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Abstract

Cryptographic systems based on the elliptic curve discrete logarithm problem (ECDLP)
are widely deployed in the world today. In order for such a system to guarantee a particular
security level, the elliptic curve selected must be such that it avoids a number of well-known
attacks. Beyond this, one also needs to be wary of attacks whose reach can be extended
via the use of isogenies. It is an open problem as to whether there exists a field for which
the isogeny walk strategy can render all elliptic curves unsuitable for cryptographic use.

This thesis provides a survey of the theory of elliptic curves from a cryptographic perspec-
tive and overviews a few of the well-known algorithms for computing elliptic curve discrete
logarithms. We perform some experimental verification for the assumptions used in the
analysis of the isogeny walk strategy for extending Weil descent-type cover attacks, and ex-
plore its applicability to elliptic curves of cryptographic size. In particular, we demonstrate
for the first time that the field F2150 is partially weak for elliptic curve cryptography.
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Chapter 1

Introduction

Let E be an elliptic curve defined over a finite field K = Fqn . The elliptic curve discrete
logarithm problem (ECDLP) in the group E(K) is the following: Given two points P and
Q in E(K) with ord(P ) = r and Q ∈ 〈P 〉, find an integer α such that αP = Q. The
presumed intractability of this problem has been the subject of much study in recent years
and has formed the basis for the security of many modern cryptosystems.

The security level of an ECDLP-based cryptosystem is dictated by the expected number
of operations the fastest known algorithm would need in order to solve arbitrary ECDLP
instances in E(K). In most cases, this can be determined by considering the computational
effort needed by Pollard’s rho method [30, 39]. However one must select the parameters of
the elliptic curve carefully in order to avoid certain known attacks. The value r should be
a large prime so that the Pohlig-Hellman [29] and Pollard’s rho attacks are both infeasible
(we assume r ≈ qn). To avoid the Weil and Tate pairing attacks [8, 22], r must be
selected so that it does not divide qni − 1 for 1 ≤ i ≤ C, where C is big enough for it
to be computationally infeasible to find discrete logarithms in FqnC . Moreover, the curve
selected should not be Fq-anomalous (#E(K) 6= qn) so that the attacks of [31, 33, 35] are
avoided.

In 2001, Frey [7] introduced the idea of Weil descent, a technique that may be used to
map instances of the ECDLP in elliptic curves over extension fields Fqn into the DLP of a
higher genus covering curve (g ≥ n) defined over Fq. This idea was fleshed out for binary
fields by Gaudry, Hess and Smart in [13] and later for odd characteristic by Diem [3].
They showed how one might apply this technique to reduce ECDLP instances into those
of hyperelliptic curves defined over a smaller field. In particular, the problem would be
embedded into the Jacobian of a hyperelliptic curve C of genus g over Fq, denoted JC(Fq).
This reduction is commonly referred to as the GHS attack. The existence of subexponential
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time algorithms in this new setting can allow the DLP to be solved more quickly.

In general there are many elliptic curves over a fixed field K, so one can expect to be
able to select one that avoids each of the attacks described above. However, an additional
pitfall can occur if a curve’s susceptibility to an attack is not invariant within its isogeny
class (that is, those curves E ′ which satisfy #E(K) = #E ′(K)). In this case, it may be
possible to use a series of small degree isogenies to map the DLP of one curve into another
for which such an attack is effective. This technique can drastically increase the range of a
particular attack. For example, Jacobson, Menezes and Stein [17] showed that for the field
F2155 , only 233 out of a possible 2156 isomorphism classes of elliptic curves defined over F2155

would yield a covering curve of small enough genus for the GHS to be feasible. However in
[11], it was shown that through isogeny walks roughly 2104 classes were vulnerable to the
GHS attack; a significant increase in its range.

With this novel approach to attacking the ECDLP, concern arose over whether there
existed fields in which most if not all elliptic curves would be vulnerable to some attack that
performed better than Pollard’s rho. This question motivated Menezes, Teske and Wang
[25] to define formally the notion of bad and weak fields for elliptic curve cryptography
(ECC).

Definition 1.0.1. A finite field Fq is said to be bad for elliptic curve cryptography if the
following conditions are satisfied:

1. for some elliptic curves E/Fq, solving the ECDLP in E(Fq) using Pollard’s rho
method is intractable using existing computer technology; and

2. algorithms are known that can feasibly solve (using existing computer technology) any
ECDLP instance for any elliptic curve over Fq.

Definition 1.0.2. A finite field Fq is said to be weak for elliptic curve cryptography if the
following conditions are satisfied:

1. for some elliptic curve E over Fq, solving the ECDLP in E(Fq) using Pollard’s rho
method is intractable using existing computer technology; and

2. algorithms are known for which any ECDLP instance for any elliptic curve over Fq
can be solved in significantly less time than it takes Pollard’s rho method to solve the
hardest ECDLP instances over Fq.

A bad field should certainly be avoided for use in cryptography, and one ought to be
wary of weak fields since this may be evidence towards badness. In the same vein, [24]
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defined the notion of a partially weak field, which only requires that for a non-negligible
portion of all elliptic curves, the ECDLP may be solved significantly faster than it takes
Pollard’s rho to solve the hardest instances. One may define a partially bad field similarly.

Currently no bad or partially bad fields for ECC are known and it is an open problem
as to whether such fields exist. The authors of [25] provided a convincing argument that
fields of the form F2N , where N ∈ [185, 600] is divisible by 5 are weak, and proposed F2210

as a strong candidate for being a bad field.

In 2012, Joux and Vitse [19] proposed the use of a combination attack on elliptic curves
defined over composite extension fields which utilizes both the Weil descent cover attack
and the decomposition technique. The rough idea is to make use of the tower of extensions
Fqn/Fq and Fq/Fp, where q = pm for some integer m. One would first use Weil descent
on the extension Fqn/Fq to transfer the DLP into the Jacobian of a (hyperelliptic) curve
defined over Fq, and then apply the point decomposition attack of Nagao [28] with the
second extension.

In particular, [19] analyzed certain elliptic curves E defined over composite extension
fields of the form Fp6 and Fp4 . Using a modified decomposition technique, they found that
their attack was more effective than Pollard’s rho in both scenarios, with the improvements
being most pronounced in the case of Fp6 using the tower Fp6 − Fp2 − Fp. With this
method, an elliptic curve defined over the 149-bit extension field Fp6 where p = 33554467
was successfully attacked, whereas no preexisting algorithms would have been practical.

In order for the attack to outperform generic algorithms, the genus of the intermediate
cover must not be too large. When this not the case, it may be possible to use the isogeny
walk strategy to transfer the DLP from E to a more vulnerable curve E ′. Depending on
the size of the isogeny class and the number of weak curves contained in it, the isogeny
walk can be the dominating factor of the algorithm’s complexity.

A natural extension of the above work is to verify experimentally the effectiveness of
their attack in fields of characteristic 2. In particular, it seems reasonable to look at fields
of the form F26m for some integer m, since degree-6 extensions were the most effective
scenario considered in [19]. The equivalent approach in this setting would be to use Weil
descent to find a genus-3 hyperelliptic covering curve defined over F22m , and then apply
Nagao’s decomposition over the extension F22m/F2m . We would also like to consider a field
of equivalent size to Joux and Vitse’s main example, namely F2150 , and determine whether
the isogeny walk is effective enough to consider this field partially bad for ECC.

The purpose of this work will be to test some of the assumptions made in previous work
pertaining to the distribution of curves vulnerable to the GHS attack amongst isogeny
classes, and to determine whether the field F2150 is indeed partially bad for use in elliptic
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curve cryptography. In particular, we would like to ascertain the following (note that all
experiments are done in fields of the form F26m):

1. Whether it is reasonable to treat isogeny classes as close to equal in size;

2. if it is reasonable to assume that as the field size grows most isogeny classes contain
curves vulnerable to Weil descent;

3. whether or not the distribution of vulnerable curves takes on a uniformly random
distribution amongst isogeny classes; and

4. whether the ECDLP in a field of cryptographic size may be effectively attacked using
the isogeny walk strategy.

The remainder of this thesis is organized as follows: First we recall in Chapter 2 some
of the essential mathematical facts needed to understand elliptic curves and the isogenies
between them. In Chapter 3, we discuss isogenies in more detail and the structure of
the so-called isogeny graph. Chapter 4 deals with the cryptographic background related
to solving the ECDLP, providing an overview of the relevant attacks including the work
of Joux and Vitse as well as the details of the isogeny walk strategy. In Chapter 5 we
describe the various assumptions and results on the distribution of curves which are used
in the analyses of the isogeny walk strategy, and provide some experimental evidence to
back these assumptions in Chapter 6. Finally we end with directions for future work in
Chapter 7.
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Chapter 2

Mathematical Background

2.1 Elliptic Curves

Let p be a prime and k = Fq a finite field of size q = pn for some positive integer n.
We define K = Fqm to be an extension field of degree m over k, noting that K will have
composite extension degree over Fp. An elliptic curve E over k (sometimes denoted E/k)
can be thought of simply as an equation of the form

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (2.1)

where the ai ∈ k satisfy a non-singularity condition. We will occasionally refer to k as the
field of definition. If k is not of characteristic 2 or 3, we can without loss of generality use
a linear change of variables to transform the above equation into the form

E : Y 2 = X3 + aX + b, a, b ∈ k. (2.2)

The above is known as the short Weierstrass equation of E. Here the non-singularity
condition is met when 4a3 + 27b2 6= 0. When k is of characteristic 2, an ordinary elliptic
curve may be transformed into the form

E : Y 2 +XY = X3 + aX2 + b, (2.3)

where a, b ∈ k. Non-singularity is met when b 6= 0.

Before we can explain what we mean by an ordinary elliptic curve, a few definitions
will be required.
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Definition 2.1.1. Let E/k be an elliptic curve and X, Y ∈ k. The ordered pair (X, Y )
is called a k-rational point of E if X and Y satisfy the equation of E. For technical
reasons, we also include a special point OE, called the point at infinity. The set of all
k-rational points of E is denoted by E(k).

Remark 2.1.1. It is worth noting that if E is defined over k, we are not confined to only
looking at subsets of E(k). In many cases we will need to consider points whose coordinates
lie in an extension field of k such as its algebraic closure k. In these instances, if L is an
extension field of k, we will use the notation E(L) to clarify the points of interest.

It is well-known that one may define a binary operation on E(k) such that the conditions
of a group are satisfied. This operation is known as the elliptic curve addition law. We
note that for any intermediate field k ⊆ k′ ⊆ k, the set E(k′) is closed under the above
operation and thus may be regarded as a subgroup of E(k) (and hence a group in its own
right).

Traditionally, the cryptographic use of elliptic curves has been centred around the group
of k-rational points of E with the security of these types of cryptosystems being more or
less dictated by the size or order of E over k, which we denote by #E(k). With this
application in mind, we will begin to explore a few of the basic results pertaining to elliptic
curves and their use in cryptography. Our major references will be [10], [40] and [15].

Theorem 2.1.2. [15, Theorem 3.7] Let E/k be an elliptic curve where k = Fq. Then

q + 1− 2
√
q ≤ #E(k) ≤ q + 1 + 2

√
q.

The above result is known as Hasse’s Theorem, and the interval [ q+1−2
√
q, q+1+2

√
q ]

is called the Hasse interval. An alternative formula for the group order is given by

#E(k) = q + 1− t,

where |t| ≤ 2
√
q. The value t is the trace of Frobenius, which will be described in greater

detail in the next sections.

Definition 2.1.2. Let p = char(k). An elliptic curve E/k is called supersingular if p|t.
If this is not the case then we say E is an ordinary elliptic curve.

The distinction between ordinary and supersingular curves will be made less superfi-
cial in Section 2.1.1, but for the time being Definition 2.1.2 provides a simple means of
distinguishing the two types of curves.

It is worth mentioning that computing #E(k) may be done efficiently using techniques
such as the Schoof-Elkies-Atkins (SEA) algorithm; so determining t is straightforward in
practice. We now present a theorem that is useful for determining the possible values for
#E(k).
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Theorem 2.1.3. [15, Theorem 3.8] Let k be a field of order q = pn. There exists an
elliptic curve E/k with #E(k) = q + 1 − t if and only if one of the following conditions
holds:

(i) t 6≡ 0 (mod p) and t2 ≤ 4q.

(ii) n is odd and either

(a) t = 0,

(b) t2 = 2q and p = 2, or

(c) t2 = 3q and p = 3.

(iii) n is even and either

(a) t2 = 4q,

(b) t2 = q and p 6≡ 1(mod 3), or

(c) t = 0 and p 6≡ 1(mod 4).

We will mostly be concerned with ordinary elliptic curves over binary fields (i.e. F2m

for some positive integer m). In this context, Theorem 2.1.3 tells us that for all even values
l that lie in the Hasse interval, there exists an elliptic curve E/k with #E(k) = l. For
the remainder of this thesis, we will largely be neglecting the supersingular case. We may
state some results that pertain to supersingular curves for completeness, but it should be
understood that such curves are not the focus of this work.

2.1.1 Torsion Points

Let E/k be an elliptic curve and n a positive integer. We define the set of n-torsion
points to be the set

E[n] = {P ∈ E(k) : nP = OE}.
A simple check will verify that the above is a group under addition. The n-torsion points
will play an important role in the discussion of isogenies in Chapter 3, so to this end we
present some results regarding their structure as groups.

Theorem 2.1.4. [37, Chapter 7] Let E be an elliptic curve over a field k of characteristic
p, and suppose l is a prime and e is a positive integer. If gcd(l, p) = 1, then

E[le] ' Z/leZ⊕ Z/leZ
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as groups. If gcd(l, p) 6= 1, then

E[le] ' Z/leZ or {0}.

Using this theorem, one can subsequently use the classification of finite abelian groups
to determine the structure of E[n] for any n. We state this result formally below.

Theorem 2.1.5. [40, Theorem 3.2] Let E be an elliptic curve over a field k of characteristic
p > 0 and suppose that n is a positive integer. If gcd(n, p) = 1, then

E[n] ' Z/nZ⊕ Z/nZ

as groups. If gcd(n, p) 6= 1, then write n = prn′ where p - n′. Then

E[n] ' Z/n′Z⊕ Z/n′Z or Z/nZ⊕ Z/n′Z.

If one considers the group E[p], the two structural possibilities are consistent with our
earlier definition of supersingular/ordinary curves. By this we mean the following:

Theorem 2.1.6. Using the same notation as above, E is supersingular if and only if
E[p] ' {0}.

The group of points E[n] ties in with an important class of functions defined on E
known as multiplication-by-n-maps. They are denoted [n] : E(k) → E(k) and defined
such that

[n](P ) = nP,

for all P ∈ E(k). The main detail to note is that E[n] is the kernel of [n].

2.1.2 Maps Between Curves

Suppose E1 and E2 are two elliptic curves defined over k. A map ϕ : E1(k) → E2(k) is
called a rational map over k if there exist rational functions f and g with coefficients in
k such that

ϕ(P ) =
(
f(P ), g(P )

)
for all P ∈ E1(k). We will write ϕ : E1 → E2 to mean a function E1(k) → E2(k) unless
otherwise stated.

In algebraic geometry, the concept of a rational map may be specialized to a class of
functions known as morphisms, which respect the geometry of the objects on which they
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act. A rough explanation is that rational maps need not be ‘defined’ for all P ∈ E(k),
and morphisms are those rational maps which are. When dealing with maps between
elliptic curves, Lemma 7.3.6 of [10] tells us that every non-constant rational map over k
is a morphism. In the interest of simplification, any apparently undefined values (those
points that evaluate to zero in the denominator of f or g) are mapped to OE by definition.

Morphisms have a number of useful properties, one of which is the following:

Theorem 2.1.7. [10, Theorem 8.2.1] Morphisms of curves are either constant or surjec-
tive.

As noted earlier, the set of k-rational points of an elliptic curve form a group, and in
typical mathematical fashion we will be interested in maps that preserve the structure of
this group. The following result provides us with a necessary condition on morphisms to
achieve this.

Theorem 2.1.8. [10, Theorem 9.2.1] Given E1 and E2 as above, a morphism ϕ : E1 → E2

such that ϕ(OE1) = OE2 is a group homomorphism.

This leads naturally to the concept of isomorphism of elliptic curves.

Definition 2.1.3. Two curves E1/k and E2/k will be called isomorphic over k if there
exist morphisms ϕ : E1 → E2 and ψ : E2 → E1 over k such that

ϕ ◦ ψ = idE2 and ψ ◦ ϕ = idE1 .

There is a convenient computational definition for determining whether two curves
are isomorphic based on their Weierstrass equations. A general definition can be found
in Chapter 4 of [15], but we will only present the specializations for short Weierstrass
equations in the cases when char(k) = 2 and char(k) 6= 2, 3:

Proposition 2.1.9. [15, Theorem 3.15]. Let k = Fq be a finite field with char(k) 6= 2, 3.
Two elliptic curves E1/k : Y 2 = X3+aX+b and E2/k : Y 2 = X3+a′X+b′ are isomorphic
over k if and only if there exists u ∈ k∗ such that

u4a′ = a and u6b′ = b.

Given that such a u exists, the change of variables (X, Y )→ (u2X, u3Y ) transforms E1 to
E2.
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Proposition 2.1.10. [15, Theorem 3.18]. Let k = F2m be a field of characteristic 2. Two
ordinary elliptic curves E1 : Y 2 +XY = X3 +aX2 + b and E2 : Y 2 +XY = X3 +a′X2 + b′

defined over k are isomorphic over k if and only if b = b′ and Tr(a) = Tr(a′).

Tr(c) denotes the trace of an element c using the extension F2m/F2 and can be calculated
with the formula

Tr(c) = c+ c2 + c2
2

+ · · ·+ c2
m−1

.

Isomorphisms will be important for us due to the following fact [15, Section 3.1.5]: if
two curves E1 and E2 defined over k are isomorphic over k, then E1(k) and E2(k) are
isomorphic as groups. Isomorphism is an equivalence relation, and the equivalence classes
are referred to as isomorphism classes. For the most part, the properties we are interested
in will be preserved by isomorphisms, therefore we will often deal with isomorphism classes
rather than the individual Weierstrass equations. Of particular importance is the fact that
instances of the ECDLP are equivalent in isomorphic curves.

A necessary condition for elliptic curves to be isomorphic over k makes use of the
j-invariant.

Definition 2.1.4. Let k be a field of characteristic not equal to 2 or 3, and E/k an elliptic
curve with short Weierstrass equation 2.2. The j-invariant of E is defined to be

j = j(E) = 1728
4a3

4a3 + 27b2
.

When the characteristic of k is 2 and E is in the form (2.3), then j(E) = 1/b.

The condition is encompassed by the theorem below.

Theorem 2.1.11. [10, Theorem 9.3.6] Let k be a field and E1/k,E2/k two elliptic curves.
There is an isomorphism from E1 to E2 over k if and only if j(E1) = j(E2).

A simple consequence of this is that if two elliptic curves are isomorphic over a field k,
then they are isomorphic over any extension of k, and hence have the same j-invariant. One
might expect that curves which are isomorphic over some extension of k, but not necessarily
k itself should be somehow related. Indeed, there is a convenient formula relating their
orders. Before we state this theorem though, we introduce the notion of twist curves.

Definition 2.1.5. Let E/k be an elliptic curve. A twist of E is an elliptic curve E ′/k
such that there is an isomorphism ϕ : E → E ′ over k (but not necessarily k). One notes
that j(E) = j(E ′).
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A twist E ′ of E will be called trivial if it is isomorphic over k to E, and non-trivial
otherwise.

Let q be an odd prime power and E : Y 2 = X3 + aX + b an elliptic curve over k. If
d ∈ k∗ (the set of non-zero elements of k) is a non-square, then the curve E(d) : Y 2 =
X3 + d2aX + d3b is a non-trivial twist of E over k. Furthermore, as long as j(E) 6= 0 or
1728, all other non-trivial twists of E are isomorphic to E(d). E(d) is called a quadratic
twist of E.

A similar notion exists when the characteristic of k is 2. If γ is an element with
Tr(γ) = 1, then the ordinary curves E : Y 2+XY = X3+b and E ′ : Y 2+XY = X3+γX2+b
are non-trivial twists over k. By Proposition 2.1.10, any twist of E must be isomorphic
over k to one of these two curves. The relationship between the cardinalities of twist curves
is given by the following theorem.

Theorem 2.1.12. [10, Section 9.5] Let q be a prime power and E/Fq an elliptic curve
with #E(Fq) = q + 1− t. Then a quadratic twist over Fq has cardinality q + 1 + t.

This theorem will be particularly useful in our experimental results since if we know the
number of distinct isomorphism classes with a given cardinality q + 1− t, we immediately
know the number of isomorphism classes of cardinality q + 1 + t.

2.2 Algebraic Number Theory

It seems necessary to now turn our discussion towards some of the essential concepts of
algebraic number theory that will help in our understanding of isogenies. A more complete
treatment can be found in any algebraic number theory textbook; we found [37] to be quite
helpful as well.

2.2.1 Quadratic Number Fields

Let L = Q(
√
d) for some square-free integer d 6= 0, 1. When d < 0, L is called an imaginary

quadratic number field and its degree is the degree of L as an extension of Q (which will
be 2). An element α ∈ C is said to be algebraic if it is the root of some polynomial
A(x) ∈ Z[x]. If it is possible to find a monic such A(x), then we call α an algebraic integer.
The set A of all algebraic integers is a ring, and one defines OL = A ∩ L to be the ring of
integers of L.
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OL is a special case of the more general notion of an order. An order of L is defined to
be a subring of L that is a finitely generated Z-submodule of rank n = deg(L) (recall that
intuitively, for a ring A, an A-module is an Abelian group M on which A acts linearly).
In a quadratic number field, one can think of an order as a set

O = {aω1 + bω2 |a, b ∈ Z},

where ω1, ω2 are Q-linearly independent elements of L such that the set forms a ring. It
is possible to show that every order must be contained in the ring of integers of L, and so
OL is actually the unique maximal order of L. One defines the discriminant of L to be

D = Disc(L) =

{
d if d ≡ 1 (mod 4),

4d if d 6≡ 1 (mod 4).
(2.4)

It can be shown that OL = Z[(D +
√
D)/2] and that any order O = Z[c(D +

√
D)/2] for

some c ∈ N. The value c is know as the conductor of O and is equal to the index [OL : O].

2.2.2 Ideals and Factorization

While we are assuming an elementary background in ring theory, there are a few additional
definitions and concepts that we will require pertaining to ideals in imaginary quadratic
number fields. In particular, we wish to define the ideal class group and mention a result
regarding the factorization of ideals.

Let O denote the ring of integers of an imaginary quadratic field L, and recall that L
is the fraction field of O. A fractional ideal I of O is an O-submodule of L such that there
exists some α ∈ L with αI ⊆ O. In this section we will only be referring to fractional
ideals of O, so from now on we will just say fractional ideal. As a quick example, suppose
O = Z[

√
−2] ⊆ Q(

√
−2). Then 1

2
O is a fractional O-ideal in Q(

√
−2), but not an ideal of

O.

A fractional ideal I is said to be invertible if there exists some fractional ideal J that

IJ = {ab : a ∈ I, b ∈ J} = O.

The set of fractional ideals form a group under ideal multiplication, and we define the ideal
class group of O to be the set of nonzero fractional ideals modulo the principal fractional
ideals (those generated by a single element). The class number of O is the cardinality of
the class group.
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Now recall that the factorization of O-ideals into prime ideals is unique. One defines
the norm of an O-ideal I to be

N(I) = #(O/I),

and we have the useful fact that the ideal generated by a rational prime l, denoted lO, can
factor in three different ways:

1. lO = q1q2, with q1 6= q2 and N(q1) = N(q2) = l;

2. lO = q2 and N(q) = l; or

3. lO is itself prime.

Note that in each case N(lO) = l2. In order, we refer to these cases by saying l splits,
ramifies or is inert. It turns out that an ideal of norm l exists only in the first two cases,
and that there are no other such ideals beside the factors of lO.

An important theorem by Dedekind (see Proposition 5.11 [2]) tells us that if L = Q(α)
and l is a prime that does not divide [OL : Z[α]], then one may determine the behaviour
of lO by looking at the factorization of the minimal polynomial f of α modulo l. In
particular, cases 1, 2, 3 above correspond to a factorization of f into 2, 1 or 0 (irreducible)
distinct degree one factors. Moreover, if µ and λ are the roots of f modulo l, then the
norm-l ideals are of the form (l, α− µ) and (l, α− λ).

For a quadratic field, we can determine how a prime l (that does not divide [OL : Z[α]])

behaves by computing the Legendre symbol
(
Disc(L)

l

)
. This can be seen from the quadratic

formula mod l since the number of roots corresponds to whether the discriminant is 0, a
quadratic residue or a quadratic non-residue mod l (these correspond to the ramify, split
and inert cases respectively). We will see how the behaviour of primes provides us with
important information about the isogenies of an elliptic curve.
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Chapter 3

Isogenies

3.1 Preliminaries

Now that we have sufficient background knowledge, we introduce the key ingredient used
in extending the GHS attack.

Definition 3.1.1. Let E1/k and E2/k be elliptic curves. An isogeny over k is a morphism
ϕ : E1 → E2 over k such that ϕ(OE1) = OE2.

Note that Theorems 2.1.7 and 2.1.8 tell us that isogenies are group homomorphisms
and that every isogeny is surjective except for the one that takes all points to OE2 . Given
an isogeny ϕ as above, its kernel is the set ker(ϕ) = {P ∈ E1(K) : ϕ(P ) = OE2}.

We denote the set of all isogenies defined over k from E1 to E2 by Homk(E1, E2). When
E2 = E1, we obtain the endomorphism ring of E, which will be denoted by Endk(E),
and consists of all isogenies from E to itself defined over k. We will drop the subscript k in
the case where we are considering the algebraic closure of the field of definition of E. One
may verify that Endk(E) is a ring with addition and multiplication given by point-wise
addition and composition respectively, and the structure of this ring will be of interest to
us in later sections.

To motivate our discussion of isogenies, we state Tate’s isogeny theorem, which illus-
trates an important property of isogenies in relation to cryptography. Essentially instances
of the ECDLP on one curve can be mapped to instances of an isogenous one, given that
the group in which the ECDLP sits is not annihilated by the kernel of the isogeny. This
caveat is typically not a concern in practice since the ECDLP is usually chosen to be in a
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subgroup of large prime order and the known methods for efficiently constructing isogenies
do not construct ones with kernels that have large prime subgroups.

Theorem 3.1.1 (Tate’s Isogeny Theorem). Let E1 and E2 be elliptic curves over a finite
field k. E1 is isogenous over k to E2 if and only if #E1(k) = #E2(k).

It should be noted that Tate’s isogeny theorem is technically only the reverse implication
of the above, and that originally it appeared in the more general context of abelian varieties;
we have simply given its specialization to the elliptic curve setting.

3.2 Standard Form

Isogenies have two particularly important invariants which we will require; those of degree
and separability. These concepts have definitions rooted in algebraic geometry, which
the interested reader may refer to [9] or [10] for details. It is not our intention to dive into
those aspects here, so we will use a more concrete definition. Our first order of business will
be to develop a standard form for a given isogeny as in Section 2.9 of [40]. For notational
ease, we will assume that we are working with a curve E given in the form (2.2).

Let r(X, Y ) be any rational function with coefficients in k. Since we are interested in
points (X, Y ) ∈ E(k), we can repeatedly use the curve equation to substitute even powers
of Y for a polynomial in X. It is thus possible to express r in the form

r(X, Y ) =
p1(X) + p2(X)Y

p3(X) + p4(X)Y
.

Further, by multiplying numerator and denominator by p3(X)− p4(X)Y and doing a few
more substitutions, we can obtain

r(X, Y ) =
q1(X) + q2(X)Y

q3(X)
. (3.1)

Now suppose ϕ(P ) = ϕ((X, Y )) = (f(X, Y ), g(X, Y )) is an isogeny. Using the fact that
ϕ is a group homomorphism and that the inverse of a point P = (X, Y ) is −P = (X,−Y ),
it follows that

ϕ((X,−Y )) = ϕ(−(X, Y )) = −ϕ(X, Y ).

Hence if we write f in the form (3.1) we can deduce that q2(X) = 0. Writing g in the
same way, similar reasoning yields that the corresponding q1 is the zero polynomial. After
eliminating common factors, we finally arrive at

ϕ(X, Y ) =
(
f(X), g(X)Y

)
,
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where f and g are now rational functions only in the variable X. This is the standard
form of an isogeny.

Definition 3.2.1. Consider an isogeny ϕ in standard form. Write

f(X) =
r1(X)

r2(X)
,

where the ri are coprime polynomial functions in X (with coefficients in k). We define the
degree of ϕ as

deg(ϕ) = max{deg(r1), deg(r2)}.

Definition 3.2.2. An isogeny is called separable if the derivative of r1/r2 is non-zero.
Otherwise we call the isogeny inseparable.

Our primary focus will be on separable isogenies, so we will often drop the word ‘sep-
arable’ unless the distinction needs to be made. The following well-known result ties the
notions of degree and separability together.

Lemma 3.2.1. [10, Lemma 9.6.4] A nonzero separable isogeny ϕ : E1 → E2 over k of
degree d has #ker(ϕ) = d.

Some examples of isogenies include the multiplication by n maps, which send P 7→ nP
for all points P ∈ E(K) and the Frobenius endomorphism, denoted by π, which given
k = Fq takes

(x, y) 7→ (xq, yq).

For n relatively prime to the characteristic, [n] is separable and has degree n2, whereas π
is inseparable of degree q.

Example 1. Consider the elliptic curve E given by the equation E : Y 2 = X3 + 12X + 1
over F13. If we write F133

∼= F13[t]/(t
3 + 2t + 11), then E has three 2-torsion points,

(2t2 + 6t + 7, 0), (t2 + 1t + 10, 0), and (10t2 + 6t + 10, 0). There are thus three separable
2-isogenies over F133 whose kernels are OE and one of these points. Explicitly the isogenies
are (respectively) as follows:

(i) The map which takes (X, Y ) to(X2 + (2t2 + 6t+ 7)X + (4t2 + 5t+ 5)

X + (11t2 + 7t+ 6)
,
X2Y + (9t2 + t+ 12)XY + (5t2 + 3t+ 2)Y

X2 + (9t2 + t+ 12)X + (4t2 + 5t+ 6)

)
is a degree-2 isogeny from E to the curve

E1/F133 : Y 2 = X3 + (t2 + 3t+ 10)X2 + (t2 + 11t+ 12)X,
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(ii) The map which takes (X, Y ) to(X2 + (t2 + t+ 10)X + (6t2 + 5t+ 12)

X + (12t2 + 12t+ 3)
,
X2Y + (11t2 + 11t+ 6)XY + (t2 + 3t+ 1)Y

X2 + (11t2 + 11t+ 6)X + (6t2 + 5t)

)
is a degree-2 isogeny from E to the curve

E1/F133 : Y 2 = X3 + (7t2 + 7t+ 5)X2 + (8t2 + 11t+ 4)X,

(iii) The map which takes (X, Y ) to(X2 + (10t2 + 6t+ 9)X + (3t2 + 3t+ 8)

X + (3t2 + 7t+ 4)
,
X2Y + (6t2 + 1t+ 8)XY + (7t2 + 7t+ 9)Y

X2 + (6t2 + t+ 8)X + (3t2 + 3t+ 9)

)
is a degree-2 isogeny from E to the curve

E1/F133 : Y 2 = X3 + (5t2 + 3t+ 11)X2 + (4t2 + 4t+ 3)X.

Note that the image curves are not in Weierstrass form, but these may be easily con-
verted.

One might wonder (and hope) that if E1 is isogenous to E2 whether E2 is isogenous to
E1. This question is answered in the affirmative by the existence of the dual isogeny.

Theorem 3.2.2. [10, Theorem 9.6.21] Let E1 and E2 be two elliptic curves over k, and
ϕ : E1 → E2 be a nonzero isogeny over k of degree m. Then there is a nonzero isogeny
ϕ̂ : E2 → E1 over k such that

ϕ̂ ◦ ϕ = [m] : E1 → E1.

Furthermore, ϕ̂ is unique and is called the dual isogeny of ϕ.

3.3 Kernels of Isogenies

Now that we have an idea of what isogenies are, a natural question is what sort of isogenies
can arise from a particular elliptic curve. In this section we present a series of results that
will shed some light on the structure of such maps.

Theorem 3.3.1. [10, Theorem 9.6.18] Let E1, E2, E3 be elliptic curves over k and ϕ :
E1 → E2, ψ : E1 → E3 be isogenies over k. Suppose that ker(ϕ) ⊆ ker(ψ) and that ψ is
separable. Then there is a unique isogeny λ : E2 → E3 over k such that ψ = λ ◦ ϕ.
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What this theorem says is that by taking a nontrivial subgroup of the kernel of some
isogeny, one can decompose it into two isogenies of smaller degree.

Definition 3.3.1. A set G is said to be defined over k if σ(P ) ∈ G for all P ∈ G and
σ ∈ Gal(k/k); i.e. the Galois group of k/k fixes G.

Theorem 3.3.2. [10, Theorem 9.6.19] Let E/k be an elliptic curve and G ⊆ E(k) a finite
group defined over k. Then there is a unique (up to isomorphism over k) elliptic curve
E1/k and a separable isogeny ϕ : E → E1 over k such that ker(ϕ) = G.

It is also true that if ψ and ϕ are two isogenies mapping from E to E1 with the same
kernel, then ψ = λ ◦ ϕ, where λ is an automorphism on the image curve. Further, if ψ
instead maps to another curve E2, then ψ = λ ◦ ϕ where λ : E1 → E2 is an isomorphism
over k.

The main conclusion here is that an isogeny is essentially determined by its kernel.
We will say that two separable isogenies are equivalent if their kernels are the same. A
corollary of the Theorem 3.3.2 is that every isogeny may be decomposed into a chain of
prime degree isogenies. We state this formally below.

Theorem 3.3.3. [10, Theorem 25.1.2] Let E1 and E2 be elliptic curves over k and ϕ :
E1 → E2 a separable isogeny over k. Then we can write

ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕk ◦ [n],

where each ϕi is a separable isogeny over k of prime degree and n is the largest integer
such that E[n] ⊆ ker(ϕ). Furthermore,

degϕ = n2

k∏
i=1

deg(ϕi).

This result plays a critical role in the concept of an isogeny walk since it tells us that
any isogeny can be constructed through a series of “steps” using prime degree isogenies.

3.4 Endomorphism Rings

Let k be a field and recall that End(E) is the set of all isogenies over k from E to itself.
We begin by listing a few facts regarding the structure of this ring.
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Theorem 3.4.1. [40, Theorem 10.6] Let E/k be an elliptic curve, char(k) = p.

1. If E is ordinary, then End(E) is an order in an imaginary quadratic field L.

2. If E is supersingular, then End(E) is a maximal order in a definite quaternion algebra
that is ramified at p and ∞ and is split at the other primes.

It can be shown that if E is ordinary and k = Fq, then L = Q(
√
t2 − 4q), where t

is the trace of Frobenius. To help gain a rough intuition, recall that for any n ∈ Z the
multiplication-by-n map [n] is an endomorphism. Each such endomorphism is distinct and
non-trivial, hence by identifying [n] with its corresponding integer, one can conclude that
Z ⊆ End(E). With finite fields, the Frobenius endomorphism π also lies in End(E), thus
we always have the following containments:

Z[π] ⊆ End(E) ⊆ OL,

where OL denotes the ring of integers of L. Because of this containment, we will often
abuse notation by simply referring to endomorphisms as complex numbers.

In the ordinary case, π 6= [n] for any n ∈ Z, and may be identified with a complex
number having minimal polynomial x2− tx+ q. Since L is a quadratic number field, {1, π}
is a Q-basis for L.

One could write

π =
−t±

√
t2 − 4q

2
,

but everything not in the root will be absorbed by Q, yielding

L = Q(π) = Q(
√
t2 − 4q).

An important note is that if cπ is the conductor of Z[π] in OL, the conductor c of any
endomorphism ring must divide cπ. Moreover one can show that cπ is the largest integer
such that (t2 − 4q)/c2π ≡ 0, 1 (mod 4).

If we denote End(E) by O, whenever E has an endomorphism ring that strictly contains
a copy of Z, we say that E has complex multiplication or CM (by O). It follows that
every ordinary elliptic curve defined over a finite field has CM. The theory of complex
multiplication is very powerful, and we will make use of a number of useful facts derived
from it [37].

1. Given an ordinary elliptic curve E/k with End(E) = O an order in an imaginary
quadratic field L, suppose that there exists an isogeny ϕ : E → E ′ of prime degree l.
Then End(E ′) = O′ is also an order in L, and one of the following holds:
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(a) O = O′,
(b) [O : O′] = l,

(c) [O′ : O] = l.

In the three cases above, the isogeny is referred to as horizontal, descending, and
ascending respectively. Horizontal isogenies have distinctive characteristics from the
other two cases, and so to distinguish them the latter two cases are called vertical
isogenies.

2. Every horizontal l-isogeny arises from the action of an invertible O-ideal of norm
l. Hence from our discussion in Section 2.2.2, if one is dealing with a curve whose
endomorphism ring is the maximal order OL, then one may look at the Legendre

symbol
(
Disc(L)

l

)
to determine exactly how many distinct horizontal l-isogenies arise

from a particular curve.

3.5 Isogeny Graphs

To reach our goal of understanding why the isogeny walk strategy is effective, we will
need to understand how curves defined over a field k are related through different degree
isogenies. It seems natural to consider the graph whose vertices correspond to elliptic
curves and whose edges correspond to isogenies. Recall that Theorem 3.3.3 tells us that
any separable isogeny may be constructed out of a series of prime degree isogenies. Hence
it will be helpful to first look at the structure of such graphs where edges only exist if there
is an isogeny of degree l for a fixed prime l. We will see how such graphs combine together
for curves of a fixed order N .

To begin, we can consider the vertex set to be the elements of k thanks to the following
theorem.

Theorem 3.5.1. [37, Theorem 14.12] For every j0 in k, there exists an elliptic curve E/k
such that j(E) = j0.

If we want our edges to correspond to l-isogenies, it would be nice if we had a way to
easily determine whether two curves were l-isogenous over k. Fortunately, the l-th modular
polynomial allows us to do just that.

For each prime l there exists a degree-(l + 1) polynomial Φl(X, Y ) ∈ Z[X, Y ] with the
property that if one computes Φl(j, Y ) where j is the j-invariant of a curve E/k, then the
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roots of Φl(j, Y ) in k are exactly the j-invariants of the curves which are l-isogenous to
E over k. It is known that if l 6= char(k), then the number of l-isogenies over k up to
isomorphism is either 0, 1, 2 or l+ 1. This corresponds to the cases where there are exactly
0, 1, or 2 order-l subgroups of E(k) that are defined over k, or if E[l] is defined over k. We
refer to Φl(X, Y ) as the l-th modular polynomial, which is used to formally define the
l-isogeny graph:

Definition 3.5.1. The l-isogeny graph Gl(k) is the graph with vertex set k and directed
edges (j1, j2) occurring with multiplicity equal to the multiplicity of j2 as a root of Φl(j1, Y ).

It is worth mentioning that given two isogenous elliptic curves related by a degree-
l isogeny, their twists are also related by a degree-l isogeny. Hence there is no loss of
generality if we simply treat twist curves as equivalent. If one is actually using the modular
polynomial to map to a different curve, the choice of twist is important, but not a difficult
task in practice.

In order to represent non-prime isogenies in our graph, we can essentially stack a number
of l-isogeny graphs on top of each other. Of course, we could do this for infinitely many
primes, but beyond a certain number computations would become quite impractical. Our
hope would be that a reasonable selection of primes will be enough to connect all the
vertices in an isogeny class.

Note that for each l, Gl(k) is a priori known to be disconnected as a consequence of
Tate’s isogeny theorem. It thus makes sense to restrict our attention to the j-invariants of
curves having the same order N . This leads us to the following definition:

Definition 3.5.2. [10, 25.3.1] Let E/k be an elliptic curve with char(k) = p. Let S ⊆ N
be a finite set of prime numbers. We define

XE,k,S

to be the (directed) graph with vertex set consisting of elements from the k-isogeny class
of E. One can think of the vertices as being labeled by j-invariants of isogenous curves.
For each l ∈ S, there is an edge (j(E1), j(E2)) labeled by l for each equivalence class of l-
isogenies from E1 to E2 defined over k. Note that because every isogeny has a dual isogeny
of the same degree going in the opposite direction, we can just think of this as an undirected
graph.

Things are slightly more complicated when j(E) = 0 or 1728 in that we cannot assume
the graph is undirected. However these instances are rare enough that we can ignore them
in the interest of simplification. We would also like to point out that if we have a particular
order N in mind rather than a curve, we can write XN,k,S without any ambiguity.
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3.5.1 The Structure of Isogeny Graphs

Recall that supersingular curves are only isogenous to other supersingular curves. The
structure of subgraphs consisting of supersingular curves is distinct from those of ordinary
curves, but as usual we will only be discussing the ordinary case.

In 1996, Kohel published the seminal work on the structure of isogeny graphs of elliptic
curves over finite fields in [20] and we refer to [36] for an excellent exposition on the subject.
The main structural result is that the ordinary components of Gl(k) are a type of graph
known as l-volcanoes. We will merely state the definition and Kohel’s main result.

Definition 3.5.3. An l-volcano V is a connected, undirected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

(i) The subgraph induced by V0 (called the surface) is a regular graph of degree at most
2.

(ii) For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1 and this accounts
for every edge not on the surface.

(iii) For i < d, each vertex in Vi has degree l + 1.

The value d is referred to as the depth of the volcano.

Theorem 3.5.2 (Kohel). Let V be an ordinary component of the l-isogeny graph Gl(k)
that does not contain the values 0 or 1728. Then V is an l-volcano with the following
properties:

(i) The vertices in level Vi all have the same endomorphism ring Oi.

(ii) The subgraph on V0 has degree 1 + (D0

l
), where D0 = disc(O0).

(iii) If (D0

l
) ≥ 0, then |V0| is the order of l in the class group of of O0, where l is a norm-l

ideal; otherwise |V0| = 1.

(iv) The depth of V is equal to r/2, where r is the largest integer such that
lr|
(
(t2 − 4q)/D0)

)
. Here t is the trace of Frobenius for a curve whose j-invariant is

in V .

(v) l 6 | [OL : O0] and [Oi : Oi+1] = l for 0 ≤ i < d.
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We would like to emphasize a few specific notions to take from this result. Suppose E/k
is an elliptic curve with endomorphism ring O 6= OL and conductor c. If ϕ is an isogeny
(over k) between E and a curve E ′/k with End(E ′) = OL, then c must divide deg(ϕ).
Secondly, if one is considering an elliptic curve with endomorphism ring equal to OL, and
l does not divide [OL : Z[π]], then the number of l-isogenies originating from this curve is
completely determined by the value of (D0

l
) (since there are no descending isogenies).

In 2005, Jao et al. [18] published results affirming the random reducibility of discrete
logarithms amongst curves of the same order under the assumption of the Generalized
Riemann Hypothesis (GRH). One of the primary theorems in this work is the following:

Theorem 3.5.3. [18, Theorem 1.1] Consider the isogeny graph XN,k,S where S is the set
of all primes less than some number m. Assuming the GRH, there exists a polynomial p(x),
independent of N and q such that for m = p(log q) the isogeny graph XN,k,S on each level
is an expander graph, in the sense that any random walk on XN,k,S will reach a subset of
size h with probability at least h

2|XN,k,S |
after polylog(q) steps (where the implicit polynomial

is again independent of N and q).

We will use this property extensively in our analyses of the random walk in the coming
chapters.

23



Chapter 4

Cryptographic Background

4.1 The Elliptic Curve Discrete Log Problem

Let E/k be an elliptic curve and consider the group E(k). Suppose that P ∈ E(k) has
order N and Q ∈ 〈P 〉, i.e. Q = αP for some α ∈ [0, N − 1]. The number α is called
the discrete logarithm of Q with respect to P , and denoted by logPQ. The elliptic curve
discrete logarithm problem (ECDLP) is the problem of finding α given only E,P and Q.

In general, the ECDLP is thought to be a hard problem. There are of course instances in
which the properties of a particular instance of ECDLP may be exploited to solve it faster
than expected, but in cryptographically interesting cases one would assume such techniques
are not applicable. Some attacks to consider during selection of a curve/instance are the
Pohlig-Hellman attack [29], Weil and Tate pairing attacks [22, 8], and those that affect
prime-field anomalous curves [31, 33, 35].

Given that one has chosen an instance appropriately, the problem is believed to be about
as hard as in a general group of size N , which means that the best methods of attack are
so-called “generic DLP solvers”— methods which may be applied to any curve/ECDLP
instance as they do not make use of any special properties. The expected run time of
such algorithms is approximately

√
N . We will begin our discussion with one of the most

effective and well-known algorithms, Pollard’s ρ method.

4.1.1 Pollard’s Rho

In a general group G of order N , the method is as follows [40, Chapter 5.2]. Begin by
selecting a function f : G→ G that “looks” random, and initialize with a random element
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P0. The next step is to compute iterations Pi+1 = f(Pi). Since G is finite, at some point
there will be indices i0 and j0, i0 < j0, such that Pi0 = Pj0 . A consequence of f being
deterministic is that now we have

Pi0+l = Pj0+l

for all l ≥ 0. Assuming that the difference j0 − i0 is the minimal number such that the
above collision occurs, the sequence Pi will become periodic after some value i with period
j0 − i0.

We will see that once we have obtained i0 and j0, the DLP is solved. The run time
thus boils down to finding a collision in the function f , which assuming f is truly random,
is on the order of

√
N by the birthday paradox. It has been shown that this is essentially

optimal (one can refer to [37, Chapter 10] for a nice exposition). Pollard’s ρ has extra
appeal since it may be modified in such a way as to require very little storage (only two
points at any one time) without much more computation. Moreover, it can be parallelized
to achieve a speedup that is linear in the number of processors [39].

The typical method that one extracts information about the discrete logarithm from a
collision is to choose f is such a way that for each i,

Pi = aiP + biQ,

where ai, bi are known. Hence a collision will result in a relation

aiP + biQ = ajP + bjQ.

Rearranging will yield the congruence

α ≡ bi − bj
aj − ai

(mod N/d),

where d = gcd(N, aj − ai). One can then guess at values for α until the appropriate value
is found, assuming d is small. In cryptographic applications, N is often a prime number
so d = 1 or N . In the latter case we have a trivial relationship and we simply repeat until
d = 1.

It is an important observation that the asymptotic running time of Pollard’s rho algo-
rithm, O(

√
N) does not seem to hide any large constants, and is in fact very close to the

actual running time [38].
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4.2 Index Calculus

An alternate method for solving DLOG that has seen quite a bit of success is index calculus.
Returning to the setting of a general cyclic group G of size N , suppose g is a generator
and that we are trying to find loggh for some h in G.

The index calculus method begins by selecting a set F ⊆ G of elements known as a
factor base. The elements of F should be such that a large portion of elements of G may
be efficiently expressed as a product of those in F . The reason for this is that one desires
to collect relations of the form

gk = ab11 a
b2
2 · · · abrr ,

where a1, . . . , ar ∈ F , b1, . . . , br ∈ Z>0, and k is a randomly chosen integer. From such a
relation, one can obtain a linear equation in the logarithms of the ai:

k ≡ b1logga1 + · · ·+ brloggar (mod N).

If #F = t, then it is quite likely that after a little more than t such relations are found,
we will have a system of linear equations with rank t, which will allow us to use standard
Gaussian elimination to determine loggai for all i.

Once these values have been obtained, the next step is to generate relations of the form

hgk = ab11 a
b2
2 · · · abrr ,

where the notation is the same as above. From here it is straightforward to solve for loggh.
The running times of index calculus algorithms depend heavily on the choice of factor
base elements, and often there is no clear choice. One must also be wary of the number
of elements chosen to be in F as there is a trade-off— more elements will make it easier
to find a relation, however this also means that more relations will be needed in order to
obtain a full-rank matrix.

4.3 Point Decomposition

In the previous section, we saw how the index calculus method could be applied to a general
group to solve discrete logarithms. However if one wishes to apply this method to elliptic
curves (or hyperelliptic curves) it is somewhat unclear how to do so effectively. In partic-
ular, there is no obvious choice of factor base elements and the concept of “factorization”
in an elliptic curve group has no real meaning.
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A significant breakthrough to these issues came from Semaev [34] in 2004. His idea was
that instead of factorization, one could aim to decompose points into the sum of a fixed
number of points in a factor base. To this end, he introduced summation polynomials,
which gave an algebraic expression for the aforementioned problem. We present an outline
of this seminal work below.

4.3.1 Summation Polynomials

In order to simplify the notation, suppose that E is an elliptic curve over a field Fq of
characteristic greater than 3 (note that summation polynomials apply in characteristic 2
as well, however this restriction allows us to simplify the notation). We can then express
E using the equation Y 2 = X3 + aX + b. The summation polynomials fn are defined
recursively as follows:

• f2(X1, X2) = X1 +X2,

• f3(X1, X2, X3) = (X1 −X2)
2X2

3 − 2((X1 +X2)(X1X2 + a) + 2b)X3

+((X1 − a)2 − 4b(X1 +X2)),

• and for n ≥ 4 and 1 ≤ r ≤ n− 3,

fn(X1, . . . , Xn) = ResX(fn−r(X1, . . . , Xn−r−1, X), fr+2(Xn−r, . . . , Xn, X)).

In essence, a solution to the nth summation polynomial satisfying specific conditions is
equivalent to a decomposition into the sum of n factor base elements. This is formalized
by the following theorem.

Theorem 4.3.1 (Semaev). Let E be an elliptic curve defined over k, n ≥ 2 an integer
and fn its n-th summation polynomial. Let X1, X2, . . . , Xn be n elements of the algebraic
closure k of k. Then fn(X1, . . . , Xn) = 0 if and only if there exists an n-tuple (Y1, . . . , Yn)
in k such that for all i, Pi = (Xi, Yi) is a point of E and

P1 + · · ·+ Pn = OE.

Furthermore, if n ≥ 3, the polynomial fn is symmetric of degree 2n−2 in each variable.

It is easy to see that in order to decompose some point R = (X ′, Y ′) into N points, it
will suffice to find a solution (X1, . . . , XN) ∈ FNq to the equation

fN+1(X1, . . . , XN , X
′) = 0.
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One will have to do some guesswork regarding the sign of Yi for each i since the Xi only
determine the value of Yi up to sign, but this takes as most 2N trials for a fixed (and
usually small) N .

Building on Semaev’s work, Diem [4] and Gaudry [12] independently proposed method-
ologies for attacking curves defined over extension fields Fqn/Fq. The underlying idea of
their attacks were similar in spirit to those of index calculus, but are commonly referred
to as decomposition attacks in order to distinguish them. The main benefit of working in
an extension field is that a relatively natural choice for the factor base arises; those points
whose X-coordinate lies in the base field Fq. We provide a rough outline of the strategy
used in [12] to illustrate the elegance of their approach.

If one fixes a polynomial representation of Fqn as an extension of Fq, say Fq[t]/(f(t))
where f(t) is an irreducible monic polynomial of degree n, then any element of Fqn may
be stored as an n-tuple with entries in Fq via the bijection

(X0, . . . , Xn−1)←→ (X0 + · · ·+Xn−1t
n−1).

The Weil restriction of scalars for E/Fqn is the set of 2n-tuples

(X0, . . . , Xn−1, Y0, . . . , Yn−1) ∈ F2n
q

that correspond to points of E under the natural extension of the above map. It is worth
noting that the Weil restriction retains the group law of E. This representation is conve-
nient since we can specify the elements whose X-coordinates lie in the base field by simply
setting X1 = · · · = Xn−1 = 0.

If we invoke summation polynomials to solve a point decomposition now, we must
rewrite the coefficients of fN+1(X1, . . . , XN , X

′) = 0 as elements of Fq[t]/(f(t)) and equate
coefficients of powers of t. This will result in a system of n polynomial equations (one
for each power of t) in N unknowns; an analysis shows that taking N = n is the best
choice. Since the summation polynomials are symmetric, it follows that these n equations
are symmetric as well. The authors of [12] propose that it is beneficial to rewrite these
polynomials in terms of a symmetric basis. This system may then be solved using a Gröbner
basis algorithm, and then we can find rational roots of the subsequent polynomials to obtain
the X-coordinates of the points in the decomposition. It turns out that the Gröbner basis
step is by far and large the limiting step, with an expected running time that is polynomial
in the value 2n(n−1).

One can apply a method of index calculus known as the double large prime variation
[14] to bring the complexity to an estimated O(q2−2/n), where n is fixed and q tends to
infinity. Unfortunately the hidden constants grow very large as n is increased, and the
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method becomes impractical for n ≥ 4 or 5. However when n is say 3, the running time is
O(q4/3), which is asymptotically faster than the Pollard’s rho algorithm’s expected O(q3/2)
running time.

4.3.2 Decomposition Attacks in Higher Genus

It is worthwhile mentioning that decomposition attacks may also be applied to hyperelliptic
curves C/Fqn with genus g > 1. The caveat is that due to the more complicated group law
(the set of points no longer possess a natural group structure), summation polynomials
are not applicable in this setting. To overcome this, Nagao [28] devised a method using
divisors and Riemann-Roch spaces which (for hyperelliptic curves) reduced relation search
to solving a quadratic multivariate polynomial system. Nagao’s technique is less efficient
than Semaev’s in the elliptic curve setting, but is the best known approach in all other
cases. Fixing both the extension and genus (n and g respectively), the complexity is
estimated to be O(q2−2/ng). Thus for example taking n = 2 and g = 3 gives a running
time of O(q5/3), which is asymptotically faster than Pollard’s rho algorithm where running
time is O(q3) (note that the relevant group in this setting is the Jacobian of a genus g
hyperelliptic curve over Fqn , which has size approximately qng). However for the same
reasons as with summation polynomials, this approach is limited in use to cases where n
and g are small.

4.4 Weil Descent

As mentioned in Chapter 1, Weil descent is a technique that allows one to map instances of
the ECDLP in elliptic curves over extension fields Fqn into the DLP of a higher genus curve
(g ≥ n) defined over Fq. The GHS attack refines the so-called Weil descent methodology
to allow the reduction of ECDLP instances into those of hyperelliptic curves defined over
a smaller field. In particular, the problem would be embedded into the Jacobian of a
hyperelliptic curve C of genus g, denoted JC.

In characteristic 2, it is known that the genus of C will always be either 2m−1 or 2m−1−1,
where m may be determined via the following theorem. The value m is referred to as the
magic number.

Theorem 4.4.1. [13] Suppose l and n are positive coprime integers and q = 2l. Let k = Fq
and K = Fqn, and consider the elliptic curve E/K given by the equation

E : Y 2 +XY = X3 + aX2 + b.
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Let ai = σi(a) and bi = σi(b), where σ : K → K is the Frobenius automorphism defined

by α 7→ αq. Allow ui to denote the vector (1, ai, b
1/2
i ), and let U = SpanF2

{ui} where i
ranges from 0 to n− 1. Also let V = {(0, x2 + x) : x ∈ K}. Finally we define

m = dimF2(U/U ∩ V ).

If a ∈ {0, 1}, then this expression simplifies to

m(b) = dimF2(SpanF2
{wi}), (4.1)

where wi = (1, b
1/2
i ) for i = 0, . . . , n− 1.

A few key things to note are that σn = π, which is the identity map for all α ∈ K,
hence σ has order n as a function (which is why we let i range from 0 to n− 1). Secondly,
the simplified expression (4.1) indicates that in these cases m depends only on the value
of b.

The reason such an approach could result in a faster DLP algorithm is because in the
hyperelliptic curve setting there are known subexponential-time algorithms that may be
applied. One can refer to [10, Chapter 15.6] for an overview of available methods. In
order to decide whether Weil descent is worth using for a particular ECDLP instance, we
compare the expected run time of such algorithms with that of Pollard’s rho algorithm.
Broadly speaking, this approach can be effective for some families of elliptic curves, but
fails in general if the genus g of the covering curve C is too large. One expects the size of
the Jacobian of C to be ≈ qg, and the running time of known subexponential algorithms
are affected greatly by this quantity. Hence a large g renders these algorithms infeasible.

4.5 Cover and Decomposition Attack

Joux and Vitse showed how one might combine Weil descent (or its variants, commonly
referred to as cover attacks) with Nagao’s decomposition to create an effective attack on the
ECDLP for curves over composite extension fields. We give an overview of their method
here, but refer to [19] for details.

Suppose that Fqn/Fp is an extension of finite fields with q being a power of p, and E an
elliptic curve defined over Fqn . Note that p itself is a large prime in most applications, but
more generally p can be any prime power. Although a decomposition attack can be applied
in this setting, if n is bigger than 5 the approach is quite impractical. Instead, one can
utilize the tower of extensions Fqn−Fq−Fp and combine both the cover and decomposition
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attacks. The general idea is to first employ (GHS) Weil descent or some variant on the
extension Fqn/Fq to obtain a (hyperelliptic) covering curve defined over Fq, with a small
enough genus (relative to directly applying Weil descent on the extension Fqn/Fp). From
here we can use a decomposition attack on this new curve with the extension Fq/Fp.

Joux and Vitse also proposed a variant of Nagao’s decomposition technique that is
reminiscent of the number field and function field sieves. It was shown that while the
complexity of this variant is asymptotically higher, a smaller hidden constant implies that
it is faster in practice for smaller values of q and p.

To showcase the applicability of their attack, analyses were done in fields of the form Fp6
and Fp4 . Joux and Vitse looked at the two different towers Fp6−Fp3−Fp and Fp6−Fp2−Fp
in the former case, and the tower Fp4 − Fp2 − Fp in the latter.

For Fp6 , the asymptotic complexity of their attack was estimated to be Θ(p5/3) using
Nagao’s decomposition for either tower, and is expected to directly affect Θ(p4) curves
as compared to the expected complexity Θ(p3) of Pollard’s rho method which affects all
curves. However, it was seen that using a genus 3 cover (that is, the smallest attainable,
non-trivial genus using the tower Fp6−Fp2−Fp) reduced the problem to a smaller polynomial
system than using a genus 2 cover (which is the smallest attainable, non-trivial genus in
the Fp6 −Fp3 −Fp case). Hence the former approach is better in practice. The use of their
variant yielded an asymptotic complexity of Θ(p12/7). Analysis of the case Fp4 showed that
the attack was effective, although the improvements were less significant.

Joux and Vitse provided an example of their attack in Fp6 with p = 33554467. The
size of the elliptic curve group in their example was a 149-bit prime, and they successfully
computed discrete logarithms using their attack which otherwise would not have been
practical using any previously known algorithm.

4.6 Isogeny walks

In 2002, Galbraith, Hess and Smart [11] proposed a novel way to increase the number of
curves for which the Weil descent attack could be applied. The principal idea of their work
was that one could use isogenies to map the discrete logarithm from a seemingly safe curve
into one for which the GHS attack is effective. We present the ideas for their algorithm
here.

Note that we will be considering elliptic curves whose endomorphism ring is the maximal
order OL of the corresponding quadratic number field L. Typically one should be able to
use Kohel’s algorithm to find a chain of isogenies from a particular curve E to one in the
maximal order and carry out the isogeny walk from there, but this step can be problematic
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if c = [OL : End(E)] is divisible by a large prime (the largest prime dividing this value
is known as the conductor gap). In this case Kohel’s algorithm is inefficient, but we are
choosing to not worry about this since such a case rarely occurs in practice for randomly
selected elliptic curves.

As usual, let k = Fq where q is some prime power. In order to simplify notation, we
will suppose that char(k) 6= 2, 3. Let E/k be an elliptic curve in the form (2.2) and l be a
prime not equal to char(k). We wish to address how one finds an l-isogeny to some elliptic
curve E1/k (which at this point is unknown).

Suppose that Endk(E) ' O ⊆ L = Q(π), where π denotes the Frobenius endomor-
phism. Letting t denote the trace of Frobenius, recall that

π2 − tπ + q = 0.

From our discussion in Section 2.2, we know how the behaviour of (l) = lO as an ideal
of O reflects the number of norm-l ideals, and hence the number of horizontal l-isogenies
over Fq. We assume l is a prime that splits in O, noting that the ramifying case is easier
and in the inert case there’s nothing to do. Since l splits, we can write (l) as the product
of two prime ideals of norm l, say (l) = l1l2. It follows that the characteristic polynomial
of Frobenius factorizes as

X2 − tX + q = (X − µ)(X − λ) (mod l)

for some µ, λ ∈ Z/lZ. Thus we can write

l = (l, π − µ)(l, π − λ).

Assume that we start with an elliptic curve E/Fq having endomorphism ring O. We
will keep track of the walk by storing only the j-invariant of the current curve along with
an ideal that is updated with each step. The ideal will contain information about an
isogeny that maps from the starting curve to the current one. Note that even though twist
curves have the same j-invariant, our starting curve is unambiguous so there will be no
confusion as the algorithm progresses. We select a set F of small primes such that F
satisfies two properties: First, the set of prime ideals l corresponding to the primes in F
should generate the ideal class group of O (the idea here being that we want our isogeny
graph to be connected). Second, we need enough primes so that our walk ‘looks’ random.

Our primes should be be chosen so that most split in O, though some ramified primes
may be used as well. According to [1], one chooses an upper bound

L = 6(log(|t2 − 4q|))2
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for the possible primes and takes all suitable primes less than L to be in F . The authors
of [11] suggest that in practice 16 distinct split primes is generally sufficient for the walk
to succeed. In addition to F , we need a deterministic, but near uniform function f : k →
F ×{0, 1}, which essentially allows us to take a j-invariant and deterministically obtain a
prime and the resolution of a coin-flip. The walk now proceeds as follows.

The algorithm initializes with the pair (j1 = j, a1 = O). At the ith stage, suppose we
have a pair (ji, ai) where ji is a j-invariant for some curve and ai is an ideal. One applies f
to ji to obtains a pair (l, b) and compute Φl(X, ji). Factoring Φl(X, ji) in Fq[X] returns two
new j-invariants. The bit b is then used to decide (in some deterministic fashion) which
of these two j-invariants becomes ji+1, and the corresponding isogeny is stored as an ideal
l. In the event that two j-invariants arise, we have that lO splits into two ideals, one of
which corresponds to the relevant isogeny. [11] outlines a method to determine the correct
association, but we are content with the fact that this may be done unambiguously. Once
we have this, let ai+1 = ai · l and update our pair to be (ji+1, ai+1).

Note that one should actually take ai+1 = Reduce(ai · l), where the function Reduce
returns the element of least norm in the ideal class group of ai · l. The reason for this is that
if one is actually trying to compute a discrete log, reducing helps us keep the ideal from
getting too large (and hence the corresponding isogeny from becoming unwieldy). In fact
once the walk terminates, one should smooth the ideal output into a product of small sized
ideals to facilitate storage and computation. We only mention this as an aside because
our focus is on the reach of the isogeny walk strategy rather than actually computing
logarithms. These details may be found in [11]. At each step we check whether or not the
new curve (which corresponds to the stored j-invariant) is vulnerable, and halt if such a
curve is found.

4.6.1 Modeling the Walk

From the above description it is entirely possible that this walk never ends, so it seems
sensible to set a limit on the number of steps to take before calling it quits. Typically,
one assumes a roughly uniform random distribution of weak curves so that combined with
Theorem 3.5.3 we can easily model the probability of encountering a weak curve during
the walk. Phrased as a problem one might find in an introductory statistics textbook,
consider an isogeny class as a bin and the isomorphism classes as coloured balls. We will
say the weak ones are red and the others are blue, and that there are N balls in total.
Our problem is now the following: If we are drawing balls at random from the bin (with
replacement), how many draws are needed until we can expect to have found a red ball?

If the total number of red balls is n, one expects to draw a red ball after dN/ne
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steps. This is of course an oversimplification since whenever the function f gives a split
prime, we are presented with two j-invariants and it makes sense to check if either of the
corresponding curves is weak before selecting one at random. This would be analogous to
drawing two balls at once and checking if either one is red. If one includes any ramified
primes in F , the scenario is slightly different and one must take into account the probability
of selecting such a prime. Let p denote the probability of selecting a ramified prime. Then
the probability of success after one draw is

P (red) = p
( n
N

)
+ (1− p)

(
1−

(N − n
N

)(N − n− 1

N − 1

))
.

One may then take the reciprocal of this value to determine the expected number of steps.

We performed a number of experiments in some small fields (F218 , F224 , F230) and
checked that this seemed to provide a reasonable approximation for the number of steps
taken in the random walk. Note that in the event that the value n is not known, we can
find an estimate on the expected number of steps needed to reach a weak curve and solve
for n to get an approximation (we will use this strategy later).

To obtain an estimate on the number of steps needed for a certain success probability,
one can model the steps as a random variable and apply Chebyshev’s Inequality. Alter-
natively, a well-studied statistics problem known as the coupon collector’s problem [26]
gives us the probability of not having reached all nodes after some number of steps. In
particular, we have

P (T > βN logN) < N−β+1,

where T is the time taken to reach all nodes (steps), N is the number of nodes, and β is
some constant. A quick calculation gives that one needs T ≥ (logN + t log(10)) to make
the probability less than 10−t.
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Chapter 5

Distribution of Curves

In this chapter we will take a closer look at some of the common assumptions that are
made in analyses of the isogeny walk strategy. In particular, we would like to discuss
the distribution of isomorphism classes of curves amongst isogeny classes, as well as the
distribution of curves which are directly vulnerable to the GHS Weil descent attack (those
which yield a low genus cover). Since one of our main goals will be to experiment with the
effectiveness of Joux-Vitse’s cover and decomposition attack on large fields of characteristic
2, we will focus on the case of elliptic curves defined over fields of the form Fq6 , where q = 2l

for some positive integer l. We will perform exhaustive calculations on a few small fields
(F218 ,F224 and F230), as well as limited experiments on some medium-sized fields (F242 ,F248

and F254) in order to gain confidence in these assumptions.

5.1 Distribution of Isomorphism Classes

Suppose we have fixed a base field Fq. Adopting the notation of [32], we let I(t) denote
the isogeny class of elliptic curves over Fq having exactly q+ 1− t points and N(t) denote
the number of Fq isomorphism classes in I(t). We have the following theorem paraphrased
from [32] which gives us a precise value for the size of an isogeny class of an ordinary elliptic
curve.

Theorem 5.1.1. Let t ∈ Z with t2 < 4q and p - t. Then N(t) = H(t2 − 4q), where H(∆)
denotes the Kronecker class number.

One notes that this theorem applies precisely to the ordinary elliptic curves due to
Hasse’s Theorem and Definition 2.1.2.
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The Kronecker class number counts the number of reduced binary quadratic forms of
discriminant ∆ < 0, which is equal to the class number of a quadratic number field with
the same discriminant. For our purposes, we will simply acknowledge that this value is
computable via the following theorem (though faster methods exist and are available in
Magma).

Theorem 5.1.2. Let ∆ ∈ Z,∆ < 0. Then

H(∆) = {(a, b, c) ∈ Z3 : a > 0, b2 − 4ac = ∆, |b| ≤ a ≤ c,

and b ≥ 0 whenever a = |b| or a = c}.

Now that we have a precise formula for the size of a particular isogeny class, the next
question to answer is how these values compare across all isogeny classes. A result of
Lenstra’s [21] gives us some insight to this question by bounding the potential sizes above
and below. Before we can state this result we will first need some notation.

Restricting to curves over a field Fp where p > 3 is prime, there are approximately
p2 − p possible nonsingular Weierstrass equations. Letting Aut(E) denote the set of all
isomorphisms from a curve E/Fp to itself, the number of curves isomorphic to a particular
curve E is #F∗p/#Aut(E) = (p− 1)/#Aut(E). If we sum over a set of representatives for
the isomorphism classes and divide by (p− 1), we obtain the equation∑

E

1

#Aut(E)
= p.

This is expressed by writing

#′{E : E is an elliptic curve over Fp}/ ∼=Fp= p,

where #′ denotes the weighted cardinality in which the isomorphism class of a curve E is
counted with weight (#AutE)−1.

Proposition 5.1.3. [21, Proposition 1.8] There exist efficiently computable positive con-
stants c1, c2 such that for each prime number p > 3 the following two assertions hold:

1. If S is a set of integers s with |s− (p+ 1)| ≤ 2
√
p then

#′{E :E elliptic curve over Fp,#E(Fp) ∈ S}/ ∼=Fp

≤ c1 ·#S ·
√
p · (log p)(log log p)2.
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2. If S is a set of integers s with |s− (p+ 1)| ≤ √p then

#′{E :E elliptic curve over Fp,#E(Fp) ∈ S}/ ∼=Fp

≥ c2 · (#S − 2) · √p/(log p).

Since most elliptic curves possess #Aut(E) = 2, we can heuristically replace the
weighted cardinality with the usual cardinality and absorb the factor of 2 into the con-
stants. While the version of this theorem that appears in [21] requires the elliptic curves
be defined over Fp for primes p > 3, the result can be adjusted for those defined on Fq
where q is any prime power.

Essentially what this tells us is that given an interval centered at q + 1 (the middle of
the Hasse interval), the sizes of the isogeny classes should be roughly bounded. Admittedly
this is a bit vague, so in order to gain a better understanding of what these bounds actually
look like, we used the computational algebra package Magma to exhaustively compute the
isogeny class sizes for fields of size 218, 224 and 230. Before presenting these findings, we
first state a lemma that helps to simplify some of our computations.

Lemma 5.1.4. Let q = pm and E1/Fqn be an elliptic curve with general Weierstrass
equation

E1 : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (5.1)

with coefficients in Fqn, and let σ denote the q-power Frobenius map, which takes rational
points P = (X, Y ) 7→ (Xq, Y q) and OE1 7→ OE2. Then σ is an isogeny of degree q.
Furthermore, if ϕ : E1 → E2 is an isogeny over Fqn of degree d, then there exists a degree-d
isogeny ϕq : Eq

1 → Eq
2, where Eq

i is the curve obtained by raising all the coefficients of Ei
to the qth power.

Proof. Observe that σ is a rational function by definition and takes the point at infinity
from one curve to the other, hence it is an isogeny. The fact that the degree of σ is q follows
from Xq having degree q (note that although we did not provide σ in standard form, the
transformation will only affect the function’s second coordinate).

Observe now that Eq
i is the image curve of Ei under σ. One can see this by considering

the general equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

and raising both sides to the qth power. Since q is a power of the characteristic of the field,
all cross terms will turn to zero, leaving us with the equation

Y 2q + aq1X
qY q + aq3Y

q = X3q + aq2X
2q + aq4X

q + aq6.
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Thus (Xq, Y q) will satisfy

Y 2 + aq1XY + aq3Y = X3 + aq2X
2 + aq4X + aq6,

whenever P = (X, Y ) ∈ Ei(Fqn). Supposing we have some degree-d isogeny ϕ in standard
form, one can verify using a similar argument that by raising all the coefficients of the
isogeny ϕ to the qth power, one obtains an isogeny between the curves Eq

1 and Eq
2 . Moreover,

changing the coefficients does not change the degree of the map, so this new isogeny is also
of degree d.

5.1.1 Small Fields

The graphical representations of our findings are displayed in Figures 5.1, 5.2 and 5.3.
Note that due to Lemma 5.1.4 we can treat curves that lie in the same orbit under action
by σ as equivalent; we refer to these colloquially as orbits or orbit classes. Recalling that σ
has order at most n, this allows us to scale our graphs by the extension degree of the field
(note that although there may be some orbits with size strictly dividing n, this number is
small enough that we can ignore them).
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Figure 5.1: Plot displaying the size of isogeny classes over F218 as a function of the trace
of Frobenius. The isogeny classes have been shifted so that those corresponding to the low
end of the Hasse interval appear on the left side of the plot.
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Figure 5.2: Plot displaying the size of isogeny classes over F224 as a function of the trace
of Frobenius. The isogeny classes have been shifted so that those corresponding to the low
end of the Hasse interval appear on the left side of the plot.
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Figure 5.3: Plot displaying the size of isogeny classes over F230 as a function of the trace
of Frobenius. The isogeny classes have been shifted so that those corresponding to the low
end of the Hasse interval appear on the left side of the plot.
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Observe that these experiments indicate that the distribution of isomorphism classes
take on the shape of a curved band with highest density in a horizontal bar near the
middle and dropping off near the ends. This is consistent with Theorem 5.1.3 which bounds
the sizes of the isogeny classes above on the Hasse interval, and below near the middle.
Our reasoning for selecting these particular fields is two-fold: their extension degrees are
divisible by 6, which means that one may apply a cover and decomposition attack to curves
defined over these fields in the same fashion as [19] (see Section 4.5), and these were the
largest such fields that we could exhaustively obtain data for vulnerable curves (which we
will see in the following section).

5.1.2 Medium Fields

The fields selected in Section 5.1.1 are hardly comparable to those typically used for crypto-
graphic applications in terms of size, so in an attempt to provide more convincing evidence,
experiments in slightly larger fields were also performed. The fields selected were of size
248 and 254. As it was not feasible to do exhaustive computations, we sampled a random
subset of curves over these fields. The sample data (Figures 5.4 and 5.5) appear to be
consistent with Theorem 5.1.3.

5.2 Distribution of Weak Curves

One of the key assumptions needed for the evaluation of the effectiveness of the random
walk is that the curves vulnerable to the GHS attack (i.e. with the smallest non-trivial
‘m’ value) are distributed roughly uniformly amongst the isogeny classes. We sketch the
heuristic analysis from [11] for completeness.

Suppose we have a fixed field K = Fqn , where q = 2r. By Hasse’s theorem there are
about 4qn/2 potential isogeny classes, and Theorem 2.1.3 gives that amongst these roughly
2qn/2 are ordinary isogeny classes. By Theorem 2.1.10, the number of distinct isomorphism
classes is approximately 2qn.

In order to compute the number of weak classes, let t be the multiplicative order of 2
mod n, and s = (n−1)/t. Then the number of weak isomorphism classes may be bounded
above by 2sqt+1. The probability of a random curve being vulnerable is thus estimated to
be

2sqt+1

2qn
= sqt+1−n.
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Figure 5.4: Plot displaying the size of isogeny classes for roughly 100 000 random curves
over F248 as a function of the trace of Frobenius. The isogeny classes have been shifted so
that those corresponding to the low end of the Hasse interval appear on the left side of the
plot.
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Figure 5.5: Plot displaying the size of isogeny classes for roughly 100 000 random curves
over F254 as a function of the trace of Frobenius. The isogeny classes have been shifted so
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One can also verify that the 2-power Frobenius map preserves the value of m, and it is
assumed this is the only map with such a property. In most cases, the orbit of the 2-
power Frobenius map is nr. What this means is that for the most part, vulnerable curves
distribute across isogeny classes in sets of size nr. Hence if we treat curves as equivalent if
they are related by 2-power Frobenius action (recall these were referred to as orbit classes),
the number of weak curves becomes

2sqt+1

nr
.

Under the assumption of a roughly uniform distribution amongst the isogeny classes,
the expected number of weak orbit classes in an arbitrary isogeny class is expected to be
close to

sqt+1

nrqn/2
=
sqt+1−n/2

nr
.

In the special case of n = 3 we have t = 2 and s = 1, so our analysis is slightly more
concrete. The number of isomorphism classes is precisely 2(q3 − 1), and the number of
weak curves can be enumerated simply by counting the number of elements b such that
TrFq3/Fq(b) = 0 and doubling, which yields a value of 2(q2− 1) (note that this is somewhat

smaller than our above upper bound). Our probabilities become roughly 1/q for a random
curve being weak, and we would expect

√
q/nr

weak orbit classes per isogeny class. This ratio is less than 1 for small fields (for example,
in F224 , the ratio is 16/24), but as r increases this number grows proportionally.

Note that ahead of time we know that around half of the ordinary isogeny classes will
not contain any weak curves. This follows from the fact that TrFq3/Fq(b) = 0 implies that

TrFq3/F2(b) = 0, and the following theorem:

Theorem 5.2.1. [25, Lemma 7] Let E : y2+xy = x3+b be an elliptic curve over F2N = Fqn
where N ≥ 3. Then TrFq3/F2(b) = 0 if and only if #E(F2N ) ≡ 0 (mod 8).

Recall that the twist E ′ of weak curve E is also weak. Further, by Theorem 2.1.12, if
#E(F2N ) = 2N + 1 − t, then #E ′(F2N ) = 2N + 1 + t. Thus if #E(F2N ) ≡ 0 (mod 8), it
is easily verified that #E ′(F2N ) ≡ 2 (mod 8). It now follows that we would only expect
half of the ordinary isogeny classes (those which contain curves with cardinality congruent
to 0 or 2 (mod 8)) to contain any weak curves. It is conjectured that all isogeny classes
that satisfy this criterion contain a weak curve, and are thus vulnerable to the cover and
decomposition attack [19].
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5.2.1 Small Fields

In order to gain confidence in the assumption on the distribution of weak curves, we
exhaustively computed the number of weak curves per isogeny class for elliptic curves
defined over F218 , F224 and F230 . It should be noted that we shall be treating these as fields
of the form Fqn , where n = 3 is fixed. Thus we directly make use of the above analysis.
We make note that the number of weak orbit classes was obtained by first determining the
total number of weak isomorphism classes, say x, and then computing bx/nrc, where nr
is the degree of the field of definition over F2. As noted earlier this is a heuristic, but the
number of orbits that deviate from this size is practically negligible.

We then compared our data to an experimental model in which one assumes that each
isogeny class is roughly the same size. This assumption is justified by Theorem 5.1.3
and the experiments performed in Section 5.1. We frame the model as a simple statistics
problem: Suppose that we have N bins and we are throwing n balls into these bins at
random. We would like to determine the expected number of bins containing exactly r
balls for all r < n.

Consider the probability that a particular bin contains exactly r balls. This probability
is given by

p =

(
n

r

)( 1

N

)r(
1− 1

N

)n−r
.

Letting Xi denote the Bernoulli random variable

Xi =

{
0 if bin i contains exactly r balls,

1 otherwise,
(5.2)

the expected value of Xi is E(Xi) = p. By the linearity of expectation, one anticipates the
number of bins with r balls to be

E(X1 + · · ·+XN) = N

(
n

r

)( 1

N

)r(
1− 1

N

)n−r
.

Figures 5.6, 5.7, and 5.8 compare the theoretical model (top) with the data for our three
chosen fields F18,F24 and F30. One notes the discrepancy between the data and the pre-
dicted number of isogeny classes with no weak curves for F224 and F230 . This difference
could be due simply to statistical variation, but given how similar the distribution is to
the theoretical model otherwise, it is possible that there is some other condition not be-
ing considered that prevents some isogeny classes from having any weak curves Further
experimentation would need to be done to strengthen such a claim.
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Figure 5.6: Number of isogeny classes defined over F218 possessing a given number of weak
orbits classes. Above is the theoretical expectation under the proposed model; below is
the data collected.
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Figure 5.7: Number of isogeny classes defined over F224 possessing a given number of weak
orbits classes. Above is the theoretical expectation under the proposed model; below is
the data collected.
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Figure 5.8: Number of isogeny classes defined over F230 possessing a given number of weak
orbits classes. Above is the theoretical expectation under the proposed model; below is
the data collected.
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5.2.2 Medium Fields

As mentioned earlier, in order to gain a more accurate idea of the weak curve distribution
we attempted to gather data for curves defined on the slightly larger fields F242 , F248 and
F254 , where exhaustive computation was no longer possible. Our experiments were done
by randomly selecting curves E such that t2 − 4q is a squarefree integer (which occurs
asymptotically with probability 6/π2), and such that the congruence conditions discussed
at the end of Section 5.2 were satisfied. The first condition ensures that the endomorphism
ring of E is the maximal order of its associated quadratic number field. For the isogeny
walk, we selected our prime bound to be 59. From Section 4.6, the expander property is
guaranteed if all primes less than L = 6(log(|t2 − 4q|))2 are selected, which is maximized
when t = 0. Hence for our largest field we would need to have selected all primes less
than around 9040, which is much too large for practical purposes. Upon implementation,
we found (similar to Galbraith et al. [11] who argued for 16 split primes) that much lower
numbers sufficed. Incidentally, the default Magma database contains only the (classical)
modular polynomials up to N < 60, so we thought this was a reasonable bound to choose.

Using Magma, we performed a random walk on the orbit classes in the isogeny graph.
The representative for a particular orbit class was determined by computing the ‘b’ coef-
ficient of each elliptic curve in the class (done by successive squaring) and reinterpreting
them as integers (recall that an element of F2n may be represented as a polynomial with
coefficients in F2 of degree less than n, and one can obtain an integer in binary by reading
off the coefficients). The element with the smallest such integer representation was taken
as the orbit’s representative. Such a walk was performed until we either encountered a
weak curve, or took enough ‘steps’ so that the probability of there being a weak curve and
us not having found it was sufficiently small (less than 1%, see Section 4.6.1).

For curves which the walk yielded a weak curve, we repeated the experiment and av-
eraged the number of steps taken, which allowed us to estimate the number of weak orbit
classes in the isogeny class. Note that in order to obtain a better estimate, it would be nec-
essary to repeat these walks many times, as well as begin the walk at different curves in the
same isogeny class. Due to computational constraints, we opted to perform walks in more
isogeny classes rather than improving the estimates, as our primary concern was to gather
evidence that most isogeny classes do indeed contain a weak curve in cryptographically
sized fields.

Due to the above drawbacks in our experimental method, we are hesitant to draw any
conclusions about the number of weak curves in the isogeny classes, however we include
the results for posterity (Figures 5.9, 5.10 and 5.11). One notes that the experimental data
is much less concentrated than the theoretical models, but this can be explained by the
fact that starting curves of our walk experiments could vary greatly in terms of distance to
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weak curves. This could either shorten or lengthen a walk and lead to skewed estimates on
the number of weak curves. Since our experiments were quite few, these anomalies would
have had a significant impact on the data.

What can be reasonably concluded from these graphs is that the proportion of curves
that do not contain any weak curves seem to be decreasing as the fields size grows, which
is what the theory suggests.
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Figure 5.9: Estimated number of isogeny classes containing a certain number of weak orbits;
data is for a sample of roughly 5000 isogeny classes of curves defined over F242 . Above is
the theoretical expectation under the proposed model; below is the data collected. The
expected number of weak orbits per isogeny class (under a uniform distribution) is roughly
3.
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Figure 5.10: Estimated number of isogeny classes containing a certain number of weak
orbits; data is for a sample of roughly 5000 isogeny classes of curves defined over F248 .
Above is the theoretical expectation under the proposed model; below is the data collected.
The expected number of weak orbits per isogeny class (under a uniform distribution) is
roughly 5.
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Figure 5.11: Estimated number of isogeny classes containing a certain number of weak
orbits; data is for a sample of roughly 4000 isogeny classes of curves defined over F254 .
Above is the theoretical expectation under the proposed model; below is the data collected.
The expected number of weak orbits per isogeny class (under a uniform distribution) is
roughly 9.
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Chapter 6

Experiments in Large Fields

In order to determine whether the isogeny walk is a viable strategy for attacking the
ECDLP in fields of cryptographic size, we performed some experiments in the field F2150

and F2210 . We chose the field F2150 because it is a sextic extension of F225 and is comparable
in size to the field used in the example found in the work of Joux and Vitse (see Section
4.5). The field F2210 was chosen for similar reasons, but additionally this field is of special
interest due to [25], which identified it as a potential candidate for being a bad field. We
will begin with a brief overview of the known methods for computing discrete logarithms
as they apply to curves defined over fields of the form Fq3 where q = 22m, followed by
concrete performance estimates in the fields mentioned above.

6.1 Discrete Logarithms in Fq3

Let K = Fq3 where q = 22m for a positive integer m. The performance of any algorithm
for solving the ECDLP in a curve E/K is compared to that of Pollard’s rho, which can
be applied to any curve defined over K. The expected running time of Pollard’s rho
is O(q3/2) and possesses essentially no memory requirements. An algorithm is deemed
effective if its running time is better asymptotically than Pollard’s rho, though in practice
these asymptotic estimates may not tell the whole story. We describe the known such
algorithms below.

One possible approach to solving discrete logarithms in K is to use Gaudry’s index
calculus algorithm. Roughly described in Section 4.3, this method works on all elliptic
curves and requires O(q) memory. The running is expected to be O(q4/3), however there
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are large hidden constants due to the use of a Gröbner basis computation to solve a large
multivariate polynomial system.

Alternatively, one might be able apply the GHS reduction followed by the Enge-Gaudry
index calculus algorithm. Using the extension Fq3/Fq, the GHS attack directly targets
roughly 2q2 curves of the total 2q3, or around 1/q curves. On its own, the reduction is
quite fast, and the index calculus is the bottleneck in both memory and running time. The
memory requirements are O(q) and achieves a running time of O(q4/3). The range of this
approach can be extended to near q3 curves using an isogeny walk, and which itself should
take time O(q). Note that one may use the GHS with different extensions, though the
options will depend on the specific value of m.

It is also theoretically possible to use the generalised version of the GHS attack [16],
in which a genus-3 non-hyperelliptic curve defined over Fq is returned. Using this method,
it was observed in in [27] that around q3/4 curves are directly affected, and this can be
extended to all curves which possess Tr(a) = 1 and Tr(b) = 0. One can then make use of
an algorithm by Diem and Thomé [5], which expects to run in time O(q) and uses memory
O(q1/2). The main drawback of this method is that the gGHS has never been implemented,
and operations in the Jacobian of the non-hyperelliptic curve are likely quite expensive.

Finally, we consider Joux-Vitse’s attack, which applies GHS on the extension Fq3/Fq
followed by Nagao’s decomposition (or a variant) on the extension F22m/F2m . This approach
targets the same curves as the GHS attack, and is similarly extendable via isogeny walks in
time O(q). Since Nagao’s method (or its variant) has running time O(q5/6) (respectively
O(q6/7)), the walk becomes a dominating factor in the running time analysis. Memory
requirements in this setting are only O(q1/2).

6.2 The Field F2150

Previous attempts at establishing the weakness of F2150 made use of the GHS attack on the
extension F25·30/F230 , where the smallest nontrivial magic number is m = 5, and predomi-
nantly yields a genus 16 hyperelliptic curve over the base field (see [25], Section 3.2 for a
more precise statement). This attack is applicable to most curves (essentially all in fact)
over this field. The time needed for the actual GHS reduction is considered negligible, so
the dominating step is the Enge-Gaudry index-calculus algorithm for solving the result-
ing HCDLP instance. Suppose T1 and T2 denote the running times for the two phases of
Enge-Gaudry, relation generation and linear-algebra, respectively. If we write F2150 = F2n·l

with n = 5 and l = 30, it was estimated in [25] that

T1 ≈ 2l+43 = 273
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where the unit of operation is in essence one Jacobian addition and a smoothness test, and

T2 ≈ 22l+2 = 262

where the operation is multiplication modulo the group size. It is safe to assume that the
former operation is more time-consuming, so the algorithm is dominated by the relation
generation phase. Comparatively, Pollard’s rho algorithm targets all elliptic curves, and is
expected to take

√
π2150/2 ≈ 275 steps or elliptic curve additions. Though the GHS attack

seems to do better by a factor of 4, it is evident that the more cumbersome Jacobian
operation and smoothness test is more time-consuming than an elliptic curve addition,
resulting in no improvement.

It should be noted that the relation generation phase of Enge-Gaudry and Pollard’s rho
are both effectively parallelizable, and essentially obtain a linear speedup in the number
of processors. This is not known to be possible with the linear-algebra phase of Enge-
Gaudry, so in practice the linear-algebra may be the algorithm’s rate-limiting step. If
one also takes into account memory requirements, Pollard’s rho uses almost no memory,
whereas the linear-algebra phase requires storing a matrix of size roughly 230 × 230 (230 is
the typical size of the factor base in this setting). Thus any improvement that might be
offered by the GHS method is likely not significant enough to warrant its use over Pollard’s
rho.

One can also implement the GHS method using the extension F2150/F250 . Here the
GHS reduction yields a genus-3 hyperelliptic curve defined over F250 for approximately
2101 isomorphism classes over F2150 . The benefit of this approach is the double-large prime
variant of index calculus (Section 4.3.1) offers the best improvement with this extension.
If the GHS is used with the extension Fqn/Fq and provides a genus g hyperelliptic curve

defined over Fq, then the total running time of the attack is O(q2−
2
g ), though one must be

wary of hidden constants. Nonetheless our case ends up with running time on the order
of 250(4/3) ≈ 266 (the operation here is again Jacobian addition and smoothness testing).
Roughly half of all curves, in particular those with Tr(b) ≡ 0, 2 (mod 8), may be reached
with this attack using an isogeny walk, though a significant drawback is that it is not
parallelizable since the main idea of the double-large prime variant is to balance the time-
cost of relation-generation with the linear algebra. Thus even if we disregard the cost of the
isogeny walk, with a moderate number of processors (around 29) this too is less effective
than Pollard’s rho.

We now consider Joux-Vitse’s method, which is able to target half of all curves defined
over F2150 (in fact these are the same curves as the GHS attack on F2150/F250). One
expects to solve an ECDLP instance on a directly weak curve (those which yield a genus 3
hyperelliptic cover via the GHS attack, since we are using the tower F2150 − F250 − F225) in
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time 225(5/3) ≈ 242 using Nagao decomposition, or 225(12/7) ≈ 243 using the sieving variant.
The unit of operation here is multiplication in F225 , although these estimates are a bit
misleading due to potentially large suppressed constants.

Supposing we are in an isogeny class that may contain a weak curve, i.e. one which
contains elliptic curves with order congruent to 0 or 2 modulo 8, our heuristic assumptions
suggest there are around 276 isomorphism classes in an isogeny class, and roughly 226

weak curves amongst them. These values come from the fact that there are roughly 2151

isomorphism classes of curves, 275 isogeny classes, and 2101 weak curves. Therefore we
expect to take about 250 steps to find a weak curve. It seems reasonable to assume that a
walk step is not 28 times faster than the unit of operation in the cover and decomposition,
so we expect the isogeny walk to dominate the complexity of this attack.

Our purpose is to now compare the time needed to perform a random walk with that
of Pollard’s rho. Scaling, this reduces to comparing the time of a single walk step against
225 Pollard rho steps or elliptic curve additions. If c150 denotes the cost of a single field
multiplication in F2150 and cE denotes the cost of a single elliptic curve addition, we have
that cE ≈ 8c150 (with the use of mixed affine-projective coordinates). In our implementa-
tion of the random walk, the most time consuming step is the computation of F2150-roots
for the polynomial f = Φl(X, j), where j is the j-invariant of an elliptic curve and l is a

prime. This is done by computing g = X2150 −X mod f , determining gcd(f, g), and then
factoring the result (which is of degree at most 2). The time to find the g.c.d. and factor
a degree 2 polynomial is overshadowed by the cost of computing g.

Breaking this up further, one computes g = X2150−X mod f by successively squaring
X modulo f (this is repeated 150 times). Since f is of degree l + 1, if we precompute the
powers X2, X4, . . . , X2l mod f , the square of a polynomial

a0 + a1X + · · ·+ alX
l ∈ F2150 [X]

modulo f is equal to
a20 + a21X

2 + · · ·+ a2lX
2l mod f.

Since our precomputed values will be polynomials of degree at most l, ignoring addition
gives that the total work comes from squaring l distinct coefficients, and multiplying each
with a degree-l polynomial. The cost of one polynomial-squaring can be estimated to be
l2c150, so the cost to fully compute g is 150l2c150. If we assume equal probability of a prime
being split versus inert and aim for the 16 split prime mark as in [11], we could set our
prime bound to be 131, which means on average, l ≈ 26.

Thus, we find that a single walk step takes time roughly 150(26)2c150 ≈ 219c150, versus
225cE ≈ 228c150. Thus a random walk should be faster than Pollard’s rho algorithm by
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about a factor of 29. We note that both the random walk and Pollard’s rho are parallelizable
in a way that they are both essentially linear in the number of processors, and both have
low storage requirements, so neither has advantage in these areas.

We implemented the random walk using an AMD Opteron 6168 processor at 2.3 GHz.
As mentioned earlier, we selected our prime bound to be much lower than recommended
(59), so on average l ≈ 24.5. Using the above analysis, we would expect the walk to be
close to 228/216 = 212 times faster than Pollard’s rho. Averaging over 1000 walks con-
sisting of 100 steps each, we estimated the time needed to perform a single walk step
to be roughly 0.0914 seconds. The estimated time for a single step of Pollard’s rho
algorithm was 4.06 × 10−5 seconds. The heuristic analysis predicts that one would re-
quire 250 random walk steps before expecting to find a weak curve, which amounts to
a total time of 102907251485415.8336 seconds (≈ 2.859 × 1010 hours or over 3.2 million
years). On the other hand, Pollard’s rho is expected to take 275 steps, which totals to
1533824633636060765.4085 seconds (≈ 4.261 × 1014 hours or over 48 billion years). The
ratio of these two values is 14903.812 ≈ 214, which seems reasonably close to the predicted
ratio. The length of these times are not within the feasible range, so we cannot conclude
that F2150 is partially bad under this attack. However, our implementation of the random
walk was admittedly very sub-optimal, and could likely be sped up significantly.

Hence we have given reasonable evidence that roughly half of isogeny classes are sus-
ceptible to an attack that performs significantly faster than Pollard’s rho, which suggests
that F2150 is a partially weak field. However to be absolutely certain, one would have to
actually compute the isogeny from a successful walk and transfer an instance of the dis-
crete logarithm problem from the initial elliptic curve to the weak one. We are assuming
the process of computing and reducing the ideal at each step (see Section 4.6) as well
as smoothing out the final ideal obtained from the random walk is fast compared to the
walk itself (asymptotically, this has running time on the order of 235, but should be im-
plemented for concreteness). To obtain the stronger result that F2150 is partially bad, one
would need to actually implement Joux-Vitse’s attack and use an isogeny walk to solve a
discrete logarithm in an elliptic curve defined over this field.

6.3 The Field F2210

Turning our attention now to the field F2210 , Menezes, Teske and Weng [25] proposed this
as a prime candidate for being a bad field. We recall the details of their analyses, which
also takes into account the relative time-consumption of the various operations. We will
then investigate how Joux-Vitse’s cover and decomposition attack influences the argument.
In this field, one expects Pollard’s rho to have a running time near 2110 (note that this
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value has been scaled with respect to multiplication in F242); we will use this value as a
benchmark to gauge the effectiveness of the methods described below.

Due to the high number of factors of 210, the GHS attack can be applied in a number
of different ways. Writing 2210 = 2n·l and applying the GHS on the extension F2210/F2l , [25]
analyzed the cases where n = 5 and 6. In both cases, the smallest nontrivial m value is 5.
For the extension F2210/F242 , the vast majority of curves are susceptible to the GHS attack,
and the running time of Enge-Gaudry (with notation as in Section 6.2) is estimated to be
around

T1 ≈ 297, T2 ≈ 289

(again, we will not be discussing the operations since they were already accounted for).
Using F2210/F235 , we expect Enge-Gaudry to perform in time

T1 ≈ 290, T2 ≈ 272.

For this extension, approximately 2175 isomorphism classes of curves are susceptible in this
case, though one can extend the range via isogenies to roughly one quarter of all curves
(those with Tr(a) = Tr(b) = 0). The isogeny walk is expected to be faster than the above
estimate, so the overall running time is dominated by Enge-Gaudry. It is clear that for
both of these extensions the running time is better than Pollard’s rho, however as in our
discussion for F2150 , the linear-algebra phase is non-parallelizable and has huge memory
requirements, which may prove to be highly restrictive in practice.

In [24], the effects of the generalized version of GHS for this field were also analyzed.
Introduced in 2004 by Hess [16], the generalized GHS (gGHS) attack differs from the
original version in that the covering curve obtained is not necessarily hyperelliptic. Under
some conservative assumptions regarding the time-cost of operating in the Jacobian of a
non-hyperelliptic curve, the following results were obtained.

When n = 7, the gGHS is effective for around 2149 curves with Tr(a) = 0. The running
time estimates for index-calculus were

T1 ≈ 284, T2 ≈ 261.

One can also use isogeny walks to extend this to half of all non-subfield curves (those with
Tr(a) = 0). The isogeny walk is dominated by the above estimates, so it does not affect
the overall running time. When n = 6, the estimates are

T1 ≈ 282, T2 ≈ 272

for curves which yield a genus 14 cover (which ends up being almost all curves). Alterna-
tively, a small portion (2176 isomorphism classes) yield a genus 12 cover. In this instance,
the estimates are

T1 ≈ 272, T2 ≈ 272.
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This can be extended to half of all curves via isogeny walks to all non-subfield curves
E such that #E(F2210) ≡ 0 or 2 (mod 8). Again, the isogeny walk is dominated by the
index-calculus costs, so it does not impact the running time. It should be mentioned
that as before, the relation generation time (T1) is parallelizable, but no effective methods
are known for the linear algebra (T2). Also, while these times are indeed very good, the
generalized GHS has yet to be implemented, and there is some uncertainty regarding the
actual cost of operating in the Jacobian of a non-hyperelliptic curve.

Finally, we consider the speed of Joux-Vitse’s algorithm using the tower F2210 − F270 −
F235 . Their attack targets roughly 2141 elliptic curves over F2210 , and with their sieving
variant of Nagao decomposition, is estimated to take time 235(12/7) ≈ 260, though hidden
constants must be kept in mind. Note that we could also consider applying the double-
large prime variation here instead, but the running time estimate is 293 operations, which
is worse than the GHS employed with the extensions discussed above. Using an argument
similar to that of Section 6.2, the isogeny walk will require roughly 270 steps, and allows the
attack to reach close to half of all curves (those with cardinality congruent to 0 or 2 modulo
8). Hence this approach seems to outperforms even the gGHS attacks (as the walk may
be parallelized), and has been implemented before, which gives us a good understanding
of its performance in practical settings.

We performed timings in this field as well, finding that a single step of Pollard’s rho
takes roughly 5.25×10−5 seconds, and a single walk step takes time roughly 0.137 seconds.
The ratio of these times is 2610 ≈ 211. Given that Pollard’s rho takes 2105 steps and the
random walk takes 270 steps, the latter approach is asymptotically faster. We conclude
that the combination of Joux-Vitse’s attack and isogeny walks adds further evidence for
the potential badness of F2210 for elliptic curve cryptography.
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Chapter 7

Concluding Remarks

Based on our experimental results, we have evidence pointing towards the validity of the
assumption that elliptic curves distribute roughly uniformly amongst isogeny classes, and
that those susceptible to Weil descent are indeed distributed in a roughly uniform fashion.
In particular, this tells us that as fields F26l reach cryptographic size, we can expect that a
given ordinary isogeny class will contain a vulnerable curve (assuming that the orders of the
curves within are congruent to either 0 or 2 modulo 8). An aspect that remains unexplored
in this work is the distribution of weak curves when there are multiple layers in the isogeny
volcano. An assumption made in [24] is that the ratio of weak curves in an entire isogeny
class is the same if one restricts to curves which have the same endomorphism ring, and it
would be worthwhile to gather experimental data for this.

While we have shown the partial weakness of the field F2150 , it remains to actually
implement the cover and decomposition attack on a cryptographically interesting elliptic
curve over this field and to compute discrete logarithms. It would be reasonable to expect
that using the tower F2150 − F250 − F225 the running time would be similar to the 149-bit
example done by Joux and Vitse, namely around 110 000 CPU hours. Furthermore, a
more refined implementation of the random walk might give the stronger result of partial
badness. In addition, an implementation of the generalised GHS attack for these fields
would also be worthwhile, so that a more concrete comparison could be drawn between it
and the Joux-Vitse attack.

Another potential avenue for future work lies in the case of odd characteristic fields.
The work done in [19] takes place in non-binary fields, and according to the authors of [19],
“it may be possible to transfer the DLP from [an elliptic curve] E to a more vulnerable
isogenous curve E ′. ” Presumably one would perform an isogeny walk on elliptic curves
expressed in Weierstrass form. However in the degree 6 extension setting, the curves for
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which the GHS attack succeeds are those with the form

y2 = h(x)(x− α)(x− σ(α)),

where h(x) is a degree 1 or 2 polynomial in Fq[x], α ∈ Fq3 \Fq, and σ is the Frobenius
automorphism of Fq3/Fq [19]. It seems unclear how one can efficiently check whether a
particular curve in Weierstrass form can be transformed into the above, since the relation-
ship between the roots is not preserved by affine transformations in Fq3 . Thus an effective
method for discerning whether a curve is weak will be needed in order to utilize the isogeny
walk in a meaningful way.
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