
Categorization and Detection of
Energy Bugs and Application Tail

Energy Bugs in Smartphones

by

Abdul Muqtadir Abbasi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Abdul Muqtadir Abbasi 2016



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Smartphones are the most ubiquitous and popular hand-held devices because of their
rich set of features and wide variety of services. However, their daily use is hampered by
their high energy consumption, which forces frequent battery recharging. In smartphones,
most energy issues are due to energy bugs (ebugs). These energy bugs are said to exist
when smartphone software applications (apps) consume more than expected power while
executing or continue to consume energy even after these apps are closed or terminated.
Therefore, it is very important to develop energy-efficient applications as these energy bugs
severely impact user experience and cause significant user frustration.

In the first half of this thesis, we discuss the problem of energy bugs. To develop
frameworks and tools that detect energy bugs, we need to characterize the power consuming
behaviour of software. To achieve that, we develop an operational definition for energy
bugs that can be easily translated to a procedure to detect energy bugs in smartphones.
Furthermore, we integrate the proposed definition with a diagnostic framework to provide
a step-by-step procedure for application developers to identify different types of energy
bugs. Using the proposed testing framework, developers can investigate the existence of
energy bugs especially when apps or platforms evolve. We validate the proposed framework
with experiments and real-world energy bug examples. The results show that there are
energy bugs across different versions of the same app as well as across different versions of
Operating systems running on the same smartphone.

Being software builders and application support providers, software developers should
make energy efficient applications for end-users. Thus in the second half of this thesis,
we discuss the relationship between software changes and energy consumption by trac-
ing wakelocks that keep a device awake, and services that might be engaging the CPU
silently. Although, computer hardware and software engineers are involved in developing
energy efficient mobile systems, unfortunately, the ultimate energy efficiency depends on
the software choices and requirements of the end-user. We investigate multiple scenarios
demonstrating that an application can consume energy differently when a user closes the
app in four different ways (Home, Back, Swipe-out or Force-stop). This difference in energy
consumption is also true when the app has different components such as activity or service
with or without wakelocks, thus illustrating the trade-offs that end-users can make for
the sake of energy consumption. Although these energy bugs trigger during the execution
stage, their effect sometimes remain after closing the app. Borrowing a similar concept of
tail energy loss from the field of computer networking, we call the loss of battery power,
even after the app is closed or terminated, as application tail energy bug (app-tail-ebug).
The diagnostic process begin by measuring any difference in energy consumption of the
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smartphone before and after closing the app by an external power meter, which clearly es-
tablishes the existence or absence of application tail energy bug. To verify, we use system
utilities such as Android logging system, logcat, bugreport, dumpstate and dumpsys.

Our ultimate goal is to design a tool as an app running on the device, which can
analyse system information and suggest the presence of energy bugs. However, Android
has strengthened the security of its OS after KitKat version 4.4, and now superuser access
is required to run system level commands. Furthermore, no user app is allowed to access
system level information unless the testing app is installed as a system app. Therefore,
we run our tool on a desktop PC. In summary, the results of this work can be used
by application developers to make implementation level decisions to appreciably improve
energy efficiency of software applications on smartphones.
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Chapter 1

Introduction

According to a report published by International Telecommunication Union (ITU), there
are nearly 7 billion mobile subscribers worldwide [6]. Smartphones have become so pop-
ular for two reasons: (i) compared to cell phones, smartphones offer richer features and
services such as powerful computing capabilities, video conferencing, online surfing, cam-
eras, media players and GPS (global positioning system) navigation units; and (ii) there
are thousands of applications (commonly referred to as ‘apps’) that are available on app
stores. However, smartphones are constrained by their battery life. Unfortunately, the
development in battery technology is not at par with the developments in software and
hardware systems [23]. Therefore, paramount attention from both academia and industry
has been given for developing more power efficient hardware and software.

Although energy is consumed by the hardware components of the smartphone, this
consumption is mainly driven by the software part of the system [24]. Therefore, maximiz-
ing the energy efficiency of the software is very important. However, due to high market
competition, app developers rarely have sufficient time to carefully optimize their applica-
tion’s energy consumption [15]. Thus, many applications suffer from energy bugs. These
energy bugs severely impact the user experience and cause significant user frustration. The
term ‘energy bug’, as the name suggests, attributes that error to the energy of the system.
In the presence of an energy bug, the application may not fail/stop but may only cause
a higher energy consumption, which makes energy bug very difficult to detect [19]. In
literature, there is a lack of useful information that can guide developers to detect the
presence of energy bugs in smartphones [17], [18], [19], [11]. Furthermore, without any
guided approach, the available energy bug definitions are very broad emphasizing only the
causes. Another difficulty is how to distinguish the power consumption of the faulty code
from the correct code. There are many factors, such as network conditions, user behaviour
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and other environmental conditions which can interfere with the test execution and make
the power consumption of the same test input different from one run to another run [19].

In smartphones, aggressive sleeping policy is applied, which by default keeps every
component in idle state, unless the developer writes code to instruct the OS to keep it on.

List of components broadly fall into two categories.

Traditional Components: CPU, Wi-Fi, NIC, 3G radio, memory, screen and storage
that are also found in desktop and laptop machines.

Exotic Components: GPS, camera and various sensors available only in smartphones.

The power consumption of individual I/O components (camera, GPS, etc.) is generally
higher than the power consumption of CPU in case of smartphones. Smartphones face
a new class of abnormal system behavior, namely energy bugs that causes unexpected
amount of high energy drain by the system. Hence the focus is to provide developers
with different application level optimizations so as to reduce power consumption, to find
e-bugs and their root cause. Android has been chosen among others OSs for its high
popularity in the smartphone market and as a promising software framework, which is an
open software. Android is also a perfect choice to study the detection of energy bugs and
providing optimizations in application design, reduce the energy consumption of network,
LCD and CPU because of its easily available multi-vendor support.

1.1 Motivation

There have not been significant improvements in battery technology over the last 25 years.
Furthermore there is little evidence that this situation will improve dramatically in next
few generations. At the same time, hand-held devices are running more applications with
widely varying power consumption characteristics. Hence, managing the battery resource
will continue to dominate the list of challenges for some time to continue. Designers of
software-hardware platforms for smartphones have added power saving features, allowing
developers to manipulate their power consumption based on different functionality. Many
software developers generally focus on application functionality rather than efficient power
consumption. As a result, many smartphone apps drain relatively more power. Android is
the latest trend in mobile OS. Even though, android provides a complete set of application,
middleware and Linux kernel for the phone applications developer, it does not utilize several
standard kernel features. Hence the need of optimizations and energy efficiency is critical.
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1.2 Problem Statement

Some mobile applications use a lot of energy, causing unnecessary drain on the device
battery. There are numerous reasons why this occurs and, where it is caused, by bad,
ignorant or devious development practice, it can and should be rectified. However, there
is no procedure or a tool to detect root causes of unexpected battery drain.

• Apps that run without user’s permission. Some applications start automatically
when the handset is powered on or do not go to sleep when the user stop using them.

• Excessive use of power-hungry device functions, such as GPS, camera, accelerometer
and other sensors, or because apps fail to turn off functions when they are no longer
required.

• Apps that keep waking the smartphone from sleep mode or prevent the smartphone
going into sleep mode, drain the battery.

1.3 Solution Strategy and Contributions

We suggest a testing framework to check the presence of energy bugs in smartphones. First,
we provide an operational definition of an energy bug in order to facilitate the diagnostic
process. Then, we present a testing procedure to detect certain classes of energy bugs.
The logic behind our procedure is very simple. If the software app is free from defects,
the power consumption before and after execution should ideally be the same. We apply
this criterion in three scenarios: when the app and platform are fixed, when the app is
only updated, and when the platform is only updated. For the first scenario, we check the
difference in average power consumption before and after closing the app. For the second
scenario, we check the difference in energy consumption of the same app before and after
upgrade. For the third scenario, we check the difference in energy consumption of the same
app before and after operating system upgrade. Furthermore, we suggest a diagnostic pro-
cedure to apply the proposed testing framework. In reality, manifestation of energy bug
is the most tedious and laborious job. To simulate a real world environment a testing app
where energy bug can be controlled by the developer is developed, furthermore, to verify
existence of energy bug, a tool has also been developed to monitor system level activities
inside smartphone.
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In summary, we make the following three contributions.

• We provide an operational definition of an energy bug and a procedure to check the
presence of certain kinds of energy bugs (wakelocks, vacuous background services);
and validate our definition by two different experiments as well as by real-world
energy bug examples.

• We develop a java based software tool to detect root causes of energy loss when it is
not running.

• We prove the correlation between two detection procedures i.e. symptom based verses
root-cause based. We find out the root-causes of the battery drain, initially detected
as battery depletion symptoms.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, we present the research literature
related to energy bugs and energy issues in smartphones. In chapter 3, we present an
operational definition and a procedure to detect energy bugs and validate our testing
framework with experiments and real energy bugs from the literature. In chapter 4, we
present potential causes of application tail energy bugs. In chapter 5, we validate the
presence of energy bugs initially through external power meter and then verify it using
system logs.
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Chapter 2

Background

A Sudden battery drain after upgrade of an app or OS in smartphone is referred as energy
bug. In order to track energy bugs, first we need to understand anatomy of Android
application. We are only interested in software related energy bugs.

2.1 Anatomy of Android Application

An Android application should be thought of as a package comprised of separate, loosely-
coupled components connected at runtime, not as a single executable. These components
work together by responding to events, or Intents, that are broadcast by other components
included in an application, or by the Android system. Each Android app has a manifest file,
AndroidManifest.xml, that lists each component that an app includes, and which Intents,
if any, will trigger these components to do work. In order to understand the architecture
of Android application, Android applications key concepts has to be understood.

• Application components

• Application lifecycle

• Application resources

Android App is basically a Java application executed by a Dalvik Virtual Machine.
The Dalvik VM runs .dex files obtained from Java .class files. It is distributed in the form
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of Android Package(.apk file). It is executed by the Android Operating System (a multi-
user Linux) in a sandbox. Each application has a unique user ID and its resources can be
accessed only by that user. Each application runs in its own Linux process and its own
Virtual Machine instance. Despite this, two different applications can be assigned same
user ID in order to share their resources. Critical operations such as access to Internet,
read or write contacts, monitor SMS, and access GPS module can be restricted or can
require user permission by using the application manifest file (AndroidManifest.xml) An
Android application is represented by one or more activities (an activity can be associated
with a user screen or window, but usually it is more than that and Linux process. An
activity lifecycle is not related to the application process lifecycle. The activity can run
even if its process does not exists any more (this is different than C, C++ or classic Java
applications where an application has a process). An application can start a component
(activity) from another application; the component is executed by its parent application
process. An Android application does NOT have a single entry point, like the main()
method in Java, C or C++ applications.

Components of Android applications

The most important components of the Android application are:

Figure 2.1: Android application components
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Activity

It represents a user interface screen, window or form. An Android application can have
one or more activities. An agenda application can have an activity to manage contacts, an
activity to manage meetings and one to edit an agenda entry. Each Activity has its own
lifecycle as shown in Figure 2.2 independent from the application process lifecycle. Each
Activity has its own state and it is possible to save it and restore it. Activities can be started
by different applications (if it is allowed). Has a complex lifecycle because applications can
have multiple activities and only one is in the foreground. Using the Activity Manager,
the Android System manages a stack of activities which are in different states (starting,
running, paused, stopped, and destroyed). In the Android SDK is implemented using a
subclass of Activity class which extends the Context class.

Figure 2.2: Android activity lifecycle diagram [7]

Intent

It represents an entity used to describe an operation to be executed. It is a message
transmitted to another component in order to announce an operation. Somehow similar
to the event-handler concept from .NET or Java. It can considered as an asynchronous
message used to activate activities, services and broadcast receivers, implemented by the
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Intent class.

Service

A task that runs in the background without the user direct interaction. It is imple-
mented by a subclass of Service. Each Activity has its own lifecycle as shown in Figure
2.3 and 2.4 independent from the application process lifecycle.

Figure 2.3: Android service lifecycle diagram [8]

Content provider

A custom API used to manage application private data. A data management alter-
native to the file system, the SQLite database or any other persistent storage location.
Implemented as a subclass of ContentProvider. A solution to share and control (with
permissions) data transfer between applications (i.e. Android system provides a content
provider for the users contact information).

Broadcast receiver

A component that responds to system-wide broadcast announcements. Somehow sim-
ilar to the global (or system event) handler concept It is Implemented as a subclass of
BroadcastReceiver.

Process and threads

When an application component starts and the application does not have any other
components running, the Android system starts a new Linux process for the application

9



Figure 2.4: Android bound service lifecycle diagram [8]

with a single thread of execution. By default, all components of the same application run
in the same process and thread (called the ”main” thread). If an application component
starts and there already exists a process for that application (because another component
from the application exists), then the component is started within that process and uses
the same thread of execution. However, you can arrange for different components in your
application to run in separate processes, and you can create additional threads for any
process.

When an applications first component starts , the Android system starts a new process
for the application with a single thread of execution called main thread or UI Thread. This
thread responsible for very important stuff like dispatching events to the user interface
widgets. The started Process then may hold Activity, Service or BroadCastReceiver.

All components of the same application usually run in the same process. When new
component is started, it will, by default, run in the same thread and inside the application
main process unless you provide something else. For example if you run a service by
startService() method from an activity, this service runs in the main application process
and thread. This is called Single Thread Model.

In this case (running service from an activity to do some intensive work), this single
thread model can cause poor performance and may cause your application not responsive
and may also see the ANR dialog.
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Here comes the need for creating worker thread(s) that runs in background in parallel
with the main thread leaving the main UI thread responsive. This is a very common
technique that you will do every day when developing Android apps.

2.2 Android Power Management and Wakelock(s)

By default, smartphone are designed to stay in sleep mode. If device is left idle without
any touching, first it will go dim, then turn off the display, and finally turn off the CPU.
This is how we prevents the device’s battery from getting discharged quickly. There are
situations when your application might require a different type of behavior:

• Apps for example movie or game apps may need to keep the display turned on.

• Some other apps may not need the display to remain stay on, but in order to do some
background jobs they may require the CPU to keep running till it finishes important
background jobs.

Android and other mobile OSs have achieved longer battery life by implementing an
aggressive power manager. Shortly after use, a phone turns its display off and the CPU
goes into a deep power state, thus consuming as little power as possible when not in use.
Therefore, phones when they are not used, are able to last several days on a single charge.
With Androids power manager, the normal assumption is that when the display is off, so
is the CPU. However, Android developers have the freedom to prevent an Android device
from going to sleep. They may wish to keep the CPU active, even when the display is off, or
perhaps, they want to be able to prevent the display from automatically turning off during
a specific activity. For this purpose, Google has included wakelocks in its PowerManager
APIs [9] .Applications that want to prevent a device from going to sleep can grab a wake-
lock. As long as there is an active wakelock on the system, the device cannot enter suspend
until the wakelock is released. When using wakelocks, it is extremely important for users to
understand that they must properly release wakelocks when they are not needed because
an unreleased wakelock will quickly drain a devices battery, by not entering default state
to conserve energy. In the case of an app-tail-ebug, we are interested only in the remaining
wakelocks not released even after closing the app. These wakelocks were acquired during
running the app and should have been released before exiting. Otherwise these remain-
ing wakelocks will keep the device components active and drain the smartphone battery
very quickly. The YouTube and Music apps are good examples showing different levels of
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Figure 2.5: Wakelocks overview [3]
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wakelocks. The YouTube application will grab a wakelock when the user streams a video.
Throughout the duration of the video, the display remains on (ignoring the systems display
settings). However, if the user presses the power button during playback, the device will
suspend, causing the display to turn off and audio/video playback to cease. In the case of
a buggy

YouTube app, remaining unreleased wakelocks can keep the display on indefinitely
(ignoring systems display settings). The smartphone will lose its battery earlier than
expected. The Music application uses a different wakelock during audio playback. The
display settings are not changed, so the devices screen will turn off according to the users
display settings. With the display off, the wakelock keeps the CPU in an active state so
that audio playback can continue, even if the user presses the power button. Mostly, users
wants play music while working on another app. In this case playing voice services in the
background indefinitely could eat up smartphone battery silently. In order to stop CPU,
programmers should use a timer with the partial wakelock.

Wakelock type Use CPU Screen
Key

board

Partial wakelock acquire or release Yes No No

Screen dim wakelock acquire or release Yes Yes dim No

Screen bright wakelock acquire or release Yes Yes bright No

Full wakelock acquire or release Yes Yes bright Yes

Table 2.1: Wakelock types

2.3 Energy Profilers and Bugs Report Readers

Energy profilers are useful to verify the indication of energy bugs. Though there are
many techniques such as collaborative energy debugging. The most accurate tools used by
researchers all over the world is Monsoon Power meter. A bugreport is the system state
log which is used by all developers for debugging purposes. It is generated and maintained
by Android OS. In order to organize it in human readable format, a number of tools has
been developed such as CHKBugreport, Battery Historian 2.
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2.3.1 Monsoon Power Monitor

The Monsoon Power Monitor, developed by Monsoon Solutions Inc., is a hardware and
software-based system that allows the tester to collect power consumption information
from any mobile phone that uses a single lithium (Li) battery technology. The hardware
component is an external device that acts as a voltage-adjustable power supply, and a
current and voltage monitor. The power monitor is connected to the mobile device battery
contacts and to a PC to interact with the software component. The software component,
PowerTool, is a Windows-PC application that provides a graphical representation of the
results and tools to perform basic power calculations. Figure 2.6 and Figure 2.6 show the
components of the Monsoon Power Monitor system.

Figure 2.6: Monsoon power monitor

The Monsoon system requires bypassing the phone battery by connecting the phone
battery contacts to the Monsoon power supply probes and electrically insulating the ter-
minals of the battery. The approach provides global measurements of power consumption,
which means that measurements indicates the overall system energy drainage. This system
is used by various testers and researchers for its ease- of-use and accuracy per second, which
detect small and short changes in power consumption due to mobile device activities. The
limitations of this approach is that it can only be used on mobile devices with accessible
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Figure 2.7: PowerTool software graphical tool.

removable batteries. Of the standard approaches, the Monsoon Power Monitor best fits
this thesis research needs.

2.3.2 Battery Historian 2

Battery Historian is a tool to inspect battery related information and events on an Android
device running Android 5.0 Lollipop (API level 21) and later, while the device was on
battery. It allows application developers to visualize system and application level events on
a timeline with panning and zooming functionality, easily see various aggregated statistics
since the device was last fully charged, and select an application and inspect the metrics
that impact battery specific to the chosen application. It also allows an A/B comparison
of two bugreports, highlighting differences in key battery related metrics.

2.4 Summary

Before starting a diagnosis process, a complete anatomy of android system has been dis-
cussed. it’s components and their lifecycle. Energy profilers and bugreport readers are also
discussed.
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Figure 2.8: Battery historian: Timeline

Figure 2.9: Battery historian: System

Figure 2.10: Battery historian: App
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Chapter 3

Energy Bugs

3.1 Related Work

In order to make smartphone applications more energy efficient, researchers have worked
mostly from three perspectives. First, various definitions have been proposed to character-
ize energy bugs as shown in Table 3.1. Second, different frameworks are proposed to detect
these energy bugs. Finally, to reduce total cost of testing for energy bugs and automate
the process, different tools are designed.

The available definitions of energy bugs are very broad, emphasizing only on the causes
using non measurable descriptive words as shown in Table 3.1. Even though guidelines to
locate energy bugs are provided, the necessary line of actions is not available. Pathak et
al. [19] defined and presented a taxonomy of energy bugs in smartphones and discussed
the reasons for those energy bugs. An overview of energy bugs by their types is shown in
Figure 3.1. We are mainly interested in developing a framework to detect energy bugs that
are related to the application and OS (operating system) categories.

In literature, a number of different frameworks have been developed [19], [11]. Our
framework is more close to the framework presented in [11]. Pathak et al. [19] proposed
guidelines for developing a systematic diagnosis framework to detect energy bugs in smart-
phones. They recommended to classify the energy bugs on the basis of symptoms and then
identify the faulty software component, but they did not provide a workable procedure that
developer can apply. Banerjee et al. [11] proposed a framework to systematically generate
test inputs that help to capture energy bugs. Each test input captures a sequence of user
interactions such as touches or taps on the smartphone screen that may cause an energy
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Table 3.1: Definitions of energy bugs from literature.

No Energy bug

a
A sudden and severe battery drain due to mysterious causes including software
defects, misconfiguration and environmental conditions [17].

b

An energy bug is a system behaviour that causes unexpectedly heavy use of energy
and which is not intrinsic to providing the desired functionality.

An app has an energy bug when some running instance of the app (the one in which
the bug manifests) drain the battery significantly faster than other instance of the
same app (the one in which the bug does not manifest) [18].

c
Ebugs, broadly defined as an error in the system (application, OS, hardware,
firmware, external conditions or combination) that causes an unexpected amount of
high energy consumption by the system as a whole [22].

d

An energy bug can be described as a scenario where a malfunctioning application
prevents the smartphone from becoming idle, even after it has completed execution
and there is no user activity.

An energy hotspot can be described as a scenario where executing an application
causes the smartphone to consume abnormally high amount of battery power even
though the utilization of its hardware resources is low [11].

bug in the application. They used a customized version of a third-party tool to gener-
ate control flow graphs for event trace generation. That tool does not cover all possible
GUI states in the application. Another drawback, the lack of a selection criteria for the
suspected user inputs which can stress energy bugs in smartphones.

Regarding tools, there are two main approaches for measuring software power consump-
tion: hardware based and software based. Hardware based measurements use hardware
power meters that are wired to the smartphone’s battery interface. Software based mea-
surements use software profilers that run on the same smartphone, such as PowerTutor [30],
vLens [12], and eProf [20]. Thus, running software profilers on the same platform can in-
terfere with the measurements of the app under test. In hardware based measurements,
the measurement devices are not powered by the smartphone’s batteries, and, therefore,
do not affect the power cost of the smartphone. However, hardware based measurement
devices support low sampling rates, while the acquisition rates of the software profilers
depend on the frequency of the smartphone processor. Therefore, software based energy
profilers are more fine-grained than hardware based measurement power meters [25]. We
use a hardware based meter, since our framework follows a black box approach.
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Figure 3.1: Taxonomy of energy bugs [20].

Developer’s               Device
      View                       Maker’s                                      

                                      View

User’s
View

Energy 
bug

Figure 3.2: Three different views of energy bugs.

3.2 The Proposed Testing Framework

Figure 3.2 shows three different views of energy bugs. Users are mainly concerned about
how often they need to charge the battery. Smartphone makers are concerned about the en-
ergy consumption of using their platforms. Existing studies show hardware misuse through
API (application programming interface) may cause higher energy consumption in smart-
phones [22]. Developers are more concerned about code level power consumption, where
mishandling of resources in coding may cause energy bugs. In this work, we mainly focus
on app and OS related energy bugs. In the following section, we present an operational
definition and a procedure to detect energy bugs in smartphones.
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3.2.1 Energy Bug: An Operational Definition

We define an energy bug as follows:

An app is considered to have caused an energy error in a smartphone when at least one
of the following conditions holds:

(1) The mean power consumption (Pf ) in the smartphone after closing the app is not
equal to the mean power consumption (Pi) before opening the app;

(2) The energy cost of app1 is not equal to the energy cost of app2, where app1 and
app2 are two different versions of the same app running on the same platform; or

(3) The energy cost of an app running on execution platform1 is not equal to energy
cost of the same app running on execution platform2, where platform1 and platform2 are
two different versions of the same execution platform.

Accordingly, an energy error is said to be due to an energy bug in the app if the
mean power consumption after closing the app is either higher or lower than the mean
power consumption before opening the app. The second case indicates that the app has
deactivated some features of the smartphone that were active before the app was invoked.
The second part of the definition can help developers analyze the behaviour of smartphone
when app is evolving. The third part can help developers analyze the behaviour of the
smartphone when the platform is evolving. In literature, energy in-efficiencies that manifest
during app execution are sometimes called hotspots [11].

Figure 3.3: Power trace for the application under test.

Figure 3.3 shows a hypothetical power consumption trace of an app. We define three
states with respect to the power consumption of the app: pre-execution state, post-execution
state and during-execution state. For the pre and post execution states, the app power print
is characterized by the mean rate of energy consumption which represents the power in
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watts (Pi and Pf ). For the during-execution state, the app consumption behaviour is
characterized by the energy cost (Ee) in joules from time t1 to t2. In practice, execution
time for app1 and app2 might not be the same. Therefore, we have two scenarios:

Scenario 1: Detection of ebugs after closing the app

According to the definition, a smartphone is in an ideal working condition without the
presence of an energy bug, if the pre power state is the same as the post power state. That
is:

Pf = Pi (3.1)

Where Pi and Pf are the pre power state and post power state, respectively. Now, if there
is an energy bug in the smartphone, the desired output will not be achieved and the system
may be in either of the following two states:

1. High Power Consuming State

In this state, the smartphone consumes on average more power than it was consuming
before the execution of the app. It will lead smartphone’s battery to drain. Thus:

Pf > Pi (3.2)

2. Low Power Consuming State

In this state, the smartphone consumes on average less power than it was consuming
before the execution of the app. It might affect the operation and performance of
the smartphone. Hence:

Pf < Pi (3.3)

Scenario 2: Detection of ebugs during execution of an app

During the execution of the app, any deviation in power consumption might affect the
performance of the smartphone. According to the definition (part 2 and 3), an app would
be in an ideal working condition without the presence of an energy bug, if either there is
no difference in energy cost when the app is evolving or the operating system is evolving.
Hence:

Ee1 = Ee2 (3.4)

Where Ee1 and Ee2 are the energy costs of app1 and app2, respectively.
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3.2.2 A Detailed Procedure

We integrate the proposed definition in a diagnostic procedure to detect energy bugs, as
shown in figures 3.4 and 3.5. In this procedure, we will consider the following types of
energy bugs [11]:

• Resource leak: resources, such as the WiFi requested by the app during execution,
must be released before exiting. Otherwise, they continue to keep the device in a
high-power state. We name the set of requested resources as Rr.

• Wakelock bug: wakelock is a power management mechanism in Android devices
through which applications can indicate that the device needs to stay awake. How-
ever, improper usage of wakelocks can cause the device to be stuck in a high-power
state even after the application has finished execution. We name the set of requested
wakelocks as Wr.

• Vacuous background services: in a scenario where an application initiates a service,
such as location updates or sensor updates, but does not remove the service explicitly
before exiting, the service keeps on reporting data even though no application needs
it. We name the set of the initiated services as Sr.

• Immortality bug: faulty applications may re-spawn after they have been closed by
the user, thereby continuing to consume energy.

• Suboptimal resource binding: binding services too early or releasing services too late
cause the app to be in a high-power state longer than required. For each resource, we
keep two time stamps: the instant at which the resource is binded, and the instant
at which the resource is unbinded. We call this set of these two time stamps as Tsrb.

• Tail energy bug: network components tend to linger in a high power state after
the workload imposed on them has completed. Note that tail energy does not con-
tribute to any useful work by the component. Scattered usage of network components
throughout the application code increases power loss due to tail energy. We call this
energy loss as Te.

• Expensive background services: background services, such as sensor updates, can be
configured to operate at different sampling rates. Unnecessarily high sampling rates
of sensor updates create energy bugs; similarly, fine-grained location updates based
on GPS are usually very power intensive and can be replaced by inexpensive, WiFi-
based coarse-grained location updates. We name the set of those services as Seb.
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• Loop energy bug: some portions of application code are repeatedly executed in a loop.
For instance, a loop containing network login code may be executed repeatedly due
to reasons such as an unreachable server.

3.2.3 Categorization of Energy Bugs

We categorize the above energy bugs into two groups: ebug1 and ebug2. The group ebug1
manifests after closing the app, while the group ebug2 manifest during execution only. The
group ebug1 contains resources leaks, wakelock bugs, vacuous background services bugs,
immortality bugs. The ebug2 contains suboptimal resource binding bugs, tail energy bugs,
expensive background services bugs, and loop energy bugs.

The step by step diagnostic procedure to detect ebug1 is shown in Figure 3.4 and is
explained in the following. The step number corresponds to the number associated at the
specific box in the flowchart.

Step 1 Before staring the app under test (AUT), measure initial average power consump-
tion Pi.

Step 2 Run the AUT and identify Rr, Sr, and Wr requested by the AUT.

Step 3 After a while, when AUT finishes its job, terminate it.

Step 4 Measure the final average power consumption Pf right after the termination of the
AUT.

Step 5 Check if Pf and Pi both are equal.

Step 6 If Pf and Pi are equal, it means no energy bug of type ebug1. Go to the end.

Step 7 If Pf is not equal to Pi, an energy bug may exist.

Step 8 Check if all resources Rr have been released before exiting. These resources were
requested by the AUT in the beginning or during runtime. Otherwise, it is an
indication of a resource leak energy bug; go to Step 9.

Step 9 Check if all wakelocks Wr have been released before exiting. These wakelocks
were requested by the AUT in the beginning or during runtime. Otherwise, it is an
indication of a wakelock energy bug; go to Step 10.
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Step 10 Check if all services Sr have been released before exiting. These services were
requested by the AUT in the beginning or during runtime. Otherwise, it is an
indication of vacuous background services related energy bug; go to Step 11.

Step 11 Check if the AUT re-spawn after it has been closed by the user. If yes, it may
be an indication of an immortality bug. Otherwise, go to the end.

For Steps 12-16, the app developer can benefit from the already developed methodolo-
gies to detect each category of ebug1 [29], [16], [22], [19].
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Figure 3.4: Energy bug (ebug1) diagnostic flowchart.

To detect energy bugs type ebug2, we need two applications: app1 and app2. The
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app1 represents either the pre updated version of the app or the app that runs on the
platform1. The app2 represents either the updated version of the app or the app that runs
on platform2. The step by step diagnostic procedure to detect ebug2 is shown in Figure 3.5
and is explained in the following. The step number corresponds to the number associated
at the specific box in the flowchart.

Step 1 Start measuring the power Pe which is the average power consumption during
execution.

Step 2 Start running app1 and label this time instant as time t1.

Step 3 Identify the set of resources and services that are acquired by the AUT and asso-
ciate with each of them the time instants at which the services/resources are acquired
and released (Tsrb and Seb). Measure the tail energy Te.

Step 4 Stop app1 and label this time instant as t2. Then, stop measuring the power. Do
the same Steps (Step 1-4) for app2 and evaluate their energy consumption Ee1 and
Ee2.

Step 5 Check if total energy consumption of app1 (Ee1) and app2 (Ee2) are equal.

Step 6 If Ee1 and Ee2 are equal there is no energy bugs; go to the end.

Step 7 If Ee2 is larger than Ee1, there is an energy bug.

Step 8 Check if suboptimal resource binding Tsrb are similar for both app1 and app2.
It is the timings for binding resources and releasing them. If not similar, it is an
indication of suboptimal resource binding type of energy bug. Otherwise, go to Step
9.

Step 9 Check if tail energy Te1 of app1 and Te2 of app2 are equal. If not, it is an indication
of tail energy bug. Otherwise, go to Step 10.

Step 10 Check if expensive back ground services Seb1 of app1 and Seb2 of app2 are equal,
If not, it is an indication of an expensive background services energy bug. Otherwise,
go to Step 11.

Step 11 Check if some portions of application code are repeatedly executed in a loop. If
yes, it may be an indication of loop energy bug. Otherwise, go to the end.

For Steps 12-16, the app developer can benefit from the already developed methodologies
to detect each category of ebug2 [29], [19].
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Figure 3.5: Energy bug (ebug2) diagnostic flowchart.

3.3 Validation of the Definition

In this section, we validate the proposed definition through a real example of proximity
sensor malfunction. Then, we conduct experiments to prove the presence of energy bugs
when apps and OS are evolving.

3.3.1 Part (1) of the Definition.

We validate the first part of the definition by considering real bugs in Apple iPhone and
Samsung smartphones. An energy bug that caused a smartphone to consume excessive
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battery power, eventually leading to battery drainage was detected on iPhone 4S running
iOS 5.0.1 and 6.1.1 [1]. iPhone 4S was introduced with a new feature called “Siri”, an
intelligent assistant that help the user get things done with voice input. In order to activate
“Siri”, users had to press the home button for a long time. However, “Siri” had another
option to activate it in the settings called Raise to Speak. This option, if activated, allows
the users to use “Siri” by just raising the phone to their ears. With this option turned on,
the iPhone’s proximity sensor would remain in an active state (consuming more power)
for the duration of time this option is on, as the proximity sensor would come to an active
state whenever the user receives a phone call or whenever a phone call is made.

Many People reported a problem with the proximity sensor, when “Raise to Speak” is
being turned on to activate “Siri”, the smartphone consume more battery power. Ideally,
when this option is turned off, the smartphone should go back to its normal power con-
suming state. That was not the case in iPhone 4S running iOS 5.0.1, whether the “Raise
to Speak” option was turned on or off, the proximity sensor was always in an active state.
Therefore, the smartphone was constantly in a high power consuming state [2].

As the name suggests, a low power state of the smartphone affects the performance and
functionality of the smartphone and leaves the smartphone in a state where it consumes
less power than it was before a particular app started. An energy bug that leads the
smartphone to this state was detected on Samsung Galaxy Note 3 running Jelly Bean
(Android OS v4.3). The issue was again with the malfunctioning of the proximity sensor.
Unlike the iPhone case, the proximity sensor malfunction was causing an energy bug to
leave the smartphone in a low power state [5].

The energy bug was that whenever a user received a phone call, the proximity sensor
being in active state sensed the user’s face and turned the screen off but never turned the
screen on again even after the user removed the phone away from his face until the power
button was pressed. In an ideal scenario, after a user answers a phone call, the proximity
sensor should turn the screen on as soon as the phone is moved away from the face, but due
to the presence of this energy bug the phone’s screen remained off, consequently affecting
the functionality of the smartphone and leaving the smartphone in a low power consuming
state [5].

3.3.2 Part (2) and (3) of the Definition:

For the during-execution state, we observe the actual behaviour of the app. We measure
the power consumption of an app in two different scenarios: (a) we observe any changes in
power consumption of different versions of the same app running on the same smartphone;
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and (b) we observe any changes in power consumption when the same app runs on two
different versions of the same OS running on the same smartphone. In the experiments,
the app under test is YouTube app for Android devices.

The experimental setup for the validation of our proposed definition of energy bug
is shown in Figure 3.6. In order to provide constant voltages, an external power supply
is connected to the smartphone and it can support high precision current measurement
facility. A laptop computer is used to continuously monitor the power supply and collect the
measurement data for the test duration. To bypass the smartphone’s battery, a modified
battery connection is made to power the smartphone externally. We set up this connection
to disconnect the battery’s power interface but keep the data interface connected to the
smartphone. To avoid the power saving mode and for accurate results, the smartphone’s
battery is kept fully charged [9].

Figure 3.6: Experimental setup [9].

For consistency in our experiments, we play the same video for four minutes in full
screen mode. In order to ensure that the measured energy is the real cost of playing
the video, we make sure to clear the cache of the AUT each time the experiment was
performed [10]. During an app or operating system upgrade, either there are features
being added, bug fixes, or a combination of both. The most important research question
(RQ) for the application developer is how to detect energy bugs. In the following section
we check the effect of application or OS upgrade on the energy consumption behaviour of
the smartphone.
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RQ1: (Energy bug detection when app is evolving):
What happens to the power consumption of the smartphone when we use different versions
of the same app running on the same platform?

In order to investigate this issue, we use Goggle Nexus S smartphone with a new Android
OS image version 4.1.2 (Jelly beans) from google developer’s website. We conducted the
experiments using the native YouTube app that is installed with the system. Then, we
upgrade the app and repeat the same experiment. We perform the same experiment using
the same smartphone with the same configurations. Then, we evaluate the percentage of
energy difference according to the following relationship:

∆Ee = (Ee2 − Ee1)/Ee1 (3.5)

Table 3.2: Energy costs of different versions of a YouTube app on the same OS.

App1 running
on same OS -

Energy (J)

App2 running
on same OS -

Energy (J)
Difference

Experiment 1 313.04 329.37 4.96 %

Experiment 2 308.44 328.05 5.98 %

Experiment 3 305.58 347.91 12.17 %

Experiment 4 321.67 334.684 6.66 %

Table 4.4 shows the differences in energy consumption by two different versions of the
YouTube app. Although app1 and app2 have the same functionality, the power consump-
tion is different. This difference in energy consumption shows that there are energy issues
in the app and it may indicate the presence of energy bugs. The results shows that the
device is consuming higher energy after upgrade the YouTube app. In other words, we can
say that impact of the energy bug has been increased and the device state is getting worse
in terms of energy consumption.

RQ2: (Energy bug detection when platform is evolving): What happens to the
power consumption of the smartphone when we use the same app running on different
versions of the same platform?

In order to investigate this issue, we use ‘Blackberry Z10’ smartphone with a new OS
image version 10.2.1. In order to check any deviation in energy cost before and after the
upgrade of an OS, we use the native browser app to play same video for six minutes. We
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perform the same experiment four times before and after the upgrade of the OS using
the same smartphone with the same configurations. Then, we evaluate the percentage of
energy difference according to the equation 5.

Table 3.3: Energy consumption over different OS versions.

App running on
different OS1 -

Energy (J)

App running on
different OS2 -

Energy (J)
Difference

Experiment 1 569.99 473.88 16.86 %

Experiment 2 564.02 478.91 15.09 %

Experiment 3 564.63 470.18 16.73 %

Experiment 4 568.05 478.04 15.84 %

Table 3.3 shows the results of four different experiments performed on the same smart-
phone with different OS versions. The results show that different versions of operating
systems have different energy consumption patterns. This difference in energy consump-
tion across operating system versions shows the presence of energy bug. The results show
that the device is consuming less energy after upgrade the OS. In other words, we can say
that impact of the energy bug has been reduced and the device is getting better in terms
of energy consumption.

3.4 Summary

In summary, we focused on energy bugs in smartphones. To provide a clear understanding
of energy bugs, we developed an operational definition that can be easily translated into a
procedure to detect the presence of energy bugs. Furthermore, we integrated the proposed
definition in a diagnostic procedure to facilitate the application of the proposed definition.
We investigated the existence of energy bugs when apps or platforms are updated. We
validated the proposed definition with measurements and realistic energy bug examples.
The results showed that there are energy bugs across different versions of the same app as
well as across different versions of the same platform.
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Chapter 4

Application Tail Energy Bugs

4.1 Related Work

Smartphones are becoming popular because of their rich features and services. However,
high energy consumption becomes a bottleneck in the daily use of smartphones. Many
efforts have been made by number of researchers to properly manage and reduce the power
consumption for smartphone recently, which mainly focus on three aspects: power estima-
tion, energy debugging, and power reduction.[21] [28] [13] [4] As we know, WakeLock is a
useful mechanism for developers to keep the system awake when necessary, it is program-
mer’s responsibility to use carefully because misuse of WakeLock will result in unnecessary
battery drain quickly. The WakeLock mechanism is provided in the form of a set of APIs in
Android developer’s documentation. There are many occasions when an acquired Wake-
Lock is not released correctly. This is called a no-sleep bug. With the presence of a
no-sleep bug, a large amount of power will be wasted even when the Android device is in
the screen-off state, because the device components are not in sleep mode as they should
be. Therefore, detecting and correcting WakeLock bugs are very helpful for end users.

Wakelock bugs have has been identified and accepted as main cause of energy loss. In
literature, two approaches are very popular for detection purposes, first is static analysis
doing a code path scanning, and second is dynamic analysis at run time. Pathak et al. [22]
and Vekris et al. [26] applied the first approach by decompiling the Dalvik byte code to
Java and then analysing the converted source code statically. However, the problem is it is
not easy to decompile all Android packages. When, the static approach lacks information
on concrete running states, and this limits its ability to find WakeLock bugs. Kwanghwan
and Hojung [14] present a runtime scheme called WakeScope to handle WakeLock bugs
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when running the AUT. However, user intervention is required, which definitely limits its
usage and utility. Another problem is, it can not detect Wakelock bugs when the screen
if off, mostly a major reason for wasted battery depletion. Its dependence on Kprobes,
a kernel tool, means kernel recompilation is needed at field use, which is infeasible for
most end users. Online article [3] that discussed about how to identify WakeLocks with
shell command at runtime and performed a simple analysis for WakeLock using BetterBat-
teryStats application. However, it did not do continue further research for energy saving
perceptive.

4.2 Potential Causes

we are adopting the same concept used in networking called tail energy loss. Lingering
energy loss after closing the app is a very complex and prominent type of energy bug. We
call it application tail energy bug (app-tail-ebug). It is caused by various faults triggered

No App tail ebug App tail ebug

As per Intended behaviour or user
specifications

Any deviation from Intended behaviour or
user specifications

Table 4.1: Indication of application tail energy bug

by programmer or user actions. Programmer mistakes in coding create a flaw in the app,
which could activate an app-tail-ebug as a result of certain user actions. As the name
suggests, application tail energy bug is energy wastage due to some unwanted processing
after stopping or closing the app. This energy loss indicates that the app does not allow
at least one component of the phone to sleep, resulting in unnecessarily prolonged battery
drain. Based on the potential causes Figure 4.1, we have categorized them into two main
groups.

• Programmer actions

• User actions
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Figure 4.1: Potential causes of application tail energy fault

4.3 Programmer Actions

An app-tail-ebug is caused by two main programmer actions. These are coding errors
include mishandling of wakelocks and services. All related wakelocks should be released
and services should be stopped after closing the app.

4.4 User Actions in Ending an App

There are five main causes of app-tail-ebug caused by users actions. Here we will discuss
them one by one. Sometimes specific user’s action might leads to app-tail-ebug. The Home
button on the virtual task bar may seem to close apps quickly, but, in fact, it actually just
minimizes the apps. This means that the app is still technically running (usually in some
sort of ”paused” state) and that you will be able to resume your app quickly if you try to
reload the app. Because the home button does not truly ”close” apps, it just gets them out
of the way, it is best to avoid using it when you are trying to end processes and conserve
your Android device’s resources including battery. User can terminate a running app by
pressing exit button (if provided) or by swipe it out from the stack or can kill by forced
stop from settings. The last option is handled by OS and it will close the app completely
including activities and services. Depending on the coding errors behind first two actions
might leads to application tail energy bug. We observed a problem with Aripuca GPS
app. Location services were supposed to be unbounded when user swipe the background
app from the stack but it was not the case. Remaining background location services were
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continuously running and consuming energy. Another problem has been observed in FM
Radio app. Even though user tried to close the app by swiping it out from the stack but
voice services were not stopped completely. Mostly users like to play with multiple apps
while using a music or radio app. Later on they forget to close it completely assuming that
when they close the radio or music app all related voice services would have been stopped
as well. In reality, voice services never stop by itself and drain all battery power in few
hours.

The Best way to ”Quit” an Android App

You may have noticed that most Android applications do not provide an ”Exit” or
”Quit” button. This is especially true in the case of all the stock apps produced by Google
none of them have any method of directly quitting. It may be a bit disconcerting coming
from a desktop-computer environment (e.g., Mac OS, Windows, or desktop Linux), but
this is very much intentional and is a fundamental feature of the Android operating system.
On Android, it is the job of the Android OS itself to load and unload applications from
memory as it sees fit. When you launch an application, the OS will ensure it is in memory.
When you stop using the application, the OS will leave it in memory until that space
is needed for other purposes. Contrary to the belief of some people who market ”auto-
killing task managers”, this behaviour actually improves the performance of the device
and increases battery life. Powered DRAM memory consumes the same amount of power
regardless of whether it is caching old applications, storing random garbage or storing pure
zeroes. Recently used applications start more quickly if they are still loaded into mem-
ory. On the other hand, loading applications into and out of memory takes additional time
and processing power, which of course has a negative effect on performance and battery life.

The purpose of ”Exit” button.

Some applications may have ”Exit” options that simply return you to the device’s
”home screen”. The application will remain in memory until the operating system deter-
mines that the memory is needed for other purposes. This is the way that the ”Exit”
feature works in Aripuca GPS tracker. Other applications actually have ”Exit” options
with teeth. These applications forcibly terminate the virtual machine in which they are
operating. This practice is specifically not recommended by Android engineers and is
seen as breaking the API. Nevertheless, many application vendors choose to provide this
capability. Google itself do not provide this capability in any of their respective apps.

Recommended way to close Apps in Android

In Android, activities (that is, the part of the app you can see) never run in the
background. They can only run (and use battery power) while they are on the screen. The
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activity stops running regardless of whether you use home or back to leave it. The only
difference is what data Android asks the app to save, so neither option is ”the right way”.
It just depends on what you want to do.

Home button

If you use home, Android leaves the app in the same state, so that if you come back
to it later (e.g. through the recent apps list), it will still be in the same state you left it:
on the same screen, with the same stuff shown. For example, if it is an email app, and
you were looking at one email, then it will remember which email that was, and show you
the same one. Eventually (after about half an hour), Android concludes that you are not
coming back to the app, so it resets this state: next time you start the app, it will start
from the front/main screen. To continue the example, the email app will forget which
email and folder you were looking at, and show you the inbox.

Back button

If you use back, you’re telling Android that you don’t want to come back to this view.
It’ll destroy the information about what you were looking at right away. Next time you
start the app, it’ll show the front screen (e.g. the inbox). As we know, apps can control
the behaviour of the back button: for example, web browsers use it to go back in the
browser history. What we have described is the default behaviour of the back button, and
developers are urged to keep the behaviour like that to avoid being confusing. Swipe-out
gesture It will kill the activity and Service. However, services can re-start immediately
with start-sticky option.

Force-stop

A google well known engineer Dianne Hackborn writes: ... (L)ong press on recent tasks
to go to app info, and hit force stop there. Force stop is a complete kill of the app – all
processes are killed, all services stopped, all notifications removed, all alarms removed, etc.
The app is not allowed to launch again until explicitly requested.

Cached background processes

Whichever method you use, Android will leave the app in memory (but not running) for
as long as it can. This is to be more efficient. When you come back to the app, if it’s still
in memory, Android can run it again right away; if it isn’t still in memory, then Android
has to spend time and energy loading the app from storage again. In old Android versions,
apps left in memory in the background this way were included in the list of ”running apps”.
This is a little confusing for users; it makes people think the app is really still running,
so newer versions call these apps ”cached background processes”, to make it clear they’re
only cached, not running.
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Background apps

As we know that activities don’t run in the background. So how does your email client
check for mail? As well as activities, apps can have services. Services don’t have any GUI
for you to see or interact with, but they do run in the background. Usually, a service will
only run infrequently, such as to check mail once an hour, but it’s possible for the app
developer to run the service all the time, draining your battery. Leaving an activity with
back or home doesn’t change how Android treats any services from the same app: the
service can continue to run, or be triggered later at a given time (next time the mail check
is due).

Desktop Mobile Phone

Minimize screen Home button

Back Back button

Only one component of the application
cannot be killed

Swipe-out gesture (only activity can be
killed)

End task from task manager Force-stop from settings

Close or exit Exit button (rarely available)

Use task manager to release RAM
Not advisable to use task manager because

OS manages mobile phone’s memory.

Table 4.2: User actions (Desktop vs Mobile phone)
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4.5 Application Tail Energy Bugs Tool Design

To track down the root cause of unexpected battery drain in smartphones, a software tool
is always demanded since long time. Preferably, a tool which can run on smartphone as
an app or as an application on developers PC. For device monitoring at runtime a number
of solution are available. To capture system information programmatically, either use
specific APIs or ADB commands such as dumpsys, dumpstate and logcat. Due to security
reasons, Android has strengthen their OS security by imposing some restrictions. Although
dumpsys is a very useful tool that can be used to view the system information on an adb
shell, these information cannot be retrieved programmatically by a normal application.
Starting from Android Kit Kat version 4.4, no user app is allowed to run dumpsys command
to fetch any system related information unless it is installed as a system app. Executing
this shell command, through android Runtime.getRuntime().exec() sometimes causes error
or unexpected stopping of AUT application under test. When try to write the output to
DataOutputStream, it shows

Permission Denial : cannot dump <servicename >.

This is because dumpsys has

android:protectionLevel=”signatureOrSystem”.

Unless AUT is signed with a platform key or built as a system application, dumpsys
information cannot be retrieved programmatically. One has to either root the phone or
install the application as a system application or change the protection level of DUMP
permission and create a new build.

4.6 Android Debug Bridge (ADB)

Android debug bridge (ADB) is the most powerful tool provided by Google to help devel-
opers for debugging and monitoring purposes. In order to check memory dump of system
services, dumpsys command can be used which provides wealth of system related informa-
tion. A number of switches are also available to filter out specific information [27].

To get full list of application and system services directly from Activity Manager, we
use

> adb shell dumpsys activity service

To get full list of wakelock(s) directly from Power Manager, we use
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Figure 4.2: Android tools architecture overview

> adb shell dumpsys power

To run ADB commands directly from Java code, a process has been created. Embedded
ADB commands in Java code automatically fetch system information from the device.
The output is saved in a text file and also displayed in text output area of the tool. The
functionality of two button such as pre-state and post-state are identical. First button
saves memory dump system services to pre-state text file and second button in post-state
file. Later, other buttons such as wakelocks and services are used to compare pre-state
and post state and display any difference. The main windows of app-tail ebug tool has two
sections. The upper section shows a button palate. The lower section where tools output
is displayed.

4.7 Challenges

To avoid security restrictions, a software tool has been developed in java for developers
PC as shown in Figure 4.3. The main purpose of this tools is to help developers to save
their time, especially while coding an app, sometimes developer makes some potential
mistakes which can lead to battery drain at run time. The root cause could be a wakelock
not released or a service not stopped before exiting the app. This tool can communicate
with Android framework system services and fetch necessary information twice, before and
after closing the AUT. Later, by comparing both system state files, it can display remaining
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wakelocks and services causing battery drain. The technology used behind this tool is a
set of management tools and commands.

Figure 4.3: Application tail energy bug tool

Methodology:

In each experiment, first we check an indication of app tail energy bug using Monsoon
power meter. If power consumption after closing the app is higher than before starting the
app then it is an indication of app tail energy bug. Once it is confirmed then we verify it
using our tool app tail energy bug tool. This tool compares pre and post state memory
dumps and show root cause of the problem.
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4.8 User Manual

The step by step diagnostic procedure to detect application tail energy ebug is shown in
Figure 4.6 and is explained in the following. The step number corresponds to the number
associated at the specific box in the flowchart.

Step by Step Procedure:

Step 1 Connect the smartphone through a USB or Wi-Fi to the desktop computer.

Figure 4.4: Running “Adb” through USB or over Wi-Fi connection

Step 2 Click on Device check button to verify connectivity between smartphone and a
PC.

Output:

List of devices attached

61ecbefc device

Step 3 Click on Pre-state button. It captures memory dump of system services and save
it in pre-state file, This file contains a list of currently running services and acquired
wakelocks, listeners, audio services and Wi-Fi status.

Output:

A snapshot of system has been written to a file as pre-state.

Step 4 Click on AUT icon to start it and then play different features.

Step 5 Close the AUT by pressing HOME button.
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Figure 4.5: Application tail energy bug tool

Step 6 Click on Post-state button. It captures memory dump of system services and save
it in pre-state file, This file contains a list of currently running services and acquired
wakelocks, listeners, audios and Wi-Fi connections.

Output:

A snapshot of system has been written to a file as post-state.

Step 7 Click on Analyze to compare both files pre-state and post-state files line by line.

Step 8 If both files are equal, it means no app tail ebug go to step 9. Otherwise show list
of remaining wakelocks, services, listeners, audios, Wi-Fi connections etc.

Output:

List of devices attached

61ecbefc device

A snapshot of system has been written to a file as pre-state.

A snapshot of system has been written to a file as post-state.

App’s Service(s) not stopped = * ServiceRecord2e7e353f u0 com.aripuca.tracker/.service.AppService

Click on Clear button to clean the output window.

To show or hide details buttons, click on show or hide details. A palette of details
like wakelocks, services, listeners,audios and Wi-Fi button will be displayed.

Step 10 If both files are not equal, it means app has stopped some components which
were active before starting AUT.
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Step 11 Click on Wakelock not released to compare both files prestate-Wakelocks and
poststate-Wakelocks files line by line. If both files are equal, it means no app tail
ebug. Otherwise show list of remaining wakelocks.

Step 12 Click on Services not released to compare files prestate-Services and poststate-
Services line by line. If both files are equal, it means no app tail ebug. Otherwise
show list of remaining services.

[Step 12][Step 13][Step 14] are the result of the experiments.
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Algorithm: Detecting Application tail energy bug (A parser)

Input:

pre-state and post-state memory dumps of system services such as activity, power,
location, Wi-Fi etc. services captured before starting and after closing the AUT.

Output:

List of remaining wakelocks, services, listeners, Wi-Fi connections after closing the
AUT. These were acquired/started during execution of AUT.

Body:

Initialize: line1, line2

While (line2 != null)

While (lin1 != null)

if line2 = line1 then

print no indication of app-tail-ebug

else if line2 != line1 then

print indication of app tail-ebug

print list of remaining wakelocks and services

end

end
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Figure 4.6: Overall testing procedure
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4.9 Wakelocks and Services Behaviour

Objective: To check the behaviour of an application when acquired wakelock(s) is not
released before exiting.

As the name shows, wakelock is a combination of two words i.e. wake (out of sleep)
and lock (stay). The overall meaning of wakelocks means stay out of sleep or stays awake.
As compare to desktops, mobile phones are designed to stay OFF to conserve batter
power. Because a desktop has a permanent power connection that is why, by default they
are designed to stay ON. The dictionary meaning of mobile is something not stationary.
Smartphoes are mobile devices. Though, these devices do not have a permanent connection
to the power source but have a limited size battery with wireless connectivity available.
In order control power consumption of the device Google has provided a mechanism for
software developers so that they can keep the device ON whenever they want to perform
some useful task. These software controlled power switches are named as Wakelocks. Cur-
rently, developers have full control on three resources CPU, display and keyboard in group
format. There are four wakelock groups. Only partial wakelock allows to acquire wakelock
on CPU individually. The Wakelock forces the device to stay in awake state. Battery
depletion rate depends upon the type of wakelock acquired or load such as CPU, display
and keyboard. Each wakelock provides a control on different combination of resources.
As shown in table1, depending upon the number of components, full wake lock consumes
highest battery power due to all components (CPU, display and keyboards) are ON, second
highest is screen bright wakelock where (CPU, display) are fully ON, the third is screen
dim wakelock where (CPU, display) are on but screen is dim and lastly partial wakelocks
where only CPU is ON. Indication of wakelock related issues in mobile devices: First, a
user can configures his smartphone display time out, let us say, just one minute. If no one
touches the mobile phone for one minute, ideally display should go off after one minute
time out and after few seconds CPU should also go into deep sleep. However, In case of
last three wakelocks in table1, screen and CPU will never go to sleep. Screen will either
stay fully on or in dim state. In case of a partial wakelock, screen will be off but devices
will be losing battery power due to CPU which will be running silently. Note: Wake lock
will be triggered after display timeout.
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Experimental Setup:

Following items are the main components of our work bench.

• A developer computer (desktop or laptop)

• A smartphone with android OS (Samsung Note with android ver. 5.11)

• A monsoon power monitor device for measuring power consumption

• A router for wireless connectivity to run ADB for fetching bugreport

System Model:

(Recommended: option1)

Option1: (Developers PC and Smartphone are connected through a wireless router)

Option2: (Developers PC and Smartphone are connected through a USB cable. A
persistant partial wakelock acquired by the system would not allow accurate power con-
sumption.)

Step by Step Procedure:

Step 1 By pass the smartphone battery and connect it monsoon power meter for steady
power.

Step 2 Run monsoon power meter on desktop PC.

Step 3 Click on vout button from right top corner of power tools window to enable output
voltages.

Step 4 Start smartphone

Step 5 Connect smartphone with developers PC through USB cable.

Step 6 Run adb from command prompt

Step 7 Check device connectivity using command (adb devices) you can see (List of de-
vices attached)

Step 8 In order to switch over to Wi-Fi, use following command (adb tcpip 5555, adb
connect IP address of device)
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Step 9 Once connectivity is established, remove the USB cable. To re-confirm device
connectivity repeat step 2.

Step 10 Set the display time to 2 minutes.

Step 11 Run app tail ebug tool on developers pc.

Step 12 Do not touch smartphone. Let the smartphone go to sleep.

Step 13 Start measuring power consumption for two minutes. In the meantime, click on
pre-state button on app tail ebug tool to generate pre-state bug report.

Step 14 Start the smartphone by clicking on Home button. Continue measuring power
consumption.

Step 15 Let the device running. Continue measuring power consumption and do not
touch it for two minutes.

Step 16 Click on AUT (App under test) to run it. Click on All Wakelocks button from
AUT. Continue measuring power consumption and do not touch it.

Step 17 After two minutes, stop the AUT by clicking on Home button. Continue mea-
suring power consumption and do not touch it.

Step 18 As per display time out set earlier, after two minutes screen will turn to dim and
then completely dark. Device will go to sleep state or maybe not depending up the
existence of wakelocks. Continue measuring power consumption.

Step 19 After a threshold time of 30 seconds take another bugreport by clicking on post-
state button on app tail ebug tool.

Step 20 Continue measuring & monitoring power consumption for a while in order to
check if device goes to sleep state or not at all.

Step 21 Click on wakelocks button on app tail ebug tool to analyze pre-state and post-
state bugreports

Step 22 To verify manually if any wakelock is not released after stopping the AUT look
between Wake Locks: size= and Suspend Blockers: size= in post-state bugreports.
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Figure 4.7: System model
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4.10 Wakelock Demo App (App Under Test)

In order to verify our assumption about wakelock-related problems, we have developed a
wakelock demo app for Android as shown in Figure 4.8. This app has two screens. The
first one is Activity screen which is designed to check activity behaviour with or without
wakelocks provides options for four types of wakelocks i.e. partial wakelock,screen dim
wakelock, screen bright wakelock and full wakelock. There are two buttons provided next
to each wakelock type. The ON button is used for acquiring and OFF button for releasing
the wakelock. Another button is provided to change the screen. The second screen is
Services screen, whcih designed to check services behaviour with or without wakelock.
Four types of wakelock mentioned earlier has been added in the coding. There are two
buttons provided next to each wakelock type. The Start button is used for starting and
stop button for stopping the service. Another button is provided to start a browser app.

The purpose of this experiment is to check the power consumption behaviour of the
AUT especially once the app is not visible. As discussed section 2.1.1, wakelocks are
software switches to control CPU, display and keyboard. It is very important to keep in
mind that once a wakelock is acquired it has to be released by the programmer. Android
system will never release them unless a process is killed or devices is re-started. Some
abbreviation used in Figure 4.8.

PWR = Partial wakelock
SDW = Screen dim wakelock
SBW = Screen bright wakelock
FWL = Full wakelock
WKL = Wakelock

4.11 Quantification of Energy Loss

Application tail energy loss can be classified into two categories.

• Energy loss before display time out.

• Persistent energy loss due to wakelock after screen-off.

In the first scenario; depending upon their convenience, users setup their smartphone’s
display time out to save power. It could be from 15 seconds to 30 minutes. Device is
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(a) Wakelocks Screen (b) Services Screen (c) Home Screen

Figure 4.8: Wakelock demo app

considered fully awake when the display is ON. Background services are allowed to run
continuously without any interruption if the display is kept ON. The loss of energy during
display time out can be calculated as the product of power and display time out. In second
scenario; any unreleased wakelock could keep the device awake indefinitely. Total energy
loss will be product of power and total time including display time out.

4.12 Summary

Lingering energy loss after closing the app is a very complex and prominent type of energy
bug. We call it application tail energy bug. We discussed about potential causes of
application tail energy bug. We categorized them into two main groups. Programmer’s and
User’s actions. Programmer’s mistakes in coding such as misuse of services and wakelock
are the main reasons. Then, we developed a testing app and a tool to capture programming
mistakes in testing at run time.
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Chapter 5

Test Cases and Validations

In order to check power consumption behaviour of android application components such
as activity and service we have performed various experiments. An activity is the essential
component of an android app. We have checked power consumption behaviour of an
activity with or without wakelock. Our result showed that activity only runs in foreground
and consume battery power. However, activity never runs in background or consume any
power. The main advantage of using wakelock cannot help them. Wakelocks has to be
released by the programmer once the intended task has been completed.

We also tested services. Our results showed that service can run in the background
continuously unless it is not stopped. However it pauses when device goes into sleep mode
after display time out. The ability of service to re-launch itself to continue unfinished task
makes it power hungry nature.

Services are more susceptible to be killed by the system in case of less resource than
activity. Only those services will not be killed which are bound to UI activities. In the
following section we will present 20 test case for each components activity and services.
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5.1 Test Cases for ”Activity”

Experiment # 1A (Wakelock type : PRW, Ending type : Home button )

Objective: To monitor systems behaviour when a partial wakelock is acquired by the
AUT but not released before exiting due to specific user action using Home button.

Hypothesis: In this experiment, we acquire a partial wakelock but not release it deliber-
ately to simulate a real life environment. Then, we start and play with another app such
as browser app for a while. Later, we come back to the wakelock demo app and close
the app using Home button. As per default behaviour of Home button, current screen
(activity) should be saved in the memory and then Home screen should be displayed. By
default Android system does not take any action to release previously acquired wakelocks.
To prove this assumption, we are doing following experiment.

Procedure: In order to check any deviation from ideal behaviour, we have run two test
cases. In the Figure 5.1, the dotted line curve represents the power consumption of the app
exhibiting buggy behaviour and the solid-line curve represents that of correct behaviour of
the app. In the beginning of the test, the smartphone is in the switched off state. We start
the phone by pressing the power button. After successful boot up, the smartphone Home
screen is completely visible. We do not touch the smartphones screen, and it remains in the
same state for a while. At this stage, the device is in the idle state. Due to the aggressive
sleeping policy implemented by the Android platform, the device goes into the sleeping
mode. At this moment, we start to measure the power consumption of the device which
corresponds to P1. We also click on pre-state button on app tail ebug tool on developers
PC. Here, the device power consumption is 100 times less than the consumption in the On
state; In order to run the test case, we press the power button of the smartphone to wake it
up at time T1. The power consumption shots up from P1 to P3. Now, the display is visible,
and other important components such as the CPU, display, keyboard and radio are also
in full wake up state. At this stage, no app is running on the smartphone. We measured
the power consumption P3 during time interval (T1-T2), which corresponds to the app
pre-execution state. At time T2, we start the AUT by clicking on the app icon. The power
consumption of the device shots up from P3 to P4. The wakelock demo app is loaded and
it starts running with full functionality. Now, the app is in the execution state. We test
different features of the application. At time T3 we press ON button next to the partial
wake lock on WakelockAndriod screen to acquire that particular wakelock. We measure
the power consumption P4 during the time interval (T2-T3-T4), which corresponds to the
power consumption of the app during execution. In the mean time we also run a browser
app and later come back to wakelock demo app. At time T4, the app is stopped by pressing
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Figure 5.1: Power trace comparison of wakelock app (Experiment # 1A)

Figure 5.2: Result from application tail energy bugs tool (Experiment # 1A)

the Home button from the WakelockAndriod screen, as shown in Figure 1.3. We do not
touch the screen. At time T5, system goes to sleeping mode after screen time out. In
our case we setup screen time out two minutes (120 seconds). For simplicity, all steps
mentioned above are summarized in Table 5.3.

Starting from T5, the power consumption of the app in the absence of wakelock is
completely differs from that of the presence of wakelock. In the absence of wakelock,
the app power consumption has dropped from P3 to P1. Once the foreground screen is
moved to the background, the AUT should be stopped and wakelock should be released.
In contrast, in the presence of the wakelock, the app power consumption did not drop to
P1 level and stayed on the P2 level. After the T4, the app is considered to be in the post-
execution state. We measure the power consumption during the time interval (T4-T5) and
call it the post-execution power consumption of the app. After stopping, we do not touch
the device at all. After display time out at T5, the power consumption of the app without
a wakelock drops from P3 to P1, whereas with wakelock, it drops from P3 to P2.
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Result from App Tail ebug tool: It shows partial wakelock acquired by the AUT has
not been released.

Observations: As shown in Figure 5.1, the graph shows that power consumption is always
settles down to the pre-execution power state level after stopping the AUT. The device
goes to suspend mode after a while when wakelock is not present, whereas in case of a
buggy behaviour, wakelock does not allow the device to go into the sleep mode.

As shown in Figure 5.2, the results shows from app tail ebug tool also supports our
theory mentioned above. Our tool successfully detects root cause of the problem. A partial
wakelock is causing the loss of battery power in the buggy app.

Conclusion: We conducted an experiment to show the presence of the app tail energy
bug when a partial wakelocks is not handled properly. We simulated the real environment
by using a wakelock demo app. We acquired a partial wakelock from AUT but did not
release it deliberately to check its affects after closing the app. While playing with AUT,
we switched to a browser app and then come to AUT after a short while. We used Home
button to close the AUT. After a display timeout of 120 seconds, screen turned to dim
and then completely dark. Partial wakelock keeps the CPU awake but nothing to do
with display. The continuous power consumption after display is off shows the presence
of partial wakelock which triggered at right time. Using Home button for exiting do not
release wakelock(s) acquired by the AUT.
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Time User/developer 
actions 

Device 
state 

Comments on power 
changes 

App 
state 

0-T1 User do not touch the 
smartphone screen for 
a while. 
 
Press pre-state button 
on app-tail-ebug tool 
 

suspend Power consumption remains at 
P1 

sleep 

T1-T2 At time T1, 
wake up the 
smartphone by 
pressing power button 
 

Idle At time T1 power consumption  
shots up from P1 to P3 

Pre-
execution 

T2-T3 At time T2, 
Click on app icon to 
run it 

On At time T2 power consumption  
shots up from P3 to P4 

Execution 

T3-T4 Press  
ON button  
OFF button 
Next to wakelock type 
 
Start browser 
 

On Correct 
app 
behaviour 
without 
WKL 
 

At time T3, power 
consumption 
changes due to 
browser app 
 

 
Execution 

Press  
ON button  
Next to wakelock type 
 
Start browser 
 

On Buggy app 
behaviour 
with WKL 

At time T3, power 
consumption 
changes due to 
browser app 
 

T4-T5 At time T4, 
Stop the AUT  
by pressing Home 
button 
 

Idle At time T4 power consumption  
drops from P4 to P3 in both 
cases 

Post-
execution 

T5-T6 User do not touch the 
smartphone screen for 
a while. 
 
Press 
Post-state button on  
app-tail-ebug tool 

Suspend Correct 
app 
behaviour 
without 
WKL  

At time T5, power 
consumption 
drops 
from P3 to P1, 
 

Sleep 

Idle Buggy app 
behaviour 
with WKL  

At time T5, power 
consumption 
drops 
from P3 to P2, 

Awake 

 

Figure 5.3: Summary of the main states of the AUT during test case execution.
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Experiment # 2A (Wakelock type : PRW, Ending type : Back button )

Objective: Same as exp.# 1A but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment#1A but now Back button is used for ending the AUT.

Figure 5.4: Power trace comparison of wakelock app (Experiment # 2A)

Result from App Tail ebug tool: Same as experiment number 1A.
Observations: Same as experiment#1A.
Conclusion: Same as experiment#1A. Using Back button for ending does not release
Partial wakelock(s) acquired by the AUT. Service continue running in the background.
Experiment # 3A (Wakelock type : PRW, Ending type : Swipe-out )

Objective: Same as exp.# 1A but swipe-out gesture would be used for ending the AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.5: Power trace comparison of wakelock app (Experiment # 3A)

Observations: No more power consumption after ending the AUT
Conclusion: AUT had only one activity. Using swipe-out gesture for ending killed the
only activity that is why process got killed as well Thats why all resources including wake-
locks has been released.
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Experiment # 4A (Wakelock type : PRW, Ending type : Force-stop )

Objective: Same as exp.#1A but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as exp.#1A However now Back button is used for ending the AUT.

Figure 5.6: Power trace comparison of wakelock app (Experiment # 4A)

Result from App Tail ebug tool: No Wakelocks left.
Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using force-stop for ending killed the process
including activities, services etc. Thats why all resources including wakelocks has been
released.

Experiment # 5A (Wakelock type : SDW, Ending type : Home button )

Objective: Same as exp.# 1A but Home button would be used for ending the AUT.
Hypothesis: : Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would not be released.
Procedure: Same as exp.#1A However now Back button is used for ending the AUT.

Figure 5.7: Power trace comparison of wakelock app (Experiment # 5A)

Result from App Tail ebug tool: Shows SDW wakelock still active.
Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.

57



Experiment # 6A (Wakelock type : SDW, Ending type : Back button )

Objective: Same as experiment# 1A but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.

Figure 5.8: Power trace comparison of wakelock app (Experiment # 6A)

Result from App Tail ebug tool: Shows SDW wakelock still active.
Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.

Experiment # 7A (Wakelock type : SDW, Ending type : Swipe-out )

Objective: Same as experiment# 1A but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.9: Power trace comparison of wakelock app (Experiment # 7A)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using swipe-out gesture for ending killed the
only activity that is why process got killed as well Thats why all resources including wake-
locks has been released.
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Experiment # 8A (Wakelock type : SDW, Ending type : Force-stop )

Objective: Same as experiment#1A but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1A but now force-stop is used for ending the AUT.

Figure 5.10: Power trace comparison of wakelock app (Experiment # 8A)

Result from App Tail ebug tool: No Wakelocks left.
Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using force-stop for ending killed the process
including activities, services etc. Thats why all resources including wakelocks has been
released.

Experiment # 9A (Wakelock type : SBW, Ending type : Home button )

Objective: Same as experiment# 1A but Home button would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1A but now Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW wakelock still active.

Figure 5.11: Power trace comparison of wakelock app (Experiment # 9A)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.
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Experiment # 10A (Wakelock type : SBW, Ending type : Back button )

Objective: Same as experiment# 1A but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.

Figure 5.12: Power trace comparison of wakelock app (Experiment # 10A)

Result from App Tail ebug tool: Shows SDW wakelock still active.
Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.

Experiment # 11A (Wakelock type : SBW, Ending type : Swipe-out )

Objective: Same as experiment# 1A but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.13: Power trace comparison of wakelock app (Experiment # 11A)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using swipe-out gesture for ending killed the
only activity that is why process got killed as well Thats why all resources including wake-
locks has been released.
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Experiment # 12A (Wakelock type : SBW, Ending type : Force-stop )

Objective: Same as experiment#1A but force-stop would be used for ending the AUT.
Hypothesis: : Current screen (activity) including process would be killed. Acquired
wakelocks would also be released.
Procedure: Same as experiment# 1A but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.14: Power trace comparison of wakelock app (Experiment # 12A)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using force-stop for ending killed the process
including activities, services etc. Thats why all resources including wakelocks has been
released.

Experiment # 13A (Wakelock type : FLW, Ending type : Home button )

Objective: Same as experiment# 1A but Home button would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1A but now Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW wakelock still active.

Figure 5.15: Power trace comparison of wakelock app (Experiment # 13A)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Home button for ending does not release
Full wakelock(s) acquired by the AUT.
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Experiment # 14A (Wakelock type : FLW, Ending type : Back button )

Objective: Same as experiment# 1A but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW wakelock still active.

Figure 5.16: Power trace comparison of wakelock app (Experiment # 14A)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1A. Using Back button for ending does not release
Full wakelock(s) acquired by the AUT.

Experiment # 15A (Wakelock type : FLW, Ending type : Swipe-out )

Objective: Same as experiment# 1A but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.17: Power trace comparison of wakelock app (Experiment # 15A)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using swipe-out gesture for ending killed the
only activity that is why process got killed as well Thats why all resources including wake-
locks has been released.
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Experiment # 16A (Wakelock type : FLW, Ending type : Force-stop )

Objective: Same as experiment#1A but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1A but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.18: Power trace comparison of wakelock app (Experiment # 16A)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity. Using force-stop for ending killed the process
including activities, services etc. Thats why all resources including wakelocks has been
released.

Experiment # 17A (Wakelock type : No WKL, Ending type : Home button )

Objective: Same as exp.# 1A but Home button would be used for ending the AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.Current screen
(activity) would be saved in the memory and then phone would display Home screen.
Procedure: Same as experiment# 1A but now Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.19: Power trace comparison of wakelock app (Experiment # 17A)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout.
Conclusion: Same as experiment # 1A. Using Home button for ending stops AUT.
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Experiment # 18A (Wakelock type : No WKL, Ending type : Back button )

Objective: Same as experiment# 1A but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen.
Procedure: Same as experiment# 1A but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.20: Power trace comparison of wakelock app (Experiment # 18A)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout.
Conclusion: Same as experiment # 1A. Using Back button for ending is stops AUT.

Experiment # 19A (Wakelock type : No WKL, Ending type : Swipe-out )

Objective: Same as experiment# 1A but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as exp.# 1A but now swipe-out gesture is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.21: Power trace comparison of wakelock app (Experiment # 19A)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout.
Conclusion: Same as experiment # 1A. Using swipe-out for ending stops AUT.
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Experiment # 20A (Wakelock type : No WKL, Ending type : Force-stop )

Objective: Same as experiment#1A but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed.
Procedure: Same as experiment# 1A but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.22: Power trace comparison of wakelock app (Experiment # 20A)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout.
Conclusion: Same as experiment # 1A. Using force-stop for ending stops AUT.
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5.2 Test Cases for ”Service”

Experiment # 1B (Wakelock type : PRW, Ending type :HOME button)
Objective: To monitor systems behaviour when a partial wakelock is not released before
exiting due to specific user action using Home button. This wakelock is acquired by the
AUT for a custom service,
Hypothesis: In this experiment, we acquire a partial wakelock for a custom service but
not release it deliberately to simulate a real life environment. Then, we start and play with
another app such as browser app for a while. Later, we come back to the wakelock demo
app and close the app using Home button. As per default behaviour of Home button,
current screen (activity) should be saved in the memory and then Home screen should be
displayed. After display time out, previously started custom service will continue running
in the background due to presence of wakelock. By default Android system does not take
any action to release previously acquired wakelocks. To prove this assumption, we are
doing following experiment.
Procedure: In order to check any deviation from ideal behaviour, we have run two test
cases. In the Figure 5.23, the dotted line curve represents the power consumption of the
app exhibiting buggy behaviour, while solid-line curve represent the normal behaviour. In
beginning of the test, the smartphone is in the switched off state. We start the phone
by pressing the power button. After successful boot up, the smartphone Home screen is
completely visible. We do not touch the smartphones screen, and it remains in the same
state for a while. At this stage, the device is in the idle state. Due to the aggressive
sleeping policy implemented by the Android platform, the device goes into the sleeping
mode. At this moment, we start to measure the power consumption of the device which
corresponds to P1. We also click on pre-state button on app tail ebug tool on developers
PC. Here, the device power consumption is 100 times less than the consumption in the
On state; In order to run the test case, we press the power button of the smartphone to
wake it up at time T1. The power consumption shots up from P1 to P3. Now, the display
is visible, and other important components such as the CPU, display, keyboard and radio
are also in full wake up state. At this stage, no app is running on the smartphone. We
measured the power consumption P3 during time interval (T1-T2), which corresponds to
the app pre-execution state. At time T2, we start the AUT by clicking on the app icon.
The power consumption of the device shots up from P3 to P4. The wakelock demo app
is loaded and it starts running with full functionality. Now, the app is in the execution
state. We test different features of the application. At time T3 we press next screen button
to the accesses WakelockAndriod2 screen. We measure the power consumption P4 during
the time interval (T2-T3), which corresponds to the power consumption of the app during
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Figure 5.23: Power trace comparison of wakelock app (Experiment # 1B)

execution. At time T3, we also pressed start download button to start a service and then
browser button to start a browser. Due to file download service, power consumption shots
up from P4 to P6. After a while, we come back to same screen of wakelock demo app.
At time T4, the app is stopped by pressing the Home button from the WakelockAndriod2
screen, as shown in Figure 1.3. Power consumption drop from P6 to P5 due to different
screen resolutions of home screen. We do not touch the screen. At time T5, system goes
to sleeping mode after screen time out. In our case we setup screen time out two minutes
(120 seconds). At this point in case of a correct app power drops from P5 to P1 where as in
case of buggy app it drops from P5 to P4 and stays there till file download is complete. At
time T6. Power consumption drops from P4 to P2 and stay there due to partial wakelock.
For simplicity, all steps mentioned above are summarized in Table 5.25 Starting from T5,
the power consumption of the app in the absence of wakelock is completely differs from
that of the presence of wakelock. In the absence of wakelock, the app power consumption
has dropped from P5 to P1. Once the foreground screen is moved to the background, the
AUT and file download should be stopped and wakelock should be released. In contrast,
in the presence of the wakelock, the app power consumption did not drop to P1 level and
stayed on the P2 level. After the T4, the app is considered to be in the post-execution
state. We measure the power consumption during the time interval (T4-T5) and call it the
post-execution power consumption of the app. After stopping, we do not touch the device
at all. After display time out at T5, the power consumption of the app without a wakelock
drops from P5 to P1, whereas with wakelock, it drops from P5 to P4 and then P4 to P2
after file download is completed.

Result from App Tail ebug tool: It shows a custom service is still running with the
help of a partial wakelock even after display time out.

Observations: As shown in Figure 5.23, the graph shows that in normal case without a
service, power consumption is always settles down to the pre-execution power state level
after stopping the AUT. The device goes to suspend mode after a while when wakelock is
not present, whereas in case of a buggy behaviour, wakelock does not allow the device to
go into the sleep mode. As shown in Figure 5.24, the results shows from app tail ebug tool
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Figure 5.24: Result from application tail energy bugs tool (Experiment # 1B)

also supports our theory mentioned above. Our tool successfully detects root cause of the
problem. A partial wakelock initiated to run download service, which is causing the loss
of battery power in the buggy app.

Conclusion: We conducted an experiment to show the presence of the app tail energy
bug when a partial wakelocks is not handled properly. We simulated the real environment
by using a wakelock demo app. We acquired a partial wakelock from AUT but did not
release it deliberately to check its affects after closing the app. While playing with AUT,
we started a download service and then switched to a browser app and then come back
to AUT after a short while. We used Home button to close the AUT. After a display
timeout of 120 seconds, screen turned to dim and then completely dark. Partial wakelock
keeps the CPU awake but nothing to do with display. The download service did not
stop even after display time out. The continuous power consumption after display is off
shows the presence of partial wakelock which triggered at right time. Though it helped
to run download service in the background. The file has been downloaded completely.
Using Home button for exiting do not release wakelock(s) acquired by the AUT. In the
other experiment, we did not acquire any wakelock, the running service pauses when the
device went into sleep. Later the same service resume when the device awake. In the
first experiment full file has been download but in another experiment system killed the
background service without downloading complete file.
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Time User/developer 
actions 

Device 
state 

Comments on power changes App 
state 
 

0-T1 User do not touch the 
smartphone screen for 
a while. 
Press pre-state button 
on app-tail-ebug tool 
 

suspend Power consumption remains at P1 Sleep 

T1-T2 At time T1,wake up the 
smartphone by 
pressing power button 
 

idle At time T1 power consumption  
shots up from P1 to P3 

Pre-
execution 

T2-T3 At time T2, 
Click on app icon to run 
it 
 

On At time T2 power consumption  
shots up from P3 to P4 

Execution 

T3-T4 Press  
Start download service 
without wakelock 
 
Start browser 
 

On Correct app 
behaviour 
without 
WKL 

At time T3, power 
consumption shots 
up from P4 to P6 
due to download 
and browser app 
 
 

Execution 

Press  
Start download service 
With partial wakelock 
 
Start browser 
 

On Buggy app 
behaviour 
with WKL 

T4-T5 At time T4, 
Stop the AUT  
by pressing Home 
button 
 

idle Correct app Drops from P6 to P5 
due to different 
screen but file 
downloading still 
continue  
 

Post-
execution 

On Buggy app 

T5-T6 User do not touch the 
smartphone screen for 
a while. 
 
Press 
Post-state button on  
app-tail-ebug tool 

suspend Correct app 
behaviour 
without 
WKL  

At time T5, power 
consumption drops 
from P5 to P1, 
Service is paused 
 

Post-
execution 
Sleep 

idle Buggy app 
behaviour 
with WKL  

At time T5, power 
consumption drops 
from P5 to P4, then 
at T6 it again drops 
from P4 to P2, when 
file download 
finishes.  
 

Post-
execution 
 
awake 

 

Figure 5.25: Summary of the main states of the AUT during test case execution.
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Experiment # 2B (Wakelock type : PRW, Ending type : Back button )
Objective: Same as experiment# 1B but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Same as experiment#1B.

Figure 5.26: Power trace comparison of wakelock app (Experiment # 2B)

Observations: Same as experiment#1B.
Conclusion: Same as experiment # 1B. Using Back button for ending does not release
Partial wakelock(s) acquired by the AUT. Service continue in the background.

Experiment # 3B (Wakelock type : PRW, Ending type : Swipe-out )
Objective: Same as experiment#1B but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: PRW still active

Figure 5.27: Power trace comparison of wakelock app (Experiment # 3B)

Observations: power consumption continue after ending the AUT
Conclusion: AUT had one activity and one service. Using swipe-out gesture for end-
ing killed the activity and service but service is restarted and running continuously till it
finished intended task. Power consumption continued due to PRW.
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Experiment # 4B (Wakelock type : PRW, Ending type : Force-stop )

Objective: Same as experiment#1B but force-stop would be used for ending the AUT.
Hypothesis:Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1B but now force-stop is used for ending the AUT.

Figure 5.28: Power trace comparison of wakelock app (Experiment # 4B)

Result from App Tail ebug tool: No Wakelocks left.
Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity and a service. Using force-stop for ending killed
the process including all activities and services etc. Thats why all resources including
wakelocks has been released.

Experiment # 5B (Wakelock type : SDW, Ending type : Home button )
Objective: Same as exp.# 1B but Home button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW wakelock still active.

Figure 5.29: Power trace comparison of wakelock app (Experiment # 5B)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.

71



Experiment # 6B (Wakelock type : SDW, Ending type : Back button )
Objective: Same as experiment# 1B but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.

Figure 5.30: Power trace comparison of wakelock app (Experiment # 6B)

Result from App Tail ebug tool: Shows SDW wakelock still active.
Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Home button for ending does not release
Screen DIM wakelock(s) acquired by the AUT.

Experiment # 7B (Wakelock type : SDW, Ending type : Swipe-out )
Objective: Same as experiment# 1B but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW still active

Figure 5.31: Power trace comparison of wakelock app (Experiment # 7B)

Observations: power consumption continue after ending the AUT
Conclusion: AUT had one activity and one service. Using swipe-out gesture for end-
ing killed the activity and service but service is restarted and running continuously till it
finished intended task. Power consumption continued due to SDW.
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Experiment # 8B (Wakelock type : SDW, Ending type : Force-stop )
Objective: Same as experiment#1B but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1B but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.32: Power trace comparison of wakelock app (Experiment # 8B)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had one activity and one service. Using force-stop for ending killed
the process including activities, services etc. Thats why all resources including wakelocks
has been released.

Experiment # 9B (Wakelock type : PRW, Ending type : Home button )
Objective: Same as experiment# 1B but Home button would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows SBW wakelock still active.

Figure 5.33: Power trace comparison of wakelock app (Experiment # 9B)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Home button for ending does not release
Screen Bright wakelock(s) acquired by the AUT.
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Experiment # 10B (Wakelock type : SBW, Ending type : Back button )
Objective: Same as experiment# 1B but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows SDW wakelock still active.

Figure 5.34: Power trace comparison of wakelock app (Experiment # 10B)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Home button for ending does not release
Screen Bright wakelock(s) acquired by the AUT.

Experiment # 11B (Wakelock type : SBW, Ending type : Swipe-out )
Objective: Same as experiment# 1B but swipe-out gesture would be used for ending the
AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would dispCurrent screen (activity) would be killed and then process. Acquired wakelocks
would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows SBW still active

Figure 5.35: Power trace comparison of wakelock app (Experiment # 11B)

Observations: power consumption continue after ending the AUT.
Conclusion: AUT had only one activity and one service. Using swipe-out gesture for
ending killed the activity and service but service re-started and continue running till it
finished intended task. Thats why all resources including wakelocks has not been released.
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Experiment # 12B (Wakelock type : SBW, Ending type : Force-stop )
Objective: Same as experiment#1B but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1B but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.36: Power trace comparison of wakelock app (Experiment # 12B)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity and one service. Using force-stop for ending killed
the process including activities, services etc. Thats why all resources including wakelocks
has been released.

Experiment # 13B (Wakelock type : FLW, Ending type : Home button )
Objective: Same as experiment# 1B but Back button would be used for ending the
AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows FLW wakelock still active.

Figure 5.37: Power trace comparison of wakelock app (Experiment # 13B)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Home button for ending does not release
FLW wakelock(s) acquired by the AUT.
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Experiment # 14B (Wakelock type : FLW, Ending type : Back button )

Objective: Same as exp.# 1B but Back button would be used for ending the AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen. Acquired wakelocks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows FLW wakelock still active.

Figure 5.38: Power trace comparison of wakelock app (Experiment # 14B)

Observations: Power consumption is continued even after ending the AUT.
Conclusion: Same as experiment # 1B. Using Back button for ending does not release
Full wakelock(s) acquired by the AUT.

Experiment # 15B (Wakelock type : FLW, Ending type : Swipe-out )
Objective: Same as exp.# 1B but swipe-out gesture would be used for ending the AUT.
Hypothesis: Current screen (activity) would be killed and then process. Acquired wake-
locks would not be released.
Procedure: Same as experiment# 1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows FLW still active#1B.

Figure 5.39: Power trace comparison of wakelock app (Experiment # 15B)

Observations: power consumption continua after ending the AUT
Conclusion: AUT had only one activity and one service. Using swipe-out gesture for
ending killed the only activity and service but service is restarted and continue running
till it finished intended task. Thats why all resources including wakelocks has not been
released.
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Experiment # 16B (Wakelock type : FLW, Ending type : Force-stop )
Objective: Same as experiment#1B but force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment# 1B but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: No Wakelocks left.

Figure 5.40: Power trace comparison of wakelock app (Experiment # 16B)

Observations: No more power consumption after ending the AUT.
Conclusion: AUT had only one activity and one service. Using force-stop for ending killed
the process including activities, services etc. Thats why all resources including wakelocks
has been released.

Experiment # 17B (Wakelock type : No WKL, Ending type : Home button )
Objective: Same as experiment#1B but Home button would be used for ending AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen.
Procedure: Same as experiment# 1B but Home button is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.41: Power trace comparison of wakelock app (Experiment # 17B)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout. A background service stops temporarily when device goes to
sleep.
Conclusion: Using Home button for ending does not help service to run continuously in
the background without a wakelock.
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Experiment # 18B (Wakelock type : No WKL, Ending type : Back button )
Objective: Same as experiment#1B but Back button would be used for ending AUT.
Hypothesis: Current screen (activity) would be not saved in the memory and then phone
would displays previous screen.
Procedure: Same as experiment#1B but now Back button is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.42: Power trace comparison of wakelock app (Experiment # 18B)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout. A background service stops temporarily when device goes to
sleep.
Conclusion: Using Back button for ending does not help service to run continuously in
the background without a wakelock.

Experiment # 19B (Wakelock type : No WKL, Ending type : Swipe-out )
Objective: Same as experiment#1B, swipe-out gesture would be used for ending AUT.
Hypothesis: Current screen (activity) would be killed and then process.
Procedure: Same as experiment#1B but now swipe-out is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.43: Power trace comparison of wakelock app (Experiment # 19B)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout. A background service stops temporarily when device goes to
sleep.
Conclusion: Using swipe-out for ending does not help service to run continuously in the
background without a wakelock.
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Experiment # 20B (Wakelock type : No WKL, Ending type : Force-stop )
Objective: Same as experiment#1B, force-stop would be used for ending the AUT.
Hypothesis: Current screen (activity) including process would be killed. Acquired wake-
locks would also be released.
Procedure: Same as experiment#1B but now force-stop is used for ending the AUT.
Result from App Tail ebug tool: Shows no wakelock still active.

Figure 5.44: Power trace comparison of wakelock app (Experiment # 20B)

Observations: poststate power consumption settles down to pre-state. Device goes to
sleep after display timeout. A background service stops temporarily when device goes to
sleep.
Conclusion: Using force-stop for ending does not help service to run continuously in the
background without a wakelock.
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Experiment # 21B (Wakelock type : PRW released, Ending type : Home button )
Objective: Same as experiment#1B but Back button would be used for ending AUT.
Hypothesis: Current screen (activity) would be saved in the memory and then phone
would displays Home screen. Acquired wakelocks would be released properly.
Procedure: Same as experiment#1B, Home button is used for ending the AUT.
Result from App Tail ebug tool: No Wakelock left.

Figure 5.45: Power trace comparison of wakelock app (Experiment # 21B)

Observations: Same as experiment#1B.
Conclusion: Same as experiment#1B. Using swipe-out gesture for ending does not release
Partial wakelock(s) acquired by the AUT. Service continue in the background till it finishes
intended task. Wakelock has been released.

Experiment # 22B (Wakelock type : PRW released, Ending type : swipe-out)
Objective: Same as experiment#1B, swipe-out gesture would be used for ending AUT.
Hypothesis: Current screen (activity) would not be saved in the memory and then phone
would displays previous screen. Acquired wakelocks would be released properly.
Procedure: Same as experiment#1B, swipe-out gesture is used for ending the AUT.
Result from App Tail ebug tool: No Wakelock left

Figure 5.46: Power trace comparison of wakelock app (Experiment # 22B)

Observations: No power consumption after finishing intended task
Conclusion: Same as experiment#1B. Using swipe-out gesture for ending does not release
Partial wakelock(s) acquired by the AUT. Service continue in the background till it finishes
intended task. Wakelock has been released.
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Exception: If you hold a partial wakelock, the CPU will continue to run, regardless of
any display time out or the state of the screen and even after the user presses the power
button. In all other wakelock types, the CPU will run, however the user can still put the
device to sleep using the power button.

The table 5.49 summarizes results from all test cases. It can be observed that Ac-
tivity never runs in the background with or without wakelocks that is why there is no
chance of energy bug due to activities. In case of test cases AHW2 and ABW2, acquired
wakelock must be released otherwise that can keep the device awake and consume battery.
Another component of android app is service which runs in background without any UI.
The only user action which kill the process including all activities, services, and release all
acquired wakelocks. That is the reason except Force-stop, all test cases shows possibility of
ebug. When device goes to sleep, background running services also get paused and resume
whenever device re-awake. On the hand in the presence of any wakelock type, service can
continue running in the background till it finishes intended task. All acquired wakelock
has to be released once the the task is completed.
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Exp 

No. 

Wake 

Lock 

Type 

Ending Type Possibility 

of app tail 

ebug 

After ending AUTat 

T4 

After display timeout 

at T5 

Process WKL Device 

State 

Activity Activity    

1A PRW Home button Yes Saved Stop Alive Active Awake 

2A PRW Back button Yes Not saved No Activity Alive Active Awake 

3A PRW Swipe-out No Killed No Activity Killed Released Sleep 

4A PRW Force-stop No Killed No Activity Killed Released Sleep 

         

5A SDW Home button Yes Saved Stop Alive Active Awake 

6A SDW Back button Yes Not saved No Activity Alive Active Awake 

7A SDW Swipe-out No Killed No Activity Killed Released Sleep 

8A SDW Force-stop No Killed No Activity Killed Released Sleep 

         

9A SBW Home button Yes Saved Stop Alive Active Awake 

10A SBW Back button Yes Not saved No Activity Alive Active Awake 

11A SBW Swipe-out No Killed No Activity Killed Released Sleep 

12A SBW Force-stop No Killed No Activity Killed Released Sleep 

         

13A FLW Home button Yes Saved Stop Alive Active Awake 

14A FLW Back button Yes Not saved No Activity Alive Active Awake 

15A FLW Swipe-out No Killed No Activity Killed Released Sleep 

16A FLW Force-stop No Killed No Activity Killed Released Sleep 

         

17A No WKL Home button No Saved Stop Alive No WKL Sleep 

18A No WKL Back button No Not saved No Activity Alive No WKL Sleep 

19A No WKL Swipe-out No Killed No Activity Killed No WKL Sleep 

20A No WKL Force-stop No Killed No Activity Killed No WKL Sleep 

 

Figure 5.47: Summary of results from all test cases related to ”Activity”
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Exp 

No. 

Wake 

Lock 

Type 

Ending Type app 

tail 

ebug 

After ending AUT 

at T4 

After display 

timeout at T5 

Process WKL Device 

State 

Activity Service Activity Service    

1B PRW Home button Yes Saved Running Stop Running Alive Active Awake 

2B PRW Back button Yes Not saved Running No Activity Running Alive Active Awake 

3B PRW Swipe-out Yes Killed Running No Activity Running Alive Active Awake 

4B PRW Force-stop No Killed Killed No Activity No service Killed Released Sleep 

           

5B SDW Home button Yes Saved Running Stop Running Alive Active Awake 

6B SDW Back button Yes Not saved Running No Activity Running Alive Active Awake 

7B SDW Swipe-out Yes Killed Running No Activity Running Alive Active Awake 

8B SDW Force-stop No Killed Killed No Activity No service Killed Released Sleep 

           

9B SBW Home button Yes Saved Running Stop Running Alive Active Awake 

10B SBW Back button Yes Not saved Running No Activity Running Alive Active Awake 

11B SBW Swipe-out Yes Killed Running No Activity Running Alive Active Awake 

12B SBW Force-stop No Killed Killed No Activity No service Killed Released Sleep 

           

13B FLW Home button Yes Saved Running Stop Running Alive Active Awake 

14B FLW Back button Yes Not saved Running No Activity Running Alive Active Awake 

15B FLW Swipe-out Yes Killed Running No Activity Running Alive Active Awake 

16B FLW Force-stop No Killed Killed No Activity No service Killed Released Sleep 

           

17B No WLK Home button No Saved Running Stop pause Alive No WLK Sleep 

18B No WLK Back button No Not saved Running No Activity pause Alive No WLK Sleep 

19B No WLK Swipe-out No Killed Running No Activity pause Alive No WLK Sleep 

20B No WLK Force-stop No Killed Killed No Activity No service Killed No WLK Sleep 

 

Figure 5.48: Summary of results from all test cases related to ”Service”
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App’s 
Components 

User Actions 

 Home button Back button Swipe-out Force-stop 

No Wakelock Wakelock No Wakelock Wakelock No Wakelock Wakelock No Wakelock Wakelock  
 

Activity State Stopped Stopped Stopped Stopped Destroyed Destroyed Destroyed Destroyed  

Behaviour 

Activity  
never runs in  
background 

Activity  
never runs in  
background 

Activity  
never runs in  
background 

Activity  
never runs in  
background 

Activity  
never  
re-start 

Activity  
never  
re-start 

Activity  
never  
re-start 

Activity 
never  
re-start 

Test 
Case# 

AHW1 AHW2 ABW1 ABW2 ASW1 ASW2 AFW1 AFW2 

Result 

No ebug ebug 
 
If Wakelock is 
not released.  
 

No ebug ebug 
 
If Wakelock is 

not released. 

No e5ug No ebug No ebug No ebug 

Service State Paused 
 

Continue 
running  

Paused 
 

Continue 
running  

Re-start then  
paused 

Re-start then  
continue 
running 

Destroyed Destroyed 

 
Behaviour 

Service 
resume 
whenever 
device is 
re-awake 

Service 
continue 
running 

Service 
resume 
whenever 
device is 
re-awake  

Service 
continue 
running 

Service is 
allowed to  
re-start and 
then resume 
whenever 
device is 
re-awake 
 

Service is 
allowed to  
re-start and 
then continue 
running 

Service is  

not allowed 

to re-start 

Service is 

not allowed 

to re-start 

Test 
Case# 

SHW1 SHW2 SBW1 SBW2 SSW1 SSW2 SFW1 SFW2 

 
Result 

ebug 
 
If Service is 

not stopped  

 

ebug 
 
If Service is 

not stopped 

and Wakelock 

is not released 

ebug 
 
If Service is 

not stopped  

 

ebug 
 
If Service is 

not stopped 

and Wakelock 

is not released 

ebug 
 
If Service is 

not stopped  

 

ebug 
 
If Service is 

not stopped 

and Wakelock 

is not released 

No ebug No ebug 

 

A=Activity, S=Service,H=Home,B=Back,S=Swipe-out,F=Force-stop,W1=Wakelock ON,W2=Wakelock OFF 

Test Case # :  Activity/Service, Home/Back/Swipe/Force, Wakelock ON/OFF 

Figure 5.49: Summary of results from all test cases.
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5.3 Real Application Test (Aripuca GPS Tracker)

In order to verify our assumption about bounded service-related problems, we have selected
an app called Aripuca GPS Tracker of version 1.3.4. It is a free and open source GPS
tracking app for Android. This app provides very useful features, for example, displaying,
recording, exporting/importing tracks/waypoints, tracking segments (by distance, by time,
by custom intervals, etc.).

Experiment

The purpose of this experiment is to check the power consumption behaviour of the
AUT especially once the app is not visible. In order to check any deviation from ideal
behaviour, we have tested two versions of the same app. In the Figure 5.51, the dotted
line curve represents the power consumption of the buggy app and the solid-line curve
represents that of correct app. In the beginning of the test, the smartphone is in the
switched off state. We start the phone by pressing the power button. After successful boot
up, the

smartphone Home screen is completely visible. We do not touch the smartphones
screen, and it remains in the same state for a while. At this stage, the device is in the
idle state. Due to the aggressive sleeping policy implemented by the Android platform,
the device goes into the sleeping mode. At this moment, we start to measure the power
consumption of the device which corresponds to P1. Here, the device power consumption is
100 times less than the consumption in the On state; In order to run the test case, we press
the power button of the smartphone to wake it up at time T1. The power consumption
shots up from P1 to P2. Now, the display is visible, and other important components such
as the CPU and radio are also in full wake up state. At this stage, no app is running on the
smartphone. We measured the power consumption P2 during time interval (T1-T2), which
corresponds to the app pre-execution state. At time T2, we start the AUT by clicking on
the app icon. The power consumption of the device shots up from P2 to P3. The Aripuca
GPS Tracker is loaded and it starts running with full functionality. Now, the app is in
the execution state. We test different features of the application. At time T3 we press the
button Waypoints on main screen to access Waypoints screen. This screen shows recorded
tracks. We measure the power consumption P3 during the time interval (T2-T3), which
corresponds to the power consumption of the app during execution. At time T3, the app
is stopped by pressing the Home button from the Waypoints screen, as shown in Figure
5.51.

Starting from T3, the power consumption of the buggy app completely differs from that
of the correct one. In the case of the correct app, the power consumption has dropped
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(a) Aripuca GPS Tracker Home (b) Waypoints screen

Figure 5.50: Aripuca GPS tracker

from P3 to P2. Once the foreground screen is moved to the background, the AUT should
be stopped. In contrast, in the case of the buggy app, the power consumption did not
drop to P2 level and stayed on the P3 level. After the T3, the app is considered to be
in the post-execution state. We measure the power consumption during the time interval
(T3-T4) and call it the post-execution power consumption of the app. After stopping, we
do not touch the device until its screen goes off automatically at time T4. After time T4,
the power consumption of the correct app, it drops from P2 to P1, whereas in the case of
the buggy app, it drops from P3 to P2.
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Figure 5.51: Power trace comparison of buggy and not buggy versions of Aripuca GPS
Tracker

Observations

As shown in Figure 5.51, the graph shows that the power consumption of the correct
app settles down to the pre-execution power state level after stopping the app, whereas in
case of a buggy the app, it does not. The buggy AUT do not allow the device to go into
the sleep mode, even though the display is off.

Validation In order to verify our observation and to find out the root cause of the
problem, we run our application tail energy bug detector. After connecting smartphone
with USB cable to developers PC, we press device check button to verify connectivity. To
get pre-execution system state during the time interval (T1-T2), we press Pre-state button
from our tool as shown in Figure 5.53. Later to get post-execution system state during
time interval (T4-T5), we press Post-state button. To find out the difference between pre
and post state files, we press Analyze button. The output of buggy and correct apps are
shown in Figure 5.53 and Figure 5.54 respectively. For simplicity, detail button palette
is not visible. To show it press show detail buttons and to hide again press hide details
button. To check what is still active even after closing the app, we press any details button
such as wakelocks, services etc.

The output shows a service named Service.AppService is still running. Second a listener
is also active. After pressing the home button listener should must be released otherwise
it can continuously keeping location services active. In correct app, no listener is active.
Though Service.AppService is active but not consuming battery power.
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Time User actions Device 
state 

Comments on power 
changes 

App state 

0-T1 User do not touch the 
smartphone screen 
for a while. 
 

suspend Power consumption remains at 
P1 

 

T1-T2 Wake up the 
smartphone by 
pressing power 
button 
 

idle At time T1 power consumption  
shots up from P1 to P2 

Pre-
execution 

T2-T3 Click on app to run it On At time T2 power consumption  
shots up from P2 to P3 
 

 
Execution 

T3-T4 Stop the AUT  
by pressing Home 
button 
 

idle correct 
app 

At time T3, power 
consumption drops 
from P3 to P2, 
 

Post-
execution 

On buggy 
app  
 

At time T3, power 
consumption 
remains at P3  
 

T4-T5 User do not touch the 
smartphone screen 
for a while. 

suspend  correct 
app 
 

At time T4, power 
consumption drops 
from P2 to P1, 
 

 

idle buggy 
app 
 

At time T4, power 
consumption drops  
from P3 to P2. 
 

 
 

Figure 5.52: Summary of the main states of the AUT during test case execution
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Figure 5.53: Result from application tail energy bug tool (Aripuca GPS tracker
“buggy app”).

Figure 5.54: Result from application tail energy bug tool (Aripuca GPS tracker
“correct app”).
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Experiment outcome and discussion

We conducted an experiment to show the presence of the app tail energy bug when
services are not handled properly. First, using monsoon power meter we discovered a
reasonable difference in power consumption before and after closing the app which shows
an indication of tail energy bug. To validate it, we used our tool application tail energy
bug detector. The tool compares pre and post system states and showed any possible
difference. For Aripuca GPS tracker app, our tool displayed a list of services and listeners
causing continuous battery drain.
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5.4 Real Application Test (FM Radio)

In order to verify our assumption that mismatch between user requirements and developer
understanding leads to app-tail-energy bug in smartphone. User are cautious about phone
battery that is why they want to open only one app at a time. Users try different ways to
stop the app like pressing Home button and swiping the app out from stack etc. In this
experiment, we are exploring the most suitable and efficient procedure to close an app. We
have selected Radio FM. It is an app to play radio on mobile phones online. It is a live,
Internet based radio service. Radio FM allows you to listen and enjoy variety of programs
like songs, music, talks, news, comedy, shows, and concerts.

Experiment

The purpose of this experiment is to check the power consumption behaviour of the
AUT especially once the app is not visible or closed. In order to check any deviation
from ideal behaviour, we have run two test cases of the same app. In the Figure 5.56, the
dotted line curve represents the power consumption of the first test case which shows buggy
behaviour and the solid-line curve represents second test case that of correct behaviour.
In the beginning of the test, the smartphone is in the switched off state. We start the
phone by pressing the power button. After successful boot up, the smartphone Home
screen is completely visible. In this stage, the device is in the idle state. Due to the
aggressive sleeping policy implemented by the Android platform, the device goes into the
sleeping mode. At this moment, we start to measure the power consumption of the device
which corresponds to P1. Here, the device power consumption is 100 times less than the
consumption in the On state. In order to run the test case, we press the power button of
the smartphone to wake it up at time T1. The power consumption shots up from P1 to
P3. Now, the display is visible, and other important components such as the CPU and
radio are also in full wake up state. At this stage, no app is running on the smartphone.
We measured the power consumption P3 during time interval (T1-T2), which corresponds
to the app pre-execution state. At time T2, we start the AUT by clicking on the app
icon. The power consumption of the device shots up from P3 to P4. The FM Radio app
is loaded and it starts running with full functionality. Now, the app is in the execution
state. We test different features of the application. At Time T3, choose and click on any
radio station to play it. At T4 continue running radio. We measure power consumption
P5 because we continue playing radio and do not stop it even after time T4. At time
T5, in the first test case, the app is stopped by pressing the Home button from the RFM
stations (search stations or genre) screen, as shown in Figure 5.56, the current screen goes
into background. User can optionally swipe out the radio activity from recent running
applications list. In the second case, app is stopped by pressing force stop from settings.
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(a) FM Radio Main (b) FM Radio Genre (c) Force Stop

Figure 5.55: FM Radio App

Once the foreground screen is moved to the background, the AUT should be stopped
including started service as well. Starting from T5, the power consumption of the app in
the absence of background started service is completely differs from that of the presence
of started service. In the absence of started service, the app power consumption has
dropped from P5 to P3. In contrast, in the presence of the started service, the app power
consumption did not drop to P3 level but stay above P3 level. After the T5, the app is
considered to be in the post-execution state. We measure the power consumption during
the time interval (T5-T6) and call it the post-execution power consumption of the app.
After stopping, we do not touch the device until its screen goes off automatically. At time
T6, in first test case, the power consumption of the app with a started service, drops from
P3 to P2 and stays at P2 continuously, but during second case, the power consumption
of the app without a started service, drops from P3 to P1 and device goes into suspend
(sleep) mode.

Steps S1-S5, S6a-S7 correspond to the test represented by solid line (correct behaviour)
Steps S1-S5, S6b-S7 correspond to the test represented by dotted line (buggy behaviour)

Observations

As shown in Figure 5.56, the graph shows that power consumption does not settle
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Figure 5.56: Power trace comparison of buggy and not buggy versions of FMRadio App

down to the pre-execution power state level after stopping the AUT when Home buttons
is pressed or swiping the AUT out from stack. We observed the radio is still playing which
means app is not yet closed completely and that is why device does not go into the suspend
mode. The device goes into suspend mode after a while when app is completely close by
using OS provided force stop button from settings. We assume that this button is properly
implemented by Android OS

Experiment outcome and discussion

We conducted an experiment to show the presence of the app-tail-ebug when user
applied only home button to close the app which is not sufficient due to running background
media service.
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Time  User actions Device 
state 

Comments on power 
changes 

App 
state 

0-T1 S1 User do not touch 
the smartphone 
screen for a while. 

suspend Power consumption 
remains at P1 

 

T1-T2 S2 Wake up the 
smartphone by 
pressing power 
button 

idle At time T1 power 
consumption  
shots up from P1 to P3 

Pre-
execution 

T2-T3 S3 Click on app to run it On At time T2 power 
consumption  
shots up from P3 to P4 

Execution 
 

T3-T4 S4 Select  
Radio station and 
play radio 

On At time T3, power 
consumption shots up 
from P4 to P5, 

T4-T5 S5 Continue playing 
radio 

On At time T4, power 
consumption stays at P5 
level. 

T5-T6 S6a Press 
Force stop from 
settings 
to stop playing radio 
 

On correct 
app 
behaviour  

At time T5, 
power 
consumption 
drops 
from P5 to 
P3, 

Post-
execution 

S6b Press 
Only Home or 
optionally  
swipe AUT out from 
stack 

On buggy 
app 
behaviour  

At time T5, 
power 
consumption 
drops from 
P5 but stays 
above P3 
level, 

T6-T7 S7 User do not touch 
the smartphone 
screen for a while. 

Suspend correct 
app 
behaviour  

At time T6, 
power 
consumption 
drops 
from P3 to P1 

 

idle buggy 
app 
behaviour 

At time T6, 
power 
consumption 
drops 
from P3 to P2 

 

Figure 5.57: Summary of the main states of the AUT during test case execution
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5.5 Real Application Test (AndriodExit Demo App)

In order to verify our assumption that coding error behind exit button leads to app-tail-
energy bug in smartphone. User are cautious about phone battery thats why they want to
open only one app at time. In order to close an app completely, often user wants a single
click operation. In this experiment, we are comparing the effect of coding errors behind
exit button. We have designed a demo app with a play music button and two exit buttons.
First exit button provides clean exit while the other one buggy exit behaviour.

Experiment

The purpose of this experiment is to check the power consumption behaviour of the
AUT especially once the app is not visible or closed. In order to check any deviation
from ideal behaviour, we have run two test cases of the same app. In the Figure 9.2, the
dotted line curve represents the power consumption of the first test case which shows buggy
behaviour and the solid-line curve represents second test case that of correct behaviour.
In the beginning of the test, the smartphone is in the switched off state. We start the
phone by pressing the power button. After successful boot up, the smartphone Home
screen is completely visible. In this stage, the device is in the idle state. Due to the
aggressive sleeping policy implemented by the Android platform, the device goes into the
sleeping mode. At this moment, we start to measure the power consumption of the device
which corresponds to P1. Here, the device power consumption is 100 times less than the
consumption in the On state. In order to run the test case, we press the power button of
the smartphone to wake it up at time T1. The power consumption shots up from P1 to
P3. Now, the display is visible, and other important components such as the CPU and
radio are also in full wake up state. At this stage, no app is running on the smartphone.
We measured the power consumption P3 during time interval (T1-T2), which corresponds
to the app pre-execution state. At time T2, we start the AUT by clicking on the app
icon. The power consumption of the device shots up from P3 to P4. The AndriodExit
demo app is loaded and it starts running with full functionality. Now, the app is in the
execution state. We test different features of the application. At Time T3, choose and click
on play button to play the music file. At T4 continue running music. We measure power
consumption P5 because we continue playing music and do not stop it even after time T4.
At time T5, in the first test case, the app is stopped by pressing the Exitb button from the
AndriodService screen, as shown in Figure 9.1, the current screen goes into background.
In the second case, app is stopped by pressing Exitc button. Once the foreground screen
is moved to the background, the AUT should be stopped including started service as well.
Starting from T5, the power consumption of the app in the absence of background started
service is completely differs from that of the presence of started service. In the absence of
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(a) Exit1 (b) Exit2 (c) Exit3

Figure 5.58: AndroidExit demo app

started service, the app power consumption has dropped from P5 to P3. In contrast, in
the presence of the started service, the app power consumption did not drop to P3 level
but stay above P3 level. After the T5, the app is considered to be in the post-execution
state. We measure the power consumption during the time interval (T5-T6) and call it the
post-execution power consumption of the app. After stopping, we do not touch the device
until its screen goes off automatically. At time T6, in first test case, the power consumption
of the app with a started service, drops from P3 to P2 and stays at P2 continuously, but
during second case, the power consumption of the app without a started service, drops
from P3 to P1 and device goes into suspend (sleep) mode.

Steps S1-S5, S6a-S7 correspond to the test represented by solid line (correct behaviour)
Steps S1-S5, S6b-S7 correspond to the test represented by dotted line (buggy behaviour)

Observations

As shown in Figure 5.59, the graph shows that power consumption does not settle down
to the pre-execution power state level after stopping the AUT when buggy exit (Exitb)
button is pressed. We observed the music is still playing which means app is not yet closed
completely and thats why device does not go into the suspend mode. The device goes
into suspend mode after a while when app is completely close by using clean exit (Exitc)
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Figure 5.59: Power trace comparison of AndroidExit demo app

button from settings.

Experiment outcome and discussion

We conducted an experiment to show the presence of the app-tail-ebug when due to
coding errors behind exit button, app is not completely closed.

5.6 Summary

In summary, it does not really matter whether you use back or home: it only changes what
the app shows you next time you run it. It does not have an effect on battery use. Neither
of them corresponds to ”exiting” a program on your PC.
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Time  User actions Device 
state 

Comments on power 
changes 

App state 

0-T1 S1 User do not touch 
the smartphone 
screen for a while. 

suspend Power consumption 
remains at P1 

 

T1-T2 S2 Wake up the 
smartphone by 
pressing power 
button 

idle At time T1 power 
consumption  
shots up from P1 to P3 

Pre-
execution 

T2-T3 S3 Click on app to run it On At time T2 power 
consumption  
shots up from P3 to P4 

Execution 
 

T3-T4 S4 Select  
Radio station and 
play radio 

On At time T3, power 
consumption shots up 
from P4 to P5, 

T4-T5 S5 Continue playing 
music 

On At time T4, power 
consumption stays at P5 
level. 

T5-T6 S6a Press 
Exitc button 
 

On correct 
app 
behaviour  

At time T5, 
power 
consumption 
drops 
from P5 to 
P3, 

Post-
execution 

S6b Press 
Exitb button 

On buggy 
app 
behaviour  

At time T5, 
power 
consumption 
drops from 
P5 but stays 
above P3 
level, 

T6-T7 S7 User do not touch 
the smartphone 
screen for a while. 

Suspend correct 
app 
behaviour  

At time T6, 
power 
consumption 
drops 
from P3 to P1 

 

idle buggy 
app 
behaviour 

At time T6, 
power 
consumption 
drops 
from P3 to P2 

 
 

Figure 5.60: Summary of the main states of the AUT during test case execution
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We focused on energy bugs in smartphones. To provide a clear understanding of energy
bugs, we developed an operational definition that could be easily translated into a pro-
cedure to detect the presence of energy bugs. Furthermore, we integrated the proposed
definition in a diagnostic procedure to facilitate the application of the proposed definition.
We investigated the existence of energy bugs when apps or platforms were updated. We
validated the proposed definition with measurements and real-world energy bug examples.
Results showed that there were energy bugs across different versions of the same app as
well as across different versions of the same platform.

A class of abnormal battery drain in smartphones comes from the misuse of OS power
management facility, services, and specific user actions. After application deployment,
the only way to handle these energy bugs is to perform a runtime check and correction
against faulty applications. In this work, we took Android based system as our primary
target, and focused on the WakeLock facility, which is the cornerstone of Android Power
Management framework. The main contribution of this work is a runtime WakeLock bug
detection framework. This framework is implemented in a tool, ”app-tail-ebug detector”
designed by us. This tool helps user detect energy bugs due to remaining background app’s
components when app is not running. Moreover, this user-level tool does not need hacking
of the OS kernel and recompilation, as some related works did.

For in-depth system monitoring, we utilized ADB (Android debug bridge) commands
provided by Google and Android framework, which is a suite of various manager services,
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such as activity manager, power manager etc. ADB provides valuable info about “Activity”
and “Service”, while Android framework keeps track of wakelocks. The PowerManagerSer-
vice class of Android framework offers internal function to dump current wakelock data
which cannot be called by the user. However, we can obtain the same wakelock data via
ADB shell command: ”adb shell dumpsys power”. To check the behaviour of Android app
components such as “Activities” and “Services” with or without wakelock, we developed
a demo app with two screens. The first screen has buttons to acquire or release four dif-
ferent types of wakelocks. The second screen provides buttons to start and stop a service
with built-in four types of wakelocks. Our results showed that activities cannot run in the
background in any case either with or without a wakelock. On the other hand, Services
can run in the background. It stops when the device goes to sleep and resume whenever
the device re-awakes. Sometime, based on user requirements, It is not useful to resume
the task which starts before the device went to sleep. It is a waste and for this reason we
call it application tail energy bug. In the presence of wakelock when the device is forced
to stay awake, “Service” is allowed to run continuously in the background till it finishes
intended task. The user is not aware of what is going on inside smartphone, but high bat-
tery temperature increases his or her suspicion. For example, persistent partial wakelock
taken by radio app can deplete the smartphone battery within few hours. Using Monsoon
power meter, we measured the power consumption before and after closing the application
under test (AUT). A significant difference in power consumption might be an indication
of an ebug. To verify the presence of ebug and find out the root cause of the problem,
we run our tool, which is based on ADB commands. It provides real-time status of AUT
components and wakelocks.

6.2 Future Work

The proposed framework utilized the black-box approach for testing energy bugs. In future,
we are interested in integrating the proposed definition in a white-box testing framework.
In addition, we intend to implement details of detecting resource leaks, wakelock bug,
vacuous background services bugs, immortality bugs, and suboptimal resource binding
bugs, tail energy bugs, expensive background services bugs, and loop energy bugs modules
in the proposed framework. We are interested to fully implement the framework and test it
using different types of apps. We deployed our tool on a smartphone as an app. However,
we intend to deploy our tool as an app on all versions of Android OS including Android-4.4
KitKat and above.
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Appendix

In the following section, I present memory dump of power manager, which is keeping
track of wakelocks data. A list of total number of wakelocks and their details can be found
between

Wake Locks: size=0 and Suspended Blockers: size=4 (page=107)

Android Debug Bridge (ADB) commands

How to check active wakelocks

adb shell dumpsys power

Power Manager State:

mDirty=0x0

mWakefulness=Asleep

mInteractive=false

mIsPowered=false

mPlugType=0

mBatteryLevel=13

mBatteryLevelWhenDreamStarted=0

mDockState=0

mStayOn=false

mProximityPositive=false

mBootCompleted=true

mSystemReady=true

mHalAutoSuspendModeEnabled=true

mHalInteractiveModeEnabled=false

mWakeLockSummary=0x0

mUserActivitySummary=0x0

mRequestWaitForNegativeProximity=false

mSandmanScheduled=false

mSandmanSummoned=false

mLowPowerModeEnabled=false

mBatteryLevelLow=true

mLastWakeTime=30779 (757509 ms ago)

mLastSleepTime=772273 (16015 ms ago)

mLastUserActivityTime=757266 (31022 ms ago)

mLastUserActivityTimeNoChangeLights=37581 (750707 ms ago)

mLastInteractivePowerHintTime=775374 (12914 ms ago)

mDisplayReady=true
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mHoldingWakeLockSuspendBlocker=false

mHoldingDisplaySuspendBlocker=false

Settings and Configuration:

mDecoupleHalAutoSuspendModeFromDisplayConfig=false

mDecoupleHalInteractiveModeFromDisplayConfig=false

mWakeUpWhenPluggedOrUnpluggedConfig=true

mSuspendWhenScreenOffDueToProximityConfig=false

mDreamsSupportedConfig=true

mDreamsEnabledByDefaultConfig=true

mDreamsActivatedOnSleepByDefaultConfig=false

mDreamsActivatedOnDockByDefaultConfig=true

mDreamsEnabledOnBatteryConfig=false

mDreamsBatteryLevelMinimumWhenPoweredConfig=-1

mDreamsBatteryLevelMinimumWhenNotPoweredConfig=15

mDreamsBatteryLevelDrainCutoffConfig=5

mDreamsEnabledSetting=false

mDreamsActivateOnSleepSetting=false

mDreamsActivateOnDockSetting=true

mDozeAfterScreenOffConfig=false

mLowPowerModeSetting=false

mAutoLowPowerModeConfigured=false

mAutoLowPowerModeSnoozing=false

mMinimumScreenOffTimeoutConfig=3000

mMaximumScreenDimDurationConfig=7000

mMaximumScreenDimRatioConfig=0.20000005

mScreenOffTimeoutSetting=15000

mSleepTimeoutSetting=-1

mMaximumScreenOffTimeoutFromDeviceAdmin=2147483647 (enforced=false)

mStayOnWhilePluggedInSetting=0

mScreenBrightnessSetting=255

mScreenAutoBrightnessAdjustmentSetting=0.0

mScreenBrightnessModeSetting=0

mScreenBrightnessOverrideFromWindowManager=-1

mUserActivityTimeoutOverrideFromWindowManager=5000

mTemporaryScreenBrightnessSettingOverride=-1

mTemporaryScreenAutoBrightnessAdjustmentSettingOverride=NaN

mDozeScreenStateOverrideFromDreamManager=0

mDozeScreenBrightnessOverrideFromDreamManager=-1
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mScreenBrightnessSettingMinimum=5

mScreenBrightnessSettingMaximum=255

mScreenBrightnessSettingDefault=162

mLastUserActivitySummary: 0

SecProductFeature_FRAMEWORK.

SEC_PRODUCT_FEATURE_FRAMEWORK_ENABLE_SMART_STAY: true

SecProductFeature_CAMERA.

SEC_PRODUCT_FEATURE_CAMERA_DELAY_TIME_FOR_SMART_STAY: 275

Sleep timeout: -1 ms

Screen off timeout: 5000 ms

Screen dim duration: 0 ms

Screen dim duration override: 0 ms

Smart Stay:

USE_SMART_STAY: true

USE_PRE_SMART_STAY: false

mSmartStayEnabledSetting: true

SmartStayDelay: 2750

mNextTimeoutForSmartStay: 766516

mPendingMessageSmartStay: false

mPendingMessagePreSmartStay: false

mFaceDetected: false

mIsBadCurrentConsumptionDevice: true

InputDeviceLightState:

mTouchKeyOffTimeoutSetting: 1500

mIsSipVisible: false

mTouchKeyForceDisable: false

mPowerSaveModeSettingBroadcasted: false

mLimitedPerformanceBroadcasted: false

mTouchKeyForceDisableOverrideFromSystemPowerSaveMode: false

mEmergencyMode: false

Clear Cover:

mIsCoverClosed: false

mIsReadyCoverFromPWM: false

mFeatureCoverSysfs: true

mIsCocktailBarCover: false

ALPM Mode:

mIsForceUnblankDisplay: false

mIsAlpmMode: false
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Wake Locks: size=0

Suspend Blockers: size=4

PowerManagerService.WakeLocks: ref count=0

PowerManagerService.Display: ref count=0

PowerManagerService.Broadcasts: ref count=0

PowerManagerService.WirelessChargerDetector: ref count=0

Display Power: state=OFF

Wireless Charger Detector State:

mGravitySensor={Sensor name="Gravity Sensor", vendor="Samsung Electronics",

version=3, type=9, maxRange=19.6133, resolution=5.9604645E-8, power=6.0,

minDelay=10000}

mPoweredWirelessly=false

mAtRest=false

mRestX=0.0, mRestY=0.0, mRestZ=0.0

mDetectionInProgress=false

mDetectionStartTime=0 (never)

mMustUpdateRestPosition=false

mTotalSamples=0

mMovingSamples=0

mFirstSampleX=0.0, mFirstSampleY=0.0, mFirstSampleZ=0.0

mLastSampleX=0.0, mLastSampleY=0.0, mLastSampleZ=0.0
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