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Abstract

System and control theory is playing an increasingly important role in the design and analysis
of computing systems. This thesis investigates a set of estimation and control problems that are
driven by new challenges presented by next-generation Multi-Processor Systems on Chips (MP-
SoCs). Specifically, we consider problems related to state norm estimation, state estimation for
positive systems, sensor selection, and nonlinear output tracking. Although these problems are
motivated by applications to multi-processor systems, the corresponding theory and algorithms
are developed for general dynamical systems.

We first study state norm estimation for linear systems with unknown inputs. Specifically, we
consider a formulation where the unknown inputs and initial condition of the system are bounded
in magnitude, and the objective is to construct an unknown input norm-observer which estimates
an upper bound for the norm of the states. This class of problems is motivated by the need
to estimate the maximum temperature across a multi-core processor, based on a given model
of the thermal dynamics. In order to characterize the existence of the norm observer, we pro-
pose a notion of bounded-input-bounded-output-bounded-state (BIBOBS) stability; this concept
supplements various system properties, including bounded-input-bounded-output (BIBO) stabil-
ity, bounded-input-bounded-state (BIBS) stability, and input-output-to-state stability (IOSS). We
provide necessary and sufficient conditions on the system matrices under which a linear system
is BIBOBS stable, and show that the set of modes of the system with magnitude 1 plays a key
role. A construction for the unknown input norm-observer follows as a byproduct.

Then we investigate the state estimation problem for positive linear systems with unknown in-
puts. This problem is also motivated by the need to monitor the temperature of a multi-processor
system and the property of positivity arises due to the physical nature of the thermal model. We
extend the concept of strong observability to positive systems and as a negative result, we show
that the additional information on positivity does not help in state estimation. Since the states
of the system are always positive, negative state estimates are meaningless and the positivity of
the observers themselves may be desirable in certain applications. Moreover, positive systems
possess certain desired robustness properties. Thus, for positive systems where state estimation
with unknown inputs is possible, we provide a linear programming based design procedure for
delayed positive observers.

Next we consider the problem of selecting an optimal set of sensors to estimate the states
of linear dynamical systems; in the context of multi-core processors, this problem arises due to
the need to place thermal sensors in order to perform state estimation. The goal is to choose (at
design-time) a subset of sensors (satisfying certain budget constraints) from a given set in order
to minimize the trace of the steady state a priori or a posteriori error covariance produced by a
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Kalman filter. We show that the a priori and a posteriori error covariance-based sensor selection
problems are both NP-hard, even under the additional assumption that the system is stable. We
then provide bounds on the worst-case performance of sensor selection algorithms based on the
system dynamics, and show that certain greedy algorithms are optimal for two classes of systems.
However, as a negative result, we show that certain typical objective functions are not submodular
or supermodular in general. While this makes it difficult to evaluate the performance of greedy
algorithms for sensor selection (outside of certain special cases), we show via simulations that
these greedy algorithms perform well in practice.

Finally, we study the output tracking problem for nonlinear systems with constraints. This
class of problems arises due to the need to optimize the energy consumption of the CPU-GPU
subsystem in multi-processor systems while satisfying certain Quality of Service (QoS) require-
ments. In order for the system output to track a class of bounded reference signals with limited
online computational resources, we propose a sampling-based explicit nonlinear model predic-
tive control (ENMPC) approach, where only a bound on the admissible references is known to
the designer a priori. The basic idea of sampling-based ENMPC is to sample the state and ref-
erence signal space using deterministic sampling and construct the ENMPC by using regression
methods. The proposed approach guarantees feasibility and stability for all admissible references
and ensures asymptotic convergence to the set-point. Furthermore, robustness through the use
of an ancillary controller is added to the nominal ENMPC for a class of nonlinear systems with
additive disturbances, where the robust controller keeps the system output close to the desired
nominal trajectory.
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Chapter 1

Introduction

System and control theory deals with the problem of how to modify the behavior of dynamical
systems through the use of feedback, especially in the presence of modeling uncertainty and
disturbances. The corresponding concepts and techniques have been successfully applied to
regulate various physical processes. Classical applications range from manufacturing, chemical
systems and flight systems, to electrical circuits and power systems [35, 43]. In recent years,
the scope of control theory has increasingly broadened to encompass different fields; examples
include applying control techniques to the study of social networks and biological systems [54,
82] and control of systems at atomic and nano (space) scales [5, 18]. In turn, these applications
and challenges from other disciplines are providing new theoretical challenges for the control
community.

In this thesis, we study a set of estimation and control problems motivated by applications to
next-generation Multi-Processor Systems on Chips (MPSoCs). Specifically, we consider prob-
lems related to state norm estimation, state estimation for positive systems, sensor selection and
nonlinear output tracking. Although these problems are motivated by specific applications, the
corresponding theory and techniques are developed for general dynamical systems. Below, we
describe the specific challenges that we will be tackling.

1.1 State Estimation

Temperature monitoring is an important function of MPSoCs to guarantee system performance;
overhigh processor temperature may bring reduction in system performance, timing delay vari-
ations or even permanent damages in the system [100]. Typically, the temperature estimation
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Figure 1.1: Temperature estimation for multi-processor systems.

techniques are based on a certain model of the thermal dynamics. A commonly studied thermal
model in the state-space form is given as follows:

x[k + 1] = e−tsF
−1G︸ ︷︷ ︸

A

x[k] +G−1F (I − e−tsF−1G)F−1︸ ︷︷ ︸
B

u[k]

y[k] = Cx[k],

(1.1)

where x is the state vector which collects the temperature of specified thermal cells, u is the
(unknown) input vector which represents the power consumption of different processors, y is the
sensor measurement, and (A,B,C) are system matrices. Furthermore, I is the identity matrix, ts
is the sampling time, the matrix F captures the thermal capacitance of the cells, and the matrix
G is the thermal conductance matrix. See [52, 122] for more details on this thermal model.

Motivated by the need to estimate the maximum temperature across a multi-processor system,
in the first part of this thesis, we study state estimation for linear systems with unknown inputs.
The problem of estimating the states of dynamical systems in the presence of unknown inputs
has been studied extensively in the literature (e.g., see [49, 50, 141]). Such unknown inputs can
be used to model uncertainty in the systems, including disturbances or faults [49], noise [50],
and attacks [135]. For discrete-time linear systems with no constraints on the inputs, it has been
shown that one can asymptotically reconstruct the states despite the unknown inputs if and only if
the system is strongly detectable (or equivalently, has no unstable invariant zeros) [42, 68, 133].
However, in many applications, the property of strong detectability may not be satisfied. For
example, a typical multi-processor system may have 10-15 unknown inputs while the system is
only equipped with 3-5 sensors [123]; see Figure 1.1 for an illustration of the system. As we
will see later in Section 2.2, in this case, the system cannot be strongly detectable since there are
more unknown inputs than measurements.
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When the system is not strongly detectable, one can either assume further information about
the unknown inputs, or relax the estimation objective. A common approach, following the line of
the Kalman filter, is to model the initial condition and inputs as random variables and stochastic
processes, respectively, with certain statistics [2]. Another option is H∞ or H2 filtering, which
attempts to minimize some norm of the operator that maps the unknown inputs to the estimation
errors [36]. One can also take a deterministic approach where the initial condition and unknown
inputs are assumed to be bounded in some set (e.g., ellipsoids or polytopes) and the goal is to find
the set of possible states that are consistent with the observations; this leads to the so-called set-
membership framework [10, 94]. Furthermore, partial state observers have also been considered
which attempt to recover a particular function of the states [51, 134].

In contrast to the approaches discussed above, we investigate the influence of two alternative
assumptions. First, we study the norm estimation problem. In certain applications (e.g., temper-
ature monitoring in multi-processor systems), rather than aiming to reconstruct the states exactly,
it suffices to provide an upper bound for the norm of the states (e.g., see [111]). In [67, 129], the
authors proposed the notion of a norm-estimator for nonlinear systems which is driven by known
inputs and outputs of the system and returns an estimate for the norm of the states. They showed
that the system admits a norm-estimator if and only if it satisfies a property termed uniform IOSS
(UIOSS).

We extend the concept of norm-estimation to the unknown input case by defining an unknown
input norm-observer. In this setting, the norm of the initial condition and unknown inputs are
bounded by some known constants and the objective is to estimate an upper bound for the norm of
the states. In order to determine the conditions under which such an observer exists, we propose
a notion of stability termed bounded-input-bounded-output-bounded-state (BIBOBS) stability,
which is a fundamental property that is related to various existing system properties, including
BIBO stability, BIBS stability, and IOSS (as we will discuss later in Section 2.5). We then
provide a characterization of BIBOBS stability for discrete-time linear systems, which leads to a
construction of an unknown input norm-observer.

Second, we consider state estimation for positive linear systems. The class of positive linear
systems is a suitable model for applications where the states of the system are always positive (or
at least nonnegative). For example, in the class of multi-processor systems, the positivity of the
system comes from the physical nature of the thermal model. Besides the physical interpretation,
the benefits of enforcing the property of positivity include simplifying the stability analysis [114]
and bringing certain robustness properties [120]. We propose the notion of strong observability
for positive systems, and provide a negative result by showing that positivity of the system is not
helpful in designing (general) unknown input observers. We also consider the situation when we
require the observer to return only positive estimates [30, 41].
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Figure 1.2: Sensor selection for multi-processor systems.

1.2 Sensor Selection

In the second part of this thesis, we consider the sensor selection problem for linear dynami-
cal systems, which is motivated by the need to place thermal sensors in order to perform state
estimation; see Figure 1.2 for an illustration of the system.

For the objective of estimating the state of a given linear Gauss-Markov system, there has
been a growing literature in the past few years that studies how to dynamically select sensors at
run-time to minimize certain metrics of the error covariance of the corresponding Kalman filter.
This is known as the sensor scheduling problem, due to the fact that a different set of sensors can
be chosen at each time-step (e.g., see [40, 55]).

However, in some applications (e.g., monitoring the state of a multi-processor system), we
may not have the freedom to choose different sensors over run-time, and this leads to the design-
time sensor selection problem (where the set of chosen sensors is not allowed to change over
time). This problem has been studied in various forms, including cases where the objective is
to guarantee a certain structural property of the system [108] or to optimize energy or informa-
tion theoretic metrics [66, 130].1 In [58], the authors studied the problem of estimating a static
random variable and proposed various heuristics for sensor selection by using convex relaxation
techniques. Sensor selection for parameter estimation was also studied in [146] where the uncer-
tainty is due to deterministic and bounded disturbances. However, the results in [58, 146] do not
directly translate to state estimation for dynamical systems and no performance guarantees were
provided on the proposed algorithms.

1There have also been various recent studies of the dual design-time actuator placement problem (e.g., see
[109, 140]).
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In [26, 27], the authors studied the design-time actuator/sensor selection problem for contin-
uous time linear dynamical systems using the sparsity-promoting framework from [78, 79, 109].
For the sensor selection problem, the objective is to design a Kalman gain matrix to minimize
the resulting H2 norm from the noise to the predicted estimation error. Sparsity is achieved by
adding a penalty function that promotes column-sparsity of the gain matrix. In contrast to the
formulation in [26, 27], in this thesis, we directly focus on minimizing functions of the steady
state error covariances of discrete-time Kalman filters, and impose a hard constraint on the set of
sensors to be chosen.

In [138, 139], the authors studied the design-time sensor selection problem for discrete-time
linear time-varying systems over a finite horizon. They assumed that each sensor directly mea-
sures one component of the state vector, and the objective is either to minimize the estimation
error with a cardinality constraint or to minimize the number of chosen sensors while guaran-
teeing a certain level of performance. Different from the formulation in [138, 139], we consider
general measurement matrices and focus on minimizing the steady state estimation error of the
Kalman filter.

In [147], the authors considered the same problem as the one we consider here, namely
the design-time sensor selection problem for Kalman filtering in discrete-time linear dynamical
systems with hard constraints. They showed that the sensor selection problem can be expressed
as a semidefinite program (SDP). However, the results in [147] can only be applied to systems
where the sensor noise terms are uncorrelated and no theoretical guarantees were provided on
the performance of the proposed heuristics.

The objective of the sensor selection problem we study in this thesis is to choose a set of sen-
sors (under certain constraints) to optimize either the a priori or the a posteriori error covariance
of the corresponding Kalman filter; we will refer to these problems as the priori and posteriori
Kalman filtering sensor selection (KFSS) problems, respectively. The priori KFSS problem is
applicable for settings where a prediction of system states is needed and the posteriori KFSS
problem is suitable for applications where the estimation can be conducted after receiving up-to-
date measurements [2].

We explore the complexity of the priori and posteriori KFSS problems and investigate what
factors of the system affect the performance of sensor selection algorithms by using the concept
of the sensor information matrix [53]. We then study greedy algorithms and corresponding
variants for the priori and posteriori KFSS problems.
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Figure 1.3: The CPU-GPU queueing system model proposed in [59].

1.3 Output Tracking

In the last part of this thesis, we study the output tracking problem for nonlinear systems with
constraints, which is motivated by the need to optimize the energy consumption of the CPU-GPU
subsystem in multi-processor systems while satisfying certain Quality of Service (QoS) require-
ments. Specifically, in [59], the authors proposed a queueing system model for the interaction
between CPU and GPU; see Figure 1.3 for an illustration of the system. The objective is to
drive the injection rate of the GPU queue to track a target number of Frames Per Second (FPS)
while minimizing the power cost, and the controllable variables are the operating frequencies of
the CPU and GPU. Furthermore, the queue occupancies need to be kept in a certain range. See
Section 5.7.2 for more details on the system model.

There exist various approaches in the literature to address the tracking problem such as H2

or H∞ optimal control, see for example [73,77]. Among these approaches, the model predictive
control (MPC) based framework has been studied extensively due to its capability to handle
constraints on the system [29, 31, 84, 86, 103].

A major disadvantage of the MPC is the need to solve an iterative optimization problem
which may be challenging for online implementation, especially for systems with fast dynamics
or controllers with limited online computational resources. Thus, in [7, 9], the authors proposed
the explicit MPC (EMPC) approach for linear systems which has drawn much attention in the
control community; see [1] and the references therein. Specifically, the authors derived an ex-
plicit form of the MPC control law in terms of the system state and used this explicit solution
as a control look-up table online. However, it is not straightforward to extend the corresponding
techniques to nonlinear systems [8, 38, 57].
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One commonly studied scenario for the output tracking problem is the case where the refer-
ence signal is a constant. For more general classes of reference signals, it is often assumed that
the desired trajectory is generated by an internal model [34,103]. However, in many applications,
we may not have exact knowledge of the reference signal during the controller design stage, es-
pecially when the reference is generated by components running online. Furthermore, the lack
of prior information on the reference signal brings further complexity to the implementation of
EMPC.

In the literature, there are few works considering the tracking problem in the absence of
known dynamics of the reference. In [31], the authors proposed a MPC controller for nonlinear
systems with changing set-points by regarding the steady state and steady input as decision vari-
ables and using an offset cost function to penalize the tracking error. In [29], the author studied
the nonlinear tracking problem with random references which are the outputs of a Markov pro-
cess and proposed a MPC based approach which guarantees convergence to the desired reference
when it remains constant. When the reference varies, the author characterized the set in which
the tracking error lies. In [33], the authors addressed the problem of tracking target sets, i.e., the
exact value of the desired output is not important as long as it stays in a certain set. The authors
proposed a stable MPC formulation by imposing an additional cost term based on the concept of
distance from a point to a set.

In this thesis, we study the output tracking problem for nonlinear systems with bounded
reference signals. In order to reduce the online computation time and storage complexity while
providing scalability to higher-dimensional state spaces, we extend the sampling-based explicit
nonlinear model predictive controller (ENMPC) in [17] to the tracking problem by considering
the reference as an extra dimension in the domain of the ENMPC. To alleviate the online search
time of the traditional EMPC approaches, the basic idea of the sampling-based approach is to
sample the state and reference signal space using deterministic sampling [17] and construct the
ENMPC by using regression methods.

In [91], the authors proposed a tube-based robust control parametrization for the linear reg-
ulation problem by adding a feedback term to the nominal MPC, and a similar idea was gener-
alized to nonlinear systems in [88, 89]. The basic idea of the tube-based robust nonlinear MPC
is to generate a central path by using a nominal controller and to keep the states close to the
central path by using an ancillary controller. By leveraging the tube-based robust MPC proposed
in [88, 89], we also propose a robust variant of the sampling-based ENMPC for the case where
there is an additive bounded disturbance.
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1.4 Organization and Contributions

In Chapter 2 and Chapter 3, we study the problem of estimating the states of discrete-time linear
systems with unknown inputs when the system is not strongly detectable. In Chapter 2, we
consider the state norm estimation problem. Our contributions are as follows:

• We extend the concept of norm-estimation in [67,129] to the unknown input case by defin-
ing an unknown input norm-observer.

• In order to characterize system properties that allow norm-estimation, we propose a notion
of stability termed bounded-input-bounded-output-bounded-state (BIBOBS) stability. We
show that the set of marginally stable eigenvalues (i.e., those with magnitude 1) plays a
key role. Specifically, other than through unobservable strictly unstable eigenvalues (i.e.,
those with magnitude bigger than 1), there are only two ways to drive the states unbounded
while keeping the output bounded: either by manipulating the controllable marginally sta-
ble eigenvalues with bounded inputs or by triggering the uncontrollable and unobservable
marginally stable eigenvalues with carefully chosen initial conditions. As we show, care
must be taken to identify the subset of marginally stable eigenvalues that cause such worst-
case situations.

• We provide a comparison of BIBOBS stability with other classical stability properties, and
illustrate the role of the concept of BIBOBS stability in the landscape of stability theory.

In Chapter 3, we consider state estimation for positive systems. Our contributions are as
follows:

• We extend the notion of strong observability for positive systems, and show that the condi-
tion for a positive system to be strongly observable is the same as that for general systems.
In other words, we show that positivity of the system is not helpful in designing (general)
unknown input observers.

• For the case where positivity of the observer itself is desirable, we provide a linear pro-
gramming based design procedure for delayed positive unknown input observers.

In Chapter 4, we study the design-time sensor selection problem for optimal filtering of
discrete-time linear dynamical systems. Our contributions are as follows:

8



• We show that it is NP-hard to find the optimal solution of cost-constrained priori and
posteriori KFSS problems, even under the assumption that the system is stable. It is of-
ten claimed in the literature that sensor selection problems are intractable [53, 58, 146];
however, except for certain problems with utility or energy based cost functions (e.g.,
see [11, 140]), to the best of our knowledge, there is still no explicit characterization of
the complexity of the optimal filtering based sensor selection problems considered in this
thesis.

• We provide insights into what factors of the system affect the performance of sensor selec-
tion algorithms. For the priori KFSS problem, we show that when the system is stable, the
worst-case performance can be bounded by a parameter that depends only on the system
dynamics matrix, and that the performance of a sensor selection algorithm cannot be arbi-
trarily bad if the system matrix is well conditioned, even under very large noise. For the
posteriori KFSS problem, we show that for a given system, the worst-case performance of
any selection of sensors can be upper-bounded in terms of the eigenvalues of the system
noise covariance matrix and the corresponding sensor information matrix.

• We study greedy algorithms for the priori and posteriori KFSS problems and show that
such algorithms are optimal (with respect to the corresponding KFSS problems) for two
classes of systems. However, for general systems, as a negative result, we show that the
cost functions of both the priori and posteriori KFSS problems do not necessarily have cer-
tain modularity properties, precluding the direct application of classical results from the
theory of combinatorial optimization. Nevertheless, we show via simulations that greedy
algorithms perform well in practice. Compared to the algorithms in [147], greedy algo-
rithms provided in this thesis can be applied to a more general class of systems (where the
sensor noises are correlated), are more efficient and (in simulations) provide comparable
performance.

• We propose a variant of a priori covariance based and a posteriori covariance based greedy
algorithms by optimizing an upper bound of the original cost functions (of the priori and
posteriori KFSS problems) based on the Lyapunov equation. We show that the relaxed
cost function is modular and that the running time of the corresponding greedy algorithm
scales more slowly with the number of states in the system as compared to the original
greedy algorithms, at the cost of a decrease in performance.

In Chapter 5, we study the output tracking problem for discrete-time nonlinear systems. Our
contributions are as follows:
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• We extend the sampling-based explicit nonlinear model predictive controller (ENMPC)
in [17] to the tracking problem, and propose a low-complexity ENMPC to enable output
tracking in the absence of complete reference signal information at design time. The pro-
posed approach is suitable for applications with limited online computational resources,
and the parameters can be easily customized to balance the trade off between performance
and online computational complexity.

• We show that the proposed sampling based ENMPC guarantees stability and feasibility for
all admissible references and is capable of steering the output of the system to any feasible
set-point asymptotically.

• We extend the nominal ENMPC to enable robust output tracking for a class of additive dis-
turbances in nonlinear systems, and show that the system output is restricted to an invariant
neighborhood about the nominal trajectory, provided that the exogenous disturbance is suf-
ficiently small.

1.5 Notation and Terminology

1.5.1 Sets

The set of integers, real numbers and complex numbers bigger than or equal to a are denoted as
Z≥a, R≥a and C≥a, respectively.

For a closed set X , X c denotes its complement and int(X ) denotes an open set consisting of
its interior points.

For two sets X ,Y ⊂ Rn in a metric space (M,d), the Minkowski set sum is denoted by
X ⊕ Y , {x + y|x ∈ X , y ∈ Y}, the Pontryagin set difference is denoted by X 	 Y ,
{x ∈ X |x ⊕ y ∈ X ,∀y ∈ Y}, and the distance between X and Y is denoted by d(X ,Y) ,
infx∈X ,y∈Y d(x, y).

For a set X ⊂ Rn and a scalar α, we define αX , {αx|x ∈ X}.

For a set X ⊂ Rn, a matrix M ∈ Rm×n and a scalar α, we define MX , {Mx|x ∈ X} and
αX , {αx|x ∈ X}.

For any set Z, we denote its cardinality and Lebesgue measure by Card(Z) and Vol(Z),
respectively.
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1.5.2 Matrices

For a square matrix M ∈ Cn×n, let MT , MH , trace(M), det(M), {λi(M)} and {σi(M)} be its
transpose, conjugate transpose, trace, determinant, set of eigenvalues and set of singular values,
respectively. The set of eigenvalues {λi(M)} of M are ordered with nondecreasing magnitude
(i.e., |λ1(M)| ≥ · · · ≥ |λn(M)|); the same order applies to the set of singular values {σi(M)}.

Let the null space and range space of a matrix M be N (M) andR(M), respectively.

The Euclidean norm of a vector and the corresponding induced matrix norm are both denoted
by ‖ · ‖. For a vector x and a positive semidefinite matrix M , define ‖x‖2

M , xTMx.

A matrix is said to be nonnegative if all of its entries are nonnegative, positive if it is nonneg-
ative and nonzero, and strictly positive if all of its entries are positive. A nonnegative, or positive,
or strictly positive matrix A is denoted by A = 0, A ≥ 0, and A > 0, respectively [85]. The
notation for vectors is similar.

A positive semi-definite matrix M is denoted by M � 0 and M � N if M −N � 0; the set
of n by n positive semi-definite (resp. positive definite) matrices is denoted by Sn+ (resp. Sn++).

The identity matrix with dimension n is denoted by In×n.

For a vector v, let diag(v) be the diagonal matrix with diagonal entries being the elements
of v; for a set of matrices {Mi}qi=1, let diag(M1, · · · ,Mq) be the block diagonal matrix with the
i-th diagonal block being Mi.

1.5.3 Functions and Signals

For a random variable w, denote E[w] as its expectation.

For a signal z, we will denote its supremum norm over time interval [0, k] by ‖z‖[0,k] =
max0≤j≤k ‖z[j]‖ [46].

A function α : R≥0 → R≥0 is said to be of class K if it is continuous, strictly increasing
and α(0) = 0. If a K-function is also unbounded, then it is said to be of class K∞. A function
β : R≥0 × R≥0 → R≥0 is said to be of class KL if β(·, k) is of class K and β(r, k) → 0 as
k →∞,∀r ≥ 0 [67].
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Chapter 2

State Norm Estimation for Linear
Dynamical Systems

2.1 Introduction

Estimation and filtering are one of the most important topics of control theory and signal process-
ing. In the presence of unknown inputs, one can attempt to construct an unknown input observer
to decouple the influence of unknown inputs [141]. However, for discrete-time linear systems
with no constraints on the inputs, if the system is not strongly detectable (i.e., has some unstable
invariant zeros), there does not exist any asymptotic observer which can recover the states. For
example, this is the case in the application of temperature estimation for multi-processor systems
since typically there are more unknown inputs than measurements in such systems [122].

When the system is not strongly detectable, in order to perform state estimation, one may
need further information either about the initial condition or about the unknown inputs. In this
chapter, instead of aiming to reconstruct the states exactly, we study a setting where the norm of
the initial condition and unknown inputs are bounded by some known constants. The objective is
to estimate an upper bound for the norm of the states. We extend the concept of norm estimation
proposed in [67,129] to the unknown input case, and determine the conditions under which such
an unknown input norm-observer exists.

To solve the norm estimation problem, we propose a notion of stability termed bounded-
input-bounded-output-bounded-state (BIBOBS) stability. In addition to its implications for un-
known input norm-observers, the concept of BIBOBS stability has applications to system mon-
itoring problems, such as the false data injection problem studied in [96, 97]; see Figure 2.1 for
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Figure 2.1: Illustration of the alarm system.

an illustration of the problem. In this setting, the system is a fault detection filter, the output is
interpreted as the residue of the filter, the bound on the output represents the threshold above
which an alarm is raised, and the states are interpreted as the estimation error; the goal of the
attacker is to maximize the error (i.e., maximize the norm of the states) while remaining unde-
tected through the output. If the attacker is constrained to apply bounded inputs (a scenario that
is not considered in [96,97]), BIBOBS stability is required for preventing worst-case attacks (i.e.,
those causing arbitrarily large error without triggering the alarm [136]).

Although related stability notions for linear systems such as BIBO stability and BIBS sta-
bility have relatively simple characterizations [128], the proofs of the conditions for BIBOBS
stability appear to be significantly more complicated. We show that the set of marginally stable
eigenvalues (i.e., those with magnitude 1) plays a key role and thus we must carefully identify
the subset of marginally stable eigenvalues that cause the worst-case situations. Moreover, we
discuss the relationships between BIBOBS stability and other existing system properties.

The rest of this chapter is organized as follows. In Section 2.2, we provide some back-
ground on state estimation techniques. In Section 2.3, we define the concept of an unknown
input norm-observer for linear systems with unknown inputs. In Section 2.4, we propose the
notion of BIBOBS stability and provide necessary and sufficient conditions for linear systems to
be BIBOBS stable. In Section 2.5, we discuss BIBOBS stability in the context of other existing
stability notions. In Section 2.6, we illustrate the results via examples and simulations. Some
concluding remarks are given in Section 2.7.

2.2 Background: State Estimation

One of the most important issues in state estimation consists in defining appropriate models of
uncertainty. In the literature, three types of disturbances are typically studied. First is the stochas-
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tic setting, where the initial condition and disturbances are modeled as random variables. If cer-
tain statistics of the initial condition and disturbances are known, one can adopt efficient filtering
strategies (e.g., Kalman filter) to reconstruct the states [15]. Second is to assume bounded dis-
turbances, which is a deterministic approach to model uncertainties and leads to set-membership
filtering [10, 21, 118]. This framework is applicable when the disturbances are not stochastic or
have statistics that are difficult to identify. Third, one can assume that the disturbances are totally
unknown, and in this case, the disturbances are often referred to as unknown inputs; this model
places no constraints on the inputs compared to the previous models but requires stricter system
properties [133].

In this section, we review some background on state estimation techniques. First, we in-
troduce the concepts of strong observability and strong detectability from linear system theory,
which are useful in the study of (totally) unknown inputs. Then we review the framework of set-
membership filtering, which is similar to the norm estimation problem studied in this chapter.
We will review the theory of Kalman filtering in Chapter 4, which serves as a basis for the sensor
selection problem studied therein. Note that there also exist other important estimation frame-
works in the literature, e.g., the H∞ filtering approach; we omit a discussion on these techniques
since they are not directly related to the approach studied in this thesis. See [127] for a more
comprehensive review for the estimation and filtering techniques.

2.2.1 Linear System Estimation

Consider the discrete-time linear system

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]
(2.1)

with state vector x ∈ Rn, output (measurement) y ∈ Rp, unknown input u ∈ Rm, and system
matrices (A,B,C,D) of appropriate dimensions. The initial condition of the system is x[0]. The
unknown inputs umay represent disturbances, faults, attacks, or other uncontrolled uncertainties.
As we have mentioned in Section 1.1, in the context of multi-processor systems, the state x
represents the temperature of different thermal cells and the unknown input u captures the power
consumption of different processors.

Let the observability matrix and invertibility matrix of system (2.1) (with delay L) be denoted
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by

OL =


C
CA

...
CAL

 ,
and

JL =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

... . . . ...
CAL−1B CAL−2B CAL−3B . . . D

 ,
respectively. Note that

y[k : k + L] = OLx[k] + JLu[k : k + L],

where y[k : k + L] ∈ R(L+1)p and u[k : k + L] ∈ R(L+1)m are the outputs and inputs over L+ 1
time steps, respectively.

Definition 1 (Strong Observability). The system (2.1) is said to be strongly observable if for
any initial condition x[0] and any sequence of unknown inputs {u[k]}, there exists some positive
integer L such that x[0] can be recovered from y[0 : L].

In words, if one wants to reconstruct the states in finite time, the system must be strongly
observable; otherwise, there exists some nonzero initial condition and an input sequence such
that the system output is always zero, which is indistinguishable from the case of zero initial
conditions and inputs.

Theorem 1 ( [65]). The system (2.1) is strongly observable if and only if

rank(
[
OL JL

]
) = n+ rank(JL)

for some L ≤ n.

If the above equality holds for some L, then we can recover x[k] by using y[k : k + L]
(without any information about u[k : k+L]). Besides the above algebraic characterization, there
also exists a matrix pencil based characterization of strong observability.
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Definition 2 (Matrix Pencil). For the linear system (2.1), the matrix

P (z) =

[
A− zIn B

C D

]
is called the matrix pencil of the set (A,B,C,D), where z ∈ C is the variable.

Theorem 2 ( [126]). The system (2.1) is strongly observable if and only if

rank(P (z)) = n+m

for all z ≤ C. In other words, the system is strongly observable if and only if it has no invariant
zeros.

A relaxed notion of strong observability is the concept of strong detectability, which is defined
as follows.

Definition 3 (Strong Detectability). The system (2.1) is said to be strongly detectable if for any
initial condition x[0] and any sequence of unknown inputs {u[k]}, y[k] = 0,∀k, implies that
x[k]→ 0 as k →∞.

If the system is strongly detectable, then we can asymptotically reconstruct the states despite
the disturbances. We also have the following matrix pencil based characterization for strong
detectability.

Theorem 3 ( [126]). The system (2.1) is strongly detectable if and only if

rank(P (z)) = n+m

for all |z| ≥ 1. In other words, the system is strongly detectable if and only if it has no unstable
invariant zeros.

2.2.2 Set-membership Filtering

In this subsection, we review the set-membership filtering approach, which is applicable to the
case where we only know that the disturbances are bounded, without any knowledge of other
statistics. In this setting, the disturbances are assumed to be contained in bounded sets such
as ellipsoids, intervals, or polytopes. Here we focus on the ellipsoid-based uncertainty model;
see [94] for a discussion on other types of uncertainty models.

16



Consider the following version of system (2.1):

x[k + 1] = Ax[k] + w[k]

y[k] = Cx[k] + v[k],
(2.2)

where w and v are the process and measurement disturbances, respectively.

Assume that the uncertain quantities (the initial condition, input disturbance and measure-
ment disturbance) are subject to the following constraints:

[x[0]− x0]TP−1[x[0]− x0] ≤ 1

wTQ−1w ≤ 1

vTR−1v ≤ 1,

where x0 is some known vector, and P−1, Q−1 and R−1 are positive definite weighting ma-
trices. Let X[k] be the set of states that is consistent with the constraints and available mea-
surements at time-step k. In [10], the authors provided an outer ellipsoidal approximation
X∗[k] of X[k] (i.e., X∗[k] guarantees that X[k] ⊂ X∗[k], ∀k). Specifically, we have X∗[k] =
{v|(v−x∗[k])TΣ[k](v−x∗[k]) ≤ 1}, where x∗[k] and Σ[k] capture the center and volume of the
ellipsoid, respectively. The weighting matrix Σ[k] can be computed by using a certain recursive
technique which is similar to the Riccati recursion; the corresponding algorithm can be regarded
as a deterministic interpretation of the Kalman filter. However, the possible set of states X[k]
is, in general, not an ellipsoid, and it is difficult to get an exact description of X[k]. A practical
technique to is to pursue both outer and inner approximations of X[k]; the problem of choosing
these approximations to optimize certain metrics has also been studied (e.g., see [21]).

2.3 Unknown Input Norm-observers for Linear Systems with
Unknown Inputs

As mentioned in the Section 2.2, one can reconstruct the states asymptotically despite the un-
known inputs if and only if the system is strongly detectable. However, in many applications,
strong observability or strong detectability of the system may not hold. For example, from The-
orem 2 and Theorem 3, we can see that if the matrix B has full column rank and there are more
unknown inputs than outputs (i.e., m > p in system (2.1)), the system cannot be strongly observ-
able or strongly detectable. In this case, we need to relax the objective of exactly reconstructing
the states.
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In practice, the inputs (either known or unknown) are often bounded in magnitude; for ex-
ample, in the context of multi-processor systems, the unknown inputs are always bounded due to
physical constraints and energy limitations [123]. Furthermore, one may have (or assume) prior
information about certain properties of the initial condition of the system. Thus, in this section,
we consider a setting similar to the set-membership approach where we assume that the norm of
the initial condition ‖x[0]‖ and the inputs are upper bounded by some known constants xmax > 0
and umax > 0, respectively, i.e., the constants xmax and umax satisfy that

‖x[0]‖ ≤ xmax,∀k ∈ Z≥0,

‖u[k]‖ ≤ umax,∀k ∈ Z≥0.

Instead of attempting to reconstruct the possible set of states consistent with the outputs as in
the set-membership approach, our objective is to build an unknown input norm-observer for
the states of the system by utilizing the information on the bounds of the initial condition and
unknown inputs, defined as follows.

Definition 4 (Unknown Input Norm-observer). For system (2.1), we say that there exists an
unknown input norm-observer x̂ of the norm of the states ‖x‖ if there exist functions γ1, γ2, γ3 ∈
K∞ such that

‖x[k]‖ ≤ x̂[k] , γ1(xmax) + γ2(‖y‖[0,k]) + γ3(umax),∀k, x[0], u.

The above definition of an unknown input norm-observer is similar to the concept of norm-
estimation studied in [67]; the difference is that we do not use information on the unknown
inputs (except for an upper bound on its norm) and we do not require the influence of the initial
condition to asymptotically decay to zero. As we will see later in the next section, it turns out
that these differences make the characterization of the unknown input norm-observer different
from the concept of UIOSS proposed in [67].

2.4 BIBOBS Stability

In order to characterize system properties that allow norm-estimation, we introduce the con-
cept of bounded-input-bounded-output-bounded-state (BIBOBS) stability. We start by formally
defining the property of BIBOBS stability as follows.
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Definition 5 (BIBOBS Stability). The system (2.1) is said to be BIBOBS stable if the state is
bounded whenever the input and output of the system are bounded. Mathematically, a BIBOBS
system satisfies

∀M1,M2,M3 ∈ R≥0 such that ‖x[0]‖ ≤M1, ‖u[k]‖ ≤M2, ‖y[k]‖ ≤M3, ∀k,
⇒ ∃M ∈ R≥0 such that ‖x[k]‖ ≤M,∀k.

In words, BIBOBS stability characterizes the ability of bounded disturbances to drive the
state unbounded while remaining undetected (by keeping the output bounded). In the context of
temperature estimation in multi-processor systems, the property of BIBOBS stability is necessary
to avoid overhigh temperature to damage the system without being detected.

The following result indicates that the system being BIBOBS stable has a stronger implica-
tion: the norm of the state can be upper bounded by specific functions of the norms of the initial
condition, input and output.

Proposition 1. The system (2.1) is BIBOBS stable if and only if there exist functions α1, α2, α3 ∈
K∞ such that

‖x[k]‖ ≤ α1(‖x[0]‖) + α2(‖u‖[0,k]) + α3(‖y‖[0,k]), ∀k, x[0], u.

Proof. If the functions α1, α2, α3 ∈ K∞ satisfying the condition in Proposition 1 exist, we can
choose M = α1(M1) +α2(M2) +α3(M3) in Definition 5 and thus the system is BIBOBS stable.

For the other direction, by our main result in this section (i.e., Theorem 5), we will see that
when the system is BIBOBS stable, such functions α1, α2, α3 ∈ K∞ always exist (see Remark 2
for a specific construction).

The condition in Proposition 1 thus serves as an alternative definition for BIBOBS stabil-
ity. Based on Proposition 1, we can relate BIBOBS stability to the norm-estimation objective
described in the previous section, as illustrated by the following result.

Theorem 4. The system (2.1) admits an unknown input norm-observer if and only if it is BIBOBS
stable.
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Proof. If the system is BIBOBS stable, by Proposition 1, we can just replace ‖x[0]‖ and ‖u‖[0,k],
∀k, by xmax and umax, respectively, and we get an unknown input norm-observer.

When the system is not BIBOBS stable, as we will prove later in this section (i.e., Lemma 1),
for any xmax, umax > 0, there exist some initial condition and input sequence such that the outputs
are bounded but the states become unbounded, and thus there does not exist an unknown input
norm-observer.

In the rest of this section, we derive the conditions under which the system (2.1) is BIBOBS
stable. As we will see, the constraint on the norm of the inputs limits their ability to drive the
state of the system to be unbounded while remaining undetected via the outputs. A construction
for the unknown input norm-observer will follow as a byproduct of the proof. We start with the
following definition.

Definition 6 (Strictly Unstable and Marginally Stable Eigenvalue). For an eigenvalue λ of the
matrix A, we say that λ is strictly unstable if it has magnitude bigger than 1, and marginally
stable if it has magnitude 1.

To give a characterization for BIBOBS stability, we consider a decomposition of the sys-
tem (2.1) by first transforming the system into its Kalman canonical form and then applying a
further transformation to convert the uncontrollable components into their Jordan forms. Let the
transformation matrix be H . The transformed system is given by

xH [k + 1] = AHxH [k] +BHu[k]

y[k] = CHxH [k] +Du[k],
(2.3)

where xH = Hx, AH = HAH−1, BH = HB, and CH = CH−1 have the form

xH =


xco
xcō
xc̄o
xc̄ō

 , AH =


Aco 0 A13 0
A21 Acō A23 A24

0 0 Jc̄o 0
0 0 A43 Jc̄ō

 , BH =


Bco

Bcō

0
0

 ,
CH =

[
Cco 0 Cc̄o 0

]
.

In the above form, the state xco is both controllable and observable, the state xcō is con-
trollable but not observable, the state xc̄o is observable but not controllable, and the state xc̄ō is
neither controllable nor observable. The matrices Jc̄o and Jc̄ō are in Jordan forms. If some of
these components do not exist, we consider their corresponding matrices to have size 0. Note
that ‖H‖−1‖xH‖ ≤ ‖x‖ ≤ ‖H−1‖‖xH‖.

The following theorem is our main result in this chapter and characterizes BIBOBS stability
for linear systems.
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Definition 7. For an eigenvalue λ of Jc̄ō, denote A43(λ) to be the matrix consisting of the rows
of A43 corresponding to the Jordan blocks of λ.

Theorem 5. The system (2.1) is BIBOBS stable if and only if in the form (2.3), all of the following
conditions are satisfied:

(i) The matrix Acō is stable;

(ii) The matrix Jc̄ō does not contain strictly unstable eigenvalues, or marginally stable Jordan
blocks with size bigger than 1;

(iii) For any shared marginally stable eigenvalue λm of Jc̄o and Jc̄ō, each eigenvector v̄m of Jc̄o
corresponding to λm satisfies v̄m ∈ N (A43(λm)).

Remark 1. From Theorem 5, it is easy to see that BIBOBS stability is strictly weaker than
detectability (which requires all unobservable eigenvalues to be stable); BIBOBS stability allows
the block Jc̄ō in the form (2.3) to have marginally stable eigenvalues, as long as conditions (ii)
and (iii) in Theorem 5 are satisfied.

We split the proof of the above theorem into the following two lemmas. The first lemma
proves the necessity of the conditions in Theorem 5. The basic idea behind the proof is that if
the conditions in Theorem 5 fail, then for any constant upper bounds xmax, umax, ymax > 0, there
is an initial state and a carefully constructed sequence of inputs {u[k]} such that ‖y[k]‖ ≤ ymax

for all k while ‖x[k]‖ → ∞ as k →∞.

Lemma 1. The system (2.1) is BIBOBS stable only if in the form (2.3), all of the conditions in
Theorem 5 are satisfied.

Proof. Note that the conditions (i) and (ii) in Theorem 5 are equivalent to the following three
conditions:

• The matrices Acō and Jc̄ō do not contain strictly unstable eigenvalues;

• The matrix Jc̄ō does not contain marginally stable Jordan blocks with size bigger than 1;

• The matrix Acō does not contain marginally stable eigenvalues.
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We will first show that if any of the above three conditions is not satisfied, the system is not BI-
BOBS stable, and then show that if condition (iii) in Theorem 5 fails, the system is not BIBOBS
stable.

The analysis for the case whereAcō or Jc̄ō contains strictly unstable eigenvalues is covered by
the standard argument for undetectable systems. Specifically, if the matrix Acō (resp. Jc̄ō) con-
tains some strictly unstable eigenvalue, we can choose the initial condition xcō[0] (resp. xc̄ō[0])
to be the corresponding eigenvector, and set the initial condition for the other subsystems and
the inputs to be zero. This results in the output being zero for all time, while ‖x[k]‖ → ∞ as
k →∞.

Now we show that if the matrix Jc̄ō contains some marginally stable eigenvalue λ2 and at
least one of the associated Jordan blocks has size bigger than 1, then there exists some choice of
initial condition which causes the states to be unbounded while keeping the output zero. Choose
the initial condition

[
xco[0]T xcō[0]T xc̄o[0]T

]T to be zero and let the inputs be identically zero.
Since xc̄ō is unobservable and xc̄ō only influence the other unobservable state xcō, the output is
always zero (under the current choice of initial conditions and inputs) and we just need to show
that there exists some choice of initial condition xc̄ō[0] which causes ‖xc̄ō[k]‖ to be unbounded.
Without loss of generality, suppose that Jc̄ō = λ2I + S where

S ,


0 1

0
. . .
. . . 1

0

 .
Note that if there exist other Jordan blocks in Jc̄ō, we can choose the initial condition of the
corresponding states to be zero. Choose the initial condition xc̄ō[0] to be [0 w 0 · · · 0]T where
w 6= 0 is some constant. Then we have

‖xc̄ō[k]‖ = ‖Jkc̄ōxc̄ō[0]‖

= ‖
k∑
i=0

λi2S
k−ixc̄ō[0]‖

= ‖
[
kλk−1

2 w λk2w 0 · · · 0
]T ‖

≥ k‖λk−1
2 w‖.

Thus, ‖xc̄ō[k]‖ becomes unbounded as k →∞. Note that since we can always scale the constant
w and the other components of the initial condition and the inputs are both zero, the analysis
holds for any upper bounds xmax and umax.
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Next we show that if the matrix Acō contains a marginally stable eigenvalue λ1, there exist
some choice of initial condition and inputs that cause the states to be unbounded while keeping
the output bounded. Note that in the form (2.3), the uncontrollable components are not influ-
enced by the controllable components or the inputs. Thus, by choosing the initial condition of
the uncontrollable components

[
xc̄o[0]T xc̄ō[0]T

]T to be zero, we can focus on the following
controllable subsystem:[

xco[k + 1]
xcō[k + 1]

]
=

[
Aco 0
A21 Acō

] [
xco[k]
xcō[k]

]
+

[
Bco

Bcō

]
u[k]

y[k] =
[
Cco 0

] [xco[k]
xcō[k]

]
+Du[k].

(2.4)

Denote the dimension of
[
xTco xTcō

]T by nc, and denote the controllability matrix of subsys-
tem (2.4) by Cnc−1. Let v1 be any eigenvector of Acō associated with λ1. Choose the initial

condition of subsystem (2.4) to be
[

0
v1

]
. For i = 0, 1, 2, . . . , choose the input sequence over time

interval [inc, (i+ 1)nc − 1] to be such that

Cnc−1u[inc : (i+ 1)nc − 1] =

[
0

λ
(i+1)nc

1 v1

]
.

Note that since the subsystem (2.4) is controllable, Cnc−1 has full rank and such an input sequence
always exists.1 Further note that since |λ1| = 1, the supremum norm of the input sequence is
bounded. One can check that under this choice of initial condition and inputs, for any integer
i ≥ 0, [

xco[inc]
xcō[inc]

]
=

[
0

(i+ 1)λinc
1 v1

]
and

y[inc : (i+ 1)nc − 1] = Jnc−1u[inc : (i+ 1)nc − 1]

where Jnc−1 is the invertibility matrix of subsystem (2.4) [117]. We can see that in this case, the
states become unbounded while the inputs and outputs are bounded and thus, the system is not
BIBOBS stable. Note that since we can always scale the initial condition and inputs, the above
analysis holds for any upper bounds xmax and umax.

Finally, we show that if condition (iii) in Theorem 5 is not satisfied, the system is not BI-
BOBS stable. In this case, Jc̄ō and Jc̄o share the same marginally stable eigenvalue λm, with an

1Note that the resulting input sequence may be complex valued; in this case, either the real part or the imaginary
part (or both parts) of the sequence will be a real valued input sequence which drives the state to be unbounded
while keeping the output bounded.
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eigenvector v̄m of Jc̄o such that v̄m 6∈ N (A43(λm)). Since condition (ii) in Theorem 5 must be
satisfied (as we have argued above), without loss of generality, we can assume that Jc̄ō is of the
form

Jc̄ō =

λmI 0 0
0 Ad 0
0 0 As

 ,
where Ad is a diagonal matrix containing the marginally stable eigenvalues of Jc̄ō except λm and
As contains the stable eigenvalues of Jc̄ō.

Choose the initial condition
[
xco[0]T xcō[0]T xc̄ō[0]T

]T to be zero and set xc̄o[0] = v̄m (so
that xc̄o[k] = λkmv̄m,∀k). Then from (2.3) we know that the state xc̄ō evolves as follows:

xc̄ō[k] = Jkc̄ōxc̄ō[0] +
k−1∑
t=0

Jk−1−t
c̄ō A43xc̄o[t]

=
k−1∑
t=0

Jk−1−t
c̄ō A43xc̄o[t]

=
k−1∑
t=0

λmI 0 0
0 Ad 0
0 0 As

k−1−t A43(λm)
A43(Ad)
A43(As)

xc̄o[t]
=

k−1∑
t=0

λk−1−t
m I 0 0

0 Ak−1−t
d 0

0 0 Ak−1−t
s

A43(λm)
A43(Ad)
A43(As)

λtmv̄m
=

 kλk−1
m A43(λm)v̄m∑k−1

t=0 A
k−1−t
d A43(Ad)λ

t
mv̄m∑k−1

t=0 A
k−1−t
s A43(As)λ

t
mv̄m

 ,
where A43(Ad) and A43(As) denote the matrices consisting of the rows of A43 corresponding to
Ad and As, respectively. Since v̄m 6∈ N (A43(λm)), |λm| = 1, we know that for any k ∈ Z≥0,

‖xc̄ō[k]‖ ≥ k‖λk−1
m A43(λm)v̄m‖

= k‖A43(λm)v̄m‖,

and thus ‖xc̄ō‖ is unbounded. Now we just need to show that under the current choice of initial
condition, there exists some sequence of inputs which keeps the output bounded.

Note that since |λm| = 1 and ‖xc̄o[k]‖ = ‖λkmv̄m‖ = ‖v̄m‖,∀k, ‖xc̄o‖ is always bounded.
Thus, we can focus on the other observable subsystem associated with state xco which (from the
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form (2.3)) has the following dynamics:

xco[k + 1] = Acoxco[k] + A13xc̄o[k] +Bcou[k].

Denote the dimension of xco by nco, and denote the controllability matrices of (Aco, Bco) and
(Aco, A13) by Cnco−1 and C ′nco−1, respectively. Choose the input sequence over time interval
[inco, (i+ 1)nco − 1] to satisfy

Cnco−1u[inco : (i+ 1)nco − 1] + C ′nco−1xc̄o[inco : (i+ 1)nco − 1] = 0.

Note that since (Aco, Bco) is controllable, Cnco−1 has full rank and such an input sequence always
exists. Then one can check that xco[inco] = 0,∀i ∈ Z≥0, and thus ‖y[k]‖ is always bounded.
Note that since we can always scale the initial condition xc̄o[0] = v̄m, the analysis holds for any
upper bounds xmax and umax.

Combining the above analysis, we see that if in the form (2.3), any of the conditions in
Theorem 5 is not satisfied, the system is not BIBOBS stable, completing the proof.

The next lemma proves the sufficiency part of Theorem 5. The basic idea of the proof is to
show that if all of the conditions in Theorem 5 are satisfied, the undetectable subsystem (i.e., the
subsystem associated with state xc̄ō) cannot be triggered by the other components of the system
and thus we can estimate an upper bound for the norm of the states (in the sense of Proposition 1).

Lemma 2. The system (2.1) is BIBOBS stable if in the form (2.3), all of the conditions in Theo-
rem 5 are satisfied.

Proof. We first group all of the states except xc̄ō in the form (2.3) into a vector x̃, i.e., xH =[
x̃T xTc̄ō

]T . Denote the components of AH , BH and CH associated with x̃ by Ã, B̃ and C̃,

respectively, i.e., AH =
[

Ã Ã12

Ã21 Jc̄ō

]
where Ã12 =

[
0 AT24 0

]T and Ã21 =
[
0 0 A43

]
, BH =[

B̃T 0
]T

, and CH =
[
C̃ 0

]
. Note that y[k] = C̃x̃[k],∀k.

If condition (i) in Theorem 5 is satisfied (i.e., the matrix Acō is stable), then (Ã, C̃) is de-
tectable and there exists some matrix L such that the matrix Ã+LC̃ is stable. For the subsystem
associated with the state x̃, using the same trick as in [67] for characterizing IOSS, we can con-
struct the following observer

x̂[k + 1] = Ãx̂[k] + B̃u[k] + Ã12xc̄ō[k] + L(C̃x̂[k]− y[k])

with the property that if x̂[0] = x̃[0], then x̂[k] = x̃[k],∀k, u. Thus, we know that

x̃[k] = (Ã+ LC̃)kx̃[0] +
k−1∑
i=0

(Ã+ LC̃)k−1−i
(
B̃u[i] + Ã12xc̄ō[i]− Ly[i]

)
.
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Since Ã + LC̃ is stable, there exists some constant K1 > 0 and λ̃ ∈ (0, 1) such that for any
k ∈ Z≥0, ‖(Ã+ LC̃)k‖ ≤ K1λ̃

k [48]. For example, we can choose λ̃ to be the spectral radius of
the matrix Ã + LC̃ and K1 = ‖V −1‖‖V ‖ where V is the matrix consisting of the eigenvectors
of Ã+ LC̃. Then for any k ∈ Z≥0, we have

‖x̃[k]‖ ≤ K1λ̃
k‖x̃[0]‖+

K1

1− λ̃

(
‖B̃‖‖u‖[0,k] + ‖Ã12‖‖xc̄ō‖[0,k] + ‖L‖‖y‖[0,k]

)
. (2.5)

Based on inequality (2.5), Definition 5 (the definition of BIBOBS stability) and the fact that
‖x[k]‖ ≤ ‖H−1‖‖xH [k]‖,∀k, if we can show that there exists some constant K2 > 0 such that
‖xc̄ō‖[0,k] ≤ K2‖xH [0]‖,∀k, then the system is BIBOBS stable. Specifically, for any k ∈ Z≥0,
we would then have

‖x[k]‖ ≤ ‖H−1‖‖xH [k]‖
≤ ‖H−1‖ (‖xc̄ō[k]‖+ ‖x̃[k]‖)
≤ ‖H−1‖‖xc̄ō[k]‖+K1λ̃

k‖H−1‖‖x̃[0]‖

+
K1‖H−1‖

1− λ̃

(
‖B̃‖‖u‖[0,k] + ‖Ã12‖‖xc̄ō‖[0,k] + ‖L‖‖y‖[0,k]

)
≤ (K2 +K1λ̃

k)‖H−1‖‖xH [0]‖

+
K1‖H−1‖

1− λ̃

(
‖B̃‖‖u‖[0,k] +K2‖Ã12‖‖xH [0]‖+ ‖L‖‖y‖[0,k]

)
≤
(
K2 +K1λ̃

k +
K1K2

1− λ̃
‖Ã12‖

)
‖H−1‖‖H‖‖x[0]‖

+
K1‖H−1‖

1− λ̃

(
‖B̃‖‖u‖[0,k] + ‖L‖‖y‖[0,k]

)
. (2.6)

In the rest of this proof, we will show that if conditions (ii) and (iii) in Theorem 5 are satisfied,
then there exists a constant K2 such that ‖xc̄ō‖[0,k] ≤ K2‖xH [0]‖,∀k; in other words, if those
conditions are satisfied, the undetectable subsystem associated with state xc̄ō cannot be triggered
by the detectable subsystem. Since in the form (2.3) the state xc̄ō is only influenced by xc̄o
(through A43), we can focus on the following uncontrollable subsystem:[

xc̄o[k + 1]
xc̄ō[k + 1]

]
=

[
Jc̄o 0
A43 Jc̄ō

] [
xc̄o[k]
xc̄ō[k]

]
. (2.7)

Note that since condition (ii) in Theorem 5 is satisfied, we know that Jc̄ō does not contain strictly
unstable eigenvalues or marginally stable Jordan blocks with size bigger than 1. In order to
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characterize the influence of xc̄o on xc̄ō, we further decompose the matrices Jc̄o and Jc̄ō as follows:

Jc̄o =

Ām Ās
Āu

 , Jc̄ō =

[
Ad

As

]
,

where Ām (resp. the diagonal matrix Ad) contains the marginally stable eigenvalues of Jc̄o (resp.
Jc̄ō), Ās (resp. As) contains the stable eigenvalues of Jc̄o (resp. Jc̄ō), and Āu contains the strictly
unstable eigenvalues of Jc̄o.

Since in the form (2.3), xc̄o is not influenced by the other components of the system, we can
investigate the dynamics of xc̄o separately. According to the decomposition of Jc̄o, we decompose
the state xc̄o as

xc̄o =

xmc̄oxsc̄o
xuc̄o

 .
Note that since the state xc̄o is observable and the input is bounded, ‖xc̄o[k]‖ must be bounded
whenever ‖y[k]‖ is bounded.

Denote the set of (marginally stable) eigenvalues of Ām and the set of corresponding eigen-
vectors by {λ̄m,i} and {ṽm,i,j}, respectively; the set of eigenvectors corresponding to a certain
eigenvalue λ̄m,l is {ṽm,l,j}. Since the matrix Ām is in Jordan form, without loss of generality, we
assume that the set of eigenvectors {ṽm,i,j} is a set of indicator vectors.

In order for ‖xc̄o[k]‖ to be bounded, xuc̄o[0] must be zero. Moreover, xmc̄o[0] must be a linear
combination of the eigenvectors of Ām (i.e., xmc̄o[0] =

∑
i,j αi,j ṽm,i,j where {αi,j} is the set of

weights); otherwise the matrix Ām must contain some Jordan block that has size bigger than 1
and the corresponding subvector of xmc̄o[0] is not an eigenvector of that block, and based on a
similar analysis as in Lemma 1 for the case where Jc̄ō contains marginally stable blocks with size
bigger than 1, we know that ‖xc̄o[k]‖ will be unbounded.

Thus, to guarantee that ‖y[k]‖ is bounded, the initial condition xc̄o[0] must have the form

xc̄o[0] =

xmc̄o[0]
xsc̄o[0]
xuc̄o[0]

 =

∑i,j αi,j ṽm,i,j
xsc̄o[0]

0

 .
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Combining the above analysis, we know that

xc̄o[k] = Jkc̄oxc̄o[0]

=

Ākm Āks
Āku

xmc̄o[0]
xsc̄o[0]
xuc̄o[0]


=
∑
i,j

αi,jλ̄
k
m,i

ṽm,i,j0
0


︸ ︷︷ ︸
v̄m,i,j︸ ︷︷ ︸

x̂mc̄o[k]

+

 0
Āksx

s
c̄o[0]
0


︸ ︷︷ ︸

x̂sc̄o[k]

. (2.8)

Note that v̄m,i,j is the j-th eigenvector of Jc̄o corresponding to the eigenvalue λ̄m,i. Since {v̄m,i,j}
is a set of indicator vectors and the set of eigenvalues {λ̄m,i} are marginally stable, we have

‖x̂mc̄o[k]‖ = ‖x̂mc̄o[0]‖ ≤ ‖xc̄o[0]‖ ≤ ‖xH [0]‖,∀k.

Finally, we are ready to consider the dynamics of xc̄ō. By equation (2.7), equation (2.8) and
the decomposition of Jc̄ō, we know that the state xc̄ō evolves as follows:

xc̄ō[k] = Jkc̄ōxc̄ō[0] +
k−1∑
t=0

Jk−1−t
c̄ō A43xc̄o[t]

= Jkc̄ōxc̄ō[0] +
k−1∑
t=0

Jk−1−t
c̄ō A43x̂

s
c̄o[t]︸ ︷︷ ︸

Pm[k]

+

[
Pd[k]
Ps[k]

]
,

where

Pd[k] =
k−1∑
t=0

Ak−1−t
d A43(Ad)x̂

m
c̄o[t]

and

Ps[k] =
k−1∑
t=0

Ak−1−t
s A43(As)x̂

m
c̄o[t].

Note that A43(Ad) and A43(As) denote the matrices consisting of the rows of A43 corresponding
toAd andAs, respectively. Due to the structure of Jc̄ō and the stability of Ās, there exist constants
K1

2 , K
2
2 > 0 such that

‖Jkc̄ōxc̄ō[0]‖ ≤ K1
2‖xH [0]‖,∀k,
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and
‖Pm[k]‖ ≤ K2

2‖xH [0]‖, ∀k.

Moreover, we can regard Ps as the state of the system (As, A43(As)) with zero initial condition
and x̂mc̄o being the input. Due to the stability of As and the fact that ‖x̂mc̄o[k]‖ ≤ ‖xH [0]‖,∀k, the
system (As, A43(As)) is input-to-state stable and there exists some constant K3

2 > 0 such that

‖Ps[k]‖ ≤ K3
2‖xH [0]‖,∀k.

Now we just need to show that ‖Pd[k]‖ is always bounded. Recall that Ad is a diagonal
matrix with marginally stable eigenvalues. Denote the subvector of Pd[k] corresponding to the
l-th eigenvalue λl of Ad by Pd,l[k]. Then we have

Pd,l[k] =
k−1∑
t=0

λk−1−t
l A43(λl)

∑
i,j

αi,jλ̄
t
m,iv̄m,i,j

= λk−1
l A43(λl)

∑
i,j

αi,j

(
k−1∑
t=0

(λ̄m,iλ
−1
l )t

)
v̄m,i,j.

Denote λ̄m,iλ−1
l = eiθl,i , where i is the imaginary unit, and let Θl be the set of indices of

the eigenvalues of Ām which are equal to λl, i.e., Θl = {i|θl,i = 0}. Since condition (iii) in
Theorem 5 is satisfied, if λl = λ̄m,i (i.e., θl,i = 0), then v̄m,i,j ∈ N (A43(λl)),∀j, and thus Pd,l[k]
does not depend on the elements in Θl. Then we have

Pd,l[k] = λk−1
l A43(λl)

∑
i 6∈Θl,j

αi,j
1− eiθl,ik

1− eiθl,i
v̄m,i,j.

Since {v̄m,i,j} is a set of indicator vectors, for any l, there exists some constant Kd,l > 0 such
that

‖Pd,l[k]‖ ≤ Kd,l‖x̂mc̄o[0]‖ ≤ Kd,l‖xH [0]‖, ∀k.

Thus, due to the fact that ‖Pd[k]‖ ≤
∑

l ‖Pd,l[k]‖,∀k, the constant K4
2 =

∑
lKd,l guarantees

that ‖Pd[k]‖ ≤ K4
2‖xH [0]‖,∀k.

Combining all of the above analysis and the fact that

‖xc̄ō[k]‖ ≤ ‖Jkc̄ōxc̄ō[0]‖+ ‖Pm[k]‖+ ‖Ps[k]‖+ ‖Pd[k]‖,∀k,

the constant K2 =
∑4

i=1K
i
2 guarantees that ‖xc̄ō‖[0,k] ≤ K2‖xH [0]‖,∀k. Thus, the system is

BIBOBS stable if all of the conditions in Theorem 5 are satisfied.
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Remark 2. If the system satisfies the conditions for BIBOBS stability, a construction of the
unknown input norm-observer follows by inequality (2.6). Specifically, in Proposition 1, we can
choose the functions γ1, γ2, γ3 ∈ K∞ as follows

γ1(xmax) =

(
K2 +K1λ̃

k +
K1K2

1− λ̃
‖Ã12‖

)
‖H−1‖‖H‖xmax, (2.9)

γ2(umax) =
K1

1− λ̃
‖H−1‖‖B̃‖umax, (2.10)

γ3(‖y‖[0,k]) =
K1

1− λ̃
‖H−1‖‖L‖‖y‖[0,k]. (2.11)

2.5 A Discussion of BIBOBS Stability

In this section, we discuss the relationships between BIBOBS stability and other classical system
properties.

2.5.1 Related Linear System Stability Notions

We first consider BIBO stability, defined as follows.

Definition 8 (BIBO Stability). The system (2.1) with x[0] = 0 is said to be BIBO stable if
every bounded input sequence excites a bounded output sequence, i.e., ∀M1 ∈ R≥0 such that
‖u[k]‖ ≤ M1, ∀k,⇒ ∃M2 ∈ R≥0 such that ‖y[k]‖ ≤ M2,∀k. Equivalently, the system is BIBO
stable if there exists a function α ∈ K∞ such that if x[0] = 0, ‖y[k]‖ ≤ α(‖u‖[0,k]),∀k, u.

Since the state does not play a role in the definition of BIBO stability, BIBO stability does not
imply BIBOBS stability. In the converse direction, a BIBOBS stable system does not have to be
BIBO stable since the output of a BIBOBS stable system can be unbounded with bounded input;
a system is still BIBOBS stable as long as we can observe that the states become unbounded.

To see the difference between BIBO stability and BIBOBS stability, consider the following
two scalar systems:

x[k + 1] = x[k] + u[k]

y[k] = 0,
(2.12)
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x[k + 1] = x[k] + u[k]

y[k] = x[k].
(2.13)

System (2.12) is BIBO stable (since the output is always zero) but not BIBOBS stable (since
we can let the input be any constant at each time step and the state will be unbounded while the
output is zero). System (2.13) is BIBOBS stable (since the output is the state) but not BIBO
stable (since a bounded input can produce an unbounded output). Thus, we have the following
result.

Proposition 2. For system (2.1), BIBO stability does not imply BIBOBS stability, and vice versa.

Next we consider the notion of BIBS stability, defined as follows.

Definition 9 (BIBS Stability). The system (2.1) is said to be BIBS stable if every bounded in-
put sequence excites a bounded state sequence, i.e., ∀M1,M2 ∈ R≥0 such that ‖x[0]‖ ≤ M1

and ‖u[k]‖ ≤ M2,∀k, ⇒ ∃M3 ∈ R≥0 such that ‖x[k]‖ ≤ M3,∀k. Equivalently, the sys-
tem is BIBS stable if there exist functions α1, α2 ∈ K∞ such that ‖x[k]‖ ≤ α1(‖x[0]‖) +
α2(‖u‖[0,k]),∀k, x[0], u.

The relationship between BIBS stability and BIBOBS stability is as follows.

Proposition 3. For system (2.1), BIBS stability implies BIBOBS stability, but not vice versa.

Proof. One direction is easy to show: since bounded input always results in bounded state for a
BIBS stable system and the state-output mapping is linear, the system must be BIBOBS stable.
For the other direction, consider again the system (2.13); the system is BIBOBS stable but not
BIBS stable.

To summarize these relationships, we have the following result, which shows that the in-
tersection of BIBO stable and BIBOBS stable linear systems is exactly the set of BIBS stable
linear systems. See Figure 2.2 for the relationships between BIBO stability, BIBS stability and
BIBOBS stability.

Proposition 4. The system (2.1) is BIBS stable if and only if it is both BIBO stable and BIBOBS
stable.

Proof. Note that for linear systems, BIBS stability also implies BIBO stability. Thus, if a linear
system is BIBS stable, then it must be both BIBO stable and BIBOBS stable.

For the other direction, if a system is both BIBO stable and BIBOBS stable, then every
bounded input results in a bounded output (due to BIBO stability) and thus results in a bounded
state (due to BIBOBS stability). This implies that the system is BIBS stable.
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BIBO BIBOBSBIBS

Linear Systems

Figure 2.2: Venn diagram for the classes of linear systems that are BIBO stable, BIBS stable and
BIBOBS stable.

Table 2.1: Comparison of different notions of stability.

BIBS Stability: ∃α1, α2 ∈ K∞ such that ISS: ∃α ∈ K∞, β ∈ KL such that

‖x[k]‖ ≤ α1(‖x[0]‖) + α2(‖u‖[0,k]),∀k, x[0], u ‖x[k]‖ ≤ β(‖x[0]‖, k) + α(‖u‖[0,k]),∀k, x[0], u

BIBO Stability: ∃α ∈ K∞ such that IOS: ∃α ∈ K∞, β ∈ KL such that

if x[0] = 0, ‖y[k]‖ ≤ α(‖u‖[0,k]),∀k, u ‖y[k]‖ ≤ β(‖x[0]‖, k) + α(‖u‖[0,k]),∀k, x[0], u

BIBOBS Stability: ∃α1, α2, α3 ∈ K∞ such that IOSS: ∃α1, α2 ∈ K∞, β ∈ KL such that

‖x[k]‖ ≤ α1(‖x[0]‖) + α2(‖u‖[0,k]) + α3(‖y‖[0,k]),∀k, x[0], u ‖x[k]‖ ≤ β(‖x[0]‖, k) + α1(‖u‖[0,k]) + α2(‖y‖[0,k]),∀k, x[0], u

2.5.2 Interpretation in Nonlinear Setting

Although we focus on linear systems in this chapter, the concept of BIBOBS stability can also
be applied to nonlinear systems, and further insights can be obtained by comparing it with a set
of properties that are normally defined for such systems.

In Table 2.1, we summarize the stability notions of interest; for a comprehensive discussion
of these properties, we refer to [128]. Note that in Table 2.1, ISS represents input-to-state stability
and IOS represents input-output stability. Note that in order to provide a uniform comparison,
we use the condition given in Proposition 1 for BIBOBS stability.

From Table 2.1, we can see that the concept of BIBOBS stability fits naturally in the land-
scape of stability theory. Specifically, we can categorize the notions in Table 2.1 by two criteria.
The first criterion is whether the output is taken into account: the notions in the first two rows
do not consider output. The second criterion is whether the definition requires the influence
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of the initial condition to decay asymptotically: the notions in the second column all have this
requirement.

Among these notions, BIBOBS stability is very similar to IOSS with the only difference
being in the term related to x[0]. It is easy to see that IOSS is stronger than BIBOBS stability:
for a system to be BIBOBS stable, the impact of initial conditions does not have to asymptotically
decay over time.

Along this line, it is interesting to compare another property which imposes a further con-
straint on the term related to x[0]. In [46], the authors proposed a notion ofKL norm-observability
for nonlinear systems; roughly speaking, a system is KL norm-observable if it is IOSS and in
the definition of IOSS, the function β can be chosen to decay arbitrarily fast in the second argu-
ment (see [46] for a formal definition). Since KL norm-observability and IOSS are equivalent
to observability and detectability for linear systems, respectively, both of them are stronger than
BIBOBS stability.

2.6 Illustrative Examples

In this section, we use several examples to illustrate the results in Lemma 1 and Lemma 2. Note
that since the impact of condition (ii) in Theorem 5 is clear in the proof of Lemma 1, we omit
the corresponding example.

2.6.1 Illustration of Condition (i) in Theorem 5

We first illustrate the case where Acō contains marginally stable eigenvalues, i.e., when condi-
tion (i) in Theorem 5 is not satisfied.

Consider the system

A =

[
2 0
1 1

]
, B =

[
1 1
1 0

]
,

C =
[
1 0

]
, D = 0.

Note that the controllable but unobservable subsystem (1,
[
1 0

]
, 0) is marginally stable. Thus,

by Lemma 1, we know that the system is not BIBOBS stable. Specifically, choose x[0] =

[
0
1

]
,
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and

u[k] =



[
6
11

− 4
11

]
, when k is even

[
3
11

− 7
11

]
, when k is odd.

Then we have

x[k] =



[
0

1 + k
2

]
, when k is even

[
2
11

17
11

+ k−1
2

]
, when k is odd

and

y[k] =

{
0, when k is even
2
11
, when k is odd.

Thus, the states become unbounded while the outputs are always bounded and the system is not
BIBOBS stable.

2.6.2 Illustration of Condition (iii) in Theorem 5

Next we illustrate the case where xc̄ō can be triggered by xc̄o, i.e., when condition (iii) in Theo-
rem 5 is not satisfied.

Consider the system

A =

 1 1
0 1

0
0

1 0 1

 =

[
Jc̄o 0

A43 Jc̄ō

]
, B =

[
0
0

]
,

C =
[

1 0 0
]

=
[
Cc̄o 0

]
, D = 0.

Note that Jc̄o and Jc̄ō have the same marginally stable eigenvalue 1. Moreover, the eigenvec-

tor v̄m =

[
1
0

]
of Jc̄o corresponding to eigenvalue 1 is not in the null space of A43. Thus, by

Lemma 1, we know that the system is not BIBOBS stable. Specifically, by choosing xc̄o[0] = v̄m

and xc̄ō[0] = 0, we know that ‖x[k]‖ =
∥∥∥[1 0 k

]T∥∥∥ becomes unbounded while ‖y[k]‖ =∥∥∥[1 0 0
]T∥∥∥ is always bounded. Note that if we replace A43 with

[
0 1

]
, then v̄m ∈ N (A43)

and thus by Lemma 2, the system is BIBOBS stable.
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2.6.3 Construction of An Unknown Input Norm Observer

Finally, we consider a system that is BIBOBS stable and provide an unknown input norm ob-
server for this system.

Consider the system

A =

 1.1
1

1

 =

[
Ã Ã12

Ã21 Jc̄ō

]
, B =

 1 1
1 0

0 0

 =

[
B̃
0

]
,

C =

[
1 1
0 1

0
0

]
=
[
C̃ 0

]
, D = 0.

Since (Ã, C̃) is observable and Ã21 = 0, by Lemma 2, we know that the system is BIBOBS
stable. Then we can choose a matrix L such that the matrix Ã + LC̃ is stable. For example, we
choose

L =

[
−1 1
0 −1.1

]
such that eig(Ã+ LC̃) = {0.1,−0.1}. Then we have the bound

‖(Ã+ LC̃)k‖ ≤ 0.1k,

i.e., K1 = 1 and λ̃ = 0.1. Furthermore, we can choose K2 = 1 since ‖xc̄ō‖ ≤ K2‖x[0]‖ =

‖x[0]‖. Thus, we have K1‖L‖
1−λ̃ < 1.9, K1‖B̃‖

1−λ̃ < 1.8, H = I , and ‖Ã12‖ = 0. By using the functions
in Remark 2, we can get an unknown input norm-observer x̂ satisfying ‖x[k]‖ ≤ x̂[k],∀k, x[0], u,
as follows:

x̂[k] = (1 + 0.1k)xmax + 1.8umax + 1.9‖y‖[0,k]. (2.14)

Now we provide simulation results to verify the performance of the above norm-observer.
In the simulation, the upper bound for the norm of the initial condition is fixed to be 1 (i.e.,
xmax = 1), and we compare the performance of the norm-observer with different upper bounds
of the unknown input. Specifically, umax is taken to be 1, 5, 10 and 20, respectively. Note that
the initial condition and unknown input are generated randomly within their upper bounds. The
results are in Figure 2.3.

From Figure 2.3, we can see that the norm-observer (2.14) provides an upper bound on the
norm of the states in all cases. Moreover, it is not surprising to observe that the scale of the state
norm increases with the upper bound umax of the unknown input.
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Figure 2.3: Performance of the unknown input norm observer (2.14) with xmax = 1 and different
values of umax.
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2.7 Summary

In this chapter, we studied the norm estimation problem for linear dynamical systems with un-
known inputs. In order to characterize the conditions under which an unknown input norm-
observer exists, we proposed the concept of BIBOBS stability and provide necessary and suf-
ficient conditions for linear systems to be BIBOBS stable. When the system is not BIBOBS
stable, we showed that the attacker is able to use bounded inputs to drive the states unbounded
while keeping the output bounded. Specifically, other than through unobservable strictly unstable
eigenvalues, such worst-case attacks can be achieved by manipulating the set of controllable but
unobservable marginally stable eigenvalues or triggering the set of uncontrollable and unobserv-
able marginally stable eigenvalues with carefully chosen initial conditions. On the other hand,
when the system is BIBOBS stable, we provided a construction method for the unknown input
norm-observer. Besides the application to norm estimation, we see that the concept of BIBOBS
stability naturally supplements the other classical stability notions.
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Chapter 3

State Estimation for Positive Linear
Dynamical Systems

3.1 Introduction

The theory of positive systems has received considerable attention in different communities (e.g.,
economic modeling, behavioral science, and control), and builds upon concepts from nonnega-
tive matrix theory [30, 85]. A positive system is a system in which the states are always pos-
itive (or at least nonnegative) and the positivity property naturally arises from the nature of
the phenomenon under consideration [102, 124]. For example, in the application of tempera-
ture estimation for multi-processor systems, the positivity of the system comes from the phys-
ical nature of the thermal dynamics [123]. Other examples include transportation networks,
industrial processes involving chemical reactors, compartmental systems (frequently used in bi-
ology and mathematics), stochastic models, and many other models for economic and social
systems [30, 39, 47].

Due to the prevalence of positive systems, it is of interest to explore the role of positivity in
state estimation. As we argued in the last chapter, when the system is not strongly observable,
there exist some initial condition and a sequence of inputs such that the output is zero for all time,
but the state is not. In this case, (finite-time) state estimation despite the unknown inputs is not
possible for such initial condition and inputs. Suppose, however, that the system is known to be
positive, and that the inputs are constrained to be nonnegative – does this additional knowledge
assist in state estimation? The answer is no, as we will show in this chapter.

We also consider the situation when we require the observer to return only positive estimates
[41]. For positive systems where state estimation with unknown inputs is possible, we extend
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the work in [113] to give a linear programming-based design method for positive unknown input
observers.

The rest of this chapter is organized as follows. In Section 3.2, we provide some preliminary
on positive systems theory. In Section 3.3, we extend the concept of strong observability to
positive systems and show that the property of positivity is not helpful in state estimation. In
Section 3.4, we consider the problem of constructing positive observers for positive systems.
Some concluding remarks are given in Section 3.5.

3.2 Background: Positive Systems

In this section, we briefly review the concept of positive systems and illustrate the usefulness of
the property of positivity. Consider the following discrete-time linear system

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k],
(3.1)

where x ∈ Rn is the state, y ∈ Rp is the output, and u ∈ Rm is the unknown input. We start with
a definition of positive systems.

Definition 10 (Positive Systems). Given any nonnegative initial condition x[0] and any sequence
of nonnegative inputs {u[k]} (i.e., u[k] = 0,∀k), the linear system (3.1) is said to be positive if
the corresponding states and outputs are always nonnegative (i.e., x[k], y[k] = 0,∀k).

In words, the system (3.1) is positive if nonnegative initial condition and inputs always result
in nonnegative states and outputs. The following result specifies whether a discrete-time state-
space model represents a positive system.

Theorem 6 ( [30]). The discrete-time linear system (3.1) is positive if and only if the system
matrices (A,B,C,D) are all nonnegative.

The study of positive systems builds upon the elegant theory of nonnegative matrices. One
of the fundamental results in this theory is the well known Perron-Frobenius theorem, stated as
follows [85].

Theorem 7 (Perron-Frobenius Theorem). For any positive matrix A > 0, the following state-
ments hold:
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(1) there exists a positive real number λ0 such that λ0 is an eigenvalue of A and any other
eigenvalue λ of A is strictly smaller than λ0 (i.e., |λ| < λ0);

(2) λ0 has geometric and algebraic multiplicity 1;

(3) there exists an eigenvector v0 of A with eigenvalue λ0 such that all components of v0 are
positive (i.e., v0 > 0).

In terms of system theory, λ0 is the dominant eigenvalue (also called the Perron root or
the Perron-Frobenius eigenvalue) and v0 provides information of the long-term behavior of the
homogeneous positive system x[k + 1] = Ax[k]: the state vector aligns itself with the dominant
eigenvector v0. These results can be applied to various applications, e.g., stability analysis of
distributed consensus algorithms [98].

Another remarkable result due to the positivity of the system is the equivalence between the
stability of the system and the existence of its equilibrium. Specifically, consider the following
nonhomogeneous system:

x[k + 1] = Ax[k] + b

with A ≥ 0 and b > 0. Then the system is stable if and only if there exists an x̄ ≥ 0 such that
x̄ = Ax̄+ b, i.e., x̄ is an equilibrium of the system [85].

A nonlinear counterpart to positive systems are so-called monotone systems, where the trajec-
tories preserve a partial ordering on the states. The class of monotone systems has drawn much
attention recently due to its applications to mathematical biology [3, 114].

3.3 Strong Observability of Positive Systems

In this section, we study the role of positivity in state estimation with unknown inputs. First we
consider the case where the inputs are known. Analogous to the theory of general linear systems,
in [41], the authors define observability for positive systems as follows.

Definition 11 (Observability of Positive Systems). A positive linear system (3.1) is said to be
observable if for any nonnegative initial condition x[0] and any known sequence of nonnegative
inputs {u[k]}, there exists some L ∈ Z>0 such that x[0] can be recovered from {y[k]}k≤L.

Theorem 8 ( [41]). The positive linear system (3.1) is observable if and only if rank(On) = n,
where On is the observability matrix of system (3.1)
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The above result shows that observability is not made easier by assuming positivity; if a given
system is not observable, restricting the states and inputs to be positive does not provide more
information about the unobserved states.

Then a natural question to ask is whether the property of positivity is helpful in conducting
state estimation in the presence of unknown inputs. We extend the concept of strong observability
for positive systems.

Definition 12 (Strong Observability of Positive Systems). A positive linear system (3.1) is said
to be strongly observable if for any nonnegative initial state x[0] and any unknown sequence
of nonnegative inputs {u[k]}, there exists some L ∈ Z>0 such that x[0] can be recovered from
{y[k]}k≤L.

We will use the following lemma in our characterization of strong observability of positive
systems. We omit the proof as it depends only on the rank of the system matrices, and thus is
identical to the proof for general systems [126]. Recall that OL and JL are the observability
matrix and invertibility matrix of system (3.1) with delay L; see Section 2.2.1 for the detailed
forms of these matrices.

Lemma 3. Given the positive linear system (3.1), let G(L) = rank(
[
OL JL

]
) − rank(JL) be

a function of L ∈ Z≥0. Then G(L) has the following properties:

• G(L) is a nondecreasing function and G(L) ≤ n;

• If G(L′) = G(L′ + 1), then G(L) = G(L′),∀L ≥ L′;

• G(L) = G(n),∀L ≥ n.

The following result tells us that the condition for strong observability of positive systems is
the same as the one for general systems. Thus, knowing the system to be positive does not help
in state estimation with arbitrary positive inputs.

Proposition 5. The positive linear system (3.1) is strongly observable if and only if

rank(
[
On Jn

]
) = n+ rank(Jn).
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Proof. (Sufficiency) Recall from the discussion in Section 2.2.1 that if the condition in the propo-
sition holds, the system is strongly observable even for arbitrary (potentially negative) states and
inputs. Thus, the condition in the proposition is also sufficient to recover the initial states under
positivity constraints.

(Necessity)1 Assume that rank(
[
On Jn

]
) < n + rank(Jn). Then either the system is not

observable (i.e., rank(On) < n) or some column ofOn can be expressed as a linear combination
of other columns of Jn and On. In the former case, there does not exist a observer even if the
inputs are known (by Theorem 8).

In the latter case, there exist nonzero vectors v1 and v2 such that Onv1 + Jnv2 = 0. Let
x1 = max{v1, 0}, x2 = max{−v1, 0}, u1 = max{v2, 0} and u2 = max{−v2, 0}. Note that for a
vector v, max{v, 0} = v if v ≥ 0 and max{v, 0} = 0 otherwise. Then we have

On(x1 − x2) + Jn(u1 − u2) = 0,

x1 6= x2, u1 6= u2,

x1, x2, u1, u2 ≥ 0.

In other words, we know that Onx1 + Jnu1 = Onx2 + Jnu2 and the nonnegative initial state
x1 with input sequence u1 is not distinguishable from the nonnegative initial state x2 with input
sequence u2 over n+ 1 time-steps. By Lemma 3, we know that the above analysis holds for any
number of time-steps larger than n and thus the system is not strongly observable.

Combining the above analysis, we know that the system is not strongly observable if the rank
condition in the proposition is not satisfied.

Remark 3. Note that even if we require all the system matrices to be strictly positive (as opposed
to just nonnegative), the above results still hold with an identical proof.

3.4 Positive Observers with Unknown Inputs

Theorem 8 and Proposition 5 tell us that the positivity of the original system is not helpful
in relaxing the algebraic condition for state estimation with positive inputs. If the system is
strongly observable, however, one can construct unknown input observers to recover the states.
Note that since the states of the system are always positive, negative estimates may not be useful,
and in some applications (e.g., observers for compartmental systems [41]), the positivity of the
observers themselves is desirable. Thus, we now consider the design of positive observers.

1This proof generalizes the proof of Theorem 4.7 in [41] (stated as Theorem 8 in this section) to the case where
there are unknown inputs.
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Definition 13 (Positive Observers). Given positive system (3.1) and any nonnegative initial esti-
mate x̂[0], an observer is said to be positive if the corresponding estimates are always nonnega-
tive (i.e., x̂[k] = 0,∀k).

The positive observer problem has been studied extensively in the literature [4, 41, 92, 113,
125, 143]. Necessary and sufficient conditions for the existence of a (Luenberger-type) positive
observer (for systems with known inputs) have been given in [113]. Note that the existence
condition for positive observers is different from that for general ones, i.e., when the (positive)
system is observable, there may still not exist positive observers. For example, consider the

example from [41] where the system matrices are A =

[
1 1
2 3

]
, B = 0, C =

[
1 0

]
, D = 0.

One can check (by using Theorem 8) that the system is observable but there does not exist a
(Luenberger-type) positive observer for the system; see [41] for details.

While these existing works study the case where there are no inputs (or assume that the
inputs are known), there are few works considering the positive observer problem with unknown
inputs. In [121], the authors designed positive unknown input observers for continuous-time
positive linear systems using current system output (i.e., no delay in the observer); the observer
parameters are obtained by solving a certain linear matrix inequality (LMI). To the best of our
knowledge, the delayed positive unknown input observer problem has not been studied.

Here we look at an unknown input observer of the form

x̂[k + 1] = Ex̂[k] + Fy[k : k + L], (3.2)

with state estimate x̂ ∈ Rn, delay L ∈ Z≥0 and system matrices (E,F ) of appropriate dimen-
sions. Recall that y[k : k + L] is the output of the system up to time-step k + L, and thus (3.2)
represents a delayed observer.

It is known that for systems with unknown inputs, a delayed observer of the above form is
typically necessary (and sufficient if the system is strongly detectable) [133]. We show this to be
the case for positive systems as well.

Lemma 4. The observer (3.2) is positive if and only if the matrices E, FOL and FJL are all
nonnegative.

Proof. (Sufficiency) Note that

x̂[k + 1] = Ex̂[k] + Fy[k : k + L]

= Ex̂[k] + FOLx[k] + FJLu[k : k + L].
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Since x̂[0] is nonnegative and x[k], u[k] = 0, ∀k, it is easy to see that x̂[k] = 0,∀k, if E, FOL
and FJL are all nonnegative.

(Necessity) Note that the positivity of the observer needs to hold for any (nonnegative)
choices of the initial estimates x̂[0], initial condition x[0] and input sequences {u[k]}. If any
of the matrices E, FOL and FJL is not nonnegative, then there always exists a combination of
x̂[0], x[0] and u[0 : L] such that x̂[1] is negative, which contradicts the positivity of the observer.
For example, assume some element Eij of E is negative. Then a natural choice is x[0] = 0,
u[0 : L] = 0, and x̂[0] = ej , where ej ∈ {0, 1}n with only the j-th element equal to 1, and it is
easy to see that x̂i[1] will be negative.

Remark 4. Note that similar to the analysis in [113], we do not require F to be nonnegative;
this is because y[k : k + L] is composed of two nonnegative ingredients x[k] and u[k : k + L]
which thus constrain y[k : k + L].

In order to choose the matrices E and F to achieve asymptotic estimation, we look at the
dynamics of the estimation error:

e[k + 1] = x̂[k + 1]− x[k + 1]

= Ex̂[k] + Fy[k : k + L]− Ax[k]−Bx[k]

= Ee[k] + Fy[k : k + L] + (E − A)x[k]−Bu[k]

= Ee[k] + (E − A+ FOL)x[k] + FJLu[k : k + L]−Bu[k].

Given the positive system (3.1), in order to achieve asymptotic estimation and guarantee the
positivity of the observer, the matrices E and F should satisfy the following properties:

1. E = A− FOL is stable and nonnegative;

2. FOL is nonnegative;

3. FJL = B′, where B′ =
[
B 0 · · · 0

]
.

Remark 5. Note that there exists a positive observer of the form (3.2) achieving asymptotic
estimation if and only if there exist matricesE and F satisfying the above properties. A necessary
condition for the existence of a matrix F satisfying the third condition is that the system (3.1)
is invertible (i.e., rank(JL) − rank(JL−1) = m for some L) [133]. The smallest nonnegative
integer L for which this rank condition holds is called the delay of integration, and can be larger
than 1. Thus, a delayed observer of the form (3.2) is typically necessary for state estimation,
even for positive systems.
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Next we will relate the existence of the positive observer to the feasibility of a linear pro-
gramming problem, which is similar to the approach adopted in [113]. We will use the following
result.

Lemma 5 ( [120]). Given a positive matrix A ∈ Rn×n
≥0 , A is stable if and only if there exists

w ∈ Rn such that w > 0 and (I − A)w > 0.

Let
OL =

[
O1
L · · · OnL

]
,

and
JL =

[
J 1
L · · · J (L+1)m

L

]
,

where O1
L, . . . ,OnL,J 1

L , . . . ,J
(L+1)m
L ∈ R(L+1)p are the columns of OL and JL, respectively.

Theorem 9. Given the positive system (3.1), the following statements are equivalent:

• There exists a positive observer (3.2) with gain matrices E and F achieving asymptotic
estimation.

• The following linear programming problem in the variables w =
[
w1 · · · wn

]T ∈ Rn,
z1, . . . , zn ∈ R(L+1)p is feasible:

ATw −OTL
n∑
i=1

zi > 0 (3.3)

Aijwi − zTi O
j
L ≥ 0, ∀ 1 ≤ i, j ≤ n (3.4)

zTi O
j
L ≥ 0, ∀ 1 ≤ i, j ≤ n (3.5)

zTi J
j
L = Bijwi, ∀ 1 ≤ i ≤ n,∀ 1 ≤ j ≤ m (3.6)

zTi J
j
L = 0, ∀ 1 ≤ i ≤ n,∀m < j ≤ (L+ 1)m (3.7)

w > 0. (3.8)

Furthermore, the gain matrix F =
[
z1
w1
· · · zn

wn

]T
and E = A− FOL.

Proof. Note that a matrix is nonnegative and stable if and only if its transpose is nonnegative
and stable; thus, by Lemma 5, we know that inequalities (3.3), (3.4) and (3.8) are equivalent to
the condition that A − FOL is nonnegative and stable. It is easy to check that inequality (3.5)
is equivalent to the condition that FOL = 0 (provided w is positive), and equality (3.6) and
inequality (3.7) are equivalent to the condition that FJL = B′. Thus, the result follows by the
previous analysis of error dynamics.
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Remark 6. Note that an alternative approach to obtain positive observers is to first construct a
general observer and then project the estimate into the nonnegative quadrant. In contrast, the
approach we considered in this section is to take positivity of the observer into account at the
design phase. As we have mentioned in Section 1.1, the benefits of enforcing the property of
positivity include simplifying the stability analysis (e.g., allowing the linear-programming based
design algorithm) and bringing certain robustness properties (e.g., stability under uncertainties
or time-varying perturbations in the system matrices) [114, 120].

3.5 Summary

In this chapter, we explored the influence of the positivity of the system on state estimation with
unknown inputs; such systems arise often in applications where the quantities are positive. We
extended the concept of strong observability to positive systems and showed that the property
of positivity is not helpful in performing state estimation. For cases where it is desirable to
require the observer to output nonnegative estimates for positive systems, we also studied the
construction of delayed positive unknown input observers and proposed a linear programming
based design procedure.
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Chapter 4

Sensor Selection for Linear Dynamical
Systems

4.1 Introduction

One of the key problems in control system design is to select an appropriate set of actuators
or sensors (either at design-time or at run-time) in order to achieve certain performance ob-
jectives [142]. In the context of sensor networks and robotics coordination, the problem of
sensor scheduling has received much attention, where the objective is to dynamically select sen-
sors at run-time to minimize a certain cost function (e.g., energy consumption or estimation
error) [40, 56, 71, 95]. However, the assumption that the sensors can be chosen at run-time may
not be feasible in many other applications, e.g., temperature monitoring in multi-processor sys-
tems [148].

The design-time sensor selection problem (where the set of chosen sensors does not evolve
over time) has also been studied in various forms. In [22, 108], the problem of sensor selection
for structured systems [28] is considered; the goal is to choose a subset of sensors such that
the system is guaranteed to satisfy a certain structural property (e.g., fault diagnosability [22]
or structural observability [108]). Alternative formulations include selecting a feasible set of
sensors to optimize an energy related metric [131] or an information theoretic metric [66].

In this chapter, we consider the design-time sensor selection problem for optimal filtering
of discrete-time linear dynamical systems. Specifically, we study the problem of choosing a set
of sensors (under certain constraints) to minimize either the a priori or the a posteriori error
covariance of the corresponding Kalman filter. As mentioned in Section 1.2, we will refer to
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these problems as the priori and posteriori Kalman filtering sensor selection (KFSS) problems,
respectively.

We will first study the complexity of the priori and posteriori KFSS problems and show that
it is NP-hard to find the optimal solution of these problems, even when the system is stable.
Then we will provide insights into what factors of the system affect the performance of sensor
selection algorithms by using the concept of the sensor information matrix [53].

Since it is intractable to find the optimal selection of sensors in general, a reasonable tradeoff
is to design appropriate approximation algorithms. For the (run-time) sensor scheduling problem,
it has been shown that certain greedy algorithms can be applied to obtain guaranteed performance
due to the fact that certain cost functions have the nice property of being submodular [55], and
this inspires us to study greedy algorithms for the priori and posteriori KFSS problems. While
the cost functions of both the priori and posteriori KFSS problems do not necessarily have certain
modularity properties, we show via simulations that greedy algorithms perform well in practice.

We also consider the problem of optimizing an upper bound of the original cost functions (of
the priori and posteriori KFSS problems) based on the Lyapunov equation and propose a variant
of a priori covariance based and a posteriori covariance based greedy algorithms. We show that
the relaxed cost function has a strong property of being modular and the running time of the
corresponding greedy algorithm scales more slowly with the number of states in the system.

The rest of the chapter is organized as follows. In Section 4.2, we provide some background
on sensor scheduling. In Section 4.3, we formulate the (design-time) sensor selection problems.
In Section 4.4, we analyze the complexity of the priori and posteriori KFSS problems. In Sec-
tion 4.5, we provide worst-case guarantees on the performance of sensor selection algorithms.
In Section 4.6, we propose and study three greedy algorithms for sensor selection, and illustrate
their performance and complexity in Section 4.7. We conclude in Section 4.8.

4.2 Background: Sensor Scheduling

In this section, we provide a general framework for the (discrete-time) sensor scheduling problem
and briefly review the corresponding literature.

Consider the discrete-time linear system

x[k + 1] = Ax[k] + w[k], (4.1)

where x[k] ∈ Rn is the system state, w[k] ∈ Rn is a zero-mean white Gaussian noise process
with E

[
w[k](w[k])T

]
= W for all k ∈ N, and A ∈ Rn×n is the system dynamics matrix. We

assume throughout this chapter that the pair (A,W
1
2 ) is stabilizable.
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The set of sensors to be chosen must come from a given set Q consisting of q sensors. Each
sensor i ∈ Q provides a measurement of the form

yi[k] = Cix[k] + vi[k], (4.2)

where Ci ∈ Rsi×n is the state measurement matrix for that sensor, and vi[k] ∈ Rsi is a zero-mean
white Gaussian noise process. For convenience, we define

y[k] ,

y1[k]
...

yq[k]

 , C ,

C1
...
Cq

 , v[k] ,

v1[k]
...

vq[k]

 .
Then the measurement equation corresponding to the output of all sensors is

y[k] = Cx[k] + v[k]. (4.3)

We denote E
[
v[k](v[k])T

]
= V and take E

[
v[k](w[j])T

]
= 0 for all j, k ∈ N.

Let zi[k] be the indicator variable of sensor i at time-step k, i.e., zi[k] ∈ {0, 1} and zi[k] = 1
if and only if the measurement of sensor i is chosen at time-step k. Based on the requirement
of the specific application, one can specify certain constraints on the selection of sensors (e.g.,
impose an upper bound on the number of sensors that can be chosen at each time-step). Let
z[k] ∈ {0, 1}q be the indicator vector of the set of chosen sensors at time-step k, and denote the
set of feasible indicator vectors (which satisfy the specified constraints) at time-step k to beZ[k].

Given an estimation strategy for the state x, the sensor scheduling problem is to design a
scheduling policy P = {z[k]|z[k] ∈ Z[k],∀k} such that the average error covariance of the cor-
responding estimator x̂P is minimized. Specifically, for the finite-horizon version of the problem
over time interval [0, T ], the objective is to solve the following optimization problem:

min
P,x̂P

JT ,
1

T

T∑
k=1

E[(x[k]− x̂P [k])TQk(x[k]− x̂P [k])],

where {Qk} is a sequence of semidefinite weighting matrices.

For the infinite-horizon version, the goal is to solve the following problem:

min
P,x̂P

lim sup
T→∞

JT .

Note that the specific form of the estimator x̂P depends on the estimation strategy adopted
and its performance depends on the scheduling policy P . A common choice of the estimation
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strategy is Kalman filtering and the corresponding sensor scheduling problem has been studied
extensively, especially the finite-horizon version of the problem.

In [40], the Kalman filter is used for state estimation after data fusion and the authors pro-
posed a stochastic sensor scheduling algorithm to minimize an upper bound on the expected
steady state estimation error covariance. In [58], the authors gave a convex relaxation based ap-
proach for parameter estimation, which provided a general framework for various cost functions
(e.g., performance criteria or energy and topology constraints); however, [58] assumes that the
sensor measurements are uncorrelated, which may not be true in practice. Thus, in [95], an-
other framework is proposed to handle correlated measurements. Some other interesting works
include [144], where optimal and suboptimal sensor scheduling algorithms based on tree prun-
ing techniques are given, and [74], where the optimization problem is decomposed into coupled
small convex optimization problems which can be solved in a distributed fashion. However, so
far, the solutions proposed for the finite-horizon problem either are computationally inefficient
or consist of heuristics with no guaranteed performance (except for the greedy policies relying
on submodularity of the corresponding objective functions) [55].

Recently, the infinite-horizon sensor scheduling problem has received increasing attentions,
e.g., see [56,71,74,99,150]. In [71], the authors considered the continuous-time sensor schedul-
ing problem; leveraged the results of the classical Restless Bandit Problem, they provided an-
alytical expressions for a simplified scalar version of the problem and proposed a family of
periodically switching policies for the multi-dimensional systems. In [74], the authors studied
a discrete-time version of the problem. While the original problem is deterministic, they pro-
posed a stochastic strategy with performance bounds; moreover, they prove the monotonicity and
trace-convexity properties of the underlying discrete-time modified ARE (MARE) and provided
a closed-form solution for a special class of MARE. In [56], the authors considered the discrete-
time sensor scheduling problem and characterized the conditions under which there exists a
schedule with uniformly bounded estimation error covariance. When such conditions are sat-
isfied, they proposed a scheduling algorithm that guarantees bounded error covariance. In [150],
some interesting properties of the solutions of the discrete-time infinite-horizon scheduling prob-
lem are demonstrated; specifically, the authors showed that both the optimal infinite-horizon
average-per-stage cost and the corresponding optimal schedules are independent of the covari-
ance matrix of the initial state, and the optimal estimation cost can be approximated arbitrarily
closely by some periodic schedule.

Finally, we note that the actuator scheduling problem (i.e., the problem of scheduling actu-
ators to minimize control efforts) can be regarded as a dual problem of the sensor scheduling
problem; see [26] for more details.
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4.3 Problem Formulation

In this section, we formulate the design-time sensor selection problem formally. The system
model is the same as the sensor scheduling problem (i.e., equations (4.1) and (4.3) in Section 4.2).
The difference is that the set of chosen senors do not change over time (i.e., the indicator variables
do not evolve over time). This is due to the fact that in the configuration of multi-processor
systems, the sensors can only be installed on the system at design-time. Let z ∈ {0, 1}q be the
indicator vector of the installed sensors, i.e., zi = 1 if and only if sensor i ∈ Q is installed. Define
the selection matrix Z , diag(z1Is1×s1 , · · · , zqIsq×sq) and denote C̃ , ZC and Ṽ , ZV ZT .

Each sensor i ∈ Q has an associated cost ri ∈ R≥0, representing, for example, monetary
costs of purchasing and installing that sensor or the energy consumption of that sensor. Define
the cost vector r , [r1 · · · rq]T . We also assume there is a sensor budget β ∈ R≥0, representing
the total cost that can be spent on sensors from Q.

For any given subset of sensors that is installed, the Kalman filter provides the optimal esti-
mate of the state using the measurements from those sensors (in the sense of minimizing mean
square estimation error, under the stated assumptions on the noise processes).

The algorithm for the Kalman filter consists of two steps: the measurement update and time
update. Let Σk|k−1(z) and Σk|k(z) be the a priori error covariance matrix and the a posteriori
error covariance matrix (at time-step k) of the Kalman filter when the set of sensors indicated by
the vector z are installed, respectively. Then for a given selection z, we have

Σk|k−1(z) = AΣk−1|k−1(z)AT +W,

and

Σk|k(z) = Σk|k−1(z)− Σk|k−1(z)C̃T (C̃Σk|k−1(z)C̃T + Ṽ )−1C̃Σk|k−1(z).

If the pair (A, C̃) is detectable (and given the stabilizability of (A,W
1
2 )), both Σk|k−1(z) and

Σk|k(z) will converge to unique limits [2]; denote the limits of Σk|k−1(z) and Σk|k(z) by Σ(z) and
Σ∗(z), respectively. We will also use Σ(S) and Σ∗(S) to denote these quantities for a specific
set of sensors S ⊆ Q.

The limit Σ(z) of the a priori error covariance satisfies the following discrete algebraic
Riccati equation (DARE) [2]:

Σ(z) = AΣ(z)AT +W − AΣ(z)C̃T (C̃Σ(z)C̃T + Ṽ )−1C̃Σ(z)AT . (4.4)

The DARE is an important research topic in control and filtering, and has many applications
(e.g., the LQR problem, canonical factorization, and H∞ control problem) [70]. However, there
is still no known closed form solution for DARE [116].
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Using the matrix inversion lemma [48], the DARE (4.4) can also be written as

Σ(z) = W + A(Σ−1(z) + C̃T Ṽ −1C̃︸ ︷︷ ︸
R(z)

)−1AT , (4.5)

where the matrix R(z) is the so-called sensor information matrix corresponding to the indicator
vector z.1 Note that R(z) is a function of the indicator vector z and subsumes the information
contribution of the chosen sensors specified by z.

The limit Σ∗(z) of the a posteriori error covariance satisfies the following equation [15]:

Σ∗(z) =
(
(AΣ∗(z)AT +W )−1 +R(z)

)−1
. (4.6)

Note that Σ(z) and Σ∗(z) are coupled as follows [15]:

Σ∗(z) = Σ(z)− Σ(z)C̃T (C̃Σ(z)C̃T + Ṽ )−1C̃Σ(z), (4.7)

or equivalently,
Σ∗(z) = (Σ−1(z) +R(z))−1. (4.8)

Further note that the inverses in the equations (4.4)-(4.8) are interpreted as pseudo-inverses if the
arguments are not invertible.2

Definition 14 (Feasible Sensor Selection). The sensor selection z ∈ {0, 1}q is said to be feasible
if both Σk|k−1(z) and Σk|k(z) converge to finite limits (denoted by Σ(z) and Σ∗(z), respectively)
as k →∞, and the limits do not depend on Σ0|0(z). When z is not feasible, define trace(Σ(z)) =
∞ and trace(Σ∗(z)) =∞.

We now propose the following priori and posteriori Kalman filtering sensor selection (KFSS)
problems. Denote s =

∑q
i=1 si.

Problem 1 (Priori KFSS Problem). Given a system dynamics matrix A ∈ Rn×n, a measurement
matrix C ∈ Rs×n, a system noise covariance matrix W ∈ Sn+, a sensor noise covariance matrix
V ∈ Ss+, a cost vector r ∈ Rq

≥0, and a budget β ∈ R≥0, the priori KFSS problem is to solve the
optimization problem:

min
z

trace(Σ(z))

s.t. rT z ≤ β

z ∈ {0, 1}q

where Σ(z) is given by equation (4.4).
1Note that the sensor information matrix is different from the Fisher information matrix, which is the inverse of

the error covariance matrix [2].
2For the special case of V = 0, the matrix inversion lemma does not hold under pseudo-inverses (unless z = 0)

and thus we can compute Σ(z) and Σ∗(z) by equations (4.4) and (4.7).
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Problem 2 (Posteriori KFSS Problem). Given a system dynamics matrix A ∈ Rn×n, a measure-
ment matrix C ∈ Rs×n, a system noise covariance matrix W ∈ Sn+, a sensor noise covariance
matrix V ∈ Ss+, a cost vector r ∈ Rq

≥0, and a budget β ∈ R≥0, the posteriori KFSS problem is to
solve the optimization problem:

min
z

trace(Σ∗(z))

s.t. rT z ≤ β

z ∈ {0, 1}q

where Σ∗(z) is given by equation (4.6).

Note that the only difference between Problem 1 and Problem 2 is the cost function (the
former is to minimize trace(Σ(z)) and the latter is to minimize trace(Σ∗(z))). In the following
sections, we will discuss the complexity of the two KFSS problems and investigate approaches
to address these problems.

4.4 Complexity of the Priori and Posteriori KFSS Problems

In this section, we show that the priori and posteriori KFSS problems are both NP-hard. We will
use the following well-known result on Kalman filtering [2].

Lemma 6. When the pair (A,W
1
2 ) is stabilizable, the indicator vector z is feasible if and only

if the pair (A, C̃) is detectable.

To show the complexity of the two KFSS problems, we will relate them to the problems
described below.

Problem 3. Given a matrix A ∈ Rn×n, the problem of finding a diagonal matrix M ∈ Rn×n

with the fewest nonzero elements such that the pair (A,M) is controllable (resp. stabilizable,
detectable) is referred to as the minimum controllability (resp. minimum stabilizability, minimum
detectability) problem.

Theorem 10. The priori KFSS problem and the posteriori KFSS problem are NP-hard.

Proof. We first give a reduction from the minimum detectability problem to the priori KFSS
problem (resp. posteriori KFSS problem). Given A ∈ Rn×n for the minimum detectability
problem and some p ∈ {1, . . . , n}, the instance for the corresponding priori KFSS problem
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(resp. posteriori KFSS problem) with parameter p is the system matrix A, the setQ of n sensors
with the measurement matrix C = In×n, the system noise covariance matrix W = In×n, the
sensor noise covariance matrix V = In×n, the cost vector r = [1 · · · 1]T and the budget β = p.3

Suppose there is an algorithm A that determines the minimum value of trace(Σ(z)) (resp.
trace(Σ∗(z)) ) over all z satisfying bT z ≤ B, or outputs a flag if there is no feasible sensor
selection; recall that trace(Σ(z)) = ∞ (resp. trace(Σ∗(z)) = ∞) for any selection z that is not
feasible. If the output of algorithm A is finite, by Lemma 6, we know that the solution to the
minimum detectability problem (i.e., the minimum number of nonzero entries of the diagonal
matrix M ∈ Rn×n such that (A,M) is detectable) is at most p. In order to solve the minimum
detectability problem, we need to call algorithm A at most n times (i.e., increase p from 1 to
n). Thus, if the minimum detectability problem is NP-hard, then the priori KFSS problem (resp.
posteriori KFSS problem) is also NP-hard.

The NP-hardness of the minimum detectability problem follows from the proof of NP-hardness
of the minimum controllability problem in [105]. Specifically, given n1, n2 ∈ Z≥1 and a collec-
tion C of n1 nonempty subsets of {1, · · · , n2}, letA(C) = U−1 diag(1, · · · , n1 +n2 +1)U , where
U is some invertible matrix related to C.4 In [105], the author proved that C has a hitting set with
cardinality s if and only if there exists a diagonal matrix B with no more than s nonzero en-
tries such that (A(C), B) is controllable. Since the hitting set problem is NP-hard, the minimum
controllability problem is also NP-hard.

Note that the set of eigenvalues of A(C) is {1, · · · , n1 + n2 + 1}, which are all unstable.
Thus, to find a matrix B such that (A(C), B) is stabilizable is equivalent to finding a matrix B
such that (A(C), B) is controllable, which implies that the minimum stabilizability problem is
NP-hard. By the duality of stabilizability and detectability, the minimum detectability problem
is also NP-hard, completing the proof.

Note that the above result shows that it is NP-hard to find a feasible solution for the priori and
posterior KFSS problems, even when all sensors have identical costs. In the following, we show
that the priori and posterior KFSS problems are still NP-hard if the system dynamics matrix A is
stable (so that all sensor selections are feasible), but when the sensor costs can be arbitrary. The
reductions are both from the optimization form of the 0-1 knapsack problem [60].

Definition 15 (0-1 Knapsack Problem). Given a set of n items, each with a value αi and a weight

3Note that here s = n (i.e., si = 1,∀i).
4Note that U is constructed based on the incidence matrix of C; we omit the construction details and refer to the

proof of Theorem 1.1 in [105].
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βi, and a weight budget B, the 0-1 knapsack problem is to solve the optimization problem:

max
z

αizi

s.t.
n∑
i=1

βizi ≤ B

z ∈ {0, 1}n

where z is the indicator vector.

Theorem 11. The priori KFSS problem is NP-hard even under the additional assumption that
the system dynamics matrix A is stable.

Proof. Consider the case where the measurement of each sensor is a scalar (i.e., si = 1,∀i).
In this case, when A = aIn×n with 0 < a < 1 being some constant, C = In×n, V = 0, and
W = diag([w1 · · ·wn]), we know that

Σ =

Σ11

. . .
Σnn

 ,
where for i = 1, . . . , n,

Σii =

{
wi, zi = 1
wi

1−a2 , zi = 0
.

Thus, the reduction of the a priori estimation error by adding sensor i is

Σii(zi = 0)− Σii(zi = 1) =
a2

1− a2
wi, ∀i.

Given the number of items n, the set of values {αi}, the set of weights {βi} and the weight
budget B for the 0-1 knapsack problem, the corresponding instance for the priori KFSS problem
is the stable system matrix A = 1

2
In×n (i.e., take the constant a = 1

2
), the setQ of n sensors with

the measurement matrix C = In×n, the system noise covariance matrix W = diag([w1 · · ·wn])
with wi = 1−a2

a2 αi = 3αi, the sensor noise covariance matrix V = 0, the cost vector r =
[β1 · · · βn]T and the budget β = B.

Then we can see that an indicator vector z for the 0-1 knapsack problem is optimal if and
only if it is optimal for the corresponding priori KFSS problem. Since the optimization form
of the 0-1 knapsack problem is NP-hard, the priori KFSS problem is NP-hard even under the
additional assumption that the matrix A is stable, completing the proof.
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Theorem 12. The posteriori KFSS problem is NP-hard even under the additional assumption
that the system dynamics matrix A is stable.

Proof. Consider the case where the measurement of each sensor is a scalar (i.e., si = 1,∀i). In
this case, when A = 0, C = In×n, V = 0, and W = diag([w1 · · ·wn]), we have

Σ∗ =

Σ∗11
. . .

Σ∗nn

 ,
where for i = 1, . . . , n,

Σ∗ii =

{
0, zi = 1

wi, zi = 0
.

Thus, the reduction of the a posteriori estimation error by adding sensor i is

Σ∗ii(zi = 0)− Σ∗ii(zi = 1) = wi,∀i.

Given the number of items n, the set of values {αi}, the set of weights {βi} and the weight
budget B for the 0-1 knapsack problem, the corresponding instance for the posteriori KFSS
problem is the (stable) system matrix A = 0, the setQ of n sensors with the measurement matrix
C = In×n, the system noise covariance matrix W = diag([w1 · · ·wn]) with wi = αi, the sensor
noise covariance matrix V = 0, the cost vector r = [β1 · · · βn]T and the budget β = B.

Following the same argument as in the proof of Theorem 11 and the fact that the optimization
form of the 0-1 knapsack problem is NP-hard, the posteriori KFSS problem is NP-hard even
under the additional assumption that the matrix A is stable.

Remark 7. There are few works in the literature that explicitly characterize the complexities
of sensor selection problems. Exceptions include [11] where a utility-based sensor selection
problem is shown to be NP-hard, and [140] where the NP-hardness of an energy metric based
sensor selection problem is established.

In the rest of this chapter, we focus on the case where the pair (A,Ci) is detectable, ∀i ∈
{1, · · · , q}. Note that in this case, any choice of sensors (except z = 0 if A is unstable) is
feasible.
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4.5 Upper Bounds on the Performance of Sensor Selection Al-
gorithms

In this section, we study worst-case bounds on the performance of sensor selection algorithms
for the priori and posteriori KFSS problems. Specifically, we consider the following ratio r(Σ):

r(Σ) ,
trace(Σworst)

trace(Σopt)
,

where Σopt and Σworst are the solutions of the DARE corresponding to the optimal selection of
sensors and the worst-case feasible selection, respectively, and also the ratio

r(Σ∗) ,
trace(Σ∗worst)

trace(Σ∗opt)
,

which is defined similarly.

Remark 8. Note that for any a priori covariance (resp. a posteriori covariance) based sensor
selection algorithm, the performance of that algorithm is within r(Σ) (resp. r(Σ∗)) times the
optimal performance. In other words, the quantities r(Σ) and r(Σ∗) characterize the ‘spectrum’
of the performance of all feasible selections.

Note that since it is in general difficult to obtain the analytical solution of the DARE (4.4)
(and also the steady state a posteriori error covariance from equation (4.8)), the problem of
providing bounds for the DARE solution has been studied extensively in the literature; see [69]
and the references therein.

However, the existing upper bounds on the DARE solution typically assume that the system
is stable [72] or that the corresponding sensor information matrix is nonsingular [63, 64]; the
latter assumption is restrictive in the context of sensor selection. Thus, in this section, we focus
on the case where the system is stable to obtain more insights into the factors that affect the
performance of sensor selection algorithms.

4.5.1 Upper Bound for r(Σ)

We first derive an upper bound on the ratio r(Σ) for the priori KFSS problem when the system
is stable. We will be using the following results.
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Lemma 7 ( [64]). For Σ � 0 satisfying the DARE (4.5) with W � 0, we have

Σ(z) � A(W−1 +R(z))−1AT +W. (4.9)

Lemma 8 ( [149]). For Hermitian matrices M,N ∈ Cn×n, we have

λn(M) trace(N) ≤ trace(MN) ≤ λ1(M) trace(N).

Lemma 9 ( [48]). For Hermitian matrices M,N ∈ Cn×n, we have the following Weyl’s inequal-
ities:

λn(M +N) ≥ λn(M) + λn(N),

λ1(M +N) ≤ λ1(M) + λ1(N).

Lemma 10 ( [81]). A square matrix A ∈ Rn×n is Schur stable if and only if there exists a
nonsingular matrix P such that σ1(PAP−1) < 1.

Remark 9. Note that in the above lemma, the matrix P can be constructed by using the eigenval-
ues and (generalized) eigenvectors of A [81]. Thus, for any stable square matrix A, there exists
some positive constant αA , σ2

1(P )

σ2
n(P )(1−σ2

1(PAP−1))
which only depends on A, where the matrix P

is nonsingular and satisfies σ1(PAP−1) < 1. This constant αA will be used to establish the
performance upper bounds in the rest of this section.

To incorporate the nature of the sensor set Q, our results will use the sensor information
matrix R(z) from (4.5) which encapsulates both the measurement matrix C̃ and the sensor noise
covariance matrix Ṽ corresponding to the indicator vector z.

Theorem 13. For a given cost vector r and budget β, let R = {R(z)} be the set of all
sensor information matrices such that the constraint rT z ≤ β is satisfied. Denote λmax

1 ,
max{λ1(R)|R ∈ R}. Then for the system (5.5) with stable A and W � 0,

r(Σ) ≤ αA(1 + λmax
1 λn(W )) trace(W )

nσ2
n(A)λn(W ) + (1 + λmax

1 λn(W )) trace(W )
, (4.10)

where αA is some positive constant that only depends on A, as defined in Remark 9.
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Proof. We first provide an upper bound for trace(Σworst). Consider the case where z = 0 (i.e., no
sensors are chosen). Note that since A is stable, z = 0 is feasible (in the sense of Definition 14).
In this case, the DARE (4.4) becomes the Lyapunov equation

Σ(0) = AΣ(0)AT +W.

Define
Σ̄ = PΣ(0)P T

and
W̄ = PWP T ,

where P is nonsingular and satisfies σ1(PAP−1) < 1. Note that since the matrix A is stable, by
Lemma 10, such a matrix P always exists.

Let D = PAP−1. Then we get

Σ̄ = DΣ̄DT + W̄ .

By Lemma 8, we know that

trace(DΣ̄DT ) = trace(DTDΣ̄)

≤ σ2
1(D) trace(Σ̄)

and thus

trace(Σ̄) ≤ trace(W̄ )

1− σ2
1(D)

.

Since W,Σ � 0 and the matrix P TP is symmetric, by Lemma 8, we know that

trace(Σ̄) = trace(P TPΣ(0))

≥ σ2
n(P ) trace(Σ(0)),

and

trace(W̄ ) = trace(P TPW )

≤ σ2
1(P ) trace(W ).

Combining the above analysis, we obtain

trace(Σworst) ≤ trace(Σ(0))

≤ σ2
1(P )

σ2
n(P )

trace(W )

1− σ2
1(D)

= αA trace(W ),
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where the last equality is due to Lemma 10 and Remark 9.

Next we derive a lower bound for trace(Σopt). Specifically, for any given z, we have

trace(Σ(z)) ≥ trace(A(W−1 +R(z))−1AT +W ) (4.11)

≥ λn(ATA) trace((W−1 +R(z))−1) + trace(W ) (4.12)

= σ2
n(A)

n∑
i=1

1

λi(W−1 +R(z))
+ trace(W )

≥ nσ2
n(A)

λ1(W−1 +R(z))
+ trace(W )

≥ nσ2
n(A)

λ1(W−1) + λ1(R(z))
+ trace(W ) (4.13)

≥ nσ2
n(A)

1
λn(W )

+ λmax
1

+ trace(W ).

Note that inequality (4.11) is due to Lemma 7, inequalities (4.12) is due to Lemma 8 and inequal-
ity (4.13) is due to Lemma 9. Further note that the derived lower bound for trace(Σ(z)) holds
for any sensor selection z and thus holds for trace(Σopt).

The result follows by combining the upper bound for trace(Σworst) and the lower bound for
trace(Σopt).

The above result also yields a simpler upper bound for r(Σ) which highlights the role of the
system dynamics matrix A.

Corollary 1. If the given system (5.5) is stable, there exists a constant αA which only depends
on the matrix A such that r(Σ) ≤ αA. Furthermore, if the matrix A is stable and normal (i.e.,
ATA = AAT ), then

r(Σ) ≤ 1

1− λ2
1(A)

.

Proof. The proof of the first part (i.e., r(Σ) ≤ αA) immediately follows by noting that the
denominator in (4.10) is lower bounded by (1 + λmax

1 λn(W )) trace(W ).

When A is normal, the set of singular values of A coincides with its eigenvalues [48] (i.e.,
σi(A) = |λi(A)|,∀i). SinceA is stable, we know that σ1(A) = |λ1(A)| < 1. Thus, in Lemma 10,
we can choose the transformation matrix P to be the identity matrix (i.e., P = I). Then by
Remark 9, we have r(Σ) ≤ αA = 1

1−λ2
1(A)

, completing the proof.
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Remark 10. Note that for fixed A and W , the upper bound of r(Σ) in (4.10) approaches αA
as λmax

1 gets bigger. In other words, when the measurement (from the past time-step) is more
accurate, the worst-case difference among all feasible sensor selection algorithms is mainly de-
termined by the system dynamics. Since there exists an upper bound for r(Σ) which only depends
on the system dynamics matrix A, no sensor selection algorithm will provide arbitrarily bad per-
formance as long as A is well conditioned, regardless of the statistics of the noise processes and
the nature of the sensor set Q. In particular, if A = 0, then the state x[k + 1] in (5.5) is uncorre-
lated with x[k], and thus measurements of the current state are not useful in predicting the next
state. This is corroborated by the fact that r(Σ) = 1 in this case.

4.5.2 Upper Bound for r(Σ∗)

Next we provide an upper bound on the ratio r(Σ∗) for the posteriori KFSS problem when the
system is stable. We will use the following result.

Lemma 11 ( [48]). For matrices M,N ∈ Sn+, if M � N , we have M−1 � N−1.

Theorem 14. For given cost vector r and budget β, letR = {R(z)} be the set of all sensor infor-
mation matrices such that the constraint rT z ≤ β is satisfied. Denote λmax

1 , max{λ1(R)|R ∈
R}. Then for the system (5.5) with stable A and W � 0,

r(Σ∗) ≤ αA

(
λ1(W )

λn(W )
+ λmax

1 λ1(W )

)
, (4.14)

where αA is some positive constant that only depends on A, as defined in Remark 9.

Proof. We first give an upper bound for trace(Σ∗worst). Since R(z) � 0,∀z, by Lemma 11 and
equation (4.8), we know that Σ∗(z) � Σ(z),∀z. Thus, a simple upper bound for trace(Σ∗worst) is

trace(Σ∗worst) ≤ trace(Σworst)

≤ αA trace(W )

≤ nαAλ1(W ),

where αA is defined in Remark 9.

Next we give a lower bound for trace(Σ∗opt). For convenience, define the following notation:

X1(z) , (A(W−1 +R(z))−1AT +W )−1 +R(z),

X2(z) , A(W−1 +R(z))−1AT +W.
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Note that X2(z) is the matrix lower bound for Σ(z) given in Lemma 7 and X1(z) = X−1
2 (z) +

R(z). Thus, by Lemma 11 and equation (4.8), we have

Σ∗(z) = (Σ−1(z) +R(z))−1

� (X−1
2 (z) +R(z))−1

= X−1
1 (z).

Moreover, it is easy to see that X2(z) � W and thus λn(X2(z)) ≥ λn(W ).

Then for any given z, we have

trace(Σ∗(z)) ≥ trace(X−1
1 (z))

=
n∑
i=1

1

λi(X1(z))
(4.15)

≥ n

λ1(X1(z))

≥ n

λ1(X−1
2 (z)) + λ1(R(z))

(4.16)

≥ n
1

λn(X2(z))
+ λmax

1

(4.17)

≥ n
1

λn(W )
+ λmax

1

.

Note that inequality (4.16) is due to Lemma 9. Since the above lower bound holds for any sensor
selection z, it also holds for trace(Σ∗opt).

The result follows by combining the upper bound for trace(Σ∗worst) and the lower bound for
trace(Σ∗opt).

Remark 11. As argued in Remark 10, when the system is stable, r(Σ) can be upper bounded by
a constant which only depends on the system matrix A. However, the above result suggests that
r(Σ∗) depends on both the system noise covariance matrix W and the achievable ‘quality’ of
measurements (which is characterized by λmax

1 ). In particular, when C = In×n, V = v̄In×n and
W = w̄In×n, where v̄, w̄ > 0 are some constants, we have λ1(W ) = λn(W ) = w̄, λmax

1 = 1
v̄

and

r(Σ∗) ≤ αA(1 +
w̄

v̄
).

Thus, for a fixed matrix A, the worst-case difference among all feasible sensor selection algo-
rithms becomes smaller if the system noise gets smaller (i.e., w̄ gets smaller) or the measurements
become more inaccurate (i.e., v̄ gets bigger).
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4.6 Greedy Algorithms

In this section, we explore simple greedy algorithms to solve the priori and posteriori KFSS
problems, given as Algorithm 1 and Algorithm 2, respectively. We focus on the case where
r = [1 · · · 1]T and β = p for some p ∈ {1, · · · , q} (i.e., our goal is to choose p sensors out of
the total q sensors to optimize the performance of the Kalman filter). In other words, an indictor
vector z is valid if z ∈ Zp whereZp is defined to be the set of indicator vectors with no more than
p nonzero elements. The basic idea of greedy algorithms is to iteratively pick sensors that provide
the largest incremental decrease in the steady state (a priori or a posteriori) error covariance.

Algorithm 1 A Priori Covariance based Greedy Algorithm
Input: System dynamics matrix A, set of all sensors Q, noise covariances W and V , and

constant p
Output: A set S of chosen sensors
1: k ← 0, S ← ∅
2: for k ≤ p do
3: for i ∈ Q ∩ S̄ do
4: Calculate trace(Σi,S) , trace(Σ(S ∪ {i}))
5: end for
6: Choose j with trace(Σj,S) = mini trace(Σi,S)
7: S ← S ∪ {j}, Q ← Q \ {j}, k ← k + 1
8: end for

Algorithm 2 A Posteriori Covariance based Greedy Algorithm
Input: System dynamics matrix A, set of all sensors Q, noise covariances W and V , and

constant p
Output: A set S of chosen sensors
1: k ← 0, S ← ∅
2: for k ≤ p do
3: for i ∈ Q ∩ S̄ do
4: Calculate trace(Σ∗i,S) , trace(Σ∗(S ∪ {i}))
5: end for
6: Choose j with trace(Σ∗j,S) = mini trace(Σ∗i,S)
7: S ← S ∪ {j}, Q ← Q \ {j}, k ← k + 1
8: end for

In the rest of this section, we will show that greedy algorithms are optimal (with respect to
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the corresponding KFSS problem) for two different classes of systems. However, for general
systems, we provide a negative result showing that the trace of the steady state a priori error
covariance and a posteriori error covariance (and other related metrics) do not satisfy certain
modularity properties in general, which precludes the direct application of classical results on
submodular function optimization. Finally, we will propose a variant of a priori covariance
based and a posteriori covariance based greedy algorithms by optimizing a relaxed objective
function.

4.6.1 Optimality of Greedy Algorithms for Two Classes of Systems

First note that when the sensor noises are uncorrelated, i.e., E
[
vi[k1](vj[k2])T

]
= 0,∀i 6=

j, k1, k2, then the sensor noise covariance matrix V is block diagonal; in this case, let V =
diag(V1, · · · , Vq) where Vi = E

[
vi[k](vi[k])T

]
. Then the sensor information matrix R(z) can be

written as

R(z) =

q∑
i=1

ziRi

where Ri , CT
i V
−1
i Ci is the sensor information matrix associated with sensor i. The following

result characterizes the relationship between the partial orders on information matrices to the
partial orders on the corresponding a priori and a posteriori error covariances.

Lemma 12 ( [53, 147]). For two selections of sensors z and z′, if R(z) � R(z′), then we have
Σ(z) � Σ(z′) and Σ∗(z) � Σ∗(z′).

In other words, when R(z) � R(z′), the sensor selection associated with z is better than the
one associated with z′ (in the sense of having smaller a priori and a posteriori error covariances).5

The following result shows that when the sensor noises are uncorrelated and the set of in-
formation matrices {Ri} is totally ordered, then Algorithm 1 and Algorithm 2 are optimal (with
respect to the corresponding KFSS problems).

Proposition 6. If the sensor noises are uncorrelated and the set of information matrices {Ri}
is totally ordered with respect to the order relation of positive semidefiniteness, then the optimal
solution of the priori and posteriori KFSS problems with r = [1 · · · 1]T and β = p is the set
of sensors P ⊆ Q such that |P| = p and Ri � Rj, ∀i ∈ P , j ∈ Q \ P . Furthermore, both
Algorithm 1 and Algorithm 2 output this optimal set of sensors.

5Note that the partial order based on positive semidefiniteness between the matrices directly leads to an order on
their traces.
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Proof. We first show that the optimal solution of the priori and posteriori KFSS problems is the
specified set of sensors P . Denote zP as the indicator vector associated with set P . Since the
set of information matrices {Ri} is totally ordered, we have R(zP) � R(z),∀z ∈ Zp. Thus, by
Lemma 12, we know that trace(Σ(zP)) ≤ trace(Σ(z)) and trace(Σ∗(zP)) ≤ trace(Σ∗(z)),∀z ∈
Zp, which implies that the set of sensors P is the optimal solution of the priori and posteriori
KFSS problems.

Next we show by induction that the output of Algorithm 1 and Algorithm 2 is the set of
sensors P . Without loss of generality, let R1 � · · · � Rq. Then P = {1, · · · , p}. By Lemma 12,
we know that Σ({1}) � Σ({i}),∀i (resp. Σ∗({1}) � Σ∗({i}),∀i); thus, after the first loop, the
output of Algorithm 1 (resp. Algorithm 2) is to choose the first sensor.

Assume that Algorithm 1 (resp. Algorithm 2) outputs the first k sensors after the k-th
loop. By Lemma 12, we know that Σ({1, · · · , k, k + 1}) � Σ({1, · · · , k, i}),∀i > k (resp.
Σ∗({1, · · · , k, k + 1}) � Σ∗({1, · · · , k, i}), ∀i > k); thus, the output of Algorithm 1 (resp. Al-
gorithm 2) is {1, · · · , k, k+1} after the (k+1)-th loop. Thus, after the p-th loop, the final output
of both algorithms is the set of sensors P , completing the proof.

Remark 12. Note that in [147], the authors showed that for a given p, under the same conditions
as in Proposition 6, the optimal solution of the posteriori KFSS problem is the set of p sensors
with ‘largest’ information matrices. However, their algorithm is a special case of Algorithm 2
and they do not consider the priori KFSS problem.

Next we consider another class of systems where the system dynamics matrix A is stable and
block-diagonal and the matrices C,W and V are all block-diagonal. Specifically, consider the
following block-diagonal system matrices:

A = diag(A1, · · · , Aq),
W = diag(W1, · · · ,Wq),

C = diag(Cd
1 , · · · , Cd

q ),

V = diag(V1, · · · , Vq),

(4.18)

where Ai, Cd
i ,Wi, Vi ∈ Rsi×si ,∀i. Note that Ci ∈ Rsi×n and Cd

i contains si columns of Ci. The
following result shows that Algorithm 1 and Algorithm 2 are optimal in this case.

Proposition 7. For the priori and posteriori KFSS problems with r = [1 · · · 1]T , β = p, stable
A and the system matrices A,C,W and V all being block-diagonal as specified in (4.18), Al-
gorithm 1 is optimal for the priori KFSS problem and Algorithm 2 is optimal for the posteriori
KFSS problem.
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Proof. Note that since A is stable, Ai is stable, ∀i, and thus any selection of sensors is feasible
(in the sense of Definition 14). Further note that for this class of systems, the a priori and a
posteriori error covariances Σ and Σ∗ are both block-diagonal. Specifically, we have

Σ = diag(Σ1, · · · ,Σq)

where
Σi = Wi + Ai

(
Σ−1
i + zi(C

d
i )TV −1

i Cd
i

)−1
ATi , ∀i,

and
Σ∗ = diag(Σ∗1, · · · ,Σ∗q)

where
Σ∗i =

(
(AiΣ

∗
iA

T
i +Wi)

−1 + zi(C
d
i )TV −1

i Cd
i

)−1
,∀i.

Thus, for any indicator vector z, we have

trace(Σ(z)) =
∑
i

trace(Σi(zi))

and
trace(Σ∗(z)) =

∑
i

trace(Σ∗i (zi)).

We will show that Algorithm 1 is optimal in this case and the optimality of Algorithm 2 follows
the same reasoning.

Define
∆i , trace(Σi(zi = 0))− trace(Σi(zi = 1))

which is the reduction of the a priori estimation error by adding sensor i. Without loss of gen-
erality, assume that ∆1 ≥ · · · ≥ ∆q. Since trace(Σ({1, · · · , p})) ≤ trace(Σ(z)),∀z ∈ Zp, the
optimal solution for the priori KFSS problem is the first p sensors. By following a similar argu-
ment as in the proof of Proposition 6, we know that after the k-th loop, the output of Algorithm 1
is the first k sensors and thus the final output of Algorithm 1 is the first p sensors which is the
optimal solution, completing the proof.

Remark 13. Note that since both A and C are block-diagonal, the stability of A is necessary to
guarantee that any selection of sensors is feasible. Further note that when the sensor noise co-
variance matrix V is block-diagonal (as specified in (4.18)), the sensor noises are uncorrelated;
however, there does not exist a total order for the set of information matrices in general. For
example, consider a system with system matrices as specified in (4.18). Then the sensor infor-
mation matrices associated with the first and second sensors are R1 = diag(Rd

1, 0, 0, · · · , 0)
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and R2 = diag(0, Rd
2, 0, · · · , 0), respectively, where Rd

i , (Cd
i )TV −1

i Cd
i , and R1 − R2 =

diag(Rd
1,−Rd

2, 0, · · · , 0) is indefinite unless Rd
1 = 0 or Rd

2 = 0. Thus, the set of instances in
Proposition 6 and Proposition 7 are disjoint. Roughly speaking, the class of systems in Propo-
sition 6 has the property that one can rank the contribution of each sensor while the class of
systems in Proposition 7 possesses the property that the influence of each sensor is separable.

4.6.2 Lack of Submodularity of the Cost Functions

Outside of the special cases discussed in Proposition 6 and Proposition 7, there are few tools
available to give performance guarantees on greedy algorithms. One such tool is the concept of
submodularity, which has been used in the analysis of greedy algorithms for the sensor schedul-
ing problem, as mentioned in the beginning of this section. Now we briefly review this concept
(see [83] for a comprehensive discussion) and show that the trace of the steady state a priori and
a posteriori error covariances (and other related metrics) do not satisfy this property in general.

Definition 16 (Normalized and Monotone). Let E be a finite set and define the set function
f : 2E → R. The set function f is normalized if f(0) = 0, and is monotone if for every
X ⊆ Y ⊆ E, f(X) ≤ f(Y ).

Definition 17 (Submodularity). Consider a setE and a set function f : 2E → R. The set function
f is submodular if for everyX, Y ⊆ E withX ⊆ Y and every x ∈ E \Y , f(X∪{x})−f(X) ≥
f(Y ∪ {x})− f(Y ), and is supermodular if −f is submodular.

An alternative way to define submodularity is through the property of diminishing marginal
return, i.e., a set function f is submodular if for every X, Y ⊆ E with X ⊆ Y and every
x ∈ E \ Y , f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y ). The concept of submodularity is
very useful in the study of combinatorial optimization problems, and the role of submodularity
in discrete optimization is similar to the role of convexity in continuous optimization.

A common approach to maximize a submodular function is to use a greedy algorithm, which
repeatedly chooses elements to maximize the marginal return. The performance of such a greedy
algorithm is characterized as follows.

Theorem 15 ( [83]). If the cost function f to be maximized is normalized, monotone and sub-
modular, then the performance of greedy algorithm is within a factor of 1 − 1

e
of the optimal.

For the priori or posteriori covariance matrices induced by the set of indicator vectors in Zp,
we will consider the problem of maximizing the following three performance metrics:
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• F1(·) = − trace(·)

• F2(·) = − log det(·)

• F3(·) = −λ1(·)

where the metric F1 captures the mean squared error, the metric F2 captures the volume of
the confidence ellipsoid (which is the ellipsoid that contains the estimation error with a certain
probability), and the metric F3 captures the worst-case error covariance. Note that maximizing
F1 is equivalent to minimizing −F1 as in the priori and posteriori KFSS problems.

In [55], the authors showed that the metric F2 is submodular for the single-step sensor
scheduling problem while F1 and F3 are neither submodular nor supermodular. One question
of interest is whether any of these metrics is submodular or supermodular for the priori and pos-
teriori KFSS problems. However, the following counterexamples show that these metrics are
neither supermodular nor submodular in general.

Definition 18. For metric Fi(Σ) (resp. Fi(Σ∗)) and two sets of sensors X and Y , let the change
of utility by adding Y toX be ∆Fi

(Y |X) (resp. ∆∗Fi
(Y |X)), i.e., ∆Fi

(Y |X) = Fi (Σ(X ∪ Y ))−
Fi (Σ(X)) and ∆∗Fi

(Y |X) = Fi (Σ
∗(X ∪ Y ))− Fi (Σ∗(X)).

Example 1 (Lack of submodularity of Fi(Σ)). Consider an instance of the priori KFSS problem
with

A =

[
0.3 0.4
0.2 0.6

]
, C =

[
1 0.5 0.7 0 0.3
0 0.5 0.3 0.7 0.7

]T
,

W = I2×2, V = I5×5,

si = 1,∀i, r = [1 · · · 1]T and β = 4. Note that A is stable and thus all selections of sensors are
feasible. One can check that

∆Fi
({1}|{2, 3}) < ∆Fi

({1}|{2, 3, 4}), i ∈ {1, 2, 3},

which contradicts the submodularity of the corresponding metrics, and

∆Fi
({1}|{2}) > ∆Fi

({1}|{2, 3}), i ∈ {1, 2, 3},

which contradicts the supermodularity of the corresponding metrics.
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Example 2 (Lack of submodularity of Fi(Σ∗)). Consider the same instance in Example 1 for the
posteriori KFSS problem. One can check that

∆∗Fi
({2}|{1, 3}) > ∆∗Fi

({2}|{1, 3, 4}), i ∈ {1, 2, 3},

which contradicts the supermodularity of the corresponding metrics, and

∆∗Fi
({5}|{2, 3}) < ∆∗Fi

({5}|{1, 2, 3}), i ∈ {1, 3},

which contradicts the submodularity of the corresponding metrics. Finally, consider another
instance as follows:

A =


0.4 0.9 0.8 0.9 1.1
0.2 0.1 −0.4 0.4 −0.5
−0.1 2.1 0.7 1.7 1.3
−0.9 −0.8 −0.8 −1.3 −1
0.4 −1.7 0.2 −1.3 −0.3

 ,W =


6.3 1.6 1.6 0.9 0.6
1.6 9.2 1.1 1.6 1.2
1.6 1.1 6.6 1.5 1.8
0.9 1.6 1.5 5.5 1
0.6 1.2 1.8 1 5.9

 ,

C =


−3 10 7 −3 2
−1 −7 3 −6 0
−8 3 3 3 5
−2 5 −3 2 −10
0 4 −3 5 1

 , V =


2.3 0.2 0 0 0
0.2 0.7 0 0 0
0 0 2.3 0 0
0 0 0 2.5 0
0 0 0 0 2.3

 ,
si = 1,∀i, r = [1 · · · 1]T and β = 4. Note that A is stable. One can check that

∆∗F2
({1}|{2}) < ∆∗F2

({1}|{2, 3, 4}),

which contradicts the submodularity of F2(Σ∗).

The above negative results imply that one may not be able to use classical results from com-
binatorial optimization to analyze Algorithm 1 and Algorithm 2; despite this, our simulations in
Section 4.7 show that these greedy algorithms perform well in practice.

Remark 14. It has been observed that greedy algorithms often perform well in practice for dif-
ferent types of “subset selection problem” (i.e., the problem of selecting a subset of items from
the total set to optimize a certain utility function) [23, 137]; however, there are few theoretical
explanations to such observation in the absence of submodularity. In [24], the authors pro-
posed a concept termed submodularity ratio as a measure of “approximate submodularity” and
this concept may serve as a predictor for the performance of greedy algorithms. We leave an
exploration of this venue for future work.
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4.6.3 Approximated KFSS Problem

Note that due to the nonlinear nature of the DARE and equation (4.6), it is in general difficult
to obtain the corresponding analytical solutions. Thus, in this subsection, we will consider an
approximation for the cost functions in the priori and posteriori KFSS problems and explore
its structural properties. Specifically, the solution of the DARE can be approximated by the
solutions of two Lyapunov equations as follows.

Lemma 13 ( [14]). Let Pw and Pv(z) satisfy the Lyapunov equations

Pw = APwA
T +W

and
Pv(z) = APv(z)AT +R(z),

respectively, where R(z) is the sensor information matrix from (4.5). For Σ(z) � 0 satisfying
the DARE (4.4), we have

(Pv(z) + P−1
w )−1 � Σ(z) � Pv(z)−1 + Pw.

Note that since Σ∗(z) = (Σ−1(z) + R(z))−1 � Σ(z), Pv(z)−1 + Pw is also a matrix up-
per bound for Σ∗(z). As a heuristic, we consider the problem of minimizing the upper bound
trace(Pv(z)−1+Pw) on trace(Σ(z)) and trace(Σ∗(z)) (rather than trace(Σ(z)) and trace(Σ∗(z))
themselves). Since the term Pw does not depend on the specific selection of sensors, we further
approximate the problem by seeking to maximize trace(Pv(z)).

Problem 4 (Approximated KFSS Problem). Given a system matrix A ∈ Rn×n, a measurement
matrix C ∈ Rs×n, a sensor noise covariance matrix V ∈ Ss+ and the number of sensors to be
chosen p, the approximated KFSS problem is to solve the following optimization problem:

max
z

trace(Pv(z))

s.t. 1T z ≤ p

z ∈ {0, 1}q
(4.19)

where Pv(z) is defined in Lemma 13.

Here we propose the following Lyapunov equation based greedy algorithm, given as Algo-
rithm 3. Note that in order to guarantee that the Lyapunov equation has a feasible solution, we

70



assume that the system matrix A is stable. We show that the cost function of the approximated
KFSS problem is modular when the measurement noises of the sensors are uncorrelated, which
indicates that the contribution of adding each sensor is separable, and thus Algorithm 3 provides
optimal performance for the approximated KFSS problem in this case. Note that the proof of
Theorem 16 is a relatively straightforward extension of the results in [131] on the continuous-
time Lyapunov equation to the discrete-time case.

Algorithm 3 Lyapunov Equation based Greedy Algorithm
Input: System dynamics matrix A, set of all sensors Q, noise covariance V , and constant p
Output: A set S of chosen sensors

1: k ← 0, S ← ∅
2: for k ≤ p do
3: for i ∈ Q ∩ S̄ do
4: Solve trace(P i,S

v ) = trace(Pv(S ∪ {i}))
5: end for
6: Choose j with trace(P j,S

v ) = maxi trace(P i,S
v )

7: S ← S ∪ {j}, Q ← Q \ {j}, k ← k + 1
8: end for

Lemma 14 ( [83]). A set function f : 2Q → R is modular if ∀S ⊂ Q, f(S) = f(0)+
∑

s∈S f(s).

Theorem 16. Let RS = CT
S V
−1
S CS be the sensor information matrix associated with the set S

of chosen sensors and let Pv(S) be the solution of Pv = APvA
T +RS . Define trace(Pv(0)) = 0.

If the matrix A is stable and the measurement noises of the sensors are uncorrelated and V � 0,
then the cost function trace(Pv(S)) is normalized, monotone and modular.

Proof. For any S ⊂ Q, since the covariance matrix V is block diagonal and V � 0, we know
that RS can be decomposed as RS =

∑
s∈S C

T
s V
−1
s Cs where Cs and Vs are the rows of C and
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measurement noise covariance matrix corresponding to sensor s, respectively. Thus, we get

Pv(S) =
∞∑
k=0

AkCT
S V
−1
S CS(AT )k

=
∞∑
k=0

Ak

(∑
s∈S

CT
s V
−1
s Cs

)
(AT )k

=
∑
s∈S

∞∑
k=0

AkCT
s V
−1
s Cs(A

T )k

=
∑
s∈S

Pv(s).

Note that the first and last equalities are due to the analytic solution of the discrete-time Lyapunov
equation [45]. Since the trace operator is a linear function and trace(Pv(0)) = 0, by using
Lemma 14, we know that the function trace(Pv(S)) is normalized, monotone and modular.

Corollary 2. Let the set of sensors chosen by Algorithm 3 be S and the optimal solution of
the approximated KFSS problem be trace(P opt

v ). If the matrix A is stable and the measurement
noises of the sensors are uncorrelated and V � 0, then trace(Pv(S)) = trace(P opt

v ).

4.7 Simulation

In this section, we provide simulation results for the performance of the DARE based greedy
algorithm (Algorithm 1), the posteriori covariance based Greedy Algorithm (Algorithm 2), and
the Lyapunov equation based greedy algorithm (Algorithm 3) and discuss their complexity.

4.7.1 Performance Evaluation

In order to illustrate the performance of greedy algorithms considered in this chapter, we will
compare them with the following sensor selection strategies:

• Sparse optimization (abbr.: SparseOpt) approach for the priori KFSS problem from [26,
109]. Sparsity is achieved by adding a penalty function on the columns of the gain matrix.
Since there is in general no systematic method to choose the weight of the penalty function,
we fix the weight in the simulations and select the sensors corresponding to the columns
of the gain matrix with largest l1 norm.
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• Priori convex relaxation (abbr.: PriConRe) approach for the priori KFSS problem from
[147]. Note that we modify the algorithm in [147] for packet-dropping channels to handle
the case of reliable channels (corresponding to the priori KFSS problem considered in this
chapter).

• Posteriori convex relaxation (abbr.: PostConRe) approach for the posteriori KFSS problem
from [147].

• A random selection (abbr.: Random) of sensors for both the priori and posteriori KFSS
problems. We use this as a benchmark.

We consider two cases: the system is stable and the system is unstable but detectable. For
the first case, we randomly generate 300 stable systems all having dimension 5 (i.e., n = 5). For
each system, the goal is to choose 5 sensors out of a total of 20 (i.e., p = 5, q = 20, r = [1 · · · 1]T

and β = p) and the measurement of each sensor is a scalar (i.e., si = 1,∀i). The results are
summarized in Table 4.1.

For the second case, we also randomly generate 300 systems. For each system, the system
matrix A is unstable and the pair (A,Ci) is detectable, ∀i ∈ {1, · · · , q}. The other parameters
are the same (i.e., n = 5, p = 5, q = 20, r = [1 · · · 1]T , β = p and si = 1,∀i). The results are
summarized in Table 4.2.

From Table 4.1a and Table 4.2a, we see that for the priori KFSS problem, the priori convex
relaxation approach from [147] provides a set of sensors with smaller trace than the other algo-
rithms in a plurality of cases. However, this algorithm also exhibits larger variance than the other
algorithms (with high worst case deviation from optimality). On average, the sparse optimization
approach from [26,109] outperforms all the other algorithms, and this approach has the smallest
variance. As illustrated in Table 4.2a and Table 4.2a, Algorithm 1 exhibits comparable average
performance to the other algorithms.

From Table 4.1b and Table 4.2b, we see that Algorithm 2 and the posteriori convex relaxation
approach from [147] each outperforms the other in a comparable number of cases. However, once
again, Algorithm 2 provides more consistent results with better average performance.

From Table 4.1a and Table 4.1b, we see that in general Algorithm 3 performs worse than the
other algorithms. Although the performance of Algorithm 3 is not appealing, as we will show in
the next subsection, the algorithm is more efficient than the other algorithms.

To summarize, the a priori and a posteriori error covariance based greedy algorithms have
comparable performance with the other sensor selection algorithms in general. Moreover, as we
have argued in Section 1.4, compared to the priori and posteriori convex relaxation approaches
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in [147], greedy algorithms can be applied to a more general class of systems where the sensor
noise covariance matrix V is not necessarily block-diagonal.

Table 4.1: Performance comparison of different algorithms over 300 randomly generated stable
systems with scalar measurements and diagonal V . For Algorithm A, the table presents the
average, standard deviation and worst-case values of trace(ΣA)

trace(Σopt)
(in 4.1a) and trace(Σ∗A)

trace(Σ∗opt)
(in 4.1b)

over the 300 runs. The last column presents the percentage of the 300 systems for which the
corresponding algorithm outperforms all the other algorithms.

(a) Priori KFSS Problem

Average
Standard
Deviation Worst

Outperforms
Other

Algorithms
Algorithm 1 1.2 0.8 7.4 12%
Algorithm 3 2.4 6.3 59.5 9.5%
PriConRe 1.3 2.2 31.6 46%
SparseOpt 1.1 0.3 4.1 32.5%
Random 16.5 81.6 1020.8 0%

(b) Posteriori KFSS Problem

Average
Standard
Deviation Worst

Outperforms
Other

Algorithms
Algorithm 2 3.6 2.5 21.0 36.5%
Algorithm 3 31.5 49.0 305.4 12%
PostConRe 12.1 25.0 185.8 49%

Random 51.0 60.6 334.0 2.5%
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Table 4.2: Performance comparison of different algorithms over 300 randomly generated unsta-
ble systems with scalar measurements and diagonal V . For Algorithm A, the table presents the
average, standard deviation and worst-case values of trace(ΣA)

trace(Σopt)
(in 4.2a) and trace(Σ∗A)

trace(Σ∗opt)
(in 4.2b)

over the 300 runs. The last column presents the percentage of the 300 systems for which the
corresponding algorithm outperforms all the other algorithms.

(a) Priori KFSS Problem

Average
Standard
Deviation Worst

Outperforms
Other

Algorithms
Algorithm 1 1.4 1.3 13.5 11.3%
PriConRe 1.5 2.7 41.3 47.0%
SparseOpt 1.1 0.3 4.7 41.7%
Random 11.3 26.0 307.3 0%

(b) Posteriori KFSS Problem

Average
Standard
Deviation Worst

Outperforms
Other

Algorithms
Algorithm 2 4.6 3.9 37.2 49.7%
PostConRe 17.8 52.4 600.7 50.3%

Random 55.0 46.5 456.7 0%
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4.7.2 Complexity Analysis

To compare the complexity of the previous algorithms, note that the complexity of solving the
DARE and the Lyapunov equation are O(n3) and O(n2), respectively, where n is the number
of states [25]. If we aim to choose p sensors from a set of q sensors, then the complexity of
Algorithm 1 and Algorithm 3 are O(pqn3) and O(pqn2), respectively. Since we can obtain Σ∗

from Σ by equation (4.8), the complexity of Algorithm 2 is also O(pqn3).

As argued in [26], when the weight of the sparsity penalty function is fixed, the complexity
of the sparse optimization approach is O((n + s)6) by using the interior point method6 (recall
that s =

∑q
i=1 si is the dimension of the combined output y); however, the process of choosing

an appropriate weight for the sparsity penalty function (in order to obtain the desired level of
sparsity) requires additional computation. Moreover, the complexities of the priori and the pos-
teriori convex relaxation approaches from [147] are both O((n+ s)6) by using the interior point
method [13].

Thus, the complexity of greedy algorithms is lower than those of the other SDP based ap-
proaches. Figure 4.1 shows simulations that support this conclusion. Note that the simulation
is conducted on a typical 2.4-GHz personal computer, the goal is to choose 5 sensors out of 20
(i.e., p = 5, q = 20, r = [1 · · · 1]T and β = p) and we take the measurement of each sensor to
be a scalar (i.e., si = 1,∀i). Further note that we found our solver ran out of memory when the
number of states n exceeded 50 for the SDP based approaches.

4.8 Summary

In this chapter, we studied the Kalman filtering based design-time sensor selection problem. We
showed that it is NP-hard to find the optimal solutions for both the priori and posteriori KFSS
problems. Then by studying the ratios between the worst-case and optimal selections, we pro-
vided insights into the factors that affect the performance of sensor selection algorithms. Finally,
we investigated greedy algorithms and corresponding variant for the priori and posteriori KFSS
problems. Although the cost functions in the priori and posteriori KFSS problems do not pos-
sess certain modularity properties in general, the simulations indicated that greedy algorithms
perform well in practice. Moreover, compared to other sensor selection strategies, greedy algo-
rithms are more efficient.

6In [26], the authors present a customized algorithm to reduce the complexity to O(n6).
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Figure 4.1: Complexity comparison of different algorithms. The x-axis is the number of states n
and the y-axis is the running time of the algorithm.
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Chapter 5

Output Tracking for Nonlinear Dynamical
Systems

5.1 Introduction

A fundamental design problem in system and control engineering is to steer the state of the sys-
tem to track a specified time-varying reference signal. For example, in the control of CPU-GPU
subsystem in mobile platforms, the main objective is to drive the system output to track some
specified number of Frames Per Second (FPS) [59, 110]. Other applications include trajectory
tracking for mobile robots [87], altitude modification in flight control [80, 112] and behavior
tracking in biomedical systems [16, 19].

Among various approaches for the tracking problem, the model predictive control (MPC)
based framework has drawn much attention due to its capability to handle hard constraints on
the system (i.e., constraints on the system states and inputs) and satisfactory performance in
practice [12, 32, 37, 76, 115]. A major issue in the implementation of MPC is the need to solve
an optimization problem online iteratively, which requires a large amount of online computation
resources.

In order to address this issue, the so called explicit MPC (EMPC) approach has been pro-
posed, and the idea is to move most of the online computations offline. However, most of the
works on EMPC focus on linear systems and the study on nonlinear EMPC is far from mature,
where the prospects of EMPC are even higher [38, 115]. Existing studies on nonlinear EMPC
normally involve partitioning the feasible regions into boxes or hypercubes (e.g., the approaches
based on convex multi-parametric nonlinear programming [8, 57]) and thus the complexity may
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grow exponentially as the problem size increases in the worst-case, which prohibits its applica-
tion to systems with very limited online computational and storage resources (e.g., the multi-
processor subsystem in mobile platforms).

In this chapter, we study the nonlinear tracking problem in the absence of exact knowledge on
the reference signal at design time. Instead, we assume that the reference signals are contained
in some bounded set. In order to reduce the online computational and storage complexity and
provide scalability to higher dimensional state spaces, we extend the sampling-based EMPC
regulator in [17] to the tracking problem by regarding the reference as an extra parameter. Instead
of using the common method of partitioning the feasible region into critical subregions, the basic
idea of the sampling based approach is to sample the state and reference signal space using
deterministic sampling [17] and construct the EMPC by using sparse-sample based regression of
orthogonal polynomial basis functions.

Based on the results for the nominal system when there is no uncertainty, we also provide an
extension of the sampling based EMPC for the case where there is an additive bounded distur-
bance. Utilizing the same idea as in [88, 89] on tube-based robust control parametrization, we
propose a sampling based robust EMPC which consists of a nominal controller and an ancillary
controller, and the output of the system is guaranteed to stay in a certain neighborhood of the
nominal trajectory provided that the disturbance is small enough.

The rest of this chapter is organized as follows. In Section 5.2, we review the model predictive
control techniques. In Section 5.3, we present the class of systems that we are considering and
formally discuss the output tracking problem. In Section 5.4, we present the sampling based
ENMPC approach for output tracking, and provide stability and feasibility guarantees for the
proposed methodology in Section 5.5. In Section 5.6, we extend the nominal ENMPC to a robust
variant in order to attain robustness against a class of additive disturbances. In Section 5.7, we
illustrate the performance and efficiency of the proposed approaches with simulations. Finally,
some concluding remarks are given in Section 5.8.

5.2 Background: Model Predictive Control

In this section, we provide some background on model predictive control for the tracking prob-
lem. Since the theory on nonlinear MPC is not as well developed as linear MPC, we use linear
MPC to illustrate the corresponding techniques.

Consider the following discrete-time linear time-invariant system:

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k],
(5.1)

79



where x ∈ Rn is the state, y ∈ Rp is the output and u ∈ Rm is the input. Suppose that the system
is subject to state and input constraints such that x[k] ∈ X, u[k] ∈ U,∀k, where X and U are the
state and input constraint sets, respectively.

In order for the output of system (5.1) to track a constant reference yr without any steady
state offset (i.e., limk→∞ ‖y[k]− yr‖ = 0), there must exist a pair of steady state and associated
constant input (xr, ur) ∈ X× U such that

xr = Axr +Bur

yr = Cxr.

The following result characterizes the condition under which the system is capable to track any
constant reference in the absence of state and input constraints.

Lemma 15 ( [107]). For system (5.1) without state and input constraints, there exists a pair of
offset-free steady state and associated constant input (xr, ur) for any set-point if and only if

rank

([
I − A B
C 0

])
= n+ p. (5.2)

Remark 15. Note that the condition (5.2) implies that the number of controlled variables cannot
exceed either the number of states or the number of control inputs (i.e., p ≤ min{n,m}).

The basic idea of MPC is to use a model of the system to predict its future evolution and
apply the control law in a receding horizon fashion. At each time-step, a certain constrained op-
timization problem is solved (for a specified prediction horizon) and the obtained input sequence
will only be applied for the immediately following time-step; then at the next time-step, a new
optimal control problem based on up-to-date measurements of the state is solved over a shifted
horizon. Specifically, for a given reference yr and the associated constant state and input (xr, ur),
at each time-step k, we solve the following problem:

min
u

‖xk+Np − xr‖2
P +

k+Np−1∑
t=k

(
‖xt − xr‖2

Q + ‖ut − ur‖2
R

)
s.t. xt+1 = Axt +But,

xk = x[k],

xt ∈ X,∀t ∈ [k, k +Np],

ut ∈ U,∀t ∈ [k, k +Np],

xk+Np ∈ Xf ,

(5.3)
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where P � 0, Q � 0 and R � 0 are symmetric weighting matrices and Xf is the terminal set.
Note that here we denote the actual values by (x[k], u[k]) and the predicted values by (xk, uk).

Typically the terminal weighting matrix P is chosen to be the solution of the following prob-
lem:

max
P,Q,R

trace(P )

s.t. P = Q+ AT (P − PB(BTPB +R)−1BTP )A.
(5.4)

Note that here we allow the state cost Q and input cost R to be design parameters. If the costs
Q and R are fixed, the terminal cost P is just given by the solution of the corresponding discrete
algebraic Riccati equation (DARE) (i.e., the constraint in Problem (5.4)).

Denote K to be the corresponding Kalman gain matrix (i.e., K = −(R+BTPB)−1BTPA)
and define Ω to be the maximal positively invariant set corresponding to the input u = Kx [61].
For a given set-point yr ∈ Yr, the terminal set Xf can be chosen to be Xf = {xr} ⊕ Ω where xr
is the corresponding steady state.

Let the optimal solution of Problem (5.3) be U∗k =
[
(u∗k)

T · · · (u∗k+Np−1)T
]T

. Then we apply
the first sample of the obtained optimal control sequence to the system (i.e., apply u[k] = u∗k)
and repeat the procedure for the next time-step k + 1 based on the new measurement of the state
x[k + 1].

One disadvantage of the MPC approach is that we need to solve an optimization problem
online and this may not be practical especially when we have fast dynamics or limited online
computation resources. For example, in the multi-processor systems, the online computation
and storage resources are very limited.

To reduce the computational complexity, in [7, 9], the authors proposed the explicit MPC
(EMPC) approach. The basic idea of EMPC is to provide an explicit form of the control inputs in
terms of the state (and reference signal in the tracking problem) and use this explicit solution as
a control look-up table online. Define the sets of all possible steady states and inputs to be X and
U , respectively. For a given time-step k, the optimal control law u∗k(x[k], xr, ur) is a piecewise
affine function of x[k], xr and ur, defined over a polyhedral partition of the feasible parameters.
In other words, the optimal control law has the following form:

u∗k(x[k], xr, ur) =


H1x̃k + h1, if x̃k ∈ P1 , {x̃|L1x̃ ≤ l1}

...
...

HNr x̃k + hNr , if x̃k ∈ PNr , {x̃|LNr x̃ ≤ lNr}
.
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where x̃k =

x[k]
xr
ur

 and {Pi}Nr
i=1 form a polyhedral partition of X×X × U [12].

Although the explicit MPC approach can provide the optimal control law with lightweight
online computation, the storage complexity (i.e., the number of regions Nr over which the con-
trol law is defined) may grow exponentially in the worst-case, which limits its application to
relatively small problems (e.g., one/two inputs, up to five-ten states and three/four free control
moves) [145].

5.3 Problem Formulation

In this section, we formally formulate the nonlinear output tracking problem studied in this chap-
ter. We consider a class of discrete-time nonlinear systems, modeled by

x[k + 1] = f(x[k], u[k])

y[k] = h(x[k], u[k])
(5.5)

where x[k] ∈ Rn is the state, y[k] ∈ Rp is the output and u[k] ∈ Rm is the input. We assume that
the functions f and h are continuously differentiable and (0, 0) is an equilibrium of the system
(i.e., f(0, 0) = 0).

The system (5.5) is subject to the following constraints:

x[k] ∈ X,
u[k] ∈ U,

for any k ≥ 0, where the state constraint set X ⊆ Rn and the control constraint set U ⊆ Rm are
convex, compact and contain the origin in their interiors.

We assume that the reference signal yref takes values within a compact set Yref ⊆ Rp. We
also assume that the designer has information regarding the bounds on the values yref can take,
but not the reference signal itself.

For each set-point yr ∈ Yref, similar to the linear tracking problem, it is desirable to find a
pair of steady state and steady input (xr, ur) ∈ X× U such that

xr = f(xr, ur)

yr = h(xr, ur).
(5.6)
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However, such steady state and input (xr, ur) may not exist or may not be reachable under the
state and input constraints. In such scenarios, we obtain a pair of (xr, ur) for the reference value
yr by solving the following problem:

(x?r, u
?
r) = arg min

xr,ur
‖yr − h(xr, ur)‖2

Qr

s.t. xr = f(xr, ur),

xr ∈ X,
ur ∈ U,

(5.7)

where Qr � 0 is a symmetric weighting matrix. In other words, for a given set-point, we steer
the output of the system to the closest admissible steady output y∗r = h(x?r, u

?
r) while fulfilling

the state and input constraints.

Remark 16. Note that since (0, 0) is an equilibrium of the system, and X and U are convex
compact sets containing the origin in their interiors, Problem (5.7) is always feasible. When
the solution of Problem (5.7) is not unique, we can choose the one with smallest ‖u?r‖ which
corresponds to the steady state input with smallest energy.

For the system (5.5), our objective is to design an ENMPC controller which guarantees re-
cursive feasibility and stability with respect to the desired reference.

5.4 Sampling based Nominal ENMPC

In this section, we present the sampling based ENMPC approach for the nonlinear tracking prob-
lem. The basic idea of the sampling based ENMPC is to sample the augmented space X × Yref

(i.e., regard both the state and the reference as parameters). At each sampling point, we solve
a constrained optimization problem to obtain the corresponding optimal nonlinear MPC control
input. Then we construct the ENMPC control surface using linear regression with a pre-defined
set of tensored polynomial basis functions.

5.4.1 Sampling Scheme

To guarantee that the samples are distributed sufficiently evenly, we use the following notion of
a low-discrepancy sequence [17, 62].
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Definition 19. The discrepancy of a sequence {z(i)}Ni=1 ⊂ Z ⊂ Rnz is defined as

DN , sup
Z∈I

∣∣∣∣#ZNN − Vol(Z)

Vol(Z)

∣∣∣∣ ,
where I ⊂ Z is the set of nz-dimensional intervals of the form

nz∏
j=1

[aj, bj) = {z ∈ Z|aj ≤ zj < bj}

and #ZN is defined as #ZN , Card{i ∈ {1, · · · , N}|z(i) ∈ Z}. A sequence {z(i)}Ni=1 is said
to be low-discrepancy if limN→∞DN = 0.

In order to obtain low-discrepancy sequences, we adopt the quasi-random sampling scheme
where the set ofN samples {z(i)}Ni=1 are drawn from the Halton sequence [17,62]. Note that one
can also use other sampling schemes such as Sobol sequences or multi-level sparse grids [17].

5.4.2 ENMPC Design

At each sampling point z(i) = (x(i), yr(i)) ∈ X×Yref, we determine a pair of steady augmented
state pair (xr(i), ur(i)) for the set-point yr(i) by solving Problem (5.7). Then we solve the
following finite-horizon output tracking problem:

min
u

VNp(x(i), xr(i), ur(i))

s.t. xk+1 = f(xk, uk),

x0 = x(i),

xk ∈ X, ∀k ∈ [0, Np],

uk ∈ U, ∀k ∈ [0, Np],

xNp ∈ Xf ,

(5.8)

where

VNp(x(i), xr(i), ur(i)) , ‖xNp − xr(i)‖2
P +

Np−1∑
k=0

(‖xk − xr(i)‖2
Q + ‖uk − ur(i))‖2

R),

P � 0, Q � 0 and R � 0 are symmetric weighting matrices, Np is the prediction horizon and
Xf is the terminal set. In Section 5.5, we will discuss the properties that the cost matrices and
terminal set should satisfy to guarantee stability and feasibility.
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Remark 17. Note that since we do not have exact knowledge of the reference signal (i.e., how the
reference varies during the predictive horizon), we solve the problem (5.8) by fixing the reference
yr over the entire predictive horizon.

Let the first control action of the optimal control sequence obtained by solving Problem (5.8)
be u∗(z). Our aim is to approximate the optimal control law u∗ by using linear regression via
tensored polynomial basis functions. Let such an approximation be ũ(z). Then, we obtain a
feasible controller û(z) by projecting ũ(z) onto the constraint set U.

Specifically, similar to the regression approach in [17], for a set of M orthogonal polyno-
mial basis functions (e.g., Chebyshev polynomials or Legendre polynomials [17]) {Bi(z)}Mi=1 ⊂
Rn+p, we express ũ(z) as a linear combination of the basis functions as follows:

ũ(z, α) =
M∑
i=1

αiBi(z), (5.9)

where αi ∈ Rm×(n+p) is the coefficient matrix. We will use the set of optimal control inputs
{u∗(z(i))}Ni=1 at the sampling points to get the coefficients {αi}.

Note that in order to obtain the orthogonal polynomial basis functions, we can use the tensor
product based construction which consists of the set of mutual products of the one-dimensional
polynomials whose total degree is less than or equal to some desired order. For example, the set
of 3-degree Legendre polynomials L3 is

L3 =
{
pj1(z1)× pj2(z2)× · · · × pjn+p(zn+p)|j1 + j2 + · · ·+ jn+p ≤ 3

}
,

where zs is the s-th element of the vector z, and pj is the j-th one dimensional polynomial such
that

p0(zs) = 1,

p1(zs) = zs,

p2(zs) =
1

2
(3z2

s − 1),

p3(zs) =
1

2
(5z3

s − 3zs).
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Define the matrices

G ,

B1(z(1)) · · · B1(z(N))
... . . . ...

BM(z(1)) · · · BM(z(N))

 ,
g ,

[
u∗(z(1)) · · · u∗(z(N))

]
,

α ,
[
α1 · · · αM

]
.

We can obtain the optimal coefficient α∗ by solving the following problem with some pre-
specified constant ᾱ > 0:

α∗ = arg min
α
{‖αG− g‖∞ : ‖α‖∞ ≤ ᾱ}. (5.10)

Note that the parameter ᾱ is used to reduce the sensitivity of the regression surface to approxi-
mation errors and to limit the number of bits required to store the coefficients. Then the corre-
sponding control law is ũ(z, α∗), with ũ defined in (5.9).

Note that in general we may have ũ(z) 6∈ U; in this case, we can choose û(z) to be the closest
point to ũ(z) which satisfies the input constraint. Thus, the sampling based ENMPC control law
û(z) is constructed as follows:

û(z) = arg min
u∈U

∥∥∥∥∥
M∑
i=1

α∗iBi(z)− u

∥∥∥∥∥. (5.11)

Remark 18. Note that if the input constraint set U is in the form of a product of closed intervals,
we can apply the above projection componentwise.

The design of the sampling based nominal ENMPC is summarized in Algorithm 4.

5.5 Feasibility and Stability Analysis

In this section, we analyze the stability and feasibility properties of the proposed sampling based
ENMPC. Note that for each set-point yr, the corresponding steady state and input (xr, ur) only
appear in the cost function of Problem (5.8) (which is the problem of solving for the optimal
control inputs) and the constraints are independent of yr. Thus, the feasibility region of Prob-
lem (5.8) is independent of yr, as argued in [31].

Suppose that there exists a subregion Xfeas ⊆ X such that for all x ∈ Xfeas and yr ∈ Yref,
Problem (5.8) is feasible. Methods for obtaining an estimate of Xfeas using samples can be found
in [17, 106], and the references therein. We make the following assumptions.
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Algorithm 4 [Sampling based Nominal ENMPC]

Offline Computations
Input: System functions f and h, constraints X and U, reference constraint Yref, number of

samples N , number of basis functions M and upper bound on coefficients ᾱ
Output: Coefficient α∗

1: Sample X× Yref using a low-discrepancy sequence
2: For each sampling point z(i) = (x(i), yr(i)), solve Problem (5.8)
3: Solve Problem (5.10) to get the coefficients {α∗i }

Online Computations
Input: Coefficient α∗ and input constraint U
Output: Control input u

At each time-step k ≥ 0:
1: Obtain the state x[k] and reference yref[k]
2: Compute values of the basis functions {Bi(z)}Mi=1 where z = (x[k], yref[k])
3: u[k] = arg minu∈U ‖

∑M
i=1 α

∗
iBi(z)− u‖

Assumption 1. Recall that u∗(x, yr) is the optimal control law obtained by solving (5.8).

(i) The feasible region Xfeas and the terminal set Xf are open and there exists a compact set
Xattr such that Xf ⊂ Xattr ⊂ Xfeas.

(ii) For any yr ∈ Yref, there exist a pair of steady state and input (xr, ur) ∈ Xf × U such that
(5.6) is satisfied, and the linearization of the function f(·, ·) at (xr, ur) is stabilizable. .

(iii) For every yr ∈ Yref, u∗(x, yr) is continuously differentiable on Xfeas.

(iv) For every yr ∈ Yref, the control constraints are satisfied inside the terminal set (i.e.,
u∗(x, yr) ∈ U,∀x ∈ Xf ) and Xf is positively invariant under u∗(x, yr) (i.e., f(x, u∗(x, yr)) ∈
Xf ,∀x ∈ Xf ).

(v) For every yr ∈ Yref and x ∈ Xf , the function Vf (·) , ‖ · ‖2
P , where P is the terminal cost

matrix in (5.8), is a local control Lyapunov function, i.e., Vf (f(x, u∗)−xr)−Vf (x−xr) ≤
−‖x− xr‖2

Q − ‖u∗ − ur‖2
R.
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In [17], the authors showed that for the continuous-time nonlinear regulation problem, by
using the deterministic sampling scheme with sufficiently large M and N , one can obtain an
arbitrarily close approximation of the nonlinear MPC control surface and achieve arbitrarily
small distance between the trajectories generated by applying u∗ and û within the prediction
horizon Np. This result can be easily extended to the tracking problem by replacing the state
space X with the augmented space X × Yref. To this end, we denote Φ(k ;x0, u) as the state of
system (5.5) at time-step k when the initial state at time k = 0 is x0 and the input signal is u.

Lemma 16 ([17]). LetW be a compact set satisfyingW ⊂ Xfeas ×Yref. For any constant ε > 0,
if Assumption 1 is satisfied, then by using low-discrepancy samples in Xfeas × Yref, there exist
some N(ε),M(ε) ∈ Z>0 and ᾱ > 0 such that

‖û(z)− u∗(z)‖ < ε,∀N > N(ε),M > M(ε), z ∈ W ,

and
‖Φ(k;x, û)− Φ(k;x, u∗)‖ < ε,

for all N > N(ε), M > M(ε) z ∈ W , and k ∈ [0, Np].

Remark 19. Note that Lemma 16 is a discrete-time counterpart of the result in [17]. The basic
idea of the proof is to utilize the continuity of the model and optimal solution u∗ and the fact that
the projection in (5.11) to the convex set U is non-expansive on Hilbert spaces [6, 17].

Remark 20. Note that the condition (iii) in Assumption 1 for continuity of the optimal solution
u∗(x, yr) is required for Lemma 16 to hold. However, in general, u∗(x, yr) may not be continuous
on Xfeas [93]. In this case, we need to divide Xfeas into subregions such that u∗(x, yr) is continu-
ously differentiable on each subregion and construct ENMPC separately for each subregion.

We are now ready to show that if Assumption 1 is satisfied, the proposed sampling based
ENMPC guarantees stability and feasibility and achieves asymptotic tracking.

Theorem 17. Suppose Assumption 1 is satisfied. Then for every set-point yr ∈ Yref, there exist
positive integers M,N sufficiently large such that the trajectory of the system (5.5) controlled
by the ENMPC controller û(x, yr) defined in (5.11) is feasible and stable and the system output
achieves asymptotic tracking (i.e., limk→∞ ‖y[k] − yr‖ → 0) with a region of attraction Xattr

satisfying condition (i) in Assumption 1.

Proof. We first prove the feasibility of the controller by using similar arguments as for the reg-
ulation problem in [17]. Note that the input constraint is satisfied by the projection operation
described in (5.11). Therefore, we need to demonstrate that the state trajectory satisfies the state
constraints for any k ≥ 0.
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Since Xfeas is open and Xattr ⊂ Xfeas, there exists some compact set X1(x) ⊂ Xfeas such that

Φ(k;x, u∗) ∈ X1(x),∀x ∈ Xattr, k ∈ [0, Np],

and there exists some positive distance δ1 such that d(X1(x),Xc
feas) > δ1. By Lemma 16, we

know that for any x ∈ Xattr and yr ∈ Yref, there exist some N(δ1) and M(δ1) such that

‖Φ(k;x, û)− Φ(k;x, u∗)‖ ≤ δ1, ∀N > N(δ1),M > M(δ1), k ∈ [0, Np].

Thus, we know that when N and M are sufficiently large,

Φ(k;x, û) ∈ Xfeas ⊆ X,∀x ∈ Xattr, k ∈ [0, Np],

and the state constraint is satisfied over the period [0, Np].

Now we consider the case for k > Np. By conditions (i) and (iv) in Assumption 1 and the
feasibility of Problem (5.8), we know that there exists some compact set X2 such that Φ(k;x, u∗)
enters and stays in X2 for k > Np, i.e.,

Φ(k;x, u∗) ∈ X2,∀x ∈ Xattr, k > Np.

Similar to the analysis for the case where k ∈ [0, Np], since Xf is open, there exists some positive
distance δ2 such that d(X2,Xc

f ) > δ2, and by Lemma 16, for any x ∈ Xattr and yr ∈ Yref, there
exist some N(δ2) and M(δ2) such that

‖Φ(k;x, û)− Φ(k;x, u∗)‖ ≤ δ2,∀N > N(δ2),M > M(δ2), k > Np.

Thus, by choosing N > max(N(δ1), N(δ2)) and M > max(M(δ1),M(δ2)), we have

Φ(k;x, û) ∈ Xfeas ⊆ X,∀k, x ∈ Xattr,

completing the proof of feasibility.

Next we prove the asymptotic tracking property. By the positive definiteness of the stage cost
matrices Q and R, we know that there exists some constant β > 0 such that for any yr ∈ Yref,

‖x− xr‖2
Q + ‖u− ur‖2

R ≥ β‖x− xr‖2
2,∀x ∈ X, u ∈ U.

Note that by the analysis for feasibility, û(x, yr) and the resulting state trajectory are both feasible
for any set-point yr and initial condition x ∈ Xf . Denote the value of the cost function in
Problem (5.8) under control law u and initial state x as VNp(x, yr;u). Then by condition (v) in
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Assumption 1 and standard techniques for stability of MPC (c.f. [90,119]), we know that for any
yr ∈ Yref and x ∈ Xf ,

VNp(f(x, û), yr; û)− VNp(x, yr; û) ≤ −β‖x− xr‖2
2. (5.12)

Since VNp(Φ(k;x, û), yr; û) is a non-increasing sequence bounded below by zero over the set Xf ,
we have

VNp(Φ(k + 1;x, û), yr; û)− VNp(Φ(k;x, û), yr; û)→ 0

as k → ∞ for any x ∈ Xf , and thus Φ(k;x, û) → xr and û → ur as k → ∞. By condition (ii)
in Assumption 1, we know that y[k]→ yr as k →∞ and the sampling based ENMPC controller
achieves asymptotic tracking.

Finally, we prove stability of the proposed controller. By the construction procedure of sam-
pling based ENMPC, we know that for fixed yr and M,N , û(x, yr) is only a function of the
(current) state x. Thus, the function VNp(x, yr; û) serves as a Lyapunov function for system
x[k + 1] = f(x[k], û(x[k], yr)) over Xf and stability of the system follows by using standard
Lyapunov arguments [115], thereby completing the proof.

5.6 Extension To Robust ENMPC

In this section, we will provide an extension of the sampling based nominal ENMPC for nonlin-
ear systems with additive disturbances. Specifically, we consider the following system model:

x̄[k + 1] = f(x̄[k], ū[k]) + w[k]

ȳ[k] = h(x̄[k], ū[k])
(5.13)

where w ∈ W ⊂ Rnw is the disturbance and W is a convex and compact set containing the
origin. Note that system (5.5) can be regarded as the nominal model of the above system by
setting w = 0. Denote Φ̄(k; x̄0, ū, w) to be the state of system (5.13) at time-step k when the
initial state at time 0 is x̄0, the input signal is ū and the disturbance input is w.

By adopting the same parametrization as in [88, 89], the sampling based robust ENMPC
controller consists of two parts: the nominal controller and the ancillary controller. The role of
the nominal controller is to generate a desired trajectory for the nominal system to follow and
the ancillary controller is designed to restrict the output ȳ of the uncertain system (5.13) to a
neighborhood of the nominal system output y by minimizing the cost of their deviations. See
Figure 5.1 for an illustration of the robust controller.
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Figure 5.1: Illustration of the robust ENMPC controller.

For the nominal controller, at each sampling point, we will solve Problem (5.8) with tightened
constraints. Specifically, at each sampling point z(i) = (x(i), yr(i)) ∈ X × Yref, we will solve
the following modified MPC problem:

min
u

VNp(x(i), yr(i)) = ‖xNp − xr(i)‖2
P

+

Np−1∑
k=0

(
‖xk − xr(i)‖2

Q + ‖uk − ur(i)‖2
R

)
s.t. xk+1 = f(xk, uk),

x0 = x(i),

xk ∈ X0, ∀k ∈ [0, Np],

uk ∈ U0,∀k ∈ [0, Np],

xNp ∈ Xf ,

(5.14)

where X0 ⊂ X and U0 ⊂ U are convex and compact constraint sets containing the origin in their
interior. We will refer to this problem as the tightened nominal control problem.

Denoting the first move of the optimal solution of Problem (5.14) to be u∗nomi(z), we can
obtain an approximated control law ûnomi(z) of u∗nomi(z) by using the same methods as in Sec-
tion 5.4.2. Note that in the projection (5.11), the input constraint U is replaced by U0. The chosen
number of samples and number of basis functions are denoted by Nnomi and Mnomi, respectively.
Furthermore, the coefficients obtained by solving Problem (5.10) with u∗(z) replaced by u∗nomi(z)
is denoted by α∗nomi.

Remark 21. The role of the tightened constraint sets X0 and U0 is to provide feasibility guar-
antees for the state and input of the uncertain system in spite of disturbance inputs; we will
illustrate this later in Remark 24 after presenting the main results in this section.
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For the ancillary controller, at each sampling point v(i) = (x̄(i), x(i), yr(i)) ∈ (X⊕W) ×
X× Yref, we solve the following problem:

min
ū

V̄N̄p
(x̄(i), x(i), yr(i))

s.t. x̄k+1 = f(x̄k, ūk)

x̄0 = x̄(i),

ūk ∈ U,∀k ∈ [0, N̄p],

x̄N̄p
∈ X̄f ,

(5.15)

where

V̄N̄p
(x̄(i), x(i), yr(i)) , ‖x̄N̄p

− Φ(N̄p;x(i), u∗nomi)‖2
P̄

+

N̄p−1∑
k=0

‖x̄k − Φ(k;x(i), u∗nomi)‖2
Q̄ + ‖ūk − u∗nomi‖2

R̄,

P̄ � 0, Q̄ � 0 and R̄ � 0 are weighting matrices, N̄p is the prediction horizon, and X̄f is
the terminal set. Note that the terminal cost P̄ and terminal set X̄f are chosen to satisfy similar
conditions as in Assumption 1 to guarantee stability.

Denote the first move of the optimal solution of Problem (5.15) to be ū∗anci(v); as before, we
can obtain an approximated control law ûanci(v) using samples drawn from ū∗anci(v). The chosen
number of samples and number of basis functions are denoted by Nanci and Manci, respectively.
Furthermore, the coefficients obtained by solving Problem (5.10) with u∗(z) replaced by u∗anci(z)
is denoted by α∗anci.

Remark 22. Note that in order to reduce the offline computational complexity, we may utilize
the data of the nominal controller to design the ancillary controller. For example, we can choose
Nnomi = Nanci and choose each sampling point v for the ancillary controller as v = (x̄, z) where
z is the corresponding sampling point for the nominal controller. Then we can apply ûnomi(z)
obtained by solving Problem (5.14) to the cost function of Problem (5.15).

The design of sampling based robust ENMPC is summarized in Algorithm 5. In the rest of
this section, we will extend the results in [88, 89] for tube-based robust nonlinear MPC to the
sampling-based robust ENMPC and show that if certain assumptions on the ENMPC parameters
are satisfied and the disturbance is small enough, then the ancillary controller is able to keep
the state of the uncertain system in a neighborhood of the central path generated by the nominal
controller.
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Algorithm 5 [Sampling based Robust ENMPC]

Offline Computations
Input: System functions f and h, constraints X0,U0,X and U, reference constraint Yref, num-

bers of samples Nnomi, Nanci, and numbers of basis functions Mnomi,Manci

Output: Coefficients α∗nomi and α∗anci

Nominal Controller
1: For each low-discrepancy sample z(i) ∈ X × Yref, solve Problem (5.8) with tightened con-

straints X0 and U0

2: Obtain α∗nomi by solving Problem (5.10) with u∗(z) replaced by u∗nomi(z)

Ancillary Controller
3: For each low-discrepancy sample v(i) ∈ (X⊕W)× X× Yref, solve Problem (5.15)
4: Obtain α∗anci by solving Problem (5.10) with u∗(z) replaced by ū∗anci(v)

Online Computations
Input: Coefficients α∗nomi, α

∗
anci and input constraints U0,U

Output: Control input ū
Initialize: Obtain the state x̄[0] and set x[0] = x̄[0]

At each time-step k ≥ 0:
1: Obtain the state x̄[k] and reference yref[k]
2: ûanci(v) = arg minu∈U ‖

∑M
i=1 α

∗
anci,iBi(v)− u‖ where v = (x̄[k], x[k], yref[k])

3: Apply ū[k] = ûanci(v) to the uncertain system (5.13)
4: ûnomi(z) = arg minu∈U0 ‖

∑M
i=1 α

∗
nomi,iBi(z)− u‖ where z = (x[k], yref[k])

5: Apply u[k] = ûnomi(z) to the nominal system (5.5)

Denote the feasibility region of the tightened nominal control problem and Problem (5.15)
as X0

feas and X̄feas(x), respectively. Note that X̄feas(x) is a function of the nominal initial state
x. Define Xfeas , {(x̄, x)|x ∈ X0

feas, x̄ ∈ X̄feas(x)}. Further define the function θ(x̄, x, u) ,
Φ̄(N ; x̄, u, 0)− Φ(N ;x, u∗nomi).

We make the following assumptions on the robust ENMPC parameters.

Assumption 2.

(i) The set Xfeas is open and there exists a compact set X̄attr ⊂ Xfeas.

(ii) For any yr ∈ Yref, u∗nomi is continuously differentiable on X0
feas and for any x ∈ X0

feas, u
∗
anci is
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continuously differentiable on X̄feas(x).

(iii) For any yr ∈ Yref, there exists some constant c > 0 such that V̄N̄p
(x̄, x, yr; ûanci) ≤ c‖x̄ −

x‖2,∀(x̄, x) ∈ (X̄feas(x)⊕W)×X0
feas, where V̄N̄p

(x̄, x, yr;u) is the value of the cost function
in Problem (5.15) when the input u is applied.

(iv) For any yr ∈ Yref and all (x̄, x) ∈ Xfeas, (∂/∂u)θ(x̄, x, u∗anci) has full rank n where (∂/∂u)θ
denotes the matrix whose (i, j)-th element is ∂θi/∂uj .

Remark 23. Note that conditions (iii) and (iv) in Assumption 2 are assumptions that have been
previously made in [88] in order to provide stability guarantees for the tube-based robust MPC.

Let V̄ ∗
N̄p

(x̄, x, yr) be the optimal value function of Problem (5.15). In [88], the authors proved
the following property of V̄ ∗

N̄p
(x̄, x, yr) when conditions (iii) and (iv) in Assumption 2 hold.

Lemma 17 ([88]). If conditions (iii) and (iv) in Assumption 2 are satisfied, then for any yr ∈ Yref,
there exist some constants c2 > c1 > 0 and γ1 , (1− c1

c2
) ∈ (0, 1) such that ∀(x̄, x) ∈ Xfeas,

c1‖x̄− x‖ ≤ V̄ ∗N̄p
(x̄, x, yr) ≤ c2‖x̄− x‖,

V̄ ∗N̄p
(f(x̄, u∗anci), f(x, u∗nomi), yr) ≤ γ1V̄

∗
N̄p

(x̄, x, yr).

Now we extend the above result to the suboptimal value function V̄N̄p
(x̄, x, yr; ûanci).

Lemma 18. If Assumption 2 is satisfied and the parameters Nnomi,Mnomi, Nanci,Manci are suffi-
ciently large, then for any yr ∈ Yref, there exists some constant γ2 ∈ (γ1, 1) such that

V̄N̄p
(f(x̄, ûanci),f(x, ûnomi), yr; ûanci)

≤ γ2V̄N̄p
(x̄, x, yr; ûanci),∀(x̄, x) ∈ X̄attr.

Proof. First note that since conditions (i) and (ii) are satisfied, by a similar analysis as in the
proof of Theorem 17, we know that

(f(x̄, ûanci), f(x, ûnomi)) ∈ Xfeas,∀(x̄, x) ∈ Xfeas,
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and thus feasibility of the controller is guaranteed.

Let c1 and c2 be constants defined in Lemma 17. Since V̄N̄p
(x̄, x, yr; ûanci) ≥ V̄ ∗

N̄p
(x̄, x, yr)

and by the same analysis as for equation (5.12) in the proof of Theorem 17, we know that there
exist some constants 0 < c′1 < c1 and c′2 > c2 such that

V̄N̄p
(x̄, x, yr; ûanci) ≤ c′2‖x̄− x‖,

and

V̄N̄p
(f(x̄, ûanci), f(x, ûnomi), yr; ûanci)− V̄N̄p

(x̄, x, yr; ûanci) ≤ −c′1‖x̄− x‖.

Thus, we have

V̄N̄p
(f(x̄, ûanci),f(x, ûnomi), yr; ûanci) ≤ γ2V̄N̄p

(x̄, x, yr; ûanci),

where γ2 , (1− c′1
c′2

) ∈ (γ1, 1), completing the proof.

Given the nominal state trajectory Φ(k;x, ûnomi), the objective of tube-based robust MPC is to
find a sequence of tubes centered at the nominal state such that the state of the uncertain system
lies in these tubes, i.e., to find a constant set S such that Φ̄(k; x̄, ûanci, w) ∈ {Φ(k;x, ûnomi)} ⊕
S,∀k, w [115]. In [88, 89], the authors showed that one can use the sublevel set of the optimal
cost function to characterize the set of tubes. Based on this idea, for any x ∈ X0

feas, yr ∈ Yref, and
a parameter d ≥ 0, we define the following set-valued function:

Sd(x, yr) , {x̄|V̄N̄p
(x̄, x, yr; ûanci) ≤ d}. (5.16)

Note that since S0(x, yr) = {x}, the set Sd(x, yr) characterizes a neighborhood of the nominal
state x [115]. Define

wmax , max {‖w‖ : w ∈W}
as a metric characterizing the size of the disturbance set.

In the following theorem, we will show that by using the sampling based robust ENMPC con-
troller, the state of the uncertain system always stays in the state-tube {Sd(Φ(k;x, ûnomi), yr)}k≥0

and converges to a set Sd(xr, yr) provided that the disturbance is small enough.

Theorem 18. Suppose that Assumption 1 for the nominal system (5.5) and Assumption 2 for the
uncertain system (5.13) are satisfied. For every set-point yr ∈ Yref and all (x̄[0], x[0]) ∈ X̄attr,
there exist positive integers Nnomi,Mnomi, Nanci,Manci sufficiently large such that

Φ̄(k; x̄[0], ûanci, w) ∈ Sd(Φ(k;x[0], ûnomi), yr),∀k,

and Φ̄(k; x̄[0], ûanci, w) converges to the set Sd(xr, yr) for all disturbances satisfying wmax ≤
(1−γ2)d

c
.
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Proof. By Lemma 18 and condition (iii) in Assumption 2, we know that ∀(x̄, x) ∈ X̄attr, w ∈W,

V̄N̄p
(f(x̄, ûanci) + w,f(x, ûnomi), yr; ûanci)

≤ γ2V̄N̄p
(x̄, x, yr; ûanci) + cwmax

where the constant c satisfies condition (iii). By using the same techniques as in Proposition 4
in [89], we know that

V̄N̄p
(f(x̄, ûanci) + w,f(x, ûnomi), yr; ûanci)

≤ V̄N̄p
(x̄, x, yr; ûanci) ≤ d

provided that cwmax ≤ (1 − γ2)V̄N̄p
(x̄, x, yr; ûanci) ≤ (1 − γ2)d. Note that since we choose

x̄[0] = x[0], we have x̄[0] ∈ Sd(x[0], yr),∀d ≥ 0, and the robust positive invariance of the
state-tube {Sd(Φ(k;x, ûnomi), yr)}k≥0 follows.

By Theorem 17, we know that for any yr ∈ Yref and x in the attraction region, Φ(k;x, ûnomi)→
xr as k →∞. Since the state-tube is robust positively invariant, the limit point of any realization
of Φ̄(k; x̄[0], ûanci, w) lies in the set Sd(xr, yr), completing the proof.

Remark 24. Note that if the tightened constraint sets X0 and U0 in the tightened nominal control
problem are chosen such that Sd(xr, yr) ⊂ X for all yr ∈ Yref, then the constraints of the
uncertain system (5.13) are satisfied. In [89], the authors proposed a simple method to determine
X0 and U0. Specifically, one can choose X0 = αX and U0 = βU where α, β ∈ (0, 1) are
some scalar tuning parameters. Then the problem is reduced to appropriately choosing the two
constants α and β.

5.7 Simulation

In this section, we illustrate the performance of the proposed sampling based ENMPC controller
with simulations. Offline solutions of the constrained optimization problems are computed by
using the GODLIKE toolbox in MATLAB [104]. The sampling points are drawn from the Halton
sequence [62].
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5.7.1 2-D System

We first consider a simple two-dimensional nonlinear system which is similar to the examples
studied in [17, 20] as follows:[

x1[k + 1]
x2[k + 1]

]
=

[
0 1
1 0

] [
x1[k]
x2[k]

]
+

[
x1[k]
x2[k]

]
u[k] +

[
w1[k]
w2[k]

]
y[k] =

[
1 1

] [x1[k]
x2[k]

]
,

(5.17)

where x1, x2, u, y, w1, w2 ∈ R. The state and input constraints are as follows:

X = {x ∈ R2 : ‖x‖∞ ≤ 2},
U = {u ∈ R : |u| ≤ 2}.

Furthermore, the reference signal yref takes values in the interval [0, 2] and the disturbance w
is a random noise process satisfying ‖w‖∞ ≤ 0.2. We will refer to the controllers generated
by Algorithm 4 and Algorithm 5 as the sampling based nominal ENMPC controller and the
sampling based robust ENMPC controller, respectively.

For the sampling based nominal ENMPC controller, we use N = 2000 sampling points
(which required approximately 1 hour of off-line computation), and the basis functions are cho-
sen to be the Legendre polynomials up to degree 3 with M = 35 coefficients. For the sampling
based robust ENMPC controller, we use Nnomi = 2000 and Nanci = 10000 sampling points for
the nominal and ancillary controllers, respectively (which required approximately 5 hours of
off-line computation), and the basis functions are chosen to be the Legendre polynomials up to
degree 3 for both controllers. The prediction horizons are all chosen to be 5. Note that there
exist different methods to determine the ENMPC parameters such that the corresponding condi-
tions in Assumption 1 are satisfied (e.g., see [20, 115]). Further note that the expansion of Nanci

compared to Nnomi is due to the sampling space being extended to a higher dimension for the
ancillary controller. The results are in Figure 5.2.

From Figure 5.2a, we can see that for the nominal system (5.5), the sampling based nominal
ENMPC controller achieves offset free tracking of the reference signal, and a relatively large
tracking error only appears when the set point changes. However, for the uncertain system (5.13)
with random noise, we can observe from Figure 5.2b that the tracking performance is not satisfac-
tory by simply ignoring the noise and applying the sampling based nominal ENMPC controller.
By contrast, the result in Figure 5.2c shows that the tracking error is reduced at steady state by
using the sampling based robust ENMPC controller and the output of the uncertain system is
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(a) Sampling based nominal ENMPC con-
troller with no disturbances.

0 20 40 60 80 100
0

0.5

1

1.5

Time-step k

y
[k
]

 

 

Output
Reference

0 20 40 60 80 100
0

0.5

1

1.5

Time-step k
|y
[k
]−

y
r
[k
]|

 

 

Tracking Error

(b) Sampling based nominal ENMPC con-
troller with random noise.
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(c) Sampling based robust ENMPC con-
troller with random noise.

Figure 5.2: Performance of the sampling based nominal ENMPC controller and the sampling
based robust ENMPC controller.
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driven to stay close to the reference. Note that the plots in Figure 5.2b and Figure 5.2c are for
the same realization of disturbances.

Next we compare the running time of the sampling based ENMPC controller with the online
NMPC controller using a set of 100 randomly generated initial conditions. The simulation is
conducted on a typical 2.4-GHz personal computer. The results are in Table 5.1.

Table 5.1: Complexity comparison of different NMPC approaches over 100 randomly generated
initial conditions. The table presents the average and standard deviation of the time required
to compute a control action (unit: millisecond).

Average Standard Deviation
Algorithm 4 3.2 0.1

Online NMPC 82.8 6
Algorithm 5 5.8 0.4

Online Tube-based Robust NMPC 213.5 26

From Table 5.1, we can see that both the sampling based nominal and robust ENMPC con-
trollers are more efficient than the online NMPC controller. Note that the online computational
time of the ENMPC controller can be further reduced by choosing a smaller number of basis
functions, at the cost of losing tracking performance.

5.7.2 CPU-GPU Queueing System

In this subsection, we test the performance of the sampling based ENMPC approach on the CPU-
GPU queueing system proposed in [59], which is the motivating application for the results in this
chapter; see Figure 5.3 for the model of the system. The objective is to drive the injection rate of
the GPU queue (i.e., λGPU ) to track a target number of Frames Per Second (FPS) of the display,
and the controllable variables are the operating frequencies of the CPU and GPU (i.e., fCPU and
fGPU ) which determine the injection rates of the corresponding queues (i.e., λCPU and λGPU ).

The dynamics of the queueing system is given as follows:

qCPU [k + 1] = qCPU [k] + λCPU [k]Ts − λGPU [k]Ts

qGPU [k + 1] = qGPU [k] + λGPU [k]Ts − µGPUTs,

where qCPU (resp. qGPU ) and λCPU (resp. λGPU ) are the state and injection rate of the CPU
queue (resp. GPU queue), respectively, Ts is the sampling time, and µGPU is a constant target
FPS.
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Figure 5.3: CPU-GPU queueing system.

The injection rates λCPU and λGPU are determined by fCPU and fGPU as follows:

λCPU [k] = Φ
(
T refCPU [k], fCPU [k]

)
λGPU [k] = Φ

(
T refGPU [k], fGPU [k]

)
,

where the parameter T refCPU [k] (resp. T refGPU [k]) is the average processing time for the tokens in the
CPU queue (resp. GPU queue) at time-step k when the CPU (resp. GPU) is operating at some
specified reference frequency. Note that T refCPU and T refGPU only depend on the characteristics of
the tokens to be processed (i.e., the input stream to the system). For a given sequence of tokens
(i.e., given T refCPU or T refGPU ), the function Φ represents the mapping from the frequency adopted
(i.e., fCPU or fGPU ) to the corresponding injection rate; we omit the specific form of the function
Φ and refer to [59] for more details.

In order to construct the ENMPC controller, we regard the variables qCPU , qGPU , T
ref
CPU and

T refGPU as parameters of the optimization problem. We use N = 5000 sampling points over the
sampling region which is qCPU , qGPU ∈ [0, 5] and T refCPU , T

ref
GPU ∈ [10, 20].1 We choose the basis

functions to be the Legendre polynomials up to degree 2 with M = 15 coefficients and the
prediction horizon is chosen to be 2. Furthermore, the sampling time Ts = 50 (unit: millisecond)
and the target FPS µGPU = 60.

In Figure 5.4, we illustrate the performance of the ENMPC controller using data collected
from a mobile platform. From Figure 5.4d, we can see that the controller is able to drive the

1Note that the unit of T ref
CPU and T ref

GPU is millisecond.
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injection rate of the GPU queue close to the desired target (i.e., µGPU ). Moreover, from Fig-
ure 5.4a and Figure 5.4b, we can see that the queue occupancies are kept in a desired range (i.e.,
qCPU , qGPU ∈ [0, 5]).
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Figure 5.4: Performance of the ENMPC controller on the CPU-GPU queueing system. The red
dashed line in Figure 5.4d is the target FPS to track.
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5.8 Summary

In this chapter, we studied the output tracking problem for nonlinear constrained systems and
proposed a sampling based ENMPC approach to address the problem. The basic idea is to
sample the augmented state and reference signal space using a low-discrepancy sequence and
approximate the optimal control surface based on the information at the sampling points. We also
extended the tube-based robust control in [88,89] to robust ENMPC by using the sampling based
approach. As we showed, the proposed approaches achieve asymptotic tracking and guarantee
stability and feasibility of the system, given that certain mild conditions are satisfied. Moreover,
the sampling based (robust) ENMPC is easy to implement and is suitable for applications with
limited online computation and storage resources, such as MPSoCs.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, we studied a set of estimation and control problems, driven by applications in
Multi-Processor Systems on Chips (MPSoCs). These applications stimulated new formulations
for extensively studied problems (e.g., the state estimation problems in Chapter 2 and Chapter 3),
motivated new objectives for existing problems in the literature (e.g., the design-time sensor se-
lection problem in Chapter 4), and brought new challenges which required us to invent applicable
techniques (e.g., the resource constrained output tracking problem in Chapter 5).

In Chapter 2 and Chapter 3, we studied the state estimation problem for linear dynamical sys-
tems with unknown inputs when the system is not strongly detectable. In other words, we studied
the case where it is impossible to exactly reconstruct the system states. Under this situation, in
Chapter 2, we considered the problem of constructing an unknown input norm-observer, which
can be regarded as a relaxed estimation objective for cases where perfect estimation cannot be
achieved, and proposed the notion of BIBOBS stability to solve the unknown input norm esti-
mation problem. We showed that under certain conditions, the inputs and initial condition can
be chosen so that the states corresponding to the eigenvalues with magnitude 1 are persistently
excited or triggered while the states of the other systems are maintained in a bounded orbit; thus,
care must be taken to avoid such situations.

In Chapter 3, we explored the influence of the other assumption on the system: the property of
positivity. We showed that the additional information on positivity is not helpful in relaxing the
conditions under which perfect estimation is achievable. We also considered the case where the
positivity of the observers is needed and provided a construction method for positive observers.
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In Chapter 4, we studied the priori and posteriori KFSS problems for linear dynamical sys-
tems. We showed that these problems are both NP-hard (even under the additional assumption
that the system is stable). We also provided upper bounds for the performance of the worst-case
selection of sensors and highlighted the factors that dominate the worst-case performance. Then
we studied a priori covariance based and a posteriori covariance based greedy algorithms for
sensor selection. We showed that these algorithms are optimal for two classes of systems. For
general systems, we provided a negative result showing that the corresponding cost functions
are neither supermodular nor submodular; however, simulations indicate that these algorithms
perform well in practice. For the Lyapunov equation based greedy algorithm (which attempts
to minimize an upper bound on the original objective functions), we showed that this algorithm
achieves optimal performance with respect to its cost function. Although this algorithm performs
less well than the original algorithm in terms of minimizing the steady state Kalman filtering er-
ror covariance, the run-time scales better with the system size.

Finally, in Chapter 5, we proposed an efficient sampling based explicit nonlinear MPC (EN-
MPC) for the nonlinear output tracking problem by augmenting the state space with the reference
space. We provided feasibility and asymptotic tracking guarantees for the nominal controlled
system. We designed an ancillary ENMPC to eliminate the influence of additive disturbances
and provided ultimate bounds for the robust ENMPC controlled system states. The proposed ap-
proaches are efficient for online implementation and can be easily modified to balance the trade
off between performance and online computational complexity.

To summarize, the theory and techniques developed in this thesis provide efficient algorithms
for estimation, configuration and control of MPSoCs and yield insights into the underlying struc-
ture of the corresponding problems.

6.2 Future Research

Along the line of our results in this thesis, there are still many interesting directions for future
research. Here we briefly state some of the potential directions.

• Partial State Norm Estimation

In Chapter 2, we studied the state norm estimation problem where the objective is to pro-
vide an upper bound on the norm of the whole set of states. However, in some cases, we
may only be interested in estimating a subset of the states. For example, in [134], the
authors proposed a design procedure for partial state observers which recovers a particular
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function of the states. Thus, it is of interest to study the partial state norm estimation prob-
lem where the objective is to estimate an upper bound on the norm of a certain subset of
states.

• State Estimation with Mixed Disturbances

As we have mentioned in Section 2.2, it is important to define appropriate models of un-
certainty to conduct state estimation. While there have been extensive works focusing on
a specific type of disturbance, little attention has been paid to a combination of different
disturbances. Exceptions include [50,132] where a combination of stochastic disturbances
and unknown inputs are considered, and [44, 101] where a combination of stochastic and
set-membership disturbances is studied. Thus, besides norm estimation and estimation for
positive systems studied in this thesis, it will be interesting to study other combinations of
disturbances.

• Sensor Selection with Different Estimation Strategies

The design-time sensor selection problem studied in Chapter 4 is based on the choice of
Kalman filter as the underlying estimator. While Kalman filtering is applicable for various
applications, there exist scenarios under which the corresponding theory is not applicable
(e.g., when it is difficult to obtain statistics of the noises or there exist requirements on the
worst-case performance). Thus, it is of interest to study the sensor selection problem based
on other estimation strategies. For example, the H∞ filtering framework is a promising
candidate, especially the algebraic Riccati equation (ARE) based approach [75] which
shares the same foundation with the Kalman filtering framework.

• Sampling based ENMPC with Model Uncertainties

In Section 5.6, we proposed a robust variant to deal with additive bounded disturbances
while assuming that the system model is accurate. In many applications, it may be difficult
to identify a reliable model of the system. Thus, for future work, it will be interesting
to extend the sampling based ENMPC to handle other classes of modeling or parametric
uncertainties.
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[33] A. Ferramosca, D. Limon, A. H. González, D. Odloak, and E. F. Camacho. MPC for
tracking zone regions. Journal of Process Control, 20(4):506–516, 2010.

[34] B. A. Francis and W. M. Wonham. The internal model principle of control theory. Auto-
matica, 12(5):457–465, 1976.

[35] G. F. Franklin, J. D. Powell, and A. E. Naeini. Feedback Control of Dynamic Systems.
Prentice Hall, 1994.

[36] J. C. Geromel, J. Bernussou, G. Garcia, and M. C. DE Oliveira. H2 andH∞ robust filtering
for discrete-time linear systems. SIAM Journal on Control Optimization, 38(5):1353–
1368, 2000.

108



[37] R. Gondhalekar and C. N. Jones. MPC of constrained discrete-time linear periodic systems
- A framework for asynchronous control: Strong feasibility, stability and optimality via
periodic invariance. Automatica, 47(2):326–333, 2011.

[38] A. Grancharova, T. A. Johansen, and P. Tøndel. Computational aspects of approximate
explicit nonlinear model predictive control. In Assessment and Future Directions of Non-
linear Model Predictive Control, pages 181–192. Springer, 2007.

[39] C. Grussler. Model reduction of positive systems. Master Thesis, 2012.

[40] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray. On a stochastic sensor selec-
tion algorithm with applications in sensor scheduling and sensor coverage. Automatica,
42(2):251–260, 2006.
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