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Abstract

Highly replicated cloud applications are deployed only when they are deemed to be func-

tional. That is, they generally perform their task and their failure rate is relatively low.

However, even though failure is rare, it does occur and is very difficult to diagnose. We

devise a tool for failure diagnosis which learns the normal behaviour of an application in

terms of the statistical properties of variables used throughout its execution, and then

monitors it for deviation from these statistical properties. Our study reveals that many

variables have unique statistical characteristics that amount to an invariant of the pro-

gram. Therefore, any significant deviation from these characteristics reflects an abnormal

behaviour of the application which may be caused by a program error.

It is difficult to get the invariant from the application’s static code analysis alone. For

example, the name of a person usually does not include a semicolon; however, an intruder

may try to do a SQL injection (which will include a semicolon) through the ‘name’ field

while entering his information and be successful if there is no checking for this case. This

scenario can only be captured at runtime and may not be tested by the application de-

veloper. The character range of the ‘name’ variable is one of its statistical properties; by

learning this range from the execution of the application it is possible to detect the above

described abnormal input. Hence, monitoring the statistics of values taken by the different

variables of an application is an effective way to detect anomalies that can help to diagnose

the failure of the application.

We build a tool that collects frequent snapshots of the application’s heap and build a

statistical model solely from the extensional knowledge of the application. The extensional

knowledge is only obtainable from runtime data of the application without having any

description or explanation of the application’s execution flow. The model characterizes

the application’s normal behaviour. Collecting snapshots in form of memory dumps and
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determine the application’s behaviour model from them without code instrumentation

make our tool applicable in cases where instrumentation is computationally expensive.

Our approach allows a behaviour model to be automatically and efficiently built using

the monitoring data alone. We evaluate the utility of our approach by applying it on

an e-commerce application and online bidding system, and then derive different statisti-

cal properties of variables from their runtime-exhibited values. Our experimental result

demonstrates 96% accuracy in the generated statistical model with a maximum 1% per-

formance overhead. This accuracy is measured at the basis of generating less false positive

alerts when the application is running without any anomaly. The high accuracy and low

performance overhead indicates that our tool can successfully determine the application’s

normal behaviour without affecting the performance of the application and can be used to

monitor it in production time. Moreover, our tool also correctly detected two anomalous

condition while monitoring the application with a small amount of injected fault. In ad-

dition to anomaly detection, our tool logs all the variables of the application that violates

the learned model. The log file can help to diagnose any failure caused by the variables

and gives our tool a source-code granularity in fault localization.
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Chapter 1

Introduction

The web serves as an essential part of the day-to-day operation of numerous organizations.

The majority of businesses, ranging from start-ups to large corporations, depend heavily on

the web to attract clients, connect with suppliers, and generate revenue. This dependency

requires the constant availability of web services, as the cost of failed online transactions

can be substantial, i.e. a single minute of downtime could cost a merchandiser thousands

of dollars in lost sales. For example, in 2011, Amazon.com experienced a series of outages

during the American Thanksgiving holiday weekend, which cost the vendor an estimated

$25,000 per minute of downtime [89]. According to a survey conducted from October to

November 2014 [39],

• the annual cost of unplanned application downtime averages $1.25 billion to $2.5

billion for Fortune 1000 companies

• the average cost per hour for an infrastructure failure is $1 million

• the average hourly cost of critical application failure is $500,000 to $1 million.

The real costs of downtime are, however, inestimable, and include lost or disappointed

clients, damage to a company’s reputation, negative impact on the stock price, and reduced
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employee efficiency.

Intensive studies have investigated the root causes of application downtime [17, 36, 63, 89]

and various pre-emptive techniques have been adapted to mitigate its impact. For example,

rollback recovery techniques reinstate the failing application to a state prior to the failure

[16, 55, 58], software rejuvenation cleans up the internal states of the system proactively in

order to prevent failure [46, 50], and replication techniques create and coordinate replicas of

the applications to ensure their constant availability [2, 15, 61]. Of these techniques, repli-

cation is the one most widely used. Replicating a web application across multiple servers

can make their services constantly available. Large companies like Facebook, Google, and

Amazon build data centers in order to support massive Internet activity by their users.

Each data center houses tens to hundreds of servers, and different web applications are

replicated and deployed in those servers. Although applications are deployed only when

they are fully functional and their failure rate is relatively low, failure still occurs.

In a data center where thousands of instances of an application are running on thousands

of servers and one of those instances fails to operate correctly, it is difficult to diagnose

the cause of the inconsistency when all the others are running flawlessly. An application

fails to serve its purpose correctly when it deviates from its expected normal behaviour.

Its behaviour can be interrupted by several factors, such as, software bugs, configuration

errors,resource limitations, hardware failures, incorrect access controls, or misconfigured

platform parameters [35]. Diagnosing these problems requires the analysis of a problem’s

characteristics and associated error messages, followed by the investigation of different

aspects of the application that could be causing the problem. Although application de-

velopers can leverage signal handlers, exceptions, and other platform supports to handle

system errors, it is nearly impossible to predict all such failures and create suitable error

intimations [49]. As a result, diagnosing these problems requires a great deal of domain

expertise, so it is difficult to automate this process.
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The automation of problem-diagnosing is generally obtained through behaviour-matching.

The behaviour of a program is defined as an activity that has observable effects on its

execution [9]. Incorrectly designed or implemented behaviour causes errors in software

applications. Previous approaches towards automated fault diagnosis take the description

of a program’s expected behaviour as input [9, 88, 95], which requires the application de-

veloper’s manual effort to define expectations. This limitation gives rise to the need for the

automated construction of a program’s behaviour model. Behaviour models targeting per-

formance diagnosis are built from performance costs, which incorporate resource consump-

tion [8], the execution time of system calls [4], and network throughput [29]. The models

are dedicated to performance-problem-related diagnosis and are not applicable to the non-

performance-related issues. Request flows are observed in instances of component-based

systems [13, 17] to determine more general types of faults. However, their implementation

still needs prior knowledge of the system’s implementation.

Deriving the normal sequence of an application’s state is another effective way to au-

tomate the process of generating program behaviour model. The state of an application

is the contents of the memory locations, where the application stores data in variables

at any given point in the application’s execution [64]. Automated determination of an

application’s state from the application’s exposed data at its runtime has been explored

by numerous projects [35, 36, 63, 92, 104, 105, 106]. Ding et al. described a mechanism

of building an application’s signature by combining application’s states, collected from

tracing several system calls. This technique is able to identify the cause of errors in an

application by comparing the application’s normal signature to the signature at the time

fault took place. Although this approach is helpful in determining causes of certain fail-

ures in an application, it cannot report abnormal behaviour unless a request for failure

diagnosis is issued. Other approaches used state information to detect only configuration

error which requires a knowledge base about the symptoms of previously reported prob-

lems [63, 104, 105, 106]. Cheng proposed a runtime state model [19] where the states of an
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application are determined at runtime using breakpoints in different execution paths of the

application. From these breakpoints changes in the values of variables are recorded, and

a state model is built based on the changes. Although this model can correctly identify

some abnormal behaviours and their causes, setting breakpoints at execution paths for

identifying changes in each variable affects the performance of the application. Hence, this

method is infeasible for monitoring an application at runtime.

The limitations in the existing methods discussed above prompt the need for a tool that

can determine an application’s normal behaviour without having prior knowledge of its

expected behaviour and without affecting the performance of the application. The tool also

needs to report any abnormal behaviour automatically in order to diagnose failures caused

by factors that could either have been previously-discovered or are not yet discovered.

We propose a mechanism to learn the behaviour of an application in terms of the sta-

tistical modeling of its variables, which can determine the application’s normal behaviour

without the requirement of having any prior knowledge of the expected behaviour. Every

variable can take different values throughout the execution of the application; exhibiting

a unique statistical characteristics and deviation from this characteristic can impact the

behaviour of the application. For instance, if the no. of items variable in a shopping cart

takes a value between 0 and 99 throughout the execution of an e-commerce application

and then suddenly takes a value of -10, the application will behave abnormally, as no

e-commerce application expects a negative number of items. Consequently, the statistics

of values taken by different variables used across an application at runtime are the rep-

resentation of the application’s behaviour model. We can take another example here. To

determine the behaviour model of a four-way traffic signal system, the time of the day can

play an important role. Suppose traffic from north to south is busier during the day while

the opposite direction is busier in the evening. If one day, the traffic appears busier from

north to south in the evening, this indicates abnormal behaviour of that traffic system.
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A possible reason for this occurrence might be an accident on that direction of the road.

If the day-to-day statistics of the traffic condition with respect to the time of the day is

recorded, a deviation from the normal behaviour can be discovered automatically. So, in

this case, the statistical property of the traffic condition at a particular time of the day is

a building block of its behaviour model.

Similarly, the statistics of values of variables taken by the application has a significant

impact on determining the normal behaviour of that application. In his PhD thesis, Vi-

jayaraghavan has provided a taxonomy of e-commerce risks and failures [103] in which he

has pointed out failures in an application due to lack of testing of different ranges of values

of variables used across the application. For example, if an online shopping store does not

have the ability to check for a negative number of items at checkout, then it can lead to

an abnormal status and create inconvenience for sellers. It is possible that the software

testing team has not checked this issue, thinking that the application developer must have

ensured it, so concentrates instead on more critical issues. Assumptions such as these can

have critical impacts. In 2014, two weeks before Christmas, some of Amazons third-party

retailers in the UK saw their wares, from PS4 games to beds and mattresses, reduced to

just 1 penny each due to an hour-long pricing software glitch [22]. Eagle-eyed shoppers

had a field day, but scores of small businesses were left having to absorb heavy losses. This

happened due to a third-party application from the Derry-based firm RepricerExpress that

helps retailers increase their sales on Amazon by automatically repricing listings faster than

their competitors. But rather than earning RepricerExpress subscribers a profit, the soft-

ware glitch repriced a wide range of items into the virtually free range. This unfortunate

incident could have been averted if the abnormal pattern in the pricing of items had been

monitored, Under monitoring, it is possible to alert sellers quickly and reduce their losses

and inconvenience. In November 2013, a pricing error was exhibited by Reebok’s online

store. Trainers worth e100 were marked as ‘free’, with customers being charged for deliv-

ery only. Reebok did not honour the orders, but instead refunded the delivery charge and
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gave customers 20 percent off their next order. These examples of abnormal behaviour of

applications give us incentive to determine the normal characteristics of variables in terms

of the statistics that build the behaviour model of the application and determine abnormal

behaviour automatically.

We implement a tool to extract the behaviour model of an application from its exposed

data at runtime. Our tool collects snapshots of the application at random intervals. A

snapshot is a collective memory of the application at a certain period of time, and the

memory comprises different variables defined by the application’s developers[73]. Our

tool calculates different statistical properties of the variables present in each snapshot.

A baseline model is generated when a significant amount of snapshots is collected and

their statistics are calculated. This baseline model is then validated with other snapshots

collected after the learning phase. The validation results in a validated model that contains

the variables, which can contribute in modeling the behaviour of the application. Next,

the tool starts a continuous monitoring process which keeps comparing the most recently

collected snapshots with the baseline model on the basis of the validated model. Should

any variable show a variance in its statistics in a significant amount of snapshots, an alert

is generated for the user and the variables are recorded with their value in a log file. If the

application fails to serve its purpose, the log file can be examined and the cause of failure

can be localized in source-code, using the variables recoreded in the log file.

Our method of behaviour model formation does not rely on source-code examinations

and does not need any prior knowledge of the structure of the application. We propose

our solution to be implemented in a replicated environment, such as data centers where

hundreds of servers can run instances of the same application. If even one of these instances

exhibits anomalous behaviour, we aim to detect when and why that anomaly occured. The

solution is evaluated by applying it to an e-commerce application (online grocery store)

[74] and online bidding application (RUBiS[24]) in replicated computing nodes. Both of
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these applications are Entity Java Bean applications implemented in Java Enterprise Edi-

tion(Java EE) platform. All the data is collected from the memory dump (heap dump

of Java Virtual Machine) of these applications during runtime, our tool can successfully

extract the behaviour model for both applications at a maximum cost of 1% of the appli-

cation’s performance overhead.

Furthermore, our tool can calculate a statistical model of variables used across an appli-

cation, so that any deviation from this model is an indication of abnormal behaviour. It is

however, worth noting here that an anomaly or the abnormal behaviour of an application

may or may not result in failure. To elaborate, suppose a person is sweating profusely. It

is possible that he or she is suffering from high blood pressure and needs to see a doctor.

However, it is also possible that this person is simply exercising. While sweating is not

something that occurs under normal conditions, it does occur in both cases. Similarly, a

deviation in an application’s behaviour may not lead to failure but it can narrow down the

search space required for problem diagnosis. Our study aims to find the behaviour model

of an application from the statistics of its variables which can then help to localize the

reason for the failure at a source-code granularity.

1.1 Contribution

Our research makes the following contributions:

1. We devise a tool that can detect an application’s normal behaviour without any code

instrumentation, annotation, or prior specification of its expected behaviour.

2. The tool calculates a statistical model of all variables used across the target applica-

tion that results an invariant of the application.
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3. Our solution builds the behaviour model solely based on the extensional knowledge

of the application which is not achievable from the static code analysis alone.

4. Our tool is evaluated on two applications and the experimental result demonstrates

96% accuracy in modelling the application’s behaviour with a maximum 1% perfor-

mance overhead.

5. Our analysis on data collected at runtime is aimed to diagnose general faults of the

application rather than being limited to a particular type of fault.

6. Our tool can help to localize the root cause of failure and map it to any problem at

the source-code granularity.

Monitoring the behaviour of a software application has been addressed by numerous

researche. Most of the existing approaches used the pre-specified expected-behaviour to

verify whether the application is running correctly. The verification process also needs to

instrument the source-code of the application in order to get data from its all possible

execution path. We create a tool that can collect data from the application without

accessing the source-code or instrumenting it. Moreover, our tool does not require any

knowledge of the expected behaviour of the application. Our tool generates the behaviour

model of any application by only analyzing its runtime exposed data.

Our tool learns the normal behaviour of the application in terms of the statistical prop-

erties of all variables accessed throughout its execution, and then monitors it for any

deviation from these statistical properties. Our study discloses that many variables have

unique statistical characteristics that amount to an invariant of the program. As a re-

sult, any significant deviation from the invariant reflects an abnormal behaviour of the

application that may be caused by a program error. The statistical property varies by the

data-type of the variable. For example, for a variable with numeric data-type, the property
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will be minimum, maximum, average, and distribution of its values taken at runtime. On

the other hand, a string variable will have minimum, maximum, average, and distribution

of string length along with the character range as its property. The statistical model of all

variables results to the behaviour model of the application.

Our solution does not assume any intensional knowledge of the application. To elabo-

rate, our tool does not require to know possible inputs to different variables used in the

application. It builds the behaviour model solely based on the extensional knowledge of

the application that is not achievable from its source-code analysis alone. A static code

analysis tests the application with a specific range of input which are decided by the

application-test-team, whereas our tool is not restricted to pre-defined sample inputs. It

analyzes data that is entered by the clients when the application is online. All data are

collected from the captured snapshots(heap dump) of the application. We implement a

heap reader to read the snapshots of Java applications. We devise a statistical analysis

engine which learns the behaviour model of the application in learning phase, validates

the model in the validation phase, and then continuously monitors the application for any

violation of the learned behaviour model.

We evaluate our tool by applying it on an e-commerce application and an online bidding

system. It derives different statistical properties of variables from the application’s runtime-

exhibited values. Our experimental result demonstrates 96% accuracy in the generated

statistical model. The high level of accuracy indicates the success of our tool in deriving the

application’s normal behaviour. Moreover, our tool also correctly identified two anomalous

condition while monitoring the application with a small amount of injected fault. In

case of a small replicated system with 10 computing nodes, our monitoring tool may

cause maximum 1% performance overhead of the application where this percentage will be

relatively low in a large system.
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Our work targets to help diagnosing general failures of an application. As we discussed

above, we do not assume any knowledge of the behaviour of the application, similarly we

do not assume any prior record of failure of the application. Any violation of the statistical

model of variables reflects an anomaly of the application which may or may not lead to a

failure. Moreover, if the application is crashed, we can still take snapshot of the application

server and compare it to the snapshot taken before the crash happened. This comparison

may help to diagnose the root cause of the failure. Our tool is designed to detect anomalous

conditions which may be caused by a known or completely new program error. Therefore,

our tool is not limited to be used only for previously known type of failure.

Our tool logs the variables which violate the learned model in the monitoring phase.

The log file contains the variable name and the specific test result which it fails while

monitoring the application. When an anomalous condition is caused by a program error,

the detail information from the log file can help to localize the cause of the error. The

variables are created and accessed inside the application’s source-code. As a result, the

log file generated by our tool can map the program error caused by the variables, to any

problem at source-code granularity.

1.2 Thesis Organization

The remainder of this thesis is structured as follows.

• Chapter 2 contains the introduction of basic terminology and the background for

the work along with a review of existing approaches toward behaviour modeling and

anomaly detection of software applications . A summary of the limitations of existing

approaches concludes the chapter.

• Chapter 3 is a brief overview of the architecture of the solution and explanation of

the algorithm implemented for the formation of statistical model.
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• Chapter 4 describes the implementation and execution flow of out tool. The exe-

cution flow includes Snapshot collection, Filtering Techniques, The learning process,

the validation process and the monitoring process.

• Chapter 5 describes the experimental setup and evaluation process of the tool using

an e-commerce Application named AffableBean [74] and an online Bidding system

called RUBiS [24].

• Chapter 6 summarizes the contribution and limitation of this project and discusses

possible future work.
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Chapter 2

Background and Related Work

This chapter defines the terminology frequently used in this thesis and also explains existing

approaches regarding the behaviour modeling of software systems. The types of data

available in a software system along with their collection mechanisms are described with

examples. As well, existing approaches related to this work and their limitations are

summarized at the end of the chapter.

2.1 Basic Terminology

The terminology used throughout this thesis follows that of Avizienis et al. [5] and the

thesis of Munwar [73]. For completeness, relevant definitions are reproduced and some of

them are redefined in accordance with this project. These definitions are described below.

• A system is an entity that interacts with other entities (that is, other systems such

as software, humans, the physical environment, etc.). These other entities define

the environment of the given system. A system is composed of a set of components

put together in order to interact, where each component is another system. This
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recursive definition stops when further decomposition is either not possible or not of

interest.

• An application is a type of software that allows users to perform specific tasks.

• The behaviour of an application is defined as an activity that has observable effects

in its execution [9].

• The snapshot of an application is a collective memory of the application at a cer-

tain period of time. The memory is comprised of different variables defined by the

application’s developers.

• The service delivered by an application is its behaviour as perceived by its user(s).

• The function of an application is what it is intended to do and is described by the

functional specification in terms of functionality and performance.

• A service failure is an event that occurs either when the delivered service does not

comply with the functional specification, or when the specification do not adequately

describe the application’s function.

• An error is the status of the system that may lead to its subsequent service failure.

• A fault is the cause of an error.

• A model is a description of some characteristics of the application that can be used

to study or predict those characteristics.

• In the context of this thesis, a behaviour model of an application is the statistical

characteristics of the variables used across the application.

• An anomaly is a departure or deviation from the normal or expected characteristics

as determined by a model. It is important to note that anomalies do not always reflect

13



errors or failures in a system. Additionally they may also occur due to normal, albeit

uncommon, events such as, a sudden change in user behaviour.

• The health of an application is the degree to which its observed behaviour and per-

formance conform to the expected behaviour and performance.

• Monitoring is the act of observing a system for the purpose of ensuring that certain

properties are maintained. In the context of this work, the purpose of monitoring is

to observe the statistical properties of variables used across an application.

• Diagnosis is the process of identifying causal factors underlying an observed anomaly.

Here the terms ’diagnosis’, ’problem determination’, ’fault localization’, and ’root

cause analysis’ are used interchangeably.

• The target application is the application to be monitored. The terms ’monitored

entity’ and ’target application’ are used interchangeably.

• A monitoring system is the entity that monitors the target system. It is often part of

a larger managing system, whose role extends to other system management functions.

2.2 Data Collection

The monitoring of a large-scale software system has to deal with the collection of different

types of data from the system. These data can be either pulled from the running system or

pushed as a notification to the monitoring entity, and then processed for further analysis.

It is important to know the types of data to be collected before building the monitoring

system. For completeness, a basic introduction to the different types of data and how they

are collected from a target system is described in this section.
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2.2.1 Type of data

The data collected by the monitoring system can be defined as a variable which measures

an attribute or a parameter of the monitored entity. An attribute either represents an

instantaneous property of the monitored entity (e.g., free memory size ) or an aggregation

of the underlying measure over a specified time interval (for example, CPU utilization)

[73]. There are two broad types of variables: qualitative and quantitative. Each of these

is broken down into two sub-types:

• Qualitative data can be ordinal or nominal

• Quantitative or numeric data can be discrete (often, integer) or continuous

Qualitative data always have a limited number of alternative values, as a result, such

variables are also described as discrete. All qualitative data are discrete, while some quan-

titative data are discrete and some are continuous. For statistical analysis, a qualitative

data can be converted into a discrete numeric data by simply counting the different values

that appear.

Qualitative data

Qualitative data arise when the observations fall into separate distinct categories [99].

Examples are:

• Colour of eyes: blue, green, brown etc.

• Exam result: pass or fail

• Socio-economic status: low, middle, or high.

Such data are inherently discrete, in that there are a finite number of possible categories

into which each observation may fall. This type of data is classified as:

15



• Nominal or Categorical data where there is no natural order between the categories

(e.g., eye colour)

• Ordinal data where an ordering exists between the categories(e.g., exam results,

socio-economic status, etc.).

Quantitative Data

Quantitative or numerical data arise when the observations are counts or measurements

[99]. The data are said to be discrete if the measurements are integers (e.g., number of

people in a household, temperature) and continuous if the measurements can take on any

value, usually within some range (e.g., weight, height).

A monitoring system may collect either numeric or categorical data or both of them.

For instance, a system’s log files contain categorical data. These log files are written when

some events are triggered in the system, for example in an e-commerce application when

a customer buy a product, it will be an event and get logged as a transaction in the

application. However, performance metrics such as CPU utilization and memory usage

are numeric data. The type of data to be collected, depends on the level of monitoring

required by the system.

2.2.2 Data collection mechanism

Variables are used to record different types of data from the system. These variables may be

read and updated either by the monitored entity or the monitoring entity. The monitoring

logic or instrumentation that updates these variables is often part of the system structure

[73]. In cases where such instrumentation does not exist, it is possible to instrument

components of a software system statically or dynamically.
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Monitoring interfaces define the mechanism to collect data. For instance, JMX [85]

specifies transport protocols, encodings, and mechanisms to collect data from the moni-

tored entity. In general, two mechanisms exist to collect data. A monitoring entity can

use polling (pull mechanism) to read the variables when needed, such that, a monitoring

entity can send a request(pull mechanism) to the monitored entity to read the size of free

memory available at certain periods of time. Alternatively, the monitored entity can send

notifications (push mechanism) containing the data to the monitoring entity. So for ex-

ample, log files can be written or updated by the monitored system and pushed to the

monitoring entity.

Various types of data collection mechanisms have been implemented over the decades.

Now-a-days most software systems built for general use are component-based distributed

information systems and an application is a component of those systems. As our work

aims to develop system monitoring at the application level, it is useful to describe how an

application relates to other components in a system. A basic introduction to the interaction

between the application and other system components is given in the next section. The

thesis of Munwar [73] has a very good introduction to these topics; therefore the relevant

materials are reproduced here.

2.3 Component-Based Distributed Software Systems

Distributed Software systems for network-based services are typically built using a component-

based platform. Examples of standard component-based distributed systems include Java

Platform Enterprise Edition (Java EE) [76], .Net [29] etc. Components of the same system

are distributed across different computing nodes in these platforms. These initiate the use

of middleware that takes care of the remote communication, data exchange, object naming,

registration, discovery, object life-cycle management, security, etc. These component-based
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software systems are typically organized in multiple tiers. For example, to support an on-

line store a basic system includes a database server for persisting data, an application server

providing the execution environment for the application, and a web server comprising an

HTTP server and other software to render results of service invocations. Each tier may

run in different machines having different Operating System.

2.3.1 The Java Platform, Enterprise Edition

Java EE is one of the most popular platforms to implement distributed, component-based

software systems. Java EE specifies application program interfaces (APIs) and interac-

Figure 2.1: Overview of a Java EE-based architecture [73]

tions for basic services needed for distributed and enterprise computing. It also defines

interfaces, roles, and deployment details of components in the framework. A simple Java

EE-based system is illustrated in Figure 2.1. A Java EE server is a runtime environment

for executing Java EE applications. It consists of component containers, which take care

of the components lifecycle, thread management, concurrency control, resource pooling,

replication, access control, etc. It also implements various common services and libraries.
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A Java EE server allows the execution of multiple applications or many instances of the

same application concurrently. Many such servers exist on the market, for example,IBM

WebSphere, BEA WebLogic, Oracle Application Server, JBoss, Apache Tomcat, Glassfish

and Jonas.

A Java EE application is a combination of many specialized components. A typical Java

EE application can be accessed via its web interface by making HTTP requests, by using

native Java calls, or by employing other means such as webservice calls. On the server side,

HTTP requests for dynamic content are handled by web components such as Java Servlets

or Java Server Pages (JSP), which are managed by a web container. The application logic

concerned with the processing of business data is implemented in Enterprise Java Beans

(EJBs). These EJBs can be accessed using a remote method invocation (RMI) protocol.

The Java EE specification classifies EJBs into three different types. A session bean is a

component that acts temporarily on behalf of a client. This component can be stateful (for

example, keeping track of a customers shopping cart) or it can be stateless (for example,

only computing a formula given some input). An entity bean is an EJB that provides

a mapping to persistent data, typically a row in a database table. A message-driven

bean allows an application to provide asynchronous functionality. For example, such a

component can accept a customer order, adding it to a queue of pending orders; when

resources become available, the orders are removed from the queue for processing. Web

components and enterprise beans execute in containers, which provide the linkage between

components and services and functionality implemented by the underlying runtime. Java

EE applications typically require connection to back-end data sources, which may include

database servers or legacy systems.

Serving user requests in a typical Java EE-based system entails processing by many

components of different types. A typical flow of execution may include the following: a

client requests a service through a web page; the request is assigned to a thread at the
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server, which executes a Servlet. The Servlet code retrieves a reference to a Session EJB

component and executes one of its methods; the Session EJB causes one or more Entity

EJBs to either be instantiated or fetched; the data mapped to the Entity EJBs is retrieved

by using a connection to the back-end database; once the data is fetched at the session

EJB, it is processed, and then returned to a JSP component; in the JSP, the results are

put in HTML format and sent to the client. While serving the request, the components

involved may utilize common services such as transactions or logging.

2.3.2 Monitoring Infrastructure

Figure 2.2: Monitoring infrastructure of a Java EE-based system [73]

Software systems expose much data to facilitate their monitoring and management.

Each component can be monitored via a multitude of performance metrics and events,

each detailing some aspect of its state, behaviour, or performance. Much of the available
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data can be accessed through predefined mechanisms such as logging, tracing, or polling

of management interfaces. Additional data can be collected on-demand at runtime by

instrumenting parts of the system. Monitoring a software system, therefore, entails dealing

with potentially large volumes of data. A glimpse of the amount of the data available can be

illustrated by considering the monitoring infrastructure of a basic Java EE-based system.

Figure 2.2 presents an overview of some important sources of information available from

various parts of such a system. Below, the main subsystems are described, the type of data

they provide, and how such data can be collected.

Generally a software system requires an operating system to function. When distributed,

multiple operating systems support the software system. Most commodity operating sys-

tems provide mechanisms and tools to monitor resource usage, user activity, process be-

haviour, etc. In Unix, for example, metrics are exposed through a virtual file system

mounted at /proc. Utilities such ps, vmstat, iostat, and netstat make access to the data

even more convenient. Similarly, the Windows Management Instrumentation (WMI) [30]

allows for the monitoring of many aspects of a system when using Windows. Besides these

conventional monitoring facilities, much more data can be collected via dynamic instru-

mentation [14, 71, 100] and dynamic insertion of interceptors between components via hot-

swapping [97]. Software systems commonly rely on runtime environments executing above

the operating system layer. These runtimes not only make it possible to develop portable

software but also implement features to improve robustness and performance. Examples

of these features include sandboxing, automatic memory management and exception han-

dling, runtime code optimization and replacement, etc. Such runtimes include the Java

Virtual Machine (JVM) [80] and Microsofts Common Language Runtime (CLR) [27]. A

Java EE-based system requires a JVM to execute. The JVM provides different interfaces

for monitoring. The JVM Tool Interface (JVMTI) [81] enables debugging as well as pro-

filing of Java applications. A JVM can also be monitored via a standardized management

interface, namely the Java Management Extensions (JMX) [85] interface. JMX allows data
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related to various aspects of the JVM, including the number and state of threads, memory

usage, classes instantiated, and garbage collection to be accessed easily. In addition, it is

possible to instrument Java bytecode dynamically at runtime [79]. Monitoring probes that

were not considered at design and implementation time can now be retrofitted when the

need arises. The availability of runtime bytecode instrumentation in the JVM allows Java

applications to take advantage of approaches like dynamic aspect-oriented programming

(see, for instance, [40]), whereby monitoring aspects can be added dynamically. This rep-

resents another potential source of monitoring data. Most Java EE-based systems require

a database management system (DBMS) to manage persistent data. These DBMS expose

a rich set of monitoring data to facilitate their tuning and maintenance (see, for example,

[26]). Examples of the available data include details on query execution, table activity,

application connections, I/O, threads, memory, storage, and locking.

Java EE applications are typically accessed via their web front-end. As such, HTTP

servers are the first subsystems to handle user requests. They usually serve static content

(for instance, images) directly, but redirect requests for dynamic content to an application

server. They may also provide authentication and encryption services. HTTP servers also

make state, performance, and error-related data available through log files or monitoring

interfaces. An HTTP server usually logs requests received, return codes, execution time,

etc. The application server lies at the centre of a Java EE-based system, as it provides

the middleware and the runtime environment to execute the application logic. Significant

events (for instance, exceptions) which occur during a servers execution are typically logged

or sent in the form of notifications to registered listeners.

Most Java EE servers are JMX-enabled [85], which allows a management entity to mon-

itor and manage them. Many subsystems of a Java EE-based system may be shipped with

embedded instrumentation that makes more detailed information available on request ba-

sis (for example, using the ARM API [56]). Another way to monitor an application built
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on Java EE is collecting the memory dump of a running java application. Parsing this

memory dump can provide relevant monitoring data of the application. Memory dumps

can be read using VisualVM [87], Jconsole [82], Memory Analyzer [38], Jhat [83]. Although

memory dump has been used only for detecting memory leak so far[10, 13, 34, 57, 72], it

can also be utilized to get overall information of application’s behaviour.

A Java EE server is itself organized into multiple subsystems, which include compo-

nent containers (for instance, web and EJB) and modules for transactions management,

database connection management, thread pool and object pool management, etc. Each

such subsystem exposes data related to the state, behaviour, and performance of the sub-

system. A Java EE application and its components can also make fine-grained monitoring

data available. Because of standardization, much monitoring data related to applications

is generic (that is, applies to all applications that conform to the Java EE specification).

Still, application-specific monitoring can be made available by instrumenting the applica-

tion. Data on web components, such as Servlets, may comprise the number of requests

being served over time or at any time instant, number of errors encountered, response time,

etc.

As illustrated above, even a basic Java EE-based system can produce a large amount

of monitoring data. A few hundred metrics may be available from the application server

and the DBMS for an application such as an online store. Production level Java EE-based

systems are generally larger and more complex, comprising clustered web and application

servers, replicated databases, load balancers, etc. Effectively monitoring such systems is

very challenging. The difficulty lies in using the data generated by these systems to good

effect; that is, for quickly detecting errors and failures and for localizing their causes.

Furthermore, collecting all this data would not only adversely affect performance, but

would create significant overhead for handling the collected data. An important aspect

of the challenge is to contain this overhead, while not sacrificing effectiveness of problem
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determination.

2.4 Literature Review

Consistent performance and dependability are the two major criteria for a software system

[73]. The performance of a system is a measure of how efficiently it can deliver correct

service and is evaluated through attributes such as resource utilization, throughput and

response time. Dependability is defined as the ability to provide services that can defensibly

be trusted within a certain time-period and is evaluated through the following attributes:

• Availability - readiness for correct service

• Reliability - continuity of correct service

• Safety - absence of catastrophic consequences on the user(s) and the environment

• Integrity - absence of improper system alteration

• Maintainability - ability for a process to undergo modifications and repairs

Confidentiality, which means, the absence of the unauthorized disclosure of information is

also used as an attribute of dependability around issues of security. Security is a composite

of confidentiality, integrity, and availability, and its guarantee is crucial for most computer

systems. This is a challenging and a massive research domain in itself, therefore outside

the scope of this thesis. However, it should be pointed out that monitoring a system’s

behaviour may allow detection of certain forms of security attacks such as denial of service

and hacking by unauthorized activity.
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Reliability and availability are quantifiable by direct measurements and are significant

for most long-running software systems. On the other hand, safety is most relevant in

the context of mission-critical systems. The behaviour and performance of safety-critical

systems are generally predefined by formal specifications, so meeting these specifications

is a must. However, Amazon Web Services(AWS) have used formal specification to verify

their real-world systems systems since 2011 [75]. They use PlusCal or TLA+ for writing

their specification of the system and then verify it using model checker. They claimed

that they found subtle bugs in system which were not possible by other means. So formal

specification turns to be an important design requirement for them. However, in our work,

we are focusing on application programs rather than system programs. Amazon is using

formal specification for distributed systems, they did not mention it for web applications.

Web applications might not have clear specifications and their update is more frequent

compare to distributes systems. As a result, writing formal specification for large systems

is worthwhile but putting manual effort for specifying a web application’s behaviour may

not be a good investment of time.

A software system should maintain a certain level of performance and dependability.

A monitoring system is built to monitor whether or not the target system is maintaining

these basic criteria. To perform correctly, software needs to be available and reliable

throughout the runtime. In large part, it can achieve reliability and availability if it can

always exhibit normal behaviour. As mentioned earlier, deviation from normal behaviour

can be a potential cause for system failure and it can also help to diagnose the root

cause of failure. The question that now arises is how to perceive the normal behaviour of a

software. An effective approach to determining a software’s normal behaviour is to compare

its runtime behaviour against its design-time specifications. However, specifications are not

always well-defined. An alternative approach is to detect the normal behaviour of a software

from its exposed data at runtime. Previous work based on failure diagnosis resulting from

the abnormal behaviour of a system has been done by extracting state information, event

25



log analysis, and metric correlation. Some of these approaches require statistical analysis,

while others use data mining. Most require prior knowledge of the internal structure of a

system but techniques do exist to view the system as a black-box.

2.4.1 State-Based Approach

State has been defined and explained by researchers based on the context of their work.

The construction of a finite-state machine was suggested by a number of researchers [8,

18, 21, 25, 68] for model checking, which is a technique for verifying the correctness of a

system. Numerous state-based techniques have been applied to construct the behaviour

model of a system; these can be used to check for predefined specifications or for fault

diagnosis.

Corbett et al. [25] developed a model extractor called Bandera, which can generate a

program model from java source code. This program model is intended to be an input to

existing verification tools for checking the correctness of a program. The Bandera can also

map the output of the verification tool back to the source-code if it finds any violation of the

specifications. It uses slicing technique to select relevant parameters that should be present

in the generated model. This is a static approach that requires user specifications along

with internal knowledge of the source-code. However, there is also dynamic approaches

in model extraction [68]. While the static approach is complete in that it describes all

possible executions of a system, it may still output some invalid behaviours as it cannot

see the runtime values of variables. In contrast, the dynamic approach describes behaviour

from runtime traces. This approach is not complete as it is nearly impossible to explore all

possible execution paths. In the dynamic method, the runtime information is collected by

code annotation or instrumentation which may affect the performance of the application.

A good comparative analysis on model extraction can be found in [68].
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Ernst et al. proposed a tool named Daikon [41], a dynamic system to detect likely

invariants of a program . The dynamic invariant detector runs a program, observes the

values that the program computes, and then reports properties that were true over the

observed executions. It keeps track of every write of every variable (both locals and fields)

which slows the program down. Daikon instruments the program in order to capture

values of different variables while executing the program. The generated invariants are very

insightful for forming the behavior model of the program but the required instrumentation

can be computationally expensive.

Whitaker et al. [106] used a Virtual Machine Monitor (VMM) to determine the deviation

point from the normal behaviour of a system. They recorded several disk updates of

the target application along with a time stamp in a storage called the Time Travel Disk

(TTD). The TTD was implemented in a parent Virtual Machine along with an analysis

engine. In case of failure they ran the target application as a child virtual machine and the

analysis engine issued software probes to find the deviation point from the normal state

to faulty state using a binary search algorithm. By utilizing the disk update and time

stamp information, their tool was able to find the point at which the failure occurred. It

is dedicated to find configuration errors in an application. Because this approach needs to

use software probes, which are issued based on failure type, it might not work in case of

occurrence of an unknown failure.

Strider [104] is a block-box approach developed by Redmond et al., that can detect

the abnormal behaviour of a system due to configuration error. When a failure occurs in

Strider, the configuration data are presented as a state-vector which is very large in size.

The vector’s size is reduced by state-diffing and state-tracing operations. Specifically, they

compare the bad state (state after failure) with the good state (state without failure) and

find the possible configuration parameters which caused the problem. These parameters are

checked against a computer genomic database, which has been formed through the knowl-
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edge of troubleshooting previous configuration errors by users. This approach is highly

useful for determining configuration errors but it cannot determine any other parameters

that may be responsible for abnormal behaviour of a system. Also, because it depends on

the troubleshooting database, it is possible that it might not detect a configuration error

that was not previously discovered.

Ding et al. [35] proposed a tool that can capture the runtime behaviour of an application

using system call traces of the application along with signals and environment variables.

They record a trace of the application whenever a system call is invoked and suspends the

application. These traces are collected from multiple runs of an application and in long

runs, they limit the size of the file containing the trace. All of these traces are integrated

in a signature bank, so if a failure occurs and a user asks for diagnosis, this signature is

compared with the traces collected at the failure time by a classifier and the root cause of

the failure is reported from there. However, if a user does not request a diagnosis, the tool

cannot detect any deviation from normal behaviour and will continue integrating the traces

to the Signature. Moreover, when the signature file becomes too large for the application

is limited in size, it is possible to lose important data which might then lead to failure.

2.4.2 Event Log Analysis

Event log processing is done in large organizations (such as those with data centers), where

log data generated on a daily basis are many gigabytes in size [47]. Using data mining to

discover event patterns from event logs has been the topic of numerous research studies

[47, 93, 94, 102]. A log file clustering algorithm was proposed by Risto [102], where a

vocabulary of words appears in log files. Using this vocabulary, anomalous log lines can

then be detected. However, for large distributed systems, the space complexity would be

massive. Furthermore, although log clustering can be automated, human interaction is

needed to understand the end result of the log profiler in order to determine any anomalies
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in the system.

Abnormal behaviour detection based on a default system log is discussed in a self-

similarity- based approach [59], where a self-similarity is derived from a cosine distance

between event distributions to find anomalies in a cloud application. The main idea is to

observe a systems trend under both normal and erroneous conditions. However, this model

cannot be guaranteed to work properly if the access to system log files is restricted. More-

over, errors that were not previously logged may not be recognized using this approach.

A hybrid framework of different statistical models to find anomalies in cloud applications

is discussed in [53]. Three techniques, including the Holt-Winters algorithm, the Adaptive

Statistical Filtering and the Ensemble Algorithm, are focused on here. Applying a hybrid

statistical model requires going through several parameter selection processes, which makes

it computationally very expensive and can cause lower performance problems. Moreover,

as soon as the system becomes more complex, parameter selection can be extremely time-

consuming. Therefore, the applicability of this type of framework in a real system might

not be affordable by small cloud business providers.

A framework of problem determination in Internet Services based on the statistical anal-

ysis of event logs is discussed by XuYuXu in [107]. This framework detects the anomalous

component by message-flow through different system components. In this approach, a

message-id is used in all log lines for a message going through different components. Sim-

ilarly, Chen et al. proposed Pinpoint [17], which can trace all client requests through the

different components of a system. In case of failure of any request, it performs data clus-

tering and statistical analysis to correlate the failure to the components most likely to have

caused them. In these approaches, the system needs to be instrumented to capture the

flow of information through all components and detect the faulty one in case of failure.
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Correlations between various data collected at multiple points of a distributed system

are analyzed to find faults in a complex system [107]. In this approach, log data is collected

from multiple points, such as the application server, database server, web server, etc., in

order to find the correlation following the Gaussian Mixture model. A fault is detected

as an outlier from the probability density boundary. The problem with this approach,

however, is that it needs to collect data from different points, which can be quite expensive

when the system is largely distributed. Additionally, the collection of data will consume

the network, and the diversity in log files from different type of servers is also an issue.

In the end, the correlation might not always be found, in which case the fault will not be

detected properly.

Research on detecting abnormal behaviour using Complex-Event Processing (CEP) is

being done on a large scale. CEP is defined as “a set of methods used for understanding

and controlling event-driven information systems” [66]. It correlates events by the way they

process massive data. A monitoring system can be designed on a single CEP engine [66,

101], on a distributed architecture [6, 7, 37, 65] of CEP engines, and also on,CEP engines

that split CEP queries into sub-queries and execute them on many nodes [1, 11, 33, 91, 98].

A single CEP engine may become a bottleneck if the amount of monitored data exceeds

the processing capacities of that engine. In distributed CEP, architectures suffer from the

potentially large number of messages exchanged between the engines. Furthermore, CEP

engines that are distributed based on rule-splitting can have operator placement problems,

which are difficult to solve.

A dynamic architecture for cloud performance monitoring and analysis via CPE(DCEP4CMA)

is defined in [69], where a hybrid of centralized and distributed CEP is used. This monitor-

ing system can switch between different CPE architectures based on the underlying cloud

environment. It is, in effect, monitoring the environment built on multiple layers, which

means it needs to collect data from all layers of the system. However, this can degrade the
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performance of a large distributed system.

All of these approaches require some event stream coming from the cloud application

as well as some predefined rules to decide whether that event is directing to an abnormal

status of the application. Additionally, the rules need to be defined by the domain experts,

which might not be possible for a newly deployed system. CEP-based monitoring requires

a different computation unit to handle complex events along with domain expertise to

decide rules for the analysis. Complex-Event Processing is potentially a good candidate

to monitor an application, but it is computationally expensive and can cause unwanted

performance degradation.

2.4.3 Performance Metric-Based Approach

Abnormal behaviour detection based on metrics correlation has been done by numerous

researchers. A model defined by Sharma et al. utilized invariant network formation among

monitoring metrics at the normal state of a system to identify its faulty state when those

invariant edges got broken [96]. However, building the invariant network includes having

prior knowledge of the systems behaviour.

Pollack et al. [92] implemented a tool called Genesis, which uses the correlated per-

formance of a system with different loads, along with work-flow and dependency between

components. They used a clustering technique to record the relation between load and per-

formance in order to evolve normality model. The clusters are empty at the initial time of

execution, but grow in size with the captured load and performance information gathered

from the monitoring database. When a new cluster is formed or an existing clusters up-

date significantly differs from the others, they report abnormal behaviour. After detecting

abnormal behaviour, Genesis generates a snapshot and checks the snapshot against Ser-

vice Level Objectives and Policy-based triggers. If it is diagnosed as a fault, the snapshot
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is saved in the state-history, which can later be used to diagnose other faults. Although

the researchers mention the clustering of load and performance, they do not discuss how

work-flow and dependency affect the cluster. This approach detects the normal behaviour

of a system based on pre-defined parameters, so it might not detect all possible deviation

from the normal behaviour of an application.

In the fingerpointing approach [90], the authors propose a mechanism to detect local

and global anomalies. Local anomalies are detected via specific threshold values that

depend only on that computing node, after which system-wide global anomalies detection is

performed. Differences in anomalies for each node are observed, but there is no comparison

between the metrics in different nodes. Global fingerpointing depends on the accuracy of

local anomaly detection. Here, they instrument each server node to collect different levels

of application data, focusing on time series data along with OS and protocol level metrics.

Hence, using this approach requires access to all levels of data, which is not always available,

and on doing statistical analysis on predefined performance metrics.

Forming clusters from inter-metric correlation is proposed in [54]. Clusters are formed

from similar metrics and the entropy of the cluster is calculated. The WilcoxonRankSum

test is then applied to identify shifts in the in-cluster entropy from a normal to a faulty state.

This approach used SigScore and BayesianScore algorithms, which require information on

component dependencies. The complete component dependency information might not

always be available, in which case this approach may not work.

2.5 Prior Work Limitations

An overview of prior efforts in the area of behaviour detection of software systems is

discussed in this chapter. In addition, various limitations in previous work are addressed.
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A summary of these limitations is given below.

1. Both static and dynamic model extraction approaches are dedicated to verifying the

correct behaviour of a software system and need to access the source code of the

software in order to do so. It is difficult to predict or generate all possible values

that a variable can take in the application’s runtime, so static approach works well

for validating the application’s design against its expected behaviour but it may not

do the same for anomaly detection for unusual values taken by the variable.

2. Existing dynamic approaches learns the runtime behaviour of an application by trac-

ing its execution path by instrumentation or annotation that can affect the perfor-

mance of the application in production. So devising a tool for learning the runtime

behaviour of the application without instrumentation is worthwhile.

3. Formal specifications(as practised by Amazon) is useful for generating abstract model

that can be verified by model checker and ensure the design is right but it cannot

ensure executable code correctly implements the verified design.

4. Some approaches detect the abnormal behaviour of a system based on some threshold

values of predefined parameters, so they limit their applicability to find anomalies

when they occur only for these parameters.

5. An approach that uses a virtual machine monitor and disk storage to find points of

failure applies software probes that need to know the type of failure. If an unknown

failure occurs, it cannot detect the deviation point properly.

6. An approach using system call traces to capture the runtime behaviour of an ap-

plication will not work for detecting deviations in normal behaviour in applications

unless a problem diagnosis request is issued.

7. Some approaches need to instrument different components to trace the flow of infor-

mation in order to identify the faulty component, but this requires having knowledge
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of the internal-structure of the system.

8. Most of the metric-based approaches rely on predefined performance metrics to detect

anomalies, making their applicability limited to detecting failures caused only by

those parameters.
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Chapter 3

Solution Overview

This chapter describes the architecture of our solution. The algorithms implemented to

determine the behaviour model of the target application are explained here. The behaviour

model is used to detect anomalous behaviour of the target application in a continuous

monitoring process.

3.1 Solution Architecture

Our solution is designed to model the behaviour of a target application. It comprises five

components. These components analyze the snapshots collected from the target application

and learn their statistical model in the learning phase and then validate the learnt model in

the validation phase. Afterwards, the validated model is utilized to test the continuously

collected snapshots and the test result is monitored for any anomalous behaviour by the

application. An overview of the solution architecture is presented here.
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Figure 3.1: Architecture of The Behaviour Monitor

As we can see in Figure 3.1, our solution these following components:

• The snapshot reader takes the snapshots of the target application as input and

convert them to an appropriate input format for the analyzer. In our work the

collected snapshots are in binary format, so we implement a mechanism to read the

binary file and convert it to a text file, which is the input format for our analyzer.

The snapshot reader can be designed according to the specific format of snapshot.

The implementation details of every component is discussed in the next chapter.

• The noise filter takes the output files generated by the snapshot reader as input and

filter out the noise from them. To illustrate, a snapshot of an application may contain

data which are not application-specific. For example, snapshot of an application

running in a web server contains information that are responsible for running the

server itself, which is common for all applications running on that server. The solution
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is designed to monitor the system in application-level, so data that is not directly

related to the application is considered to be noise. Filtering out this kind of noise

is essential for learning the behaviour model of the target application.

• The baseline generator executes the learning phase of our tool. It analyzes the

filtered snapshots and calculate the statistical measures (range of values, average,

character-range used to form a string, etc.) of each variable present in the snapshot.

Based upon learning a sufficient number of snapshots, it generates the baseline model.

The baseline model contains the statistical characteristics of each variables present in

the analyzed snapshots. Next, it is forwarded to the validation phase, which validates

the learned baseline by comparing it to collected snapshots afterwards.

• The validator validates the learned statistical model present in baseline. It starts

taking the filtered snapshots which are collected from the application after the base-

line has been formed and then generate windows containing statistical measures of a

user-defined number of snapshots. The size of the window is the number of snapshots

present in that window. Each window is identified by its starting snapshot sequence

number and ending snapshot sequence number. For example, a window of size 10

means it has the statistics of 10 consecutive snapshots and it can be identified by

snapshots from 41 to 50. These windows are used to validate the baseline through

different validation tests. The tests are run in the validation phase of our tool. A

regression analysis and different range-testings are run to compare each window to

the baseline. The variables that pass all the tests remain in the validated model and

rest of them are not considered in the monitoring phase. The validator outputs the

validated model of the target application. The validaion phase is necessary to reduce

the number of false positive anomaly detection.
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Figure 3.2: Sliding Window Generation

• The behaviour monitor monitors the application until any external interruption

turns it off. It starts taking the filtered snapshots which are collected after the

validation phase. It implements a sliding window of snapshots where each window is

formed with the statistics of a user-defined number of snapshots. The next collected

snapshot after the last window, and the window itself are compared by regression

analysis and range testing in the same way as the validation phase. Each time a

snapshot is collected, a new window is generated by sliding the previous window

by one snapshot. Each window has a fixed size and identified by the starting and

ending snapshot sequence number. Figure 3.2 illustrates this step for a window with

size 5. When a new snapshot(snapshot 106) is collected then the current window

(snapshot 101-105) and the new snapshot(snapshot 106) are compared in the current

iteration. In the next iteration, the window slides by one snapshot (snapshot 102-106)

and gets compared with the newly collected snapshot (snapshot 107). The behaviour

monitor run tests to compare the new snapshot with the current window based on the

parameters present in the validated model. If the new snapshot fits with the current

window then the monitor does not take any action, however if the new snapshot does

not fit then the monitor observes a sufficient number(x) of iterations and write the
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result in a log file. Upon finding x consecutive failure in the fit test, the behaviour

monitor detects it as an anomaly and generate alert for user. The checking for x

consecutive failures is done in order to reduce the number of false positive alerts.

We have introduced the building blocks of the architecture of our proposed solution in

the current section. The algorithms for the learning, validation, and monitoring phases will

be explained in the next sections. For a quick overview of the algorithms, we summarize

the execution flow of our tool as follows: first the snapshots are collected and filtered.

Afterwards, the filtered snapshots go through the learning, validation, and monitoring

phases based on their collection sequence. The outcome of the learning phase is the baseline,

that contains the statistical properties of the first N snapshots. Next, the validator runs

the validation test to compare the baseline and the validation windows and generates

a validated model. Next, the validated model is forwarded to the behaviour monitor.

Finally, the behaviour monitor runs monitoring tests to compare the sliding windows with

the recently collected snapshot based on the parameters present in the validated model.

3.2 Learning Phase

The baseline generator learns the first N snapshots and generate baseline. It learns the

different statistical property of each variable such as the range of value, the average value

taken by the variables present in snapshots in learning phase. The learning process depends

on the data type of the variable. The baseline generator keep aggregating the learned

snapshot with existing baseline until N number of snapshots are learnt.
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Input: Snapshots S1, S2, .., SN
Output: Baseline

1 begin
2 vasrSet := { };// initialize an empty dictionary for storing

statistics of values in each snapshot with the corresponding
variable as key

3 baseline := { };// initialize an empty dictionary for storing the
aggregate statistics of values in N snapshots with the
corresponding variable as key

4 f1 := ReadSnapshot(S1);// Read the first snapshot for baseline
initialization

5 fS1 := NoiseFilter(f1);// Apply Noise filtering on the first snapshot
6 for all var in fS1 do
7 baseline[var]=calculateStatistics(var,valueList(var));// calculate

statistics of values of each variable present in the first
snapshot and store it to the initial baseline

8 end
9 for i:=2 to N do

10 fi := ReadSnapshot(Si);// Read the collected snapshots
11 fSi := NoiseFilter(fi);// Apply Noise filtering on each snapshot
12 for all var in fSi do
13 varSet[var]:=calculateStatistics(var,valueList(var));// calculate

statistics of values of each variable present in the
current snapshot and store it in the dictionary

14 end
15 baseline:=calculateAggregateStatistics(varSet,baseline);
16 i:=i+1;
17 end
18 output baseline;
19 end

Algorithm 1: generateBaseline
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Input: var,A value list of the variable, V
Output: Statistics of V , V ′

1 begin
2 if var is a number then
3 minV:=calculate minimum(V );
4 maxV:=calculate maximum(V );
5 avgV:=calcualte average(V );
6 V ′.append(minV,maxV,avgV);
7 V ′.append(V );

// we need to keep all the values in order to do the regression
analysis

8 else if var is a String then
9 minV:=calculate minimum(stringlenght(V ));

10 maxV:=calculate maximum(stringlength(V ));
11 avgV:=calcualte average(stringlength(V ));
12 if all V is alpha then
13 type:=alpha;
14 else if all V are alphanumeric then
15 type:=alphanumeric;
16 else
17 type:=notalphanumeric;
18 V ′.append(minV,maxV,avgV,type);
19 V ′.append((V ));

// we need keep all the values in order to do the regression
analysis

20 else
21 V ′.append(V );
22 output V ′;
23 end

Algorithm 2: calculateStatistics
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Input: varSet,baseline
Output: Aggregated Statistics of varSet and baseline, baselineOut

1 begin
2 for all var in varSet and baseline do
3 baselineOut[var]:=[ ];// initialize with empty list
4 V :=value(varSet[var]);
5 Vbase:=value(baseline[var]);
6 if var is a number then
7 if V [0] < Vbase[0] then
8 baselineOut[var].append(V [0]);
9 else

10 baselineOut[var].append(Vbase[0]);
11 if V [1] > Vbase[1] then
12 baselineOut[var].append(V [1]);
13 else
14 baselineOut[var].append(Vbase[1]);
15 baselineOu[var].append(average(V [2],Vbase[2]));
16 baselineOut[var].append(V [3..length(V )]);
17 baselineOut[var].append(Vbase[3..length(Vbase)]);
18 else if var is a String then
19 if V [0] < Vbase[0] then
20 baselineOut[var].append(V [0]);
21 else
22 baselineOut[var].append(Vbase[0]);
23 if V [1] > Vbase[1] then
24 baselineOut[var].append(V [1]);
25 else
26 baselineOut[var].append(Vbase[1]);
27 baselineOu[var].append(average(V [2],Vbase[2]));
28 if V [3]==Vbase[3]==alpha then
29 baselineOu[var].append(alpha);
30 else if V [3]==Vbase[3]==alphanumeric then
31 baselineOu[var].append(alphanumeric);
32 else
33 baselineOu[var].append(notalphanumeric);
34 baselineOut[var].append(V [4..length(V )]);
35 baselineOut[var].append(Vbase[4..length(Vbase)]);
36 else
37 baselineOut.append(V );
38 baselineOut.append(Vbase);
39 end
40 output baselineOut;
41 end

Algorithm 3: calculateAggregateStatistics



3.2.1 Learning Single Snapshot

A variable can have multiple instances in a single snapshot(in our project, snapshot is

the memory dump of Java Virtual Machine), so we need to calculate the statistics of the

values taken by each variable. This calculation is done for each snapshot Algorithm 2. The

statistics of every variable inside a snapshot is calculated based on their data type. For

example, a variables having integer value or floating point value will be learnt by calculating

its average, minimum and maximum range. On the other hand a variable with string data

type will be learnt by the maximum, minimum and average of its length. Every string

variable has a unique character range. It can be alpha-numeric or alpha or other than

alpha-numeric. Therefore, the baseline generator learns the character range as a property

for the variable. In case of boolean variable the value is stored as it has either True or

False value. We also keep the values of each variable in order to test their distribution in

the validation phase.

3.2.2 Learning Aggregated Statistics

The baseline of N snapshots is calculated by the aggregated statistics of N snapshots

using Algorithm 3. Each time a snapshot is collected and the statistics of the snapshot is

calculated, it gets aggregated in the baseline by invoking the calculateAggregateStatistics()

method. After learning N snapshots, the baseline will have the aggregated statistics of

N snapshots and return it as baseline from the Algorithm 1. It is then validated in the

validation phase and then also used in the monitoring phase for comparison with incoming

snapshots.

43



3.3 Validation Phase

The validator validates the baseline with the snapshots collected after N snapshots. These

snapshots are filtered and pass through the validator and get grouped in separate windows.

The windows are of same size and identified by the start and end snapshot sequence

number. A regression analysis is run to find if these windows are a good fit with the learnt

baseline. There might be a certain number of variables which are hard to model(random

variables or monotonously increasing variables), so they will fail the validation and if

they are forwarded to the monitoring phase, they will generate false alerts which are not

expected. To elaborate, in the algorithm we are holding a hypothesis for a match between

the distribution of values learnt in baseline and the validation window. If the hypothesis

is rejected for any variable in the validator, we are not considering them in the monitoring

phase.

3.3.1 Validation Window Generation

Algorithm 4 is explaining how the validator generates the validation windows and invoke

the validation() method(Algorithm 6) on each window. Algorithm 5 is implemented for

generating window of size w from snapshot Si to Sj. The windows are generated in a

similar way the baseline is generated. When the window generator is invoked it initializes

the window with the statistics(Algorithm 2) of the first snapshot, in case of snapshots Si

to Sj, it is the snapshot Si. Then it keep aggregating(Algorithm 3) the snapshots with

the window till it reach the wth snapshot. If there are M snapshots to be tested in the

validation phase then M/w number of windows are generated. Each window is sent to the

validation() function along with the the baseline in order to validate the learning phase.

Algorithm 6 explains the steps to validate the window with the baseline. As we can see,

three types of testing are done in the validation phase. We are going to explain these test

briefly in the following subsections.
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Input: Snapshots SN+1, SN+2, .., SM ,Window Size w, baseline
Output: Validated Model

1 begin
2 vm := [ ];// initialize an empty list to store the validated

variables
3 result := {};// initialize an empty dictionary to store the result of

variables in each validation window with corresponding variable
as key

4 vmtemp := {};// initialize an empty dictionary to store the list of
results of variables from all validation window with
corresponding variable as key

5 ivm:=[ ]; // initialize an empty list to store the variables which do
not pass validation

6 for i:=N+1 to M do
7 window:=windowGenerator(Si, Si+1, .., Si+w−1);
8 result:=validation(window,baseline) for all var in result do
9 if var not exists in vmtemp then

10 vmtemp[var]:=[ ];
// initialize an empty list as value of the var key

11 vmtemp[var].append(result[var])
12 end
13 i := i + w;
14 end
15 for all var in vmtemp do
16 if (count(False) in vmtemp[var])>= v ∗M/w then
17 ivm.append(var);

// this will only insert those variables which failed the
validation more than half of the time windows are sent

18 else
19 vm.append(var);// this will only insert those variables which

did not fail the validation more than half of the time
windows are sent

20 end
21 output vm;
22 end

Algorithm 4: Validator
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Input: Snapshots Si, Si+1, .., Sj

Output: Window
1 begin
2 varSet := { };// initialize an empty dictionary for storing

statistics of values in each snapshot with the corresponding
variable as key

3 window := { };// initialize an empty dictionary for storing the
aggregate statistics of values in snapshots i to j with the
corresponding variable as key

4 fi := ReadSnapshot(Si);// Read the first snapshot for baseline
initialization

5 fSi := NoiseFilter(fi);// Apply Noise filtering on the first snapshot
6 for all var in fSi do
7 window[var]:=calculateStatistics(var,valueList(var));// calculate

statistics of values of each variable present in the first
snapshot and store it to the initial baseline

8 end
9 for k:=i+1 to j do

10 fk := ReadSnapshot(Sk);// Read the collected snapshots
11 fSk := NoiseFilter(fk);// Apply Noise filtering on each snapshot
12 for all var in fSk do
13 varSet[var]:=calculateStatistics(var,valueList(var));// calculate

statistics of values of each variable present in the
current snapshot and store it in the dictionary

14 end
15 window:=calculateAggregateStatistics(varSet,window);
16 k:=k+1;
17 end
18 output window;
19 end

Algorithm 5: windowGenerator
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Input: window,baseline
Output: Validation test result for each variable,result

1 begin
2 for all var in window and baseline do
3 result[var]:=True;// initialize with True means we start with an

assumption that our hypothesis is true
4 Vwin:=value(varSet[var]);
5 Vbase:=value(baseline[var]);
6 if var is a number then
7 V1:=value(Vwin[3..length(Vwin)]);
8 V2:=value(Vbase[3..length(Vbase)]);
9 if hypothesisTest(V1,V2)==rejected then

10 result[var]:=False;
11 if Vwin[0] < Vbase[0] or Vwin[1] > Vbase[1] then
12 result[var]:=False;
13 else if var is a String then
14 if Vwin[3]!=Vbase[3] then
15 result[var]:=False;
16 else
17 V1:=value(Vwin[4..length(Vwin)]);
18 V2:=value(Vbase[4..length(Vbase)]);
19 if hypothesisTest(V1,V2)==rejected then
20 result[var]:=False;
21 if Vwin[2] < Vbase[0] or Vwin[2] > Vbase[1] then
22 result[var]:=False;
23 else
24 if Vwin is not a subset of Vbase or Vbase is not a subset of Vwin then
25 result[var]:=False;
26 end
27 output result;
28 end

Algorithm 6: validation
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3.3.2 Hypothesis Test

The validation phase validates the baseline by doing regression analysis which is a null-

hypothesis test for testing the similarity in distribution of the variables present in both of

the baseline and the validation window. This test can be the Kolmogorov-Smirnov test,

the Student-T test or the Student-T Confidence interval test or the Chi-square Test. This

test is done to validate the fact that the variables in the baseline and in the windows

are following the same distribution. It ensures that our tool has learnt the statistical

property of the variable properly. To keep it a general algorithmic solution here, we are

not mentioning any particular test name. We will discuss the test in the next chapter. In

case of variables having integer or floating point data type the testing is done directly on

the value list and for the variables having string data type the test is done on their string

length.

3.3.3 Range of Value Test

The range of a variable is tested to find if the learning phase has modeled the range of

values taken by a variable correctly. This statistical property is important to know as we

are not having any intentional knowledge about the application; we are not doing code

analysis. What we are learning about the application is the extensional knowledge which

is learning the application’s behaviour from run time which requires learning all possible

statistical properties of a variable accessed in the application. For example, it is possible

that an e-commerce application does not have a checking for negative number of items in a

shopping cart. In that case if someone try to checkout with negative number of items and

the application crashed for that, the range checking is going to be helpful and the operator

can quickly identify the reason behind this crash. So beside hypothesis testing of variables

it is equally important to learn their range and validate it to make sure we have learnt it

properly.
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In case of string variables, the minimum and maximum string length is tested. We

can see the necessity of this testing from an example of name variable . Suppose the

application developer assume the length of name should be 35 character long, where the

database developer thought it should be 30 character long but the tester tests it only

for maximum 20 character. Now this is possible because in companies engineers work in

different group and they might not have the communication for deciding this fact. So when

the application is in production it might get a 60 character long name, which is unusual

and never tested by the tester. It is possible that someone has tried to write a long sting

of random characters instead of name and the application server has not check it and pass

it to database server and the database server is not accepting it and application get stuck

there. Now if they use our tool for monitoring, they can easily find that all the value of

name were following a range of string length and suddenly one name appeared to be longer

than the maximum length found so far from the run time behaviour of the application.

Therefore, range testing for string variables is an interesting statistical property.

In case of variables having categorical value, such as boolean value, we test whether the

variable is taking either True or False in the learning phase and suddenly takes an opposite

value during the validation phase. This testing is done because, the learning phase learns

the application for a significant amount of time and if a variable takes the same boolean

value in all snapshots in the learning phase and change its value in the validation phase, it

means this variable’s statistics is not contributing to model for the application. Hence it

is advantageous to keep out this variable from monitoring phase to reduce unwanted false

positive anomaly alert.

3.3.4 Character Range Test

The character-range testing is done for string variables to verify the type of character range

learnt, is the only possible character-range for that variable. If we take the same example
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as above, if someone tries to enter a SQL query in place of a name, for example, someone

typed “Robert; Drop Table Customer;” and it went through the application and deleted

the Customer table from database. It will take a long time for the operator to know where

things went wrong when no customer can see their data, but if there was a way to check

that the variable name is not getting the same character range(alpha or alpha-numeric

or not alpha-numeric) as it gets in normal execution of the application it becomes very

fast to localize what went wrong. So to detect this kind of unusual event, modeling the

character-range property of a string variable is essential.

The different types of validation testing is done with a purpose to model the application’s

run time behaviour correctly. A validated model, vm is generated by this testings after M

number of snapshots in M/w windows are compared with the baseline. This model includes

only those variables which do not reject the hypothesis. These variables can be modeled by

our approach correctly and can be used to monitor the application for anomalous behaviour.

In order to do the validation accurately, we filter out only those variables which fail the

hypothesis test in v number of the validation windows.The value of v ranges from 1 to

M/w. These variables are stored in a separate list, ivm for future analysis. The validator

authenticates the accuracy of the modeling and reduce the possibility of false positive alerts

in the anomaly detection process. The validated model is used by the behaviour monitor

in the monitoring phase.

3.4 Monitoring Phase

The monitoring phase is a continuous process which will keep monitoring the application

unless a system operator turn off the behaviour monitor. We have discussed how the

validated model of a target application is generated in section 3.3. This validated model is

used here to compare only those variables which are learnt correctly. The monitor generates
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sliding windows of snapshots where the window is slided by one snapshot each time. Once

the required number of snapshots get collected, the continuous process of monitoring is

started.

3.4.1 Sliding Window Generation

The behaviour monitor generates sliding windows by invoking the method windowGenera-

tor()(Algorithm 5) where the assignment of start and end pointer of the window makes it

slided. Snapshots Sstart to Send are sent as parameter to the windowGenerator() method,

where start is initialized with the snapshot’s sequence number L and the end is set to

L + sw − 1. Here, sw is the size of the sliding window and L > M where M is the last

snapshot’s sequence number in the validation phase. The monitor needs to wait for n

snapshots to be collected where n > end, which means there are enough number of snap-

shots present to form the first window. The continuous loop of monitoring starts and keep

monitoring the collected snapshots.

Algorithm 7 is explaining the procedure to call sliding window generator and call the

monitor() function (Algorithm 8) with the current snapshot and the current window. The

number of snapshots collected always need to be greater than the end pointer of the last

window. And this is also ensuring that the comparison function is not invoked until enough

number of snapshots have been collected. As it is a continuous monitoring process, we do

not have the end limit for the number of collected snapshots here. The sliding window is

generated by sliding the previous window by one snapshot as we have seen in Figure 3.2.

It is achieved here by incrementing start and end pointer of previous window at the end

of while loop. To elaborate, each time a window returns the current status of monitoring

and the start and end is incremented by 1 in order to slide it by 1 snapshot. A system

operator can decide from where they want to start monitoring or can choose the option to

start monitoring automatically right after the validation phase, according to the decision,
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Input: Snapshots SL, SL+1,..,Window Size sw,Validated Model,vm
Output: Alert if anomalous behaviour detected

1 begin
2 anomaly := [ ];// initialize an empty list to store the consecutive

three results to detect anomaly
3 result := {};// initialize an empty dictionary to store the result of

variables in each validation window with corresponding variable
as key

4 currentSnapshot := { };// initialize an empty dictionary for storing
statistics of values in each snapshot with the corresponding
variable as key

5 start:=L;
6 end:=L + sw − 1;
7 while new snapshot Sncollected and n > end do
8 fn := ReadSnapshot(Sn);// Read the collected snapshots
9 fSn := NoiseFilter(fn);// Apply Noise filtering on each snapshot

10 for all var in fSn do
11 if var is in vm then
12 currentSnapshot[var]:=calculateStatistics(var,valueList(var));
13 end
14 currentWindow:=windowGenerator(Sstart, Sstart+1, .., Send);
15 result:=monitor(currentWindow,currentSnapshot);
16 flag:=False;
17 for all var in result do
18 if result[var]==False then
19 flag:=True
20 end
21 anomaly.append(flag);
22 if length(anomaly)==x then
23 if anomaly[0]==anomaly[1]==...=anomaly[x]==True then
24 Generate Alert;
25 anomaly:=[ ];
26 else
27 anomaly:=[ ];
28 start:=start+1;
29 end:=end+1;
30 end
31 end

Algorithm 7: monitoringPhase
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Input: window,snapshot
Output: Monitoring test result for each variable,result

1 begin
2 generate an empty logF ile to log the status of monitoring for all var in window

and snapshot and baseline do
3 result[var]:=True;
4 Vwin:=value(varSet[var]);
5 Vsnap:=value(snapshot[var]);
6 Vbase:=value(baseline[var]);
7 if var is a number then
8 V1:=value(Vwin[3..length(Vwin)]);
9 V2:=value(Vsnap[3..length(Vsnap)]);

10 V3:=value(Vbase[3..length(Vbase)]);
11 if hypothesisTest(V1,V2)==rejected then
12 if hypothesisTest(V2,V3)==rejected then
13 result[var]:=False;
14 Write the variable name and value in logF ile and the type of

testing;
15 if Vwin[0] < Vsnap[0] or Vsnap[1] > Vwin[1] then
16 if Vbase[0] < Vsnap[0] or Vsnap[1] > Vbase[1] then
17 result[var]:=False;
18 Write the variable name and value in logF ile and the type of

testing;
19 else if var is a String then
20 if Vwin[3]!=Vsnap[3] then
21 if Vbase[3]!=Vsnap[3] then
22 result[var]:=False;
23 else
24 V1:=value(Vwin[4..length(Vwin)]);
25 V2:=value(Vsnap[4..length(Vsnap)]);
26 V3:=value(Vbase[4..length(Vbase)]);
27 if hypothesisTest(V1,V2)==rejected then
28 if hypothesisTest(V2,V3)==rejected then
29 result[var]:=False;
30 Write the variable name and value in logF ile and the type of

testing;
31 if Vwin[0] < Vsnap[0] or Vsnap[1] > Vwin[1] then
32 if Vbase[0] < Vsnap[0] or Vsnap[1] > Vbase[1] then
33 result[var]:=False;
34 Write the variable name and value in logF ile and the type of

testing;
35 else
36 if Vwin is not a subset of Vsnap or Vsnap is not a subset of Vwin then
37 if Vsnap is not a subset of Vbase or Vbase is not a subset of Vsnap then
38 result[var]:=False;
39 Write the variable name and value in logF ile and the type of

testing;
40 end
41 output result;
42 end

Algorithm 8: monitor
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she can assign the value to start.

3.4.2 Anomaly Detection

The behaviour monitor invokes the function monitor()(Algorithm 8) for comparing the

current snapshot with the current window for each variable if it exists in the validated model

vm. The different types of testing we mentioned in the last section are also performed in the

monitoring phase. While monitoring, if a variables fails the hypothesis test for the current

window and the current snapshot, we are also checking whether it is also failing the testing

between baseline and the current snapshot. It is possible that the application exhibits

behaviour similar to the its starting point, in that case the current window might not have

that similarity but baseline will definitely have it. Therefore, if a variable fails both the

current window and baseline then it ensures that variable is exhibiting a statistics which

was never seen before in the run time of the application. Similarly, the range checking, the

character range checking are done both for the window and the baseline with the current

snapshot.

The output of the monitor() method is tested for getting any variable failing the hypoth-

esis test or the range test. An anomaly list is created at the beginning of the monitoring

phase(Algorithm 7. A flag is used here in order to keep track of any single variable that has

returned a False from this method. If every variable passes the test then the flag remains

False, and entered in the anomaly list. The status of monitoring is always logged in a file,

logF ile to identify the cause immediately in case of an anomaly detected. If the flag gets

True for any variable, it means that some variable from the current snapshot has failed

the test. If the flag turns True for x consecutive windows, then the monitor generates an

alert for anomalous behaviour. To ensure, x consecutive failed results, we keep track of

the length of the anomaly list. Each time the length reach x, we check its value, and if we

find it is not True for all x entry, then we simply empty the list and keep monitoring.
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It becomes straight forward to identify the cause of anomaly by looking at the logFile

and the snapshot collected at the time when the comparison started failing the test, as the

same snapshot remains in x consecutive testing, we can safely make this argument that

anomalous behaviour of the application started at that time when the snapshot was taken.

The logFile contains the failing variables and their values. These variables exist in the

application code, as a result it gives our solution a code level granularity in the process of

anomaly detection and fault localization.

In this chapter, we have discussed algorithm for all the functions that are implemented

in our project. We did not explain the function ReadSnapshot and NoiseF ilter which

are used by the snapshot reader and the noise filter component respectively. These two

functions are implemented based on the programming language used by the monitor and

the application developer. We have given a general solution overview in this chapter, so

any function that is implementation specific we did not elaborate here. We are going to

discuss the implementation process briefly in the next chapter.
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Chapter 4

Implementation

This chapter describes the detail implementation of our tool. Our target is to build an

automated monitoring system which does not require any code instrumentation. It does

not require access to source code or any system log file. As it is mentioned in the solution

overview(Chapter 3) the input of the algorithm is the snapshots of the target application.

In our tool, snapshots are the memory dump of the running application. Java Virtual

Machine(JVM) comes up with a great utility called jmap(Java Memory Map) which can

be used to collect memory dump of the running application. A brief overview of Jave EE

is given in section 2.3.1, where features of JVM are also highlighted. In this chapter,we ex-

plain briefly, the snapshot collection and reading process along with the noise filtering tech-

niques and the regression analysis used for monitoring the application. All the algorithms

described in the Chapter 3 are implemented in Java and Python programming language.

The original source code is available online in Grepcode [78]. The snapshot reader and

noise filter is implemented in Java(version 1.8.0 60 with 64−Bit Server VM). The baseline

generator, the validator and the behaviour monitor are implemented in Python(version

2.7.6 with GCC 4.8.2 ).
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4.1 Snapshot Collection

The target application is built on Java EE platform which needs JVM to run the application

in our project. JVM provides various utilities to debug the application. One of the way

to debug an application is to analyze its heap dump. Therefore, it is advantageous to use

the existing utility of JVM and collect the snapshot of the application in the form of heap

dump.

4.1.1 Heap Dump

A heap dump is a snapshot of memory at a given point in time. It contains information

on the Java objects and classes in memory at the time the snapshot was taken. It comes

in various format like HPROF or PHD (Portable Heap Dump) [62]. The content of Java

heap dump can be written to a binary file. Heap dumps can contain two types of objects:

• Alive objects only (those are objects, which can be reached via a Garbage Collector

root reference)

• All objects (includes the no longer referenced, but not yet garbage collected objects

along with alive objects)

Live objects can be determined from various VM internal mechanisms. Creating a full heap

dump with dead objects takes much longer compare to live objects and also consumes more

disk space. Therefore, collecting only live objects of a heap dump is more efficient than

collecting all objects.

4.1.2 Collecting Heap Dump

Heap dumps can be created in 2 ways. If the Java option

“-XX:+HeapDumpOnOutOfMemoryError” is used while executing the Java program,then
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the JVM will create a heap dump whenever it encounters an out of memory error before it

quits. Therefore, in this approach heap dump cannot be taken unless the application runs

out of memory and exit. Using the JVM utility JMAP(Java Memory Map), heap dumps

can be created from the command line:

jmap− dump : live, format = b, file =< filename >< PID > (4.1)

This will create a binary file containing all information of live objects of the Java application

at the timestamp when the command is run. The jmap command can run in any machine

that has JDK(Java Development Kit) installed in it. The jmap [84] command can extract

the heap dump along with heap histogram from a running JVM using the process id of the

JVM. The process ID can be extracted by the jps command.The heap dump can be stored

in a binary file . The jmap command prints out the HPROF file in binary format. The

HPROF is a heap profiler [79]. For faster analysis we create heap dumps of live objects.

Garbage collected objects are out of this context.

4.2 Snapshot Reader

The snapshots are collected in the form of heap dumps of the application server. When the

jps command is run, it prints the process id of the application server. Using the process

id of the application server jmap command is run as shown in command 4.1. We use

Jhat to read the heap dump in this project. It is an utility that comes with JDK which

visualizes the heap dump in the localhost port using http server. Jhat utility requires a

human operator to look at the result in web-browser to understand it. We implement a

customized heap dump reader by rewriting the source code of Jhat and make its output in

an input format for the tool which does not require a human operator to understand the

heap dump.
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The snapshot reader is the parser which parses the binary heap dump file. Once the

file is read, the snapshot reader extracts all the class names, their instances, static and

non-static data members and reference to those class names. The snapshot reader reads

the heap dump and output the following type of Java classes:

• An abstract Java thing visitor class. Java thing can be Java Heap Object, Java

Object reference or Java Value

• An Array Type codes as defined in Java Virtual Machine specification

• A class to represent null values, unresolved references.

• Classes to represent Boolean, Byte, Char, Double, Float, Integer, Long, Short, Static

fields in an instance.

• Class file to extract class names from HPROF file.

• A Class file containing reference chain from and to some target object upon query.

The Object Query feature is not used here. The assumption is, there is no information

available about the application other than the process id. So it is not feasible to write

query for individual objects to get detail information. This feature can be investigated

in future.

• A class representing the Stack Frame

• A class representing the stack trace, that is an ordered collection of stack frames.

We are interested in the statistics of variables accessed in the execution of the applica-

tion. So we need a mechanism to read the value of the variables efficiently and correctly.

A heap dump contains more than thousand of classes, their references and instances. Now

to access the different variables inside each classes, which are the field of the classes we

need to read each of the instances created by the class. When a heap dump is created
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Figure 4.1: A screen-shot of source code of Hprofreader

all instances of all classes get dumped in a single binary file. We use different methods to

read the class names, their field’s name, type of the fields and their data type and most

importantly their value in each instance of the class. The source code is not included in the

thesis but we want to discuss some of the frequently used class files and methods in order

to give a comprehensive idea about how snapshots are read in this project. The original

source code is available online at [78]. We re-implement some of these classes and add our

own package to utilize those classes.

The HprofReader class(com.sun.tools.hat.internal.parser.HprofReader) is used to read

the snapshot. It identifies a Java class by the magic number which is a pre-specified

value to distinguish the Java class file. The value is always 0xCAFEBABE. In short,

when the first 4 bytes of a file is 0xCAFEBABE, it can be regarded as the Java class
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Java Bytecode Type Description

B byte signed byte

C char Unicode character

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

J long long integer

L reference an instance of class¡classname¿

S short signed short

Z boolean true or false

Table 4.1: Type Expression In Java Heap [31]

file [31]. The binary file(heap dump) is read using readUnsignedByte() function by a

java.io.DataInputStream object referring to the file. A screen-shot of small part of the

code of Hprofreader is shown here in Figure 4.1. The readHeapDump() method is called

based on the byte read from the file and its function is to read subsequent bytes to find all

the classes, their instances, their ids and name form those ids. The entire heap dump is

parsed and get stored in the Hashtable. A reference to Hashtable is return to the instance

of Snapshot class(com.sun.tools.hat.internal.model.Snapshot) which is used for any queries

on the snapshot.

All class names from the heap dump can be extracted using the getClass() method which

is implemented inside the Snapshot class. In order to get the instances of the classes we

use getInstances() method from the same class and to get the field inside the class we call

the getFieldsForInstance() function. Java heap dump exhibits the data type with special

symbol. We read those symbols by the getSignature() method and analyze the variables

according to their data type. Table 4.1 is a list of data types and their corresponding
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symbols inside the heap dump.

The class files we mentioned above are present in the original source code, but all of

them are designed to show the information in a browser which listen to query request for

specific classes. As we are not assuming any prior code level knowledge about the target

application except the language it is written in, we cannot run query for a specific class.

Therefore, we re-implement these class files and methods to return all class names, their

instances, their values and data types. In order to read and print the heap dump in text

format we have implemented a viewerpackage which is not present in the original source

code. We are not providing the source code for this package but we want to describe the

purpose of each classes implemented in this package for a better understanding of our work.

Inside this package we have implemented these following class files:

• QueryLoader class is used to pass the instance of Snapshot class to HeapReader class.

Its setModel method instantiates HeapReader class to read the snapshot and do all

possible queries on the snapshot.

• QueryFilter class is used for doing queries on classes which pass the filter. In the

process of noise filtering, we get class names which are application specific, and

an “exclude class list” which are not application specific. In order to model the

application accurately, we forward the data of only application specific classes to

further components.

• HeapReader class’s read() method instantiates AllClassesQuery class and

InstancesCountQuery class to get information about the heap dump’s classes and

their instances.

• AllClassesQuery class is used for finding all the class names except those are present

in the “exclude class list”. We use the getClass() method here.
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• InstancesCountQuery class is used for resulting the total number of instances of each

classes which are returned in an array from the AllClassesQuery class’s allClass()

method.

• AllServerClassesQuery class is used for getting the package names which are common

for all applications running in the same server, not for any specific application.

• PlatformClasses is used for getting the class names those are platform specific, not

application specific. These classes are dumped in all Java programs using the same

version of JVM. We need to record them to filter out noise.

• InstancesQuery class is used for ensuring a particular class is queried only when it

has at least one instance. Its instances() method is invoked by the read() method of

QueryFilter with the class id that has been extracted from the heap dump. From

the class id it extracts the name of the class and output it. It calls the objectquery()

method of ClassQuery class with the input class id

• ClassQuery class is used to output static and non-static fields’s name of the class

whose id it gets as input. It also prints the data type and the value of each field. As

mentioned above here we call the getFieldsForInstance() and getSignature() methods

to get the field and data type information respectively. The value of the filed as

printed using printThing method which is implemented inside this class file.

There are more than thousands of classes exist in a single heap dump and each of

these classes can have zero to hundred plus instances. Not all of them are related to the

application directly. Some of them are platform classes which remains in every heap dump,

some are server classes. In order to model the target application correctly and efficiently, it

is essential to get details about only application specific classes, which contains information

strictly related to the application. So we implement the noise filter to filter out the classes

which are not contributing in modeling the application’s behaviour.
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4.3 Noise Filter

The noise filter is an essential component of our tool. As we discussed in the previous

section, we do not assume any source code level knowledge about the target application,

we need a mechanism which can learn the class names which are strictly related to the

application’s runtime behaviour. The noise filter is implemented to perform this job. Thee

filtering techniques have been applied in our tool:

4.3.1 Filter1

In the heap dump there exist several instances of platform classes. These classes are

dumped for every Java application. Therefore, the first filter is applied to exclude these

platform classes as they will not carry relevant information about the behaviour of a

particular application. Example of these platform specific classes are class [B ,class [C

,class [D, etc. These are the one dimension array of references that get dumped for all

Java programs. They contains reference to classes of different data types. After closely

inspecting these platform classes from different heap dumps we figure out that they do not

contain specific information for any application. So we use the existing exclude platform

parameter of the HprofReader class’s constructor method to filter out these classes from

our snapshot.

4.3.2 Filter2

The second filtering technique is applied to eliminate packages which are common for

multiple applications running on the server. Those are packages containing the application

server-specific classes. In order to resolve these packages, we collect the heap dump of

the application server when no applications were deployed. We use the snapshot reader

to read the heap dump and output the package names using the AllServerClassesQuery
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class. The output is written to the “exclude package list” file and send as parameter

to the QueryFilter ’s read() method. The QueryF ilter then exclude the classes of these

packages while printing the instances of all classes present in the snapshot. Examples of

these packages are org.apache.derby.iapi.services.io, org.apache.felix.gogo.shell, etc. These

packages are not interesting because they will have common properties for all deployed

application on the server. So classes inside those packages are not contributing in learning

the behaviour of the application.

4.3.3 Filter3

The third filtering technique is applied to filter out classes which do not instantiate any

object. These classes exist in the heap dump with zero instances. We use InstancesQuery

to find the total number of instances of a class. If any class returns with zero number of

instances then our tool does not take its data for further analysis. It is obvious that a class

with zero instance will not give us any value for analysis. So we filter them out from the

snapshots.

The noise filter clarify most of the classes which are not specific to a particular appli-

cation. After filtering out irrelevant classes, the tool output data of interesting classes to

filtered snapshots. These filtered snapshots have the class name, their total number of

instances, value and data type of all fields in each instance. As we do not have the source

code level knowledge about the application, it is still possible that some classes may remain

in the filtered snapshots which are not relevant to the target application, however, the noise

filter will not filter out something which is linked to the target application’s behaviour. It

is better to have more information than losing some important information. With that

concept the filtered snapshots are passed to the learning, validation and monitoring phase.
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4.4 Baseline Generator

The baseline generator initiates the learning phase of our tool. We have explained the

learning phase in the Chapter 3 using algorithms which we implement to build this compo-

nent. Algorithm 1 is implemented to generate the baseline. As mentioned at the beginning

of this chapter, we implement the algorithm in Python. We import the defaultdict data

structure from the collections module. This is a container data type. It is a dictionary

where we can add a growing list as value for a key and do not need to initialize the dic-

tionary with that key. The data structure is well suited for storing multiple layer of data.

The filtered snapshots that the baseline generator gets from noise filter has all the class

names, their filed names, number of instances and value of each field by each instance. We

need to keep the data of the fields for each instance under each class in a structure that

will be easily accessible for efficient computation,as a result we find defaultdict is a best

choice.

The baseline generator reads the filtered snapshots and add the class name as key and

their (filed, value) pair for each instance as the value of the key. As we have seen in Algo-

rithm 1, the dictionary, baseline is initialized with the statistics built from the first collected

snapshot. After that, each time a snapshot is read and filtered, the calculateStatistics()

method is called for calculating statistics of all the classes present in that snapshot. Al-

gorithm 2 presents the pseudo code of the whole process of reading each filed of a class

and calculating their statistics based on their data type. At the end of calculation for each

snapshot, its statistics is aggregated with existing baseline using the calculateAggregateS-

tatistics() method(Algorithm 3). Finally, when N snapshots are read and integrated in the

baseline, we get a initial model of the application. The baseline is then forward as input to

the validator because we want to make sure that our tool has learnt the model correctly

and detect anomalous behaviour in the monitoring phase efficiently.
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4.5 Validator

The validator validates the output of the learning phase. It generates fixed size windows

containing statistics of filtered snapshots and then test them with the baseline using regres-

sion analysis and range testing. The algorithms for validation phase are explained in the

section 3.3. As we do not assume any prior knowledge about the application’s behaviour,

it is not possible to know how the value of each variables are distributed. Therefore, we

did not choose the Student T test as it requires the data to be normally distributed. The

Chi-square test needs the data to categorical, but from our observation on the baseline,

we found most of our data is continuous and if they are categorical like boolean data,

they keep the same value most of the time. We have implemented the two-sample Kol-

mogorovSmirnov test(KS test) for the regression analysis as it does not require the data

to be normally distributed.

The two-sample Kolmogorov-Smirnov test is a nonparametric test of the equality of con-

tinuous, one-dimensional probability distributions that can be used to compare two samples

of data. The test quantifies a distance between the empirical distribution functions of two

samples. The null distribution of this statistic is calculated under the null hypothesis that

that the samples are drawn from the same distribution. The distributions considered under

the null hypothesis are continuous distributions but are otherwise unrestricted. According

to wikipedia, the two-sample KS test is one of the most useful and general nonparametric

methods for comparing two samples, as it is sensitive to differences in both location and

shape of the empirical cumulative distribution functions of the two samples.

We implement the validator in Python which has a great library resource for statistics.

The scipy is a module of Python which is build for complex statistical computation. We

import the ks 2samp() method from the scipy.stats module. The ks 2samp() method takes

two list of values as parameter and returns a difference value(D-value) and a probability
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value(P-value). If the P-value is close to 1, it means two list of values are coming from

the same distribution. It is standard practice to use the P-value 0.05 or 0.01 to accept or

reject the null hypothesis. In our tool, we reject the null-hypothesis of two samples coming

from the same distribution if the P-value is smaller than 0.05. When a variable is present

in the baseline and in the current validation window, we compare its value using the kS

test. If the test returns less than 0.05 as P-value, then the null-hypothesis is rejected for

the variable which means it fails the test. And if a variables fails the test for more than v

of the total number of windows(line no. 15 of Algorithm 4), then we do not enter it in the

validated model, we store it in separate list for future analysis.

The validator test each window for range test along with KS test. As we have discussed

in the last chapter in section 3.3, all these tests are done to test the accuracy of the model

we have learnt in the baseline. Therefore, the final validated model will only contain those

variables which statistics are validated, that means they can be modeled properly using

statistical analysis. This validated model pass to the behaviour monitor as input and

reduce the possibility of having false alert of anomalous behaviour.

4.6 Behaviour Monitor

The behaviour monitor initiates the monitoring phase. This is a continuous process which

can only be stop by a system operator. It monitors the incoming snapshots in sliding

windows. We have explained the monitoring phase in the last chapter where we discuss

how the sliding windows are generated and tested with each incoming snapshot and the

baseline. The window-size can be set by the system operator and based on this size the

monitor waits to start testing until the tool has collected and filtered n snapshots where n is

greater than the end pointer of the window. We have discussed in the section 3.4, how the

start and end pointer of the sliding windows are initialized and updated in each window.
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The testing is done by invoking the monitor method(Algorithm 8), where the current

window is tested with the current snapshot for each variable if it exists in the validate

model. In case of failure, the variable is tested again with the baseline. If a variable fails

both of the testing, then it returns False. The validated model is used here as a filter.

Variables those are not present in the validated model are not compared between the

window and the snapshot. It is useful as we do not want the tool to notify user frequently

with false alerts. In order to detect an application’s anomalous behaviour, the monitor

keep track of the result from validation. If x consecutive windows fails the comparison

test, then it generates alert for the user. The behaviour monitor does not stop on alert, it

keeps monitoring for the next snapshots and possible anomalous behaviour.

The tool also keep a log of the variables which fails the test in monitoring phase. The

log file makes it facile to localize the variable for which consecutive tests fail and that gives

the application developer to investigate the source code and find the problem with that

variable. Our tool is not only designed to detect anomaly but also to map the anomaly

back to the source code. We have evaluated the tool using two applications. In the next

chapter we are going to discuss the experimental setup and the evaluation result of our

tool.
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Chapter 5

Evaluation

We evaluate our tool with two target applications: an e-commerce application and to an

online bidding application and describe the experimental setup and result in this chapter.

5.1 Configuration of computing Node

• We have deployed our application on 7 computing node that are named from ‘Styx

01’ to ‘Styx 07’.

• Each of the computing node has 2TByte storage, 24 core CPU(Intel(R) Xeon(R)

CPU E5-2620 v3 @ 2.40GHz) and 64Gb RAM.

• Each of them have operating system Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0−76−
generic x86 64).
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5.2 System Setup for E-commerce System

We implement an e-commerce system using the source-code from the Netbeans e-commerce

demo program AffableBean [74]. It emulates an online grocery store where clients can buy

products from different categories, add or update their shopping cart and get confirmation

on checking out.

5.2.1 Database Server

We setup MySQL version−5.6.19 [86] as the database server in the computing node ‘Styx

01’. All other nodes are accessing the database server of this machine. The database is

named ‘affablebean’. A JDBC connector is used here to connect the application server to

the database server.

5.2.2 Application Server

Each of the computing nodes is running an Application Server. We setup Glassfish-4.2

[77] as the application server. This open source edition of Glassfish provides a server for

the development and deployment of Java Platform, Enterprise Edition (Java EE platform)

applications and web technologies based on Java technology. It has the following features:

• A lightweight and extensible core based on OSGi Alliance standards.

• A web container.

• An easy-to-use Administration Console for configuration and management.

• Update Tool connectivity for updates and add-on components.

• Support for high availability clustering and load balancing.
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5.2.3 Client

We use Jmeter−2.8 [43] to simulate the client. It is an open source software that is designed

to test functional behaviour and measure performance of web application. We found five

types of shopper and estimate their shopping frequency by analyzing the current online

shopping trend. These categories are as following:

Just Browser: This type of shoppers usually does not buy anything, scan through dif-

ferent categories of products and their price. Approximately 20% of shoppers are of

this type.

Shopaholic: This type of shoppers buys products frequently. They browse and buy almost

everything. 20% of shoppers are from this category.

Confused Shopper: 10% of shoppers are from this category. They are confused about

what to buy. They browse, add product to cart and change their cart frequently.

They keep updating their cart all the time.

General Shopper: 30% of the shoppers are general type. They browse and shop in a

moderate way.

Confident Shopper: This type of shoppers have a specific list to buy items, they browse

less and buy exactly what they need. 20% of shoppers are these type.

The computing node ‘Styx 07’ is set up for running the Client. Each server gets request

from five categories of client. So there are 5 thread group for each server. Just Browser

thread group having 20 user threads. Shopaholic thread group has 20, confused thread

group has 10, general thread group has 30, and confident thread group has 20 user threads.

Each of the thread group running 500-1000 times, producing 85,000 users for each server.

In total 595,000 customers shopping on 7 servers.
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5.3 System set up for RUBiS

We implement an online bidding system called RUBiS [24]. RUBiS is an auction site proto-

type, modeled after eBay, that is used to evaluate application’s design patterns and server’s

performance. This benchmark implements the core functionality of an auction site: selling,

browsing, and bidding. There are three kinds of user sessions: visitor, buyer, and seller.

For a visitor session, users need not register but are only allowed to browse. The buyer and

seller sessions require registration. In addition to the functionality provided during visitor

sessions, during a buyer session users can bid on items and consult a summary of their

current bids, rating, and comments left by other users. An auction starts immediately and

lasts typically for no more than a week. The seller can specify a reserve (minimum) price

for an item. RUBiS is a free, open source initiative. We implement the EJB version of

RUBiS.

5.3.1 Database Server

We use the same database server as the AffableBean application. The database is named

‘rubis’. The database is populated with 236 categories from 62 regions and 1000000 users.

Each user put bid on items from different categories. Here also we use JDBC connector to

connect the application server to the database server.

5.3.2 Application Server

Each of the computing nodes is running one Application Server. We use Glassfish-4.2 as

the application server. Glassfish is well structured for implementing applications in Entity

Java Bean(EJB). Also it has an interactive admin port that makes it easier to configure

the server to use any third party API required to deploy the application.
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5.3.3 Client

RUBiS source-code comes up with a Client emulator. The database is populated by users

using the file named “rubis.properties”. The same file is also used to assign the number of

clients to be generated. Emulator is setup to send different types of request such as log in,

store bid, view item etc. Also the workload for the emulator can be assigned from different

type of workload files saved in the folder named workload, that is included in the source-

code of RUBiS. We run the emulator with different workloads while taking the snapshots.

The workloads are different in terms of the probability of different page request. Some of

these generate clients who do more browsing, some of these generate clients who bid a lot

of items and some of these sell and buy in more frequency. We setup the emulator in the

computing node‘Styx 03’ that can send client request to all application servers using the

emulator.

5.4 Experimental Result and Discussion

We collected the snapshots of both applications from each of the seven computing nodes

using the process explained in the section 4.1. When the application server is started, we

get the process id of the server using the jps command. Next, we use the jmap command

4.1 to get the snapshots(heap dumps). We collected 400 snapshots with a 3-minute interval

between each snapshot. After collection, each snapshot goes through the snapshot reader

and noise filter. Afterwards, the filtered snapshots go through the learning, validation, or

monitoring phase based on their sequence of collection. The outcome of the experiment

on the target applications are discussed in the following subsections.
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5.4.1 Filtering Techniques

The filtering techniques filter out the classes that are not directly instantiated by the target

application. We apply three filters, the first one clear out the platform classes, the second

one filter out common packages for all applications running on the same server, and the

third one clear out the classes with zero instances. We take two snapshots from each of

the applications and tabulate the number of classes before and after applying filters.

The AffableBean Application

Before Noise Filter: 11540 Classes in the 45th Snapshot

After Noise Filter

No of classes:

Filter 1 Filter 2 Filter 3

8211 1618 617

Before Noise Filter: 11545 Classes in the 100th Snapshot

After Noise Filter

No of classes:

Filter 1 Filter 2 Filter 3

8212 1618 499

Table 5.1: Filtering techniques applied to snapshots of the AffabeBean application

We take the 45th snapshot of the AffableBean application as an example here. We can

see in Table 5.4.1, without any filtering the snapshot had 11540 classes to analyze. The

number went down to 8211 by applying the first filter. The second filter cleared out

another 6593 classes. Finally, the third filter was applied which gave us 617 classes to

analyze. Moreover, our experiment finds that not all the classes are present in all the

snapshots and even though they are present, they may not instantiate any object. For

example, the number of classes went down from 11545 to 499 for the 100th snapshot which

is less than the number of filtered classes in the 45th snapshot.
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The RUBiS Application

Before Noise Filter: 11205 Classes in the 40th Snapshot

After Noise Filter

No of classes:

Filter 1 Filter 2 Filter 3

8143 1672 524

Before Noise Filter: 11236 Classes in the 80th Snapshot

After Noise Filter

No of classes:

Filter 1 Filter 2 Filter 3

8145 1672 524

Table 5.2: Filtering techniques applied to snapshots of the RUBiS application

We got similar result from the experiment on the RUBiS application. The noise filter

reduced the total number of classes to analyze from 11205 to 524 in the 40th snapshot

(Table 5.2). The first filter reduced the number of classes by 3062, next, the second one

filtered out another 6471 classes. Finally, the third filter cleared out another 1,148 classes.

So by applying all three filters, we get 524 application-specific classes to analyze. Similarly,

number of classes reduced to 524 from 11205 in the 80th snapshot.

We present the outcome of the learning, validation, and monitoring phases for both

applications in the following subsections. The algorithms for these phases are discussed in

the chapter 3 and their implementation is described in the chapter 4. For a quick revision,

we can summarize the steps as follows: first, the learning phase is executed by the baseline

generator and outputs the baseline model of the target application. Next, the baseline

is validated with the validation windows. Finally, the validated model is utilized by the

behaviour monitor in the process of continuous monitoring.
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5.4.2 Learning Phase

We divided the 400 snapshots to be analyzed in three phases. We generate the baseline

with 40 snapshots because in the process of collecting 40 snapshots the tool went through

2 hours(3minutes ∗ 40 = 120minutes) of execution time. The emulator sent different

requests and the tool built its baseline model from the data exhibited in this time period.

The outcome of the learning phase is following below.

The AffableBean Application

Total Number of Classes : 617

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 628 3 49 3 2 1089 5503 7277

Not Boring 24 2 9 1 0 19 65 120

Total 652 5 58 4 2 1108 5568 7397

Table 5.3: Category of variables in the learning phase of the AffableBean application

Boring Variables

Reference Null Reference Total

3423 2080 5503

Table 5.4: Number of variables referring to null in the learning phase of the AffableBean

application
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The RUBiS Application

Total Number of Classes : 640

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 637 4 59 3 5 1101 5667 7476

Not Boring 13 0 7 1 0 11 37 69

Total 650 4 66 3 6 1112 5704 7545

Table 5.5: Category of variables in the learning phase in the RUBiS application

Boring Variables

Reference Always Null Reference Total

3432 2235 5667

Table 5.6: Number of variables referring to null in the learning phase in the RUBiS appli-

cation

We discovered two categories of variable from our experiment :

The Boring Variables: These variables do not change their value from the beginning of

execution of the tool to the baseline model generation. We present their result in

Table 5.3. We group the variables based on their data type. The variables in the

group of reference type can refer to a string or any other class. If a boring variable

is referring to a string then it takes the same value for all instances, otherwise it is

referring to the same class. There are some variables that refer to null throughout

the learning phase, so they are also enlisted in boring category(Table 5.4 and Table

5.6).
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The Non Boring Variables: These variables exhibit different range of values and con-

sequently their statistics are interesting. We present them under the non boring

category in Table 5.3 and Table 5.5. For variables that are type of numbers(integer,

float, double, short, and long integer) we calculate their average, minimum, maxi-

mum, and their probability distribution. For reference variable, our tool learns them

as string variables because the heap dump contains either a string value or a ref-

erence to some class name. The tool calculates the minimum, maximum, average,

and probability distribution of string length of this type of variables. Moreover, it

learns the character-range of the string variable such as alpha, alpha numeric, and

not alpha numeric. If they are alpha or alpha numeric then they are normal string

variables, otherwise, in most cases they contain a class name.

The baseline contains the different statistics of variables. For example, the a shopping cart

class in the AffableBean application has the following representation in baseline:

Class cart.ShoppingCart

Name Type Minimum Maximum Average Distribution

total Double 0.0 311.0 156.990291262 Normal greater

numberOfItems Integer 0 104 52 Normal

Table 5.7: Example of statistics of variables in the baseline of the AffableBean application

Similarly, the ‘User’ class in the RUBiS application has the following representation in

baseline:
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Class entity.Users

Name Type Minimum Maximum Average Distribution

password string, alpha-numeric 9 14 13.8556701031 Normal greater

nickname string, alpha 5 10 9.85910652921 Normal greater

email string,not alpha-numeric 22 32 31.7079037801 Normal greater

Table 5.8: Example of statistics of variables in baseline in the RUBiS application

The variables shown in Table 5.7 are of number type. Our tool calculates their mini-

mum, maximum, average and probability distribution. The distribution is measured using

the P-value of 1 sample KS test. If the value is always greater than zero and follow a normal

distribution, it is classified as normal greater distribution and if the the value is always

smaller than zero and normally distributed, then it is classified as normal less. More-

over, a variable can follow a normal or exponential distribution. Otherwise, we present its

distribution as undefined.

Similar statistics are calculated for the variables present in Table 5.8. In this example,

the variables are string type, so the baseline contains the statistics over their string length

as well as the character-range of each variable.

5.4.3 Validation Phase

The validator runs different types of validation test(section 3.3). 80 snapshots(41 to 120)

are tested in 8 validation windows, each of size 10. Each window contains the statistics

of variables in the same way as the baseline(Table 5.7). We take only those variables that

pass all the tests in every window.
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Result for The AffableBean Application

Total Number of Classes : 617

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 627 3 49 3 2 1088 5497 7269

Not Boring 25 2 9 1 0 20 71 128

Total 652 5 58 4 2 1108 5568 7397

Table 5.9: Category of Variables in the validation phase of the AffableBean application

As we can see in Table 5.9, the total number of variables remains the same as the learning

phase. Eight of the boring variables change their value in this phase. So they are added

to the non boring variable list. One previously null referring variable exhibits a different

reference during the validation phase.

Boring Variables

Reference Always Null Reference Total

3418 2079 5497

Table 5.10: Number of variables referring to null in the validation phase for the AffableBean

application

Number of Variables Failing Test : 8

Integer Long Integer Boolean Reference Total

3 3 1 1 8

Table 5.11: Number of variables failing the validation test for the AffableBean application
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Eight variables fail the validation test including one boring variable of boolean data

type. Upon closely inspecting these variables we find that they are monotonously increasing

variable such as ‘readtime’ or ‘readquerytime’. These variables contains time stamp as

their values and updated with system clock and we do not model them. However, it

will be interesting to build a separate model for these type of data in order to detect

anomaly due to clock synchronization error. Other example of continuously increasing

variables are ‘confirmation number’ or ‘lastupdatedqueryId’. The ‘confirmation number’

keeps increasing with every check out, similarly query-id gets updated with the latest query

initiated by customers. We find that most of the variables that fail the validation test,

need individual modeling technique. Moreover, they will fail the test in the monitoring

phase as well and generate false positive alerts. Therefore, we do not included them in the

validated model.

The RUBiS Application

Total Number of Classes : 640

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 637 4 59 3 5 1100 5665 7473

Not Boring 13 0 7 0 1 12 39 72

Total 650 4 66 3 6 1112 5704 7545

Table 5.12: Variables Found in Validation Phase in the RUBiS application

As we can see in Table 5.12, the total number of variables remain the same as learning

phase. Three variables exposed different result than learning phase. Three of the boring

variables change their value in this phase. Two of them are reference type and one is

boolean type. So they added to the non boring variable list. One boolean type variable

fails the validation test, that was boring in the learning phase.
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Boring Variables

Reference Always Null Reference Total

3430 2235 5665

Table 5.13: Number of not null and always null reference in validation phase in the RUBiS

application

Number of Variables Failing Test : 4

Integer Long Integer Total

1 3 4

Table 5.14: Number of variables failing the validation test for the RUBiS application

Four variables fail the validation test. When we closely inspect the variables failing the

test we find they are either monotonously increasing variable like ‘readtime’ or ‘lastUp-

datedQueryId’. These variables contains time stamp as their values. As these variables

are failing the test and their reason of failing is reasonable, we do not include them in the

validated model and proceed to monitoring phase with variables that pass the validation

phase for all windows.

5.4.4 Monitoring Phase

The behaviour monitor takes the validated model as an input and starts monitoring the

incoming snapshots. It starts generating sliding windows and test every snapshot with the

most recent window. We assign the window size to 10 in our experiment. The outcome of

the monitoring phase for snapshot no. 121 to 400 is as follows:
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The AffableBean Application

Total Number of Classes : 618

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 627 3 48 3 2 1088 5492 7263

Not Boring 27 2 10 1 0 21 82 143

Total 654 5 58 4 2 1109 5574 7406

Table 5.15: Category of Variables in the monitoring phase of the AffableBean application

Boring Variables

Reference Always Null Reference Total

3417 2075 5492

Table 5.16: Number of variables referring to null in the monitoring phase of the AffableBean

application

Six boring variables change their value in the monitoring phase, three of them fail the

comparison test as they exhibit a different value than the baseline and the validated model.

By closely inspecting them, we find that they are reference type variables and referring

to a different class name in the monitoring phase. As we implement the EJB version of

the application, there are some built in API that are used by the application, which we

consider as black box and therefore, we did not explore the reason of failure in details.

A variable named ‘total’ from the ‘ShoppingCart’ failed the monitoring test a few time.

This variable contains the total amount of prices of items in a cart and from the statistical

analysis, we find its distribution varies from snapshot to snapshot. For instance, its value
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sometimes takes an exponential distribution and sometimes a normal distribution, because

of this variation, it is possible in some snapshots that it fails the KS test.

The RUBiS Application

Total Number of Classes : 640

Type Integer Signed Short Long Integer Double Float Boolean Reference Total

Boring 637 4 59 3 5 1100 5665 7473

Not Boring 13 0 7 0 1 12 39 72

Total 650 4 66 3 6 1112 5704 7545

Table 5.17: Variables found in the monitoring phase of the RUBiS application

Boring Variables

Reference Always Null Reference Total

3430 2235 5665

Table 5.18: Number of not null and always null reference in the monitoring phase of the

RUBiS application

In case of RUBiS application only one variable failed the validation phase and that was

the variable named ‘logSessionString’. This variable contains the log of a session, and

it exhibited a minimum string length that was not present in the baseline model or any

validation window. By close inspection, we found that it was not an anomaly, it was a new

log message recorded for a transaction with a new item. Although it was not anomaly, but

it ensured that in case of any variable fail the range-test for anomalous situation, our tool

can successfully detect it.

85



Anomaly Detection

In order to test the correctness of the statistical model generated by our tool, first we run

the monitoring phase without any fault injection. The application should behave normally

through out the monitoring phase in that case. With this assumption, any variables that

violate their statistical modelling will generate a false positive result for anomaly detection.

We summarize the result as following:

The AffableBean Application

Total Number of Snapshots 280

Total number of snapshots with false positive anomaly 33

Frequency of False Positive Alert 11.7857%

Maximum number of variables showing false positive anomaly in any snapshot 3

Maximum rate of false positive in any snapshot 2.09%

Rate of false positive anomaly over all snapshots 3.49%

Table 5.19: False positive anomaly detection in the monitoring phase of the AffabeBean

application

We calculated the rate of false positive anomaly of the snapshots by the following calcula-

tion:

Total Number of Non boring Variables 143

Total number of variables violating their model 5

Percentage of false positive anomaly 5/143*100% = 3.49%

Maximum number of variables violating the model in any snapshot 3

Maximum rate of false positive anomaly in any snapshot 3/143*100%=2.09%
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We then calculated the accuracy of our model by the formula:

Accuracy = tp+tn
tp+tn+fp+fn

False positive(fp) True Negative(tn) False negative(fn) True positive(tp)

5 138 0 0

Accuracy =96.5%

The RUBiS Application

We did similar calculation for the RUBiS application. The result is as follows:

Total Number of Snapshots 280

Total number of snapshots with false positive anomaly 4

Frequency of False Positive Alert 1.42857%

Maximum number of variables showing false positive anomaly in any snapshot 1

Maximum rate of false positive in any snapshot 1.38%

Rate of false positive anomaly over all snapshots 1.38%

Table 5.20: False positive anomaly detection in the monitoring phase of the RUBiS appli-

cation

Total Number of Non boring Variables 72

Total number of variables violating their model 1

Percentage of false positive anomaly (1/72)*100% = 1.38%

Maximum number of variables violating the model in any snapshot 1

Maximum rate of false positive anomaly in any snapshot (1/72)*100%=1.38%
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False positive(fp) True Negative(tn) False negative(fn) True positive(tp)

1 71 0 0

Accuracy =98.61%

As we have seen in the above calculated results, the statistical model generated by our

tool is mostly accurate with a very less percentage of false positive result. In order to prove

the accuracy of our tool in detecting true anomaly, we tested our tool on the AffableBean

application by injecting small amount of fault. In our experiment, we were able to capture

two anomalous situation.

• We re-implemented the AffableBean application and allow it to take a negative num-

ber as an input for the variable ‘numberofItems’ inside the ‘ShoppingCart’ class. In

the monitoring phase, we sent a client request with negative number of items and it

got captured in snapshot no. 300. While analyzing, this snapshot our tool success-

fully detected this anomaly by the range test where it finds a new minimum value

for the variable ‘numberofItems’.

• We sent a check out request with the string ‘Drop Table Customer;’ as an input to

the ‘name’ field while taking snapshot 180 to 185 and this string got captured in

the snapshot no. 181. From the baseline and validation phases our tool has learned

the character range of the variable ‘name’ is alpha and putting a semicolon violates

this range. As a result our tool successfully detected it as an anomaly. Moreover,

it writes the variable that fails the monitoring test with its test result in the log file

that can be used in future to localize any application-level failure.

Limitation

We collected snapshot every 3 minutes, so we were able to capture anomaly only when data

with different statistical value got captured in the snapshot. If any object with unusual
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value is created and garbage collected in this interval, we were not able to capture its

variance. We aim to overcome this limitation in our future work.

5.5 Performance Overhead of Application for Moni-

toring

The collection of snapshot halts the application for a few seconds. From our experiment we

found that for an application with less feature a heap dump collection can halt the system

for maximum 5.74 seconds. On average it can take 3.0972 seconds. We recorded the heap

dump-collection time for the two target applications and tabulated their statistics in the

following Table.

Application Name Minimum Time(seconds) Maximum Time(seconds) Average Time(seconds)

RUBiS 1.65 11.11 3.0972

AffableBean 1.04 5.74 1.5133

Table 5.21: Time spent for snapshot collection

Our tool is designed for monitoring application in replicated nodes. So when one node

gets halted for snapshot collection, any other node can serve the client. So the effect of

monitoring will not be visible. Moreover, the maximum time for collecting a heap dump

was 11.11 seconds(Table 5.21). We collected snapshot in every 180 seconds. So it is a

(11.11*100/180) = 6.17% hit on one computing node. In a replicated system, it will be

6.17% hit on one of the k computing nodes. For example, if we take a small system with 10

replicated nodes, it becomes 0.617% hit on the total system. So it will not cause a visible

performance degradation for the total system. Therefore, our tool can be used to monitor

an application when its is online and extract its normal behaviour from runtime-exhibited

data.
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Chapter 6

Conclusion and Future work

In this chapter we summarize our work. We conclude our thesis by providing direction to

the future research regarding our work.

6.1 Conclusion

We proposed a solution to develop a behaviour model of an application which does not

require any source-code examination or prior specifications about the expected behaviour

from the application developers. To predict the abnormal behaviour of an application, we

first need to perceive its normal behaviour. Numerous variables play vital roles in changing

the behaviour of an application. Finding those variables often requires domain knowledge,

code instrumentation, and annotation. Our solution does not require knowledge of the

internal structure of an application or access to source code, nor does it need any code

instrumentation. We conclude our work as follows:

• We describe the importance of the reliability and availability of software applica-

tions and explain how the downtime of web applications may affect an organizations

reputation and cause significant monetary loss.
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• Even large companies that maintain thousands of servers in data centers suffer from

application downtime. In these centers, applications are replicated and deployed in

several computing nodes. Although the applications are only deployed when fully

functional, failure may still occur and, upon failure, it is nearly impossible for a

human operator to find why one instance of an application failed when the others

are functioning properly. Instead, automation is required to detect the problem and

avoid future failures.

• Existing approaches regarding abnormal behaviour detection require either domain

knowledge about the problem or a database of previously found failures. Moreover,

these methods can only detect specific types of error, and some require access to

the source code of the application. Approaches tracing the execution path of the

application need to set frequent breakpoints, which then affect the performance of

the application throughout the monitoring process.

• Our analysis on data collected at runtime is aimed at finding general faults rather

than being restricted to a specific type of faults. Our solution does not require

annotation or access to an applications source code, nor does it need to trace each

event in the execution path.

• Our solution addresses the application-level monitoring of a system, whereas most

existing approaches target platform-level monitoring. It is important to monitor a

system at the application level, as it is the most exposed component and is intended

for interaction with users.

• We implement a tool that can detect an applications normal behaviour without any

code instrumentation. The behaviour is modeled as the statistical characteristics

of variables used across the application. Variations in these characteristics have a

significant impact on its execution. The statistical properties of these variables are

determined directly from the captured snapshots of the application at runtime, so
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there is no dependency on prior specifications by the application developer.

• We have described our proposed solution and implementation process in detail. The

solution is implemented in Java and Python. In this thesis, we develop the tool for

applications built in the Java Enterprise Edition platform, but we believe the solution

can also be implemented for applications written in other development platforms.

• Our solution has three phases: learning, validation, and monitoring. In the learning

phase, the collected snapshots are learned and a baseline model is generated, which

is then validated with the snapshots collected in the validation phase. The purpose

of validation is to reduce false positive anomaly alerts. The validator generates a

validated model, which is then used in the monitoring phase throughout the lifetime

of the application, unless the monitor is explicitly turned off.

• We evaluated our tool on an e-commerce application and an online bidding system

and explained our results in the Evaluation chapter of this thesis. We discovered

that there are certain variables which are interesting and that their statistics can

contribute to building the applications behaviour model. At the same time, there are

also some boring variables which do not change their values throughout the execution

time. We record them because their characteristic of being boring is a part of the

normal behaviour of the target application; if for some reason they change their

value, our tool can immediately report it as anomalous behaviour and the cause

can be investigated at once. Hence, we report both types of variables and discuss

how their statistics can be used to determine the normal behaviour of the target

application.

• We calculated the accuracy of the model generated by our tool and we find it is 96%

accurate in case of the AffableBean application and 98% for the RUBiS application.

Also the false positive rate is very low for both of the application. These results

demonstrate the utillity of our technique to generate behaviour model of a software
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application.

• Our tool keeps logs of variables and their values that exhibit variances in statistics.

Should an anomaly occur, the log file can be used to identify the problem causing the

variables. Because these variables exist in the application code, it gives our solution

a code-level granularity in the process of anomaly detection and fault localization.

6.2 Future Work

Our hope is to extend our work in the future toward the better performance of our tool.

1. The snapshot collection process needs improvement, as the heap dump collection

halts the system for few seconds in order to obtain a perfect memory dump at that

point. If the process of the heap dump collection can be optimized, we can guarantee

better monitoring performance. In a replicated environment, if one server is busy,

another can serve the client, so a few seconds halt-time will not be noticeable. Even

so, we still believe that we can be more efficient if we can collect a customized dump

without halting the system.

2. We collect snapshots from the application every three minutes in our evaluation

process. It is possible that a variable may expose abnormal statistics in the time

between two snapshot collections, in which case our tool will not be able to capture

that portion. However, if we start collecting snapshots more frequently, it might

negatively affect the performance of the application. In future research efforts, we

want to find a way to resolve this problem without affecting the performance of the

running application.

3. We captured periodic heap dumps and they contain only fields of classes, not the

value of local variables. A well-known tool named Daikon [41] captures all possible
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writes for both local variables and fields. But in order to do it, the tool slows down

the performance of the application. As our tool does not record all writes, it may

produce less strong program invariants. However, the performance of the application

is less affected by using our tool than Daikon. Generating a behavior model from

strong and accurate program invariants without affecting its performance is a goal

that we want to achieve.

4. We want to differentiate our tool’s generated model with the same for other existing

tools. In this project, we evaluate the applicability of our tool only, so we were not

able to find its appropriateness in terms of finding anomalies compare to other tools.

Moreover, we want to detect various types of anomaly and turn our tool to a robust

anomaly detector.

5. The false positive alerts generated by our tool is noteworthy and its frequency for the

AffableBean application is quite high(11%). We want to add some filtering techniques

in this alert generation process. These filtering techniques can be formed using

previously reported anomaly or with input from the system operator. Based on

the output of the filter, false positives will only be generated for valid anomalies.

Automating the whole process of anomaly detection and at the same time, having

lower false positive alerts are very desirable properties for any monitoring system.

We want to achieve this property in our future research.

6. Our tool can perform as an behaviour model generator for existing tools that need

the expected behaviour to be specified by the application developers. For example,

the output of our tool can be used as an input for Pip [95]. Also we did not consider

the relationship among different variables. Existing approaches such as Genesis [92],

information-theoretic monitoring [54], invariant relationships [96] are addressing the

inter-variable relations. We can incorporate our tool with these mechanisms and get

high level of accuracy in anomaly detection.
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7. We implemented our solution only for a Java EE application, but we would like

to implement it for applications built in other development platforms to see how

efficiently the solution works in those cases.
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