Planar graphs without 3-cycles and with 4-cycles far apart are 3-choosable by

Matthew Sullivan

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2016
(c)Matthew Sullivan

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

A graph G is said to be L-colourable if for a given list assignment $L=\{L(v) \mid v \in V(G)\}$ there is a proper colouring c of G such that $c(v) \in L(v)$ for all v in $V(G)$. If G is L-colourable for all L with $|L(v)| \geq k$ for all v in $V(G)$, then G is said to be k-choosable.

This paper focuses on two different ways to prove list colouring results on planar graphs. The first method will be discharging, which will be used to fuse multiple results into one theorem. The second method will be restricting the lists of vertices on the boundary and applying induction, which will show that planar graphs without 3cycles and 4 -cycles distance 8 apart are 3 -choosable.

Acknowledgements

I would like to thank:

- my advisor Dr. Bruce R. Richter for suggesting the topic for my thesis, suggesting edits to my thesis, and for all around putting up with my crazy train of thought;
- my friends for keeping me on track when needed and for supplying distractions when I needed a break;
- the Department of Combinatorics and Optimization for giving me the opportunity to pursue my interests; and
- my readers for taking the time to read my thesis.

Table of Contents

Author's Declaration ii
Abstract iii
Acknowledgements iv
Table of Contents v
List of Symbols vi
Chapter 1: Introduction 1
Chapter 2: Discharging 3
Chapter 3: Boundary Colouring and Induction 11
References 65

List of Symbols

$d^{\nabla}(G)$	2
$L(v)$	3
$N_{G}(v)$	3
$\operatorname{ch}(v)$	4
$\operatorname{Int}(C)$	11
$\operatorname{int}(C)$	11
$\operatorname{Ext}(C)$	11
$\operatorname{ext}(C)$	11
$\operatorname{Bnd}(G)$	11
$\operatorname{int}(G)$	11
\mathcal{G}	14
S	14
T	14
\mathcal{P}	16

Chapter 1: Introduction

H. Grötzsch published one of the most famous theorems in graph colouring in 1959. He stated that every planar graph without 3 -cycles is 3 -colourable and today this is known as Grötzsch's Theorem. His proof, although correct, was also complex. Therefore, short and concise proofs of this theorem were well sought after. In 1995, Thomassen published [11], which contained a similar result for list colouring planar graphs. Thomassen's theorem stated that every planar graph with girth 5 is 3 -choosable. He then went on to use this result to publish [12], which contains a new proof of Grötzsch's Theorem. To date, Thomassen's proof of Grötzsch's Theorem is one of the shortest and most concise proofs we know.

The results in this paper focus on families of planar graphs that are 3choosable that were not covered by Thomassen's theorem. After Thomassen released his list colouring result for planar graph, there has been a vast influx of results pertaining to planar graphs without certain cycles. Theorem 1 shows some recent results in this area.

Theorem 1. Every planar graph without x-cycles is 3 -choosable.

3	4	5	6	7	8	9	Authors	Year
x	x						[11] Thomassen	1995
	X	X	X	X	X	x	[2] Borodin	1996
x			X	X		X	[20] Zhang and Xu	2004
X		x			X	X	[16] Zhang	2005
x		x	x				[8] Lam, Shiu and Song	2005
X					x	x	[21] Zhang, Xu and Sun	2006
x					X	x	[22] Zhu, Miao and Wang	2007
x				X	X		[5] Dvořák, Lidický and Škrekovski	2009
x			x	X			[6] Dvořák, Lidický and Škrekovski	2010
	x	X	X	x	x		[7] Dvořák and Postle	2015
	x	*	*	*	*	x	[17]-[15] Varies	Varies

Note that the last theorem has stars for cycles of length 5 to 8 . This is because it has been proven that every planar graph without 4- and 9-cycles, and without any two cycles of length between 5 and 8 is 3 -choosable.

Along with removing cycles from planar graphs, we ask what happens when
cycles of certain length are further and further apart. Theorem 2 is an example of some of the results in this area that have appeared after Thomassen's theorem.

Theorem 2. Every planar graph without x-cycles and 3 -cycles distance d^{∇} apart is 3 -choosable.

4	5	6	7	8	9	d^{∇}	Authors	Year
x	x	x	x	x	x	0	[2] Borodin	1996
x	x	x				3	[10] Montassier, Raspaud, Wang	2006
x	x					4	[10] Montassier, Raspaud, Wang	2006
	x	x	x			3	[19] Zhang and Sun	2008
	x	x		x		2	[19] Zhang and Sun	2008
x	x	x	x	x		0	[7] Dvoŕák and Postle	2015
x	x	x	x			2	Theorem 3	

In Chapter 2 we will see how a new results along with results from Borodin, Montassier, Raspaud, and Wang can be combined and proven using discharging. But results in this area do not solely depend on discharging. As an example, in Chapter 3, we will show a proof of Theorem 4 by restricting the lists of the vertices on the boundary of planar graphs and applying induction.

Theorem 4. Let G be a planar graph without 3 -cycles such that any two 4 -cycles are distance at least 8 apart. Then G is 3 -choosable.

Theorem 4 extends Thommasen's Theorem about girth 5 planar graphs. The goal of this theorem was to improve upon a theorem by Dvořák [4], that states planar graphs with 3- and 4-cycles distance 26 apart are 3-choosable. This thesis can be viewed as a proof of concept and we intend to continue simplifying and extending the arguments to include 3 -cycles.

Chapter 2: Discharging

The discharging method was developed in the 1970s to attempt to prove the 4 -colour theorem. Ultimately, it would be one of the key components to proving one of the biggest theorems in graph colouring and become an important tool in graph theory. As an example of discharging we show that the results in [2] and [10] can be combined using one discharging proof.

Theorem 3. Let G be a planar graph without 4 - and 5 -cycles. Then G is 3 -choosable if it satisfies one of the following conditions:

1. G has no 6 - to 9 -cycles, (Borodin, 1996)
2. G has no 6 - to 7 -cycles and $d^{\nabla}(G) \geq 2$,
3. G has no 6 -cycles and $d^{\nabla}(G) \geq 3$, (Montassier-Raspaud-Wang,2006)
4. $d^{\nabla}(G) \geq$ 4. (Montassier-Raspaud-Wang, 2006)

Proof. Define \mathcal{G} to be the set of plane graphs with no 4 - and 5 -cycles. Let $G \in \mathcal{G}$ be a minimal counter example to the theorem and let L be a 3 -list assignment on the vertices of G such that G is not L-colourable.

Claim 1. $\delta(G) \geq 3$.
Proof. Suppose there was a vertex v in G such that $\operatorname{deg}_{G}(v) \leq 2$. By minimality of G, there is an L-colouring of $G-v$. Since $\operatorname{deg}_{G}(v) \leq 2$ and $|L(v)|=3$ we can colour v with a colour from $L(v) \backslash\left\{c(x) \mid x \in N_{G}(v)\right\}$. This yeields an L-colouring of G, and a contradiction.

For the sake of the reader, we will note that an i-vertex is a vertex of degree i and an i^{+}-vertex is a vertex of degree at least i.

Claim 2. For a postive even integer k, G does not contain any chordless k-cycles comprised of all 3 -vertices.

Proof. Suppose there was an chordless even cycle $C=\left(x_{1}, \ldots, x_{k}, x_{1}\right)$ such that every vertex in V had degree three. By minimality of G, there is an L-colouring of $G-V(C)$. Place the cycle C back into the graph. For every vertex x_{i} in $V(C)$ let c_{i} be the colour of the neighbour of x_{i} in $G-V(C)$. Define $L^{\prime}\left(x_{i}\right)=L\left(x_{i}\right) \backslash\left\{c_{i}\right\}$. We have that for all $i,\left|L\left(x_{i}\right)\right| \geq 2$. Since even
cycles are 2-choosable, there is an L^{\prime}-colouring of C, yielding an L-colouring of G, and a contradiction.

Now we use discharging to show that if G has one of the four properties, then G does not exist. Define ℓ_{f} to be the length of face f. Assign a charge to each face and vertex denoted $\operatorname{ch}(x)$ for $x \in V(G) \cup F(G)$. We define the charges to be:

- $\operatorname{ch}(v)=\operatorname{deg}_{G}(v)-4$, if $v \in V(G)$; and
- $\operatorname{ch}(f)=\ell_{f}-4$, if $f \in F(G)$.

We note that by Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ gives us

$$
\begin{aligned}
\sum_{v \in V(G)} \operatorname{ch}(v)+\sum_{f \in F(G)} c h(f) & =\sum_{v \in V(G)}\left(\operatorname{deg}_{G}(v)-4\right)+\sum_{f \in F(G)}\left(\ell_{f}-4\right) \\
& =-4|V(G)|+4|E(G)|-4|F(G)|=-8 .
\end{aligned}
$$

Now we define discharging rules on the charged graph in a way that preserves the total charge of the graph.

R1. Each vertex incident to a 3 -face gives $+\frac{1}{3}$ to the 3 -face.

R2. For $k \geq 6$, each k-face gives $+\frac{2}{3}$ to each incident 3 -vertex also incident with a 3 -face and $+\frac{1}{3}$ to each 3 -vertex not also incident with a 3 -face.

R3. For $k \geq 6$, each k-face gives $+\frac{1}{3}$ to each incident 4 -vertex that is also either incident to two 3 -faces or incident with a 3 -face that does not share an edge with the k-face.

It is clear that R1 makes every 3-face non-negative. Suppose we have a k-face f_{k} for $k \geq 12$. From the three discharging rules we see that

$$
\operatorname{ch}\left(f_{k}\right) \geq k-4-\frac{2 k}{3}=\frac{k}{3}-4 \geq \frac{12}{3}-4=0 .
$$

If every vertex in a face of length k has degree three, then there are at most $\left\lfloor\frac{k}{2}\right\rfloor$ edges that are incident with two 3 -vertices and a 3 -cycle. This implies that there are at most $2\left\lfloor\frac{k}{2}\right\rfloor 3$-vertices incident with a 3 -face in this face of length k. This implies that an 11-face f_{11} has charge

$$
\operatorname{ch}\left(f_{11}\right) \geq 11-4-\frac{2 * 10}{3}-\frac{1}{3}=0 .
$$

If a 10 -face has negative charge, then it must have nine 3 -vertices that are each incident to a 3 -cycle. Let f_{10} be such a face. Let v be a vertex of maximum degree in f_{10}. If v has degree three, then f_{10} is a chordless even cycle with every vertex having degree three, a contradiction with Claim 2. Therefore, v has degree at least four. If each of nine 3 -vertices is incident to a 3 -cycle, then f_{10} must share an edge with exactly five 3 -cycles. Since there is no 4 -cycle, this implies that v is incident to one 3 -cycle and this 3 -cycle shares an edge with f_{10}. We count to find that

$$
\operatorname{ch}\left(f_{10}\right) \geq 10-4-\frac{2 * 9}{3}=0
$$

By $\mathbf{R 1}$, if v_{k} is a vertex of degree $k \geq 5$, then

$$
\operatorname{ch}\left(v_{k}\right) \geq k-4-\frac{1}{3}\left\lfloor\frac{k}{2}\right\rfloor \geq 5-4-\frac{1}{3}\left\lfloor\frac{5}{2}\right\rfloor=\frac{1}{3} .
$$

Let $v \in V(G)$. It is clear that if $\operatorname{deg}_{G}(v)=3$, then v is incident with at most one 3 -face, as otherwise G has a 4 -cycle. Thus, R2 implies that $\operatorname{ch}(v)=0$. Similarly, if $\operatorname{deg}_{G}(v)=4$, then R3 implies that $\operatorname{ch}(v)=0$.

We have that the only possible negative faces are 6- to 9-faces. Since the sum of the charges in G is negative, G must have 6 - to 9 -cycles.

Using the same argument on 7 - to 9 - faces we get the following claim.
Claim 3. For $7 \leq k \leq 9$, a k-face f_{k} has negative charge only if there are at least $k-53$-faces that share an edge with f_{k}.

Proof. Suppose f_{k} is a k-face such that $7 \leq k \leq 9$ and f_{k} has negative charge. Let t be the number 3 -vertices in f_{k} that are incident with a 3 -face. It follows that

$$
0>\operatorname{ch}\left(f_{k}\right) \geq k-4-t \frac{2}{3}-(k-t) \frac{1}{3}
$$

or

$$
\frac{t}{2}>k-6
$$

The number of edges in f_{k} that are in a 3 -face is at least $\left\lceil\frac{t}{2}\right\rceil$. The result follows by plugging in values for k.

Claim 4. G does not have any of the following properties:

- G has no 6 - to 7 -cycles and $d^{\nabla}(G) \geq 2$,
- G has no 6 -cycles and $d^{\nabla}(G) \geq 3$, (Montassier-Raspaud-Wang,2006).

Proof. It follows from Claim 3.
Therefore, it must be the case that $d^{\nabla}(G) \geq 4$.
Definition 5. A face f is bad if it shares an edge with a 3 -face and both vertices incident with this edge are degree three, and a face is good otherwise. Similarly, we say a vertex v is bad if it is incident with a 3 -face and good otherwise.

Under our current discharging rules the only negative faces in G are bad 6 -faces. Since 6 -faces are chordless in G and $d^{\nabla}(G) \geq 4$, we have that all 6 -faces have a good vertex v of degree at least 4 as shown.

Under this case we add two new rules to take care of the bad 6 -faces.

- R4. Good 4^{+}-vertices give $+\frac{1}{3}$ to each incident bad 6 -face.
- R5. 7^{+}-faces and good 6 -faces give $+\frac{1}{3}$ to each incident good 4 - and 5 -vertex.

Under these new rules we count the charge of f_{k} a face of length k. Since 3 -faces are distance at least four apart we have that there are at most $\left\lfloor\frac{k}{5}\right\rfloor$ 3 -faces that share an edge with a k face. This results in
$\operatorname{ch}\left(f_{k}\right) \geq k-4-2 * \frac{2}{3}\left\lfloor\frac{k}{5}\right\rfloor-\frac{1}{3}\left(k-2\left\lfloor\frac{k}{5}\right\rfloor\right) \geq 7-4-2 * \frac{2}{3}\left\lfloor\frac{7}{5}\right\rfloor-\frac{1}{3}\left(7-2\left\lfloor\frac{7}{5}\right\rfloor\right)=0$.
Originally bad 6 -faces had charge at least $6-4-3 \frac{1}{3}-2 \frac{2}{3}=-\frac{1}{3}$. It is clear that $\mathbf{R} 4$ shows that bad 6 -faces now have non-negative charge.

Good 6 -faces have charge at least $6-4-6 \frac{1}{3}=6-4-4 \frac{1}{3}-\frac{2}{3}=0$, therefore all faces have non-negative charge.

By R1 and R4, we have that k-vertices have charge at least $k-4-k \frac{1}{3}$. Therefore, for $k \geq 6, k$-vertices have non-negative charge. The counting for 3 -vertices, bad 4 -vertices, and bad 5 -vertices stays unaffected by R4 and R5, therefore they have non-negative charge.

The only thing left to check is that the charge on good 4 -vertices and good

5-vertices is non-negative. By R4 and R5, we want to show that good 4vertices are incident with at most 2 bad 6 -faces and good 5 -vertices are not incident with 5 bad 6 -faces.

The following claim is helpful in doing this.
Claim 6. Suppose a vertex v is incident with distinct 6-faces C_{1} and C_{2}, and T is a 3 -face having an edge in each of C_{1} and C_{2}. Then, for some $i \in\{1,2\}$, an end of an edge in $T \cap C_{i}$ is within distance 1 of v.

Proof. Suppose v is incident with two 6 -faces and a 3 -cycle T has an edge in each of the 6 -faces. Let one 6 -face be bounded by the cycle C_{1} and the other bounded by the cycle C_{2}. Let $x_{i} y \in E\left(C_{i}\right)$ be in the 3 -cycle. By way of contradiction, we may assume that both x_{i} and y_{i} are distance ≥ 2 to v in C_{i}.

Since only one vertex is distance greater than 2 to v in C_{i}, we may assume x_{i} is distance 2 from v in C_{i}. Let P_{i} be the shortest x_{i}, v path in C_{i}. The path obtained by extending P_{2} with the edge $x_{1} x_{2}$ and the path P_{1} are distinct v, x_{1}-paths since the edge $x_{2} x_{1}$ is in one and not the other. The two paths together from a closed walk of length 5 that does not contain every edge of T. Since it was formed by two distinct v, x_{1}-paths, there is a cycle C of length at most 5 in this closed walk that is not T. Since 3 -cycles are distance 4 apart, C is not a 3 -cycle. Since G does not contain 4 - or 5 -cycle, C can not exist, therefore our assumption is false and one of x_{i} or y_{i} is distance at most 1 to v, as desired.

Suppose that G has a negatively charged good 4 -vertex v. Then v is incident with at least 3 bad 6 -faces and let each of these faces be bounded by a cycle C_{i}.

We begin by proving that none of the 3 -faces having an edge in common with any of the C_{i} contains v. By way of contradiction, suppose that T contains v. Then T is the boundary of the fourth face incident with v. In particular, $T \cap C_{1}$ and $T \cap C_{3}$ have edges $v x_{1}$ and $v x_{2}$, respectively.

Suppose $x_{1} x_{2}$ is in $E\left(C_{2}\right)$. Since $x_{1} \neq v$ and there are no parallel edges incident with v, x_{i} has distance 2 or 3 from v in C_{2}. Let P be a shortest $x_{1} v$-path in C_{2}. Adding the edge $v x_{i}$ to P yields a cycle of length 3 or 4 . The latter does not exist and the former is a 3-cycle through v that does not
use the edge $x_{1} x_{2}$. Both conclusions are contradictions. Therefore, T does not have a vertex in C_{2} other than v.

There is another 3-face T^{\prime} that has an edge in C_{2}. One end of this edge is within distance at most 2 of v in C_{2}. But then T and T^{\prime} are only distance at most 2 apart, a contradiction. Thus, none of the 3 -faces with edges in a C_{i} contains v.

Now suppose that some 3 -face T has edges in all of C_{1}, C_{2} and C_{3}. Since v is not incident with any of these edges, Claim 6 , implies two of the C_{i} have an edge of T having an end adjacent in C_{i} to v. The short paths from these ends to v in the C_{i} together with an edge of T yields a 3 -, 4 -, or 5 -cycle in G containing v, a contradiction.

Let $\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}=\{1,2,3\}$ and suppose that some 3 -face T has edges in C_{i} and C_{j}, but not C_{k}. There is another 3 -face T^{\prime} with an edge in C_{k}. One end of this edge is within distance at most 2 of v in C_{2}. By Claim 5, T is at most distance 1 to v. Therefore, T and T^{\prime} are within distance at most 3, a contradiction.

Thus there are three different 3 -faces T_{1}, T_{2}, T_{3} such that, for $i=1,2,3$, $T_{i} \cap C_{i}$ is an edge. Each of these edges must be at distance 2 from v in each C_{i} as otherwise to of the T_{1}, T_{2}, T_{3} are at distance at most 3 in G, a contradiction. However, the end of $T_{2} \cap C_{2}$ that is distance at most two from v is necessarily at distance at most 3 in G from the end of either $T_{1} \cap C_{1}$ or $T_{3} \cap C_{3}$ that is distance from v in its C_{i}. This is the final contradiction that shows such a v does not exist. That is, good 4 -vertices have non-negative charge.

It remains to show that no good 5 -vertex v can be incident with five bad 6 -faces but this is actually an easier case. If a 3 -cycle shares an edge with two bad 6 -faces, then the 3 -cycle is distance at most 1 from v. If this is the
case, then every edge in the 6 -cycles are distance at most 3 from this 3 -cycle. This implies that not all of the 6 -cycles can be bad, a contradiction.

Therefore, no 3 -cycle is incident with more than one bad 6 -cycle. It follows that we are looking for a set of five edges that are all distance 4 apart in these five 6 -cycles such that no edge has v as its end. Now if we let C be the cycle formed by these five 6 -faces that does not include v, C has length 20. It follows that for this set of edges to exist, C must have length at least 25 , a contradiction. Therefore, such a v does not exist and good 5 -vertices have non-negative charge.

By discharging we have a contradiction with the total charge of the graph being negative, as desired.

Chapter 3: Boundary Colouring and Induction

Discharging is not the only tool to be used in graph colouring. Another common tool is to work around the boundary of a planar graph and apply induction. This particular work involves restricting the lists of some boundary vertices and applying induction. This technique originated from Thomassen [12] where he originally proves Grötzsch's theorem. Thomassen used a list colouring approach along with restricting a path of vertices on the boundary to be 1-lists and an independent set of vertices on the boundary to be 2-lists.

This technique was then modified in the unpublished work of C. Nuñes da Silva, R.B. Richter, and D.H. Younger to allow for an adjacency between 2-list vertices. This modified technique was then used by N. Asghar in [1] to present another proof of Grötzsch's theorem using list colouring. We will use this technique to show that every planar graph without 3 -cycles has 4 cycles distance 8 apart is 3 -choosable. This result may seem random but the motivation is to improve a result of Dvořák's result that planar graphs with cycle of length at most 4 being distance at least 26 from each other are 3 -choosable.

Definition 7. Let G be a graph embedded in the plane, let C be a cycle and P a path in G. Then:
(a) $\operatorname{Int}(C)$ is the subgraph of G contained in the closed disc bounded by $C, \operatorname{int}(C)=\operatorname{Int}(C)-V(C), \operatorname{Ext}(C)=G-\operatorname{int}(C)$, and $\operatorname{ext}(C)=$ Ext $(C)-V(C)$;
(b) the outer face, also known as the infinite face, is the unique face of G that is unbounded;
(c) the boundary $\operatorname{Bnd}(G)$ is the subgraph consisting of the vertices and edges incident with the outer face on the boundary of G and its vertices and edges of $\operatorname{Bnd}(G)$ are the boundary vertices and edges;
(d) $\operatorname{int}(G)=G-V(\operatorname{Bnd}(G))$;
(e) a cycle or path of length i is an i-cycle or i-path; and
(f) P separates the boundary of G if $G-P$ has two disjoint connected components G_{1} and G_{2} such that $V\left(G_{1}\right) \cap V(B n d(G)) \neq \varnothing$ and $V\left(G_{2}\right) \cap$ $V(\operatorname{Bnd}(G)) \neq \varnothing$.

Definition 8. Let G be a graph, L a list-assignment of G, G_{1} and G_{2} subgraphs of G, and c_{1} and c_{2} be colourings of G_{1} and G_{2}, respectively. Then:
(a) a vertex v with $|L(v)|=1$ has a proper 1-list if for every vertex u adjacent to v with $|L(u)|=1$ we have $L(v) \cap L(u)=\varnothing$; and
(b) If for all $v \in V\left(G_{1}\right) \cap V\left(G_{2}\right)$ we have $c_{1}(v)=c_{2}(v)$, then the union of the colourings c_{1} and c_{2} on $G_{1} \cup G_{2}$ is

$$
c(v)=\left\{\begin{array}{l}
c_{1}(v), \text { if } v \in V\left(G_{1}\right) \\
c_{2}(v), \text { if } v \in V\left(G_{2}\right) .
\end{array}\right.
$$

We are trying to prove that planar graphs without 3-cycles and 4-cycles distance at least 8 apart are 3 -choosable and so it makes sense to define this set of graphs.

Definition 9. The set \mathcal{G} is the set of planar graphs G such that:

- G has no 3 -cycles; and
- each pair of 4 -cycles in G is distance at least 8 apart.

From now on we will just say that the 4 -cycles are far apart to reference that they are distance at least 8 apart.

Theorem 4. Suppose $G \in \mathcal{G}$. If we have an L-list assignment of the vertices of G such that:
4.1 there is a set T of boundary vertices such that (i) each vertex in T has a list size at least 2, (ii) there are no S-T adjacencies, and (iii) $|E(G[T])| \leq 1 ;$
4.2 there is a set S of consecutive boundary vertices such that $|S| \leq 6$, and each S-vertex has a proper 1-list;
4.3 internal vertices and boundary vertices that are not in $S \cup T$ have 3-lists;
4.4 If $|E(G[T])|=1$, then $|S| \leq 4$;
4.5 no edge in $E(G[T])$ is in a 4-cycle;
4.6 $G\left[N_{G}(S) \cup T\right]$ contains no odd cycles; and
4.7 no 3 -list vertex is adjacent to three S-vertices.

Then G is L-colourable.
Theorem 4 is proven by first showing that there are no short separating paths. We then colour and delete some of the boundary vertices (S vertices if there is no T-adjacency, or vertices around the T-adjacency if it exists) and define a new S set and T set. We then show that there is no adjacency between an old S-vertex and a new T-vertex and vice versa since there are no separating paths across the boundary. We then show through case analysis that the remaining properties hold on the new S and T sets and apply induction to find an L-colouring of G.

Let P be a path in a graph G and v a vertex adjacent to at least three vertices of P. If $|V(P)| \leq 6$, then $G[V(P) \cup\{v\}]$ contains either a 3 -cycle or a 4 -cycle. If $|V(P)| \leq 5$, then it contains a 3 -cycle or distinct 4 -cycles. As we think about Theorem 4 (4.7), if S has at most five vertices, then no vertex will be adjacent to three vertices of S. For $|S|=6$, if there is another 4 -cycle nearby, then no vertex will be adjacent to three vertices of S.

Similarly, we see that no vertex is adjacent to three vertices in a cycle of length at most 7.

As for Item 4.6, it seems to be a cumbersome property, but Lemma 10 will give us a much more concrete property to deal with if the property does not hold true.

Lemma 10. Let $H \in \mathcal{G}$ satisfy (4.1)-(4.5). If $H\left[N_{H}(S) \cup T\right]$ contains an odd cycle C, then:

- C is a 5 -cycle;
- there is a vertex of S in a 4-cycle in $H[S \cup C]$;
- every 3 -list in C is adjacent to an S-vertex;
- every vertex of C not in T-vertex has a 3 -list; and
- either;
- $C \cap T$ is precisely the T-adjacency and $|S|=4$; or
- $C \cap T$ is a single vertex and $|S|=6$.

Proof. Let $H \in \mathcal{G}$ such that H satisfies (4.1)-(4.5). Suppose $H\left[N_{H}(S) \cup T\right]$ contains an odd cycle C.

First note that no vertex in $H\left[N_{H}(S) \cup T\right]$ is an S-vertex, therefore C is comprised of T-vertices and 3-list vertices. Consecutively label the S-vertices in $\operatorname{Bnd}(H), s_{1}, \ldots, s_{n}$. Let $C=\left(c_{1}, \ldots, c_{m}\right)$.

Case 10.1 H does not have a T-adjacency.
Since H does not have a T-adjacency, C has at least three vertices in $N_{H}(S)$. Let s_{i} be the first S-vertex that is adjacent to a C vertex c_{l} and let s_{j} be the last S-vertex that is adjacent to a C-vertex c_{h}. Let P and R be the two c_{l}, c_{h}-paths in C. Without loss of generality, suppose every vertex in $V(P) \backslash\left\{c_{l}, c_{h}\right\}$ is in the interior of the cycle formed by the paths $\operatorname{Bnd}(H)[S]$, $s_{i} c_{l}, R, c_{h} s_{j}$.

Therefore, for every vertex in $v \in V(P), v \notin T$ and v must be a neighbour of an S-vertex. Since S-vertices are on the boundary of H, there are no vertices in $V(R) \backslash\left\{c_{l}, c_{h}\right\}$ that are adjacent to an S-vertex. Since there is no T-adjacency, this tells us that $V(R) \backslash\left\{c_{l}, c_{h}\right\}$ is empty or is a set containing one T-vertex.

Since 3-cycle do not exist and C is an odd cycle we have $|V(P)|=|V(C)|-$ $|V(R)|+2 \geq 5-3+2=4$. Because $|S| \leq 6, H[S \cup P]$ has a 4 -cycle. Since 4 -cycles are far apart, $H[S \cup P]$ can only have one 4 -cycle, so $|S|>5$. Therefore, $|S|=6,|V(P)|=4$, R has precisely one T-vertex, and $m=5$, as desired.

Case 10.2 H has a T-adjacency.
Since H does have a T-adjacency, C has at least two vertices in $N_{H}(S)$. Let s_{i} be the first S-vertex that is adjacent to a C vertex c_{l} and let s_{j} be the last S-vertex that is adjacent to a C-vertex c_{h}. Let P and R be the
two c_{l}, c_{h}-paths in C. Without loss of generality, suppose every vertex in $V(P) \backslash\left\{c_{l}, c_{h}\right\}$ is in the interior of the cycle formed by the paths $\operatorname{Bnd}(H)[S]$, $s_{i} c_{l}, R, c_{h} s_{j}$.

Therefore, for every vertex in $v \in V(P), v \notin T$ and v must be a neighbour of an S-vertex. Since S-vertices are on the boundary of H, there are no vertices in $V(R) \backslash\left\{c_{l}, c_{h}\right\}$ that are adjacent to an S-vertex. Since there is a T-adjacency, this tells us that $V(R) \backslash\left\{c_{l}, c_{h}\right\}$ is empty, is a set containing one T-vertex or a set containing two T-vertices.

Since 3-cycle do not exist and C is an odd cycle we have $|V(P)|=|V(C)|-$ $|V(R)|+2 \geq 5-4+2=3$. Because $|S| \leq 4, H[S \cup P]$ has a 4 -cycle. Since 4-cycles are far apart, $H[S \cup P]$ can only have one 4-cycle, so $|S|>3$. Therefore, $|S|=4,|V(P)|=3, R$ has precisely the T-adjacency, and $m=5$, as desired.

Proof of Theorem 4. Let $G \in \mathcal{G}$ be a minimum counterexample and let L be a list-assignment as described such that G is not L-colourable. The hypothesis being satisfied for G implies the hypothesis is satisfied for each connected component of G; therefore, G is connected by minimality of G.

Claim 11. G has no vertex v such that $|L(v)|>\operatorname{deg}(v)$.
Proof. Suppose G has a vertex v as described. Define G^{\prime} to be $G-v$ and L^{\prime} to be L restricted to G^{\prime}. By the minimality of G, G^{\prime} is L^{\prime}-colourable. Let this L^{\prime}-colouring be a partial L-colouring of G with v not coloured. Since $|L(v)| \geq \operatorname{deg}(v)+1$, we can properly colour v and find an L-colouring for G, a contradiction.

Claim 12. G has no k-cycle C such that $k \leq 7, \operatorname{int}(C) \neq \varnothing$, and $\operatorname{ext}(C) \neq \varnothing$.
Proof. Suppose first that C has legnth at most 6 . By minimality of G. By minimality of G we can L-colour $\operatorname{Ext}(C)$ with L restricted to the vertices of $\operatorname{Ext}(C)$. This colouring induces a new list assignment on $\operatorname{Int}(C)$ where all vertices of C have proper 1-lists. Clearly no vertex in $\operatorname{int}(C)$ is adjacent to three vertices in $V(C)$ since that would form a pair of cycles of length four that are adjacent. Therefore, $\operatorname{Int}(C)$ satisfies the hypothesis and by minimality of G we can extend the L-colouring of $\operatorname{Ext}(C)$ to G itself, a contradiction.

Now suppose C has length 7 . By minimality of G, we can L-colour $\operatorname{Ext}(C)$ with L restricted to the vertices of $\operatorname{Ext}(C)$. This colouring induces a new list assignment on $\operatorname{Int}(C)$ where all vertices of C have proper 1-lists. Let $v \in V(C)$ such that v is not in a 4 -cycle. Since v is not in a 4-cycle, no vertex in $N_{G}(v) \cap V(\operatorname{int}(C))$ is adjacent to a vertex of $V(C)$ other than v, else G contains a separating k-cycle for $k \leq 6$, contradicting Claim 12 .

Define $S^{\prime}=V(C) \backslash\{v\}$ and $T^{\prime}=N_{\text {int }(C)}(v)$. No vertex in $\operatorname{int}(C)$ is adjacent to three vertices of $V(C)$ since 4 -cycles are far apart. Since 4 -cycles are far apart, no neighbour of v is in a 5 -cycle with two vertices that are adjacent to the ends of $C-v$ (this would form two different 4-cycles with v). Delete v, and adjust the lists of the vertices of T^{\prime}. By minimality of G, we can find an L-colouring of $\operatorname{Int}(C)-v$. Placing v back in the graph we find an L-colouring of $\operatorname{Int}(C)$. The union of the colourings of $\operatorname{Int}(C)$ and $\operatorname{Ext}(C)$ form an L-colouring of G, and a contradiction.

A principle point in the induction is dealing with short paths that allow for a partition of G into two smaller subgraphs. Our next definition is a first step to finding the paths that allow for an inductive argument.

Definition 13. Let \mathcal{P} be the set of triples $\left(G_{1}, G_{2}, P\right)$ with the properties:

- P is a path;
- $G_{1} \cap G_{2}=P ;$
- $\left(V\left(G_{2}\right) \backslash V(P)\right) \cap V(B n d(G)) \neq \varnothing$;
- $\left(V\left(G_{1}\right) \backslash V(P)\right) \cap V(B n d(G)) \neq \varnothing$;
- If $S \neq \varnothing$, then $V\left(G_{1}\right) \cap S \neq \varnothing$;
- the vertices of $V\left(G_{1}\right) \cap S$ are consecutive on the boundary of G_{1}; and
- $G_{1} \cup G_{2}=G ;$

We will call these properties the separating path properties.
Claim 14. G has no 0-path that separates the boundary and no 1-path with one end in T that separates the boundary.

Figure 1: 0-path separating the boundary and 1-path separating the boundary with one end in T.

Proof. Let $\overline{\mathcal{P}} \subseteq \mathcal{P}$ be the set of triples $\left(G_{1}, G_{2}, P\right)$ where P is a 0-path or a 1-path with one end in T.

Choose the triple $\left(G_{1}, G_{2}, P\right) \in \overline{\mathcal{P}}$ that maximizes $\left|V\left(G_{1}\right) \backslash V(P)\right|$. Note that $G\left[V\left(G_{2}\right) \backslash V(P)\right]$ is connected, else $\left|V\left(G_{1}\right) \backslash V(P)\right|$ is not maximum.

Suppose a vertex v in the boundary of $\operatorname{Bnd}\left(G_{2}\right)$ is adjacent to three or more vertices of $\operatorname{Bnd}\left(G_{2}\right)$. Let v_{1}, v_{2}, v_{3} be three vertices in $\operatorname{Bnd}\left(G_{2}\right)$ adjacent to v.

By our choice of G_{1} and G_{2}, v is not a cut vertex, therefore $\operatorname{Bnd}\left(G_{2}\right)-v$ is connected. There is a path P in $\operatorname{Bnd}\left(G_{2}\right)$ joining, say, v_{1} and v_{2} that does not go through v_{3}. In $\operatorname{Bnd}\left(G_{2}\right)$, there is a $v_{3} P$-path Q such that $Q \cap P$ is a single vertex w. The 2-connected subgraph of $\operatorname{Bnd}\left(G_{2}\right)$ consisting of v, its three incident edges, P, and Q has three faces, all incident with two of the three edges incident with v. One of these faces is the outer face, and is not incident with one of these three edges. Therefore, v has degree at most 2 in $\operatorname{Bnd}\left(G_{2}\right)$

Suppose v has degree 1 in $\operatorname{Bnd}\left(G_{2}\right)$ and is adjacent to u in $\operatorname{Bnd}\left(G_{2}\right)$. It is clear that $d e g_{G_{2}}(v)=1$. By Claim 11, $v \in S$. If $u \in S$, then by minimality of G we colour $G-v$. Since $c(u) \notin L(v)$, we place v back in the graph and colour it to find an L-colouring of G and a contradiction.

Therefore, $u \notin S$. Let $S^{\prime}=\left(N_{G}(u) \cap T\right) \cap\{u\}$ and let $T^{\prime}=T \backslash T^{\prime}$ and define $L^{\prime}(u)=L(u) \backslash L(v)$. There is an L-colouring of $G-v$. Colouring v and placing it back in the graphs yields an L-colouring of G, a contradiction. Therefore v does not exist.

Every vertex in the boundary of G_{2} is incident with exactly two boundary edges, therefore the boundary of G_{2} is a cycle.

Case 14.1 $V(P) \subseteq S$.
By the hypothesis of this claim, it must be the case that $V(P)=\{u\}$ and $u \in S$. Under this case we colour all of G_{1}, then we colour all of G_{2} by minimality of G. The union of these colourings results in an L-colouring of G, a contradiction.

Case $14.2 V(P) \nsubseteq S$.
As $V(P) \nsubseteq S$, there exists $b \in V(P)$ such that $b \notin S$. Since $|V(P)| \leq 2$, $S \subseteq V\left(G_{1}\right)$. Thus P is either a 0-path that separates the boundary and has no vertex in S or a 1-path with one end in T that separates the boundary.

Since G is connected, we know that both G_{1} and G_{2} are connected. We define H to be the component of $G\left[V\left(G_{1}\right) \cup T\right]$ that contains G_{1}. We will colour H by minimality of G, but first we must show that $H \neq G$. It is enough to show that G_{2} has a vertex with list of size three not in P.

We know that the boundary of G_{2} is a cycle C of length at least four. If P is a 0-path, then C has three consecutive vertices that are not in $P \cup S$, and therefore the definition of T implies one of them must have a list of size three.

If P is a 1-path, then P has a T-vertex u. Observe that $G[V(C-P) \cup\{u\}]$ is a path of length two with one vertex in T. Since none of these vertices is in S and there is at most one T-adjacency in G, we have that one of the vertices in $V(C-P) \subseteq V\left(G_{2}-P\right)$ has a list of size three.

We now colour H by minimality of G, thereby inducing a proper 1-list on the set of vertices $S^{\prime}=V\left(H \cap G_{2}\right)$ on the boundary of G_{2}. By maximality of $\left|V\left(G_{1}-P\right)\right|, G_{2}$ has no 1-path with one end in T that separates the boundary. Therefore, the vertices of S^{\prime} must be consecutive on the boundary of G_{2}. Define $T^{\prime}=\left(V\left(G_{2}\right) \cap T\right) \backslash S^{\prime}$. No S^{\prime}-vertex is adjacent to a T^{\prime}-vertex by definition of H and S^{\prime}.

To help determine $\left|S^{\prime}\right|$, notice that $S^{\prime} \subseteq S$ or

$$
S^{\prime} \leq \begin{cases}|P|+3 \leq 5, & \text { if } G_{2}-S^{\prime} \text { does not contain a } T \text {-adjacency } \\ 3, & \text { if } G_{2}-S^{\prime} \text { contains a } T \text {-adjacency }\end{cases}
$$

It is clear that no vertices with list size three in G_{2} are adjacent to three S^{\prime}-vertices since G_{2} does not contain any 3-cycles, and 4-cycles are far apart. Since $\left|S^{\prime}\right|$ is one less than its bound of 6 or 4 depending on the situation, this implies that $G\left[N_{G}\left(S^{\prime}\right) \cup T^{\prime}\right]$ contains no odd cycles. Therefore, with S^{\prime} and T^{\prime}, we get that G_{2} satisfies the hypothesis and by minimality of G, there is an L-colouring of G_{2}. The colouring of H and G_{2} agree on their intersection and therefore the union of the two colorings results in an L-colouring of G, a contradiction.

Claim 15. G is 2-connected.
Proof. By Claim 14, we need only suppose G has a cut-vertex v that does not separate the boundary. Let G_{1} be the component of $G-v$ graph that contains the boundary of G, and let $G_{2}=G-V\left(G_{1}\right)$. By minimality of G, we can extend L to all of $G_{1}+v$. This L-colouring of G_{1} defines a new L^{\prime}-list assignment on G_{2} where v is an S-vertex and every other vertex in G_{2} has a list of size three. By minimality of G, we have an L^{\prime}-colouring of G_{2}. These two colourings result in an L-colouring of G, a contradiction.

Note by Claim 15, If $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}$, then G_{1} and G_{2} are 2-connected; in particular the boundaries are cycles.

Observation 16. [Separating Path] For every path P that separates the boundary of G, there is a triple $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}$.

Proof. Let u and v be the ends of P. Since the boundary of G is a cycle we have that there are two internally disjoint (u, v)-paths H_{1} and H_{2} that form the boundary of G. Let C_{1} be the cycle $H_{1} \cup P$ and C_{2} be the cycle $H_{2} \cup P$. Since the S-vertices are consecutive on the boundary of G, we have that if $S \neq \varnothing$, then a non-empty subset of the S-vertices are consecutive on H_{1} or H_{2}. Without loss of generality, suppose if $S \neq \varnothing$, then a non-empty subset of the S-vertices are consecutive on H_{1}. Let $G_{1}=\operatorname{Int}\left(C_{1}\right)$ and $G_{2}=\operatorname{Int}\left(C_{2}\right)$. It is clear that $\left(G_{1}, G_{2}, P\right)$ have the desired properties.

Definition 17. Given a triple $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}$, we define H_{P} to be the component of $G\left[V\left(G_{1}\right) \cup S \cup T\right]$ containing G_{1} and S_{P} to be the set containing the vertices of the component of $H_{P} \cap \operatorname{Bnd}\left(G_{2}\right)$ that contains P.

Note that we can find an upper bound on $\left|S_{P}\right|$ by considering the length of P along with the length of the extension of P in the boundary of G_{2} using $S \cup T$-vertices.

Definition 18. A triple $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}$ is good if it satisfies:

- $\left|S_{P}\right| \leq 6$, if $G_{2}-H_{P}$ does not contain a T-adjacency;
- $\left|S_{P}\right| \leq 4$, if $G_{2}-H_{P}$ does contain a T-adjacency;
- there exists $v \in V\left(G_{2}\right) \backslash V\left(H_{P}\right)$ such that $|L(v)|=3$;
- No vertex with list size three in $V\left(G_{2}\right) \backslash V\left(H_{P}\right)$ is adjacent to three vertices in S_{P}; and
- $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ contains no odd cycles.

We must consider the number of vertices in S_{P} because S_{P} becomes our new " S-set" in G_{2} after we do induction on G_{1}. Because of this, if (G_{1}, G_{2}, P) is a good triple, then $\left(G\left[V\left(G_{1}\right) \cup S_{P}\right], G_{2}, S_{P}\right)$ is a good triple as well.

Claim 19. G has no good triples $\left(G_{1}, G_{2}, P\right)$.
Proof. By way of contradiction, let $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}$ be a good triple as described with the additional property that $\left|V\left(G_{2}\right)\right|$ is minimal. We have two cases, either the boundary of $G_{2}-H_{P}$ does or does not contain a vertex v with $|L(v)|=3$.

Case 19.1 The boundary of $G_{2}-H_{P}$ does not contain a vertex v with $|L(v)|=3$.

This means that the boundary of G_{2} is bounded by the vertices of S_{P}. Therefore, G_{2} is bounded by a cycle C of length at most six. Since there is a vertex v with $|L(v)|=3$ in $V\left(G_{2}\right)$ that is not in the boundary of G_{2}, it must be in $\operatorname{int}(C)$. Therefore, $\operatorname{int}(C) \neq \emptyset$. Since P separates the boundary, $V\left(\operatorname{Bnd}\left(G_{1}\right)\right) \backslash V(P) \neq \emptyset$. Therefore $\operatorname{ext}(C) \neq \emptyset$. By Claim 12, we have a contradiction.

Case 19.2 The boundary of $G_{2}-H_{P}$ contains a vertex v with $|L(v)|=3$.

Since $G_{2}-H_{P}$ contains a vertex v with $|L(v)|=3$, we have that $H_{P} \neq G$. We show that $V\left(H_{P}\right) \cap V\left(G_{2}\right)=S_{P}$.

If not, then there is a vertex $a \in S_{P}$ adjacent to x (a $S \cup T$-vertex) through an edge that is not on the boundary of G_{2}. The vertices of S are consecutive on the boundary of G and there is an S-vertex in G_{1}, therefore if $x \in S$, then $x \in S_{P}$. Since $x \notin S_{P}, x$ is a T-vertex. By Claim 14, $a \in V(P) \cap V(\operatorname{int}(G))$.

Let u be the closest endpoint of S_{P} to x in $G\left[V\left(S_{P}\right) \cup\{x\}\right]$, and y be the endpoint of P that is in the shortest (u, x)-path in $G\left[V\left(S_{P}\right) \cup\{x\}\right]$. Let P^{\prime} be the shortest (x, y)-path in $G\left[V\left(S_{P}\right) \cup\{x\}\right]$. Let R be the unique (x, y)-path on the boundary of G_{2} that does not contain an edge of P. Since $x \notin S_{P}$, $x \in T, R$ must contain a vertex $v \neq u$ with $|L(v)|=3$ (in particular u is not adjacent to an $S \cup T$-vertex on R).

Take $G_{2}^{\prime}=\operatorname{Int}\left(P^{\prime} \cup R\right)$ (the union of two internally disjoint (x, y)-paths). Let $G_{1}^{\prime}=G\left[V\left(\operatorname{ext}\left(P^{\prime} \cup R\right)\right) \cup V\left(P^{\prime}\right)\right]$. We have a triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$ such that:
(1) $G_{1} \subset G_{1}^{\prime}$;
(2) $G_{2}^{\prime} \subset G_{2}$;
(3) $G_{1}^{\prime} \cap G_{2}^{\prime}=P^{\prime}$;
(4) $G_{1}^{\prime} \cup G_{2}^{\prime}=G$; and
(5) G_{2}^{\prime} has a vertex v with $|L(v)|=3$ in the boundary of G not in P^{\prime}.
(1), (2), (3), and (4) are clear by definition of G_{1}^{\prime} and G_{2}^{\prime}. (5) is true since R has a vertex with list size three.

Let $H_{P^{\prime}}$ and $S_{P^{\prime}}$ be as defined in Definition 17 on the triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$.
We would like to find out the number of vertices in $S_{P^{\prime}}$, which is the component of $H_{P^{\prime}} \cap \operatorname{Bnd}\left(G_{2}^{\prime}\right)$ that contains P^{\prime}. We count the vertices of $S_{P^{\prime}}$ to
find that

$$
\left|S_{P^{\prime}}\right| \leq\left\lceil\frac{\left|V\left(S_{P}\right)\right|}{2}\right\rceil+1+t \leq \begin{cases}3, & \text { if } G_{2}^{\prime}-H_{P^{\prime}} \text { contains a } T \text {-adjacency, } \\ 4, & \text { otherwise }\end{cases}
$$

where t is the number of T-vertices adjacent to the T-vertex x.
Note that $\left|V\left(G_{2}^{\prime}\right)\right|<\left|V\left(G_{2}\right)\right|$, and $\left|S_{P^{\prime}}\right|$ does not meet its upper bounds, therefore, by Lemma 10, $G_{2}^{\prime}\left[N_{G_{2}^{\prime}}\left(S_{P^{\prime}}\right) \cup\left(\left(T \cap V\left(G_{2}^{\prime}\right)\right) \backslash S_{P^{\prime}}\right)\right]$ contains no odd cycles. Since $\left|S_{P^{\prime}}\right|$ does not meet its upper bound we also have that no 3-list vertex is adjacent to three $S_{P^{\prime}}$ in G_{2}^{\prime}.

Therefore, $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$ is a good triple, a contradiction with the minimality of $\left|V\left(G_{2}\right)\right|$. Therefore, $G_{2} \cap H_{P}$ is a path. In other words, $H_{P}=S_{P}$.

We now colour G_{1} by minimality of G, which induces a proper 1-list on the set of vertices S_{P}; these are consecutive on the boundary of G_{2}. Define $T^{\prime}=T \cap V\left(G_{2}\right) \backslash S_{P}$. No S_{P}-vertex is adjacent to a T^{\prime}-vertex since $S_{P}=H_{P}$. $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ contains no odd cycles by hypothesis of good triple.

Since no vertex in $V\left(G_{2}\right) \backslash S_{P}$ is adjacent to three vertices of S_{P}, we have that S_{P} and T^{\prime} satisfy the hypothesis of the main theorem on G_{2}. Therefore, we colour G_{2} by minimality of G and take the union of the colorings of G_{1} and G_{2} to form an L-colouring of G, a contradiction.

Claim 20. G has no 1-path containing an $S \cup T$-vertex that separates the boundary.

Proof. First we may assume by Claim 14 that every separating 1-path has no T-vertex, and therefore the paths we consider contain an S-vertex. Suppose G has 1-paths that separate the boundary. Choose a triple $\left(G_{1}, G_{2}, P\right) \in \mathcal{P}_{1}$ such that $\left|V(S) \cap V\left(G_{1}\right)\right| \geq\left|V(S) \cap V\left(G_{2}\right)\right|$ and there does not exist a 1path with one end in S that separates the boundary of G_{2}. We now have two cases. Either $|E(T)|=0$ or $|E(T)|=1$.

Case 20.1 $|E(T)|=0$.
Let H_{P} and S_{P} be as in Definition 17 on the triple $\left(G_{1}, G_{2}, P\right)$, and H_{P}^{\prime} and S_{P}^{\prime} be as defined on the triple $\left(G_{2}, G_{1}, P\right)$. We have two subcases. Either $V\left(G_{2}\right) \backslash V(P)$ has a vertex v with $|L(v)|=3$ or it does not.

Subcase 20.1.1 $V\left(G_{2}\right) \backslash V(P)$ has a vertex v with $|L(v)|=3$.
By Claim 12, $V\left(\operatorname{Bnd}\left(G_{2}\right)\right) \backslash V(P)$ contains a vertex u with $|L(u)|=3$, since $v \in \operatorname{Int}\left(\operatorname{Bnd}\left(G_{2}\right)\right)$ and $V\left(G_{1}\right) \backslash V\left(G_{2}\right)$ is non-empty.

Since G does not contain a T-adjacency, we have $\left|S_{P}\right| \leq 4$. Therefore, no vertex is adjacent to three vertices of S_{P}. Similarly, since $\left|S_{P}\right| \leq 4$, we have that $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ contains no odd cycles. Therefore, $\left(G_{1}, G_{2}, P\right)$ is a good triple, and we have a contradiction with Claim 19.

Subcase 20.1.2 $V\left(G_{2}\right) \backslash V(P)$ does not have a vertex v with $|L(v)|=3$.
Note that $\left|V\left(G_{2}\right) \backslash V(P)\right| \geq 2$ since G_{2} is bounded by a cycle of length at least four. Since $|E(T)|=0$, If there is a T-vertex in $V\left(G_{2}-P\right)$, then there is also a vertex with list size three in $V\left(G_{2}-P\right)$. Therefore, $V\left(G_{2}-P\right) \subset S$. Since $\left|V(S) \cap V\left(G_{1}\right)\right| \geq\left|V(S) \cap V\left(G_{2}\right)\right|$, we have that G_{2} is a 4-cycle by Claim 12.

If $V(P) \subseteq S$, then we colour G_{1}, by minimality of G which results in an L-colouring G, and a contradiction.

Therefore, there must be a vertex $u \in P$ such that $|L(u)|=3$ and $V(P)=$ $\{u, v\}$ where $v \in S$. Since no vertex with list size three is adjacent to three S-vertices and u is adjacent to two S vertices in G_{2}, it must be the case that u is adjacent to a T-vertex or another vertex with list size three on the boundary of G_{1}.

In either case, since a T-vertex in $G_{1}-V(P)$ implies a vertex with list size three in $G_{1}-V(P)$, we have that $G_{1}-V(P)$ contains a vertex with list size three. We also note that, since $\left|V(S) \cap V\left(G_{1}\right)\right| \geq\left|V(S) \cap V\left(G_{2}\right)\right|$ and $V\left(G_{2}-P\right) \subset S$, we have that G_{2} is a 4-cycle.

Since $G_{1}-V(P)$ has a vertex with list size three, $H_{P}^{\prime} \neq G$. Since G has no T-adjacency, G_{1} has no T-adjacency. By Lemma 10, since G_{2} is a 4 -cycle, we have that no vertex with list size three in G_{1} is adjacent to three vertices in S_{P}^{\prime}. Similarly, since G_{2} is a 4-cycle $G_{1}\left[N_{G_{1}}\left(S_{P}^{\prime}\right) \cup\left(T \cap V\left(G_{1}\right)\right)\right]$ contains no odd cycles. It is clear that $\left|S_{P}^{\prime}\right| \leq|S|-2+2 \leq 6$, therefore $\left(G_{2}, G_{1}, P\right)$
is a good triple, contradicting Claim 19.
Case $20.2|E(G[T])|=1$.
Either $G_{2}-V\left(H_{P}\right)$ has a vertex with list size three or it does not.
Subcase 20.2.1 $G_{2}-V\left(H_{P}\right)$ has a vertex v with list size three.
If $V\left(\operatorname{Bnd}\left(G_{2}\right)\right)=S_{P}$, then $\operatorname{Bnd}\left(G_{2}\right)$ is a separating cycle with v on its interior, a contradiction with Claim 12. Therefore, $V\left(\operatorname{Bnd}\left(G_{2}\right)\right) \neq S_{P}$ and $V\left(\operatorname{Bnd}\left(G_{2}\right)\right) \backslash V\left(S_{P}\right)$ contains a 3-list vertex u.

If $G_{2}-V\left(H_{P}\right)$ does not contain a T-adjacency, then $\left|S_{P}\right| \leq 5$. By Lemma 10 , since $\left|S_{P}\right| \leq 5$, no vertex with list size three in G_{2} is adjacent to three S_{P}-vertices and $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(\left(T \cap V\left(G_{2}\right)\right) \backslash S_{P}\right)\right]$ contains no odd cycles. Therefore, $\left(G_{1}, G_{2}, P\right)$ would be a good triple, contradicting Claim 19.

Therefore, $G_{2}-V\left(H_{P}\right)$ does contain a T-adjacency. In this case, $\left|S_{P}\right| \leq 4$. By Claim 19, we must have that $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(\left(T \cap V\left(G_{2}\right)\right) \backslash S_{P}\right)\right]$ contains an odd cycle. By Lemma 10, a vertex in S_{P} is in a 4 -cycle in G_{2}.

Now we consider the triple $\left(G_{2}, G_{1}, P\right)$ and let H_{P}^{\prime} and S_{P}^{\prime} be as defined in Definition 17 on this triple. Since $\left|V\left(G_{1}\right) \cap S\right| \geq\left|V\left(G_{2}\right) \cap S\right|$ and $\left|S_{P}\right|=4$, we have that $\left|S_{P}^{\prime}\right| \leq 5$.

If there does not exist a vertex with list size three in $G_{1}-H_{P}^{\prime}$, then $\left|S_{P}^{\prime}\right|=4$ and G_{1} is a 4-cycle. This is not possible since P has a vertex in a 4 -cycle in G_{2}, therefore the same vertex is not close to a 4 -cycle in G_{1}. Therefore, $G_{1}-H_{P}^{\prime}$ has a vertex with list size three. By Lemma 10 , since $\left|S_{P}^{\prime}\right|=5$, we have that no vertex with list size three in G_{1} is adjacent to three $S_{P^{-}}^{\prime}$ vertices and $G_{1}\left[N_{G_{1}}\left(S_{P}^{\prime}\right) \cup\left(T \cap V\left(G_{1}\right)\right)\right]$ contains no odd cycles. Therefore, $\left(G_{2}, G_{1}, P\right)$ is a good triple, a contradiction with Claim 19.

Subcase 20.2.2 $G_{2}-V\left(H_{P}\right)$ does not contain a vertex with list size three.
Since $V\left(G_{2}\right)-V(P)$ does not contain a vertex with list size three, G_{2} is bounded by a cycle of length four. From this, we have that $\operatorname{Bnd}\left(G_{2}\right)-V(P)$ is a path of length two. Since $G_{2}-V\left(H_{P}\right)$ does not contain a vertex with list
size three, we have that if one of the vertices on the path $\operatorname{Bnd}\left(G_{2}\right)-V(P)$ is an S-vertex, then both of them are S-vertices. Therefore, either the vertices in $\operatorname{Bnd}\left(G_{2}\right)-H_{P}$ are both in S or both in T.

Since the T-adjacency is not in a 4 -cycle, it must be the case that $G_{2}-V(P)$ has two S-vertices. Since S-vertices are consecutive on the boundary of G, we have that $G_{1}-V(P)$ contains at least two S-vertices and P contains at least one S vertex. We have that $|S| \geq 5$, a contradiction with $|E(G[T])|=1$ and $|S| \leq 4$.

Claim 21. G has no separating 2-paths with both ends in S.
Proof. Let P be a separating 2-path in G with ends in S, let $s, u \in S$ be the ends of P, and let $v \in V(P) \backslash\{s, u\}$. By the Separating Paths Observation 16 , a triple $\left(G_{1}, G_{2}, P\right)$ exists with the separating graph properties.

Case 21.1 $|V(\operatorname{Bnd}(G)) \backslash S| \leq 1$.
By Claim 20, no vertex on the boundary is adjacent to another on the boundary through a non-boundary edge. Since there are no 3 -cycles, 4 -cycles are far apart and $|V(\operatorname{Bnd}(G))| \leq 7$, we also have that there are no internal vertices that are adjacent to three boundary vertices. Since v is adjacent to two vertices on the boundary (s and u), it can not be adjacent to a third.

Let S_{P} be as defined in Definition 17 on the triple $\left(G_{1}, G_{2}, P\right)$. Either $\operatorname{Bnd}\left(G_{1}\right)$ is a 4 -cycle and $\left|S_{P}\right| \leq 6$, or $\left|S_{P}\right| \leq 5$. By Lemma 10, since $\operatorname{Bnd}\left(G_{1}\right)$ is a 4-cycle or $\left|S_{P}\right| \leq 5$, no vertex is adjacent to three vertices of S_{P} and $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ does not contain an odd cycle.

There is no T-adjacency in G_{2} since $T=\varnothing$. Note $\mid S_{P} \leq 6$, therefore $\left(G_{1}, G_{2}, P\right)$ is a good triple, contradicting Claim 19.

Case 21.2 $|V(\operatorname{Bnd}(G)) \backslash S| \geq 2$.
Let H_{P} and S_{P} be as in Definition 17. Since G_{1} is not bounded by a 3cycle we have that if there is no T-adjacency, then

$$
\left|S_{P}\right| \leq \begin{cases}6, & \text { if } \operatorname{Bnd}\left(G_{1}\right) \text { is a 4-cycle } \\ 5, & \text { otherwise }\end{cases}
$$

and if there is a T-adjacency, then

$$
\left|S_{P}\right| \leq \begin{cases}4, & \text { if } \operatorname{Bnd}\left(G_{1}\right) \text { is a } 4 \text {-cycle } \\ 3, & \text { otherwise }\end{cases}
$$

Since $|V(B n d(G)) \backslash S| \neq 0$ we have that there exists a vertex v with $|L(v)|=3$ on the boundary of G. This vertex is not on the boundary of G_{1} since the ends of P are in S and the S-vertices are consecutive on the boundary of G_{1}. Therefore, $v \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ and hence v is in $G_{2}-V\left(H_{P}\right)$. If $\left|S_{P}\right|=6$, then the boundary of G_{1} is a 4 -cycle. Similarly, if $\left|S_{P}\right|=4$ and there is a T-adjacency, then the boundary of G_{1} is a 4 -cycle.

By Lemma 10, if $\operatorname{Bnd}\left(G_{1}\right)$ is a 4-cycle, then no vertex with list size three in G_{2} is adjacent to three S_{P}-vertices and $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ does not contain an odd cycle. Therefore, either $\left|S_{P}\right| \leq 5$ and there is no T-adjacency, or $\left|S_{P}\right| \leq 3$ and there is a T - adjacency.

In both cases, by Lemma 10, no vertex with list size three in G_{2} is adjacent to three S_{P}-vertices and $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ does not contain an odd cycle.Therefore, $\left(G_{1}, G_{2}, P\right)$ is a good triple, contradicting Claim 19.

Claim 22. G has no separating 2 -, 3 -paths with one end in T and the other in $S \cup T$.

Proof. By way of contradiction, suppose G has a separating 2- or 3-path P with one end in T and the other in $S \cup T$. Let $\left(G_{1}, G_{2}, P\right)$ be as defined in the Separating Path Observation 16 and without loss of generality, let $\left|V\left(G_{1}\right) \cap S\right| \geq\left|V\left(G_{2}\right) \cap S\right|$. Define H_{P} and S_{P} as in Definition 17. We have two cases, either both ends of P are T-vertices, or one end is not a T-vertex.

Case 22.1 Both ends of P are T-vertices.

In this case,

$$
\left|S_{P}\right| \leq \begin{cases}4, & \text { if } G_{2}-H_{P} \text { has a T-adjacency } \\ 5, & \text { if } G_{2}-H_{P} \text { does not have a T-adjacency. }\end{cases}
$$

Since both ends of P are T-vertices, we have that $G_{2}-H_{P}$ has a vertex with list size three. By Claim 19, $\left(G_{1}, G_{2}, P\right)$ is not a good triple, therefore it
must be the case that $G_{2}-H_{P}$ has a T-adjacency, $\left|S_{P}\right|=4$, and $N_{G}\left(S_{P}\right) \cup$ $\left(\left(T \cap V\left(G_{2}\right)\right) \backslash S_{P}\right)$ contains an odd cycle. By Lemma 10 there is a cycle C such that

- C is a 5 -cycle;
- every 3 -list vertex of C is adjacent to an S-vertex;
- C contains the T-adjacency; and
- all the vertices in C have 3-lists other than the vertices in the T adjacency.

Let $C=\left(z_{1}, \ldots, z_{5}\right)$ such that $z_{1} z_{5}$ is the T-adjacency. Consecutively label the vertices of $S_{P} x_{1}, \ldots, x_{4}$ such that $x_{1} z_{2}, x_{4} z_{4} \in E\left(G_{2}\right)$. Since both ends of S_{P} are in T, we can assume without loss of generality that z_{3} is adjacent to x_{2}.

Note that if x_{2} is adjacent to an $S \cup T$-vertex v other than x_{1}, then the path $P^{\prime}=\left(x_{1}, x_{2}, v\right)$ would be a separating path. This separating path would induce a triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$ such that G_{2} is contained in G_{1}^{\prime}. Define $S_{P^{\prime}}$ and $H_{P^{\prime}}$ as in Definition 17 on the triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$.

Since $S \subset V\left(G_{1}\right)$, we have that $\left|S_{P^{\prime}}\right| \leq 6$. Since the T-adjacency is in G_{2} we have that there is no T-adjacency in G_{2}^{\prime}. Since the ends of $S_{P^{\prime}}$ are in $S \cup T$, there is a 3 -list vertex in $G_{2}^{\prime}-V\left(H_{P}^{\prime}\right)$. By Lemma 10 , since a vertex of S_{P} is in a 4-cycle in G_{2}, there are no odd cycles in $G_{2}^{\prime}\left[N_{G_{2}^{\prime}}\left(S_{P^{\prime}}\right) \cup\left(\left(T \cap V\left(G_{2}^{\prime}\right)\right) \backslash S_{P^{\prime}}\right)\right]$. Similarly, there is no 3 -list vertex adjacent to three $S_{P^{\prime}}$-vertices in G_{2}^{\prime}.

Therefore, the triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P^{\prime}\right)$ would be a good triple, contradicting Claim 19. All this to say x_{2} is not adjacent to any $S \cup T$-vertices other than x_{1}.

By Claim 12, the 4 - and 5 -cycles formed by the vertices of C and the vertices of $N_{B n d\left(G_{2}\right)}\left(S_{P}\right) \cup S_{P}$ have empty interior. Let $c \in L\left(z_{3}\right) \backslash L\left(z_{1}\right)$. Redefine the list of x_{2} to be $L^{\prime}\left(x_{2}\right)=L\left(x_{2}\right) \backslash\{c\}$.

On G_{1} we define $T^{\prime}=\left(T \cup\left\{x_{2}\right\} \cap V\left(G_{1}\right)\right)$ and by minimality of G, we find and L-colouring of G_{1}. This induces a colouring on the vertices of P in G_{2}. We delete those vertices and adjust the lists of the vertices of C accordingly. Since $c\left(x_{2}\right) \neq c, c \in L\left(z_{3}\right)$ and $c \notin L\left(z_{1}\right)$, we have that the remaining

5-cycle is L-colourable (All remaining vertices have 2-list that are not all the same). Giving us an L-colouring of G, and a contradiction.

Case 22.2 One end of P is not a T-vertex.
This implies that one end of P is an S-vertex. We consider two separate cases, whether $G_{2}-H_{P}$ does or does not contain a T-adjacency.

Subcase 22.2.1 $G_{2}-H_{P}$ does not contain a T-adjacency.
If $G_{2}-H_{P}$ does not contain a T-adjacency, then

$$
\left|S_{P}\right| \leq \begin{cases}\left\lceil\frac{|S|}{2}\right\rceil+(|V(P)|-1)+1, & G \text { has a T-adjacency } \\ \left\lceil\frac{|S|}{2}\right\rceil+(|V(P)|-1), & G \text { does not have a T-adjacency. }\end{cases}
$$

In either case $\left|S_{P}\right| \leq 6$.
If $\left|S_{P}\right| \leq 5$, then we can use Lemma 10 to show that $\left(G_{1}, G_{2}, P\right)$ is a good triple, contradicting Claim 19. Therefore, $|V(P)|=4$ and $\left|S_{P}\right|=6$. By Claim 19, it must be the case that either there is a vertex with list size three in G_{2} that is adjacent to three S_{P}-vertices or $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ contains a 5 -cycle containing one T-vertex.

Consecutively label the vertices of the path $G\left[S_{P}\right] \cap \operatorname{Bnd}\left(G_{2}\right)$ starting at the T-vertex $x_{1}, x_{2}, \ldots, x_{6}$.

Subcase 22.2.1.1 There is a vertex with list size three in G_{2} that is adjacent to three S_{P}-vertices and that $\left|S_{P}\right|=6$.

Let v be such a vertex. Then v must be adjacent to x_{1} and x_{6}. Since 4cycles are far apart and v is adjacent to three S-vertices, it is either v is adjacent to x_{3} or x_{4}.

If $\operatorname{Bnd}\left(G_{2}\right) \backslash\left(S_{P} \cup\{v\}\right) \neq \varnothing$, then the path $P^{\prime}=\left(x_{1}, v, x_{6}\right)$ is a separating 2-path with one end in S and the other end in T, which have shown already in this lemma do not exist.

It is clear that v forms a 4 -cycle and a 5 -cycle with the vertices of S_{P}, and by Claim 12, the interior of these cycles are empty (in particular, the only vertex in $V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ is v). We break this into two cases whether v is adjacent to x_{3} or x_{4}.

Subcase 22.2.1.1.1 v is adjacent to x_{3}.
It is either x_{2} has a 3 -list or $x_{2} \in T$.
Subcase 22.2.1.1.1.1 x_{2} has a 3 -list.
Since $\left|S_{P}\right|=6$, it must be the case that $x_{4}, x_{5}, x_{6} \in S$. It must be the case that $L\left(x_{6}\right) \subset L(v)$ else we would delete x_{6} and do induction on $G-x_{6}$. Colour x_{3} with $c \in L\left(x_{3}\right) \backslash\left(L(v) \backslash L\left(x_{6}\right)\right)$.

Let $S^{\prime}=\left(S \cup\left\{x_{3}\right\}\right) \backslash\left\{x_{5}, x_{6}\right\}$ and $T^{\prime}=T \backslash\{v\}$. There is no T^{\prime}-adjacency in G_{1}. If there is a T-adjacency in G, then $\left|S^{\prime}\right| \leq 4$. If there is no T adjacency in G, then $\left|S^{\prime}\right|=5$. Since we have proven the length two version of this theorem already, there are no S^{\prime}, T^{\prime}-adjacencies in G_{1}.

By Lemma 10, since $\left(v, x_{1}, x_{2}, x_{3}, v\right)$ is a 4 -cycle in G_{2}, we know that there are no odd cycles in $G_{1}\left[N_{G_{1}}\left(S^{\prime}\right) \cup T^{\prime}\right]$. Since $\left|S^{\prime}\right| \leq 5$, we know that there is not a 3 -list vertex in G_{1} adjacent to three S^{\prime}-vertices. Therefore, we can colour G_{1} by induction such that $c\left(x_{3}\right)=c$. Since $c \in L\left(x_{3}\right) \backslash\left(L(v) \backslash L\left(x_{6}\right)\right)$ we can colour v and find an L-colouring of G, and a contradiction.

Subcase 22.2.1.1.1.2 $x_{2} \in T$.
Define H_{P}^{\prime} and S_{P}^{\prime} as in Definition 17 on the triple $\left(G_{2}, G_{1}, P\right)$. Since $x_{5}, x_{6} \in S \cap V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ and $\left|V\left(G_{1}\right) \cap S\right| \geq\left|V\left(G_{2}\right) \cap S\right|$, we have that $|S| \geq 5$ and there is no T-adjacency in G. This tells us that $\left|S_{P}^{\prime}\right| \leq 6$.

Clearly there is a 3-list vertex in $V\left(G_{1}\right) \backslash V\left(H_{P}^{\prime}\right)$ since the one end of S_{P}^{\prime} is in S and the other is in T. By Lemma 10 and by the existence of the 4 -cycle $\left(v, x_{1}, x_{2}, x_{3}, v\right)$ in G_{2}, no vertex with list size three in $V\left(G_{1}\right) \backslash V\left(H_{P}^{\prime}\right)$ is adjacent to three vertices in S_{P}^{\prime} and $G_{1}\left[N_{G_{1}}\left(S_{P}^{\prime}\right) \cup\left(T \cap V\left(G_{1}\right)\right)\right]$ contains no odd cycles.

Therefore, $\left(G_{2}, G_{1}, P\right)$ is a good triple contradicting Claim 19 .
Subcase 22.2.1.1.2 v is adjacent to x_{4}.
It is either x_{4} is an S-vertex or $\left|L\left(x_{4}\right)\right|=3$.
Subcase 22.2.1.1.2.1 x_{4} is an S-vertex.
Colour and delete x_{5} and x_{6}, and colour v and x_{1}. Let $T^{\prime}=T \backslash\left\{x_{1}\right\}$ and $S^{\prime}=\left(S \cup\left\{v, x_{1}\right\}\right) \backslash\left\{x_{5}, x_{6}\right\}$. There are no T-adjacencies in $G-\left\{x_{5}, x_{6}\right\}$, no S^{\prime}, T^{\prime}-adjacencies and $\left|S^{\prime}\right|=6$. By Lemma 10 , since ($x_{4}, x_{5}, x_{6}, v, x_{4}$) was a 4-cycle, no three list vertex in $G-\left\{x_{5}, x_{6}\right\}$ is adjacent to three S^{\prime}-vertices. By minimality of G, we can find and L-colouring of $G-\left\{x_{5}, x_{6}\right\}$. Placing the vertices x_{5} and x_{6} back into the graph we find an L-colouring of G, and a contradiction.

Subcase 22.2.1.1.2.2 $\left|L\left(x_{4}\right)\right|=3$.
Since $\left|S_{P}\right|=6$, we have that $x_{2} \in T$. Let $G_{1}^{\prime}=G_{2}$ and $G_{2}^{\prime}=G_{1}$. Consider the triple $\left(G_{1}^{\prime}, G_{2}^{\prime}, P\right)$ and define H_{P}^{\prime} and S_{P}^{\prime} as in 17 . We know that no vertex with list size three in G_{2}^{\prime} is adjacent to three vertices in S_{P}^{\prime} since $\left(v, x_{4}, x_{5}, x_{6}, v\right)$ is a 4-cycle in G_{1}^{\prime}. We also know that $\left|S_{P}^{\prime}\right| \leq(|S|-1)+3=6$. Since one end of S_{P}^{\prime} is in T and the other is in S we know that there is a vertex with list size three in G_{2}^{\prime}. Therefore, $\left(G_{1}^{\prime}, G_{2}^{\prime}, P\right)$ is a good triple, a contradiction with 19.

Subcase 22.2.1.2 $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}\right)\right)\right]$ contains a 5-cycle containing one T-vertex.

Let this 5 -cycle be $C=\left(z_{1}, . ., z_{5}, z_{1}\right)$ such that z_{5} is the T-vertex. Now it must be the case that z_{1} and z_{4} are adjacent to x_{1} and x_{6} respectively. Since we have already proved this lemma for paths of length 2 , it must be the case that z_{1} and z_{4} are boundary vertices. By Claim 12, the faces of $G\left[V(C) \cup S_{P}\right]$ have empty interior in G.

We will now break this into two cases depending on whether $x_{2} \in T$ or $x_{2} \notin T$.

Subcase 22.2.1.2.1 $x_{2} \in T$.
Since 4-cycles are far apart, the T-adjacency is not in a 4-cycle, and four vertices of C are adjacent to vertices of S_{P}, we have z_{2} is adjacent to x_{3}.

Let $c \in L\left(z_{2}\right) \backslash\left(z_{5}\right)$. Reduce the list of x_{3} to be $L^{\prime}\left(x_{3}\right)=L\left(x_{3}\right) \backslash\{c\}$. Let $S^{\prime}=\left(S \cap V\left(G_{1}\right)\right)$ and $T^{\prime}=\left(T \cap V\left(G_{1}\right)\right) \cup\left\{x_{3}\right\}$. Since we have already proven this lemma for 2-paths and $x_{2} \in T, x_{3}$ is not adjacent to any $S \cup T$ vertices other than x_{2}. Therefore, there are no S^{\prime}, T^{\prime}-adjacencies and the only T^{\prime}-adjacency is the edge $x_{2} x_{3}$.

We have that $\left|S^{\prime}\right|=|S|-1=3$ and that G_{1} has exactly one T^{\prime}-adjacency $\left(x_{2} x_{3}\right)$. Therefore, there is no need to check if anything bad happens around the S^{\prime}-vertices. By minimality of G, we have an L-colouring of G_{1} such that $c\left(x_{3}\right) \notin\left(L\left(z_{3}\right) \backslash L\left(z_{5}\right)\right)$. We colour S_{P} and look at the graph $C=$ $G-\left(V\left(G_{1}\right) \cup S_{P}\right)$ after adjusting the lists of the vertices of C.

Every vertex in C now has list size two after the deletion. But we now have that c is in the list of z_{3} and is not in the list of z_{5}. This implies we can find an L-colouring of C, and therefore, an L-colouring of G, a contradiction.

Subcase 22.2.1.2.2 $x_{2} \notin T$.
Since 4 -cycles are far apart, it is either the case that z_{2} is adjacent to x_{2} or x_{3}.

Subcase 22.2.1.2.2.1 z_{2} is adjacent to x_{2}.
Let $c \in L\left(z_{2}\right) \backslash L\left(z_{5}\right)$. Reduce the list of x_{2} to be $L^{\prime}\left(x_{2}\right)=L\left(x_{2}\right) \backslash\{c\}$, define $T^{\prime}=\left(T \cap V\left(G_{1}\right)\right) \cup\left\{x_{2}\right\}$ and $S^{\prime}=S \backslash\left\{x_{5}, x_{6}\right\}$. Since x_{2} is in the 4-cycle $\left(z_{1}, x_{1}, x_{2}, z_{2}, x_{1}\right)$ in G_{2}, we have that the T^{\prime}-adjacency $x_{1} x_{2}$ is not in a 4 cycle in G_{1}. Since we have proven this theorem for length two paths, x_{2} is not adjacent to any $S \cup T$-vertices other than x_{1}.

By Lemma 10, since x_{2} is in a 4 -cycle in G_{2}, there are no odd cycle in $G_{1}\left[N_{G_{1}}\left(S^{\prime}\right) \cup T^{\prime}\right]$. We also have that $\left|S^{\prime}\right|=|S|-2 \leq 4$, therefore, we do induction on G_{1}. This induces a colouring on the vertices of $G-V(C)$. Adjust the lists of the vertices of C accordingly. Every vertex in C now has list
size at least two after the deletion. But we now have that c is in the list of z_{2} and is not in the list of z_{5}. This implies we can find an L-colouring of C, and therefore, an L-colouring of G, a contradiction.

Subcase 22.2.1.2.2.2 z_{2} is adjacent to x_{3}.
If x_{3} is adjacent to exactly one S-vertex, then we apply the same argument as in Subcase 22.2.1.2.1.1 with z_{2} and find an L-colouring of G, and a contradiction. Therefore, it must be the case that x_{3} is adjacent to two S-vertices.

Since 4 -cycles are far apart, and a vertex of S_{P} is in a 4 -cycle in G_{2}, it must be the case that x_{3} is adjacent to the end of the path $\operatorname{Bnd}(G)[S]$ in G_{1}. Call this end y. Notice that x_{1}, x_{2}, and x_{3} are all not adjacent to T-vertices and x_{1} and x_{2} are not adjacent to S-vertices since we have proven the 2-path version of this lemma.

Since x_{1} is an end of $\operatorname{Bnd}\left(G_{2}\right)\left[S_{P}\right]$ we have that x_{1} is adjacent to z_{1}. Let $c \in L\left(z_{1}\right) \backslash L\left(z_{5}\right)$. Reduce the list of x_{1} to be $L^{\prime}\left(x_{1}\right)=L\left(x_{1}\right) \backslash\{c\}$, then reduce the lists of x_{2} and x_{3} to be proper 1-lists (this is possible since x_{2} is not adjacent to any S-vertices).

By minimality of G, we can L-colour $G\left[\left(V\left(G_{1}\right) \backslash S\right) \cup\{y\}\right]$. We then colour the S-vertices and the rest of S_{P}. This induces 2-lists on every vertices of C, which are the only remaining uncoloured vertices. Since $c \notin L\left(z_{1}\right) \backslash L\left(z_{5}\right)$ we have that C is L-colourable, resulting in an L-colouring of G, and a contradiction.

Subcase 22.2.2 $G_{2}-H_{P}$ does contain a T-adjacency.
Let S_{P}^{\prime} and H_{P}^{\prime} be as in Definition 17 on the triple $\left(G_{2}, G_{1}, P\right)$. We first note that $\left|S_{P}\right|+\left|S_{P}^{\prime}\right| \leq 2|V(P)|+3 \leq 11$. It is important to note that $|V(P)|=4$ and at this point we have already proven the theorem when $|V(P)|=3$, this will be useful for the end of the proof. By Claim 19, neither $\left(G_{1}, G_{2}, P\right)$ nor $\left(G_{2}, G_{1}, P\right)$ is a good triple. Therefore, this leaves us with two cases, either $\left|S_{P}\right|=4$ and $\left|S_{P}^{\prime}\right|=7$, or $\left|S_{P}\right|=5$ and $\left|S_{P}^{\prime}\right|=6$.

Subcase 22.2.2.1 $\left|S_{P}\right|=4$ and $\left|S_{P}^{\prime}\right|=7$.

Consecutively label the vertices of the path $G\left[S_{P}\right] \cap \operatorname{Bnd}\left(G_{2}\right)$ starting at the T-vertex $x_{1}, x_{2}, \ldots, x_{4}$.

By Claim 19 it must be the case that there is a 5 -cycle C in G_{2} comprised of the T-adjacency and three 3 -list vertices such that each 3 -list vertex is adjacent to exactly one vertex of S_{P}. Let $C=\left(z_{1}, z_{2}, \ldots, z_{5}, z_{1}\right)$ such that $z_{1}, z_{5} \in T$ and $z_{2} x_{1}, z_{4} x_{4} \in E\left(G_{2}\right)$.

Since this claim has been proven for paths of length 2, we have that the vertices of C other than z_{3} are boundary vertices. By Claim 12, the 4and 5 -cycles in the graph $G\left[S_{P} \cup V(C)\right]$ have empty interior. Therefore, $V\left(G_{2}\right)=S_{P} \cup V(C)$.

Let y be the vertex adjacent to z_{3} on S_{P}. Note that since y is adjacent to either x_{1} or x_{4} it is not adjacent to any other $S \cup T$-vertices by Claim 21 and by the length 2 version of this lemma.

Let $c \in L\left(z_{3}\right) \backslash L\left(z_{1}\right)$. Redefine the list of y to be

$$
L^{\prime}(y)= \begin{cases}L(y) \backslash\{c\}, & \text { if } y=x_{2} \\ \{c(y)\}, & c(y) \in L(y) \backslash\left(\{c\} \cup L\left(x_{4}\right)\right), \text { if } y=x_{3}\end{cases}
$$

On G_{1} we define

$$
T^{\prime}= \begin{cases}\left(T \cap V\left(G_{1}\right)\right) \cup\{y\}, & \text { if } y=x_{2} \\ T \cap V\left(G_{1}\right), & \text { if } y=x_{3}\end{cases}
$$

and

$$
S^{\prime}= \begin{cases}S, & \text { if } y=x_{2} \\ S \cup\{y\}, & \text { if } y=x_{3}\end{cases}
$$

By minimality of G, we find and L-colouring of G_{1}. This induces a colouring on the vertices of P in G_{2}. We delete those vertices and adjust the lists of the vertices of the 5 -cycle that contains the T-adjacency and the two ends of the path $\operatorname{Bnd}\left(G_{2}\right)\left[S_{P} \cup N_{B n d\left(G_{2}\right)}\left(S_{P}\right)\right]$ accordingly. Since $c(y) \neq c, c \in L(v)$ and $c \notin L(x)$, we have that the remaining 5 -cycle is L-colourable (All remaining
vertices have 2-list that are not all the same). Giving us an L-colouring of G, and a contradiction.

Subcase 22.2.2.2 $\left|S_{P}\right|=5$ and $\left|S_{P}^{\prime}\right|=6$.
Consecutively label the vertices of the path $G\left[S_{P}^{\prime}\right] \cap \operatorname{Bnd}\left(G_{1}\right)$ starting at the T-vertex $x_{1}, x_{2}, \ldots, x_{6}$.

Since $\left(G_{2}, G_{1}, P\right)$ is not a good triple it must be the case that there is a vertex $v \in V\left(G_{1}\right)$ such that $|L(v)|=3$, and v is adjacent to three S_{P}^{\prime}-vertices or $G_{1}\left[N_{G_{1}}\left(S_{P}^{\prime}\right) \cup\left(T \cap V\left(G_{1}\right)\right)\right]$ contains a 5 -cycle containing one T-vertex.

Subcase 22.2.2.2.1 There is a vertex $v \in V\left(G_{1}\right)$ such that $|L(v)|=3$, and v is adjacent to three S_{P}^{\prime}-vertices.

Since v is adjacent to three S_{P}^{\prime}-vertices, it is adjacent to x_{1} and $x_{6} . v$ is not adjacent to x_{4} by Claim 20, therefore v must be adjacent to x_{3}.

We have already proven that there are no separating $S \cup T, T$-paths of length two, therefore the path $\left(x_{1}, v, x_{6}\right)$ is not a separating path. This implies that $G_{1}=G\left[\left\{x_{1}, x_{2}, \ldots, x_{6}, v\right\}\right]$. Let u be the neighbour of x_{1} in $\operatorname{Bnd}\left(G_{2}\right)$ that is not x_{2} and let u_{1} be the neighbour of u on the boundary of G_{2} that is not x_{1}. Either u_{1} has list size three, or it does not.

Subcase 22.2.2.2.1.1 $\left|L\left(u_{1}\right)\right|=3$.
Colour and delete x_{1} and adjust the lists of the neighbours of x_{1} accordingly. Call this new list assignment L^{\prime}. We also have a new set $T^{\prime}=$ $\left(T \cup N_{G}\left(x_{1}\right)\right) \backslash\left\{x_{1}\right\}$ of T^{\prime}-vertices on $G-\left\{x_{1}\right\}$. Colour and delete x_{5}, x_{6} and v. Then colour x_{3} and x_{2}.

Define $S^{\prime}=\left(S \backslash\left\{x_{5}, x_{6}\right\}\right) \cup\left\{x_{2}, x_{3}\right\}$, let $H=G_{2}-x_{1}$ and restrict T^{\prime} to H. Note $N_{G}\left(x_{1}\right)$ is an independence set. Since no separating $S \cup T, T$-paths of length two exist, we also have that no vertex in $N_{G}\left(x_{1}\right)$ is adjacent to an $S \cup T$-vertex in $G_{2}-x_{1}$. Therefore, the only T^{\prime}-adjacency in $G_{2}-x_{1}$ is the T-adjacency.

By Lemma 10 , since $\left(v, x_{1}, x_{2}, x_{3}, v\right)$ is a 4 -cycle in G_{1}, there are no odd
cycles in $H\left[N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right]$. Since $\left|S^{\prime}\right|=4$, we can use the minimality of G to find an L^{\prime}-colouring of H. Placing the coloured vertices x_{1}, v, x_{5}, x_{6} back in the graph, we find an L-colouring of G, and a contradiction.

Subcase 22.2.2.2.1.2 $\left|L\left(u_{1}\right)\right| \neq 3$.
By the existence of the T-adjacency in G_{2} and $x_{4} \in S, u_{1}$ must be a T vertex. Colour and delete u and x_{1} as to not disturb the list of u_{1} and adjust the lists of the neighbours of u and x_{1} accordingly. Call this new list assignment L^{\prime}. We also have a new set $T^{\prime}=\left(T \cup N_{G}\left(\left\{x_{1}, u\right\}\right)\right) \backslash\left\{x_{1}, u\right\}$ of T^{\prime}-vertices on $G-\left\{x_{1}\right\}$. Colour and delete x_{5}, x_{6} and v. Then colour x_{3} and x_{2}.

Define $S^{\prime}=\left(S \backslash\left\{x_{5}, x_{6}\right\}\right) \cup\left\{x_{2}, x_{3}\right\}$ and restrict T^{\prime} to $G_{2}-x_{1}$. Note $N_{G}\left(\left\{u, x_{1}\right\}\right)$ is an independence set by the existence of the cycle ($x_{1}, x_{2}, x_{3}, v, x_{1}$) in G. Since no separating $S \cup T, T$-paths of length two exist, we also have that no vertex in $N_{G}\left(x_{1}\right)$ is adjacent to an $S \cup T$-vertex in $G_{2}-x_{1}$. By the existence of the cycle $\left(x_{1}, x_{2}, x_{3}, v, x_{1}\right)$, if a vertex in $N_{G_{2}}(u) \cap \operatorname{int}\left(G_{2}\right)$ were adjacent to an $S \cup T$-vertex, then there would be a separating path of length two that would induce a good triple in G, a contradiction with Claim 19.

Therefore, the only T^{\prime}-adjacency in $G_{2}-x_{1}$ is the T-adjacency. Since $\left|S^{\prime}\right|=4$, we can use the minimality of G to fine an L^{\prime}-colouring of $G-x_{1}$. Placing the coloured vertex x_{1} back in the graph, we find an L-colouring of G, and a contradiction.

Subcase 22.2.2.2.2 $G_{1}\left[N_{G_{1}}\left(S_{P}^{\prime}\right) \cup\left(T \cap V\left(G_{1}\right)\right)\right]$ contains a 5 -cycle containing one T-vertex.

Let this 5 -cycle be $C=\left(z_{1}, . ., z_{5}, z_{1}\right)$ such that z_{5} is the T-vertex. Now it must be the case that z_{1} and z_{4} are adjacent to the ends of $\operatorname{Bnd}\left(G_{1}\right)\left[S_{P}^{\prime}\right]$, without loss of generality, suppose that z_{1} is adjacent to x_{1} and z_{4} is adjacent to x_{6}. Since we have already proved this lemma for paths of length 2 , it must be the case that z_{1} and z_{4} are boundary vertices. By Claim 12, the faces of $G\left[V(C) \cup S_{P}^{\prime}\right]$ have empty interior in G.

Since 4 -cycles are far apart, it is either the case that z_{2} is adjacent to w_{2} or w_{3}.

Subcase 22.2.2.2.2.1 z_{2} is adjacent to x_{2}.
This case is the same as Subcase 22.2.1.2.2.1, only on G_{1} and S_{P}^{\prime}.
Subcase 22.2.2.2.2.2 z_{2} is adjacent to x_{3}.
Since $|S|=4$ and one of the vertices of C is in a 4 -cycle, we have that x_{3} is adjacent to exactly one S-vertex. We apply the same argument as in Subcase 22.2.1.2.1.1. with z_{2} to find an L-colouring of G, and a contradiciton.

Claim 23. G has a T-adjacency.
Proof. Suppose G does not have a T-adjacency. We will show without loss of generality that $|S| \geq 3$.

Suppose $|S|<3$. Since G does not contain any 3-cycles, we know that $|V(\operatorname{Bnd}(G))| \geq 4$. Since $\operatorname{Bnd}(G)$ can not have all T-vertices, we have that $\operatorname{Bnd}(G)$ has a vertex v such that $|L(v)|=3$. Let P be a path in $\operatorname{Bnd}(G)$ such that:

- $S \subset V(P)$;
- $v \notin V(P)$; and
- $3 \leq|V(P)| \leq 4$.

Let H be the component in $G[V(P) \cup T]$ that contains P and let $S^{\prime}=V(H)$. Let $T^{\prime}=T \backslash S^{\prime}$. By Claim 20, G has no 1-paths that separate the boundary with one end in $S \cup T$. Therefore, the vertices of S^{\prime} are consecutive on the boundary. Reduce the lists of the vertices of S^{\prime} so that they have proper 1 -lists (we can do this since paths with one end coloured and every other vertex having a list of size at least two are L-colourable). Call this new list assignment L^{\prime}. An L^{\prime}-colouring is clearly an L-colouring, therefore we can assume $|S| \geq 3$. Furthermore $G[S] \cap B n d(G)$ is either a path or a cycle.

Case 23.1 $|V(B n d(G)) \backslash S| \leq 1$.
By Claims 20 and 21, if $\operatorname{Bnd}(G)[S]$ is not a cycle, then both ends of $\operatorname{Bnd}(G)[S]$
are not in the same 4-cycle. Since 4-cycles are far apart, it must be the case that one of these ends is not in a 4 -cycle. If $B n d(G)[S]$ is not a cycle. then let $s \in S$ be an end of $\operatorname{Bnd}(G)[S]$ that is not in a 4 -cycle. If $\operatorname{Bnd}(G)[S]$ induces a cycle, then s can be any S-vertex not in a 4 -cycle with 3 -list vertices.

Colour and delete s. Let $c(s)$ be the only colour in $L(s)$. For every neighbor x of s, redefine the list of x to be $L(x) \backslash\{c(s)\}$, and let $T^{\prime}=N_{G}(s) \cap \operatorname{int}(C)$ and $S^{\prime}=V(\operatorname{Bnd}(G)) \backslash\{s\}$ (If needed, reduce the list of S^{\prime}-vertices to be proper 1 -lists). Note that $T=\varnothing$, so $T \subset T^{\prime}$. There are no T^{\prime}-adjacencies since there are no 3 -cycles in the graph. There are no S, T^{\prime}-adjacencies by Claim 21 and therefore, no S^{\prime}, T^{\prime}-adjacencies since s is not in a 4 -cycle. Reduce the lists of the vertices of S^{\prime} to be proper 1-lists (this only happens when x was adjacent to a list three vertex on the boundary).

Now S^{\prime} and T^{\prime} satisfy the hypothesis and by minimality of G we colour $G-s$. This induces a partial colouring on G where no neighbor of s is coloured $c(s)$, therefore we colour s with $c(s)$ and we have an L-colouring of G, a contradiction.

Case $23.2|V(B n d(G)) \backslash S| \geq 2$.
Let u_{1} and v_{1} be the first and last S-vertices, and let u_{2} and v_{2} be their S-neighbours via a boundary edge, respectively. By Claims 20 and 21, u_{1} and v_{1} can not be in the same 4 -cycle. Since 4 -cycles are far apart we have that one pair of neighbours is not in a 4 -cycle together. Without loss of generality, suppose u_{1} and u_{2} are not in a 4 -cycle together.

Let x_{1} be the neighbour of u_{1} in $\operatorname{Bnd}(G)$ not in S and let x_{2} be the neighbour of x_{1} in $\operatorname{Bnd}(G)$ that is not in S. There are two cases, either x_{2} is a 3 -list vertex or $x_{2} \in T$.

Case 23.2.1 x_{2} is a 3-list vertex.

Colour and delete u_{1} and let $H=G-u_{1}$. Adjust the lists of the vertices in $N_{G}\left(u_{1}\right) \backslash\left\{u_{2}\right\}$ to be 2-lists (either by deleting $c\left(u_{1}\right)$ from their lists, or deleting a colour from their lists). Define $T^{\prime}=T \cup N_{G}\left(u_{1}\right) \backslash\left\{u_{2}\right\}$ and $S^{\prime}=S \backslash\left\{u_{1}\right\}$.

By Claim 21, there are no S, T^{\prime}-adjacencies, and therefore there are no S^{\prime}, T^{\prime} -
adjacencies. $N_{G}\left(u_{1}\right)$ is an independence set since there are no 3 -cycles in G. By Claim 22, there are no adjacencies between vertices in $N_{G}\left(u_{1}\right)$ and vertices in T. Therefore, there are no T^{\prime}-adjacencies.

By Lemma 10, since $\left|S^{\prime}\right|=|S|-1 \leq 5$, there are no odd cycles in $(H)\left[N_{H}\left(S^{\prime}\right) \cup\right.$ T^{\prime}]. Similarly, there is no 3-list vertex in H adjacent to three S^{\prime} vertices. Therefore, we can apply induction to H, resulting in an L-colouring of H. Placing the coloured vertex u_{1} back in H, we get an L-colouring of G, and a contradiction.

Case 23.2.1 $x_{2} \in T$.
Colour and delete u_{1} and u_{2}, and let $H=G-\left\{u_{1}, u_{2}\right\}$. Adjust the lists of the vertices in $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ to be 2 -lists (either by deleting $c\left(u_{1}\right)$ or $c\left(u_{2}\right)$ from their lists, or deleting a colour from their lists). Define $T^{\prime}=T \cup N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ and $S^{\prime}=S \backslash\left\{u_{1}, u_{2}\right\}$.

By Claim 21, there are no S, T^{\prime}-adjacencies, and therefore there are no S^{\prime}, T^{\prime} adjacencies. $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ is an independence set since there are no 3-cycles, and u_{1} and u_{2} are not in a 4 -cycle. By Claim 22, there are no adjacencies between vertices in $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ and vertices in T other than the edge $x_{1} x_{2}$. Therefore, is exactly one T^{\prime}-adjacency.

If the T^{\prime}-adjacency is in a 4 -cycle, then by Claim 20 this 4 -cycle does not contain v_{1} and v_{2}. Therefore, we would have coloured and deleted the vertices v_{1} and v_{2} over u_{1} and u_{2}. We may assume without loss of generality that the T-adjacency is not in a 4 -cycle.

The last thing we must check is for odd cycles in $H\left[N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right]$. Suppose by way of contradiction that a cycle C in Lemma 10 exists in H. Since x_{1} was originally adjacent to u_{1} in G and $x_{2} \in T, C$ would be an odd cycle in $G\left[N_{G}(S) \cup T\right]$, a contradiction with G being a counter example.

Therefore, we can apply induction to H, resulting in an L-colouring of H. Placing the coloured vertices u_{1}, u_{2} back in H, we get an L-colouring of G, and a contradiction.

Claim 24. G has no T-adjacency.

By way of contradiction, suppose G has a T-adjacency. We will first show that $|\operatorname{Bnd}(G)|>6$.

Suppose $|\operatorname{Bnd}(G)| \leq 6$. Since G has a exactly one T-adjacency and no S, T-adjacencies, there exists a vertex $v \in V(\operatorname{Bnd}(G))$ such that $|L(v)|=3$. Observe by the existence of $v, \operatorname{Bnd}(G)$ is L-colourable. Therefore, we can define L^{\prime} to be the new list assignment with the lists of vertices in $V(\operatorname{Bnd}(G)$ to be proper 1-lists and the remaining vertices keeping their original lists from L. Letting $S^{\prime}=V(\operatorname{Bnd}(G))$, we have that $\left|S^{\prime}\right| \leq 6$, and that G under the list assignment L^{\prime} and with the set S^{\prime} satisfies the hypothesis. By Claim 23, we have that G is L^{\prime}-colourable, and therefore L-colourable, a contradiction.

Let $u, v \in T$ be adjacent and let $\left(u_{2}, u_{1}, u, v, v_{1}, v_{2}\right)$ be the subpath of $B n d(G)$ of length five with the T-adjacency in the middle. Clearly we have that $\left|L\left(u_{1}\right)\right|=3=\left|L\left(v_{1}\right)\right|$. The rest of this proof will follow by considering cases of u_{2} and v_{2}.

Case 24.1 $u_{2} \in S$ and $\left|L\left(v_{2}\right)\right|=3$.
Colour and delete v. Adjust the lists of the vertices in $N_{G}(v)$, reduce the lists of u_{1} and u to be proper 1 -lists and call the resulting graph and list assignment G^{\prime} and L^{\prime} respectively. If there is an L^{\prime}-colouring of G^{\prime}, then there is an L-colouring of G by placing the coloured vertex v in G^{\prime}. Define $S^{\prime}=S \cup\left\{u_{1}, u\right\}$ and $T^{\prime}=\left(T \cup N_{G}(v)\right) \backslash\{u, v\}$.

First let us check for any T^{\prime}-adjacencies. Note that $T^{\prime} \backslash T \subseteq N_{G}(v)$ and there are no 3-cycles in G; therefore $T^{\prime} \backslash T$ is an independence set. As $G[T \backslash\{v\}]$ is an independent set, so; by Claim 22, there are no edges between $T^{\prime} \backslash T$ and $T \backslash\{v\}$. Therefore T^{\prime} is an independent set.

Now let us check that there are no S^{\prime}, T^{\prime}-adjacencies. We know there are no S^{\prime}, T-adjacencies by Claim 20. There are also no adjacencies between S-vertices and vertices in $N_{G}(v) \cap V(\operatorname{int}(G))$ by Claim 22. Since the T adjacency is not in a 4 -cycle, u_{1} is not adjacent to anything in $N_{G}(v) \cap$ $V(\operatorname{int}(G))$. There are no 3 -cycles, therefore u is not adjacent to anything in $N_{G}(v) \cap V(\operatorname{int}(G))$. Hence there are no S^{\prime}, T^{\prime}-adjacencies.

If G^{\prime} satisfies the hypothesis on L^{\prime} with the sets S^{\prime} and T^{\prime}, then we colour
G^{\prime}, find an L-colouring for G, and end with a contradiction. Therefore, G^{\prime} does not satisfy the hypothesis under the list assignment L^{\prime} and the sets S^{\prime} and T^{\prime}. This imples that there exists an odd cycle in $G^{\prime}\left[N_{G^{\prime}}\left(S^{\prime}\right) \cup T^{\prime}\right]$. This means that there is a 5 -cycle $C=\left(z_{1} z_{2} \ldots z_{5} z_{1}\right)$ such that $z_{5} \in T$ and for each vertex that is not z_{5} in the cycle, it must have list size three and be adjacent to an S^{\prime}-vertex. Since this is the case, $\left|S^{\prime}\right|=6, z_{1}$ is adjacent to w_{1} and z_{4} is adjacent to w_{2} where w_{1} and w_{2} are the different ends of $\operatorname{Bnd}(G)\left[S^{\prime}\right]$.

Let $P=\left(w_{2} z_{4} z_{3} z_{2} z_{1} w_{1}\right)$ be a path of length four. Clearly P is separating by the existence of v_{1}. This path P induces a triple $\left(G_{1}, G_{2}, P\right)$. Define H_{P} and S_{P} as in Definition 17 on the triple $\left(G_{1}, G_{2}, P\right)$. Note that both z_{1} and z_{4} are each at most distance one from a 4 -cycle in G_{1}. Therefore, there is no vertex in $G_{2}-V\left(H_{P}\right)$ with list size three adjacent to three vertices of S_{P} in G_{2} and $G_{2}\left[N_{G_{2}}\left(S_{P}\right) \cup\left(T \cap V\left(G_{2}-V\left(H_{P}\right)\right)\right)\right]$ does not contain an odd cycle. Thus $\left(G_{1}, G_{2}, P\right)$ is a good triple, contradicting Claim 19.

Case $24.2 u_{2} \in S$ and $v_{2} \in T$.
There are two cases: u_{1} and v_{1} either have a common neighbour in $V(\operatorname{int}(G))$ or they do not.

Subcase 24.2.1 u_{1} and v_{1} have a common neighbour $x \in V(\operatorname{int}(G))$.
We will break this up into two cases, depending on whether x is adjacent to an S-vertex or not.

Subcase 24.2.1.1 x is adjacent to a vertex $z \in S$.
This implies that both z and u_{1} are incident with an interior face F. We colour and delete all S-vertices in F that have degree two, u_{1}, u, and v. Reduce the lists of x, v_{1}, and v_{2} to be proper 1-lists and call this new graph G^{\prime} with new list assignment L^{\prime}. Let $S^{\prime}=\left\{v \in V\left(G^{\prime}\right) \mid L^{\prime}(v)=1\right\}$ and $T^{\prime}=T \backslash\left\{u, v, v_{2}\right\}$.

Note that either $\left|S^{\prime}\right| \leq 5$ or x is in a 4-cycle in G that is not in G^{\prime}. Either way there is no need to check if there is a vertex in G^{\prime} adjacent to three S^{\prime}-vertices or for odd cycles in $G^{\prime}\left[N_{G^{\prime}}\left(S^{\prime}\right) \cup T^{\prime}\right]$. If x is adjacent to a T-vertex, then there is a separating 2-path in G with one end in S and the other in
T, a contradiction with Claim 22. Therefore, there are no S^{\prime}, T^{\prime}-adjacencies and G^{\prime} is L^{\prime}-colourable, a contradiction.

Subcase 24.2.1.2 x is not adjacent to an S-vertex.
Colour and delete v_{1}, v, and u such that $c\left(v_{1}\right) \notin L\left(v_{2}\right)$. Adjust the lists of the vertices in $N_{G}\left(\left\{u, v_{1}\right\}\right)$ to be 2-lists.

If u_{1} can not be reduced to a proper 1-list, then it is adjacent to an S vertex through an edge that is not on the boundary, a contradiction with Claim 20.

If x can not be reduced to a proper 1 -list, then it is adjacent to an S-vertex, contradicting the hypothesis of this case.

Reduce the lists of u_{1} and x to be proper 1 -lists and call the resulting graph and list assignment G^{\prime} and L^{\prime} respectively. Note that by Claim 12, u, v have degree two in G since the cycle ($u_{1}, u, v, v_{1}, s, u_{1}$) bounds a face of length five, therefore the only neighbour of u that remains in G^{\prime} is u_{1}.

Define $S^{\prime}=S \cup\left\{u_{1}, x\right\}$ and $T^{\prime}=\left(T \cup N_{G}\left(v_{1}\right)\right) \backslash\{u, v, x\}$.
Clearly there are no L^{\prime}-colourings of G^{\prime}, else we could place the coloured vertices u, v, v_{1} back in G^{\prime} to find a L-colouring of G, and a contradiction.

Let us check for any T^{\prime}-adjacencies. Recall $\left(T^{\prime} \backslash T\right) \subseteq N_{G}\left(v_{1}\right)$. Since there are no 3-cycles in G, we have that $T^{\prime} \backslash T$ is an independent set. By defiinition $T \backslash\left\{u, v, v_{1}\right\}$ is an independent set. By Claim 22, the only possible edge between $T^{\prime} \backslash T$ and $T \backslash\{u, v\}$ is between a T-vertex that is not in a T-adjacency and a vertex in $N_{G}\left(v_{1}\right) \cap V(\operatorname{int}(G))$. This adjacency is not possible because it would form a good separating 2-path, which by Claim 19 does not exist. Therefore T^{\prime} is an independent set.

By Claim 20, we know there are no $S^{\prime} \backslash\{x\}, T$-adjacencies. Suppose there is a vertex $w \in S$ that is adjacent to a vertex $y \in N_{G}\left(v_{1}\right) \cap V(\operatorname{int}(G))$. Since the path v_{1}, y, w does not induce a good triple it must be the case that $\left(w, y, v_{1}, v, u, u_{1}, u_{2}, w\right)$ is a 6 -cycle. By Claim 12, we have that $\operatorname{deg}_{G}(x)=2$, a contradiction with Claim 11. Therefore, no vertex in $N_{G}\left(v_{1}\right)$ is adjacent to
an S-vertex.
If u_{1} is adjacent to anything in $\left(N_{G}\left(v_{1}\right) \backslash\{x\}\right)$, then u_{1} is in a 5 -cycle that has x in its interior and u_{2} in its exterior, contradicting Claim 12.

If x is adjacent to a T-vertex, then it forms a good separating 2 -path, contradicting Claim 19. Since there are no 3 -cycles in the graph, x is also not adjacent to a vertex in $T^{\prime} \backslash T \subseteq N_{G}\left(v_{1}\right)$.

We need to check two things, first that there are no vertices that are adjacent to three vertices in S^{\prime}, and second that $H\left[N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right]$ does not contain an odd cycle.

Suppose there is a vertex z adjacent to three vertices in $s_{1}, s_{i}, x \in S^{\prime}$ such that s_{1} and x are the ends of the path $\operatorname{Bnd}\left(G^{\prime}\right)\left[S^{\prime}\right]$. Similar to Subcase 24.2.1.1, colour and delete every vertex in $\left(S^{\prime} \cup\left\{u_{1}, u, v\right)\right\} \backslash\left\{s_{1}, x\right\}$ and call this new graph $G^{\prime \prime}$. Then define $S^{\prime \prime}=\left\{s_{1}, z, x, v_{1}, v_{2}\right\}$ and $T^{\prime \prime}=T \backslash\left\{u, v, v_{2}\right\}$ and reduce the list of the vertices of $S^{\prime \prime}$ to be proper 1-lists and call this list assignments $L^{\prime \prime}$.

By minimality of $G, G^{\prime \prime}$ is $L^{\prime \prime}$-colourable. Placing the coloured vertices of $V(G) \backslash V\left(G^{\prime \prime}\right)$ back into the graph $G^{\prime \prime}$ we get an L-colouring of G and a contradiction. Therefore, there is no vertex adjacent to three vertices of S^{\prime}.

Suppose there is an odd cycle in $G^{\prime}\left[N_{G^{\prime}}\left(S^{\prime}\right) \cup T^{\prime}\right]$. Let C be a cycle as described in Lemma 10 such that $C=\left(z_{1} z_{2} \ldots z_{5} z_{1}\right)$ and $z_{5} \in T^{\prime}$. Since this is the case, $\left|S^{\prime}\right|=6, z_{1}$ is adjacent to w_{1} and z_{4} is adjacent to w_{2}, where w_{1} and w_{2} are the different ends of $\operatorname{Bnd}(G)\left[S^{\prime}\right]$.

Without loss of generality, let $w_{1}=u_{2}$. If $z_{5} \in T$, then the path $\left(z_{5} z_{1} u_{2}\right)$ is a separating 2-path,a contradiction with Claim 22. Therefore, $z_{5} \in V(\operatorname{int}(G))$ which tells us z_{5} is adjacent to v_{1} since $z_{5} \in T^{\prime} \backslash T$. Since there is a 4 -cycle comprised of only $S^{\prime} \cup V(C)$-vertices, we have that $x \neq z_{5}$, else $\left(x, u_{1}, u_{2}, z_{1}, x\right)$ would be another 4 -cycle too close to the previous.

We have $\left(u_{1}, u, v, v_{1}, x\right)$ is a 5 -cycle with empty interior by Claim 12 , and $\left(v_{1}, z_{5}, z_{1}, u_{2}, u_{1}, x, v_{1}\right)$ is a 6 -cycle with empty interior for the same reason. This implies that $\operatorname{deg}_{G}(x)=2$, a contradiction with Claim 11. Therefore
there is no odd cycle in $H\left[N_{G^{\prime}}\left(S^{\prime}\right) \cup T^{\prime}\right]$.
By minimality of G, we get an L^{\prime}-colouring of G^{\prime}; placing the coloured vertices of $V(G) \backslash V\left(G^{\prime}\right)$ back yields an L-colouring of G and a contradiction.

Subcase 24.2.2 u_{1} and v_{1} do not have a common neighbour in $V(\operatorname{int}(G))$.

We have either both v and v_{1} are in a 4 -cycle or they are not.
Subcase 24.2.2.1 One of v and v_{1} is not in a 4 -cycle.
Colour and delete v_{1} and v so as not to disturb the list of v_{2} and call this new graph H. Following this reduce the lists of $N_{G}\left(\left\{v, v_{1}\right\}\right)$. Assign u a 1-list that is not the colour of v, and u_{1} a 1-list that is not the colour of u_{2} or v. Define $S^{\prime}=S \cup\left\{u, u_{1}\right\}$ and $T^{\prime}=\left(T \cup N_{G}\left(\left\{v, v_{1}\right\}\right)\right) \backslash\{u, v\}$.

There are no adjacencies between a vertex in $N_{G}\left(v_{1}\right) \cap V(\operatorname{int}(G))$ and an $S \cup T$-vertex, else there is a separating path P of length two form v_{1} to an S-vertex that would induce a triples $\left(G_{1}, G_{2}, P\right),\left(G_{2}, G_{1}, P\right)$ such that one of the triples is good, a contradiction with Claim 19. There are also no adjacencies between u or u_{1}, and a vertex in $N_{G}\left(v_{1}\right) \cap V(\operatorname{int}(G))$ since the T-adjacency is not in a 4 -cycle and u_{1} and v_{1} do not have a common neighbour in $V(G)$.

There are no adjacencies between a vertex in $N_{G}(v) \cap V(i n t(G))$ and an $S \cup T$ vertex by Claim 22 and no adjacencies between a vertex in $N_{G}(v) \cap V(\operatorname{int}(G))$ and a vertex in $S^{\prime} \backslash S$ since the T-adjacency is not in a 3- or 4-cycle.

By Claim 20 no vertex in S^{\prime} is adjacent to a T-vertex. Therefore, we have that there are no S^{\prime}, T^{\prime}-adjacencies. Since one of v and v_{1} is not in a 4-cycle, we have that there are no T^{\prime}-adjacencies in $G\left[N_{G}\left(\left\{v, v_{1}\right\}\right)\right]$. Since the T adjacency no longer exists in H, we have that there are no T^{\prime}-adjacencies in H.

By Claim 22, since $u \in T$ and u is an end of the path $\operatorname{Bnd}(H)\left[S^{\prime}\right]$), there is no vertex with list size three in H that is adjacent to three S-vertices. Therefore, we need only check that there is not a 5 -cycle in H that has one vertex in T^{\prime}, and the rest having list size and each being adjacent to one
S^{\prime}-vertex.

Suppose by way of contradiction that there exists such a cycle $C=\left(z_{1} z_{2} \ldots z_{5} z_{1}\right)$ such that $z_{5} \in T^{\prime}, z_{1}$ is adjacent to u_{1} and z_{4} is adjacent to a vertex w that is the end of both paths $\operatorname{Bnd}(G)[S]$ and $\operatorname{Bnd}(H)\left[S^{\prime}\right]$. If z_{5} is adjacent to v, then the path $\left(v, z_{5}, z_{4}, w\right)$ is a separating 3 -path with one end in S and the other in T, a contradiction with Claim 22.

If z_{5} is adjacent to v_{1}, then the path $\left(v_{1}, z_{5}, z_{4}, w\right)$ will induce a good triple since one side of this path contains the S-vertices and the T-adjacency, and the other side contains a list size three vertex (i.e. v_{1}).

If $z_{5} \in T$, then the path $\left(z_{5}, z_{1}, u_{1}\right)$ is a separating 2-path since $z_{5} \neq u$ $\left(z_{5} \in V(H), u \notin V(H)\right)$.

Therefore, $z_{5} \notin T^{\prime}$, a contradiction with $z_{5} \in T^{\prime}$. This gives us that there are no odd cycles in $\left(N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right)$ with every list three vertex adjacent to an S^{\prime}-vertex. By minimality of G, we L-colour H, and place the coloured vertices v and v_{1} back into H to find an L-colouring of G, and a contradiction.

Subcase 24.2.2.2 Both of v and v_{1} are in 4-cycles.
Since 4 -cycles are far apart it must be the case that v and v_{1} are in the same 4 -cycle. Let this 4 -cycle be $C=\left(v, v_{1}, x_{1}, x\right)$. Since the T-adjacency is not in a 4 -cycle and $\operatorname{deg}_{G}\left(v_{1}\right)=3$, by Claim 11 we know that neither x nor x_{1} is either of u or v_{2}.

Now we have that either there is a vertex in $N_{G}\left(u_{1}\right)$ that is adjacent to a vertex in $N_{G}(v)$ or not.

Subcase 24.2.2.2.1 There does not exist a vertex in $N_{G}\left(u_{1}\right)$ that is adjacent to a vertex in $N_{G}(v)$.

Colour and delete u_{1}, u and v so as not to disturb the list of u_{2} and call this new graph H. Following this reduce the lists of the vertices of $N_{G}\left(\left\{u_{1}, u, v\right\}\right)$ in H. Define $T^{\prime}=\left(T \cup N_{G}\left(\left\{u_{1}, u, v,\right\}\right)\right) \backslash\{u, v\}$.

Since $N_{G}\left(\left\{u_{1}, v\right\}\right)$ is an independent set, and by the existence of C we have
that $N_{G}\left(\left\{u_{1}, v, v_{1}\right\}\right)$ is an independent set. We also have that $T \backslash\{u, v\}$ is an independent set. Now we check for $\left(T^{\prime} \backslash T, S \cup T \backslash T^{\prime}\right)$-adjacencies.

By Claim 22, no vertex in $N_{G}(\{u, v\}) \backslash\left\{u_{1}\right\}$ is adjacent to an $S \cup T$-vertex. By the existence of C, if a vertex in $N_{G}\left(u_{1}\right)$ is adjacent to a $S \cup T$-vertex, then it would form a separating path that would induce a good triple, contradicting Claim 19. Therefore, there are no T^{\prime}-adjacencies and no $\left(S, T^{\prime}\right)$-adjacencies.

By Lemma 10, since C is in G, and not in H, we know the remaining properties to the hypothesis hold. Therefore, with the sets S and T^{\prime} and by minimality of G, we find an L-colouring of H. Placing the coloured vertices u, v, and v_{1} back in the graph, we find an L-colouring of G, and a contradiction.

Subcase 24.2.2.2.2 There does exist a vertex in $N_{G}\left(u_{1}\right)$ that is adjacent to a vertex in $N_{G}(v)$.

Let these two vertices be $w_{1} \in N_{G}\left(u_{1}\right)$ and $w \in N_{G}(v)$. There are two cases to consider, whether $w=x$ or $w \neq x$.

Subcase 24.2.2.2.2.1 $w \neq x$.
By Claim 22, no vertex in $N_{G}(w)$ is adjacent to an S-vertex.
Colour and delete u_{1}, u, v, v_{1}, w and w_{1} so as not to disturb the list of v_{2} and call this new graph H. Following this reduce the lists of the vertices of $N_{G}\left(\left\{u_{1}, u, v, v_{1}, w, w_{1}\right\}\right)$ in H. Define $T^{\prime}=\left(T \cup N_{G}\left(\left\{u_{1}, u, v, v_{1}, w, w_{1}\right\}\right)\right) \backslash\{u, v\}$.

By the existence of C, and Claims 12, 11 we have that $E\left(G\left[N_{G}\left(\left\{w, w_{1}, u_{1}, u, v, v_{1}\right\}\right)\right]\right)=$ $\left\{x x_{1}\right\}$. We already have that $T \backslash\{u, v\}$ is an independence set and that there are no (S, T)-adjacencies. Now we check for $\left(T^{\prime} \backslash T, S \cup\left(T \backslash T^{\prime}\right)\right)$-adjacencies.

Since u is in the cycle $\left(u_{1}, u, v, w, w_{1}, u_{1}\right)$, Claim 12 implies $\operatorname{deg}_{G}(u)$, and that all of its neighbours were deleted. By Claim 22, no vertex in $N_{G}(v, w) \backslash\left\{u_{2}\right\}$ is adjacent to an $S \cup T$-vertex.

If a vertex in $N_{G}\left(\left\{u_{1}, v_{1}\right\}\right) \backslash\{u, v\}$ is adjacent to an $S \cup T$-vertex, then it would form a separating path. By Lemma 10, since C is close to this separating path, the path would induce a good triple, contradiction Claim 19.

Liekwise, no vertex in $N_{G}\left(w_{1}\right) \backslash\left\{v_{1}, w\right\}$ is adjacent to an $S \cup T$-vertex.
Therefore, there is one T^{\prime}-adjacency and no $\left(S, T^{\prime}\right)$-adjacencies.
Since C is in G, and not in H, we know that the T^{\prime}-adjacency is not in a 4-cycle and that it is not in an odd cycle with the remaining vertices adjacent to S-vertices. Therefore, by minimality of G, an L-colouring of H. Placing the coloured vertices $u_{1}, u, v, v_{1}, w, w_{1}$ back in the graph, yields an L-colouring of G, and a contradiction.

Subcase 24.2.2.2.2.2 $w=x$.
By Claim 22 , no vertex in $N_{G}\left(x_{1}\right)$ is adjacent to an S-vertex.
Colour and delete u, v, v_{1}, x and x_{1}. Call this new graph H. Following this reduce the lists of the vertices of $N_{G}\left(\left\{v_{1}, x, x_{1}\right\}\right)$ in H and then reduce the lists of u_{1} and w_{1} to be proper 1-lists. Define $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{1}, x, x_{1}\right\}\right)\right) \backslash\left\{u, v, w_{1}\right\}$ and $S^{\prime}=S \cup\left\{u_{1}, w_{1}\right\}$.

By the existence of C, Claims 11 and 12 imply that $N_{G}\left(\left\{x, x_{1}, v_{1}\right\}\right) \backslash\{u, v\}$ is an independent set. We also have that $T \backslash\{u, v\}$ is an independent set. Now we check for $\left(T^{\prime} \backslash T, S^{\prime} \cup\left(T \backslash T^{\prime}\right)\right.$)-adjacencies.

By Claim 22, no vertex in $N_{G}(x) \backslash\left\{u_{2}\right\}$ is adjacent to an $S \cup T$-vertex. If a vertex in $N_{G}\left(\left\{v_{1}\right\}\right) \backslash\{u, v\}$ is adjacent to an $S \cup T$-vertex, then it along with its $S \cup T$ neighbour and v_{1} would form a separating path. By Lemma 10 , since C is close to this path, the path would induce a good triple, contradicting Claim 19.

By Claim 19 and by the hypothesis of this case, no vertex in $N_{G}\left(x_{1}\right) \backslash\left\{v_{1}, w\right\}$ is adjacent to an $S \cup T$-vertex. Therefore, there are no T^{\prime}-adjacencies and no (S, T^{\prime})-adjacencies.

By the existence of C, and Claims 12, 11 we have that w_{1} and u_{1} are not adjacent to any $T^{\prime} \backslash T$-vertices. By Claim 20, u_{1} is not adjacent to any T-vertices. If w_{1} is adjacent to a T-vertex, then the 2-path from u_{1} to this T-vertex would induce a good triple, contradicting Claim 19. Therefore, there are no S^{\prime}, T^{\prime}-adjacencies.

By Lemma 10, since C is in G, and not in H, we know the remaining hypothes hold. Therefore, by minimality of G, there is an L-colouring of H. Placing the coloured vertices u, v, v_{1}, w, w_{1} back in the graph, produces an L-colouring of G, and a contradiction.

Case $24.3 u_{2}, v_{2} \in S$.
We will break this up into cases, depending on whether $N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right)=\varnothing$ or not.

Subcase 24.3.1 $z \in N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right)$.
Colour and delete u, v and reduce the lists of u_{1} and v_{1} to be proper 1lists. Let $S^{\prime}=S \cup\left\{u_{1}, v_{1}\right\}, T^{\prime}=\varnothing$ and let this this new list assignment be L^{\prime} on $G^{\prime}=G-\{u, v\}$. Clearly z is not adjacent to an S vertex, else the 5 -cycle $\left(z, u_{1}, u, v, v_{1}, z\right)$ is in G and has every three list adjacent to an S-vertex, which is not possible by hypothesis.

There are also no odd cycles in $N_{G^{\prime}}\left(S^{\prime}\right) \cup T^{\prime}$ because $T^{\prime}=\varnothing$. If there is a list size three vertex adjacent to three S^{\prime}-vertices, then is must be adjacent to both u_{1} and v_{1}. This vertex would then form a 5 -cycle in G with z on its interior and u_{2} on its exterior, a contradiction with Claim 12.

Therefore, by minimality of G, G^{\prime} satisfies the hypothesis and is L^{\prime}-colourable. Placing the coloured vertices back into G^{\prime} we get that G is L-colourable, a contradiction.

Subcase 24.3.2 $N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right)=\varnothing$
Since the T-adjacency is not in a 4 -cycle, we may assume without loss of generality that v is not in a 4 -cycle, else we look at u. Colour and delete v and v_{1}. Adjust the lists of $N_{G}\left(\left\{v, v_{1}\right\}\right)$ accordingly and reduce the lists of u_{1} and u to be proper 1-lists. Let $S^{\prime}=S \cup\left\{u_{1}, u\right\}$ and $T^{\prime}=N_{G}\left(\left\{v, v_{1}\right\}\right) \backslash\left\{u, v_{2}\right\}$ and let this new list assignment be L^{\prime} on $G^{\prime}=G-\left\{v, v_{1}\right\}$.

Since v is not in a 4 -cycle, we have that there are no T^{\prime}-adjacencies. Since the T-adjacency is not in a 4 -cycle and $N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right)=\varnothing$, we have
that there are no ($S^{\prime} \backslash S, T^{\prime}$)-adjacencies. If there a was an S, T^{\prime}-adjacency, then we would have a good separating 2-path, a contradiction with Claim 19.

Suppose there is a vertex with list size three adjacent to three S^{\prime}-vertices in G^{\prime} and let this vertex be z. z would be adjacent to both u and v_{2} and therefore (u, v, v_{1}, v_{2}, s, u) would be a 5 -cycle with empty interior by Claim 12. This would imply that $\operatorname{deg}_{G}\left(v_{1}\right)=2$, and by Claim 11, this is a contradiction. Therefore, thre is no vertex adjacent to three S^{\prime}-vertices.

Suppose there is a 5 -cycle $C=\left(z_{1}, z_{2}, \ldots, z_{5}, z_{1}\right)$ in G^{\prime}, such that $z_{5} \in T^{\prime}$, z_{1} is adjacent to u and z_{4} is adjacent to v_{2} and the graph $G\left[V(C) \cup S^{\prime}\right]$ has a 4 -cycle C_{4}. Since $z_{5} \in T^{\prime}$, it is either $z_{5} v \in E(G)$ or $z_{5} v_{1} \in E(G)$. If $z_{5} v \in E(G)$, then the 4 -cycle $\left(v, z_{5}, z_{1}, u, v\right)$ is too close to C_{4}. Therefore, $z_{5} v_{1} \in E(G)$. We have that the 4 -cycle $\left(v_{1}, z_{5}, z_{4}, v_{2}, v_{1}\right)$ is too close to C_{4}, therefore C does not exists.
G^{\prime} satisfies the hypothesis and by minimality of G, we have that G^{\prime} is L^{\prime} colourable. Placing the coloured vertices back into G^{\prime}, we get that G is L-colourable, and a contradiction.

Case $24.4 u_{2}, v_{2} \notin S \cup T$.
In this case we colour and delete u and v. For every vertex $x \in N_{G}(u)$, redefine the list of x to be $L^{\prime}(x)=L(x) \backslash c(u)$. Similarly, redefine the lists of the neighbours of v. Define $T^{\prime}=\left(T \cup N_{G}(\{u, v\})\right) \backslash\{u, v\}$. By Claim 22, no vertex in $N_{G}(\{u, v\}) \backslash\left\{u_{1}, v_{1}\right\}$ is adjacent to an $S \cup T^{\prime}$-vertex. By Claim 20, u_{1} and v_{1} are not adjacent to any $S \cup T^{\prime}$-vertices either.

Since the T-adjacency is not in a 4-cycle, we have that there is no T^{\prime} adjacency. Since $|S| \leq 4$ and there is no T^{\prime}-adjacency, we have that there is no odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$

Therefore $G-\{u, v\}$ satisfies the hypothesis, and by minimality of $G, G-$ $\{u, v\}$ has an L^{\prime}-colouring. Placing the coloured vertices u, v back in the graph we find an L-colouring of G, and a contradiction.

Case $24.5 u_{2} \in T$ and $v_{2} \notin S \cup T$.

Colour and delete u_{1}, u, v so as not to disturb the list of u_{2} and let $G^{\prime}=$ $G-\left\{u_{1}, u, v\right\}$. Adjust the list of each vertex in $N_{G}\left(\left\{u_{1}, u, v\right\}\right)$ accordingly and call this list assignment L^{\prime}. Note that since the list of u_{2} was not disturb by the colouring of these vertices, $\left|L^{\prime}\left(u_{2}\right)\right|=2$. Define $T^{\prime}=$ $T \cup\left(N_{G}\left(\left\{u_{1}, u, v, s\right\}\right) \cap V\left(G^{\prime}\right)\right)$.

Since the T-adjacency is not in a 4-cycle we have that $N_{G}\left(u_{1}\right) \cap N_{G}(v) \cap$ $\operatorname{Int}(G)=\varnothing$. This implies that there are no vertices outside of the S-vertices that have an L^{\prime} list size of one in G^{\prime}.

By Claim 22, we know that no neighbours of u or v are adjacent to a $S \cup T$ vertex other than u and v. By Claim 19, we know that no neighbour of u_{1} is adjacent to an $S \cup T$-vertex.

Now the question becomes, where might a new T^{\prime}-adjacency $x y$ appear, and can it be in a 4 -cycle in G^{\prime}. Since the T-adjacency can not be in a 4 -cycle, there are two cases for x and y that are independent of each other by Claim 12. Either

- $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(u) \cap \operatorname{int}(G)$,or
- $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(v)$.

Subcase 24.5.1 Suppose $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(u) \cap \operatorname{int}(G)$.
This immediately implies that the cycle $C=\left(u_{1}, x, y, u, u_{1}\right)$ is a 4-cycle. It follows that the T^{\prime}-adjacency in G^{\prime} is not in a 4 -cycle since 4 -cycles are far apart. Similarly there are no odd cycles in $N_{G^{\prime}}(S) \cup T^{\prime}$ since the T^{\prime} adjacencies are close to C in G, and C is not in G^{\prime}. Therefore, under this constraint G^{\prime} has an L^{\prime}-colouring. Placing the deleted vertices back into the graph, we find an L-colouring of G, and a contradiction.

Subcase 24.5.2 $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(v)$.
First let us show that the edge $x y$ is not in a 5 -cycle in G^{\prime} with the property that the three vertices in the 5 -cycle that are not x or y are each adjacent to an S-vertex. Suppose this is the case and let z be the vertex adjacent to y in the 5 -cycle that is not x and let s be the S-vertex adjacent to z. The path (v, y, z, s) is a separating 3 -path, a contradiction with Claim 22.

Therefore, we may assume that $x y$ is in a 4 -cycle C in G^{\prime}, else we can find an L^{\prime}-colouring of G^{\prime} and a contradiction. By Claim 22, no vertex of this 4-cycle is in $S \cup T$.

Extend the labelling of the vertices, so u_{3} is the neighbour of u_{2} on the boundary that is not u_{1} and u_{4} is the neighbour of u_{3} on the boundary that is not u_{2}. Colour and delete u_{1} and u_{2} as to not disturb the list of u and call the resulting graph H. For every vertex in $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ adjust their lists accordingly and call this list assignment $L^{\prime \prime}$. Note that since the list of u was not disturbed by the colouring of these vertices, $\left|L^{\prime \prime}(u)\right|=2$. Define $T^{\prime \prime}=T \cup\left(N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)\right.$.

If a neighbour of u_{1} that is not u is adjacent to an $S \cup T$-vertex other than v, then this neighbour along with the $S \cup T$-vertex and u_{1} would form a separating path. By Lemma 10 and the existence of the cycle C, this path would induce a good triple, contradicting Claim 19. If a neighbour of u_{1} other than u is adjacent to v, then this neighbour along with u_{1}, u and v would form a 4 -cycle that is close to C, a contradiction with 4 -cycles far apart.

By Claim 22, at most one neighbour of u_{2} is adjacent to an $S \cup T$-vertex, specifically u_{3}.

Since 4-cycles are far apart, either $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ is an independent set, or $y \in N_{G}\left(u_{2}\right)$. If $y \in N_{G}\left(u_{2}\right)$, then $\left(y, u_{2}, u_{1}, u, v, y\right)$ is a 5 -cycle with x on the interior and v_{2} on the exterior, a contradiction by Claim 12.

Therefore, $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ is an independence set. Since $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(v)$, Claim 12 shows $\operatorname{deg}_{H}(u)=1$. So we have that there are no $S, T^{\prime \prime}$-adjacencies in $H-u$ and there is at most one $T^{\prime \prime}$-adjacency in $H-u$.

If there is an $L^{\prime \prime}$-colouring of $H-u$, then we can we place the coloured vertices back into the graph so that we have an L-colouring of $G-\{u\}$. Since $c\left(u_{1}\right) \notin L(u)$, we can let $c(u) \in L(u) \backslash\{c(v)\}$ to get an L-colouring of G, and a contradiction. Therefore, we need only find an $L^{\prime \prime}$-colouring of $H-u$. Either u_{3} is adjacent to an S-vertex or it is not.

Subcase 24.5.2.1 u_{3} is adjacent to an S-vertex.

In $H-u$, if u_{3} is adjacent to an S-vertex, then reduce its list to be a proper 1 -list, let $S^{\prime}=S \cup\left\{u_{3}\right\}$ and remove u_{3} from $T^{\prime \prime}$. Note that $\left|S^{\prime}\right| \leq 5$, therefore $H-u$ satisfies the hypothesis with S^{\prime} and $T^{\prime \prime}$ and we use the minimality of G to find an $L^{\prime \prime}$-colouring of $H-u$, and a contradiction.

Subcase 24.5.2.2 u_{3} is not adjacent to an S-vertex.
Suppose $N_{H-u}(S) \cup T^{\prime \prime}$ contains an odd cycle. By Lemma 10, $(H-u)\left[V\left(C^{\prime}\right) \cup\right.$ $S]$ contains a 4 -cycle. Note that this 4 -cycle is different from C because C contains no $S \cup T$ vertices. These two cycles contradict the fact that 4 -cycles are far apart. Therefore, $N_{H-u}(S) \cup T^{\prime \prime}$ does not contain an odd cycle.

Similarly, if there is a $T^{\prime \prime}$-adjacency, then the $T^{\prime \prime}$-adjacency would be $u_{2} u_{3}$ and it is it not in a 4 -cycle because it would be too close to C.

The minimality of G shows there is an $L^{\prime \prime}$-colouring of $H-u$, and a contradiction.

Case $24.6 u_{2}, v_{2} \in T$.
Without loss of generality, we may assume that $N_{G}\left(u_{1}\right)$ does not have a vertex adjacent to a vertex in $N_{G}(v)$, else by planarity the vertices v_{1} and u do not have adjacent neighbours.

Define $T^{\prime}=(T \backslash\{u, v\}) \cup N_{G}\left(\left\{u_{1}, u, v\right\}\right)$. We would like to colour and delete u_{1}, u, v such that the colour of u_{1} is not in $L\left(u_{2}\right)$ and proceed as in previous cases by reducing the lists of their neighbours, but unwelcome things can happen. In particular, there could be an odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$, $N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right) \cap \operatorname{Int}(G) \neq \varnothing$, there could be a vertex in $N_{G}\left(u_{1}\right)$ adjacent to a vertex in $N_{G}(u)$, or v_{1} and v_{2} could be in a 4 -cycle.

Claim 24.6.1 There is no odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$.
Suppose by way of contradiction that there is an odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$.
This implies that there is a cycle C such that the edge $v_{1} v_{2}$ is in C, and every other vertex of C has list size three and is adjacent to an S-vertex. Let z be
the neighbour of v_{1} in $V(C) \backslash\{u v 2\}$. Since 4-cycles are far apart, we have that z is adjacent to a vertex s that is the end of $\operatorname{Bnd}(G)[S]$. The path $\left(v_{1}, z, s\right)$ is a separating 2-path, that induces triples $\left(G_{1}, G_{2}, P\right)$ and $\left(G_{2}, G_{1}, P\right)$, in which one of them is a good triple, a contradiction with Claim 19.

Claim 24.6.2 $N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right) \cap \operatorname{Int}(G)=\varnothing$.
Suppose to the contrary that $z \in N_{G}\left(u_{1}\right) \cap N_{G}\left(v_{1}\right) \cap \operatorname{Int}(G)$.
As before let u_{3} be the neighbour of u_{2} on the boundary that is not u_{1} and let u_{4} be the neighbour of u_{3} on the boundary that is not u_{2}. Define v_{3} and v_{4} in a similar manner on the other side. The $\operatorname{Bnd}(G)$ is really two internally disjoint u_{1}, v_{1}-paths.

Let R be the path of the two that is not the path $\left(u_{1}, u, v, v_{1}\right)$.By Claim 12, if the cycle formed by R and z has length less than 7 , then its interior must be empty. But the interior of the cycle $\left(z, u_{1}, u, v, v_{1}, z\right)$ is empty. This would imply that $\operatorname{deg}_{G}(z)=2$, a contradiction with Claim 11. Therefore, we know that $|V(\operatorname{Bnd}(G))| \geq 9$. This says that if $u_{i}=v_{j}$, then $i=j=4$.

First we show that no vertex in the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is adjacent to a vertex in $\left\{v_{1}, v_{2}, v_{3}\right\}$.

Suppose this is not the case, so some u_{i} and v_{j} are adjacent for $i, j \in$ $\{1,2,3\}$. If $i \neq 3$ and $j \neq 3$, then this would give us a separating cycle $\left(u_{i}, \ldots, u, v, \ldots, v_{j}\right)$ of length at most 7 , a contradiction with Claim 12. Therefore, it must be the case that $i=j=3$. Apply the same argument that shows $|V(\operatorname{Bnd}(G))| \geq 9$ to show u_{3} is not adjacent to u_{3}, except define $R=\left(u_{1}, u_{2}, u_{3}, v_{3}, v_{2}, v_{1}\right)$.

Without loss of generality we may assume that no pair of vertices in $\left\{u_{1}, u_{2}, u_{3}\right\}$ is in a 4-cycle, else we look at v 's instead of u 's. Colour and delete u_{1} and u_{2} as to not disturb u. Delete u and v and call the resulting graph H. Adjust the lists of neighbours of u_{1} and u_{2} accordingly and call this list assignment L^{\prime}.

Either $u_{4} \in S$ or $u_{4} \notin S$.

Case 24.6.2.1 $u_{4} \in S$.
Define $T^{\prime}=\left(T \cup N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)\right) \backslash\left\{v, u, u_{2}, u_{3}\right\}$ and $S^{\prime}=S \cup\left\{u_{3}\right\}$. If a vertex y in $N_{G}\left(u_{1}\right) \backslash\left\{u_{1}, u\right\}$ is adjacent to an $S \cup T$-vertex, then the $S \cup T$-vertex along with y, u_{1} and u_{2} would a separating path, contradicting Claim 22. By Claim 22, no vertex in $N_{G}\left(u_{2}\right) \backslash\left\{u_{1}, u_{3}\right\}$ is adjacent to an $S \cup T$-vertex.

Since u_{1} and u_{2} are not in a 4 -cycle together, we have that $N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)$ is an independent set. For the same reason, we have that u_{3} is not adjacent to any internal neighbours of u_{1}. By Claim 20, we have that u_{3} is not adjacent to any $T^{\prime \prime}$-vertices. Reduce the list of u_{3} to be a proper 1-list.

From our arguments, there are no S^{\prime}, T^{\prime}-adjacencies, and there are no T^{\prime} adjacencies. As $\left|S^{\prime}\right| \leq 5$, there are no odd cycles in $N_{H}\left(S^{\prime}\right) \cup T^{\prime}$, and no list size three vertex is adjacent to three S^{\prime}-vertices. With sets S^{\prime} and T^{\prime}, H satisfies the hypothesis of the theorem, and by minimality of G, there is an L^{\prime}-colouring of H. Place the coloured vertices u_{1}, u_{2} back in the graph along with the non-coloured vertices u, v. Since u_{1} does not disturb the list of u we can colour v, u without conflict, resulting in an L-colouring of G, a contradiction.

Case 24.6.2.2 $u_{4} \notin S$.
Define $T^{\prime \prime}=\left(T \cup N_{G}\left(\left\{u_{1}, u_{2}\right\}\right)\right) \backslash\left\{v, u, u_{2}\right\}$ and $S^{\prime}=S$. Apply the same arguments as in Case 24.6.2.1 to show that there are no $S^{\prime}, T^{\prime \prime}$-adjacencies and that the only possible $T^{\prime \prime}$-adjacency is $u_{3} u_{4}$. By Lemma 10 , the only thing we need worry about is if $u_{3} u_{4}$ is a T^{\prime}-adjacency in a 5 -cycle C, with the other vertices in C having list size three and each being adjacent to an S^{\prime}-vertex.

Let the vertices of $C=\left(z_{1}, \ldots, z_{5}\right)$ be such that $u_{3}=z_{4}$ and $u_{4}=z_{5}$. Let s be the S-vertex adjacent to z_{3}. Then the path $P=\left(z_{4}, z_{3}, s\right)$ induces a good triple (G_{1}, G_{2}, P), a contradiction with Claim 19.

Therefore, there are no odd cycles in $N_{H}\left(S^{\prime}\right) \cup T^{\prime}$, and we have an L-colouring of H. Place the coloured vertices u_{1} and u_{2} back in the graph along with u and v. Since u_{1} does not disturb the list of u we can colour v, u without conflict, resulting in an L-colouring of G, a contradiction.

Claim 24.6.3 There is no vertex in $N_{G}\left(u_{1}\right)$ that is adjacent to a vertex in $N_{G}(u)$.

Suppose there exists a vertex $x \in N_{G}\left(u_{1}\right)$ that is adjacent to a vertex $y \in N_{G}(u)$.

Since the T-adjacency is not in a 4 -cycle, $y \neq v$. By Claim 11, $\operatorname{deg}_{G}\left(u_{1}\right) \geq 3$. If $x=u_{2}$, then $\left(x, u_{1}, u, y, x\right)$ would be a 4 -cycle with non-empty interior and non-empty exterior, contradicting Claim 12. As such, $x \in N_{G}\left(u_{1}\right) \cap \operatorname{int}(G)$ and $y \in N_{G}(u) \cap \operatorname{int}(G)$. Let C be the 4 -cycle $\left(u_{1}, u, y, x, u_{1}\right)$. Either no vertex in $N_{G}(u)$ is adjacent to a vertex in $N_{G}\left(v_{1}\right)$ or some vertex in $N_{G}(u)$ is adjacent to a vertex in $N_{G}\left(v_{1}\right)$.

Case 24.6.3.1 No vertex in $N_{G}(u)$ is adjacent to a vertex in $N_{G}\left(v_{1}\right)$.
Colour and delete u, v, v_{1} so as not to disturb the list of v_{2}. Adjust the lists of the neighbours of u, v, v_{1} accordingly and call this new graph H. Let $T^{\prime \prime}=T \cup N_{G}\left(\left\{u, v, v_{1}\right\}\right)$.

Clearly no neighbour of u or v is adjacent to an $S \cup T$-vertex by Claim 22. If a neighbour of v_{1} is adjacent to an $S \cup T$-vertex, then there is a separating path of length two across the boundary of G with both sides of the path containing a 3-list vertex on the boundary. Using Claim 19, we get that no neighbour of v_{1} is adjacent to an $S \cup T$-vertex.

Since C is a 4 -cycle, we have that $N_{G}\left(\left\{v, v_{1}\right\}\right)$ is an independent set. Similarly, since the T-adjacency is not in a 4-cycle, we have $N_{G}(\{u, v\})$ is an independent set. Since no vertex in $N_{G}(u)$ is adjacent to a vertex in $N_{G}\left(v_{1}\right)$, we have that $N_{G}\left(\left\{u, v_{1}\right\}\right) \cap \operatorname{int}(G)$ is an independent set. Thus, $N_{G}\left(\left\{u, v, v_{1}\right\}\right) \cap$ $\operatorname{int}(G)$ is an independent set.

Therefore the only $T^{\prime \prime}$-adjacency is between v_{1} and v_{2}. Since C is a 4 -cycle, we have that the $T^{\prime \prime}$-adjacency is not in a 4-cycle. Similarly, by the existence of C, we have that $H\left[N_{H}(S) \cup T^{\prime}\right]^{\prime}$ has no odd cycles. Taking the sets S and $T^{\prime \prime}$ along with the list assignment L^{\prime}, we get that $G-\left\{u, v, v_{1}\right\}$ is L^{\prime} colourable by minimality of G. Placing the coloured vertices u, v, v_{1} back in the graph, results in an L-colouring of G, and a contradiction.

Case 24.6.3.2 There does exist a vertex in $N_{G}(u)$ that is adjacent to a vertex in $N_{G}\left(v_{1}\right)$.

As before, let u_{3} be the neighbour of u_{2} on the boundary that is not u_{1} and let u_{4} be the neighbour of u_{3} on the boundary that is not u_{2}. Similarly, extend the labelling of the vertices for v up to v_{4}.

It is clear that by Claim 12 , since u, v, v_{1} are in a 5 -face on the interior of the graph, $\operatorname{deg}_{G}(v)=2$. It also follows from Claim 12 that neither u_{1} nor u is adjacent to v_{1}, v_{2}, v_{3} or v_{4}.

Colour and delete v_{1} and v_{2} so as not to disturb the list of v. Following this delete v and let $H=G-\left\{v, v_{1}, v_{2}\right\}$. Define $T^{\prime}=\left(T \cup N_{G}\left(v_{1}, v_{2}\right)\right) \backslash\left\{v, v_{3}\right\}$ and $S^{\prime}=S \cup\left\{v_{3}\right\}$ and call this new list-assignment L^{\prime}. Adjust the list of the vertices in $N_{G}\left(v_{1}, v_{2}\right)$ accordingly, and reduce the list of v_{3} to be a proper 1 -list.

Clearly no neighbour of v_{2} is adjacent to an $S \cup T$-vertex by Claim 22. If a neighbour of v_{1} is adjacent to an $S \cup T$-vertex, then there is a separating path of length two across the boundary of G with both sides of the path containing a 3 -list vertex on the boundary. Using Claim 19, we get that no neighbour of v_{1} is adjacent to an $S \cup T$-vertex.

We can break this up into two similar subcases. Either $v_{4} \in S$ or $v_{4} \notin S$.
Subcase 24.6.3.2.1 $v_{4} \in S$.
C is close to v_{1} and v_{2}, therefore, $N_{G}\left(v_{1}, v_{2}\right)$ is an independence set and there is no T^{\prime}-adjacency. Since $\left|S^{\prime}\right| \leq 5, N_{H}\left(S^{\prime}\right) \cup T^{\prime}$ has no odd cycles.

By minimality of G, we have that H is L^{\prime}-colourable, by placing the coloured vertices v_{1} and v_{2} back in the graph, we get an L-colouring of $G-\{v\}$. Apply this colouring to G and let $c(v) \in L(v) \backslash\{c(u)\}$. This is an L-colouring of G, and a contradiction.

Subcase 24.6.3.2.2 $v_{4} \notin S$.
C is close to v_{1} and v_{2}, therefore, $N_{G}\left(v_{1}, v_{2}\right)$ is an independence set and at most one new T^{\prime}-adjacencies occurs at the edge $v_{3} v_{4}$. Since C is close to the T^{\prime}-adjacency, we have that $N_{H}\left(S^{\prime}\right) \cup T^{\prime}$ has no odd cycles.

Since C is close to the edge $v_{3} v_{4}$, the T^{\prime}-adjacency is not is a 4 -cycle. Since $\left|S^{\prime}\right|=|S| \leq 4$, we may use the minimality of G to get that H is L^{\prime}-colourable, by placing the coloured vertices v_{1} and v_{2} back in the graph, we get an L colouring of $G-\{v\}$. Apply this colouring to G and let $c(v) \in L(v) \backslash\{c(u)\}$. This is an L-colouring of G, and a contradiction.

Claim 24.6.4 There is no vertex in $N_{G}\left(v_{1}\right)$ that is adjacent to a vertex in $N_{G}\left(v_{2}\right)$.

Suppose by way of contradiction there there exists a vertex $x \in N_{G}\left(v_{1}\right)$ that is adjacent to a vertex $y \in N_{G}\left(v_{2}\right)$. First we know by Claims 12 and 11 that $x \neq v$. Let C be the 4 -cycle $\left(v_{1}, v_{2}, y, x, v_{1}\right)$.

There are two cases, either there is a vertex in $N_{G}(u)$ adjacent to a vertex of $N_{G}\left(v_{1}\right)$ or not.

Case 24.6.4.1 No vertex in $N_{G}(u)$ is adjacent to a vertex of $N_{G}\left(v_{1}\right)$.
Colour and delete v_{1}, v, u so as not to disturb the list of v_{2}. Adjust the lists of the neighbours of u, v, v_{1} and call this new graph H and list assignment L^{\prime}. Let $T^{\prime}=\left(T \cup\left\{u_{1}\right\}\right) \backslash\{u, v\}$ and $S^{\prime}=S$. By hypothesis, and the existence of C we know that $N_{G}\left(u, v, v_{1}\right)$ is an independent set.

By Claim 12 and $v_{2} \in T$, no vertex in $N_{G}\left(v_{1}\right)$ is adjacent to an $S \cup T$ vertex. By Claim 22, no vertex in $N_{G}(\{u, v\})$ is adjacent to an $S \cup T$-vertex other than the vertex u_{1}. From Claim 20 we know the only T^{\prime}-adjacency is the edge $u_{1} u_{2}$.

By the existence of C and Lemma 10, the T^{\prime}-adjacency is not in a 4-cycle, and there is no odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$.

As a consequence of the minimality of G, there is an L^{\prime}-colouring of H. Placing the coloured vertices u, v, v_{1} back into H, yields an L-colouring of G, and a contradiction.

Case 24.6.4.2 $z \in N_{G}(u)$ such that z is adjacent to a vertex $z_{1} \in N_{G}\left(v_{1}\right)$.
Now we either have $z_{1} \neq x$ or $z_{1}=x$.
Subcase 24.6.4.2.1 $z_{1} \neq x$.
Colour and delete v_{1}, v, u, z_{1}, and z so as not to disturb the list of v_{2} and call the resulting graph H. Adjust the lists of the vertices of $N_{G}\left(\left\{v_{1}, v, u, z_{1}, z\right\}\right)$ accordingly, define $T^{\prime}=\left(T \cup N_{G}\left(v_{1}, v, u, z_{1}, z\right)\right) \backslash\{u, v\}$ and $S^{\prime}=S$.

By Claims 12 and 11, and by the existence of C, we have that $N_{G}\left(\left\{v_{1}, v, u, z_{1}, z\right\}\right)$ is an independent set. By Claims 20 and 22, none of $\left\{v_{1}, v, u, z_{1}, z\right\}$ is adjacent to an $S \cup T$-vertex therefore, every T^{\prime}-vertex has a 2 -list and every S^{\prime}-vertex has a 1 -list.

We claim that no vertex in $N_{G}\left(\left\{v_{1}, v, u, z_{1}, z\right\}\right)$ is adjacent to an $S^{\prime} \cup T^{\prime}$ vertex except u_{1} adjacent to u_{2}.

Claim 22, no vertex in $N_{G}(\{u, z\})$ is adjacent to an $S \cup T$-vertex, except for u_{1}. No neighbour of v_{1} is adjacent to an $S \cup T$-vertex, else it would form a path that would induce a good triple, contradicting Claim 19. Suppose w is an $S \cup T$-vertex adjacent to $w_{1} \in N_{G}\left(z_{1}\right)$. One of the paths $\left(v_{1}, z_{1}, w_{1}, w\right)$ or $\left(u, z, z_{1}, w_{1}, w\right)$ would induce a good triple, contradicting Claim 19, therefore, no such $S \cup T$-vertex exists.

Clearly Claim 20 and the existence of C imply that u_{1} is not adjacent to any T^{\prime}-vertices other than u_{2}. By the existence of C, we have that there is no odd cycle in $H\left[N_{H}(S) \cup T^{\prime}\right]$. Therefore, H satisfies the hypothesis with S and T^{\prime}, and by minimality of G, there is an L-colouring of H. Placing the coloured vertices back into the graph, yields an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2 $z_{1}=x$.
We prove a claim that will break this down into easier cases.
Claim 24.6.4.2.2 One of the following four sets is non-empty:

1. $\left[L\left(v_{1}\right) \cap L(y)\right] \backslash L(v)$;
2. $L\left(v_{1}\right) \backslash[L(v) \cup L(x)]$;
3. $\left[L(x) \cap L\left(v_{2}\right)\right] \backslash L(y)$;
4. $L\left(v_{1}\right) \backslash\left[L(v) \cup L\left(v_{2}\right)\right]$

Proof.

Suppose all of these sets are empty. We have $\left|L\left(v_{1}\right) \backslash L(v)\right| \geq 1$, therefore, let $c \in L\left(v_{1}\right) \backslash L(v)$,

By 4), $c \in L\left(v_{2}\right)$,
By 2), $c \in L(x)$,
By 3$), c \in L(y)$,
By 1$), c \in L(v)$,
and we have a contradiction with $c \notin L(v)$.
Let v_{3} be the neighbour of v_{2} on the boundary that is not v_{1} and let v_{4} be the neighbour of v_{3} on the boundary that is not v_{2}. From here we consider two cases, whether $y=v_{3}$ or not.

Subcase 24.6.4.2.2.1 $y \neq v_{3}$.
From Claim 24.6.4.2.2, we have four cases.
Subcase 24.6.4.2.2.1.1 There exists $c \in\left[L\left(v_{1}\right) \cap L(y)\right] \backslash L(v)$.
Colour and delete v_{1}, v_{2} and y so that v_{1} and y get coloured with c. Following this delete v, adjust the lists of the vertices in $N_{G}\left(\left\{v_{1}, v_{2}, y\right\}\right)$ accordingly, and call the resulting graph H. Let $\left.T^{\prime}=\left(T \cup N_{G}\left(v_{1}, v_{2}, y\right\}\right)\right) \backslash\{v\}$. By Claims 12 and 11, and the existence of C, we have that $N_{G}\left(\left\{v_{1}, v_{2}, y\right\}\right)$ is an independence set.

If x is adjacent to any $S \cup T$-vertices, then would form a path that induces a good triple, and a contradiction with Claim 19. By Claim 22, $N_{G}\left(\left\{v_{2}, y\right\}\right)$ contains no vertex adjacent to an $S \cup T$-vertex other than v_{3}. If $v_{4} \in S$, then
reduce the list of v_{3} to be a proper 1-list, remove it from T^{\prime} and place it in S. By the existence of C, there are no odd cycles in $H\left[N_{H}(S) \cup T^{\prime}\right]$ in either case. Similarly, the existence of C implies $v_{3} v_{4}$ is not in a 4 -cycle. Since $|S| \leq 5$, we also have that there is no 3 -list vertex adjacent to three S-vertices.

Therefore, there is an L-colouring of H by minimality of G. Place the coloured and uncoloured vertices back into H. Since $c\left(v_{1}\right) \notin L(v)$, we colour v, and this yields an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.2 There exists $c \in L\left(v_{1}\right) \backslash[L(v) \cup L(x)]$.
Colour and delete v_{1} and v_{2} so that v_{1} gets coloured with c. Following this delete v and adjust the lists of the vertices accordingly, and call the resulting graph H. Let $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{1}, v_{2}\right\}\right)\right) \backslash\{v\}$.

By the analysis of Subcase 24.6.4.2.2.1.1, there are no S, T^{\prime}-adjacencies, the only possible T^{\prime}-adjacency is $v_{3} v_{4}, v_{3} v_{4}$ is not in a 4 -cycle, there are no odd cycles in $H\left[N_{H}(S) \cup T^{\prime}\right]$, and there is no 3-list vertex adjacent to three S vertices. Therefore, there is an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.3 There exists $c \in\left[L(x) \cap L\left(v_{2}\right)\right] \backslash L(y)$.
There are two cases here depending on whether $v_{4} \in S \cup T$ or not.
Subcase 24.6.4.2.2.1.3.1 $v_{4} \in S \cup T$.
Colour and delete $v_{3}, v_{2}, v_{1}, v, u, z, x$ so as to not disturb the list of v_{4} and so that the colour of x is c. Following this adjust the lists of the vertices accordingly, and call the resulting graph H. Let $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{3}, v_{2}, v_{1}, v, u, z, x\right\}\right)\right) \backslash\{v\}$. By Claims 12 and 11, and the existence of C, we have that $N_{G}\left(\left\{v_{3}, v_{2}, v_{1}, v, u, z, x\right\}\right)$ is an independent set.

Claim 22 implies that no vertex in $N_{G}\left(v_{2}\right)$ is adjacent an $S \cup T$-vertex. We need not worry about the neighbours of v and v_{1} since they were all deleted. The paths $\left(v_{2}, y, x, z\right)$ and (u, z) show that no neighbour of z is adjacent to an $S \cup T$-vertex, else it would form a path that would induce a good triple, contradicting Claim 19. Similarly, by paths (u, z, x) and $\left(v_{2}, y, x\right)$, no neighbour of x is adjacent to an $(S \cup T)$-vertex. By Claim 20, other than v_{4}, no
vertex in $N_{H}\left(v_{3}\right)$ is an $(S \cup T)$-vertex. By Claim 19, no vertex other than u_{1} in $N_{H}\left(\left\{u, v_{2}\right\}\right)$ is adjacent an $S \cup T$-vertex.

Now we have that the only T^{\prime}-adjacency is the edge $u_{1} u_{2}$ and it is clearly not in a 4 -cycle by the existence of C in G. Lemma 10 tells us that the existence of C in G implies that $H\left[N_{H}(S) \cup T^{\prime}\right]$ does not contain an odd cycle. Therefore, by minimality of G, there is an L-colouring of H. Place the coloured vertices back into H to get an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.3.2 $v_{4} \notin S \cup T$.
Colour and delete v_{2}, v_{1}, v, u, z, x so that the colour of x is c. Following this adjust the list of the vertices in $N_{G}\left(\left\{v_{2}, v_{1}, v, u, z, x\right\}\right)$ accordingly, and call the resulting graph H. Let $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{2}, v_{1}, v, u, z, x\right\}\right) \backslash\{v\}\right.$. The rest of the analysis of this case is contained in the analysis Subcase 24.6.4.2.2.1.3.1, and so we can find an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.1.4 There exists $c \in L\left(v_{1}\right) \backslash\left[L(v) \cup L\left(v_{2}\right)\right]$.
Colour v_{1} with c and delete it. Reduce the list of x and define $T^{\prime}=T \cup\{x\}$. By the existence of the paths (u, z, x) and $\left(v_{2}, y, x\right), x$ is not adjacent to an $S \cup T$-vertex, else there would be a path that induces a good triple, contradicting Claim 19. Since G satisfies the hypothesis with sets S and T, we have $G-v_{1}$ satisfies the hypothesis with sets S and T^{\prime}. By minimality of G, there is an L-colouring $G-v_{1}$. Placing the coloured vertex v_{1} back in the graph, yields an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2 $y=v_{3}$.
By Claim 22, other than u_{1} and v no vertex in $N_{G}(\{u, z\})$ is adjacent to an $(S \cup T)$-vertex. By paths (u, z, x) and (y, x), no vertex in $N_{G}(x)$ is an $S \cup T$-vertex. By a similar argument, no vertex other than possibly v_{4} and v_{2} in $N_{G}\left(v_{3}\right)$ is an $(S \cup T)$-vertex and no vertex in $N_{G}\left(v_{3}\right)$ is adjacent to an ($S \cup T$)-vertex.

From Claim 24.6.4.2.2, we have four cases.
Subcase 24.6.4.2.2.2.1 There exists $c \in\left[L\left(v_{1}\right) \cap L(y)\right] \backslash L(v)$.

There are three options for the size of the lists of v_{4}
Subcase 24.6.4.2.2.2.1.1 $v_{4} \in S$.
Colour and delete v_{1} and v_{2} such that v_{1} is coloured with c, delete v and call the resulting graph H. Reduce the lists of v_{3} and x to be proper 1-lists, and define $T^{\prime}=T \backslash\left\{v, v_{2}\right\}$ and $S^{\prime}=S \cup\left\{v_{3}, x\right\}$. Clearly $T^{\prime} \subset T$ is an independent set, since the T-adjacency was deleted. We already know that there are no $\left(S^{\prime}, T\right)$-adjacencies, therefore there are no $\left(S^{\prime}, T^{\prime}\right)$-adjacencies. By the existence of C in G, we know that there is no vertex with list size three adjacent to three S^{\prime}-vertices, and that there are no odd cyccles in $\left.H\left[N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right)\right]$.

There is an L-colouring H, by minimality of G, and place the coloured vertices along with v back in the graph. By our choice of $c\left(v_{1}\right)$, it is possible to colour v to find an L-colouring of G, a contradiction.

Subcase 24.6.4.2.2.2.1.2 $v_{4} \in T$.
By Claim 12, we know that $v_{4} \neq u_{2}$, and since the T-adjacency is already defined, we know that v_{4} is not adjacent to u_{2}. Extend the labelling two steps further to v_{5} and v_{6}. Colour and delete v_{1}, v_{2}, v_{3} and v_{4} so that v_{1} and v_{3} are coloured with c. Following this delete v, reduce the lists of the vertices of $N_{G}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)$ accordingly, and call the resulting graph H. Define $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)\right) \backslash\left\{v, v_{2}, v_{4}\right\}$. By the existence of C, $N_{G}\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)$ is an independent set.

By Claim 22, other than v_{5}, no vertex in $N_{G}\left(v_{4}\right)$ is adjacent to an $(S \cup T)$ vertex. If $v_{6} \in S$, then we reduce the list of v_{5} to be a proper 1 -list and define $S^{\prime}=S \cup\left\{v_{5}\right\}$ and remove v_{5} form T^{\prime}. In any case, we have that by the existence of C in G, there is no list size three vertex adjacent to three S or S^{\prime} vertices, that $H\left[N_{H}(S) \cup T^{\prime}\right]$ and $\left.H\left[N_{H}\left(S^{\prime}\right) \cup T^{\prime}\right)\right]$ both do not contain an odd cycle, and that the T^{\prime}-adjacency $v_{5} v_{6}$ if it exists is not in a 4-cycle.

Therefore, H satisfies the hypothesis, and by minimality of G, there is an L-colouring of H. Placing the coloured vertices back in the graph yields an L-colouring of $G-v$. By our choice of $c\left(v_{1}\right)$, we can colour v, resulting in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.1.3 $v_{4} \notin S \cup T$.
Colour and delete v_{1}, v_{2}, v_{3} so that v_{1} and v_{3} get coloured with c. Following this, delete v, adjust the lists of $N_{G}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ accordingly, and call the resulting graph H. Define $T^{\prime}=\left(T \cup N_{G}\left(v_{4}\right)\right) \backslash\left\{v, v_{2}\right\}$. The analysis of this case is contained in the analysis of Subcase 24.6.4.2.2.2.1.2, therefore, there is an L-colouring of H by minimality of G.

Placing the coloured vertices back in the graph yields an L-colouring of $G-v$. By our choice of $c\left(v_{1}\right)$, we colour v, resulting in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.2 There exists $c \in L\left(v_{1}\right) \backslash[L(v) \cup L(x)]$.
Colour and delete v_{1} and v_{2} such that v_{1} is coloured with c. Following this delete v, reduce the lists of vertices in $N_{G}\left(\left\{v_{1}, v_{2}\right\}\right)$ and call the resulting graph H. Define $S^{\prime}=S$ and $T^{\prime}=\left(T \cup N_{G}\left(\left\{v_{1}, v_{2}\right\}\right) \backslash\left\{v_{2}\right\}\right.$. By Claim 22, no vertex in $N_{G}\left(\left\{v_{1}, v_{2}\right\}\right.$ is adjacent to an $S \cup T$ vertex and therefore, there are no S^{\prime}, T^{\prime}-adjacencies. Since $c \notin L(x)$, the only possible T^{\prime}-adjacency is $v_{3} v_{4}$.

If v_{4} is not an S-vertex, then we can L-colour H and we are done by placing the vertices back in the graph and colouring v.

Therefore, v_{4} is an S-vertex. Remove v_{3} from T^{\prime} and add it to S^{\prime}. We reduce the list of v_{3} to be a proper 1 -list. Yet again, we find that we can L-colour H, which results in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.3 There exists $c \in\left[L(x) \cap L\left(v_{2}\right)\right] \backslash L(y)$.
Colour x and v_{2} such that they are both coloured with c and delete them. Following this, delete v_{1} and v, reduce the list of $N_{G}(x)$ other than v_{1}, and call the resulting graph H. Define $T^{\prime}=\left(T \cup N_{G}(x)\right) \backslash\left\{v_{2}, v_{1}, v\right\}$. We have already checked for $\left(S \cup T, T^{\prime}\right)$-adjacencies. By the existence of C, the only T^{\prime}-adjacency is the edge $u z$. By the existence of C, the T^{\prime}-adjacency is not in a 4-cycle and $H\left[N_{H}(S) \cup T^{\prime}\right]$ contains no odd cycle.

Therefore, there is an L-colouring of H. By placing the vertices back in
the graph, and by our choice of $c\left(v_{2}\right)=c\left(x_{2}\right)=c$ we can colour v and v_{1}, resulting in an L-colouring of G, and a contradiction.

Subcase 24.6.4.2.2.2.4 There exists $c \in L\left(v_{1}\right) \backslash\left[L(v) \cup L\left(v_{2}\right)\right]$.
Apply the same argument as in Subcase 24.6.4.2.2.1.4. There is an L colouring of G, and a contradiction.

And so ends the cases of Claim 24.6.4.

Now that these claims are finished we may resume the last case of the main theorem, in particular we are in the case where $u_{2}, v_{2} \in T$.

We colour and delete u_{1}, u, v so as to not disturb the list of u_{2}. Adjust the lists of the neighbours of u_{1}, u, v accordingly, and call this new graph H. Define $T^{\prime}=T \cup N_{G}\left(\left\{u_{1}, u, v\right\}\right) \backslash\left\{u_{1}, u, v\right\}$. Since the T-adjacency is not in a 4-cycle, Claim 24.6.3 shows $N_{G}\left(u_{1}, u, v\right)$ is an independent set.

By Claims 22 and 19, other than v_{1} no vertex in $N_{G}\left(\left\{u_{1}, u, v\right\}\right)$ is adjacent to an $S \cup T$-vertex. Therefore, since there is no (S, T)-adjacencies, there is also no $\left(S, T^{\prime}\right)$-adjacencies.

By Claim 24.6.2, no neighbour of u_{1} is adjacent to v_{1}. Since the T-adjacency is not in a 4 -cycle, no neighbour of u is adjacent to v_{1}. Therefore, the only T^{\prime}-adjacency is the edge $v_{1} v_{2}$. By Claim 24.6.1, there is no odd cycle in $G\left[N_{G}(S) \cup T^{\prime}\right]$. By Claim 24.6.4, the T^{\prime}-adjacency is not in a 4 -cycle.

Therefore, H satisfies the hypothesis, and by minimality of G, there is an L-colouring of H. Placing the coloured vertices back in the graph yields an L-colouring of G, and our final contradiction to the proof.

Claim 24 and Claim 23 are contradictory, therefore, G does not exist and Theorem 4 holds true.

Corollary 25. Every planar graph without 3 -cycles and with 4 -cycles distance 8 apart is 3 -choosable.

Proof. Let G be a planar graph without 3-cycles and with 4-cycles distance 8 apart and L a list assignment of the $V(G)$ such that $|L(v)|=3$ for all
$v \in V(G)$. Note that $G \in \mathcal{G}$. Let $S=T=\varnothing$. Every internal vertex in G has a 3-list and 4.2-4.7 are vacuously true. Therefore, G satisfies the hypothesis of Theorem 4 and G has an L-colouring.

The goal of the thesis was to improve Dvoŕák's theorem. Dealing with the case of 4 -cycles has provided strong evidence that this is possible. In the immediate future we will pursue the case of 3 -cycle. This thesis also gives the reader a complicated proof to a generalization of Thomassen's theorem. By removing the tedious case work of the 4 -cycles, this proof gives way to a tidy proof of Thomassen's theorem.

References

[1] N.Asghar, Grötzsch's Theorem, (2012).
[2] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 21 (2) (1996) 183-186.
[3] O.V. Borodin, Colorings of plane graphs: A survey, Discrete Math. 313 (4) (2013) 517-539.
[4] Z. Dvořák, 3-choosability of planar graphs with (≤ 4)-cycles far apart, J. Comb. Theo., Series B 104 (2014) 28-59.
[5] Z. Dvořák, B. Lidický, R. Škrekovski, Planar graphs without 3-, 7-, and 8-cycles are 3-choosable, Discrete Math. 309 (20) (2009) 5899-5904.
[6] Z. Dvořák, B. Lidický, R. Škrekovski, 3-Choosabiity of Triangle-Free Planar Graphs with Constraints on 4-Cycles, SIAM J. Discrete Math. 24 (3) (2010) 934-945.
[7] Z. Dvořák, L. Postle, List-coloring embedded graphs without cycles of length 4 to 8, ArXiv e-prints, 2015.
[8] P. Lam, W.C. Shiu, Z.M. Song, The 3-choosability of plane graphs of girth 4, Discrete Math. 294 (2005) 297-301.
[9] L. Shen, Y. Wang, A sufficient condition for a planar graph to be 3choosable, Inform. Process. Lett. 104 (4) (2007) 146-151.
[10] M. Montassier, A. Raspaud, W. Wang, Bordeaux 3-color conjecture and 3-choosability, Discrete Math. 306 (6) (2006) 573-579.
[11] C. Thomassen, 3-List-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101-107.
[12] C.Thomassen, A short list color proof of Grötzsch's theorem, J. Comb. Theo., Series B 88 (1) (2003) 189-192.
[13] Y. Wang, H. Lu, M. Chen, Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable, Discrete Math. 310 (1) (2010) 147-158.
[14] Y. Wang, H. Lu, M. Chen, A note on 3-choosability of planar graphs, Inform. Process. Lett. 105 (5) (2008) 206-211.
[15] Y. Wang, Q. Wu L. Shen, Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable, 159 (4) (2011) 232-239.
[16] H. Zhang, On 3-choosability of plane graphs without 5-, 8- and 9-cycles, J. Lanzhou Univ., Nat. Sci. 41 (2005) 93-97.
[17] L. Zhang, B. Wu, A note on 3-choosability of planar graphs without certain cycles, Discrete Math. 297 (1-3) (2005) 206-209.
[18] L. Zhang, B. Wu, Three-coloring planar graphs without certain small cycles, Graph Theory Notes of N. Y. 46 (2004) 27-30.
[19] H. Zhang, Z. Sun, On 3-choosability of planar graphs without certain cycles, Inform. Process. Lett. 107 (3-4) (2008) 102-106.
[20] H. Zhang, B. Xu, On 3-choosability of plane graphs without 6 -, 7- and 9-cycles, Appl. Math. Ser. B (Engl. Ed.) 19 (2004) 109-115.
[21] H. Zhang, B. Xu, Z. Sun, Every plane graph with girth at least 4 without 8- and 9-circuits is 3-choosable, Ars Combin. 80 (2006) 247-257.
[22] X. Zhu, L. Miao, C. Wang, On 3-choosability of plane graphs wihtout 3-, 8- and 9-cycles, Australas. J. Comb. 38 (2007) 249-254.

