
Optimization of Forged Magnesium 

Structural Automotive Components 

 

 

by 

 

 

Alexander W. Strong 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Mechanical Engineering 

 

 

 

Waterloo, Ontario, Canada, 2016 

 

 

© Alexander W. Strong 2016 

 



 

 ii 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

        Alexander W. Strong 



 

 iii 

Abstract 

In an ongoing search for better vehicle fuel economy, the automotive industry has put significant 

emphasis on the reduction of vehicle weight while retaining stringent safety, quality and performance 

standards. With its high specific stiffness, strength, and fatigue performance under typical automotive 

service conditions, forged magnesium is a potential material to fill these requirements. Investigating 

an existing front lower control arm, engineering specifications were developed to evaluate the 

performance of a forged magnesium replacement. Combining a design volume derived from a 

kinematic CAD model and the produced engineering specifications, an optimization design space was 

created, and a component optimized within it using Altair Optistruct. Based on this optimized result 

an initial design was created in CAD, and design-analysis iterations conducted until it was structurally 

equivalent to the baseline design. This initial detail design produced a mass savings of 39% over the 

benchmark cast aluminum control arm, and only failed to challenge it in fatigue. It is expected that 

future designs will improve fatigue performance with little added mass, while continuing to integrate 

improving knowledge about the forging and mechanical performance of magnesium alloys. 
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Chapter 1 

Introduction 

1.1 Motivation 

In a three-pronged approach towards vehicle lightweighting, designers have the option of decreasing 

fuel consumption at the expense of performance, creating more efficient powertrains, or reducing 

vehicle mass and size [1]. Reducing vehicle mass is a significant industry focus, as it often also 

results in improved vehicle performance. Automotive original equipment manufacturers (OEMs) have 

an interest in reducing the mass of vehicles to improve fuel economy in order to meet corporate 

average fuel economy (CAFE) standards, and are willing to invest in new technologies to meet these 

challenges [2]. 

Magnesium is a material well suited to lightweight design, with a density of only 1.7-1.8 g/cm3. 

The strength and elastic modulus of magnesium are also in a viable range for many components 

typically made from other metals that may have not been easily converted to plastic. The use of cast 

magnesium alloys for internal vehicle structures is already commonplace, including instrument panel 

beams and steering components; however, their mechanical performance is a limiting factor in 

structural applications [3]. Forging has been shown to produce superior mechanical properties in 

magnesium, and has opened the door to implementation in more heavily stressed components that are 

currently dominated by aluminum and steel [4]. 

Topology optimization continues to become a part of automotive design practice, as it allows a 

designer to generate an optimal design shape that may be based on a novel distribution of material 

[5]. The combination of this technique with a low density material like magnesium is interesting, as 

the mass penalty for using unpredicted load paths will be reduced, potentially allowing for more 

efficient designs. The application of topology optimization to a forged magnesium part has great 

potential to challenge the mass efficiency of aluminum automotive components. 

In 2014, a project supported by Automotive Partnership Canada (APC) began, with the objective of 

investigating the design of fatigue-critical automotive components forged from magnesium. The 

project team involves the University of Waterloo, Ford Motor Company, Multimatic Inc., 

CanmetMATERIALS, and Centerline Ltd. The work presented in this thesis was completed as part of 

the design task associated with this project, and focused on the design of a forged magnesium 

component based on the insights generated by the research team. 
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1.2 Objectives 

The overall goal of the APC project is to create a forged magnesium component that is equivalent to 

the benchmark OEM design with at least a 20% mass reduction. For this research, the design of an 

optimum component was undertaken using available information, including the development of 

specifications, optimization of the component, and the dimensional design of the part. 

Generation of an Engineering Specification 

Specifications for a benchmark component were compiled and evaluated. Manufacturing 

specifications were developed through research, especially on the forging practices typically used in 

the aerospace industry. The specifications had to be verified through comparison with the analysis of 

the benchmark component geometry and material properties. 

Optimization 

With information on the geometry of surrounding parts and structural requirements, a design 

volume and optimization model could be created. An objective of this research is to develop and 

verify the robustness of this optimization model, and also to develop appropriate manufacturability 

parameters for the model. From the output, several viable design concepts will be extracted. 

Preliminary Design and Verification 

The final objective of this work is to produce a design that meets all specified requirements. With 

limited information available about the performance of wrought alloys at the outset of the project, it 

was expected that this verification would take the most accurate form available at the given time. 

Furthermore, as more information became available about the performance of magnesium as a 

material it was to be integrated into the design. 

1.3 Overview 

The presented thesis is composed of five main sections: 

In Chapter 2, background information on magnesium, forging, and the optimization of structural 

components is detailed. Pertinent sources in literature are discussed, and the project objectives are put 

in the context of other successful projects in the forging of magnesium and structural optimization.  

Chapter 3 first details the analysis of the benchmark component, and discusses why it is a relevant 

component to design using forged magnesium. Structural design specifications, and the related 
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analysis processes are then discussed. Finally, the chapter details requirements related to 

manufacturing, derived through the project’s experience to date with forging magnesium, and 

aerospace industry guidelines. 

Topology optimization for the design of the forged magnesium component is presented in Chapter 

4. The model is first assessed for robustness through a sensitivity analysis procedure. Following 

confidence being established in the model, a number of trials were used to create design concepts and 

investigate the performance of different materials for the application. Lastly, a preliminary design was 

extracted from the optimization model and analyzed to determine if it complied with the engineering 

specifications. 

Following optimization, Chapter 5 explores the design of a manufacturable component and the 

verification of most engineering specifications. First the final design is detailed, including discussion 

of the forging and machining processes involved, as well as the design work undertaken. The design 

is then verified against the engineering specifications. Lastly, engineering specifications that were not 

met are discussed. 

Chapters 6 and 7 cover the conclusions and recommendations generated through the completion of 

this project.  
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Chapter 2 

Background and Literature Review 

The following section investigates current research progress and directions found in the literature, as 

well as relevant background information. Increasing focus on magnesium as an engineering material 

and its related characteristics are explored. The use of forging to form more structurally advantageous 

magnesium components is then investigated. Finally, state-of-the art strategies for structural 

optimization will be discussed, along with some successful applications in the automotive industry. 

2.1 Magnesium Alloys 

Magnesium has been implemented as a structural and non-structural material for over eighty years, 

including use in lightweight transport trucks, aircraft, electronics enclosures and automotive 

instrument panel beams [3] [6]. With 65% of aluminum’s density (1.7-1.8 g/cm3), magnesium is the 

lightest structural metal, while still demonstrating similar strength and fatigue properties to 

aluminum. Magnesium has the potential to provide superior specific stiffness and strength compared 

to most commonly used materials in many automotive applications. These characteristics suggest 

opportunities with regards to the use of magnesium in automotive lightweighting efforts [3]. 

Magnesium alloys have a hexagonal closed packed (HCP) crystal structure, with only two easily 

activated basal slip systems at room temperature. Since five active slip systems are required for 

uniform yielding, magnesium’s behaviour is influenced by other deformation mechanics as well [7]. 

Mechanical twinning systems contribute alternative deformation mechanisms, allowing the material 

to deform in a ductile manner. Twins however contribute to asymmetric and anisotropic material 

properties, forming strong textures that make forming and mechanical behaviour complex [8]. Alloy 

development including the application of rare earth elements, heated processing, and grain refinement 

are all strategies that are being commonly applied in mitigating these formability challenges [7] [9]. 

From a sustainability point of view, magnesium is an environmentally available material and can 

be reduced from MgO or obtained through electrolysis of MgCl salts [10]. With abundance in sea 

water, this method offers a large supply without large mining operations. Additional work on 

recycling is still needed, although focus on recovery, especially of valuable secondary elements, is 

ongoing as magnesium becomes more commonly used [11]. Possibly the largest environmental 

benefit is in vehicle fuel economy, with overall mass savings of 100 kg contributing 0.3 to 0.4 
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L/100km of fuel savings [1]. The large scale implementation of structural magnesium in vehicles may 

significantly assist in meeting government fuel economy targets and reducing greenhouse gas 

emissions. 

Alongside the difficulties with formability and mechanical behaviours, magnesium alloys also 

commonly suffer from relatively poor corrosion resistance, especially in galvanic couples, due to their 

high electrochemical activity [3]. For use in moderate environments, conversion coatings and the 

application of paints or sealants is typically required [12]. There are also concerns with flammability 

in processing, however they can generally be overcome by process control, effective chip clearing 

during machining, and the presence of appropriate emergency extinguishing equipment [10] [13]. 

Magnesium has been utilized in the automotive industry dominantly in the form of cast 

components. Instrument panel beams, steering components, and seat structures commonly use 

magnesium alloys, as they are internal parts not susceptible to aggressively corrosive environments. 

Magnesium has also been used in engine blocks, intake manifolds, wheels, transmission cases, 

brackets, and engine cradles on a more limited basis [3] [10]. Overall, there is an interest in applying 

wrought alloys within the automotive industry to achieve further lightweighting performance on parts 

with more demanding mechanical property requirements. 

2.2 Forging 

Forging is a metalworking process in which compressive loading is used to form a metal using a die 

or other tooling. This family of processes has been in use since at least 5000 BC, however traditional 

blacksmithing methods have mostly given way to specialized dies and industrial scale presses and 

hammers [14]. Magnesium forging found its first significant uses with the second world war, in 

which it was used to replace aluminum in aerospace applications, partly due to aluminum shortages 

[10]. With the first flight of the B-36 ‘Peacemaker’ in 1946, aerospace magnesium forgings had 

reached maturity with 680kg of them on the plane, helping enable the first intercontinental range 

bomber [3] [15]. Since then, renewed interest in the process has arisen due to the potential of 

challenging aluminum in terms of strength and fatigue properties for automotive applications [4]. 

An exemplar I-beam section forging is shown in Figure 1 with important features labelled [14]. 

With high specific bending strength and stiffness, the I-section is likely to be a component of a 

structural forging, and the nomenclature will be used in the description of design features going 

forward. The labelled features all have relevance to component forgeability. If the web is too thin, 
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defects may occur as metal flows through the rib to the flash, breaking the grain flow and initiating 

cracks in a cold shut. The fillet radius is critical to filling the rib, and must be sufficient to allow metal 

to flow around it without folding over itself. The flash is also crucial for impression die forgings, as it 

restricts flow outward and helps fill the rest of the die. Overall, it is the balanced consideration of 

these parameters that permit successful forging of components in any material [14] [16]. 

 

Figure 1: I-beam Forging Section 

There are many available forging techniques and presses with which to accomplish forging 

operations. Mechanical screw presses, hydraulic presses and drop hammers have all been found in use 

producing magnesium forgings throughout the literature [16] [17]. Precision forging, in which a 

component is formed to tight tolerance and minimal draft has also been successfully used to produce 

parts from magnesium with minimal machining requirements [16] [18]. 

Forging process design has been greatly aided by the use of thermo-mechanical simulations with 

the finite element method. Vazquez and Altan developed first a predictive physical simulation using 

plasticine, then a refined finite element model in DEFORM 3D that informed the design of a near-

flashless forging process for an engine connecting rod [19]. Preform design using structural 

optimization approaches was developed by Shao et al. and implemented to investigate the optimal 

preform topologies of a wheel and a turbine blade [20]. Furthermore, several projects involving the 

forging of magnesium components have utilized finite element forging models to effectively predict 

die filling, the presence of defects, and the final shape of completed forgings [17] [18] [21] [22]. The 
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use of these computational simulation techniques give confidence to the designer that design 

performance in manufacturing can be predicted and optimized prior to the manufacturing of tooling. 

Although magnesium forgings have been produced in industry since the second world war, a 

number of more recent projects have successfully implemented magnesium forging and proved out 

various technologies. Gontarz et al. successfully simulated and forged a lever using a drop forging 

process without heated dies [17]. The component had flaws in locations predicted by simulation, but 

by using a larger number of lighter strikes the part was produced with good quality. Using a heated, 

multiple piece female die, Wang et al. simulated and forged a bracket and wheel from cast materials. 

The resultant forged AZ80 part had significantly improved ultimate strength (320-330MPa) and 

elongation of 10-12% [18]. Pepelnjak et al. forged a shock absorber head from AZ80 magnesium, and 

used collected anisotropic forming data to add anisotropy into the simulation [21]. There was 

significant variation between the topologies predicted from three different simulation software 

packages, but DEFORM 3D produced a fairly accurate result compared to the forged part. Near-net-

shape precision forging has also been used to successfully produce pulley wheels and an aerospace 

door stop from magnesium alloys [4]. 

2.3 Structural Optimization 

In the design of automotive components, structural optimization techniques have been implemented 

to achieve optimal designs for vehicle lightweighting. Three dominant methods exist: sizing 

optimization, shape optimization, and topology optimization. Sizing optimization selects the most 

appropriate feature size for a given location; for example, tubing sizes in a spaceframe might be 

selected this way. Shape optimization techniques use variations in external object shape or FEA nodal 

locations to produce optimal contours for the exterior of a part. Since shape optimization is unable to 

create holes in a component robustly, topology optimization was developed to generate a starting 

point for component design [23] [5]. Upon the completion of an optimization process, design 

engineers are required to translate an optimal structure into a viable part that meets all the imposed 

requirements. 

The topology optimization process starts with a finite element mesh encompassing the space in 

which material can be placed. Each design element has an element density, and the compliance of the 

structure can be computed with this information. In practice, commercial programs can use a wide 

variety of design variables, objectives, and constraints; however, the method was pioneered to design 



 

 21 

structures of minimum compliance with a given average density [23] [24]. In early studies the 

variation in element density and stiffness was computed by the modelling of microstructural 

composites via the homogenization method, but simpler methods use a penalization process for 

intermediate density elements driven by a power function known as the solid isotropic material with 

penalization model (SIMP). The power function is set based on empirical studies rather than physical 

composite models, but accomplishes the same function of avoiding designs with large areas of 

intermediate density [5] [25]. The optimization begins with the assignment of an initial element 

density for the set followed by solution of the finite element model. Using an optimization algorithm 

(many can be used), elements with high strain energy density see an increase in density, whereas 

those with low strain energy density have their density reduced. This solution and optimization 

process is then iterated until the change in compliance of the design reaches a convergence criterion 

[5]. The end result is a set of element densities for the design that suggest the distribution of material. 

Design interpretation is required to transform this into a viable part of non-intermediate density. 

Manufacturability of designs generated via topology optimization is a concern due to the freedom 

inherent in the process. In order to constrain the design further, commercial codes such as Altair 

Optistruct have introduced penalization methods that model manufacturing requirements such as 

casting and forging draft, extrusion, patterning, symmetry and structural member size requirements 

[24] [26]. These methods have been directly applied to challenges in creating geometries suitable for 

forging, and are likely to be critical in the design interpretation process [27]. 

Topology optimization has been widely used in industry to design more efficient automotive 

components. Multimatic and General Motors collaborated to produce a series of topology-optimized 

control arm designs using different high strength steel-friendly processes. The best component 

concept was able to equal a benchmark aluminum component in mass at up to 34% savings in 

production costs [28]. Audi AG used two commercially available topology optimization packages to 

optimize the mass of an engine support, auxiliary bracket and a crankshaft bearing cap, all with 

significant reductions in mass over baseline designs. Design volumes were generated from clearance 

models and using the baseline parts, allowing the designer to approach the problem from a design 

refinement perspective with greater success for the given case [29]. Honda R&D used topology 

optimization to reduce the mass of a transmission housing with a very complex design volume. It was 

determined that the best design strategy revolved around the use of topology optimization for the 
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generation of an initial concept design when freedom of material placement was at its greatest, and 

for further trials making use of shape optimization to refine the design space [30]. 

Overall, the combination of magnesium forging and topology optimization seem likely to be an 

effective pairing. The optimization method is capable of capturing limitations of the manufacturing 

process, while still creating an optimal topology relevant to the design scenario. Additionally, the low 

density of magnesium may permit the exploitation of a large design space with novel load direction 

strategies.  
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Chapter 3 

Engineering Specifications 

In order to create a design capable of replacing an in service automotive component, it was necessary 

to generate an engineering specification. The benchmark component was analyzed for performance, 

and engineering requirements from Ford were evaluated. Manufacturing research was then 

incorporated to generate the completed specification. Some requirements were tentatively not 

included in this specification, including balljoint and bushing design integration, due to limitations in 

research scope. 

3.1 Component Benchmarking 

3.1.1 Description of Benchmark Component 

The front lower control arm (FLCA) of the 2013 Ford Fusion was selected as the benchmark 

component for this project, as it is a substantial component in terms of mass, and structurally critical. 

The Ford Fusion front suspension is a typical Macpherson strut design as shown in Figure 2. Because 

of this, the FLCA reacts the majority of wheel loads in the x-y plane while loads in the z direction are 

passed almost directly into the strut as shown in Figure 3. Over the vehicles lifetime the FLCA must 

safely transmit all braking, cornering and acceleration loads back into the chassis, provide sufficient 

stiffness to support good vehicle handling, avoid excessive deformation in light overloading, and 

survive heavy overloading events without becoming a safety risk. In addition to these requirements, 

the control arm must be sufficiently corrosion resistant, durable, and of sufficient quality to integrate 

with the rest of the vehicle. The benchmark FLCA is made of cast A356-T6 aluminum and was 

calculated to weigh 2523 grams. To assess the performance of the benchmark, a finite element model 

was created and analyzed based on the requirements provided by Ford. 
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Figure 2: 2013 Ford Fusion Front Suspension Assembly 

 

Figure 3: 2013 Ford Fusion Front Lower Control Arm 
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3.1.2 Finite Element Model 

Using information provided by the OEM, a finite element model was generated for the benchmark 

FLCA. The results are captured in summary table form, and finite element contour plots. Finite 

element analysis was completed using Abaqus 6.13-4 and fatigue analysis was performed using 

nCode DesignLife v11.0. 

Table 1 : Model Information 

 Element Type Count 

Surface Mesh (2D Membrane) Abaqus M3D6 21998 

Solid Mesh (3D) Abaqus C3D10M 74525 

   
Selected Quality Parameters 

 Model Value Target Value 

Minimum Tet Collapse (3D) 0.21 > 0.3 

Minimum Jacobian (3D) 0.15 > 0.2 

Minimum Interior Angle (3D) 16.6° > 20° 

 

Table 1 above shows the element types and count used in the model, as well as three element quality 

measures that were referenced in building the FE model. The surface geometry of the part was 

simplified and de-featured, including the very complex cast parting line geometry. The part was then 

meshed with a uniform second order triangular surface mesh with a target size of 3 mm. Due to the 

complexity of the parting line geometry, it was difficult to reach the quality targets shown in Table 1; 

however, the majority of elements (99.8%) beat these quality guidelines. It was decided to go forward 

with the model, as all elements were above the software required quality measures and the model size 

was reasonable [31]. The 3D second order tetra mesh of C3D10M elements was surfaced with M3D6 

membrane elements in order to provide more accurate stress results [32]. The final mesh is shown in 

Figure 4 below. 
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Figure 4: Baseline Component FE Mesh 

3.1.3 Stiffness Analysis Results 

The stiffness of the control arm was evaluated in the global x (Aft) and y (Lateral) directions of the 

model, which are shown in Figure 3. Loads were applied, and deflections measured at point 6 (the 

balljoint). The suspension hard points (3,4 and 6) were connected to the component via Abaqus 

DCOUP3D (RBE3) elements. Constraints were then applied to the hard points as shown in Table 2. 

Table 2 : Model Constraints 

Suspension Hard Point Constrained Directions 

3: Handling Bushing 1,2,3 (x, y, z) 

4: Ride Bushing 2,3 (y, z) 

6: Balljoint 3 (z) 

 

When the model was set up, both Aft and Lateral stiffness analyses were run as linear perturbation 

steps. The results of this analysis are shown below in Table 3. Figure 5 and Figure 6 show contour 

plots for the analyses from which stiffness was computed. The RBE3 based stiffness method is 

presented here because it gives lower stiffness values than most other methods (and is thus 

conservative), is easy to set up for most cases, and non-proprietary. 
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Table 3 : Benchmark Component Stiffness Results 

 Stiffness (RBE3) 

 Aft Pt 6 Lat Pt 6 

 [kN/mm] [kN/mm] 

Benchmark FLCA 4.33 81.8 

 

 

Figure 5: Benchmark aft deflection [mm] under 1 kN (+x) unit load 
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Figure 6: Benchmark lateral deflection [mm] under 1 kN (+y) unit load 

3.1.4 Strength Analysis Results 

Two types of loading were applied to evaluate the FLCA’s strength. Initially, a light overload was 

applied that may occur over the course of the vehicles normal life. The FLCA would be expected to 

survive such a load with minimal deformation, such that it can continue functioning without adverse 

handling or clearance impacts. If the part passed this first stage, the component was subjected to an 

ultimate loading case, which represents a much heavier overload in which significant deformation is 

expected. As long as the balljoint (Pt. 6) stays within maximum specified displacement limits, and the 

plastic equivalent strain is below a threshold value set for the material the part is acceptable. 

The setup for the finite element model is very similar to the stiffness model, however instead of 

direct constraint of the suspension hard points, the RBE3 elements are linked to a linear elastic 

suspension and chassis model. This flexible model allows the load to be distributed more realistically 

into the FLCA. The chassis and suspension model is fixed at the locations where the sub-frame bolts 

to the primary structure of the chassis. In addition to these boundary conditions, the model was run 

with a non-linear material to capture the plastic deformation. Results for all cases are shown in Table 

4 below. All of the load case requirements were passed without issue. 

Figure 7 to Figure 12 show the results of the three major areas of interest: permanent deflection 

after light overload, maximum deflection, and the maximum equivalent plastic strain. Relatively high 
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deformation was observed under light overloading, but with most of the deformation localized to the 

region around the balljoint where the cross section narrows, this is an expected behaviour of the 

design. The contour plots for this case are captured in Figure 7 and Figure 8. For overloading, both 

maximum deformations were acceptable, and contour plots are shown in Figure 9 and Figure 10. The 

maximum of 3% for the equivalent plastic strain (PEEQ) is a material specific allowable for A356-

T6, but was closely approached in the aft load case. Investigating the model, the peak is located on an 

inside corner at a mesh induced discontinuity, which suggests that the analysis is conservative 

because in reality the surface would be relatively smooth. Contour plots of the max PEEQ are shown 

in Figure 11 and Figure 12. 

Table 4: Benchmark Component Strength Results 

 

 

Permanent Set Max Deflection PEEQ Max 

 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 

 [mm] [mm] [mm] [mm] [%] [%] 

Benchmark FLCA 0.17 0.42 33.4 4.8 2.74 0.26 

Specification Targets     3.00 3.00 

 

 

Figure 7: Benchmark aft load permanent set [mm] 
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Figure 8: Benchmark lateral load permanent set [mm] 

 

 

Figure 9: Benchmark aft load max deflection [mm] 
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Figure 10: Benchmark lateral load max deflection [mm] 

 

 

Figure 11: Benchmark aft load equivalent plastic strain [mm/mm] 
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Figure 12: Benchmark lateral load equivalent plastic strain [mm/mm] 

3.1.5 Fatigue Analysis Results 

For fatigue evaluation, unit load analysis was completed for x, y, and z unit loads at the balljoint and 

all six force and moment components for each of the bushings. These analysis steps were conducted 

with inertia relief in order to eliminate rigid body modes. Unit loading stress results were combined 

with proprietary Ford fatigue loading histories to create a stress and strain history for the component 

using nCode DesignLife. Strain life fatigue analysis was then conducted on the component within 

DesignLife using A356-T6 fatigue data from a proprietary Coffin-Manson stress strain curve. The 

Neuber rule for elastic-plastic correction, and the Smith-Watson-Topper mean stress correction were 

used to run the fatigue analyses. The model was run with and without a fatigue surface correction 

factor, however the use of a correction factor may not correlate well to actual fatigue life results for 

A356-T6. The reason for this is the consistent presence of defects both inside and outside the 

component in cast specimens, meaning that even the polished samples tested when deriving fatigue 

data have significant available surface or near-subsurface crack initiation sites [33]. For forged 

specimens, this characteristic may not hold due to the potential for improved surface quality. 

Table 5 shows the results of the fatigue analysis with and without the surface factor for 

comparison. In both cases, the lowest life detected was on the forward edge of the control arm near 

the balljoint. Both cases were viable, however as previously discussed no surface factor should be 
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applied and a polished Ks result is more likely predictive. Figure 13 and Figure 14 show the fatigue 

life contour plots from this analysis from both sides of the control arm. Both contour plots use a 

logarithmic scale. 

Table 5: Benchmark Component Fatigue Results 

 Fatigue Life 

 Polished Ks Cast Ks 

 [Cycles] [Cycles] 

Benchmark FLCA 144776 29100 

 

 

 

Figure 13: Benchmark fatigue [cycles] inboard view 
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Figure 14: Benchmark fatigue [cycles] outboard view 

3.2 General Engineering Specifications 

3.2.1 Clearance 

In service, the FLCA should not come into contact with any other component of the vehicle in order 

to avoid damage. This requirement extends to all local components including the brake caliper, 

knuckle, subframe, stabilizer bar, steering tie rod and boot, brake shield, tire and wheel. Specific 

clearance guidelines were made available to the project from Ford, however the details are 

proprietary. The main elements to be accounted for by clearances were compliance, geometric 

tolerances in the system, and a safety factor derived from experience in vehicle design. In cases of 

insufficient clearance, it would be necessary to demonstrate functionality via an analysis of deflection 

and tolerance stackup in the local region to the OEM. 

In order to better visualize the critical clearance regions of the model and support optimization 

tasks, a clearance volume was produced. In the case of this component, the wheel, tie-rod, subframe 

and knuckle clearances are especially restrictive, as can be seen in Figure 15. To verify acceptable 

clearance is present, a series of CAD clearance models were extracted for measurement in CATIA v5. 

The development of this clearance model is further explained in section 4.1.2, as it originated as a 

core component of the optimization model. 
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Figure 15: Clearance Volume with Baseline Control Arm 

3.2.2 Geometry 

Suspension hard point geometry is a set requirement for the structural design of most suspension 

components. The required positions are shown in Table 6. The local geometry required to 

accommodate balljoint and bushings must also be preserved to allow their continued use. The use of 

magnesium is an additional complication for meeting bushing and balljoint specifications, but for this 

preliminary design stage these elements were not explicitly considered. Possible issues with 

magnesium include insufficient balljoint pullout strength, maintaining an adequate press fit on the 

handing bushing, and interface corrosion. The most limiting design implication to come from the 

preservation of local geometry is the orientation of the balljoint, which is angled inboard towards the 

bushings and makes ensuring adequate draft angles difficult. 
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Table 6: Suspension points (rounded to the nearest mm) 

Pickup Point x y z 

Balljoint [Pt. 6] 1695 -764 333 

Handling Bushing [Pt. 3] 1721 -405 346 

Ride Bushing [Pt. 4] 1987 -405 355 

 

3.2.3 Quality 

Producing a sufficient product quality beyond just passing technical requirements is an additional 

important part of the OEM specification. The component should give the driver confidence that it will 

function adequately, as well as not present significant risks in manufacturing. Magnesium 

components present a number of challenges on these fronts, and although these challenges cannot be 

formally captured in this study for scope reasons, they should be informally considered. Some of the 

challenges that should be examined include: crack formation during forging, galvanic corrosion, 

balljoint cold formability, and balljoint cup strength. 

3.3 Structural Design Specifications 

3.3.1 Stiffness Requirements 

The FLCA serves primarily to fix the wheel in a specific position, and helps maintain the tire in an 

appropriate orientation. If the FLCA deforms significantly there will be implications for tire life, 

vehicle stability, and handling [34]. The results of the benchmark analysis are shown in Table 7 for 

comparison. Any planned design should exhibit values close to these results. 

Table 7: Benchmark Stiffness 

Requirement Value Units 

Aft Stiffness 4.33 kN/mm 

Lateral Stiffness 81.8 kN/mm 

 

The lateral stiffness result is acceptable, based on an engineering rule of thumb that the stiffness of 

the control arm should be 5 to 10 times the handling bushing stiffness (~10 kN/mm). Since the 

handling bushing and the control arm behave as springs in series, there are diminishing returns on 

total system stiffness as the control arms stiffness gets larger. The system stiffness only increases 8% 
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from 50 to 100 kN/mm and only 3.5% from 75 to 110 kN/mm. 75 kN/mm was chosen as the target, 

as it is a reasonable compromise between system stiffness and the ability to reduce mass efficiently, 

as shown through the optimization model in section 4.3.2. Appendix A shows calculations related to 

this simplified model of springs in series. 

To create the finite element model for stiffness, designs were first meshed using the same process 

and requirements described in section 3.1.2. The suspension hard points were then connected to the 

relevant contact points on the mesh using distributed coupling elements (RBE3) to distribute the loads 

into the arm. Constraints were then applied to the individual hard points as described previously 

(Table 2). Two linear elastic analysis load steps were created individually, containing a 1 kN load in 

the relevant direction (positive x for aft, positive y for lateral).  

3.3.2 Strength Requirements 

In service, it is necessary for the control arm to tolerate occasional high stress loading events. Two 

types of loading were considered in a manner similar to analysis of the benchmark component 

(section 3.1.4). The first loads that should be considered are typical overloads possible during service, 

but that should not adversely affect the function of the control arm. As in the benchmark analysis, 

some minor local yielding is permissible under these load cases, but should remain below adjustment 

available in the suspension design. Both aft and lateral cases should be considered, representative of 

the two primary loading directions.  

Ultimate load cases are also required to be met that will likely necessitate the replacement of the 

FLCA, but cannot result in part failure. Overall deflection must be limited in this scenario to avoid 

damage to other components. Additionally, failure can be characterized first by the ability of the 

control arm to support the load, and secondarily by a series of material allowables for equivalent 

plastic strain (PEEQ), as shown in Table 8. These critical PEEQ values were in most cases taken from 

the literature, but some also came from initial testing of the material. When the material allowable 

came from the literature, it was selected initially based on process specific information, but was 

informed based on other relevant information if available. For this reason, Table 8 shows minimum 

and maximum values found. It should be noted that the presented values are in many cases from 

conservative aerospace sources, and in practice more aggressive material allowables might be 

reasonable. 
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Table 8: Equivalent Plastic Strain Material Allowables 

Material PEEQmax 

Allowable [%] 

Maximum 

Elongation [%] 

Minimum 

Elongation [%] 

A356.0-T6 Cast Aluminum 3 5 [35] 3 [35] 

6061-T6 Forged Aluminum 6 7 [35] 5 [35] 

AZ31B Forged Magnesium 6 [35] 19* 4 [35] 

AZ80 Forged Magnesium 7 [3] 11 [16] 5 [16] 

ZK60 Forged Magnesium 7 7 [35] 4 [35] 

*Data from monotonic tensile testing of forged samples 

For the setup of the strength model, the stiffness mesh and RBE3 elements were reused. The 

suspension hard points are then connected directly to a simplified stiffness model of the suspension. 

This stiffness model was provided by the OEM and generates more realistic deflections and load 

directions during the analysis. This model is shown for reference in Figure 16. The analysis starts 

with an initialization step where the skeleton model is allowed to come to static equilibrium. The 

second step pushes the FLCA to the position the suspension reaches under gross vehicle weight 

loading. In the third step lateral loads are applied at the tire contact patch, whereas aft loads are 

applied at the wheel center, and are ramped up to their maximum level by the non-linear solver. To 

determine permanent deformations, the load can also be ramped down to zero and the arm returned to 

its base z position in a forth step. 

 

Figure 16: Suspension Skeleton for Strength Load Cases 



 

 39 

3.3.3 Fatigue Life 

The ability of the FLCA to survive its expected service life is characterized by its predicted fatigue 

life under a set of OEM-specified fatigue loads. The loads used were simplified representative loads, 

and for the most part were constant amplitude. To translate the load history into a component stress 

and strain history, the finite element model of the control arm is first subjected to unit load analyses 

for all possible load application directions with inertia relief. These component loads are then 

superimposed in proportion to the fatigue load data to find stress and strain for each of the load cases 

on the part within nCode DesignLife., 

With the stress strain history in DesignLife, strain life fatigue damage can then be calculated using 

a Coffin-Manson strain life curve appropriate for the material being evaluated. For the purposes of 

this project, the Neuber elastic plastic correction factor and Smith Watson Topper mean stress 

correction were used in the fatigue model. In the case of a cast material, no surface correction should 

be applied, to account for the consistent presence of material defects throughout fatigue specimens. 

For a forged material, the surface correction factor should be applied to accurately model the 

roughness of a forged surface [33]. The FLCA was required to provide similar performance to the 

baseline component that survived 144,776 fatigue loading cycles. 

3.4 Manufacturing Design Specifications 

For the initial phase of design, it was decided to use the literature as a reference for geometric 

requirements, as forging models were still in development. The goal of the manufacturing 

specifications is to ensure the part can be produced accurately, cost effectively, without defects and 

with advantageous metal flow. In future design work these specifications should at least be based on 

future forging tests and analyses, and ideally forgeability would be directly evaluated with a forging 

simulation. Figure 17 shows the minimum forged I section with critical dimensions as discussed in 

the following detail sections. 
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Figure 17: Forged I Section with Specification Variables 

3.4.1 Draft Angles 

Sufficient draft angles are required to allow the part to fill adequately and clearly extract from the 

forging die. For the outside draft angles (do) a 5° minimum draft was selected. For the internal pocket 

draft angles (di) a 10° minimum draft was chosen, as a greater internal angle is required to prevent 

binding on the die during release [14]. 

Table 9: Draft Angles 

No. Requirement Case Value Units 

M01 Outside Draft Angle (do) >= 5 deg 

M02 Internal Draft Angle (di) >= 10 deg 

3.4.2 Corner and Fillet Radii 

The fillet radius has a direct impact on die filling for I section forgings since it directs flow up into the 

rib. If an insufficient fillet radius is present, the web material may flow directly through to the flash 

region causing internal defects [16] [14]. The corner radius is less critical than the fillet, however a 

sharp edge is still difficult to fill. The required values for both of these requirements are shown in 

Table 10 below. 



 

 41 

Table 10: Fillet and Corner Radii 

No. Requirement Case Value Units 

M03 Fillet Radius (ri) >= 10 mm 

M04 Corner Radius (re) >= 2.3 mm 

3.4.3 Web Thickness 

With a larger part, it becomes more difficult to form thinner sections due to the transition between 

thick and thin regions, as well as the large forces required [16] [14]. Based on an assumed part 

surface area for a section of the part, a web thickness of 5 mm was selected for the initial design as 

shown in Table 11 [13]. 

Table 11: Web Thickness 

No. Requirement Case Value Units 

M05 Web Thickness >= 5.0 mm 

3.4.4 Rib Thickness 

Filling the rib section is one of the largest challenges in designing a forging. Due to the shape of the 

design volume, the rib height is naturally limited and should not be a major constraint. The more 

critical constraint with this in mind is the minimum allowable thickness of the rib. As the rib gets 

thinner the material must be extruded up through a smaller gap, making filling more difficult. Based 

on aerospace industry data, the rib thickness for this geometry was set at 6.35 mm (1/4”) as shown in 

Table 12 [16]. 

Table 12: Rib Thickness 

No. Requirement Case Value Units 

M06 Rib Thickness >= 6.35 mm 

3.4.5 Barriers to Automation 

Since the Ford Fusion is built on a high production global platform [36], production of the FLCA 

would likely exceed one million parts per year. In order to achieve the required production rate 

efficiently, some basic requirements were selected as listed below: 
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1. The design should have provision for ejector pins, in order to allow rapid removal from the 

production die. Similarly, the design should avoid features that might bind with the die 

[16]. 

2. The design should be sufficiently robust after forging to either be handled by a robot 

manipulator, or dropped into a part chute. Reasonable adaptation can be expected on the 

automation side to make this feasible [16]. 

3. After forging, the design should have repeatable reference areas that can be used to 

efficiently set up the part for machining. Sufficient material should also be present in 

machined regions of the forging to avoid defects. 

4. The rate limiting step in part production should not exceed 1 minute. This is a preliminary 

guideline, and needs to be verified through a full cost and production analysis compared to 

the benchmark component. 

3.4.6 Surface Finish 

Two primary surface finish issues identified so far are corrosion and fatigue. If graphite lubricant is 

embedded in the final forged part, there is a risk of galvanic corrosion between the graphite particles 

and the magnesium. Typical aerospace practice indicates that the part should be shot blasted, washed 

in a mild acid solution, rinsed, and dichromate coated (although other more recent coatings are also 

available) after forging [16]. Good surface finish also generally improves fatigue durability. Direct 

requirements for surface finish should be defined to meet the mechanical requirements. In addition, 

surface cracks should not be present in the final part. 

3.4.7 Increased Manufacturing Cost 

In order to ensure the component is economically viable, the cost per unit weight reduction versus the 

baseline component should be considered. Automotive OEM’s are required to meet certain fuel 

economy standards, and as such are willing to compromise part cost in order to achieve lower part 

mass. The equivalency value of 1 USD/kg saved is conservative, and this should be established based 

on further analysis, research, and consultation with project partners [2]. 
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Chapter 4 

Topology Optimization 

Topology optimization was used to generate an optimal distribution of material based on meeting the 

target stiffness constraints. This model was developed in three phases. First the available region in 

which material could be placed was defined using a CAD model of surrounding components. The 

model was then improved by assessing its response to changes in analysis technique, model 

composition and design constraints. Finally, the model was put through several design studies with 

varying materials, design objectives and manufacturing constraints to generate designs for 

consideration. Of these designs, a promising concept was selected and extracted for use as a design 

reference. This concept was then used to create a CAD model from which further improvements were 

made manually at the preliminary design stage. 

4.1 Design Volume 

To obtain an appropriate optimization model, a design volume was defined. This region corresponded 

to all the areas in which material could be placed without violating the clearance specifications 

(section 3.2.1). Initially a complete assembly model of the front suspension was not available for use, 

so the reference control arm was filled in to form a conservative initial design volume. This volume 

was manipulated to give insight on the model until more detail was available. Once a complete 

suspension assembly model was available, a series of increasingly accurate design volumes were 

produced as a basis for the optimization. 

4.1.1 Initial Clearance Models 

Testing of the optimization model started with filling in the cast baseline geometry between the ribs 

and any other regions of complexity with material while preserving the outside perimeter of the part. 

The topology optimization model was created in Altair Optistruct (Hyperworks 13) and was based on 

a fairly coarse mesh, linked using RBE2 elements to suspension hard points that had been constrained 

as described in Table 2 (3.1.3). The optimization was driven entirely by an estimated aft stiffness 

requirement, as it was found to be impossible to meet the lateral stiffness load case due to the limited 

section available and magnesium’s 36% lower elastic modulus.  

The baseline model resulted in almost the entire section being filled with material to meet the 

stiffness target. Since this was not an efficient use of material, a number of experiments were run 
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which expanded the model section in both width and height. It was found that expanding the width of 

the arm section resulted in the most efficient removal of material, as would be expected for a simple 

beam in bending. An example contour plot of a 15mm width expanded design that meets the stiffness 

criterion is shown in Figure 18. 

Although the edge growth model gave an initial idea of what parameters might drive the 

optimization, it was clear that a higher fidelity model would be necessary to challenge the baseline 

design. Other limitations with this original simplified model, such as the analysis setup, also needed 

to be updated to better match the ABAQUS model. 

 

Figure 18: 15mm Edge Growth Topology Optimization 

4.1.2 High Fidelity Clearance Model 

When accurate CAD data became available, a precise design volume could be created to overcome 

the limitations of the previous model. After determining the relevant clearance requirements, CAD 

geometry was extracted from the suspension kinematic CAD model at critical points. For example, 

the geometry of the subframe was extracted in full vehicle jounce and rebound to determine the 

closest pass to the area material might be placed. All of the components relevant to clearance were 

mapped this way as surfaces or offset surfaces. Defining a large box shape around the possible design 

space, the interferences with these surfaces were methodically cut away until the blue design space 

shown in Figure 19 remained. 
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Figure 19: High Fidelity Clearance Model with Benchmark FLCA and Tie Rod 

When overlaid with the benchmark design, it became clear that some regions did not follow the 

first tier of clearance requirements, and were instead likely being evaluated with more complex 

tolerance based, or compliant models. For this reason, clearance offsets were reduced in the region of 

the tie rod, as more detailed data was unavailable on the exact requirements. Overall the most limiting 

parts for the design space, as defined by their proximity to the benchmark arm, are the steering tie 

rod, subframe window and knuckle bolt. 

The modelling of this high fidelity design space took substantial time. While this accuracy gave a 

level of confidence in the design results appropriate for experimentation, the use of this kind of 

modelling in industry would severely limit its applications. Using the right balance of high fidelity 

modelling in critical regions and low fidelity modelling in non-critical regions would be necessary to 

implement design space creation as an industry workflow. 

4.2 Model Development Studies 

With a reliable high fidelity design space model, it was possible to establish an accurate topology 

optimization model. The model was created to mirror the accepted Abaqus model, and the real 

behavior of the part by extension. Initial studies were run with the intention of assessing the models 

stability and reliability for predicting reasonable designs. Attention was also paid to the computing 
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performance effects of changes. The goal of this was to end up with an efficient model that produced 

a high fidelity concept design. 

4.2.1 Baseline Model 

The design space was meshed with 3D tetra elements, aiming for a 2mm average size. This size was 

chosen because the smallest minimum member size constraint value is three times the average mesh 

size [24]. Since the minimum web thickness was initially estimated at 6mm, this was considered 

adequate. It was also important that the element size not vary significantly through the thickness of 

the part, as all elements might need to form the outer edge of the part. As a result, the model for the 

2mm mesh has 495 394 elements, as shown below in Figure 20. Non-design space (pink) was also 

defined as a single element layer around the handling bushing, the contacted post of the ride bushing, 

and the modelled balljoint cup. 

 

Figure 20: Baseline Topology Optimization Mesh (2mm) 

The model was set up with the same boundary conditions as a stiffness analysis (3.3.1). In 

Optistruct, it was also necessary to place a very stiff CBUSH (configurable bushing) element in 

between the RBE3 elements and the hard point constraints to avoid an error. Through 

experimentation, the stiffness of this bushing element was set high enough to not significantly effect 

the final stiffness results. The design objective was set to minimize mass, while constraints were 
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applied on the maximum x and y deflections allowed. These deflections were set to correspond to the 

stiffness specifications. Split draw was selected as a topology optimization constraint, with its axis 

pointing in the global z direction. This constraint disallowed designs that would not allow dies to part 

from both sides of the geometry. Minimum member size was specified as 13mm, due primarily to a 

misunderstanding of the parameters requirements (see section 4.2.4). The model was run using a 

linear elastic load step with an elastic magnesium material model. The model details for comparison 

are shown in Table 13. 

Table 13: Baseline Topology Optimization Model Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 2mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 13mm Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

The mass history plot of the baseline analysis is shown in Figure 21, and an iso-plot of element 

density for the converged design is shown in Figure 22. The optimized mass was 1666g, and although 

somewhat bulky, the material distribution looked reasonable for the load case. The model was also 

run without manufacturing constraints for comparison. There was not a significant difference in mass 

distribution, but the material was not more spread out and there were some undercuts. The converged 

mass was also significantly lower at 1383g. This led to some suspicion that the minimum member 

size might be too large. Overall, the model seemed reasonable, so studies of its robustness were 

continued.  
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Figure 21: Baseline Topology Optimization Mass History 

 

 

Figure 22: Baseline Topology Optimization Element Contour Plot 
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4.2.2 Element Order and Mesh Refinement 

For an accurate model, it was expected that changes in element order and further refinement of the 

mesh would not have an effect on the model results. In prior work, 2nd order elements had been used 

to model most optimization volumes by default. Due to a significant reduction in run time, it was 

recommended by Altair Engineering to switch to 1st order elements [37]. With the associated effect 

on minimum member size constraint bounds, it was also desirable to see what the implications of a 

higher density mesh were. To compare the 1st and 2nd order models, the same mesh was used with the 

relevant element type. For the refinement study, a 1.4mm average size mesh was meshed created with 

a total of 1 574 455 1st order elements. Table 14 shows a summary of the model parameters with 

highlighted changes. 

Table 14: Refinement/Order Model Parameters 

Parameter Value/Details 

Element Order 1st Order vs. 2nd Order 3D Tetra 

Mesh Size 2mm vs. 1.4mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 13mm Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

The comparison contour plot of the 1st and 2nd order model is shown in Figure 24, while the mesh 

density model comparison is shown in Figure 25. Figure 23 shows the mass history of both models 

compared to the baseline optimization. Overall, both models were very close to the baseline 

optimization, giving confidence in the simple model. The 2nd order model ended up slightly heavier, 

but this was expected due to the more accurate and conservative stiffness of 2nd order tetrahedral 

elements [32]. Run time for the three simulations varied wildly, with the baseline running in 22 

minutes, the refined model running in 3 hours and 8 minutes, and the 2nd order model running in 18 

hours and 2 minutes. This is understandable due to the massively increased number of degrees of 

freedom in the 2nd order model and the more modest increase in the refined model. Both first order 

models were small enough to run entirely in RAM on the analysis computer (32 GB), which was a 

clear speed advantage going forward. 
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Figure 23: Refinement/Order Study Mass History 

 

 

Figure 24: Element Order Topology Optimization Comparison 
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Figure 25: Mesh Density Topology Optimization Comparison 

4.2.3 Boundary Conditions 

In earlier simulations, RBE2 elements had been used to simplify the optimization model. To 

understand the effect this would have on topology results, the baseline model was run with RBE21 

elements and constrained hard points. Table 15 shows the model details with the highlighted changes. 

Table 15: Boundary Condition Comparison Model Parameters 

Parameter Value/Details 

Element Order 1st Order 

Mesh Size 2mm average size 

Boundary Conditions RBE 2 vs. RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 13mm Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

                                                      
1 RBE2 elements are composed of a rigid beam element connecting two nodes, and therefore transfer all loads 

from the independent node to the dependent node without any change. RBE3 elements average the displacement 

of all dependent nodes to determine the displacement of the independent node, therefore allowing the boundary 

on which the dependent nodes are located to flex [41] 
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Figure 26: Boundary Condition Study Mass History 

The converged mass of the RBE2 model is 12% lower than the baseline model with RBE3 

constraints, and this is a consistent trend through the optimization as shown in Figure 26. Figure 27 

shows a significant difference in material distribution, especially around the handling bushing. Due to 

the definition of RBE2 elements as simple rigid beams, the constrained surfaces are unable to deform 

naturally. This leads to increased part stiffness to weight ratio, as the region is rigid and barely any 

material is required to support the bushing. Using RBE3 elements allows the bushing bore to deform, 

providing a more realistic model. It may be relevant in future models to add the steel bushing core to 

the bore in order to more accurately determine material requirements in this area [31]. 
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Figure 27: Boundary Condition Topology Optimization Comparison 

4.2.4 Minimum Member Size Constraint 

One of the available methods with which to capture the limitations of the forging process is through 

the minimum member size constraint. With this constraint in place structural members produced 

below the specified constraint value are penalized by reduced stiffness. While this may not 

completely eliminate thin sections, the simulation will avoid creating them in most cases.  

In order to evaluate the effectiveness of this parameter, a study was conducted with a range of 

acceptable minimum member sizes. The accepted minimum member size in Optistruct is three times 

the average element size. Element size is calculated by taking the cube root of the average element 

volume [37]. For the standard mesh used, this allowed minimum member sizes down to 6mm, while 

the refined mesh allowed 4.2mm. It was decided to run parameter values of 13, 9, 6.3 and 4.5 

millimeters, as these values corresponded to possible forged web thicknesses found in the literature 

[16] [13]. The parameters used in the study are shown in Table 16, with variations highlighted. 
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Table 16: Minimum Member Size Comparison Model Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 2mm average (1.4mm average for 4.5mm min member size) 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 13, 9, 6.3, 4.5mm Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

 

Figure 28: Minimum Member Size Study Mass History 
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Figure 29: Minimum Member Size Study Topology Optimization Comparison 

Figure 28 shows the mass history of the simulations conducted. As the minimum member size was 

reduced from the baseline value of 13mm, there was a significant decrease in mass. This decrease had 

diminishing returns as the parameter dropped to below 6.3mm, but at 4.5mm saved a total of 275g off 

the baseline of 1666g. Overall the mass converged to the results of the simulation unbounded by 

manufacturing constraints. The topological differences between the 13mm and 4.5mm simulations 

can be clearly seen in Figure 29. With a lower minimum member size, the simulation is able to form 

efficient reinforcing ribs that closely mirror what can be achieved in a forging design.  

4.2.5 Added Load Cases 

For a topology optimization to produce a structurally efficient design, it is necessary to build in all 

significant load cases. If this is not done the optimization is unable to capture anything to do with the 

load cases that are not present, and passing these requirements will not be guaranteed [37]. Prior to 

the study, two load cases were used in the optimization: lateral stiffness and aft stiffness. It was 

decided to search for other load cases that might cause issues within the OEM fatigue data. Maximum 

and minimum loads were derived from this data, producing 24 possible critical load cases. Figure 30 

shows the load cases producing maximum stress at each simulated element. Through this analysis, six 

fatigue load cases were identified as possibly critical for stress. 
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Figure 30: Critical Fatigue Load Cases for Individual Elements 

In order to try to capture the effect of the critical fatigue load cases, they were added to the topology 

optimization. To add the load cases, the point loads and moments were applied at the suspension hard 

points and the load step was set up with inertia relief to suppress rigid body modes. The optimization 

was set up with a 100 MPa stress constraint based on tests with the baseline component and these 

load cases. Table 17 shows the simulation parameters used with changes from the baseline 

highlighted. 

Table 17: Additional Load Case Study Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 2mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 6mm Minimum Member Size, Split Draw, Stress (100 MPa) 

Load Cases Stiffness and Critical Strength Load Cases 

 

Running the model, it was clear that no significant changes to the part topology were created in this 

simulation. Figure 31 shows a plot of Von Mises stresses for the critical load case, with all elements 

with stress below 1 MPa removed. This plot shows that most regions of the part were below the 100 
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MPa constraint, with certain sharp edges generating higher stresses. Due to the nature of the 

optimization, surface elements are not removed [24]. The stress constraint would be more effective if 

the critical points were not driven by the geometry of the design space. An additional reason why the 

stress constraints had a minimal effect was because the largest loads were in the same direction as the 

stiffness loads. Since material was already well distributed to meet the stiffness requirements, in this 

design the additional loads were mostly accommodated. Lastly, the loads that were not in the 

directions of the stiffness loads were relatively small, and did not generate stresses in excess of the 

constraint. Overall the conclusion of this study was that the model should remain driven by only the 

two stiffness requirements. 

 

Figure 31: Von Mises Contour of Critical Load Case 

4.3 Design Studies 

With the robustness of the topology optimization model established, the primary objective of creating 

an optimal material distribution for the magnesium FLCA could be realized. Studies were planned to 

evaluate the results achievable with different materials, the effect of the lateral stiffness constraint on 

outcomes, and what effect different manufacturing constraints might have on the realized topology. 

These studies were to be part of the project conceptual design phase, helping to generate usable 

design concepts for the final part. 
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4.3.1 Material Changes 

Steel and aluminum are already commonly used for control arms in the form of castings, forgings and 

sheet metal parts. In order to determine which material would be optimal for a forging, topology 

optimizations were run with a new set of baseline parameters established in the first set of studies, 

and the different materials as shown in Table 18. 

Table 18: Material Study Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 1.4mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium, Aluminum and Steel 

Manufacturing Constraints 4.5mm Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

 

Figure 32: Material Study Mass Histories 
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Figure 34 above shows the mass history of the three materials in the same optimization model. All 

three materials actually beat the baseline design in terms of mass; however, they only consider the 

stiffness load cases. While magnesium and aluminum are quite competitive, the forged steel design is 

less so in this optimization, as it struggles to use the efficient edges of the design space without 

adding heavy web material. The use of thinner steel sheet and tube based designs would necessitate a 

finer mesh or different optimization strategy but has been shown to be effective at challenging 

aluminum’s specific stiffness and strength, especially in more restrictive spaces [28]. 

 

 

Figure 33: Magnesium vs. Aluminum Topology Results 

Figure 33 shows fairly similar topologies generated by aluminum and magnesium. The aluminum 

model is unable to spread to fill the design space as efficiently as the magnesium, and leverages the 

manufacturing constraints to allow more holes in the design volume. The tie rod cut-out requires 

more magnesium to fill, as it is a relatively restricted area, giving the aluminum a local advantage in a 

critical region. Overall the two designs are very competitive for mass. The stiffness constraints may 

not be the critical design constraint; given strength and fatigue cases need to be explicitly considered.  
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Figure 34: Magnesium vs. Steel Topology Results 

The comparison of steel and magnesium optimized designs shown in Figure 34 provides much 

greater contrast. The steel design uses a number of small internal stiffening members to allow for 

more internal holes, and has a comparatively restricted distribution of its ribs. Additionally, it is very 

clear that to support the bushing structure a comparatively large amount of magnesium may be 

required. 

4.3.2 Lateral Stiffness Sensitivity 

In order to inform the final selection of a viable lateral stiffness constraint, a study of the effects of 

changing lateral stiffness constraints was performed on both aluminum and magnesium. Magnesium 

is at least even with, and at worst only 94% as stiff per unit mass as aluminum under tension-

compression loading as shown in Appendix B. Due to diminishing returns with increasing lateral 

stiffness, as discussed in section 3.3.1, it was decided to set the specification target lower to reflect the 

opportunity for light weight design more effectively. Table 19 shows the model parameters used for 

this analysis with study variations highlighted. 
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Table 19: Lateral Stiffness Sensitivity Model Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 2mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 6.3mm Minimum Member Size, Split Draw, varied Lateral 

Stiffness constraint 

Load Cases Stiffness Only 

 

 

Figure 35: Lateral Stiffness vs. Topology Optimization Converged Mass 

Figure 35 shows the variation in converged mass with changing lateral stiffness constraint. Initial 

studies with RBE2 elements linking to the suspension hard points showed superior magnesium 

performance in the whole domain, whereas this study with RBE3 elements shows a clear crossover 

point in terms of mass efficiency around the 90 kN/mm point. While the aluminum model does not 

change much over 90 kN/mm, the magnesium model shifts from an efficient I-beam section to filling 
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the tensile load path directly as shown in Figure 36. In order to produce a magnesium part with a 

better stiffness to weight ratio, it is necessary to drop the lateral stiffness constraint to below 

90kN/mm so that the aft stiffness is the optimization driver. 

 

 

Figure 36: Topology Optimization Changes with Material and Lateral Stiffness 

4.3.3 Maximum Member Size Constraint 

Several manufacturing constraints are available within Optistruct beyond those previously explored. 

Maximum member size uses a similar penalization effect to the minimum member size constraint, 

with a recommended minimum size of 6 times the average element size [24]. In general, it is used to 

put a limit on how thick a member can be, for example in the case of a casting where a relatively 

uniform wall thickness is needed to avoid defects. It was decided to explore the effects of this 

constraint given that it might generate different design possibilities, and had the potential to create 

more uniform rib sizes. Table 20 shows the model parameters used for this study, with changing 

parameters highlighted. 
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Table 20: Maximum Member Size Constraint Study Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 1.4mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 10, 15, 20, 25, and 30 mm Maximum Member Size, 4.5mm 

Minimum Member Size, Split Draw 

Load Cases Stiffness Only 

 

 

Figure 37: Maximum Member Size Study Mass History 

As can be seen in Figure 37, the simulation was not always very stable. With low maximum 

member size, it was very difficult for the design to effectively support the lateral stiffness constraint. 

The lack of connectivity in the final topology for a 10mm max member size value contributed to a 

very full design space, as observed in Figure 38. Further instabilities were reached past a 20mm 

maximum member size, likely due to the recommendation not to go past half the model thickness 
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with this parameter [24]. Overall, the distributions produced were not particularly easy to 

manufacture, but the higher values gave some insight as to where thicker doubled up wall sections 

might be useful on the final part to avoid excessively tall ribs. 

 

Figure 38: Topology Changes with Maximum Member Size Constraint 

4.3.4 Alternative Manufacturing Constraints 

Continuing to explore possible manufacturing constraints, it was decided to run exploratory studies 

with the extrusion constraint, and the no-hole constraint with split draw. The extrusion constraint 

study was intended to discover where direct load paths existed in the part, without the complication of 

a web. Studies with the no hole constraint were designed to discover the effect on topology of 

disallowing holes to form in the web. The intention of this was to possibly skip the added difficulty of 

hot shearing internal features on the part. Table 21 shows the study parameters, with changes 

highlighted. 

Table 21: Alternative Manufacturing Constraint Study Model Parameters 

Parameter Value/Details 

Element Order 1st Order 3D Tetra 

Mesh Size 1.4mm average size 

Boundary Conditions RBE3 elements to fixed CBUSH, constrained CBUSH 

Material Elastic Magnesium 

Manufacturing Constraints 4.5mm Minimum Member Size. Extrusion and Split Draw with 

No Hole Constraint 

Load Cases Stiffness Only 
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Figure 39: Extrusion Constraint Topology Comparison 

 

Figure 40: No-hole Constraint Topology 

Figure 39 shows the extrusion topology compared to the baseline topology. Although the result is a 

well-defined set of material traces, it is difficult to draw direct conclusions since the extrusion 

constraint forces use of the entire height of the design volume. With the ability to adjust height, or a 

shorter design volume, this may have been more useful, but the current design is limited by the need 
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for very tall thin members. The results of the no-hole optimization are shown in Figure 40. Again, the 

findings of this optimization were interesting, but not directly usable as the constraint forced the use 

of material sufficient to fully cover the part from a top view. It is clear that web distortion and 

localized ribbing can be efficiently used in the region of the ride bushing post, whereas the rest of the 

part is viable as a more traditional I section. While neither of these optimization results were directly 

usable, they both gave useful insights. If it were of interest to implement either design strategy a more 

specific design volume would need to be constructed based on the initial results shown here. 

4.4 Preliminary Design 

With a number of viable design concepts, it was necessary to select one and move forward with it as a 

preliminary design. It was decided to move forward with the simple split draw model with a 4.5mm 

minimum member size as developed in section 4.2.4. This model was a good approximation of 

expected forging capabilities in terms of meeting the geometrical specifications, and also made direct 

use of typical industry forging practices such as the hot trimming of holes. At this point it was 

necessary to extract the model from the topology optimization, and check the extracted design for 

initial compliance to the specifications. 

4.4.1 Model Extraction 

Using the OSSmooth module within Optistruct, a model was extracted for analysis from the topology 

optimization contours. The contour model cannot be used directly, as it has many elements with 

intermediate stiffness and density. OSSmooth identifies the shape of the exterior contour, creates a 

surface mesh, and has the ability to fill the mesh and retain boundary conditions. Due to element 

quality issues, the model was remeshed in order to run at all in Abaqus. Element quality was not 

referenced as a critical factor, since it was very difficult to control without generation of errors. Since 

these analysis trials were to be focused on getting an approximation of performance, this was deemed 

to be reasonable. Figure 41 shows the final extracted mesh with boundary conditions. The optimized 

mass at this point was 1813g, which was significantly heavier than the converged topology 

optimization value. With the filling in of partial density elements, this compensation was expected, 

but further design interpretation was expected to reduce this value in the final design. 
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Figure 41: Extracted Optimized Topology 

4.4.2 Initial Design Verification 

Before proceeding with the interpretation of the design in the form of a CAD model, it was analyzed 

to judge compliance with the engineering specifications and detect any potential issues for 

implementation. Stiffness and strength analysis were conducted, but fatigue analysis was not. 

Using Abaqus, the stiffness of the component was analyzed as required by the stiffness 

specifications described in section 3.3.1. Table 22 shows the results of these simulations. In both 

lateral and aft stiffness, the preliminary design passed with a substantial margin over the benchmark. 

This was somewhat expected due to the excess mass of the part, but no major issues were identified 

with the design, as the excess prediction is roughly proportional to the mass increase. 

Table 22: Extracted Model Stiffness Results 

 Stiffness (RBE3) 

 Aft Pt 6 Lat Pt 6 

 [kN/mm] [kN/mm] 

Extracted Model 5.79 95.1 

Benchmark Design 4.33 81.8 
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Strength analysis produced a more mixed set of results than seen in the stiffness trials as shown in 

Table 23 below. Permanent set produced under the aft load cases was high enough to warrant 

concern, generated by a global buckling effect at the tie rod cut-out. The overloading analysis in the 

aft direction also failed to solve, meaning the part was unable to adequately sustain the full load. This 

failure also seemed to be driven by the transition around the tie rod cut-out, generating a large local 

stress concentration as shown in Figure 42. However, despite significant stress concentrations around 

the balljoint region, the lateral strength performance was similar to the benchmark. With additional 

refinement of these regions and smoother transitions, they should not present a major design obstacle. 

Table 23: Extracted Model Strength Results 

 

 

Permanent Set Max Deflection PEEQ Max 

 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 

 [mm] [mm] [mm] [mm] [%] [%] 

Extracted Model 1.56 0.58 FAIL 4.7 FAIL 1.13 

Benchmark/Targets 0.17 0.42 33.4 4.8 6.00 6.00 

 

 

Figure 42: Terminal Step of Strength Loading on Extracted Geometry 

In order to further explore the failure of the part under aft strength loading, it was decided to run a 

trial with a linearly ramped displacement, and measure the reaction force. The resultant load 

displacement curve is shown in Figure 43 below. Clearly, the load displacement curve does not peak 
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close to the benchmark result. Generally, this ramped displacement analysis is conservative as it does 

not use as small of a simulation step time when the maximum load is reached, and therefore does not 

necessarily capture the peak load. As a tool to understand the behavior of the part under load to 

compare design changes, this was determined to be a useful first step to try to quickly reach a design 

capable of achieving equivalent strength. 

 

Figure 43: Extracted Optimization Load Displacement Curve 
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Chapter 5 

Detail Design and Verification 

5.1 Detail Design Process 

With the completion of the project’s first stage of optimization trials, it was necessary to turn the 

optimization output into a viable design for production. Using CATIA v5 the FLCA was modelled, 

referencing the engineering specification and optimization results. With the initial model a series of 

verification trials were conducted, resulting in design iterations that eventually met most of the 

engineering specifications. 

5.1.1 CAD Model 

Figure 44 shows the D010_R11 CAD model rendered to represent the appearance of a forged and 

machined part. The model was constructed from a bulk enclosed volume, deriving its external 

features by comparison to the optimization model. Internal material was removed with Boolean 

operations on the top and bottom. Further trims were then added to create features such as the tie rod 

nest and wheel cut-out. Overall the process was subtractive from the initial volume, and this worked 

fairly well for a complex part, including reasonable compatibility with draft generation tools. 

 

Figure 44: D010_R11 Control Arm (Machined) 
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Two views of the designed forging are shown in Figure 45 below. The forging weighs 1713g, with 

material saving pockets inside the areas to be machined. The component is intended to be forged in at 

least two steps. One set of steps would be used to form the bulk geometry of the part, where a 

secondary operation would have to be used to hot trim the flash and the hole in the part. 

 

Figure 45: Forging CAD Model (Hot Trimmed) 

Machining is required in order to produce the accurate surfaces needed for the press fit handling 

bushing and the balljoint used in the OEM design. Figure 46 shows the part after machining 

operations, with machined surfaces highlighted in green and forged surfaces in blue. The handling 

bushing bore is machined in one operation with a tapered lead-in derived from the OEM benchmark 

part. To machine the area around the integral balljoint, operations are required on both sides of the 

part. An additional operation was used to profile the steep drafts required around the balljoint cup 

forging so that reasonable clearance would be present to the brake shield, although the control arm 

design typically dictates the shape of the brake shield. Although more machining than the OEM 

benchmark would be required, this is somewhat offset by magnesium’s high machinability and 

affinity for high speed machining [13]. 

 

Figure 46: Machined CAD Model 
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5.1.2 Clearance Checking 

In order to retain the efficiency of the optimized structure, it was necessary to push material up 

against the limits of the design space. Figure 47 shows the end effect of the design process compared 

to the design space. It can be observed that there are some violations of design space clearance by 

small amounts in this comparison.  To ensure the FLCA had sufficient clearance to other components 

it was inserted into a series of clearance assemblies generated to accurately represent the limits of 

suspension travel.

 

Figure 47: R11 Design Compared to Design Space 

Figure 48 shows the critical position for the steering tie rod. Because of the depth at which the tie 

rod cuts this critical region, it was necessary to flow material around the tie rod without creating too 

much of a stress concentration. Although the stress concentration was minimized, it was still a factor 

in analysis results detailed later in this chapter. The minimum tie rod clearance to the benchmark 

component was matched with this design detail. 
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Figure 48: Clearance to Tie Rod, Closest Step 

Figure 49 and Figure 50 show the clearance model at its upper and lower most positions 

respectively. In both of these cases the control arm was initially very close to the subframe flanges. 

Profiled cuts were added to the front edge of the part, created by offsetting from the subframe 

geometry. This technique allowed the design to match the benchmark OEM component for clearance 

in these regions. 
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Figure 49: Clearance to Upper Subframe, Closest Step 

 

Figure 50: Clearance to Lower Subframe, Closest Step 

Not all of the potential clearance issues could be addressed adequately in the first stage of design. 

Figure 51 below shows regions where clearance difficulties eventually passed the specification in 

green circles, and where they did not in yellow circles. On the inboard side of the control arm there 

were difficulties making the vertical portion of the rib pass clearance. Any movement away from the 
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subframe is parallel to the clearance surface for this part, so some height may need to be removed 

from the rib. Two outboard clearance issues remained unaddressed after the first design stage, since 

they were relatively minor and would have required major rework or the addition of abnormal 

trimming surfaces. On the top side, the knuckle bolt minimally violated the overall clearance 

requirement, while on the bottom side, the wheel weight clearance zone barely touched the FLCA. In 

the long run these clearances will need to be addressed, but they were avoided in the initial stages to 

speed up identification of more critical structural issues.

 

Figure 51: Identified Clearance Issues 

5.1.3 Design Iterations 

Table 24 shows the development of the design in order to meet the structural requirements. The mass 

increased from the starting 1447g to 1558g in the R11 design due to the need for a thicker rib in the 

region around the tie rod cut-out. 

Table 24: D010 Design Iteration Record 

Design Iteration Mass 

[g] 

Notes 

D010_PD_Control Arm_04 1447 First complete model, poor strength performance 

D010_PD_Control Arm_05 1468 Thickened rear edge rib 

D010_PD_Control Arm_06 1485 Clearance modifications, inboard edge continuity 

D010_PD_Control Arm_07 1485 Modified AZ80 model for T6 heat treatment 
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D010_PD_Control Arm_08 1542 More rear edge rib width, height, tighter to wheel 

D010_PD_Control Arm_09 1522 Fully smoothed tie rod cut-out 

D010_PD_Control Arm_10 1542 More rear edge and inboard rib width 

D010_PD_Control Arm_11 1558 Thickened rib rear edge, short height addition 

Upon analysis of the initial design, it was found to be able to support only a little more than half of 

the benchmark strength loading. Due to the criticality of this problem, it was decided to pursue a 

development strategy based on load deflection analysis. Design changes would be made, and the 

model analyzed for load deflection behaviour to quickly evaluate the effect of those changes. Meshes 

were recycled as often as possible but this form of manual optimization was very time consuming. 

After changes to the geometry, and the adoption of a stronger AZ80A-T6 material, the design was 

close to the benchmark performance (0008_R11). Figure 52 shows the history of changes to load 

deflection as the design was iterated. Some steps in the optimization were more productive than 

others, but in general the manual optimization strategy was inefficient, as no strategies for improving 

strength were enough on their own. Local shape optimization should be investigated in the future to 

speed up this process. 

 

Figure 52: Load Displacement Development Curves 
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5.2 Design Verification 

Once the design had achieved aft strength performance in the load displacement analysis, the R11 

model was run through all required load cases for verification of the specifications. Stiffness and 

strength load cases were analyzed with the developed material data, while fatigue analysis was run 

using available test data for AZ80. 

5.2.1 Stiffness Verification 

Stiffness analysis was conducted in accordance with the specification requirements described in 

section 3.3.1. Table 25 shows that in both lateral and aft load cases the benchmark stiffness was very 

closely approximated. It has been observed that extracted optimization results are usually stiffer than 

the targets, and that stiffness is often lost in interpretation through the simplification of structural 

forms. Both stiffness values were relatively close to the benchmark, indicating that the design 

optimization and interpretation processes offset each other to create a successful design. This is not 

likely to be a consistently repeatable pattern, but was very useful in this case. 

Table 25: D010_R11 Stiffness Analysis Results 

 Stiffness (RBE3) 

 Aft Pt 6 Lat Pt 6 

 [kN/mm] [kN/mm] 

D010_ Control Arm_11 4.37 79.8 

Benchmark FLCA 4.33 81.8 

 

Figure 53 shows the deflection under aft loading, with the design exhibiting very consistent and 

symmetrical bending deflection as would be ideally expected. In Figure 54, the lateral load case 

shows some localized deformation around the balljoint, but for the most part the ribs around the 

balljoint seem to stabilize it more effectively than the benchmark design. The load is also not evenly 

split between the front and rear facing edges of the control arm, with the front edge taking the 

majority of the deflection. The front edge may need to be balanced more efficiently with the rear 

edge, although the rear edge has already been built up as a result of strength requirements. It is 

possible the front edge can be refined to carry the majority of the lateral deflection, with less 

consideration towards bending strength, as this design shows. 
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Figure 53: D010_R11 Aft Stiffness Contour Plot 

 

Figure 54: D010_R11 Lateral Stiffness Contour Plot 

5.2.2 Strength Verification 

In the development of the strength model, three material models were explored as shown in Figure 

55. The AZ31B model was based off of monotonic tensile testing conducted using forged magnesium 
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specimens. Due to higher yield and ultimate properties, AZ80 data derived in a similar fashion was 

initially used to help enhance strength. With additional research it was found that heat treatment 

further improved the yield strength of AZ80, but did not have much of an effect on ultimate strength 

compared to the existing model [38]. In order to account for this shift, the AZ80 model was bumped 

linearly to increase the yield without an effect on the ultimate properties. 

 

Figure 55: Comparison of Magnesium Material Models 

Table 28 shows the results of strength analysis on the R11 model with the procedures described in 

section 3.3.2. The component passed all analysis trials with similar performance to the benchmark. 

Table 26: D010_R11 Strength Analysis Results (with AZ80A-T6 Properties) 

 

 

Permanent Set Max Deflection PEEQ Max 

 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 Aft Pt 6 Lat Pt 6 

 [mm] [mm] [mm] [mm] [%] [%] 

D010_ Control Arm_11 0.12 0.59 29.9 4.8 4.41 0.44 

Benchmark/Targets 0.17 0.42 33.4 4.8 7.00 7.00 

 



 

 80 

Figure 56 and Figure 57 show the aft and lateral permanent set contour plots respectively. Both 

cases performed similarly to the benchmark with minimal balljoint deflection for the aft load case, 

and moderate local deformation around the balljoint under lateral loading. 

 

Figure 56: D010_R11 Aft Permanent Set 

 

Figure 57: D010_R11 Lateral Permanent Set 
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In Figure 58 and Figure 59, contour plots of the aft and lateral max deflections are shown. Both 

values are reasonably similar to the benchmark analysis. Deflection instabilities were not found with 

the design prior to its ultimate load. 

 

Figure 58: D010_R11 Aft Max Deflection 

 

Figure 59: D010_R11 Lateral Max Deflection 
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Contour plots of equivalent plastic strain are shown in Figure 60 and Figure 61. For aft loading, 

plastic strain initially develops on the inboard reinforcing web, but is then overtaken by the tie rod 

cut-out stress concentration.  The lateral case generates only minimal plastic strain around the 

balljoint cup. 

 

Figure 60: D010_R11 Aft PEEQ 

 

Figure 61: D010_R11 Lateral PEEQ 
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5.2.3 Fatigue Verification 

Using nCode DesignLife v12.0, and the process described in section 3.3.3, the fatigue life of the R11 

design was determined. Table 27 shows the final minimum fatigue cycles. The part failed by a 

significant margin, even though no surface correction factor was applied during the analysis. 

Table 27: D010_R11 Fatigue Analysis Results 

 Fatigue Life 

 Ks = Polished 

 [Cycles] 

D010_ Control Arm_11 2623 

Benchmark Design 144776 

 

Figure 62 and Figure 63 show fatigue plots of the part from both an outboard and inboard view. The 

main hot spots for low fatigue life are at the tie rod cut-out, and also the external reinforcing web on 

the inboard side. One element on the inside of the hole through the part also failed, suggesting a bead 

around the hole may be beneficial to reduce local stresses. Overall the failure locations are primarily 

regions of high stress concentrations, and should mean local modifications with low mass penalties 

will result in a survivable part. As part of this project, local fatigue strengthening using cold spray 

coatings is being evaluated. This may also be used to improve the situation. 

 

Figure 62: D010_R11 Fatigue Life Outboard View 



 

 84 

 

Figure 63: D010_R11 Fatigue Life Inboard View 

5.2.4 Geometric Manufacturing Verification 

During the design phase, adherence to the geometric design specifications was integrated into CAD 

modelling. Table shows the final design parameters compared to the specifications. Overall most of 

the specifications were met exactly. Minor issues with the stability of the CAD model in generating 

some of the fillets led to placeholders being used until the structural specifications had been fully 

verified. Additionally, some of the ribs near transitions need to be made slightly larger to meet the 

requirements. 

Table 28: D010_R11 Forging Geometry Verification 

Geometric Verification: D010_Control Arm_11 

Specification Min. Model Value Target 

Outside Draft Angle [M01] 5° > 5° 

Internal Draft Angle [M02] 10° > 10° 

Fillet Radius [M03] 10 mm > 10 mm 

Corner Radius [M04] 2.5 mm* > 2.3 mm 

Web Thickness [M05] 5.0 mm > 5.0 mm 

Rib Thickness [M06] 6.1 mm > 6.35 mm 

*Issues with CAD model stability, must be fixed prior to release (lower radii present) 

Figure 64 shows the regions that need to be refined to meet dimensional requirements. Regions with 

ribs that do not yet meet the minimum thickness requirement are highlighted in red, and the area with 
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an external radius problem is highlighted in yellow. With further experience creating CAD models of 

this kind, these difficulties should be less common. The problems are usually caused by local 

topological complexity that would make manufacturing difficult as well, or feature layering that does 

not triage regions of complexity well.

 

Figure 64: D010_R11 Outstanding Manufacturing Geometry Issues 

5.2.5 Manufacturability Verification 

At the level of design reached during the initial design, manufacturing-specific features were mostly 

omitted. Forged impressions inside the balljoint and handling bushing were added to speed up 

machining and reduced material usage, but beyond that none of the other manufacturability 

specifications could be verified. Knockout pin pads to help eject the part from the forging die are 

planned as shown in Figure 65, but the detail design and analysis work required to implement them 

has not yet been completed. It is also planned to use these features as machining references; however, 

provisioning for a reference normal to the forging plane may be more difficult due to forging draft 

limitations. Due to the dimensional tolerances achievable with forging, it may be possible to use 

drafted surfaces to accurately reference instead [16]. 
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Figure 65: Planned Knock-Out Pin Locations 

5.2.6 Unverified Specifications 

Several specifications were not verified in this initial stage of design and simulation. In its current 

state, the R11 design is unable to challenge the benchmark in terms of fatigue performance. This 

seems to be a local geometry problem rather than a material or overall design issue though. The 

assessment of quality and surface finish issues was not covered directly, although forging trials 

conducted outside of this project have given useful insight on how to account for these challenges. 

The robustness of the part at forging temperature was also not considered, although this is a problem 

that might be better suited to solving on the automation side. Lastly, the combination of 

manufacturing cycle time and the related total cost requirements were not analyzed, but effort was 

expended to design a forging with minimal wasted material. In the future these requirements will 

need to directly feed into the design processes to achieve a design that can be implemented 

practically. 
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Chapter 6 

Conclusions 

Over the course of this project, a forged magnesium control arm was designed to replace an in-service 

cast aluminum part. Optimization techniques were used to inform this design, and the end result of 

the work to date is a control arm that is close to equivalence with the benchmark component, with 

concrete plans in place to overcome remaining shortcomings without the addition of significant mass. 

With the initial establishment of specifications, it was clear that while the specifications for 

mechanical performance were generally considered, it would be helpful to delve further into more 

detailed requirements including the design of interface components such as the balljoint. The 

manufacturing specifications were established effectively as a good starting point, and ongoing 

research into magnesium forging will doubtless better inform these specifications as more 

information becomes available. 

The optimization process revealed that a much lighter than baseline control arm was possible 

through the use of forged magnesium. Significant insight was gained through the development of this 

model regarding the construction of an efficient optimization model, and different configurations that 

might be viable for the final design. It was found that magnesium maintains a mass advantage over 

steel and aluminum only if a tensile/compressive stiffness requirement isn’t the dominant 

requirement. If magnesium is restricted by over-constraint of a design space, or sufficient space is not 

present, it will be very difficult to challenge incumbent materials. This factor also depends on how 

thin other materials can be formed. Stiffness was very well predicted by the topology optimization 

process, however strength and fatigue were not. This was understandable, as the strength and fatigue 

requirements were not explicitly present in the optimization process. 

Translation of the optimization results into a detailed design resulted in the verification of all 

structural design requirements except fatigue. An iterative manual optimization process was required 

for the component to achieve similar strength to the benchmark, and it is expected a similar process 

will be needed for fatigue performance. The use of a stronger material than currently available was 

required, presenting a challenge for groups involved in developing better forged mechanical 

properties. 

In the end, a preliminary design with a mass of 1558g was designed, presenting a 39% mass 

savings opportunity. With further optimization, additional mass savings may yet be realized while 
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still achieving equivalent performance. This work suggests forged magnesium is a potentially 

valuable tool for automotive lightweighting efforts, even under significant structural loading. 
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Chapter 7 

Recommendations 

The following are recommendations for future work based on the author’s experiences with this 

project. The recommendations are grouped by their relevant subtopic. 

Optimization Practices 

1. It requires a significant time investment to generate a high fidelity design space for 

optimization. It is therefore pertinent for the analyst to generate a general design space model 

and only refine areas that prove to be critical to the optimization. The development of a 

software solution to create design spaces from kinematic models directly would also be 

helpful, as many analysts do not typically work with CAD modelling on a regular basis. 

2. If a requirement is not captured in the optimization process, it seems unlikely that the 

optimized result will actually prove effective in meeting that requirement. For this reason, 

future optimization trials should be conducted in at least two stages, starting with a topology 

optimization process and following with a shape optimization process to reduce stress 

concentrations. 

Design 

1. It may be important to capture the effects of trimmed flash in the design. Definitely this will 

be useful for the creation of forging die designs, and secondarily it will be useful for 

capturing stress concentrations that may cause fatigue issues. This was observed to some 

extent in the baseline component fatigue analysis, but was not critical. 

2. The group should consider creating an aluminum forged benchmark to challenge the 

magnesium design. There is a strong possibility that an aluminum design with the aggressive 

web thicknesses permitted by industry will present a serious challenge to the refined 

magnesium design. Aluminum is a more accepted material in the automotive industry, and 

has generally better corrosion performance than magnesium. Cost and performance wise, it 

may be a more representative and difficult component to try to beat. 

3. More effective design task integration is desirable now that other research group elements are 

generating findings that can be used in design. It would be valuable for all parties to have 

design reviews on a regular basis so that the requirements are understood and research efforts 
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can be directed to create better materials and processes for the component, while design 

efforts can be directed at leveraging novel findings. 

Materials and Manufacturing 

1. It was structurally advantageous to use AZ80 due to its higher specific strength over AZ31B 

to improve strength loading performance. If the strength of AZ31B cannot be further 

improved to meet the requirements, it will not produce the greatest mass savings for this part. 

It should be determined if the other advantages of AZ31B merit its continued investigation 

for the program. 

2. Strength being critical in this part, the provision for maximum yield and ultimate strengths 

should be the driving factor in design of the forged material. Various heat treatments are cited 

in the literature for improved properties, and seem worthwhile to investigate. 

3. In trials of the baseline component, fatigue surface factor was found to have a significant 

effect on the final result. For this reason, an accurate correction factor should be determined 

for the forged magnesium design. 
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Appendix A 

Simplified Lateral Stiffness Model 

In order to determine the relationship between the control arm stiffness and the total stiffness, a 

simplified model was constructed using two springs in series as shown in Figure 66. The relationship 

determined is shown in Figure 67. Overall, there are significant diminishing returns in overall 

stiffness as control arm stiffness becomes much greater than bushing stiffness, and this indicates only 

a few percentage points of stiffness difference that may be easily compensated for by increased 

bushing stiffness. 

 

Figure 66: Lateral Stiffness Model 

 

Figure 67: Lateral Stiffness Relationship Between Bushing and Control Arm  
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Appendix B 

Specific Stiffness Comparison 

Stiffness in Tension/Compression 

𝑤ℎ𝑒𝑟𝑒, 𝑢 =
𝑃𝐿

𝐴𝐸
 

𝑎𝑛𝑑, 𝐴𝐿𝜌 = 𝑚 

∴ 𝑢 =
𝜌𝑃𝐿2

𝑚𝐸
 

𝑓𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 
𝜌𝑎𝑙

𝑚𝑎𝑙𝐸𝑎𝑙
=

𝜌𝑚𝑔

𝑚𝑚𝑔𝐸𝑚𝑔
 

2.66 [
𝑔

𝑐𝑚3]

𝑚𝑎𝑙 ∙ 71.7 [𝐺𝑃𝑎]
=

1.76 [
𝑔

𝑐𝑚3]

𝑚𝑚𝑔 ∙ 44.8 [𝐺𝑃𝑎]
 

 

∴ 𝐼𝑛 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑚𝑚𝑔 = 1.06 ∙ 𝑚𝑎𝑙  𝑓𝑜𝑟 𝑎𝑛  

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, using typical properties. [39] 

 

Both aluminum and steel have about 6% higher specific stiffness under tensile compressive loading 

than magnesium. If a part is driven primarily by a tension/compression stiffness load case it will not 

be feasible to use magnesium. 

Stiffness in Bending of an Equal Width Cantilever Beam 

𝑤ℎ𝑒𝑟𝑒, 𝑦𝑚𝑎𝑥 =
−𝐹𝑙3

3𝐸𝐼
 𝑓𝑜𝑟 𝑎 𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝑏𝑒𝑎𝑚 𝑖𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

It is our goal to find the equal mass rectangular beam with an equal length and base that 

deflects the same amount at the tip. 

𝑘𝑛𝑜𝑤𝑖𝑛𝑔, 𝐼 =
𝑏ℎ3

12
 𝑎𝑛𝑑 𝑚 = 𝑏ℎ𝑙𝜌 

𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝐸1𝐼1 = 𝐸2𝐼2 

𝐼 =
𝑚3

𝑏2𝑙3𝜌3
, 𝑤ℎ𝑒𝑟𝑒 𝑏 𝑎𝑛𝑑 𝑙 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔,
𝐸1𝑚1

3

𝜌1
3

=
𝐸2𝑚2

3

𝜌2
3
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𝑚1 = √
𝜌1

3𝐸2

𝜌2
3𝐸1

3

 

∴ 𝐼𝑛 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑓 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑏𝑎𝑠𝑒 𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝑏𝑒𝑎𝑚, 𝑚𝑚𝑔 = 0.77𝑚𝑎𝑙   

𝑓𝑜𝑟 𝑎𝑛 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑢𝑠𝑖𝑛𝑔 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 [39]. 

In the case of bending, magnesium clearly expresses superior stiffness compared to aluminum, 

resulting in 23% mass savings. With steel, this difference increases to a mass savings potential of 

62%. If sufficient space is available and the load can be efficiently transferred, magnesium is 

certainly a viable mass saving material. 
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