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Abstract

Channel estimation has received considerable attention over the years for its contribu-
tion to more reliable signal decoding. General wireless communication environment would
cause multi-path fading for signals that propagate through them. Multi-path fading has
two major effects on the system; causing inter symbol interference (ISI) and reshaping
signal constellation. Estimating the channel would enable us to combat these two effects.
Channel estimation can be done either blindly or with the help of training sequences.

In this thesis, we propose a new blind channel estimation technique for M-FSK modu-
lation systems. Our method can decrease the effect of signal reshaping and thus decreasing
the probability of error. It also has the ability to track the channel variations in a time-
variant environment.

In our method, an initial estimation is assumed as the channel impulse response. Uti-
lizing this channel, received signals are demodulated and decoded. Based on output of
the demodulator, a new estimation is generated for the channel. Consequently, a new
output can be produced by exploiting the new channel estimate. This process can be done
iteratively n times to reach the minimum possible probability of error.
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Chapter 1

Introduction

In this chapter, we initially express the necessity of channel estimation and introduce two
main channel estimation techniques which are trained or blind. Then, we compare these
two techniques and find out why blind estimation is a better option. After that, we review
some of the earlier works done on blind channel estimation. And at the of this chapter, we
are going to outline a summary of contributions of this thesis.

1.1 Communication Model

The channel model shown in figure 1.1 is considered as our channel model, where s (t) is
the transmitted signal, n (t) is AWGN 1 noise, and y (t) is the received signal.

According to figure 1.1, y (t) can be represented as follows

y (t) = s (t) ∗ h (t) + n (t) (1.1)

or equivalently in the frequency domain as:

Y (f) = S (f)H (f) +N (f) . (1.2)

Thus, both the amplitude and phase of s (t) are distorted. The goal of the receiver is to
estimate the transmitted signal ŝ (t) from the received signal y (t). This can be done by
applying the received signal to a new filter with a transfer function equal to the inverse of

1additive white Gaussian noise
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Figure 1.1: System Model

H (f), which would be H−1 (f). This procedure is called, channel equalization. Finding
the exact value of H−1 (f) is not usually feasible because of the practical realization of
filter, and the fact that channel is noisy. Therefore, an estimation of channel is found using
a linear minimum mean square error (LMMSE) estimator. This estimator minimizes the
mean square error between ŝ (t) and s (t):

ŝ (t) = argmin
ŝ(t)

E
[
(s (t)− ŝ (t))2] . (1.3)

Channel identification and equalization techniques can be divided into two major cate-
gories, the supervised or trained estimation, and the unsupervised or blind estimation. In
trained estimation, there is access to either transmitted signal, or some property or distri-
bution of transmitted signal. Whereas, in blind estimation, the only available information
is received signal as is shown in figure 1.1, and estimation is done solely based on that
received signal.

Trained estimation usually involves sending training or pilot sequences. In this method,
a training sequence is attached to the beginning of transmitted signal. This training
sequence is used to estimate the impulse response of channel for the receiver, while allowing
the receiver to have a simple structure. In time-varying channels, the channel estimate must
be updated fast enough to keep track of changes in channel impulse response. Thus, this
method will have problem in fast time-varying channels. Furthermore, sending training
sequences would result in reduction of throughput and efficiency.

Because of the problems involved in aforementioned technique, the adaptive channel
equalization techniques have been proposed to blindly estimate and equalize the channel.

2



Blind estimation and equalization of the channel have received considerable attention in
the past few decades because of its application in real time communication. This technique
has applications in some cases where sending training sequence in not possible, or when
there are advantages in reducing data overhead, like wireless transmission over time-varying
channels. Some of applications of blind channel estimation are listed below [2]:

• In data communication, an unknown channel frequency response with finite band-
width would usually cause inter symbol interference (or ISI). In order to eliminate
ISI when there is no information about the transmitted signal, channel is needed to
be blindly estimated. The existence of time-varying multi-path fading channel that
is common in a mobile communication network can cause severe ISI. The varying
channel needs to be estimated and if trained estimate is to be used, a major fraction
of channel capacity should be dedicated to sending training sequence. Thus, using
blind channel estimation which rely only on the received signal would save channel
capacity.

• In speech recognition, the received signal at recognizer is the convolution of original
speech, impulse response of the channel, and impulse response of the surrounding
environment. If training is used to inform the recognizer of transducer, the recognizer
might not work in a different transducer or in a different environment. Therefore, it
is desirable to build a recognizer that can estimate the channel itself and recover the
original speech.

• In image restoration applications like astronomy, remote sensing, or medical imaging,
in which the system shows blurring effects caused by camera motion, or inaccurately
focused lenses, channel estimation is needed to restore the image. Unfortunately,
the original image in these practical cases are not available, and thus blind channel
estimation is the only option.

1.2 Blind Channel Estimation Techniques

In this section, we mention some works that are previously done on blind channel estima-
tion, along with their contributions, problems, and in some cases, the environment that
they can work optimally.

In earlier works on the blind channel estimation, the knowledge about higher order
statistics of the received signal was the main attribute in finding channel coefficients [4], [6],
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and [25]. These approaches, although reliable, require a large amount of received symbols
and a lot of computation to make an accurate estimation. Because of these requirements,
these methods have limited application in fast time-varying channels.

Tong, Xu, and Kailath [23] used second-order statistics of the channel output to do blind
channel estimation which was made possible by exploiting the cyclostational properties of
an oversampled communication signal. Although their method is more computationally
efficient than other approaches that rely on high-order statistics, still requires a lot of
received signals before it can estimate the channel properly.

In [14], a method is proposed to divide the observation space into two orthogonal
subspaces, signal subspace and noise subspace, by applying eigenvalue decomposition on
correlation matrix of received blocks. This method is more computationally efficient than
[23], and yields reasonable estimates even for short data frames, and thus is used when fast
convergence is required.

In [1], Abed-Meraim, Moulines, and Loubaton propose a method based on second order
statistics that has restrictions on zero locations of FIR subchannels from oversampling or
multiple antennas. However, Ding in [7] showed that [23] and [1] methods cannot be
used to blindly estimate all channels and there is a practical limitation on their ability to
estimate channels. These methods fail for some channels that have common zeros among
sub-channels which are obtained by oversampling.

It should not be forgotten that second-order statistics (SOS) based techniques require
a system model that has more than one output signal. However, there are some applica-
tions in which there are only one output signal available, and thus SOS is insufficient to
reveal all of the information of system unless some properties of the input are known e.g.
stationary single output system model. Thus, high-order statistic (HOS) techniques are
often necessary for single output systems.

In order to overcome the problem regarding zero positions, Tsatsanis and Giannakis [24]
proposed to induce cyclostationarity by repeating input blocks. In other words, instead
of introducing cyclostationarity at receiver, they introduce it at transmitter. This cyclo-
stationarity allows the channel to be estimated from second-order statistics only. In their
work, they show that coding information can be used to facilitate the receiver’s equaliza-
tion, even though the objective of channel coding is error correction without any concern
about channel dispersion. Moreover, channel equalization methods usually assume inputs
to be i.i.d without any concern about channel coding. Despite all benefits of their method,
repetition of input blocks, reduces information rate.

To minimize this rate reduction, Giannakis himself used a different technique in [10] to
introduce cyclostationarity. He used a precoding filterbank at transmitter and a decoding
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filterbank at receiver, to keep benefits of [24], and also have a small rate reduction. This
filterbank precoder at transmitter create input diversity, similar to the diversity obtained
by using training sequences.

Cyclostationary-based methods find application in many systems. Heath, and Gian-
nakis exploit its applications in cyclic prefix orthogonal-frequency-division multiplexing
(CP-OFDM) systems [11], while Doukopoulos and Moustakides exploit its applications in
zero-padding orthogonal-frequency-division multiplexing (ZP-OFDM) systems [8]. OFDM
is widely used in modern transmission because of its ease of channel equalization, high
spectral efficiency, and flexible data rate. Due to the existence of either cyclic prefix or
zero-padding, OFDM systems have cyclostationarity as an inherent feature and can be
considered a special case of precoding structure in [10]. By inserting a cyclic prefix (or
zero-padded sequence) longer than the channel order, OFDM changes a frequency-selective
channel into flat-fading channel. Therefore, only a one-tap equalization is required, but
this comes at expense of a loss of 10-25 % in efficiency. Moreover, if the length of the
channel impulse response is longer than cyclic prefix (zero-padded sequence), ISI occurs
and this simple equalization is not possible anymore.

In some of OFDM systems, some of subcarriers, which are called virtual carriers (VC),
are not used for data transmission for various reasons. The method in [13] provided a
channel estimation method for OFDM systems by exploiting virtual carriers over time-
dispersive channels. This method works for both OFDM with cyclic prefix and without it
as long as a sufficient channel identifiability condition is met. As said before, using cyclic
prefix longer than the length of channel multi-path spread, would result in a significant
loss in channel utilization. Moreover, the channel in some applications is time-varying
and would need a periodic training sequence to be transmitted which further reduces
throughput. Therefore, OFDM systems with short CP or no CP at all are more desired.
Reduction of cyclic prefix allows OFDM to use a higher portion of channel capacity in
comparison to previous estimators that were cyclic prefix based.

In [19], the application of cyclostationary-based estimation in code-division multiple
access (CDMA) is discussed. It has applications in estimating the down-link channel of
TDMA and CDMA systems. Simulations in this paper show that performance of the
cyclostationary-based channel estimation is superior to that of RAKE receiver, which as-
sumes perfect knowledge of the channel impulse response, at high SINR when multiuser
interference is the dominating disturbance.

Using mathematical models developed in [2], papers [17], [19], and [21] proposed blind
channel identification techniques using trailing zeros and they are called subspace-based
techniques. In [19], a deterministic method was proposed to estimate the channel. The
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deterministic nature of the solution, contrary to previous statistical methods, is appealing
for transmission over slow-varying channels. In this method, if the length of channel is not
greater than the length of trailing zero sequence (guard intervals), channel matrix can be
modeled as a Toeplitz matrix and its kernel would be channel coefficients. This method
needs to receive at least M blocks of data before it can find channel coefficients. This
prevents the method from being effective when channel is changing fast, especially when
M is large.

Pham and Manton propose a method that only depend on the presence of gurad in-
tervals to prevent ISI [17]. They derive a practical algorithm to identify and estimate the
channel from just two received blocks by using guard intervals. In this method, given two
received blocks Y1 (z) = S1 (z)H (z) and Y2 (z) = S2 (z)H (z), the channel can be esti-
mated by computing the greatest common divisor (GCD) of Y1 (z) and Y2 (z), with the
condition that S1 (z) and S2 (z) are co-prime. This method can be compared to previous
works that has been done on Single Input Multiple Output (SIMO) systems [23], and [14].
In SIMO system, the output of mth channel is given by Ym (z) = S (z)Hm (z). Therefore,
blind channel identification algorithms for SIMO system are basically algorithms for finding
the GCD of outputs {Y1 (z) , Y2 (z) , ...., YN (z)}. In a Single Input Single Output (SISO)
system with guard intervals, GCD is H (z), whereas in SIMO systems, GCD is S (z). This
means that both of these techniques are essentially trying to do the same thing. Although
these algorithms reduced the number of received blocks needed to estimate the channel,
they have more computational complexity especially when M is large.

In [21], Su proposes an algorithm that [17],and [19] are special cases of. In it, Su and
Vaidyanathan, provide a generalized algorithm that made a trade-off between the number
of repetitions and received blocks. These two parameters can be chosen freely as long as
they satisfy a certain constraint. They show that when the system parameter or as they
call it repetition index (Q) is chosen properly, their generalized algorithm outperforms
previous methods in [17] and [19].

In [5], Choi and Lim proposed a method using Cholesky factorization of covariance
matrix to estimate the channel impulse response. Cholesky factorization would result
in an upper triangular covariance matrix that contains the full information of channel
impulse response. A parameterization technique is used to estimate the channel using this
information. It should be noted that the computational complexity of the proposed method
depends on the length of channel impulse response, whereas the computational complexity
of methods in [17], [19], and [21] depend on the length of packet. Therefore, when the
length of packet is long, these techniques are much more efficient. Through simulation,
this method showed that it continues to be effective even if the number of data blocks is
small. This feature is important in time-varying channels.
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In [26], Zeng, Li and Cheng proposed another blind and semi-blind channel estima-
tion technique that has relatively lower complexity than [17], [19], and [21], and also re-
quires significantly less number of received blocks compared to them, which is attractive
when channel is varying fast. In their paper, they used blind channel estimation for zero-
padding single-carrier block transmission (ZP-SCBT) systems using SOS. SCBT has nearly
all benefits of OFDM but has significant performance improvement over OFDM in spe-
cific environments. SCBT has smaller peak-to-average power ratio (PAPR) than OFDM.
Moreover, in SCBT, carrier frequency offsets cause less degradation in SNR than OFDM.
Unlike subspace-based techniques, this approach tries to identify the inverse of channel
impulse response instead of the channel itself by using the redundancy of zero padding.

Conventional subspace-based algorithms for blind channel estimation in zero-padded
systems were frequently used because they can accurately estimate the channel using only
a few blocks. However, they don’t work when they are applied to ZP-OFDM with VC.
Pan and Phoong proposed an improved version of subspace-based algorithm for blind
channel estimation using only a few received blocks [15]. In their paper, they proposed
an improved algorithm for SISO zero padded systems. Their algorithm has two main
advantages compared to previous subspace-based blind channel estimation methods for
ZP-OFDM.

First of all, they showed that the deterministic channel estimation method in [21], due
to its repetitive structure, would not result in a noise autocorrelation matrix equal to a
scaled version of identity matrix, even if the channel noise is independent and identically
distributed (i.i.d.). This problem would degrade the performance of estimation. They
instead proposed a simple diagonal noise weighting matrix, which unlike the weighted
least square methods, depends only on the repetition index (Q) [21] and not on channel
variance or SNR.

Furthermore, they showed that methods in [17], [19], and [21] would not work for ZP-
OFDM with VC. Instead, they proposed a generalization of these blind estimation methods
for ZP-OFDM with VC, which uses both repetition index Q and information that VC has
to offer (there is no constraint on the location of the VC). Their simulation results show
that their method not only works in presence of VC, it also outperforms previous methods
in [17], [19] and [21].

1.3 Contributions of the thesis

In this thesis, M-FSK is considered as the modulation scheme. The FSK modulation
symbols are considered as basis vectors for M-dimensional space which are orthogonal to
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each other. Because of this orthogonality, all of these symbols have the same distance
in space with respect to each other. However, as these symbols go through the channel,
they do not remain orthogonal to each other and thus some of them will get closer while
some of them will become farther than before. Those that got closer are more probable to
be mistaken with each other. Thus, making the decoding more susceptible to error. The
decoder does not know about reshaped signals, and make its decision based on original bases
which causes further degradation in performance. Therefore, by estimating the channel,
reshaped signals could be found and error probability will decrease.

In our model, the channel is not flat fading and has more than one tap. This would
cause multi-path fading in the received signal. One of the effects of multi-path fading is
inter symbol interference (ISI), in which each symbol leaks some of its energy to adjacent
symbols. Fortunately, we have low transmission rate which will allow us to work in low
SNR where the energy of each symbol is low compared to noise. Therefore, the leaked
energy, which is only a portion of each symbol’s energy, is not noticeable compared to
noise and ISI effect is minimized.

In this thesis, a blind channel estimation method is proposed. Our method uses an
iterative algorithm in the receiver to decode the received signal. In each iteration of the
algorithm, a new decoded output frame is generated which is an estimate of transmitted
frame data. An estimation of channel is then generated from output frame. This channel
estimation is then used to derive reshaped bases. At the end of each iteration, a new
output is generated from the received signal using new reshaped bases.

8



Chapter 2

System Design

This chapter is dedicated to representing our system model. In the first section, we give
a brief description of our signaling method. In the second section, we define our channel
model, multi-path fading, and its effect on our system. Then, we derive signal to noise and
interference ratio (SINR) of the system. In the last two sections, product coding and the
corresponding decoding method are introduced.

2.1 System Model

We are using multiple frequency shift keying (M-FSK) as our modulation scheme. In this
modulation, M signals with different center frequencies are chosen to transmit data. We
choose the following set of signals as transmission signals

S1 = A sin (2πf0t) 0 ≤ t ≤ Ts

S2 = A sin (2π (f0 + ∆f) t) 0 ≤ t ≤ Ts

S3 = A sin (2π (f0 + 2∆f) t) 0 ≤ t ≤ Ts (2.1)

...

SM = A sin (2π (f0 + (M − 1) ∆f) t) 0 ≤ t ≤ Ts ,

in which f0 is an arbitrary modulation frequency. Parameter ∆f can be found using
the condition that these set of signals should be orthogonal in [0, Ts] interval. Therefore,
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applying the orthogonality condition would yield

〈sk1 , sk2〉 =

∫ Ts

0

A2 sin (2π (f0 + (k1 − 1) ∆f) t) sin (2π (f0 + (k2 − 1) ∆f) t)

=

∫ Ts

0

A2

2
[cos (2π (2f0 + (k1 + k2 − 2) ∆f) t)− cos (2π (k1 − k2) ∆ft)]

=
A2

2

[
sin (2π (2f0 + (k1 + k2 − 2) ∆f) t)

2π (2f0 + (k1 + k2 − 2) ∆f)
− sin (2π (k1 − k2) ∆ft)

2π (k1 − k2) ∆f

]Ts
0

= 0 (2.2)

for every k1, k2 ∈ {1, 2, ...,M} and k1 6= k2. Due to the fact that f0 � sin (α), the first
term in (2.2) would be negligible. Therefore, we get

1

4π (k1 − k2) ∆f
sin (2π (k1 − k2) ∆ft)|Ts0 = 0.

The above equation can be simplified to

sin (2π (k1 − k2) ∆fTs)− sin 0 = 0. (2.3)

The argument of sine should be a multiplier of π in 2.3. Therefore,

2π (k1 − k2) ∆fTs = kπ.

The minimum value for ∆f is desirable so k will be set as k = 1 and

∆f =
1

2 (k1 − k2)Ts
.

Because adjacent signals should also be orthogonal, k1−k2 should be equal to one and ∆f
would be

∆f =
1

2Ts
(2.4)

Parameter A has to be determined based on the fact that the energy of each basis signal
should be E for every i

〈si, si〉 =

∫ Ts

0

A2 sin2 (2π (f0 + (i− 1) ∆f) t)dt

=

∫ Ts

0

A2

(
1− cos (4π (f0 + (i− 1) ∆f) t)

2

)
dt = E .
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Therefore, we have

A2

2

[
t− sin (4π (f0 + (i− 1) ∆f) t)

4π (f0 + (i− 1) ∆f)

]Ts
0

= E . (2.5)

In equation (2.5), the second term in brackets contains f0 in denominator. This means
that the value of denominator is big compared to the sine term in numerator and can be
ignored. This will result in

A2

2
Ts = E , (2.6)

or equivalently

A =

√
2E
Ts
. (2.7)

Referring to equation 2.1, these set of signals are M sinc functions at M center frequen-
cies in the frequency domain. These basis signals can be interpreted in a different manner
e.g. a space with M basis vectors. This interpretation can be seen in figure 2.1

The set of signals in 2.1 are used to transmit data. Each time that we want to send
a symbol, we transmit one of these signals instead. The chosen basis signal experience
multi-path fading and is added to noise before arriving at the receiver. At the receiver,
the received signal is then projected into basis vectors of M-dimensional space and these
projections form the received vector.

The main criteria in deciding which basis was sent is to find the minimum distance
between the received vector and basis signals. Therefore, we introduce a matrix that
measures the distance between each two of these bases in 2.1, called distance matrix.
Distance matrix is a symmetric matrix with zero diagonal elements. The distance matrix
is represented as follows

D =


d1,1 d1,2 d1,3 .... d1,M

d2,1 d2,2 d2,3 .... d2,M

d3,1 d3,2 d3,3 .... d3,M
...

...
...

. . .
...

dM,1 dM,2 dM,3 .... dM,M

 (2.8)

The error probability of the system can be represented as follows

Pe =
∑
i

∑
j

P (s = i)P (ŝ = j|s = i) i 6= j ,

11
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Ś2

ŚM

d1,M

d1,2
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ψ1

ψ2
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Figure 2.1: Basis vectors in M-dimension space

where P (s = i) is the probability that symbol i has been sent and P (ŝ = j|s = i) is the
probability that ith symbol has been sent but it is demodulated as j th symbol.

In the presented interpretation, all bases are equally spaced with respect to each other,

which means that all entries except di,i are equal to 2
√
E
Ts

. Therefore, the probability that

the ith symbol is mistaken with j th symbol is the same for all i and j as long as j 6= i.
Therefore, the error probability will become

Pe = (M − 1)
∑
i

P (s = i)P (ŝ = j0|s = i) ,

in which j0 ∈ {1, 2, ...,M}− {i}. P (ŝ = j0|s = i) is the same for all values of i because all
bases have the same distance, so

Pe = (M − 1)
∑
i

P (s = i)P (ŝ = j0|s = i0) = (M − 1)P (ŝ = j0|s = i0) . (2.9)

As it is evident from (2.9), error probability is independent of transmitted and received
symbols.
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2.2 Channel Model

In our system, the transmitted signal goes through a channel that has an specific impulse
response and also adds noise to the transmitted signal. Thus, the received signal can be
represented as follows

y (t) = x (t) ∗ h (t) + n (t) (2.10)

in which the channel h (t) can be modeled with L different taps in time as the following
equation

h (t) =
L−1∑
i=0

aiδ (t− iτ) , (2.11)

where
L−1∑
i=0

a2
i = 1 (2.12)

in which ai represents the ith tap of channel.

Substituting channel model of 2.11 in 2.10 would give us the received signal y (t). This
channel model causes some problems for us. First of all, if the channel has more than one
tap, then it causes multi-path fading for transmitted signals. One of the effects of multi-
path fading is the leakage of some portion of the energy of each symbol into next symbols.
This leakage would cause ISI. Fortunately, our designed system has low transmission rate
and therefore operates in low SINR. When SINR is low, the energy leakage of one symbol
is not noticeable in comparison to the energy of noise.

Another problem generated by channel model of 2.11 is signal reshaping. After Si (t)
i ∈ {1, 2, ...,M} went through the channel, they are not in the previous position in M-
dimensional space. For instance, Si (t) can be represented by

∑
αiψi (t). This signal

reshaping causes some of vectors to become closer to each other and thus more susceptible
to error. Therefore, Pe depends more on these close vectors. As a result, equation 2.9 is
not valid anymore and Pe is bigger than the value calculated by 2.9.

Referring to figure 2.2, the error probability can be decreased if the distance is computed
between the received signal and S

′
i instead of being computed between the received signal

and Si. This decrease in error depends on either knowing the channel, or somehow being
able to estimate it. Therefore, if the receiver has access to reshaped bases {S ′1, S

′
2, ..., S

′
M},

the error probability can be reduced drastically.

In this work, we have two different types of information. The first one is the informa-
tion which is related to the transmitted data and the second one is the information about
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Ś1

Ś2

ŚM

d1,M d1,2

d2,M

ψ1

ψ2

ψM

Figure 2.2: Basis vectors convolved with channel

channel state. The second type of information has a key role in decodability of received
signals. However, the channel has limited capacity which generates some constraints on
transmission rate and the amount of channel distortion. Lower channel distortion at the
receiver would result in a more precise estimation of the location of distorted symbols
in signal constellation, but occupies higher portion of channel capacity to itself. There-
fore, the remaining channel capacity which can be dedicated to data transmission reduces.
Thus, there is a trade-off between high precision and channel capacity available for data
transmission.

Since it would take infinite amount of bits to send a random real number, each tap
of h (t) in its continuous format needs infinite bits per transmission to be sent. On the
other hand, a finite set of discrete numbers can be expressed by limited amount of bits.
Thus, channel information can be sent to the receiver if we accept distortion in channel
tap values.

The channel distortion for each tap is λ. Therefore, the estimated channel can be
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represented by

ĥ (t) =
L−1∑
k=0

âkδ (t− kτ) (2.13)

with âk being

âk = bak
λ
cλ. (2.14)

In this estimation, the channel estimation error will be

∆ĥ (t) =
L−1∑
k=0

∆âkδ (t− kτ) (2.15)

where
∆âk = ak − âk (2.16)

and |∆âk| ≤ λ. Therefore, the channel model of 2.10 can be extended as follows

y (t) = x (t) ∗ h (t) + n (t)

= x (t) ∗
(
ĥ (t) + ∆ĥ (t)

)
+ n (t)

= x (t) ∗ ĥ (t) + x (t) ∗∆ĥ (t) + n (t) (2.17)

where x (t) ∗ ĥ (t) is the desired term. x (t) ∗∆ĥ (t) along with n (t) are unknown param-
eters that represent distorted transmitted signal and noise respectively. Based on above
equations, signal to interference and noise ratio will be

SINR =
Power of {x (t) ∗ ĥ (t)}

Power of {x (t) ∗∆ĥ (t) + n (t)}
, (2.18)

or equivalently in the frequency domain we have

SINR (f) =
|X (f)|2

∣∣∣Ĥ (f)
∣∣∣2

|X (f)|2
∣∣∣∆̂H (f)

∣∣∣2 + σ2
n

, (2.19)

where the interference comes from the signal itself. Thus, one of the methods to compute
SINR is to compute the power spectral density (or PSD) of x (t), ĥ (t), and ∆ĥ (t).

First of all, the PSD of transmitted signal is going to be calculated. The transmit-
ted signal is not diterministic, thus PSD can only be calculated through autocorrelation
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function. As it is shown in [9], the autocorrelation function for this phase-incoherent FSK
signalling can be found by expressing the transmitted signal as the following form:

x (t) =
∞∑
n=0

an (t) p (t− nTs) (2.20)

where
an (t) = cos (2π (f0 + f (n)) t+ θn), (2.21)

and

f (n) =
M∑
m=1

δm (n) fm. (2.22)

In the above equations, M is alphabet size, p (t) is pulse shaping signal, fm is the frequency
of the mth basis, and

δ (n) = [δ1 (n) , δ2 (n) , ..., δM (n)] (2.23)

is an indicator vector (for each value of n) with one element equal to unity and the rest
equal to zero and δm (n) is the mth element of that vector.

If θn is an independent sequence, has uniform distribution on the interval [−π, π], and
is statistically independent of {f (n)}, then it can be shown that autocorrelation for this
phase-incoherent FSK signal is given by:

Rx (τ) =
1

2Ts
rp (τ)Zy (τ) (2.24)

where

rp (τ) =

∫ ∞
−∞

p (t− τ/2) p (t+ τ/2) dt (2.25)

and

Zy (τ) = lim
N→∞

1

2N + 1

N∑
n=−N

yn (τ) (2.26)

for which
yn (τ) = cos (2π [f0 + f (n)] τ). (2.27)

Thus, the power spectral density is given by the following convolutional form:

Sx (f) =
1

2Ts
[P (f)P ∗ (f)]⊗

∫ ∞
−∞

Zy (τ) e−i2πfτdτ , (2.28)
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where P (f) is the Fourier transform of p (t). In this case, p (t) is assumed to be a full-
duty-cycle rectangle pulse

p (t) =

{
1, |t| ≤ Ts/2

0, |t| > Ts/2
(2.29)

which in the frequency domain can be translated to

P (f) =
sin πfTs
πf

. (2.30)

If {f (n)} is stationary and basis signals have discrete distribution of {Prm}M1 , then (2.26)
can be simplified to

Zy (τ) =
M∑
m=1

Prm cos (2π (f0 + fm) τ) , (2.31)

and the PSD of x (t) will be

Sx (f) =
1

4Ts

M∑
m=1

Prm [Q (f + f0 + fm)Q∗ (f + f0 + fm) +Q (f − f0 − fm)Q∗ (f − f0 − fm)] .

(2.32)

After the calculation of PSD for x (t), the PSD for channel estimate (ĥ (t)) and channel
error (∆ĥ (t)) will be calculated. Therefore, the Fourier transform of the estimated channel
in (2.15) is taken

Ĥ (f) =
L−1∑
k=0

âke
−i2πkfτ , (2.33)

and PSD of this estimation will be

Sĥ (f) = Ĥ (f) Ĥ∗ (f)

=

(
L−1∑
k=0

âke
−i2πkfτ

)(
L−1∑
u=0

â∗ue
i2πufτ

)

=
L−1∑
u=0

L−1∑
k=0

âkâ
∗
ue
−i2π(k−u)fτ (2.34)

Because estimation and error have the same form, ∆h has the same PSD form ĥ

S∆ĥ (f) =
L−1∑
u=0

L−1∑
k=0

∆âk∆â
∗
ue
−i2π(k−u)fτ . (2.35)
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SINR (f) can be computed based on |X (f)|2,
∣∣∣Ĥ (f)

∣∣∣2, and
∣∣∣∆̂H (f)

∣∣∣2. The capacity

of a channel with AWGN noise can calculated by the following relation

C =
BW

2
log2 (1 + SINR) . (2.36)

where BW is the signaling bandwidth. Then the total capacity will be

C =
1

2

∫
BW

log2

1 +
|X (f)|2

∣∣∣Ĥ (f)
∣∣∣2

|X (f)|2
∣∣∣∆̂H (f)

∣∣∣2 + σ2
n

 df. (2.37)

As it was discussed before, this capacity can upper bound both the transmission rate
R and the channel coefficients rate Rĥ or in other words we have

R +Rĥ ≤ C. (2.38)

One of the constraints on channel is defined in equation (2.12). Based on this equation,
the following should hold for every i

|hi| ≤ 1. (2.39)

In order to have a channel estimation with distortion less than Lλ, each tap of channel
can be identified by a discrete random variable from {−1,−1 + λ, ..., b 1

λ
cλ} with equal

probability. Therefore, identifying the channel with distortion of Lλ occupies the following
portion of channel capacity

Rĥ =
∑
a0

...
∑
aL−1

Pr (â0, ..., âL−1) log2

(
1

Pr (â0, ..., âL−1)

)
(2.40)

which can be upper bounded as follows

Rĥ ≤
∑
a0

Pr (â0 = xi) log2

(
1

Pr (â0 = xi)

)
+ ...

+
∑
aL−1

Pr (âL−1 = xi) log2

(
1

Pr (âL−1 = xi)

)
.

(2.41)
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However, each tap has the same distribution. Thus, the above inequality can be simplified
as follows

Rĥ ≤ LH (âk) = L
∑
xi

Pr (X = xi) log2

(
1

Pr (X = xi)

)
= L

∑
xi

1

b 2
λ
c

log2

(
b2
λ
c
)

= L log2

(
b2
λ
c
)
. (2.42)

The rate computed in 2.42 is for channels that are time-invariant. If a channel changes
every Tc seconds and each symbol time is Ts, then the channel entropy with acceptable Lλ
distortion would be

Rĥ = H
(
ĥ
)
≤ Tc
Ts
L log2

(
b2
λ
c
)

(2.43)

Based on 2.38 and 2.43, the achievable data rate can be upper bounded by the following
inequality:

R +
Tc
Ts
L log2

(
b2
λ
c
)
≤
∫

BW

log2

1 +
|X (f)|2

∣∣∣Ĥ (f)
∣∣∣2

σ2
n + |X (f)|2

∣∣∣∆̂H (f)
∣∣∣2
 (2.44)

2.3 Product Code

In this section, a brief introduction of product code is provided based on the works of
Pellikaan, Wu, Bulygin, and Jurrius in [16].

If C1 is a [n1, k1, d1] code, C2 is a [n2, k2, d2] code, ..., and CN is a [nN , kN , dN ] code,
where ni is the length of the ith code’s codeword, ki is the length of the ith code’s message,
and di is the minimum distance of ith code, then product code denoted by C1⊗C2⊗...⊗CN
is defined by

C1 ⊗ C2 ⊗ ...⊗ CN =

(cij...u)1≤i≤n1,1≤j≤n2,...,1≤u≤nN

∣∣∣∣∣
(cij...u)1≤i≤n1

∈ C1 for all i

(cij...u)1≤j≤n1
∈ C2 for all j

...
(cij...u)1≤u≤nN

∈ CN for all u

 .

(2.45)
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In C1 ⊗ C2, ⊗ indicate the Kronecker product of C1 and C2.

The entries of this code are k1 × k2 × ... × kN arrays with elements from a common
GF(q) (a Galois field of order q) and the codewords are n1 × n2 × ... × nN matrices with
elements from the same GF(q).

Based on this definition, C1⊗C2⊗ ...⊗CN is the set of all n1×n2× ...×nN arrays whose
columns belong to C1, rows to C2, ..., and the N th dimension vectors to CN . This product
code will be a [n1n2...nN , k1k2...kN , d1d2...dN ] code and this new code has information rate
of R = R1R2...RN = k1k2...kN

n1n2...nN
. It is worth noting that C1 ⊗ C2 ⊗ ...⊗ CN is linear if all of

C1, C2, ...,CN are linear.

As it was shown, combining two or more codes will result in a product code. Product
code is also called direct product, Kronecker product, or tensor product code.

Here, for simplicity, C1, C2, ...,CN are all considered as parity check codes. This means
that in the ith code, ni = ki + 1 and the parity check symbol can be found solving the
following equation (

ki∑
l=1

xil

)
+ xn ≡ 0 (mod q) (2.46)

in which xil, l ∈ {1, ..., ki} are known and xn is the unknown parity.

As N increases, each symbol is in a higher number of parity equations and the proba-
bility that this symbol is mistaken with another one is reduced. Since this symbol should
check in N different equations, there is a small chance that an incorrectly decoded symbol
would satisfy all of them. Thus, if there are constant number of symbols, arranging them
in a higher dimension cube would result in a lower probability of error. However, it should
be noted that with changing the values of n, k, and N , the spectral efficiency also changes.

As an example, a C1 ⊗ C2 product code is shown in figure 2.3. As it can be seen,
message bits are put in the upper left hand corner, and parity bits are calculated in each
row and column. Moreover, symbols in the down right hand corner are parity checks on
parity checks, which means that even parity bits are held in their own parity equation.

As it is proved in [3], one of the facts that should be considered for product code is
that, utilizing it will reduce each code’s ability to correct errors that have length up to half
the code’s length. Consider the following for the above example

µ1 =
d1

n1

µ2 =
d2

n2

, (2.47)
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Figure 2.3: product code with N=2

where µ1 and µ1 show the ability of each code to correct errors up to half their lengths,
and for product code this value is

µ = µ1µ2 =
d1d2

n1n2

≤ µ1 and µ2 (2.48)

which is less than the correction ability of both of codes.

Although having less minimum distance is not a good quality for product code, it
should also be noted that product code has interleaving as an inherent feature in itself,
thus making this code robust to burst errors. Furthermore, the simple structure of product
code along with the use of low complexity decoding algorithm , has made product code
appealing.

2.4 Decoding of Product Code

For decoding product code, a soft iterative symbol decoding algorithm that operates on a
code trellis is used. This algorithm is called BCJR after its founders Bahl, Cocke, Jelinek
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and Raviv. This algorithm is also called Maximum a Posteriori (MAP)or forward-backward
algorithm. There are some simplified versions of MAP algorithm, namely log-MAP and
max-log-MAP algorithms, and in this thesis, the log-MAP is used to decode.

As it is stated in [12] and [18], a MAP symbol decoder maximizes the a posteriori
symbol probabilities. This algorithm initially computes so called a posteriori probability
(or APP) values for each symbol

APP(k) (xj) = ln (Pr (xj = k | r)) , (2.49)

where xj is the j th transmitted symbol, r is the received signal, and k ∈ {1, 2, ...,M} is
the number of each basis. After computing these APPs, the decoder make use of the fact
that each symbol is in N parity equations and thus uses the information of other symbols
to decode that symbol. These APPs handover among different symbols for a number of
iterations that can be set. In each iteration, these APPs are computed again using the
information of other symbols.

Finally, the demodulator uses hard decision to find the estimate of xj

x̂j = max
k
{APP(k) (xj)}. (2.50)

In order to find these APPs, BCJR algorithm computes and uses the following metrics in
trellis

αj (sk) , forward metric (2.51)

βj (sk) , backward metric (2.52)

γj (sk, śu) , branch metric (2.53)

The forward metric is the probability of being in state sk at time j given the received
sequence up to time j in forward direction, whereas the backward metric is the probability
of being in state sk at time j given the received sequence up to time j in backward direction.
For a given received vector at time j , γj (sk, śu) is the probability of going from state sk to
śu.

At first, all metrics in the trellis are calculated, and then the APP for each transmitted
symbol and each basis will be computed by the following equation

APP(k) (xj) = m̂ax
(sk,śu)

{α̂j (sk) , γ̂j (sk, śu) , β̂j+1 (śu)}, (2.54)

where sk is state at time j , śu is state at time j+1, and (sk, śu) is the set of all state pairs
corresponding to input being xj = k at time j . Metrics with hat are logarithmic versions
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Figure 2.4: Three metrics on trellis for M=2

of original metrics, meaning that:

α̂j (sk) = ln (αj (sk)) (2.55)

β̂j (sk) = ln (βj (sk)) (2.56)

γ̂j (sk, śu) = ln (γj (sk, śu)) (2.57)

and m̂ax operation is defined as follows

m̂ax
1≤n≤N

{xn} , ln

(
N∑
n=1

exn

)
(2.58)

.

At the end of last iteration, remaining APPs are then considered as outputs of decoder
and these outputs are fed into demodulator to determine which of these APPs in each xj
is bigger than others.
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As an example, the trellis for M=2 is shown in figure 2.4 along with all three metrics.
As it can be seen, for computing APP(k) (x3), α3 (sk)s and β4 (sk)s are considered along
with γ3s, and they are used in equation (2.54) to find APP.
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Chapter 3

Analysis of Error Probability

This chapter is dedicated to channel estimation and the error probability associated with
it. At first, we find the error probability of our system model. After that, we define the
procedure in which we estimate the channel with. At the end of the chapter, we show the
relation between our estimation method and the error probability.

3.1 Error Probability Computation

The set of sinusoidal signals 2.1 that were used to transmit data can be shown in the
M-dimension space as

S1 =

(√
2E
Ts
, 0, ..., 0

)

S2 =

(
0,

√
2E
Ts
, ..., 0

)
...

SM =

(
0, 0, ...,

√
2E
Ts

)
. (3.1)

After going through the channel, basis signals are reshaped by the channel impulse
response and noise. Based on the channel model that was introduced in chapter 2, each
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reshaped basis vector will be computed by

Sri (t) = Si (t) ∗ h (t) + n (t) = S
′

i (t) + n (t) , (3.2)

where i ∈ {1, 2, ...,M}. In the above equation, S
′
i (t) is the reshaped basis signal corre-

sponding to channel h (t). Utilizing the following equation

h (t) =
L−1∑
k=0

akδ (t− kτ)

S
′
i (t) would become

S
′

i (t) = Si (t) ∗
L−1∑
k=0

akδ (t− kτ) , (3.3)

or equivalently

S
′

i (t) =
L−1∑
k=0

akSi (t− kτ) . (3.4)

By replacing Si (t) with its sinusoidal signal form in 2.1, S
′
i (t) will become

S
′

i (t) =
L−1∑
k=0

ak

√
2E
Ts

sin (2π (f0 + (i− 1) ∆f) (t− kτ))

=
L−1∑
k=0

ak

√
2E
Ts

[sin (2π (f0 + (i− 1) ∆f) t− 2π (f0 + (i− 1) ∆f) kτ)] . (3.5)

By using the formula sin (α− β) = sin (α) cos (β)− cos (α) sin (β), S
′
i (t) would become

S
′

i (t) =
L−1∑
k=0

ak

√
2E
Ts

sin (2π (f0 + (i− 1) ∆f) t) cos (2π (f0 + (i− 1) ∆f) kτ)

−
L−1∑
k=0

ak

√
2E
Ts

cos (2π (f0 + (i− 1) ∆f) t) sin (2π (f0 + (i− 1) ∆f) kτ)

(3.6)

or
S
′

i (t) = S
′

i1
(t)− S ′i2 (t) . (3.7)

In M-dimensional space, this reshaped signal can be expressed by projecting it onto
each one of the space basis vectors with unit energy

S
′

i = (Ci,1, ..., Ci,i, ..., Ci,M) . (3.8)
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{ψ1, ψ2, ...., ψM} are defined as orthonormal bases of M-dimensional space. Therefore, each
one of them is defined by the following equation

ψi =
Si√∫ Ts

0
S2
i dt

=
Si√
E

=

√
2

Ts
sin (2π (f0 + (i− 1) ∆f) t) 0 ≤ t ≤ Ts. (3.9)

For j 6= i, these projections are computed by

Ci,j =

∫ Ts

0

S
′

i (t)ψj (t) dt =

∫ Ts

0

(
S
′

i1
(t)− S ′i2 (t)

)
ψj (t) dt

=

∫ Ts

0

S
′

i1
(t)ψj (t) dt−

∫ Ts

0

S
′

i2
(t)ψj (t) dt = C

(1)
i,j − C

(2)
i,j . (3.10)

Each term in Ci,j will be calculated separately, starting with C
(1)
i,j . We have

C
(1)
i,j =

∫ Ts

0

[
L−1∑
k=0

ak

√
2E
Ts

sin (2π (f0 + (i− 1) ∆f) t) cos (2π (f0 + (i− 1) ∆f) kτ)

]
×√

2

Ts
sin (2π (f0 + (j − 1) ∆f) t)dt

,

(3.11)
or equivalently

C
(1)
i,j =

L−1∑
k=0

ak

√
1

E
cos (2π (f0 + (i− 1) ∆f) kτ) 〈Si, Sj〉 . (3.12)

Due to the fact that j 6= i and Si signals are an orthogonal set, C
(1)
i,j = 0. In the next step

we are going to compute C
(2)
i,j as follows

C
(2)
i,j =

∫ Ts

0

[
L−1∑
k=0

ak

√
2E
Ts
cos(2π (f0 + (i− 1) ∆f) t) sin (2π (f0 + (i− 1) ∆f) kτ)

]
×√

2

Ts
sin (2π (f0 + (j − 1) ∆f) t)dt.

(3.13)
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Since sin (α) cos (β) = 1
2

(sin (α + β) + sin (α− β)), then the above equation can be sim-
plified as follows:

C
(2)
i,j =

L−1∑
k=0

ak
2

Ts

√
E sin (2π (f0 + (i− 1) ∆f) kτ)×∫ Ts

0

[
sin (2π (2f0 + (i+ j − 2) ∆f) t) + sin (2π (j − i) ∆ft)

2

]
dt.

(3.14)

Let us indicate the integral term of the above equation by W . Therefore, W can be
simplified and calculated as follows

W =

[
− cos (2π (2f0 + (i+ j − 2) ∆f) t)

4π (2f0 + (i+ j − 2) ∆f)
+
− cos (2π (j − i) ∆ft)

4π (j − i) ∆f

]Ts
0

. (3.15)

The first term in (3.15) contains f0 in denominator, which is a big number compared to
the cosine function in nominator. Thus, it will be negligible and we have

W ∼=
1− cos (2π (j − i) ∆fTs)

4π (j − i) ∆f
. (3.16)

As it was stated in (2.4), ∆f = 1
2Ts

. Therefore, W would become

W =
(1− cos (π (j − i)))Ts

2π (j − i)
=

(
1 + (−1)(j−i+1)

)
Ts

2π (j − i)
. (3.17)

Finally, Ci,j for j 6= i would be calculated by

Ci,j = −C(2)
i,j = −

(
1 + (−1)(j−i+1)

π (j − i)

)
L−1∑
k=0

ak
√
E sin (2π (f0 + (i− 1) ∆f) kτ). (3.18)

The next step is to compute the projection of S
′
i on its own (ith) dimension. Based on

equation (3.10) we have:

Ci,i =

∫ Ts

0

S
′

i1
(t)ψi (t) dt−

∫ Ts

0

S
′

i2
(t)ψi (t) dt = C

(1)
i,i − C

(2)
i,i , (3.19)

where C
(1)
i,i has the same form as (3.11). If j is replaced with i , we get the following

C
(1)
i,i =

L−1∑
k=0

ak

√
1

E
cos (2π (f0 + (i− 1) ∆f) kτ) 〈Si, Si〉

=
L−1∑
k=0

ak
√
E cos (2π (f0 + (i− 1) ∆f) kτ). (3.20)
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C
(2)
i,i also has the same form as equation (3.13). Therefore, if j is replaced with i in (3.13)

and we use the formula sin (α) cos (α) = 1
2

sin (2α), C
(2)
i,i can be calculated as

C
(2)
i,i =

L−1∑
k=0

ak
2

Ts

√
E sin (2π (f0 + (i− 1) ∆f) kτ)

∫ Ts

0

1

2
sin (4π (f0 + (i− 1) ∆f) t)dt

=
L−1∑
k=0

ak
1

Ts

√
E sin (2π (f0 + (i− 1) ∆f) kτ)

[
− cos (4π (f0 + (i− 1) ∆f) t)

4π (f0 + (i− 1) ∆f)

]Ts
0

.

C
(2)
i,i has f0 in its denominator and can be ignored. Therefore, for each value of i we have

Ci,i = C
(1)
i,i − C

(2)
i,i = C

(1)
i,i . (3.21)

The set of reshaped basis vectors will be

S
′
=


S
′
1

S
′
2

S
′
3
...
S
′
M

 =


C1,1 C1,2 C1,3 .... C1,M

C2,1 C2,2 C2,3 .... C2,M

C3,1 C3,2 C3,3 .... C3,M
...

...
...

. . .
...

CM,1 CM,2 CM,3 .... CM,M

 . (3.22)

After projecting the reshaped basis signal on each dimension using the above formulas,
noise has to be projected on each dimension as well. In other words, we have

n = (n1, n2, ..., nM) . (3.23)

where ni is the projection of noise signal on ith basis.

The decoding is based on APPs, which in turn depend on the distance of the vector
representation of the received signal from reshaped bases in 3.22. The demodulator chooses
the closest basis vector to the received signal. Therefore, the probability of correctly
demodulating the received signal is

Pc = Pr
(
|Sri − S

′

i|2 < |Sri − S
′

1|2, ..., |Sri − S
′

i|2 < |Sri − S
′

M |2 | Si (t) was sent
)
, (3.24)

or equivalently

Pc =
M∏
k=1
k 6=i

Pr
(
|Sri − S

′

i|2 < |Sri − S
′

k|2 | Si (t) was sent
)

=
M∏
k=1
k 6=i

P k
c . (3.25)
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Let us compute P k
c

P k
c = Pr

(
|Sri − S

′

i|2 < |Sri − S
′

k|2 | Si (t) was sent
)

= Pr
(
|S ′i + n− S ′i|2 < |S

′

i + n− S ′k|2
)
.

P k
c expands to

P k
c = Pr

(
| (n1, ..., nM) |2 < | (Ci,1 − Ck,1 + n1, ..., Ci,M − Ck,M + nM) |2

)
= Pr

(
M∑
j=1

n2
j <

M∑
j=1

(Ci,j − Ck,j + nj)
2

)
. (3.26)

or

P k
c = Pr

(
M∑
j=1

n2
j <

M∑
j=1

(Ci,j − Ck,j)2 + 2nj (Ci,j − Ck,j) + n2
j

)

= Pr

(
−

M∑
j=1

(Ci,j − Ck,j)2 <
M∑
j=1

2nj (Ci,j − Ck,j)

)
. (3.27)

The right-hand side of the inequality in 3.27 is a summation of M independent, Gaussian
random variables with zero mean and variance of N0. Thus, the whole summation is equal
to a Gaussian random variable with the following distribution

M∑
j=1

2nj (Ci,j − Ck,j) ∼ N

(
0, 4N0

M∑
j=1

(Ci,j − Ck,j)2

)
. (3.28)

Therefore, P k
c can be expressed using Q-function, which is defined as follows

Q (x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (3.29)

Q-function is defined for Gaussian random variables with zero mean and unit variance,
therefore its modified version must be used to find P k

c

P k
c = Q

 −
∑M

j=1 (Ci,j − Ck,j)2√
4N0

∑M
j=1 (Ci,j − Ck,j)2


= Q

−1

2

√∑M
j=1 (Ci,j − Ck,j)2

N0

 . (3.30)
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Due to symmetric property of Q-function that states Q (−x) = 1−Q (x), we can say that

P k
c = 1−Q

1

2

√∑M
j=1 (Ci,j − Ck,j)2

N0

 . (3.31)

Finally, the probability of error will become

Pe = 1− Pc = 1−
M∏
k=1
k 6=i

1−Q

1

2

√∑M
j=1 (Ci,j − Ck,j)2

N0

 . (3.32)

In what was discussed so far, the assumption is that the channel coefficients are known
to the decoder. However, only an estimate of these coefficients can be extracted from the
received signal. Thus, 3.2 would be rewritten as

Sri (t) = Si (t) ∗
(
ĥ (t) + ∆h (t)

)
+ n (t)

= Si (t) ∗ ĥ (t) + Si (t) ∗∆h (t) + n (t)

= Ŝi (t) + ∆Si (t) + n (t) ,

where Ŝi (t) and ∆Si (t) have the same form as (3.4) except that ak is replaced with âk and
∆ak, respectively. Therefore,

Ŝi (t) =
L−1∑
k=0

âkSi (t− kτ) (3.33)

∆Si (t) =
L−1∑
k=0

∆akSi (t− kτ) . (3.34)

The projection of these two signals onto {ψ1, ..., ψM} would result in a formula like (3.18)
for j 6= i and in a formula like (3.20) for i = j. Therefore, we have the following equations

Ĉi,j = −

(
1 + (−1)(j−i+1)

π (j − i)

)
L−1∑
k=0

âk
√
E sin (2π (f0 + (i− 1) ∆f) kτ)

∆Ci,j = −

(
1 + (−1)(j−i+1)

π (j − i)

)
L−1∑
k=0

∆ak
√
E sin (2π (f0 + (i− 1) ∆f) kτ)
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for j 6= i and we have

Ĉi,i =
L−1∑
k=0

âk
√
E cos (2π (f0 + (i− 1) ∆f) kτ)

∆Ci,i =
L−1∑
k=0

∆ak
√
E cos (2π (f0 + (i− 1) ∆f) kτ)

for i = j. The estimated reshaped basis vectors would become

Ŝ =


Ŝ1

Ŝ2

Ŝ3
...

ŜM

 =


Ĉ1,1 Ĉ1,2 Ĉ1,3 .... Ĉ1,M

Ĉ2,1 Ĉ2,2 Ĉ2,3 .... Ĉ2,M

Ĉ3,1 Ĉ3,2 Ĉ3,3 .... Ĉ3,M
...

...
...

. . .
...

ĈM,1 ĈM,2 ĈM,3 .... ĈM,M

 . (3.35)

The projection of noise onto {ψ1, ..., ψM} would result in M independent Gaussian noise
elements like (3.23).

Assume that Ŝi, i ∈ {1, 2, ...,M} are known to the decoder and APPs are measured
with respect to them. Demodulator chooses the closest basis vector to the received signal.
Thus,

Pc =
M∏
k=1
k 6=i

Pr
(
|Sri − Ŝi|2 < |Sri − Ŝk|2 | Si (t) was sent

)

=
M∏
k=1
k 6=i

P k
c .

We begin by computing P k
c

P k
c = Pr

(
|∆Si + n|2 < |Ŝi − Ŝk + ∆Si + n|2

)
= Pr

(
M∑
j=1

(nj + ∆Ci,j)
2 <

M∑
j=1

(
Ĉi,j − Ĉk,j + nj + ∆Ci,j

)2
)

= Pr

(
M∑
j=1

(nj + ∆Ci,j)
2 <

M∑
j=1

(
Ĉi,j − Ĉk,j

)2

+ (nj + ∆Ci,j)
2 + 2 (nj + ∆Ci,j)

(
Ĉi,j − Ĉk,j

))
(3.36)
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or equivalently

P k
c = Pr

(
−

M∑
j=1

(
Ĉi,j − Ĉk,j

)2

<

M∑
j=1

2 (nj + ∆Ci,j)
(
Ĉi,j − Ĉk,j

))
. (3.37)

The distribution of ∆Ci,js are not known. In the worst case scenario, they have indepen-
dent, Gaussian distributions with zero mean and variance νi,j. In that case we have

M∑
j=1

2 (nj + ∆Ci,j)
(
Ĉi,j − Ĉk,j

)
∼ N

(
0, 4

M∑
j=1

(N0 + νi,j)
(
Ĉi,j − Ĉk,j

)2
)
. (3.38)

As a result, P k
c can be expressed by Q-function as follows

P k
c ≥ Q

 −
∑M

j=1

(
Ĉi,j − Ĉk,j

)2

2

√∑M
j=1 (N0 + νi,j)

(
Ĉi,j − Ĉk,j

)2



= 1−Q


∑M

j=1

(
Ĉi,j − Ĉk,j

)2

2

√∑M
j=1 (N0 + νi,j)

(
Ĉi,j − Ĉk,j

)2

 , (3.39)

and consequently Pe would be

Pe = 1− Pc ≤ 1−
M∏
k=1
k 6=i

1−Q


∑M

j=1

(
Ĉi,j − Ĉk,j

)2

2

√∑M
j=1 (N0 + νi,j)

(
Ĉi,j − Ĉk,j

)2


 . (3.40)

3.2 Channel Estimation

The previous section provided the error probability for our M-FSK modulated system
when the channel is known and when we estimate the channel from received signals. In
this section, the main objective is to find a method to estimate the channel from received
signals. This estimation would enable us to find reshaped basis signals and therefore,
decrease the error probability.
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In the first iteration of decoding, we do not have any knowledge about the channel or
reshaped bases. Therefore, we have to use original bases of 3.1 to demodulate and decode
received signals. Next, we define two M ×M matrices R∗ and R.

Matrix R∗ is our summation matrix. Vector representation of received signals that are
demodulated as Si are added together and put in the ith row of R∗. This procedure is done
for all of received vectors. We fill R∗ with these summations. Let the number of received
signals demodulated as Si be αi where αi ∈ {0, 1, ..., T}. T is the number of symbols in
each frame of product code. We keep these numbers in a vector {α1, ..., αM}. Matrix R∗

is represented as follows

R∗ =


R∗1
R∗2
R∗3
...
R∗M

 =


R∗1,1 R∗1,2 R∗1,3 .... R∗1,M
R∗2,1 R∗2,2 R∗2,3 .... R∗2,M
R∗3,1 R∗3,2 R∗3,3 .... R∗3,M

...
...

...
. . .

...
R∗M,1 R∗M,2 R∗M,3 .... R∗M,M

 . (3.41)

Matrix R is our mean matrix. The ith row of R is the result of dividing the ith row of
R∗ by αi. Matrix R can be represented as follows

R =


R

(1)
1

R
(1)
2

R
(1)
3
...

R
(1)
M

 =


R

(1)
1,1 R

(1)
1,2 R

(1)
1,3 .... R

(1)
1,M

R
(1)
2,1 R

(1)
2,2 R

(1)
2,3 .... R

(1)
2,M

R
(1)
3,1 R

(1)
3,2 R

(1)
3,3 .... R

(1)
3,M

...
...

...
. . .

...

R
(1)
M,1 R

(1)
M,2 R

(1)
M,3 .... R

(1)
M,M

 . (3.42)

Matrix R is now an estimation of matrix S
′

in 3.22. Consequently, each element of R
is an estimate of its corresponding element in S

′
. Therefore, we try to find the relation be-

tween R
(1)
i,j and Ci,j. R

(1)
i,j is the summation of Ci,j and a noise ni,j which can be represented

as follows
R

(1)
i,j = Ci,j + ni,j, (3.43)

where ni,j is the mean of the projection of αi noises onto ψj, or equivalently

ni,j =

∑αi

d=1 n
d
j

αi
.

Furthermore, Ci,j can be written as a linear combination of ak, k ∈ {0, ..., L− 1} like what
follows

Ci,j =
L−1∑
k=0

akζi,j,k,
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where ζi,j,k is

ζi,j,k =

{
−
(

1+(−1)(j−i+1)

π(j−i)

)√
E sin (2π (f0 + (i− 1) ∆f) kτ) when j 6= i

√
E cos (2π (f0 + (i− 1) ∆f) kτ) when j 6= i,

(3.44)

Therefore, R
(1)
i,j will be represented as

R
(1)
i,j =

L−1∑
k=0

akζi,j,k + ni,j. (3.45)

The goal is to find ak where k ∈ {0, 1, ..., L − 1}, thus the estimation of channel must
has at least L taps to correctly portray the channel. The number of taps are assumed to
be N where N ≥ L, in which the first L terms are estimate of channel taps and the rest
have very small values.

From (3.18) and (3.20), we know that only some of R
(1)
i,j s are non-zero. These non-zero

elements are put in an η × 1 matix

R(1) =


R

(1)
1,1

R
(1)
1,2

R
(1)
1,4
...

R
(1)
M,M


η×1

. (3.46)

where η is the number of non-zero elements calculated by finding the number of (i, j) tuples
that satisfy ζi,j,k = 0. Calculated values for η will be

η =

{
M(M+1)

2
when M is odd

M(M+2)
2

when M is even.
(3.47)

Ci,j can be shown as the multiplication of two matrices. One of these matrices is an N × 1
matrix which contains ak or channel taps

A =


a1

a2

a3
...
aN


N×1

. (3.48)
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The other one is an η ×N matrix which contains ζi,j,k

ζ =


ζ1,1,1 ζ1,1,2 ζ1,1,3 .... ζ1,1,N

ζ1,2,1 ζ1,2,2 ζ1,2,3 .... ζ1,2,N

ζ1,4,1 ζ1,4,2 ζ1,4,3 .... ζ1,4,N
...

...
...

. . .
...

ζM,M,1 ζM,M,2 ζM,M,3 .... ζM,M,N


η×N

. (3.49)

Moreover, the noise of each term of Ri,j is also put in an η × 1 matrix

n =


n1,1

n1,2

n1,4
...

nM,M


η×1

. (3.50)

Finally, channel taps can be found by solving the following matrix equation

R
(1)
η×1 = ζη×NAN×1 + nη×1. (3.51)

It is not possible to simply multiply both sides by ζ−1, because ζ is not a square matrix
and thus not invertible. Referring to [22], the LMMSE estimation of the channel would be
computed as:

ζHR(1) = ζHζA+ ζHn (3.52)

where ζH is the Hermition transpose of H. Thus, A would be

AN×1 =
(
ζHζ

)−1
ζHR(1) −

(
ζHζ

)−1
ζHn, (3.53)

where
(
ζHζ

)−1
ζHn shows the estimator error which was caused by noise. Therefore, Â(1)

which is a matrix with elements that represent estimated channel taps is computed by

Â(1) =
(
ζHζ

)−1
ζHR(1). (3.54)

Referring to equations (3.18) and (3.20), our initial estimation of reshaped bases {Ŝ(1)
1 , Ŝ

(1)
2 , ..., Ŝ

(1)
M }

can be formed.

In the second iteration, the decoder uses {Ŝ(1)
1 , Ŝ

(1)
2 , ..., Ŝ

(1)
M } to demodulate and decode

received signals. Like the first iteration, matrices R∗ and R can be formed. The new R
contains R

(2)
i,j as its element. R

(2)
i,j has the following relation with Ci,j

R
(2)
i,j = Ci,j + n

′

i,j =
L−1∑
k=0

akζi,j,k + n
′

i,j (3.55)
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Then, matrix R(2) is formed by replacing each R
(1)
i,j with R

(2)
i,j in 3.46

R(2) =


R

(2)
1,1

R
(2)
1,2

R
(2)
1,4
...

R
(2)
M,M


η×1

. (3.56)

Finally, Â(2) would be calculated like (3.54) in the following manner

Â(2) =
(
ζHζ

)−1
ζHR(2). (3.57)

Â(2) is the second estimation of the channel. This procedure can go on for a sufficiently
large iteration (n = 2, 3).

3.3 Relation Between Channel Estimation Error and

SER

In the previous section, we propose our method to estimate the channel. In our calculations
we assumed that all of received signals are demodulated correctly. However, we know that
this is not the case and our initial demodulation and decoding has error probability of P

(1)
e .

If P
(1)
e is too big, then our first channel estimation will be misleading. This causes our

method to diverge from the real channel and the error probability will converge to one.
Therefore, we have to consider this P

(1)
e in our calculations.

Referring to 3.41, the summation matrix R∗ can be divided into two parts. One part is
the summation of the vector representation of received signals that are correctly decoded
(R∗C). Another part is the summation of the vector representation of received signals that
are incorrectly decoded (R∗I). Therefore, R∗ can be represented as

R∗ = R∗C +R∗I . (3.58)
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The matrix R∗C can be written as

R∗C =


α1S

′
1

α2S
′
2

α3S
′
3

...
αMS

′
M

+


α1n1

α2n2

α3n3
...

αMnM

 =


α1C1,1 α1C1,2 α1C1,3 .... α1C1,M

α2C2,1 α2C2,2 α2C2,3 .... α2C2,M

α3C3,1 α3C3,2 α3C3,3 .... α3C3,M
...

...
...

. . .
...

αMCM,1 αMCM,2 αMCM,3 .... αMCM,M



+


α1n1,1 α1n1,2 α1n1,3 .... α1n1,M

α2n2,1 α2n2,2 α2n2,3 .... α2n2,M

α3n3,1 α3n3,2 α3n3,3 .... α3n3,M
...

...
...

. . .
...

αMnM,1 αMnM,2 αMnM,3 .... αMnM,M



,

(3.59)
where αi is the number of correctly decoded Si symbols. Moreover, αini,j is the summation
of the projection of αi noises onto ψj.

The matrix R∗I can be written as

R∗I =



∑M
u=2 β

u
1S
′
u∑M

u=1
u6=2

βu2S
′
u

∑M
u=1

u6=3

βu3S
′
u

...∑M−1
u=1 βuMS

′
u


+


β1n

′
1

β2n
′
2

β3n
′
3

...
βMn

′
M

 , (3.60)
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or equivalently

R∗I =



β1n1,1 +
∑M

u=2 β
u
1Cu,1 β1n1,2 +

∑M
u=2 β

u
1Cu,2 .... β1n1,M +

∑M
u=2 β

u
1Cu,M

β2n2,1 +
∑M

u=1
u6=2

β2Cu,1 β2n2,2 +
∑M

u=1
u6=2

β2Cu,2 .... β2n2,M +
∑M

u=1
u6=2

β2Cu,M

β3n3,1 +
∑M

u=1
u6=3

β3Cu,1 β3n3,2 +
∑M

u=1
u6=3

β3Cu,2 .... β3n3,M +
∑M

u=1
u6=3

β3Cu,M

...
...

. . .
...

βMnM,1 +
∑M−1

u=1 βMCu,1 βMnM,2 +
∑M−1

u=1 βMCu,2 .... βMnM,M +
∑M−1

u=1 βMCu,M


.

βui is the number of times that symbol Su was sent but mistakenly demodulated as Si, and
βi is

βi =
M∑
u=1
u6=i

βui . (3.61)

βini,j is the summation of the projection of βi noises onto ψj.

Referring to 3.42, the mean matrix R can be calculated. Each row of R is the mean of
the corresponding row in R∗

R =


R1

R2

R3
...
RM


M×M

=



R∗1
α1+β1
R∗2

α2+β2
R∗3

α3+β3
...

R∗M
αM+βM

 =



R∗C1
+R∗I1

α1+β1
R∗C2

+R∗I2
α2+β2

R∗C3
+R∗I3

α3+β3
...

R∗CM
+R∗IM

αM+βM


= RC +RI , (3.62)
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or equivalently

R = RC +RI =



α1

α1+β1
S
′
1

α2

α2+β2
S
′
2

α3

α3+β3
S
′
3

...

αM

αM+βM
S
′
M


+



1
α1+β1

∑M
u=2 β

u
1S
′
u

1
α2+β2

∑M
u=1

u6=2

βu2S
′
u

1
α3+β3

∑M
u=1

u6=3

βu3S
′
u

...

1
αM+βM

∑M−1
u=1 βuMS

′
u


+



α1n1+β1n
′
1

α1+β1

α2n2+β2n
′
2

α2+β2

α3n3+β3n
′
3

α3+β3

...

αMnM+βMn
′
M

αM+βM


.

(3.63)

Each R
(1)
i,j can be demonstrated as the summation of Ci,j and noise like what follows

R
(1)
i,j = R

(1)
Ci,j

+R
(1)
Ii,j

= Ci,j + ni,j. (3.64)

The non-zero elements of R are chosen and put in a new η × 1 matrix

R(1) = R
(1)
C +R

(1)
I =


R

(1)
1,1

R
(1)
1,2

R
(1)
1,4
...

R
(1)
M,M


η×1

=


R

(1)
C1,1

+R
(1)
I1,1

R
(1)
C1,2

+R
(1)
I1,2

R
(1)
C1,4

+R
(1)
I1,4

...

R
(1)
C1,M

+R
(1)
I1,M

 . (3.65)

R(1) can be put in a matrix equation like 3.51. Therefore, we have

R(1) = R
(1)
C +R

(1)
I = ζA+ n (3.66)

where ζ = [ζi,j,k]η×N . ζi,j,k can be computed based on 3.44. Referring to [22], the LMMSE
estimation of channel would be computed as:

A =
(
ζHζ

)−1
ζHR

(1)
C +

(
ζHζ

)−1
ζHR

(1)
I −

(
ζHζ

)−1
ζHn, (3.67)

and our channel estimation would be

Â =
(
ζHζ

)−1
ζHR

(1)
C +

(
ζHζ

)−1
ζHR

(1)
I =

(
ζHζ

)−1
ζHR(1). (3.68)
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Therefore, the channel estimation error will be

Ece =
∣∣∣A− Â∣∣∣ =


|a1 − â1|
|a2 − â2|
|a3 − â3|

...
|aN − âN |

 =
∣∣∣(ζHζ)−1

ζHR
(1)
I +

(
ζHζ

)−1
ζHn

∣∣∣ , (3.69)

which is caused by two different terms,
(
ζHζ

)−1
ζHR

(i)
I and

(
ζHζ

)−1
ζHn.

(
ζHζ

)−1
ζHR

(i)
I

can be reduced as the iterations goes on, but
(
ζHζ

)−1
ζHn will remain constant during the

iterations.

The probability of error for this case is going to be computed based on equation 3.40.
However, νi,j terms in 3.40, which are variances of errors in channel estimation, need to be
calculated first.

Consider the case where the initial error probability is P
(1)
e . If the number of all the

transmitted data are Tr, then the number of symbols that are mistakenly demodulated are
P

(1)
e Tr.

For sake of simplicity, let us assume that each symbol has the same probability to be
mistaken with other symbols. Thus, each one of P

(1)
e Tr errors can be uniformly chosen

from the following set of received matrices based on 3.41:

G = {g2
1, g

3
1, ...., g

M
1 , g

1
2, ...., g

M−1
M }, (3.70)

where
gji = R∗ (Sj (t) is demodulated | Si (t) was sent) . (3.71)

gji can be shown in matrix form as

gji =



0 0 0 ... 0
0 0 0 ... 0
...

...
...

. . .
...

S
′
i,1 S

′
i,2 S

′
i,3 ... S

′
i,M

...
...

...
. . .

...
0 0 0 ... 0


. (3.72)

where only the jth row is nonzero.
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The probability of error (X) for each tuple (i, j) can be defined as follows

Pr
(
X = gji

)
=

1

M (M − 1)
for all i,j where i 6= j. (3.73)

The expected value of this random variable would be

E (X) =
∑
i,j

XP (X) =
1

M (M − 1)

∑
i,j

X, (3.74)

or as defined in 3.72 as

E (X) =
1

M (M − 1)



∑M
u=2 S

′
u∑M

u=1
u6=2

S
′
u

∑M
u=1

u6=3

S
′
u

...∑M−1
u=1 S

′
u


. (3.75)

In the same manner, E (X2) can be found to be

E
(
X2
)

=
∑
i,j

X2P (X) =
1

M (M − 1)



∑M
u=2

(
S
′
u

)2

∑M
u=1

u6=2

(
S
′
u

)2

∑M
u=1

u6=3

(
S
′
u

)2

...∑M−1
u=1

(
S
′
u

)2



. (3.76)

Therefore, variance of these errors will be

V ar (X) = E
(
X2
)
− E (X)2 (3.77)
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V ar (X) =
1

M (M − 1)



∑M
u=2

(
S
′
u

)2

∑M
u=1

u6=2

(
S
′
u

)2

∑M
u=1

u6=3

(
S
′
u

)2

...∑M−1
u=1

(
S
′
u

)2



− 1

M2 (M − 1)2



(∑M
u=2 S

′
u

)2

(∑M
u=1

u6=2

S
′
u

)2

(∑M
u=1

u6=3

S
′
u

)2

...(∑M−1
u=1 S

′
u

)2



(3.78)

This is the variance matrix for one error in estimating the channel, thus the variance matrix
for all of these errors will be

ν(1) = P (1)
e TrV ar (X) , (3.79)

because all errors are independent from each other. Matrix ν(1) contains νi,j, i, j ∈
{1, 2, ...,M} that are needed in 3.40. Utilizing this matrix, a new Pe can be computed.

P
(2)
e is the result of the following equation

P (2)
e = f (Pe) , (3.80)

where f (.) is the function that shows the effect of coding. With P
(2)
e and a new estimate

of reshaped basis Ŝ, a new matrix for ν(2) can be found. Based on the iterative method
explained in the previous section, each time a lower error probability will be achieved. This
procedure can be done n times to achieve the minimum possible error probability.
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Chapter 4

Simulation and Observations

This chapter is dedicated to simulating blind channel estimation for M-FSK modulation
systems with product code and its results. The simulation is done in MATLAB. At first,
different parts of our simulation is explained. Then, the results for each scenario is pre-
sented as figures to give a better understanding of the simulation process.

4.1 Outline of the Simulation Process

The simulation process for our communication system is divided into three major parts.
The first part is the simulation of transmitted signal blocks, which is shown as a block
diagram in figure 4.1. This part consists of following steps

• Step 1 : At first, the transmitted data needs to be generated. Therefore, based on ki
which is the number of symbols in each dimension and N which is the total number
of dimensions, a frame of k = k1×k2× ...×kN random number from {0, 1, ...,M −1}
is chosen. This frame is shown as K in the block diagram of figure 4.1. Each element
of this frame represents one of the symbols in 2.1. For example, if the value of an
element is 3, this means that this element represents S4.

• Step 2 : After generating transmission symbols, we have to code them. Product code
is the channel coding scheme being used. In order to implement the coding process,
we add a parity check symbol in each dimension. For instance, in the first dimension,
elements in each row are added together. Then, the additive inverse of this summation
in GF(M) is concatenated at the end of that row. The product coder block in 4.1 does
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this procedure for each dimension to produce a n = (k1 + 1)×(k2 + 1)× ...×(kN + 1)
frame which is represented as N .

• Step 3 : Referring to 2.1, each transmitted symbol that represents Si can be modeled
as a vector with M discrete values Vi e.g. Vi = [0, ..., 1, ..., 0], where the ith element
of Vi is one and the rest are zero. Therefore, to send a frame through channel, N
vectors of length M are needed. The resulting block of vectors is represented by U
in 4.1.

• Step 4 : In step 3, each vector Vi represents symbol Si in frequency domain. In order
to get the corresponding time domain vector vi, we get M -point IFFT of Vi. We do
this process for all of the vectors of a frame. The resulting transmitted signal block
of time samples is represented by x in 4.1.

K N U x
Input
Data

Product
Coder

Modualtor
Block

IFFT
Block

Figure 4.1: Block diagram of the transmitter

The second part is the simulation of the transmitted signal block passing through the
channel. Block diagram of figure 4.2 shows this process. This process consist of following
steps

• Step 5 : As a transmitted signal block x goes through the channel, the time samples
are convolved with a L tap channel impulse response represented by h. The resulting
block is demonstrated as x

′
in figure 4.2.

• Step 6 : Based on equation 2.10, an AWGN vector is added to x
′
. This addition

produce the received signal block y in 4.2.

The last part of the simulation is dedicated to decoding the received signal block y .
Block diagram of this procedure is provided in figure 4.3. Following steps would explain
the last part of simulation:
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Channel
Impulse
Response

x

n

y

x
′

Figure 4.2: Block diagram of the channel

• Step 7 : The received signal y is first applied to FFT block. This block’s role is to
first divide the received signal into vectors of length M . Then, it takes M -point FFT
of each of these vectors to get a block of vectors in frequency domain. This frequency
block is represented by Û in figure 4.3.

• Step 8 : BCJR decoder, which is also called MAP decoder, is a soft decoder that
maximizes the a posteriori symbol probabilities. APPs need to be calculated based
on formula 2.49. These APPs are calculated for each M sample vector and with
respect to all M symbols possible. Resulting APPs are demonstrated by P in 4.3.

• Step 9 : APPs are then fed into BCJR algorithm. This algorithm uses equation 2.54
in an iterative manner to produce decoded APPs which are represented by P̂ in 4.3.

• Step 10 : Based on equation 2.50, APPs are demodulated to one of the symbols
{S1, S2, ..., SM}. The resulting demodulated symbols can be put in a n = (k1 + 1)×
(k2 + 1)× ...× (kN + 1) output frame called Z1.

• Step 11 : Utilizing output frame Z1, along with the formula 3.57, an estimate of
the channel can be produced. This estimate ĥ can has more taps than L while
representing the original h closely.

• Step 12 : Based on equations 3.18 and 3.20, reshaped basis vectors can be obtained
by using the estimated channel. These reshaped bases are then put in a matrix like
Ŝ in figure 4.3.

• Step 13 : The APP calculator block of step 8 once again calculates APPs based on
Û , Ŝ, and 2.49.

• Step 14 : Based on these new APPs, steps 9 till 13 are repeated again and again until
the difference between two consecutive output frames is less than an specified ε.

Zi − Z(i−1) ≤ ε (4.1)
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ĥŜ

Figure 4.3: Block diagram of the receiver

4.2 Simulation Results

In results that follows, the number of the basis vectors M is set to be 64. Each frame of
data contains 64 symbols in which they are distributed in a three-dimensional matrix of
size [4, 4, 4]. Consequently, each frame of transmitted signals contain 125 symbols in which
they are distributed in a [5, 5, 5] matrix. Furthermore, from one transmission frame to the
next, channel impulse response changes. Each tap of the channel impulse response changes
based on the following equation

at+1
k = atk + ρ for every 0 ≤ k ≤ L− 1, (4.2)

where atk, k ∈ {0, 1, ..., L− 1} are channel coefficients at time t , at+1
k , k ∈ {0, 1, ..., L− 1}

are channel coefficients at time t + 1 , and ρ is a Gaussian random number that has the
following distribution:

ρ ∼ N (0, δ) (4.3)

with δ as its variance. However, the energy constraint of 2.12 is still in place, which means
that

L−1∑
k=0

(
at+1
k

)2
=

L−1∑
k=0

(
atk
)2

= 1. (4.4)
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In one of the simulations, we change parameter δ to find the value of δ that limits our
ability to estimate the channel, because as δ grows, each channel differs more from the
previous one and the performance of estimation method degrades.

Another parameter is also considered in the simulations which shows how fast our
algorithm is going to converge to its final value. How much each output frame Zi is going
to effect the previous channel estimation depends on parameter ε. The relationship among
consecutive channel estimations, mean of the received vector, and epsilon is as follows

ĥt+1 = ĥt − ε
(
ĥt −

(
ζHζ

)−1
ζHRt+1

)
, (4.5)

where ĥt is the estimated channel at time t, ĥt+1 is the estimated channel at time t + 1,

and
(
ζHζ

)−1
ζHRt+1 is the mean of received signal vector calculated based on matrix 3.42.

Different scenarios can be discussed by using different values for L (channel length), ε,
and δ. At first, let us take a look at the effect of product code. In figure 4.4, two curves
are presented. Both of these curves are assuming that channel is a delta function (L = 1,
ε = 0, δ = 0):

h [n] = δ [n] =

{
1 if n = 0
0 if n 6= 0

(4.6)

As can be seen, product code vastly improves the symbol error rate (or SER).

Figure 4.5 depicts the effect of channel impulse response on system’s performance. For
both of the curves in the figure 4.5, δ = 0, which means that channel is not varying with
time. For one of the curves it is assumed that the channel is a delta function. However,
for the other curve, it is assumed that there is a channel impulse response with L = 10
that meets the condition of 2.12 and the decoder knows this channel impulse response.
Therefore, there is no need for estimating the channel impulse response.

Based on 4.5, the effect of channel impulse response can be modeled as a reduction in
SINR. In this case, this reduction in SINR is around 0.5 dB.

Next, we are going to explore the effect of the length of channel. In figures 4.6 - 4.9, it is
assumed that channel is not varying with time or δ = 0. In each one of these figures, three
curves are presented. The blue solid line curve is the result of simulation when channel is
unknown and there is no attempt to estimate it (ε = 0). The red dashed line curve belongs
to the case when channel is unknown but we try to estimate it and our estimation gets
better as more data arrives (ε = 1). And, the green dotted curve belongs to the case where
we know the channel and thus there is no need for estimation (ε = 0).

As the length of channel increases, a larger portion of the energy of each symbol leaks
into next symbols. This increase in energy leakage would cause more ISI. Increase in ISI
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Figure 4.5: Effect of channel impulse response

49



SNR (in dB)
-12 -11.5 -11 -10.5 -10 -9.5 -9 -8.5 -8

Sy
m

bo
l E

rr
or

 R
at

e

10-5

10-4

10-3

10-2

10-1

100

SER when the channel is unknown and there is no estimation
SER when the channel is unknown and there is estimation
SER when the channel is known
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Figure 4.7: Effect of the channel length when L=40
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Figure 4.8: Effect of the channel length when L=160

would result in an increase in error probability. Figures 4.6 - 4.9 would support this claim.
It can be seen in these figures that as the length of channel grows, the error probability of
all three curves increases.

From figures 4.6 - 4.9, it is implied that channel estimation decreases error probability
compared to the case where there is no estimation. However, it should be noted that this
reduction of error probability can continue until the error probability reaches the green
dotted curve.

Figure 4.10 depicts how δ can affect the performance of the system. For this figure, a
channel with length of 10 (L = 10) is considered. Moreover, in all of these curves, ε is set
to be equal to one.

Based on figure 4.10, as the value of δ increases, the channel varies faster and it becomes
more difficult for the estimator to track the channel. The SER for the curve that represents
δ = 0.1 shows that our estimator does not work properly anymore. Thus, there is a limit
to the performance of our estimator.

The last parameter to be discussed is ε. It indicates the speed of convergence of our
algorithm. As the value of ε changes from zero to one, the estimation error converges faster
to its final value. Estimation error is the energy difference between the estimated channel
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Figure 4.9: Effect of the channel length when L=640
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and the real value of the channel

Ee =
64∑
k=1

∣∣∣Ak − Âk∣∣∣2 (4.7)

where Ak, k ∈ {1, 2, ..., 64} are 64 coefficients obtained by taking 64-point FFT of channel
impulse response, and Âk, k ∈ {1, 2, ..., 64} are 64 FFT coefficients of the estimated channel.
Figure 4.11 depicts the result of convergence when the length of channel is L = 10 , and
δ = 0.001.

As it is evident from figure 4.11, channel converges faster when ε has a higher value.
However, if the value of ε is very small, then the estimator is too slow and cannot track
channel variations.
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Chapter 5

Conclusion

In this thesis, we proposed a blind channel estimation method for M-FSK modulation
systems that employs product code. This algorithm has low transmission rate, and thus
perform in low SINR. Performing in low SINR would decrease the effect of ISI on the
performance of our system.

The proposed product code, which is used in our system, has a simple coding procedure,
while the decoder uses a soft decoding scheme called BCJR method that reduces the
probability of error. Moreover, utilizing product code would also improve the robustness
of the system against burst noise because of its inherent interleaving feature.

Our proposed method uses an iterative algorithm in the receiver to decode and de-
modulate received frames of data. In the first iteration of this method, an output frame
is generated using the initial estimation of channel. A new estimation of the channel is
then computed based on this output frame. Finally, this estimated channel is used to find
reshaped basis signals. Using these reshaped signals, a new output frame is generated. The
goal of this algorithm is to improve error probability and reduce the difference between the
transmitted frame and the estimated one in each iteration. This procedure can be done
iteratively n times.

In order to simulate our estimation method, two parameters were introduced. A param-
eter to show the gradual change of channel in each frame time (δ) and another parameter
to show the speed of convergence of the algorithm (ε). Using these two parameters along
with channel length (L), different scenarios were considered.

At first, we investigate the effect of channel length L. As L increases, a larger portion
of the energy of each symbol leaks into adjacent symbols. Therefore, as L increases, the
effect of ISI as well as error probability increases.
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Next, we showed that as δ increases, the difference between two consecutive channels
increases as well, which would restrict our method’s ability to keep track of the channel.
Therefore, the performance of the system degrades and the error probability increases.

Finally, we investigate the effect of ε. The parameter ε shows how much each output
frame can affect the channel estimation and represents convergence speed of the algorithm.
If the value of ε is low, the decoder slowly tracks the channel. However, if the value of the
ε is near one, then the decoder tracks channel variations faster but it is more probable to
diverge.
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