
Exact Results in Supersymmetric
Gauge Theory

by
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Abstract

Exact results are a key component for understanding any physical theory. Unfortu-
nately in the context of quantum field theory (QFT) they are in general impossible to ob-
tain, and we need some sort of approximations. However there exists certain non-realistic
theories rich in exactly computable quantities, and from those exact quantities we can infer
various theoretical implications for realistic quantum field theories. Supersymmetric gauge
theories stand out among these non-realistic theories as the best compromise between the
contradicting requirements of realism and exact computability.

This thesis consists of three projects, in which we explore some exact results in super-
symmetric quantum field theory.

In the first project we define and describe irregular vertex operators in the H+
3 Wess-

Zumino-Witten model. Irregular vertex operators are a QFT-equivalent of irregular singu-
lar points in the theory of differential equations, and their study is motivated by a relation
to the partition functions of some asymptotically free four-dimensional N = 2 supersym-
metric gauge theories. The definition is shown to be compatible with previously defined
irregular vertex operators in Liouville theory through a known duality between the H+

3

and Liouville theories.

In the second project we use supersymmetric localization to compute the partition
function of N = 2 supersymmetric gauge theories on a four-sphere in the presence of a
surface defect on a two-sphere subspace, taking the form of a two-dimensional gauged linear
sigma model. The result generalizes the known results for separate supersymmetric gauge
theories on the separate spaces. We obtain a partition function in the form of a standard
partition function on S4, with a modified instanton partition function and an additional
insertion corresponding to a shifted version of the S2 partition function.

In the third project we develop a new method for finding the ground states of fermions
in the presence of BPS monopoles. We use it to find the ground states in the case of
Abelian BPS monopoles in R3, which were previously unknown.

iv



Acknowledgments

First I would like to thank my supervisor Davide Gaiotto for his support and guidance
in my research and study. For similar reasons I am thankful to my co-supervisor Jaume
Gomis

I would also like to thank my fellow students for their help and encouragement. I
am especially grateful to Nima Doroud, Bruno Le Floch, Dalimil Mazáč, and Miroslav
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Chapter 1

Introduction and summary

The standard model of particle physics describes the microscopic world with remarkable
precision. It consists of three generations of quarks and leptons, each containing several
elementary fields (or particles), subject to three types of fundamental interactions (elec-
troweak, strong and Higgs), each mediated by its own set of fields. However extracting any
accurate prediction from the theory is a difficult task, and often impossible given currently
available methods and computing power. This is due to the complexity of the standard
model as a quantum field theory, but also the difficulty of quantum field theory itself. In
short we are left with the following dilemma: we can either keep pushing our knowledge
of the standard model, knowing that some questions may never be answered properly, or
we can look at simpler models where those questions can be answered, knowing that the
results will not apply directly to the real world. Of course both approach should be taken,
as they serve different purposes, however in this work we will follow exclusively the latter
one.

In this thesis, we describe three different projects, motivated by a common goal: to
obtain exact results in quantum field theory. In the first [39], we consider a special set
of operators (or states) in two-dimensional conformal field theory (CFT), which induce
unusual singularities in the current algebra. We describe such operators, called irregular
vectors, in a specific Wess-Zumino-Witten (WZW) model. In the second project [64], we
consider gauge theories with extended supersymmetry interacting with fields living on a
two-dimensional subspace, and compute the main components of their partition function
using supersymmetric localization. In the last project [65], we explore a certain class of
magnetic monopoles, and describe a method for finding fermion zero modes in the presence
of a fixed background of such monopoles. In the following sections we summarize each
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project, but first we elaborate on our motivation for finding exact results in non-realistic
theories, and explore a few aspects of supersymmetry, a common theme for all the projects.

1.1 Exact results

1.1.1 The limits of perturbation theory

Almost every successful method so far in particle physics involves perturbation theory.
In that context one approximates the evolution of a small set of elementary excitations
(scattering amplitudes), or particles, by considering the most probable intermediate states,
also made of elementary excitations. These intermediate states are expressed schematically
as a set of Feynman diagrams [80], and their contributions to scattering amplitudes are
sorted into a formal series expansion of the coupling constants. As long as those coupling
constants are small and only a few particles are involved, a small number of Feynman
suffice to obtain a reasonably accurate result. Perturbation theory works relatively well in
particle accelerator experiments, in which a pair of particles collide to form a new small
set of particles.

Even in particle accelerators the perturbative approach has its limits, since as the colli-
sion energy increases, so does the number of resulting particles and thus the computational
burden of comparing theory and experiment. Another problem concerns quantum chromo-
dynamics (QCD), which has a relatively high coupling constant (at experimental energy
scales), and perturbative methods give inaccurate results. The accuracy can be improved
slightly by considering higher order terms in the approximation, however since the number
of Feynman diagrams one needs to compute grows factorially with the order, the computa-
tion quickly becomes intractable1. The computational complexity can be made polynomial
by statistical approximations (“Monte Carlo” sampling), although these methods remain
a challenge even for modern supercomputers.

In any case, perturbation theory can fail completely when we consider experimental
setups other than the well-suited particle collision experiments. This can happen because
some phenomena, dubbed “non-perturbative”, leave no trace at all in any order of pertur-
bation theory. Non-perturbative phenomena are in general due to a fundamental limitation
of the perturbative approach, in which there is a distinguished set of “elementary parti-
cles”. It is known from many examples that there is in general no unique fundamental set

1One remembers that for a computational problem to be possible for large value of a parameter n, here
the order in perturbation theory, the amount of computation needed as a function of n must be bounded
by a polynomial in n.
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of particles, and there can be various such sets at different energy levels, and the basic ex-
citation will appear completely different as we go through various phases of a theory. The
main example of such phenomenon in the standard model concerns QCD: at sufficiently
high energy we find quarks and gluons, while at lower energy the quarks are “confined”
into hadrons (for example protons and neutrons), which then appear elementary. A similar
phenomenon happens in the context of the Higgs mechanism, in which the Higgs boson
disappears at low energy while giving mass to the other elementary particles.

As stated previously, perturbation theory requires the number of particles to be small.
Therefore it will fail to describe most phenomena involving a large number of particles,
for the same reason that classical dynamics fails in the analogous case and must be re-
placed by a different approach (thermodynamics). It is worth noting that for some large
systems one can find a different perturbative approach, in which an effective field theory is
built from some “collective excitations” of the fields (in a QFT equivalent of the classical
thermodynamical approach), however this is not always the case. The worst case concerns
critical phenomena, in which all the excitations contribute at every scale, which is the exact
opposite of the assumptions of perturbation theory. These critical phenomena actually oc-
cur mainly at phase transitions, i.e. at the boundary between two different (perturbative)
descriptions in terms of elementary particles.

Given the above limitations, it is essential to look for alternatives to perturbation
theory, to be able to describe the physical phenomena for which perturbative methods fail.
In the following we explore two such approach, Lattice QCD and exact computations in
approximate theories.

1.1.2 The limits of non-perturbative numerical methods

The most basic numerical approach to understand a physical system is to simulate it on
a computer. Quantum field theory is no exception to this; however as for any continuous
system a perfect simulation is impossible, since by construction computers are discrete.
The space and time dimensions must be approximated by discrete points separated by
finite intervals, in such a way that the approximation approaches the true result as the size
of the intervals is sent to zero (and the number of points is sent to infinity). The points
form a lattice, and are given a set of local degrees of freedom. We designate the discretized
theory by the term “lattice quantum field theory” (or “lattice QFT”).

Simulations on a lattice QFT require very intensive computations. This is due in large
part by the large number of degrees of freedom involved. Indeed, since the space is three-
dimensional even a small number of points per dimension will result in a very large lattice.
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This lattice size multiplies the degrees of freedom at each point, which may already be
large, for example the standard model has over a hundred degrees of freedom per point.
This means simulating the standard model on a lattice of a thousand points per dimension
will already involve over 100 billion degrees of freedom. However the main issue comes from
the fact that the theory is quantum, and the size of the Hilbert space grows exponentially
with respect to the number of degrees of freedom, so even for tiny lattices it is already
impossible to enumerate all the states, and a perfect simulation is hopeless2. For example
we may be interested in computing a transition matrix relating the initial and final states.
For a Hilbert space of size N , this is a N ×N matrix, and it is obtained by a set of matrix
multiplications, one for each time step. Computing even one such element shows the same
problem, since we still need to consider all N intermediate states.

Despite these issues there has been some progress in lattice QFT computations. It is
actually possible to partially overcome the difficulties associated with the exponentially
large Hilbert spaces with further approximations. For example by estimating the matrix
elements through a statistical sample of the intermediate states. It is also possible to obtain
meaningful results from relatively small lattices (i.e. too small to give accurate results) by
estimating the required quantity as a function of the lattice separation and extrapolating to
zero-separation (infinite lattice). However even with these methods realistic lattice QFT
computations remain a big computational challenge. There are many open questions,
although most of them will require more computational power than is available today
before we can hope for an answer.

1.1.3 The advantages of non-realistic theories

In the previous two sections we obtained the same conclusion concerning numerical results:
we need better computers. However numerical results are also limited in their explanatory
power: while numbers are well-suited for comparing to experiments, and it may be possible
to “observe” or “describe” physical phenomena through a numerical simulation, it is in
general not possible to give a concrete explanation for what is going on. To see this consider
the example of confinement. As mentioned previously, confinement cannot be described
using perturbation theory. It can be observed in lattice QFT, and we can observe hadron-
like states on a lattice, and estimate their masses. It is however impossible to formally prove

2This comment applies to transistor-based “classical” computers. Quantum computers, involving the
simulation of a quantum system, may eventually allow to partially overcome this difficulty by providing
Hilbert spaces of exponentially growing size (with respect to the number of quantum bits). It is however
unknown to this day whether it is feasible to build quantum computers powerful enough to be relevant for
lattice QFT.

4



the existence of hadrons from this framework, and even finding a concrete explanation is
tricky.

To describe confinement, we may wish to turn to non-realistic theories, and indeed it
can be described by an exact computation in some supersymmetric theories [86, 87]. The
result itself may be not entirely relevant for the standard model, but we can use it to make
the following conclusion: it is indeed possible to observe confinement in a quantum field
theory. We also gain some insight into a possible explanation for the phenomenon (a certain
form of the Higgs mechanism, in which confinement is a consequence of a certain set of
quasiparticles acquiring a mass), and prove that it is a theoretically possible explanation.
This goes further than any known result in realistic theories.

Confinement is one of many examples in which simpler, non-realistic theories help
understanding the standard model (and other realistic quantum field theories, such as
those describing condensed matter systems and hypothetical theories for cosmology and
physics beyond the standard model) by providing exact results. Therefore we may want to
look for more such results in theories simpler than the standard model. Some comments
are in order here concerning the term “non-realistic”. Here we are interested in theories
showing some similarities to the real world in their phenomenological behavior. We are not
necessarily interested actual numerical accuracy, which would be the domain of “realistic”
approximate theories (such as some forms of lattice QFT and some effective field theories).
We now turn to some of the most important theories in which we can hope for exact results.

To reduce the complexity of a quantum field theory, one may want to reduce the num-
ber of elementary fields and simplify their interactions. However in the context of non-
perturbative physics, this method does not provide enough simplification, and it may actu-
ally make the non-perturbative phenomena trivial. An alternative, more suitable approach
is to consider theories with more structure, or symmetry. In four spacetime dimensions this
kind of simplification almost always involve supersymmetry in some form. As described in
the next section, the reason for this is as follows: it allows for using powerful mathemat-
ical tools from geometry and topology, and as a consequence it is in some cases possible
to obtain non-trivial exact results, which is generally impossible in non-supersymmetric
interacting theories. We may also look for conformally invariant theories, although most
known four-dimensional conformal theories are also supersymmetric. Theories with both
symmetries, or superconformal theories, are a particularly good source of exact results. A
different approach is to vary the dimensionality, as theories in fewer dimensions are much
easier to handle.
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1.2 Why supersymmetry?

We now turn to supersymmetry, with the goal of justifying its importance for the compu-
tation of exact results. We begin with a brief review of supersymmetry.

In particle physics, supersymmetry is described as a symmetry of a quantum field theory
relating bosonic (integer spin) and fermionic (half-integer spin) particles. However in this
work a more formal approach will be needed, and instead of describing supersymmetry
by some symmetry transformation we will describe it through a symmetry algebra and its
representations.

The main building block of a supersymmetry algebra consists of a pair of anticommuting
(Grassmann odd) symmetry charges Q and Q†, called supercharges, and a commuting
(Grassmann even) charge H3. They satisfy the algebra

{Q,Q†} = 2H, [Q,H] = [Q†, H] = 0, Q2 = (Q†)2 = 0 (1.1)

where H is a commuting conserved charge. (In supersymmetric quantum mechanics, H is
the Hamiltonian.) Even in the simplest case, supersymmetry has some interesting conse-
quences: H must be positive semidefinite, H ≥ 0, and any eigenstate of H with nonzero
eigenvalue E must be part of a multiplet containing a boson |φ〉 and a fermion |ψ〉, satis-
fying either

Q|φ〉 =
√
E|ψ〉, Q†|φ〉 = 0,

Q†|ψ〉 =
√
E|φ〉, Q|ψ〉 = 0, (1.2)

or the equivalent with Q ↔ Q†. The states annihilated by H play a special role in
supersymmetry, as they are the ground states with respect to H, and they are not required
to appear in multiplets. One of the most important results in supersymmetric quantum
mechanics is based on these facts [97]: suppose we want to know if supersymmetry is
spontaneously broken. (The question arises in any realistic application of supersymmetry,
as if supersymmetry is present in nature, it must be broken.) This can only happen if there
is no supersymmetric ground state, and in particular every state is part of a multiplet.
From this fact we obtain a simple constraint on supersymmetry breaking: if the number
of fermionic and bosonic states is different, then there exists at least one ground state and
supersymmetry is not spontaneously broken. To formalize this result and to make sense
of it for infinite-dimensional Hilbert spaces, one introduces the quantity Tr[(−1)F e−βH ],
called Witten index. Here F is a fermion number operator, and (−1)F acts as +1 on

3Most of the material in this section follows [55]
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bosonic states and −1 on fermionic states, and β is a positive constant. The Witten index
can be interpreted as a partition function for a supersymmetric theory compactified on a
cylinder of circumference β with antiperiodic boundary conditions for the fermions. By
supersymmetry, the index reduces to the trace of (−1)F over the ground states (an integer),
and if it is nonzero then there must be at least one supersymmetric ground state. The
above result is not isolated, and is in fact the prototype for a wide variety of exact results
in supersymmetric quantum field theory: if an operator O is invariant under the action of a
supercharge Q (and by extension Q†), then its correlator 〈O〉 depends only on Q-invariant
states, allowing for drastic simplifications. In the Hilbert space formalism the statement
follows from a simple fact: consider the projection of an operator to the subspace spanned
by a multiplet of the form (1.1), taking the explicit form

(
|φ〉 |ψ〉

)
·
(
a b
c d

)
·
(
〈φ|
〈ψ|

)
. (1.3)

Invariance under Q forces a = b = 0, while invariance under Q† imposes c = d = 0, i.e.
the operator vanishes in that subspace. Before exploring the consequences of this result,
we proceed with a review of supersymmetric quantum field theory.

In supersymmetric quantum field theory, supersymmetry follows the same principles as
outlined above, but we now require compatibility with the spacetime symmetries. In four
dimensions, Poincaré invariance forces the supercharges to appear in sets of four. The basic
supersymmetry algebra consists of a pair of (left-handed and right-handed Weyl) spinor
supercharges Q, Q̄, satisfying {Qα, Q̄α̇} = 2σαα̇ ·P , where P is the momentum four-vector
and σ is the set of Pauli matrices [96]. The supersymmetry algebra generalizes to sets of
4N supercharges QI , Q̄I , I = 1, · · · ,N (usually with N ∈ {1, 2, 4, 8}), taking the form

{QI
α, Q̄

J
α̇} = 2δIJσαα̇ · P, {QI

α, Q
J
β} = 2εαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = 2ε̄α̇β̇Z̄

IJ . (1.4)

Here ε, ε̄ are two-dimensional antisymmetric tensors, and ZIJ , Z̄IJ are a set of central
charges (i.e. they commute with all symmetry generators). There is a SU(N ) × U(1)
symmetry acting on the supercharge indices (I, J , · · · ), called R-symmetry, although it
is often broken. A generic supermultiplet consists of 22N states, since all states must be
part of a basic multiplet under each pair of supercharges (although CPT invariance may
further double the state count). However, there can be smaller multiplets, as described
below. In the present work we are mainly interested in the case N = 2, where we can write
ZIJ = εIJZ, where Z is simply C-valued.

The central charge is the main new feature of extended supersymmetry, and gives rise
to a variety of new phenomena. In particular, it separates the Hilbert space into a variety
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of disconnected subspaces with different values for Z (since no local operator can change
Z). For each sector, we can obtain a lower bound on the energy: consider a particle of mass
M in its rest frame, or equivalently a zero-momentum state |ψ〉, with P 0|ψ〉 = M |ψ〉 and
P|ψ〉 = 0). Define a±α = 1

2
(Q1

α ± σ0
αα̇(Q̄2)α̇), satisfying {a±α , (a±)†α̇}|ψ〉 = σ0

αα̇(M ± Z)|ψ〉.
As a consequence the states (a±)†α̇|ψ〉 have squared norm (M ±Z)〈ψ|ψ〉. Since all physical
states must have positive norm, we find the constraint M ≥ |Z|, or BPS bound4. For
M = |Z|, the state is annihilated by either (a+)† or (a−)† implying that it can be part of
a “short” multiplet, containing a quarter of the states states. The analysis generalizes to
nonzero momentum, and a short multiplet with M = |Z| is called “BPS state”. Massless
states correspond to a special kind of short multiplet, corresponding to the Z = 0 sector.
Supersymmetric ground states, annihilated by all the supercharges, further specialize the
Z = 0 sector. Related to BPS stated are BPS operators, which are invariant under half
the supercharges, and generate BPS states when acting on supersymmetric ground states.

The presence of BPS states and operators is what makes supersymmetric theories inter-
esting toy models for non-perturbative computations and phenomena. A BPS operator is
invariant under some supercharges, so as mentioned before its correlator depends only on
field configurations invariant under those supercharges. In many cases the resulting simpli-
fications allow for an exact computation, and thus we can find a wide variety of non-trivial
exact results. A canonical example concerns the computation of instanton corrections to
the metric of the moduli space of vacua in N = 2 supersymmetric gauge theories [86, 87].
The metric determines the low-energy effective action for the theory, and thus encodes its
low-energy behavior. By a non-renormalization theorem, the metric cannot receives per-
turbative corrections (except for a simple one at first order), but receives non-perturbative
corrections. Such corrections are caused by instantons, i.e. critical points of the Lagrangian
with nonzero finite action. By supersymmetry only BPS instantons (being the BPS states)
contribute to the metric , and their contribution can be computed exactly. The result has
a direct application: it provides an explicit example of confinement, which is extremely
difficult to study in realistic theories.

With these remarks, we can now provide our main justification for supersymmetry:
it makes exact computations possible. It is however worth noting that there are other
motivations for supersymmetry, although they are less relevant to the present work. Su-
persymmetry is an essential component of realistic string theories, as a requirement for
the presence of fermions [82]. Approximate supersymmetry is also present in many hypo-
thetical extensions of the standard model, although only N = 1 is possible since extended
supersymmetry prevents chiral symmetry breaking, a key feature of the standard model.

4The term “BPS”, named after the works of Bogomoln’yi [14], Prasad and Sommerfeld [84], is used in
various contexts, all related to some extent to the bound described here.
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1.3 Four dimensional N = 2 supersymmetric gauge

theories

We now briefly review some aspects of four dimensional N = 2 supersymmetric gauge
theories [8, 90]. There are two main types of N = 2 supersymmetric multiplets: vector
multiplets and hypermultiplets. Note that unlike in the previous section, here the multi-
plets are formed at the level of fields rather than states, but the principle is identical. In
Minkowski signature, aN = 2 vector multiplet consists of a vector field, a R-symmetry pair
of fermions, and a complex scalar, all in the adjoint representation of a gauge group G. A
hypermultiplet consists of a pair of fermion and a R-symmetry doublet of complex scalars.
In some (real) representations hypermultiplets are not fundamental, and are in fact com-
posed of two fundamental multiplets with half the matter content, or half-hypermultiplets.
In a N = 2 theory, vector multiplets plays the role of gauge fields, and hypermultiplets
that of matter fields. In particular, hypermultiplets can have masses, and couple to vector
multiplets through their representation with respect to the gauge groups. These are in fact
the only couplings allowed by supersymmetry.

There is a special class of N = 2 supersymmetric gauge theories, called class S theories,
which are also superconformal and benefit from additional integrability properties [36, 87].
These are obtained by compactification of six-dimensionalN = (2, 0) superconformal gauge
theories on punctured Riemann surfaces [99]. The resulting theory depends only on the
(6d) gauge group, the punctured Riemann surface T and its complex structure (but not its
metric), and the boundary condition for each puncture. Given such data, and restricting
to the gauge (and flavour) group G = SU(2), a class S theory is constructed as follow.

The basic ingredient for the construction is a three-punctured sphere. In isolation, it
corresponds to a set of eight half-hypermultiplets, forming a trifundamental representation
of a SU(2)×SU(2)×SU(2) flavor symmetry. Each SU(2) group corresponds to a puncture,
with boundary condition corresponding to a (Cartan-valued) mass parameter m for the
group. To construct more complicated theories, we consider multiple three-punctured
spheres and proceed in the following way. Taking two distinct punctures on separate
spheres, we “gauge” their flavor symmetries by replacing them with a SU(2) gauge group,
for which both hypermultiplets are in the fundamental representation. Note that the
“reverse” process amounts to freezing the gauge group to a vacuum expectation value
m by removing its kinetic term. In terms of Riemann surfaces, the process amounts to
“sewing” the spheres together by replacing the punctures with a thin tube connecting the
sphere. One can repeat the process to generate a network of spheres, and by conformal
invariance we can fatten the tubes and reshape the result to obtain a complicated punctured

9



Riemann surface. If fact every punctured Riemann surface can be obtained in this way,
as given such surface one can easily reverse the process to obtain a set of spheres with
three punctures. We thus have a description of the four-dimensional theory, depending on
the punctured Riemann surface and a decomposition into three-punctured spheres. Note
that the decomposition is not unique, and in fact a single Riemann surface can give rise to
various four-dimensional theories, and as a consequence we obtain dualities between such
theories.

The above construction has an interesting consequence: many BPS quantities in class
S theories correspond to quantities on the corresponding Riemann surfaces. The Alday-
Gaiotto-Tachikawa (AGT) duality provides the relation for several cases [3, 101]. For
example, the partition function of a class S theory on a four-sphere corresponds to a corre-
lation function for Toda conformal field theory on the corresponding Riemann surface, with
the insertions in the correlation function corresponding to the punctures. The quantities
on each side are described in the following sections.

In this work we are particularly interested in a specific class of non-local operators,
living on a two dimensional subspace of the four-dimensional theory [37, 46, 47]. These
are called surface operators, or surface defects. Such operator breaks some translation
and rotation symmetry, and as a consequence at least half the supercharges are broken
by the operator. In the most supersymmetric case, and the only case considered in this
work, the remaining four supercharges are preserved, and their algebra corresponds to the
two-dimensional N = (2, 2) supersymmetry algebra.

In a class S theory, the behavior of a surface operator depends on its six-dimensional
interpretation, and in particular how it appears in the compactified Riemann surface T
[32, 34, 43]. A “codimension four” defect correspond to a point in T . On the four-
dimensional theory it corresponds to the insertion of a non-local operator on a surface,
and on the CFT side it results in the insertion of an additional vertex operator of a special
kind. In contrast, a “codimension two” defect fills T , and couples the four-dimensional
theory to extra degrees of freedom on the surface. On the CFT side it generates a space-
filling insertion, i.e. it modifies the theory. It is widely believed that the modified theory
is a WZW model, as supported by several computations [7, 16, 62]. Although there is no
formal proof of the result, in this work we will assume it to be true. In this work we are
mainly interested in codimension two defects.
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1.4 Two dimensional N = (2, 2) supersymmetric gauge

theories

As mentioned in the previous section, surface defects in four dimensional N = 2 theories
behave as two dimensional N = (2, 2) theories. Here we review some basic facts about
such theories [55]. While the N = (2, 2) supersymmetry can arise as a subalgebra of four-
dimensional extended supersymmetry, it is best seen as the dimensional reduction of the
four-dimensional N = 1 supersymmetry algebra. The four supercharges satisfy the same
algebra {Qα, Q̄α̇} = 2σαα̇ · P , where the momenta in the reduced dimensions play the role
of central charges. In this work we consider two types of multiplets, vector and chiral
multiplets, respectively playing the role of gauge and matter fields.

1.5 AGT duality and two-dimensional conformal field

theory

In this section we review the two dimensional side of AGT duality, and complete the
presentation of the first project of this thesis. We restrict our focus to the dual of SU(2)
gauge theories, which in the absence of codimension two defects correspond to Liouville
theory.

In the Lagrangian formulation, Liouville theory is a nonlinear modification of the the-
ory of a free boson φ, with action S = 1

4π

∫
d2x(∂φ · ∂φ+ 4πµe2bφ), where µ and b are two

parameters of the theory (see for example [50, 93]). However it is best described as a con-
formal field theory, i.e. in terms of its primary operators (punctures) and their correlation
functions. The primaries Vα are parametrized by a “Liouville momentum” α, and have
conformal weight ∆α = α(Q − α), Q = b + b−1. Classically they are given by Ṽα = e2αφ.
The Liouville momentum specifies a boundary condition for the field ∂φ near the puncture:

∂φ(w)Vα(z) ∼ α

w − z
Vα(z), (1.5)

up to terms regular near w = z.

The AGT duality for SU(2) symmetry groups states the following [3]. Consider a theory
of class S obtained from the compactification of the SU(2) six-dimensional N = (2, 0)
superconformal theory on a n-punctured Riemann surface T , with boundary conditions
mi at each puncture, i = 1 · · ·n. Then the four-sphere partition function of the theory is
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equal to the Liouville correlator

ZS4 = 〈Vm1 · · ·Vmn〉T (1.6)

We will give a precise definition of ZS4 in section 1.6.

1.5.1 Asymptotically free theories and irregular vertex operators

The theories of class S obtained by compactification of the six-dimensional superconformal
field theories are all conformal; however one can also recover theories with a negative
β-function, or asymptotically free theories, by a slight generalization of the formalism.
Specifically one allows for more singular boundary conditions near the punctures. On the
CFT side we let [41]

∂φ(w)Vc(z) ∼
r∑

k=0

ck
(w − z)k+1

Vα(z). (1.7)

Here r is called the “rank” of the puncture, and c is the vector (c0 = α, c1, · · · , cr). A
puncture with rank ≥ 1 is called irregular, and is in fact a “quantum equivalent” for an
irregular singular point in the theory of ordinary differential equations.

It is not always possible to have irregular vertex operators in a CFT, however in many
non-compact CFTs (characterized by a continuous spectrum) one can derive their existence
from a “collision limit” of regular vertex operators (or primary fields). The method consists
of taking the parameters of a set of punctures to infinity while simultaneously taking their
separation to zero, in such a way that the limit is finite but nontrivial. In Liouville theory
this corresponds to taking the Liouville momenta to infinity while constraining their sum,
and in the simplest example we find

lim
z→0

V−cz−1(z)Vcz−1+α(0) = V(α,c)(0). (1.8)

To prove the above result we need to show that the correlation functions have a finite limit,
however as a simple check we find the correct boundary conditions:

∂φ(w)
(

lim
z→0

V−cz−1(z)Vcz−1+α(0)
)
∼ lim

z→0

(
− cz−1

w − z
+
cz−1 + α

w

)
V−cz−1(z)Vcz−1+α(0)

∼
( c

w2
+
α

w

)
lim
z→0

V−cz−1(z)Vcz−1+α(0), (1.9)

12



assuming the above limits exist.

On the four-dimensional side, the collision limit has the following interpretation: one
reduces a set of flavor symmetry groups to a single one by taking their mass parameters
to infinity while keeping their sum finite. In the generic case this removes some hyper-
multiplets from the theory while keeping the vector multiplets unchanged, thus breaking
conformal invariance (since a hypermultiplet has a positive contribution to the β-function).
By construction AGT duality can be extended to the resulting theory, provided we use the
appropriate irregular vertex operators in the CFT side [35].

1.5.2 Irregular vertex operators in WZW models

As mentioned previously in the presence of a codimension two surface defect the CFT is
replaced by a WZW model. In this work we are interested in the simplest case, involving
a ŝl(2) WZW model, which we treat as a toy model for more complicated theories. Specif-
ically we aim to find and describe irregular vertex operators in that theory, and chapter
2 is dedicated to this goal. In that project we find and describe such irregular punctures
by considering a free-field realization of the theory, and confirm the result by comparing
to the collision limit of primary fields. The free-field approach is a simpler alternative to
the collision limit, and easily generalizes to many CFTs admitting a free-field realization.
We also explore a duality [85] between the model and Liouville theory in the context of
irregular punctures, related to an infrared duality [34] between codimension two and codi-
mension four defects. In particular we find that our description is compatible with the
duality and the description of irregular vectors in Liouville theory [41]. Finally we explore
the semiclassical limit of correlation functions and observe the Stokes phenomenon, a key
property related to irregular singular points in differential equations.

1.6 Supersymmetric localization and exact computa-

tions of partition functions

In this section we describe supersymmetric localization, and complete the presentation of
the second project of this thesis.

As described in section 1.2, the correlator 〈O〉 for an operatorO invariant under a super-
charge Q depends only on Q-invariant field configurations. In the path integral formalism,
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this property is realized as follow [55]. Consider the integral5 over a bosonic variable X and
a fermionic variable ψ, of a function F (X,ψ) (playing the role of exp(−iS(X,ψ))O(X,ψ)∫

dXdψF (X,ψ) =

∫
dXdψ(F1(X) + ψF2(X)) =

∫
dXF2(X). (1.10)

In this system the basic supersymmetry algebra (1.1) is realized on the variables as

δQX =
√
h(X)ψ, δQ†X = 0,

δQψ = 0, δQ†ψ =
√
h(X)X. (1.11)

If F (X,ψ) is Q-invariant, we find

0 = δQF (X,ψ) =
√
h(X)ψF ′1(X),

0 = δQ†F (X,ψ) =
√
h(X)F2(X), (1.12)

so as long as h(X) is nonzero F (X,ψ) must be a constant, and in particular the fermionic
integral vanishes. However at a point where h(X) = 0 there is no such constraint. Summing
up, we find

F (X,ψ) = F0 + δ(h(X))
(
F̃1(X) + ψF̃2(X)

)
, (1.13)

and the path integral becomes∫
dXdψF (X,ψ) =

∑
n, h(Xn)=0

F2(Xn)

|h′(Xn)|
, (1.14)

i.e. it only receives contributions from the zeros of h(X), i.e. it localizes to Q-invariant
points (configurations). This principle is called supersymmetric localization.

Under certain regularity assumptions the above analysis can be applied directly to a
Q-invariant QFT correlator 〈O〉, written in the (Euclidian) path integral formalism as

〈O〉 =

∫
DΦe−S[Φ]O[Φ], (1.15)

5Here we remind the rules for Grassmann integration over a fermionic variable ψ,∫
dψ = 0,

∫
dψψ = 0

.
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where Φ is a collective coordinate for the fields. As before the integral depends only on
Q-invariant field configurations, since it is essentially a (infinite) product of integrals of
the type considered above. However the invariant configurations may be difficult to find,
and we can deform the theory to simplify the computation. We deform the action with
S → S + tδQ · V , and as long as δ2

Q · V = 0 the path integral is modified by a Q-exact
term and is thus unchanged. If V is non-negative we can take t → ∞, and in that limit
the saddle-point approximation becomes exact, and from it we recover the original path
integral.

The saddle-point approximation is used as follow. We aim to compute

〈O〉 = lim
t→∞

∫
DΦe−S[Φ]−tδQ·V [Φ]O[Φ]. (1.16)

By construction the integrand contributes only near the zeros of δQ · V , or “classical
configurations”. The contribution from a zero at Φ0 is

e−S[Φ0] lim
t→∞

∫
DΦe−t(Q·V )[Φ+Φ0]. (1.17)

After rescaling the fields and taking the limit we find that only the quadratic terms in the
fields Φ contribute, and we obtain

e−S[Φ0]

∫
DΦe−(Q·V )[Φ+Φ0]Quad = e−S[Φ0]Z1−loop[Φ0]. (1.18)

The quantity Z1−loop[Φ0] is a one-loop determinant, and in many cases can be computed
exactly, either by direct computation or using the Atiyah-Singer index theorem [10]. The
full path integral is obtained by summing or integrating over the zeros of δQ · V .

1.6.1 Supersymmetric localization on S4 and S2

The method described above was successfully used for several exact computations. In this
work we are interested in two such results, the partition functions ofN = 2 supersymmetric
gauge theories on S4 [81] and N = (2, 2) supersymmetric gauge theories on S2 [12, 31]. We
restrict to localization on the Coulomb branch, in which the vector fields acquire a vacuum
expectation value and gauge invariance is broken to an Abelian subgroup6.

6One can also localize to the Higgs branch, where the hypermultiplet scalars acquire a vacuum ex-
pectation value and gauge invariance is completely broken. This was done in the two dimensional case
in [12, 31]. The branch for localization is determined through the choice of the supercharge Q and the
deformation term V .
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In both cases, the supercharge Q is chosen so that it generates an algebra leaving the
poles of the sphere invariant. Given this property, the Atiyah-Singer index theorem states
that the one-loop determinant receives only contributions from the poles (the fixed points
of the algebra), and provides these contributions. The rest of the computation follows as
outlined above. In two dimensions the set of classical configurations is parametrized by a
Cartan-valued real parameter a and a Cartan-valued integer parameter B (magnetic flux),
and the partition function takes the form7

Z2d =
∑
B

∫
2d Coulomb

dae−S
2d
cl (a,B)Z2d

1−loop(a,B). (1.19)

The four-dimensional case is more complex, as the presence of instantons (and anti-
instantons) makes the set of classical configurations much larger. The instantons form a
full quantum mechanical theory by themselves, and localization as described above leaves
a part of the path integral unevaluated. However instantons do not affect the one-loop
computation, so the two computations can be done independently. Schematically we find
(again, a is a Cartan-valued real parameter for the Coulomb branch)

Z4d =

∫
4d Coulomb

dae−S
4d
cl (a)Z4d

1−loop(a)

∫
inst, anti-inst

DΦeS[a;Φ]. (1.20)

In the localization framework instantons localize to the North pole, while anti-instantons
localize to the South pole. The two contributions are related by complex conjugation, and
we write their combined contribution as∫

inst, anti-inst

DΦeS[a;Φ] = |Z4d
inst(a)|2. (1.21)

The quantity Z4d
inst(a) is an instanton partition function [76, 77, 81]. We will not consider

the details of instanton partition functions in this work.

1.6.2 Supersymmetric localization involving a surface defect

Given the known results on S2 and S4, we can now consider localization of the four-
dimensional theory in the presence of a codimension two surface defect. The defect is
located on a great sphere of S4 (i.e. it has maximal radius). In the first time we consider
the case where the defect does not interact with the bulk theory. If we define the poles

7In this section we omit the dependence on the parameters of the theory for simplicity.
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of S4 in such a way that they are located on the defect, then the (Coulomb branch) lo-
calization computations on S2 and S4 are actually compatible. By compatible we mean
that we can embed the N = (2, 2) supersymmetry algebra on S2 inside the N = 2 super-
symmetry algebra on S4, and that we can pick the same supercharge for both localization
computations. The result still holds when the defect interacts (in a supersymmetric way)
with the bulk theory, and in chapter 3 we show it explicitly. We describe the embedding
explicitly by writing the four-dimensional multiplets as sets of N = (2, 2) multiplets, and
use it to find the allowed interactions. For localization only one coupling is relevant, in
which a chiral multiplet on S2 interacts with a vector multiplet on S4 (or more precisely, a
subset of its fields forming a N = (2, 2) vector multiplet on S2) through its representation
of the gauge group. We generalize the localization formula to include the interaction, and
find a partition function of the form

Z2d−4d =

∫
4d Coulomb

da e−S
4d
cl (a)Z4d

1−loop(a)

×
∑
B

∫
2d Coulomb

dã e−S
2d
cl (ã,B)|Z2d−4d

inst (ã, B; a)|2Z2d
1−loop(ã, B; a). (1.22)

We find the Coulomb branch integral and the one-loop determinants to be similar to those
of the separate computations, in which the 2d fields see the 4d Coulomb branch in a way
identical to a 2d branch with zero magnetic flux (as a “twisted mass”). The instanton
partition function is modified by the presence of the defect, however its computation is left
for future work.

1.7 BPS states, magnetic monopoles and zero modes

In this section we introduce magnetic monopoles, and complete the presentation of the
third project of this thesis.

1.7.1 Monopoles in four dimensions

In four-dimensional gauge theory, a magnetic monopole is a time-independent solution of
the equations of motion with finite energy. As a simple example [54, 83] (see also [94]),
consider the theory of a gauge field Aµ coupled with an adjoint scalar field φ. (This is a
prototype for a N = 2 supersymmetric gauge theory.) To make time invariance manifest
we use a three dimensional language, in which8 Aµ = (A0,A), and use gauge invariance

8Here and in the following we use the three dimensional vector notation A = (Ai) = (A1, A2, A3).
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to set A0 = 0. The resulting field strength can be written in terms of a magnetic field B,
with Bi = εijkFjk. We can find a bound on the energy (mass) of a monopole by a simple
computation [14]:

E =
1

e2

∫
d3xTr

(
B2 + (Dφ)2

)
=

1

e2

∫
d3xTr

(
(B∓Dφ)2 ± 2B ·Dφ

)
≥ ± 2

e2

∫
d3xTr (B ·Dφ) , (1.23)

where the last quantity is a topological quantity (magnetic charge). The bound is attained
if and only if the Bogomoln’yi equations

B = ±Dφ (1.24)

are satisfied. The Bogomoln’yi equations are particularly important to N = 2 supersym-
metric gauge theories [86], as they correspond to a condition for invariance under some
supersymmetry. Its solutions thus correspond to BPS states, and they are called BPS
monopoles. In this work we are exclusively concerned with BPS monopoles.

1.7.2 Monopoles from supersymmetric quantum mechanics

BPS monopoles also arise naturally in supersymmetric quantum mechanics with four su-
percharges. Consider the reduction of a four-dimensional N = 1 supersymmetric gauge
theory to one dimension (or equivalently the reduction of a two-dimensional N = (2, 2)
gauge theory). The field content consists of vector multiplets and chiral multiplets. In the
one-dimensional theory, a vector multiplet consists of a vector x = x(t) (the reduction of
the gauge field, Aµ = (0,x)), fermions λ, λ̄ and an auxiliary field D. We are interested in a
low-energy effective theory, obtained by taking the gauge coupling e to zero. In that limit
we can integrate away the chiral multiplets [79, 88, 89], resulting in an effective interaction
term

Leff = A(x) · ẋ− Φ(x)D + C(x) · λ̄σλ (1.25)

for the vector multiplet. The potentials Φ and C correspond to one-loop corrections to
the theory, while A is a Berry connection. In quantum mechanics, a Berry connection
describes how the ground states vary as the parameters of the theory (here the potentials
in Leff) are varied adiabatically. Supersymmetry constrains the potentials with [25]

C = DΦ = ∗F, (1.26)
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where F is the field strength. The second equality in (1.26) is precisely the Bogomoln’yi
equation, so Φ and A describe a monopole configuration. For example, in a U(1) theory,
a chiral multiplet of charge q results in the configuration (x = ||x||)

Φ =
q

2x
, A = q

x2dx1 − x1dx2

2x(x+ x3)
, (1.27)

corresponding to a monopole of charge q centered at the origin. The method described
above is actually a form of supersymmetric localization (since varying e modifies the action
by a Q-exact term), and many BPS quantities computed in the effective theory are exact
(in the original theory).

1.7.3 Periodic monopoles from two-dimensional gauge theory

BPS monopoles also occur in two dimensionalN = (2, 2) supersymmetric gauge theory on a
cylinder. The cylindrical geometry encodes many non-perturbative phenomena, including
the spectrum of BPS states. In this setup we can use localization to find a monopole
description similar to the one-dimensional case, however the monopoles are now periodic.
Indeed, in the e→ 0 (zero coupling) limit the theory becomes effectively one dimensional,
and the result is a set of one-dimensional vector multiplets coupled to towers of chiral
multiplets9. The chiral multiplets are related by a momentum translation, and once they
are integrated out this leads to a translation in x in the potential, hence the periodicity.

By the above construction, the BPS spectrum of two dimensional theories can be ob-
tained from a periodic monopole geometry. This requires finding the supersymmetric
ground states, to which we now turn.

1.7.4 Supersymmetric ground states

One of the most important properties of a supersymmetric theory is its set of supersymmet-
ric ground states. In the monopole quantum mechanics (periodic or not) the ground states
are highly nontrivial configurations. To find them we first describe the Hilbert space of the
theory. Once the auxiliary field D has been integrated out, the bosonic field content is the
vector x(t), describing the motion of a particle in three-dimensional space. The bosonic
part Hb of the Hilbert space is the space of square integrable complex functions on R3

9This is essentially a Kaluza-Klein reduction. Note that the reduction leads to single vector multiplets
instead of towers of them, as gauge invariance can be used to remove the nonzero modes.
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(defined outside the monopole singularities). The fermionic part Hf is four-dimensional,
and we pick a basis {|−〉, |0〉α, |+〉}, on which the fermionic operators act as

λα|−〉 = 0, λ̄α|−〉 = |0〉α,
λα|0〉β = δβα|−〉, λ̄α|0〉β = εαβ|+〉,
λα|+〉 = εαβ|0〉β = −|0〉α, λ̄α|+〉 = 0. (1.28)

The total Hilbert space is Hb ⊗ Hf , and a generic state is described by the set of wave-
functions 〈x|ψ〉 = ψ−(x)|−〉+ψα(x)|0〉α +ψ+(x)|+〉. The supercharges act on Hb⊗Hf as
the operators

Qα = (P −A)(λ̄σ)α − Φλ̄α, Q̄α = (P −A)(σλ)α − Φλα, (1.29)

where P = ẋ +A is the canonical momentum for x. The ground states are described by
the conditions Q|ψ〉 = Q̄|ψ〉 = 0, or

((∂x − iA) · σ − Φ)ψ = 0,

(∂x − iA)ψ+ = Φψ+ = 0,

(∂x − iA)ψ− = Φψ− = 0, (1.30)

These imply ψ− = ψ− = 0, and we are left with the equation ((∂x − iA) · σ − Φ)ψ = 0
for ψ. This equation describes the zero modes of a fermion in a monopole background.

1.7.5 Fermion zero modes

In the previous section we showed that finding the ground states of the monopole quantum
mechanics amounts to obtaining the fermion zero modes for the appropriate monopole
configuration. Such zero mode have been the subject of much research, in particular for
their relation to the Nahm transform [57, 74]. The Nahm transform relates solutions to the
Bogomoln’yi equations to solution of a set of topological-anti-topological (tt∗) equations [19,
20], describing the relation between two topological constructions for the supersymmetric
ground states in some supersymmetric theories. In the R3 case the tt∗ equations correspond
to the Nahm equations [71–74], while in the periodic case they correspond to a Hitchin
system.

Despite the relevance of fermion zero modes, no generic solution for multiple monopoles
was known prior to this work. In chapter 4 we present a solution for the case of Abelian
monopole configurations on R3. The solution relies on a new method, in which the zero
modes are obtained in terms of a residue integral over a set of flat sections for an auxiliary
pair of connections (a Lax pair).
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Chapter 2

Irregular Singularities in the H+
3

WZW Model

2.1 Introduction and Conclusions

As seen the introduction, there are several protected quantities (BPS operators) which are
exactly computable in N = 2 four-dimensional gauge theories, and have a rich physical
and mathematical content. Many four-dimensional gauge theories can be engineered from
the twisted compactification of a six-dimensional CFT on a Riemann surface [36, 40, 99].
Protected quantities associated to such “class S” gauge theories can be usually given an
interpretation in terms of mathematical structures attached to the Riemann surface. In
particular, the Ω-deformed partition function of the four-dimensional theories takes the
form of two-dimensional conformal blocks for Virasoro or W-algebras [3, 101]. Other
current algebras arise from modifications of the four-dimensional setup: super-Virasoro and
para-Virasoro (or W-algebras) [15, 78] arise from geometric quotients of the Ω background,
WZW current algebras and their Hamiltonian reductions arise in the presence of extra
surface defects [7, 62]. Furthermore, the partition function on a four-dimensional ellipsoid
[48, 81] coincides with the correlation functions of the Liouville-like conformal field theories
directly associated to the appropriate current algebra: Liouville and Toda, super or para-
Liouville or super or para-Toda, the H+

3 WZW model and its higher rank SL(N,C)/SU(N)
generalizations.

There is an intricate dictionary which pairs up a specific class S theory with a specific
choice of correlation function in the two-dimensional conformal field theories. Standard
superconformal field theories in the class S can be matched to generic correlation functions
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of standard vertex operators in the two-dimensional CFTs. Asymptotically free gauge
theories and Argyres-Douglas-like theories are matched with conformal blocks and corre-
lation functions involving more exotic vertex operators, dubbed irregular vertex operators
[35, 40, 41]. Indeed, asymptotically free gauge theories and Argyres-Douglas-like theories
can be derived by a careful degeneration limit of the standard superconformal field theo-
ries. Correspondingly, on the two-dimensional CFT side, irregular vertex operators arise
from a collision of standard vertex operators, whose conformal dimension is sent to infinity
in a specific way.

The definition of irregular vectors has been given systematically for the Virasoro current
algebra and Liouville theory correlation functions in [41]. The main purpose of this chapter
is to give a systematic definition of irregular conformal blocks for the ŝl(2) current algebra
and H+

3 WZW theory. Similar, but sometimes more restrictive definitions appeared before
in the mathematical literature, see for example [58, 69, 70] or [33].

We have a good reason for picking this example, among all possible generalizations
of the Virasoro problem: it is a toy model for a different, deep problem which arises in
the calculation of scattering amplitudes at strong coupling in planar N = 4 SYM theory.
Scattering amplitudes in planar N = 4 SYM theory can be related to correlation functions
of polygonal Wilson loops with null edges [2, 4–6]. At strong coupling, the Wilson loop
correlation function should be computable in terms of a string world-sheet in AdS5, ending
on the null polygon at the boundary. At leading order, the calculation is classical, and
one has to compute the area of a minimal-area surface bounded by the null polygon. In
order to go beyond the leading order, one has to do a full quantum computation on the
world-sheet theory describing a superstring moving in AdS5 × S5. In particular, one has
to find out how to impose appropriate boundary conditions at infinity, encoding in the full
quantum theory the shape of the null Wilson loop at the boundary.

In the classical problem, the boundary condition at infinity produces an “irregular sin-
gularity” in a certain auxiliary connection, which lead to Stokes phenomena. The Stokes
data at the singularity encodes the shape of the null polygon. Thus one needs to define
a vertex operator for the world-sheet theory, which inserted at infinity leads to similar
singularities and Stokes phenomena. Irregular vectors in Liouville theory give rise to irreg-
ular singularities in the differential equations satisfied by degenerate fields, and to Stokes
phenomena. It is our hope that irregular singularities in the H+

3 WZW theory may provide
a closer analogue to the irregular singularities which are needed in the world-sheet theory
of a superstring moving in AdS5 × S5.

In this paper we derive the Ward identities which define irregular vertex operators
and conformal blocks for the ŝl(2) current algebra. We define a collision limit for r + 1
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standard highest weight vertex operators, which leads to a generic rank r irregular vertex
operator. Our results generalize in a natural way the definitions given for the Virasoro
algebra in [41], and allow us to formulate a simple conjecture on the structure of Ward
identities for irregular vertex operators in a general current algebra which admits a free
field realization. We also give a generalization of the known duality between H+

3 WZW
correlation functions and Liouville theory correlation functions, which includes irregular
vertex operators on both sides of the relation. This duality can be used in conjunction
with the results of [41] in order to understand the structure of WZW conformal blocks with
irregular singularities. Finally, we derive the KZ equations satisfied by irregular conformal
blocks and correlation functions, and we give a semiclassical description of irregular vertex
operators.

2.2 Irregular vectors and current algebras

In this section we give the explicit current algebra Ward identities for irregular vectors.
Our main result in this section is a parameterization of the singularity in the currents which
is compatible with the current algebra commutation relations, and with collision limits. In
section 2.2.1 we review the Virasoro algebra analysis from [41]. In section 2.2.2 we look

at the collision limit for several colliding primary fields of a ŝl(2) current algebra. We
look for an appropriate set of parameters which can be kept independent of the collision
parameters while giving rise to a finite limit. The final form of the irregular Ward identities
parameterizes the singularity of the currents by a set of bosonic oscillators, with a structure
which mimics the Wakimoto free-field representation. The simplicity of our result suggests
a natural extension to generic current algebras which admit a free field realization, which
we discuss in section 2.2.3.

2.2.1 The Virasoro case

The Virasoro Ward identity for irregular vertex operators has been studied in [41]. An
irregular vertex operator of rank r is defined as an eigenvector of the Virasoro modes
{L2r, · · · , Lr}, annihilated by the higher modes Ln, n > 2r:

LmΨ
(r)
Λ =

{
ΛmΨ

(r)
Λ 2r ≥ m ≥ r

0 m > 2r
, (2.1)
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where Λ is the set of eigenvalues Λ = (Λr, · · · ,Λ2r). The Virasoro algebra forbids the field

to be an eigenvector of any other mode. The Virasoro Ward identity for a rank r field Ψ
(r)
Λ

can thus be written in the form

T (w)Ψ
(r)
Λ (z) ∼

[
2r∑
k=r

Λk

(w − z)k+2
+

r−1∑
k=0

Lk
(w − z)k+2

+
∂z

(w − z)

]
Ψ

(r)
Λ (z). (2.2)

where the differential operators Lk need to be compatible with the Virasoro algebra. The
general solution proposed in [41] requires one to express the eigenvalues Λk in terms of a
new set of auxiliary parameters c = (c0 = α, c1, · · · , cr)

Λk = (k + 1)Qck −
k∑
l=0

clck−l, (2.3)

where cn>r ≡ 0. This is a generalization of the parametrization ∆ = α(Q − α) familiar
from Liouville theory. In terms of these parameters, the differential operators read

Lk = (k + 1)Qck −
k∑
l=0

clck−l +
r∑

l=k+1

(l − k)cl∂cl−k . (2.4)

(Note that the derivatives ∂ck are only defined for 1 ≤ k ≤ r.) This allows to write the
Ward identity in the form

T (w)Ψ
(r)
Λ (z) ∼

[
2r∑
k=0

(k + 1)Qck −
∑k

l=0 clck−l +
∑r

l=k+1(l − k)cl∂cl−k
(w − z)k+2

+
∂z

(w − z)

]
Ψ

(r)
Λ (z).

(2.5)

The parameterization of the Virasoro Ward identities is clearly inspired by the free-field
realization of the Virasoro algebra, but it is conceptually distinct. The correct statement
is that an irregular vertex operator for the Virasoro algebra is an object which satisfies the
same Ward identities as a coherent state

exp

[∑
k

cka−k

]
|0〉 (2.6)

in the free field theory which realizes the Virasoro algebra. The a−k are the creation modes
of the free scalar. In general, there is a linear space of solutions of the irregular Virasoro
Ward identities, i.e. irregular conformal blocks. As for standard conformal blocks, the
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naive free-field description only provides a special solution in that space, and intricate
configurations of screening charges are required to give a free-field description of general
solutions.

A more intrinsic way to understand the origin of the irregular Virasoro Ward identities
and the meaning of irregular conformal blocks is to define a rank r irregular vertex operator
as a collision limit of r + 1 regular vertex operators. Starting from the Ward identity

T (w)
∏
j

Ψαj(zj) ∼
∑
i

[
αi(Q− αi)
(w − zi)2

+
1

w − zi
∂zi

]
Ψαj(zj) (2.7)

and defining 1

Ψ =
∏
k,t

(zk − zt)2αkαt
∏
j

Ψαj(zj) (2.8)

we can bring the zi to a common point z, while the αi are sent to infinity in such a way
that ∑

i

αi
w − zi

→
∑
k

ck
(w − z)k+1

(2.9)

This collision limit brings the Ward identities for Ψ to the ones for the irregular vector
Ψ

(r)
Λ (z).

2.2.2 Irregular ŝl(2) currents

The Ward identity for a standard spin j primary field and the ŝl(2) valued current J(w) =
Ja(w)ta reads

Ja(w)Φj(µ|z) ∼ 1

w − z
DaΦj(µ|z), (2.10)

for some µ ∈ C, where Da are spin-j generators for sl(2). We use the following realization
of the generators: 2

D− = µ, D0 = j − µ∂µ, D+ = 2j∂µ − µ∂2
µ. (2.11)

1Note that this rescaling allows to obtain a finite limit for the Virasoro Ward identities. Virasoro
conformal blocks will have a finite limit if properly normalized and Liouville theory correlation functions
will also have a finite limit (see [41] for details). In order to extend the collision limits to correlation
functions of other CFTs, one may need to add further prefactors which take into account the behavior of
three-point functions and the normalization conventions for the vertex operators in that CFT.

2Here the fields are rescaled by a factor µj relative to the ones in [85], so the differential operators are
slightly different.
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Here the fields are related to a more common “x−basis” [7, 26, 91, 92] by a Fourier
transform and a rescaling [85]

Φj(µ|z) =
1

π
|µ|4j+2

∫
C
d2x eµx−µ̄x̄Φj(x|z) (2.12)

In that basis the fields Φj(x|z) satisfy a Ward identity similar to (2.10), where the differ-
ential operators are replaced by D̃a:

D̃− = −∂x, D̃0 = x∂x − j, D̃+ = x2∂x − 2jx. (2.13)

The use of the µ basis is rather convenient both for the collision limit, and to make contact
with the Liouville-H+

3 duality.

It will be useful to remember how such Ward identities arise in the context of a Waki-
moto free-field realization of the current algebra [26]. In such realisation, we express the

ŝl(2) current in terms of a free boson φ and a bosonic ghost pair β, γ, in the form

J−(w) =β(w),

J0(w) =∂φ(w) + (γβ)(w),

J+(w) =− 2(∂φγ)(w)− k∂γ − (β(γγ))(w). (2.14)

The Ward identities (2.10) then follow by those of a a primary field Ej(µ|z) for the scalar
φ and the βγ system.

β(w)Ej(µ|z) ∼ µ

w − z
Ej(µ|z),

∂φ(w)Ej(µ|z) ∼ j

w − z
Ej(µ|z),

γ(w)Ej(µ|z) ∼ −∂µEj(µ|z). (2.15)

Our final answer for the irregular vector Ward identities will coincide with the Ward
identities satisfied by an appropriate coherent state E

(r)
j (µ|z) for φ and the βγ system.

β(w)E
(r)
j (µ|z) ∼

r∑
m=0

µm
(w − z)m+1

E
(r)
j (µ|z),

∂φ(w)E
(r)
j (µ|z) ∼

r∑
m=0

jm
(w − z)m+1

E
(r)
j (µ|z),

γ(w)E
(r)
j (µ|z) ∼−

r∑
m=0

(w − z)m∂µmE
(r)
j (µ|z), (2.16)
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Combining these OPE with the Wakimoto realization we arrive to our proposal for the
irregular Ward identities for an irregular vector of rank r Φ

(r)
j (µ|z), labeled by j = {jn},

µ = {µn}, with 0 ≤ n ≤ r.

J−(w)Φ
(r)
j (µ|z) ∼

r∑
m=0

µm
(w − z)m+1

Φ
(r)
j (µ|z),

J0(w)Φ
(r)
j (µ|z) ∼

r∑
m=0

jm −
∑

n µn∂µn−m
(w − z)m+1

Φ
(r)
j (µ|z),

J+(w)Φ
(r)
j (µ|z) ∼

r∑
m=0

2
∑

n jn∂µn−m −
∑

n,p µn∂µp∂µn−p−m+1

(w − z)m
Φ

(r)
j (µ|z). (2.17)

As in the Virasoro case, the coherent state only provides a model to the Ward identities,
but not the general solution of the Ward identities.

We obtain the same result if we define a rank r WZW irregular vertex operator in terms
of the collision of r + 1 regular vertex operators. For this purpose, consider r + 1 primary
fields Φjk(µ

k|zk), using an upper index for jk and µk to distinguish from the mode index.
As each field approach the collision point z, we allow jk and µk to diverge in the collision
limit qk → 0, but we require the current Ja(w) to remain finite. If we adjust the µk in such
a way that ∑

i

µi

w − zi
→

r∑
m=0

µm
(w − z)m+1

(2.18)

then the Ward identity for J−(w)

J−(w)
∏
k

Φ
(r)

jk
(µk|zk) ∼

∑
i

µi

w − zi

∏
k

Φ
(r)

jk
(µk|zk) (2.19)

will obviously have the correct limit.

Note that the change of variables from µk to µm is generated by the Vandermonde
matrix

µm−1 =
∑
k

Mmkµ
k, where Mmk = (zk − z)m−1 (2.20)

From the change of variables we read the relation between the derivatives, ∂µk =
∑r+1

m=1Mmk∂µm−1 ,
and a straightforward calculation shows that the contribution from the −µ∂µ terms in
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J0(w) has a finite limit by itself. If we adjust the jk in such a way that

∑
i

ji

w − zi
→

r∑
m=0

jm
(w − z)m+1

(2.21)

then we arrive to the desired J0(w) Ward identity. Finally, some tedious algebra shows
that the J+(w) Ward identities have a finite limit, and we recover the Ward identities for a
rank r WZW irregular vector. Notice that the relation between derivatives tells us how one
would do the collision limit in the x basis: xk =

∑r+1
m=1Mmkxm−1, i.e. the xk parameters

collide in a similar pattern as the zk. The irregular vertex operators in the xm and µm
bases are again related by Fourier transform and a rescaling.

The WZW Ward identities are not sensitive to a rescaling by a function of the zk in the
collision limit. Such a factor can be fixed by requiring the stress tensor Ward identities to
also have a specific finite limit. Choices which differ by a finite function of the jm in the
limit will give slightly different, albeit equivalent forms for the Virasoro Ward identities.
A natural choice for the Ward identities is to mimic the form of the stress tensor in the
Wakimoto free field realization of the theory.

T = −b2(∂φ∂φ) + b2∂2φ− (β∂γ) (2.22)

This expression actually allows to write the whole Virasoro Ward identity, since the first
r regular modes of ∂φ are fixed by its mode algebra. The result takes the form (2.5) with
cm → bjm, Q→ −b, plus µ∂µ terms which arise from the β∂γ term:

T (w)Φ
(r)
j (µ|z) ∼

(
−b2

2r∑
m=0

∑m
n=0 jnjm−n + (m+ 1)jm

(w − z)m+2
+

∂z
(w − z)

+
r−1∑
m=0

∑r
n=1 n(µn+m∂µn + jn+m∂jn)

(w − z)m+2

)
Φ

(r)
j (µ|z). (2.23)

In appendix 2.A.1, we derive the same result from the collision limit. It is an important
building block for the generalization of the KZ equation, which is derived in appendix 2.B.

2.2.3 Generalization to other current algebras

It is pretty natural to take the Virasoro and ŝl(2) irregular Ward identities as an example
of a general proposal on how to describe irregular vectors for any current algebra which
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admits a free-field realization: mimic the Ward identities satisfied by an appropriate co-
herent state for the free fields. For finite Lie algebras, the current algebra can be obtained
from a Wakimoto realization, in a way similar to ŝl(2). In this case we have one pair of
bosonic ghosts βa, γa per positive root, and one free boson ∂φi per element of the Cartan
subalgebra. The irregular Ward identities for these fields work exactly in the same way as
in the ŝl(2) case, so the current Ward identities can be obtained by their Wakimoto repre-
sentations analogously. For example, since the energy-momentum tensor in the Wakimoto
representation is simply the sum of the one for the free fields, its irregular expression has
to take the form

T (w)Φ
(r)
j (µ|z) ∼

(
−b2

2r∑
m=0

∑m
n=0 jn · jm−n + (m+ 1)ρ · jm

(w − z)m+2
+

∂z
(w − z)

+
r−1∑
m=0

∑r
n=1 n(

∑
a µ

a
n+m∂µan +

∑
i j
i
n+m∂jin)

(w − z)m+2

)
Φ

(r)
j (µ|z), (2.24)

where ρ is the Weyl vector. (As in the ŝl(2) case, this expression is not unique, as shifting
the field by a function of the parameters jim can modify the expression slightly.)

While the use of free-field realizations works well for affine Lie algebras, it can be used
for other current algebras as well. We will give here a simple example: irregular vectors
for the W3 algebra. This algebra has two generators: the energy-momentum tensor T (z),
and a spin 3 field W (z). A free-field realization of this algebra is obtained from a triplet
of free bosons φi, constrained by

∑
i φi = 0. In this realization the currents take the form

[60]

T = −1

2
(∂φ2

1 + ∂φ2
2 + ∂φ2

3) +Q(∂2φ3 − ∂2φ1),

W = i

√
3

30Q+ 8

(
∂φ3

1 + ∂φ3
2 + ∂φ3

3 −Q2∂3φ2 − 2QMij∂φi∂
2φj
)

(2.25)

where Q is a parameter of the theory. The matrix M has the nonzero entries M12 = M13 =
M23 = M33 = −M11 = 1 Primary fields in this representation satisfy

∂φi(w)Vc(z) ∼ ci

w − z
Vc(z), (2.26)

for i = 1, 2. Following the same method as before, we can guess that irregular vectors will
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satisfy

∂φi(w)V (r)
c (z) ∼

(
r∑

m=0

cim
(w − z)m+1

+
r∑

m=1

m∂cim(w − z)m−1 +O((w − z)r)

)
V (r)
c (z),

(2.27)

which implies the irregular currents

T (w)V (r)
c (z) ∼

(
2r∑
m=0

−1
2

∑
i,n c

i
nc
i
m−n + (m+ 1)Q(c3

m − c1
m) +

∑
i,n nc

i
n+m∂cin

(w − z)m+2

+
∂z

(w − z)

)
V (r)
c (z),

W (w)V (r)
c (z) ∼ i

√
3

30Q+ 8

(
3r∑
m=r

∑
i,n,p c

i
nc
i
pc
i
m−n−p +

∑
i,n,p c

i
nc
i
p∂cin+p−m

(w − z)m+3

−
2Q
∑

i,j,n(n+ 1)Mijc
i
nc
j
m−n +Q2(m+ 1)(m+ 2)cim

(w − z)m+3
+O((w − z)−r−2)

)
V (r)
c (z).

(2.28)

The Ward identities do not fix several singular terms in the OPE of W . This is not a
surprise: the Ward identities for a regular vector V of the W-algebra contain descendants
such as W−1V and W−2V which cannot be rewritten in terms of derivatives in the parame-
ters of the conformal block. The Ward identities for a rank r irregular vector contain r+ 2
such descendants.

2.3 Correlation functions

Our discussion of the collision limits until this point only concerned the holomorphic (or
anti-holomorphic) Ward identities. In the Virasoro case, there is strong evidence [41] that
the collision limit is also sensible at the level of full correlation functions for Liouville
theory. The Liouville theory correlation functions are assembled from DOZZ three-point
functions (see [28, 29, 102]), holomorphic and anti-holomorphic conformal blocks. The
pairing is defined on the physical locus for the external Liouville momenta, α = Q

2
+ iR,

and can be analytically continued to the complex α plane by setting the parameter in the
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anti-holomorphic conformal block to be ᾱ = Q− α (or ᾱ = α, the choice is immaterial in
conformal blocks). The collision limit is done by sending the Liouville momenta αk of the
colliding puncture to ±i∞, and involves the cancellations of divergent factors between the
DOZZ three-point functions and the conformal blocks.

We expect that an analogous collision limit should be possible in a suitable rational CFT
(RCFT) based on the ŝl(2) current algebra: the so-called H+

3 WZW model. A standard
primary field Φj(µ, µ̄|z, z̄) in this RCFT carries a spin j ∈ −1

2
+ iR. The correlation

functions are defined on this physical slice of parameter space (and µ∗ = µ̄), and can
be analytically continued away from there, by keeping the spin in the anti-holomorphic
conformal blocks j̄ = j (the convention j̄ = −j − 1 is equivalent, but less convenient)[85].

The collision limit gives a generalization of the physical slice j ∈ −1
2

+ iR. For a vector
of rank r, we require j0 ∈ − r+1

2
+ iR, and j̄n = jn = −j∗n − (r + 1)δn,0.

2.3.1 An example: one-point function of a rank two irregular
vector

To show that the above results are consistent, we proceed with an example and calculate
the one-point function of a rank two irregular vector, up to a function of j0. This is
the simplest nontrivial case, as rank 1 vectors have a vanishing one-point function by
symmetry (see below). We use the fact that the singular modes of the currents T (w)
and Ja(w) annihilate the vacuum state. This implies that the differential operators L0,
L±1 and J a

0 must annihilate the one-point function. In the current case these conditions
are sufficient to fix the correlation function, and the generalized KZ equations (derived in
appendix 2.B) are not needed. The six equations read

J −0 〈Φ
(2)
j (µ|z)〉 =µ0〈Φ(2)

j (µ|z)〉 = 0,

J 0
0 〈Φ

(2)
j (µ|z)〉 =(j0 − µ0∂µ0 − µ1∂µ1 − µ2∂µ2)〈Φ(2)

j (µ|z)〉 = 0,

J +
0 〈Φ

(2)
j (µ|z)〉 =(2j0∂µ0 + 2j1∂µ1 + 2j2∂µ2

− µ0∂
2
µ0
− 2µ1∂µ0∂µ1 − µ2(∂2

µ1
+ ∂µ0∂µ2))〈Φ(2)

j (µ|z)〉 = 0,

L−1〈Φ(2)
j (µ|z)〉 =∂z〈Φ(2)

j (µ|z)〉 = 0,

L0〈Φ(2)
j (µ|z)〉 =(µ1∂µ1 + 2µ2∂µ2 + j1∂j1 + 2j2∂j2 − b2j0(j0 + 1))〈Φ(2)

j (µ|z)〉 = 0,

L1〈Φ(2)
j (µ|z)〉 =(µ2∂µ1 + j2∂j1 − 2b2j1(j0 + 1))〈Φ(2)

j (µ|z)〉 = 0. (2.29)
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This system, together with its anti-holomorphic counterpart, has the solution

〈Φ(2)
j (µ|z)〉 =δ(2)(µ0)|µ2|2j0+2|j2|(j0+1)(b2j0−2)e

2ib2(j0+1)Im

(
j21
j2

)
+ 1

2
iIm(u2)

× (Dj0+1(u), D−j0−2(iu))C(j0) (Dj0+1(ū), D−j0−2(iū))T , (2.30)

where u = i(µ2/2)−1/2(j2(µ1/µ2)− j1), with ū = −iu∗, C(j0) is an arbitrary 2× 2 matrix,
and DA is the parabolic cylinder function

DA(z) = 2A/2
√
πe−

1
4
z2

(
Γ
(

1−A
2

)−1
1F1

(
−A

2
;
1

2
;
z2

2

)
−
√

2 Γ
(
−A

2

)−1
z 1F1

(
1− A

2
;
3

2
;
z2

2

))
.

(2.31)

To find the matrix C(j0) we impose the constraint that the physical correlation function do
not grow exponentially in any direction in the u-plane. This property holds for the three-
point function whose collision limit defines the correlation function we are after [85]. The
parabolic cylinder function has a Stokes phenomenon, so we must make sure the constraint
holds for each of the four Stokes sector3. This fixes the matrix to C(j0) =diag(1, i γ(j0+2)),
where γ(A) = Γ(A)/Γ(1− A), up to an overall factor.

The correlation function can be expressed as the double integral

〈Φ(2)
j (µ|z)〉 =δ(2)(µ0)C(j0)|µ2|2j0+2|j2|(j0+1)(b2j0−2)e

2ib2(j0+1)Im

(
j21
j2

)

×
∫
C
dxdx̄ |x|−2(j0+2)e−

1
2
x2+ 1

2
x̄2−ux+u∗x̄. (2.32)

The integral is calculated in appendix 2.C.3 The integrand is the “square” of the integrand
in the contour integral definition of the parabolic cylinder function. The holomorphic and
anti-holomorphic parameters are such that the integrand is oscillatory, of modulo 1, and
does not blow up exponentially at large u. The double integral can also be interpreted as
the Fourier transform of the correlation function in the x-basis, which can be determined
independently by the collision limit on the standard three-point function of the WZW
model in the x-basis. In appendix 2.D we verify that the same correlation function (2.32)
arises from the collision limit (in the µ-basis).

3For a review of the Stokes phenomenon, see [100]
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2.4 Irregular vectors and the Liouville-H+
3 duality

2.4.1 The Liouville-H+
3 duality

We review the duality between WZW and Liouville correlation functions. Primary fields
in Liouville theory are parametrized by a Liouville momentum α, and have conformal
dimension ∆α = α(Q− α). Here Q = b + b−1 is a parameter of the theory, related to the
central charge by c = 1 + 6Q2. For a review of Liouville theory, see [50, 93].

The Liouville-H+
3 duality relates the correlation functions of primary fields in the form

[85]〈
n∏
k

Φjk(µ
k|zk)

〉
=
π

2
(−π)−nb δ(2)(

n∑
k

µk) |Θn,n−2|2
〈

(
n∏
k

Vαk(zk))(
n−2∏
m

V− 1
2b

(ym))

〉
.

(2.33)

where the function Θn,m is defined as4

Θn,m(z1, · · · , zn|y1, · · · , ym, u) = u
∑n
k
αk
b
− n

2b2
−(n−1)

∏n
s,k<s(zk − zs)

−αk+αs
b

+ 3
2b2

+2∏n
k

∏m
p (zk − yp)−

αk
b

+ 1
b2

+1

m∏
p,q<p

(yq − yp)
1

2b2 .

(2.34)

The WZW variables are related to those on the Liouville side by

αk = b(jk + 1) +
1

2b
, (2.35)

µk = u

∏n−2
m (zk − ym)∏n
s 6=k(zk − zs)

. (2.36)

The parameters k and b are related under the duality by b2 = −(k + 2)−1, and u =∑n
k=1 µ

kzk.

This somewhat imposing relation can be understood more easily after two simple ob-
servations. First, the ym are essentially the zeroes of J−(y), or more precisely of∑

k

µk

y − zk
. (2.37)

4Here the function differs from the one defined in [85] because of the different normalization for the
fields.
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This statement inverts the relation (2.36). Second, the Θn,m prefactor, which allows one to
reduce the KZ equations on the WZW side to the BPZ equations satisfied by the degenerate
punctures at ym, can be derived by comparing the various OPE limits of corresponding
conformal blocks on the two sides. A similar relation holds at the level of conformal
blocks. Each trinion on the WZW side maps to a trinion on the Liouville side with an
extra degenerate on one of the three legs. There is a two-dimensional space of three-
point junctions on the WZW side, which matches the two-dimensional space of Virasoro
three-point junctions with an extra degenerate insertion on one of the three legs.

2.4.2 H+
3 irregular vectors from Liouville theory

We now turn to the main objective of this section, and look for an equivalent of eq. (2.33)
for correlation functions involving irregular vectors. Again, we use the collision limit for
this purpose. The duality formula provides an alternative definition of H+

3 correlation
functions involving irregular vectors, in terms of the corresponding Liouville theory cor-
relation functions, which behave as described in section 2.2.1. Most calculations in this
section are tedious and are done in the appendix 2.A.2.

We look for the duality involving n punctures of ranks rk, k = {1, · · · , n}, on the WZW
side, which can be regular if rk = 0. For this purpose we start from the duality formula
with t =

∑n
k=1(rk + 1) H+

3 regular vectors. This implies on the Liouville side the presence
of t regular vectors and t − 2 degenerate insertions. Then, we do the usual collision limit
on the H+

3 side. Because, by definition, we tune the µk so that the J−(y) Ward identity
finite in the limit, the location of the zeros ym remains generic in the collision limit. On the
other hand, the way we tune the jk to keep the J0(y) Ward identity finite is compatible
with the standard collision limit on the Virasoro side of the duality. Thus the endpoint
of the collision limit on the Liouville side involves irregular vectors of rank rk and t − 2
degenerate fields.

Thus our final formula includes n fields Φ
(rk)

jk
(µk|zk) on the H+

3 side and the dual fields

V
(rk)

ck
(zk) and t− 2 degenerate fields V− 1

2b
(yp). The parameters are related by

ckm = bjkm + (r + 1)(b+
1

2b
)δm,0, (2.38)

µkm = u

∏t−2
p=1(zk − yp)∏n

s 6=k(zk − zs)rs+1
W k
rk−m, (2.39)
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where W k
rk−m represents the series expansion

∑
p

W k
p q

p
i =

∏t−2
m (1 + qi(zk − ym)−1)∏n

s=r+2(1 + qi(zk − zs)−1)rs+1
. (2.40)

The first relation follows straightforwardly from (2.35), while the second requires more
work and is derived in appendix 2.A.2. Of course, this relation is simply a complicated
way to say that the ym are zeros of the J−(y) Ward identity.

The duality formula for this field content is also derived in appendix 2.A.2, and takes
the form〈

n∏
k=1

Φ
(rk)

jk
(µk|zk)

〉
=
π

2
(−π)−tb δ(2)(

n∑
k=1

µk0) |Θr|2
〈

(
n∏
k=1

V
(rk)

ck
(zk))(

t−2∏
m

V− 1
2b

(ym))

〉
.

(2.41)

The function Θr is the generalization of Θn,n−2 to irregular vectors and is given by

Θr(z1, · · · , zn|y1, · · · , yt−2, u)

= u
∑n
k
αk
b
− t

2b2
−(t−1)

t−2∏
p,q<p

(yq − yp)
1

2b2

∏n
k,s<k(zk − zs)

− (rs+1)αk+(rk+1)αs
b

+(rk+1)(rs+1)(2+ 3
2b2

)∏n
k

∏t−2
m (zk − ym)−

αk
b

+(r+1)(1+ 1
2b2

)

×

∏n
k,s<k exp

(
b−1
∑max(rk,rs)

p=1 (−1)p
(rs+1)ckp+(rk+1)csp

p(zk−zs)p

)
∏n

k

∏t−2
m exp

(
b−1
∑r

p=1

(−1)pckp
p(zk−ym)p

) F (r)(j) (2.42)

with u =
∑n

k=1(jk0zk + jk1 ). The function F (r)(j) is the exponent of a rational function of
the j, which is defined as the solution to the set of differential equations

r−m∑
n=0

njm+n
∂jnF

(r)(j)

F (r)(j)
+ 2(r −m)(b2 + 1)jm + (b2 + 1)r(r + 1)δm0 = 0, (2.43)

for 0 ≤ m ≤ r, normalized such that F (0, · · · , 0, jr) = j
(b2+1)(r+1)
r . A similar formula holds

at the level of conformal blocks. Because of the structure of the collision limit, we expect
each of the irregular junctions described in [41] on the Virasoro side to combine with a
degenerate insertion to give an irregular junction in irregular WZW conformal blocks. We
leave the details of the dictionary between irregular conformal blocks to future work.
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2.5 Semiclassical analysis of irregular vectors

In order to understand better the meaning of irregular vectors in WZW models, we can look
at the semiclassical limit of correlation functions. The semiclassical limit is defined as a
k →∞ limit5, combined with an appropriate rescaling of the parameters at the punctures,
in such a way that correlation functions scale as

〈
∏
i

Φi(zi)〉 ∼ e
1
k+2

Scl(zi) (2.44)

in terms of the classical action for an appropriate solution of the classical WZW equations
of motion, determined by the data at the punctures.

Here the action is the WZW action for the gauge group H+
3 = SL(2, C)/SU(2). One

useful parametrization for a group element is

h =

(
1 γ
0 1

)(
eφ 0
0 eφ

)(
1 0
γ̄ 1

)
=

(
e−φ + γγ̄eφ eφγ

eφγ̄ eφ

)
. (2.45)

In terms of these parameters, the action reads [26]

SWZW =
k

π

∫
d2zTr(∂h−1∂̄h) + kΓWZ =

k

π

∫
d2z(∂φ∂̄φ+ e2φ∂γ̄∂̄γ). (2.46)

This also corresponds to a string action in H+
3 , with the metric ds2 = dφ2 + e2φdγdγ̄. The

H+
3 theory is reviewed in [24, 66, 67, 91]

The KZ equations for a spin 1/2 degenerate field is also expected to have a finite limit,
and reduce to the equations of motion for the classical WZW solution. More precisely, the
KZ differential operator should go to an ordinary differential operator in the semiclassical
limit

∂z −
1

k + 2
Jaσa → ∂z − A(z). (2.47)

At regular singularities, A(z) should have a single pole with residue R = Raσa

R− = m, R0 = a− xm, R+ = 2ax− x2m. (2.48)

Here we scaled j = a(k + 2), µ = m(k + 2), and x = ∂Scl

∂µ
. This is a rather generic

parameterization for a traceless matrix of fixed eigenvalues a and −a in terms of a pair of
conjugate variables x and m.

5This is equivalent to the standard semiclassical limit ~→ 0, since k appears as an overall multiplicative
factor in the WZW action (2.46)
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The group element G(z, z̄) which represents a classical solution of the WZW equations
of motion should satisfy

∂G = AG, ∂̄G = GĀ. (2.49)

and it should be single-valued on the Riemann surface. The latter constraint is rather
strong. We can solve the equations by writing

G(z, z̄) = g(z)Cḡ(z̄). (2.50)

for some holomorphic solution g(z) and constant hermitian matrix C.

The holomorphic solution g(z) will have monodromy

g(e2πi(z − zs) + zs) = g(z)Ms (2.51)

around the regular singularities at the locations zs of the ordinary vertex operators. Then
G will be single-valued if

MsCM̄s = C, (2.52)

i.e. Ma is conjugate to M̄−1
s .

This means that the trace of the monodromy along any path is real. This constraint
kills half of the degrees of freedom of the system. In principle it fixes, say, the m parameters
at all punctures in terms of the x parameters at all punctures. As the relation between A
and its monodromies is highly transcendental, it is very hard to describe the constraints
on A implied by the constraints on the monodromy matrices Ms. The semiclassical limit
of WZW conformal blocks solves this problem. This is analogous to the statement that
the semiclassical limit of Virasoro conformal blocks solves the uniformization problem.

This constraints can only be satisfied if the parameter as for the regular singularity at
zs is either pure real or pure imaginary: in the first case the eigenvalue e2πia of M is a
phase, in the second it is real. If we pick the as parameters to be real at all punctures, then
we can pick a gauge where all the monodromies are unitary matrices, and C = 1. Then
G lives in the space of hermitian matrices of unit determinant, which is the same as the
hyperbolic space H+

3 . This is the expected target space for the H+
3 WZW sigma model.

On the other hand, the vertex operators which represent normalizable states in the
H+

3 model have pure imaginary as. If we pick the as parameters to be imaginary at all
punctures, then we can pick a gauge where all the monodromies are real, i.e. belong
to SL(2, R). Then we need to pick C = iσ2. As a consequence, G lives in the space of
hermitian matrices of determinant −1, which is an analytic continuation of H+

3 : it is three-
dimensional de-Sitter space dS3. It may seem strange for the semiclassical saddle points for
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correlation functions of normalizable vertex operators to take value in the complexification
of the target space, but it becomes less surprising if we look at a much simpler CFT: the
theory of a free boson. The semiclassical solutions near a normalizable vertex operator
eipX are imaginary

X ∼ ipα′ log |z|2. (2.53)

This is also the correct range of parameters for the regular punctures we collide to
obtain irregular punctures. Our expectation is based on the Liouville theory analogue
setup [41]. It essentially means that in the collision limit, one of the eigenvalues of each of
the monodromy matrices Ms involved in the collision should be sent to infinity. We will
see momentarily that the natural constraints at irregular singularities which replace the
single-valuedness at regular singularities indeed require a C of the form C = iσ2.

In order to understand the semiclassical behavior near a regular puncture, it is useful
to consider solutions g

(s)
± (z) which behave as (z − zs)±a at the regular singularity. If as is

real, then the solution must take the diagonal form

G = csg
(s)
+

(
g

(s)
+

)∗
+ c−1

s g
(s)
−

(
g

(s)
−

)∗
. (2.54)

The coefficient cs is fixed by the requirement that G should take the diagonal form at
all punctures. As we approach the singularity, one of the two solutions blows up, and G
goes to the boundary of H+

3 , at a location determined by the x parameter of the regular
puncture

G ∼
(

1 x̄
x xx̄

)
|z − zs|−2|as|. (2.55)

Thus the semiclassical solution is the solution of the equation of motion which reach the
boundary at a prescribed set of points.

If as is imaginary, then the solution must take the off-diagonal form

G = csg
(s)
+

(
g

(s)
−

)∗
+ c−1

s g
(s)
−

(
g

(s)
+

)∗
. (2.56)

As we approach the singularity, neither solution diverges. Rather, we get an oscillating
approximate solution

G→
(

1
x

)(
m̄ 2ā+ m̄x̄

)
|z − zs|2i|as| +

(
m

2a+mx

)(
1 x̄

)
|z − zs|−2i|as|. (2.57)

As we approach the regular singularity, the solution winds infinitely many times along a
specific circle in dS3.

38



At an irregular vertex operator, the differential operator ∂z −A has an irregular singu-
larity: the matrix A takes the form A =

∑
n=0 z

−n−1Ra
nσa, where

R−n = mn, R0
n = an −

∑
p

mnxp−n, R+
n = 2

∑
p

anxp−n −
∑
p,q

mpxqxp−q−n+1.

(2.58)

To simplify the analysis, we set x0 = mr = 0 by a H+
3 transformation, and zs = 0.

The solution g(z) will have Stokes phenomena. Given a generic straight ray going into the
irregular singularity, we can find a unique solution which decreases exponentially fast along
that ray according to a specific asymptotic behavior, which is valid only in an appropriate
Stokes sector around the ray. Roughly,

g(z) ∼ z±a0e∓
∑r
n=1

an
nzn (2.59)

with an appropriate vector structure. This procedure identifies 2n “small solutions” g
(s)
i ,

each decreasing exponentially fast in a sector of width π/n around the irregular singularity.

Pairs of consecutive small solutions g
(s)
i , g

(s)
i+1 are always linearly independent, and can

be normalized so that det(g
(s)
i , g

(s)
i+1) = 1. If we compare g

(s)
i+1 and g

(s)
i−1 in the i-th sector,

they will grow at the same rate, and their sum will be proportional to g
(s)
i :

g
(s)
i+1 + g

(s)
i−1 = d

(s)
i g

(s)
i . (2.60)

Imposing this normalization, we will get a periodicity g
(s)
i+2n = η±1g

(s)
i , where the “formal

monodromy” η depends on a0.

The proportionality coefficients d
(s)
i generalize the notion of monodromy around a regu-

lar puncture. In particular, if we look at an irregular singularity as the collision of n regular
singularities, the coefficients d

(s)
i control the behavior of the n monodromy matrices in the

limit.

We should ask what is the condition on the d
(s)
i which arises from the condition (2.52)

in the collision limit. We can take a shortcut: as the solution G did not blow up at the
regular singularities, it should also not blow up at an irregular singularity. Thus between
each pair of sectors G should take the off-diagonal form proportional to

g
(s)
i

(
g

(s)
i−1

)∗
− g(s)

i−1

(
g

(s)
i

)∗
. (2.61)
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This is compatible with (2.60) if the d
(s)
i are real. The asymptotic solution in all sectors

is, to leading order, of the form

G(z, z̄) ∼

(
−2 Re(x1zS(z, z̄)) S∗(z, z̄)

S(z, z̄) 2 Re
(
mr−1

2ar
zS∗(z, z̄)

) )
+O(z2), (2.62)

where we defined

S(z, z̄) = |z|2a0e−2iIm
∑
n=1

an
nzn = exp

[
2iIm

(
a0 log |z| −

∑
n=1

an
nzn

)]
= eiψ. (2.63)

At the zeroth order (neglecting the O(z) terms), the solution is included in a U(1) subgroup
of dS3 parametrized by the angle ψ. For sufficiently small and constant |z| the solution
winds quickly in alternating direction, i.e., ψ′(θ) is separated in 2n sectors of opposing
sign.
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Appendix

In these appendices we derive some of the technica results of this chapter as well as a
few extra results, and review some properties of double (complex) integrals. In appendix
2.A, we derive some results by a collision limit, the irregular Virasoro current (2.23) and
the H3

+-Liouville duality formula (2.33). In appendix 2.B we generalize a set of differential
equations constraining the correlation functions, the KZ equations [26], to include irregular
vertex operators. In appendix 2.C we review some identities for complex integrals and
demonstrate them with some examples.In appendix 2.D we rederivenamely the one point-
function of a rank two vector, found in section 2.3.1, from the direct collision of the regular
three-point function.

2.A Collision limits

2.A.1 The irregular Virasoro current

Here we derive the irregular Virasoro current (2.23) for ŝl(2) WZW models from a collision
limit. As in section 2.2.2 we start with r + 1 primary fields Φjk(µ

k|z + qk), and write the
collision in the form

Φ
′(r)
j (µ|z,q) =

∏
i,j<i

|qi − qj|2b
2Cij

r+1∏
k=1

Φjk(µ
k|z + qk),

with Φ̃
(r)
j (µ|z) = lim

q→0
Φ
′(r)
j (µ|z,q). (2.64)

As will be shown in the next section, finiteness of the conformal blocks in the collision
limite require Cij = 2jijj + 2(1 + b−2)(ji + jj + 1). We look for the collision limit of the
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Virasoro Ward identity

T (w)
r+1∏
k=1

Φjk(µ
k|z + qk) ∼

r+1∑
k=1

(
∆k

(w − z − qk)2
+

∂zk
(w − z − qk)

)
×
∏
i,j<i

|qi − qj|−2b2CijΦ
′(r)
j (µ|z,q), (2.65)

with ∆k = −b2jk(jk + 1). Defining Cji = Cij for j > i, this becomes

T (w)Φ
′(r)
j (µ|z,q) ∼

(
∞∑
m=0

−(m+ 1)b2
∑

i q
m
i j

i(ji + 1)−
∑r+1

i,j 6=iCijb
2qm+1
i (qi − qj)−1

(w − z)m+2

+
∞∑

m=−1

∑r+1
i qm+1

i ∂zi
(w − z)m+2

)
Φ
′(r)
j (µ|z,q). (2.66)

For the moment we neglect the part with the derivative terms, and call the rest Tj(w).
The terms containing Cij can be rewritten in the form

r+1∑
i,j 6=i

Cijq
m+1
i (qi − qj)−1 =

1

2

r+1∑
i,j 6=i

m∑
n=0

qni q
m−n−1
j Cij, (2.67)

which implies

Tj(w)Φ
′(r)
j (µ|z,q)

∼ −b2

∞∑
m=0

(m+ 1)(jm +
∑

i q
m
i (ji)2) +

∑r+1
i,j 6=i

∑m
n=0 q

n
i q

m−n−1
j Cij/2

(w − z)m+2
Φ
′(r)
j (µ|z,q)

∼ −
∞∑
m=0

(
(b2(2r + 1−m) + 2(r −m))jm

(w − z)+2m

+
b2
∑m

n=0 jnjm−n−1 + (b2 + 1)r(r + 1)δm,0
(w − z)m+2

)
Φ
′(r)
j (µ|z,q) (2.68)

We now turn to the other part of the Virasoro Ward identity, containing z-derivatives
(labeled T∂(w)). This part cannot easily be treated symmetrically in i, so here we set qr+1

to 0. This gives the set of derivatives

∂zr+1 = ∂z −
r∑
i=1

∂qi , and ∂zi = ∂qi , i ≤ i ≤ r. (2.69)
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We use this to rewrite

T∂(w)Φ
′(r)
j (µ|z,q) ∼

(
∂z

(w − z)
+
∞∑
m=0

∑r
i q

m+1
i ∂qi

(w − z)m+2

)
Φ
′(r)
j (µ|z,q). (2.70)

Using the chain rule to rewrite the ∂qi as combinations of ∂jn and ∂µn , we find

T∂(w)Φ
′(r)
j (µ|z,q) ∼

(
∂z

(w − z)
+
∞∑
m=0

∑r+1
n=1 n(µn+m∂µn + jn+m∂jn)

(w − z)m+2

)
Φ
′(r)
j (µ|z,q). (2.71)

Assembling the pieces together and taking the collision limit, we get the full Virasoro Ward
identity

T (w)Φ̃
(r)
j (µ|z) ∼

(
−

2r∑
m=0

(b2(2r + 1−m) + 2(r −m))jm
(w − z)m+2

−
2r∑
m=0

b2
∑m

n=0 jnjm−n + (b2 + 1)r(r + 1)δm,0
(w − z)m+2

+
∂z

(w − z)
+

r−1∑
m=0

∑r
n=1 n(µn+m∂µn + jn+m∂jn)

(w − z)m+2

)
Φ̃

(r)
j (µ|z), (2.72)

This differs slightly from the expected result, however the the difference is only due to a
different scaling in jm. which can be brought to the form (2.23) with the rescaling

Φ
(r)
j (µ|z) = F (r)(j)Φ̃

(r)
j (µ|z), (2.73)

where F (r)(j) is the function introduced in section 2.4.2. By requiring Φ(r) to satisfy (2.23)
we recover the defining set of differential equations (2.43).

2.A.2 The duality formula for irregular vectors

We evaluate the collision limit of eq (2.36) to find the relation between the µkm and the
Liouville parameters in the duality. The setup is described in section 2.4.2. Starting with
the collisions which do not involve µi, we find (assuming the field i collide to the irregular
field k)

µi = u

∏t−2
p (zk + qi − yp)∏rk+1

j 6=i (qi − qj)
∏n

m 6=k(zk + qi − zm)rm+1
. (2.74)
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For a regular field rk = 0 there is no factor (qi−qj) in the denominator, and we can directly
find the result by setting qi = 0, µi = µk. For the irregular case we expand in series in qi

µi = u

∏t−2
p (zk − yp)∏rk+1

j 6=i (qi − qj)
∏n

m 6=k(zk − zm)rm+1

∞∑
p=0

qpi W
k
p , (2.75)

Where theW k
p are the series coefficients defined in (2.40). To compare with the parametriza-

tion found in section 2.2.2, we calculate the sums
∑

i q
x
i µ

i explicitly (where the sum runs
over the colliding fields)6:

∑
i

qmi µ
i =u

∏t−2
p (zk − yp)∏n

s 6=k(zk − zs)rs+1

(
∞∑
p=0

W k
p

∑
i

qm+p
i∏rk+1

j 6=i (qi − qj)

)

=u

∏t−2
p (zk − yp)∏n

s 6=k(zk − zs)rs+1

(
∞∑
p=0

W k
p

∑
i(−1)rk+1−iqm+p

i

∏
s,t<s,s,t 6=i(qs − qt)∏

s,t<s(qs − qt)

)

=u

∏t−2
p (zk − yp)∏n

s 6=k(zk − zs)rs+1
Wrk−m +O(q). (2.76)

Taking the collision limit, we recover the announced result (2.39)

We now turn to the limit of the full duality formula (2.33). Using the results of the
previous section, we write

∏
k

∏
i,j<i

|qik − qjk|−4b4jikjjk−4(b2+1)(jik+jjk+1)|F (j)|2
〈∏

k

Φ
′(rk)

jk
(µk|zk,qk)

〉

=
π

2
(−π)−tb δ(2)(

n∑
k

µik) |Θt,t−2|2
∏
k

∏
i,j<i

|qik − qjk|−4αikαjk

〈∏
k

V ′(rk)
αk

(zk,qk)
t−2∏
p

V− 1
2b

(yp)

〉
,

(2.77)

where a pair of indices of the form qik denotes the field number i in the collision forming

6To get the third line we can use the fact that the sum over i is antisymmetric under odd permutations
of the qk, so it has to factor the Vandermonde determinant. For x+ p 6= r, this fact fixes the sum to 0 or
O(q) times the denominator. For x+p = r we can compare to the Laplace expansion of the Vandermonde
determinant
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the irregular field k, for example qk = (q1k, · · · , qrk+1 k). The function Θt,t−2 goes as

F (r)(j)Θt,t−2(z1 + q1, · · · , zn + qn|y1, · · · , ym, u) = u
∑
ik

αik
b
− t

2b2
−(t−1)

m∏
p,q<p

(yq − yp)
1

2b2

× F (r)(j)
∏
k

∏
i,j<i

(qik − qjk)−
αik+αjk

b
+ 3

2b2
+2

∏
s,k<s

∏
i,j(zk − zs + qik − qjs)−

αik+αjs
b

+ 3
2b2

+2∏
ik

∏
p(zk + qik − yp)−

αik
b

+ 1
b2

+1
.

= u
∑
k

ck0
b
− t

2b2
−(t−1)F (r)(j)

∏
k

∏
i,j<i

(qik − qjk)−
αik+αjk

b
+ 3

2b2
+2

m∏
p,q<p

(yq − yp)
1

2b2

×

∏
s,k<s(zk − zs)

− (rs+1)ck0+(rk+1)cs0
b

+(rk+1)(rs+1)( 3
2b2

+2) exp
(∑∞

p=0

(rk+1)csp+(−1)p(rs+1)ckp)

bp(zk−zs)p

)
∏

k

∏
p(zk − yp)

−
ck0
b

+(rk+1)( 1
b2

+1) exp
(∑∞

p=0

ckp
bp(yp−zk)p

)
∼
∏
k

∏
i,j<i

(qik − qjk)−
αik+αjk

b
+ 3

2b2
+2Θr(z1, · · · , zn|y1, · · · , yt−2, u). (2.78)

The powers of (qik− qjk) cancel with the ones already present in the duality formula. This
is the announced validation for the choice of the rescaling for the irregular vector, as if
the choice had been different some powers of the (qik − qjk) would remain, leading to an
uninteresting limit. Taking the collision limit, we recover the duality formula (2.41).

2.B The generalized KZ equations for irregular vec-

tors

In this appendix we provide the generalization of the KZ equation for ŝl(2) theories involv-
ing irregular vectors, as well as an outline of its derivation. Here we find the generalization
from scratch in a way analogous to the regular case [26], but it can also be found by taking
the collision limit of the usual KZ equation.

The starting point is the Sugawara construction for the energy-momentum operator in
ŝl(2) WZW models:

T (w) =
1

2(k + 2)
(JaJa)(w). (2.79)

The KZ equation is obtained by requiring consistency of both sides when inserted in cor-
relation functions. This amounts to imposing the equality of the OPE for singular modes.
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For regular vectors, the positive modes annihilate the states, and the equation for the L0

mode is trivially realized, so there is only one equation coming from L−1. This equation
reads [26] (

∂z +
1

k + 2

n∑
i=1

DaDai
z − zi

)
〈Φj(µ|z)Φj1(µ1|z1) · · ·Φjn(µn|zn)〉 = 0. (2.80)

For irregular vectors, some positive modes act nontrivially, so we have to generalize the
consistency condition. The mode expansion of eq. (2.79) reads

Ln =
1

2(k + 2)

∑
m

: Jam−nJ
a
m :=

{ 1
2
Jan/2J

a
n/2 +

∑
m=1 J

a
n/2−mJ

a
n/2+m, n even,∑

m=0 J
a
(n−1)/2−mJ

a
(n+1)/2+m, n odd.

(2.81)

We insert this equality inside a correlation function by applying it to a field Φ
(r)
B (A|z), in

the presence of k other fields Φ
(ri)
Bi

(Ai|zi). This forces the equality〈((
Ln −

1

2(k + 2)

∑
m

Jam−nJ
a
m

)
Φ

(r)
B (A|z)

)
(z)

k∏
i=1

Φ
(ri)
Bi

(Ai|zi)

〉
= 0, n ≥ −1. (2.82)

The effect of the irregular modes of T (w) and Ja(w) is known from eq. (2.17) and (2.23).
However, there are also contributions from the non-singular part of Ja(w). These can be
expressed in terms of the other fields of the correlation function using the residue theorem
(n > 0):〈

(Ja−nΦ(r))(z)
k∏
i=1

Φ
(ri)
ji

(µi|zi)

〉
=

∮
dw

(w − z)n

〈
(JaΦ(r))(z)

k∏
i=1

Φ
(ri)
ji

(µi|zi)

〉

= −
k∑
s=1

∮
dw

(w − z)n

〈
Φ(r)(z)(JaΦ

(rs)
js

)(µs|zs)
k∏

i=1,i 6=s

Φ
(ri)
ji

(µi|zi)

〉

= −
k∑
s=1

rs∑
m=0

(−1)m(n+m− 1)!J a
m(s)

(n− 1)!(zs − z)n+m

〈
Φ(r)(z)

k∏
i=1

Φ
(ri)
ji

(µi|zi)

〉
(2.83)

where J a
m(s) is the differential operator representing the action of Jam on the field s. For

the special case of a regular vector, we have only the term m = 0, with J a
0(s) = Das . For
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even n the equation becomes

0 =

(
L2n −

1

k + 2

(
1

2
J a
nJ a

n +
n∑

m=1

J a
n−mJ a

n+m −
r−n∑

m=n+1

k∑
s=1

rs∑
p=0

(−1)p(m− n+ p− 1)!J a
p(s)J a

n+m

(m− n− 1)!(zs − z)m−n+p

))

×

〈
Φ(r)(z)

k∏
i=1

Φ
(ri)
ji

(µi|zi)

〉
, n ≥ 0. (2.84)

Similarly, for odd n,

0 =

(
L2n+1 −

1

k + 2

(
n∑

m=1

J a
n+1−mJ a

n+m −
r−n∑
m=n

k∑
s=1

rs∑
p=0

(−1)p(m− n+ p− 2)!J a
p(s)J a

n+m

(m− n− 2)!(zs − z)m−n+1+p

))

×

〈
Φ(r)(z)

k∏
i=1

Φ
(ri)
ji

(µi|zi)

〉
, n ≥ −1. (2.85)

This is the generalized form of the KZ equation for ŝl(2) theories7. The differential opera-
tors are given by (2.17), (2.23).

2.C Review of double integrals

We discuss some integral identities, all of which are variations on the theme of the Riemann
bilinear identity, which relates an integral over a Riemann surface to a bilinear of contour
integrals over a basis of 1-cycles on the surface∫

Σ

ω ∧ ω̃ =
∑
i

∮
αi

ω

∮
βi

ω̃ −
∮
βi

ω

∮
αi

ω̃ (2.86)

Here ω is a holomorphic (1, 0) form, ω̃ is an anti-holomorphic (0, 1) form, and the basis of
cycles αi, βj is chosen as usual so that the intersection matrix is 〈αi, αj〉 = 〈βi, βj〉 = 0,
〈αi, βj〉 = δij. The formula has obvious extensions to higher dimensional manifolds.

A standard strategy to prove this relation is to look at this integral as a contour integral
in Σ × Σ̄, with local coordinates z and z̃ and integration contour I : z̃ = z̄ Then we can

7Actually, this formula is completely general and holds for any sort of field in any WZW model (provided
we replace the factor (k+2) by (k+g)). What differs between theories is the actual form of the differential
operators and the algebra in which the index a is valued.
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simply decompose the integration contour into a basis for the second homology of Σ× Σ̄,
which can be taken to consist of cycles of the form αi × ᾱj, αi × β̄j, etc. The coefficient
of a basis element in the decomposition is simply the intersection number of I with a dual
basis element. For example, the coefficient of αi × β̄j is the intersection number of I with
−βi × ᾱj, which is equal to the intersection of αj and βi (some orientation sleight of hand
here...), etcetera. This immediately leads to the bilinear identity. It is also useful to write
the identity in terms of a generic basis of cycles γa with intersection matrix Iab:∫

Σ

ω ∧ ω̃ = −
∮
γa

ωI−1
ab

∮
γb

ω̃ (2.87)

It is useful to give a trivial example of the bilinear identity. Consider the area of a
torus, ∫

Eτ

dzdz̄ = −2iImτ (2.88)

The period of dz on α is 1, and on β it is τ .

2.C.1 Multivaluedness

We will need two simple generalizations of this strategy. The first is to consider situations
where ω∧ω̃ is single-valued, but ω is not. The second is to consider non-compact situations
where ω may diverge at infinity, while ω ∧ ω̃ is integrable.

Consider a situation where ω is a section of some line bundle, i.e. it is a multi-valued
holomorphic (1, 0) form with constant Abelian monodromies ω → µpω when transported
along some closed path p. We take the µp to be monomials in a certain set of n generators
µs. Suppose that ω̃ has opposite monodromies, so that ω ∧ ω̃ is single-valued, and the
integral ∫

Σ

ω ∧ ω̃ (2.89)

can still be considered as a contour integral on I. Now the contour integrals for ω do not
belong to the homology of Σ. We can consider a cover Σµ of Σ on which ω is single-valued,
and work with the homology of that cover. We can take the cover to have fiber Zn, gluing
it together by the map p→ µp.

As we only really care about integration cycles for ω, we can naturally represent the
images of a cycle γ under Zn deck transformations as

∏
s µ

ns
s γ, so that the period of ω on∏

s µ
ns
s γ is

∏
s µ

ns
s times the period on γ. Once we work with a homology whose coefficients
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are rational functions of the µs, we can usually find a basis of cycles γa, and use the Riemann
bilinear identity, with an intersection matrix which will depend on the µs.

As an example, consider the following integral, which leads to the Virasoro-Shapiro
amplitude ∫

C
dzdz̄|z|2A|1− z|2B (2.90)

This integral converges as long as the real parts of A and B are larger than −1, and
their sum smaller than −1. The form ω is now zA(1 − z)Bdz, and has monodromies by
µA = e2πiA and µB = e2πiB around 0 and 1 respectively. These monodromies combine to a
monodromy µ−1

A µ−1
B around infinity. The three ramification points 0, 1 and ∞ are really

on the same footing, and we could move them to generic positions:∫
C
dzdz̄|z − z1|2A|z − z2|2B|z − z3|−2A−2B−4

= |z1 − z2|2A+2B+2|z2 − z3|−2A−2|z3 − z1|−2B−2

∫
C
dzdz̄|z|2A|1− z|2B (2.91)

There is a single homology generator, which takes the form of a Pochhammer contour
γ, depicted in figure 2.C.1, together with its µnAA µnBB images. The intersection matrix takes
the nice, symmetric form

I = −(1− µA)(1− µB)(1− µ−1
A µ−1

B ) (2.92)

The next example, ∫
C
dzdz̄|z|2A|1− z|2B|1− tz|2C (2.93)

or more generically∫
C
dzdz̄|z − z1|2A|z − z2|2B|z − z3|2C |z − z4|−2A−2B−2C−4

= |z1 − z2|2A+2B+2|z1 − z3|2C |z4 − z2|−2A−2|z1 − z4|−2B−2C−2

∫
C
dzdz̄|z|2A|1− z|2B|1− tz|2C(2.94)

where t = (z3−z4)(z1−z2)
(z3−z1)(z4−z2)

.

The corresponding one form ω has monodromies µA = e2πiA around 0, µB = e2πiB

around 1, µC = e2πiC around 1/t and thus µ−1
A µ−1

B µ−1
C around infinity. The appropriate
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(0,0)

(0,1)

(1,1)

(1,0)

(0,0)

(0,1)

(1,1)

(0,0)

(0,1)

(1,1)

(1,0)

Figure 2.C.1: Two views of the Pochhammer cycle. On the left: a symmetric presentation.
The three punctures are 0 on the left, 1 on the right, ∞ at the top. We indicate on which
sheets the contour runs. On the right, a more traditional presentation, as a cycle wrapping
several times around 0 and 1. This presentation makes more manifest the relation to an
open integration cycle from 0 to 1. A positive intersection point between sheets which
differ by (nA, nB) units contributes µnAA µnBB − µ

−nA
A µ−nBB to the intersection matrix.

homology of integration contours has two generators. We can take them to be a Pochham-
mer cycle around 0 and 1, and a Pochhammer cycle around 1/t and ∞. This choice is
convenient, as they do not intersect, and we already know their self-intersection.

Furthermore, we can use the well-known integral∫ 1

0

zA(1− z)B(1− tz)Cdz =
Γ(A+ 1)Γ(B + 1)

Γ(A+B + 2)
2F1(−C,A+ 1, A+B + 2, t) (2.95)

or more generally∫ z2

z1

(z − z1)A(z − z2)B(z − z3)C(z − z4)−A−B−C−2dz = (z1 − z2)A+B+1(z1 − z3)C(z1 − z4)−B−C−1

(z4 − z2)−A−1 Γ(A+ 1)Γ(B + 1)

Γ(A+B + 2)
2F1(−C,A+ 1, A+B + 2,

(z3 − z4)(z1 − z2)

(z3 − z1)(z4 − z2)
)

(2.96)

which we can specialize to∫ 1/t

∞
zA(1− z)B(1− tz)Cdz = t−A−B−1(t− 1)B+C+1 Γ(C + 1)Γ(−B − C − A− 1)

Γ(−B − A)

× 2F1(−A,C + 1,−B − C, t) (2.97)
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Thus∫
C
dzdz̄|z|2A|1− z|2B|1− tz|2C

=− 2πi
Γ(A+ 1)Γ(B + 1)Γ(−A−B − 1)

Γ(−A)Γ(−B)Γ(A+B + 2)
|2F1(−C,A+ 1, A+B + 2, t)|2

− 2πi
Γ(C + 1)Γ(−A−B − C − 1)Γ(A+B + 1)

Γ(−C)Γ(A+B + C + 2)Γ(−A−B)
|2F1(−A,C + 1,−B − C, t)|2(2.98)

2.C.2 Exponential growth

The next generalization involves an integral of the form∫
Σ

ω ∧ ω̃eW (z)−W̄ (z̄) (2.99)

where W grows polynomially at infinity. The rapid oscillation makes the integral barely
convergent. After the usual analytic continuation, we can improve the behavior at infinity,
pushing the boundary of the integration cycle towards region where the real part of W (z)
grows arbitrarily large and negative, and the real part of W̄ (z̃) grows arbitrarily large and
positive. The integral is then exponentially convergent.

Next, we can try to decompose the integration contour in a convenient basis of ap-
propriate homology of integration cycles for ωeW (z) and for ω̃e−W̄ (z̃). The former includes
both closed contours and contours which are allowed to end at infinity, in regions where
the real part of W (z) grows arbitrarily large and negative. The latter includes both closed
contours and contours which are allowed to end at infinity, in regions where the real part
of W̄ (z̃) grows arbitrarily large and positive.

It is important to observe that there is no well-defined notion of mutual intersection
for contours which are allowed to end at infinity, in regions where ReW (z) � 0. Luckily,
we do not need that. Rather, there is a well-defined intersection pairing between contours
which are allowed to end at infinity, in regions where ReW (z) � 0, and contours which
are allowed to end at infinity, in regions where ReW (z)� 0 If we pick a set of contours in
αa in the first class, and β̄b in the second, with intersection Iij, we can write as usual∫

Σ

ω ∧ ω̃eW (z)−W̄ (z̄) = −
∮
αa

ωeW (z)I−1
ab

∮
βb

ω̃e−W̄ (z̄) (2.100)
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The first example is a version of the Airy integral∫
C
dzdz̄e

z3

3
−tz− z̄

3

3
+t̄z̄ (2.101)

There are three regions where the contours of integration can end, which are centered
around rays of phase π/3, π, −π/3. We can denote the integration contours which join
consecutive regions counterclockwise as C1, C2, C3, with

∑
iCi = 0. Dual contours D1, D2,

D3 join regions centered around rays of phase −2π/3, 0, 2π/3. The intersections numbers
are basically Ii,i+1 = −Ii,i−1 = 1. Thus the integral can be written in the rough form
Ai(t)Āi′(t̄)− Ai′(t)Āi(t̄) where Ai and Ai′ are two of the contour integrals.

Another useful example is ∫
dzdz̄|z|2Aez−z̄ (2.102)

which is well-defined before analytic continuation if the real part of A is −1. We can
improve the behavior at infinity by deforming the contour at large |z| to something like
z̃ = z̄ + ε|z|, after which we can allow the real part of A to be bigger than −1.

There is a unique basic integration contour, comes from negative real infinity, goes
around the origin counterclockwise, and goes back to negative real infinity. A dual contour
runs from positive real infinity and back. The contours have intersection 1− µA. We can
write ∮

α

dz(−z)Aez = (1− µA)

∫ ∞
0

tAe−tdt = (1− µA)Γ(A+ 1) (2.103)

and the integral is proportional to (1− µA)Γ(A+ 1)2 ∼ Γ(A+1)
Γ(−A)

In a similar way, one can express the integral∫
dzdz̄|z|2A|1− tz|2Bez−z̄ (2.104)

in terms of confluent hypergeometric functions, and∫
dzdz̄|1− tz|2Bez2−z̄2

(2.105)

in terms of parabolic cylinder functions.
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2.C.3 The parabolic cylinder double integral

Here we calculate the parabolic cylinder double integral∫
C
dzdz̄ |z|−2(A+1)e−

1
2
z2+ 1

2
z̄2−tz+t̄z̄. (2.106)

A convenient basis of contours is made of a path from zero to positive infinity and another
from negative infinity to zero. A dual basis is a pair of paths from −i∞± ε to +i∞± ε.
The branch cut is on the negative imaginary axis, such that it splits the dual contours. All
the contours can be reduced to the basic integral∫ ∞

0

dz z−A−1e−
1
2
z2−tz = e

1
4
t2Γ(−A)DA(t), (2.107)

which leads to the result∫
C
dzdz̄ |z|−2(A+1)e−

1
2
z2+ 1

2
z̄2−tz+t̄z̄ = e

1
4

(t−t̄)Γ(−A)2ei
π
2
A
[
(DA(t)

(
DA(t̄)− e−iπADA(−it̄)

)
− e−iπADA(−t)

(
DA(it̄)− eiπADA(−it̄)

)]
= −2iπe

1
4

(t−t̄)γ(−A)ei
π
2
A (DA(t)DA(−it̄) + i γ(A+ 1)D−A−1(it)D−A−1(t̄)) .

(2.108)

This agrees with the results of section 2.3.1.

2.D Direct collision limit of the regular three-point

function

We rederive the result of section 2.3.1, namely the one point-function of a rank two vector,
from the direct collision of the regular three-point function.

As previously, we assume that the ji are in the slice j ∈ −1
2

+ iR. The three-point
function of primary fields reads [85]

〈Φj1(µ1|z1)Φj2(µ2|z2)Φj3(µ3|z3)〉 =|z3 − z2|−2∆1
23|z3 − z1|−2∆2

13|z2 − z1|−2∆3
12

× δ(2)(µ1 + µ2 + µ3)DH

[
j1 j2 j3

µ1 µ2 µ3

]
CH(j1, j2, j3),

(2.109)
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where

CH(j1, j2, j3) =− 1

2π3b

[
γ(b2)b2−2b2

π

]−2−j123

Υ′b(0)

Υb(−b(j123 + 1))

× Υb(−b(2j1 + 1))Υb(−b(2j2 + 1))Υb(−b(2j3 + 1))

Υb(−bj3
12)Υb(−bj1

23)Υb(−bj2
31)

,

DH

[
j1 j2 j3

µ1 µ2 µ3

]
=π
|µ1|4j1+2|µ2|−2j213−2|µ3|4j3+2

γ(−j123 − 1)

∫
C
dxdx̄|x|2j123|x+ 1|2j312

∣∣∣∣x− µ1

µ2

∣∣∣∣−2j123−4

.

(2.110)

We use the notation j123 = j1 + j2 + j3 and j3
12 = j1 + j2 − j3, and the function γ(x) =

Γ(x)/Γ(1 − x). The function Υb is defined by the integral (Q = b + b−1, domain 0 <
Re(x) < Q)

log Υb(x) =

∫ ∞
0

dt

t

[(
Q

2
− x
)2

e−t −
sinh2[(Q

2
− x) t

2
]

sinh bt
2

sinh t
2b

]
. (2.111)

For the collision of CH we use the asymptotics (∆̃x = x(Q− x))

Υb(x) ∼ ∆̃
− 1

2
∆̃x+ 1

12
(1+Q2)

x e
3
2

∆̃x , (2.112)

valid when x has a large imaginary part, with 0 < Re(x) < Q. This leads to the limit

CH(j1, j2, j3) ∼− 2(j0+2)(b2(j0+3)+1)πj0−1b(j0+2)(b2(j0+5)−1)γ(b2)−(j0+2)Υ′b(0)

Υb(−b(j0 + 1))

× j(j1+3)(b2(j0+2)+1)
2

(
q
−j312−1
12 q

−j213−1
13 q

−j123−1
23 e

j21
j2

)2(b2(j0+2)+1)

∼− 2(j0+2)(b2(j0+3)+1)πj0−1b(j0+2)(b2(j0+5)−1)γ(b2)−(j0+2)Υ′b(0)

Υb(−b(j0 + 1))

×
(
|q12|−2(j312+1)|q13|−2(j213+1)|q23|−2(j123+1)|j2|(j0+3)e

j21
j2

+
j̄21
j̄2

)(b2(j0+2)+1)

,

(2.113)

where we used the equality j = j̄ to relate qij to |qij|. In DH , the limit of the integral can
be evaluated using the change of variable

x =
µ1

µ2

(
1 + i

q12η√
2j2

)
, (2.114)
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and its anti-holomorphic counterpart. This leads to

DH

[
j1 j2 j3

µ1 µ2 µ3

]
∼|q12q13q23|−2j0−22j0+1π|µ2|2j0+2|j2|j0+1γ(j0 + 2)

×
∫
C
dηdη̄ |η|−2(j0+2)e−

1
2
η2+ 1

2
η̄2−uη+u∗η̄, (2.115)

with u is the same parameter as defined in section 2.3.1. Inserting these results back in
eq. (2.109), the powers of qij cancel and we find the limit

〈Φ̃(2)
j (µ|z)〉 =− 2(j0+2)(b2(j0+3)−1)πj0b(j0+2)(b2(j0+3)−1)|µ2|2(j0+1)|j2|(j0+2)(b2(j0+3)+2)

× δ(2)(µ0)γ(j0 + 2)
γ(b2)−(j0+2)Υ′b(0)

Υb(−b(j0 + 1))
e

2i(b2(j0+2)+1)Im

(
j21
j2

)

×
∫
C
dηdη̄ |η|−2(j0+2)e−

1
2
η2+ 1

2
η̄2−uη+u∗η̄ (2.116)

Using the function F (2) = j
−(b2+1)(4j0+6)
2 e−(b2+1)j21/j2 to find the one-point function of Φ(2),

we recover the result (2.32) found directly for the irregular vector, and fix the overall factor
C(j0).
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Chapter 3

Localization of a supersymmetric
gauge theory in the presence of a
surface defect

3.1 Introduction

Supersymmetry, despite being so far of little use for realistic physical models, is an interest-
ing framework for studying nonperturbative phenomena in quantum field theory. Indeed,
many physical quantities invariant under some supersymmetry can be computed exactly
using various tools. One such tool is localization [98], which allows to compute some par-
tition functions and supersymmetric quantities by deforming the action in a suitable way.
In recent years, localization allowed to compute partition functions and Wilson loops of
supersymmetric gauge theories on S4 and its deformations [45, 48, 81], on S2 [12, 31], and
on various other spacetimes. In two dimensions, the method has also proven successful in
computing various other physical and mathematical quantities [9, 13, 30, 44, 56, 59].

In this chapter, we explore another direction in which the localization program can be
expanded, that of supersymmetric gauge theories with surface defects. Surface defects play
an important role in quantum theory, and therefore are interesting objects to study [32, 37].
Our goal is to localize a N = 2 supersymmetric gauge theory on S4 interacting with some
extra GLSM degrees of freedom on a S2 surface1. The surface is embedded as a great

1It would also be possible include twisted multiplets and perform localization as in [30], but we do not
explore this possibility here
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sphere of S4 (i.e. it contains antipodal points). The presence of the defect breaks half the
supercharges, leaving a N = (2, 2) supersymmetry group. We also focus on the partition
function of that theory. In addition to being an interesting result by itself, the partition
function plays an important role in the AGT duality [1, 3], and thus its computation allows
for an additional check of the conjecture. The computation also sets the ground for that
of other physical quantities (compatible with localization) in the same setup. For most
of the paper, we specialize the computation to the case of a pure supersymmetric gauge
theory on S4 interacting with chiral multiplets on the defect. The simpler computation
already shows all the important features of the general case, allowing for a straightforward
generalization. In particular, charging a chiral multiplet under a 2d representation of a 4d
vector multiplet gives the only coupling between the bulk and the defect relevant for the
computation. Superpotential interactions are also possible, but they do not directly affect
the path integral.

We compute the partition using supersymmetric localization in the Coulomb branch.
The result is an integral over the coulomb branches of both the 4d and 2d multiplets, of
the form:

Z2d−4d =

∫
4d Coulomb

da e−S
4d
cl (a)Z4d

1−loop(a)

×
∑
B

∫
2d Coulomb

dã e−S
2d
cl (ã,B)|Z2d−4d

inst (ã, B; a)|2Zchiral
1−loop(ã, B; a)Z2d vector

1−loop (ã).

(3.1)

(See eq. (3.25) for the exact formula.) The one-loop determinants are the same as in the
partition function of the isolated 2d and 4d theories, except for the chiral multiplets which
see the 4d vector multiplets as background vector fields. The instanton partition function
corresponds to a modified version of Nekrasov’s partition function, where the gauge theory
in the Ω-background now contains a R2 defect. It is expected to be computable using the
methods of [38], but its derivation is left for future work.

This chapter is organized as follows. In section 3.2, we describe the theory of a 2d chiral
multiplet and a 4d vector multiplet and its relevant properties. The relevant computations
and some technical details are left for the appendices. The localization is performed in
section 3.3, where we find the appropriate setup for the localization and assemble the
components of the partition function. Most of the components can be taken from the
literature with little change, and we review the computation of the one-loop determinant
for the chiral multiplet in appendix 3.E. In section 3.4, we show how the results generalize
in the presence of matter on S4 and vector multiplets on the defect.
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3.2 The theory

In this section we write down the action and some basic properties of the theory of a vector
multiplet on S4 coupled to a chiral multiplet on a S2 defect. The separate uncoupled
theories on S2 and S4 have been described previously [12, 31, 81]. Our goal is to find the
coupling between the defect and the four dimensional vector multiplet. For this purpose,
we express the vector multiplet in a “two dimensional” language, where only the unbroken
symmetries of the theory are manifest. We split the tangent space near the S2 subspace
in a parallel and a perpendicular part, and we write the spinors as two dimensional Dirac
spinors (relative to the parallel part of the tangent space). Then the restriction of the
multiplet to the S2 subspace can be seen as a set of field on that subspace, hence it can
interact locally with the matter on the defect. In particular, the derivatives of the fields
in the orthogonal direction appear as an extra set of fields. In the following, we call this
process the “restriction” of the vector multiplet from S4 to S2.

When restricted to S2, the four dimensional vector multiplet appears as a tower of
fields, which consists of the vector multiplet on the defect and its transverse derivatives.
Each level appears as a two dimensional vector multiplet together with a chiral multiplet.
In principle we can couple the defect to any of this fields, but renormalizability forbids any
supersymmetric coupling to the derivative fields (see appendix 3.D).

The resulting chiral multiplet is coupled to the vector multiplet in an unusual way, which
encodes its variation in the directions transverse to the defect. However, the (restricted)
vector multiplet itself appears exactly as a N = (2, 2) vector multiplet, with the correct
supersymmetry transformations. Therefore we can couple the 2d matter to the restricted
vector multiplet as if it was a vector multiplet on S2, and the result is guaranteed to
be supersymmetric2. As shown in appendix 3.D, this is the most general renormalizable
coupling between the 2d and 4d fields compatible with the symmetries of the theory.

2Alternatively, we can interpret S4 in some neighborhood of S2 as a bundle S2 × I,over S2, where I is
some interval, and encode the restricted dimensions in a larger gauge group I⊗G living on that bundle. In
this framework, a 4d vector multiplets split into 2d chiral and vector multiplets, and the “unusual coupling”
is encoded in the representation of the chiral multiplet under the new gauge group. The restricted fields
are obtained by considering the section of the bundle corresponding to S2
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3.2.1 Field content and action

We now proceed to describe the action for theory. It separates into a two dimensional part
and a four dimensional one, in the generic form

S = SS4 + SS2 =

∫
S4

d4x
√
gS4LS4 +

∫
S2

d2x
√
gS2LS2 . (3.2)

The four-sphere has a radius r, and we describe it using the stereographic coordinates xµ,
µ = 1, · · · , 4, centered at the north pole. The metric is conformally flat, gµν = e2Ωδµν , with
conformal factor e−Ω = 1 + xµxµ

r2 . The two-sphere is taken to be the subspace x3 = x4 = 0,
and we use the coordinate system xi, i = 1, · · · , 2, induced by inclusion. Our conventions
for spinors are described in appendix 3.A.

We begin with the description3 of the vector multiplet on S4. The multiplet consists
of a gauge field Aµ, a SU(2)R R-symmetry doublets of Weyl fermions λA, λ̄A, a pair of
scalars φ, φ̄, and a R-symmetry triplet of auxiliary fields DAB = DBA. All fields are in
the adjoint representation of the gauge group G, with Lie algebra g. The SU(2)R indices
{A,B = 1, 2} are raised and lowered by the antisymmetric matrices C and C̃, defined by
C21 = C̃12 = 1, in the form λA = CABλ

B, λA = C̃ABλB. The Lagrangian for the multiplet
is [48]

LS4 = 1
g2 Tr

(
1
2
FµνF

µν − 4Dµφ̄Dµφ− 8
r2 φ̄φ− 2iλAσµDµλ̄A − 1

2
DABDAB

− 2λA[φ̄, λA] + 2λ̄A[φ, λ̄A] + 4[φ̄, φ]2
)
. (3.3)

Here Fµν is the field strength for Aµ, and Dµ = ∇µ− iAµ is the gauge covariant derivative.

On the two dimensional side, the defect consists in a set of chiral multiplets, or equiv-
alently a single chiral multiplet in a representation R =

⊕
I RI of the gauge group G ,

decomposing into a direct sum of irreducible representations (flavors) RI . A chiral mul-
tiplet in a representation R consists of a scalar χ, a Dirac fermion ψ, and an auxiliary
scalar F (the corresponding fields are χ̄, ψ̄, F̄ for the antichiral multiplet). The multiplet
is characterized by a mass m and a R-charge q, where m, q are matrix valued in the flavor
space and take constant values mI , qI in each irreducible representation. As discussed
before, the coupling to the S4 vector multiplet takes the same form as the coupling to a
S2 vector multiplet. Therefore we can write the Lagrangian as [31]

LS2 = χ̄
(
−D2

i + σ2
1 + σ2

2 + iD +M2 + (2M − i
r
)σ2

)
χ− iψ̄

(
γiDi − σ1 − iσ2γ

3 − iMγ3
)
ψ

+ F̄F + iψ̄λχ− iχ̄λ̄ψ + LW , (3.4)

3Our conventions on S4 mostly follow [48], and those on S2 mostly follow [31]
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where M = m + i
2r
q and Di = ∇i − iAi. The fields σ1, σ2, D, λ, λ̄, and Ai and form a

vector multiplet representation of N = (2, 2) supersymmetry. Their exact expression is
obtained by decomposing the vector multiplet in terms of representations of the N = (2, 2)
supersymmetry algebra, which is done by comparing the supersymmetry transformations
of the multiplets (see appendix 3.C). The identification of the vector fields is trivial, and
the scalars are given by

σ1 = i(φ+ φ̄), σ2 = φ− φ̄,
D = −D12 − 1

r
(φ− φ̄)− iF34. (3.5)

The term LW is a superpotential term, which we will ignore for the purpose of this work
since it doesn’t affect the partition function. (This is due to the fact that the superpotential
term id Q-exact, and by the principle of localization described in section 3.3 it has no effect
on the path integral.)

3.2.2 Supersymmetry transformations

Supersymmetry transformations in curved space are most naturally obtained as a subset
of the superconformal transformations. Such transformations are parametrized by a set of
conformal Killing spinors. Each of these spinors can be expressed as a linear combination
of a basis of conformal Killing spinors, each associated to one of the supercharges. In
this paper, we describe supersymmetry and superconformal symmetry through conformal
Killing spinors, i.e. through the realization of the algebra on the fields.

For generic conformal Killing spinors, the commutator of superconformal transforma-
tions contains conformal transformations through conformal Killing vectors. Supersym-
metry is obtained by restricting to a maximal subset of the conformal Killing spinors
generating only Killing vectors, i.e. isometries.

On S4, the N = 2 superconformal transformations are given in terms of SU(2)R dou-
blets of conformal Killing spinors εA, ε̄A. The fields of the vector multiplet transform
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as

(δε + δε̄)Aµ = iεAσgµλ̄A − iε̄Aσ̄gµλA,
(δε + δε̄)φ = −iεAλA,
(δε + δε̄)φ̄ = iε̄Aλ̄A,

(δε + δε̄)λA =
1

2
σµνg εAFµν + 2σµg ε̄ADµφ+ σµg∇µε̄Aφ+ 2iεA[φ, φ̄] +DABε

B,

(δε + δε̄)λ̄A =
1

2
σ̄µνg ε̄AFµν + 2σ̄µg εADµφ̄+ σ̄µg∇µεAφ̄− 2iε̄A[φ, φ̄] +DAB ε̄

B,

(δε + δε̄)DAB = −2iε̄(Bσ̄
µ
gDµλA) + 2iε(Aσ

µ
gDµλ̄B) − 4[φ, ε̄(Aλ̄B)] + 4[φ̄, ε(AλB)]. (3.6)

For N = 2 supersymmetry, the allowed set of spinors is given in terms of constant spinors
εA0 , ε̄A0 , by

εA = e
1
2

Ω
(
εA0 + 1

2r
xµσµ(τ 3)AB ε̄

B
0

)
, ε̄A = e

1
2

Ω
(
ε̄A0 − 1

2r
xµσ̄µ(τ 3)ABε

B
0

)
. (3.7)

(See appendix 3.B.2.) The four constant spinors correspond to the eight supercharges
of the theory. In the presence of a S2 defect, half of the supersymmetries are broken,
and the unbroken ones correspond to spinors of definite “two dimensional chirality”. The
restriction takes the form:

(−iσ12)ε10 = +ε10, (iσ̄12)ε̄10 = −ε̄10,
(−iσ12)ε20 = −ε20, (iσ̄12)ε̄20 = +ε̄20. (3.8)

On S2, the N = (2, 2) superconformal transformations are generated by a pair of
conformal Killing spinors ε, ε̄. The fields of the chiral (and antichiral) multiplet transform
as

(δε + δε̄)χ = ε̄ψ,

(δε + δε̄)χ̄ = εψ̄,

(δε + δε̄)ψ = i
(
γigDiχ+ (σ1 − i(σ2 +m)γ3)χ+ q

2
χγig∇i

)
ε+ F ε̄

(δε + δε̄)ψ̄ = i
(
γiDiχ̄+ (σ1 + i(σ2 +m)γ3)χ̄+ q

2
χ̄γig∇i

)
ε̄+ F̄ ε

(δε + δε̄)F = −i
(
Diψγig + σ1ψ − i(σ2 +m)ψγ3 + λχ+ q

2
ψγig∇i

)
ε,

(δε + δε̄)F̄ = −i
(
Diψ̄γig + ψ̄σ1 + iψ̄(σ2 +m)γ3 + χ̄λ̄+ q

2
ψ̄γig∇i

)
ε̄. (3.9)

For supersymmetry, the set of allowed spinors is given in terms of a pair of constant spinors
ε0, ε̄0, by

ε = e
1
2

Ω
(
ε0 + 1

2r
xiγiγ3ε0

)
, ε̄ = e

1
2

Ω
(
ε̄0 − 1

2r
xiγiγ3ε̄0

)
. (3.10)
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(See appendix 3.B.3.) For the theory being considered, the supercharges on S2 and S4 are
the same, so the allowed conformal Killing spinors are related. In components, the relation
is

(ε1)1 = 1√
2
ε1, (ε2)2 = 1√

2
ε̄2, (ε̄1)2 = − i√

2
ε2, (ε̄2)1 = i√

2
ε̄1. (3.11)

(See appendix 3.B.4.)

3.3 Localization

The goal of this paper is to compute the partition function

Z =

∫
DΦgDΦe−S2d[Φ]−S4d[Φ]−Sg [Φg ,Φ], (3.12)

where Φ denotes the set of fields of the chiral and vector multiplets, Φg is a set of ghosts,
S = S2d + S4d is the action defined in the previous section, and Sg is a gauge fixing
action. We perform the path integral over a contour in which the bosons satisfy the reality
conditions

A†µ = Aµ, φ† = −φ̄, D†AB = −DAB, χ† = χ̄, F † = F̄ . (3.13)

We compute the partition function using supersymmetric localization [81, 98]. The
method relies on the fact that given a supercharge Q, only the Q-invariant field configu-
rations contribute to the path integral. Indeed, if the orbit of Q is non-trivial, then the
path integral over that orbit vanishes (see section 1.6). In practice, we can simplify the
computation by deforming the action by a Q-exact term in the form S → S + tQ · V . Un-
der certain assumptions (V must be Q2-invariant, and the deformation must not modify
the asymptotics of the action), the path integral is not affected by such deformation. If
the deformation term is non-negative, we can take the limit t → ∞. In that limit, the
saddle-point approximation becomes exact, and thus can be used to compute the partition
function for the original theory exactly. Schematically, the path integral reduces to a sum
(or integral) over the set F of zeros of Q · V , and a Gaussian integral, in the form

Z =
∑

Φ0∈F

e−S[Φ0]

∫
DΦe−(Q·V )[Φ+Φ0]Quad =

∑
Φ0∈F

e−S[Φ0]Z1−loop[Φ0]. (3.14)

In the t → ∞ limit, the only smooth classical configurations correspond to a set F0 of
configurations with zero instanton number, which in the case of interest will correspond
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to the Coulomb branch of the theory. However we also need to consider the contribution
of singular instanton configurations, arrising from the t → ∞ limit of smooth instanton
configurations. (One can show by a careful computation of the limit that these need to
be included.) We can package the instanton contributions at each pole into an “instanton
partition function” Z1−loop[Φ0], giving a full partition function of the form

Z =
∑

Φ0∈F0

e−S[Φ0]Z1−loop[Φ0] |Zinst[Φ0]|2 . (3.15)

The one-loop partition function (for smooth field configurations) Z1−loop[Φ0] is a ratio of
functional determinants, and is greatly simplified by supersymmetry. Indeed, as mentioned
before, only the supersymmetric configurations contribute, the others canceling pairwise.
We compute it using the Atiyah-Singer index theorem (see appendix 3.E).

3.3.1 The supercharge and deformation terms

To perform the localization, we choose a supercharge compatible with the localization for
both the two and four dimensional fields, i.e. a supercharge of the unbroken supersymmetry.
We pick the supercharge Q such that the poles are left invariant by Q2. In that case Q2

generates a U(1) group, which consists of a combination of SO(2) ⊂ SO(3) and SO(2)⊥
rotations, where SO(2)⊥ corresponds to rotation in the plane perpendicular to the defect.
In terms of conformal Killing spinors in the two dimensional formalism, the constraint is
ε0γ

iχ̄0 + ε̄0γ
iχ0 = 0 (i.e. the coefficient of Mi5 must vanish in the Killing vector (3.50)),

and is satisfied by imposing γ3ε0 = +ε0, γ3ε̄0 = −ε̄0. This leaves two independent spinors,
and we choose the combination defined by ε0 = iγ1ε̄0. In components, we write (ε0)1 =

i(ε̄0)2 = εQ, where εQ is the parameter for the transformation δQ = r−
1
2 εQQ. The square

of the supercharge Q is realized as

Q2 = M12 +M34 + 1
2
R + G[Λ]− irm,

Λ = −iv · A+ r(f(x)σ1 − iσ2),

f(x) = eΩ(1− xµxµ

4r2 ) = cos(θ), (3.16)

where v is the Killing vector associated with M12M34, θ measures the angle on S4 relative
to the north pole, and m is the mass of the multiplet.

This choice of supercharge is compatible with previous computations on S2 and S4,
hence we can pick a similar deformation term, and the computations follow a similar
pattern. In particular, the classical and one-loop computations are almost the same, the
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main difference being in the classical field configuration appearing in the two-dimensional
one-loop determinant. We review these computations and adapt them to the present case,
mostly following the conventions of [31] on S2, and those of [48] on S4. However, the
instanton partition function for the four dimensional theory is affected by the presence of
the defect, and must be computed separately.

We deform the action by a non-negative Q-exact term QV = QV4d +QV2d. The two-
dimensional part QV2d can be taken to be the action SS2 itself, as it is Q-exact. On the
four-dimensional side, we take

V = Tr[(QλA)†λA + (Qλ̄A)†λ̄A]. (3.17)

The resulting deformation term QV4d manifestly satisfies the required properties.

3.3.2 Classical configurations and one-loop determinants

For the vector multiplet, the classical configurations are given by the zeros of the deforma-
tion term QV4d, for which the bosonic part is

QV bos
4d = Tr[(QλA)†(QλA) + (Qλ̄A)†(Qλ̄A)]. (3.18)

The classical configurations thus coincide with the supersymmetric configurations. Up to a
gauge transformation, the smooth solutions to QV bos

4d = 0 are given in terms of a constant
g-valued parameter a, by [81]

Aµ = 0, φ = −φ̄ = 1
2r
a, D12 = − 1

r2a, D11 = D22 = 0. (3.19)

For the chiral multiplet, the equation of motion for D12 and the above configuration fix
χ = 0, and F must vanish by its own equation of motion. The action (3.2) for such field
configuration is Scl(a) = 8π2

g2 Tr(a2
0).

The one-loop determinants for the chiral and vector multiplets are computed inde-
pendently from each other, although they both depend on the background of the vector
multiplet. For a generic vector multiplet background, the one-loop determinant for the
chiral multiplet is a product over the weights of R:

Z̃2d
1−loop(Λ) =

∏
w∈R

Γ(ω · ΛN − irM)

Γ(1− ω · ΛS + irM)
(3.20)
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where N , S denote the values at the north and south poles. This result is computed in
appendix 3.E. For the above background, the formula reduces to

Z2d
1−loop(a) =

∏
w∈R

Γ(−iω · a− irM)

Γ(1 + iω · a+ irM)
(3.21)

The one-loop determinant for the vector multiplet is (see [81])

Z̃4d
1−loop(a) =

∏
α∈∆

G(1 + ia · α)G(1− ia · α), (3.22)

where ∆ is the set of roots of g, and G(z) is the Barnes G-function [11].

3.3.3 The instanton partition function

In [81], it was shown that the instanton contribution to the partition function at each
pole in the absence of defect is given by Nekrasov’s instanton partition function [76] of the
theory in the Ω-background on R4. The argument given in that paper is still valid here,
however the presence of the defect modifies the instanton partition function, which is now
that of a similar theory with a R2 defect, i.e. the R4 version of the theory considered in
this paper in the Ω-background. We leave the computation of the exact instanton partition
function Z2d−4d

inst (a) for future work.

Summing up the previous computations, we write the complete partition function as

Z2d−4d =

∫
h

dae
−8π2

g2 Tr(a2)
Z2d

1−loop(a)Z4d
1−loop(a)|Z2d−4d

inst (a)|2, (3.23)

where we reduced the integral over a to the Cartan subalgebra h at the price of a Jacobian
factor

∏
α∈∆(α · a), inserted in the modified one-loop determinant

Z4d
1−loop(a) =

∏
α∈∆

(α · a)G(1 + ia · α)G(1− ia · α), (3.24)

3.4 Generalizations

In this section we consider the generalization of the above results, where we allow addi-
tional types of multiplets. Namely, we consider the addition of hypermultiplets on S4 and
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vector multiplets on the defect. As in the previous case (see appendix 3.D) symmetry and
renormalizability imposes heavy constraints on the possible couplings between the defect
and the bulk. A vector multiplet on the defect cannot be coupled consistently with a 4d
field, and a hypermultiplet can only couple to the defect through a (heavily constrained)
superpotential. However, a superpotential term does not affect the partition function, so
the localization procedure involves no more couplings between the bulk and the defect than
the one considered previously.

A vector multiplet on the defect cannot be coupled consistently with a 4d field, but
a hypermultiplet can couple to the defect in two different ways. The first one is through
a superpotential: the restricted hypermultiplet appears as two series of chiral multiplets,
which can appear in the superpotential. By renormalizability the superpotential must be
at most linear in the 4d fields, and only the top chiral multiplet in each series is allowed
(i.e. without transverse derivative), and gauge invariance constrains the superpotential
further. In any case, a superpotential term does not affect the partition function, so it
is irrelevant for the present computation. The other possible coupling is through a four
dimensional vector multiplet frozen to its vacuum expectation value [43]: if a Lagrangian
is invariant under some flavor symmetry, we can weakly gauge it by introducing a vector
multiplet, then freezing it.

The localization procedure for the generalized theory is unchanged from the one de-
scribed previously. Here we consider vector multiplets V4d and V2d, with gauge groups G4d

and G2d. V2d is also associated to a Fayet-Iliopoulos parameter ξ and a topological angle
θ, appearing in the combination τ = θ

2π
+ iξ. The matter on S4 forms a hypermultiplet

H with mass mH , in a representation RH of G4d
4. The chiral multiplet Ψ on the defect

has mass and R-charge MΨ = mΨ + i
2r
qΨ, and is in a representation RΨ of G4d × G2d.

Localization works exactly as before, and we obtain the formula

Z2d−4d =
∑
B

∫
h2d

dãe−4πirImTr[τ(ã+
i

2r
B)]

∫
h4d

dae
−8π2

g2 Tr(a2)
Z1−loop(a, ã, B)|Z2d−4d

inst (a, ã, B)|2,

(3.25)

where Z1−loop(a, ã, B) = ZV2d
1−loop(ã, B)ZV4d

1−loop(a)ZH
1−loop(a)ZΨ

1−loop(a, ã, B), (3.26)

4As in the 2d case, hypermultiplet masses are obtained through a four dimensional vector multiplet
frozen to its vacuum expectation value. In principle, one could also couple such vector multiplet to chiral
fields on the defect, but the effect is equivalent to giving (equal) twisted masses to the 2d fields [43].
Namely, one can obtain such coupling from others simply by constraining masses, so we do not need to
consider it here.
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and ZΨ
1−loop(a, ã, B) =

∏
w∈R

Γ(−iω · (a, ã+ i
2r
B)− irM)

Γ(1 + iω · (a, ã+ i
2r
B) + irM)

. (3.27)

The other one-loop determinants are unchanged from the separate expressions on S2 and
S4 [12, 31, 81], and as before we leave the computation of the instanton partition function
for future work.
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Appendix

In these appendices we review some of the conventions used in this chapter, and derive some
technical results. In appendix 3.A we review our conventions concerning the coordinate
systems and spinors. In appendix 3.B we describe the supersymmetry algebras on S4 and
S2, and we relate the two algebras by describing the embedding of the 2d algebra inside the
4d algebra. In appendix 3.C we decompose the N = 2 vector multiplet into representations
of the N = (2, 2) superconformal algebra, focusing on the N = (2, 2) vector multiplet. In
appendix 3.D we describe the restrivtion process from a superspace point of view, and use it
to find the most generic couplings allowed by symmetry and renormalizability. In appendix
3.E we compute the one-loop determinant of the chiral multiplet using the equivariant index
theorem for transversally elliptic operators.

3.A Coordinates and spinors

In this section we review some basic conventions used in this chapter concerning the coor-
dinate systems and spinors.

We use the stereographic coordinates on S4. The coordinates are labeled xµ, µ =
1, · · · , 4, and the metric is conformally flat:

gµν = e2Ωδµν , e−Ω = 1 +
xµxµ

4r2
, (3.28)

where r is the radius of the sphere. By xµxµ, it is understood that the contraction is
performed using the flat space metric, xµxµ = δµνx

µxν . The S2 subspace is taken to be
along the 1-2 plane. When needed, we split the coordinates and indices into parallel and
orthogonal pairs, and write the indices as i, j = 1, 2, and ĩ, j̃ = 3, 4. The coordinates xi

on S2 are given by inclusion. The induced metric is gij = e2Ωδij, with conformal factor

e−Ω = 1 + xixi

4r2 .
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On S4, we use the Weyl spinor formalism. The matrices (σµg )αα̇, (σ̄µg )α̇α satisfy {σµg , σ̄νg} =
2gµν . Since the space is conformally flat, they are simply related to the flat space matrices
σµ, σ̄µ (anticommuting to δµν), by σµg = e−Ωσµ, σ̄µg = e−Ωσ̄µ. We take a basis in which the
flat space matrices are given by σ4 = σ̄4 = 1 and σm = −σ̄m = −iτm, m = 1, 2, 3, where
τm are the Pauli matrices. Spinor indices are raised and lowered by the charge conjugation
matrices C and C̃ in the form λα = Cαβλ

β, λα = C̃αβλβ (and similarly for right-handed
indices). The charge conjugation matrices are antisymmetric and satisfy CαγC̃

γβ = δβα. By
convention we take C21 = C̃12 = −C12 = −C̃21 = 1.

The two dimensional spinors are taken to be Dirac spinors, and the Dirac matrices
(γig)

b
a satisfy the Clifford algebra {γig, γjg} = 2gij. As in the four dimensional case, they

can be expressed in terms of the flat space Dirac matrices γi as γig = e−Ωγi. The chirality
matrix is γ3 = −iγ1γ2. We take a basis in which γm (m = 1, 2, 3) are numerically equal to
the Pauli matrices τm. Spinor indices are raised and lowered as four dimensional spinors.

3.B Conformal Killing spinors and supersymmetry

In this section we describe the supersymmetry algebras on S4 and S2, using conformal
Killing spinors. We also relate the two algebras by describing the embedding of the 2d
algebra inside the 4d algebra.

3.B.1 Conformal Killing spinors on S4 and S2

Conformal Killing spinor ε, ε̄ in four dimensions are solutions of the equations

∇µε = σgµε̄
′, ∇µε̄

′ = − 1
4r2 σ̄gµε,

∇µε̄ = σ̄gµε
′, ∇µε

′ = − 1
4r2σgµε̄, (3.29)

where ε′, ε̄′ are some auxiliary spinors. The solutions to these equations are

ε = e
1
2

Ω(ε0 + xµσµε̄1), ε̄ = e
1
2

Ω(ε̄0 + xµσ̄µε1), (3.30)

where ε0, ε1, ε̄0, ε̄1 are arbitrary constant spinors, and can be obtained using the flat space
(r →∞) solution together with Weyl covariance.

Conformal Killing spinors in two dimensions work exactly as in four dimension. In this
case, the equations are

∇iε = γgiε
′, ∇iε

′ = − 1
4r2γgiε, (3.31)
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and are solved by

ε = e
1
2

Ω(ε0 + xiγiε1) (3.32)

3.B.2 N = 2 supersymmetry on S4

The supersymmetry algebra on S4 is most conveniently obtained as a subalgebra of the
superconformal algebra, in which the spacetime transformations are restricted to the isome-
tries. In the following we describe this process through the realization of the algebra on
fields and spacetime.

N = 2 superconformal transformations are realized through SU(2) doublets of confor-
mal Killing spinors εA, ε̄A. For the vector multiplet, the superconformal transformations
are given by (3.6), and the algebra is realized on the vector multiplet as

[δε̄ + δε̄, δη + δη̄] = Lv + G(−iv · A+ Φ) + ωΩ + Θ̃R̃ + ΘABR
AB, (3.33)

where Lv is a lie derivative,G is a gauge transformation, Ω is a Weyl transformation, and
R̃, RAB are U(1) and SU(2) R-symmetry transformations. The various parameters are
given by

vµ = 2iεAσµg η̄A − (ε↔ η), ω = 1
4
∇µv

µ,

Θ̃ = i
4
(εAσµg∇µη̄A −∇µε

Aσµg η̄A)− (ε↔ η),

ΘAB = i(ε(Aσ
µ
g∇µη̄B) −∇µε(Aσ

µ
g η̄B))− (ε↔ η),

Φ = −4εAηAφ̄+ 4ε̄Aη̄Aφ (3.34)

In particular, the spacetime transformations are generated by the conformal Killing vector
v. To restrict to supersymmetry, we restrict the set of allowed conformal Killing spinors
in such a way that v is a Killing vector, i.e. it generates only isometries of the sphere. We
expand

v = 2iεA0 σ
µη̄0A∂µ + 2i(εA0 η1A − ε̄A1 η̄0A)xµ∂µ − 2i(εA0 σ

µνη1A + ε̄A1 σ̄
µν η̄0A)xµ∂ν

+ 2iε̄A1 σ̄
µη1A(x2∂µ − 2xµx

ν∂ν)− (ε↔ η)

= −2εA0 σ
µη̄0APµ + 2(εA0 η1A − ε̄A1 η̄0A)D + (εA0 σ

µνη1A + ε̄A1 σ̄
µν η̄0A)Mµν

− 2ε̄A1 σ̄
µη1AKµ − (ε↔ η), (3.35)
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where Pµ, D, Mµν , Kµ are the generators of the conformal transformations in the scalar
representation. The SO(5, 1) symmetry can be made manifest by defining

Mµ5 = nPµ −mKµ, Mµ6 = nPµ +mKµ, M56 = D, (3.36)

where n = coshα, m = sinhα for some hyperbolic angle α.

v = −
[

1
n
εA0 σ

µη̄0A + 1
m
ε̄A1 σ̄

µη1A

]
Mµ5 −

[
1
n
εA0 σ

µη̄0A − 1
m
ε̄A1 σ̄

µη1A

]
Mµ6

+ (εA0 σ
µνη1A + ε̄A1 σ̄

µν η̄0A)Mµν + 2(εA0 η1A − ε̄A1 η̄0A)M56 − (ε↔ η) (3.37)

For the sphere, the isometry group is SO(5), which is made manifest as a subgroup of
SO(5, 1) by setting tanhα = m

n
= 1

4r2 . For this choice of angle, the generators Mµ6 and
M56 are not allowed. This imposes the conditions

(εA1 σ
µη̄1A − ηA1 σµε̄1A) = − 1

4r2 (εA0 σ
µη̄0A − ηA0 σµε̄0A),

εA0 η1A + εA1 η0A = ε̄A1 η̄0A + ε̄A0 η̄1A, (3.38)

which are satisfied by

εA1 = 1
2r

(τ 3)ABε
B
0 , ε̄A1 = − 1

2r
(τ 3)AB ε̄

B
0 ,

or ∇µε
A = − 1

2r
σgµ(τ 3)AB ε̄

B, ∇µε̄
A = 1

2r
σ̄gµ(τ 3)ABε

B. (3.39)

(and similarly for ηA, η̄A). After imposing these conditions, we obtain N = 2 supersym-
metry, and the Killing vector is given by

v = − 2
n
(εA0 σ

µη̄0A − ηA0 σµε̄0A)Mµ5 − 1
r
(τ 3)BA(εA0 σ

µνη0B + ε̄A0 σ̄
µν η̄0B)Mµν . (3.40)

The other parameters in (3.34) reduce to

ω = Θ̃ = Θ11 = Θ22 = 0,

Θ12 = 2Θ = −2i
r

(εAηA − ε̄Aη̄A),

Φ = −4εAηAφ̄+ 4ε̄Aη̄Aφ, (3.41)

and the algebra simplifies to

[δε̄ + δε̄, δη + δη̄] = Lv + G(−iv · A+ Φ) + ΘR, (3.42)

where R = 4R12 is the unbroken R-charge.

The coupling of the theory to matter on a S2 surface breaks the spacetime symmetry of
the theory to SO(3)× SO(2)⊥. Here SO(3) represents the isometries of S2, i.e. rotations
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and translations on the 1-2 plane, and SO(2)⊥ represents the rotations on the 3-4 plane.
Hence to obtain the set of unbroken supersymmetries, we need a subset of the Killing
spinors which does not generate Mĩ5 or Mij̃. This requirement imposes the conditions

εA0 σ
ĩη̄0A − ηA0 σĩε̄0A = 0, εA0 σ

ij̃η0B + ε̄A0 σ̄
ij̃ η̄0B = 0, (3.43)

which can be satisfied by requiring the spinors to have a definite ”two dimensional chiral-
ity”. We choose them to satisfy

(−iσ12)ε10 = +ε10, (−iσ̄12)ε̄10 = −ε̄10,
(−iσ12)ε20 = −ε20, (−iσ̄12)ε̄20 = +ε̄20 (3.44)

(and similarly for ηA, η̄A). The Killing spinor then simplifies to

v = 4
n
(ε

[1
0 σ

iη̄
2]
0 − η

[1
0 σ

iε̄
2]
0 )Mi5 + 4i

r

(
ε

[1
0 η

2]
0 − ε̄

[1
0 η̄

2]
0

)
M12 + 4i

r

(
ε

[1
0 η

2]
0 + ε̄

[1
0 η̄

2]
0

)
M34 (3.45)

3.B.3 N = (2, 2) supersymmetry on S2

For supersymmetry on S2, we proceed exactly as in the S4 case. N = (2, 2) supersymmetry
are realized through a pair of real conformal Killing spinors ε, ε̄, and the algebra is realized
as

[δε̄ + δε̄, δχ + δχ̄] = Lv + G(−iv · A+ Φ) + ωΩ + ΘR + Θ̃A+ αm, (3.46)

where R and A are R-symmetry transformations, m is the mass of the multiplet, and the
parameters are

vµ = −iεγigη̄ − (ε↔ χ), ω = 1
4
∇µv

µ,

Θ = − i
4
(∇iεγ

i
gχ̄− εγig∇iχ̄)− (ε↔ χ)

Θ̃ = i
4
(∇iεγ

3γigχ̄− εγ3γig∇iχ̄)− (ε↔ χ),

Φ = iεχ̄σ1 − εγ3
g χ̄σ2 − (ε↔ χ), α = −εγ3χ̄− (ε↔ χ). (3.47)

The conformal Killing vector v expands as

v = ε0γ
iχ̄0Pi − (ε0χ̄1 − ε1χ̄0)D − 1

2
(ε0γ

ijχ̄1 + ε1γ
ijχ̄0)Mij + ε1γ

iχ̄1Ki − (ε↔ χ)

= 1
2

[
1
n
ε0γ

iχ̄0 − 1
m
ε1γ

iχ̄1

]
Mi5 + 1

2

[
1
n
ε0γ

iχ̄0 + 1
m
ε1γ

iχ̄1

]
Mi6

− 1
2
(ε0γ

ijχ̄1 + ε1γ
ijχ̄0)Mij − (ε0χ̄1 − ε1χ̄0)M56 − (ε↔ χ), (3.48)
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where we used the restriction of (3.36) to make the SO(3, 1) symmetry manifest. We
reduce the symmetry group to SO(3) by imposing

ε1 = 1
2r
γ3ε0, ε̄1 = − 1

2r
γ3ε̄0,

or ∇iε = + 1
2r
γgiγ

3ε, ∇iε̄ = − 1
2r
γgiγ

3ε̄. (3.49)

Under these constraints, the Killing vector is

v = 1
n
(ε0γ

iχ̄0 + ε̄0γ
iχ0)Mi5 + 1

2r
(ε0γ

ijγ3χ̄0 − ε̄0γ
ijγ3χ0)Mij

= 1
n
(ε0γ

iχ̄0 + ε̄0γ
iχ0)Mi5 + i

r
(ε0χ̄0 − ε̄0χ0)M12, (3.50)

and the other parameters of the algebra simplify to

ω = Θ̃ = 0, Θ = i
2r
α (3.51)

3.B.4 Relating the spinor formalisms

We now proceed to relate the two spinor formalisms introduced for N = (2, 2) supersym-
metry. This amounts to matching the conformal Killing spinors on both sides. We recall
that on one side we have four four dimensional Weyl spinors εA0 , ε̄A0 of definite two dimen-
sional chirality, and on the other we have two unconstrained two dimensional Dirac spinors
ε0, ε̄0. To proceed, we write the spinors in components in chiral bases, which gives four
elementary spinors on both sides:

(ε10)1, (ε
2
0)2, (ε̄

1
0)2, (ε̄20)1, and (ε0)1, (ε0)2, (ε̄0)1, (ε̄0)2. (3.52)

The matching must respect the supersymmetry algebra, i.e. the Killing vector vµ must be
preserved on S2. This can be achieved by setting

(ε10)1 = 1√
2
(ε0)1, (ε20)2 = 1√

2
(ε̄0)2, (ε̄10)2 = − i√

2
(ε0)2, (ε̄20)1 = i√

2
(ε̄0)1. (3.53)

This form allows to relate the nonzero components of the conformal Killing spinors by

(ε1)1 = 1√
2
ε1, (ε2)2 = 1√

2
ε̄2, (ε̄1)2 = − i√

2
ε2, (ε̄2)1 = i√

2
ε̄1. (3.54)

3.C Decomposition of the vector multiplet on S4

In this section we decompose the N = 2 vector multiplet into representations of the
N = (2, 2) superconformal algebra. We focus on the N = (2, 2) vector multiplet, for which

73



an exact expression is needed to the coupling to the defect. Our goal is to find a set of
fields (Ai, σ1, σ2, D, λ, λ̄) among these which transform as a N = (2, 2) vector multiplet, in
the form

δεAi = − i
2
(ε̄γgiλ+ εγgiλ̄),

δεσ1 = 1
2
(ε̄λ− ελ̄),

δεσ2 = − i
2
(ε̄γ3λ+ εγ3λ̄),

δελ = (1
2
γijg Fij − γ3γigDiσ2 + iγigDiσ1 − γ3[σ1, σ2]−D)ε+ i(σ1 + iσ2γ

3)γig∇iε,

δελ̄ = (1
2
γijg Fij − γ3γigDiσ2 − iγigDiσ1 − γ3[σ1, σ2] +D)ε̄− i(σ1 − iσ2γ

3)γig∇iε,

δεD = i
2
Di(εγigλ̄− ε̄γigλ)− i

2

[
σ1, ελ̄+ ε̄λ

]
+ 1

2

[
σ2, εγ

3λ̄− ε̄γ3λ
]
. (3.55)

For the gauge field, the identification A
N=(2,2)
i = AN=2

i is obvious. We evaluate

δεAi = iεAσµλ̄A − iε̄Aσ̄µλA
= i√

2
ε1(γgi)

2
1 (λ1)2 + 1√

2
ε2(γgi)

1
2 (λ̄1)1 + 1√

2
ε̄1(γgi)

2
1 (λ̄2)2 − i√

2
ε̄2(γgi)

1
2 (λ2)1, (3.56)

which implies the identifications

(λ1)2 = − 1√
2
λ̄2, (λ2)1 = 1√

2
λ1, (λ̄1)1 = − i√

2
λ̄1, (λ̄2)2 = − i√

2
λ2. (3.57)

Under these identifications, the scalars φ, φ̄ transform as

δεφ = −iεAλA = i
2
ε2λ̄2 − i

2
ε̄1λ1,

δεφ̄ = iε̄Aλ̄A = i
2
ε1λ̄1 − i

2
ε̄2λ2, (3.58)

implying σ1 = i(φ+ φ̄), σ2 = φ− φ̄. The auxiliary field D12 transforms as

δεD12 = − i
2
(εγigDiλ̄− ε̄γigDiλ) + i

2

[
σ1, ελ̄+ ε̄λ

]
− 1

2

[
σ2, εγ

3λ̄− ε̄γ3λ
]

+ iδ(F34)

= −δ(D + 1
r
σ2 + iF34), (3.59)

implying the identification

D = −D12 − 1
r
(φ− φ̄)− iF34. (3.60)

A similar computation can be done to show that the supersymmetry transformations of
the fermions are consistent with the above identifications.
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3.D Restriction in the superfield formalism and su-

persymmetric couplings

In this section we present an alternative description of the theory, based on the superfield
formalism in flat space. This description has the advantage of making explicit the possible
supersymmetric couplings between the 2d and 4d multiplets. It is equivalent to the S2 ⊂
S4 case by classical conformal invariance, which allows to relate the Lagrangians and
supersymmetry transformations in the two cases.

We first write down the vector multiplet on R4 in terms of representations of N = (2, 2)

supersymmetry. It takes the form of a chiral multiplet Φ = Φ(xi, xĩ, θ, θ̄) coupled to a

vector multiplet V = V (xi, xĩ, θ, θ̄). The symmetry in the directions orthogonal to the
defect is encoded in the gauge transformations δΛV = i(Λ − Λ†), δΛΦ = 2

√
2∂+Λ, where

Λ = Λ(xi, xĩ, θ, θ̄) is a chiral field, and ∂± = 1
2
(∂3± i∂4). The four dimensional Lagrangian

LR4 =

∫
d4θ
(

(Φ† − 2
√

2i∂−V )(Φ + 2
√

2i∂+V )− 2∂+V ∂−V
)

+

∫
d4θW 2 +

∫
d4θ̄W̄ 2

(3.61)

is gauge invariant, and can be shown to reproduce that of a N = 2 vector multiplet on
R4. The restriction to R2 contains the fundamental fields Φ and V at xĩ = 0, but also
their derivatives on the defect. Therefore the set of restricted fields consists of an infinite
tower of vector multiplets V

(m,n)
R = (∂m+ ∂

n
−V )(xĩ = 0), and a tower of chiral multiplets

Φ
(m,n)
R = (∂m+ ∂

n
−Φ)(xĩ = 0). In particular, the defect sees infinitely many copies of the

gauge group G, which we label by G(m,n). Also in the Wess-Zumino gauge the different
chiral multiplets mix under supersymmetry.

Given a chiral multiplet Ψ, the most general supersymmetric (and gauge invariant)
coupling to the vector multiplet is obtained by picking a representation R(m,n) for each of
the gauge groups. The Lagrangian may also include a superpotential W = W(Ψ) (The

superpotential cannot depend on Φ
(m,n)
R by gauge invariance), and twisted masses. Twisted

masses are obtained by coupling the chiral multiplet to a (2d) vector multiplet frozen to
its vacuum expectation value Ṽ . In this paper we are interested in a local, renormalizable
interaction term, which preserves the SO(2)⊥ symmetry between the transverse directions.
Locality requires the interaction to involve only a finite number of multiplets, and by
SO(2)⊥ symmetry we must restrict to those with m = n. By renormalizability all the
representations other than R(0,0) must be trivial. Therefore the most general allowed two
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dimensional Lagrangian is of the form

LR2 =

∫
d4θ Ψ† exp(V

(0,0)
R + Ṽ )Ψ +

∫
d2θ W(Ψ) + c.c. (3.62)

3.E One-loop determinants of the chiral multiplet from

index theorem

We compute the one-loop determinant of the chiral multiplet using the equivariant index
theorem for transversally elliptic operators . For our purpose, the statement of the index
theorem is as follow [10, 81]. Let E0, E1 be a pair of vector bundles over a manifold M , and
G a compact Lie group acting on the bundles and the manifold. Let D : Γ(E0) → Γ(E1)
map sections of the bundles and commute with the action of G. We also require D to be
transversally elliptic5. The index of D is defined as

indD(t̂) = trKerD t̂− trCokerD t̂, (3.63)

where t̂ is an element of the maximal torus of G. For a transversally elliptic operator, the
Kernel and Cokernel are both infinite dimensional, but can be decomposed as a sum of
irreducible representations of G, each appearing with a finite multiplicity. Therefore we
can expand the index in formal series. For G = U(1), t̂ = eiεĝ = tg, where ε ∈ R, and g
is the generator of the Lie algebra u(1), and we can expand indD(t̂) =

∑
i cit

wi . However,
the expansion is not unique, and some care must be taken in choosing the appropriate
expansion. Assuming that G has a discrete set of fixed points F , the index theorem gives
the index of D as a sum over F :

indD(t̂) =
∑
p∈F

trE0(p)t̂− trE1(p)t̂

detTpM(1− t̂)
. (3.64)

To use the index theorem, we first build a Q-complex from the fields. We write the fields of
each multiplet as a pair of (sets of) bosons {Φ, Φ̃} and a pair of (sets of) fermions {Ψ, Ψ̃},
such that Ψ̃ = QΦ, Φ̃ = QΨ. The fields are sections of vector bundles, which we write

5A differential operator D is said to be transversally elliptic if its symbol is invertible for sections of
the cotangent bundle T ∗M transversal to the G-orbit. In a local coordinate frame, the symbol is obtained
from the highest order part of D by replacing partial derivatives at each point x by momenta, ∂i → ipi,
where {pi} is set of coordinates for a point p on T ∗xM . For transversal ellipticity, we require the symbol
to be invertible for all p in the subspace of T ∗xM transversal to the G-orbit at each point x ∈ M (in any
coordinate frame).
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{EΦ, EΦ̃}, {EΨ, EΨ̃}. Then Q2 maps each bundle to itself, and we can take G to be the
U(1) Lie group generated by Q2. The quadratic part of the deformation term Vq in the
form

Vq =
(

Ψ̃ Ψ
)
·
(
D00 D01

D10 D11

)
·
(

Φ

Φ̃

)
= Ψ† ·D ·Φ. (3.65)

This construction gives a smooth linear map D10 : Γ(EΦ) → Γ(EΨ). In the following, we
assume that D10 commutes with the action of Q, allowing us to use the index theorem.
The quadratic part of the Lagrangian can then be written as

QVq = (QΨ) ·D ·Φ + Ψ ·D · (QΦ) = Φ ·Q2
R ·D ·Φ + Ψ ·D ·Q2 ·Ψ, (3.66)

where Q2 = diag(1,Q2), Q2
R = diag(Q2

R, 1), and QR is the supercharge Q acting on the
right. Then for real fields, the one-loop determinant can be written as

Z1−loop =

√
det(D ·Q2)

det(Q2
R ·D)

=

√
detΨQ2

detΦQ2
=

√
detCokerD10 Q2

detKerD10 Q2
, (3.67)

where the last equality follows from the assumption that D10 commutes with Q, therefore
it relates the action of Q on both bundles outside its kernel and cokernel. For complex
fields, square root is absent. The ratio of determinant can be obtained from the equivariant
index through

indD10(t) =
∑
i

cit
wi ⇐⇒ detCokerD10 Q2

detKerD10 Q2
=
∏
i

w−cii . (3.68)

3.E.1 The chiral multiplet

We now proceed to compute the one-loop determinant of the chiral multiplet using the
above method, as done in [12]. Here we assume that the operator D10 is transversally
elliptic, and avoid computing its exact form. We take the Q-complex defined by Φ = φ,
εQΨ = εγ3ψ. The two fixed points are the north and south poles. Near the north pole Q2

acts in complex coordinates as Q2(z, z̄) = (z,−z̄), so the denominator is (1− t)(1− t−1),
and similarly at the south pole. The numerator is obtained from the action of Q2 at the
poles, obtained from

Q2φN = [ΛN − irM ]φN , Q2φS = [ΛS − irM ]φS,

Q2εψN = [ΛN − irM − 1]εψN , Q2εψS = [ΛS − irM − 1]εψS, (3.69)
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where Λ = −iv ·A+ r(f(x)σ1− iσ2), M = m+ i
2r
q. Here the fields of the vector multiplet

are treated as background fields. More formally, the bundles EΦ, EΨ are isomorphic to
Kq,m⊗R and S ⊗Kq−1,m⊗R, where Kq,m is a one-dimensional vector bundle encoding a
R-charge q and a mass m, R is a vector bundle transforming in the representation R of G,
and S is a (one-dimensional) subbundle of a Spin-1

2
bundle interpolating between definite

angular momenta −1
2

at the north pole and +1
2

at the south pole. The index evaluates to
a sum over the roots of R:

indD10(t) =

[∑
w∈R

tω·ΛN−irM

1− t

]
N

+

[∑
w∈R

tω·ΛS−irM

1− t

]
S

(3.70)

The series expansion at each pole is dictated by the symbol of D10 (see [81] for details).
Here we need to expand the north pole contribution in powers of t, and the south pole
contribution in powers of t−1, giving

indD10(t) =
∑
w∈R

∞∑
n=0

(
tn+ω·ΛN−irM − (t−1)n+1−ω·ΛS+irM

)
(3.71)

From this index we deduce the one-loop determinant (up to an irrelevant phase)

Z1−loop =
∏
w∈R

∏∞
n=0(1 + n− ω · ΛS + irM)∏∞
n=0(n+ ω · ΛN − irM)

. (3.72)

We regularize the products according to the formula

∞∏
n=0

(n+m)→ 1

Γ(m)
, (3.73)

giving the result

Z1−loop =
∏
w∈R

Γ(ω · ΛN − irM)

Γ(1− ω · ΛS + irM)
. (3.74)
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Chapter 4

Dirac zero modes for Abelian BPS
multimonopoles

4.1 Introduction

In the construction of BPS monopoles one usually consider a related Dirac operator D†
and its normalizable zero modes [74]. In particular the zero modes play an important role
in the Nahm transform [71, 73] used for computing the monopoles, where they provide a
solution to the Nahm equations. However, while in many cases the form of the monopoles
is known, the zero modes themselves remain hard to compute.

In this paper we aim to develop a method for finding the Dirac zero modes, by con-
sidering the case of Abelian (singular) BPS monopoles in R3. These monopoles have a
relatively simple field configuration, but their zero modes remain difficult to compute.
Only a few results are known, concerning single monopoles [22] (see also [68]; some older
references on electron-monopole boundstates include [17, 42, 49, 61]) and certain cases of
double monopoles [95]. In this paper we present a general formula for arbitrary (finite)
monopole configurations. The formula is explicit (in terms of solutions to a finite set of
linear equations) for monopoles of charge ±1 at generic positions, while solutions for the
other cases can be recovered by a limiting process. The formula takes the form of a sum of
residues at a certain set of poles, where the location of the poles corresponds to the zeros
of algebraic functions.

Our method is based on the fact that a large class of (generally non-normalizable) solu-
tions to the equation D†Ψ = 0 can be built from flat sections of a Lax pair of connections.
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We conjecture that the zero modes can be written as superpositions of such solutions. The
conjecture can also be stated in the following way: the zero modes are of the form Dχ,
where D is the adjoint of D†. In the Abelian case, the flat sections are easily found, so
the conjecture reduces the problem to finding which superpositions give the correct zero
modes, i.e. which ones are normalizable. It is worth noting that while the conjecture itself
appears to be new, some similar ideas can be found in the literature. In [74] the zero modes
for smooth monopoles are related to flat sections of the Lax pair in a different way, in terms
of a differential equation involving normalizable flat sections. Also the dipole solution in
[95] is found in the form Dχ.

Our main motivation for computing Dirac zero modes is to obtain the BPS spectrum of
two-dimensional gauged linear sigma models (GLSM), and by extension that of many non-
linear sigma models (NLSM). As described in the introduction (section 1.7), the BPS spec-
trum of GLSM is encoded in a cylindrical geometry, through a topological-anti-topological
metric [20] and a supersymmetric index [18] (see also [21]). The BPS spectrum is in-
dependent of the radius of the cylinder, and for a small radius we obtain an effective
one-dimensional theory, corresponding to the quantum mechanics of vector multiplets in
the presence of a background of periodic monopoles. In particular the supersymmetric
index of [18] can be computed in terms of the ground states of the resulting theory, which
correspond precisely to the Dirac zero modes for periodic monopoles. While in this paper
we only consider non-periodic monopoles, we hope that our results can be generalized to
the periodic case.

This chapter is organized as follow. In section 4.2 we briefly review some background
material on Abelian BPS monopoles and the associated Dirac operator. In section 4.3 we
review the basic properties of the Lax pair for the Bogomoln’yi equations, and show how
it gives an ansatz for the Dirac zero modes. We continue in section 4.4 with the simplest
example, a single monopole of unit charge, and use the ansatz to find the correct zero
mode. The result takes the form of a residue at a special value of a spectral parameter. In
the following section we show that the formula for a generic monopole configuration with
positively charged monopoles can also be expressed as a residue formula. We find the exact
formula for monopoles of unit charge at generic positions, and the generalization to other
cases is straightforward. We leave the details of the computation for appendix 4.A, and we
generalize the results for negative charges in appendix 4.B. In section 4.6 we review some
of the implications of our results for the Nahm transform, and give an expression for the
solutions of the relevant Nahm equations in terms of an integral over an algebraic variety.
We conclude in section 4.7 with some open questions concerning the results of this paper
and their possible generalizations.
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4.2 BPS monopoles and Dirac zero modes

A BPS monopole configuration on R3 with gauge group G consists of a vector field A(x)
and a Higgs field Φ(x), satisfying the Bogomoln’yi equation

DΦ = ∗F, (4.1)

where D = d − iA is the connection defined by A, and F is the curvature of A. The
configuration must also be sufficiently regular at infinity. In this paper we restrict the
gauge group to G = U(1). In this case a monopole configuration corresponds to a set S of
monopoles, described by their charge q ∈ Z∗ and their location a ∈ R3. We can choose a
gauge such that the fields are given by [22, 63]

Φ(x) =
∑
m∈S

qm
2rm

, A(x) = i
∑
m∈S

zmdz̄ − z̄mdz

4rm(rm − xm)
. (4.2)

Here we work in the coordinates x = x3, z = x1 + ix2, and we write xm = x − am,
rm = ||xm||.

In this paper we are interested in the Dirac operators

D† = σ ·D + Φ− t, D = σ ·D− Φ + t, (4.3)

where t ∈ R. Specifically we are looking for zero modes of D† in the Hilbert space H of
spinors Ψ satisfying D†Ψ = 0, which are non-singular on R3\{am} (up to gauge-dependent
phase singularities) and square-integrable:∫

R3

d3xΨ̄Ψ <∞. (4.4)

It is expected (and proved in [68]) that the number of zero modes is N+ =
∑

m∈S+
qm for

t ∈ R+, and N− =
∑

m∈S− |qm| for t ∈ R−, where S± = {i|qi ∈ Z±}. Indeed, Abelian
monopoles can be obtained from a large Higgs field limit of smooth SU(2) monopoles, for
which a similar result holds by an index theorem [53, 75]. The above claim is also predicted
by string theoretical constructions of the Nahm transform [23, 27].

4.3 Twistor space, Lax pair and the Dirac equation

In the following we will consider the space T of oriented straight lines in R3, which is
identical to the holomorphic tangent space TP1 of the (complex) projective line P1 [51]. A
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line in T can be described (non-uniquely) by a base point x and a direction v. It is useful
to view the direction as a point in P1, represented by the coordinate

ζ(v) =
||v||+ v3

vz̄
(4.5)

For any ζ, there is a convenient choice of coordinates for x:

u(ζ; x) =
z

2ζ
+
z̄ζ

2
, v(ζ; x) = − z

2ζ
+
z̄ζ

2
+ x, y(ζ; x) =

z

2ζ
− z̄ζ

2
+ x. (4.6)

The space of lines passing through a point x forms a real section of TP1, noted Px. Given
two distinct points x, y, we denote by Cx ·Cy the line passing through both points, passing
through x first.

In the study of singular monopoles, it is useful to consider spaces of half-lines in R3

[63]. We define T+ as the space of oriented half-lines pointing away from their endpoint,
and similarly we define T− from half-lines pointing towards their endpoint1. Given a point
x, we write the spaces of lines ending at x as C±x .

Given ζ ∈ C, one has special pair of connections [74],

∇ζ = ζDz + ζ−1Dz̄ − Φ + t ≡ Du(ζ) − Φ + t,

∇̃ζ = ζDz − ζ−1Dz̄ +D3 ≡ 2Dv(ζ), (4.7)

forming a Lax pair for the Bogonolnyi equation. Indeed, the flatness condition for (∇ζ ,
∇̃ζ) is equivalent to the Bogonolnyi equation. Here we are interested in the flat sections
χ(x, t; ζ) of the Lax pair, satisfying

∇ζχ(x, t; ζ) = 0, ∇̃ζχ(x, t; ζ) = 0. (4.8)

The connections (4.7) can be related to the Dirac operators D and D† as follow. We
make the ansatz

Ψ̃(x, t; ζ) = χ(x, t; ζ)

(
1
ζ

)
. (4.9)

1Alternatively, T+ is built from linear maps (0,∞)→ R3, while T− comes from maps (−∞, 0)→ R3
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Then the equation DΨ̃ = 0 reduces to2

0 = DΨ̃ =

(
D3 − Φ + t 2Dz

2Dz̄ −D3 − Φ + t

)
χ(x, t; ζ)

(
1
ζ

)
=

(
2ζDz +D3 − Φ + t

ζ(2ζ−1Dz̄ −D3 − Φ + t)

)
χ(x, t; ζ), (4.10)

which is equivalent to eq. (4.8). Thus given a set of solution to eq. (4.8), one can
obtain solutions to DΨ̃ = 0 by integrating over ζ against arbitrary functions F (ζ). (This
corresponds to an integral over Cx.) However, here we are interested in the zero modes of
D†. We can actually build a large class of solutions to D†Ψ = 0 from those of eq. (4.8), of
the form

Ψ(x, t; ζ) = D
(
χ(x, t; ζ)

0

)
. (4.11)

Since D†D = (D2 − (Φ − t)2) ⊗ I2 is diagonal, it follows (by D†DΨ̃(x, t; ζ) = 0) that
D†Ψ(x, t; ζ) = 0. We now claim that all the zero modes in H can be obtained as combi-
nations of such solutions. In the rest of this paper we prove this statement for U(1) BPS
monopoles in R3 by finding an explicit expression for χ(x, t; ζ).

The approach of this section is in many points similar to that of [74], although in that
paper only smooth monopoles are considered. However in that paper the zero modes of D†
are obtained in a different way: given a square integrable function η satisfying Dη = 0, a
zero mode Ψ is built from the equation ∇ · (Ψ†ση) = 0. It would be interesting to relate
the two approaches.

4.4 Simple example: single monopole of unit charge

We now proceed to a simple example of the method outlined above and write a known
zero mode in terms of flat sections of the Lax connection. We consider a single monopole
of unit charge centered at the origin. Assuming t > 0, the unique zero mode [22] of D† in
H is

Ψ(x, t) =
e−rt

r

( √
r − x

−eiφ
√
r + x

)
= De

−rt + ce−xt

t
√
r − x

(
1
0

)
, (4.12)

2Here and in the following we relax the assumption that the spinors lie in the Hilbert space H, and
allow for more singular functions. Hence “solving” the equation DΨ̃ = 0 makes sense here even though
none of the solutions lie in H. The assumption will be restored later, as a condition for the zero modes of
D† to lie in H.
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where c is an arbitrary constant which we set to zero. The flat sections are given by

χ(x, t; ζ;F ) =
(r − x)1/2

z̄ζ + r − x
etu(ζ)F (ζ, y(ζ)), (4.13)

where F is an arbitrary function. In this simple case we can recover the zero mode (4.12)
by guesswork: letting F (ζ, y) = ζ−1 and taking the residue at ζ0 = ζ(−x) = −(r − x)/z̄,
we find

(r − x)1/2

2πiz̄

∮
ζ0

dζ

ζ(ζ − ζ0)
etu(ζ) =

i(r − x)1/2

z̄ζ0

e−rt = − e−rt√
r − x

, (4.14)

i.e.

Ψ(x, t) = − 1

2πit
D
∮
ζ0

χ(x, t; ζ; ζ−1)

(
1
0

)
. (4.15)

4.5 The general formula for Abelian BPS monopoles

on R3

We now show that the residue formula is quite general, and in fact can be generalized to
any set of U(1) BPS monopoles. Here we find an exact formula for monopoles of unit
charge at generic positions, and as outlined at the end of this section, special cases and
generic positive charges can be obtained in a similar way. In appendix 4.B we explore the
case where negative charges are also included. In this section, we assume t > 0.

We consider a set of N monopoles of unit charges qm = 1, at positions am (m =
1, · · · , N). We assume that the positions are generic, which requires the following:

• No pair of monopoles are separated only by a translation in the x3 direction, i.e.
am− an is not proportional to ê3 for any m 6= n (this prevents issues with the choice
of gauge).

• No triplet of positions lie on the same line.

In particular, all the positions are different. We now make the following definitions:

xm = x− am, (similarly for xm, zm, z̄m, rm, um, vm, ym),

amn = am − an, amn = ||amn|| (4.16)
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Flat sections of the Lax connection take the form

χ(x, t; ζ;F ) =

(∏
m

χ0(xm)

)
etu(ζ)F (ζ, y(ζ)),

χ0(x) =
(r − x)1/2

z̄(ζ − ζ(−x))
=

(
−ζ(−x)

z̄

)1/2

(ζ − ζ(−x))−1. (4.17)

To simplify the twistor notation, we define

ζm = ζ(−xm) = −rm − xm
z̄m

, ζ ′m = ζ(xm) =
rm + xm
z̄m

, ζmn = ζ(anm). (4.18)

Note that the coordinates ζm(x) and ζ ′m(x) correspond to the zeros of y(ζ; xm):

y(ζ; xm) = − z̄m
2ζ

(ζ − ζm)(ζ − ζ ′m). (4.19)

Inspired by the results of the previous section, we seek a residue formulation for the
zero modes. We pick a residue at each of the ζm, corresponding to the direction of the
monopoles3, and define

Xn[F ] ≡ 1

2πi

∮
ζn

dζ

(∏
m

χ0(xm)

)
etu(ζ)ζ−1F (ζ)

=

(∏
m

−ζm
z̄m

)1/2
e−rntζ−1

n F (ζn)∏
m6=n(ζn − ζm)

,

X[{Fn}] =
∑
n

Xn[Fn] =

(∏
m

−ζm
z̄m

)1/2∑
n

e−rntζ−1
n Fn(ζn)∏

m 6=n(ζn − ζm)
. (4.20)

Note that we dropped the second argument of F , since y(ζn; x) is actually a function of ζn
only (hence the two argument of F are redundent). We now look for zero modes in H of
the form

Ψ[{Fn}] = D
(
X[{Fn}]

0

)
. (4.21)

3 Here one could try using more complicated residues, but these are the only choices allowing square-
integrability at infinity in x. For example if we divide by a power of y(ζ;xm) to obtain a higher order pole
at ζm, we also create a pole at ζ ′m. That additional pole must then also lie inside the integration contour,
as the integration contour cannot depend explicitly on x (and a contour depending solely on y(ζ) cannot
distinguish the two poles). However etu(ζ

′
m) = etrm grows exponentially at infinity, so the result is not

square-integrable. One could also try including in F (ζ, y) a pole at some other location and integrating
around it, however this can be ruled out by a similar argument.
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This can be achieved by sets of functions {Fn} of the form

Fp(ζ) =
∏
m 6=p

(ζ − ζpm)Ap +
∑
n6=p

e−apntFn(ζpn)
∏
m6=n,p

ζ − ζpm
ζpn − ζpm

, (4.22)

for any set of constants Ap. The values Fn(ζpn) can be fixed by the consistency conditions

Fp(ζqp) =
∏
m 6=p

(ζqp − ζpm)Ap +
∑
n6=p

e−apntFn(ζpn)
∏
m6=n,p

ζqp − ζpm
ζpn − ζpm

. (4.23)

This leaves N free parameters Ap, or N zero modes4. In appendix 4.A we derive eq. (4.22)
and prove that it generates the correct zero modes.

The solutions in the non-generic cases can be obtained by taking a careful limit of the
above equations (or by adapting the analysis of this section or appendix 4.A). In particular,
monopoles of higher charges can be obtained from monopoles at coincident position. Note
that in that case the integrands in the residue formula have multiple poles.

4.6 Relation to Nahm’s formulation

The zero modes found in this paper allow to compute solutions to the Nahm equations
and the Nahm zero modes via the Nahm transform. In this section we briefly review the
procedure, following [73, 74]. In this section we relate the results of this paper to Nahm’s
approach to monopoles.

Given a set {Ψi} of zero modes of D†, one forms the matrices

T(t)ij = −i
∫
R3

d3xΨi(x, t)
†xΨj(x, t),

T 0(t)ij = −i
∫
R3

d3xΨi(x, t)
†∂tΨj(x, t). (4.24)

We can always set T 0 = 0 by a suitable gauge transformation. Assuming this, the other
three matrices satisfy the Nahm equations

∂tT = T×T. (4.25)

4Here we assumed without proof that the set of equations (4.23) is linearly independent. While this
can be justified by the expected number of zero modes, it would be interesting to give a concrete proof of
the statement.
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Associated to these matrices is a pair of operators

D† = −i∂t + σ · (T + x), D = i∂t + σ · (T + x), (4.26)

playing a role similar to D†, D. The zero modes vi(x, t) of D† can be related to those of
D† by the formulas

Ψi(x, t) = − 1

2
√

2π
εD†Dvi(x, t)†, vi(x, t) = −

√
2π

2
ε(D†D)ijΨj(x, t), (4.27)

where ε is the two-dimensional antisymmetric tensor.

4.6.1 An integral formulation

The results of this paper allow to write solutions of the Nahm equation via eq. (4.24),
although the integral is in general difficult to compute. We can however use the residue
formula to write the solutions as sets of integrals over algebraic varieties. In the following
we explore the formulation of these integrals, but some additional work is needed in order
to understand their meaning and relevance.

Schematically the integrals take the form5

T(t)ij = −i
∑
m,n

∫
R3

d3x

∮
ζ∗m

dζ̃

∮
ζn

dζχ̄i(x, t, ζ̃)†xχj(x, t, ζ)

= −i
∑
m,n

∫
d3xdζ̃dζχ̄i(x, t, ζ̃)†xχj(x, t, ζ)δ(ζ̃ − ζ∗m)δ(ζ − ζn)

= −i
∑
m,n

∫
d3xdζ̃dζχ̄i(x, t, ζ̃)†xχj(x, t, ζ)ȳm(x, ζ̃)yn(x, ζ)δ(ȳm(x, ζ̃))δ(yn(x, ζ)),

(4.28)

for some spinors χi(x, t, ζ) (which include the action of the Dirac operator D). Therefore
we have an integral over the algebraic varieties defined by ȳm(x, ζ̃) = yn(x, ζ) = 0 in the
space spanned by (x, ζ̃, ζ), and the integral is nontrivial only on the components defined
by ζ̃ = ζ∗m, ζ = ζn. For n = m we can identify ζ̃ = ζ∗, and the algebraic variety is
the tautological line bundle over Cam , and the contributing “component” is a half-line
bundle over C−am . The story is similar for n 6= m, but in that case we need to consider
a complexification of the space of lines. While this formulation does not simplify the
computation of the integral, it gives an algebraic interpretation of the integration contour.

5Here the “Dirac delta functions” are just schematic, as we do not define the integration contour
properly.
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4.7 Conclusion and open questions

In this paper we found the Dirac zero modes for Abelian BPS monopoles on R3. Our
method relies on the following ideas and results:

• A complete set of flat sections for the Lax pair of connections (∇ζ , ∇̃ζ), providing a
large set of solutions to the Dirac equation D†Ψ = 0.

• The assumption that the zero modes belong to the above set of solutions.

• An integration contour, which gives a set of residue at specific points in P1 corre-
sponding to the direction of each of the monopoles, and described by (one of the
roots of) the algebraic equations y(ζ,xm) = 0. The function y(ζ,xm) describe the
algebraic space Cam , the space of lines passing through the monopole.

• An explicit evaluation of the singularities for the solutions of the Dirac equations
obtained from the contour integrals, and a resulting simple set of algebraic conditions
for the integrand of the contour integral.

As we look for generalizations of the results of this paper, some of the above ideas are
bound to fail. For instance the algebraic varieties Cam considered in this paper are specific
to singular monopoles, hence a different integration contour is needed for non-Abelian
monopoles. A natural guess is the spectral curve [51, 52]. For periodic monopoles the
flat section for the Lax pair have an essential singularity near the monopoles, and its
cancellation is highly nontrivial. We hope that these difficulties can be overcome.

88



Appendix

In these appendices we prove our main result by deriving eq. (4.22), and generalize it in
the presence of negatively charged monopoles.

4.A Proof of the general formula

In this appendix we prove that the zero modes described in section 4.5 do belong to the
Hilbert space H. We first derive equation (4.22) by imposing square integrability near the
monopoles, then we show that the singularities at ζp = ζq all cancel. The “Dirac string”
type singularities also cancel, however the proof is tedious but straightforward and we do
not write it here. Also, it is clear that the solution is regular at infinity if and only if t > 0.
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4.A.1 Near the monopoles

In the first step we impose square integrability near the monopoles. This requires Ψ[{Fn}]
to be less divergent that r

−3/2
n . In components, we have

Ψ1[{Fn}] =

(∏
m

−ζm
z̄m

)1/2∑
n

e−rntζ−1
n F (ζn)∏

m6=n(ζn − ζm)

×

(∑
m 6=n

ζ−1
m ∂3ζm +

F ′n(ζn)

Fn(ζn)
∂3ζn −

∑
m 6=n

∂3ζn − ∂3ζm
ζn − ζm

+ t

(
1− xn

rn

))
,

Ψ2[{Fn}] =

(∏
m

−ζm
z̄m

)1/2∑
n

e−rntζ−1
n F (ζn)∏

m6=n(ζn − ζm)

×

(∑
m 6=n

ζ−1
m ∂̄ζm +

F ′n(ζn)

Fn(ζn)
∂̄ζn −

∑
m 6=n

∂̄ζn − ∂̄ζm
ζn − ζm

− t zn
2rn

)
. (4.29)

Near a monopole, say rp → 0, only the terms proportional to ∂3ζp or ∂̄ζp contribute to the
leading singularity, so we have

Ψ1[{Fn}] ∼

(∏
m 6=p

−ζpm
(apm)z̄

)1/2(
−ζp
z̄p

)1/2

ζ−1
p ∂3ζp

× ∂

∂ζp

(
Fp(ζp)∏

m6=p(ζp − ζpm)
−
∑
n6=p

e−apntFp(ζpn)

(ζp − ζpn)
∏

m 6=n,p(ζpn − ζpm)

)
,

Ψ2[{Fn}] ∼

(∏
m 6=p

−ζpm
(apm)z̄

)1/2(
−ζp
z̄p

)1/2

ζ−1
p ∂̄ζp

× ∂

∂ζp

(
Fp(ζp)∏

m6=p(ζp − ζpm)
−
∑
n6=p

e−apntFp(ζpn)

(ζp − ζpn)
∏

m 6=n,p(ζpn − ζpm)

)
. (4.30)

Since the leading singularity is of order r
−3/2
p , it must cancel, leading to the differential

equations

∂

∂ζp

(
Fp(ζp)∏

m 6=p(ζp − ζpm)
−
∑
n 6=p

e−apntFp(ζpn)

(ζp − ζpn)
∏

m6=n,p(ζpn − ζpm)

)
= 0, (4.31)

solved by (4.22).
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4.A.2 Cancellation of singularities: ζp = ζq

We first consider the case where ζp = ζq for some p, q. This happens on a subset of the
line connecting ap and an, on the two half lines between ap and aq, and ∞ in the opposite
direction (i.e. outside the interval between the two points). Consider the case of the (open)
half line between ap and ∞, where ζp = ζq = ζpq, the other case being similar. We want to
show that Ψ[{Fn}] is regular there for any solution of eq. (4.22). In fact X[{Fn}] is also
regular there. To show this, we write

X[{Fn}] =

(∏
m

−ζm
z̄m

)1/2(
1

ζp − ζq

[
e−rptFp(ζp)∏
m 6=p,q(ζp − ζm)

− e−rqtFq(ζq)∏
m 6=p,q(ζq − ζm)

]
+ · · ·

)
,

(4.32)

where · · · is regular on the half line, while the term inside the square brackets evaluates to

e−rptFp(ζpq)− e−rqtFq(ζpq)∏
m 6=p,q(ζpq − ζm)

=
e−rpt(Fp(ζpq)− e−apqtFq(ζpq))∏

m 6=p,q(ζpq − ζm)
. (4.33)

Meanwhile, evaluating eq. (4.22) at ζ = cpq gives Fp(cpq) = e−apqtFq(cpq), so X[{Fn}] is
regular on the half line. Since the Dirac operator D cannot add a singularity there, it
implies Ψ[{Fn}] is also regular there.

4.B Negative charges

In this appendix we generalize the residue formula for a configuration including both
monopoles of charge +1 and −1 (and by appropriate limits any combination any set of
integer charges).

We consider a configuration containing N+ monopoles of charge +1 at positions am,
m ∈ S+, and N− monopoles of charge −1 at am̂, m̂ ∈ S−. We write the contribution of
the negatively charged monopoles to the flat section of the Lax connection in terms of

χ′0(x; ζ) = (−2χ0y(ζ))−1 = (−ζ(−x)z̄)−1/2 (ζ − ζ(x))−1 (4.34)
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We define the residues

Xn[F ] ≡
∮
ζn

dζ

(∏
m

χ0(xm)

)(∏
m̂

χ′0(xm̂)

)
etu(ζ)ζ−1F (ζ),

Xn̂[F ] ≡
∮
ζn̂

dζ

(∏
m

χ0(xm)

)(∏
m̂

χ′0(xm̂)

)
etu(ζ)ζ−1F (ζ),

X[{Fn}] =
∑
n

Xn[Fn], X̂[{Fn̂}] =
∑
n̂

Xn̂[Fn̂], (4.35)

Note that X and X̂ cannot be mixed, since regularity at infinity requires t > 0 for X
and t < 0 for X̂. Proceeding as before, we impose square-integrability for X near the
monopoles, and find the set of equations

0 =
∂

∂ζp

[
1∏

m̂(ζp − ζm̂p)

(
Fp(ζp)∏

m 6=p(ζp − ζpm)
−
∑
n6=p

e−apntFp(ζpn)

(ζp − ζpn)
∏

m6=n,p(ζpn − ζpm)

)]
,

0 = Fp(ζm̂p). (4.36)

The first equation is solved by

Fp(ζ) =

(∏
m̂

(ζp − ζm̂p)

)(∏
m 6=p

(ζ − ζpm)Ap +
∑
n6=p

e−apntFn(ζpn)
∏
m6=n,p

ζ − ζpm
ζpn − ζpm

)
, (4.37)

which trivially satisfies the second. A similar analysis can be performed for X̂, and as
before we can show that the formula gives valid zero modes. Also the number of zero
modes is N+ for t > 0, and N− for t < 0, as expected.
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