
Anti-Patterns for Automatic
Program Repairs

by

Taiyue Liu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Taiyue Liu 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Automated program repair has been a heated topic in software engineering. In recent
years, we have witnessed many successful applications such as Genprog, SPR, RSRepair,
etc. Given a bug and its test suite, which includes both passed test cases and failed test
cases, these tools aim to automatically generate a patch that fixes the bug without devel-
opers’ efforts. All these tools adopt a “Generate-and-Validate” approach, which assumes
a tool-generated patch to be correct as long as it passes all its test cases. However, if
test suites are of poor quality that cannot cover all the situations, incorrect tool-generated
patches might pass all their test cases and be regarded as correct patches. We call such
patches that are incorrect but can pass whose test suites as overfitted patches.

In order to investigate the reasons why overfitted patches are generated and to reduce
overfitted patches, we perform a deep analysis on the patches composed by developers, and
the patches (i.e., the correct and the overfitted patches) that are generated by Genprog and
SPR. In this thesis, we propose two orthogonal approaches to filter out overfitted patches:
1) To preserve correct tool-generated patches and filter out only overfitted patches, we pro-
pose some patterns, named anti-patterns, that can efficiently distinguish correct patches
against overfitted patches. We select nine bugs from the Genprog benchmark data set to
evaluate the anti-patterns. By embedding the anti-patterns into SPR and filtering out over-
fitted patches, on average, developers can review 44.7% less tool-generated patches to reach
correct patches. Meanwhile, by filtering out overfitted patches at runtime, the anti-patterns
speed up SPR’s efficiency by 1.34 times on average. 2) We leverage machine learning tech-
niques with meaningful features to predict the correctness of tool-generated patches. Our
results show that the machine learning approach cannot preserve correct patches well. In
other words, machine learning techniques would mis-classify correct patches as overfitted
patches and filter them out. Thus, we believe the machine learning approach requires signif-
icant future work, e.g., more representative features and effective classification algorithms,
to be useful in practice. These two orthogonal approaches provide automatic program
repair tools with valuable guidance on how to avoid generating overfitted patches.

iii

Acknowledgments

Firstly, I want to thank my supervisor–Professor Lin Tan. I can still remember the first
time that I saw Lin, when she was introducing the course outline for the fourth-year testing
course. Two years has passed since then, I grow up from a novice in research to a master
student with my own project, while Lin is always there and offering me with advises and
help. Sometimes I might feel disappointed about results, might be stuck with problems,
or even hesitant, Lin is always my strong support. Start with basic testing concepts and
terminology, she taught me how to manage time, how to make a good presentation, how to
write a professional paper, how to conduct research independently, etc. I really appreciate
that my research journey is accompanied with Lin.

Then, I want to thank Professor Werner Dietl and Professor Ladan Tahvildari. In the
best and busiest season in Canada, they make time to read my thesis and provide me with
valuable feedback. Thank you my labmates such as Song, Yuefei, Edmund, Jinqiu, Alex,
Chenyang, Ming, and others, I really enjoy the time we spend together. No matter if it
is playing Laser Quest, or just having a simple lunch in plaza, they are all my beautiful
memories.

Finally, I want to thank for my parents. I know that I bring more worries than happiness
to them since I went abroad, or even since I was born, but they always give me the best.

iv

Dedication

This thesis is dedicated to the ones I love and the ones who love me.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 4

2.1 Automatic Program Repair Tools . 4

2.2 Problem of the “Generate-and-Validate” Approach 7

2.3 Supervised Learning . 8

3 Approaches 9

3.1 Anti-Patterns . 10

3.1.1 Anti-Pattern 1: Turning an if condition to make it always true or
always false . 11

3.1.2 Anti-Pattern 2: Adding a return statement to skip functionality . . 12

3.1.3 Anti-Pattern 3: Adding a comparison with unusual value on the right
side . 13

3.1.4 Anti-Pattern 4: Adding a variable that does not appear in the if
condition . 17

3.2 Machine Learning Method . 17

3.2.1 Data Labeling . 17

vi

3.2.2 Feature Extraction . 17

3.2.3 Classification Algorithms . 18

4 Experimental Setup 20

4.1 Evaluated Data Sets and Bugs . 20

4.1.1 Anti-Patterns Data Set . 20

4.1.2 Machine Learning Data Set . 21

4.2 Evaluation Setup and Metrics . 22

4.2.1 Anti-Patterns Setup and Metrics 22

4.2.2 Machine Learning Setup and Metrics 23

5 Experiment Results 24

5.1 RQ1: Are the proposed anti-patterns effective in filtering out overfitted
patches? . 24

5.2 RQ2: What is the runtime overhead of introducing anti-patterns into auto-
matic program repair tools? . 27

5.3 RQ3: Can the machine-learning-based approach filter out overfitted patches
effectively? . 28

6 Threats 30

6.1 Data Set Selection . 30

6.2 Repair Tool Selection . 31

7 Related Work 32

7.1 Automatic Repair Tools . 32

7.2 Limitations of “Generate-and-Validate” Approach 34

8 Conclusion and Future Work 36

8.1 Conclusion . 36

8.2 Future Work . 37

8.2.1 Anti-Patterns . 37

8.2.2 Machine Learning . 38

vii

Bibliography 39

viii

List of Tables

4.1 Evaluated Projects and Bugs for Anti-Patterns 21

4.2 Evaluated Patches for Machine Learning Models 22

5.1 Performance for Anti-Patterns . 25

5.2 Performance of Individual Anti-Patterns 26

5.3 Time Cost for Introducing Anti-Patterns (h:hour, m:minute, s:second) . . . 28

5.4 Performance for Machine Learning Models 29

ix

List of Figures

2.1 Workflow of Automatic Repair Tools . 4

2.2 Example of Plausible Patches . 6

3.1 Workflow of Automatic Repair Tools with Anti-Patterns 10

3.2 A Special Case of Pattern 1 . 12

3.3 Example of Pattern 2 . 13

3.4 Example of Pattern 3 . 14

3.5 Example of Pattern 4 . 16

x

Chapter 1

Introduction

Repairing software defects is an expensive, tedious, and time-consuming task. To fix a
defect, it takes time to investigate the cause of the defect and compose a correct patch,
while requires developers to have a deep understanding of the software. In order to save
developers’ efforts and minimize the time spent fixing a defect, we have seen many suc-
cessful automatic program repair tools in recent years [9–12, 27, 28, 32, 38, 41, 45, 55–57].
These automatic program repair tools aim to compose defect repairs with little or none
developer effort. The difference between these tools falls into using different algorithms to
mutate defective software. For example, Genprog [12] proposes to use genetic program-
ming techniques to select mutation operations and compose patches in favor of more passed
test cases, while RSRepair [45] chooses mutation operations randomly; SPR [27] receives
promising results by tracking variable states in both passed test cases and failed test cases,
and leveraging manually encoded templates to mutate buggy programs; Kali [46] creates
patches that contain only deletions; DirectFix [32] is an oracle-based repair tool that con-
verts a repair problem into a Boolean Satisfiability Problem, which is known as SAT, and
tries to generate simple repairs; and there are some other algorithms such as PAR [21],
SemFix [38], AE [56], Angelix [34], etc.

Normally, revealing a software defect requires a test suite containing at least one failed
test case. In order to fix a defect, these tools first run fault localization algorithms to locate
suspicious faulty lines by considering the stack trace of both the passed and the failed
test cases. Then, the tools generate a repair search space from the context of suspicious
faulty lines. The repair search space contains repair fragments (are also known as repair
ingredients), which are synthesized with repair operations such as addition, deletion, and
replacement to compose patches. Given a defect, these tools can generate many candidate
patches for fixing it. However, not all of these patches can correctly fix the defect.

1

To eliminate incorrect candidate patches, most automatic program repair tools adopt
an approach called “Generate-and-Validate”. The assumption behind this approach is, a
patch that passes all its test cases is a correct patch. Given a tool-generated patch, the
“Generate-and-Validate” approach re-runs the patched program on all the test cases. The
patches that can pass all the test cases will be kept and produced by these automatic
program repair tools.

However, due to the issue of “weak test suite” [28], most tool-generated patches are not
correct although they pass all the corresponding test cases. We name the tool-generated
patches that are not correct but can pass all the test cases as overfitted patches [49] (also
referred as plausible patches [46]). The root cause of generating overfitted patches is that,
test suites are not thorough enough to cover all situations, which allow some incorrect
patches to bypass validation by test suites. This is why tool-generated patches cannot be
deployed directly and require developers to review. Tools such as Genprog, SPR, RSRepair,
etc. that adopt the “Generate-and-Validate”, there exists a lot of overfitted patches in their
search space. Manually reviewing tool-generated patches is also expensive or even more
expensive than just letting developers compose a patch.

In this thesis, we manually inspect the tool-generated patches from SPR and Genprog
and the patches composed by developers. We first propose some anti-patterns and embed
these anti-patterns into SPR to filter out overfitted patches at runtime. Also, based on
our analysis, we find some meaningful features that might differentiate between correct
patches and overfitted patches. We use these features together with different supervised
machine learning algorithms to predict the correctness of tool-generated patches.

In this thesis, we make the following contributions:

• Based on our analysis of the tool-generated patches from SPR, we propose anti-
patterns that can capture the difference between correct patches and overfitted
patches. The tool-generated patches that match any anti-patterns would be re-
garded as incorrect patches. We embed anti-patterns into SPR in order to filter
out overfitted patches at runtime. Through our experiments, on average, developers
can review 44.7% fewer tool-generated patches to reach correct patches by embed-
ding the anti-patterns into automatic program repair tools. Meanwhile, with the
proposed anti-patterns, we can preserve all the correct patches for the bugs in our
selected benchmark data set.

• For the patches that match the anti-patterns, we filter them out immediately and
prevent SPR from spending time on validating them. By introducing anti-patterns
into SPR, we successfully improve the efficiency of SPR by 1.34 times.

2

• Besides the patches from SPR, for all the bugs in the benchmark data set, we also
analyze their tool-generated patches from Genprog and the patches composed by
developers. We predict the correctness of tool-generated patches by using differ-
ent supervised machine learning algorithms together with Deckard features [15] and
meaningful meta features. Our trained models predict overfitted patches with 77.8%
precision, 95.5% recall, and 85.7% F-measure. However, six out of the eight correct
patches are filtered out by this approach by mistake. Thus, we believe this approach
requires significant future work, e.g., more representative features and effective clas-
sification algorithms, to be useful in practice.

The rest of this thesis is organized as follows. Chapter 2 introduces the backgrounds
of automatic program repair tools, the “Generate-and-Validate” approach, and supervised
machine learning. Chapter 3 elaborates the two proposed approaches for filtering out
overfitted patches. Chapter 4 describes the setup of experiments to evaluate the proposed
approaches. We show and analyze experimental results in Chapter 5. In Chapter 6 and 7,
we present the threats in our work and related work respectively. Chapter 8 includes the
conclusion and future work to this thesis.

3

Chapter 2

Background

This section provides the background of generating program repairs automatically, how
overfitted patches are produced, and supervised learning.

2.1 Automatic Program Repair Tools

Figure 2.1: Workflow of Automatic Repair Tools

Figure 2.1 demonstrates an overview of the work-flow of search-based automatic repair
tools. To fix a bug, the existing automatic program repair tools require the source code of a

4

defective program and the test suite that reveals the bug. For the test suite, there exists at
least one failed test case. According to the stack trace of both failed and passed test cases,
repair tools run fault localization techniques [7,18,58] to locate the source code lines that
are suspected to be buggy. Then, repair tools extract repair ingredients from the context of
the suspected lines. Each repair ingredient can be a variable, an expression, a statement,
or a chunk of statements. There are a variety of methods for composing patches from
repair ingredients. Search-based tools such as SPR apply their templates with abstract
placeholders to suspected locations and synthesizes ingredients into their templates to
compose patches. Oracle-based tools like Angelix [34], DirectFix [33] and SemFix [38]
convert test cases into constraints, add abstract expressions to the suspected locations,
and replace the abstract expressions with ingredients by solving a Boolean Satisfiability
Problem. These tools adopt the idea of the “Generate-and-Validate” approach to check
the correctness of generated patches by using test suites. They will produce patches if
and only if the patches can pass the corresponding test suites. As shown in Figure 2.1,
the procedures in the red rectangle are for the “Generate-and-Validate” approach. Given
a patch, repair tools apply it to the defective program and re-run the test suite for the
corresponding bug. If the patched version of the program can pass all the test cases, the
patch would be regarded as a correct patch and be produced out. Otherwise, the tools will
discard this patch and keep searching for correct patches.

5

589 {

590 // original buggy version

591 if (td ->td_nstrips > 1

592 && td ->td_compression == COMPRESSION_NONE

593 && td ->td_stripbytecount [0] != td->td_stripbytecount [1]) {

594 TIFFWarning(module , "%s: Wrong \"%s\" field , ignoring and

595 calculating from imagelength",

596 tif ->tif_name ,

597 _TIFFFieldWithTag(tif ,TIFFTAG_STRIPBYTECOUNTS)->field_name);

598 if (EstimateStripByteCounts(tif , dir , dircount) < 0)

599 goto bad;

600 }

601 ...

677 return (1);

678 bad:

679 if (dir)

680 _TIFFfree(dir);

681 return (0);

682 }

Original Buggy Version

589 {

590 // developer patch

591 - if (td->td_nstrips > 1

592 + if (td->td_nstrips > 2

593 && td ->td_compression == COMPRESSION_NONE

594 && td ->td_stripbytecount [0] != td->td_stripbytecount [1]) {

595 TIFFWarning(module , "%s: Wrong \"%s\" field , ignoring and

596 calculating from imagelength",

597 tif ->tif_name ,

598 _TIFFFieldWithTag(tif ,TIFFTAG_STRIPBYTECOUNTS)->field_name);

599 if (EstimateStripByteCounts(tif , dir , dircount) < 0)

600 goto bad;

601 }

602 ...

Developer Patch Version

589 {

590 // SPR generated patch

591 if (td ->td_nstrips > 1

592 && td ->td_compression == COMPRESSION_NONE

593 - && td->td_stripbytecount [0] != td->td_stripbytecount [1]) {

594 + && td->td_stripbytecount [0] != td ->td_stripbytecount [1]

595 + && !(1)) {

596 TIFFWarning(module , "%s: Wrong \"%s\" field , ignoring and

597 calculating from imagelength",

598 tif ->tif_name ,

599 _TIFFFieldWithTag(tif ,TIFFTAG_STRIPBYTECOUNTS)->field_name);

600 if (EstimateStripByteCounts(tif , dir , dircount) < 0)

601 goto bad;

602 }

603 ...

SPR Patch Version

Figure 2.2: Example of Plausible Patches
6

2.2 Problem of the “Generate-and-Validate” Approach

Most automatic program repair tools [12, 21, 27, 28, 33, 34, 38, 45, 51, 56] adopt the idea of
the approach called “Generate-and-Validate”. For a compilable tool-generated patch, this
approach provides the tools with a validation step by running the patched program on
all test cases. If a patch can pass all test cases, this patch will be produced out by the
tools and be regarded as a successful fix to the corresponding bug. The tools would keep
exploring search space and generating patches until they finish exploring the search space
or reach the time-limit.

Although the “Generate-and-Validate” approach can filter out most incorrect patches,
there are still some patches that can bypass the validation of test suites while being incor-
rect. We call the patches that pass their test suites but are actually incorrect as “Overfitted
Patches”. The root cause of generating overfitted patches is that test suites are not thor-
ough enough to cover all situations. An overfitted patch can simply delete a functionality of
its program and then pass its test suite. Figure 2.2 shows an example of overfitted patches
together with its original buggy version and the correct patch from developers. This exam-
ple is from Libtiff bug d13be72c-ccadf48a. The faulty lines are the if condition from line 591
to line 593. Specifically, the if condition wrongly includes a case when td → td nstrips is
equal to 2. In the corresponding human fix, developers modify the if condition and change
it from td→ td nstrips > 1 to td→ td nstrips > 2, so the case of td→ td nstrips == 2
would not be handled by the error handling code. However, the SPR patch disables the
whole if block by appending && !(1) to the end of the if condition. Although there is no
more warning message for the failed test case running on the patched program, the error
handling code between line 678 and line 681 would not function properly anymore.

After going through all candidate repairs in search space or reaching the time-limit, the
tools stop and produce all the patches that pass test suites. However, among these patches,
there might be only one or two correct patches while the rest are all overfitted patches.
Take libtiff bug 5b02179-3dfb33b as an example, running SPR with configurations of fully
synthesis and trying first 57000 repair schemes would produce out 239 patches, which
include one correct patch and 238 overfitted patches. Here, one scheme is a group of
patches that modify the same faulty location with the same template, but with different
contents filled in the template. SPR starts with candidate repairs with higher priorities,
which depend on the templates that repairs belong to and the ranks of locations returned
by fault localization algorithms. But still, for Libtiff bug 5b02179-3dfb33b, the correct
patch is at position 210, which means developers need to review the correctness of 210
patches in order to reach the correct one. Sometimes, manually reviewing the correctness
of tool-generated patches takes even more time and efforts than just letting developers

7

compose a correct patch. Libtiff bug 5b02179-3dfb33b is not the only case. Among the
twenty bugs that have correct patches in SPR search space, nine of them have correct
patches that are not as their first patches. It would save reviewing efforts if we can filter
out overfitted patches and expose correct patches earlier.

At the same time, the “Generate-and-Validate” approach takes time to apply patches,
re-compile the program, and validate patches by test suites. Especially when the size of
test suite is very large, validating patches will take a lot of machine time. PHP bugs have
the largest test suites in the benchmark set, the test suites corresponding to PHP bugs each
contains around seven thousand test cases. Filtering out overfitted patches immediately
after they have been generated would save both compilation time and validation time.

2.3 Supervised Learning

Supervised learning is a category of machine learning tasks, which build classification mod-
els by learning from training data with class labels (also referred as output or signal) and
predict class labels for test data. Training instances for supervised learning each contains
a vector of features and a desired class label, while depending on learning algorithms, a
supervised learning classification model can be a probabilistic function, a set of hyper-
planes, or a decision tree that relates the features of instances to their corresponding class
labels. Given a new instance with only features, supervised learning aims to correctly
determine the class label for the new instance. We have seen many successful applica-
tions of supervised learning in research areas such as defect prediction [16, 17, 20, 39], tag
recommendation [50], bug triaging [2, 5].

As the population of overfitted patches is big, we want to filter out overfitted patches
so developers can review fewer tool-generated patches. In next chapter, we will explain the
two proposed approaches for filtering out overfitted patches. For the anti-pattern approach,
we explain it in aspects of how we propose the anti-patterns approach and what the anti-
patterns are. For the machine learning approach, we elaborate how we label data, extract
features, and build classification models.

8

Chapter 3

Approaches

We first perform a deep analysis on the patches that are generated by Genprog and SPR.
For SPR, we manually inspected all their released patches including both correct and
overfitted patches. For Genprog, we inspected more than fifty of its generated patches,
which include all the correct patches and some of its overfitted patches. For each of
the patches we inspected, we analyze itself and also the developers’ patch for the same
defect. Here, we regard the developers’ patches as the ground-truth and manually check
the correctness of tool-generated patches. A tool-generated patch is correct if and only if
it is semantically equivalent with the patch composed by developers.

Generating a correct patch is hard for automatic repair tools. Take SPR as an example,
to generate a correct patch, SPR needs to: 1) correctly find the faulty location among the
hundreds of faulty locations returned by fault localization algorithms. 2) apply appropriate
abstract templates to the faulty locations 3) fill in a reasonable expression from the context
of the faulty location. In most cases, there exists only one correct patch in repair search
space for a bug, while there are tens of thousands of schemes, each of which can be synthe-
sized to multiple patches [29]. Due to the difficulty of generating correct patches, we want
to preserve as many correct patches as possible. We are looking for some anti-patterns that
are shared among only overfitted patches but not correct patches. These anti-patterns can
be good indicators for the correctness of tool-generated patches and can preserve correct
patches well. Our proposed anti-patterns are designed for SPR only, as SPR is a more
effective tool compared with Genprog. Among the 105 bugs in the benchmark set that is
proposed by Genprog, Genprog generates correct patches for only two bugs, while SPR
correctly fixes twenty of them.

9

Figure 3.1: Workflow of Automatic Repair Tools with Anti-Patterns

Then, we also make an attempt to predict the correctness of the tool-generated patches
by using machine learning techniques with features at both Abstract Syntax Tree (AST in
abbreviation) token level and commit level. The details of the machine learning approach
are explained in Section 3.2.

3.1 Anti-Patterns

We propose the anti-patterns approach that particularly aims at filtering overfitted patches
out while preserving correct patches. For each overfitted patches we inspect, we brainstorm
and list all the patterns that can categorize it. After we go through all the patches, we
summarize and select the patterns that occur only in overfitted patches but not correct
patches.

Through our manual inspection, we propose four patterns that are good indicators of
the overfitted patches. Except for pattern 2 that is implemented by directly modifying
SPR source code, the rest three patterns are all implemented by using Clang [24], which
is a C language frontend.

Figure 3.1 demonstrates the workflow of SPR with the anti-patterns embedded. Besides
the steps in the original workflow of automatic program repair tools in Figure 2.1, we add
one more step, which is called “Anti-Patterns” in the figure, to check for the anti-patterns.
We check for the anti-patterns after patches have been generated and before patches are
applied to defective program. If a patch satisfies one of the anti-patterns, we discard that

10

patch and try next patch. Otherwise, we apply the patch to the defective program and
validate it by its test suite as in the original workflow.

There are two positions where we can insert the step of checking anti-patterns. Besides
the one we are using, we can also insert the step after the patches have been validated by
test suites. The reason why we choose the current position is that, by filtering overfitted
patches out before applying them to defective programs, we can save time by not re-
compiling programs. More important, we save time by not running test cases for the
patches that satisfy any of the anti-patterns.

In the following, we will give details about how the patterns are shared among the
patches and discuss how the patches with these patterns are composed by SPR.

3.1.1 Anti-Pattern 1: Turning an if condition to make it always
true or always false

SPR can mutate programs to make an if code block to be always executed or never executed.
In the case of always executed, when SPR found that an if code block is executed only
in passed test cases while not in failed test cases, it might doubt that not executing the
code block is the cause of failure. So SPR would generate a patch to make the condition
of the code block always true. Similar reason for the case of never executed, when SPR
found that an if code block would be executed only in failed test cases but not passed test
cases, it would turn the if condition of the code block to be always false so the code block
would never be executed. However, in most cases, disabling a whole if block or making
an if block to be always executed is not a correct fix. Figure 2.2 is an example of making
an if condition never be executed. Due to the poor quality of the test suite, this kind of
overfitted patches can bypass the validation by test suites.

To detect the patches that belong to this pattern, we first locate the if condition modi-
fied by SPR. Then, for always true case, we check whether the if condition is in one of the
two forms: if(... || (1)) or if(...a || !a). Similar for always false, we check whether the if
condition is either if(... && !(1)) or if(... a && !(a)). If the if condition is either always
true or always false, we filter the patch out before executing test suites.

However, python bug 69783-69784 is a special case. The correct patch generated by
SPR for this bug is shown in Figure 3.2 and it turns the if condition into always false.
Python bug 69783-69784 is a functionality change instead of a bug, while we do not think
this functionality change should be in the benchmark data set. The disabled if condition
happens at line 341 and is for handling a input date whose year is in format of two digits.

11

332 if (y < 1000) {

333 ...

339 //SPR generated patch

340 - if (acceptval) {

341 + if (acceptval && !(1)) {

342 if (0 <= y && y < 69)

343 y += 2000;

344 else if (69 <= y && y < 100)

345 y += 1900;

346 else {

347 PyErr_SetString(PyExc_ValueError ,

348 "year out of range");

349 return 0;

350 }

351 ...

352 }

354 ...

357 p->tm_year = y - 1900;

358 p->tm_mon --;

359 p->tm_wday = (p->tm_wday + 1) % 7;

360 p->tm_yday --;

361 return 1;

362 }

Figure 3.2: A Special Case of Pattern 1

Since developers decide to accept only the dates with four-digit years, they simply delete
the whole if block for handling two-digit years. This is the only case in SPR patches that
disable a if block while being correct.

3.1.2 Anti-Pattern 2: Adding a return statement to skip func-
tionality

Another pattern that is shared among overfitted patches is adding return statements to
force programs to exit before reaching buggy lines. Figure 3.3 shows two SPR patches and
both of them are for the bug PHP 308262-308315. The first one is an overfitted patch that
adds a return statement at line 1264, while the second patch is a correct patch that we
want to preserve. As we can see, to avoid producing out the error message at line 1265,
the return statement introduced by the overfitted patch simply skips the error message
together with all the functionalities after the code chunk. As a result, there is no more
error message and the failed test case that checks only standard errors would pass then.

12

1261 if (Z_LVAL_P(dim) < 0 || Z_STRLEN_P(container) <= Z_LVAL_P(dim)) {

1262 //SPR generated patch

1263 + if ((type != 0))

1264 + return;

1265 zend_error ((1 << 3L), "Uninitialized string offset: %ld", (*dim).value.lval);

1266 Z_STRVAL_P(ptr) = STR_EMPTY_ALLOC ();

1267 Z_STRLEN_P(ptr) = 0;

1268 }

1269 else {

1270 ...

1273 }

1274 AI_SET_PTR(result , ptr);

1275 return;

Overfitted SPR Patch
1261 if (Z_LVAL_P(dim) < 0 || Z_STRLEN_P(container) <= Z_LVAL_P(dim)) {

1262 //SPR generated patch

1263 + if (!(type == 3))

1264 zend_error ((1 << 3L), "Uninitialized string offset: %ld", (*dim).value

.lval);

1265 Z_STRVAL_P(ptr) = STR_EMPTY_ALLOC ();

1266 Z_STRLEN_P(ptr) = 0;

1267 }

1268 else {

1269 ...

1273 }

1274 AI_SET_PTR(result , ptr);

1275 return;

Correct SPR Patch

Figure 3.3: Example of Pattern 2

We filter out this kind of patches by modifying SPR source code and disabling generat-
ing patches in this kind. The reason why this kind of overfitted patches can be generated
is, some test cases check only the return value of the program and if the program generates
warning or error messages. Adding a return before the error message would skip the code
that produce errors or warnings and make the test cases passed. We prevent SPR from
generating the patches that satisfy this pattern.

3.1.3 Anti-Pattern 3: Adding a comparison with unusual value
on the right side

The third pattern is appending a comparison in a form of “variable == value” to an if
condition and the value on the right side of the comparison is unusual. We define a value

13

51 //SPR generated patch

52 - if (((dst == ((void *)0)) || (dst ->data == ((void *)0)) || ((((FBSTRING *)dst)->len

& ~2147483648 UL) == 0))) {

53 + if (((dst == ((void *)0)) || (dst ->data == ((void *)0)) || ((((FBSTRING *)dst)->len

& ~2147483648 UL) == 0)) || (dst ->len == 7)) {

54 fb_hStrDelTemp_NoLock(src);

55 fb_hStrDelTemp_NoLock(dst);

56 FB_STRUNLOCK ();

57 return;

58 }

59 ...

70 if((start > 0) && (start <= dst_len))

71 {

72 --start;

73
74 if((len < 1) || (len > src_len))

75 len = src_len;

76
77 if(start + len > dst_len)

78 len = (dst_len - start);

79
80 memcpy(dst ->data + start , src ->data , len);

81 }

Overfitted SPR Patch Version
69 ...

70 //SPR generated patch

71 - if((start > 0) && (start <= dst_len))

72 - {

73 + if (((start > 0) && (start <= dst_len)) && !(len == 0)) {

74 --start;

75 if ((len < 1) || (len > src_len))

76 len = src_len;

77
78 if(start + len > dst_len)

79 len = (dst_len - start);

80
81 memcpy(dst ->data + start , src ->data , len);

82 }

Correct SPR Patch Version

Figure 3.4: Example of Pattern 3

to be “unusual” if it is not global variable, constant, or previously assigned to a variable.
Through our inspection, we think the value on the right side of the comparison that is
added by SPR should be previously defined. Figure 3.4 is an illustration of this pattern
from Fbc bug 5458-5459. SPR appends (dst→ len == 7) to the if condition, while 7 is
never defined in the local context and the header files.

14

We take the overfitted patch for Fbc bug 5458-5459 as an example to explain the
situation of generating such patches. SPR finds that sometimes not executing the if block
is the cause of failing test cases. For the executions that the if condition is not true while
SPR thinks it is necessary to execute the if block, dst→ len is happened to be 7. And for
the executions that the if condition is not true while SPR also agrees, dst → len is never
equal to 7. So SPR appends the comparison to the end of the if condition and make the if
block executed.

To detect whether a patch belongs to this pattern, we first find the comparison expres-
sion that is added by the patch. For SPR-generated comparison in this kind, the right side
is always an integer value while the left side is a variable name. For this anti-pattern, we
are interested in only the right side of the comparison. We parse all the header files of the
patched file including the patched file itself, while recording down all the integer values
that are defined. Then, we check if the integer value is defined either in the patched file or
the header files. If it is not defined, we filter out the patch.

15

589 {

590 //SPR generated patch

591 if ((td->td_nstrips > 1

592 && td ->td_compression == 1

593 - && td->td_stripbytecount [0] != td ->td_stripbytecount [1]) {

594 + && td ->td_stripbytecount [0] != td->td_stripbytecount [1])

595 + && !(td->td_subifd == 0)) {

596 TIFFWarning(module , "%s: Wrong \"%s\" field , ignoring and calculating from

imagelength", tif ->tif_name , TIFFFieldWithTag(tif , 279) ->field_name);

597 if (EstimateStripByteCounts(tif , dir , dircount) < 0)

598 goto bad;

599 }

600 ...

678 return (1);

679 bad:

680 if (dir)

681 _TIFFfree(dir);

682 return (0);

683 }

Overfitted SPR Patch
589 {

590 //SPR generated patch

591 if ((td->td_nstrips > 1

592 && td ->td_compression == 1

593 - && td->td_stripbytecount [0] != td ->td_stripbytecount [1]) {

594 + && td ->td_stripbytecount [0] != td->td_stripbytecount [1])

595 + && !(td->td_nstrips == 2)) {

596 TIFFWarning(module , "%s: Wrong \"%s\" field , ignoring and calculating from

imagelength", tif ->tif_name , TIFFFieldWithTag(tif , 279) ->field_name);

597 if (EstimateStripByteCounts(tif , dir , dircount) < 0)

598 goto bad;

599 }

600 ...

678 return (1);

679 bad:

680 if (dir)

681 _TIFFfree(dir);

682 return (0);

683 }

Correct SPR Patch

Figure 3.5: Example of Pattern 4

16

3.1.4 Anti-Pattern 4: Adding a variable that does not appear in
the if condition

This pattern does not filter out patches, instead it adjusts the ranks of the patches that are
within one scheme. One scheme is a group of patches that modify the same faulty location
with the same template, but with different contents filled in the template.

For the comparison appended by SPR to an if condition, the left side is always a variable.
In this pattern, we favor the variable that has already existed in the if condition. Figure 3.5
is from Libtiff bug d13be72c-ccadf48a, the overfitted patch appends !(td→ td subifd ==
0) to the if condition while the correct patch appends !(td → td nstrips == 2) to the if
condition. Since td→ td nstrips already exists in the if condition in the buggy version, we
give the correct patch a higher rank than the overfitted patches. To implement this pattern,
we save all the original expressions in the if condition that is modified by SPR. Then, given
a SPR patch, we check whether the variable appended by the patch has already existed.
If it is, we give the patch a higher score than the other patches in the same scheme, so the
correct patch can be explored earlier than overfitted patches.

3.2 Machine Learning Method

3.2.1 Data Labeling

Both Genprog and SPR released their generated patches for the bugs in the benchmark
set, and for each patch, they clearly state if the patch is overfiited or correct. Meanwhile,
for each bug in the benchmark set, there is a correct patch that is composed by developers.
Genprog and SPR state a patch to be correct if and only if the patch is semantically
equivalent to the patch that is composed by developers. We assgin the label ‘class 0’ to
the patches that are correct. The correct patches include all the developers’ patches and
tool-generated correct patches. And we label overfitted patches as ‘class 1’. We will explain
more on how we label data in Section 4.1.2.

3.2.2 Feature Extraction

Our features are in two categories: 1) Deckard features and 2) meta features. Deckard [15]
is a tree-based code clone detection tool that detects code clones by comparing the ASTs of
code snippets. Since the patches generated by both Genprog and SPR are for C programs,

17

we deploy Deckard as AST parser to analyze the patch files. Deckard can parse C source
files while generating characteristic vectors of 225 features. Each feature corresponds to
one AST node type, such as if condition, for loop, definition of constant, binary operators
such as &&, etc., and its value records the number of occurrences of the AST node type
in the analyzed file. Given a buggy file and a patch to fix it, we run Deckard on both
buggy version and patched version of the file. Then, we get two sets of features, each set of
features corresponds to the number of occurrences of AST nodes in one version of the file.
We subtract the features of the buggy version from the features of the patched version.
After that, the values of the features we get are the numbers of AST nodes modified by
tool-generated patches. For example, we assume that the buggy version contains four
“if condition” nodes while the patched version contains five “if condition” node. After
subtraction, the value of the feature becomes one and we know the patch introduces one
“if condition”. Deckard features do not contain project-specific information such as method
names, variable names, class names, etc.

Our meta features contain lines of addition, lines of deletion, and change in the number
of unusual token sequences made by patches. For lines of addition and line of deletion,
we call Linux command “diff” between buggy and patched version. We treat lines with
plus sign at the beginning as addition and lines with minus sign at the beginning as
deletion. We ignore empty lines and lines containing only comments. To count the number
of unusual token sequences, we adopt n-gram language model. Existing work [14] shows
that software is more repetitive and predictable than natural languages. Besides, Ray et
al. [47] demonstrate that n-gram language model is a simple and efficient way to direct
inspection efforts. We run 3-gram model on both the buggy version and patched version
while empirically set the sequence size to be 5 and probability threshold to be 5× 10−6.
The value returned from n-gram model is the number of unusual sequences, which have
probabilities less than the threshold of 5× 10−6. Just like how we handle Deckard features,
we subtract the number of unusual sequences of the buggy version from the number of the
patched version. Then, the value we get is the number of unusual sequences that are
introduced by a patch.

3.2.3 Classification Algorithms

We leverage the features described above together with different supervised learning al-
gorithms to predict the correctness of tool-generated patches. The supervised learning
algorithms that we use include Alternating Decision Tree (ADTree in abbreviation), Naive
Bayes, Logistic Regression, and Naive Bayes with kernel density estimator. These learning
algorithms are widely used in research [2, 5, 16,20,35,50].

18

ADTree [43] is a special kind of decision tree. Instead of like normal decision tree that
follows only one path from the root to a leaf node, ADTree follows all the paths whose
decision nodes are satisfied and generates results based on all the reached leaves. Logistic
regression [53] is a kind of generalized linear models but with a slight difference. Logis-
tic regression assumes that the conditional probability of two features follows Bernoulli
distribution rather than a normal distribution. Naive Bayes [48] is a simple probabilistic
learning algorithm assuming that features are independent to each other and follow normal
distribution, while Naive Bayes with kernel density estimator is a variant of Naive Bayes
without the assumption that features follow normal distribution. We train the classifica-
tion models for the selected algorithms by using a data mining software Weka [13], which
contains state-of-the-art techniques in machine learning.

In this chapter, we propose two approaches for filtering out overfitted patches and
saving developers’ time on reviewing tool-generated patches. For the next chapter, we will
describe how we collect datasets and conduct experiments to evaluate the two approaches.

19

Chapter 4

Experimental Setup

In this section, we will explain how we conduct experiments to evaluate the proposed
anti-patterns and the machine learning approach.

4.1 Evaluated Data Sets and Bugs

4.1.1 Anti-Patterns Data Set

Anti-patterns are for SPR only. To evaluate the performance of our anti-patterns, we
choose nine bugs from the Genprog [12] benchmark data set, which contains 69 defects
and 36 functionality changes. For the bugs that we select, there are two requirements: 1)
there are correct patches existing in SPR search space. 2) the correct patch is not the first
patch that passes all the test cases. For the bugs with correct patches as the their first
generated patches, they already have optimal results and there is no need to apply anti-
patterns on them. Note that, our patterns would not filter out any correct patches for this
kind of bugs. For the bugs without correct patches in their search space, our patterns can
filter out some overfitted patches. But since there is even no correct patch, our patterns
cannot help developers reach the correct patches earlier and so we do not examine our
patterns on these bugs. There are nine bugs that satisfy our requirements.

Table 4.1 shows the nine bugs that we try to improve by embedding anti-patterns into
SPR. Column 1 lists the names of the projects and Column 2 is the bug IDs for the bugs
we try to improve on. The nine bugs are from five different projects with different func-
tionalities such as web programming (Php), image processing (Libtiff), data compression

20

Table 4.1: Evaluated Projects and Bugs for Anti-Patterns

Project Bug ID # PassingTCs #FailingTCs Loc(k)

PHP

308262-308315 6956 1

1046
309111-309159 6703 1
309688-309716 6972 1
310011-310050 6989 1

Libtiff
5b02179-3dfb33b 64 9

77
d13be7-ccadf4 32 3

Fbc 5458-5459 466 1 97
Python 69783-69784 306 1 407
Gzip a1d3d4-f17cbd 2 1 491

(Gzip), compilers (Fbc, Python). Column 3 and 4 are the numbers of passing test cases
and failing test cases respectively. The total number of test cases varies among bugs. Php
bug 310011-310050 has the largest test suite with 6956 passing test cases and 1 failing test
case, while Gzip bug a1d3d4-f17cbd has only 2 passing test cases and 1 failing test cases.
The last column shows the lines of code for the projects. The sizes of projects range from
77 thounsand lines of code to 1046 thousand lines of code.

We embed our patterns into SPR source code. The details about how we design anti-
patterns are shown in Section 3.1.

4.1.2 Machine Learning Data Set

To evaluate the machine learning approach for filtering out overfitted patches, we adopt
the benchmark set released by Genprog. The benchmark set contains 69 defects and 36
functionality changes. Besides the five projects we mentioned in Section 4.1.1, there are
also some defects and functionality changes that are from projects Gmp, Lighttpd, and
Wireshark, which are math library, web server, and network analysis tool respectively.
Both Genprog and SPR released their generated patches. We collect Genprog patches,
SPR patches and also developers’ patches for the bugs in the benchmark set. Table 4.2
shows details about our data. We collect and use Deckard to parse 423 patches from
Genprog, 71 patches from developers and 30 patches from SPR. Among the 423 Genprog
patches, 5 of them are correct, while 8 out of 30 SPR patches are correct. We regard all
the developers’ patches as correct patches.

21

Table 4.2: Evaluated Patches for Machine Learning Models

Source Total Correct

Developer 71 71
Genprog 423 5
SPR 30 8
PHP 158 158

Due to the number of correct patches versus the number of overfitted patches is too
imbalanced, we also collect developers’ patches from project PHP by a similar approach
with the previous studies [22, 23, 36, 40] about bug fixes. More specifically, we first clone
PHP source code and call “git log” to receive information of all git commits. Then, we parse
commit messages and search for phrases such as “fixed bug #” and “fix bug #”. There
are also some other phrases that might indicate a bug fix, but due to the consideration of
precision, we do not use them. To make sure that the commits we get are indeed bug fixes,
we search the bug ids succeeding ‘#’ in the bug tracking system of PHP. We keep only
the commits that have bug reports in the tracking system. Meanwhile, we do not consider
the bugs have multiple fix commits. For each of the commits, we have a patch and two
versions that one is before the patch and one is after the patch. We treat all the collected
PHP patches as correct patches. Finally, we label the instances of overfitted patches as
‘class 1’ and the instances of correct patches as ‘class 0’. So in total, we have 440 ‘class 1’
instances and 242 ‘class 0’ instances.

4.2 Evaluation Setup and Metrics

4.2.1 Anti-Patterns Setup and Metrics

To investigate the performance of anti-patterns, we embed anti-patterns into SPR and re-
run experiments on the selected nine bugs. We care about only the overfitted patches that
are explored earlier than their corresponding correct patches. For the overfitted patches
that are explored after the correct patches, their existences do not increase developers’
workload for reviewing the correctness of tool-generated patches, since we assume that
developers would stop at the first correct patches. Through our experiments, we want to
know: 1) how many overfitted patches that happen before the correct patches can be filtered
out by anti-patterns. The more overfitted patches are filtered out, the less time and efforts
would be spent on reviewing tool-generated patches. 2) whether the correct patches can

22

be preserved and pass the validation from anti-patterns. 3) if the anti-patterns introduce
significant runtime overhead to SPR or if the anti-patterns can improve the efficiency of
SPR.

4.2.2 Machine Learning Setup and Metrics

We use Genprog patches, Developer patches and PHP as our training set to build machine
learning models and use the models to predict the correctness of SPR patches. The four
learning algorithms that we use to train machine learning model are explained in Sec-
tion 3.2.3. Meanwhile, to make training data more balanced, We also perform SMOTE,
which is a data re-sampling technique that is used by existing work [44] in defect predic-
tion, on our training set to make ratio of overfitted patches versus correct patches become
roughly 1:1.

To measure the performance of the machine learning models, we use three metrics,
which are Precision, Recall, and F-measure. These three metrics are widely used in defect
prediction work [16, 30, 31, 37, 54] to evaluate the performance of prediction models. The
following is an brief introduction for the three metrics:

Precision =
true positive

true positive + false positive
(4.1)

Recall =
true positive

true positive + false negative
(4.2)

F −measure =
2 ∗ Precision ∗Recall

Precision + Recall
(4.3)

To calculate precision, recall, and F-measure, we need three numbers, which are true
positive, false positive, and false negative. True positive is the number of overfitted patches
that are correctly predicted as overfitted patches, while false positive is the number of
correct patches that are wrongly labeled as overfitted patches. False negative measures
the number of overfitted patches that are wrongly labeled as correct patches. A higher
precision means that we mis-classify fewer correct patches as overfitted patches. A higher
recall means that we can save more developer’s effort on reviewing the correctness of
overfitted patches.

Based on the description above, we conduct experiments to evaluate the two approaches.
The experimental results are shown in next chapter together with analysis.

23

Chapter 5

Experiment Results

Based on the analysis that we perform on developers, Genprog, and SPR patches, and the
results of running anti-patterns and machine learning approach, we are willing to answer
the following research questions:

• RQ1: Are the proposed anti-patterns effective in filtering out overfitted patches?

• RQ2: What is the runtime overhead of introducing anti-patterns to automatic pro-
gram repair tools?

• RQ3: Can the machine-learning-based approach filter out overfitted patches effec-
tively?

5.1 RQ1: Are the proposed anti-patterns effective in

filtering out overfitted patches?

To evaluate the performance of the proposed anti-patterns, we embed them into SPR source
code and re-run experiments on the selected nine bugs. As we mentioned in Section 4.1.1,
the selected nine bugs all have correct patches in their search space but there are overfitted
patches explored before the correct patches. Table 5.1 are the results from our experiments.
The first and second column list project names and bug IDs respectively. Column “Try-
at-Least” shows the number of schemes that we try in order to reach the correct patches in
search space. Column 4 shows the total number of patches that are generated by trying the

24

Table 5.1: Performance for Anti-Patterns

Project Bug ID Try-at-Least # Patches # OrigOverfit # NewOverfit FilterRate

PHP

308262-308315 8000 4 3 1 66.7%
309111-309159 25000 3 2 1 50%
309688-309716 8500 145 101 97 4.0%
310011-310050 32000 181 51 27 47.1%

Libtiff
5b02179-3dfb33b 57000 239 209 163 22.0%

d13be-ccadf 400 309 14 0 100%
Fbc 5458-5459 500 24 13 7 46.2%
Gzip a1d3d4-f17cbd 8000 4 3 3 0%
Python* 69783-69784 80 6 3 1 66.7%

Total – – 915 399 300 44.7%

number of schemes specified in Column 3. Column “# OrigOverfit” shows the number of
overfitted patches that happen before the correct patches without the anti-patterns. For a
bug, we care about only the overfitted patches that happen before the correct patch, since
those overfitted patches are the patches that require developers to review. We assume that
developers would stop reviewing when they find the correct patch. Column “# NewOverfit”
shows the number of overfitted patches that happen before the correct patches with the
anti-patterns have been embedded. From the table, we can see that overfitted patches are
the overwhelming majority of tool-generated patches. For the 915 tool-generated patches
that SPR generates, there are only nine correct patches while the rest are all overfitted
patches. Among the 399 overfitted patches that happen before the correct patches, we
filter out 99 of them, in other words, we filter out 24.8% overfitted patches. Except for
python 69783-69784, the anti-patterns successfully preserve all the correct patches not only
for the selected nine bugs, but also for the bugs that have correct patches being the first
generated patch. As we explained in Section 3.1, python 69783-69784 is a special case
since it is functionality change instead of a bug. Column “FilterRate” demonstrates how
much reviewing effort that the anti-patterns can save for developers. The performance of
the anti-patterns varies depending on bugs. For Libtiff bug d13be-ccadf, the anti-patterns
successfully expose the correct patches as the first generated patch. However, for the bugs
like Gzip a1d3d4-f17cbd, none of its overfitted patches can match our anti-patterns. On
average, with the anti-patterns embedded, developers can review 44.7% less tool-generated
patches to reach correct patches.

Table 5.2 shows the performance of each individual anti-pattern. The first three columns
are identical to Table 5.1, while Column 4, 5, and 6 list the number of overfitted patches

25

Table 5.2: Performance of Individual Anti-Patterns

Project Bug ID Try-at-Least Pattern1 Pattern2 Pattern3 LostFun

PHP

308262-308315 8000 0 2 0 Less
309111-309159 25000 0 0 1 Similar
309688-309716 8500 2 0 2 Similar
310011-310050 32000 1 3 20 Less

Libtiff
5b02179-3dfb33b 57000 22 15 9 Less

d13be-ccadf 400 1 0 0 Less
Fbc 5458-5459 500 0 0 6 Similar
Gzip a1d3d4-f17cbd 8000 0 0 0 Similar
Python* 69783-69784 80 1 0 1 Less

Total – – 27 20 39 –

that are filtered out by each anti-pattern correspondingly. Here, we do not show the
performance of pattern 4, because pattern 4 just re-ranks the patches in the same scheme
instead of filtering patches out. For pattern 4, it ranks the correct patch for Libtiff d13be-
ccadf as the first patch while moves 13 overfitted patches, which are in the same scheme
with the correct patch, to the back of the correct patch. The last row is the summary
for each anti-pattern. As we can see, these three anti-patterns are widely shared among
overfitted patches and are not specific to certain bugs. The three patterns filter out 27,
20, and 39 overfitted patches respectively.

Meanwhile, we evaluate the quality of the SPR-generated patches with the anti-patterns
embedded. For a bug, we compare its new first patch, which is the first patch that is
generated by SPR with the anti-patterns, with its old first patch, which is the first patch
that is generated by SPR without the anti-patterns, to see if the new first patch deletes
more, less, or a similar extent of functionalities than the old first patch does. For example,
if the old first patch is appending && !(1) to an if condition, while the new first patch
is inserting a new statement or appending &&!(a == 1) to an if condition. In this
case, we think the new patch remove less functionalities than the old patch. Column
“LostFun” shows the results of the comparisons. Five out of nine new first patches delete
less functionalities than their old first patches do, while the rest delete functionalities to
a similar extent as the old first patches do. None of the new first patches deletes more
functionalities comparing with the old first patches do. Tool-generated patches that delete

26

less functionalities can narrow down the search scope for the correct fix locations and better
guide developers to find a fix.

The proposed anti-patterns are widely shared among overfitted patches but not correct
patches. On average, the anti-patterns can reduce 44.7% tool-generated patches for de-
velopers to review, while being able to preserve the correct patches for bugs. Meanwhile,
the anti-patterns prevent tool-generated patches from removing functionalities.

5.2 RQ2: What is the runtime overhead of introduc-

ing anti-patterns into automatic program repair

tools?

To answer this question, we conduct another set of experiments on the nine bugs. For each
bug, we re-run SPR on it without and with anti-patterns separately. Different from the
configurations for the experiments in Section 5.1, here we try one thousand repair schemes
for each run. Table 5.3 shows the time needed to finish exploring the first one thousand
schemes. Column “PureSPR” is the time needed for the original version of SPR, while
Column “PatternSPR” is for the SPR with anti-patterns embedded. To reveal how much
time we can save by introducing the patterns, we divide the time in Column 3 by the time
in Column 4 and see how many times anti-patterns can speed up SPR. Take Libtiff d13be7-
ccadf4 as an example, exploring the first one thousand schemes takes 2 hours, 33 minutes
and 1 second for original version of SPR, and 1 hour 5 minutes and 36 seconds for SPR
with anti-patterns embedded. The SPR with anti-patterns runs 1.41 times (1583 seconds /
1119 seconds) faster than the original SPR. The reason why anti-patterns can save machine
time is, the patches that match anti-patterns would be filtered out immediately, and would
not proceed to “Generate-and-Validate” step. In other words, the patterns save time for
running test suite on the detected overfitted patches. However, we also see some cases like
PHP 309111-309159 and PHP 310011-310050, that the SPR with anti-patterns runs more
slowly than the original SPR. This is because most SPR-generated patches do not satisfy
anti-patterns and testing anti-patterns on patches introduces extra overhead to SPR. On
average, embedding the proposed anti-patterns into SPR improve SPR’s efficiency by 1.34
times.

Introducing the proposed anti-patterns to SPR can greatly improve the efficiency of
SPR. On average, the anti-patterns speed up SPR by 1.34 times.

27

Table 5.3: Time Cost for Introducing Anti-Patterns (h:hour, m:minute, s:second)

Project Bug ID PureSPR (h:m:s) PatternSPR (h:m:s) SpeedUp

PHP

308262-308315 13:02:31 9:08:07 1.43
309111-309159 1:32:32 1:50:12 0.83
309688-309716 2:56:46 2:08:19 1.38
310011-310050 1:51:29 3:59:21 0.47

Libtiff
5b0217-3dfb33 0:27:37 0:18:39 1.41
d13be7-ccadf4 2:33:01 1:05:36 2.33

Fbc 5458-5459 1:48:04 1:10:37 1.53
Python 69783-69784 1:10:23 0:53:27 1.32
Gzip a1d3d4-f17cbd 0:09:02 0:05:40 1.36

5.3 RQ3: Can the machine-learning-based approach

filter out overfitted patches effectively?

To answer this question, we train machine learning models by using Genprog patches,
Developers’ patches, and PHP patches and leverage the trained models to predict the
correctness of SPR patches. In our training set, we have 418 overfitted patches and 234
correct patches. Note that, we also perform a data re-sampling technique named SMOTE
on our training set to make ratio of overfitted patches versus correct patches become roughly
1:1. Table 5.4 shows the performance of machine learning models that are trained with
different learning algorithms. The first Column shows the algorithms that we use and the
rest three columns are the precision, recall, and F-measure for the corresponding models.
The learning algorithms that we use are ADTree, Naive Bayes, Logistic Regression, and
Naive Bayes with kernel density estimator (represented as “NaiveK” in the table). As we
can see, the results vary with algorithms. The best result happens to the model trained with
NaiveK, which predicts overfitted patches with 77.8% precision, 95.5% recall, and 85.7%
F-measure. More specifically, 21 out of 22 overfitted patches are predicted as overfitted
patches correctly. However, we lose 6 out of 8 correct patches.

As we mentioned in Section 3, generating a correct patch is difficult and costly. From
the point of mis-classifying correct patches, using machine learning models to predict the
correctness of tool-generated patches is not a practical way.

28

Table 5.4: Performance for Machine Learning Models

Algorithms Precision Recall F-measure

ADTree 62.5% 22.7% 33.3%
Naive 76.0% 86.4% 80.9%
Logistic 61.1% 50.0% 55.0%
NaiveK 77.8% 95.5% 85.7%

Using machine learning techniques with AST token-level features and meta-features to
reduce overfitted patches is impractical due to the mis-classification of correct patches.
We believe the machine learning approach requires significant future work, e.g. more
representative features and effective classification algorithms, to be useful in practice.

29

Chapter 6

Threats

6.1 Data Set Selection

For the selection of data set, we choose the data set proposed by Genprog. There are
69 defects and 36 functionality changes in this data set, which is well-maintained and
widely used by most existing work in automatic program repair tools [12,27,28,34]. In our
experiments, we choose nine bugs from the data set. The nine bugs are from five different
projects with different functionalities as we mentioned in Section 4.1.1. Besides these five
projects, there are also some bugs from projects gmp, lighttpd, and wireshark. All of these
projects have abundant test cases for running “Generate-and-Validate” approach.

At the same time, there exists other data sets. For example, Goues et al. [25] introduces
two new data sets in terms of “MANYBUGS” and “INTROCLASS”. “MANYBUGS” is
an extension to the data set that we select, while “INTROCLASS” consists of 998 defects
from the programs that are written by the students from a C introductory programming
course.

For fair comparison with existing work such as SPR, we choose Genprog data set as our
analyzed target. The performance of our machine learning features may vary depending on
the choice of data set. Meanwhile, it is possible that the performance of the anti-patterns
fluctuates between projects, although we do not find any clues that the anti-patterns are
specific to certain projects through our experiment results.

30

6.2 Repair Tool Selection

Based on our inspection of the patches from a successful search-based automatic program
repair tool SPR, we propose the anti-patterns. The reason why we choose SPR to embed
and test the anti-patterns is that, SPR is a more successful tools than Genprog as we
mentioned in Chapter3. Due to the variety in methodologies of generating repairs, our
proposed patterns might not be all applicable to other repair tools. For example, pattern 2
does not apply to the oracle-based repair tool Angelix [34] since Angelix would not generate
a patch to add a return statement, but pattern 1 and pattern 3 are still applicable.

Meanwhile, depending on the repair tools to which anti-patterns are applied, the po-
sition where we embed anti-patterns might be different. There exists differences in the
workflow of automatic program repair tools, and so anti-pattern might speed up repair
tools more or less comparing with they speed up SPR. Take SemFix [38] as an example,
SemFix is an oracle-based repair tool that converts test cases into constraints and trans-
forms a program repair problem to a SAT problem. By solving the SAT problem, SemFix
can find a program change that makes all test cases passed. We can still check anti-patterns
right after patches have been generated, but anti-patterns would not save time by not re-
running test suites. Because the test cases are already converted to constraints at the
step of generating patches and there is no more validation step after patches have been
generated.

31

Chapter 7

Related Work

7.1 Automatic Repair Tools

In recent years, we have witnessed many successful automatic program repair tools [1, 6,
8, 12, 21, 27, 33, 34, 38, 42]. All these repair tools aim to generate patches to fix software
defects with little or none developers’ efforts. To fix defects, repair tools usually require
the source code of buggy files and the test suites that can reveal bugs. These repair tools
vary in the algorithms of generating patches.

Debroy and Wong [9] propose an intriguing question: if mutating a correct program can
result in a realistic fault, is it possible to mutate a faulty program to generate a realistic
fix? They deploy mutation technique to generate possible repairs. As generating mutants
can be expensive, they combine mutation techniques with fault localization techniques to
reduce repairing cost. Their evaluation on the programs from the Siemens suite and Java
Ant proves the effectiveness of their strategy.

ClearView [42] is a generate-and-validate system that learns invariants by observing
normal executions. When a failure is detected, ClearView finds a set of correlated invariants
that characterize normal and erroneous executions, and generates a set of candidate patches
to enforce the correlated invariants. ClearView selects the most successful patch based on
the continued execution, aiming at minimizing negative effects.

Nopol [10] is dedicated to repair buggy if-conditions and missing preconditions. Given
a program and its test suite, Nopol first locates buggy statements and identifies fix oracles.
During test suite execution, Nopol collects the context of conditional expressions and their
expected values in each test case, then transforms them into a Satisfiability Modulo Theory
(SMT) problem. The solutions to the SMT problem are converted to patches.

32

GenProg [12] uses genetic programming technique [3,4] to to select mutation operations
that make more test cases passed. The mutations operations include copy, replacement and
deletion. Meanwhile, Genprog introduces the benchmark data set containing 69 defects
and 36 functionality changes. This data set is widely adopted by the existing work in
automatic program repair.

The authors of PAR [21] manually inspect more than 60,000 human-written patches
and propose six fix patterns that are widely adopted (around 30%) in real patches. These
patterns are encoded as fix templates to generate repairs.

RSRepair [45] uses the same mutation operations as GenProg’s. But instead of us-
ing genetic programming to select mutation operation, it deploys random search, which
gives equal chance to all the mutations operations. Different from Genprog that keeps
adding more operations to complement patches, RSRepair discards invalid patches imme-
diately after they has been generated and so RSRepair requires less test case executions.
Their evaluation on 7 programs shows that RSRepair improves Genprog in aspects of both
efficiency and effectiveness.

AE [56] defines a model to measure the cost of generating a patch based on size of the
fault space, size of the fix space, and test executions. Besides, AE checks the equivalence
between patches and so reduces repair search space greatly.

SPR [27] is a state-of-art automatic program repair tool. To fix a defect, SPR first
mutates the suspicious faulty lines by using some manually-encoded templates with an
abstract variable inserted. Then, SPR assigns a sequence of values to the inserted abstract
variable and try to find a sequence of values that can make all the test cases passed. At
the same time, SPR records states of the variables in the context and search for a variable
whose values can match the found sequence of values. If SPR finds such a variable, SPR
would replace the abstract variable with the found variable and generate a patch. The
technique proposed by SPR can greatly reduce repair search space and generate more
meaningful candidate repairs.

Prophet [28] is an expansion to SPR. Prophet adopts the same defect localization
algorithm and the same framework of generating repairs with SPR. Moreover, Prophet
has one more step to rank candidate repairs by learning from developer patches in aspects
of variable invocations, mutation operations and fix locations. By testing on the same
benchmark data set, Prophet successfully exposes correct patches earlier comparing with
SPR.

SemFix [38] is an oracle-based repair tool. It converts test cases into repair constraints
via symbolic execution and solve the repair constraints using program synthesis. Direct-
Fix [32] believes simple fixes are the best fixes. Unlike SemFix that takes fault localization

33

and repair as separate stages, DirectFix integrates fault localization and repair genera-
tion, and tries to generate a patch as simple as possible. Angelix [34] is a more scalable
oracle-based repair tool, which can generate a repair that modifies several faulty locations.
Relifix [51] is a repair tool designed for fixing regression bugs through manually-encoded
fix patterns.

Concurrent to my thesis work, Tan et al. [52] proposes a similar pattern-based approach
to address the overfitted patch problem. In their work, they propose six anti-patterns,
while four of them are for Genprog and the rest two are for SPR. They do not have our
anti-pattern 3 and anti-pattern 4. For the two anti-patterns that are dedicated to SPR,
they name them as Anti-append Trivial and Anti-append Early Exit respectively. For their
Anti-append Trivial pattern, it corresponds to our anti-pattern 1. However, it considers
only the cases when SPR turns an if condition to if(... || (1)) or if(... && !(1)), while
it does not consider the cases of if(... a && !(a)) or if(...a || !a). Anti-append Early
Exit pattern corresponds to our anti-pattern 2 with a slight difference. Their Anti-append
Early Exit pattern filters out not only the patches that introduce return statements, but
also the patches that introduce control statements such as goto and break. Through our
inspection on SPR patches, we believe their Anti-append Early Exit pattern would filter
out the correct patch of Php bug 308734-308761, which is another bug in the Genprog
data set. The correct SPR-generated patch of Php bug 308734-308761 introduces a break
statement guarded by an if condition and it is the first patch that passes all the test cases.

7.2 Limitations of “Generate-and-Validate” Approach

Many prior studies [8,12,19,26,32,38,41] indicate that “Generate-and-Validate” approach
is feasible and efficient. However, since test cases are limited and imperfect, “Generate-
and-Validate” approach is not a perfect validation for the correctness of patches. Existing
work [27, 46, 49] has shown that there exists a significant population of tool-generated
patches that can pass their test suites but are actually incorrect. Due to the poor quality
of test suites, Repair tools like GenProg, RSRepair, AE, etc. generate only zero or one
correct patch for each bug, whereas most generated patches are overfitted [46]. Recent
work [49] also exposes the limitations of “Generate-and-Validate” approach. In this re-
search, two independent test suites are deployed to produce and validate tool-generated
patches separately. One of the two test suites is called training test suite and used for
generating patches. If a patch can pass all the test cases in the training test suite, it would
be tested by the other test suite. If a patch passes the validation by training test suite but
fails to pass the validation by the other test suite, the patch is regarded as overfitted to its

34

training test suite. The results show that patches are always overfitted to their training
test suites. Moreover, even if test suites are of high quality and have high coverage, there
still exists overfitted patches.

35

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Automatic program repair tools aim to fix software defects with little or none developers’
efforts. Sometimes, the tools require developers to specify the files that are suspected of
being buggy, since fault localization algorithms cannot locate the proper buggy files and
thus mislead the repair tools to generate irrelevant search space. But still, a successful
repair tool is expected to greatly save developers’ efforts. However, due to the existence
of overfitted patches, which are the patches that can pass the validation by test cases
but are actually incorrect, tool-generated patches cannot be deployed directly and require
developers to review their correctness before applying. As the population of overfitted
patches is big, reviewing tool-generated patches takes even more time and efforts than just
letting developers compose a correct patch.

In this thesis, we first perform a deep analysis on the patches generated by SPR,
Genprog, developers for the bugs in the benchmark set proposed by Genprog. During
our inspection on both overfitted patches and correct patches, we are looking for patterns
and features that significantly differentiate between overfitted patches and correct patches.
We propose two approaches to address the challenging overfitted patch problem in the
automatic program repair area. The two approaches are the anti-patterns approach and
the machine learning approach, which are believed to reduce overfitted patches and save
developers’ efforts on reviewing tool-generated patches.

In aspect of anti-patterns approach, we propose four anti-patterns that are shared
among overfitted patches but not correct patches. These anti-patterns can be embedded

36

in automatic program repair tools. A tool-generated patch that matches any anti-patterns
would be filtered out immediately after it has been generated. To evaluate the anti-
pattern approach, we embed the anti-patterns into a successful repair tool named SPR
and select eight bugs and one functionality change that have potential to generate correct
patches as their first patches from the widely-adopted benchmark data set proposed by
Genprog. Through our experiments, on average, the anti-patterns reduce 44.7% tool-
generated patches for developers to review, while preserve the correct patches for all the
bugs (except for python 69783-69784, which is the functionality change) in the benchmark
set. At the same time, by filtering out overfitted patches at runtime and not running
the “Generate-and-Validate” approach on the filtered patches, the anti-patterns approach
greatly improves the efficiency of SPR by 1.34 times on average.

For the machine learning method, we adopt 228 features to capture the differences
between overfitted patches and correct patches. The 228 features belong to two categories,
which are AST token-level features and meta features. We leverage Deckard to extract AST
token-level features to capture syntactic changes that are introduced by patches, while use
heuristics and n-gram model to extract meta features to capture the abnormal operations
in patches. We use the trained machine learning models to predict the correctness of tool-
generated patches. Our best results are achieved by using the learning algorithm Naive
Bayes with kernel density estimator, with 77.8% precision, 95.5% recall, and 85.7% F-
measure. However, among the eight correct patches, the trained model mis-classifies six of
them. Due to the mis-classification of the correct patches, we believe that using machine
learning method to reduce overfitted patches requires significant future work, e.g., more
representative features and effective classification algorithms, to be useful in practice.

8.2 Future Work

8.2.1 Anti-Patterns

Besides the four anti-patterns which we described in Chapter 3, we have other anti-patterns
that are also widely shared among overfitted patches. The reason why we do not include
them into the anti-pattern approach is that, we want to preserve correct patches but they
might wrongly filter out correct ones. This is a trade-off between preserving more correct
patches, or filtering out more overfitted patches. For the future work on the anti-patterns
approach, we will perform a deeper analysis on the anti-patterns that might filter out
correct patches, to see if it is worth to include them.

37

Meanwhile, based on the insights given by the anti-patterns, we want to revise the
repair templates to make them more precise. More precise repair templates could prevent
overfitted patches from being generated at root and help repair tools save time by trying
fewer repair candidates.

8.2.2 Machine Learning

Currently, our models are trained by the patches from developers, Genprog, and PHP,
while Genprog is the only source of overfitted patches in the training set. Since Genprog
and SPR use different repair algorithms and repair templates to compose patches, there
might be some differences in their generated patches and training models with Genprog
patches might not capture the characteristics of SPR patches well. In the future, we will
replace the Genprog patches in the training set with the overfitted patches from SPR. In
addition, we will collect more human patches from different projects to expand our training
set.

Encoding the anti-patterns as features is another direction for our future work. As the
proposed anti-patterns are all good indicators of patches’ correctness and are proved to
be efficient to discriminate correct patches from overfitted patches, we want to encode the
anti-patterns as features, add them to machine learning models, and test their efficiency
as features in the future.

38

Bibliography

[1] M. Alkhalaf, A. Aydin, and T. Bultan. Semantic differential repair for input validation
and sanitization. In ISSTA 2014, pages 225–236, 2014.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In ICSE 2006, pages
361–370, 2006.

[3] A. Arcuri. On the automation of fixing software bugs. In ICSE 2008, pages 1003–1006,
2008.

[4] A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug
fixing. In CEC 2008, pages 162–168, 2008.

[5] G. Canfora and L. Cerulo. Supporting change request assignment in open source
development. In SAC 2006, pages 1767–1772, 2006.

[6] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic workarounds for web
applications. In FSE 2010, pages 237–246, 2010.

[7] S. Chandra, E. Torlak, S. Barman, and R. Bod́ık. Angelic debugging. In ICSE 2011,
pages 121–130, 2011.

[8] Z. Coker and M. Hafiz. Program transformations to fix C integers. In ICSE 2013,
pages 792–801, 2013.

[9] V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for faulty
programs. In ICST 2010, pages 65–74, 2010.

[10] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic repair of buggy if
conditions and missing preconditions with SMT. In CSTVA 2014, pages 30–39, 2014.

39

[11] D. Gopinath, S. Khurshid, D. Saha, and S. Chandra. Data-guided repair of selection
statements. In ICSE 2014, pages 243–253, 2014.

[12] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. IEEE Trans. Software Eng., pages 54–72, 2012.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: An update. SIGKDD Explor. Newsl., pages 10–18, 2009.

[14] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of
software. In ICSE 2012, pages 837–847, 2012.

[15] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In ICSE 2007, pages 96–105, 2007.

[16] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In ASE 2013, pages
279–289, 2013.

[17] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu. Heterogeneous cross-company defect
prediction by unified metric representation and cca-based transfer learning. In ES-
EC/FSE 2015, pages 496–507, 2015.

[18] M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In PLDI 2011, pages 437–446, 2011.

[19] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing programs with semantic
code search. In ASE 2015, pages 295–306, 2015.

[20] T. M. Khoshgoftaar and N. Seliya. Tree-based software quality estimation models for
fault prediction. In METRICS 2002, pages 203–214, 2002.

[21] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In ICSE 2013, pages 802–811, 2013.

[22] M. Kim, D. Cai, and S. Kim. An empirical investigation into the role of api-level
refactorings during software evolution. In ICSE 2011, pages 151–160, 2011.

[23] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software changes: Clean or
buggy? IEEE Trans. Softw. Eng., pages 181–196, 2008.

[24] C. Lattner. Llvm and clang: Advancing compiler technology. In FOSDEM 2011, 2001.

40

[25] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu, S. Forrest, and
W. Weimer. The manybugs and introclass benchmarks for automated repair of C
programs. IEEE Trans. Software Eng., pages 1236–1256, 2015.

[26] P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing of concurrency bugs. In
FSE 2014, pages 318–329, 2014.

[27] F. Long and M. Rinard. Staged program repair with condition synthesis. In ES-
EC/FSE 2015, pages 166–178, 2015.

[28] F. Long and M. Rinard. Automatic patch generation by learning correct code. In
POPL 2016, pages 298–312, 2016.

[29] F. Long and M. C. Rinard. An analysis of the search spaces for generate and validate
patch generation systems. In ICSE 2016, pages 702–713, 2016.

[30] C. D. Manning and H. Schütze. Foundations of statistical natural language processing.
MIT Press, 2001.

[31] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
pages 308–320, 1976.

[32] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple program
repairs. In ICSE 2015, pages 448–458, 2015.

[33] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple program
repairs. In ICSE 2015, pages 448–458, 2015.

[34] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch
synthesis via symbolic analysis. In ICSE 2016, pages 691–701, 2016.

[35] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn
defect predictors. TSE 2007, pages 2–13.

[36] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic
databases. In ICSM 2000, pages 120–130, 2000.

[37] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. TBCNN: A tree-based convolutional
neural network for programming language processing. CoRR, 2014.

[38] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: program repair
via semantic analysis. In ICSE 2013, pages 772–781, 2013.

41

[39] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong. Topic-based defect prediction (nier
track). In ICSE 2011, pages 932–935, 2011.

[40] J. Park, M. Kim, B. Ray, and D. Bae. An empirical study of supplementary bug fixes.
In MSR 2012, pages 40–49, 2012.

[41] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller. Automated fixing
of programs with contracts. IEEE Trans. Software Eng., pages 427–449, 2014.

[42] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W. Wong, Y. Zibin, M. D.
Ernst, and M. C. Rinard. Automatically patching errors in deployed software. In
SOSP 2009, pages 87–102, 2009.

[43] B. Pfahringer, G. Holmes, and R. Kirkby. Optimizing the induction of alternating
decision trees. In PAKDD 2001, pages 477–487, 2001.

[44] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict
failures? In FSE 2008, pages 2–12, 2008.

[45] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on
automated program repair. In ICSE 2014, pages 254–265, 2014.

[46] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In ISSTA 2015, pages
24–36, 2015.

[47] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. T. Devanbu. On the
”naturalness” of buggy code. In ICSE 2016, pages 428–439, 2016.

[48] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall, 2002.

[49] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun. Is the Cure Worse Than the
Disease? Overfitting in Automated Program Repair. In ESEC/FSE 2015, pages 532–
543, 2015.

[50] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L. Giles. Real-time
automatic tag recommendation. In SIGIR 2008, pages 515–522, 2008.

[51] S. H. Tan and A. Roychoudhury. relifix: Automated repair of software regressions. In
ICSE 2015, pages 471–482, 2015.

42

[52] S. H. Tan, H. Yoshida, M. Prasad, and A. Roychoudhury. Anti-patterns in search-
based program repair. In FSE 2016, 2016.

[53] S. H. Walker and D. B. Duncan. Estimation of the probability of an event as a function
of several independent variables. Biometrika, pages 167–179, 1967.

[54] S. Watanabe, H. Kaiya, and K. Kaijiri. Adapting a fault prediction model to allow
inter languagereuse. In PROMISE 2008, pages 19–24, 2008.

[55] W. Weimer. Patches as better bug reports. In GPCE 2006, pages 181–190, 2006.

[56] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence for adaptive
program repair: Models and first results. In ASE 2013, pages 356–366, 2013.

[57] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically finding patches
using genetic programming. In ICSE 2009, pages 364–374, 2009.

[58] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., pages 183–200, 2002.

43

	List of Tables
	List of Figures
	Introduction
	Background
	Automatic Program Repair Tools
	Problem of the ``Generate-and-Validate'' Approach
	Supervised Learning

	Approaches
	Anti-Patterns
	Anti-Pattern 1: Turning an if condition to make it always true or always false
	Anti-Pattern 2: Adding a return statement to skip functionality
	Anti-Pattern 3: Adding a comparison with unusual value on the right side
	Anti-Pattern 4: Adding a variable that does not appear in the if condition

	Machine Learning Method
	Data Labeling
	Feature Extraction
	Classification Algorithms

	Experimental Setup
	Evaluated Data Sets and Bugs
	Anti-Patterns Data Set
	Machine Learning Data Set

	Evaluation Setup and Metrics
	Anti-Patterns Setup and Metrics
	Machine Learning Setup and Metrics

	Experiment Results
	RQ1: Are the proposed anti-patterns effective in filtering out overfitted patches?
	RQ2: What is the runtime overhead of introducing anti-patterns into automatic program repair tools?
	RQ3: Can the machine-learning-based approach filter out overfitted patches effectively?

	Threats
	Data Set Selection
	Repair Tool Selection

	Related Work
	Automatic Repair Tools
	Limitations of ``Generate-and-Validate'' Approach

	Conclusion and Future Work
	Conclusion
	Future Work
	Anti-Patterns
	Machine Learning

	Bibliography

