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Abstract 

In recent decades, population growth and global warming consequent to greenhouse gas emissions 

because of human activities, has changed the atmospheric composition leading to intensifying 

extreme climate phenomena and overall increase of extreme events. These extreme events have 

caused human suffering and devastating effects in recent record-breaking warming years. To mitigate 

adverse consequences arising from global warming, the best strategy is to project the future 

probabilistic behavior of extreme climate phenomena under changing environment.  

The first contribution of this research is to improve the predictive power of regression-based 

statistical downscaling processes to accurately project the future behavior of extreme climate 

phenomena. First, a supervised dimensionality reduction algorithm is proposed for the statistical 

downscaling to derive a low-dimensional manifold representing climate change signals encoding of 

high-dimensional atmospheric variables. Such an algorithm is novel in climate change studies as past 

literature has focused on deriving low-dimensional principal components from large-scale 

atmospheric projectors without taking into account the target hydro-climate variables. The new 

algorithm called Supervised Principal Component analysis (Supervised PCA) outperforms all of the 

existing state-of-the-art dimensionality reduction algorithms. The model improves the performance of 

the statistical downscaling modelling through deriving subspaces that have maximum dependency 

with the target hydro-climate variables. A kernel version of Supervised PCA is also introduced to 

reduce nonlinear dimensionality and capture all of the nonlinear and complex variabilities between 

hydro-climate response variable and atmospheric projectors.  

To address the biases arising from difference between observed and simulated large-scale 

atmospheric projectors, and to represent anomalies of low frequency variability of teleconnections in 

General Circulation Models (GCMs), a Multivariate Recursive Nesting Bias Correction (MRNBC) is 

proposed to the regression-based statistical downscaling. The proposed method is able to use multiple 

variables in multiple locations to simultaneously correct temporal and spatial biases in cross 

dependent multi-projectors. To reduce another source of uncertainty arising from complexity and 

nonlinearity in quantitative empirical relationships in the statistical downscaling, the results 

demonstrate the superiority of a Bayesian machine-learning algorithm. The predictive power of the 

statistical downscaling is therefore improved through addressing the aforementioned sources of 

uncertainty. This results in improvement of the projection of the global warming impacts on the 
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probabilistic behavior of hydro-climate variables using future multi-model ensemble GCMs under 

forcing climate change scenarios. The results of two Design-of-Experiments also reveal that the 

proposed comprehensive statistical downscaling is credible and adjustable to the changes under non-

stationary conditions arising from climate change.  

Under the impact of climate change arising from anthropogenic global warming, it is demonstrated 

that the nature and the risk of extreme climate phenomena are changed over time. It is also well 

known that the extreme climate processes are multi-dimensional by their very nature characterized by 

multi-dimensions that are highly dependent. Accordingly, to strength the reliability of infrastructure 

designs and the management of water systems in the changing climate, it is of crucial importance to 

update the risk concept to a new adaptive multi-dimensional time-varying one to integrate anomalies 

of dynamic anthropogenically forced environments. The main contribution of this research is to 

develop a new generation of multivariate time-varying risk concept for an adaptive design framework 

in non-stationary conditions arising from climate change. This research develops a Bayesian, dynamic 

conditional copula model describing time-varying dependence structure between mixed continuous 

and discrete marginals of extreme multi-dimensional climate phenomena. The framework is able to 

integrate any anomalies in extreme multi-dimensional events in non-stationary conditions arising 

from climate change. It generates iterative samples using a Markov Chain Monte Carlo (MCMC) 

method from the full conditional marginals and joint distribution in a fully likelihood-based Bayesian 

inference. The framework also introduces a fully Bayesian, time-varying Joint Return Period (JRP) 

concept to quantify the extent of changes in the nature and the risk of extreme multi-dimensional 

events over time under the impact of climate change. The proposed generalized time-dependent risk 

framework can be applied to all stochastic multi-dimensional climate systems that are under the 

influence of changing environments. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Global warming is recognized as one of the major threats to the planet in the 21st century. 

Anthropogenic greenhouse gas emissions are changing atmospheric composition leading to climate 

change. According to the Intergovernmental Panel on Climate Change (IPCC) fifth Assessment 

Report (IPCC, 2014), it is “extremely likely” that observed surface and atmospheric warming in 

recent decades since the mid-twentieth century is due to the increase in anthropogenic greenhouse gas 

emissions. There is a strong relationship between climate and hydrological systems. Subsequent 

increased temperature as a consequence of global warming enhances atmosphere water vapor—as the 

main greenhouse gas—which adversely influences hydro-climatic processes, leading to an overall 

increase of extreme events (Cheng and AghaKouchak, 2014). Global warming is thus directly 

increasing the risk of extreme climate events that are becoming more severe and frequent (Cheng and 

AghaKouchak, 2014; Karl and Trenberth, 2003) and threatening water resources in the future in 

different parts of the world. These extreme events have caused major human suffering and economic 

damages all around the world in recent record-breaking warmer years (Coumou and Rahmstorf, 

2012). Global changing climate raises the question of how reliable are our water resources planning 

and infrastructure designs to deal with these changing extreme disasters.  

Water professionals struggle to develop approaches that account for the impact of climate change 

on hydrological designs to reduce associated risks. Traditional, risk-based decision-making principles 

in water resources planning are based on the fundamental assumption of statistical stationarity. Under 

stationarity, it is assumed that the probabilistic characteristics of hydro-meteorological processes will 

not change over time, and that future water resources planning can be designed with past records in 

mind. Milly et al. (2008; 2015) argued that the fundamental assumption of stationarity has been 

influenced by climate change and anthropogenic effects, and therefore it is no longer applicable for 

water resources risk assessment and planning. Accordingly, water planners must revise current 

planning and analytic strategies to develop non-stationary probabilistic models based on the 

anomalies of the changing environment arising from climate change (Read and Vogel, 2015; Salas 

and Obeysekera, 2013). Therefore, in the changing environment an effective and flexible time-

varying design approach must be adopted for risk-based decision-making.  
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Univariate non-stationarity modelling in hydrological risk assessment has drawn a great deal of 

attention in hydrological science in recent years (Rosner et al., 2014; Salas and Obeysekera, 2013; 

Westra et al., 2014). It is well known that natural stochastic hydro-climate processes are, however, 

multivariate phenomena and by their very nature characterized by multi-dimensional properties that 

are statistically dependent. Accordingly, univariate risk analysis methods even under non-stationary 

conditions cannot fully characterize the properties of hydro-climate processes that are highly 

correlated. This inability may lead to high uncertainty for infrastructure designs, and destructive 

consequences in water resources systems. It is hence of crucial importance that water associated 

communities change from a univariate to a non-stationary multivariate perspective. Substituting this 

perspective in risk analyses leads to changing probabilistic behavior of each variable in multi-

dimensional hydro-climate processes. In a changing climate, a generalized fully time-varying 

multivariate risk framework should be designed to allow each dimension (marginal) and dependence 

structure between multi-dimensions (copula) to evolve simultaneously through time under non-

stationary conditions. In this time-dependent framework, the effect of non-stationarity will thus be 

integrated and probabilistic parameters of marginals and copula are allowed to change over time. The 

currently-used multivariate static (time-independent) risk analysis should thus be updated and 

substituted with the new multivariate time-varying risk concept for long-term decision making in 

water resources planning and infrastructure designs under changing environments arising from 

human-induced climate change.   

 To develop a long-term risk-based water resources plan in a non-stationary condition, the 

limitations of the relatively short historical hydro-climate records, and the uncertainties associated 

with future climate model projections, are considered major restrictions. To address these limitations, 

a time varying stochastic model can be developed by synthetizing historical observed records and 

future climate model projections using multiple climate forcing scenarios (Borgomeo et al., 2014; 

Milly et al., 2008). Future climate change information is derived from simulated large-scale 

atmospheric processes developed based on General Circulation Models (GCMs). GCMs simulate 

future climate at coarse spatial scales, and are unable to provide information that can be directly used 

at the finer scales of interest to hydrologists (Bennett et al., 2012; Dingbao Wang, 2013). This 

inadequacy has been the reason for developing dynamical and statistical downscaling techniques to 

transfer large-scale global atmospheric variables (provided by GCMs) to regional and local hydro-

climate information for use in climate change impact studies. One option for this is dynamical 

downscaling approaches, which are based on obtaining finer scale information from Regional Climate 
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Models (RCMs) driven by boundary conditions simulated using GCMs (Najafi and Moradkhani, 

2015). The limitation of these approaches is that they require expensive and complicated 

computations and use biased lateral boundary inputs as the basis of their simulations (Rocheta et al., 

2014a) that cannot be easily bias corrected for use. Statistical downscaling approaches rely on 

developing a statistical and quantitive relationship between large-scale atmospheric variables and fine 

scale variables at a particular site and have gained popularity among hydrologists wanting to predict 

climate change impacts on hydro-climate variables. The most popular methods in statistical 

downscaling are regression-based ones, which are preferred over other methods (weather typing and 

transfer function, and weather generation) because they have low computation requirements and are 

relatively straightforward to apply (Tofiq and Guven, 2014; Wilby et al., 2004). These transfer 

function methods involve developing direct quantitive relationships between predictands and 

predictors through different forms of regression (Dibike and Coulibaly, 2005a).  

Due to the complexity of climate-associated processes, the three main challenges in developing the 

stochastic regression-based statistical downscaling approaches that need to be addressed in climate 

change impact assessments are: (i) development of the right quantitative functional relationship for 

capturing the complex nonlinearity between target hydro-climate variables and atmospheric simulated 

predictors; (ii) identification of predictor variables from high dimensional atmospheric predictors 

conveying climate change information with respect to the hydro-climate variable of interest; and iii) 

correction of biases in raw GCMs to represent interannual and interdecadal fluctuation of climate.  

It is well known that due to the complex nonlinear relationship existing between target hydro-

climate variables and large-scale atmospheric variables, standard linear methods fail to capture the 

nonlinear functional relationship. To address the first challenge in developing a statistical 

downscaling model, attention should be paid to nonlinear-based soft computing data-driven 

regression models. From these techniques, Bayesian-based machine-learning methods have become 

very popular as they can improve projections of climate change impacts in terms of performance 

accuracy through avoiding over-fitting.     

In terms of the second challenge, projecting a dependent hydro-climate variable from high-

dimensional large-scale atmospheric variables leads to inadequate results in terms of performance 

accuracy, due to the curse of dimensionality. The number of potentially important input variables may 

be large and the existence of correlation among data may subsequently induce redundancy and 

collinearity. To complicate matters further, the inherent complexity, nonlinearity, and 
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interdependency among explanatory large-scale atmospheric parameters give rise to unsatisfactory 

predictive performance of data-driven models in statistical downscaling. Despite its critical 

importance in climate change studies, the second challenge has so far gained only limited attention. 

Developing supervised learning-based dimensionality reduction methods, which take into account the 

dependence between target hydro-climate variable and atmospheric predictors, may thus lead to 

improvement of the predictive power of the statistical downscaling process.      

Bias correction as the third challenge in statistical downscaling has been shown to improve the 

quality of GCMs for use in projecting hydro-climate variables under different climate change 

scenarios of the future (Mehrotra and Sharma, 2012; Ojha et al., 2013). In the statistical downscaling 

processes, therefore, an initial post-processing correction must be carried out on GCM outputs to 

represent the current climate. In this procedure, based on the statistical characteristics of observations, 

the differences between observed and simulated large-scale atmospheric variables are removed. In 

addition, interannual and interdecadal variability in the large-scale climate modes are often not well 

represented in GCM simulations (Rocheta et al., 2014b) resulting in uncertainty and biases in 

projections of hydro-climate variables relating to the future. Thus, raw data from GCMs must also be 

corrected to capture the effect of low frequency variability of teleconnections on large-scale 

atmospheric variables (Mehrotra and Sharma, 2012).  

Reducing different sources of uncertainty is hence crucial in statistical downscaling as it enhances 

the quality of the hydro-climate variable projections in the future. Multi-model ensemble future 

projections derived from the statistical downscaling process can subsequently be combined with 

historical records to quantify probabilistic behavior of multivariate hydro-climate processes. Relying 

on the synthetized information as inputs, decision makers are able to effectively develop an adaptive 

time-varying risk framework to improve the reliability of infrastructure designs and the management 

of water systems under non-stationary conditions.    

1.2 Research Outline 

The objectives of this thesis are: (i) to enhance the reliability of future projections to be synthetized 

with recorded observations as inputs of the adaptive multivariate risk framework. For this purpose, 

this research attempts to address all the aforementioned challenges in the regression-based statistical 

downscaling processes; (ii) to update currently-used stationary multivariate risk concepts to develop 

new generation of the adaptive multivariate non-stationary-based methodologies for future risk-based 
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water system designs under changing environments arising from climate change. These general 

research objectives are elaborated on as follows.  

Due to the complexity of climate-associated processes, identification of predictor variables from 

high dimensional atmospheric variables is considered a key factor for improvement of climate change 

projections in statistical downscaling approaches. To address the curse of dimensionality, this thesis 

aims to adopt a new approach of supervised learning dimensionality reduction to regression-based 

statistical downscaling. The proposed technique enhances the performance accuracy of the 

downscaling as it takes into account the target response variable and extracts principal components in 

which the dependency between response hydro-climate variable and large-scale atmospheric 

projectors is maximized. Moreover, two soft-computing nonlinear machine-learning methods are 

employed in the modelling procedure to capture non-linearity between the predictand and dimension-

reduced predictors. 

   One of the main post-processing analyses in statistical downscaling approaches that improves the 

quality of raw data from GCMs in projecting target hydro-climate variables under future climate 

changes scenarios is bias correction. The main drawback of many bias correction methods is that they 

only take into account biases in the distribution of GCM simulations rather than biases in the 

representation of persistence and variability in simulations. To address this source of uncertainty and 

to represent interannual and interdecadal fluctuation of climate in raw GCM outputs, this thesis 

develops an adaptation of the Multivariate Recursive Nesting Bias Correction (MRNBC) approach to 

the regression-based statistical downscaling. Using this method, one is able to correct biases in the 

spatial cross dependence statistical attributes over multiple time scales in GCM predictors.   

 Under non-stationary conditions arising from climate change, the behavior of extreme hydro-

climate processes changes and their probabilistic parameters may no longer be constant. In this 

condition, alternative approaches should be developed in which the effect of non-stationarity is 

integrated and probabilistic parameters are allowed to change over time in risk assessment studies. 

This concept has been studied in terms of non-stationarity modelling in the univariate context in 

recent years. Due to unavailability of robust methodology and complexity of theoretical concepts, 

however, the notion of time-varying non-stationary risk is relatively new in the multivariate context 

and scarcely investigated in the water resources area. This thesis argues that the risk concept should 

be updated to a flexible time-varying multivariate one to model dependent time-varying multi-

dimensions under non-stationarity conditions generated by climate change. The main goal of this 
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research is to introduce a new time-varying non-stationary multivariate risk framework by developing 

a Bayesian, dynamic copula. In the proposed methodology, the effect of non-stationarity is integrated 

and probabilistic parameters of marginals and the dependence structure between multi-dimensions 

(copula) are allowed to change over time. Doing so, water resources authorities will be able to 

compute time-varying risk of extreme multi-dimensional hydro-climatic events in a changing climate.  

1.3 Thesis Structure and Research Contributions 

This thesis is structured around published and submitted manuscripts. Chapter 2 is based on a 

manuscript published by (Sarhadi et al., 2016d) in the Climate Dynamics journal. Chapter 3 

corresponds to a published paper by Sarhadi et al. (2016c) in the Journal of Hydrology. Chapter 4 

corresponds closely to a published paper by Sarhadi et al. (2016b) in the Water Resources Research 

journal and a submitted manuscript in the journal of Scientific Reports by (Sarhadi et al., 2016a).  

The main contributions that this research has made to hydrological modelling in climate change 

impact assessment and multivariate risk studies are summarized as follows: 

 A Supervised Principal Component Analysis (Supervised PCA) is adopted to regression-based 

statistical downscaling for identification of influential atmospheric predictors. Supervised 

PCA method is a generalization of PCA that explores subspaces along which the dependency 

between target hydro-climate variable and large-scale atmospheric projectors is maximized. 

This procedure improves the performance and the predictive power of regression-based 

statistical downscaling processes with high-dimensional input data. To capture the complexity 

and nonlinear variability between hydro-climatic response variables and projectors, a 

kernelized version of Supervised PCA is also presented for nonlinear data transformation. 

Details about Supervised PCA algorithms and results are presented in Chapter 2.  

 The development of a comprehensive regression-based statistical downscaling approach using 

nonlinear and multivariate soft-computing techniques to reduce different sources of 

uncertainty and enhance the quality of hydro-climate projections. The approach captures 

complex and nonlinear relationships between large-scale atmospheric processes and target 

hydro-climate variable. The approach also proposes a framework to address bias correction 

using multiple locations to include spatial as well as temporal dependence in GCM 

simulations. In Chapter 3, the comprehensive statistical downscaling approach and its 

successful application in projection of an illustrative example are presented.  
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 The development of a generalized time-varying multivariate risk framework evolving through 

time under non-stationary conditions. This concept is developed by introducing a Bayesian, 

dynamic conditional copula to model the time-varying dependence structure between mixed 

continuous and discrete multi-dimensional hydro-climate phenomena. The research also 

improves the concept of Joint Return Period (JRP) in stationary multivariate risk studies to a 

fully time-varying JRP concept to compute time-dependent risk of extreme multi-dimensional 

hydro-climatic events in a changing climate. Details about this contribution are presented in 

Chapter 4. Moreover, an uncertainty analysis is run on currently-used time-independent 

(static) and the proposed time-dependent multivariate risk. The results demonstrate that 

multivariate stationary risk analysis is no longer applicable to projecting probabilistic behavior 

of changing multi-dimensional extreme events, and this may lead to increases in the risk of 

failure for water systems under non-stationary conditions arising from climate change. More 

details and results are reported in Chapter 4.      

The following flowchart shows the aims and the inter-connections among different chapters in this 

study.   

 

 

 

 

        

 

 

 

 

 

Figure 1-1. Schematic flowchart of the main contributions in each chapter 
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Chapter 2 

Advances in Projection of Climate Change Impacts Using 

Supervised Nonlinear Dimensionality Reduction Techniques 

This chapter is based on the following published article with the same title in the Climate 

Dynamics journal. Minor changes are made on some parts of the article to be more consistent with the 

body of the thesis.  Thus, the content of this chapter is not exactly the same as the paper. There are 

also minor changes in response to comments from the examining committee.   

Sarhadi, A., D. H. Burn, G. Yang, and A. Ghodsi (2016d), Advances in Projection of Climate Change 

Impacts Using Supervised Nonlinear Dimensionality Reduction Techniques, Climate Dynamics, DOI: 

10.1007/s00382-016-3145-0. 

Summary  

One of the main challenges in climate change studies is accurate projection of the global warming 

impacts on the probabilistic behavior of hydro-climate processes. Due to the complexity of climate-

associated processes, identification of predictor variables from high dimensional atmospheric 

variables is considered a key factor for improvement of climate change projections in statistical 

downscaling approaches. For this purpose, the present paper adopts a new approach of supervised 

dimensionality reduction, which is called “Supervised Principal Component Analysis (Supervised 

PCA)” to regression-based statistical downscaling. This method is a generalization of PCA, extracting 

a sequence of principal components of atmospheric variables that have maximal dependence on the 

response hydro-climate variable. To capture the nonlinear variability between hydro-climatic 

response variables and projectors, a kernelized version of Supervised PCA is also applied for 

nonlinear dimensionality reduction. The effectiveness of the Supervised PCA methods in comparison 

with some state-of-the-art algorithms for dimensionality reduction is evaluated in relation to the 

statistical downscaling process of precipitation in a specific site using two soft computing nonlinear 

machine learning methods, Support Vector Regression (SVR) and Relevance Vector Machine 

(RVM). The results demonstrate a significant improvement over Supervised PCA methods in terms of 

performance accuracy. 
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2.1 Introduction  

Climate change is recognized as one of the major threats to the planet in the 21st century. 

According to the Intergovernmental Panel on Climate Change (IPCC) fifth Assessment Report 

(IPCC, 2013), it is “extremely likely” that observed surface and atmospheric warming in the decades 

since the mid-twentieth century is due to the increase in anthropogenic greenhouse gas emissions. 

Since a strong interrelation exists between climate and hydrological systems, it is expected that 

hydrological processes will be adversely affected as a consequence of global warming, leading to the 

overall increase of extreme events, and subsequently threatened water resources in the future. 

Therefore, to better plan and adapt water resource systems for mitigation of associated adverse 

consequences, it is necessary to understand the effect of future climate change on the availability of 

surface water resources. 

Future climate changes are modelled under several simulated scenarios developed based on outputs 

from physically-based General Circulation Models (GCM), which are mechanistic models 

representing the large scale atmospheric processes (Tisseuil et al., 2010). However, inconsistency in 

the spatial scales is considered to be a key challenge in the application of GCMs. GCM outputs 

providing simulation of atmospheric variables at a coarse global resolution cannot capture 

hydrological changes in the finer local and regional resolutions that are of interest to hydrologists and 

decision makers. Consequently, the results of GCMs cannot be directly used at the finer scales for 

assessing how possible climate-change impacts on surface water availability may affect water supply 

(Bennett et al., 2012; Dingbao Wang, 2013). To overcome this problem, interest has increased in 

bridging global and regional climate data by developing and using a technique called “downscaling”. 

Two types of downscaling—dynamic and statistical—are most commonly used techniques in 

transferring large-scale global atmospheric variables (provided by GCMs) to regional and local 

hydro-climate information for use in climate change impact studies. Dynamical downscaling 

approaches are based on obtaining finer scale information from Regional Climate Models (RCMs) 

driven by boundary conditions simulated using GCMs (Najafi and Moradkhani, 2015). The limitation 

of these approaches is that they require expensive and complicated computations and use biased 

lateral boundary inputs as the basis of their simulations (Rocheta et al., 2014a), inputs that cannot be 

easily bias corrected for use. Hence, the statistical downscaling approaches relying on developing 

empirical and quantitative relationships between large-scale atmospheric variables and fine scale 

variables at a particular site have gained more popularity among hydrologists wanting to predict 
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climate change impacts on hydro-climate variables. The most popular methods in statistical 

downscaling are regression-based ones, which are preferred over other methods (weather typing and 

transfer function, and weather generation) because they have low computation requirements and are 

relatively straightforward to apply (Tofiq and Guven, 2014; Wilby et al., 2004). These transfer 

function methods involve developing direct quantitative relationships between predictands and 

predictors through different forms of regression (Dibike and Coulibaly, 2005b).  

The regression-based statistical downscaling is carried out in two main steps: i) deriving statistical 

relationships from historical climate information and hydro-climate variables of interest (developing a 

statistical model step); and ii) using these models to project hydro-climate variables in the future, 

relying on the assumption that current empirical models are applicable to GCM simulations of the 

future (a projection step). Due to the complexity of climate-associated processes, the two main 

challenges in the first step of the procedure (developing statistical model step) are: i) identification of 

the large-scale atmospheric predictors conveying relevant climate change information; and ii) 

development of the right quantitative functional relationship for capturing the complex nonlinearity 

between target hydro-climate variables and atmospheric simulated predictors. While the first of these 

problems is partly due to the high dimensionality of the climate processes that lead to inadequate 

results in projection of hydro-climate variables, the second is due to poor characterisation of the 

functional form. This chapter attempts to address both these limitations in the regression-based 

statistical downscaling as discussed below.  

In statistical downscaling processes, projecting a dependent hydro-climate variable from high-

dimensional large-scale atmospheric variables leads to inadequate results in terms of performance 

accuracy, due to the curse of dimensionality. The number of potentially important input variables may 

be large, and the existence of correlation among data may subsequently induce redundancy and 

collinearity. To complicate matters further, the inherent complexity, nonlinearity, and 

interdependency among explanatory large-scale atmospheric parameters give rise to unsatisfactory 

predictive performance of data-driven models in statistical downscaling. Despite its critical 

importance in climate change studies, this challenge has so far gained only limited attention. The 

majority of attempts to reduce dimensionality’s impacts, and thus improve the performance of models 

in statistical downscaling, have used conventional methods. Principal Component Analysis (PCA) 

(Shashikanth et al., 2014; Tripathi et al., 2006b), Canonical Correlation Analysis (CCA) (Joshi et al., 

2013; Wójcik, 2014), Correlation Analysis (CA) (Chen et al., 2010), Multivariate Sequential 
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(forward, backward, and stepwise) Regression Models (Hessami et al., 2008; Joshi et al., 2013), and 

different types of clustering (Ghosh and Mujumdar, 2008b; Tisseuil et al., 2010; Wójcik, 2015) are 

the most commonly used dimensionality reduction techniques in downscaling processes. A few 

attempts have also been made to select effective variables from high dimensional atmospheric 

predictor variables, using a combination of Gamma test (GT) and entropy methods (Ahmadi et al., 

2014), Bayesian Model Averaging (BMA) (Tareghian and Rasmussen, 2013), Mutual Information 

(Nasseri et al., 2013), the Least Absolute Shrinkage and Selection Operator (LASSO) (Hammami et 

al., 2012), and Independent Component Analysis (ICA) (Moradkhani and Meier, 2010; Najafi et al., 

2011). 

The prominent dimensionality reduction techniques are unsupervised, ignore the response variable, 

and seek a sequence of directions capturing the maximum variability and modelling the covariance 

structure of data. However, in regression-based statistical downscaling, projecting atmospheric 

predictor variables along directions that are related to the response variable is of particular interest. 

Moreover, the recent variable selection-based approaches also select a limited number of predictors, 

which do not adequately encompass the properties of the explanatory data, leading to insufficient 

performance of statistical downscaling models. For example, the relevance between each potential 

predictor and target variable is considered separately, ignoring the interactions within the input 

dataset. Consequently, an irrelevant individual predictor may be discarded, even though its 

combination with other atmospheric predictors would make it a very relevant variable (Galelli et al., 

2014; Saeys et al., 2007). These methods are also inappropriate for dimension reduction purposes for 

nonlinear predictors. The other drawback is that some feature selection-based methods utilize 

optimization algorithms as a part of the input variable selection procedure, resulting in 

computationally expensive analyses (Galelli et al., 2014).  

To address the abovementioned drawbacks of the dimensionality reduction in the statistical 

downscaling processes, this study presents a new approach of supervised dimensionality reduction: 

“Supervised Principal Component Analysis (Supervised PCA)”. This method, proposed by Barshan et 

al. (2011), is a generalization of PCA, extracting the principal components of explanatory variables 

that have maximal dependency on the response variable. The Supervised PCA technique explores 

subspaces along which the dependency between target hydro-climate variable and large-scale 

atmospheric projectors is maximized. To capture the nonlinear variability between hydro-climatic 
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response variables and projectors, a kernel version of Supervised PCA is also presented for nonlinear 

data transformation.  

Due to the complex nonlinear relationship existing between target hydro-climate variables and 

large-scale atmospheric variables, standard linear methods fail to capture the nonlinear functional 

relationship. To address the second challenge in developing a statistical modelling step, considerable 

attention has also been paid in the last few years to nonlinear-based soft computing data-driven 

regression models. Machine-learning methods have gained more popularity for statistical 

downscaling modelling. Among machine learning methods, Support Vector Regression (SVR) has 

been widely employed in hydrology for nonlinear stochastic modelling of different hydro-climatic 

variables (Chen et al., 2010; 2012; Nasseri et al., 2013). In recent years, however, a fully probabilistic 

Bayesian framework of the SVR known as Relevance Vector Machine (RVM) has gained more 

popularity in regression-based statistical modelling. Ghosh and Mujumdar (2008a) compared the 

results obtained from the SVR and RVM models for projection of streamflow in a statistical 

downscaling process. They presented the advantages of the RVM over the SVR to improve the model 

performance. In another attempt, the authors also employed the RVM model with a fuzzy clustering 

method to downscale GCM outputs for monsoon streamflow projections (Mujumdar and Ghosh, 

2008). Joshi et al. (2013) analyzed the performance of two statistical downscaling frameworks to 

characterize the low-flow regime of three rivers in eastern Canada. They also mentioned the 

superiority of the RVM model to the Automated Statistical Downscaling (ASD) method in terms of 

performance criteria. Other studies such as Bai et al. (2014), Khalil et al. (2005), and Okkan and Inan 

(2014) have also discussed the power of the RVM model compared with other learning algorithms in 

capturing the nonlinearity and improving the performance accuracy of different water resources 

associated projections. 

The remainder of this chapter is organized as follows: Section 2.2 provides a mathematical 

background of dimensionality reduction methods in two different categories, unsupervised and 

supervised. In the unsupervised category, PCA and CCA methods are described, with particular focus 

on the drawbacks of these currently used dimension-reduction techniques. In the supervised category, 

the dependence measurement criterion on which the supervised dimensionality reduction methods is 

based on is described. The Supervised PCA, its extensions, and the connection to the conventional 

PCA are next presented. Section 2.3 presents the performance evaluation procedure for the 

dimensionality reduction methods of the two different categories in relation to statistical downscaling 
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using two machine-learning methods (SVR and RVM). Section 2.4 describes the data used for 

statistical downscaling in this study. The effectiveness of the supervised methods is then examined for 

the statistical downscaling of precipitation for a specific site and compared with other dimensionality 

reduction methods in section 2.5. Conclusions are given in section 2.6.  

Figure 2-1 depicts a flowchart of different methods and procedures applied in this chapter. 

 

Figure 2-1. Summarized methodology used in the current chapter 
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2.2 Dimensionality Reduction Methods  

In a given high-dimensional data set, consider projecting a response stochastic variable using a set 

of independent high-dimensional explanatory random variables. Using conventional regression 

methods, projecting the target variable leads to unsatisfactory results in terms of performance 

accuracy, simply due to the “curse of dimensionality” (Ahmadi et al., 2014; Barshan et al., 2011; 

Najafi et al., 2011). In addition, the number of observations required for learning is exponentially 

increased with the dimensionality of the data set. A preprocessing step deriving an appropriate low-

dimensional manifold encoding of a high-dimension data set is thus crucial to reaching the best 

performance on learning. This step forms the dimensionality reduction procedure.  

The following subsections describe the mathematical framework of the dimensionality reduction 

methods applied in this study.   

2.2.1 Unsupervised Methods 

2.2.1.1 Linear and Nonlinear Principal Component Analysis 

Principal Component Analysis (PCA) is a technique currently popular for dimensionality reduction 

in different climate-related disciplines, especially for statistical downscaling processes in climate 

change studies. PCA is a classical and prominent data analysis method providing a reduced sequence 

of linear subspaces from a high-dimensional data set, capturing maximum variability, and modelling 

the covariance structure of the explanatory data.  

The specified linear subspaces projected by d orthogonal vectors in a new coordinate system are 

called ‘principal components’. In a given data set of vectors 𝑥i, 𝑖 ∈ 1 … 𝑝, the d principal components 

are defined as orthonormal transformations onto which the variance retained under projection is 

maximal (Hotelling, 1993).  

Suppose all centered observations are stacked into matrix X, which has dimension of 𝑝 × 𝑛, where 

p corresponds to p-dimensional columns with n observations. To capture the maximum variability, let 

the first principal component denoted by 𝑈1, be a combination of X defined by combinations 

(weights) 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑛]. Then the first principal component will be 

𝑈1 = 𝑤𝑇𝑋                                                         (2.1) 

and 



 

15 

𝑣𝑎𝑟(𝑈1) = 𝑣𝑎𝑟(𝑤𝑇𝑋) = 𝑤𝑇𝑆𝑤                   (2.2) 

where 𝑆 is the 𝑛 × 𝑛 sample covariance matrix of X. The objective is maximization of var(𝑈1), while 

that can be increased arbitrarily by increasing the magnitude of 𝑤. Hence, constraining 𝑤 to having 

unit length, 𝑤 is chosen to maximize 𝑤𝑇𝑆𝑤. Therefore, the objective will be: 

max 𝑤𝑇𝑆𝑤                                                    (2.3) 

subject to 𝑤𝑇𝑤 = 1                                           

The first d principal components are determined using the d dominant eigenvectors of covariance 

matrix S.  

A kernel PCA (Schölkopf et al., 1998) can be defined by performing nonlinear transformation of 

data to find the principal components associated with the input (explanatory) data. Given the set of 

centred observations 𝑥𝑖, PCA diagonalizes the covariance matrix 𝑆 =
1

𝑡
∑ 𝑥𝑗𝑥𝑗

𝑇𝑡
𝑗=1  by solving the 

eigenvalue problem 𝜆𝜐 = 𝑆𝜐. Using kernels (which are methods of implicitly mapping data into a 

higher dimension feature space) the same computation can be performed in a dot product space ℋ by 

a nonlinear mapping of input data 𝛷: 𝑥 → ℋ, 𝑥 → 𝛷(𝑥), so that the covariance matrix can be re-

written as: 

𝑆̂ =
1

𝑡
∑ 𝛷(𝑥𝑗)𝛷(𝑥𝑗)𝑇

𝑡

𝑗=1

                                       (2.4)    

The kernel principal components are then extracted by computing projections onto the eigenvectors of 

the centred kernel matrix 𝐾𝑖𝑗 = 〈𝛷(𝑥𝑗), 𝛷(𝑥𝑗)〉. 

2.2.1.2 Linear and Nonlinear Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a dominant technique that can be 

applied in modelling the association between two variables. The CCA method seeks two sets of basis 

vectors for two blocks of variables, so that the correlation between the projections of variables onto 

these basis vectors is maximized.  

Suppose n observations from explanatory variable 𝒳ϵℝp and response variable 𝒴ϵℝl, are stacked 

in zero-mean matrices 𝑋𝑝×𝑛 and 𝑌𝑙×𝑛. Then CCA searches for linear transformation of matrices 𝑊𝑥 

and 𝑊𝑦 to maximize the correlation between the two vectors as follows: 
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𝜌 =
𝐶𝑜𝑣 (𝑊𝑥

𝑇𝑋, 𝑊𝑦
𝑇𝑌)

√𝑉𝑎𝑟(𝑊𝑥
𝑇𝑋)𝑉𝑎𝑟(𝑊𝑦

𝑇𝑌)

=
𝑊𝑥

𝑇𝑋𝑌𝑇𝑊𝑦

√(𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑥)(𝑊𝑦

𝑇𝑌𝑌𝑇𝑊𝑦 

                                (2.5) 

Equation 2.5 equivalents to the following optimization problem: 

argmax
𝑊𝑥,𝑊𝑦

   𝑊𝑥
𝑇X𝑌𝑇𝑊𝑦                             

            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑥 = 𝐼                                                     (2.6) 

𝑊𝑦
𝑇𝑌𝑌𝑇𝑊𝑦 = 𝐼                     

The optimum value of 𝑊𝑥 is therefore obtained by first solving for generalized eigenvectors of the 

form (Hardoon et al., 2004): 

𝑋𝑌𝑇(𝑌𝑌𝑇)−1𝑌𝑋𝑇𝑊𝑥 = 𝜆2𝑋𝑋𝑇𝑊𝑥                                 (2.7) 

and then the corresponding 𝑊𝑦 is found as 𝑊𝑦 = (𝑌𝑌𝑇)−1𝑌𝑋𝑇𝑊𝑥/𝜆. 

CCA may not extract useful descriptors of data due to the existence of the dependence in nonlinear 

relationships. In this case, kernel CCA addresses this drawback by projecting data into a higher 

dimensional feature space, and then preforming CCA in the new feature space. If kernel matrices 𝐾𝑥 

and 𝐾𝑦 contain inner products of 𝛷𝑥 and 𝛹𝑦 as the new projection of data, then 𝑊𝑥 and 𝑊𝑦 can be re-

written as 𝑊𝑥 = 𝛷(𝑋)𝛼 and 𝑊𝑦 = 𝛹(𝑌)𝛽. Replacing the inner products as 𝐾𝑥 = 𝛷(𝑋)𝑇𝛷(𝑋) and 

𝐾𝑦 = 𝛹(𝑌)𝑇𝛹(𝑌), equation 2.6 becomes: 

argmax
𝛼,𝛽

   𝛼𝑇𝐾𝑥𝐾𝑦β                             

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      𝛼𝑇𝐾𝑥
2𝛼 = 𝐼                                       

                              𝛽𝑇𝐾𝑦
2𝛽 = 𝐼                                          (2.8) 

Therefore, after implementing the kernel process, CCA can be applied in the mapping space. It should 

be noted that other nonlinear methods such as nonlinear CCA using neural networks (CCA-NN) 

(Ouali et al., 2016) can be applied in the same context for nonlinear data transformation. 

In spite of being the most popular methods in dimensionality reduction, PCA and CCA suffer from 

several drawbacks. PCA’s effectiveness is influenced by its linearity and unsupervised problems. 

PCA method projects a sequence of linear subspaces (manifolds) corresponding to the maximum 
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variation of the covariate explanatory data without taking into account the response variable. CCA is 

also unable to capture nonlinearity between data. In statistical downscaling, certain modes of 

variability that are dependent on the response variable are of particular interest. Thus, projection of 

the explanatory variables along directions that are associated with the response variable is preferable, 

but is not achieved by deriving subspaces that have maximum variation or correlation.  

To overcome this drawback, supervised dimensionality reduction methods seek subspaces in which 

the dependency between response variable and explanatory variables (predictors) is maximized.  

2.2.2  Supervised Methods 

2.2.2.1 Supervised Principal Component Analysis (Supervised PCA) 

The supervised dimensionality reduction method proposed by Barshan et al. (2011) is based on 

extracting the principal components of predictors that have maximal dependency on the response 

variable. This method relies on Hilbert-Schmidt Independence Criterion (HSIC), measuring the 

dependence between response variable and predictors. According to the HSIC, two random variables, 

𝒳 and 𝒴, are statistically independent if and only if any bounded continuous function of the variables 

is uncorrelated. Consider ℱ and 𝒢 as the separable Reproducing Kernel Hilbert Spaces (RKHS) 

containing bounded real-valued functions of x from 𝒳 to ℝ, and y from 𝒴 to ℝ, respectively. In this 

case, the HSIC can be expressed in terms of kernel functions as 

𝐻𝑆𝐼𝐶(𝑃𝒳,𝒴, ℱ, 𝒢 )

= 𝐸𝑥,𝑥′,𝑦,𝑦′[𝑘(𝑥, 𝑥′)𝑙(𝑦, 𝑦′)] + 𝐸𝑥,𝑥′[𝑘(𝑥, 𝑥′)𝐸𝑦,𝑦′[𝑙(𝑦, 𝑦′)]

− 2𝐸𝑥,𝑦 [𝐸𝑥′[𝑘(𝑥, 𝑥′)]𝐸𝑦′[𝑙(𝑦, 𝑦′)]]                        (2.9)  

where 𝐸𝑥,𝑥′,𝑦,𝑦′is the expectation over both pairs of (𝑥, 𝑦) and (𝑥′, 𝑦′) drawn independently from 

𝑃𝒳,𝒴 (the joint probability distribution of random variables 𝒳 and 𝒴). Here 𝑘 and 𝑙 are the associated 

kernels of ℱ and 𝒢, respectively. To use HSIC as a practical test for dependency testing, it is 

necessary to approximate HSIC (𝑝𝒳,𝒴, ℱ, 𝒢), given a finite number of observations. Let 𝒵 ≔

{𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}  ⊆  𝒳 × 𝒴 be a series of n independent observations drawn from 𝑃𝒳,𝒴. An 

empirical estimate of HSIC is: 

𝐻𝑆𝐼𝐶(𝒵, ℱ, 𝒢) ≔ (𝑛 − 1)2𝑡𝑟(𝐾𝐻𝐿𝐻)             (2.10)  
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where 𝐻, 𝐾, 𝐿 ∈  ℝ𝑛×𝑛, 𝑘𝑖𝑗 ≔ 𝑘(𝑥𝑖, 𝑥𝑗), 𝐿𝑖𝑗 ≔ 𝑙(𝑦𝑖 , 𝑦𝑗), and 𝐻𝑖𝑗 ≔ 𝐼 − 𝑛−1𝑒𝑒𝑇 (the centering 

matrix, ‘e’ is a vector of all ones). Thus, it can be concluded that to maximize the dependence 

between two kernels, it is necessary to increase the value of the empirical estimate, i.e., 𝑡𝑟 (𝐾𝐻𝐿𝐻).  

It should be noted that if one of the kernel matrices (K or L) is already centered, for example L (i.e., 

HLH=L), then the objective function no longer includes the centering matrix H, and it will be 

addressed as 𝑡𝑟 (𝐾𝐿). Likewise, if HKH=K, then the objective function will be 𝑡𝑟 (𝐾𝐻𝐿𝐻) =

𝑡𝑟(𝐻𝐾𝐻𝐿) with the same identical results (Barshan et al., 2011).  

After defining HSIC as a measure for determining dependency between random variables, 

Supervised PCA is developed. Suppose for explanatory variables, there is a set of n data points 

{𝑋𝑖} 𝑖=1
𝑛 with p features, stacked in the 𝑝 × 𝑛 matrix 𝑋. The target variable is also Y in the 𝑙 × 𝑛 

matrix. The goal is finding the subspace in which the dependency between the projected data 𝑈𝑇𝑋 

and the target variable is maximized. According to the empirical HSIC, the objective function can be 

formulated to maximize 𝑡𝑟(𝐻𝐾𝐻𝐿), such that: 

𝑡𝑟(𝐻𝐾𝐻𝐿) = 𝑡𝑟(𝐻𝑋𝑇𝑈𝑈𝑇𝑋𝐻𝐿)              (2.11) 

= 𝑡𝑟(𝑈𝑇𝑋𝐻𝐿𝐻𝑋𝑇𝑈) 

where K is the kernel of 𝑈𝑇𝑋 (e.g., 𝑋𝑇𝑈𝑈𝑇𝑋), L is the kernel of target variable Y (e.g., 𝑌𝑇𝑌), and 

𝐻𝑖𝑗 ≔ 𝐼 − 𝑛−1𝑒𝑒𝑇. 

As an orthogonal transformation matrix 𝑈 mapping a data set into a space in which the features are 

uncorrelated, the optimization problem is constrained and can be written as: 

argmax
𝑈

   𝑡𝑟(𝑈𝑇𝑋𝐻𝐿𝐻𝑋𝑇𝑈)                             

subject to    𝑈𝑇𝑈 = 𝐼                            (2.12) 

If the symmetric and real matrix denotes 𝑄 = 𝑋𝐻𝐿𝐻𝑋𝑇, the optimal solution will be 𝑈 =

[𝑢1, 𝑢𝑖, … , 𝑢𝑑], where 𝑢𝑖 is the corresponding eigenvector to the i-th largest eigenvalue. Supervised 

PCA also has a closed-form in dual formulation that is described in Barshan et al. (2011).  

The procedure of the Supervised PCA is summarized in Algorithm 1.   

Algorithm 1 (Supervised PCA) 

Input: Matrix of training data, X, testing data example, x, kernel matrix of target variable, L, and 

training data size, n.  
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Output: Dimension reduced training and testing data, Z, and z.  

1: 𝐻 ← 𝐼 − 𝑛−1𝒆𝒆𝑇 

2: 𝑄 ← 𝑋𝐻𝐿𝐻𝑋𝑇 

3: Compute basis: 𝑈 ← eigenvectors of 𝑄 corresponding to the top 𝑑 eigenvalues.  

4: Encode training data: 𝑍 ← 𝑈𝑇𝑋 

5: Encode test example: 𝒛 ← 𝑈𝑇𝒙 

 

 2.2.2.2 Kernel Supervised Principal Component Analysis 

Supervised PCA and PCA are designed to find linear subspaces of high-dimensional data, with and 

without taking into account the response variable, respectively, such that a data set can be represented 

with a minimal loss of variance. This approach allows the detection of linear patterns (Jackson, 1991), 

and cannot model the variability of data correctly. However, high-dimensional hydro-climatic 

variables have a nonlinear nature (Raghavendra and Deka, 2014), and therefore linear models cannot 

capture their variabilities. In this case, nonlinear transformation of the variables is required to 

successfully apply learning algorithms for dimensionality reduction. One efficient method that can 

address the problem of nonlinear dimensionality reduction is to use kernels, computing the similarity 

measure between any two data points. This section presents how, through the use of a kernel, 

Supervised PCA can be extended to nonlinear mapping of data to compute principal components 

efficiently in high-dimensional feature spaces.   

The nonlinear mapping function maps the feature matrix x, from 𝑥 → 𝛷(𝑥). Thus, the non-linear 

kernel is 𝐾 = 𝛷(𝑥)𝑇𝛷(𝑥). Accordingly, Supervised PCA objective can be formulated as: 

argmax
𝑈

   𝑡𝑟(𝑈𝑇𝛷(𝑥)𝐻𝐿𝐻𝛷(𝑋)𝑇𝑈)                             

subject to 𝑈𝑇𝑈 = 𝐼                                              (2.13) 

It should be noted that the matrix 𝐾 = 𝛷(𝑥)𝑇𝛷(𝑥) can be efficiently computed, without computing 

𝛷(𝑥) explicitly. The transformation matrix, 𝑈, can be further represented as a linear combination of 

the projected dataset 𝑈 = 𝛷(𝑋)𝛽. Thus, the objective function is rewritten as  

𝑡𝑟(𝑈𝑇𝛷(𝑥)𝐻𝐿𝐻𝛷(𝑋)𝑇𝑈) = 𝑡𝑟(𝛽𝑇𝛷(𝑋)𝑇𝛷(𝑋)𝐻𝐿𝐻𝛷(𝑋)𝑇𝛷(𝑋)𝛽)                                                 

= 𝑡𝑟(𝛽𝑇𝐾𝐻𝐿𝐻𝐾𝛽)                                                (2.14)       
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the constraint is: 

𝑈𝑇𝑈 = 𝛽𝑇𝛷(𝑋)𝑇𝛷(𝑋)𝛽                                         

= 𝛽𝑇𝐾𝛽                                            (2.15)  

where K is a kernel function. After defining a new objective function and constraint in terms of inner 

products between data points that are computed via the kernel, a new optimization problem can be 

formulated as 

argmax
𝑈

   𝑡𝑟(𝛽𝑇𝐾𝐻𝐿𝐻𝐾𝛽)                                (2.16)    

subject to    𝛽𝑇𝐾𝛽 = 𝐼                    

This is considered to be a generalized eigenvector problem. Here 𝛽 can be computed as the top 𝑑 

generalized eigenvectors of (𝐾𝐻𝐿𝐻𝐾, 𝐾) (Barshan et al., 2011). Kernel Supervised PCA is 

summarized in Algorithm 2.  

 

Algorithm 2 (Kernel Supervised PCA) 

Input: Kernel matrix of training data, K, kernel matrix of testing data, 𝑲𝑡𝑒𝑠𝑡, kernel matrix of target 

variable, L, testing data example, x, training data size, n.  

Output: Dimension reduced training and testing data, Z and z. 

1. 𝐻 ← 𝐼 − 𝑛−1𝒆𝒆𝑇 

2. 𝑄 ← 𝐾𝐻𝐿𝐻𝐾 

3. Compute basis: 𝛽 ← generalized eigenvectors of (𝑄, 𝐾) corresponding to the top d 

eigenvalues. 

4. Encode training data: 𝑍 ← 𝛽𝑇[𝛷(𝑋)𝑇𝛷(𝑋)] = 𝛽𝑇𝐾 

5. Encode test example: 𝒛 ← 𝛽𝑇[𝛷(𝑋)𝑇𝛷(𝒙)] = 𝛽𝑇𝐾𝑡𝑒𝑠𝑡 

 

In addition to the aforementioned methods for dimensionality reduction, three common backward, 

forward, and stepwise multivariate linear regression methods are also considered to provide a basis 

(as feature selection-based methods) for comparison of the performance accuracy of the different 

supervised dimensionality reduction methods.  

2.3  Evaluation of Dimensionality Reduction Approaches 

The presented Supervised PCA method’s effectiveness in comparison to that of some of the state-

of-the-art algorithms for dimensionality reduction is evaluated under a statistical downscaling 
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procedure. For this purpose, the performances of Supervised PCA and Kernel Supervised PCA are 

compared with those of conventional and feature selection-based linear dimensionality reduction 

approaches on a target predictand variable and a set of predictor variables. A random section of a 

75% training set and 25% testing set is performed on the input dataset. Note that the input features of 

both training and testing dataset are provided at learning time for conventional and feature selection-

based dimensionality reduction approaches. Before that, all the input features are normalized and the 

kernel parameter is obtained using 10-fold cross-validation in Supervised PCA approaches. 

For each method, after estimating the transformation matrix (using the training set for Supervised 

PCA approaches) a regression model is fitted to the response variable 𝑌 and the dimension-reduced 

explanatory data 𝑍. Since the relationship between climate variables and transformed explanatory 

atmospheric projectors is still complex and nonlinear, two soft computing nonlinear machine learning 

methods Support Vector Regression (SVR), and Relevance Vector Machine (RVM) are employed to 

capture the nonlinearity and evaluate different dimensionality reduction methods in terms of response 

variable projection performance.  

2.3.1 Nonlinear Support Vector Regression (SVR) 

Unlike most traditional Artificial Neural Network (ANN) models, which use empirical risk 

minimization, SVR implements Structural Risk Minimization (SRM) principles. The concept of SRM 

is to minimize an upper bound on the generalization error rather than to minimize the training error. 

This principal helps the SVR to achieve an optimum network structure (Lin et al., 2006). This 

superior feature has made the SVR popular for generalization purposes in statistical modelling and 

led to its wide application in pattern recognition.  

Given an input dataset as predictors and a target variable as a predictand, a function 𝑓(𝑋) should be 

developed to describe the inherent nonlinear relationship between the dataset and predictand. This 

function can be used later to project the target variable from generated new input data (here principal 

components extracted by Supervised PCA techniques). The standard nonlinear function in the SVR is 

formulated as 

𝑦̂ = 𝑓(𝑋) = ∑ 𝑤𝑖𝐾(𝑋𝑘 . 𝑋) + 𝑏

𝑛

𝑖=1

                                      (2.17) 
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where 𝐾(𝑋𝑘 . 𝑋) is a kernel function, based on which basis functions are defined in the training 

dataset. A detailed introduction to the SVR method may be found in Dibike et al. (2001) and Vapnik 

(1998).  

In spite of its many advantages in modelling, the SVR suffers from practical drawbacks. SVR 

makes unnecessary liberal use of basis functions while the training dataset size grows, leading to 

complexity in computation and over-fitting in prediction, which are addressed in the Sparse Bayesian 

Learning (SBL) algorithm known as Relevance Vector Machine (RVM) (Tipping, 2001).  

2.3.2 Relevance Vector Machine (RVM) 

In the SVR, predictions are not probabilistic and the model outputs a point estimate and a ‘hard’ 

binary decision in classification, whereas the conditional distribution 𝑝(𝑌|𝑋) is desired to capture 

uncertainty in predictions (Ghosh and Mujumdar, 2008b). There is also a need to estimate the 

“nuisance” parameter of C and the insensitivity parameter ‘𝜀’, which is wasteful in both data and 

computation. The kernel function 𝐾(𝑋, 𝑋𝑖) must also satisfy Mercer’s condition (for a continuous 

symmetric kernel of a positive operator). To cover these limitations, Tipping (2001) developed a 

Sparse Bayesian Learning (SBL) algorithm.  

The RVM is a Bayesian treatment of equation 2.17, which covers all limitations of the SVR. The 

RVM proposes a fully probabilistic framework and introduces prior information over the model 

weights governed by a set of hyper-parameters that are iteratively estimated from the data. In practice, 

the posterior distribution of the majority of weights peaks sharply around zero. A few training vectors 

associated with the remaining non-zero weights are called relevant vectors. While RVM is capable of 

generalization performance in comparison to the SVR, its most compelling feature is that it utilizes 

fewer kernel functions, thus avoiding over-fitting (Khalil et al., 2006; Tipping, 2001). A detailed 

mathematical background of the SBL algorithm for regression modelling is found in Tipping (2001). 

Once the two methods (SVR and RVM) are applied in the downscaling procedure based on 

transformed projector components, the validation of the model performances is evaluated for each 

dimensionality reduction method. A two-fold cross-validation procedure is used for training and 

testing. In this procedure, the datasets (including inputs and the target datasets) are randomly split into 

two non-overlapping subsets (a shuffling is implemented on the data array and then the dataset is split 

into two training and testing subsets). Each of the nonlinear regression models is then trained based 

on training subset. The validation of the model is then examined based on testing subset assumed as 



 

23 

unobserved data points (validation). A sampling 10-fold cross validation method is used for tuning of 

the machine-learning parameters (gamma, cost, and error in SVR and kernel width in RVM). The 

training and testing process is carried out based on a chosen kernel. Gaussian (radial basis), 

Polynomial, and Laplacian kernel functions are used as nonlinear functions in both SVR and RVM 

models in this study. In the validation process, the consistency of input features, division into two 

training datasets and testing datasets remains the same in the Supervised PCA methods, as a random 

selection (of a 75% training set and 25% testing set) is performed on the input features in other 

dimensionality reduction methods.  

To increase the predictive performance for low and high magnitudes of the target variable, a unique 

clustering method is employed. First a threshold is tuned on the precipitation values to partition the 

training data points into two classes, high and low. Since the high and the low data points are from 

two different distributions, it is possible to separate them and develop two different regression models 

for them. In the training step, after the partitioning, the low class and high class are fitted separately 

with two different SVR and RVM models. Now given the two classes of training data, i.e., high and 

low, support vector machine (classification) is used to find the margin of these two classes. In the 

testing step, it is first classified whether the given test data point belongs to high or low class and then 

the SVR and RVM models are applied correspondingly. 

To evaluate the goodness of fit of the two machine learning models, in terms of the agreement 

between observed and model-predicted target variable for the testing dataset, and to assess the 

performance of the dimensionality reduction methods, the following criteria are used in this study: 

       I: Correlation coefficient between observed and predicted series. 

       II: Nash-Sutcliffe Model Efficiency (E): 

The model efficiency criterion, proposed by Nash and Sutcliffe (1970), for model evaluation is:  

𝐸 = 1 −
∑(𝑂𝑖−𝐹𝑖)

2

∑(𝑂𝑖−𝑄̅)
2                                                                    (2.18) 

where E is the coefficient of efficiency, 𝑂𝑖 is the observations of the target variable, 𝐹i is the predicted 

target variable, and 𝑄̅ is the average of the observed time series. A value of 1 represents a perfect 

model and for a value of E<0, the model predictions are worse than those from the reference model.  
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        III: Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = (
∑ (𝐹𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
)0.5                                                            (2.19) 

        IV: Mean Absolute Error (MAE) 

The mean absolute error is used to measure how close predictions and observations of the target 

variables are to each other. This criterion is given by: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐹𝑖 − 𝑂𝑖|𝑛

𝑖=1                        (2.20) 

The parameters are defined as in the preceding equations.  

        V: Mean Bias Error (MBE) 

The mean bias error is usually intended to indicate model average ‘bias’. The criterion measures 

average over or under-prediction of a model. MBE formula can be written as: 

     𝑀𝐵𝐸 =
1

𝑛
∑ 𝑒𝑖 = 𝐹𝑖̅ −𝑛

𝑖=1 𝑂𝑖̅                                     (2.21) 

The parameters are the same as in the aforementioned equations.  

Considering the above criteria, the best dimensionality reduction method is then determined in 

terms of the best performance accuracy using machine-learning methods. Subsequently, the best 

reduction method is employed for transformation of the same explanatory variables from different 

climate change scenarios to project the potential impact of climate change on the target variable for 

the upcoming decades. 

2.4 Study Area and Data Set 

2.4.1 Study area 

The domain of interest in this study is the capital of Iran, Tehran. This megacity, with a population 

surpassing 14 million, is the largest and the most-populated city in Iran and in western Asia. The 

consistent rapid expansion of the city and population has led to several environmental issues, 

particularly surface water resources shortages. Additionally, the occurrence of severe dry spells and 

mismanagement of surface water resources in recent years have made this shortage much more 

complicated, so that water authorities are obliged to ration water. Therefore, it is essential to have a 
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plan for better management of water resources in relation to the future likelihood of extreme 

hydrological events, which could lead to dry spells and increase the water shortage in this city. The 

present study thus investigates the impact of future climate change on the availability of surface water 

resources for different purposes, especially the water supply in this megacity.   

2.4.2 Observations 

To better understand the impact of climate change on the availability of surface water resources for 

various purposes, especially for water supply, a meteorological station (Mehrabad) has been selected 

to project the future behavior of precipitation in this city. Launched by the Iran Meteorological 

Organization (IRIMO), Mehrabad synoptic station, with its mean annual rainfall of 235 mm, 

represents the semi-arid climate condition of the Tehran city. The recorded monthly-based 

precipitation time series applied in the current study, span from 1951 to 2011 (60 years) at the site. 

Tehran’s climate is largely influenced by its geographical location, surrounded by Alborz Mountains 

in the north and the central flat plains in the south. Seasonal precipitation is varied in this city and 

influenced by the monsoon phenomenon, so that summer and winter are characterized as dry seasons, 

while spring and fall are almost lush, with the main precipitation occurring in these seasons. Figure 2-

2 illustrates the location of the study site. 

National Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis data are employed as a proxy of observed large-scale atmospheric 

predictors. The NCEP/NCAR dataset comprised of outputs of a high-resolution atmosphere model, 

reproduced through assimilated data from surface observations, upper air stations, and a satellite-

observing platform (Kalnay et al., 1996) are typically viewed on a regular grid with a spatial 

resolution of 2.5° × 2.5° (approximately 250 km × 250 km). Reanalysis NCEP/NCAR datasets are 

available from 1948 to present. In the pre-processing phase of the statistical downscaling procedure, 

NCEP/NCAR data are considered as observations and are employed as a benchmark for correcting 

systematic biases in the different GCMs. In the next phase, variables from the NCEP/NCAR dataset 

act as atmospheric predictors for developing the empirical model, which forms a basis for projecting 

the hydro-climate predictand of interest (precipitation here) for the following decades.  

Since the downscaling model is sensitive to the choice of predictor variables (Shashikanth et al., 

2014), the selection of reanalysis variables that are highly associated and show meaningful 

relationships with the precipitation data is of crucial importance. 
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Figure 2-2. Study area and grids surrounding the study site 

The criteria that the selection of predictors are based on are that: (i) predictors should be physically 

relevant to the host GCMs; (ii) predictors can be realistically simulated by GCMs; and (iii) selected 

predictors are able to represent climate change signals (Hewitson and Crane, 2012). Considering these 

criteria, the main predictors identified are precipitation (PRECFLUX), surface, maximum, and 

minimum air temperature variables (AIR, TMAX, and TMIN), which explain soil moisture and 

precipitation feedback (Dery and Wood, 2005; Nasseri et al., 2013). Mean sea level pressure (SLP) is 

also included, as it provides a basis for other variables such as surface vorticity, airflow strength, 

meridional and zonal wind flow components, and divergence (Kannan and Ghosh, 2013; Wilby and 

Wigley, 2000). Surface specific and relative humidity variables (SHUM and RHUM) are chosen 

because of their importance to GCM precipitation schemes (Hennessy et al., 1997; Kannan and 
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Ghosh, 2013). Geopotential height (HGT) at three pressure levels (1000, 500, 250 hPa) are also 

selected as predictors for precipitation in this study (Ahmadi et al., 2014; Nasseri et al., 2013). All the 

predictors are extracted in a monthly based temporal resolution (from 1948 to present) from the 

NCEP/NCAR reanalysis data for nine grid cells surrounding the Tehran meteorological site. These 

cells lie between latitude 32.5°N-37.5°N and longitude 37.5°E-52.5°E (illustrated in Figure 2-2). The 

monthly-recorded precipitation time series at the Tehran site is used as predictand and the overlapped 

time period with NCEP/NCAR data (1951-2011) is selected as a baseline for developing downscaling 

modelling. Therefore, in the study site a matrix with dimension 1 × 732 as predictand and 72× 732 

as predictors (here 732 is the number of recorded monthly observations in the study site and 72 is the 

number of predictors) is considered as the input dataset for different dimensionality reduction 

methods.   

2.4.3 CMIP5 Climate Models 

For future projection, outputs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

multi-model dataset are used. The World Climate Research Program (WCRP) initiated the 

intercomparison project, CMIP5, to provide the most recent generation of GCMs in the 

Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (Taylor et al., 2012a). In 

this study, 15 GCMs of CMIP5 multi-model ensemble are employed. Table 2-1 shows the list of the 

selected GCM models of CMIP5 covering the whole time period of 2015-2100, and also 

encompassing the same projector variables selected from NCEP/NCAR reanalysis data.  

To compare the projection results, all the GCM models are re-gridded by bilinear interpolation 

method to match the resolution of the NCEP/NCAR reanalysis data (2.5∘ × 2.5∘). The CMIP5 

provides future projection simulations with specified concentrations referred to as “representative 

concentration pathways” (RCPs), which are forced by anthropogenic influences on the atmospheric 

composition and land cover. The CMIP5 projections of future climate change underlying the RCPs 

provide a consistent combination of future population growth, technological advances, and 

socioeconomic parameters (Taylor et al., 2012a). Three RCPs employed in this study provide a rough 

estimate range of the radiative forcing in the 21st century. RCP2.6 radiative forcing increases to about 

3 𝑊/𝑚2 near the middle of the 21st century, before decreasing to nominal level of 2.6 𝑊/𝑚2 by 

2100. RCP2.6 is also called a peak-decline scenario in which 2∘ C global warming is satisfied. In 

intermediate RCP4.5, by the end of 21st century the radiative forcing reaches about 4.5 𝑊/𝑚2. The 
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radiative forcing increases fast throughout the 21st century before reaching the level of 8.5 𝑊/𝑚2 at 

the end of the century in RCP8.5 (Gräler et al., 2013; Taylor et al., 2012a).  

Table 2-1. List of CMIP5 models evaluated in the present study 

    Data Duration 

Number Model Modelling center Spatial Resolution Historical RCP2.6 RCP4.5 RCP8.5 

1 BCC-CSM1.1 BCC (China) 1° ×  1.33° 1948-2014 2006-2100 2006-2100 2006-2100 

2 CanESM2 CCCMA (Canada) 2.8° ×  2.8° 1948-2014 - 2006-2100 - 

3 CCSM4 NCAR (USA) 0.9° ×  1.25° 1948-2014 2006-2100 2006-2100 - 

4 CNRM-CM5 CNRM-CERFACS (France) 1.5° ×  1.5° 1948-2014 2006-2100 - - 

5 CSIRO-Mk3.6.0 CSIRO-QCCCE (Australia) 1.875° ×  1.875° 1948-2014 2006-2100 - - 

6 GFDL-ESM2M NOAA GFDL (USA) 2° ×  2.5° 1948-2014 - 2006-2100 2006-2100 

7 GISS-E2-R NASA GISS (USA) 2° ×  2.5° 1948-2014 2006-2100 2006-2100 2006-2100 

8 HadGEM2-ES MOHC (UK) 1.25° ×  1.875° 1948-2014 2006-2100 - - 

9 INM-CM4 INM (Russia) 1.5° ×  2.0° 1948-2014 - 2006-2100 2006-2100 

10 IPSL-CM5A-MR IPSL (France) 1.25° ×  2.5° 1948-2014 2006-2100 2006-2100 2006-2100 

11 MIROC5 MIROC (Japan) 2.8° ×  2.8° 1948-2014 2006-2100 2006-2100 2006-2100 

12 MIROC-ESM MIROC (Japan) 2.8° ×  2.8° 1948-2014 2006-2100 2006-2100 2006-2100 

13 MIROC-ESM-CHEM MIROC (Japan) 2.8° ×  2.8° 1948-2014 2006-2100 2006-2100 2006-2100 

14 MRI-CGCM3 MRI (Japan) 1.125° ×  1.125° 1948-2014 2006-2100 2006-2100 2006-2100 

15 NorESM1-M NCC (Norway) 1.875° ×  2.5° 1948-2014 2006-2100 2006-2100 2006-2100 

 

2.5 Results and Discussion  

2.5.1 Dimensionality Reduction Performances 

To better evaluate the effectiveness of the dimensionality reduction methods in the downscaling 

process, they are first classified into different categories. All of the dimensionality reduction methods 

in this study can be categorized under two main approaches: unsupervised and supervised methods. 

According to the type of data transformation in a learning algorithm, each of the main approaches is 

placed in either the linear or nonlinear group. Therefore, PCA and CCA are considered to be linear 

unsupervised methods, and KPCA and KCCA are located in the nonlinear unsupervised group. The 

same subdivision can be recognized for the supervised category, where the three feature selection-
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based multivariate regression methods (Backward, Forward, and Stepwise) accompanying Supervised 

PCA are studied as supervised linear methods, while Kernel Supervised PCA method is a supervised 

nonlinear method.  

In the category of the unsupervised methods, the input dataset encompasses the large-scale 

atmospheric variables (predictors), while for the supervised ones, the precipitation time series (as the 

response variable) is also added to the dataset. The results of both Pearson’s and Spearman’s rank 

correlation analyses show that all of the projectors are significantly correlated with the target 

precipitation variable at the 1% significance level. All observations in the unsupervised category and 

also feature selection-based multivariate regression methods are provided in the learning algorithms, 

whereas in the Supervised PCA and Kernel Supervised PCA, 75% random splits of observations are 

employed as a training set for calculation of the transformation matrix. It should be noted that the 

projection of datasets in nonlinear unsupervised and supervised methods is carried out using an RBF 

kernel. After computing the low dimensional projection of the data, the performance of the different 

dimensionality reduction methods is evaluated through two nonlinear SVR and RVM machine 

learning-based methods for 25% of the sample testing dataset. Doing so requires many steps to obtain 

optimum results. For each dimensionality reduction method output, a K-fold cross validation (K=10) 

procedure is applied on the testing dataset to choose the best tuning parameters for the SVR and RVM 

methods. Based on the choice of parameters, goodness of fit is then assessed for the different 

methods. Prior to that the clustering method is carried out on both training and testing datasets to 

improve the performance of the precipitation predictability for extreme minimum and maximum 

values. Table 2-2 provides the results of the performance criteria for different projections of the 

dimensionality reduction methods with the best selected kernels. 

As these results show, in the unsupervised approach category, the nonlinear methods perform better 

than the linear ones in terms of the performance criteria in both SVR and RVM methods. The KPCA 

outperforms both linear methods (including PCA and CCA), and also nonlinear KCCA, indicating the 

existence of nonlinear relationships in the atmospheric predictor variables and the ability of KPCA to 

capture the nonlinear dependence among the predictors. The transformation of a nonlinear 

atmospheric dataset into a higher dimension feature space to capture the maximum variation leads to 

a more well-posed objective function in comparison with maximizing the correlation coefficient. 

Compared with the linear supervised multivariate regression methods using the same atmospheric 

projectors, the KPCA still yields a better embedding in terms of performance, because KPCA  
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Table 2-2. Results of the performance criteria obtained for different dimensionality reduction methods with the best selected kernels using SVR and RVM on 

testing dataset 

Approach 
Transfer 

Function 

 Dimensionality 

Reduction Method 

 Machine 

Learning Method 

Kernel 

Function 

 No of 

vectors 
R2 RMSE NSE MAE MBE 

Unsupervised 

 

Linear 

 
PCA 

 SVR RBF  384 0.38 18.05 0.37 11.94 -2.43 

  RVM Laplacian  47 0.39 17.46 0.38 12.17 -0.64 

 
CCA 

 SVR RBF  365 0.34 18.30 0.33 12.65 -2.57 

  RVM RBF  28 0.36 17.86 0.35 12.45 -1.20 

Nonlinear 

 
KPCA 

 SVR RBF  336 0.49 16.14 0.47 10.67 1.32 

  RVM RBF  69 0.57 14.37 0.55 9.21 0.55 

 
KCCA 

 SVR RBF  372 0.43 16.85 0.42 11.72 -1.48 

  RVM RBF  28 0.53 17.42 0.51 10.7 -0.69 

Supervised 

Linear 

 
Backward 

 SVR RBF  344 0.56 14.66 0.54 9.61 -1.37 

  RVM Laplacian  42 0.55 14.76 0.53 9.87 -0.61 

 
Forward 

 SVR RBF  309 0.53 15.38 0.51 10.22 -3.62 

  RVM RBF  49 0.55 15.01 0.52 10.13 -2.48 

 
Stepwise 

 SVR RBF  338 0.52 15.6 0.50 10.31 -3.21 

  RVM RBF  30 0.54 14.8 0.52 9.96 -2.32 

 
S-PCA 

 SVR RBF  188 0.65 2.95 0.61 2.37 -0.87 

  RVM Laplacian  37 0.68 2.66 0.63 2.33 -0.23 

Nonlinear 
 

K-S-PCA 
 SVR RBF  135 0.76 1.45 0.75 1.32 -0.12 

  RVM RBF  12 0.79 1.39 0.78 1.27 -0.02 

* Bold signifies preferred (optimal) result in each category.
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provides a nonlinear projection while the linear feature selection-based multivariate regression 

(backward, forward, and stepwise) methods, can only produce linear embedding based on linear 

dependence between the target variable and the projectors.  

Comparison of the methods in the supervised linear group shows that Supervised PCA significantly 

improves the prediction performance of the testing data. The multivariate feature selection-based 

regression methods are only able to detect linear dependence between precipitation and large-scale 

atmospheric predictors, while Supervised PCA is potentially capable of capturing any kind of 

dependence (linear and nonlinear) (Barshan et al., 2011). Although application of a linear kernel for 

response variable results in capturing the linear dependence between the target variable and 

projectors, other kernels can be also employed, leading to the capture of nonlinear dependence.  

Accordingly, Supervised PCA with an RBF kernel to the target variable not only performs as the 

best in the supervised linear group, but also outperforms the best selected nonlinear KPCA method in 

the unsupervised category. By using Kernel Supervised PCA in the next step, significant progress can 

be achieved in comparison with even Supervised PCA in terms of the performance criteria. This 

improvement indicates the benefit of nonlinear transformation of the data into a higher dimensional 

space in capturing the nonlinear dependence between the target precipitation and the projector 

variables. As can be seen, close competition occurs amongst the unsupervised methods and feature 

selection-based methods in the supervised category, while using Supervised PCA (linear and 

nonlinear) methods leads to significant improvement in the goodness of fit. Moreover, Kernel 

Supervised PCA outperforms all of the other linear and nonlinear methods and remains superior in 

terms of dimensionality reduction. Figure 2-3 shows how Kernel Supervised PCA method can reduce 

the nonlinearity and complexity in the atmospheric predictors (from NCEP/NCAR dataset), and 

extract components that are highly dependent on the target variable.  

It is worth noting that in all of the dimensionality reduction methods in the present study, the RVM 

method using very few relevant vectors compared with the number of support vectors in SVR 

outperforms the SVR method in the regression-based statistical downscaling in terms of goodness of 

fit. This superiority indicates the probabilistic reasoning of this method, which leads to minimizing 

the possibility of overfitting and reducing computational time as well. 
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Figure 2-3. a) Nonlinear and complex relationship between one of the atmospheric predictors (SLP) and the 

target variable before using dimensionality reduction, and b) Relationship between reduced-dimension 

atmospheric predictors (components) extracted from Kernel Supervised PCA and the target variable. All the 

variables have already been standardized  
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Figure 2-4 illustrates the observed and predicted precipitation time series and the scatter plot 

between them derived from the Kernel Supervised PCA and the RVM method for validation period 

(testing data) at the Tehran station. The figure indicates a good agreement between observed and 

predicted precipitation time series. Therefore, the combination of the Kernel Supervised PCA and the 

RVM method performs best in the modelling section of the statistical downscaling process. Although 

the presented model is able to capture extreme minimum and maximum precipitation events, in very 

rare cases, it cannot completely mimic extreme recorded monthly precipitation events. The reason 

might be related to the essence of regression based statistical downscaling models that cannot explain 

entire variance of the downscaled response variable (Ghosh and Mujumdar, 2008a; Tripathi et al., 

2006a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-4. Observed and predicted precipitation time series derived from combination of the Kernel Supervised 

PCA and the RVM method 
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2.5.2 Predictor Domain 

There is no priori predictor domain for any region and hydro-climate variables (Spak et al., 2007). 

Predictor domains in terms of spatial extent and geographical location may contain different potential 

relevant information for the predictand. To address the concern of whether other projector domains 

could improve the performance accuracy of the best-selected model, the model’s sensitivity to 

predictor domains is quantified based on the NCEP/NCAR dataset using the same downscaling 

procedure on the six states of projector domains illustrated in Figure 2-5. Doing so, the best-selected 

models (Kernel Supervised PCA and RVM) are employed on the different dimension-size of the 

atmospheric projectors formed based on the six predictor domain states to compare the model 

performances over the study area. Following the procedure used in the previous section, the optimum 

transformed-dimension is computed using the Kernel Supervised PCA method. The performance 

results are then derived based on the transformed low-dimension projectors using the RVM model. 

Figure 2-5 shows the results of performance accuracy in terms of the NSE coefficient for the six 

projector domains based on the testing dataset. The results indicate that relying on only the center 

host grid-cell with the same atmospheric projectors leads to the least performance accuracy. Adding 

the neighbor grid-cells and increasing the domain size from one to five results in better performance 

accuracy, with NSEs of 0.67 and 0.64 for state 2 and state 3, respectively. Compared with the other 

states with fewer local predictors, taking into account the nine surrounding grid-cells in state 4 

improves the accuracy of downscaled time series and leads to the highest performance accuracy. 

Enlarging the domain size by adding more surrounding grid-cells (states 5 and state 6) results in less 

performance accuracy compared with state 4. The reason is that in comparison with state 4 adding 

more predictor from surrounding zones leads to a nonhomogeneous region in terms of effective 

synoptic circulation patterns. The study area is surrounded by the Alborz Mountains in the north, the 

Zagros Mountains in the west, and the central flat plains in the south (Figure 2-2). The high 

mountains form an orographic barrier and divert the northern hemisphere westerlies carrying moisture 

sources from the Mediterranean, Black, and Caspian Seas to the study area (Ballato et al., 2010). This 

blockage creates different nonhomogeneous zones in terms of climate, so that the northern parts (of 

the study region) are dominated with a different Mediterranean climate and dense forests, while the 

southern parts (central Iran) are characterized with arid climate and almost flat deserts. Including 

different irrelevant zones of predictors from nonhomogeneous climates in state 5 and state 6, the 

results of the models demonstrate that the new spatial extent of predictors contain unrepresentative 

synoptic scale circulation patterns influencing precipitation process in the study area.  
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Figure 2-5. Sensitivity analysis on the predictor domains 
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Therefore, analyzing the sensitivities of the predictor domains demonstrates that including 

atmospheric subspaces from nine-surrounding-grid cells is much more informative, and the projector 

interactions of the subspaces play an important role in enhancing the modelling performance. 

Furthermore, the results emphasize that predictor domain size is an important factor in the regression 

statistical downscaling procedure, and the Kernel Supervised PCA method has high efficiency in 

capturing spatial patterns of the projector behaviours at the different spatial scales by taking into 

account the linkage and the dependency between the predictand and the atmospheric characteristics.  

After selecting the best dimensionality reduction method and demonstrating the sensitivities and 

corresponding sources of uncertainty in terms of predictor sets, the best combination of the Kernel 

Supervised PCA and the RVM model formed based on the nine surrounding-grid-cells is employed 

for projecting precipitation time series for the upcoming decades.  

2.5.3 Future Precipitation Projection   

To project the impact of climate change on future precipitation, 15 GCMs of the CMIP5 multi-

model ensemble are used under three forcing emission scenarios. After extracting the same 

atmospheric projectors for each model and rescaling them, different models are used as input for the 

best selected dimensionality reduction method (Kernel Supervised PCA). Using the same tuned 

Kernel Supervised PCA model in the modelling section, the derived transformed atmospheric 

projectors for the upcoming decades based on different scenarios (in the same reduced-dimension 

extracted in the modelling) are employed for precipitation projection using the best selected RVM 

data-mining method.  

To better understand whether the supervised dimensionality reduction method acts differently from 

the commonly-used standard PCA method over different climate change scenarios (RCPs), the 

representations of precipitation are projected through the standard PCA method under three forcing 

scenarios as well. Figure 2-6 illustrates the results of precipitation reproduced based on the best-

selected Kernel Supervised PCA and the standard PCA in the form of empirical cumulative 

distributions under the three RCPs scenarios. The behavior of precipitation projected through the two 

dimensionality methods is completely different under the three climate-change scenarios. The 

difference is obvious across the different exceedance probabilities, especially in the extreme high and 

low-magnitude observations. In Figure 2-6, the standard PCA cannot capture low magnitude 

observations and over-estimates the low-value observations in the lower tails, while in the upper tails, 

it under-estimates observations and cannot capture extreme high-magnitude events for future decades. 
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Figure 2-6. Empirical cumulative distribution of reproduced precipitation based on two kernel supervised PCA and standard-PCA models under three different forcing scenarios for the future 

decades 
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In contrast, Kernel Supervised PCA is not only able to project the majority of the dry-spells in the 

lower tails across the different GCMs, but also projects the rare-frequent observations in the upper 

tails under different forcing scenarios, quite similar to the values for the historical time period. The 

reason is due to exploring subspaces through orthogonal transformations (using nonlinear kernel 

functions) onto which the dependency (between precipitation and the atmospheric predictors) and the 

variance retained under projection in the Kernel Supervised PCA are maximal. Using these reduced 

sequences of nonlinear subspaces (manifolds) in the downscaling model leads to capturing extreme 

observations in all GCMs and reducing uncertainty.    

Thus, applying the standard PCA as a dimensionality reduction may result in entirely different RCP 

projections for future time periods and is considered a main source of uncertainty in terms of 

projecting extreme values in the statistical downscaling. Using a supervised dimensionality reduction 

model leads to reducing this source of uncertainty and to the projection of extreme observations based 

on different GCM models under different climate change scenarios for the upcoming decades. 

 To better explain the differences arising from the two dimensionality reduction methods and to 

understand how each can influence future precipitation behavior, the linear trends of the projected 

precipitation using a simple linear regression are calculated based on the annual mean under the 

different scenarios. The difference between precipitation amount at the beginning and the end of the 

21st century is calculated as an index to show the increase or reduction of precipitation over future 

time periods. The projection of precipitation based on CMIP5’s models is provided in two time 

scales, near-term (2015-2040) and long-term (2015-2100), under three scenarios RCP2.6, RCP4.5, 

and RCP8.5 (Table 2-3).  

In the 15 CMIP5 multi-model ensemble data employed in the present study, there are 13 models 

available in RCP2.6, 13 in RCP4.5, and 11 in RCP8.5 scenarios, respectively. The missing models in 

each scenario are due to the unavailability of some large-scale atmospheric variables in the models at 

the time of this manuscript’s preparation. According to the results in Table 2-3, the precipitation 

linear trend fluctuates in both methods in all three scenarios for the near-term and the long-term 

scales. However, the majority of the models indicate different trends in terms of both the magnitude 

and the direction, based on the Kernel Supervised PCA and the standard-PCA under the different 

scenarios in both the future time periods. Although both the dimensionality reduction methods lead to 

precipitation reduction on average compared with the historical records (1951-2011) showing an 

increasing trend of 7.29 mm (10yr)-1, the magnitude of reduction varies based on each method for 

different GCM models under the forcing scenarios. 
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Table 2-3. Linear trends for projected precipitation (mm (10yr)-1) in near-term (2015-2040) and long-term (2015-2100) temporal scale under different climate 

change scenarios 

 * It should be noted that the precipitation linear trend analysis for the historical records (1951-2011) shows an increasing trend of 7.29 mm (10yr)-1. 

  RCP2.6  RCP4.5  RCP8.5 

  Near-Term Long-Term  Near-Term Long-Term  Near-Term Long-Term 

Model  PCA S-PCA PCA S-PCA  PCA S-PCA PCA S-PCA  PCA S-PCA PCA S-PCA 

BCC-CSM1.1  3.32 -8.69 -3.90 -1.07  1.89 -9.61 -0.93 -4.80  -33.75 -25.63 -23.27 -6.41 

CanESM2  -12.72 -1.11 0.23 -0.07  2.64 -9.24 -0.44 -3.58  - - - - 

CCSM4  -1.91 0.12 1.42 -1.85  -15.77 0.58 -0.95 -0.17  - - - - 

CNRM-CM5  4.74 6.76 -4.22 1.38  -12.78 12.31 -5.64 0.92  - - - - 

CSIRO-Mk3.6.0  -15.48 -19.40 -0.87 -0.25  - - - -  17.79 -2.34 0.11 -2.80 

GFDL-ESM2M  - - - -  -7.15 -19.98 -0.64 -6.25  13.94 4.46 -1.52 -3.90 

GISS-E2-R  -10.53 -4.09 1.64 -0.82  -2.53 19.49 4.14 -1.69  3.41 3.46 3.61 -1.39 

HadGEM2-ES  11.93 10.11 -1.70 2.57  - - -   - - - - 

INM-CM4  - - - -  20.85 -6.03 4.39 -4.63  -4.60 1.25 -0.76 -3.80 

IPSL-CM5A-MR  19.13 4.72 1.36 2.26  -18.85 -7.29 -3.30 -0.14  -0.64 7.90 0.75 -6.60 

MIROC5  9.45 -3.43 0.42 -3.15  -11.35 -13.72 -0.55 -1.92  -12.16 6.49 -12.50 -5.76 

MIROC-ESM  -6.09 -22.05 -0.63 -3.72  -6.09 -10.34 -0.63 -8.56  2.95 3.84 -4.35 -9.23 

MIROC-ESM-CHEM  -22.31 -8.51 -0.80 -3.34  2.23 10.38 -6.21 -4.78  -2.15 -26.45 -9.65 -5.52 

MRI-CGCM3  8.63 4.88 -1.06 1.80  -29.30 -1.05 -1.45 -0.74  -41.51 -2.84 -17.89 -1.48 

NorESM1-M  -5.82 -2.09 -2.56 -2.25  -19.32 -12.16 3.60 -4.95  -1.65 -2.20 -13.74 -8.94 

Average  -1.35 -3.29 -0.82 -0.66  -7.34 -3.59 -0.66 -3.18  -5.31 -2.92 -7.20 -5.08 

Variance  124.99 79.76 3.18 4.09  147.45 114.64 9.35 7.94  238.78 104.22 65.49 10.52 

No. of negative models  7/15 8/15 8/15 9/15  9/15 9/15 10/15 12/15  7/15 5/15 8/15 11/15 
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A variance comparison of the magnitude of linear trends across different ensemble GCM 

models reveals that a difference exists between the standard-PCA and the Kernel Supervised PCA 

linear trend results. For the various RCP scenarios, the difference is much greater in the near time 

period, ranging from 124.9 to 238.78 mm (10yr)-1 based on the PCA’s results, and much less, 

ranging from 79.76 to 114.64 mm (10yr)-1, based on the Kernel Supervised’s ones. In contrast, 

the variance magnitude of linear trends derived from the two dimensionality reduction methods is 

less for the long-term period, varying from 3.18 to 4.09 mm (10yr)-1 in RCP2.6, from 9.35 to 7.97 

mm (10yr)-1 in RCP4.5, and from 65.4 to 10.52 mm (10yr)-1 in RCP8.5 based on the PCA and 

Kernel Supervised PCA results, respectively. However, the difference between the variances of 

the two methods in RCP8.5 is still significant in comparison with the other two scenarios. 

Therefore, it can be concluded that in statistical downscaling the commonly used standard PCA 

is not only unable to project extreme precipitation values, but also leads to different trends in 

terms of near-term and long-term precipitation projection. Consequently, compared with the PCA 

method, using Kernel Supervised PCA method and extracting a sequence of principal component 

of the projector variables, which have maximum dependency on the predictand, can better explain 

projector interactions and improve future projections of precipitation in a nonlinear downscaling.   

2.5.4 Seasonal projection 

In some water resources applications, projecting precipitation changes in different seasons is 

more important than projecting the changes in annual-based temporal scale. Relying on the 

Kernel Supervised PCA, seasonal precipitation changes are projected at the study site based on 

this dimensionality reduction method. Figure 2-7 shows seasonal changes in projected 

precipitation based on different emission scenarios for the near-term and long-term periods. 

Without taking into account post-processing analyses on projected precipitation (bias 

corrections), all of the scenarios indicate an increase of precipitation for spring and fall, and a 

significant reduction in winter and summer precipitation in both future temporal scales relative to 

the historical time period. The mean reduction of projected precipitation in winter ranges from -

26.31% under RCP8.5 in the near-term to -31.72% under RCP2.6 in the long-term compared with 

the historical period based on the existing GCM models. Spring precipitation is projected to 

increase, but not significantly. The largest dispersion of 8.76% is expected to occur in RCP8.5 in 

the near-term, and the least dispersion of 0.85% occurs in RCP8.5 in the long-term. Although 

precipitation reduction is highest in the summer, it is not significant in terms of precipitation 

magnitude. Consistent with that of spring, fall precipitation also tends to increase based on the 

ensemble averages in both near and long term periods, with larger intermodel variability than in 
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other seasons in different scenarios. Although different scenarios demonstrate an increase in total 

precipitation for some of the seasons in the study site, two other characteristics - distribution and 

intensity of rainfall through the seasons - may potentially be significantly impacted by climate 

change. It is thus important to consider them as well. 

Overall, comparing the annual linear trend results with the seasonal ones based on the Kernel 

Supervised PCA method, it is clear that precipitation reduction in winter has an important role in 

the occurrence of negative annual trends in the near and long-term periods. Therefore, to better 

manage future near and long-term surface water resources for various purposes, especially 

drinking water use, authorities must be ready to mitigate adverse effects of rainfall shortage and 

surface water reduction under the impact of climate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-7. Seasonal changes of projected precipitation under different emission scenarios relative to the 

historical (1951-2011) mean for that season. The near-term time periods are depicted in green color and the 

long-term ones are in blue.  
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2.6 Conclusions 

To improve the performance and the predictive power of the statistical downscaling processes 

with high-dimensional input data, this study has presented a supervised nonlinear dimensionality 

reduction technique–Supervised PCA–for extracting principal components in which the 

dependency between the response hydro-climate variable and large-scale atmospheric projectors 

is maximized. Due to the complexity and nonlinearity of climate associated processes, and the 

existence of nonlinear interdependency within atmospheric projectors, a kernelized form of 

supervised dimensionality reduction is able to efficiently model the nonlinear variability of the 

data.  

The results demonstrate the high efficiency of the Supervised PCA techniques in enhancing 

performance accuracy of the precipitation downscaling using two machine learning methods, 

SVR and RVM methods, so that the Supervised PCA methods outperform all of the existing 

state-of-the-art dimensionality reduction techniques. The Supervised PCA method is able to 

capture the complex nonlinear dependency between target precipitation variable and the 

atmospheric projectors.  

The proposed methodology can be used for other hydro-climate variables and also other 

regression-based statistical downscaling processes to improve the projection accuracy of target 

hydro-climate variables in the future. Hence, the application of the presented methodology in 

climate change studies will result in more-accurate projections for future proactive strategies, by 

which decision makers will be able to develop effective and long-term policies to be adopted in 

response to potential future changes and to mitigate adverse consequences of severe hydro-

climate processes. 

Since GCM simulations of precipitation for the current climate should be consistent with 

observed data, future work will focus on application of newly developed analyses for bias 

correction of projected precipitation time series for the upcoming decades.  
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Chapter 3 

Water Resources Climate Change Projections Using Supervised 

Nonlinear and Multivariate Soft Computing Techniques 

This chapter is a mirror of the following published paper with the same title in Journal of 

Hydrology. Only minor changes are made to the paper to be consistent in the thesis format.  

Sarhadi, A., D. H. Burn, F. Johnson, R. Mehrotra, and A. Sharma (2016c), Water resources 

climate change projections using supervised nonlinear and multivariate soft computing 

techniques, Journal of Hydrology, 536, 119-132. 

 

Summary  

Accurate projection of global warming on the future probabilistic behavior of hydro-climate 

variables is one of the main challenges in climate change impact assessment studies. Due to the 

complexity of climate-associated processes, different sources of uncertainty influence the 

projected behavior of hydro-climate variables in regression-based statistical downscaling 

procedures. The current study presents a comprehensive methodology to improve the predictive 

power of the procedure to provide improved future projections. It does this by minimizing the 

uncertainty sources arising from the biases that exist in climate model simulations. To correct the 

spatial and temporal biases over multiple time scales in the GCM predictands, the Multivariate 

Recursive Nesting Bias Correction (MRNBC) approach is proposed for the regression-based 

statistical downscaling. The results demonstrate that this approach significantly improves the 

downscaling procedure in terms of future precipitation projection. 

3.1  Introduction 

Bias correction has been shown to improve the quality of GCMs for use in projecting hydro-

climate variables under different climate change scenarios of the future (Mehrotra and Sharma, 

2012; Ojha et al., 2013). Regarding the projection step of the statistical downscaling, the accuracy 

of climate change simulations is influenced by the similarity in the relationship between actual 

atmospheric variables and observed rainfall, as compared to simulated variables and the 

presumed projected rainfall. This similarity is expected to be influenced by the biases that 

characterise the raw GCM fields. Therefore, in the statistical downscaling processes an initial 
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post-processing correction must be carried out on GCM outputs representing the current climate, 

based on the statistical characteristics of observations, to remove the difference between observed 

and simulated large-scale atmospheric variables. The bias correction model over a historical time 

period is assumed to be the same in the future and can thus be employed on future GCM 

simulations (Johnson and Sharma, 2015). In addition, anomalous atmospheric circulation patterns 

influence the hydrological cycle and large-scale atmospheric variables. Interannual and 

interdecadal variability in the large-scale climate modes are often not well represented in GCM 

simulations (Rocheta et al., 2014b), resulting in uncertainty and biases in projections of hydro-

climate variables relating to the future. Thus, raw data from GCMs must also be corrected to 

capture the effect of low frequency variability of teleconnections on large-scale atmospheric 

variables (Mehrotra and Sharma, 2012). 

It is therefore critical to identify the nature of these biases and develop methods to address 

these sources of uncertainty. Several bias correction approaches have been developed to quantify 

the difference between observed (or reanalysis) data and large-scale GCM-simulated variables 

and form the basis on which to correct biases in both current and future atmospheric GCM 

simulations. Commonly used bias correction procedures can be classified into two main 

categories. The first relies on delta change and scaling approaches, including quantile mapping, 

scaling, correction factor, and transfer functions (a detailed review of the various methods can be 

found in Johnson and Sharma (2012) and Fowler et al. (2007)). All the methods in this category 

can be applied for post-processing either on GCM variables or outputs of downscaling models. 

Their main drawback is that they only take into account biases in the distribution of GCM 

simulations rather than biases in the representation of persistence and variability in simulations. 

Current climate variability is thus assumed to remain the same in the future. The second category 

involves approaches relying on statistical bias correction. Simple techniques in this category such 

as Monthly Bias Correction (MBC) (Ojha et al., 2013) correct only systematic biases in the mean 

and variance of GCM-simulated variables or output of downscaled processes in an independent 

time scale, ignoring the influence of regional and global teleconnection signals. However, the 

impact of teleconnections on hydro-climate variable behaviour in large scales makes it important 

to properly represent the interannual and interdecadal fluctuation of climate in the raw GCM 

outputs. To do so, Johnson and Sharma (2012) developed a bias correction methodology by 

adding lag-1 correlation to the procedure to correct the representation of low frequency variability 

between GCM simulations and observed data. The approach corrects the distributional and 

persistence GCM biases from fine to progressively longer time series and is called Nested Bias 

Correction (NBC). An extension of NBC was proposed by Mehrotra and Sharma (2012) to 
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enhance the representation of variability at multiple time series by reducing biases through 

repeating the nesting process several times (Recursive Nesting Bias Correction, RNBC method).  

One of the criticisms of bias correction is that the statistical corrections do not maintain the 

physical relationships between different climate variables (Ehret et al., 2012; Haerter et al., 2011; 

Rocheta et al., 2014a). To overcome this problem Mehrotra and Sharma (2015) developed a bias 

correction method that can consider multiple variables and correct the cross correlations between 

them over a range of time scales. The Multivariate Recursive Nesting Bias Correction (MRNBC) 

extends the previous nesting bias correction approaches (Johnson and Sharma, 2012) and has 

been shown to be effective at correcting predictors for statistical downscaling leading to 

improved downscaled simulations. An alternative implementation could include using multiple 

locations rather than multiple variables in statistical downscaling to correct spatial as well as 

temporal dependence in the GCM simulations. 

Reducing different sources of uncertainty is crucial in statistical downscaling as it enhances the 

quality of the hydro-climate variable projections. Consequently, these accurate projections help 

hydrological and water resources studies better assess the impact of climate change on the 

availability and allocation of water resources for various sectors, especially drinking water 

supply. While the uncertainty sources, including the complex and nonlinear relationship between 

large-scale atmospheric processes and hydro-climate variables are discussed in the previous 

chapter, the present chapter focuses on the multivariate bias correction methods to address the 

uncertainty arising from GCM simulations. Figure 3-1 depicts a flowchart of the applied 

procedures and their relationships in the present study.  

The rest of the paper is organized as follows: Section 3.2 explains the mathematical 

background of the methodologies used in the regression-based statistical downscaling, namely 

bias correction of multivariate atmospheric projectors. The study is completed with the 

presentation of the results and discussion on the bias correction findings in Section 3.3. The 

credibility of the statistical downscaling model under non-stationary conditions is also examined 

in the same section. The conclusions are given in Section 3.4.   
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Figure 3-1. Schematic flowchart of the methodology 
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3.2 Methodology 

3.2.1 Bias correction  

A brief description of the logic of the multivariate bias correction is provided with readers referred 

to Mehrotra and Sharma (2015) for the full derivation. The MRNBC is based on a Multivariate 

Autoregressive order 1 model (MAR1) (Salas, 1980) that is used to represent both the observed data 

and the GCM simulations. The general idea is that for all time scales of interest the GCM simulations 

are nested into the observed time series. In this case the observed data are the chosen atmospheric 

predictors from the reanalysis data set as described in Chapter 2. To achieve the nesting, both time 

series are standardized to have zero mean and standard deviation of one. Then the lag one 

autocorrelations and lag one and lag zero cross correlations in the GCM simulations can be corrected 

to match the observed correlations in time and space. Although this study uses only an MAR1 model, 

the possibility of correlations in higher order lags can also be checked (Molina et al., 2013).  

Let X be a p x n matrix of p predictor variables with n time steps at a single location. Xh
 is used to 

denote the observations and Xm the GCM variables. For the monthly correction, the parameters are 

allowed to vary seasonally so for month i, the data to be corrected is Xm
i for all years of data. The data 

are first standardized to form a periodic time series and for the observations.  

In general the MAR1 model describes each data set as: 

 and                                                           (3.1) 

where C and D are the lag zero and lag one auto and cross correlations from the observations, E and 

F are calculated in the same way for the standardized GCM simulations and εi is a vector of p 

independent random variates having zero mean and the identity covariance matrix. 

To obtain the corrected data for any particular year t the model for correction is: 

                                                           (3.2) 

where is the value in the corrected time series from the previous month in year t. After 

correction the time series is rescaled by the observed mean and standard deviation to give the final 

corrected time series . Details on solving for the matrices C, D, E and F are provided by Mehrotra 

and Sharma (2015) based on Srikanthan and Pegram (2009) and Matalas (1967). 
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Following the monthly corrections, the time series is aggregated to form a seasonal series and 

the periodic corrections described above are applied, now indexing over the 4 seasons rather than 12 

months to give where S refers to the seasonal matrix of simulations which is p x n/4 in size. 

Finally this time series is aggregated to an annual time series and the correlations, standard deviation 

and mean are corrected to form  where A is the matrix of yearly data which is p x n/12.  

According to Srikanthan and Pegram (2009), the corrections at each time aggregation can be 

applied in a single correction step as follows: 

                                                                  (3.3) 

There are some further details in the bias correction that ensure optimum results. A three step 

correction procedure is used to correct biases firstly in the mean, then the standard deviation and 

finally the correlations. This ensures that the future climate change signal is not affected by the bias 

correction. The bias corrections are applied three times in the recursive nature suggested by Mehrotra 

and Sharma (2012) to achieve even better performance in the bias corrected simulations. To correct 

the future GCM projections, the statistics from the historical period GCM simulations and the 

reanalysis data are applied for the corrections (Johnson and Sharma, 2012). This allows the GCM 

projections to evolve according to the impacts of climate change over time. 

After involving the bias correction method with the developed models (dimensionality-reduction 

and machine-learning methods) in the previous chapter, the credibility of the combined regression-

based statistical downscaling model should be validated under the impact of changing conditions 

(non-stationarity) arising from global warming.  

3.2.2 Credibility of model under non-stationary climate 

Statistical downscaling models are developed based on quantitative and empirical relations 

between a target variable and predictors over the historical period. The relations are criticized owing 

to remaining unaltered despite non-stationary changes arising from global warming in the future. It is 

therefore important to distinguish between stationarity of the statistical relations and the non-

stationarity under global warming. The empirical relations between target hydro-climatic variable and 

large-scale atmospheric predictors are not expected to change over time. If the best-selected 
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downscaling model is, however, calibrated under non-stationary conditions, it is adjusted to the 

changes arising from global warming. The model will consequently be qualified to a better possibility 

of generalizing to future changing climate. Relying on this assumption, in the present study two 

design-of-experiment (DOE)-based frameworks proposed by Salvi et al. (2015) are employed to 

examine the credibility of the best-selected statistical downscaling model for future generalization 

under approximate non-stationarity. The core of the framework is based on an implicit assumption 

that “climate conditions in the current or future will have ‘signatures’ over time and space. For any 

specific region, future climate states and empirical relations may be assumed to have signatures in the 

past climate” (Salvi et al., 2015). According to this assumption, if in the future due to global 

warming, climate gets warmer (colder) or El-Niños become more (less) prevalent, and anthropogenic 

activities lead to severe radiative forcing, the climate may start to resemble the situations in the past 

where the similar conditions occurred due to natural variability (Salvi et al., 2015). The details of the 

two design-of-experiments are discussed in the following subsections. 

3.2.2.1 Experiment series 1: Training period selection 

The general capability of empirical relations may be validated through carefully selecting the data 

into the downscaling models for training phase followed by a testing phase. The first series of the 

DOE experiments is based on the performance evaluation of a model for the period when the 

condition of atmospheric predictors are different from those used in the calibration or training phase. 

In other words, the satisfactory performance of a model that has been trained based on a specific 

condition of climate is expected to be robust for a totally contrasting climate condition to a great 

extent. The contrasting climate conditions could be hot versus cold years, or ENSO versus non-ENSO 

years, and vice versa. The different experiments designed to validate the performance of the 

combined supervised dimensionality reduction and machine-learning models in the current study are 

discussed in more detail as follows: 

I) Base experiment (Tr-RAN-Te-RAN)    

A random selection of training and validating periods (K-fold cross-validation) is used as a 

scenario for the validity of the model. In this method, known also as the leave-one-out cross-

validation, all observations are used for both training and validation, and each observation is used for 

validation exactly once. This random selection of training period ensures complex mixing of large-
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scale atmospheric patterns of different climate conditions, leading to the coverage of a wide range of 

climate variability. This experiment is therefore treated as ‘base experiment’ and the results of all 

other experiments in series 1 are compared with this random-selection experiment. The experiment is 

referred to as ‘Tr-RAN-Te-RAN’ in the present paper.  

II) Chronological order (Tr-CH-Te-CH) 

In this scenario the selection of training period is conventionally carried out based on chronological 

order. The first 30 years of the overall time period (1951-1980) (known as ‘Past’) are selected for 

training period and the next 25 years (1981-2005) (known as ‘Recent Past’) are considered as 

validation period.   

III) Hot and cold years (Tr-C-Te-H and Tr-H-Te-C)   

In this experiment relatively warmer/colder years from the time period 1951-2005 are identified as 

training set. In other words, subset of data that are considered relatively warmer years (in case of 

colder years as testing) or relatively colder years (in case of warmer years as testing) are selected for 

training the statistical model.  

To identify relatively warmer/colder years, mean annual temperature data can be used for this 

purpose. In this method, mean annual temperatures are arranged in descending order. First X years 

will then be considered as relatively warmer years. The same procedure is also carried out for 

ascending order to select relatively colder years. In the present study to have a realistic criterion, the 

categorization of warmer/colder years is performed based on average monthly temperature data over 

the summer months. As the summer months (Jun, July, and Aug) form relatively high-temperature 

periods compared with other months of year, they can be considered as a better indicator for 

identification of relatively warmer/colder years.     

IV) ENSO and non-ESNO years (Tr-EN-Te-nonEN and Tr-nonEN-Te-EN) 

El Niño-Southern Oscillation (ENSO) is an irregularly periodical variation in Sea Surface 

Temperature (SST) in the equatorial Pacific Ocean having remote influence on global climate systems 

(Langenbrunner and Neelin, 2013). Different studies (Modarres and Ouarda, 2014; Nazemosadat and 

Cordery, 2000; Roghani et al., 2015) demonstrate the influence of El Niño (warming) and La Niña 

(cooling) phases on precipitation behavior in different parts of Iran including the study area. It is 
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likely that the frequency and the magnitude of El Niño influences may increase by more emission of 

greenhouse gases in the future. Another experiment set of the first series of DOE is hence formed by 

the selection of ENSO/nonENSO occurrence years as training period. The list of El Niño and non-El 

Niño years is obtained from Salvi et al. (2015). In this set of experiments, Tr-nonEN-Te-EN 

represents the scenario in which non-El Niño years are selected from the time period (1951-2005) as 

training period. Conversely, Tr-EN-Te-nonEN represents selection of El Niño years from the overall 

time slice as training period.  

The list of selected years for calibration of the downscaling model for different set of experiments 

in the first series of the DOE approach is given in Table 3-1. 

3.2.2.2 Experiment series 2: validation based on climate change signatures 

The second series of DOE to validate the proficiency of the downscaling model in predicting 

changing climate is based on an indirect ‘signature based’ approach. In this experiment two scenarios 

are followed: 1) ‘Pre-industrial run’ corresponding to ‘no anthropogenic greenhouse gas emissions’, 

and 2) ‘Future RCP8.5 run’ corresponding to ‘highest greenhouse gas emissions’ and representing the 

strongest radiative forcing in the future. In this experiment, signatures of ‘Pre-industrial’ scenario (PI) 

and ‘Future RCP8.5’ scenario are identified (based on large-scale atmospheric predictors) in the 

recent past time period (1980-2005). For each individual year in the recent past time period, the 

Euclidean distance is computed for centroid of atmospheric predictors between that year and each 

year in the selected scenarios (PI and RCP8.5). Years that have atmospheric predictor close to the 

different scenarios, based on the results of the Euclidean distance analysis, form two different subsets. 

The subset close to Average Climate Conditions (ACCs) of pre-industrial is called ‘ACC-PI 

signatures’ and the subset close to average climate conditions of RCP8.5 is called ‘ACC-RCP8.5’. 

The difference in observed monthly mean precipitation for ‘ACC-PI’ and ‘ACC-RCP8.5’ signatures 

represents the possible signature of greenhouse gas emissions to precipitation in future. After 

implementing supervised PCA method on the projectors, precipitation is projected for both ‘ACC-PI’ 

and ‘ACC-RCP8.5’ signatures as well. Similar difference is also computed for projected precipitation 

and the results are compared with observed ones. The proficiency of supervised PCA and the 

downscaling model in predicting the expected difference between ‘ACC-PI’ and ‘ACC-RCP8.5’ 

signatures indicates high credibility of model in precipitation projections under changing (non-
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stationary) conditions. The procedure is carried out on different types of GCMs for the PI and RCP8.5 

predictors.  

Table 3-1. List of time sets selected as training period for different experiments in series 1 of DOE 

Tr-CH-Te-CH Tr-C-Te-H Tr-H-Te-C Tr-nonEN-Te-EN Tr-EN-Te-nonEN 

1951 1951 1964 1951 1957 

1952 1952 1966 1952 1958 

1953 1953 1973 1953 1965 

1954 1954 1975 1954 1966 

1955 1955 1976 1955 1968 

1956 1956 1977 1956 1969 

1957 1957 1980 1959 1972 

1958 1958 1983 1960 1973 

1959 1959 1984 1961 1982 

1960 1960 1985 1962 1983 

1961 1961 1987 1963 1986 

1962 1962 1989 1964 1987 

1963 1963 1990 1967 1991 

1964 1965 1994 1970 1992 

1965 1967 1995 1971 1994 

1966 1968 1997 1974 1995 

1967 1969 1998 1975 1997 

1968 1970 1999 1976 1998 

1969 1971 2000 1977  

1970 1972 2001 1978  

1971 1974 2002 1979  

1972 1978 2003 1980  

1973 1979 2004 1981  

1974 1981 2005 1984  

1975 1982 2006 1985  

1976 1986 2007 1988  

1977 1988 2008 1989  

1978 1991 2009 1990  

1979 1992 2010 1993  

1980 1993 2011 1996  

 1996  2000  

   2001  

   2002  

   2003  

   2004  

   2005  

3.2.3 Projection for a future climate 

After correcting biases and errors in the large-scale atmospheric predictors, and also examining the 

credibility of the combined statistical downscaling model, the next phase is to project the accurate 

behavior of the target variable for future climate simulations.  
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Therefore, in the procedure, the simulated GCMs for different climate change scenarios are first 

corrected using the MRNBC method in the preprocessing step of downscaling. The bias corrected 

atmospheric predictors are subsequently imported into the supervised dimensionality reduction model 

(Kernel Supervised PCA) developed and discussed in the previous chapter to generate principal 

components. Consequently, the principal components are substituted in the best-selected machine-

learning method (RVM) to downscale the target variable for long term projection. The complete 

downscaling procedure is illustrated in Figure 3-1.  

3.3 Results and discussion 

3.3.1 Bias correction 

To correct the biases in GCMs of the multi-model ensemble, NCEP/NCAR-based atmospheric 

projectors are used as the bench mark. The bias corrected results are presented in Table 3-2 where it is 

clear that the MRNBC has led to substantial improvements in the representation of the statistics of 

each of the predictors compared to the raw GCM simulations for the current climate. Due to space 

limitations, results are provided for a single GCM (BCC-CSM1-1) but the performance of the bias 

correction is similar for all GCMs.  

Table 3-2. Root mean square error (RMSE) in estimates of annual statistics from GCM simulations compared to 

NCEP/NCAR estimates. RMSE calculated across 9 grid cells for BCC-CSM1-1 GCM.  

 

Figures 3-2, 3-3 and 3.4 show the performance of the bias correction across all GCMs, grid cells 

and, in the case of the monthly level statistics, all 12 months. Again it is clear that the bias correction 

leads to substantial improvements in all three statistics (monthly mean, monthly standard deviation, 

and annual standard deviation) for the current climate. The observed monthly means (and therefore 

seasonal and annual means) are almost exactly reproduced. The variance and persistence (standard 

deviation at the monthly and annual level) also show good improvements although there are some 

remaining biases compared to the mean corrections, for example the positive bias in all models at all 

Statistic GCM case AIR RHUM SHUM SLP TMAX TMIN HGT3 PRECFLUX 

Annual Mean 
Raw 2.83 12.05 4.3 3.69 2.69 4 17.68 5.6 

MRNBC 0.01 0.17 0.01 0.03 0.02 0.03 0.22 0.09 

Annual Standard 

Deviation 

Raw 0.11 1.23 0.38 0.7 0.21 0.3 1.76 0.41 

MRNBC 0.02 0.49 0.06 0.24 0.08 0.1 0.77 0.10 

2 year Standard 

Deviation 

Raw 0.11 1.42 0.38 0.86 0.23 0.31 2.75 0.45 

MRNBC 0.02 0.44 0.06 0.2 0.06 0.08 0.43 0.09 
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locations for Sea Level Pressure variance. This is because the corrections are applied in the 

multivariate setting so it is not possible to correct each variable perfectly as well as correcting the 

inter-variable relationship. Larger reductions in bias could be expected if the corrections were applied 

separately for each variable but this would not preserve the physical relationship between variables, 

which is important as they form the inputs to the downscaling models. 

 

Figure 3-2 Monthly mean values for each predictor variable for all GCMs and all grid locations for raw and bias 

corrected GCM simulations. Each plot contains 1620 points representing 15 GCMs, 9 grid locations and 12 

months. R2 values are provided for both cases below the title for each panel. 
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Figure 3-3 Monthly standard deviation values for each predictor variable for all GCMs and all grid locations for 

raw and bias corrected GCM simulations. Each plot contains 1620 points representing 15 GCMs, 9 grid 

locations and 12 months. R2 values are provided for both cases below the title for each panel. 

 

 

 



 

56 

 

 

Figure 3-4 Annual standard deviation values for each predictor variable for all GCMs and all grid locations for 

raw and bias corrected GCM simulations. Each plot contains 135 points representing 15 GCMs and 9 grid 

locations. R2 values are provided for both cases below the title for each panel. 

3.3.2 Historical precipitation representation in GCMs 

In this section, to assess the impact of the bias corrections on each GCM-based input atmospheric 

projector of the downscaling model, the representations of precipitation downscaled with different 

ensemble GCM models are extracted for the historical period and compared with observed 

precipitation during the same time period (1951-2005).  
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Doing so, the same raw atmospheric projectors used in the modelling step, and the bias-corrected 

ones derived from the previous section for each GCM model, are used as input to the best selected 

dimensionality reduction method from the previous chapter (Kernel Supervised PCA). Using the 

same tuned parameters derived in the modelling step (Chapter 2) for the Kernel Supervised PCA, low 

dimensional projectors of the both raw and corrected historical atmospheric projectors are retained. 

The derived transformed projectors (in the same reduced-dimension as the modelling section, Z=10) 

for CMIP5 GCM models are imported to the best selected machine-learning model (RVM) for 

probabilistic precipitation projection of the multiple-GCM-models for the historical time period. The 

results of reproduced precipitations from both bias-corrected and raw GCM models are compared 

against observed precipitation for the same time period, in the form of the empirical cumulative 

distributions in Figure 3-5. As illustrated in Figure 3-5 (a), a significant bias exists between observed 

and projected precipitation for the raw GCM models across the different exceedance probabilities, 

especially rare high-magnitude observations. This error, related to variability and persistence biases in 

atmospheric projectors, is significantly reduced for the corrected multiple-GCM-derived precipitation 

through using the MRNBC bias correction model. As current precipitation variability in the GCMs 

should be the same as that in the observed data, Figure 3-5 (b) depicts that all the GCM-derived 

projected precipitations follow similar distributional behavior and show a good fit with observed 

precipitation. The MRNBC technique in the bias correction procedure is thus able to remove the 

difference between observed and the raw simulated multiple-GCMs through addressing variability 

and biases in serial and cross dependence of large-scale atmospheric projectors, thereby enhancing 

the quality of GCM outputs. Accordingly, relying on the MRNBC model is expected to improve the 

performance of precipitation projection under different climate change scenarios for the upcoming 

decades.  

3.3.3 Performance evaluation under non-stationary conditions 

To examine the credibility of the downscaling model under non-stationary conditions arising from 

climate change, the two DOE experiment series (described in section 3.3) are executed on the best 

selected model (K-S-PCA and RVM). The results of each experiment series are discussed in the 

following sections.  
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Figure 3-5. Empirical cumulative distribution functions of reproduced precipitation from a) raw-multiple-GCM 

models, and b) bias-corrected multiple-GCM models for the historical time period (1951-2005) against 

observed precipitation in the same time period.  

(a) 

(b) 
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3.3.3.1 Training period-selection-based approach (series 1) 

In this series, the best tuned statistical downscaling model consisting of the Kernel Supervised PCA 

and the RVM model is trained with the hypothetical scenarios taking reverse climate conditions for 

validation. The results of these series of experiments are given in Table 3-3, where the model is 

trained with cold years and validated for hot years (Tr-C-Te-H), trained with non-El-Niño years and 

validated for El-Niño years (Tr-nonEN-Te-EN), and also dramatically opposite climate conditions 

(Te-H-Te-C and Tr-EN-Te-nonEN) along with chronological order (Tr-CH-Te-CH). The small 

magnitude of RMSE in Table 3-3 reveals that the best selected downscaling model performs 

satisfactorily under reverse changing climates. The difference between RMSE of the Tr-RAN-Te-

RAN (as the base experiment) and RMSE of the other experiments in this DOE series is also small, 

which indicates high performance accuracy of the model for the conditions defined in each 

experiment. Figure 3-6 also illustrates observed and predicted precipitation time series derived for the 

validation time period in each experiment. The graphs depict a good agreement between observed and 

predicted precipitation time series through the model under different changing climates. It should be 

noted that the model preforms satisfactorily in terms of extreme events in all experiments as well. The 

results demonstrate that the combination of the developed Kernel Supervised PCA and RVM model is 

capable of capturing all the expected changes arising from dynamically complicated and changing 

climates.  

 

Table 3-3. Performance accuracy of the best selected statistical downscaling model under the first series of 

DOE experiments 

DOE Methods 
Dimensionality Reduction 

Method 

Machine-Learning 

Method 
Kernel Function RMSE Diff* 

Tr-RAN-Te-RAN K-S-PCA RVM RBF 1.39 - 

Tr-CH-Te-CH 

K-S-PCA RVM RBF 

3.18 1.79 

Tr-C-Te-H 2.91 1.52 

Tr-H-Te-C 3.93 2.54 

Tr-nonEN-Te-EN 3.29 1.9 

Tr-EN-Te-nonEN 1.89 0.5 

   Bold signifies the base experiment (Random Method).  
* Difference between the RMSE of the Random Method and each DOE (series1) method.  
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Figure 3-6. Observed and predicted precipitation time series derived from the best selected downscaling model for the validation time periods of DOE series1 

experiments 60 
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3.3.3.2 Signature-based validation approach (Series 2) 

The capability of the best selected downscaling model in terms of capturing the expected difference 

in mean precipitation owing to greenhouse gas emissions is tested with the signature-based method of 

the DOE approach. In the signature-based method, average climate conditions are obtained for the 

ACC-PI and ACC-RCP8.5 scenarios. These climate conditions should be obtained for a period of 

time, in which large-scale atmospheric predictors reflect significant climate change impacts from 

historical period to the RCP8.5 condition. For this purpose, Probability Density Functions (PDFs) of 

the atmospheric predictors are examined over the historical period (1981-2005) and a time period 

reflecting the worse condition of RCP8.5 (2070-2099). After removing systematic errors from 

different GCMs using the Multivariate Recursive Nesting Bias Correction (MRNBC) method, 

spatially averaged time series of each predictor are obtained over the 9 grid-cell domain for the PI and 

RCP8.5 periods. Figure 3-7 illustrates the kernel probability density functions of the atmospheric 

predictors for INMCM4 GCM as an example. Comparing between PDFs of the predictors simulated 

by the INMCM4 for historical and RCP8.5 illustrates significant changes. Applying a two sample 

Kolmogorov-Smirnov (K-S) test indicates that all predictors are statistically changed from historic 

runs to RCP8.5 at 5% significance level. The same condition exists for all GCMs in scenario RCP8.5 

mentioned in Table 2-1. 

 The Euclidean distance analysis is then applied on multi-predictors of historical and PI/RCP8.5 

scenarios as a measure of resemblance to identify associated signatures in the recent historical period 

(1981-2005). After identifying the signature years, the low dimension of the related atmospheric 

predictors are projected through the Kernel Supervised PCA. The dimension-reduced predictors are 

then imported to the developed RVM model to project monthly precipitation time series for the 

signature periods in the recent historical data. To identify the difference between mean projected and 

observed precipitation in each ACC-PI and ACC-RCP8.5 signature, and also the difference of mean 

projected precipitation between both the signatures, the non-parametric Wilcoxon test is employed. 

The results of the mean difference between observed and predicted precipitation in each signature and 

the Wilcoxon analysis are given in Table 3-4 for all the GCMs. The results demonstrate that the 

downscaling model performs satisfactorily in projecting precipitation for both the ACC-PI and ACC-

RCP8.5 signatures, so that the difference between mean of observed and projected precipitation is 

significantly small under all GCMs. This demonstrates good match between the results of projected 

precipitation through the model and observed precipitation for each signature.  
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Figure 3-7.  Probability density function plots for comparison of atmospheric predictors simulated for ‘historic’ 

and ‘RCP8.5’ scenario over the study area 
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Table 3-4. Difference between mean of projected and observed precipitation obtained through the downscaling 

model for ACC-PI and ACC-RCP8.5 signatures and associated Wilcoxon test results 

 

GCM models  ACC-PI Signatures  ACC-RCP8.5 Signatures  (ACC-PI) - (ACC-RCP8.5) 

 
 

(Obs)-(Pred) 
P-value 

Will-Cox 
 (Obs)-(Pred) 

P-value 

Will-Cox 
 P-value Will-Cox 

BCC-CSM1.1  2.6 0.293  0.79 0.923  0.081 

CNRM-CM5  0.31 0.668  8.12 0.158  0.044 

CSIRO-MK3.6  1.61 0.950  5.49 0.181  0.003 

GFDL-ESM2M  1.193 0.394  1.68 0.944  0.065 

GISS-E2-R  2.24 0.339  4.75 0.439  0.041 

INM-CM4  3.28 0.611  0.856 0.918  0.039 

IPSL-CM5A-MR  1.33 0.902  4.67 0.688  0.052 

MIROC5  3.43 0.589  0.53 0.656  0.048 

MIROC-ESM  0.305 0.706  0.64 0.569  0.69 

MRI-CGCM3  3.51 0.402  4.73 0.280  0.0004 

NorESM1-M  5.53 0.370  0.29 0.646  0.064 
*Bold indicates significant at the 10% significance level  

 

The results of the Wilcoxon test also indicate that there is not any significant difference between 

the mean of projected and observed precipitation in each ACC-PI and ACC-RCP8.5 signature. 

However, the results of the Wilcoxon test reveal that except one GCM (MIROC-ESM) the mean of 

projected precipitation between the ACC-PI and ACC-RCP8.5 signatures is significantly different at 

10% significance level. The results prove the capability of the model in capturing changes in mean 

precipitation due to greenhouse gas emissions under the strongest radiative forcing scenario in the 

future.                 

Overall, the results of both the DOE experiment series demonstrate the ability of the downscaling 

modelling in projecting precipitation under all possible future dynamic climates. The high 

performance of the model in all DOE experiments therefore indicates the credibility of the 

downscaling model in generalizing under future non-stationary climates.          

3.3.4 Future precipitation projections 

To project the impact of climate change on the future precipitation behavior, 15 different GCMs of 

the CMIP5 multi-model ensemble are used under three different forcing emission scenarios. To 

project future precipitation for each GCM model under climate change scenarios, the same three 

operational procedures explained in the previous section for the historical dataset (i.e., bias correction, 

dimensionality reduction, and nonlinear machine-learning based modelling) are implemented on the 



 

64 

 

future simulated atmospheric projectors in two temporal time scales, near-term (2015-2040) and long-

term (2015-2100).  

To better explain the projection changes and understand how the bias-correction procedure can 

influence the behavior of projected precipitation in comparison with the bias-uncorrected projections 

in the previous chapter, a linear trend is calculated from the annual mean of projected precipitation 

derived from raw and bias-corrected-multi GCM models under three forcing scenarios for the two 

temporal scales (Table 3-5). According to the results, the precipitation trend is quite variable across 

the different GCMs, but the majority of the models indicate a steadily decreasing trend in the twenty-

first century under each climate change scenario. This is consistent for both the raw and bias-

corrected models showing that the bias correction has not affected the average direction of the climate 

change signal, even though the absolute magnitude of the future projections is different.  

Bias correction does, however, lead to changes in the magnitude of precipitation reduction. For 

example, before bias correction, the average precipitation change ranges across the different scenarios 

from -2.92 mm(10yr)-1 to -3.59 mm(10yr)-1 and from -0.66 to -5.08 mm(10yr)-1 for the near-and long-

term periods respectively. After employing bias correction on all the GCMs, the precipitation 

reduction becomes much greater for the near-term, so that average precipitation changes range from -

1.20 mm(10yr)-1 to -11.30 mm(10yr)-1 and for the long-term it varies from -0.87 to -3.43 mm(10yr)-1. 

Interestingly, the RCP2.6 case has the largest reduction in the near-term period, which may be 

attributed to the availability of more GCMs for this scenario. For the two high emission scenarios the 

trends are still expected to be negative and of the order of around 10 mm reduction per decade to the 

current trend for recorded precipitation. Slightly smaller reductions in precipitation are expected over 

the long-term period. Generally the largest reductions are projected in the near-term under all three 

emission scenarios.  

Overall, the results indicate a more negative trend after employing the bias-correction procedure in 

the statistical downscaling for both near-term (2015-2040) and long-term (2015-2100) periods. More 

models agree on the direction of climate change signal after applying bias correction. Similar results 

were found by Johnson and Sharma (2015) in the context of drought modelling where agreement 

across the GCMs was improved following bias correction with more consistency in the direction of 

the change in drought frequency.  
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Table 3-5. Linear trends for projected precipitation (mm (10yr)-1) in near-term (2015-2040) and long-term (2015-2100) periods, before and after bias-correction 

under different climate change scenarios 

 

 

* It should be noted that the precipitation linear trend analysis for the historical records (1951-2011) shows an increasing trend of 7.29 mm (10yr)-1. 

  RCP2.6  RCP4.5  RCP8.5 

  Near-Term Long-Term  Near-Term Long-Term  Near-Term Long-Term 

Model  Before After Before After  Before After Before After  Before After Before After 

BCC-CSM1.1  -8.69 -16.68 -1.07 -2.25  -9.61 -30.10 -4.80 -1.37  -25.63 -20.53 -6.41 -2.14 

CanESM2  -1.11 -5.17 -0.07 -5.89  -9.24 -26.74 -3.58 -1.46  - - - - 

CCSM4  0.12 -27.40 -1.85 -1.23  0.58 -27.08 -0.17 0.59  - - - - 

CNRM-CM5  6.76 17.98 1.38 11.05  12.31 24.90 0.92 3.62  - - - - 

CSIRO-Mk3.6.0  -19.40 -32.08 -0.25 0.78  - - - -  -2.34 -31.74 -2.80 -3.52 
GFDL-ESM2M  - - - -  -19.98 -5.68 -6.25 -2.03  4.46 -8.97 -3.90 -1.69 

GISS-E2-R  -4.09 -9.89 -0.82 -0.99  19.49 40.60 -1.69 -0.34  3.46 13.85 -1.39 1.07 

HadGEM2-ES  10.11 -9.89 2.57 -0.99  - -  -  - - - - 
INM-CM4  - - - -  -6.03 15.00 -4.63 -2.63  1.25 -21.91 -3.80 -4.82 

IPSL-CM5A-MR  4.72 8.49 2.26 2.46  -7.29 23.37 -0.14 1.87  7.90 -0.61 -6.60 -5.17 
MIROC5  -3.43 -17.27 -3.15 -3.63  -13.72 -12.21 -1.92 -3.13  6.49 3.54 -5.76 -3.60 

MIROC-ESM  -22.05 -51.31 -3.72 -5.93  -10.34 -30.75 -8.56 -5.36  3.84 36.30 -9.23 -5.16 

MIROC-ESM-CHEM  -8.51 -39.31 -3.34 -2.33  10.38 20.22 -4.78 -3.96  -26.45 -33.73 -5.52 -4.42 

MRI-CGCM3  4.88 18.81 1.80 1.24  -1.05 23.66 -0.74 0.01  -2.84 6.87 -1.48 -2.38 
NorESM1-M  -2.09 16.81 -2.25 -4.44  -12.16 -30.75 -4.95 -5.57  -2.20 -5.17 -8.94 -5.89 

Average  -3.29 -11.30 -0.66 -0.87  -3.59 -1.20 -3.18 -1.52  -2.92 -5.65 -5.08 -3.43 

No. of negative models  8/15 9/15 9/15 9/15  9/15 7/15 12/15 9/15  5/15 7/15 11/15 10/15 
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Therefore, it is worth noting that the applied bias-correction model (MRNBC) has potential to 

improve the results of future projections through addressing biases in persistence, which may 

represent interannual variability arising from large-scale climate modes, and also biases across the 

atmospheric projectors. Thus, the bias-correction procedure constitutes an important step in the post-

processing analysis of large-scale atmospheric projectors in regression-based statistical downscaling 

and can play a vital role in reducing the uncertainty of hydro-climate variable projections. 

Due to the importance of the seasonal precipitation variation in water resources applications, 

seasonal behavior changes of projected precipitation are also considered under different climate 

change scenarios. Figure 3-8 illustrates the seasonal changes of derived average projected 

precipitation based on post-processed (bias-corrected) CMIP5 models under three different emission 

scenarios for near and long-term periods. The mean of observed precipitation is also shown in Figure 

3-8 (as blue marks) for each season to compare the future projected precipitation changes derived 

from different scenarios to historical recorded precipitation for the study site. The results indicate a 

decrease of precipitation for winter, compared with the historical time period, under all of the 

scenarios in both near and long-term periods; less reduction is seen in the near period. The mean 

reduction of projected precipitation in winter ranges from -6.10% under RCP2.6 to -17.71% under the 

same scenario. However, over the long-term period the same reduction pattern is also projected for 

spring, with variation from -2.63% to -7.84% under different forcing scenarios for both time periods. 

The changes for summer are generally small as this is the dry season but the majority of the scenarios 

still show reductions in projected precipitation. In fall, no significant changes are projected based on 

the ensemble averages over the short-term period, even precipitation under RCP2.6 tends to increase. 

Unlike the short-term period, more reduction is seen in the long-term period for all the scenarios, as 

the fluctuation varies from -0.12% to -3.20%. Although the most precipitation reduction is projected 

to occur in winter and spring, other characteristics of precipitation (especially rainfall), i.e., 

distribution and intensity, may potentially be significantly influenced by climate change under 

different scenarios. Thus, in addition to studying only the amount of precipitation, it is also important 

that these two factors are considered and taken into account when projecting the availability of 

surface water resources at the study site.      

According to the results, the precipitation for Tehran city is clearly projected to be influenced by 

climate change in future decades and the availability of surface water resources will potentially be 

severely decreased in the near and long-term. Therefore, water resources authorities and managers 
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need to provide near and long term plans for mitigating adverse consequences arising from water 

shortages and surface water resources reduction under the impact of climate change in future decades.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Seasonal changes of projected precipitation after bias correction under different emission scenarios 

relative to the historical (1951-2011) mean for that season. The near-term time periods are illustrated in green 

color and the long-term ones are in blue. 

 

3.4 Conclusions 

Projecting the impact of climate change on the probabilistic behavior of hydro-climate variables in 

fine local scales is highly complicated due to the existing complex and nonlinear relationship between 

climate-associated processes and the target hydro-climate variables of interest. This complexity 
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results in different sources of uncertainty, which influence the projection accuracy of the global 

warming impacts on the response variable. To improve the accurate projection of hydro-climate 

variables, this study has presented a comprehensive methodology for enhancing the predictive power 

of regression-based statistical downscaling through addressing different sources of uncertainty arising 

from biases in raw data from GCMs, high dimensional space atmospheric projectors, and nonlinearity 

between hydro-climate predictands and atmospheric projectors.  

The results in the dimensionality-reduction section demonstrate that a kernelized form of 

supervised dimensionality reduction technique is able to efficiently reduce the impact of the high 

dimensional space of atmospheric projectors in terms of performance accuracy in statistical 

downscaling. This improvement is achieved through modelling the nonlinear variability and 

interdependency among bias-corrected atmospheric projectors by taking into account the dependency 

between the target precipitation variable and explanatory projectors.  

Subsequently, the application of nonlinear data-driven machine-learning methods proves the high 

efficiency of the Bayesian learning algorithm (RVM) in capturing the nonlinearity between 

dimension-reduced atmospheric projectors and the target variable in the modelling section. The 

superiority of this model in addressing the complex nonlinear relationships gives rise to minimizing 

the possibility of overfitting and reducing computational burden in the downscaling modelling as 

well.     

Unlike traditional univariate bias correction approaches, the current study demonstrated the 

usefulness of the Multivariate Recursive Nesting Bias Correction (MRNBC) approach on 

simultaneously correcting biases and variability in multiple-GCM-derived variables over multiple 

time scales for regression-based statistical downscaling. Since multiple projectors in statistical 

downscaling represent a number of grid cells surrounding a specific study site, it is important to 

extend the scale-dependent climate model biases to account for the biases in the spatial cross 

dependence attributes among multi projectors as well. Thus, employing this procedure leads to 

reducing the uncertainty and improving the future projection accuracy of hydro-climate variables of 

interest.    

It should be noted that the proposed methodology is not restricted to precipitation and can be used 

for other hydro-climate variables as well. The application of the proposed methodology in the 

regression-based statistical downscaling in the study site reduces the impact of different sources of 
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uncertainty and results in more accurate climate change impact assessments on hydro-climate 

variables in the future. Using more-accurate projections, decision makers of the capital of Iran will be 

able to better define long-term and effective proactive strategies to be adopted in response to potential 

future changes. They will thus be better able to mitigate adverse consequences arising from global 

warming that might threaten the availability of surface water resources in this megacity. However, 

whether the method is able to globally outperform other methodologies is a challenge that needs be 

addressed in future work.  
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Chapter 4 

Time Varying Non-stationary Multivariate Risk Analysis Using a 

Dynamic Bayesian Copula 

This chapter is based on the following two papers; one is published in the journal Water Resources 

Research and the other is under review in the journal Scientific Reports. Organizational changes are 

made to both the papers to be consistent with the format of the thesis. There are thus differences 

between the content of this chapter and the papers. There are also minor changes in response to 

comments from the examining committee.  

Sarhadi, A., D. H. Burn, M. Concepción Ausín, and M. P. Wiper (2016b), Time varying 

nonstationary multivariate risk analysis using a dynamic Bayesian copula, Water Resources Research, 

52(3), 2327-2349. 

Sarhadi, A., M. C. Ausín, and P. M. Wiper (2016a), A New Time-varying Concept of Risk in a 

Changing Climate, Scientific Reports, Submitted. 

 

Summary  

A time varying risk analysis is proposed for an adaptive design framework in non-stationary 

conditions arising from climate change based on the projections derived in the previous chapters. A 

Bayesian, dynamic conditional copula is developed for modelling the time-varying dependence 

structure between mixed continuous and discrete multi-dimensional hydro-meteorological 

phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative 

example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean 

estimates and credible intervals are provided for the model parameters and the Deviance Information 

Criterion (DIC) is used to select the model that best captures different forms of non-stationarity over 

time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate 

time-dependent risk analysis in non-stationary environments. The results demonstrate that the nature 

and the risk of extreme-climate multi-dimensional processes are changed over time under the impact 

of climate change and accordingly the long-term decision making strategies should be updated based 

on the anomalies of the non-stationary environment. 
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4.1 introduction  

Global warming is a major threat to the planet. This warming is a result of an increase in human-

induced greenhouse gas emissions and is altering Earth’s climate. According to the Intergovernmental 

Panel on Climate Change (IPCC), changes in characteristics of the water cycle due to rising 

temperatures have hydrological implications (IPCC, 2014; Milly et al., 2015). Thus, global warming 

will impact hydrological processes and lead to increased risk of climate extremes in different parts of 

the world.  

This chapter deals with the probabilistic aspect of the risk in infrastructure and water resource 

planning. The risk term is thus defined as the probability of failure of a water system over a planning 

horizon. The failure may occur under the impact of extreme rare hydro-climate events. To estimate 

the reliability of the system over its lifetime, the exceedance probability of rare events should be 

estimated. Water professionals struggle to develop approaches that account for the impact of climate 

change on hydrological designs to reduce associated risks. Traditional, risk-based decision-making 

principles in water resources planning are based on the fundamental assumption of statistical 

stationarity. Under stationarity it is assumed that the probabilistic characteristics of hydro-

meteorological processes will not change over time and that future water resources planning can be 

designed with past records in mind. Milly et al. (2008; 2015) argued that the fundamental assumption 

of stationarity has been influenced by climate change and anthropogenic effects and therefore 

stationarity is no longer applicable for water resources risk assessment and planning. Accordingly, 

water planners must revise current planning and analytic strategies to develop non-stationary 

probabilistic models based on the anomalies of the changing environment arising from climate change 

(Read and Vogel, 2015; Salas and Obeysekera, 2013). Therefore, in the changing environment an 

effective and flexible time-varying design approach must be adopted for risk-based decision-making 

in water resources planning and infrastructure designs.   

Under non-stationary conditions, the behavior of extreme hydro-meteorological processes changes 

and their probabilistic parameters may no longer be constant. Vogel et al. (2011) introduced a “flood 

magnification factor” to quantify how the distribution of extreme events shifts from decade to decade 

under the impact of a broad range of anthropogenic activities, including climate change. In this 

condition, alternative approaches should be developed in which the effect of non-stationarity is 

integrated and probabilistic parameters are allowed to change over time. In this case, statistical 
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distribution parameters are expressed as functions of covariates to model the changing conditions 

associated with non-stationarity generated by climate change impacts. A covariate could take the 

form of a time-dependent trend in the moments of hydro-meteorological variable time series or low 

frequency climatological signals (Du et al., 2015; Katz et al., 2002). 

Univariate non-stationarity modelling in hydrological risk assessment has drawn a great deal of 

attention in hydrological science in recent years (Rosner et al., 2014; Salas and Obeysekera, 2013; 

Westra et al., 2014). Khaliq et al. (2006) reviewed approaches used for the non-stationary frequency 

analysis of hydro-meteorological variables. Bayesian approaches have gained more attention for non-

stationary modelling in recent years. Studies that use Bayesian techniques for the analysis of hydro-

meteorological variables include Cunderlik et al. (2007), Ouarda and El-Adlouni (2011), El-Adlouni 

and Ouarda (2009) for at-site frequency analysis, and Khaliq et al. (2006) and Leclerc and Ouarda 

(2007) for regional frequency analysis at ungauged areas. These studies were carried out under non-

stationary conditions in a univariate context, while it is well known that natural stochastic hydro-

meteorological processes are multivariate phenomena by their very nature characterized by multi-

dimensional properties that are statistically dependent. Accordingly, univariate risk analysis methods 

under non-stationarity conditions cannot fully characterize the properties that are highly correlated. 

This inability may lead to high uncertainty and failure of risk plans in water resources systems. For a 

complete understanding of multivariate hydro-meteorological extreme events under the impact of 

climate change, it is therefore necessary to study the simultaneous, multivariate, probabilistic 

behavior of two or more hydrological properties. Since being introduced and applied in hydrology 

and geosciences by De Michele and Salvadori (2003), the application of copulas in modelling the 

dependence behavior of hydrological processes has grown quickly in recent years (Chebana and 

Ouarda, 2011; Hao and Singh, 2012; Lee et al., 2013; Madadgar and Moradkhani, 2013; Madadgar 

and Moradkhani, 2014; Requena et al., 2013; Sadri and Burn, 2012; Santhosh and Srinivas, 2013). 

However, these studies and similar ones have not taken into account the effects of non-stationarity 

and assumed a constant dependence relation over time, which is not appropriate under a changing 

environment. Wahl et al. (2015) also demonstrated increasing risk of compound flooding through 

exhibiting non-stationarity in the dependence between two natural hazards, heavy precipitation and 

storm surge, at major US coastal cities. Using the lowest and highest values of dependency 

separately, they attempted to show changes in joint return periods relevant to flood risk analyses at 
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the beginning and the end of a time period, ignoring time-varying non-stationarity in a multivariate 

risk analysis.    

Multivariate, non-stationary risk analysis is relatively new and very few publications are available 

in the literature regarding this area. Chebana et al. (2013) first mentioned the idea of using 

multivariate functions with changing dependence structure between multivariate hydrological 

dimensions over time. Corbella and Stretch (2013) also applied conditional copula functions with 

invariant dependence metrics. Despite their importance, dependence structures affected by the 

changing environments between different individual hydrological dimensions have scarcely been 

investigated. Bender et al. (2014) presented a bivariate non-stationary approach to study the time 

dependent behavior of bivariate hydrological design parameters. Jiang et al. (2015) also performed a 

bivariate frequency analysis with time variation in dependence structure for the low-flow series from 

two hydrological neighbor stations. Nevertheless, practical mathematical issues arise when dealing 

with time-varying dependence of two or more dimensions over time in multivariate non-stationary 

stochastic modelling. For example existing studies only use simple, linear trend estimators to model 

the distribution function parameters. The methods are not fully time-varying in terms of functions, 

especially in the definition of the return period concept. Furthermore, they are not assessing time 

varying risk concept for an adaptive multivariate design framework over future long time periods. 

Thus, few theoretical hydrological studies on the concept of time-varying multivariate non-stationary 

modelling exist. This is partly related to the unavailability of robust methods and the complexity of 

parameter estimation techniques.  

While frequentist methods have been preferred for estimating distribution parameters, Bayesian 

inference offers a more attractive framework in terms of time-varying copula estimation (Smith, 

2013). In particular, Bayesian inference for dynamic copulas has been studied in the financial context 

by Ausin and Lopes (2010) and Creal and Tsay (2015). However, to the best of our knowledge, no 

study is available in the literature that discusses adapting Bayesian inference for multivariate 

conditional dynamic copula modelling in the water resource management area. Thus, this insight is 

new in hydrology and should prompt a strong interest in multivariate copula-based models with time-

varying dependence parameters under non-stationary conditions. To promote a robust methodology to 

deal with the concept, the present study proposes a time varying copula capturing the time evolution 

in the changing dependence structures under multi-model ensembles of climate change scenarios. Full 
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likelihood-based Bayesian inference is developed where the whole set of the model parameters are 

estimated in an adaptive multivariate time-varying design framework. The proposed methodology is 

employed on the complex natural phenomenon, drought, which stands first among all others affecting 

the most people (Tallaksen and van Lanen, 2004), as an illustrative case study.  

This chapter is organized as follows: Section 4.2 describes the main properties of drought process 

that is used as an illustrative case study and the climate dataset used in this study. Section 4.3 presents 

the mathematical background of the Bayesian dynamic copula model used to assess time varying risk 

in an adaptive non-stationary water-planning framework under changing climate conditions. The 

results and discussion of the case study follow in the Section 4.4, and finally the conclusions and 

potential future work for wider applications are drawn.  

4.2 Illustrative study and dataset 

4.2.1 Definition of drought characteristics 

Drought is a complex natural hazard. The reasons arise from the dynamic complexity and lack of 

knowledge about this natural hazard and can be summarized in several ways. First, drought is 

recognized as a creeping process whose impacts start slowly and then accumulate over a considerable 

period of time and may linger for a long time after the termination of the drought event. Second, there 

is no precise and universal definition for drought, which makes it difficult to deal with such a 

phenomenon (Mishra and Singh, 2010). Third, the impacts of drought result in non-structural 

damages spreading over a large geographical area varying in spatial and temporal scales (Mishra and 

Singh, 2010; Wilhite, 2000). Unlike some other natural hazards, humans can directly trigger drought 

and aggravate it through impacting land’s capacity for receiving and holding water (Mishra and 

Singh, 2010). The other way that humans affect drought is by the indirect impact of climate change, 

which is created by global warming from greenhouse gas emissions. This process can adversely 

exacerbate drought characteristics.   

Droughts are dynamic and multi-dimensional in nature. One cannot assess and describe them by 

characterizing a single feature for any type of analysis. There is a need to find an appropriate way to 

define different properties of drought using underlying indices. A list of the most prominent indices, 

which have been widely used to define different types of droughts, is found in Mishra and Singh 

(2010). One of these, formed by monthly time series of precipitation—Standardized Precipitation 
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Index (SPI)—and developed by McKee et al. (1993), is used to represent multivariate drought 

characteristics under the run theory context. SPI’s simplicity, its spatial invariance in its 

interpretation, its probabilistic nature, and its presentation of better spatial standardization with 

respect to extreme events, have made it a powerful and specialized indicator for precise quantification 

of drought (Lloyd‐Hughes and Saunders, 2002; Mishra and Singh, 2010). The fundamental 

superiority of SPI relative to other drought indices is that it can be calculated for a variety of time 

scales. This flexibility enables SPI to monitor precipitation anomalies on short-term and long-term 

water supplies from soil moisture to streamflow, groundwater, and reservoir storage supplies (Mishra 

and Singh, 2010). This index is calculated by fitting a Gamma distribution to the monthly 

precipitation data. The Gamma Cumulative Distribution Function (CDF) is then rescaled so that an 

index of SPI=0 is the median precipitation. This index applies to different time scales ranging from 1 

to 24 months. A drought period is assumed as a consecutive number of time intervals when SPI 

values are less than the truncation level (SPI=0). Therefore, drought duration is defined as the number 

of consecutive events with negative-SPI, while drought severity is the cumulative value of the 

negative-SPI within the drought duration as given in the following form (Mishra and Singh, 2011; 

Shiau, 2006): 

S = − ∑ SPIi                                                                                                                     (4.1)

D

i=1

 

where S denotes drought severity, and D denotes drought duration. In this case, severity dimension is 

a continuous measurement and is described as a ‘continuous random variable’, while duration 

dimension values are discretized to integer numbers and can assume finite or countably infinite 

number of values. Thus, duration dimension is considered a ‘discrete random variable’.       

As a dynamic and alternating process, drought occurrences take into account inter-arrival time 

expression for the recurrence interval of droughts. Inter-arrival time denoted as X is thus defined as 

the period elapsing from the initiation of a drought event to the beginning of the next event (Song and 

Singh, 2010). Similar to duration dimension, the discretized inter-arrival time dimension is also 

described as a ‘discrete random variable’. The probabilistic characteristics of the defined drought 

dimensions may be influenced by natural internal climate processes or external forcing as a 

consequence of human influences. In the changing non-stationary environment, each of the 
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dimensions may change over time. Figure 4-1 shows the alternating process and time-varying 

characteristics of droughts defined by the given concept over time.    

As mentioned before, the management of surface water resources has been a main challenge for 

water authorities in Tehran in recent years with respect to rapid expansion of population and 

occurrence of severe long-term dry spells arising from climate change. It is therefore of crucial 

importance to have a long-term management plan including the impact of climate change on the 

occurrence of dry spells and availability of surface water resources in this megacity.  
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Figure 4-1. Dynamic drought renewal process and definition of drought characteristics in a changing 

environment 

To develop a risk-based water resources plan in a non-stationary condition, the limitations of the 

relatively short historical hydro-meteorological records, and the uncertainties associated with future 

climate model projections, are considered major restrictions. To address these limitations, a time 

varying stochastic model can be developed by synthetizing historical observed records and climate 

model projections using multiple climate forcing scenarios (Borgomeo et al., 2014; Milly et al., 

2008). Although the uncertainty of future projections is still problematic in a changing climate, using 

climate multi-model ensembles allows to quantify probabilistic uncertainties of hydrological 

processes in future climate projections. Hence, despite having inherent uncertainties, probabilistic 

information from multiple-model ensembles under different forcing scenarios helps to identify 

sources of uncertainty and to measure the degree of influence of extreme events (Bayazit, 2015; 
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Galloway, 2011). To quantify future extreme dry spells in an adaptive time-varying design 

framework, based on the concept of design’s life period (Rootzén and Katz, 2013), the relatively short 

historical precipitation time series (1951-2011) in the study site (Tehran) are synthetized with 

projected precipitation from multi-model ensemble GCMs (spanning from 2015 to 2100) derived in 

the previous chapter. Synthetizing probabilistic precipitation projections under different forcing 

scenarios (representing uncertainty of future precipitation behavior) with observed precipitation also 

helps experts better communicate the certainty of an event occurrence. In this way, assuming that 

probabilistic projections are reliable, decision makers are able to effectively manage the risk of the 

event occurring (DeChant and Moradkhani, 2015). To develop a risk-based time-varying framework 

and to include all the possibilities and avoid additional calculations, one appropriate representative 

synthetized precipitation time series is selected from each climate change scenario. By making a 

boxplot of all the synthetized precipitation time series from all ensemble models in the different 

scenarios, one is able to select two models covering the minimum and the maximum variance of all 

the synthetized GCM models. In this way, all the possibilities (other models) are located in between 

these two selected models covering the whole variance of data. Doing so, synthetized MIRO-ESM 

CHEM model is selected from the scenario RCP2.6 and synthetized INMCM4 model is selected from 

the scenario RCP8.5, representing minimum and maximum variances of all models, respectively. 

From the midrange mitigation emission scenario (RCP4.5) synthetized model of CanESM2 is also 

selected as the representative of this scenario class.  

Choosing one representative model from each climate change scenario, the synthetized 

precipitation time series are used for forming SPI3 (SPI index for 3-month precipitation time series) 

to define the drought characteristics over the design’s life period.  

4.3 Methodology 

4.3.1 Time-varying multivariate non-stationary risk analysis 

Introduced by Sklar (1959), copulas are considered flexible tools for constructing multivariate 

distributions and modelling the dependence structure between correlated variables. The popularity of 

copulas is due to their flexibility in forming dependence between variables using any type of 

marginals. In addition, copulas are able to capture wide variety of dependence structures, including 
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asymmetry, nonlinear, and tail dependence (Jammazi et al., 2015). More-detailed information about 

the properties of copulas is given in Nelsen (2007)  and Salvadori et al. (2007).  

Realizing a changing environment, a time varying or dynamic conditional copula should be taken 

into account for water resources risk-based decision-making. Introduced by Patton (2006) in a 

financial framework, a dynamic copula allows a time variant dependence structure to characterize the 

relationship of underlying variables in a more flexible and time-varying manner. Suppose that 𝒚𝑡 =

(𝑦1𝑡 , 𝑦2𝑡) represents a pair of hydrological variables whose dependence structure is defined by a 

copula function. A general form of a time varying joint distribution can be built at any time t using a 

dynamic copula as follows: 

                                         𝒚𝑡~ 𝐹(𝑦𝑡|𝜃𝑡)                                    (4.2) 

𝐹(𝒚𝑡|𝜃𝑡) = 𝐶(𝐹1(𝑦1𝑡|𝜃1𝑡), 𝐹2(𝑦2𝑡|𝜃2𝑡)|𝜃𝑐𝑡) 

𝐹(𝒚𝑡|𝜃𝑡) = 𝐶(𝑢1𝑡 , 𝑢2𝑡|𝜃𝑐𝑡) 

where F(.) denotes cumulative distribution function, C(.) is the copula function, 𝜃1𝑡 and 𝜃2𝑡 are 

parameters for the time-varying marginal models, 𝜃𝑐𝑡 is the time varying copula parameter, and 

𝑢1𝑡 and 𝑢2𝑡 are marginal probabilities in the dynamic copula in the unit hypercube with uniform 

𝑈[0,1] marginal distributions.  

In a multivariate, risk analysis framework, non-stationarity could be identified in the statistical 

characteristics of either one or two marginal variables and not in the dependence structure or vice 

versa. It might also happen that both the marginals and the dependence structure show non-stationary 

behavior. Non-stationarity can be via a trend component (i.e., linear or nonlinear) and (or) sudden 

changes in statistical attributes of the variables. The presence of trend or change point may have a 

considerable effect on the interpretation of results in fitting different probability distributions (Khaliq 

et al., 2006). To capture the possible non-stationarity of the marginals and the dependence in fitting 

probability distributions, various time dependent approaches are employed in the context of univariate 

and multivariate non-stationary frequency analysis (AghaKouchak et al., 2012; Khaliq et al., 2006). 

Local likelihood-based methods have gained more popularity and proven to be useful explanatory 

tools. These methods can be developed to include covariates to estimate distribution and copula 

parameters such that they vary over time. Various techniques have been utilized for this purpose, 

including the Full Maximum Likelihood (FML) estimation, the Canonical Maximum Likelihood 
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(CML) method, Inference Functions for Marginals (IFM) approach and empirical copulas (El Adlouni 

et al., 2007; Jammazi et al., 2015; Ouarda and El‐Adlouni, 2011). 

In this study, marginal distribution parameters are specified as functions of time, which is viewed 

as a covariate, and are estimated via the generalized additive model approach capturing linear or 

nonlinear trends. Different forms of non-stationarity (sudden jump, periodicity, and trend) on the 

synthetized long-term drought observations are detected using classical statistical techniques such as 

nonparameteric, univariate and multivariate Mann-Kendall tests (Chebana et al., 2013) on both the 

marginals and the dependence functions. The null hypothesis of no trend is rejected if the trend test 

statistic is different from zero at 5% significance level. In the following, the parameter estimation 

methods of the marginal distributions in the presence of the non-stationarities are discussed for each 

drought dimension. 

4.3.1.1 Time-varying marginal distributions 

As in the illustrative example of this study, two correlated drought dimensions are different in 

terms of probabilistic behaviour; different classes of independent distributions are used to construct 

their marginal distributions. In a non-stationary process, the parameters of the underlying marginal 

distributions are time-dependent, and hence, the stochastic behavior of these distributions varies over 

time (Cheng and AghaKouchak, 2014). Upon detection of a significant trend, to capture the non-

stationarity behavior, in this study, different forms of linear and nonlinear functions of time are 

discussed with respect to location parameter (𝜇𝑡) of the different marginal distributions. Other 

distribution parameters are kept constant in this case, although they could be similarly assumed to be 

time-varying. This leads to estimating drought quantiles in a more realistic way consistent with the 

behavior of observed and projected extreme drought events (Cheng and AghaKouchak, 2014). In the 

following, different forms of trend in regard with the time dependent distribution parameters are 

discussed for the two drought dimensions.  

I. Drought severity models 

As drought severity is considered a continuous random variable, the most popular and well-fitted 

distributions in respect to this variable are Gamma and Log-Normal distributions (Janga Reddy and 

Ganguli, 2012; Shiau, 2006). Let 𝑆𝑡 be the severity dimension starting at (real) time 𝑡. Then the two 

proposed time varying model possibilities will be as follows: 
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Log-Normal severity model: 

               log 𝑆𝑡| 𝜇𝑡 , 𝜎 ~ 𝑁(𝜇𝑡 , 𝜎2)                        (4.3) 

Gamma severity model: 

                 𝑆𝑡 | 𝜇𝑡 , 𝜙 ~ 𝐺𝑎(𝜇𝑡𝜙, 𝜙)                              (4.4) 

with density function given by 

𝑓(𝑠𝑡 | 𝜇𝑡 , 𝜙) =
𝜙𝜇𝑡𝜙−1

𝛤(𝜇𝑡𝜙)
𝑠𝑡

𝜇𝑡𝜙−1 𝑒𝑥𝑝(−𝜙𝑠𝑡),           𝑠𝑡 > 0   

with E[𝑆𝑡]=  𝜇𝑡. In both models, the location parameter ( 𝜇𝑡) is assumed to be a function of time. 

Then, we consider different forms of constant, linear, and quadratic models for the location parameter 

as follows: 

                                               𝜇𝑡 = 𝛿                                          (4.5) 

𝜇𝑡 = 𝛿 + 𝜖𝑡 

𝜇𝑡 = 𝛿 + 𝜖𝑡 + 𝜁𝑡2 

where t is time. A similar structure can also be used in the case of the Gamma distribution such that, 

here we assume (for the quadratic model), 

        log 𝜇𝑡 = 𝛿 + 𝜖𝑡 + 𝜁𝑡2                                       

 Therefore, the set of severity model parameters is given by  𝛽𝑆 = (𝛿, 𝜖, 𝜁, 𝜎) if a Log-Normal 

model is chosen or, alternatively, by  βS = (∂, ϱ, ι, ϕ) if a Gamma model is selected. 

II. Drought duration models 

According to the run-theory definition, droughts last as integer numbers of months, and drought 

duration is thus considered as a ‘discrete random variable’. The majority of studies in multivariate 

frequency area have assumed drought duration as a continuous random variable. For example, 

Madadgar and Moradkhani (2013), Shiau (2006), Shiau and Modarres (2009), Halwatura et al. 

(2015), and other associated studies have fitted continuous probability distributions to discrete 

drought duration values. Other studies such as  De Michele et al. (2013) suggested using a 
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randomization technique known as “jittering” to transform discrete drought duration dimension to a 

continuous variable.  

In this study, however, drought duration dimension is considered as a ‘discrete random variable’ 

and ‘discrete distributions’ are fitted to the drought duration time series. Assume droughts last an 

integer number of months, 𝑑 ∈ {1, 2, … }, and that in a changing environment, as time goes on, 

drought durations and their variability may be increasing or decreasing. In this condition we consider 

a time varying duration model.  

Let 𝐷𝑡 be the duration of a drought, which starts at (real) time t. Then one possibility could be a 

Negative Binomial duration model: 

                                      𝐿𝑒𝑡 𝑍𝑡 = 𝐷𝑡 − 1                                  (4.6) 

Then 𝑍𝑡|𝑟, 𝑝𝑡  ~ 𝑁𝐵(𝑟, 𝑝𝑡) 

where 𝑝𝑡 = 𝑟/(𝑟 + 𝜆𝑡) 

with probability mass function given by, 

Pr(𝑍𝑡 = 𝑧| 𝑟, 𝑝𝑡) = (
𝑧 + 𝑟 − 1

𝑧
) 𝑝𝑡

𝑟(1 − 𝑝𝑡)𝑧,      𝑧 = 0,1,2, …  

Note that the Negative Binomial model generally allows for capturing overdispersed data. An 

alternative model could be a Poisson duration model:  

                        𝑍𝑡|𝜆𝑡 ~ 𝑃𝑜(𝜆𝑡)               (4.7) 

with probability mass function: 

Pr(Zt = z| 𝜆𝑡) =
 𝜆𝑡

𝑧𝑒− 𝜆𝑡

𝑧!
, 𝑧 = 0,1,2, … 

 This model could be sometimes overly restrictive when there are many zeros in observations. 

Another possible model for duration data is a Geometric distribution. This model corresponds to a 

particular case of the Negative Binomial model with r set to 1 although it is restricted to data that 

show strictly decreasing probabilities for higher durations.  
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 In a changing climate, the rate of drought occurrence (λt) is assumed to be time-dependent and 

varies over time. Similar to severity, different log trend forms, including constant, linear, and 

quadratic models can be employed for λt as follows: 

                                                   log 𝜆𝑡 = 𝜂                                             (4.8) 

log 𝜆𝑡 = 𝜂 + 𝜃𝑡 

log 𝜆𝑡 = 𝜂 + 𝜃𝑡 + 𝜅𝑡2 

where t is time and the set of duration model parameters is given by 𝛽𝐷 = (𝜂, 𝜃, 𝜅, 𝑟).  

4.3.1.2 Dynamic copula 

To model the dependence between severity and duration dimensions under a changing non-

stationary condition, a dynamic copula needs to be developed. In the static states, and even in the 

existing multivariate time-varying studies, it is assumed that marginal distributions come from the 

same type of random variables. For example, a copula can model marginal dimensions that are only 

continuous or discrete random variables. This assumption indicates the uniqueness aspect of copulas 

and has been mentioned in the literature (Nelson, 2007). In performing statistical inference for copula 

models in water resource risk studies, it happens some of marginals are discrete and the others are 

continuous, such as the illustrative example (drought). Here, a non-uniqueness aspect of copula can 

also be used to model dependency between two different mixed random variables (discrete and 

continuous) based on the Sklar’s theorem (Sklar, 1959). To the best of our knowledge, no studies 

exist in this area to consider the application of a dynamic copula for mixed dimensions (discrete and 

continuous). By extending the classical copula model, one is able to develop a dynamic copula so that 

its parameters vary over time. This study presents an original approach, which can handle realistic, 

dynamic copula modelling in the case of mixed outcomes.  

Let 𝐶𝑡(𝑢𝑡, 𝑣𝑡) represent the dependence structure between severity and duration for a drought that 

begins at (real) time t, where  𝑢𝑡 = 𝐹𝑆𝑡
(𝑠𝑡) and 𝑣𝑡 = 𝐹𝐷𝑡

(𝑑𝑡) are the cumulative distribution functions 

of the severity and duration, respectively, at time t. In the current study, a time varying Gumbel 

copula 𝐶(𝑢𝑡 , 𝑣𝑡|𝜃𝑐𝑡) is developed for drought observations, as this exhibits greater dependence in the 

positive tail than in the negative and is therefore one of the possible copula functions for extreme 
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value analyses (AghaKouchak et al., 2012; Chebana and Ouarda, 2011). The time varying distribution 

function of a Gumbel copula is given by: 

        𝐶(𝑢𝑡 , 𝑣𝑡|𝜃𝑐𝑡) = exp {−[(− log 𝑢𝑡)𝜃𝑐𝑡 + (−𝑙𝑜𝑔 𝑣𝑡)𝜃𝑐𝑡]
1

𝜃𝑐𝑡}                     (4.9) 

where 𝜃𝑐𝑡 ∈ [1, ∞] and the density function is given by: 

𝑐(𝑢𝑡 , 𝑣𝑡|𝜃𝑐𝑡) = 𝐶(𝑢𝑡, 𝑣𝑡|𝜃𝑐𝑡)𝑢𝑡
−1 𝑣𝑡

−1[(− 𝑙𝑜𝑔 𝑢𝑡)𝜃𝑐𝑡 + (−𝑙𝑜𝑔 𝑣𝑡)𝜃𝑐𝑡]
−2+

2

𝜃𝑐𝑡 ×

[(log 𝑢𝑡) (log 𝑣𝑡)]𝜃𝑐𝑡−1 {1 + (𝜃𝑐𝑡 − 1)[(− log 𝑢𝑡)𝜃𝑐𝑡 + (− log 𝑣𝑡)𝜃𝑐𝑡]
−

1

𝜃𝑐𝑡}           (4.10) 

 

The relation between the dependence parameter of the Gumbel copula and the standard, Kendall’s 

tau dependence values can be expressed as: 

                                     𝜏𝑡 = 1 − 1/𝜃𝑐𝑡                                     (4.11) 

where the Gumbel copula parameter is defined for 𝜏𝑡 in (0,1) so that there is positive dependence as 

reflected in the real drought observations.  

To capture different forms of Kendall’s tau under changing non-stationary conditions, the 

following models are assumed: 

                                       𝑙𝑜𝑔
𝜏𝑡

1−𝜏𝑡
= 𝜉                                       (4.12) 

𝑙𝑜𝑔
𝜏𝑡

1 − 𝜏𝑡
= 𝜉 + 𝜈𝑡 

𝑙𝑜𝑔
𝜏𝑡

1 − 𝜏𝑡
= 𝜉 + 𝜈𝑡 + 𝜒𝑡2 

The copula parameter, 𝜃𝑐𝑡, is thus defined as a deterministic function of time, t, and a vector of 

unknown parameters, 𝛽𝐶 = (𝜉, 𝜈, 𝜒).  

Following the same concept, other members of the Archimedean or elliptical families of copulas 

could also be considered. 



 

84 

 

4.3.1.3 Time-varying joint return period 

In planning and management of water resources, risk assessment is a crucial task requiring 

estimation of the recurrence intervals of extreme events. Recurrence intervals of events are 

characterized by the concept of return periods in hydrology. In the multivariate domain, different 

transformation types of the joint exceedance probability to a joint return period (JRP) have been 

suggested in literature (Gräler et al., 2013; Salvadori et al., 2007; Shiau, 2006). There is still 

discussion on which form of the JRP could be more appropriate in water resources planning and 

project design (Bender et al., 2014). Following the method introduced by De Michele et al. (2013) 

and Gräler et al. (2013), in this study, a fully time-varying framework evolving through time is 

proposed for joint return period. We define the time-varying joint return period at time t, denoted by 

𝐽𝑅𝑃𝑡(𝑑0, 𝑠0), as the expected time between droughts with duration larger than 𝑑0 and severity larger 

than 𝑠0 at time t: 

𝐽𝑅𝑃𝑡(𝑑0, 𝑠0) =
𝐸[𝑋𝑡]

1 − 𝐹𝐷𝑡
(𝑑0) − 𝐹𝑆𝑡

(𝑠0) + 𝑃(𝐷𝑡 ≤ 𝑑0, 𝑆𝑡 ≤ 𝑠0)
                        (4.13) 

where  𝑋𝑡 is the mean inter-arrival time between drought events.  

Since with the evolution of a drought, inter-arrival time between events may vary over time, the 

behavior of this variable may be time-dependent; this dimension can also be modelled through 

potential discrete probability distributions such as those fitted to drought duration in the previous 

section.  

Let 𝑋𝑡 be the inter-arrival time between drought events, which starts at (real) time t. Then similar to 

drought duration, one possible model could be a Negative Binomial inter-arrival model: 

                                   𝐿𝑒𝑡 𝑀𝑡 = 𝑋𝑡 − 2                                  (4.14) 

Then 𝑀𝑡|𝑠, 𝑞𝑡  ~ 𝑁𝐵(𝑠, 𝑞𝑡) 

where 𝑞𝑡 = 𝑠/(𝑠 + 𝛾𝑡) 

Other discrete distributions, including Poisson and Geometric can also be fitted. Similar to the 

drought duration, constant, linear, and quadratic models (shown in equation 4.8) are also used to 

express the time varying 𝛾𝑡. In this case, a set of inter-arrival model parameters is given by 𝛽𝐴 =

(𝜓, 𝜔, 𝜗).  
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Taking into account the inter-arrival time as a time varying variable, and given the time dependent 

marginal distributions for the duration and severity, the fully time-varying joint return period is given 

by: 

𝐽𝑅𝑃𝑡(𝑑0, 𝑠0) =
𝛾𝑡 + 2

1 − 𝑢𝑡0
− 𝑣𝑡0

+ 𝐶(𝑢𝑡0
, 𝑣𝑡0

|𝜃𝑐𝑡)
                     (4.15) 

Observe that if we have non-stationary drought durations and severities, such that these increase 

with time, it is expected that the time-varying joint return period, 𝐽𝑅𝑃𝑡(𝑑0, 𝑠0) will decrease as t 

increases for each pair of values, 𝑑0, 𝑠0. Therefore, the time-varying return period in a non-stationary 

condition depends on the time-varying parameters of the inter-arrival times, marginal distribution and 

dynamic copula. It should be noted that the other forms of the joint return period can also be 

developed using the same concept.  

4.3.2 Bayesian Inference of dynamic copula  

In a multivariate, non-stationary risk analysis framework under a non-stationary environment, 

uncertainty assessment of the dynamic copula using time as a covariate is of fundamental importance. 

In this study, a Bayesian Markov Chain Monte Carlo (MCMC) approach is integrated to the non-

stationary marginal and copula models to characterize the uncertainty. In this approach, for all the 

time-varying variables (including marginals, inter-arrival-time, and copula) a Bayesian inference 

scheme is implemented to indirectly estimate the time varying distribution parameters, 𝜇𝑡 , 𝜆𝑡, 𝜃𝑐𝑡 and 

 𝛾𝑡 . For this purpose, instead of directly inferring these distribution parameters, Bayesian inferences 

are employed to estimate the generalized additive model parameters 𝛽𝑆, 𝛽𝐷 , 𝛽𝐴 and 𝛽𝑐, respectively, 

linking the parameter values at time t with the time as a covariate. 

Bayesian inference defines prior distributions for all unknown generalized additive model 

parameters 𝛽𝑆, 𝛽𝐷 , 𝛽𝐴 and 𝛽𝑐. Then, the knowledge brought by a prior distribution is combined with 

the given observations to generate posterior distribution by Bayes theorem. More specifically, we 

consider a two-step Bayesian approach where we first make inference for the marginal parameters of 

the drought severity, 𝛽𝑆, duration,  𝛽𝐷 and inter-arrival time, 𝛽𝐴. Then, in the second step, we make 

inference for the copula parameters, 𝛽𝑐, given the results for the marginal parameters. Assume for 

example that we have a sample of severities, s𝑡1
, … , s𝑡𝑛

, observed at n instant times, 𝑡1, … , 𝑡𝑛. 
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Suppose that we have considered a time-varying Gamma model for the severity as defined in (4.4). 

Then, the posterior distribution for the severity parameters  𝛽𝑆 = (𝜕, 𝜚, 𝜄, 𝜙),  is given by,   

p(βS|st1
, … , stn

)  ∝ p(βS) ∏ p(sti
|βS)n

i=1                            (4.16) 

where p(βS) is the prior density and 

p(sti
|βS) =

ϕμti
ϕ−1

Γ(μti
ϕ)

st
μti

ϕ−1 exp(−ϕsti
), 

and where log μti
= ∂ + ϱti + ιti

2. Consequently, the generated posterior distribution, 

p(βS|st1
, … , stn

), provides information on the posterior distribution of the time-varying parameter, μt, 

for each time, t. Note that in the case of stationarity ϱ and ι are equal to zero and the parameter μt 

remains constant and consequently, the severity observations are independent and identically 

distributed. 

4.3.2.1 Prior distributions 

The prior distributions are used to provide any prior knowledge on the parameters, βS, βD, βA and 

βc. Thus, prior distributions are independent from observations and are preferably specified using 

external source of knowledge (AghaKouchak et al., 2012). In the current illustrative example, proper 

but weakly informative priors are assumed in the case of drought severity model as: 

                          ∂ ~ 𝑁 (0, 1000)               (4.17)  

ϱ ~ N (0, 1000) 

ι ~ N (0, 1000) 

and ϕ ~ Ga (0.01, 0.01), if a Gamma model is considered for the severity distribution. In the case of 

the lognormal model, N(0,1000) prior distributions are also used for δ, ε and ζ and  

τ ~ Ga (0.01, 0.01) where τ =
1

σ2 . 

Similarly, for the duration parameters, 𝑁 (0, 1000) priors are set for 𝜃, 𝜅 and a Gamma prior 

Ga (0.01, 0.01) is also used for 𝑟. Likewise, priors of the same form are used for the equivalent 

parameters of the inter-arrival time distribution.  
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For the copula parameters, it is assumed that 𝜉 ~ 𝑁 (0, 1000), and 𝜈 ~ 𝑁 (0, 1000), as well as 

𝜒 ~ 𝑁 (0, 10−9) to avoid numerical problems with the increase of t. Note that if good expert 

information were available, then this could be used to define more informative prior distributions.   

4.3.2.2 Bayesian MCMC inference 

In general for our models, analytic evaluation of the posterior distributions is not possible. To 

estimate parameters inferred by Bayes, an MCMC sampling method is integrated to generate an 

approximate Monte Carlo sample of realizations from the posterior distributions. While there are 

different types of MCMC sampling algorithms, the Gibbs sampler approach is employed in the 

current study to obtain samples from a joint distribution through iterative sampling from the full 

conditional distributions. For example, in order to generate a sample from the joint posterior 

distribution (4.16) of the severity parameters, under a given model,  𝛽𝑆 = (𝛿, 𝜖, 𝜁, 𝜙),  a systematic 

form of the Gibbs sampler algorithm proceeds as follows (Dellaportas and Smith, 1993): 

0. Set initial values  δ(0), ϵ(0), ζ(0), ϕ(0) .  

1. Repeat for m = 1,…, M. 

2. Sample from 𝑝(𝛿|  𝜖(𝑚−1), 𝜁(𝑚−1), 𝜙(𝑚−1), st1
, … , stn

)                               (4.18) 

3. Sample from 𝑝(𝜖|  𝛿(𝑚), 𝜁(𝑚−1), 𝜙(𝑚−1), st1
, … , stn

)       

4. Sample from 𝑝(𝜁|   𝛿(𝑚),   𝜖(𝑚), 𝜙(𝑚−1), st1
, … , stn

)       

5. Sample from 𝑝(𝜙|   𝛿(𝑚),   𝜖(𝑚), 𝜁(𝑚), st1
, … , stn

)       

Repeated iteration of the above procedure yields a sequence,  𝛽𝑆
(𝑚) = (𝛿(𝑚), 𝜖(𝑚), 𝜁(𝑚), 𝜙(𝑚)), 

which is a realization of the MCMC. To ensure the full convergence of the chains and also 

minimizing the influence of initialization, the so-called burn-in samples are discarded from the chain. 

The remaining samples are then used for inference. This procedure can be implemented using the free 

software WinBUGS (http://www.mrc-bsu.cam.ac.uk/software/bugs/), which is run via the 

R2WinBUGS interface in R software.  

To assess the convergence of the Markov chain, a convergence diagnosis method proposed by 

Geweke (1991) is used. According to the Geweke test, if the convergence is achieved, the Geweke 

statistic will have an asymptotically standard Gaussian distribution. More information about this test 

is given in Geweke (1991). Following the underlying MCMC Bayesian inference, the credibility 
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intervals and the uncertainty of non-stationary probabilities of the generalized additive models’ 

parameters can also be obtained.   

4.3.2.3 Model selection 

To select the best proposed models, a Bayesian discrimination criterion is employed. The Deviance 

Information Criterion (DIC) defined by Spiegelhalter et al. (2002) is a measure specifically designed 

for model selection under Bayesian inference and can be thought of as a Bayesian alternative to the 

standard AIC. Once samples of the posterior distributions for the parameters of the different trend 

models (including constant, linear, and quadratic) are obtained using Bayesian MCMC inference, the 

DIC measure can be easily calculated. For example, the DIC value for a severity model is obtained as 

(Spiegelhalter et al., 2002): 

                                        𝐷𝐼𝐶 = 𝐷(𝛽𝑆
̅̅ ̅) + 2𝑛𝐷                                (4.19) 

where 𝐷(𝛽𝑆) is the deviance: 

𝐷(𝛽𝑆) = −2 ∑ log p(sti
|βS)

𝑛

𝑖=1

 

and  𝛽𝑆
̅̅ ̅ = 𝐸(𝛽𝑆|st1

, … , stn
), is the posterior mean, which can be approximated from the MCMC 

output using,  

𝛽𝑆
̅̅ ̅ ≃

1

𝑀−𝐵
∑  𝛽𝑆

(𝑚)
𝑀−𝐵

𝑚=1
, 

where B is the number of burn-in iterations, and 𝑛𝐷 is the effective number of parameters of the 

model which is given by: 

                                         𝑛𝐷 = 𝐷̅ − 𝐷(𝛽𝑆
̅̅ ̅)                                   (4.20) 

where 𝐷̅ = 𝐸(𝐷(𝛽𝑆)|st1
, … , stn

) is the posterior deviance, which assesses the model’s goodness of fit 

and can be approximated by,  

𝐷̅ ≃
1

𝑀 − 𝐵
∑  𝐷(𝛽𝑆

(𝑚)
)

𝑀−𝐵

𝑚=1

                                             (4.21) 

The DIC can be measured in a straightforward way from the WinBUGS output. Note that the 

minimum value of the DIC indicates the best model. 
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4.4 Results and discussion  

4.4.1 Pre-processing analyses 

For selection of an appropriate model in frequency analysis process, the first step is to check if 

there is any non-stationarity in the dataset. Prior to this step, based on nonparametric goodness-of-fit 

tests (Chi-square test for discrete drought dimensions and Kolmogorov-Smirnov test for continuous 

one) the best distribution functions are fitted to the synthetized drought characteristics for the selected 

GCM models under different forcing climate change scenarios. Table 4-1 shows the best selected 

distribution for each dimension in different selected scenarios. 

According to Chebana et al. (2013) it is recommended to jointly analyze univariate and 

multivariate trend tests to capture all existing trend components as the signs of non-stationarity. The 

output of the Mann-Kendall test in univariate and multivariate cases of the drought dimensions in 

different models are shown in Table 4-1. It should be noted that the trend results are achieved after 

testing serial correlation and change point detection for univariate properties, and change point 

detection for multivariate copula dimension. The results indicate that in the low and midrange 

emission scenarios (RCP2.6 and RCP4.5) only duration dimensions exhibit the presence of non-

stationarity, whereas in a severe forcing scenario (RCP8.5) all the univariate and multivariate 

dimensions of the selected synthetized model show significant trend. In the latter model, all severity, 

duration, and copula variables exhibit significant upward trend, while inter-arrival time dimension 

shows significant downward trend.  

Table 4-1. Results of the best selected distribution and univariate and multivariate Mann-Kendall trend statistics 

for each drought dimension in different scenarios 

Scenario 
 

Models 
 

Dimensions 
 

Selected Dist. 
Univariate 

MK (Z-value) 
P-value 

Multivariate 

MK (Z-value) 
P-value 

RCP2.6 

 

MIRO-ESM 

CHEM 

 Severity  Gamma 0.67 0.49 - - 

  Duration  Neg. Binomial 2.07 0.04* - - 

  Copula  Gumbel - - 1.39 0.16 

  Inter-arrival  Neg. Binomial -1.54 0.12 - - 

RCP4.5 

 

CanESM2 

 Severity  Gamma 1.25 0.21 - - 

  Duration  Neg. Binomial 2.39 0.01* - - 

  Copula  Gumbel - - 1.85 0.06 

  Inter-arrival  Neg. Binomial -2.35 0.02* - - 

RCP8.5 

 

INMCM4 

 Severity  Gamma 1.86 0.04* - - 

  Duration  Neg. Binomial 2.47 0.01* - - 

  Copula  Gumbel - - 2.21 0.02* 

  Inter-arrival  Neg. Binomial -3.09 0.001** - - 
* 5% Significance level 

         **     1% Significance level 
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4.4.2 Estimation and selection of time-varying models using MCMC sampling 

The distribution parameters of the marginals and copula are estimated through the posterior 

distribution of the MCMC samples. Considering a trend imposes a certain type of non-stationarity, 

outputs of posterior distributions should be actively checked to select the best statistical model 

capturing the non-stationarity form. Three different modes of the posterior distributions are employed 

in the parameter estimations to select the best fitted model. Mode 0 (M0) is used when non-stationary 

model does not fit to the model, indicating the mean parameter of distribution (𝜇) or dependence 𝜃𝑐𝑡 

is time invariant. Mode 1 (M1) is accounted for a non-stationary condition by assuming the model 

parameter is a linear function of time. In mode 2 (M2), a quadratic function is used to model the non-

stationarity in the distribution parameters and dependence structure.  

In all climate change scenarios, the Gibbs algorithm is used to generate independent Monte Carlo 

samples that are used for convergence diagnosis. In each case, the MCMC algorithm is run for 30000 

iterations, which are drawn from the posterior distribution. The first 3000 samples are discarded as 

burn-in and the rest are used for computing the parameter estimations. Having an asymptotically 

standard normal distribution, the results of the Geweke’s statistic (with absolute values less than 1.96) 

indicate the chains have converged in all cases. For the sake of brevity, the values of the Geweke’s 

statistic are not reported here.  

Figure 4-2 illustrates the trace plot and Auto-Correlation Function (ACF) of the posterior samples 

obtained for the linear model’s parameters of the drought duration dimension under the RCP4.5 

scenario as an example. The trace plots reveal no upward and downward trend in simulated samples, 

which is consistent with the convergence results. The ACF plots also demonstrate that the samples are 

independent within chains, indicating a good mixing performance of the Markov chain through time. 

The trace plots obtained for the parameters of the other modes and other dimensions also indicate 

good mixing, but they are not reported here for the sake of saving space.   

Having multiple forms of models capturing stationarity and different complex types of non-

stationarity, the performance of the DIC measure is examined to select the best Bayesian model for 

estimation of the time dependent marginal distributions, inter-arrival time and copula parameters. 

After selection of the best Bayesian model, the Bayesian posterior mean is used to produce estimates 

for the distribution parameters of interest over time that are subsequently used for the time-varying 
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multivariate risk analysis. In the following, the results of the procedure are described for the marginal, 

the dependence structure of drought severity and duration characteristics, and inter-arrival time 

dimension under the three selected climate change scenarios.  

 Figure 4-2. Trace plots for posterior samples obtained using MCMC chains for the parameters of the linear 

non-stationarity model on drought duration under the RCP4.5 scenario 

4.4.2.1 RCP2.6 Bayesian model 

The results of the DIC for each drought dimension in different forms of non-stationarity under the 

scenario RCP2.6 are given in Table 4-2. In this scenario for the severity dimension, the results of the 

DIC show that the constant stationary model presents better fit to severity data. Thus, none of the 

non-stationary models is adequate to describe the behaviour of severity characteristic over time.  

Unlike the severity, and consistent with the trend analysis output, the results of the DIC indicate 

that the drought duration follows a non-stationary probabilistic time dependent behavior. Although 

the DIC values of the linear and the quadratic models are not very different, the quadratic Bayesian 

model shows the least DIC and it is therefore selected as the best model for estimation of the time 

dependent negative binomial distribution. Similar to the duration, the quadratic model is also selected 

as the best model to describe the probabilistic time-varying behavior of the inter-arrival time variable 

in a non-stationary condition. 

In terms of the dependency between the severity and duration characteristics (copula variable), the 

results indicate that a linear non-stationary model provides the best result. Although one of the 

marginals (duration) exhibits a quadratic non-stationary time dependent behavior, analogously the 
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DIC results reveal that the linear non-stationary model is required to describe the copula over time. 

Therefore, it can be concluded that under the RCP2.6 scenario, which is called a peak-decline 

scenario, the influence of non-stationarity on the marginal distribution (here duration) is larger than 

the copula dependence measure. The results of the mean and standard deviation of the estimated 

parameters for each Bayesian model are given in Table 4-2. Figure 4-3 illustrates the smoothed log 

form of drought multi-dimension time series as function of time and the best-fitted time dependent 

models.   

Table 4-2. Parameter estimation and DIC results of the different forms of the generalized Bayesian models 

under RCP2.6 scenario 

 

Scenario  Dimension  
Statistical 

Model 
 Parameters 

Posterior 

mean 
Posterior St. DIC 

RCP2.6 

 

 

 

Severity 

 M0  𝜕 1.207 0.109 646.39 

  
M1 

 𝜕 1.15 0.15 
648.02 

   𝜚 0.001 0.002 

  

M2 

 𝜕 1.15 0.20  

   𝜚 0.001 0.012 650.50 

   𝜄 -1.27 0.0001  

 

Duration 

 M0  𝜂 1.32 0.11 749.8 

  
M1 

 𝜂 0.733 0.22 
743.23 

   𝜃 0.001 0.0003 

  

M2 

 𝜂 0.512 0.220  

   𝜃 0.002 0.0005 742.08 

   𝜅 -1.355 4.476  

 

Inter-

arrival 

time 

 M0  𝜓 1.43 0.08 792.62 

  
M1 

 𝜓 1.65 0.17 
792.29 

   𝜔 -0.0004 0.0003 

  

M2 

 𝜓 1.36 0.18  

   𝜔 0.001 0.0006 786.54 

   𝜗 -1.92 5.91  

 

Copula 

 

 

 M0  𝜉 0.620 0.102 -191.44 

  
M1 

 𝜉 0.110 0.214 
-195.48 

   𝜈 0.105 0.033 

  

M2 

 𝜉 -0.401 0.521  

   𝜈 0.386 0.217 -193.9 

   𝜒 -0.027 0.020  
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Figure 4-3. Predictive mean (blue dashed lines), true mean of Kendall’s τt(black dashed line), 95 % Bayesian confidence intervals (red dotted lines), and drought 

multi-dimension time series (solid black lines) under forcing scenario RCP2.6 
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4.4.2.2 RCP4.5 Bayesian model 

The results of the time varying models for the drought dimensions under the scenario of RCP4.5 

are given in Table 4-3. For the severity characteristic, the derived DIC values indicate that the 

constant model is the most adequate model to describe the probabilistic behavior of severity 

observations. In terms of the drought duration dimension, the time varying negative binomial 

distribution is described in different forms of non-stationarity. The results indicate that the linear 

model is the best model to capture the time varying rate of drought occurrence over time under this 

climate change forcing scenario. Quite similar to the low emission scenario (RCP2.6) the results of 

the DICs indicate the superiority of the quadratic model with respect to the time-varying inter-arrival 

time dimension. The results of the predictive posterior mean and the Bayesian predictive intervals are 

illustrated in Figure 4-4. Observe that the 95% predictive intervals for the inter-arrival time dimension 

are narrow with the selected model, as some of the observations lie outside of the intervals. This 

seems realistic as around 5% of the observed data should be outside of these predictive intervals.   

Similar to the RCP2.6 scenario, the results of the time varying Gumbel copula show that the linear 

function fits as the best model to the dependency structure. 

4.4.2.3 RCP8.5 Bayesian model 

The Bayesian modelling under the RCP8.5 is an interesting example demonstrating the importance 

of using a fully non-stationary-based Bayesian model for all the dimensions in a temporal evolution 

of the climate under a worst-case scenario.  

Testing three different Bayesian models with respect to the drought dimensions under the current 

scenario demonstrates that based on the DIC criterion, the quadratic model is the best model 

describing the time varying selected distributions for all the dimensions (Table 4-4). The results 

obtained from the time-varying models are completely consistent with the trend analysis outputs and 

demonstrate the superiority of non-stationary quadratic-based Bayesian models in capturing a 

multivariate time-varying environment. Unlike the two previous scenarios, since under the current 

scenario both the severity and duration dimensions exhibit a quadratic non-stationary time dependent 

probabilistic behavior, the quadratic generalized Bayesian model proves to be an adequate model in 

describing the multivariate conditional dynamic copula. Figure 4-5 illustrates the drought dimension 

time series and the time-varying fitted Bayesian models under the RCP8.5 scenario.   
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Table 4-3. Parameter estimation and DIC results of the different forms of the generalized Bayesian models 

under RCP4.5 scenario 

 

Scenario  Dimension  
Statistical 

Model 
 Parameters 

Posterior 

mean 
Posterior St. DIC 

RCP4.5 

 

Severity 

 M0  𝜕 1.298 0.104 644.21 

  
M1 

 𝜕 1.14 0.16 
644.70 

   𝜚 0.003 0.002 

  

M2 

 𝜕 1.17 0.23  

   𝜚 0.001 0.013 647.21 

   𝜄 3.14 0.0001  

 

Duration 

 M0  𝜂 1.42 0.11 731.94 

  
M1 

 𝜂 0.715 0.211 
722.66 

   𝜃 0.001 0.0003 

  

M2 

 𝜂 0.58 0.23  

   𝜃 0.002 0.0005 722.93 

   𝜅 -0.976 2.83  

 

Inter-

arrival 

time 

 M0  𝜓 1.483 0.089 759.57 

  
M1 

 𝜓 1.756 0.197 
759.51 

   𝜔 -0.0005 0.0003 

  

M2 

 𝜓 1.688 0.195  

   𝜔 -0.0003 0.0004 758.70 

   𝜗 1.087 0.166  

 

Copula 

 

 

 M0  𝜉 0.655 0.104 -192.73 

  
M1 

 𝜉 0.046 0.224 
-206.81 

   𝜈 0.129 0.036 

  

M2 

 𝜉 -0.049 0.383  

 

 

   𝜈 0.183 0.176 -203.36 

   𝜒 -0.005 0.017  

 

 

Overall, the results of the Bayesian modelling demonstrate the complex non-stationary 

environments under three different climate change scenarios. The results also demonstrate the 

capability of the proposed methodology in modelling the different types of time-varying non-

stationarities in the underlying dimensions arising from the complex environments under different 

radiative forcing scenarios.  
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 Figure 4-4. Predictive mean (blue dashed lines), true mean of Kendall’s 𝜏𝑡(black dashed line), 95 % Bayesian confidence intervals (red dotted lines), and    

drought multi-dimension time series (solid black lines) under forcing scenario RCP4.5 
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Table 4-4. Parameter estimation and DIC results of the different forms of the generalized Bayesian models 

under RCP8.5 scenario 

 

Scenario  Dimension  
Statistical 

Model 
 Parameters 

Posterior 

mean 
Posterior St. DIC 

RCP8.5 

 

 

 

Severity 

 M0  𝜕 1.023 0.099 634.49 

  
M1 

 𝜕 0.796 0.172 
634.05 

   𝜚 0.004 0.003 

  

M2 

 𝜕 1.267 0.222  

   𝜚 -0.032 0.013 626.53 

   𝜄 0.0004 0.0001  

 

Duration 

 M0  𝜂 1.151 0.110 746.35 

  
M1 

 𝜂 0.557 0.213 
738.21 

   𝜃 0.001 0.0003 

  

M2 

 𝜂 0.570 0.207  

   𝜃 0.0009 0.0003 737.39 

   𝜅 1.660 2.241  

 

Inter-

arrival 

time 

 M0  𝜓 1.358 0.090 815.77 

  
M1 

 𝜓 1.688 0.179 
813.20 

   𝜔 -0.0006 0.0003 

  

M2 

 𝜓 1.605 0.180  

   𝜔 -0.0002 0.0003 811.48 

   𝜗 -4.781 1.965  

 

Copula 

 

 

 M0  𝜉 0.572 0.100 -183.84 

  
M1 

 𝜉 0.329 0.219 
-186.88 

   𝜈 0.043 0.035 

  

M2 

 𝜉 0.570 0.416  

   𝜈 -0.980 0.190 -200.40 

   𝜒 0.013 0.017  

 

4.4.3 Bayesian time-varying joint return period 

After selecting the best Bayesian models and constructing time-varying distributions and copula on 

the drought multi-dimensions using the MCMC algorithm, the results are employed in creating time 

varying joint return period in a multivariate risk framework. The results are given for the three forcing 

scenarios. In each scenario, as the time-varying joint return period plots cannot be shown over time in 

a 2D plot, three time frames from the design’s life time period are selected for illustration of the time 

variation on the time-varying joint return period.  
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Figure 4-5. Predictive mean (blue solid lines), true mean of Kendall’s τt(black dashed line), 95 % Bayesian confidence intervals (red dotted lines), and drought 

multi-dimension time series (black solid lines) under forcing scenario RCP8.5 
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The first time frame is year 2015, in which the historical observations till this time are employed 

for creating time-varying joint return period. The second time slice is 2065, a half century after 2015. 

Over this time period the time-varying joint return period is updated as time goes by. The last time 

frame is the year 2100. To show the performance of the proposed time-varying framework, the results 

of the time-varying non-stationary multivariate risk analysis are also compared with the outputs of the 

currently used time-independent stationary multivariate framework for the same time slices under the 

three forcing scenarios.   

In the following the results of the time-varying non-stationary approach accompany the time-

independent stationary multivariate risk analysis for the low and midrange green-house gas emission 

scenarios (RCP2.6 and RCP4.5) and the worst-case forcing scenario (RCP8.5), respectively. 

4.4.3.1 Time-varying joint return period under RCP2.6 and RCP4.5 

To show the time-varying non-stationary multivariate risk, the contours of joint probability for 

drought severity and duration using the dynamic copula and including the time-varying inter-arrival 

time dimension are illustrated in Figure 4-6(a) for the three time slices under scenario RCP2.6. The 

results of the time-independent stationary multivariate risk are also illustrated in Figure 4-6(b) for the 

three time slices under the same scenario. In these plots, historical observations and projected 

downscaled observations are exhibited separately. A critical return period covering the whole 

historical drought events is also highlighted as a milestone to better illustrate the flow of time-varying 

joint return period through time. At the first selected time slice (2015) in the time-varying 

multivariate framework, the historical drought events are located in the downside of the joint return 

period plot. This indicates that the majority of drought events occurring in this area have low joint 

return periods of less than 20 years. By the end of 2065 the majority of drought events are projected 

to occur with similar characteristics to those of the historical events based on the same framework, 

whereas some more severe drought events are likely to occur with return period between 20 and 100 

years. At the end of the century, as seen in the plot, the number of extreme drought events that are 

more severe and longer (passing the critical return period) will likely be increased under this climate 

change scenario.  

As illustrated in Figure 4-6(a), as time goes by, the time-varying joint contour plots are moving 

forward (tractable by following the critical RP contour) indicating that the time between drought 

events is decreasing and they are becoming more frequent over design’s life period. In contrast, in the 

time-independent stationary framework illustrated in Figure 4-6(b), the risk of droughts is unchanged 

over the entire century without any changes in the characteristics of historical and projected droughts.   
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It is likely as time goes on a half century until 2065 under the current scenario, both frequent and 

rare extreme drought events (especially rare worst extreme events with return period between 50 and 

500 years) will be increased in comparison with the same time period in the previous scenario. Over 

the last time period, although the number of frequent drought events (under the critical return period) 

is increased, only one extreme event with return period more than 50 year is projected to occur. In 

other words, the most extreme severe rare drought events are likely occur over the second time period 

(2015-2065), which is consistent with the trend of green-house gas emission under RCP4.5 forcing 

scenario (Taylor et al., 2012b). Looking at the time-varying joint contour plots, the results indicate as 

time goes by over the design’s life period, as same as the previous scenario, the characteristics of 

droughts are changed and the expected time between extreme drought events is substantially 

decreased. Illustrated in Figure 4-7(b), the results of the multivariate risk analysis in the stationary 

condition, however, indicate that the probabilistic characteristics of droughts will remain unchanged 

over time using currently used time-independent marginals and copula models. 

Comparing each time slice in the two time-varying non-stationary and time-independent stationary 

risk analyses under scenarios RCP2.6 and RCP4.5, the stationary multivariate framework 

underestimates the risk of multivariate drought event occurrences and the drought characteristics over 

time in comparison with the non-stationary multivariate one. In terms of drought characteristics, as 

the duration exhibits a non-stationary behavior under these two climate scenarios (statistical models 

M2 and M1, in Table 2 and 3) than the stationary behavior of severity, a remarkable discrepancy is 

seen relative to the drought duration than the drought severity in the two frameworks over time.        

 

 

 

 

 
Figure 4-6. Dynamic (non-stationary) versus static (stationary) joint return period plots at three-selected time 

frames under scenario RCP2.6 

 

a) Non-Stationary b) Stationary 
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It is likely as time goes on a half century until 2065 under the current scenario, both frequent and 

rare extreme drought events (especially rare worst extreme events with return period between 50 and 

500 years) will be increased in comparison with the same time period in the previous scenario. Over 

the last time period, although the number of frequent drought events (under the critical return period) 

is increased, only one extreme event with return period more than 50 year is projected to occur. In 

other words, the most extreme severe rare drought events are likely occur over the second time period 

(2015-2065), which is consistent with the trend of green-house gas emission under RCP4.5 forcing 

scenario (Taylor et al., 2012b). Looking at the time-varying joint contour plots, the results indicate as 

time goes by over the design’s life period, as same as the previous scenario, the characteristics of 

droughts are changed and the expected time between extreme drought events is substantially 

decreased. Illustrated in Figure 8(b), the results of the multivariate risk analysis in the stationary 

condition, however, indicate that the probabilistic characteristics of droughts will remain unchanged 

over time using currently used time-independent marginals and copula models. 

Comparing each time slice in the two time-varying non-stationary and time-independent stationary 

risk analyses under scenarios RCP2.6 and RCP4.5, the stationary multivariate framework 

underestimates the risk of multivariate drought event occurrences and the drought characteristics over 

time in comparison with the non-stationary multivariate one. In terms of drought characteristics, as 

the duration exhibits a non-stationary behaviour under these two climate scenarios (statistical models 

M2 and M1, in Table 2 and 3) than the stationary behaviour of severity, a remarkable discrepancy is 

seen relative to the drought duration than the drought severity in the two frameworks over time.        

 

 

 

 

 

Figure 4-7. Dynamic (non-stationary) versus static (stationary) joint return period plots at three-selected time 

frames under scenario RCP4.5 

 

a) Non-Stationary b) Stationary 
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In Figure 4-7(a) the results of the joint return period are illustrated based on the selected time-

varying non-stationary models under the forcing scenario RCP4.5. As exhibited at the first time 

frame, all drought events occur under return period 10 years. Compared with the same time in the 

same framework under scenario RCP2.6, the drought events are much more frequent. It should be 

noted that the drought characteristics are extracted from the synthetized historical and projected 

precipitation time series. Synthetizing historical precipitation with different projected precipitation 

time series under different climate change scenarios leads to different SPI time series and 

subsequently different drought characteristics. That is the reason that the different time-varying joint 

probability are achieved over the first time period (2015) under the two underlying scenarios, whereas 

the historical observations are completely similar in the three scenarios.  

4.4.3.2 Time-varying joint return period under RCP8.5 

Modelled by quadratic-based Bayesian functions in terms of all the dimensions, the time-varying 

multivariate risk analysis under this scenario is carried out in a fully non-stationary condition. Figure 

4-8(a) illustrates the time-varying joint return period plots at the three selected time frames under this 

scenario. As shown at the first time slice, the historical droughts over the time period until 2015 are 

having more severe and lengthier duration in comparison with the other two scenarios, so that more 

events are observed between return period 20 and 50 year. Ignoring the actual non-stationary 

environment by this time, the multivariate stationary framework, however, overestimates the risk of 

multivariate drought occurrences and the drought characteristics (shown in Figure 4-8(b)). As time 

progresses, in the second time period, the number of extreme events is not increased, and the majority 

of drought events will probably occur with the same characteristics as the historical events based on 

the multivariate non-stationary risk framework. However, it is interesting that the time between 

drought events are decreased in comparison with the other two scenarios. For instance, the events 

between contour plots of 20-50 years, seen in the previous time slice no longer exist over this time 

period and they have become much more frequent and moved towards the lower joint return periods. 

That demonstrates that the drought characteristics are changing over time under the impact of the 

worst-case climate change scenario. In multivariate stationary framework, however, the risk and the 

nature of droughts are unchanged over time. In comparison with the non-stationary environment, the 

time-independent stationary assumption underestimates the length and the risk of droughts (especially 

frequent droughts) by this time slice.  
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Figure 4-8. Non-stationary (time-varying) versus stationary (static) joint return periods for three time slices of 

the INM-CM4 model under scenario RCP8.5. The risk changes of the particular assumed drought (symbolized 

as a black star) are also illustrated in both frameworks 

 

a) Non-Stationary b) Stationary 
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Over the last time period, not only the number of much more severe and lengthy droughts will 

likely be increased under the critical return period, but also two rare extreme events probably occur 

under this worst forcing scenario based on the time-varying non-stationary risk framework. The 

return period of these events are between 500-1000 years, meaning that they are extreme droughts 

with large potential damage consequences. However, the currently used multivariate time-

independent stationary-based risk analysis shows remarkable discrepancy with the multivariate time-

varying non-stationary one so that it underestimates the risk of drought occurrences (for all the 

frequent and extreme events) and both the drought severity and drought duration. Therefore, the 

adverse consequences arising from ignoring the non-stationary condition and changing the nature and 

the risk of droughts in the time-independent stationary multivariate framework under this climate 

change scenario will seriously threaten various sectors of the Tehran city, especially drinking water 

sector.    

In comparison to the other two scenarios (RCP2.6 and RCP4.5), all the multi-dimensions 

(including marginal, copula, and inter-arrival time) are exhibiting a non-stationary behavior under this 

scenario. Since the joint return period is also a function of the time-varying multi-dimensions, as time 

progresses over the design’s life period, the speed of the forward moving of the contour plots is 

consequently greater than the previous scenarios. This indicates that the nature of drought 

characteristics are severely and fast changed under this worst greenhouse gas emission scenario.  

To better compare the concept of risk in the two frameworks, an example is given in Figure 4-8. An 

assumed symbolized severe drought event (illustrated in black) represents joint multi-dimensions of 

the severity 14.0 and the duration of 19.0 months. The results indicate that under the currently-used 

static risk framework, droughts having the same joint multi-dimensions constantly occur in return 

period of 50yr without any changes over the entire design period. According to the time-varying 

framework in the dynamic condition, however, the same characterized drought event having a joint 

return period of about 100yr occurs less frequent than the drought in the static framework at the 

beginning of the century. Such overestimation of the risk (joint return period) in the static framework 

raises infrastructure designing costs and the management of water systems, whereas that is not 

necessarily based on an actual adaptive time-varying risk framework.  
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Figure 4-9. Non-stationary versus stationary joint return periods for the three time slices of the GFDL-ESM2M 

model. 

 

Non-Stationary Stationary 



 

106 

 

The nature of the joint characterized droughts, however, change over time under the dynamic 

condition and become much worse in comparison with the static framework, so that the same severe 

multi-dimensional drought becomes much more frequent with return period of 15yr at the end of the 

century. 

The results indicate that after 2030s the static stationary framework will be underestimating the risk 

of projected extreme multi-dimensional droughts. That means if the nature-changing assumption of 

extreme multi-dimensional droughts is overlooked and such a static-based risk framework is used for 

water system designs, the systems may not be able to withstand drought conditions as the actual risk 

is higher than that for which the systems are designed. Similar results are achieved for the other 

synthetized climate models. For example in the GFDL-ESM2M model in Figure 4-9, likewise to the 

behavior of the INM-CM4 model, the essence of droughts is dynamic and drought characteristics are 

changing over time in the non-stationary condition for this model as well. In the stationary condition, 

however, the risk of droughts is constant over the time period. 

The results demonstrate that the essence of the complex multi-dimensional droughts is dynamic 

under altering environment arising from climate change and subsequently the risk of their occurrence 

will also become dynamic over time.    

Figure 4-10 also illustrates the uncertainty in the estimation of joint return period over time in the 

two stationary and non-stationary based multivariate risk frameworks (based on the GFDL-ESM2M 

model). The results are shown for a historical event that occurred in 1955 (with the severity 𝑆 ≥

𝑠 =11.5 and the duration of 𝐷 ≥ 𝑑 =11 months). As illustrated in the figure, under the fully 

nonstationary risk framework, the mean joint return period of such a multi-dimensional event changes 

over time. The results indicate that the mean joint return period will become less in the future, and 

such an extreme drought will occur frequently by the end of the century. In the stationary-based risk 

framework, the mean joint return period of such an extreme event is assumed static without any 

changes over the entire lifetime. This inability of the currently used multivariate stationary risk 

framework in capturing actual changing joint return period may lead to high uncertainty and failure of 

risk plans in water resource systems. 
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Figure 4-10. The uncertainty of mean joint return period over time with duration and severity equal to or greater 

than the 1955 Tehran extreme drought in nonstationary and stationary multivariate risk framework. The shaded 

area illustrate Bayesian Credible Intervals (2.5% and 97.5%) for the return periods     

 

Overall future dynamic-nature extreme droughts will be compounded with severe and long-time 

impacts. In addition, co-occurrence of more severe droughts accompany with soaring temperature 

arising from global warming will increase water demand and the challenge of water resources 

allocation for various sectors, especially drinking water. As drought characteristics change over time 

through anthropogenic effects, lessons from the past droughts cannot be applied to the future drought 

events (AghaKouchak et al., 2015). Thus, to mitigate adverse consequences, water resources 

authorities should be prepared for new characterized drought situations in a warmer environment by 

defining proactive and long-term effective drought management strategies. Infrastructure adaptations, 

demand management, improving water-conservation technologies, developing an advanced 

prediction-monitoring system, raising awareness and public perception, and long-term water policy 

reforms could be some management long-term mitigation strategies.  

The introduced time-varying multivariate risk concept can be effectively used for infrastructure 

designs and water resources planning. Using the time-varying risk strategy, one is able to estimate to 

what extent the probability of exceedance associated with extreme multi-dimensional climate event 

occurrences may change under the intensified non-stationary conditions. Knowing that, engineering 

designers can reduce uncertainties in the estimation of risk, which results in enhancing reliability of 

water resources infrastructure designs and reducing the potential costs. In terms of water resources 

planning and management, using the multivariate nonstationary risk framework, one is also able to 

project the time-varying frequency and magnitude of multi-dimensional extreme events under the 

impact of climate change. In this case, ensemble IPCC model runs can be used as an application for 
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future projection of multi-dimensional extreme events in near and long-term periods. Managers can 

better operate water supply systems to deliver the water that is demanded with more reliability under 

a complex and uncertain changing climate. The time-varying risk can be designed for any fine or 

coarse temporal resolutions. Depending on the context that the time-varying multivariate risk 

framework is developed for, it can be updated over time by adding new information (observations) 

for the same time-scale.         

4.5 Conclusions  

Climate change is impacting hydrological processes leading to increasing the risk of climate 

extremes. Accordingly, time-varying non-stationary-based multivariate probabilistic modelling 

concepts should be developed and adopted for risk-based decision-making in water resources 

planning and designs.  

In the present study, a Bayesian procedure is proposed to perform joint Bayesian inference for a 

conditional copula model describing dependence between continuous (drought severity) and discrete 

(drought duration) dimensions. The Bayesian inference approach allows estimation of time varying 

marginal and copula distribution parameters in a two-stage estimation procedure for mixed 

complicated situations when one of the marginals is discrete. To capture different types of non-

stationarity through time, the Bayesian inference is employed to estimate different formats of the 

generalized additive model parameters. To make the inference and to estimate the parameters, the 

Gibbs MCMC sampler is employed to generate sample realizations from the posterior distributions. 

Moreover, the credibility of the Bayesian predictive intervals are also developed providing 

information about the precision of the estimates. This study has also improved the concept of the joint 

return period in multivariate risk studies to a fully time-varying joint return period concept through 

considering inter-arrival time as a time-varying dimension.  

The proposed approach in the present study offers a number of advantages. One of the main 

benefits is producing fully likelihood-based inference to model complex time-varying multivariate 

non-stationary condition arising from climate change. The approach is able to handle modelling any 

complex hydro-climate extreme phenomena with complicated time-varying dependence structures 

consisting of mixed dimensions (continuous and discrete). It is also flexible for modelling mixtures of 

stationary and non-stationary conditions for multi-dimensions. The study also demonstrates that the 
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risk of multi-dimensional extreme climate processes becomes time-varying under the impact of 

climate change. Accordingly, to mitigate adverse consequences arising from these new characterized 

natural hazards, the associated authorities should keep updating long-term proactive strategies based 

on anomalies of dynamic anthropogenically forced environments. Updating long-term decision-

making strategies, however, requires interdisciplinary cooperation of engineers, policy makers, 

climate experts, and economists.       
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Summary, Conclusions, and Future Work 

Under the changing climate, the safety and the security of water infrastructure is influenced by the 

risk of extreme hydro-climatic phenomena. Potential global warming-induced-changes to the extreme 

hydro-climatic processes call into question the reliability and the accuracy of the currently-used 

design concepts. The increasing impact of climate change on extreme hydro-climatic phenomena 

around the world (Coumou and Rahmstorf, 2012) implies that the nature and the risk of these multi-

dimensional phenomena are being changed. This thesis first proposes a comprehensive methodology 

to improve predictive power of the statistical downscaling models for enhancing credibility of 

climate-related projections in defining long-term strategies and quantifying uncertainties under the 

impact of climate change. The thesis then outlines a novel framework of a multi-dimensional time-

varying risk concept to be incorporated in updating infrastructure design strategies under dynamic 

environments arising from climate change. This new generation of the adaptive multi-dimensional 

time-varying risk methodology can be applied for any types of multi-dimensional hydro-climate 

processes to study anomalies of extreme events arising from climate change.  

The following sections outline the concluding remarks as well as recommendations for future work 

based on the findings in each chapter.  

4.6 Summary and Concluding Remarks  

    Chapter 2 is the first study to introduce a supervised nonlinear dimensionality reduction method to 

the regression-based statistical downscaling. The algorithm derives a low-dimensional manifold from 

high-dimensional atmospheric variables conveying relevant climate change information and having 

maximal dependency with the target variable. The comparison of the results reveals that the proposed 

supervised PCA methods outperform most of the existing state-of-the-art dimensionality reduction 

algorithms in terms of the future projection accuracy of the hydro-climate variable in the statistical 

downscaling process. Specific conclusions from this chapter are outlined as follows: 

 

 The proposed supervised PCA is able to capture certain modes of variability in the 

atmospheric variables along directions that are associated with the target hydro-climate 

variable. Using derived subspaces that have maximum dependency with the target variable 
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improves the predictive power of the regression-based statistical downscaling modelling. It 

thus leads to projecting more accurate future behavior of hydro-climate variables under the 

impact of climate change.  

 The developed Kernel Supervised PCA algorithm can capture the complexity and nonlinear 

dependence between the target precipitation and high-dimensional projector variables and 

also interdependency within atmospheric projectors. The algorithm does this through a 

nonlinear mapping of the atmospheric projectors using different kernel functions to compute 

low-dimensional principal components. This ability allows projecting any complexity in 

climate change signals to improve the accuracy of hydro-climate variable projections under 

the statistical downscaling process.  

 Comparison between precipitation projections derived from the application of conventional 

PCA (as a standard dimensionality reduction) and Kernel Supervised PCA in the statistical 

downscaling reveals the former method acts poorly in terms of extreme event projections 

under RCP scenarios. Using a supervised dimensionality reduction model thus results in 

reducing this source of uncertainty and improving projection of extreme observations of 

hydro-climate variables under different GCM models and climate change scenarios for the 

upcoming decades. 

Chapter 3 develops a comprehensive methodology to address other sources of uncertainties in the 

regression based statistical downscaling. In addition to the impact of high dimensional feature 

space, this chapter engages soft-computing nonlinear machine learning to capture nonlinear 

relationships between predictand and atmospheric predictors. In this chapter a Multivariate 

Recursive Nesting Bias Correction (MRNBC) approach is also proposed to correct biases arising 

from differences between observed and simulated large-scale atmospheric projectors and to 

represent anomalies of the large-scale teleconnections in GCM simulations. The following 

conclusions are drawn in Chapter 3: 

 The results demonstrate the effectiveness of the Multivariate Recursive Nesting Bias 

Correction (MRNBC) in simultaneously correcting temporal and spatial biases over 

multiple time-scales in cross dependent multi projectors. Applying this procedure in the 

statistical downscaling leads to reducing different sources of uncertainty and improving 
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the accuracy of the projections of hydro-climate processes for defining long-term 

strategies in response to potential future changes.  

 The results demonstrate the superiority of the Bayesian learning algorithm (RVM) in 

capturing any types of complexity and nonlinearity in quantitative empirical relationship 

between the target variable and atmospheric predictors. The Bayesian based machine 

learning method shows high efficiency in minimizing the possibility of overfitting and 

computational time processing. These advantages make RVM a powerful method 

compared with other learning algorithms to improve performance accuracy of statistical 

downscaling and future projection of any hydro-climate variables under the impact of 

climate change.  

 The results of the two DOE-based frameworks reveal that the developed downscaling 

model (consisting of the Kernel Supervised PCA and the RVM model) is credible to 

project precipitation behaviour under possible future dynamic non-stationary climates 

arising from global warming. The DOE experiments address unaltered empirical relations 

in the statistical downscaling models under non-stationary conditions. The experiments 

demonstrate that the statistical downscaling models are trustworthy and adjusted to the 

changes arising from global warming.  

 The proposed comprehensive methodology enhances the predictive power of regression-

based statistical downscaling through addressing the impact of different sources of 

uncertainties. This leads to more accurate understanding about the impact of climate 

change on the future behaviour of different types of hydro-climate variables. Relying on 

the projections, decision makers will thus be able to better define effective and long-term 

strategies to mitigate adverse consequences arising from global warming on the 

availability of surface water resources.  

It should also be noted that the all analyses in Chapter 2 and Chapter 3 are employed to reduce 

different sources of uncertainties (high-dimensionality, biases, and nonlinear functional relationships) 

to project precipitation in a consistent target monthly-based temporal scale. The same procedures can 

be easily applied to project precipitation (or other hydro-climate variables) for other finer temporal 

resolutions (e.g. weekly, daily, hourly-based scales) depending on the context. Using other temporal 
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resolutions for the aforementioned chapters may give rise to dissimilar outcomes in terms of reducing 

different sources of uncertainties.   

Chapter 4 demonstrates that in a changing climate arising from anthropogenic global warming, the 

nature and the risk of extreme climatic events are changing over time. To strengthen the reliability of 

infrastructure designs and the management of water systems in the changing environment, existing 

analytical methods in multi-dimensional risk studies should be replaced with a new adaptive 

perspective. The results of a comparison indicate that current time-independent (static) multi-

dimensional risk frameworks are no longer applicable to projecting the probabilistic behavior under 

changing multi-dimensional extreme climate processes. Using stationary-based methods may result in 

undesirable consequences in designing water system infrastructures. The time-independent concept 

should therefore be replaced with a flexible multi-dimensional time-varying risk framework. Chapter 

4 develops a new multi-dimensional time-varying risk concept to be incorporated in updating 

infrastructure design strategies under changing environments arising from human-induced climate 

change. Specific conclusions in this chapter are outlined as follows: 

 The proposed multivariate time-varying risk framework develops joint Bayesian 

inference for conditional copula model describing time-varying dependence between 

mixed continuous and discrete drought marginals over time. The Bayesian framework 

makes inference by generating iterative samples from the full conditional marginals and 

joint distribution to estimate related marginals and copula time-dependent parameters. 

The multivariate framework is full likelihood-based Bayesian inference where the whole 

set of parameters is allowed to change over time. The framework is thus able to integrate 

any anomalies in extreme multi-dimensional droughts in non-stationary conditions 

arising from global warming.    

 The framework also introduces a fully Bayesian, time-varying Joint Return Period (JRP) 

concept. Using the new concept, one is able to compute the extent of risk changes of 

extreme multi-dimensional droughts over time. It is also possible to exhibit how the 

nature of extreme climate phenomena is changing under the impact of climate change. 

The other unique feature of the framework is the computation of the uncertainty in terms 

of JRP using time-varying multi-dimensions (marginal, copula, and inter-arrival time) in 

the changing environments under climate change scenarios against stationary condition.  
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 The credibility of the Bayesian predictive intervals can be developed providing 

information about the precision of the estimates. The framework also measures 

uncertainty of time varying distribution parameters of the drought dimensions estimated 

through the posterior distribution of the MCMC samples in the non-stationary and 

stationary conditions. Considering a trend imposes a certain type of non-stationarity, the 

best statistical models are selected on the outputs of posterior distributions to capture 

different forms of non-stationarity. 

 The results demonstrate that using time-independent multivariate risk methodologies may 

lead to high uncertainty for infrastructure designs and inaccurate estimates of the risk of 

failure for water resources systems. To avoid undesirable consequences, it is thus of 

crucial importance to update the current time-independent design concepts and substitute 

the new generation of the adaptive multi-dimensional time-varying-based methodologies 

for future risk-based designs in water resources systems. Applying the new concept, one 

is able to adapt the design of water systems and infrastructure to the dynamic conditions 

generated by climate change. 

4.7 Recommendations for Future Research 

Chapter 2 uses the Supervised PCA technique, which focuses on deriving new reduced-dimension 

features having maximum dependency on the target variable by transformations of the original feature 

dataset. Supervised PCA therefore does not consider the local structure of the data and subsequently it 

cannot extract intrinsic dimensionality of the data. Future research can focus on improving this 

characteristic of Supervised PCA.  

Although the Regional Climate Models (RCMs) require expensive and complicated computations 

and use biased lateral boundary inputs, future research may focus on comparison of the dynamic 

downscaling results and the comprehensive statistical downscaling methodology in Chapter 3. Such 

comparison could address the uncertainty arising from the application of GCMs and RCMs in 

projecting hydro-meteorological processes under different climate change scenarios. Future research 

can be directed to apply deep structure learning techniques (Deep Learning) in the statistical 

downscaling. Deep learning is characterized as a class of machine learning that can model multiple 

levels of representations of large scale atmospheric observations using multiple processing layers. 
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Deep structure learning can explain entire variance of a response variable in the statistical 

downscaling and project extreme minimum and maximum hydro-climate events with high accuracy 

under RCP scenarios. In Chapter 3, the Euclidean distance approach is used to obtain signatures of 

climate changes for scenarios PI and RCP8.5. Development of other sequence pattern matching may 

improve similarity measurement to better identify climate change signatures.   

The current time-independent stationary-based risk concepts in multi-dimensional climate change 

studies should be replaced with the new proposed time-varying multivariate insight of risk analysis in 

Chapter 4. Thus future work can focus on developing the same concept for different copula families 

and compare their performances for selecting the best dynamic copula. Using simultaneous estimation 

of both marginal and copula distributions’ parameters in contrast with the two-stage procedure may 

lead to better understanding of the parameter dependences and also result in better performance of 

model selection criteria.  

Extreme climate phenomena are regional processes and their impacts vary from region to region. 

The proposed risk concept in this thesis can also be extended to a regional multivariate time-varying 

framework to assess the risk of multi-dimensional extreme events at a regional scale under non-

stationary conditions arising from climate change. In the regional context, multi-dimensional extreme 

events in different sites in homogeneous regions are spatially inter-dependent in one way or another. 

To study spatially varying multi-dimensional extreme climate processes or dimensions of two 

extreme phenomena, the dependence between pairs of sites in a spatial context can thus be taken into 

account in the time-varying risk framework for future research. The multivariate time-varying risk 

framework can also be more generalized by fitting Generalized Extreme Value (GEV) distribution to 

each marginal. According to the extreme value theory, each joint extreme dimension can generally be 

described by the GEV as the most frequently used distribution for extreme value analysis. Further 

research should also be dedicated to apply and develop the proposed framework for other stochastic 

multi-dimensional systems that are under the influence of changing environments.  
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