2) : p1, p2, sresn−1(p1, p2), . . . , sres0(p1, p2), is called the sub-
resultant sequence of p1 and p2.

The next theorem shows how we can use subresultants to calculate and give
statements about the GCRD of two polynomials p1, p2 ∈ R.

Theorem 4.2 (cf. Li [1998], Prop. 6.1). Let d be the degree in x of the GCRD
of p1, p2 ∈ R. Then sresd is a GCRD of p1 and p2. Furthermore we have

d = 0 ⇐⇒ sres0(p1, p2) 6= 0.

Now we have the tools to prove the following Lemma.

Lemma 4.5. Let f, g ∈ R have degx(f) = n and degx(g) = m, without loss of
generality n ≥ m. Let w ∈ K[z] be chosen randomly of degree n, with coefficients
coming from a subset of K of size at least nm. Then

Prob {GCRD(fw, g) = 1} ≥ 1− 1

n
.

Proof. Assume the coefficients of w = w0 +w1z+ . . .+wnz
n are independent

indeterminates commuting with x. Consider the condition that GCRD(fw, g) = 1.
We can construct the subresultants

sres0(fw, g), . . . , sresn(fw, g),

where determinants are calculated in the coefficients of fw and g over
K(z)[w1, . . . , wn]. Then D := sres0(fw, g) is non-zero if and only if GCRD(fw, g) =
1. By Corollary 4.3 we know D is not identically zero for at least one w. Let us
have a closer look at sres0(fw, g) :

sres0(fw, g) = |xm−1fw, . . . , xfw, fw, xn−1g, . . . , xg, g|
It is easily derived from the Leibniz formula for the determinant that the total
degree of D in the coefficients of w is less or equal to m. The probability stated
then follows immediately from the Schwarz-Zippel lemma [Schwartz, 1980]. �

4.3.1.2. The algebra K(z)[x;σ]. The previous ideas (subsection 4.3.1.1) can be
applied to the algebra R := K(z)[x;σ] with slight modification. We will briefly
address the differences here. Let us begin with an analogue to Proposition 4.1.

Proposition 4.2. Given h =
∑n
i=0 hix

i, where hi ∈ K(z) for i ∈ n ∪ {0},
nontrivial in x of degree n ∈ N. Furthermore, let ord(σ) > n and k := min{i =
0, . . . , n | hi 6= 0}. Then we have

GCRD(h, hz, . . . , hzn−k) = xk.
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Proof. Without loss of generality let k := 0, as we can extract xk and work
solely with left hand factor. We can make the following observation:

h(1) := hz − σn(z)h =

n−1∑
i=0

(σi(z)− σn(z))hix
i−1.

Due to the assumed order of σ, the term (σi(z)− σn(z)) is not equal to be zero for
all i ∈ {0, . . . , n− 1}. This means that the transformation hz − σn(z)h lowers the
degree of h without annihilating it. Iterating this transformation, we obtain a non-
zero sequence h(1), h(2), . . . , h(n), where h(i+1) = h(i)z− zh(i) and deg(h(i)) = n− i.

The final element h(n) ∈ K(z) is due to its construction obtained by an K(z)-
linear combination of h, hz, hz2, . . . , hzn, which proves that R = Rh+Rhz + . . .+
Rhzn and thus GCRD(h, hz, . . . , hzn) = 1. �

The analogue to Lemma 4.4 is given as follows, and can be proven in an analogue
way.

Lemma 4.6. Given h :=
∑n
i=0 hix

i ∈ R := K(z)[x;σ], nontrivial in x, where
the order of σ is greater than n. Then there exists a w ∈ F [z] of degree at most n,
such that

GCRD(h, hw) = xk,

where k := min{i = 0, . . . , n | hi 6= 0}.
Corollary 4.4. For any f, g ∈ R := K(z)[x;σ], n := deg(f) ≥ deg(g),

nontrivial in x, where the order of σ is greater than n, there exists a w ∈ K[z] of
degree at most n such that GCRD(fw, g) = xk for k ≤ min{degx(f),degx(g)}.

Lemma 4.7. Let f, g ∈ R have degx(f) = n and degx(g) = m. Without loss of
generality let n ≥ m. Let w ∈ K[z] be chosen randomly of degree 1, with coefficients
coming from a subset of K of size at least nm. Then

Prob {GCRD(fw, g) = 1} ≥ 1− 1

n
.

The proof of the previous lemma is analogue to the proof of Lemma 4.5.
As a summarizing comment one can state here that, in order to apply the ideas

we had for the differential algebra to the ring F (z)[x;σ], we have to make further
assumptions on the order of the automorphism σ.

4.3.2. Construction of an Algorithm to Compute the Jacobson Nor-
mal Form. We now use these basic results to construct a generic preconditioning
matrix for A.

We are going to deal partially with the case of the differential algebra and an
algebra of the form K(z)[x;σ] in parallel, as the general idea is the same.

First, consider the case of a 2× 2 matrix A ∈ R2×2, with Hermite form

H =

(
f g
0 h

)
= UA

for some unimodular U ∈ R2×2. We then precondition A by multiplying it with

Q =

(
1 0
w 1

)
,
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where w ∈ K[z] is chosen randomly of degree max{degx(f),degx(g),degx(h)}, so
that

HQ = UAQ =

(
f + gw g
hw h

)
.

Our goal is to have the Hermite form of AQ have a 1 in the (1, 1) position in the
differential case, or xk for some k ∈ N0 for R = K(z)[x;σ]. The next lemma will
show the existence of such a w, for which the statement is true.

Lemma 4.8. Given f, g, h ∈ R, nontrivial in x. Then there exists a w ∈ F [z]
with deg(w) ≤ 2d, d := max {degx(f),degx(g),degx(h)} (in the case where R =
K(z)[x;σ], we require additionally ord(σ) > 2d), such that GCRD(f + gw, hw) = 1
resp. GCRD(f + gw, hw) = xk, k ∈ N0.

Proof. Let ϕ,ψ ∈ R be, such that ϕg = ψh = LCLM(g, h). Then for any
w ∈ K[z], we can make the reduction

ϕ(f + gw)− ψhw = ϕf.

Thus, our GCRD computation can be reduced to GCRD(ϕf, hw), and due to
Lemma 4.5 resp. 4.7, we have a guaranteed existence of w, such that this GCRD
is equal to 1.

�

A similar resultant argument to Lemma 4.5 and 4.7 now demonstrates that for
a random choice of w we obtain our co-primality condition. We leave the proof to
the reader.

Lemma 4.9. Given f, g, h ∈ R with d := max{degx(f),degx(g),degx(h)},
where R is either K(z)[x; ′] or K(z)[x;σ], ord(σ) > 2d. Let w ∈ R have degree
2d, and suppose its coefficients are chosen from a subset of K of size at least d2.
Then

Prob {GCRD(f + gw, hw) = 1} ≥ 1− 1

d
.

This implies that for any matrix A ∈ R2×2 and a randomly selected w ∈ K[z]
of appropriate degree we obtain with high probability

A

[
1 0
w 1

]
= U

[
1 ∗
0 h

]
= U

[
1 0
0 h

]
V,

resp.

A

[
1 0
w 1

]
= U

[
xk f
0 h

]
,

where f, h ∈ R, degx(f) < degx(h), k ∈ N0 and U, V ∈ R2×2 are unimodular
matrices. Hence A has the Jacobson form diag(1, h) in the case of R being the
differential algebra. This is accomplished with one Hermite form computation on
a matrix of the same degree in x, and not too much higher degree in z, than that
of A. For the case where R = K(z)[x;σ], we would require that f , as well as h has
xk as left divisor, which is not trivial at the first glance, but the next lemma will
show this fact.

Lemma 4.10. Let A ∈ R2×2 := K(z)[x;σ]2×2, and

H :=

[
h1 h2

0 h3

]
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be its Hermite normal form. Furthermore, let

ord(σ) ≥ 2 max{degx(f),degx(g),degx(x)},
and let w ∈ K[z] be a random element of degree 2d. Then the Hermite normal form
of

A

[
1 0
w 1

]
has with high probability for k ≤ k̂, k̃ ∈ N0, ϕ, ψ ∈ R the form[

xk ϕxk̂

0 ψxk̃

]
.

Proof. We have H := UA for some unimodular matrix U ∈ R2×2. Further-
more,

H

[
1 0
w 1

]
=

[
h1 + h2w h2

h3w h3

]
.

When computing the Hermite normal form of this matrix, we would compute
GCRD(h1 + h2w, h3w), which we know from Lemma 4.8 to be of the form xk for
some k ∈ N0. As xk is right divisor of h3w, it is also a right divisor of h3 itself. If
h2 had some terms in x of lower degree than k, then they would appear in h1 +h2w
with high probability, as the solution for one w to eliminate the lowest term in
h1 + h2w is, if existent, unique. Hence we obtain the desired result. �

The generalization to n×n matrices can unfortunately not be completely anal-
ogously done for both cases for R. Therefore we will describe the generalization
of the idea to arbitrary matrices for the differential case first, and later deal with
R = K(z)[x;σ].

4.3.2.1. Computing the Jacobson Normal Form of Arbitrary Sized Matrices –
Differential Case. We now generalize this technique to n×n matrices over R, where
R denotes, until defined otherwise, the differential algebra.

Theorem 4.3. Let A ∈ Rn×n have full row rank. Let Q be a lower triangular,
banded, unimodular matrix of the form

1 0 0 . . . 0
w1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 wn−1 1

 ∈ R
n×n,

where wi ∈ K[z] for i ∈ n− 1, deg(wi) = 2 · i · n · d and d is the maximum degree
of the entries in A. Then with high probability the diagonal of the Hermite form of
B = AQ is diag(1, . . . , 1,m), where m ∈ K(z)[x; ′].

Proof. Let H be the Hermite form of A and have the form

f1 h1 ∗ . . . ∗
0 f2 h2 . . . ∗
0

. . .
. . .

. . .
...

...
. . .

. . .
. . . hn−1

0 . . . 0 0 fn

 .
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According to Giesbrecht and Kim [2013, Theorem 3.6], we know that the sum of
the degrees of the diagonal entries of the Hermite form of A equals n · d. Thus we
can regard nd as an upper bound for the degrees of the fi. If we now multiply the
matrix  1 0 0 . . . 0

w1 1 0 . . . 0
0n−2×1 0n−2×1 In−2


from the right, we obtain the following in the upper left 2× 2 submatrix:[

f1 + h1w1 h1

f2w1 f2

]
.

After calculation of the Hermite form of this resulting matrix, we get with high
probability 

1 ∗ ∗ . . . ∗
0 kf1w

−1
1 ∗ . . . ∗

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . hn−1

0 . . . 0 0 fn

 .
The entry kf1w

−1
1 has degree at most 2 · n · d, where we see, why we have chosen

the degree 2 · n · d for w2. After n− 1 such steps we obtain a Hermite form with 1s
on the diagonal, and an entry in K(z)[x; ′] �

This leads us to the Algorithm 4.1 to compute the Jacobson form by just
calculating the Hermite form after preconditioning.
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Algorithm 4.1 JacobsonViaHermite: Compute the Jacobson normal form of a
matrix over the differential polynomials

Input: A ∈ K(z)[x; ′]n×n, n ∈ N
Output: The Jacobson normal form of A

Preconditions:

• Existence of an algorithm HERMITE to calculate the Hermite normal
form of a given matrix over K(z)[x; ′]

• Existence of an algorithm RANDPOLY which computes a random
polynomial of specified degree with coefficients chosen from a specified
set.

1: d← max{deg(Ai,j) | i, j ∈ {1, . . . , n}}
2: for i from 1 to n− 1 do
3: wi ← RANDPOLY(degree = 2 · i · n · d)
4: end for
5: Construct a matrix W , such that

Wij ←


1 if i = j

wi if i = j + 1

0 otherwise

6: result← HERMITE(A ·W )
7: if resultii 6= 1 for any i ∈ {1, . . . , n− 1} then
8: FAIL {With low probability this happens}
9: end if

10: Eliminate the off diagonal entries in result by simple column operations
11: return result

4.3.2.2. Computing the Jacobson Normal Form of Arbitrary Sized Matrices –
K(z)[x;σ]. Now we deal with the case, where R := K(z)[x;σ]. This denotation for
R is valid until we define R differently.

We begin with stating an analogue of Theorem 4.3. The proof can be done in
a similar fashion, therefore we will refrain from presenting it.

Theorem 4.4. Let A ∈ Rn×n := K(z)[x;σ] have full row rank. Let Q be a
lower triangular, banded, unimodular matrix of the form

1 0 0 . . . 0
w1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 wn−1 1

 ∈ R
n×n,

where wi ∈ K[z] for i ∈ {1, . . . , n− 1}, deg(wi) = 2 · i · n · d and d is the maximum
degree of the entries in A. Moreover, let ord(σ) > 2·n·d. Then with high probability
the diagonal of the Hermite normal form of B = AQ is diag(xj1 , . . . , xjn−1 , ϕxjn),
where ϕ ∈ K(z)[x;σ] and ji ∈ N0 for i ∈ n.

Different from the differential case, we cannot guarantee that we are able to
eliminate the whole upper triangular part of the Hermite form after preconditioning.
In fact, we can guarantee with high probability that we obtain a matrix of the form
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B :=



xj1 ∗ ∗ · · · ∗ ∗
0 xj2 ∗ . . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . ∗ ∗

... · · · · · · 0 xjn−1 ∗
0 · · · · · · · · · 0 ϕxjn


.(16)

Therefore, an algorithm that would compute the Jacobson normal form for R
using our technique differs from Algorithm 4.1 not only in the choice of the degree of
the elements wi, i ∈ n− 1, but also in the part that comes after line 9. Fortunately,
we can apply transformations to the resulting matrix from Theorem 4.4 that would
lead to the diagonal of the Jacobson normal form and not increase the complexity
of our formerly stated algorithm. The remainder of this subsection is dedicated to
this problem.

The main benefit is the nice shape of the matrix B in (16), as the diagonal
entries are simply powers of x. Due to the properties that we fixed for R, we have
knowledge about the only possible factorization of a power of x in R (different from
the differential case, as Example 2.2 depicts)

Lemma 4.11. The element xk for k ∈ N has in R = K(z)[x;σ] only one possible
factorization into monic irreducibles, namely

x · · ·x︸ ︷︷ ︸
k times

.

Proof. Assume that there is a factorization ϕ ·ψ = xk for ϕ =
∑n
i=0 ϕix

i, ψ =∑m
i=0 ψix

i ∈ R, m,n ∈ N0, and ϕi, ψj ∈ K(z) for i ∈ n and j ∈ m. Due to our
assumptions we have ϕn = ψm = 1. Then the highest homogeneous summand of
ϕ · ψ is xn · xm, and it cannot be cancelled by other summands. Hence n+m = k,
and all the other summands in ϕ · ψ have to vanish. However, let ñ := min{i ∈
n | ϕi 6= 0} and m̃ := min{i ∈ m | ψi 6= 0}. Then the summand in ϕ · ψ with the
lowest power in x is given by ϕñ · xñ · ψm̃ · xm̃ = ϕñ · σñ(ψm̃) · xñ+m̃. As σ is an
automorphism and K(z) is a domain, we will have ϕñ · σñ(ψm̃) 6= 0. This leaves
only the option ñ = n and m̃ = m, and hence ϕ,ψ are powers of x as expected. �

With the help of Lemma 4.11, the first statement that we are going to make
touches the space-complexity of extended GCRD computations between a power
of x and an arbitrary polynomial in R. An analogue statement also holds for the
GCLD.

Lemma 4.12. Given n,m ∈ N0, and let p :=
∑m
i=0 pix

i, pi ∈ K(z) for i ∈
{0, 1, . . . ,m}, be a polynomial in R. Let κ ∈ N0 be the smallest index, such that
pκ 6= 0. Then the GCRD between xn and p is xκ, and the size of the coefficients of
the elements ϕ,ψ ∈ R, such that ϕxn + ψp = xκ, is in polynomial relation to the
size of the pi.

Proof. That GCRD(xn, p) = xκ follows from the fact that xn possesses only
one possible factorization as an element in R = K(z)[x;σ].
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For the second statement, if κ ≥ n, there is nothing to show. Assume therefore
that κ < n. We demonstrate that we can reduce our problem to the calculation
of a solution of a commutative linear system of equations given by Ax = b, where
A ∈ K(z)k×k, k ∈ N, is a matrix in row echelon form and b ∈ F (z)k, where b has a
1 at the last position and 0s everywhere else. Then the claim follows by Cramer’s
rule [von zur Gathen and Gerhard, 2013] applied to solving linear equations given
in echelon form, which is polynomial with respect to the input matrix.

We know that degx(ϕ) < m and degx(ψ) < n. For degree reasons, the role of
the product ϕxn is to eliminate all summands of ψp of degree greater or equal to n.
Let us write ψ =

∑n−1
i=0 ψix

i, where ψi ∈ K(z) for i ∈ {0, . . . , n− 1}. We can build
a system of equations with the ψi as unknowns based on the coefficient comparison
of the product ψp. We have knowledge that xk is the GCRD and that the terms
with degree bigger than n in the product can be ignored. This system of equations
is of the form Ax = b as described above. �

Hence, we do not have to bother about possible coefficient explosion during
extended GCRD (resp. GCLD) calculations (cf. Knuth [1998]) in the case when
one of the input polynomials is a power of x. With this in mind, we can proceed
describing our technique.

Without loss of generality, we assume that the non zero off-diagonal entries are
not divisible by, and their degree is strictly smaller than the degree of the diagonal
entries in the same row. Furthermore, we can reorder the matrix such that the rows
which have non zero entries right of the diagonal are collected in the first rows.

As an additional step which requires at most n GCLD computations, we rear-
range those rows by increasing order in the degree in x on the diagonal.

As we will proof next, it remains to construct an algorithm similar to the classic
Hermite computation approach, that would transform B into a diagonal form. The
complexity of this algorithm is dominated by O(n2) more GCLD computations,
where one of the input polynomials is a power of x.

In order to present the technique, let us assume without loss of generality, that
the first row of B has at least one off diagonal entry not equal to zero. From the
non-zero entries B1i, i > 1, pick an entry B1j that is the first one not equal to zero
among the B1i. Now multiply B by a proper expansion of the matrix[

a b
c −d

]
,

where a, b, c, d ∈ R, such that B11a + B1jc = GCLD(B11, B1j) = xk, where
k := max{l ∈ N0 | xl divides B1j} and B11b = B1jd = LCRM(B11, B1j). It is
unimodular due to [Jacobson, 1943, Section 3.7]. The expansion should be cho-

sen in the way that the resulting matrix B̃ after the matrix multiplication has the
following properties:

B̃11 = GCLD(B11, B1j) = xk and B̃1j = 0.

Note here, that this would also lead to

B̃j1 = Bjjc and B̃jj = Bjjd.

It is easy to see that d is a power of x. Hence the diagonal entry B̃jj remains some
– may not normalized – power of x.
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Obviously, B̃j1 = Bjjc is divisible by B̃11 = xk, thus the only nontrivial entry
in the first column is divisible by the diagonal entry. Therefore, we can eliminate
it. Some entries in the first row may also appear to be divisible by the diagonal
entry after this step, and we can eliminate them. Important is that the upper
diagonal structure is not violated by these elimination steps. This is guaranteed by
the choice of our j. As the degree of B̃jj becomes larger than the degree of Bjj , we
may have to swap this element in order to remain the condition that the diagonal
elements are sorted by their degree in x.

We can apply the same technique to all nontrivial entries in the first row and
continue in a similar way with all the other rows and end up having a diagonal
matrix. The remaining step might be to apply at most n GCLD computations with
the right-bottom entry, if it is not divisible by the respective largest power of x on
the diagonal.

Corollary 4.5. Using the denotations of Theorem 4.4, we can calculate the
Jacobson normal form of B as given in (16) by using O(n2) GCLD/GCRD cal-
culations, where one of the input polynomials for the GCLD/GCRD is a power of
x.

Proof. If B was already diagonal, we are done up to reordering and adjusting
the bottom-right diagonal entry.

If B has non trivial entries right of the diagonal, we can use the steps described
above to obtain the diagonal form:

We require at most n GCLD/GCRD computations to sort the diagonal entries
in increasing order by their degree in x. Then, we will compute GCLDs between
off-diagonal entries and their respective diagonal entries in the same row, which

will be done at most n(n−1)
2 times. In every step, we might have to swap two

elements on the diagonal again, which sums up to at most n more GCRD/GCLD
computations. Once the diagonal form is established, we might have to adjust the
bottom right element in order to obtain the total divisibility condition. This will
again require at most n GCRD computations. �

4.3.3. Improvements to the Approach of the Differential Case. The
main issue which lets the output explode in our algorithm is the degree we can
choose for the preconditioning elements wi from Theorem 4.3 resp. Theorem 4.4.

Experiments have shown us, that generically we already obtain the desired
result using degree 1 polynomials. Even though we cannot guarantee that we will
be done after preconditioning with degree 1 elements, we can say that in every
step, the degree of the diagonal elements decreases strictly. Thus, we can use the
following approach that would increase our performance:

• Precondition the given matrix A with a matrix as in Theorem 4.3 resp.
Theorem 4.4, where the difference is, that the wi have degree 1 in z. Let
Ã be the resulting matrix.

• Compute the Hermite normal form H of A.
• While H is not in the desired form, i.e. the diagonal elements are the same

as in the Jacobson normal form, precondition it with another matrix with
degree 1 entries and compute its Hermite normal form again.

Generally, we would need nd Hermite form computations for this approach.
But experiments have shown, in most cases, we are done after one step.
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4.3.4. Experimental Implementation and Results. We have written an
experimental implementation in Maple, using the OreTools package by Abramov
et al. [2003], as a proof of concept of our algorithm.

Since there are no other implementations of the calculation of the Hermite form
available for Ore rings, we used the standard way of calculating the Hermite form,
i.e. by repeated GCRD computations. Because the Hermite form of a matrix is
unique, the choice of the algorithm is just a matter of calculation speed.

One problem with the preconditioning approach is that the diagonal entries
become “ugly” in the sense that the K(z) coefficients of the non-trivial element are
large compared to the output of e.g. the naive algorithm which computes GCRDs
resp. GCLDs until the normal form is reached (recall that the diagonal entries are
only unique up to the equivalence described in the introduction). We illustrate this
with an example for the differential algebra as follows.

Example 4.2. Consider matrix A in the differential algebra:[
1 + zx z2 + zx

z + (z + 1)x 5 + 10x

]
.

Its Jacobson form, calculated by Singular, has as its nontrivial entry:

(45z − 10 − 11z2 − z4 + 2z5) + (2z5 + 3z4 − 12z3 + 10z + 2z2)x + (2z4 − 19z3 + 9z2)x2.

Calculating the Jacobson form with the approach of calculating a lot of GCRDs or
GCLDs respectively results in the polynomial:

(−3z3 +z5−4z2 +3z+10)+(−8z3 +z2 +z5 +z4 +13z+19)x+(−10z3 +8z2 +z4 +9z)x2.

If we precondition the matrix in the described way, the output of Singular
stays the same, but the output of the straightforward approach is the polynomial:

88360z9 − 384554z8 + 243285z7 + 1104036z6 − 4428356z5 + 2474570z4 + 3533537z3

− 3915039z2 + 1431017z − 150930

+ (88360z9 − 31114z8 − 948071z7 + 5093247z6 − 7538458z5 + 5740077z4 − 1935190z3

− 20353z2 + 154797z + 10621)x

+ (−739659z3 + 137249z2 + 5031z + 1769774z4 − 2553232 + z5 + 2133343z6

− 1003074z7 + 88360z8)x2.

The calculation time was as expected similar to just calculating a Hermite
form. Both answers are “correct”, but the Gröbner-based approach has the effect
of reducing coefficient size and degree. An important future task could be to find a
normal form for a polynomial in this notion of weak similarity. This normal form
should have coefficients as simple as possible.

The demonstration here is simply to show empirically, in addition to the es-
tablished theory in this chapter, that the algorithm works, not that we would beat
previous heuristic algorithms in practice. The primary goal of our work is to demon-
strate a polynomial time algorithm, which we hope will ultimately lead to faster
methods for computing and a better understanding of the Jacobson form.

4.4. Future Work

One of the most interesting subjects would be to study normal forms with
respect to similarity, if these were existent. Similarity appeared in the context
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of factorization in chapter 2. However, the observed differences in the different
obtained factors were not as drastic as the differences we have seen in this chapter
concerning different matrix normal forms. The motivation therefore comes from
the area of matrix normal forms.

There is furthermore something interesting about the algorithm presented by
Levandovskyy and Schindelar, namely that it seems to produce the same outputs,
independent of the preconditioning of the matrix. This is only empirically observed,
and it should be verified with many more experiments. If one can prove that their
diagonal form forms some sort of an invariant, we would be a great step closer to
the mentioned normal form with respect to similarity.

As far as the presented algorithm is concerned, it relies strongly on special
knowledge of the expected diagonal form (Corollary 4.1 and Theorem 4.1). Hence,
its applicability is limited to the kind of rings, where we have additional knowledge
of the form of the diagonal elements (mainly obtained by a restricted choice of total
divisors). As we saw, many practical rings do provide this special structure, like
differential and difference polynomials. In cases when there is no special diagonal
form expected, other approaches to calculate the Jacobson normal form have to be
studied.
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CHAPTER 5

Implementations

5.1. ncfactor.lib

5.1.1. Brief History. The development of ncfactor.lib started with the
completion of the author’s Bachelor’s thesis [Heinle, 2010]. In the beginning, the
library supported certain factorization features for the first Weyl and first shift
algebra. For homogeneous polynomials, the library worked very well and fast, and
we were able to outperform commodity implementations. For general polynomials,
the implementation had still certain documented limitations. Nonetheless, it was
included into the distribution of Singular version 3-1-3.

Two years later, the author’s Master’s thesis [Heinle, 2012] dealt among other
topics with an improvement of the methodology for general polynomials. Not only
did the new approach for non-homogeneous polynomials removed the limitations of
the factorization method at that time, it also increased the performance for factoring
general polynomials in the first Weyl and shift algebra. Furthermore, ncfactor.lib
included methods to factor homogeneous elements in the first q-Weyl algebra at that
time. This improved version was included in Singular version 3-1-6.

In 2014, the next substantial update occurred. In [Giesbrecht, Heinle, and
Levandovskyy, 2014], we successfully generalized the techniques described in [Heinle,
2012] to the nth Weyl, the nth shift and homogeneous polynomials in the nth q-
Weyl algebra by considering Zn gradings with respect to a certain ordering instead
of Z gradings. For many results, definitions and requirements, we were able state
generalizations with feasible efforts, except from the requirement that all elements
in the nth Weyl and nth shift algebra have only finitely many distinct factoriza-
tions. The proof that elements in these rings do indeed only have finitely many
distinct factorizations was subject of a separate publication, namely [Bell, Heinle,
and Levandovskyy, 2014]. There, we have shown the finite factorization property
for a large class of algebras, including the G-algebras. The version of ncfactor.lib
which contains these generalized algorithms was distributed with Singular version
4.0.1.

The new findings in [Bell, Heinle, and Levandovskyy, 2014] lead further to the
possibility of a formulation of a general algorithm to factor elements in G-algebras
with minimal assumptions on the underlying field [Heinle and Levandovskyy, 2016].
Although the generality of this algorithm comes with the price of performance, we
designed it in ncfactor.lib in a modular way, such that the input is re-directed to
an improved, specialized algorithm (like e.g. for the Weyl algebras), where possible.
In this new version, we also cleaned up the entire library and dismissed deprecated
code. This new version of ncfactor.lib is planned to appear with the next version
of Singular after this thesis is completed.
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Name Purpose

facFirstShift(h) Same as facShift, but specialized to the first shift algebra.

facFirstWeyl(h) Same as facWeyl, but specialized on the first Weyl algebra.

facShift(h) Factorization of an element h in the nth shift algebra; Re-
quirement on the underlying field K: char(K) = 0 and K
does not include transcendental or algebraic parameters.
The active ring should have exactly 2n variables, namely
the ones representing x1, . . . , xn, s1, . . . , sn.

facSubWeyl(h[,VARS]) Same as facWeyl, but the ring can have more variables
than the ones needed to form a Weyl algebra. The element
h has to be dependent only on the variables coming from
a Weyl algebra. Optionally, to speed up calculations, the
user can provide the variables h specifically depends on
through VARS.

facWeyl(h) Factorization of an element h in the nth Weyl algebra;
Requirement on the underlying field K: char(K) = 0 and
K does not include transcendent or algebraic parameters.
The active ring should have exactly 2n variables, namely
the ones representing x1, . . . , xn, ∂1, . . . , ∂n.

homogfacFirstQWeyl(h) Same as homogfacNthQWeyl, but specializing in the first
q-Weyl algebra.

homogfacFirstQWeyl all(h) Same as homogfacNthQWeyl all, but specializing in the
first q-Weyl algebra.

homogfacNthQWeyl(h) Implements Algorithm 2.2 for q-Weyl algebras. Require-
ment on the underlying field K: char(K) = 0 and K in-
cludes q1, . . . , qn for the commuting relations as only pa-
rameters. The active ring should have exactly 2n variables,
namely the ones representing x1, . . . , xn, ∂1, . . . , ∂n.

homogfacNthQWeyl all(h)
Implements Algorithm 2.3. Same requirements on the un-
derlying ring as homogfacNthQWeyl(h).

ncfactor(h) Implements Algorithm 2.1, i.e. returns all factorizations
of an element h in any G-algebra over a field K. Require-
ment on K: Singular’s factorize method must be able
to factor multivariate commutative polynomials over K.

testNCfac(l[,h[,1]]) Given a list l as appearing in the output of e.g. ncfactor,
this function checks if all factorizations are factorizations
of the same element h, which can be provided as an op-
tional parameter. The last optional flag, 1, causes a list
of differences between h and the factorizations in l to be
returned.

tst ncfactor() Checks the compatibility of the installed Singular version
with all the functions in ncfactor.lib.

Table 5.1. Overview of functions provided by ncfactor.lib.

5.1.2. Functions in ncfactor.lib. We will introduce all functions available
in ncfactor.lib, and provide examples on the use of these functions. Table 5.1
provides a brief overview.

5.1.2.1. facFirstShift.
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Signature: facFirstShift(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a polynomial h in the first shift algebra, this function computes
all different factorizations of h. The output will be a list l. Each k ∈ l
is a list with the first element being of type number, and the rest of
k consists of elements of type poly. The first element represents the
content of h, and the rest of the elements are the different polynomial
factors that have been found.

Requires: The active ring in Singular must represent the first shift algebra (the
order of the variables in the ring definition does not matter). There
are no additional variables permitted. Furthermore, for the underlying
field K we require char(K) = 0 and no extra parameters.

Example: Singular commands and output:

> ring R = 0,(x,s),dp;

> def r = nc_algebra(1,s);//defining the shift algebra

//with sx = xs + s

> setring(r);

> poly h = (s^2*x+x)*s;

> facFirstShift(h);

[1]:

[1]:

1

[2]:

s

[3]:

s2+1

[4]:

x-1

[2]:

[1]:

1

[2]:

s2+1

[3]:

s

[4]:

x-1

[3]:

[1]:

1

[2]:

s2+1

[3]:

x

[4]:

s
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5.1.2.2. facFirstWeyl.

Signature: facFirstWeyl(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a polynomial h in the first Weyl algebra, this function computes
all different factorizations of h. The output will be a list l. Each k ∈ l
is a list with the first element being of type number, and the rest of
k consists of elements of type poly. The first element represents the
content of h, and the rest of the elements are the different polynomial
factors that have been found.

Requires: The active ring in Singular must represent the first Weyl algebra (the
order of the variables in the ring definition does not matter). There
are no additional variables permitted. Furthermore, for the underlying
field K we require char(K) = 0 and no extra parameters.

Example: Singular commands and output:

> ring R = 0,(x,y),dp;

> def r = nc_algebra(1,1);

> setring(r);

> poly h = (x^2*y^2+x)*(x+1);

> facFirstWeyl(h);

[1]:

[1]:

1

[2]:

x

[3]:

xy2+1

[4]:

x+1

5.1.2.3. facShift.

Signature: facShift(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a polynomial h in the nth shift algebra, where n ∈ N, this
function computes all different factorizations of h. The output will
be a list l. Each k ∈ l is a list with the first element being of type
number, and the rest of k consists of elements of type poly. The first
element represents the content of h, and the rest of the elements are
the different polynomial factors that have been found.

Requires: The active ring in Singular must represent a shift algebra (the order
of the variables in the ring definition does not matter). There are no
additional variables permitted. Furthermore, for the underlying field
K we require char(K) = 0 and no extra parameters.
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Example: Singular commands and output:

> ring R = 0,(x1,x2,s1,s2),dp;

> matrix C[4][4] = 1,1,1,1,

. 1,1,1,1,

. 1,1,1,1,

. 1,1,1,1;

> matrix D[4][4] = 0,0,s1,0,

. 0,0,0,s2,

. -s1,0,0,0,

. 0,-s2,0,0;

> def r = nc_algebra(C,D);//defining the second shift

//algebra with s1x1 = x1s1 + s1

//and s2x2 = x2s2 + s2

> setring(r);

> poly h = x1*(x1+1)*s1^2-2*x1*(x1+100)*s1+(x1+99)*(x1+100);

> facShift(h);

[1]:

[1]:

1

[2]:

x1*s1-x1+s1-100

[3]:

x1*s1-x1-s1-99

[2]:

[1]:

1

[2]:

x1*s1-x1-100

[3]:

x1*s1-x1-99

[3]:

[1]:

1

[2]:

x1*s1-x1-99

[3]:

x1*s1-x1-100

5.1.2.4. facSubWeyl.

Signature: facSubWeyl(h[,VARS])

Contract: poly[→ poly]∗ → [[number,poly, . . . ,poly]]
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Purpose: Given a polynomial h in the nth Weyl algebra, where n ∈ N, this
function computes all different factorizations of h. The output will
be a list l. Each k ∈ l is a list with the first element being of type
number, and the rest of k consists of elements of type poly. The first
element represents the content of h, and the rest of the elements are
the different polynomial factors that have been found. Optionally, in
order to speed up computations, the user can provide the variables that
resemble the Weyl algebra in the current ring.

Requires: A Weyl algebra A must be a subalgebra of the currently active ring
in Singular (the order of the variables in the ring definition does not
matter). The input h must be only dependent on the variables that
appear in A. If the optional arguments, i.e. the variables that form
the Weyl algebra in the current ring, are supplied, they must be valid
and the list must be complete. Furthermore, for the underlying field
K we require char(K) = 0 and no extra parameters.

Example: Singular commands and output:

> ring r = 0,(x,y,z),dp;

> matrix D[3][3]; D[1,3]=-1;

> def R = nc_algebra(1,D); // x,z generate Weyl subalgebra

// with xz = zx + 1

> setring R;

> poly h = (x^2*z^2+x)*x;

> facSubWeyl(h);

[1]:

[1]:

1

[2]:

x

[3]:

x

[4]:

xz2-2z+1

[2]:

[1]:

1

[2]:

x

[3]:

xz2+1

[4]:

x

5.1.2.5. facWeyl.

Signature: facWeyl(h)

Contract: poly→ [[number,poly, . . . ,poly]]
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Purpose: Given a polynomial h in a Weyl algebra, this function computes all
different factorizations of h. The output will be a list l. Each k ∈ l
is a list with the first element being of type number, and the rest of
k consists of elements of type poly. The first element represents the
content of h, and the rest of the elements are the different polynomial
factors that have been found.

Requires: The active ring in Singular must represent a Weyl algebra (the order
of the variables in the ring definition does not matter). There are no
additional variables permitted. Furthermore, for the underlying field
K we require char(K) = 0 and no extra parameters.

Example: Singular commands and output:

> ring R = 0,(x1,x2,d1,d2),dp;

> def r = Weyl();

> setring(r);

> poly h = (d1+1)^2*(d1 + x1*d2);

> facWeyl(h);

[1]:

[1]:

1

[2]:

d1+1

[3]:

d1+1

[4]:

x1*d2+d1

[2]:

[1]:

1

[2]:

x1*d1*d2+d1^2+x1*d2+d1+2*d2

[3]:

d1+1

5.1.2.6. homogfacFirstQWeyl.

Signature: homogfacFirstQWeyl(h)

Contract: poly→ [number,poly, . . . ,poly]

Purpose: Given a homogeneous polynomial h in the first q-Weyl algebra, with
respect to the Z-grading introduced in section 2.4. This function com-
putes one factorization of h. The output will be a list l. The first
element represents the content of h, followed by factors of degree zero
with respect to the Z-grading, and ending with several entries contain-
ing x or ∂, depending on the degree of h.
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Requires: The active ring in Singular must represent the first q-Weyl algebra,
and the order of the variables matters (the first variable must be x,
the second ∂). The polynomial h must be homogeneous with respect
to the Z-grading on the first q-Weyl algebra. There are no additional
variables permitted. Furthermore, for the underlying field K we require
char(K) = 0, and the q that appears in the noncommutative relation
between x and ∂ is a parameter of K. No further parameters should
be given.

Example: Singular commands and output:

> ring R = (0,q),(x,d),dp;

> def r = nc_algebra (q,1);

> setring(r);

> poly h = q^25*x^10*d^10+q^16*(q^4+q^3+q^2+q+1)^2*x^9*d^9+

. q^9*(q^13+3*q^12+7*q^11+13*q^10+20*q^9+26*q^8+30*q^7+

. 31*q^6+26*q^5+20*q^4+13*q^3+7*q^2+3*q+1)*x^8*d^8+

. q^4*(q^9+2*q^8+4*q^7+6*q^6+7*q^5+8*q^4+6*q^3+

. 4*q^2+2q+1)*(q^4+q^3+q^2+q+1)*(q^2+q+1)*x^7*d^7+

. q*(q^2+q+1)*(q^5+2*q^4+2*q^3+3*q^2+2*q+1)*

. (q^4+q^3+q^2+q+1)*(q^2+1)*(q+1)*x^6*d^6+(q^10+5*q^9+

. 12*q^8+21*q^7+29*q^6+33*q^5+31*q^4+24*q^3+15*q^2+7*q+

. 12)*x^5*d^5+6*x^3*d^3+24;

> homogfacFirstQWeyl(h);

[1]:

1

[2]:

x5d5+x3d3+4

[3]:

x5d5+6

5.1.2.7. homogfacFirstQWeyl all.

Signature: homogfacFirstQWeyl all(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a homogeneous polynomial h in the first q-Weyl algebra, with
respect to the Z-grading introduced in section 2.4. This function com-
putes all factorizations of h. The output will be a list l, containing
lists. For each k ∈ l, the first element in k represents the content of h,
followed by polynomial factors of h that have been computed.

Requires: The active ring in Singular must represent the first q-Weyl algebra,
and the order of the variables matters (the first variable must be x,
the second ∂). The polynomial h must be a homogeneous polynomial
with respect to the Z-grading on the first q-Weyl algebra. There are no
additional variables permitted. Furthermore, for the underlying field K
we require char(K) = 0, and the q that appears in the noncommutative
relation between x and ∂ is a parameter of K. No further parameters
should be given.
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Example: Singular commands and output:

> ring R = (0,q),(x,d),dp;

> def r = nc_algebra (q,1);

> setring(r);

> poly h = q^25*x^10*d^10+q^16*(q^4+q^3+q^2+q+1)^2*x^9*d^9+

. q^9*(q^13+3*q^12+7*q^11+13*q^10+20*q^9+26*q^8+30*q^7+

. 31*q^6+26*q^5+20*q^4+13*q^3+7*q^2+3*q+1)*x^8*d^8+

. q^4*(q^9+2*q^8+4*q^7+6*q^6+7*q^5+8*q^4+6*q^3+

. 4*q^2+2q+1)*(q^4+q^3+q^2+q+1)*(q^2+q+1)*x^7*d^7+

. q*(q^2+q+1)*(q^5+2*q^4+2*q^3+3*q^2+2*q+1)*

. (q^4+q^3+q^2+q+1)*(q^2+1)*(q+1)*x^6*d^6+(q^10+5*q^9+

. 12*q^8+21*q^7+29*q^6+33*q^5+31*q^4+24*q^3+15*q^2+7*q+

. 12)*x^5*d^5+6*x^3*d^3+24;

> homogfacFirstQWeyl_all(h);

[1]:

[1]:

1

[2]:

x5d5+6

[3]:

x5d5+x3d3+4

[2]:

[1]:

1

[2]:

x5d5+x3d3+4

[3]:

x5d5+6

5.1.2.8. homogfacNthQWeyl.

Signature: homogfacNthQWeyl(h)

Contract: poly→ [number,poly, . . . ,poly]

Purpose: Given a homogeneous polynomial h in the nth q-Weyl algebra, with
respect to the Zn-grading introduced in section 2.4. This function
computes one factorization of h. The output will be a list l. The
first element represents the content of h, followed by factors of degree
zero with respect to the Z-grading, and ending with several entries
containing x or ∂, depending on the degree of h.

Requires: The active ring in Singular must represent the nth q-Weyl algebra,
where the first n variables are x1, . . . , xn, and the last n variables are
∂1, . . . , ∂n. The polynomial h must be homogeneous with respect to
the Zn-grading on the nth q-Weyl algebra. There are no additional
variables permitted. Furthermore, for the underlying field K we require
char(K) = 0, and the q1, . . . , qn that appear in the noncommutative
relations between the xi and ∂i for i ∈ n are parameters of K (provided
in the correct order). No further parameters should be given.
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Example: Singular commands and output:

> ring R = (0,q1,q2,q3),(x1,x2,x3,d1,d2,d3),dp;

> matrix C[6][6] = 1,1,1,q1,1,1,

. 1,1,1,1,q2,1,

. 1,1,1,1,1,q3,

. 1,1,1,1,1,1,

. 1,1,1,1,1,1,

. 1,1,1,1,1,1;

> matrix D[6][6] = 0,0,0,1,0,0,

. 0,0,0,0,1,0,

. 0,0,0,0,0,1,

. -1,0,0,0,0,0,

. 0,-1,0,0,0,0,

. 0,0,-1,0,0,0;

> def r = nc_algebra(C,D); // defines the third q-Weyl

// algebra with d1x1=q1x1d1+1,

// d2x2=q2x2d2+1, d3x3=q3x3d3+1

> setring(r);

> poly h =x1*x2^2*x3^3*d1*d2^2+x2*x3^3*d2;

> homogfacNthQWeyl(h);

[1]:

1/(q2)

[2]:

x1*x2*d1*d2-x1*d1+(q2)

[3]:

x2

[4]:

d2

[5]:

x3

[6]:

x3

[7]:

x3

5.1.2.9. homogfacNthQWeyl all.

Signature: homogfacNthQWeyl all(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a homogeneous polynomial h in the nth q-Weyl algebra, with
respect to the Zn-grading introduced in section 2.4. This function
computes all factorizations of h. The output will be a list l, containing
lists. For each k ∈ l, the first element in k represents the content of h,
followed by polynomial factors of h that have been computed.
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Requires: The active ring in Singular must represent the nth q-Weyl algebra,
where the first n variables are x1, . . . , xn, and the last n variables are
∂1, . . . , ∂n. The polynomial h must be homogeneous with respect to
the Zn-grading on the nth q-Weyl algebra. There are no additional
variables permitted. Furthermore, for the underlying field K we require
char(K) = 0, and the q1, . . . , qn that appear in the noncommutative
relations between the xi and ∂i for i ∈ n are parameters of K (provided
in the correct order). No further parameters should be given.

Example: Singular commands and output:

> ring R = (0,q1,q2,q3,q4),(x1,x2,x3,x4,d1,d2,d3,d4),dp;

> matrix C[8][8] =

. 1,1,1,1,q1,1,1,1,

. 1,1,1,1,1,q2,1,1,

. 1,1,1,1,1,1,q3,1,

. 1,1,1,1,1,1,1,q4,

. 1,1,1,1,1,1,1,1,

. 1,1,1,1,1,1,1,1,

. 1,1,1,1,1,1,1,1,

. 1,1,1,1,1,1,1,1;

> matrix D[8][8] =

. 0,0,0,0,1,0,0,0,

. 0,0,0,0,0,1,0,0,

. 0,0,0,0,0,0,1,0,

. 0,0,0,0,0,0,0,1,

. -1,0,0,0,0,0,0,0,

. 0,-1,0,0,0,0,0,0,

. 0,0,-1,0,0,0,0,0,

. 0,0,0,-1,0,0,0,0;

> def r = nc_algebra(C,D);// Defines the 4th q-Weyl algebra

// with d1x1=q1x1d1+1,

// d2x2=q2x2d2+1, d3x3=q3x3d3+1,

// d4x4=q4x4d4+1

> setring(r);

> poly h = ((x4*d4)^2 + (x2*d2) + 5)*((x3*d3)^2+(x4*d4)^2+4);

> homogfacNthQWeyl_all(h);

[1]:

[1]:

1

[2]:

(q3)*x3^2*d3^2+(q4)*x4^2*d4^2+x3*d3+x4*d4+4

[3]:

(q4)*x4^2*d4^2+x2*d2+x4*d4+5

[2]:

[1]:

1

[2]:

(q4)*x4^2*d4^2+x2*d2+x4*d4+5

[3]:

(q3)*x3^2*d3^2+(q4)*x4^2*d4^2+x3*d3+x4*d4+4

97



5.1.2.10. ncfactor.

Signature: ncfactor(h)

Contract: poly→ [[number,poly, . . . ,poly]]

Purpose: Given a polynomial h in a G-algebra G. This function computes all
factorizations of h. The output will be a list l, containing lists. For
each k ∈ l, the first element in k represents the content of h, followed
by polynomial factors of h that have been computed.

Requires: For the underlying field K we require that for multivariate commuta-
tive polynomial rings over K, the factorize function in Singular is
defined.

Example: Singular commands and output:

> def R = makeUsl2();// defines the universal enveloping

// algebra of sl2

> setring(R);

> poly p = e^3*f+e^2*f^2-e^3+e^2*f+2*e*f^2-3*e^2*h

. -2*e*f*h-8*e^2+e*f+f^2-4*e*h-2*f*h-7*e+f-h;

> ncfactor(p);

[1]:

[1]:

1

[2]:

e+1

[3]:

ef-e+f-2h-3

[4]:

e+f

[2]:

[1]:

1

[2]:

e2f+ef2-e2+f2-2eh-3e-f-2h

[3]:

e+1

5.1.2.11. testNCfac.

Signature: testNCfac(l[,h[,1]])

Contract: [[number,poly, . . . ,poly]][→ poly[→ 1]]→ (bool || [poly])
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Purpose: Given a list l, containing lists. Each list k ∈ l contains itself polyno-
mials. When called just with l, it returns true, if all k ∈ l are factor-
izations of the same polynomial, and otherwise false. If the optional
parameter h is provided, this function returns true if all k ∈ l are fac-
torizations of h, and otherwise false. If the second optional parameter
is provided, then testNCfac returns a list containing the differences
between the product of each k ∈ l and h.

Example: Singular commands and output:

> ring r = 0,(x,y),dp;

> def R = nc_algebra(1,1);

> setring R;

> poly h = (x^2*y^2+1)*(x^2);

> def t1 = facFirstWeyl(h);

> testNCfac(t1);//Use without optional parameters

1

> testNCfac(t1,h);//Check if h is represented

1

> testNCfac(t1,h,1);//Difference with h

[1]:

0

[2]:

0

[3]:

0

> testNCfac(t1,h-1,1);

[1]:

1

[2]:

1

[3]:

1

5.1.2.12. tst ncfactor.

Signature: tst ncfactor()

Contract: void→ void

Purpose: Tests the compatibility of ncfactor.lib with the Singular ver-
sion. Throws an error if one of the tests did not succeed.

Side Effects: Prints the results of the tests and throws an error, if one of the
tests did not succeed.

Example: Singular commands and output:

> tst_ncfactor();

...

All tests ran successfully.
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5.2. Multivariate Ore Extensions of Finite Fields

In chapter 3, we have discussed Ore polynomials as a paradigm for crypto-
graphic protocols. For practical purposes, one would consider Ore extensions of a
finite field Fq of the form

R := Fq[∂1;σ1]...[∂n;σn],

where n > 1 ∈ N and σi ∈ Aut(Fq) for i ∈ n.
Unfortunately, in current computer algebra systems, there is no way to directly

define such a ring and make computations. In Singular , one can only define
non-commuting relations affecting the variables of a polynomial ring, not the un-
derlying field and its parameters. Maple’s OreTools package only allows for single
Ore extensions. The same holds for the Polynômes tordus package [Caruso and
Borgne, 2012]. The Ore algebra package in Maple allows for multiple extensions.
However, in this package, the non-commuting relations between identifiers have to
be defined pair-wise, and the implementation prohibits one identifier appearing in
more than one pair. In our case, the σi are supposed to alter the primitive element
α of the field extension in Fq, and if we would try to model R as above, we would
need pairs that have identifiers in common.

The only way that we identified to generate a ring like R in a current computer
algebra system is by using the ore algebra package developed for Sage [Kauers
et al., 2014]. The following example shows how to create the ring as used in section
3.5.

Example 5.1. Let q = 53 = 125, and we view F125 as the extension of F5 with
minimal polynomial x3 + 3x + 3, i.e. F125 := F5(α) := F5[x]/〈x3 + 3x + 3〉. We
define σ1 : F125 → F125, a 7→ a5 and σ2 : F125 → F125, a 7→ a25 to be two different
powers of the Frobenius automorphism. Using Sage’s ore algebra package, the
ring R := F125[x;σ1][y;σ2] can be constructed and used as follows.

> from ore_algebra import *

> U.<a> = GF(5)[]

> A.<x,y> = OreAlgebra(U,

(’x’,lambda p: p.substitute(a=3*a^2+1),lambda p:U.zero()),

(’y’,lambda p: p.substitute(a=2*a^2 + 4*a + 4),lambda p:U.zero()))

> p1 = a*x*y + a^2*y + 1

> p2 = (a^2 + 2*a + 4)*x + (3*a + 1)*y + 2

> p12 = p1*p2

> p12

(4*a^9 + 2*a^8 + 3*a^7 + 2*a^5 + 2*a^4 + a^3 + 3*a)*x^2*y + (a^5 +

4*a^4 + 3*a^3 + 3*a^2 + 3*a)*x*y^2 + (4*a^6 + a^5 + a^4 + 3*a^2 +

2*a)*x*y + (a^4 + 2*a^3 + 3*a^2)*y^2 + (a^2 + 2*a + 4)*x + (2*a^2 +

3*a + 1)*y + 2

> p12 = p12.map_coefficients(lambda p: p.quo_rem(a^3 + 3*a + 3)[1])

> p12

(2*a^2 + a + 2)*x^2*y + (3*a^2 + a)*x*y^2 + 3*a^2*x*y + (a + 4)*y^2 +

(a^2 + 2*a + 4)*x + (2*a^2 + 3*a + 1)*y + 2

Example 5.1 shows that it is possible to simulate arithmetics for elements in a
ring R as described above using Sage . However, the presented method is more a
“hack” than a practical suggestion. As one can expect, the larger the polynomials
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get, the more inefficient this method becomes. This is largely due to the fact that
we can only reduce α after each multiplication.

Therefore, at least for our experiments in section 3.5, we needed a custom
solution that would allow the multiplication operation to scale well. We wrote
a solution in the programming language C [Kernighan, 1988]. The choice of the
programming language was made to reduce overhead as much as possible and to
obtain a fast implementation even for theoretically naive approaches.

We designed our implementation to be potentially re-usable by other researchers
in the future. In this section, we will describe how to use our code to per-
form arithmetics in Ore extensions of finite fields, and its limitations. All source
files can be found in our GitHub repository at https://github.com/ioah86/

diffieHellmanNonCommutative.

5.2.1. The Module gf coefficients. In the module gf coefficients, we
collect functions to handle arithmetics in Fq. The order q is fixed in this mod-
ule to be 125 by default. If a user desires to use a different finite field, he or
she can generate a custom version of gf coefficients.c using a Sage script
called build gf coefficients c.sage that we have written for this purpose. This
means, our implementation supports any finite field as ground-field, whose charac-
teristic does not exceed the integer limits of C.

The functions and constants provided in gf coefficients are summarized in
the Table 5.2.

Name Purpose

MODULUS Fixed integer representing the characteristic of Fq
DEGREEEXTENSION The degree of Fq as an extension of its prime-field.
NUMBEROFELEMENTSINGF The number of elements in Fq.
struct GFModulus Representation of Fq as a struct. It has a field

coeffs, which is an array of all coefficients of the
primitive element.

GFModulusToString Returns a string representation of an element in
Fq.

GFModulusToStdOut Prints a string representation of an element in Fq
to the standard output.

addGF Returns the result of adding two elements in Fq.
minusGF Returns the result of subtracting one element in

Fq from another.
multGF Returns the result of multiplying two elements in

Fq.
isZero GF Checks whether a given element in Fq is the zero-

element.
isEqual GF Checks whether two elements in Fq are equal.
getZeroElemGF Returns the zero element in Fq.
getIdentityElemGF Returns the identity element in Fq.
getMinusOneElemGF Returns negative one in Fq.
getRandomGFElem Returns a random element in Fq.
identityMap Represents the identity mapping on Fq.
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Hom[i] Functions that represent different powers of the
Frobenius automorphism (i.e. we have such a
function for all i ∈ {1, . . . ,DEGREEEXTENSION−1}).

scalarMultGF Returns the result of the multiplication of an ele-
ment in Fq by an integer.

getAllPossibleGFElements Returns an array containing all possible elements
in Fq.

Table 5.2: Overview of functionality provided by the module
gf coefficients.

5.2.1.1. struct GFModulus.

Fields: int coeffs[DEGREEEXTENSION] (i.e. an integer vector whose
size coincides with the degree of the extension.)

Assumptions: All values in coeffs must be smaller or equal to MODULUS.

5.2.1.2. GFModulusToString.

Signature: char* GFModulusToString(struct GFModulus);

Purpose: Returns a string representation of an element in Fq. In the string
representation, we assume that the name of the primitive element
in Fq is a.

Example In F125, the element 1 would be represented as (1a^0 + 0a^1 +

0a^2). The element 4a2 + a+ 2 would be represented as (2a^0 +

1a^1 + 4a^2).

5.2.1.3. GFModulusToStdOut.

Signature: void GFModulusToStdOut(struct GFModulus);

Purpose: Does the same as GFModulusToString, but instead of creating a
string in memory, it directs the string representation to the stan-
dard output right away.

5.2.1.4. addGF.

Signature: struct GFModulus addGF(struct GFModulus, struct

GFModulus);

Purpose: Adds two elements in Fq.

5.2.1.5. minusGF.

Signature: struct GFModulus minusGF(struct GFModulus, struct

GFModulus);
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Purpose: Given two elements a, b ∈ Fq, this function computes a − b. The
first argument of the function represents a in this case, and the
second argument represents b.

5.2.1.6. multGF.

Signature: struct GFModulus minusGF(struct GFModulus, struct

GFModulus);

Purpose: Given two elements a, b ∈ Fq, this function computes a · b.

5.2.1.7. isZero GF.

Signature: int isZero GF(struct GFModulus);

Purpose: Checks whether a given element is the zero-element in Fq.

5.2.1.8. isEqual GF.

Signature: int isEqual GF(struct GFModulus, struct GFModulus);

Purpose: Given two elements a, b ∈ Fq, this function checks if a = b. It
returns 1 if a = b, and 0 if a 6= b.

5.2.1.9. getZeroElemGF.

Signature: struct GFModulus getZeroElemGF(void);

Purpose: Returns the zero-element in Fq.

5.2.1.10. getIdentityElemGF.

Signature: struct GFModulus getIdentityElemGF(void);

Purpose: Returns the 1-element in Fq.

5.2.1.11. getMinusOneElemGF.

Signature: struct GFModulus getMinusOneElemGF(void);

Purpose: Returns the additive inverse of the 1-element in Fq.

5.2.1.12. getRandomGFElem.

Signature: struct GFModulus getRandomGFElem(void);

Purpose: Returns a random element in Fq.

5.2.1.13. identityMap.

Signature: struct GFModulus identityMap(struct GFModulus);
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Purpose: Represents the identity mapping on Fq. This is useful when creat-
ing commuting Ore extensions later in the ore algebra package.

5.2.1.14. Hom[i].

Signature: struct GFModulus Hom[i](struct GFModulus);

Purpose: For i ∈ {1, . . . ,DEGREEEXTENSION−1}, the function Homi represents
the ith power of the Frobenius automorphism.

Example For F125, there are exactly two of these functions given, namely
Hom1 and Hom2. Hom1 maps the primitive element a to a5, and
Hom2 maps a to a25.

5.2.1.15. scalarMultGF.

Signature: struct GFModulus scalarMultGF(int, struct GFModulus);

Purpose: For an element s ∈ Z and f ∈ Fq, this function performs a scalar
multiplication on f . The element s is considered to come from the
primitive field of Fq.

5.2.1.16. getAllPossibleGFElements.

Signature: struct GFModulus* getAllPossibleGFElements(void);

Purpose: Creates an array containing all possible elements in Fq.

5.2.2. The Module ore algebra. This is the main module of the project,
providing functionalities for arithmetics for a ring of the form Fq[∂1;σ1][∂2;σ2].
This module includes gf coefficients, where Fq is completely defined.

At its heart, there is the structure OrePoly, which represents an Ore poly-
nomial. For now, the coefficients are saved using a dense representation. In the
future, when extending the functionality to work with more than two iterated Ore
extensions of Fq, there is a greater need for sparse representation.

There is always a trade-off between extending functionality and increasing the
ease of use of a module. Fixing σ1 and σ2 for the whole module (by using e.g.
macros) would have resulted in a user only being able to use one ring of the form
Fq[∂1;σ1][∂2;σ2] in his/her entire code. We decided that a typical user is likely
experimenting with different rings in the same project. Hence, we made the two
mappings part of the OrePoly structure, and any binary operation of two Ore
polynomials does a sanity check, if the mappings coincide.

As a future work, we also intend to write a script as used to generate almost
any possible ground field Fq (build gf coefficients c.sage), to generate Ore
polynomial rings over a finite field generated with arbitrary many Ore extensions.

In order to speed up computations, we recently added parallelism to the mul-
tiplication function, using OpenMP1. The multiplication function will invoke mul-
tiple threads to help calculate the product only if a certain minimal total degree
is reached, since otherwise the overhead causes the parallel implementation to be

1http://openmp.org/
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slower than the subsequent one. This minimal degree has been determined experi-
mentally.

The main functions provided by ore algebra are summarized in Table 5.3.

Name Purpose

struct OrePoly A structure representing an element in
an Ore polynomial ring. We assume
a dense representation of the elements.
This structure contains fields to repre-
sent the degree in ∂1 and ∂2, an array
of the Fq coefficients, and function point-
ers to σ1 resp. σ2, which can be any
of the Hom[i] functions as provided by
gf coefficients.

OrePolyToString Returns a string representation of an Ore
polynomial.

OrePolyToStdOut Prints the string representation of a poly-
nomial to the standard output.

getOrePolyViaIntegerCoefficients Provides a convenient way of creating an
Ore polynomial by simply providing all
integer coefficients as array.

isZero OrePoly Returns whether a given polynomial is
zero.

isEqual OrePoly Returns whether two given Ore polyno-
mials are equal.

getIdentityElemOrePoly Returns the identity element in the given
Ore polynomial ring.

getZeroElemOrePoly Returns the zero element in the given Ore
polynomial ring.

scalarMult Returns the result of the multiplication of
an Ore polynomial with an integer.

add Returns the result of adding two Ore
polynomials.

minus Returns the result of subtracting one Ore
polynomial by another.

mult Returns the result of multiplying two Ore
polynomials.

getRandomOrePoly Returns a random Ore polynomial.
generateRandomSecretKey Given an Ore polynomial P , this function

returns a random element coming from
the set as described in (13).

Table 5.3: Overview of functionality provided by the module
ore algebra.
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5.2.2.1. struct OrePoly.

Fields: This structure has the following fields:

• int degD1: The maximal degree of ∂1 in this ele-
ment.

• int degD2: The maximal degree of ∂2 in this ele-
ment.

• struct GFModulus* coeffs: A pointer to an ar-
ray of length degD1·degD2 containing elements in Fq.
This is the dense representation of the given Ore poly-
nomial.

• struct GFModulus (*ptrD1manip)(struct

GFModulus): The function σ1 in the Ore extension
Fq[∂1;σ1][∂2;σ2].

• struct GFModulus (*ptrD2manip)(struct

GFModulus): The function σ2 in the Ore extension
Fq[∂1;σ1][∂2;σ2].

Assumptions: All values in coeffs must be smaller or equal to MODULUS.

5.2.2.2. OrePolyToString.

Signature: char* OrePolyToString(struct OrePoly*);

Purpose: Creates a string representation of an element in Fq[∂1;σ1][∂2;σ2]
and returns it. The string representation ignores zero-coefficients
and slightly simplifies the output where possible.

Example The element 2+a∂1 +∂2 +(3+4a+2a2)∂2
1∂

3
2 is printed as (2a^0 +

0a^1 + 0a^2) + (0a^0 + 1a^1 + 0a^2)d1^1 + (1a^0 + 0a^1

+ 0a^2)d2^1 + (3a^0 + 4a^1 + 2a^2)d1^2d2^3 .

5.2.2.3. OrePolyToStdOut.

Signature: void OrePolyToStdOut(struct OrePoly*);

Purpose: Does the same as OrePolyToString, but instead of creating a
string and returning it, it prints the string representation directly
to the standard output.

5.2.2.4. getOrePolyViaIntegerCoefficients.

Signature: struct OrePoly * getOrePolyViaIntegerCoefficients(int,

int, struct GFModulus (*ptrD1manip)(struct GFModulus),

struct GFModulus (*ptrD2manip)(struct GFModulus),

int*);
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Purpose: Assists the user in the generation of an Ore polynomial. If the user
wants to generate an element in the ring Fq[∂1;σ1][∂2;σ2], he/she
passes the desired degrees d1, d2 in ∂1 resp. ∂2, the maps σ1 and
σ2, and an array of integers of size d1d2k, where k is the degree
of the extension Fq over its primitive field. Hence, the user does
not need to create a priori elements in Fq by hand, but just passes
their stored coefficients.

Example In F125, if one wants to generate the element (2a2−2a−1)∂2
1 +(a2+

2)∂2
2 + (a2 + 2a)∂1 + (−2a2 − 2)∂2 + 1, one would pass d1 := d2 :=

2 and the coefficient array {1,0,0, 0,2,1, -1,-2,2, -2,0,-2,

0,0,0, 0,0,0, 2,0,1, 0,0,0, 0,0,0}.

5.2.2.5. isZero OrePoly.

Signature: int isZero OrePoly(struct OrePoly*);

Purpose: Returns 1 if the passed element is 0, otherwise it returns zero.

5.2.2.6. isEqual OrePoly.

Signature: int isEqual OrePoly(struct OrePoly*, struct OrePoly*);

Purpose: Returns 1 if the passed elements are equal in Fq[∂1;σ1][∂2;σ2],
otherwise it returns zero.

5.2.2.7. getIdentityElemOrePoly.

Signature: struct OrePoly *getIdentityElemOrePoly(struct

GFModulus (*ptrD1manip)(struct GFModulus), struct

GFModulus (*ptrD2manip)(struct GFModulus));

Purpose: Returns 1 as element in Fq[∂1;σ1][∂2;σ2].

5.2.2.8. getZeroElemOrePoly.

Signature: struct OrePoly *getZeroElemOrePoly(struct GFModulus

(*ptrD1manip)(struct GFModulus), struct GFModulus

(*ptrD2manip)(struct GFModulus));

Purpose: Returns 0 as element in Fq[∂1;σ1][∂2;σ2].

5.2.2.9. scalarMult.

Signature: struct OrePoly* scalarMult(int, struct OrePoly*);

Purpose: Returns the result of a multiplication of an Ore polynomial in
Fq[∂1;σ1][∂2;σ2] by an integer.

5.2.2.10. add.

Signature: struct OrePoly* add(struct OrePoly*, struct OrePoly*);
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Purpose: Returns the result of adding two elements in Fq[∂1;σ1][∂2;σ2].

5.2.2.11. minus.

Signature: struct OrePoly* minus(struct OrePoly*, struct

OrePoly*);

Purpose: Given two elements a, b ∈ Fq[∂1;σ1][∂2;σ2] (passed in this order to
minus), this function returns the result of a− b.

5.2.2.12. mult.

Signature: struct OrePoly* mult(struct OrePoly*, struct

OrePoly*);

Purpose: Given two elements a, b ∈ Fq[∂1;σ1][∂2;σ2], this function returns
the result of a · b.

5.2.2.13. getRandomOrePoly.

Signature: struct OrePoly * getRandomOrePoly(int, int, struct

GFModulus (*ptrD1manip)(struct GFModulus), struct

GFModulus (*ptrD2manip)(struct GFModulus));

Purpose: The user specifies two numbers d1, d2 ∈ N0, two endomorphisms
σ1, σ2 on Fq. Then this function returns a random element in
Fq[∂1;σ1][∂2;σ2], whose maximal degree in ∂1 (resp. ∂2) is d1 (resp.
d2).

5.2.2.14. generateRandomSecretKey.

Signature: struct OrePoly * generateRandomSecretKey(int, struct

OrePoly*);

Purpose: Given a number d ∈ N0, and an element p ∈ Fq[∂1;σ1][∂2;σ2],
this function computes the result after substituting X by P in a
random polynomial in Fp[X], where Fp is the primitive subfield of
Fq.

5.3. Benchmarking in Computer Algebra Using SymbolicData:SDEval

This section is devoted to present a project called SDEval concerning bench-
marking of software, i.e. measuring the quality of results and the time resp. memory
consumption for a given, standardized set of examples as input. It provides a brief
overview of the description as published in [Heinle and Levandovskyy, 2015], stat-
ing the mission and showing how to use the tools inside the SDEval project. We
have also published a video online on the use of SDEval2.

5.3.1. A Brief History of SDEval. The development of SDEval started
officially in 2011. In the beginning, the goal was to assist the team behind the

2https://www.youtube.com/watch?v=CctmrfisZso
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Singular:Letterplace project [La Scala and Levandovskyy, 2009, 2013, Levan-
dovskyy et al., 2013] with functionality to compare their computational results to
current implementations in other computer algebra systems. These computations
came with certain particularities.

• The underlying algorithms of these computations had no guarantee of
termination; the teams had to decide for how long these computations
should run at the most and required a way to automatically terminate
them.

• One could observe that the memory uses of these processes exploded some-
times in an unpredictable manner. It was crucial to automatically moni-
tor the memory consumption and terminate the calculation once a certain
memory limit has been reached.

These particularities created the need for a tool that was able to monitor com-
putations coming from computer algebra systems. Furthermore, the daunting task
of expressing each instance of a computation problem in every possible computer
algebra system also needed to be automatized. SDEval is linked with the Sym-
bolicData database, and these instances were possible to be expressed in this
database using a unified XML format. In this way, the team had to write each
instance of a computation problem only once, and then SDEval provided scripts
that translated these instances into executable code for all supported computer
algebra systems.

Right from the beginning, part of the design of SDEval was to ensure its
extensibility to other computation problems coming from computer algebra, like
Gröbner basis computations in commutative polynomial rings.

After gaining experience using the tool and evaluating the needs of the com-
puter algebra community, SDEval was almost completely re-written from scratch
in 2012, following rigorous software design principles. Ever since, several additional
functionalities were incorporated (like e.g. parallel job processing, pause/resume
benchmark runs). The mission of SDEval also changed, and it is outlined in the
following subsection.

5.3.2. The Mission of SDEval. Creating standardized benchmarks is a
common way of evaluating implementations of algorithms in many areas of in-
dustry and academia. For example, common benchmarks for satisfiability modulo
theorems (SMT) solvers are collected in the standard library SMT-LIB [Barrett
et al., 2010], and the advantages of various solvers like Z3 [De Moura and Bjørner,
2008] or CVC4 [Barrett et al., 2011] are revealed with the help of those benchmarks.

Considering the field of computer algebra, there could be various benchmarks
for the different computation problems. Sometimes, one can find common prob-
lem instances throughout papers dealing with the same topics, but often there is
no standard collection and authors use examples best to their knowledge. For the
calculation of Gröbner bases for example, there is a collection of ideals that often
appear when a new or modified approach accompanied by an implementation is
presented (e.g. in [Neumann, 2012], the author uses the classical examples Kat-
sura-n, n ∈ {11, 12}, from [Katsura et al., 1987] and Cyclic-m, m ∈ {8, 9}, from
[Bjorck and Haagerup, 2008] to evaluate his new implementation). Regarding the
computation on that set, the new implementation is then compared to existing and
available ones. Note, that even in computations of Gröbner bases of polynomial
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ideals there are parameters, defining the concrete instance of the computation task,
such as the ground field and the ordering on monomials. Different computer algebra
systems vary in the implemented functionality, see e.g. [Levandovskyy et al., 2007]
for the comparison.

An outstanding systematic and transparent practice has been shown in 2001 by
the computer algebra lab, lead by V. P. Gerdt, of the “Joint Institute for Nuclear
Research”, on their website about the progress in research of computing Janet and
Gröbner bases of complicated polynomial systems (http://invo.jinr.ru/).

However, one can still observe that authors of research papers pick just some
– if any – of the standard test sets to be run on their implementation. The best
practice would be to agree upon a fixed set of problem instances within a respective
community, and require any new presented technique with implementation to solve
these and publish their result and timings. The challenge is to convince communi-
ties of the necessity of such a test set, and then setting it up and maintaining it.
Additionally, a framework is needed which allows to reconstruct the results, since
often certain extra parameters need to be set for a certain algorithm implementa-
tion. This framework also needs a functionality that provides fair timing evaluation.
We will discuss this topic detailed in this section.

Here is where the mission of SDEval is defined. It can be summarized by the
following two main tasks:

(i) Creating benchmark sets coming from one or more databases.
(ii) Running benchmarks, with a flexible (i.e. cross-community adaptable)

interface that makes reproduction as simple as possible.

A database containing a collection of various instances of problems coming es-
pecially from the computer algebra community is given by the Symbolic Data
project [Gräbe, 2009]. It started more than 10 years ago, and its team of developers
is steadily extending the collection of problem instances together with precise ref-
erences to their origins. Furthermore, the ways of accessing the information in the
database and interlinking it with other databases are being kept up to date. For the
latter, the techniques of the so called “semantic web” movement have been applied
(for more details consider Gräbe et al. [2014]). The entries are given in the XML

data format, which makes it easy to parse them since almost every programming
language nowadays provides XML support. All these arguments lead to the decision
to use Symbolic Data as the underlying database for our project (i.e. for the task
described by item (i) above).

In particular, we implemented for certain computational problems (e.g. calcula-
tion of a Gröbner basis) translators of respective problem instances from Symbolic
Data into executable code for a set of computer algebra systems.

Item (ii) has a broader range of possible uses, and is completely independent
from item (i). First of all, it provides a way to run arbitrary programs on dif-
ferent inputs. Optionally, it monitors the computations and terminates programs
automatically if they exceed a user-given time or memory limit.

The results are generated and presented in a transparent and reproducible way.
We envision for the future that tar-balls of the folders generated by SDEval would
be published with computation-focused papers, so that it becomes easier to verify
results of the authors.
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The current version of the presented toolkit SDEval can be found on GitHub3.
The latest information on Symbolic Data is available at the Symbolic Data
website4.

Of course, we practice what we preach ourselves. Each computation described
in this thesis can be downloaded as a tar-ball from the author’s website5.

5.3.3. Basic Terminology. Now that we have a clear idea about the purpose
of SDEval, we should define certain terminology that appears in the project more
rigorously.

Definition 5.1 (SD-Table). An SD-Table denotes a table with computation
problems given in the Symbolic Data project.

Example 5.2 (SD-Table). An example for an SD-Table is the table that con-
tains instances of ideals in a polynomial ring over Q using integer coefficients.
These instances can be used e.g. for Gröbner basis computations. The abbreviation
chosen by the Symbolic Data project for this table is IntPS.

Definition 5.2 (Problem Instance). A problem instance is in our context a
representation of a concrete input – aligned to the Symbolic Data format – that
can be used for one or more algorithms. The input values for the chosen algorithm
are contained in this problem instance. A problem instance is always contained in
an SD-Table.

Example 5.3 (Problem Instance). A problem instance is for example the entry
Amrhein (an integer polynomial system taken from [Amrhein et al., 1996]) in the
SD-Table IntPS. It contains the list of variables’ names and a collection of poly-
nomials forming the generators of the respective ideal. The concrete system is also
shown in Figure 5.1.

Definition 5.3 (Computation Problem). A computation problem is a con-
crete and completely specified member of a family of algorithms. In the context of
SDEval, it specifies which computations we want to perform on certain problem
instances.

A selection of computation problems is already provided in the SD-Table COMP.
The selection can be extended by the user.

Example 5.4 (Computation Problem). A computation problem is for example
the computation of a Gröbner basis given an ideal over a polynomial ring over Q
using the lexicographic ordering (abbr. GB Z lp).

Definition 5.4 (Task). A task consists of a computation problem, a selection
of problem instances that are suitable as inputs for it and a collection of computer
algebra systems that implement algorithms for the computation problem.

5.3.4. The Challenges of SDEval. Writing benchmarks in the field of com-
puter algebra differs from benchmarking for other communities. A collection of
appearing challenges is the following.

3github.com/ioah86/symbolicdata
4http://symbolicdata.org
5https://cs.uwaterloo.ca/~aheinle/software_projects.html
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• Sometimes, the results of computations are not unique; that is, several
non identically equal outputs can be equivalently correct. It is not always
possible to find a canonical form for an output. Even if this is the case,
the transformation of an output into a canonical form can be quite costly.
Moreover, the latter transformation is not necessarily provided by every
single computer algebra system.

• Related to the previous item: If an answer is not unique, then the eval-
uation of the correctness of the output is often far from trivial. In some
cases the correctness-evaluation of certain results is even subject of on-
going research.

• The field of computer algebra deals with a large variety of topics, even
though it can be divided into classes of areas where certain common com-
putational problems do appear. Thus, there need to be collections of
benchmarks, optimally one as a standard for each class. The benchmark
creation process should be flexible to be applicable in a wide range of
areas.

• Considering input formats, many computer algebra systems are going their
own ways, i.e. for many computation problems, telling the respective
system what to calculate differ a lot. The source of this problem is that
the way of representing certain given mathematical objects may also not
be unified across the community.

We tried to address these challenges as much as possible when designing our toolkit.
In particular, the first item is something that differs the creation of benchmarks

for computer algebra problems from most other fields of studies.
The second item leads to one of the design decisions we made for SDEval,

namely that we provide an interface for decision routines, and partially include
some of them as examples how such routines could be added. Then, a particu-
lar community can deal with this question based on their problems, and provide
SDEval with the information on what routine to call to obtain an answer.

5.3.4.1. Correct and Feasible Time Measurement. Another seemingly trivial,
yet controversial question is the correct time measure of computations. It is very
common in computer algebra systems to provide a time measuring functionality,
and many of the timings provided in papers were calculated using those commands,
since it is easily available.

Nevertheless, this methodology is questionable. Often one cannot verify their
validity due to e.g. their source not being open. Furthermore, sometimes run-time-
benefiting calculations are already done during the initialization phase; therefore
one has to specify clearly where to start the provided time measurement. If one
makes use of the implemented techniques, every program has to be analyzed in
detail to find the correct spot to start the time counting in order to make the
comparison fair. Hence, the use of system-provided time measuring is not practical
for fair comparisons.

A widely spread method in software development is to run programs with the
time command provided with Unix based operating systems (a similar program for
Microsoft Windows is timeit, contained in Microsofts Server Resource
Toolkit). Even though the time for parsing input – which is in general not
the complex part about the computations done in computer algebra – would then
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also being taken into account, we decided that this method is the best choice for
SDEval.

It has also another benefit: We are interested in extracting the timing results
from the output files in an automated way, and there is a standard for providing
timings given by the IEEE standard IEEE Std 1003.2-1992 (‘‘POSIX.2’’)); the
time command can be instrumented using a parameter to provide its output ac-
cording to this standard. Arranging this format for the output with the help of
the included time measurement mechanisms in computer algebra systems can be
regarded as an infeasible requirement for a user.

5.3.5. Automated Creation of Benchmarks using SDEval. Now that
we have defined some basic terminology, we will address how a benchmark suite
can be generated using the problem instances given in the SD-Tables. This part of
SDEval addresses e.g. developers, who want to compare the running time of their
implementations with those of available software without the necessity of becoming
familiar with all of the available systems. Additionally, it addresses mathematicians
who discovered a certain instance for a computational problem and want to examine
what computer algebra systems are able to solve it and what solutions are provided,
as they might differ – depending on the uniqueness of the result – for the different
systems.

The SDEval project contains two Python programs that can do this job:
ctc.py and create tasks gui.py. The first one is a command-line program, the
second one provides a graphical user interface. Those scripts perform the following
three steps

(1) The user chooses from a set of currently supported computation problems.
(2) After that, the script collects possible problem instances across the SD-

Tables and presents them to the user. One can pick the desired problem
instances that should be included in the benchmark. An illustration of
this step is given in Figure 5.1.

(3) In the last step, besides setting configuration parameters, the user selects
from a set of computer algebra systems for which it is known that they
contain implementations of the algorithms that solve the selected com-
putation problem. Furthermore, the user enters the calling commands to
execute those systems on the machine she/he wants the computation to
be run on.

After these three steps, the user confirms his or her choices and a folder, from
now on referred to as taskfolder, is generated. This folder contains executable
files for the selected computer algebra systems, a Python script to run all the
calculations and some adjustable configuration files (e.g. if the user wants to change
call parameters for a computer algebra system). The taskfolder can then be sent to
the machine where the computations are intended to be run. The concrete structure
is given as in Figure 5.2. As a recent addition, we provided a functionality that
output-analyzing scripts can be included and would automatically be run after
completion of the computation by the computer algebra system. For the supported
computation problems and the supported computer algebra systems, we already
provide scripts to do a light analysis on the output. Light analysis in this context
means that it checks whether there is an output or whether the calculation has
been terminated.
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Figure 5.1. The selection of the problem instance from integer
polynomial systems

+ TaskFolder
| - runTasks.py //For Running the task
| - taskInfo.xml //Saving the Task in XML Structure
| - machinesettings.xml//The Machine Settings in XML form
| + classes //All classes of the SDEval project
| + casSources //Folder containing all executable files
| | + SomeProblemInstance1
| | | + ComputerAlgebraSystem1
| | | | - executablefile.sdc //Executable code for CAS
| | | | - template_sol.py //Script to analyze the output of the CAS
| | | + ComputerAlgebraSystem2
| | | | - executablefile.sdc
| | | + ...
| | + SomeProblemInstance2
| | | + ...
| | + ...

Figure 5.2. Folder structure of a taskfolder

As outlined before, the creation tool is very flexible and easily extensible. This
is due to the object oriented nature of the code written in Python. One can specify
new computation problems, and declare which problem instances can be chosen as
inputs. The respective code for the computer algebra systems can be added in a
template-fashion and does not require familiarity with the particular concepts of
Python.

5.3.6. Running a Benchmark Using SDEval.

Assumption 5.1. Whereas the creation of the benchmark suite is possible on
any machine where Python is installed, the running routine requires a machine
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running with a UNIX-like operating system (e.g. Linux or Mac OS X). We
require the time command or some equivalent to be supported, which is in general
always the case on UNIX systems. If one wants to use an equivalent, it needs to be
able to provide an output according to the IEEE standard IEEE Std 1003.2-1992

(‘‘POSIX.2’’).

Assumption 5.2. Calculations are run within a terminal. This decision was
made due to the fact that calculations are often sent to a compute server. The
connection to that server is in general provided through a terminal interface.

The running of a benchmark is closely connected to the taskfolder as presented
in the previous section. As one can see in Figure 5.2, it contains a Python script
called runTasks.py. One can either generate an individual taskfolder using the de-
sign principles given in the documentation (see Figure 5.2 for the general structure),
or one can use a taskfolder generated by the task creation scripts.

If one executes runTasks.py, all the stored scripts for all the contained com-
puter algebra systems will be run consequently. Using execution parameters, one
can instruct the script to do the following:

• Automatically kill a process once a user-provided CPU time limit is reached.
• Automatically kill a process once a user-provided memory consumption

limit is reached.
• Run a user-provided number of processes in parallel.
• Continue a previously prematurely terminated benchmark.

Example 5.5. Within a taskfolder, a call of

$> python runTasks.py -c240 -m100000000 -j4

will start the execution process. The computer algebra systems are terminated if
they take more than four minutes to run on a problem instance (indicated by -c240,
where 240 stands for 240s) or if they use more than approx. 100MB of memory
(indicated by -m100000000, where the unit used is bytes). Furthermore, the user
wants to have up to four processes to be run in parallel (indicated by -j4).

The script will create — if not yet existent — a sub-folder within the taskfolder
named results. Within results, there will be a folder named by the time stamp
when runTasks.py was executed, where it will store the results of the computa-
tions, some monitoring information about the executed scripts (in form of HTML
and XML files) and files containing information about the machine where the cal-
culation is run on (detailed information on CPU, memory and operating system).

During the execution process, the user can feel free to terminate manually a run-
ning process without having to restart runTasks.py. It will simply continue with
the next waiting program on the next script in the queue. If an output analyzing
script is provided, there will be an error indicated in the HTML resp. XML table
afterwards. Otherwise it will be just marked as “completed”. If the runTasks.py

is terminated before the task was finished, the task can be resumed later by using
the flag -r, followed by the correct time-stamp of the process (runTasks.py will
then search for the respective subfolder and continue the task using the available
information).

Remark 5.1. The resuming of the task does not mean that the computa-
tions marked as “running” start off where they left when they were terminated.
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These computations (however many were running in parallel in the moment when
runTasks.py was prematurely terminated) will be restarted.

This design of the benchmark execution part has the following benefit. Future
authors that execute their scripts on certain files could provide their taskfolder
with the paper they submitted. Then everyone can see the results (i.e. the outputs
of the programs), and verify the timings using the calculated table. Furthermore,
they can run the calculation using runTasks.py after adjusting the configuration to
their machine (i.e. replacing the call commands for the computer algebra systems
to those used on one’s machine). As mentioned before, we are already adapting
this practice by publishing the timings of all our research work.

There are further uses of the running routines. As we can see, the execution of
the benchmarks is completely detached from the creation part. This means, that
a customized taskfolder can be created, defining programs one wants to run and
provide the inputs and scripts to analyze the outputs inside the casSources folder.

Even though the routines were designed to fit especially the needs of the com-
puter algebra community, the principles can be used for almost any kind of program.

Another use of the taskfolder and the contained Python-program would be to
keep track of the development process of a software project over time. Executing the
runTasks.py script after every version change would reveal profiling information
on the different examples. The profiling can be automatized since the timing-data
after every run is stored in an XML file.

The following examples will illustrate the flexibility and the ease of adjustment
of the taskfolder.

Example 5.6. Assume the user already has a taskfolder. Now, he or she en-
counters a new, interesting problem instance and intends to add it to the existing
problem instances in the taskfolder. There are two ways of doing it:

• If the user is familiar with every computer algebra system that is used in
this taskfolder, the user creates the respective scripts and adds the problem
with the scripts as a new subfolder to casSources. Then, it remains to
add an entry in the taskInfo.xml file. In particular, the entry is given
by the following lines:

<probleminstance>

myNewExample

</probleminstance>

After that, the example will be considered with the next run.
• If the user is not familiar with the computer algebra systems in use, then

an entry in the database of Symbolic Data has to be made, which is a
simple XML file. After that, the user can use our tool to automatically
generate code for the computer algebra systems that have functionality for
the respective computation problem.

Example 5.7. As in the previous example, assume that the user is already
in possession of a taskfolder. Now he or she wants, in addition to the consid-
ered computer algebra systems, benchmark a personal, maybe self written program
on the examples. All the user has to do is then generate for every problem in-
stance in the folder casSources a subfolder with the respective script. After that,
the user specifies how the program is called (parameters, options, etc.) in the
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MachineSettings.xml file, registers it in the taskInfo.xml and then the program
will be considered in the next call of runTasks.py.

Example 5.8. By using SDEval ourselves, we also have encountered the fol-
lowing scenario. We generated a taskfolder with a large set of problem instances.
After running the computer algebra systems on these problem instances, we realized
that currently some cannot be solved in a feasible amount of time. Thus, until there
is a new version of one of the used computer algebra systems, we want to exclude
the example when executing runTasks.py. This can be done by simply commenting
out the respective entries in the taskInfo.xml file.

The same can be done to a computer algebra system which performs poorly in
comparison to others, i.e. the user can comment it out until a new version appears.

5.3.7. Related Work. StarExec [Stump et al., 2012]: This is an infras-
tructure especially for the logic solver communities. Its main focus is to provide
a platform for managing benchmark libraries and run solver competitions. It is
widely used in conferences based on logic solving to evaluate the benefits of new
approaches. Moreover, it includes translators of problems between the different
communities dealing with logic solving. Calculations are always run on the same
hardware, therefore results can directly be compared to all other benchmarks that
were run before without taking hardware differences into consideration. The main
difference to our project is that it provides less flexibility for the individual re-
searcher to define customized computation problems and submit problem instances.
Furthermore, as the input data comes from the logic solver community, the input
is standardized and every program accepts the same types of files. For computer
algebra systems, this is different, as stated earlier.

Homalg [Barakat and Robertz, 2008]: Focusing on constructive homological
algebra, the Homalg project provides an abstract structure for abelian categories
and is distributed as a package of the computer algebra system GAP [GAP]. For
time critical computations, it allows the usage of other computer algebra systems,
i.e. the task is translated to the respective system and then executed. This corre-
sponds to the translation part of the SDEval project for the supported computa-
tion problems.

Sage [The Sage Developers, 2016]: The popular computer algebra system Sage
provides as an optional package an interface to the database of integer polynomial
systems (IntPS) of the Symbolic Data project. One can directly load those
problem instances as objects in Sage for further calculations and apply the imple-
mented/wrapped algorithms on them.
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Mass, 1969.
N. R. Baeth and D. Smertnig. Factorization Theory: From Commutative to Non-

commutative Settings. Journal of Algebra, 441:475–551, 2015.
M. Barakat and D. Robertz. homalg — A Meta-Package for Homological Algebra.

Journal of Algebra and its Applications, 7(03):299–317, 2008.
C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. In

Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, England), volume 13, 2010.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
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H.-G. Gräbe. Triangular Systems and Factorized Gröbner Bases. In International
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H.-G. Gräbe, A. Nareike, and S. Johanning. The SymbolicData Project–Towards
a Computer Algebra Social Network. In CICM Workshops, 2014.

G.-M. Greuel, V. Levandovskyy, A. Motsak, and H. Schönemann. Plural. A
Singular 3.1 Subsystem for Computations with Non-commutative Polynomial
Algebras. Centre for Computer Algebra, TU Kaiserslautern, 2010. URL http:

//www.singular.uni-kl.de.
D. Grigoriev. Complexity of Factoring and Calculating the GCD of Lin-

ear Ordinary Differential Operators. J. Symb. Comput., 10(1):7–37, 1990.
doi: 10.1016/S0747-7171(08)80034-X. URL http://www.sciencedirect.com/

science/article/pii/S074771710880034X.
D. Grigoriev and F. Schwarz. Factoring and Solving Linear Partial Differential

Equations. Computing, 73(2):179–197, 2004. doi: 10.1007/s00607-004-0073-3.
URL http://link.springer.com/article/10.1007/s00607-004-0073-3.

R. Hartshorne. Algebraic Geometry, volume 52. Springer Science & Business Media,
2013.

R. Hattori and N. Takayama. The Singular Locus of Lauricella’s FC . Journal of
the Mathematical Society of Japan, 66(3):981–995, 07 2014. doi: 10.2969/jmsj/
06630981. URL http://dx.doi.org/10.2969/jmsj/06630981.

A. Hearn. REDUCE User’s Manual, Version 3.8, 2004.
A. Heinle. Factorization of Polynomials in a Class of Noncommutative Algebras.

Bachelor Thesis at RWTH Aachen University, April 2010.
A. Heinle. Factorization, Similarity and Matrix Normal Forms over Certain Ore

Domains. Master’s Thesis at RWTH Aachen University, September 2012.

122

http://doi.acm.org/10.1145/860854.860888
http://doi.acm.org/10.1145/860854.860888
http://doi.acm.org/10.1145/2608628.2608667
http://www.sciencedirect.com/science/article/pii/S0747717115001108
http://www.symbolicdata.org
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.sciencedirect.com/science/article/pii/S074771710880034X
http://www.sciencedirect.com/science/article/pii/S074771710880034X
http://link.springer.com/article/10.1007/s00607-004-0073-3
http://dx.doi.org/10.2969/jmsj/06630981


A. Heinle and V. Levandovskyy. Factorization of Polynomials in Z-Graded Skew
Polynomial Rings. ACM Commun. Comput. Algebra, 44(3/4):113–114, 2011.
URL http://doi.acm.org/10.1145/1940475.1940491.

A. Heinle and V. Levandovskyy. Factorization of Z-homogeneous Polynomials in
the First (q)−Weyl Algebra. arXiv preprint arXiv:1302.5674, 2013. URL http:

//arxiv.org/abs/1302.5674.
A. Heinle and V. Levandovskyy. The SDEval Benchmarking Toolkit. ACM Com-

munications in Computer Algebra, 49(1):1–9, 2015.
A. Heinle and V. Levandovskyy. A Factorization Algorithm for G-Algebras and

Applications. Proceedings of the 41st International Symposium on Symbolic and
Algebraic Computation (ISSAC’16), pages 263–270, 2016. doi: http://dx.doi.
org/10.1145/2930889.2930906.

N. Jacobson. The Theory of Rings, volume 2. American Mathematical Soc., 1943.
N. Jacobson. Finite-Dimensional Division Algebras over Fields. Springer, 2010.
E. Kaltofen, M. Krishnamoorthy, and D. Saunders. Parallel Algorithms for Matrix

Normal Forms. Linear Algebra and its Applications, 136:189–208, 1990.
A. Kandri-Rody and V. Weispfenning. Non-Commutative Gröbner Bases in Alge-
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APPENDIX A

Appendix of Chpapter 2

A.1. Regarding Example 2.13

The commutative polynomial system of equations that is formed in Example
2.13 is given as follows.

{−q̃(8)
µ2
,−q̃(7)

µ2
− 2q̃(8)

µ2
,−q̃(6)

µ2
− q̃(7)

µ2
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µ2
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µ2
,−q̃(4)

µ2
− 2q̃(5)

µ2

− 4q̃(8)
µ2
,−q̃(3)

µ2
− q̃(4)

µ2
− q̃(5)

µ2
− 2q̃(7)

µ2
,−q̃(2)

µ2
+ 4q̃(8)

µ2
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µ2
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µ2
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Index

U(·), see enveloping algebra

[n]q , see q-bracket

K(z)[x; ′], see Weyl algebra (rational)

deg(·), see degree

dim(I), see ideal dimension (commutative)

γα,β , 34

Oq(Kn), see coordinate ring of quantum

affine n-space

V(I), see ideal variety

Til and Tir, 28

Sol, 45

grV (A), see associated graded algebra

sl2, 12

θi, see Euler operator

ncfactor.lib, 1, 20, 23, 42

Sn,q , see nth q-Shift algebra

Qn, see q-Weyl algebra

Sn, see nth shift algebra

An, see Weyl algebra

0, 27

algebra

associated graded, 10, 18, 19

filtered, 10

graded, 10, 52

Alice, 54

block factorization, 46

Bob, 54

center, 2, 58, 71, 72

central, 2, 17–20, 23, 55, 59

cleavage, 46

common left divisor, 3, 62

greatest, 3

common left multiple, 3

least, 3

common right divisor

greatest, 3

common right divisor, 3

greatest, 3, 54, 62, 65

common right multiple, 3

least, 3

computation problem, 111–114, 116, 117

constrained Gröbner tuple, 46–48

factorized-, 47

coordinate ring of quantum affine n-space,

12, 13, 19, 57

rational, 14

degree, 10

denominator set

left-, 13

derivation

quasi-, 5–7, 13

σ-, 5, 6

determinant polynomial, 74, 75

difference polynomials, see nth shift algebra

differential polynomials, see nth Weyl

algebra

divisor

left, 2

right, 2

domain, see integral domain

(left/right) principal ideal-, 3, 4, 62, 65,

69, 70

enveloping algebra, 12, 19, 22, 98

Euclidean

domain, 4, 6, 7, 52, 53, 56

domain(left), 4, 6, 54

domain(right), 4, 6

function, 4

function(left), 3

function(right), 4

Euler operator, 27

Eve, 54

factorization

distinct, 17

FFD, see finite factorization domain

filtration, 10, 18, 19

finite-dimensional, 10

finite factorization domain, 18–20, 38, 45

Frobenius

automorphism, 7, 57, 63, 66, 100, 102,
104

monomorphism, 7
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GitHub, 65, 101, 111

GCD, see common (right/left) divisor

GCRD, see common right divisor (greatest)

G-Algebra, 10–13, 18–21, 23, 24, 42, 43, 45,
46, 50–52, 87, 88, 98

graded, see homogeneous

grading, 10, 11, 24–27, 50, 58, 72, 87, 93–97

Hermite normal form, 71, 72, 76–80, 83, 84

homogeneous, 10, 24, 25, 27–32, 34, 36, 38,

40–42, 50, 52, 58, 60, 72, 81, 87, 93–97

ideal

dimension (commutative), 22

dimension (commutative), 14, 22, 37, 38

left-, 3

principal, 3, 7, 46, 71

proper, 3

right, 3

two-sided, 3
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zero-dimensional, 14, 15, 22, 37, 38, 61

independent, 14

maximally, 14
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leading

coefficient, 9

monomial, 9
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facShift, 88, 90

facSubWeyl, 88, 91
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ODH, see Ore Diffie Hellman
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degree lexicographic, 8, 9, 13, 22
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monomial, 9
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well-, 8

Ore

extension, 5–7, 9, 13, 53, 55, 57, 60, 61,
69, 72

extension of Lie type, 6, 7, 51, 56, 57

left condition, 13
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polynomial, 5

polynomial rings, 5

skew Ore extension, 6, 7, 54, 56, 57, 61,

69, 72

Ore Diffie Hellman, 61

Poincaré-Birkhoff-Witt

-algebras, 10

-theorem, 12

Problem Instance, 111, 113–117

q-bracket, 27, 28

REDUCE, 42–44, 49, 51, 64

ring

(left/right) principal ideal-, 3

simple, 3, 4, 11

Sage, 52, 56, 100, 101, 117

Singular, 1, 20, 23, 42–44, 52, 64, 70, 84,
87–100

Letterplace, 109

Plural, 1, 46, 48

SD-Table, 111, 113

shift algebra

nth, 11, 13, 17, 19, 24, 28, 33, 45, 57,

87–91

nth q-, 11, 13, 19

rational, 14, 20, 72, 85

rational q−, 20

rational q−, 14

similar, 4, 11, 17, 20, 69, 70, 84

solution

set of, 45

space, 45

subresultant, 75

sequence, 75

subring of constants, 55, 58, 60, 61

Task, 111

taskfolder, 113–117
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triangular, 15

variety, see ideal variety

weight vector, 8, 21, 25, 26

Weyl algebra
nth, 11, 19, 20, 24, 26–28, 31, 35–38, 42,
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rational q-, 14
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