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Abstract

A graph G is said to be L-colourable if for a given list assignment
L = {L(v)|v ∈ V (G)} there is a proper colouring c of G such that
c(v) ∈ L(v) for all v in V (G). If G is L-colourable for all L with
|L(v)| ≥ k for all v in V (G), then G is said to be k-choosable.

This paper focuses on two different ways to prove list colouring
results on planar graphs. The first method will be discharging, which
will be used to fuse multiple results into one theorem. The second
method will be restricting the lists of vertices on the boundary and
applying induction, which will show that planar graphs without 3-
cycles and 4-cycles distance 8 apart are 3-choosable.
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Chapter 1: Introduction

H. Grötzsch published one of the most famous theorems in graph colouring
in 1959. He stated that every planar graph without 3-cycles is 3-colourable
and today this is known as Grötzsch’s Theorem. His proof, although correct,
was also complex. Therefore, short and concise proofs of this theorem were
well sought after. In 1995, Thomassen published [11], which contained a sim-
ilar result for list colouring planar graphs. Thomassen’s theorem stated that
every planar graph with girth 5 is 3-choosable. He then went on to use this
result to publish [12], which contains a new proof of Grötzsch’s Theorem. To
date, Thomassen’s proof of Grötzsch’s Theorem is one of the shortest and
most concise proofs we know.

The results in this paper focus on families of planar graphs that are 3-
choosable that were not covered by Thomassen’s theorem. After Thomassen
released his list colouring result for planar graph, there has been a vast in-
flux of results pertaining to planar graphs without certain cycles. Theorem
1 shows some recent results in this area.

Theorem 1. Every planar graph without x-cycles is 3-choosable.

3 4 5 6 7 8 9 Authors Year
x x [11] Thomassen 1995

x x x x x x [2] Borodin 1996
x x x x [20] Zhang and Xu 2004
x x x x [16] Zhang 2005
x x x [8] Lam, Shiu and Song 2005
x x x [21] Zhang, Xu and Sun 2006
x x x [22] Zhu, Miao and Wang 2007
x x x [5] Dvořák, Lidický and Škrekovski 2009
x x x [6] Dvořák, Lidický and Škrekovski 2010

x x x x x [7] Dvořák and Postle 2015
x * * * * x [17]-[15] Varies Varies

Note that the last theorem has stars for cycles of length 5 to 8. This is
because it has been proven that every planar graph without 4- and 9-cycles,
and without any two cycles of length between 5 and 8 is 3-choosable.

Along with removing cycles from planar graphs, we ask what happens when
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cycles of certain length are further and further apart. Theorem 2 is an exam-
ple of some of the results in this area that have appeared after Thomassen’s
theorem.

Theorem 2. Every planar graph without x-cycles and 3-cycles distance dO

apart is 3-choosable.

4 5 6 7 8 9 dO Authors Year
x x x x x x 0 [2] Borodin 1996
x x x 3 [10] Montassier, Raspaud, Wang 2006
x x 4 [10] Montassier, Raspaud, Wang 2006

x x x 3 [19] Zhang and Sun 2008
x x x 2 [19] Zhang and Sun 2008

x x x x x 0 [7] Dvořák and Postle 2015
x x x x 2 Theorem 3 2016

In Chapter 2 we will see how a new results along with results from Borodin,
Montassier, Raspaud, and Wang can be combined and proven using dis-
charging. But results in this area do not solely depend on discharging. As an
example, in Chapter 3, we will show a proof of Theorem 4 by restricting the
lists of the vertices on the boundary of planar graphs and applying induction.

Theorem 4. Let G be a planar graph without 3-cycles such that any two
4-cycles are distance at least 8 apart. Then G is 3-choosable.

Theorem 4 extends Thommasen’s Theorem about girth 5 planar graphs.
The goal of this theorem was to improve upon a theorem by Dvořák [4], that
states planar graphs with 3- and 4-cycles distance 26 apart are 3-choosable.
This thesis can be viewed as a proof of concept and we intend to continue
simplifying and extending the arguments to include 3-cycles.
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Chapter 2: Discharging

The discharging method was developed in the 1970s to attempt to prove
the 4-colour theorem. Ultimately, it would be one of the key components
to proving one of the biggest theorems in graph colouring and become an
important tool in graph theory. As an example of discharging we show that
the results in [2] and [10] can be combined using one discharging proof.

Theorem 3. Let G be a planar graph without 4- and 5-cycles. Then G is
3-choosable if it satisfies one of the following conditions:

1. G has no 6- to 9-cycles, (Borodin,1996)

2. G has no 6- to 7-cycles and dO(G) ≥ 2,

3. G has no 6-cycles and dO(G) ≥ 3, (Montassier-Raspaud-Wang,2006)

4. dO(G) ≥ 4. (Montassier-Raspaud-Wang,2006)

Proof. Define G to be the set of plane graphs with no 4- and 5-cycles. Let
G ∈ G be a minimal counter example to the theorem and let L be a 3-list
assignment on the vertices of G such that G is not L-colourable.

Claim 1. δ(G) ≥ 3.

Proof. Suppose there was a vertex v in G such that degG(v) ≤ 2. By
minimality of G, there is an L-colouring of G − v. Since degG(v) ≤ 2 and
|L(v)| = 3 we can colour v with a colour from L(v)\{c(x)|x ∈ NG(v)}. This
yeields an L-colouring of G, and a contradiction. �

For the sake of the reader, we will note that an i-vertex is a vertex of degree
i and an i+-vertex is a vertex of degree at least i.

Claim 2. For a postive even integer k, G does not contain any chordless
k-cycles comprised of all 3-vertices.

Proof. Suppose there was an chordless even cycle C = (x1, ..., xk, x1) such
that every vertex in V had degree three. By minimality of G, there is an
L-colouring of G− V (C). Place the cycle C back into the graph. For every
vertex xi in V (C) let ci be the colour of the neighbour of xi in G − V (C).
Define L′(xi) = L(xi)\{ci}. We have that for all i, |L(xi)| ≥ 2. Since even
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cycles are 2-choosable, there is an L′-colouring of C, yielding an L-colouring
of G, and a contradiction. �

Now we use discharging to show that if G has one of the four properties,
then G does not exist. Define `f to be the length of face f . Assign a charge
to each face and vertex denoted ch(x) for x ∈ V (G) ∪ F (G). We define the
charges to be:

• ch(v) = degG(v)− 4, if v ∈ V (G); and

• ch(f) = `f − 4, if f ∈ F (G).

We note that by Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2 gives us∑
v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =
∑

v∈V (G)

(degG(v)− 4) +
∑

f∈F (G)

(`f − 4)

= −4|V (G)|+ 4|E(G)| − 4|F (G)| = −8.

Now we define discharging rules on the charged graph in a way that pre-
serves the total charge of the graph.

R1. Each vertex incident to a 3-face gives +1
3

to the 3-face.

+1
3

+1
3

+1
3

R2. For k ≥ 6, each k-face gives +2
3

to each incident 3-vertex also incident
with a 3-face and +1

3
to each 3-vertex not also incident with a 3-face.

+2
3

+2
3

+1
3

+1
3

+1
3

R3. For k ≥ 6, each k-face gives +1
3

to each incident 4-vertex that is also
either incident to two 3-faces or incident with a 3-face that does not share
an edge with the k-face.
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+1
3

+1
3

+1
3

It is clear that R1 makes every 3-face non-negative. Suppose we have a
k-face fk for k ≥ 12. From the three discharging rules we see that

ch(fk) ≥ k − 4− 2k

3
=
k

3
− 4 ≥ 12

3
− 4 = 0.

If every vertex in a face of length k has degree three, then there are at
most bk

2
c edges that are incident with two 3-vertices and a 3-cycle. This

implies that there are at most 2bk
2
c 3-vertices incident with a 3-face in this

face of length k. This implies that an 11-face f11 has charge

ch(f11) ≥ 11− 4− 2 ∗ 10

3
− 1

3
= 0.

If a 10-face has negative charge, then it must have nine 3-vertices that
are each incident to a 3-cycle. Let f10 be such a face. Let v be a vertex of
maximum degree in f10. If v has degree three, then f10 is a chordless even
cycle with every vertex having degree three, a contradiction with Claim 2.
Therefore, v has degree at least four. If each of nine 3-vertices is incident to
a 3-cycle, then f10 must share an edge with exactly five 3-cycles. Since there
is no 4-cycle, this implies that v is incident to one 3-cycle and this 3-cycle
shares an edge with f10. We count to find that

ch(f10) ≥ 10− 4− 2 ∗ 9

3
= 0.
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By R1, if vk is a vertex of degree k ≥ 5, then

ch(vk) ≥ k − 4− 1

3

⌊
k

2

⌋
≥ 5− 4− 1

3

⌊
5

2

⌋
=

1

3
.

Let v ∈ V (G). It is clear that if degG(v) = 3, then v is incident with
at most one 3-face, as otherwise G has a 4-cycle. Thus, R2 implies that
ch(v) = 0. Similarly, if degG(v) = 4, then R3 implies that ch(v) = 0.

We have that the only possible negative faces are 6- to 9-faces. Since the
sum of the charges in G is negative, G must have 6- to 9-cycles.

Using the same argument on 7- to 9- faces we get the following claim.

Claim 3. For 7 ≤ k ≤ 9, a k-face fk has negative charge only if there are at
least k − 5 3-faces that share an edge with fk.

Proof. Suppose fk is a k-face such that 7 ≤ k ≤ 9 and fk has negative
charge. Let t be the number 3-vertices in fk that are incident with a 3-face.
It follows that

0 > ch(fk) ≥ k − 4− t2
3
− (k − t)1

3
,

or
t

2
> k − 6.

The number of edges in fk that are in a 3-face is at least
⌈
t
2

⌉
. The result

follows by plugging in values for k. �

Claim 4. G does not have any of the following properties:

• G has no 6- to 7-cycles and dO(G) ≥ 2,

• G has no 6-cycles and dO(G) ≥ 3, (Montassier-Raspaud-Wang,2006).

Proof. It follows from Claim 3. �

Therefore, it must be the case that dO(G) ≥ 4.

Definition 5. A face f is bad if it shares an edge with a 3-face and both
vertices incident with this edge are degree three, and a face is good otherwise.
Similarly, we say a vertex v is bad if it is incident with a 3-face and good
otherwise.
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Under our current discharging rules the only negative faces in G are bad
6-faces. Since 6-faces are chordless in G and dO(G) ≥ 4, we have that all
6-faces have a good vertex v of degree at least 4 as shown.

+1
3

+1
3

+1
3

+2
3

+2
3

v

Under this case we add two new rules to take care of the bad 6-faces.

• R4. Good 4+-vertices give +1
3

to each incident bad 6-face.

• R5. 7+-faces and good 6-faces give +1
3

to each incident good 4- and
5-vertex.

Under these new rules we count the charge of fk a face of length k. Since
3-faces are distance at least four apart we have that there are at most

⌊
k
5

⌋
3-faces that share an edge with a k face. This results in

ch(fk) ≥ k−4−2∗2

3

⌊
k

5

⌋
−1

3

(
k − 2

⌊
k

5

⌋)
≥ 7−4−2∗2

3

⌊
7

5

⌋
−1

3

(
7− 2

⌊
7

5

⌋)
= 0.

Originally bad 6-faces had charge at least 6− 4− 31
3
− 22

3
= −1

3
. It is clear

that R4 shows that bad 6-faces now have non-negative charge.

Good 6-faces have charge at least 6− 4− 61
3

= 6− 4− 41
3
− 2

3
= 0, therefore

all faces have non-negative charge.

By R1 and R4, we have that k-vertices have charge at least k − 4 − k 1
3
.

Therefore, for k ≥ 6, k-vertices have non-negative charge. The counting for
3-vertices, bad 4-vertices, and bad 5-vertices stays unaffected by R4 and R5,
therefore they have non-negative charge.

The only thing left to check is that the charge on good 4-vertices and good
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5-vertices is non-negative. By R4 and R5, we want to show that good 4-
vertices are incident with at most 2 bad 6-faces and good 5-vertices are not
incident with 5 bad 6-faces.

The following claim is helpful in doing this.

Claim 6. Suppose a vertex v is incident with distinct 6-faces C1 and C2, and
T is a 3-face having an edge in each of C1 and C2. Then, for some i ∈ {1, 2},
an end of an edge in T ∩ Ci is within distance 1 of v.

Proof. Suppose v is incident with two 6-faces and a 3-cycle T has an edge
in each of the 6-faces. Let one 6-face be bounded by the cycle C1 and the
other bounded by the cycle C2. Let xiy ∈ E(Ci) be in the 3-cycle. By way of
contradiction, we may assume that both xi and yi are distance ≥ 2 to v in Ci.

Since only one vertex is distance greater than 2 to v in Ci, we may as-
sume xi is distance 2 from v in Ci. Let Pi be the shortest xi, v path in Ci.
The path obtained by extending P2 with the edge x1x2 and the path P1 are
distinct v, x1-paths since the edge x2x1 is in one and not the other. The two
paths together from a closed walk of length 5 that does not contain every
edge of T . Since it was formed by two distinct v, x1-paths, there is a cycle
C of length at most 5 in this closed walk that is not T . Since 3-cycles are
distance 4 apart, C is not a 3-cycle. Since G does not contain 4- or 5-cycle, C
can not exist, therefore our assumption is false and one of xi or yi is distance
at most 1 to v, as desired. �

Suppose that G has a negatively charged good 4-vertex v. Then v is in-
cident with at least 3 bad 6-faces and let each of these faces be bounded by
a cycle Ci.

We begin by proving that none of the 3-faces having an edge in common
with any of the Ci contains v. By way of contradiction, suppose that T
contains v. Then T is the boundary of the fourth face incident with v. In
particular, T ∩ C1 and T ∩ C3 have edges vx1 and vx2, respectively.

Suppose x1x2 is in E(C2). Since x1 6= v and there are no parallel edges
incident with v, xi has distance 2 or 3 from v in C2. Let P be a shortest
x1v-path in C2. Adding the edge vxi to P yields a cycle of length 3 or 4.
The latter does not exist and the former is a 3-cycle through v that does not
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use the edge x1x2. Both conclusions are contradictions. Therefore, T does
not have a vertex in C2 other than v.

There is another 3-face T ′ that has an edge in C2. One end of this edge
is within distance at most 2 of v in C2. But then T and T ′ are only distance
at most 2 apart, a contradiction. Thus, none of the 3-faces with edges in a
Ci contains v.

Now suppose that some 3-face T has edges in all of C1, C2 and C3. Since v
is not incident with any of these edges, Claim 6, implies two of the Ci have
an edge of T having an end adjacent in Ci to v. The short paths from these
ends to v in the Ci together with an edge of T yields a 3-, 4-, or 5-cycle in G
containing v, a contradiction.

Let {i,j,k}={1,2,3} and suppose that some 3-face T has edges in Ci and
Cj , but not Ck. There is another 3-face T ′ with an edge in Ck. One end
of this edge is within distance at most 2 of v in C2. By Claim 5, T is at
most distance 1 to v. Therefore, T and T ′ are within distance at most 3, a
contradiction.

Thus there are three different 3-faces T1, T2, T3 such that , for i = 1, 2, 3,
Ti ∩ Ci is an edge. Each of these edges must be at distance 2 from v in
each Ci as otherwise to of the T1, T2, T3 are at distance at most 3 in G, a
contradiction. However, the end of T2∩C2 that is distance at most two from
v is necessarily at distance at most 3 in G from the end of either T1 ∩ C1 or
T3 ∩C3 that is distance from v in its Ci. This is the final contradiction that
shows such a v does not exist. That is, good 4-vertices have non-negative
charge.

C1

C2

C3

c1 c3

v

It remains to show that no good 5-vertex v can be incident with five bad
6-faces but this is actually an easier case. If a 3-cycle shares an edge with
two bad 6-faces, then the 3-cycle is distance at most 1 from v. If this is the
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case, then every edge in the 6-cycles are distance at most 3 from this 3-cycle.
This implies that not all of the 6-cycles can be bad, a contradiction.

Therefore, no 3-cycle is incident with more than one bad 6-cycle. It fol-
lows that we are looking for a set of five edges that are all distance 4 apart
in these five 6-cycles such that no edge has v as its end. Now if we let C be
the cycle formed by these five 6-faces that does not include v, C has length
20. It follows that for this set of edges to exist, C must have length at least
25, a contradiction. Therefore, such a v does not exist and good 5-vertices
have non-negative charge.

v

By discharging we have a contradiction with the total charge of the graph
being negative, as desired. �
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Chapter 3: Boundary Colouring and Induction

Discharging is not the only tool to be used in graph colouring. Another
common tool is to work around the boundary of a planar graph and ap-
ply induction. This particular work involves restricting the lists of some
boundary vertices and applying induction. This technique originated from
Thomassen [12] where he originally proves Grötzsch’s theorem. Thomassen
used a list colouring approach along with restricting a path of vertices on the
boundary to be 1-lists and an independent set of vertices on the boundary
to be 2-lists.

This technique was then modified in the unpublished work of C. Nuñes da
Silva, R.B. Richter, and D.H. Younger to allow for an adjacency between
2-list vertices. This modified technique was then used by N. Asghar in [1]
to present another proof of Grötzsch’s theorem using list colouring. We will
use this technique to show that every planar graph without 3-cycles has 4-
cycles distance 8 apart is 3-choosable. This result may seem random but
the motivation is to improve a result of Dvořák’s result that planar graphs
with cycle of length at most 4 being distance at least 26 from each other are
3-choosable.

Definition 7. Let G be a graph embedded in the plane, let C be a cycle
and P a path in G. Then:

(a) Int(C) is the subgraph of G contained in the closed disc bounded by
C, int(C) = Int(C) − V (C), Ext(C) = G − int(C), and ext(C) =
Ext(C)− V (C);

(b) the outer face, also known as the infinite face, is the unique face of G
that is unbounded;

(c) the boundary Bnd(G) is the subgraph consisting of the vertices and
edges incident with the outer face on the boundary of G and its vertices
and edges of Bnd(G) are the boundary vertices and edges;

(d) int(G) = G− V (Bnd(G));

(e) a cycle or path of length i is an i-cycle or i-path; and
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(f) P separates the boundary of G if G − P has two disjoint connected
components G1 and G2 such that V (G1)∩V (Bnd(G)) 6= ∅ and V (G2)∩
V (Bnd(G)) 6= ∅.

Definition 8. Let G be a graph, L a list-assignment of G, G1 and G2 sub-
graphs of G, and c1 and c2 be colourings of G1 and G2, respectively. Then:

(a) a vertex v with |L(v)| = 1 has a proper 1-list if for every vertex u
adjacent to v with |L(u)| = 1 we have L(v) ∩ L(u) = ∅; and

(b) If for all v ∈ V (G1) ∩ V (G2) we have c1(v) = c2(v), then the union of
the colourings c1 and c2 on G1 ∪G2 is

c(v) =

{
c1(v), if v ∈ V (G1)
c2(v), if v ∈ V (G2).

We are trying to prove that planar graphs without 3-cycles and 4-cycles
distance at least 8 apart are 3-choosable and so it makes sense to define this
set of graphs.

Definition 9. The set G is the set of planar graphs G such that:

• G has no 3-cycles; and

• each pair of 4-cycles in G is distance at least 8 apart.

From now on we will just say that the 4-cycles are far apart to reference
that they are distance at least 8 apart.

Theorem 4. Suppose G ∈ G. If we have an L-list assignment of the vertices
of G such that:

4.1 there is a set T of boundary vertices such that (i) each vertex in T
has a list size at least 2, (ii) there are no S-T adjacencies, and (iii)
|E(G[T ])| ≤ 1;

4.2 there is a set S of consecutive boundary vertices such that |S| ≤ 6, and
each S-vertex has a proper 1-list;

4.3 internal vertices and boundary vertices that are not in S∪T have 3-lists;

4.4 If |E(G[T ])| = 1, then |S| ≤ 4;
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4.5 no edge in E(G[T ]) is in a 4-cycle;

4.6 G[NG(S) ∪ T ] contains no odd cycles; and

4.7 no 3-list vertex is adjacent to three S-vertices.

Then G is L-colourable.

Theorem 4 is proven by first showing that there are no short separating
paths. We then colour and delete some of the boundary vertices (S vertices
if there is no T -adjacency, or vertices around the T -adjacency if it exists)
and define a new S set and T set. We then show that there is no adjacency
between an old S-vertex and a new T -vertex and vice versa since there are
no separating paths across the boundary. We then show through case anal-
ysis that the remaining properties hold on the new S and T sets and apply
induction to find an L-colouring of G.

Let P be a path in a graph G and v a vertex adjacent to at least three
vertices of P . If |V (P )| ≤ 6, then G[V (P ) ∪ {v}] contains either a 3-cycle
or a 4-cycle. If |V (P )| ≤ 5, then it contains a 3-cycle or distinct 4-cycles.
As we think about Theorem 4 (4.7), if S has at most five vertices, then no
vertex will be adjacent to three vertices of S. For |S| = 6, if there is another
4-cycle nearby, then no vertex will be adjacent to three vertices of S.

Similarly, we see that no vertex is adjacent to three vertices in a cycle of
length at most 7.

As for Item 4.6, it seems to be a cumbersome property, but Lemma 10 will
give us a much more concrete property to deal with if the property does not
hold true.

Lemma 10. Let H ∈ G satisfy (4.1)-(4.5). If H[NH(S)∪T ] contains an odd
cycle C, then:

• C is a 5-cycle;

• there is a vertex of S in a 4-cycle in H[S ∪ C];

• every 3-list in C is adjacent to an S-vertex;

• every vertex of C not in T -vertex has a 3-list; and
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• either;

• C ∩ T is precisely the T -adjacency and |S| = 4; or

• C ∩ T is a single vertex and |S| = 6.

Proof. Let H ∈ G such that H satisfies (4.1)-(4.5). Suppose H[NH(S) ∪ T ]
contains an odd cycle C.

First note that no vertex in H[NH(S) ∪ T ] is an S-vertex, therefore C is
comprised of T -vertices and 3-list vertices. Consecutively label the S-vertices
in Bnd(H), s1, ..., sn. Let C = (c1, ..., cm).

Case 10.1 H does not have a T -adjacency.

Since H does not have a T -adjacency, C has at least three vertices in NH(S).
Let si be the first S-vertex that is adjacent to a C vertex cl and let sj be
the last S-vertex that is adjacent to a C-vertex ch. Let P and R be the
two cl, ch-paths in C. Without loss of generality, suppose every vertex in
V (P )\{cl, ch} is in the interior of the cycle formed by the paths Bnd(H)[S],
sicl, R, chsj.

Therefore, for every vertex in v ∈ V (P ), v /∈ T and v must be a neigh-
bour of an S-vertex. Since S-vertices are on the boundary of H, there are no
vertices in V (R)\{cl, ch} that are adjacent to an S-vertex. Since there is no
T -adjacency, this tells us that V (R)\{cl, ch} is empty or is a set containing
one T -vertex.

Since 3-cycle do not exist and C is an odd cycle we have |V (P )| = |V (C)| −
|V (R)| + 2 ≥ 5 − 3 + 2 = 4. Because |S| ≤ 6, H[S ∪ P ] has a 4-cycle.
Since 4-cycles are far apart, H[S ∪ P ] can only have one 4-cycle, so |S| > 5.
Therefore, |S| = 6, |V (P )| = 4, R has precisely one T -vertex, and m = 5, as
desired.

Case 10.2 H has a T -adjacency.

Since H does have a T -adjacency, C has at least two vertices in NH(S).
Let si be the first S-vertex that is adjacent to a C vertex cl and let sj be
the last S-vertex that is adjacent to a C-vertex ch. Let P and R be the
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two cl, ch-paths in C. Without loss of generality, suppose every vertex in
V (P )\{cl, ch} is in the interior of the cycle formed by the paths Bnd(H)[S],
sicl, R, chsj.

Therefore, for every vertex in v ∈ V (P ), v /∈ T and v must be a neigh-
bour of an S-vertex. Since S-vertices are on the boundary of H, there are
no vertices in V (R)\{cl, ch} that are adjacent to an S-vertex. Since there is
a T -adjacency, this tells us that V (R)\{cl, ch} is empty, is a set containing
one T -vertex or a set containing two T -vertices.

Since 3-cycle do not exist and C is an odd cycle we have |V (P )| = |V (C)| −
|V (R)| + 2 ≥ 5 − 4 + 2 = 3. Because |S| ≤ 4, H[S ∪ P ] has a 4-cycle.
Since 4-cycles are far apart, H[S ∪ P ] can only have one 4-cycle, so |S| > 3.
Therefore, |S| = 4, |V (P )| = 3, R has precisely the T -adjacency, and m = 5,
as desired. �

Proof of Theorem 4. Let G ∈ G be a minimum counterexample and
let L be a list-assignment as described such that G is not L-colourable. The
hypothesis being satisfied for G implies the hypothesis is satisfied for each
connected component of G; therefore, G is connected by minimality of G.

Claim 11. G has no vertex v such that |L(v)| > deg(v).

Proof. Suppose G has a vertex v as described. Define G′ to be G − v and
L′ to be L restricted to G′. By the minimality of G , G′ is L′-colourable. Let
this L′-colouring be a partial L-colouring of G with v not coloured. Since
|L(v)| ≥ deg(v) + 1, we can properly colour v and find an L-colouring for G,
a contradiction. �

Claim 12. G has no k-cycle C such that k ≤ 7, int(C) 6= ∅, and ext(C) 6= ∅.

Proof. Suppose first that C has legnth at most 6. By minimality of G. By
minimality of G we can L-colour Ext(C) with L restricted to the vertices of
Ext(C). This colouring induces a new list assignment on Int(C) where all
vertices of C have proper 1-lists. Clearly no vertex in int(C) is adjacent to
three vertices in V (C) since that would form a pair of cycles of length four
that are adjacent. Therefore, Int(C) satisfies the hypothesis and by minimal-
ity of G we can extend the L-colouring of Ext(C) to G itself, a contradiction.
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Now suppose C has length 7. By minimality of G, we can L-colour Ext(C)
with L restricted to the vertices of Ext(C). This colouring induces a new
list assignment on Int(C) where all vertices of C have proper 1-lists. Let
v ∈ V (C) such that v is not in a 4-cycle. Since v is not in a 4-cycle, no
vertex in NG(v) ∩ V (int(C)) is adjacent to a vertex of V (C) other than v,
else G contains a separating k-cycle for k ≤ 6, contradicting Claim 12.

Define S ′ = V (C)\{v} and T ′ = Nint(C)(v). No vertex in int(C) is adja-
cent to three vertices of V(C) since 4-cycles are far apart. Since 4-cycles are
far apart, no neighbour of v is in a 5-cycle with two vertices that are adjacent
to the ends of C − v (this would form two different 4-cycles with v). Delete
v, and adjust the lists of the vertices of T ′. By minimality of G, we can
find an L-colouring of Int(C) − v. Placing v back in the graph we find an
L-colouring of Int(C). The union of the colourings of Int(C) and Ext(C)
form an L-colouring of G, and a contradiction. �

A principle point in the induction is dealing with short paths that allow
for a partition of G into two smaller subgraphs. Our next definition is a first
step to finding the paths that allow for an inductive argument.

Definition 13. Let P be the set of triples (G1, G2, P ) with the properties:

• P is a path;

• G1 ∩G2 = P ;

• (V (G2)\V (P )) ∩ V (Bnd(G)) 6= ∅;

• (V (G1)\V (P )) ∩ V (Bnd(G)) 6= ∅;

• If S 6= ∅, then V (G1) ∩ S 6= ∅;

• the vertices of V (G1) ∩ S are consecutive on the boundary of G1; and

• G1 ∪G2 = G;

We will call these properties the separating path properties.

Claim 14. G has no 0-path that separates the boundary and no 1-path with
one end in T that separates the boundary.
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G1
u

G2 G1 G2

Figure 1: 0-path separating the boundary and 1-path separating the bound-
ary with one end in T .

Proof. Let P̄ ⊆ P be the set of triples (G1, G2, P ) where P is a 0-path or a
1-path with one end in T .

Choose the triple (G1, G2, P ) ∈ P̄ that maximizes |V (G1)\V (P )|. Note that
G[V (G2)\V (P )] is connected, else |V (G1)\V (P )| is not maximum.

Suppose a vertex v in the boundary of Bnd(G2) is adjacent to three or more
vertices of Bnd(G2). Let v1, v2, v3 be three vertices in Bnd(G2) adjacent to v.

By our choice of G1 and G2, v is not a cut vertex, therefore Bnd(G2)− v is
connected. There is a path P in Bnd(G2) joining, say, v1 and v2 that does
not go through v3. In Bnd(G2), there is a v3P -path Q such that Q ∩ P is a
single vertex w. The 2-connected subgraph of Bnd(G2) consisting of v, its
three incident edges, P , and Q has three faces, all incident with two of the
three edges incident with v. One of these faces is the outer face, and is not
incident with one of these three edges. Therefore, v has degree at most 2 in
Bnd(G2)

Suppose v has degree 1 in Bnd(G2) and is adjacent to u in Bnd(G2). It
is clear thatdegG2(v) = 1. By Claim 11, v ∈ S. If u ∈ S, then by minimality
of G we colour G − v. Since c(u) /∈ L(v), we place v back in the graph and
colour it to find an L-colouring of G and a contradiction.

Therefore, u /∈ S. Let S ′ = (NG(u) ∩ T ) ∩ {u} and let T ′ = T\T ′ and
define L′(u) = L(u)\L(v). There is an L-colouring of G − v. Colouring v
and placing it back in the graphs yields an L-colouring of G, a contradiction.
Therefore v does not exist.
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Every vertex in the boundary of G2 is incident with exactly two bound-
ary edges, therefore the boundary of G2 is a cycle.

Case 14.1 V (P ) ⊆ S.

By the hypothesis of this claim, it must be the case that V (P ) = {u} and
u ∈ S. Under this case we colour all of G1, then we colour all of G2 by
minimality of G. The union of these colourings results in an L-colouring of
G, a contradiction.

Case 14.2 V (P ) 6⊆ S.

As V (P ) 6⊆ S, there exists b ∈ V (P ) such that b /∈ S. Since |V (P )| ≤ 2,
S ⊆ V (G1). Thus P is either a 0-path that separates the boundary and has
no vertex in S or a 1-path with one end in T that separates the boundary.

Since G is connected, we know that both G1 and G2 are connected. We
define H to be the component of G[V (G1) ∪ T ] that contains G1. We will
colour H by minimality of G, but first we must show that H 6= G. It is
enough to show that G2 has a vertex with list of size three not in P .

We know that the boundary of G2 is a cycle C of length at least four. If P
is a 0-path, then C has three consecutive vertices that are not in P ∪ S, and
therefore the definition of T implies one of them must have a list of size three.

If P is a 1-path, then P has a T -vertex u. Observe that G[V (C − P ) ∪ {u}]
is a path of length two with one vertex in T . Since none of these vertices
is in S and there is at most one T -adjacency in G, we have that one of the
vertices in V (C − P ) ⊆ V (G2 − P ) has a list of size three.

We now colour H by minimality of G, thereby inducing a proper 1-list on
the set of vertices S ′ = V (H ∩G2) on the boundary of G2. By maximality of
|V (G1 − P )|, G2 has no 1-path with one end in T that separates the bound-
ary. Therefore, the vertices of S ′ must be consecutive on the boundary of
G2. Define T ′ = (V (G2) ∩ T )\S ′. No S ′-vertex is adjacent to a T ′-vertex by
definition of H and S ′.
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To help determine |S ′|, notice that S ′ ⊆ S or

S ′ ≤
{
|P |+ 3 ≤ 5, if G2 − S ′ does not contain a T -adjacency
3, if G2 − S ′ contains a T -adjacency .

It is clear that no vertices with list size three in G2 are adjacent to three
S ′-vertices since G2 does not contain any 3-cycles, and 4-cycles are far apart.
Since |S ′| is one less than its bound of 6 or 4 depending on the situation, this
implies that G[NG(S ′) ∪ T ′] contains no odd cycles. Therefore, with S ′ and
T ′, we get that G2 satisfies the hypothesis and by minimality of G, there is
an L-colouring of G2. The colouring of H and G2 agree on their intersection
and therefore the union of the two colorings results in an L-colouring of G,
a contradiction. �

Claim 15. G is 2-connected.

Proof. By Claim 14, we need only suppose G has a cut-vertex v that does
not separate the boundary. Let G1 be the component of G − v graph that
contains the boundary of G, and let G2 = G − V (G1). By minimality of
G, we can extend L to all of G1 + v. This L-colouring of G1 defines a
new L′-list assignment on G2 where v is an S-vertex and every other vertex
in G2 has a list of size three. By minimality of G, we have an L′-colouring
of G2. These two colourings result in an L-colouring of G, a contradiction. �

Note by Claim 15, If (G1, G2, P ) ∈ P , then G1 and G2 are 2-connected;
in particular the boundaries are cycles.

Observation 16. [Separating Path] For every path P that separates the
boundary of G, there is a triple (G1, G2, P ) ∈ P .

Proof. Let u and v be the ends of P . Since the boundary of G is a cycle we
have that there are two internally disjoint (u, v)-paths H1 and H2 that form
the boundary of G. Let C1 be the cycle H1 ∪ P and C2 be the cycle H2 ∪ P .
Since the S-vertices are consecutive on the boundary of G, we have that if
S 6= ∅, then a non-empty subset of the S-vertices are consecutive on H1 or
H2. Without loss of generality, suppose if S 6= ∅, then a non-empty subset of
the S-vertices are consecutive on H1. Let G1 = Int(C1) and G2 = Int(C2).
It is clear that (G1, G2, P ) have the desired properties. �
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Definition 17. Given a triple (G1, G2, P ) ∈ P , we define HP to be the
component of G[V (G1)∪S∪T ] containing G1 and SP to be the set containing
the vertices of the component of HP ∩Bnd(G2) that contains P .

Note that we can find an upper bound on |SP | by considering the length of
P along with the length of the extension of P in the boundary of G2 using
S ∪ T -vertices.

Definition 18. A triple (G1, G2, P ) ∈ P is good if it satisfies:

• |SP | ≤ 6, if G2 −HP does not contain a T -adjacency;

• |SP | ≤ 4, if G2 −HP does contain a T -adjacency;

• there exists v ∈ V (G2)\V (HP ) such that |L(v)| = 3;

• No vertex with list size three in V (G2)\V (HP ) is adjacent to three
vertices in SP ; and

• G2[NG2(SP ) ∪ (T ∩ V (G2))] contains no odd cycles.

We must consider the number of vertices in SP because SP becomes our
new “S-set” in G2 after we do induction on G1. Because of this, if (G1, G2, P )
is a good triple, then (G[V (G1) ∪ SP ], G2, SP ) is a good triple as well.

Claim 19. G has no good triples (G1, G2, P ).

Proof. By way of contradiction, let (G1, G2, P ) ∈ P be a good triple as
described with the additional property that |V (G2)| is minimal. We have
two cases, either the boundary of G2−HP does or does not contain a vertex
v with |L(v)| = 3.

Case 19.1 The boundary of G2 − HP does not contain a vertex v with
|L(v)| = 3.

This means that the boundary of G2 is bounded by the vertices of SP . There-
fore, G2 is bounded by a cycle C of length at most six. Since there is a
vertex v with |L(v)| = 3 in V (G2) that is not in the boundary of G2, it
must be in int(C). Therefore, int(C) 6= ∅. Since P separates the boundary,
V (Bnd(G1))\V (P ) 6= ∅. Therefore ext(C) 6= ∅. By Claim 12, we have a
contradiction.
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Case 19.2 The boundary of G2 −HP contains a vertex v with |L(v)| = 3.

Since G2 − HP contains a vertex v with |L(v)| = 3, we have that HP 6= G.
We show that V (HP ) ∩ V (G2) = SP .

If not, then there is a vertex a ∈ SP adjacent to x (a S ∪ T -vertex) through
an edge that is not on the boundary of G2. The vertices of S are consecutive
on the boundary of G and there is an S-vertex in G1, therefore if x ∈ S, then
x ∈ SP . Since x /∈ SP , x is a T -vertex. By Claim 14, a ∈ V (P )∩ V (int(G)).

Let u be the closest endpoint of SP to x in G[V (SP ) ∪ {x}], and y be the
endpoint of P that is in the shortest (u, x)-path in G[V (SP )∪{x}]. Let P ′ be
the shortest (x, y)-path in G[V (SP ) ∪ {x}]. Let R be the unique (x, y)-path
on the boundary of G2 that does not contain an edge of P . Since x /∈ SP ,
x ∈ T , R must contain a vertex v 6= u with |L(v)| = 3 (in particular u is not
adjacent to an S ∪ T -vertex on R).

Take G′2 = Int(P ′ ∪ R) (the union of two internally disjoint (x, y)-paths).
Let G′1 = G[V (ext(P ′∪R))∪V (P ′)]. We have a triple (G′1, G

′
2, P

′) such that:

(1) G1 ⊂ G′1;

(2) G′2 ⊂ G2;

(3) G′1 ∩G′2 = P ′;

(4) G′1 ∪G′2 = G; and

(5) G′2 has a vertex v with |L(v)| = 3 in the boundary of G not in P ′.

(1), (2), (3), and (4) are clear by definition of G′1 and G′2. (5) is true
since R has a vertex with list size three.

Let HP ′ and SP ′ be as defined in Definition 17 on the triple (G′1, G
′
2, P

′).

We would like to find out the number of vertices in SP ′ , which is the com-
ponent of HP ′ ∩ Bnd(G′2) that contains P ′. We count the vertices of SP ′ to
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find that

|SP ′ | ≤
⌈
|V (SP )|

2

⌉
+ 1 + t ≤

{
3, if G′2 −HP ′ contains a T -adjacency,
4, otherwise,

where t is the number of T -vertices adjacent to the T -vertex x.

Note that |V (G′2)| < |V (G2)|, and |SP ′ | does not meet its upper bounds,
therefore, by Lemma 10, G′2[NG′

2
(SP ′) ∪ ((T ∩ V (G′2))\SP ′)] contains no odd

cycles. Since |SP ′| does not meet its upper bound we also have that no 3-list
vertex is adjacent to three SP ′ in G′2.

Therefore, (G′1, G
′
2, P

′) is a good triple, a contradiction with the minimal-
ity of |V (G2)|. Therefore, G2 ∩HP is a path. In other words, HP = SP .

We now colour G1 by minimality of G, which induces a proper 1-list on
the set of vertices SP ; these are consecutive on the boundary of G2. Define
T ′ = T ∩V (G2)\SP . No SP -vertex is adjacent to a T ′-vertex since SP = HP .
G2[NG2(SP )∪(T∩V (G2))] contains no odd cycles by hypothesis of good triple.

Since no vertex in V (G2)\SP is adjacent to three vertices of SP , we have
that SP and T ′ satisfy the hypothesis of the main theorem on G2. Therefore,
we colour G2 by minimality of G and take the union of the colorings of G1

and G2 to form an L-colouring of G, a contradiction. �

Claim 20. G has no 1-path containing an S ∪ T -vertex that separates the
boundary.

Proof. First we may assume by Claim 14 that every separating 1-path has no
T -vertex, and therefore the paths we consider contain an S-vertex. Suppose
G has 1-paths that separate the boundary. Choose a triple (G1, G2, P ) ∈ P1

such that |V (S) ∩ V (G1)| ≥ |V (S) ∩ V (G2)| and there does not exist a 1-
path with one end in S that separates the boundary of G2. We now have
two cases. Either |E(T )| = 0 or |E(T )| = 1.

Case 20.1 |E(T )| = 0.

Let HP and SP be as in Definition 17 on the triple (G1, G2, P ), and H ′P
and S ′P be as defined on the triple (G2, G1, P ). We have two subcases. Ei-
ther V (G2)\V (P ) has a vertex v with |L(v)| = 3 or it does not.
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Subcase 20.1.1 V (G2)\V (P ) has a vertex v with |L(v)| = 3.

By Claim 12, V (Bnd(G2))\V (P ) contains a vertex u with |L(u)| = 3, since
v ∈ Int(Bnd(G2)) and V (G1)\V (G2) is non-empty.

Since G does not contain a T -adjacency, we have |SP | ≤ 4. Therefore,
no vertex is adjacent to three vertices of SP . Similarly, since |SP | ≤ 4, we
have that G2[NG2(SP ) ∪ (T ∩ V (G2))] contains no odd cycles. Therefore,
(G1, G2, P ) is a good triple, and we have a contradiction with Claim 19.

Subcase 20.1.2 V (G2)\V (P ) does not have a vertex v with |L(v)| = 3.

Note that |V (G2)\V (P )| ≥ 2 since G2 is bounded by a cycle of length at
least four. Since |E(T )| = 0, If there is a T -vertex in V (G2 − P ), then there
is also a vertex with list size three in V (G2−P ). Therefore, V (G2−P ) ⊂ S.
Since |V (S) ∩ V (G1)| ≥ |V (S) ∩ V (G2)|, we have that G2 is a 4-cycle by
Claim 12.

If V (P ) ⊆ S, then we colour G1, by minimality of G which results in an
L-colouring G, and a contradiction.

Therefore, there must be a vertex u ∈ P such that |L(u)| = 3 and V (P ) =
{u, v} where v ∈ S. Since no vertex with list size three is adjacent to three
S-vertices and u is adjacent to two S vertices in G2, it must be the case
that u is adjacent to a T -vertex or another vertex with list size three on the
boundary of G1.

In either case, since a T -vertex in G1 − V (P ) implies a vertex with list
size three in G1− V (P ), we have that G1− V (P ) contains a vertex with list
size three. We also note that, since |V (S) ∩ V (G1)| ≥ |V (S) ∩ V (G2)| and
V (G2 − P ) ⊂ S, we have that G2 is a 4-cycle.

Since G1 − V (P ) has a vertex with list size three, H ′P 6= G. Since G has
no T -adjacency, G1 has no T -adjacency. By Lemma 10, since G2 is a 4-cycle,
we have that no vertex with list size three in G1 is adjacent to three vertices
in S ′P . Similarly, since G2 is a 4-cycle G1[NG1(S

′
P ) ∪ (T ∩ V (G1))] contains

no odd cycles. It is clear that |S ′P | ≤ |S| − 2 + 2 ≤ 6, therefore (G2, G1, P )
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is a good triple, contradicting Claim 19.

Case 20.2 |E(G[T ])| = 1.

Either G2 − V (HP ) has a vertex with list size three or it does not.

Subcase 20.2.1 G2 − V (HP ) has a vertex v with list size three.

If V (Bnd(G2)) = SP , then Bnd(G2) is a separating cycle with v on its
interior, a contradiction with Claim 12. Therefore, V (Bnd(G2)) 6= SP and
V (Bnd(G2))\V (SP ) contains a 3-list vertex u.

If G2 − V (HP ) does not contain a T -adjacency, then |SP | ≤ 5. By Lemma
10, since |SP | ≤ 5, no vertex with list size three in G2 is adjacent to three
SP -vertices and G2[NG2(SP ) ∪ ((T ∩ V (G2))\SP )] contains no odd cycles.
Therefore, (G1, G2, P ) would be a good triple, contradicting Claim 19.

Therefore, G2 − V (HP ) does contain a T -adjacency. In this case, |SP | ≤ 4.
By Claim 19, we must have that G2[NG2(SP ) ∪ ((T ∩ V (G2))\SP )] contains
an odd cycle. By Lemma 10, a vertex in SP is in a 4-cycle in G2.

Now we consider the triple (G2, G1, P ) and let H ′P and S ′P be as defined
in Definition 17 on this triple. Since |V (G1)∩S| ≥ |V (G2)∩S| and |SP | = 4,
we have that |S ′P | ≤ 5.

If there does not exist a vertex with list size three in G1−H ′P , then |S ′P | = 4
and G1 is a 4-cycle. This is not possible since P has a vertex in a 4-cycle
in G2, therefore the same vertex is not close to a 4-cycle in G1. Therefore,
G1 − H ′P has a vertex with list size three. By Lemma 10, since |S ′P | = 5,
we have that no vertex with list size three in G1 is adjacent to three S ′P -
vertices and G1[NG1(S

′
P ) ∪ (T ∩ V (G1))] contains no odd cycles. Therefore,

(G2, G1, P ) is a good triple, a contradiction with Claim 19.

Subcase 20.2.2 G2 − V (HP ) does not contain a vertex with list size three.

Since V (G2) − V (P ) does not contain a vertex with list size three, G2 is
bounded by a cycle of length four. From this, we have that Bnd(G2)−V (P )
is a path of length two. Since G2−V (HP ) does not contain a vertex with list
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size three, we have that if one of the vertices on the path Bnd(G2)−V (P ) is
an S-vertex, then both of them are S-vertices. Therefore, either the vertices
in Bnd(G2)−HP are both in S or both in T .

Since the T -adjacency is not in a 4-cycle, it must be the case that G2−V (P )
has two S-vertices. Since S-vertices are consecutive on the boundary of G,
we have that G1 − V (P ) contains at least two S-vertices and P contains at
least one S vertex. We have that |S| ≥ 5, a contradiction with |E(G[T ])| = 1
and |S| ≤ 4. �

Claim 21. G has no separating 2-paths with both ends in S.

Proof. Let P be a separating 2-path in G with ends in S, let s, u ∈ S be the
ends of P , and let v ∈ V (P )\{s, u}. By the Separating Paths Observation
16, a triple (G1, G2, P ) exists with the separating graph properties.

Case 21.1 |V (Bnd(G))\S| ≤ 1.

By Claim 20, no vertex on the boundary is adjacent to another on the bound-
ary through a non-boundary edge. Since there are no 3-cycles, 4-cycles are
far apart and |V (Bnd(G))| ≤ 7, we also have that there are no internal ver-
tices that are adjacent to three boundary vertices. Since v is adjacent to two
vertices on the boundary (s and u), it can not be adjacent to a third.

Let SP be as defined in Definition 17 on the triple (G1, G2, P ). Either
Bnd(G1) is a 4-cycle and |SP | ≤ 6, or |SP | ≤ 5. By Lemma 10, since
Bnd(G1) is a 4-cycle or |SP | ≤ 5, no vertex is adjacent to three vertices of
SP and G2[NG2(SP ) ∪ (T ∩ V (G2))] does not contain an odd cycle.

There is no T -adjacency in G2 since T = ∅. Note |SP ≤ 6, therefore
(G1, G2, P ) is a good triple, contradicting Claim 19.

Case 21.2 |V (Bnd(G))\S| ≥ 2.

Let HP and SP be as in Definition 17. Since G1 is not bounded by a 3-
cycle we have that if there is no T -adjacency, then

|SP | ≤
{

6, if Bnd(G1) is a 4-cycle
5, otherwise,
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and if there is a T -adjacency, then

|SP | ≤
{

4, if Bnd(G1) is a 4-cycle
3, otherwise.

Since |V (Bnd(G))\S| 6= 0 we have that there exists a vertex v with |L(v)| = 3
on the boundary of G. This vertex is not on the boundary of G1 since the
ends of P are in S and the S-vertices are consecutive on the boundary of G1.
Therefore, v ∈ V (G2)\V (G1) and hence v is in G2 − V (HP ). If |SP | = 6,
then the boundary of G1 is a 4-cycle. Similarly, if |SP | = 4 and there is a
T -adjacency, then the boundary of G1 is a 4-cycle.

By Lemma 10, if Bnd(G1) is a 4-cycle, then no vertex with list size three in
G2 is adjacent to three SP -vertices and G2[NG2(SP )∪ (T ∩ V (G2))] does not
contain an odd cycle. Therefore, either |SP | ≤ 5 and there is no T -adjacency,
or |SP | ≤ 3 and there is a T - adjacency.

In both cases, by Lemma 10, no vertex with list size three in G2 is adja-
cent to three SP -vertices and G2[NG2(SP ) ∪ (T ∩ V (G2))] does not contain
an odd cycle.Therefore, (G1, G2, P ) is a good triple, contradicting Claim 19.
�

Claim 22. G has no separating 2-,3-paths with one end in T and the other
in S ∪ T .

Proof. By way of contradiction, suppose G has a separating 2- or 3-path
P with one end in T and the other in S ∪ T . Let (G1, G2, P ) be as defined
in the Separating Path Observation 16 and without loss of generality, let
|V (G1) ∩ S| ≥ |V (G2) ∩ S|. Define HP and SP as in Definition 17. We have
two cases, either both ends of P are T -vertices, or one end is not a T -vertex.

Case 22.1 Both ends of P are T -vertices.

In this case,

|SP | ≤
{

4, if G2 −HP has a T-adjacency
5, if G2 −HP does not have a T-adjacency.

Since both ends of P are T -vertices, we have that G2−HP has a vertex with
list size three. By Claim 19, (G1, G2, P ) is not a good triple, therefore it
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must be the case that G2 −HP has a T -adjacency, |SP | = 4, and NG(SP ) ∪
((T ∩ V (G2))\SP ) contains an odd cycle. By Lemma 10 there is a cycle C
such that

• C is a 5-cycle;

• every 3-list vertex of C is adjacent to an S-vertex;

• C contains the T -adjacency; and

• all the vertices in C have 3-lists other than the vertices in the T -
adjacency.

Let C = (z1, ..., z5) such that z1z5 is the T -adjacency. Consecutively label
the vertices of SP x1, ..., x4 such that x1z2, x4z4 ∈ E(G2). Since both ends of
SP are in T , we can assume without loss of generality that z3 is adjacent to x2.

Note that if x2 is adjacent to an S ∪ T -vertex v other than x1, then the
path P ′ = (x1, x2, v) would be a separating path. This separating path
would induce a triple (G′1, G

′
2, P

′) such that G2 is contained in G′1. Define
SP ′ and HP ′ as in Definition 17 on the triple (G′1, G

′
2, P

′).

Since S ⊂ V (G1), we have that |SP ′ | ≤ 6. Since the T -adjacency is in G2 we
have that there is no T -adjacency in G′2. Since the ends of SP ′ are in S ∪ T ,
there is a 3-list vertex in G′2−V (H ′P ). By Lemma 10, since a vertex of SP is in
a 4-cycle in G2, there are no odd cycles in G′2[NG′

2
(SP ′)∪ ((T ∩V (G′2))\SP ′)].

Similarly, there is no 3-list vertex adjacent to three SP ′-vertices in G′2.

Therefore, the triple (G′1, G
′
2, P

′) would be a good triple, contradicting Claim
19. All this to say x2 is not adjacent to any S ∪ T -vertices other than x1.

By Claim 12, the 4- and 5-cycles formed by the vertices of C and the vertices
of NBnd(G2)(SP )∪SP have empty interior. Let c ∈ L(z3)\L(z1). Redefine the
list of x2 to be L′(x2) = L(x2)\{c}.

On G1 we define T ′ = (T ∪ {x2} ∩ V (G1)) and by minimality of G, we
find and L-colouring of G1. This induces a colouring on the vertices of P in
G2. We delete those vertices and adjust the lists of the vertices of C accord-
ingly. Since c(x2) 6= c, c ∈ L(z3) and c /∈ L(z1), we have that the remaining
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5-cycle is L-colourable (All remaining vertices have 2-list that are not all the
same). Giving us an L-colouring of G, and a contradiction.

Case 22.2 One end of P is not a T -vertex.

This implies that one end of P is an S-vertex. We consider two separate
cases, whether G2 −HP does or does not contain a T -adjacency.

Subcase 22.2.1 G2 −HP does not contain a T -adjacency.

If G2 −HP does not contain a T -adjacency, then

|SP | ≤


⌈
|S|
2

⌉
+ (|V (P )| − 1) + 1, G has a T-adjacency

⌈
|S|
2

⌉
+ (|V (P )| − 1), G does not have a T-adjacency.

In either case |SP | ≤ 6.

If |SP | ≤ 5, then we can use Lemma 10 to show that (G1, G2, P ) is a good
triple, contradicting Claim 19. Therefore, |V (P )| = 4 and |SP | = 6. By
Claim 19, it must be the case that either there is a vertex with list size three
in G2 that is adjacent to three SP -vertices or G2[NG2(SP ) ∪ (T ∩ V (G2))]
contains a 5-cycle containing one T -vertex.

Consecutively label the vertices of the path G[SP ] ∩ Bnd(G2) starting at
the T -vertex x1, x2, ..., x6.

Subcase 22.2.1.1 There is a vertex with list size three in G2 that is ad-
jacent to three SP -vertices and that |SP | = 6.

Let v be such a vertex. Then v must be adjacent to x1 and x6. Since 4-
cycles are far apart and v is adjacent to three S-vertices, it is either v is
adjacent to x3 or x4.

If Bnd(G2)\(SP ∪ {v}) 6= ∅, then the path P ′ = (x1, v, x6) is a separat-
ing 2-path with one end in S and the other end in T , which have shown
already in this lemma do not exist.
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It is clear that v forms a 4-cycle and a 5-cycle with the vertices of SP ,
and by Claim 12, the interior of these cycles are empty (in particular, the
only vertex in V (G2)\V (G1) is v). We break this into two cases whether v
is adjacent to x3 or x4.

Subcase 22.2.1.1.1 v is adjacent to x3.

It is either x2 has a 3-list or x2 ∈ T .

Subcase 22.2.1.1.1.1 x2 has a 3-list.

Since |SP | = 6, it must be the case that x4, x5, x6 ∈ S. It must be the
case that L(x6) ⊂ L(v) else we would delete x6 and do induction on G− x6.
Colour x3 with c ∈ L(x3)\(L(v)\L(x6)).

Let S ′ = (S ∪ {x3})\{x5, x6} and T ′ = T\{v}. There is no T ′-adjacency
in G1. If there is a T -adjacency in G, then |S ′| ≤ 4. If there is no T -
adjacency in G, then |S ′| = 5. Since we have proven the length two version
of this theorem already, there are no S ′, T ′-adjacencies in G1.

By Lemma 10, since (v, x1, x2, x3, v) is a 4-cycle in G2, we know that there
are no odd cycles in G1[NG1(S

′) ∪ T ′]. Since |S ′| ≤ 5, we know that there
is not a 3-list vertex in G1 adjacent to three S ′-vertices. Therefore, we can
colour G1 by induction such that c(x3) = c. Since c ∈ L(x3)\(L(v)\L(x6))
we can colour v and find an L-colouring of G, and a contradiction.

Subcase 22.2.1.1.1.2 x2 ∈ T .

Define H ′P and S ′P as in Definition 17 on the triple (G2, G1, P ). Since
x5, x6 ∈ S ∩ V (G2)\V (G1) and |V (G1) ∩ S| ≥ |V (G2) ∩ S|, we have that
|S| ≥ 5 and there is no T -adjacency in G. This tells us that |S ′P | ≤ 6.

Clearly there is a 3-list vertex in V (G1)\V (H ′P ) since the one end of S ′P
is in S and the other is in T . By Lemma 10 and by the existence of the
4-cycle (v, x1, x2, x3, v) in G2, no vertex with list size three in V (G1)\V (H ′P )
is adjacent to three vertices in S ′P and G1[NG1(S

′
P ) ∪ (T ∩ V (G1))] contains

no odd cycles.
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Therefore, (G2, G1, P ) is a good triple contradicting Claim 19.

Subcase 22.2.1.1.2 v is adjacent to x4.

It is either x4 is an S-vertex or |L(x4)| = 3.

Subcase 22.2.1.1.2.1 x4 is an S-vertex.

Colour and delete x5 and x6, and colour v and x1. Let T ′ = T\{x1} and
S ′ = (S ∪ {v, x1})\{x5, x6}. There are no T -adjacencies in G− {x5, x6}, no
S ′, T ′-adjacencies and |S ′| = 6. By Lemma 10, since (x4, x5, x6, v, x4) was a
4-cycle, no three list vertex in G − {x5, x6} is adjacent to three S ′-vertices.
By minimality of G, we can find and L-colouring of G − {x5, x6}. Placing
the vertices x5 and x6 back into the graph we find an L-colouring of G, and
a contradiction.

Subcase 22.2.1.1.2.2 |L(x4)| = 3.

Since |SP | = 6, we have that x2 ∈ T . Let G′1 = G2 and G′2 = G1. Con-
sider the triple (G′1, G

′
2, P ) and define H ′P and S ′P as in 17. We know that

no vertex with list size three in G′2 is adjacent to three vertices in S ′P since
(v, x4, x5, x6, v) is a 4-cycle in G′1. We also know that |S ′P | ≤ (|S|−1)+3 = 6.
Since one end of S ′P is in T and the other is in S we know that there is a
vertex with list size three in G′2. Therefore, (G′1, G

′
2, P ) is a good triple, a

contradiction with 19.

Subcase 22.2.1.2 G2[NG2(SP )∪ (T ∩ V (G2))] contains a 5-cycle containing
one T -vertex.

Let this 5-cycle be C = (z1, .., z5, z1) such that z5 is the T -vertex. Now
it must be the case that z1 and z4 are adjacent to x1 and x6 respectively.
Since we have already proved this lemma for paths of length 2, it must be
the case that z1 and z4 are boundary vertices. By Claim 12, the faces of
G[V (C) ∪ SP ] have empty interior in G.

We will now break this into two cases depending on whether x2 ∈ T or
x2 /∈ T .
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Subcase 22.2.1.2.1 x2 ∈ T .

Since 4-cycles are far apart, the T -adjacency is not in a 4-cycle, and four
vertices of C are adjacent to vertices of SP , we have z2 is adjacent to x3.

Let c ∈ L(z2)\(z5). Reduce the list of x3 to be L′(x3) = L(x3)\{c}. Let
S ′ = (S ∩ V (G1)) and T ′ = (T ∩ V (G1)) ∪ {x3}. Since we have already
proven this lemma for 2-paths and x2 ∈ T , x3 is not adjacent to any S ∪ T -
vertices other than x2. Therefore, there are no S ′, T ′-adjacencies and the
only T ′-adjacency is the edge x2x3.

We have that |S ′| = |S| − 1 = 3 and that G1 has exactly one T ′-adjacency
(x2x3). Therefore, there is no need to check if anything bad happens around
the S ′-vertices. By minimality of G, we have an L-colouring of G1 such
that c(x3) /∈ (L(z3)\L(z5)). We colour SP and look at the graph C =
G− (V (G1) ∪ SP ) after adjusting the lists of the vertices of C.

Every vertex in C now has list size two after the deletion. But we now
have that c is in the list of z3 and is not in the list of z5. This implies we can
find an L-colouring of C, and therefore, an L-colouring of G, a contradiction.

Subcase 22.2.1.2.2 x2 /∈ T .

Since 4-cycles are far apart, it is either the case that z2 is adjacent to x2
or x3.

Subcase 22.2.1.2.2.1 z2 is adjacent to x2.

Let c ∈ L(z2)\L(z5). Reduce the list of x2 to be L′(x2) = L(x2)\{c}, define
T ′ = (T ∩ V (G1)) ∪ {x2} and S ′ = S\{x5, x6}. Since x2 is in the 4-cycle
(z1, x1, x2, z2, x1) in G2, we have that the T ′-adjacency x1x2 is not in a 4-
cycle in G1. Since we have proven this theorem for length two paths, x2 is
not adjacent to any S ∪ T -vertices other than x1.

By Lemma 10, since x2 is in a 4-cycle in G2, there are no odd cycle in
G1[NG1(S

′) ∪ T ′]. We also have that |S ′| = |S| − 2 ≤ 4, therefore, we do
induction on G1. This induces a colouring on the vertices of G− V (C). Ad-
just the lists of the vertices of C accordingly. Every vertex in C now has list
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size at least two after the deletion. But we now have that c is in the list of
z2 and is not in the list of z5. This implies we can find an L-colouring of C,
and therefore, an L-colouring of G, a contradiction.

Subcase 22.2.1.2.2.2 z2 is adjacent to x3.

If x3 is adjacent to exactly one S-vertex, then we apply the same argu-
ment as in Subcase 22.2.1.2.1.1 with z2 and find an L-colouring of G, and
a contradiction. Therefore, it must be the case that x3 is adjacent to two
S-vertices.

Since 4-cycles are far apart, and a vertex of SP is in a 4-cycle in G2, it
must be the case that x3 is adjacent to the end of the path Bnd(G)[S] in G1.
Call this end y. Notice that x1,x2, and x3 are all not adjacent to T -vertices
and x1 and x2 are not adjacent to S-vertices since we have proven the 2-path
version of this lemma.

Since x1 is an end of Bnd(G2)[SP ] we have that x1 is adjacent to z1. Let
c ∈ L(z1)\L(z5). Reduce the list of x1 to be L′(x1) = L(x1)\{c}, then reduce
the lists of x2 and x3 to be proper 1-lists (this is possible since x2 is not
adjacent to any S-vertices).

By minimality of G, we can L-colour G[(V (G1)\S) ∪ {y}]. We then colour
the S-vertices and the rest of SP . This induces 2-lists on every vertices of C,
which are the only remaining uncoloured vertices. Since c /∈ L(z1)\L(z5) we
have that C is L-colourable, resulting in an L-colouring of G, and a contra-
diction.

Subcase 22.2.2 G2 −HP does contain a T -adjacency.

Let S ′P and H ′P be as in Definition 17 on the triple (G2, G1, P ). We first
note that |SP | + |S ′P | ≤ 2|V (P )| + 3 ≤ 11. It is important to note that
|V (P )| = 4 and at this point we have already proven the theorem when
|V (P )| = 3, this will be useful for the end of the proof. By Claim 19, neither
(G1, G2, P ) nor (G2, G1, P ) is a good triple. Therefore, this leaves us with
two cases, either |SP | = 4 and |S ′P | = 7, or |SP | = 5 and |S ′P | = 6.

Subcase 22.2.2.1 |SP | = 4 and |S ′P | = 7.
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Consecutively label the vertices of the path G[SP ] ∩ Bnd(G2) starting at
the T -vertex x1, x2, ..., x4.

By Claim 19 it must be the case that there is a 5-cycle C in G2 comprised
of the T -adjacency and three 3-list vertices such that each 3-list vertex is
adjacent to exactly one vertex of SP . Let C = (z1, z2, ..., z5, z1) such that
z1, z5 ∈ T and z2x1, z4x4 ∈ E(G2).

Since this claim has been proven for paths of length 2, we have that the
vertices of C other than z3 are boundary vertices. By Claim 12, the 4-
and 5-cycles in the graph G[SP ∪ V (C)] have empty interior. Therefore,
V (G2) = SP ∪ V (C).

Let y be the vertex adjacent to z3 on SP . Note that since y is adjacent
to either x1 or x4 it is not adjacent to any other S ∪ T -vertices by Claim 21
and by the length 2 version of this lemma.

Let c ∈ L(z3)\L(z1). Redefine the list of y to be

L′(y) =


L(y)\{c}, if y = x2

{c(y)}, c(y) ∈ L(y)\({c} ∪ L(x4)) , if y = x3.

On G1 we define

T ′ =


(T ∩ V (G1)) ∪ {y}, if y = x2

T ∩ V (G1), if y = x3

and

S ′ =


S, if y = x2

S ∪ {y}, if y = x3.

By minimality of G, we find and L-colouring of G1. This induces a colouring
on the vertices of P in G2. We delete those vertices and adjust the lists of the
vertices of the 5-cycle that contains the T -adjacency and the two ends of the
path Bnd(G2)[SP ∪NBnd(G2)(SP )] accordingly. Since c(y) 6= c, c ∈ L(v) and
c /∈ L(x), we have that the remaining 5-cycle is L-colourable (All remaining
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vertices have 2-list that are not all the same). Giving us an L-colouring of
G, and a contradiction.

Subcase 22.2.2.2 |SP | = 5 and |S ′P | = 6.

Consecutively label the vertices of the path G[S ′P ] ∩ Bnd(G1) starting at
the T -vertex x1, x2, ..., x6.

Since (G2, G1, P ) is not a good triple it must be the case that there is a
vertex v ∈ V (G1) such that |L(v)| = 3, and v is adjacent to three S ′P -vertices
or G1[NG1(S

′
P ) ∪ (T ∩ V (G1))] contains a 5-cycle containing one T -vertex.

Subcase 22.2.2.2.1 There is a vertex v ∈ V (G1) such that |L(v)| = 3,
and v is adjacent to three S ′P -vertices.

Since v is adjacent to three S ′P -vertices, it is adjacent to x1 and x6. v is
not adjacent to x4 by Claim 20, therefore v must be adjacent to x3.

We have already proven that there are no separating S∪T, T -paths of length
two, therefore the path (x1, v, x6) is not a separating path. This implies that
G1 = G[{x1, x2, ..., x6, v}]. Let u be the neighbour of x1 in Bnd(G2) that is
not x2 and let u1 be the neighbour of u on the boundary of G2 that is not
x1. Either u1 has list size three, or it does not.

Subcase 22.2.2.2.1.1 |L(u1)| = 3.

Colour and delete x1 and adjust the lists of the neighbours of x1 accord-
ingly. Call this new list assignment L′. We also have a new set T ′ =
(T ∪ NG(x1))\{x1} of T ′-vertices on G − {x1}. Colour and delete x5,x6
and v. Then colour x3 and x2.

Define S ′ = (S\{x5, x6}) ∪ {x2, x3}, let H = G2 − x1 and restrict T ′ to
H. Note NG(x1) is an independence set. Since no separating S ∪ T, T -paths
of length two exist, we also have that no vertex in NG(x1) is adjacent to an
S ∪ T -vertex in G2 − x1. Therefore, the only T ′-adjacency in G2 − x1 is the
T -adjacency.

By Lemma 10, since (v, x1, x2, x3, v) is a 4-cycle in G1, there are no odd
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cycles in H[NH(S ′) ∪ T ′]. Since |S ′| = 4, we can use the minimality of G to
find an L′-colouring of H. Placing the coloured verticesx1, v, x5, x6 back in
the graph, we find an L-colouring of G, and a contradiction.

Subcase 22.2.2.2.1.2 |L(u1)| 6= 3.

By the existence of the T -adjacency in G2 and x4 ∈ S, u1 must be a T -
vertex. Colour and delete u and x1 as to not disturb the list of u1 and
adjust the lists of the neighbours of u and x1 accordingly. Call this new list
assignment L′. We also have a new set T ′ = (T ∪ NG({x1, u}))\{x1, u} of
T ′-vertices on G−{x1}. Colour and delete x5,x6 and v. Then colour x3 and
x2.

Define S ′ = (S\{x5, x6})∪{x2, x3} and restrict T ′ toG2−x1. NoteNG({u, x1})
is an independence set by the existence of the cycle (x1, x2, x3, v, x1) in G.
Since no separating S ∪ T, T -paths of length two exist, we also have that no
vertex in NG(x1) is adjacent to an S ∪ T -vertex in G2 − x1.By the existence
of the cycle (x1, x2, x3, v, x1), if a vertex in NG2(u) ∩ int(G2) were adjacent
to an S ∪T -vertex, then there would be a separating path of length two that
would induce a good triple in G, a contradiction with Claim 19.

Therefore, the only T ′-adjacency in G2−x1 is the T -adjacency. Since |S ′| = 4,
we can use the minimality of G to fine an L′-colouring of G − x1. Placing
the coloured vertex x1 back in the graph, we find an L-colouring of G, and a
contradiction.

Subcase 22.2.2.2.2 G1[NG1(S
′
P )∪ (T ∩ V (G1))] contains a 5-cycle contain-

ing one T -vertex.

Let this 5-cycle be C = (z1, .., z5, z1) such that z5 is the T -vertex. Now
it must be the case that z1 and z4 are adjacent to the ends of Bnd(G1)[S

′
P ],

without loss of generality, suppose that z1 is adjacent to x1 and z4 is adjacent
to x6. Since we have already proved this lemma for paths of length 2, it must
be the case that z1 and z4 are boundary vertices. By Claim 12, the faces of
G[V (C) ∪ S ′P ] have empty interior in G.

Since 4-cycles are far apart, it is either the case that z2 is adjacent to w2

or w3.
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Subcase 22.2.2.2.2.1 z2 is adjacent to x2.

This case is the same as Subcase 22.2.1.2.2.1, only on G1 and S ′P .

Subcase 22.2.2.2.2.2 z2 is adjacent to x3.

Since |S| = 4 and one of the vertices of C is in a 4-cycle, we have that
x3 is adjacent to exactly one S-vertex. We apply the same argument as in
Subcase 22.2.1.2.1.1. with z2 to find an L-colouring of G, and a contradiciton.
�

Claim 23. G has a T -adjacency.

Proof. Suppose G does not have a T -adjacency. We will show without loss
of generality that |S| ≥ 3.

Suppose |S| < 3. Since G does not contain any 3-cycles, we know that
|V (Bnd(G))| ≥ 4. Since Bnd(G) can not have all T -vertices, we have that
Bnd(G) has a vertex v such that |L(v)| = 3. Let P be a path in Bnd(G)
such that:

• S ⊂ V (P );

• v /∈ V (P ); and

• 3 ≤ |V (P )| ≤ 4.

Let H be the component in G[V (P )∪T ] that contains P and let S ′ = V (H).
Let T ′ = T\S ′. By Claim 20, G has no 1-paths that separate the boundary
with one end in S ∪ T . Therefore, the vertices of S ′ are consecutive on the
boundary. Reduce the lists of the vertices of S ′ so that they have proper
1-lists (we can do this since paths with one end coloured and every other
vertex having a list of size at least two are L-colourable). Call this new list
assignment L′. An L′-colouring is clearly an L-colouring, therefore we can
assume |S| ≥ 3. Furthermore G[S] ∩Bnd(G) is either a path or a cycle.

Case 23.1 |V (Bnd(G))\S| ≤ 1.

By Claims 20 and 21, ifBnd(G)[S] is not a cycle, then both ends ofBnd(G)[S]
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are not in the same 4-cycle. Since 4-cycles are far apart, it must be the case
that one of these ends is not in a 4-cycle. If Bnd(G)[S] is not a cycle. then let
s ∈ S be an end of Bnd(G)[S] that is not in a 4-cycle. If Bnd(G)[S] induces
a cycle, then s can be any S-vertex not in a 4-cycle with 3-list vertices.

Colour and delete s. Let c(s) be the only colour in L(s). For every neighbor x
of s, redefine the list of x to be L(x)\{c(s)}, and let T ′ = NG(s)∩ int(C) and
S ′ = V (Bnd(G))\{s} (If needed, reduce the list of S ′-vertices to be proper
1-lists). Note that T = ∅, so T ⊂ T ′. There are no T ′-adjacencies since
there are no 3-cycles in the graph. There are no S, T ′-adjacencies by Claim
21 and therefore, no S ′, T ′-adjacencies since s is not in a 4-cycle. Reduce the
lists of the vertices of S ′ to be proper 1-lists (this only happens when x was
adjacent to a list three vertex on the boundary).

Now S ′ and T ′ satisfy the hypothesis and by minimality of G we colour
G − s. This induces a partial colouring on G where no neighbor of s is
coloured c(s), therefore we colour s with c(s) and we have an L-colouring of
G, a contradiction.

Case 23.2 |V (Bnd(G))\S| ≥ 2.

Let u1 and v1 be the first and last S-vertices, and let u2 and v2 be their
S-neighbours via a boundary edge, respectively. By Claims 20 and 21, u1
and v1 can not be in the same 4-cycle. Since 4-cycles are far apart we have
that one pair of neighbours is not in a 4-cycle together. Without loss of
generality, suppose u1 and u2 are not in a 4-cycle together.

Let x1 be the neighbour of u1 in Bnd(G) not in S and let x2 be the neighbour
of x1 in Bnd(G) that is not in S. There are two cases, either x2 is a 3-list
vertex or x2 ∈ T .

Case 23.2.1 x2 is a 3-list vertex.

Colour and delete u1 and let H = G− u1. Adjust the lists of the vertices in
NG(u1)\{u2} to be 2-lists (either by deleting c(u1) from their lists, or delet-
ing a colour from their lists). Define T ′ = T ∪NG(u1)\{u2} and S ′ = S\{u1}.

By Claim 21, there are no S, T ′-adjacencies, and therefore there are no S ′, T ′-
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adjacencies. NG(u1) is an independence set since there are no 3-cycles in G.
By Claim 22, there are no adjacencies between vertices inNG(u1) and vertices
in T . Therefore, there are no T ′-adjacencies.

By Lemma 10, since |S ′| = |S|−1 ≤ 5, there are no odd cycles in (H)[NH(S ′)∪
T ′]. Similarly, there is no 3-list vertex in H adjacent to three S ′ vertices.
Therefore, we can apply induction to H, resulting in an L-colouring of H.
Placing the coloured vertex u1 back in H, we get an L-colouring of G, and a
contradiction.

Case 23.2.1 x2 ∈ T .

Colour and delete u1 and u2, and let H = G−{u1, u2}. Adjust the lists of the
vertices in NG({u1, u2}) to be 2-lists (either by deleting c(u1) or c(u2) from
their lists, or deleting a colour from their lists). Define T ′ = T ∪NG({u1, u2})
and S ′ = S\{u1, u2}.

By Claim 21, there are no S, T ′-adjacencies, and therefore there are no S ′, T ′-
adjacencies. NG({u1, u2}) is an independence set since there are no 3-cycles,
and u1 and u2 are not in a 4-cycle. By Claim 22, there are no adjacencies
between vertices in NG({u1, u2}) and vertices in T other than the edge x1x2.
Therefore, is exactly one T ′-adjacency.

If the T ′-adjacency is in a 4-cycle, then by Claim 20 this 4-cycle does not
contain v1 and v2. Therefore, we would have coloured and deleted the ver-
tices v1 and v2 over u1 and u2. We may assume without loss of generality
that the T -adjacency is not in a 4-cycle.

The last thing we must check is for odd cycles in H[NH(S ′) ∪ T ′]. Sup-
pose by way of contradiction that a cycle C in Lemma 10 exists in H. Since
x1 was originally adjacent to u1 in G and x2 ∈ T , C would be an odd cycle
in G[NG(S) ∪ T ], a contradiction with G being a counter example.

Therefore, we can apply induction to H, resulting in an L-colouring of H.
Placing the coloured vertices u1, u2 back in H, we get an L-colouring of G,
and a contradiction. �

Claim 24. G has no T -adjacency.
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By way of contradiction, suppose G has a T -adjacency. We will first show
that |Bnd(G)| > 6.

Suppose |Bnd(G)| ≤ 6. Since G has a exactly one T -adjacency and no
S, T -adjacencies, there exists a vertex v ∈ V (Bnd(G)) such that |L(v)| = 3.
Observe by the existence of v, Bnd(G) is L-colourable. Therefore, we can de-
fine L′ to be the new list assignment with the lists of vertices in V (Bnd(G) to
be proper 1-lists and the remaining vertices keeping their original lists from
L. Letting S ′ = V (Bnd(G)), we have that |S ′| ≤ 6, and that G under the
list assignment L′ and with the set S ′ satisfies the hypothesis. By Claim 23,
we have that G is L′-colourable, and therefore L-colourable, a contradiction.

Let u, v ∈ T be adjacent and let (u2, u1, u, v, v1, v2) be the subpath of Bnd(G)
of length five with the T -adjacency in the middle. Clearly we have that
|L(u1)| = 3 = |L(v1)|. The rest of this proof will follow by considering cases
of u2 and v2.

Case 24.1 u2 ∈ S and |L(v2)| = 3.

Colour and delete v. Adjust the lists of the vertices in NG(v), reduce the
lists of u1 and u to be proper 1-lists and call the resulting graph and list
assignment G′ and L′ respectively. If there is an L′-colouring of G′, then
there is an L-colouring of G by placing the coloured vertex v in G′. Define
S ′ = S ∪ {u1, u} and T ′ = (T ∪NG(v))\{u, v}.

First let us check for any T ′-adjacencies. Note that T ′\T ⊆ NG(v) and there
are no 3-cycles in G; therefore T ′\T is an independence set. As G[T\{v}] is
an independent set, so; by Claim 22, there are no edges between T ′\T and
T\{v}. Therefore T ′ is an independent set.

Now let us check that there are no S ′, T ′-adjacencies. We know there are
no S ′, T -adjacencies by Claim 20. There are also no adjacencies between
S-vertices and vertices in NG(v) ∩ V (int(G)) by Claim 22. Since the T -
adjacency is not in a 4-cycle, u1 is not adjacent to anything in NG(v) ∩
V (int(G)). There are no 3-cycles, therefore u is not adjacent to anything in
NG(v) ∩ V (int(G)). Hence there are no S ′, T ′-adjacencies.

If G′ satisfies the hypothesis on L′ with the sets S ′ and T ′, then we colour
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G′, find an L-colouring for G, and end with a contradiction. Therefore, G′

does not satisfy the hypothesis under the list assignment L′ and the sets S ′

and T ′. This imples that there exists an odd cycle in G′[NG′(S ′) ∪ T ′]. This
means that there is a 5-cycle C = (z1z2...z5z1) such that z5 ∈ T and for
each vertex that is not z5 in the cycle, it must have list size three and be
adjacent to an S ′-vertex. Since this is the case, |S ′| = 6, z1 is adjacent to w1

and z4 is adjacent to w2 where w1 and w2 are the different ends of Bnd(G)[S ′].

Let P = (w2z4z3z2z1w1) be a path of length four. Clearly P is separat-
ing by the existence of v1. This path P induces a triple (G1, G2, P ). Define
HP and SP as in Definition 17 on the triple (G1, G2, P ). Note that both z1
and z4 are each at most distance one from a 4-cycle in G1. Therefore, there
is no vertex in G2 − V (HP ) with list size three adjacent to three vertices of
SP in G2 and G2[NG2(SP ) ∪ (T ∩ V (G2 − V (HP )))] does not contain an odd
cycle. Thus (G1, G2, P ) is a good triple, contradicting Claim 19.

Case 24.2 u2 ∈ S and v2 ∈ T .

There are two cases: u1 and v1 either have a common neighbour in V (int(G))
or they do not.

Subcase 24.2.1 u1 and v1 have a common neighbour x ∈ V (int(G)).

We will break this up into two cases, depending on whether x is adjacent
to an S-vertex or not.

Subcase 24.2.1.1 x is adjacent to a vertex z ∈ S.

This implies that both z and u1 are incident with an interior face F . We
colour and delete all S-vertices in F that have degree two, u1, u, and v.
Reduce the lists of x, v1, and v2 to be proper 1-lists and call this new graph
G′ with new list assignment L′. Let S ′ = {v ∈ V (G′)|L′(v) = 1} and
T ′ = T\{u, v, v2}.

Note that either |S ′| ≤ 5 or x is in a 4-cycle in G that is not in G′. Ei-
ther way there is no need to check if there is a vertex in G′ adjacent to three
S ′-vertices or for odd cycles in G′[NG′(S ′)∪T ′]. If x is adjacent to a T -vertex,
then there is a separating 2-path in G with one end in S and the other in
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T , a contradiction with Claim 22. Therefore, there are no S ′, T ′-adjacencies
and G′ is L′-colourable, a contradiction.

Subcase 24.2.1.2 x is not adjacent to an S-vertex.

Colour and delete v1, v, and u such that c(v1) /∈ L(v2). Adjust the lists
of the vertices in NG({u, v1}) to be 2-lists.

If u1 can not be reduced to a proper 1-list, then it is adjacent to an S-
vertex through an edge that is not on the boundary, a contradiction with
Claim 20.

If x can not be reduced to a proper 1-list, then it is adjacent to an S-vertex,
contradicting the hypothesis of this case.

Reduce the lists of u1 and x to be proper 1-lists and call the resulting graph
and list assignment G′ and L′ respectively. Note that by Claim 12, u, v have
degree two in G since the cycle (u1, u, v, v1, s, u1) bounds a face of length five,
therefore the only neighbour of u that remains in G′ is u1.

Define S ′ = S ∪ {u1, x} and T ′ = (T ∪NG(v1))\{u, v, x}.

Clearly there are no L′-colourings of G′, else we could place the coloured
vertices u, v, v1 back in G′ to find a L-colouring of G, and a contradiction.

Let us check for any T ′-adjacencies. Recall (T ′\T ) ⊆ NG(v1). Since there
are no 3-cycles in G, we have that T ′\T is an independent set. By defiinition
T\{u, v, v1} is an independent set. By Claim 22, the only possible edge be-
tween T ′\T and T\{u, v} is between a T -vertex that is not in a T -adjacency
and a vertex in NG(v1) ∩ V (int(G)). This adjacency is not possible because
it would form a good separating 2-path, which by Claim 19 does not exist.
Therefore T ′ is an independent set.

By Claim 20, we know there are no S ′\{x}, T -adjacencies. Suppose there
is a vertex w ∈ S that is adjacent to a vertex y ∈ NG(v1) ∩ V (int(G)).
Since the path v1, y, w does not induce a good triple it must be the case that
(w, y, v1, v, u, u1, u2, w) is a 6-cycle. By Claim 12, we have that degG(x) = 2,
a contradiction with Claim 11. Therefore, no vertex in NG(v1) is adjacent to
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an S-vertex.

If u1 is adjacent to anything in (NG(v1)\{x}), then u1 is in a 5-cycle that
has x in its interior and u2 in its exterior, contradicting Claim 12.

If x is adjacent to a T -vertex, then it forms a good separating 2-path, con-
tradicting Claim 19. Since there are no 3-cycles in the graph, x is also not
adjacent to a vertex in T ′\T ⊆ NG(v1).

We need to check two things, first that there are no vertices that are adjacent
to three vertices in S ′, and second that H[NH(S ′) ∪ T ′] does not contain an
odd cycle.

Suppose there is a vertex z adjacent to three vertices in s1, si, x ∈ S ′ such
that s1 and x are the ends of the path Bnd(G′)[S ′]. Similar to Subcase
24.2.1.1, colour and delete every vertex in (S ′ ∪ {u1, u, v)}\{s1, x} and call
this new graph G′′. Then define S ′′ = {s1, z, x, v1, v2} and T ′′ = T\{u, v, v2}
and reduce the list of the vertices of S ′′ to be proper 1-lists and call this list
assignments L′′.

By minimality of G, G′′ is L′′-colourable. Placing the coloured vertices of
V (G)\V (G′′) back into the graph G′′ we get an L-colouring of G and a con-
tradiction. Therefore, there is no vertex adjacent to three vertices of S ′.

Suppose there is an odd cycle in G′[NG′(S ′) ∪ T ′]. Let C be a cycle as
described in Lemma 10 such that C = (z1z2...z5z1) and z5 ∈ T ′. Since this
is the case, |S ′| = 6, z1 is adjacent to w1 and z4 is adjacent to w2, where w1

and w2 are the different ends of Bnd(G)[S ′].

Without loss of generality, let w1 = u2. If z5 ∈ T , then the path (z5z1u2) is a
separating 2-path,a contradiction with Claim 22. Therefore, z5 ∈ V (int(G))
which tells us z5 is adjacent to v1 since z5 ∈ T ′\T . Since there is a 4-cycle
comprised of only S ′∪V (C)-vertices, we have that x 6= z5, else (x, u1, u2, z1, x)
would be another 4-cycle too close to the previous.

We have (u1, u, v, v1, x) is a 5-cycle with empty interior by Claim 12, and
(v1, z5, z1, u2, u1, x, v1) is a 6-cycle with empty interior for the same reason.
This implies that degG(x) = 2, a contradiction with Claim 11. Therefore
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there is no odd cycle in H[NG′(S ′) ∪ T ′].

By minimality of G, we get an L′-colouring of G′; placing the coloured ver-
tices of V (G)\V (G′) back yields an L-colouring of G and a contradiction.

Subcase 24.2.2 u1 and v1 do not have a common neighbour in V (int(G)).

We have either both v and v1 are in a 4-cycle or they are not.

Subcase 24.2.2.1 One of v and v1 is not in a 4-cycle.

Colour and delete v1 and v so as not to disturb the list of v2 and call this new
graph H. Following this reduce the lists of NG({v, v1}). Assign u a 1-list
that is not the colour of v, and u1 a 1-list that is not the colour of u2 or v.
Define S ′ = S ∪ {u, u1} and T ′ = (T ∪NG({v, v1}))\{u, v}.

There are no adjacencies between a vertex in NG(v1) ∩ V (int(G)) and an
S ∪ T -vertex, else there is a separating path P of length two form v1 to
an S-vertex that would induce a triples (G1, G2, P ), (G2, G1, P ) such that
one of the triples is good, a contradiction with Claim 19. There are also
no adjacencies between u or u1, and a vertex in NG(v1) ∩ V (int(G)) since
the T -adjacency is not in a 4-cycle and u1 and v1 do not have a common
neighbour in V (G).

There are no adjacencies between a vertex in NG(v)∩V (int(G)) and an S∪T -
vertex by Claim 22 and no adjacencies between a vertex in NG(v)∩V (int(G))
and a vertex in S ′\S since the T -adjacency is not in a 3- or 4-cycle.

By Claim 20 no vertex in S ′ is adjacent to a T -vertex. Therefore, we have
that there are no S ′, T ′-adjacencies. Since one of v and v1 is not in a 4-cycle,
we have that there are no T ′-adjacencies in G[NG({v, v1})]. Since the T -
adjacency no longer exists in H, we have that there are no T ′-adjacencies in
H.

By Claim 22, since u ∈ T and u is an end of the path Bnd(H)[S ′]), there
is no vertex with list size three in H that is adjacent to three S-vertices.
Therefore, we need only check that there is not a 5-cycle in H that has one
vertex in T ′, and the rest having list size and each being adjacent to one
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S ′-vertex.

Suppose by way of contradiction that there exists such a cycle C = (z1z2...z5z1)
such that z5 ∈ T ′, z1 is adjacent to u1 and z4 is adjacent to a vertex w that
is the end of both paths Bnd(G)[S] and Bnd(H)[S ′]. If z5 is adjacent to v,
then the path (v, z5, z4, w) is a separating 3-path with one end in S and the
other in T , a contradiction with Claim 22.

If z5 is adjacent to v1, then the path (v1, z5, z4, w) will induce a good triple
since one side of this path contains the S-vertices and the T -adjacency, and
the other side contains a list size three vertex (i.e. v1).

If z5 ∈ T , then the path (z5, z1, u1) is a separating 2-path since z5 6= u
(z5 ∈ V (H), u /∈ V (H)).

Therefore, z5 /∈ T ′, a contradiction with z5 ∈ T ′. This gives us that there
are no odd cycles in (NH(S ′) ∪ T ′) with every list three vertex adjacent to
an S ′-vertex. By minimality of G, we L-colour H, and place the coloured
vertices v and v1 back into H to find an L-colouring of G, and a contradiction.

Subcase 24.2.2.2 Both of v and v1 are in 4-cycles.

Since 4-cycles are far apart it must be the case that v and v1 are in the
same 4-cycle. Let this 4-cycle be C = (v, v1, x1, x). Since the T -adjacency is
not in a 4-cycle and degG(v1) = 3, by Claim 11 we know that neither x nor
x1 is either of u or v2.

Now we have that either there is a vertex in NG(u1) that is adjacent to
a vertex in NG(v) or not.

Subcase 24.2.2.2.1 There does not exist a vertex in NG(u1) that is ad-
jacent to a vertex in NG(v).

Colour and delete u1, u and v so as not to disturb the list of u2 and call this
new graph H. Following this reduce the lists of the vertices of NG({u1, u, v})
in H. Define T ′ = (T ∪NG({u1, u, v, }))\{u, v}.

Since NG({u1, v}) is an independent set, and by the existence of C we have
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that NG({u1, v, v1}) is an independent set. We also have that T\{u, v} is an
independent set. Now we check for (T ′\T, S ∪ T\T ′)-adjacencies.

By Claim 22, no vertex in NG({u, v})\{u1} is adjacent to an S∪T -vertex. By
the existence of C, if a vertex in NG(u1) is adjacent to a S∪T -vertex, then it
would form a separating path that would induce a good triple, contradicting
Claim 19. Therefore, there are no T ′-adjacencies and no (S, T ′)-adjacencies.

By Lemma 10, since C is in G, and not in H, we know the remaining prop-
erties to the hypothesis hold. Therefore, with the sets S and T ′ and by min-
imality of G, we find an L-colouring of H. Placing the coloured vertices u,
v, and v1 back in the graph, we find an L-colouring of G, and a contradiction.

Subcase 24.2.2.2.2 There does exist a vertex in NG(u1) that is adjacent to
a vertex in NG(v).

Let these two vertices be w1 ∈ NG(u1) and w ∈ NG(v). There are two
cases to consider, whether w = x or w 6= x.

Subcase 24.2.2.2.2.1 w 6= x.

By Claim 22, no vertex in NG(w) is adjacent to an S-vertex.

Colour and delete u1, u, v, v1, w and w1 so as not to disturb the list of
v2 and call this new graph H. Following this reduce the lists of the vertices of
NG({u1, u, v, v1, w, w1}) inH. Define T ′ = (T∪NG({u1, u, v, v1, w, w1}))\{u, v}.

By the existence of C, and Claims 12, 11 we have thatE(G[NG({w,w1, u1, u, v, v1})]) =
{xx1}. We already have that T\{u, v} is an independence set and that there
are no (S, T )-adjacencies. Now we check for (T ′\T, S ∪ (T\T ′))-adjacencies.

Since u is in the cycle (u1, u, v, w, w1, u1), Claim 12 implies degG(u), and that
all of its neighbours were deleted. By Claim 22, no vertex in NG(v, w)\{u2}
is adjacent to an S ∪ T -vertex.

If a vertex in NG({u1, v1})\{u, v} is adjacent to an S ∪ T -vertex, then it
would form a separating path. By Lemma 10, since C is close to this sep-
arating path, the path would induce a good triple, contradiction Claim 19.
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Liekwise, no vertex in NG(w1)\{v1, w} is adjacent to an S ∪ T -vertex.

Therefore, there is one T ′-adjacency and no (S, T ′)-adjacencies.

Since C is in G, and not in H, we know that the T ′-adjacency is not in
a 4-cycle and that it is not in an odd cycle with the remaining vertices ad-
jacent to S-vertices. Therefore, by minimality of G, an L-colouring of H.
Placing the coloured vertices u1, u, v, v1, w, w1 back in the graph, yields an
L-colouring of G, and a contradiction.

Subcase 24.2.2.2.2.2 w = x.

By Claim 22, no vertex in NG(x1) is adjacent to an S-vertex.

Colour and delete u, v, v1, x and x1. Call this new graph H. Following this
reduce the lists of the vertices ofNG({v1, x, x1}) inH and then reduce the lists
of u1 and w1 to be proper 1-lists. Define T ′ = (T ∪NG({v1, x, x1}))\{u, v, w1}
and S ′ = S ∪ {u1, w1}.

By the existence of C, Claims 11 and 12 imply that NG({x, x1, v1})\{u, v} is
an independent set. We also have that T\{u, v} is an independent set. Now
we check for (T ′\T, S ′ ∪ (T\T ′))-adjacencies.

By Claim 22, no vertex in NG(x)\{u2} is adjacent to an S ∪ T -vertex. If
a vertex in NG({v1})\{u, v} is adjacent to an S ∪ T -vertex, then it along
with its S ∪ T neighbour and v1 would form a separating path. By Lemma
10, since C is close to this path, the path would induce a good triple, con-
tradicting Claim 19.

By Claim 19 and by the hypothesis of this case, no vertex in NG(x1)\{v1, w}
is adjacent to an S ∪ T -vertex. Therefore, there are no T ′-adjacencies and
no (S, T ′)-adjacencies.

By the existence of C, and Claims 12, 11 we have that w1 and u1 are not adja-
cent to any T ′\T -vertices. By Claim 20, u1 is not adjacent to any T -vertices.
If w1 is adjacent to a T -vertex, then the 2-path from u1 to this T -vertex
would induce a good triple, contradicting Claim 19. Therefore, there are no
S ′, T ′-adjacencies.
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By Lemma 10, since C is in G, and not in H, we know the remaining hy-
pothes hold. Therefore, by minimality of G, there is an L-colouring of H.
Placing the coloured vertices u, v, v1, w, w1 back in the graph, produces an
L-colouring of G, and a contradiction.

Case 24.3 u2, v2 ∈ S.

We will break this up into cases, depending on whether NG(u1)∩NG(v1) = ∅
or not.

Subcase 24.3.1 z ∈ NG(u1) ∩NG(v1).

Colour and delete u, v and reduce the lists of u1 and v1 to be proper 1-
lists. Let S ′ = S ∪ {u1, v1}, T ′ = ∅ and let this this new list assignment
be L′ on G′ = G − {u, v}. Clearly z is not adjacent to an S vertex, else
the 5-cycle (z, u1, u, v, v1, z) is in G and has every three list adjacent to an
S-vertex, which is not possible by hypothesis.

There are also no odd cycles in NG′(S ′) ∪ T ′ because T ′ = ∅. If there is
a list size three vertex adjacent to three S ′-vertices, then is must be adjacent
to both u1 and v1. This vertex would then form a 5-cycle in G with z on its
interior and u2 on its exterior, a contradiction with Claim 12.

Therefore, by minimality ofG, G′ satisfies the hypothesis and is L′-colourable.
Placing the coloured vertices back into G′ we get that G is L-colourable, a
contradiction.

Subcase 24.3.2 NG(u1) ∩NG(v1) = ∅

Since the T -adjacency is not in a 4-cycle, we may assume without loss of
generality that v is not in a 4-cycle, else we look at u. Colour and delete v
and v1. Adjust the lists of NG({v, v1}) accordingly and reduce the lists of u1
and u to be proper 1-lists. Let S ′ = S∪{u1, u} and T ′ = NG({v, v1})\{u, v2}
and let this new list assignment be L′ on G′ = G− {v, v1}.

Since v is not in a 4-cycle, we have that there are no T ′-adjacencies. Since
the T -adjacency is not in a 4-cycle and NG(u1) ∩ NG(v1) = ∅, we have
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that there are no (S ′\S, T ′)-adjacencies. If there a was an S, T ′-adjacency,
then we would have a good separating 2-path, a contradiction with Claim 19.

Suppose there is a vertex with list size three adjacent to three S ′-vertices
in G′ and let this vertex be z. z would be adjacent to both u and v2 and
therefore (u, v, v1, v2, s, u) would be a 5-cycle with empty interior by Claim
12. This would imply that degG(v1) = 2, and by Claim 11, this is a contra-
diction. Therefore, thre is no vertex adjacent to three S ′-vertices.

Suppose there is a 5-cycle C = (z1, z2, ..., z5, z1) in G′, such that z5 ∈ T ′,
z1 is adjacent to u and z4 is adjacent to v2 and the graph G[V (C) ∪ S ′] has
a 4-cycle C4. Since z5 ∈ T ′, it is either z5v ∈ E(G) or z5v1 ∈ E(G). If
z5v ∈ E(G), then the 4-cycle (v, z5, z1, u, v) is too close to C4. Therefore,
z5v1 ∈ E(G). We have that the 4-cycle (v1, z5, z4, v2, v1) is too close to C4,
therefore C does not exists.

G′ satisfies the hypothesis and by minimality of G, we have that G′ is L′-
colourable. Placing the coloured vertices back into G′, we get that G is
L-colourable, and a contradiction.

Case 24.4 u2, v2 /∈ S ∪ T .

In this case we colour and delete u and v. For every vertex x ∈ NG(u),
redefine the list of x to be L′(x) = L(x)\c(u). Similarly, redefine the lists of
the neighbours of v. Define T ′ = (T ∪NG({u, v}))\{u, v}. By Claim 22, no
vertex in NG({u, v})\{u1, v1} is adjacent to an S ∪ T ′-vertex. By Claim 20,
u1 and v1 are not adjacent to any S ∪ T ′-vertices either.

Since the T -adjacency is not in a 4-cycle, we have that there is no T ′-
adjacency. Since |S| ≤ 4 and there is no T ′-adjacency, we have that there is
no odd cycle in G[NG(S) ∪ T ′]

Therefore G − {u, v} satisfies the hypothesis, and by minimality of G, G −
{u, v} has an L′-colouring. Placing the coloured vertices u, v back in the
graph we find an L-colouring of G, and a contradiction.

Case 24.5 u2 ∈ T and v2 /∈ S ∪ T .
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Colour and delete u1, u, v so as not to disturb the list of u2 and let G′ =
G − {u1, u, v}. Adjust the list of each vertex in NG({u1, u, v}) accord-
ingly and call this list assignment L′. Note that since the list of u2 was
not disturb by the colouring of these vertices, |L′(u2)| = 2. Define T ′ =
T ∪ (NG({u1, u, v, s}) ∩ V (G′)).

Since the T -adjacency is not in a 4-cycle we have that NG(u1) ∩ NG(v) ∩
Int(G) = ∅. This implies that there are no vertices outside of the S-vertices
that have an L′ list size of one in G′.

By Claim 22, we know that no neighbours of u or v are adjacent to a S ∪ T -
vertex other than u and v. By Claim 19, we know that no neighbour of u1 is
adjacent to an S ∪ T -vertex.

Now the question becomes, where might a new T ′-adjacency xy appear, and
can it be in a 4-cycle in G′. Since the T -adjacency can not be in a 4-cycle,
there are two cases for x and y that are independent of each other by Claim
12. Either

• x ∈ NG(u1) ∩ int(G) and y ∈ NG(u) ∩ int(G),or

• x ∈ NG(u1) ∩ int(G) and y ∈ NG(v).

Subcase 24.5.1 Suppose x ∈ NG(u1) ∩ int(G) and y ∈ NG(u) ∩ int(G).

This immediately implies that the cycle C = (u1, x, y, u, u1) is a 4-cycle.
It follows that the T ′-adjacency in G′ is not in a 4-cycle since 4-cycles are
far apart. Similarly there are no odd cycles in NG′(S) ∪ T ′ since the T ′-
adjacencies are close to C in G, and C is not in G′. Therefore, under this
constraint G′ has an L′-colouring. Placing the deleted vertices back into the
graph, we find an L-colouring of G, and a contradiction.

Subcase 24.5.2 x ∈ NG(u1) ∩ int(G) and y ∈ NG(v).

First let us show that the edge xy is not in a 5-cycle in G′ with the property
that the three vertices in the 5-cycle that are not x or y are each adjacent
to an S-vertex. Suppose this is the case and let z be the vertex adjacent to
y in the 5-cycle that is not x and let s be the S-vertex adjacent to z. The
path (v, y, z, s) is a separating 3-path, a contradiction with Claim 22.
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Therefore, we may assume that xy is in a 4-cycle C in G′, else we can find
an L′-colouring of G′ and a contradiction. By Claim 22, no vertex of this
4-cycle is in S ∪ T .

Extend the labelling of the vertices, so u3 is the neighbour of u2 on the
boundary that is not u1 and u4 is the neighbour of u3 on the boundary that
is not u2. Colour and delete u1 and u2 as to not disturb the list of u and
call the resulting graph H. For every vertex in NG({u1, u2}) adjust their
lists accordingly and call this list assignment L′′. Note that since the list of
u was not disturbed by the colouring of these vertices, |L′′(u)| = 2. Define
T ′′ = T ∪ (NG({u1, u2}).

If a neighbour of u1 that is not u is adjacent to an S ∪ T -vertex other than
v, then this neighbour along with the S ∪ T -vertex and u1 would form a
separating path. By Lemma 10 and the existence of the cycle C, this path
would induce a good triple, contradicting Claim 19. If a neighbour of u1
other than u is adjacent to v, then this neighbour along with u1, u and v
would form a 4-cycle that is close to C, a contradiction with 4-cycles far apart.

By Claim 22, at most one neighbour of u2 is adjacent to an S ∪ T -vertex,
specifically u3.

Since 4-cycles are far apart, either NG({u1, u2}) is an independent set, or
y ∈ NG(u2). If y ∈ NG(u2), then (y, u2, u1, u, v, y) is a 5-cycle with x on the
interior and v2 on the exterior, a contradiction by Claim 12.

Therefore, NG({u1, u2}) is an independence set. Since x ∈ NG(u1) ∩ int(G)
and y ∈ NG(v), Claim 12 shows degH(u) = 1. So we have that there are no
S, T ′′-adjacencies in H − u and there is at most one T ′′-adjacency in H − u.

If there is an L′′-colouring of H − u, then we can we place the coloured
vertices back into the graph so that we have an L-colouring of G − {u}.
Since c(u1) /∈ L(u), we can let c(u) ∈ L(u)\{c(v)} to get an L-colouring
of G, and a contradiction. Therefore, we need only find an L′′-colouring of
H − u. Either u3 is adjacent to an S-vertex or it is not.

Subcase 24.5.2.1 u3 is adjacent to an S-vertex.
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In H − u, if u3 is adjacent to an S-vertex, then reduce its list to be a proper
1-list, let S ′ = S∪{u3} and remove u3 from T ′′. Note that |S ′| ≤ 5, therefore
H − u satisfies the hypothesis with S ′ and T ′′ and we use the minimality of
G to find an L′′-colouring of H − u, and a contradiction.

Subcase 24.5.2.2 u3 is not adjacent to an S-vertex.

Suppose NH−u(S)∪T ′′ contains an odd cycle. By Lemma 10, (H−u)[V (C ′)∪
S] contains a 4-cycle. Note that this 4-cycle is different from C because C
contains no S∪T vertices. These two cycles contradict the fact that 4-cycles
are far apart. Therefore, NH−u(S) ∪ T ′′ does not contain an odd cycle.

Similarly, if there is a T ′′-adjacency, then the T ′′-adjacency would be u2u3
and it is it not in a 4-cycle because it would be too close to C.

The minimality of G shows there is an L′′-colouring of H − u, and a contra-
diction.

Case 24.6 u2, v2 ∈ T .

Without loss of generality, we may assume that NG(u1) does not have a
vertex adjacent to a vertex in NG(v), else by planarity the vertices v1 and u
do not have adjacent neighbours.

Define T ′ = (T\{u, v}) ∪NG({u1, u, v}). We would like to colour and delete
u1, u, v such that the colour of u1 is not in L(u2) and proceed as in previ-
ous cases by reducing the lists of their neighbours, but unwelcome things
can happen. In particular, there could be an odd cycle in G[NG(S) ∪ T ′],
NG(u1) ∩NG(v1) ∩ Int(G) 6= ∅, there could be a vertex in NG(u1) adjacent
to a vertex in NG(u), or v1 and v2 could be in a 4-cycle.

Claim 24.6.1 There is no odd cycle in G[NG(S) ∪ T ′].

Suppose by way of contradiction that there is an odd cycle in G[NG(S)∪T ′].

This implies that there is a cycle C such that the edge v1v2 is in C, and every
other vertex of C has list size three and is adjacent to an S-vertex. Let z be
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the neighbour of v1 in V (C)\{uv2}. Since 4-cycles are far apart, we have that
z is adjacent to a vertex s that is the end of Bnd(G)[S]. The path (v1, z, s)
is a separating 2-path, that induces triples (G1, G2, P ) and (G2, G1, P ), in
which one of them is a good triple, a contradiction with Claim 19.

Claim 24.6.2 NG(u1) ∩NG(v1) ∩ Int(G) = ∅.

Suppose to the contrary that z ∈ NG(u1) ∩NG(v1) ∩ Int(G).

As before let u3 be the neighbour of u2 on the boundary that is not u1
and let u4 be the neighbour of u3 on the boundary that is not u2. Define
v3 and v4 in a similar manner on the other side. The Bnd(G) is really two
internally disjoint u1, v1-paths.

Let R be the path of the two that is not the path (u1, u, v, v1).By Claim
12, if the cycle formed by R and z has length less than 7, then its interior
must be empty. But the interior of the cycle (z, u1, u, v, v1, z) is empty. This
would imply that degG(z) = 2, a contradiction with Claim 11. Therefore, we
know that |V (Bnd(G))| ≥ 9. This says that if ui = vj, then i = j = 4.

First we show that no vertex in the set {u1, u2, u3} is adjacent to a ver-
tex in {v1, v2, v3}.

Suppose this is not the case, so some ui and vj are adjacent for i, j ∈
{1, 2, 3}. If i 6= 3 and j 6= 3, then this would give us a separating cycle
(ui, ..., u, v, ..., vj) of length at most 7, a contradiction with Claim 12. There-
fore, it must be the case that i = j = 3. Apply the same argument that
shows |V (Bnd(G))| ≥ 9 to show u3 is not adjacent to u3, except define
R = (u1, u2, u3, v3, v2, v1).

Without loss of generality we may assume that no pair of vertices in {u1, u2, u3}
is in a 4-cycle, else we look at v’s instead of u’s. Colour and delete u1 and u2
as to not disturb u. Delete u and v and call the resulting graph H. Adjust
the lists of neighbours of u1 and u2 accordingly and call this list assignment
L′.

Either u4 ∈ S or u4 /∈ S.
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Case 24.6.2.1 u4 ∈ S.

Define T ′ = (T ∪NG({u1, u2}))\{v, u, u2, u3} and S ′ = S ∪ {u3}. If a vertex
y in NG(u1)\{u1, u} is adjacent to an S ∪ T -vertex, then the S ∪ T -vertex
along with y, u1 and u2 would a separating path, contradicting Claim 22. By
Claim 22, no vertex in NG(u2)\{u1, u3} is adjacent to an S ∪ T -vertex.

Since u1 and u2 are not in a 4-cycle together, we have that NG({u1, u2})
is an independent set. For the same reason, we have that u3 is not adjacent
to any internal neighbours of u1. By Claim 20, we have that u3 is not adja-
cent to any T ′-vertices. Reduce the list of u3 to be a proper 1-list.

From our arguments, there are no S ′, T ′-adjacencies, and there are no T ′-
adjacencies. As |S ′| ≤ 5, there are no odd cycles in NH(S ′) ∪ T ′, and no
list size three vertex is adjacent to three S ′-vertices. With sets S ′ and T ′,
H satisfies the hypothesis of the theorem, and by minimality of G, there is
an L′-colouring of H. Place the coloured vertices u1, u2 back in the graph
along with the non-coloured vertices u, v. Since u1 does not disturb the list
of u we can colour v, u without conflict, resulting in an L-colouring of G, a
contradiction.

Case 24.6.2.2 u4 /∈ S.

Define T ′′ = (T ∪ NG({u1, u2}))\{v, u, u2} and S ′ = S. Apply the same
arguments as in Case 24.6.2.1 to show that there are no S ′, T ′′-adjacencies
and that the only possible T ′′-adjacency is u3u4. By Lemma 10, the only
thing we need worry about is if u3u4 is a T ′-adjacency in a 5-cycle C, with
the other vertices in C having list size three and each being adjacent to an
S ′-vertex.

Let the vertices of C = (z1, ..., z5) be such that u3 = z4 and u4 = z5. Let s
be the S-vertex adjacent to z3. Then the path P = (z4, z3, s) induces a good
triple (G1, G2, P ), a contradiction with Claim 19.

Therefore, there are no odd cycles in NH(S ′)∪T ′, and we have an L-colouring
of H. Place the coloured vertices u1 and u2 back in the graph along with
u and v. Since u1 does not disturb the list of u we can colour v, u without
conflict, resulting in an L-colouring of G, a contradiction.
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Claim 24.6.3 There is no vertex in NG(u1) that is adjacent to a vertex
in NG(u).

Suppose there exists a vertex x ∈ NG(u1) that is adjacent to a vertex
y ∈ NG(u).

Since the T -adjacency is not in a 4-cycle, y 6= v. By Claim 11, degG(u1) ≥ 3.
If x = u2, then (x, u1, u, y, x) would be a 4-cycle with non-empty interior and
non-empty exterior, contradicting Claim 12. As such, x ∈ NG(u1) ∩ int(G)
and y ∈ NG(u) ∩ int(G). Let C be the 4-cycle (u1, u, y, x, u1). Either no
vertex in NG(u) is adjacent to a vertex in NG(v1) or some vertex in NG(u)
is adjacent to a vertex in NG(v1).

Case 24.6.3.1 No vertex in NG(u) is adjacent to a vertex in NG(v1).

Colour and delete u, v, v1 so as not to disturb the list of v2. Adjust the
lists of the neighbours of u, v, v1 accordingly and call this new graph H. Let
T ′′ = T ∪NG({u, v, v1}).

Clearly no neighbour of u or v is adjacent to an S ∪ T -vertex by Claim
22. If a neighbour of v1 is adjacent to an S ∪ T -vertex, then there is a sep-
arating path of length two across the boundary of G with both sides of the
path containing a 3-list vertex on the boundary. Using Claim 19, we get that
no neighbour of v1 is adjacent to an S ∪ T -vertex.

Since C is a 4-cycle, we have that NG({v, v1}) is an independent set. Simi-
larly, since the T -adjacency is not in a 4-cycle, we have NG({u, v}) is an inde-
pendent set. Since no vertex in NG(u) is adjacent to a vertex in NG(v1), we
have that NG({u, v1})∩ int(G) is an independent set. Thus, NG({u, v, v1})∩
int(G) is an independent set.

Therefore the only T ′′-adjacency is between v1 and v2. Since C is a 4-cycle,
we have that the T ′′-adjacency is not in a 4-cycle. Similarly, by the existence
of C, we have that H[NH(S) ∪ T ′]′ has no odd cycles. Taking the sets S
and T ′′ along with the list assignment L′, we get that G − {u, v, v1} is L′-
colourable by minimality of G. Placing the coloured vertices u, v, v1 back in
the graph, results in an L-colouring of G, and a contradiction.
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Case 24.6.3.2 There does exist a vertex in NG(u) that is adjacent to a
vertex in NG(v1).

As before, let u3 be the neighbour of u2 on the boundary that is not u1
and let u4 be the neighbour of u3 on the boundary that is not u2. Similarly,
extend the labelling of the vertices for v up to v4.

It is clear that by Claim 12, since u, v, v1 are in a 5-face on the interior
of the graph, degG(v) = 2. It also follows from Claim 12 that neither u1 nor
u is adjacent to v1, v2, v3 or v4.

Colour and delete v1 and v2 so as not to disturb the list of v. Following this
delete v and let H = G − {v, v1, v2}. Define T ′ = (T ∪ NG(v1, v2))\{v, v3}
and S ′ = S ∪{v3} and call this new list-assignment L′. Adjust the list of the
vertices in NG(v1, v2) accordingly, and reduce the list of v3 to be a proper
1-list.

Clearly no neighbour of v2 is adjacent to an S ∪ T -vertex by Claim 22. If
a neighbour of v1 is adjacent to an S ∪ T -vertex, then there is a separating
path of length two across the boundary of G with both sides of the path
containing a 3-list vertex on the boundary. Using Claim 19, we get that no
neighbour of v1 is adjacent to an S ∪ T -vertex.

We can break this up into two similar subcases. Either v4 ∈ S or v4 /∈ S.

Subcase 24.6.3.2.1 v4 ∈ S.

C is close to v1 and v2, therefore, NG(v1, v2) is an independence set and
there is no T ′-adjacency. Since |S ′| ≤ 5, NH(S ′) ∪ T ′ has no odd cycles.

By minimality of G, we have that H is L′-colourable, by placing the coloured
vertices v1 and v2 back in the graph, we get an L-colouring of G−{v}. Apply
this colouring to G and let c(v) ∈ L(v)\{c(u)}. This is an L-colouring of G,
and a contradiction.

Subcase 24.6.3.2.2 v4 /∈ S.
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C is close to v1 and v2, therefore, NG(v1, v2) is an independence set and
at most one new T ′-adjacencies occurs at the edge v3v4. Since C is close to
the T ′-adjacency, we have that NH(S ′) ∪ T ′ has no odd cycles.

Since C is close to the edge v3v4, the T ′-adjacency is not is a 4-cycle. Since
|S ′| = |S| ≤ 4, we may use the minimality of G to get that H is L′-colourable,
by placing the coloured vertices v1 and v2 back in the graph, we get an L-
colouring of G− {v}. Apply this colouring to G and let c(v) ∈ L(v)\{c(u)}.
This is an L-colouring of G, and a contradiction.

Claim 24.6.4 There is no vertex in NG(v1) that is adjacent to a vertex
in NG(v2).

Suppose by way of contradiction there there exists a vertex x ∈ NG(v1)
that is adjacent to a vertex y ∈ NG(v2). First we know by Claims 12 and 11
that x 6= v. Let C be the 4-cycle (v1, v2, y, x, v1).

There are two cases, either there is a vertex in NG(u) adjacent to a ver-
tex of NG(v1) or not.

Case 24.6.4.1 No vertex in NG(u) is adjacent to a vertex of NG(v1).

Colour and delete v1, v, u so as not to disturb the list of v2. Adjust the
lists of the neighbours of u, v, v1 and call this new graph H and list assign-
ment L′. Let T ′ = (T ∪ {u1})\{u, v} and S ′ = S. By hypothesis, and the
existence of C we know that NG(u, v, v1) is an independent set.

By Claim 12 and v2 ∈ T , no vertex in NG(v1) is adjacent to an S ∪ T -
vertex. By Claim 22, no vertex in NG({u, v}) is adjacent to an S ∪ T -vertex
other than the vertex u1. From Claim 20 we know the only T ′-adjacency is
the edge u1u2.

By the existence of C and Lemma 10, the T ′-adjacency is not in a 4-cycle,
and there is no odd cycle in G[NG(S) ∪ T ′].

As a consequence of the minimality of G, there is an L′-colouring of H.
Placing the coloured vertices u, v, v1 back into H, yields an L-colouring of G,
and a contradiction.
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Case 24.6.4.2 z ∈ NG(u) such that z is adjacent to a vertex z1 ∈ NG(v1).

Now we either have z1 6= x or z1 = x.

Subcase 24.6.4.2.1 z1 6= x.

Colour and delete v1, v, u, z1, and z so as not to disturb the list of v2 and call
the resulting graph H. Adjust the lists of the vertices of NG({v1, v, u, z1, z})
accordingly, define T ′ = (T ∪NG(v1, v, u, z1, z))\{u, v} and S ′ = S.

By Claims 12 and 11, and by the existence of C, we have thatNG({v1, v, u, z1, z})
is an independent set. By Claims 20 and 22, none of {v1, v, u, z1, z} is ad-
jacent to an S ∪ T -vertex therefore, every T ′-vertex has a 2-list and every
S ′-vertex has a 1-list.

We claim that no vertex in NG({v1, v, u, z1, z}) is adjacent to an S ′ ∪ T ′-
vertex except u1 adjacent to u2.

Claim 22, no vertex in NG({u, z}) is adjacent to an S ∪ T -vertex, except
for u1. No neighbour of v1 is adjacent to an S ∪ T -vertex, else it would form
a path that would induce a good triple, contradicting Claim 19. Suppose w is
an S ∪ T -vertex adjacent to w1 ∈ NG(z1). One of the paths (v1, z1, w1, w) or
(u, z, z1, w1, w) would induce a good triple, contradicting Claim 19, therefore,
no such S ∪ T -vertex exists.

Clearly Claim 20 and the existence of C imply that u1 is not adjacent to
any T ′-vertices other than u2. By the existence of C, we have that there is
no odd cycle in H[NH(S) ∪ T ′]. Therefore, H satisfies the hypothesis with
S and T ′, and by minimality of G, there is an L-colouring of H. Placing
the coloured vertices back into the graph, yields an L-colouring of G, and a
contradiction.

Subcase 24.6.4.2.2 z1 = x.

We prove a claim that will break this down into easier cases.

Claim 24.6.4.2.2 One of the following four sets is non-empty:
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1. [L(v1) ∩ L(y)]\L(v);

2. L(v1)\[L(v) ∪ L(x)];

3. [L(x) ∩ L(v2)]\L(y);

4. L(v1)\[L(v) ∪ L(v2)]

Proof.
Suppose all of these sets are empty. We have |L(v1)\L(v)| ≥ 1, therefore, let
c ∈ L(v1)\L(v),

By 4), c ∈ L(v2),

By 2), c ∈ L(x),

By 3), c ∈ L(y),

By 1), c ∈ L(v),

and we have a contradiction with c /∈ L(v). �

Let v3 be the neighbour of v2 on the boundary that is not v1 and let v4
be the neighbour of v3 on the boundary that is not v2. From here we con-
sider two cases, whether y = v3 or not.

Subcase 24.6.4.2.2.1 y 6= v3.

From Claim 24.6.4.2.2, we have four cases.

Subcase 24.6.4.2.2.1.1 There exists c ∈ [L(v1) ∩ L(y)]\L(v).

Colour and delete v1, v2 and y so that v1 and y get coloured with c. Following
this delete v, adjust the lists of the vertices in NG({v1, v2, y}) accordingly,
and call the resulting graph H. Let T ′ = (T ∪ NG( v1, v2, y}))\{v}. By
Claims 12 and 11, and the existence of C, we have that NG({v1, v2, y}) is an
independence set.

If x is adjacent to any S ∪ T -vertices, then would form a path that induces
a good triple, and a contradiction with Claim 19. By Claim 22, NG({v2, y})
contains no vertex adjacent to an S ∪T -vertex other than v3. If v4 ∈ S, then
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reduce the list of v3 to be a proper 1-list, remove it from T ′ and place it in
S. By the existence of C, there are no odd cycles in H[NH(S) ∪ T ′] in ei-
ther case. Similarly, the existence of C implies v3v4 is not in a 4-cycle. Since
|S| ≤ 5, we also have that there is no 3-list vertex adjacent to three S-vertices.

Therefore, there is an L-colouring of H by minimality of G. Place the
coloured and uncoloured vertices back into H. Since c(v1) /∈ L(v), we colour
v, and this yields an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.2 There exists c ∈ L(v1)\[L(v) ∪ L(x)].

Colour and delete v1 and v2 so that v1 gets coloured with c. Following this
delete v and adjust the lists of the vertices accordingly, and call the resulting
graph H. Let T ′ = (T ∪NG({v1, v2}))\{v}.

By the analysis of Subcase 24.6.4.2.2.1.1, there are no S, T ′-adjacencies, the
only possible T ′-adjacency is v3v4, v3v4 is not in a 4-cycle, there are no odd
cycles in H[NH(S) ∪ T ′], and there is no 3-list vertex adjacent to three S-
vertices. Therefore, there is an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.3 There exists c ∈ [L(x) ∩ L(v2)]\L(y).

There are two cases here depending on whether v4 ∈ S ∪ T or not.

Subcase 24.6.4.2.2.1.3.1 v4 ∈ S ∪ T .

Colour and delete v3, v2, v1, v, u, z, x so as to not disturb the list of v4 and so
that the colour of x is c. Following this adjust the lists of the vertices accord-
ingly, and call the resulting graphH. Let T ′ = (T∪NG({v3, v2, v1, v, u, z, x}))\{v}.
By Claims 12 and 11, and the existence of C, we have thatNG({v3, v2, v1, v, u, z, x})
is an independent set.

Claim 22 implies that no vertex in NG(v2) is adjacent an S ∪ T -vertex. We
need not worry about the neighbours of v and v1 since they were all deleted.
The paths (v2, y, x, z) and (u, z) show that no neighbour of z is adjacent to
an S ∪ T -vertex, else it would form a path that would induce a good triple,
contradicting Claim 19. Similarly, by paths (u, z, x) and (v2, y, x), no neigh-
bour of x is adjacent to an (S ∪ T )-vertex. By Claim 20, other than v4, no
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vertex in NH(v3) is an (S ∪T )-vertex. By Claim 19, no vertex other than u1
in NH({u, v2}) is adjacent an S ∪ T -vertex.

Now we have that the only T ′-adjacency is the edge u1u2 and it is clearly
not in a 4-cycle by the existence of C in G. Lemma 10 tells us that the
existence of C in G implies that H[NH(S) ∪ T ′] does not contain an odd
cycle. Therefore, by minimality of G, there is an L-colouring of H. Place the
coloured vertices back into H to get an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.3.2 v4 /∈ S ∪ T .

Colour and delete v2, v1, v, u, z, x so that the colour of x is c. Following this
adjust the list of the vertices in NG({v2, v1, v, u, z, x}) accordingly, and call
the resulting graph H. Let T ′ = (T ∪NG({v2, v1, v, u, z, x})\{v}. The rest of
the analysis of this case is contained in the analysis Subcase 24.6.4.2.2.1.3.1,
and so we can find an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.4 There exists c ∈ L(v1)\[L(v) ∪ L(v2)].

Colour v1 with c and delete it. Reduce the list of x and define T ′ = T ∪ {x}.
By the existence of the paths (u, z, x) and (v2, y, x), x is not adjacent to an
S ∪ T -vertex, else there would be a path that induces a good triple, con-
tradicting Claim 19. Since G satisfies the hypothesis with sets S and T , we
have G− v1 satisfies the hypothesis with sets S and T ′. By minimality of G,
there is an L-colouring G − v1. Placing the coloured vertex v1 back in the
graph, yields an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2 y = v3.

By Claim 22, other than u1 and v no vertex in NG({u, z}) is adjacent to
an (S ∪ T )-vertex. By paths (u, z, x) and (y, x), no vertex in NG(x) is an
S ∪ T -vertex. By a similar argument, no vertex other than possibly v4 and
v2 in NG(v3) is an (S ∪ T )-vertex and no vertex in NG(v3) is adjacent to an
(S ∪ T )-vertex.

From Claim 24.6.4.2.2, we have four cases.

Subcase 24.6.4.2.2.2.1 There exists c ∈ [L(v1) ∩ L(y)]\L(v).
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There are three options for the size of the lists of v4

Subcase 24.6.4.2.2.2.1.1 v4 ∈ S.

Colour and delete v1 and v2 such that v1 is coloured with c, delete v and
call the resulting graph H. Reduce the lists of v3 and x to be proper 1-lists,
and define T ′ = T\{v, v2} and S ′ = S ∪ {v3, x}. Clearly T ′ ⊂ T is an inde-
pendent set, since the T -adjacency was deleted. We already know that there
are no (S ′, T )-adjacencies, therefore there are no (S ′, T ′)-adjacencies. By the
existence of C in G, we know that there is no vertex with list size three adja-
cent to three S ′-vertices, and that there are no odd cyccles in H[NH(S ′)∪T ′)].

There is an L-colouring H, by minimality of G, and place the coloured ver-
tices along with v back in the graph. By our choice of c(v1), it is possible to
colour v to find an L-colouring of G, a contradiction.

Subcase 24.6.4.2.2.2.1.2 v4 ∈ T .

By Claim 12, we know that v4 6= u2, and since the T -adjacency is already
defined, we know that v4 is not adjacent to u2. Extend the labelling two
steps further to v5 and v6. Colour and delete v1, v2, v3 and v4 so that v1
and v3 are coloured with c. Following this delete v, reduce the lists of the
vertices of NG({v1, v2, v3, v4}) accordingly, and call the resulting graph H.
Define T ′ = (T ∪ NG({v1, v2, v3, v4}))\{v, v2, v4}. By the existence of C,
NG({v1, v2, v3, v4}) is an independent set.

By Claim 22, other than v5, no vertex in NG(v4) is adjacent to an (S ∪ T )-
vertex. If v6 ∈ S, then we reduce the list of v5 to be a proper 1-list and
define S ′ = S ∪ {v5} and remove v5 form T ′. In any case, we have that by
the existence of C in G, there is no list size three vertex adjacent to three
S or S ′ vertices, that H[NH(S) ∪ T ′] and H[NH(S ′) ∪ T ′)] both do not con-
tain an odd cycle, and that the T ′-adjacency v5v6 if it exists is not in a 4-cycle.

Therefore, H satisfies the hypothesis, and by minimality of G, there is an
L-colouring of H. Placing the coloured vertices back in the graph yields an
L-colouring of G− v. By our choice of c(v1), we can colour v, resulting in an
L-colouring of G, and a contradiction.
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Subcase 24.6.4.2.2.2.1.3 v4 /∈ S ∪ T .

Colour and delete v1, v2, v3 so that v1 and v3 get coloured with c. Following
this, delete v, adjust the lists of NG({v1, v2, v3}) accordingly, and call the
resulting graph H. Define T ′ = (T ∪ NG(v4))\{v, v2}. The analysis of this
case is contained in the analysis of Subcase 24.6.4.2.2.2.1.2, therefore, there
is an L-colouring of H by minimality of G.

Placing the coloured vertices back in the graph yields an L-colouring of G−v.
By our choice of c(v1), we colour v, resulting in an L-colouring of G, and a
contradiction.

Subcase 24.6.4.2.2.2.2 There exists c ∈ L(v1)\[L(v) ∪ L(x)].

Colour and delete v1 and v2 such that v1 is coloured with c. Following this
delete v, reduce the lists of vertices in NG({v1, v2}) and call the resulting
graph H. Define S ′ = S and T ′ = (T ∪NG({v1, v2})\{v2}. By Claim 22, no
vertex in NG({v1, v2} is adjacent to an S ∪ T vertex and therefore, there are
no S ′, T ′-adjacencies. Since c /∈ L(x), the only possible T ′-adjacency is v3v4.

If v4 is not an S-vertex, then we can L-colour H and we are done by placing
the vertices back in the graph and colouring v.

Therefore, v4 is an S-vertex. Remove v3 from T ′ and add it to S ′. We
reduce the list of v3 to be a proper 1-list. Yet again, we find that we can
L-colour H, which results in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.3 There exists c ∈ [L(x) ∩ L(v2)]\L(y).

Colour x and v2 such that they are both coloured with c and delete them.
Following this, delete v1 and v, reduce the list of NG(x) other than v1, and
call the resulting graph H. Define T ′ = (T ∪ NG(x))\{v2, v1, v}. We have
already checked for (S ∪ T, T ′)-adjacencies. By the existence of C, the only
T ′-adjacency is the edge uz. By the existence of C, the T ′-adjacency is not
in a 4-cycle and H[NH(S) ∪ T ′] contains no odd cycle.

Therefore, there is an L-colouring of H. By placing the vertices back in
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the graph, and by our choice of c(v2) = c(x2) = c we can colour v and v1,
resulting in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.4 There exists c ∈ L(v1)\[L(v) ∪ L(v2)].

Apply the same argument as in Subcase 24.6.4.2.2.1.4. There is an L-
colouring of G, and a contradiction.

And so ends the cases of Claim 24.6.4.

Now that these claims are finished we may resume the last case of the main
theorem, in particular we are in the case where u2, v2 ∈ T .

We colour and delete u1, u, v so as to not disturb the list of u2. Adjust
the lists of the neighbours of u1, u, v accordingly, and call this new graph H.
Define T ′ = T ∪NG({u1, u, v})\{u1, u, v}. Since the T -adjacency is not in a
4-cycle, Claim 24.6.3 shows NG(u1, u, v) is an independent set.

By Claims 22 and 19, other than v1 no vertex in NG({u1, u, v}) is adja-
cent to an S∪T -vertex. Therefore, since there is no (S, T )-adjacencies, there
is also no (S, T ′)-adjacencies.

By Claim 24.6.2, no neighbour of u1 is adjacent to v1. Since the T -adjacency
is not in a 4-cycle, no neighbour of u is adjacent to v1. Therefore, the only
T ′-adjacency is the edge v1v2. By Claim 24.6.1, there is no odd cycle in
G[NG(S) ∪ T ′]. By Claim 24.6.4, the T ′-adjacency is not in a 4-cycle.

Therefore, H satisfies the hypothesis, and by minimality of G, there is an
L-colouring of H. Placing the coloured vertices back in the graph yields an
L-colouring of G, and our final contradiction to the proof. �

Claim 24 and Claim 23 are contradictory, therefore, G does not exist and
Theorem 4 holds true. �

Corollary 25. Every planar graph without 3-cycles and with 4-cycles dis-
tance 8 apart is 3-choosable.

Proof. Let G be a planar graph without 3-cycles and with 4-cycles distance
8 apart and L a list assignment of the V (G) such that |L(v)| = 3 for all
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v ∈ V (G). Note that G ∈ G. Let S = T = ∅. Every internal vertex in G has
a 3-list and 4.2-4.7 are vacuously true. Therefore, G satisfies the hypothesis
of Theorem 4 and G has an L-colouring. �

The goal of the thesis was to improve Dvořák’s theorem. Dealing with the
case of 4-cycles has provided strong evidence that this is possible. In the
immediate future we will pursue the case of 3-cycle. This thesis also gives
the reader a complicated proof to a generalization of Thomassen’s theorem.
By removing the tedious case work of the 4-cycles, this proof gives way to a
tidy proof of Thomassen’s theorem.
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