
Synthesis and Exploration of
Multi-Level, Multi-Perspective
Architectures of Automotive

Embedded Systems

by

Jordan Ross

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Jordan Ross 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144149418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In industry, evaluating candidate architectures of automotive embedded systems is rou-
tinely done during the design process. Today’s engineers, however, are limited in the
number of candidates that they are able to evaluate in order to find the optimal architec-
tures. This limitation results from the difficulty in defining the candidates as it is a mostly
manual process. In this work, we propose a way to synthesize multi-level, multi-perspective
candidate architectures and to explore them across the different layers and perspectives.
Using a reference model similar to the EAST-ADL domain model but with a focus on
early design, we explore the candidate architectures for two case studies: an automotive
power window system and the central door locking system. Further, we provide a com-
prehensive set of questions, based on the different layers and perspectives, that engineers
can ask to synthesize only the candidates relevant to their task at hand. Finally, using the
modeling language Clafer, which is supported by automated backend reasoners, we show
that it is possible to synthesize and explore optimal candidate architectures for two highly
configurable automotive subsystems.

iii

Acknowledgements

I want to first and foremost thank my supervisor, Krzysztof Czarnecki, for giving me
this wonderful opportunity to learn from him and deepen my understanding. I have learned
more than I ever have these last couple of years because of him.

I also want to thank Michał Antkiewicz for all of the discussions and guidance he
provided me these last couple of years, it was a pleasure.

Lastly, I want to thank my family for their patience as I embarked on this adventure.

iv

Dedication

I dedicate this to my lovely wife Emily.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

2 Clafer Background 4
2.1 Types of clafers and inheritance . 5

2.1.1 Instance generation . 6
2.2 Clafer multiplicity and group cardinality 7
2.3 References . 8
2.4 Writing Basic Constraints . 10
2.5 Working with Integers . 13
2.6 Optimization Objectives . 14

3 Reference Model 17
3.1 Reference Model Layers . 18
3.2 Reference Model Perspectives . 24

4 Characterizing the Possible Design Scenarios 27
4.1 Possible Design Exploration Scenarios . 29
4.2 Generalizing the Possible Design Exploration Scenarios 30
4.3 Example Design Exploration using Templates 34

5 Encoding the Reference Model in Clafer 36
5.1 Encoding of Reference Model Layers in Clafer 37

5.1.1 Using Clafer to Model a Simplified Power Window 45
5.2 The Supporting Reasoner and Tools . 47

vi

6 Modeling Two Case Studies in Clafer 48
6.1 Power Window . 48

6.1.1 Single Door: Driver . 49
6.1.2 Two Door: Driver & Front Passenger 58
6.1.3 Quality Attributes & Timing Analysis 63

6.2 Door Locks . 65
6.2.1 Feature Model . 65
6.2.2 Functional Analysis Architecture 67
6.2.3 Device Node Classification . 71
6.2.4 Power Topology . 74
6.2.5 Communication Topology . 74
6.2.6 Deployment . 75
6.2.7 Quality Attributes & Timing Analysis 77

7 Evaluation 79
7.1 Research Methodology . 80

7.1.1 Comparison to State-of-the-Art Tools 80
7.1.2 Role of Multiple Layers . 81
7.1.3 Performance Evaluation . 81

7.2 Comparison to State-of-the-Art Tools . 84
7.2.1 Research Question 1 . 90
7.2.2 Research Question 2 . 91

7.3 Role of Multiple Layers (Research Question 3) 94
7.4 Performance Evaluation . 94

7.4.1 Research Question 4 . 94
7.4.2 Research Question 5 . 97

8 Threats to Validity 100
8.1 Research Questions 1 & 2 . 100
8.2 Research Question 3 . 100
8.3 Research Questions 4 & 5 . 101

9 Related Work 102
9.1 Survey of Architecture Optimization . 102
9.2 Recent Advances in E/E Architecture Evaluation & Optimization 103
9.3 Extensions to Previous Work . 105

10 Conclusions & Future Work 106

vii

APPENDICES 107

A Full Source Code for Clafer Models 108
A.1 Reference Model . 108
A.2 Generalized Power Window . 112
A.3 Two Door Power Window . 117
A.4 Central Door Locks . 123

References 147

viii

List of Tables

4.1 A set of decision templates based on the reference architecture model . . . 32
4.2 A set of constraint templates based on the reference architecture model . . 33
4.3 A set of the design objective templates based on the reference architecture

model . 34

7.1 Number of concrete components for each reference model element, number
of deployment configurations, and number of possible candidates for each
design-space model. (n) denotes that n of the concrete components have
presence variability. 82

7.2 Size of Clafer encoding for each model. The design-space model numbers
are reported minus the reference model elements. 83

7.3 Details for selected state-of-the-art tools to compare with Clafer 87
7.4 Limitations we encountered when modeling the single door variant of the

power window system introduced in Chapter 3 90
7.5 Supported (Yes) and unsupported (No) decision templates for each of the

surveyed tools. If the decision is unsupported, one of the following reasons
is listed: 1) Model element not supported 2) Variability not captured. . . . 92

7.6 Supported (Yes) and unsupported (No) constraint and objective templates
for each of the surveyed tools. If unsupported, one of the following reasons
is listed: 1) Quality not supported 2) Expression not supported. 93

7.7 Resulting quality attribute values when removing portions of the power win-
dow model (single door variant). The margin latency is for the timing chain
from the switch to the motor. The margin latency value is given as a range
denoting the smallest and largest values for the reported instances. We use
the curly braces to denote an ordered set of values when more than one set
of values exists on the Pareto front. 95

ix

7.8 Design decision and constraint solving time for three case study models. A
timeout is reported if the solver takes more than 10 minutes to find the first
10 non-optimal solutions. 97

7.9 Design objective solving time for three case study models. A timeout is
reported if the solver takes more than 45 minutes to find the first 10 optimal
solutions. 98

7.10 Design exploration scenario specification solving time for the power window
case study models. A timeout is reported if the solver takes more than 10
minutes to find the first 10 non-optimal solutions and more than 45 minutes
to find the first 10 optimal solutions. 99

x

List of Figures

1.1 EAST-ADL Architecture . 2

2.1 Overall workflow of Clafer and supported backend solvers. 5
2.2 Screenshot of MOO Visualizer for Listing 2.6. 16

3.1 The reference model used for early design of automotive E/E systems archi-
tecture. 18

3.2 Power window feature models. 19
3.3 Power window functional analysis architecture. The “HW” or “SW” in upper

right corner of a function indicates the implementation choice in hardware
or software, respectively. 20

3.4 Class diagram showing classification of device nodes and functions. 21
3.5 Modeling of data connectors at different levels of abstraction. The lowest

level is shown on the left, where connectors are modeled between pins; the
middle shows connectors between ports; the right is the highest level, where
two device nodes are connected via a connector. The dashed selection shows
the level of abstraction used for data and power connectors in this paper. . 22

3.6 Power window communication topology. 23
3.7 Power window power topology. 23
3.8 Power window FAA with variability. Optional components are shown by a

dotted border/line. “HW/SW” indicates the function can be implemented
in either software or hardware. 25

4.1 Illustration of comparing candidate designs for different sets of architectures
using a manual versus an automated model-based approach. 28

4.2 A workflow diagram for combining design decisions, constraints, and objec-
tives together to create a design specification. 35

xi

5.1 A unified view of the reference model used for early design of automotive
E/E systems architecture . 37

6.1 The feature model for a single door power window 49
6.2 The functional analysis architecture for a single door power window. The

“HW” or “SW” in upper right corner of a function indicates the implemen-
tation choice in hardware or software respectively. “HW/SW” indicates the
function can be implemented in either software or hardware. 50

6.3 Legend for the graphical domain-specific language (DSL) for describing the
FAA for E/E architectures . 50

6.4 The power topology for a single door power window. The inside dotted box
for the BCM denote that it is an optional remote device node. 54

6.5 Legend for the graphical domain specific language (DSL) for describing the
hardware architecture for E/E architectures. 55

6.6 The communication topology for a single door power window 57
6.7 The functional analysis architecture for a passenger door power window system 61
6.8 CT . 63
6.9 The feature model for a central door locks system 66
6.10 The functional analysis architecture for the basic features in the door locks

system . 67
6.11 The functional analysis architecture for the RKA fragment in the door locks

system . 68
6.12 The functional analysis architecture for the PKE fragment in the door locks

system . 70
6.13 The power topology for the door locks system 74
6.14 The communication topology for the door locks system basic and RKA

fragments . 75
6.15 The communication topology for the door locks system PKE fragment which

uses the BCM as a transmitter . 76
6.16 The communication topology for the door locks system PKE fragment which

uses the transmitter device node . 77

xii

Chapter 1

Introduction

Automotive E/E (electrical and electronic) architectures are continuing to grow in size
and complexity due to the increasing amount of software functions being deployed to cars.
These architectures consist of sensors, actuators, electronic control units (ECUs), and the
physical connection media such as discrete signal wires, analog signal wires, and digital
network buses. Premium cars can have 3 km of wiring connecting more than 70 ECUs with
at least 2,000 software functions running on them [17, 31]. Additionally, the architectures
contain large amounts of variability in features, functions, devices, and the deployment,
which further increases the complexity.

EAST-ADL is a reference architecture model and a set of domain-specific languages for
modeling automotive E/E architectures. It was designed to capture E/E systems with
sufficient detail to allow modeling for documentation, design, analysis, and synthesis [25].
Figure 1.1 shows the domain model for EAST-ADL and how the system model is composed
of multiple abstraction levels which can be cross-cut by one or more perspectives (or ex-
tensions). Using EAST-ADL to model a system (or a family of systems) aids in managing
the associated complexity [20]. In Chapter 3, we define a reference model for modeling
architecture of E/E systems that is simplified (compared to EAST-ADL) for early design,
where decomposition of software components may be too detailed to capture. However, the
presented model could be extended to cover full EAST-ADL and the presented synthesis
and optimization would be equally applicable. Additionally, while being simplified, the
presented reference model is composed of multiple abstraction levels and perspectives. We
apply the reference model to building architectural models which represent many possible
candidate architectures and which affords the engineers to optimize quality attributes of
the architecture such as total cost, mass, and timing and explore the tradeoffs among them.

1

Figure 1.1: EAST-ADL Domain Model [25]

In Chapter 4, we present a mechanism for constructing a set of design specifications to use
in exploring the possible candidate architectures captured in models constructed using the
reference model from Chapter 3.

To appreciate the motivation, consider the following example scenario used throughout the
remainder of the paper. Emily is an engineer at an automotive company. She is working on
designing the E/E system architecture for the door power window. Emily wants to consider
a set of candidate architectures and to compare them based on their mass and cost. The
candidates themselves should be correct, meaning that they must meet any requirements
and constraints specified by Emily (e.g., end-to-end latency and deployment restrictions).

While the EAST-ADL can help Emily in modeling multiple candidate E/E architectures,
there is currently no approach allowing Emily to synthesize the candidate architectures,
while considering design decisions at all layers, and explore trade-offs among them. In
this work, we use a modeling language Clafer (see Chapter 2) to model multi-layer, multi-
perspective architectures (Chapter 5). We show that by using Clafer we can model alterna-
tive design decisions for any component in addition to design constraints and objectives for
a number of qualities such as latency, mass, and parts cost. Furthermore, we can join these
decisions, constraints, and objectives together using first-order logic to write fine-grained
design specifications for exploring the possible design space (Chapter 4).

In Chapter 6 we give the full details, including their Clafer encoding, for a power window

2

system and door locks system. We evaluate our approach in Chapter 7 to show how it
improves the state of the art. Additionally, we evaluate the performance of synthesizing
the candidate architectures. We then provide the threats to validity, related work, and
conclude in Chapters 8, 9, and 10, respectively.

This work provides the following contributions:

• Design exploration approach for E/E architectures based on a multi-layer and multi-
perspective reference model; in contrast to previous work (see related work section),
the approach explores many types of design decisions (at least 15) from multiple
layers, constraints (at least 13), and objectives (at least 5) simultaneously

• The approach is supported by a modeling language, reasoning tool, and results vi-
sualization tool to enable a wide range of design exploration scenarios, which are
characterized using specification templates.

• Two large case studies of realistic automotive E/E systems; the corresponding models
and exploration scenarios can serve as a future benchmark for comparing design
exploration tools in the E/E systems domain.

• We use one of the case studies to show the relevance of capturing multiple layers for
obtaining more realistic exploration results.

• We show that the majority of the exploration scenarios of the case studies are feasible
in terms of performance; we also show that exact optimization is feasible for most of
the optimization scenarios for most of the studied models; however, future work will
need to address scalability to larger models.

3

Chapter 2

Clafer Background

Clafer [4] is a lightweight, general-purpose, structural modeling language that was orig-
inally developed for feature modeling [15]. In this section we provide readers with an
informal background and basic understanding of the Clafer language and its constructs.
The formal semantics of the language can be found in [15].

Clafer currently supports two backend solvers that generate instances from Clafer models.
The first solver (not used in this work) is Alloy [1] and the second is Choco3 CSP based
solver called chocosolver1. Clafer compiler translates an input Clafer model into the input
language of each backend solver. We use chocosolver to generate both non-optimal and
optimal instances for the modeled E/E architectures. Figure 2.1 shows the workflow of how
a Clafer file is compiled into one of the backend model formats then processed to generate
instances. Chocosolver uses exact algorithms in order to find optimal instances based on
single or multiple objectives.

In the following sections, the constructs of a Clafer model are explained along with ex-
amples. Additionally, we use the solver to show what instances are generated from the
corresponding example models.

1https://github.com/gsdlab/chocosolver

4

Figure 2.1: Overall workflow of Clafer and supported backend solvers.

2.1 Types of clafers and inheritance

In Clafer, a model consists of clafers2. The name “clafer” comes from the words class,
feature, and reference because a clafer provides modeling capabilities of all these language
constructs.

Clafers are organized in a containment hierarchy: root clafers can contain nested clafers,
similarly to how classes can contain other classes and attributes. Each clafer defines a set
of instances, similarly to how a class defines a set of its instances (objects). A clafer can
be one of two types: abstract or concrete, similarly to classes. A concrete clafer results in
an instance being generated, while an abstract one does not. Clafers are also organized
in an inheritance hierarchy, like classes, with a restriction that only abstract clafers can
be superclafers. Listing 2.1 shows an example of two abstract clafers Car and ElectricCar
and two concrete clafers JanesCar and JohnsCar. Comments begin with //.

Listing 2.1: Example for concrete and abstract clafers
abstract Car // top -level abstract clafer

engine // nested concrete clafer

// an abstract clafer inheriting from an abstract clafer
abstract ElectricCar : Car

battery

// a concrete clafer inheriting from an abstract clafer
JanesCar : ElectricCar

// error: cannot inherit from a concrete clafer

2Throughout this paper if the word Clafer begins with an uppercase letter it describes the language,
whereas a lowercase one denotes the language construct.

5

JohnsCar : JanesCar

The containment is specified using indentation, whereas inheritance if specified using colon
(:). With respect to the containment hierarchy, we say that a clafer is a child of another
clafer (e.g., engine is a child of Car) and a clafer is a parent of another clafer (e.g., Car
is the parent of engine). With respect to the inheritance hierarchy, we say that a clafer
is a superclafer of another one (e.g., Car is the superclafer of ElectricCar, which itself
is a superclafer of JanesCar). Conversely, a clafer inherits from/is a subclafer of/extends
another clafer (e.g., ElectricCar inherits from/is a subclafer of/extends Car).

2.1.1 Instance generation

Given a Clafer model, a backend reasoner can generate all instances of the model in a given
finite scope. For example, for the model in Listing 2.1 (without the incorrect JohnsCar) we
get the following instance:
=== Instance 1 Begin ===

JanesCar
engine
battery

--- Instance 1 End ---

As we can see, only instances of the concrete clafer JanesCar and the inherited concrete
clafers are generated. For simplicity, the instances have the same names as the clafers. To
be fully explicit one would have to write the following, which we usually omit (we overload
: to mean instanceOf relationship).
=== Instance 1 Begin ===

JanesCar : JanesCar
engine : engine
battery : battery

--- Instance 1 End ---

Note, that because inheritance is transitive, the instance JanesCar is also an instance of
ElectricCar and Car.

6

2.2 Clafer multiplicity and group cardinality

Up to this point none of the concepts introduced have allowed for expressing variability
in the model. Clafer provides two constructs expressing variability: clafer multiplicity and
group cardinality. Clafer multiplicity is a range n..m indicating the allowed number of
instances of the given clafer with respect to its parent. The most common multiplicities
are 1..1 (mandatory) which requires one instance of the given clafer per instance of its
parent; and 0..1 (optional) which allows for at most one instance of the given clafer per
instance of its parent.

Group cardinalities are used to express variability over a group of children of the given
clafer, hence the name. All clafers, by default have the group cardinality of 0..*, that is,
they do not impose any constraints on their children.

In Listing 2.2, we explicitly show the multiplicities of all clafers. By default, all abstract
clafers have the multiplicity of 0..*, which we usually omit. Also, by default, clafers have
the multiplicity of 1..1 unless they are children of a group with cardinality other than
0..*, in which case the default multiplicity is 0..1. For example, the clafer engine has
multiplicity of 1 (short for 1..1), wheel has multiplicity of 4, and seat has the multiplicity
of 2..4. These multiplicities specify that every instance of Car contains exactly one instance
of engine, four instances of wheel, and between two and four instances of seat, respectively.

In Listing 2.2, the clafer transmission has group cardinality xor (keyword for 1..1) mean-
ing that every instance of transmission must contain exactly one instance of its children
(automatic or manual).

Listing 2.2: Example with explicit clafer multiplicities and a group cardinality
abstract Car 0..*

engine 1
xor transmission 1

automatic 0..1
manual ?

wheel 4
seat 2..4

abstract Chevy : Car 0..*

JohnsCar : Chevy 1

Using the instance generator, two of the 6 instances are:
=== Instance 1 Begin ===

7

JohnsCar
engine
transmission

automatic
wheel
wheel$1
wheel$2
wheel$3
seat
seat$1

--- Instance 1 End ---

=== Instance 4 Begin ===

JohnsCar
engine
transmission

manual
wheel
wheel$1
wheel$2
wheel$3
seat
seat$1
seat$2

--- Instance 4 End ---

Note that in order to distinguish the multiple instances of the same clafer from each other,
a suffix $n where n is the instance number is added.

Both model instances satisfy all multiplicity and group cardinality constraints; for example,
the instance generator will never generate an instance which has both kinds of transmission
or neither of them.

2.3 References

The last Clafer construct which allows for variability in models are reference clafers, that
is, clafers whose instances can point to instances of other clafers or primitive values.

8

Listing 2.3 shows an example of a clafer Car that contains two references driver and
passenger, which denote the driver and passengers of the car, respectively. The type of
the reference clafer driver is Person, which means that every instance of the clafer driver
points to one instance of the clafer Person. The multiplicity of driver is 1..1, by default,
so every instance of a Car will be always connected with one instance of Person via an
instance of the reference clafer driver. The reference clafer passenger can have between
zero and four instances, each pointing to an instance of Person. There are two kinds of
reference clafers: set (specified using ->) and bag (multiset, specified using ->>). In our
example, we do not want to allow the same person to be a passenger more than once, that
is, the collection of passengers should be a set and we used -> to express that constraint.

Listing 2.3: Example using references
abstract Person

abstract Car
driver -> Person
passenger -> Person 0..4

MyCar : Car
John : Person
Jane : Person

A correct instance of this model then would have John or Jane as the driver because they
are the only clafers of type Person in the model. The reference clafer passenger points to a
set of size 0 to 4 meaning that up to four passengers can be in the car. A correct instance
of this model can have no passengers, both John and Jane as passengers, or only John or
only Jane as a passenger.

Two of eight possible instances for Listing 2.3 are:
=== Instance 1 Begin ===

MyCar
driver -> John

John
Jane

--- Instance 1 End ---

=== Instance 8 Begin ===

MyCar
driver -> Jane

9

passenger -> John
passenger$1 -> Jane

John
Jane

--- Instance 8 End ---

We can see two instances of the reference clafer passenger (passenger and passenger$1)
pointing to the instances of John and Jane, respectively. The following instance is incorrect.
MyCar

passenger -> John
passenger$1 -> John

John
Jane

First, a required instance of driver is missing, which violates the multiplicity driver 1..1;
second, the same instance of John is a passenger twice, which violates the set constraint.

2.4 Writing Basic Constraints

So far all we have shown with Clafer is the ability to create models with large amounts of
variability using references and cardinalities. When modeling real systems and problems a
modeler also wants to use constraints in order to restrict the targets of references and the
allowed configurations of the model. Additionally, constraints are used when wanting to
query a model for one or more specific instances which satisfy the given constraints.

In this section, we give readers some of the basics for writing constraints but for conciseness
it is not exhaustive. Readers should refer to other documentation found at http://www.
clafer.org (we recommend “Clafer Cheat Sheet”3 for an informal language reference). One
general rule when writing constraints in Clafer, is that there are no scalars in the language,
only sets, and therefore writing a number 1 really means a singleton set containing the
number one. Similarly, we cannot directly access clafer instances (since they only exist at
instance generation time) and instead we often use singleton sets. For example, the concrete
clafer John : Person 1 is a singleton set which will contain exactly one instance, thus by
writing constraints about the clafer John, we write constraints about its only instance.

3http://t3-necsis.cs.uwaterloo.ca:8091/ClaferCheatSheet

10

http://www.clafer.org
http://www.clafer.org
http://t3-necsis.cs.uwaterloo.ca:8091/Clafer Cheat Sheet

Listing 2.4 builds on the previous two examples and adds some constraints. The constraints
that we want to model are:

• C1: John is the driver of MyCar

• C2: Only Dan and Jane can be passengers in MyCar

• C3: The driver should not be in the set of passengers in a car

• C4: The total number of passengers with the driver can’t exceed the number of seats
in a car

A constraint is a Boolean expression surrounded by square brackets “[]”. Just like clafers,
constraints can be either top-level or nested. Nested constraints must hold for every in-
stance of their context clafer (the clafer they are nested under); consequently an instance
of the context clafer cannot exist unless all of its nested constraints hold.

In Listing 2.4, the constraint C1 is captured in line 10, whereby .dref gets the target value
of the reference clafer (much like dereferencing a pointer in C/C++). C2 is then captured
in line 11 in the model. Note the subtle differences between C1 and C2 in the constraints
and the wording. For C1, set equality (the operator =) is used to restrict that the target
of the reference has to be John. In C2, the wording is “can be” so subsetting is used (the
keyword in). The difference between in and = is that the former can let the set be any
of values to the right of the operation where the latter requires that the set is equal to
the right of the operation (note the correct instances that can be generated). In C2, the
expression Jane, Dan computes a union of instances of Jane and Dan (alternatively, it can
be written as Jane ++ Dan).

Listing 2.4: Example using constraints
1 abstract Person
2 abstract Car
3 seat 2..4
4 driver -> Person
5 passenger -> Person 0..4
6 [driver .dref not in passenger .dref] // C3
7 [#(passenger , driver) <= #seat] // C4
8
9 MyCar : Car

10 [driver .dref = John] // C1
11 [passenger .dref in (Jane , Dan)] // C2
12 John : Person
13 Jane : Person
14 Dan : Person

11

Constraints C3 and C4 pertain to every instance of Car so the constraints are nested
under Car. For C3 the not in enforces that the target of driver is not present in the set
passenger.

C4 uses # to get the size of a set such that one can say the size of the union of sets
passenger and driver is less than or equal to the size of the set seat. When using the
instance generator 12 instances are found that satisfy the constraints and two of them are
as follows:
=== Instance 3 Begin ===

MyCar
seats
seats$1
driver -> John
passenger -> Dan

John
Jane
Dan

--- Instance 3 End ---

=== Instance 11 Begin ===

MyCar
seats
seats$1
seats$2
seats$3
driver -> John
passenger -> Jane
passenger$1 -> Dan

John
Jane
Dan

--- Instance 11 End ---

Constraints are one of the most important aspects of Clafer for modeling systems since
restrictions on system configurations, deployments, etc. can be constrained such that only
correct systems are synthesized.

12

2.5 Working with Integers

Clafer and its backends also support working with integers allowing for adding quantitative
information to models. Currently, only integer arithmetic is supported, so working with
numbers is cumbersome when modeling real systems.

Constraints can be used to model numerical relationships between components and get the
total for a set of component. For example, Listing 2.5 takes the car example and models
three features which have an associated cost.

Listing 2.5: Example using constraints
abstract Feature

cost -> integer
abstract Car

bluetooth : Feature
heatedSeats : Feature
passiveKeyEntry : Feature

MyCar : Car
[bluetooth .cost = 5]
[heatedSeats .cost = 10]
[passiveKeyEntry .cost = 25]

The constraints nested under MyCar configure an instance of Car by giving values to the
different feature costs. The dot "." operator navigates from a parent to a child clafer or
to the target of a reference. Using the instance generator gives just one correct instance
as there is no variability in the model (all references have been tightly constrained and all
multiplicities are fixed).

=== Instance 1 Begin ===

MyCar
passiveKeyEntry

cost -> 25
heatedSeats

cost$1 -> 10
bluetooth

cost$2 -> 5

--- Instance 1 End ---

13

2.6 Optimization Objectives

In order to do optimization over qualities of a model, objectives must be defined. In Clafer,
optimization objectives are captured through goals as in lines 26 and 27 of Listing 2.6. In
this example the car with features is used but a second quality is added to represent the
comfort level for a user. Also note that all of the features are optional (denoted by the
?, meaning cardinality 0..1) such that there is variability among the available features. In
order to populate the used feature set of the Car the constraint C1 on lines 9, 13, and 17
constrains that this (the Feature) is in the set of parent’s (the Car’s) child feature. The
constraint C2 on lines 21 and 22 sum the cost and comfort (respectively) of all the present
features in the car to be used for the optimization goals.

Listing 2.6: Example using optimization
1 abstract Feature
2 cost -> integer
3 comfort -> integer
4 abstract Car
5 feature -> Feature 2..*
6 totalCost -> integer
7 totalComfort -> integer
8 bluetooth : Feature ?
9 [this in parent . feature] // C1

10 [cost = 5]
11 [comfort = 30]
12 heatedSeats : Feature ?
13 [this in parent . feature] // C1
14 [cost = 30]
15 [comfort = 10]
16 passiveKeyEntry : Feature ?
17 [this in parent . feature] // C1
18 [cost = 40]
19 [comfort = 10]
20
21 [totalCost = sum feature .cost] // C2
22 [totalComfort = sum feature . comfort]
23
24 MyCar : Car
25
26 << minimize MyCar. totalCost >>
27 << maximize MyCar. totalComfort >>

The instance generator configured for optimization finds 2 Pareto-optimal instances which

14

are shown below:
=== Instance 1 Begin ===

MyCar
feature -> bluetooth
feature$1 -> heatedSeats
totalCost -> 35
totalComfort -> 40
bluetooth

cost -> 5
comfort -> 30

heatedSeats
cost$1 -> 30
comfort$1 -> 10

--- Instance 1 End ---

=== Instance 2 Begin ===

MyCar
feature -> bluetooth
feature$1 -> heatedSeats
feature$2 -> passiveKeyEntry
totalCost -> 75
totalComfort -> 50
bluetooth

cost -> 5
comfort -> 30

heatedSeats
cost$1 -> 30
comfort$1 -> 10

passiveKeyEntry
cost$2 -> 40
comfort$2 -> 10

--- Instance 2 End ---

What are the tradeoffs between these two instances? Instance 1 has the lowest cost, while
sacrificing the comfort. Instance 2 has the highest comfort at the higher cost. Clafer tools
include Clafer Multi-Objective Optimization (MOO) Visualizer, a tool for visualizing and
exploring the set of optimal instances of a model, which allows the users to perform tradeoff
analysis and find the instances most suitable for their needs [6]. A screenshot from the
tool is shown in Figure 2.2 when visualizing the instances generated from Listing 2.6.

15

Figure 2.2: Screenshot of MOO Visualizer for Listing 2.6.

16

Chapter 3

Reference Model

Using the motivational scenario, in this section we define a reference model (for the re-
mainder of this paper we refer to it as the reference model) that supports early design of
E/E system architectures. Similar to the EAST-ADL, the reference model is made up of
multiple abstraction layers. Each layer describes the system, but at a different level of
abstraction. We use the term multi-layer to describe models consisting of multiple layers.
The reference model also contains multiple perspectives, which augment the system with
analysis-task or stakeholder-specific information such as points of variability, latency, and
mass; we use the term multi-perspective to describe models that contain more than one
perspective. Figure 3.1 shows the multi-layered, multi-perspective reference model with the
supported perspectives covered in this paper. We use an ellipses in the perspectives to
show that the reference model is not limited to the ones shown, but could be extended
with additional ones.

When a perspective is combined with a multi-layered model, it may cross-cut some or all
the layers. For example, the mass perspective applies primarily to the hardware architec-
ture, where devices and wires are assigned mass; however, mass information can also be
aggregated at the feature level.

The reference model we define is similar to the EAST-ADL domain model; however, the one
defined here focuses on the early design stages and does not consider the lower-level soft-
ware decomposition for the system. More precisely, the simplified model does not consider
the functional design architecture of the EAST-ADL; instead, it maps the functional anal-
ysis architecture on the hardware design architecture. Additionally, the reference model
contains cross-cutting concerns that are not present in the EAST-ADL such as cost and

17

PerspectivesSystem Model

Feature Model

Functional Analysis Architecture

Hardware Architecture V
ar

ia
b
il

it
y

L
at

en
cy

M
as

s

P
ar

ts
 C

o
st

W
ar

ra
n
ty

 P
ar

ts
 C

o
st

M
u
lt

i-
L

ay
er

Multi-Perspective

Device Node Classification

Communication Topology

Power

Topology

…

Figure 3.1: The reference model used for early design of automotive E/E systems archi-
tecture.

mass, which were introduced by Murashkin [49]. The following two sections detail the
different layers and perspectives of the model, respectively, using Emily’s power window
as the running example.

3.1 Reference Model Layers

Starting with the top-most layer, the features of the system are captured in the feature
model layer1. A feature is a high-level system characteristic relevant to some stakeholder,
such as the customer or the user. Features may represent functionality or performance.
When defining the features of the power window system, Emily chooses to have three
features:

• basicUpDown:2 the basic functionality of the power window to close or open it by
pulling up or pressing the switch until the window glass reaches an end position;

• expressDown: the window glass retracts automatically when the user presses the
switch once;

• expressUp: the window glass closes automatically, unless an object is detected, when
the user pulls up and releases the switch once.

1We use italics to introduce a reference model element.
2We use typeface to denote Emily’s model elements; a concrete element.

18

Figure 3.2a is a feature model, which organizes features into a hierarchy and indicates their
variability, as Kang et. al. proposed in [35]. In Figure 3.2a, the features are all mandatory
(i.e., no variability). In Figure 3.2b, express and expressUp are optional; the hierarchy also
expresses an implication from expressUp to express, and from express to Driver PW. In
this section, we will assume the feature mode representing a single system (Figure 3a) for
our example.

(a) Single system. (b) Three variants.

Figure 3.2: Power window feature models.

The features are then implemented by one or more functions in the functional analysis
architecture (FAA) layer. There are two types of functions defined in the FAA: analysis
functions, which model control functions with their inputs and outputs; and functional
devices, which capture functions that represent sensors and actuators. Many of the analy-
sis functions will be realized as software components; however, some functions or parts of
them may be realized by specialized hardware (such as digital signal processor). Functional
devices will typically be realized by hardware sensors and actuators plus additional soft-
ware, such as device drivers or signal conditioning software. The FAA not only captures
the functions, but also the communication among them in order to define a function graph
(using function connectors). Figure 3.3 shows a FAA for the power window in which part
of the feature expressUp is implemented by the functions PositionSensor, PinchDetection,
and WinControl, including the communication between them.

The hardware architecture models the physical hardware devices and connectivity media
in the system, which we decompose into the device node classification, communication
topology, and power topology. The device node classification captures the device nodes in
the system and their properties; one of which is the device node type. We define a device
node as a piece of hardware such as a sensor, actuator, ECU, switch, electric center, or
battery. We consider three types of device nodes:

• Smart: A device node that can be programmed with one or more analysis functions

19

Figure 3.3: Power window functional analysis architecture. The “HW” or “SW” in upper
right corner of a function indicates the implementation choice in hardware or software,
respectively.

or functional devices which are implemented in software. Examples would be an ECU
or a hardware device with embedded microcontroller.

• Electric/Electronic (E/E): A device node that can not be programmed with exe-
cutable software but rather implements some hardware functionality described by a
functional device or analysis function that is implemented in hardware. Examples
would be an analog sensor or actuator.

• Power : A device node that generates, stores, or relays power to other device nodes.
In this paper, we do not allow a power device node to have any logic associated with
it (i.e., no functional devices or analysis functions deployed to it). An example would
be a battery or fuse box.

Figure 3.4 shows a class diagram of the classification for device nodes, analysis functions,
and functional devices. It also shows the allowed deployments of the different functions to
the various device node types. Notice from the figure that the classification is a lattice,
that is, a smart device also has E/E and power capabilities, whereas an E/E device also has

20

power capability but not smart capability. Thus, a functional device or analysis function
implemented in hardware can be deployed to either an E/E or a smart device node.

Figure 3.4: Class diagram showing classification of device nodes and functions.

In addition to classifying the device node type, we also differentiate between local and
remote device nodes. A local device node is one that is owned by the modeled system
whereas a remote node is owned by another system. In her power window, Emily chooses
to have three local device nodes:

• Motor - an actuator that is smart.

• Switch - a sensor that is E/E.

• DoorModule - an ECU that is smart.

• DoorInline - an interconnect that connects the wiring from the main body harness
to the door harness and that is a power device node.

In addition to the local nodes, Emily has two remote device nodes: the BCM (body control
module) and the EC (electric center). The BCM is an ECU that is shared among all body-
domain systems, including the power window, and the EC is a fuse box that acts like a
main power source for the car.

The next part of the hardware architecture is the communication topology, which defines
the physical media that function connectors are deployed to. The following hardware
connectors make up the topology:

• Discrete data connectors: A connector used to indicate the status of a binary input,
such as a switch. Figure 3.5 shows the different levels of abstraction for modeling

21

Figure 3.5: Modeling of data connectors at different levels of abstraction. The lowest level is
shown on the left, where connectors are modeled between pins; the middle shows connectors
between ports; the right is the highest level, where two device nodes are connected via a
connector. The dashed selection shows the level of abstraction used for data and power
connectors in this paper.

hardware connectors. We chose to model them at the highest level (shown in the
dashed box) to reduce model complexity; thus we don’t model ports or pins on a
device node.

• Analog data connectors: A connector which sends an analog signal (as opposed to
digital); typically encoded as voltage amplitude. This is also an abstract connector
similar to the discrete data connector.

• Bus connectors: An abstract connector between two or more device nodes in which all
connected nodes may pass messages; these are typically serial buses such as CAN [23]
and LIN [7].

Figure 3.6 shows the communication topology Emily chooses to connect the device nodes.
The smart nodes are connected together using the bus and only the switch and BCM are
connected via a discrete data connector.

The last part of the hardware architecture we consider is the power topology, which models
how device nodes are connected with power and in which we consider two types of power
connectors:

• Load Power Connector : An abstraction for lower gauge wires that distributes higher

22

Figure 3.6: Power window communication topology.

power to device nodes. These connectors are often used to power motors, heaters,
and lights.

• Device Power Connector : An abstraction for higher gauge wires that distributes lower
power to device nodes. These connectors are often used to power smart devices.

As with the data connectors, we choose to model the power connectors with a high level
of abstraction and disregard ports, pins, and routing through the wiring harness.

Figure 3.7: Power window power topology.

Figure 3.7 shows the power topology Emily models for her power window. Two load
power connectors are used to provide the necessary voltage from the EC to the motor.
Additionally, three device power connectors are used to connect the EC with the smart
devices in the architecture. Even though the BCM is smart, device power is not modeled
because the EC and BCM belong to other systems (shown as remote device nodes).

The last part of the system model is the deployment of the FAA to the hardware architec-
ture, which is represented by the arrow in Figure 3.1. The analysis functions and functional
devices are deployed onto device nodes, whereas function connectors are mapped onto the
different communication topology connectors.

23

The deployment step may result in different allowed topologies and node classifications.
For example, in Emily’s power window, the communication topology only defines a discrete
connector between Switch and BCM as well as the Switch being E/E. Therefore the function
WinArbiter has to be deployed to the BCM if WinSwitch is deployed to the Switch. This
is the only correct deployment because the reference model does not support deploying a
single function connector to more than one hardware communication medium.

3.2 Reference Model Perspectives

Until this point, Emily has only defined a single candidate architecture for her power
window. In order for her to model multiple candidates, variability (also known as degrees
of freedom [10]) has to be expressed in the model. First, Emily adds variability to the
feature model in which the express features are made optional and the feature expressUp is
only present if the feature express is (c.f. Figure 3.2b). Just by adding variability at the
feature level, Emily now has three possible candidates. Adding variability to the feature
expressUp results in having optional functions and connectors which are used to implement
the feature. Figure 3.8 shows the resulting variable functional analysis architecture in which
the PinchDetectionFAA is optional; which implies all contained functions and connectors
are optional as well (PositionSensor, position, PinchDetection, and object). Emily can
also express variability in how a function is implemented; for example, in Figure 3.8 Emily
choses to have WinArbiter be implemented in either hardware or software.

Additionally, variability can be expressed in the mapping of the FAA to the hardware
architecture by allowing more than one valid deployment for a function to a device node or
a function connector to a communication topology connector. We also consider variability
for the type of device node in the device node classification. For example, Emily might
have two types of Switch device nodes she can use in the system, either a smart or an
electric/electronic one. Furthermore, variability can be expressed over the presence of a
device node in the classification; such as the DoorModule being optional in the resulting
candidate architectures. Lastly, the communication and power topologies can contain
variability in the presence of connectors or in the case of a bus connector, the type of bus
(i.e. LIN, CAN, or FlexRay). By adding variability to each of the layers in the power
window model, Emily can end up modeling an exponential (in the number of components)
number of candidate architectures. With adding variability to each individual layer, Emily
also does not need to enumerate manually the complete variable configurations of the
system; instead she can simply add variations to individual components.

24

Figure 3.8: Power window FAA with variability. Optional components are shown by
a dotted border/line. “HW/SW” indicates the function can be implemented in either
software or hardware.

In order to evaluate the candidates based on metrics such as mass and cost, Emily must
define qualities for the components of the different layers. When considering the mass, part
unit cost, and part warranty cost of an architecture, we only assign values at the hardware
architecture layer as it represents the physical elements in the architecture; we do not
consider other costs in our model. Therefore, the components that add to the total mass
and cost of a system are device nodes, power connectors, and communication connectors.
We consider part warranty cost to be the cost incurred by the OEM when a defective part
fails and calculate by taking the failure rate multiplied by the replacement part cost.

The last perspective that we define in this paper is for the latency of a system. We do
this through timing chains — a sequence of executing functions with their communication
as defined in the FAA. With the latency of a system being modeled, timing requirements
such as end-to-end latency — the time taken to reach a target function from some source
function — or input synchronization latency — the maximum difference in time taken to
reach a target function from more than one source function. For the power window, Emily
could model the timing requirement that the time taken from the function WinSwitch to
function WinMotor is less than 500 ms.

In this work, we consider a simple latency model where schedulability and complex equa-
tions (such as the recurrence relation for worst case transmission delay [22]) are not mod-

25

eled. Instead, we assume the deployment of functions to nodes to be schedulable and they
are scheduled in a way to avoid any bus arbitration (no blocking times). Additionally, we
do not consider the overhead associated with different communication protocols which is
needed for a more precise timing model. Such a model is sufficient for very early explo-
ration. We consider the following components to contribute to the latency of a system:

• Functional device & analysis function: a base latency is specified by the user. If the
function is implemented in software, the base latency represents the latency a function
is expected to take at some base ECU speed factor. If the function is implemented
in hardware, the base latency is simply the hardware specification latency.

• Function connector : a size is specified by the user to represent the size of the message
being sent. Then based on whether the function connector is deployed and to what
type of hardware connector, the latency is calculated using the transfer rate of the
hardware connector.

• Device node: a speed factor can be given to the device node which affects the resulting
latency of deployed analysis functions.

• Discrete/analog data connector : the latency is assumed to be zero in our model.

• Bus connector : the transfer rate is dependent on the type of bus, which then affects
the deployed to function connectors.

In the next chapter, we characterize the different design specifications, for exploration,
that can be constructed for a model built using our reference model, such as Emily’s power
window.

26

Chapter 4

Characterizing the Possible Design
Scenarios

For Emily, building an architectural model of her system has provided no exploration ben-
efits, yet. However, the model represents all possible candidate designs; being able to ask
or query for a subset of them based on some decisions would provide such a benefit. Mak-
ing design decisions is routinely done throughout the early stages of design. For example,
Emily might need to decide if having a dedicated ECU on each door is a cost-effective
solution while meeting some high-level requirements such as end-to-end latency or mass.
While making a decision is quite simple (e.g., Emily could just flip a coin), the challenge
is finding the possible remaining candidates which satisfy the high-level requirements and
the model constraints when the decision is made. Additionally, if more than one decision
is made (e.g., Emily chooses to have the dedicated ECU and have the feature expressUp),
which is often done, it may be challenging to determine if a candidate design is possible.

Another benefit Emily could reap from building the architectural model is comparing two
or more sets of candidates. While an argument could be made that this comparison could
be done manually (e.g., it is intuitive that adding a dedicated ECU will be of higher cost
than not), it is limited to comparing a single candidate from each set. Consider the example
shown in Figure 4.1 in which Emily is trying to compare designs with a dedicated door ECU
and designs without such an ECU. Doing this manually would require generating, by hand,
a candidate for each design choice (shown as black circles in the figure) and then comparing
them one at a time (shown as the red rounded rectangles). Using the architectural model
and a supporting reasoner, all candidates for both design decisions could be synthesized
and the sets of architectures could be compared at one time (shown as the blue rounded

27

Candidate architectures

with a dedicated door

ECU.

Candidate architectures

without a dedicated door

ECU.

Manual Comparison

Candidate Design

Comparison using Reasoner

Figure 4.1: Illustration of comparing candidate designs for different sets of architectures
using a manual versus an automated model-based approach.

rectangle). Then, since we are comparing sets, we can group candidates by part cost values
to show if there exists any candidate with the dedicated ECU which costs less than any
without.

Furthermore, Emily could ask for a comparison between only optimal candidates. This
would allow her to compare the candidates with minimal part costs when either design
decision holds. Doing this optimization manually would not be practical, unless the number
of candidates is small; by considering all layers of the reference model a reasoner would
also produce candidates that are globally optimal rather than locally within only one or
two of the layers.

In the following subsections, we first give example exploration scenarios using design deci-
sions that Emily, or another engineer, might make for the power window model built using
the reference model. Secondly, we generalize the decisions, constraints, and objectives that
can be reasoned about for any model constructed using the reference model from Chap-
ter 3. This generalized set of decisions covers a subset of the possible degrees of freedom
and qualities that are captured by the reference model.

28

4.1 Possible Design Exploration Scenarios

For the power window that Emily is designing, we give several design scenarios in which
Emily would like to explore the possible designs based on her model using a set of decisions,
constraints, and objectives.

1. Emily would like to investigate the possibility of adding a dedicated ECU to each door
(we call the door module). Precisely, she would like to find out if it is a cost-effective
solution while meeting the requirements for mass and latency.

2. Suppose that Emily has made a set of decisions which captures the architecture of
her companies previous generation power window system. Now, Emily would like to
know if it is possible to implement the express up feature on the previous generation
architecture while satisfying latency constraints. If so, she would like to find out
what designs they would be.

3. Emily would like to compare having a dumb architecture which uses electric/electronic
switches and motors versus a smart architecture where they are smart. She would
like to explore optimal designs of both to see how they compare in respect to the
qualities: mass, parts costs, and part warranty cost.

4. Emily is tasked with designing the power window for a higher end car in which cost
is irrelevant but mass should be minimized, she would like to explore the possible
designs. Additionally, since it is a high end car, all features should be included.
Lastly, the end-to-end latency for pinch detection to react and reverse the motor
should be less than 200 ms.

5. Emily would like to minimize the cost, regardless of the features, to support an
“economy class” vehicle her company is rolling out. Is there an optimal car design
that does include all features?

6. Emily is investigating whether it would be better in terms of all qualities (latency,
mass, parts cost, and part warranty cost) to have a distributed architecture, when
considering multiple power window systems (e.g., the driver and passenger doors),
or a centralized one.

By using the reference model we describe in the previous section, Emily can construct a
model that can be used in each of these scenarios. This is possible because of the layers we
consider along with the cross-cutting perspectives. By modeling from the features down
to the power and communication topology, Emily can consider the comprehensive impact
of making decisions. Also, she is able to make decisions since each layer is augmented

29

with a variability perspective, thus she can consider adding or removing elements, such
as a feature or device node. In the next subsection, we formally state the set of design
decisions, constraints, and objectives that can be expressed over any model using the
reference model in order to explore the possible candidate architectures.

4.2 Generalizing the Possible Design Exploration Sce-
narios

As we saw in the previous section, design space exploration entails exploring resulting
candidates when certain decisions are made, constraints are held, and objectives are opti-
mized. Before we state what possible decisions, constraints, and objectives one can make
when using the reference model, we first define what design exploration are and its defining
elements as follows:

• Design Space Exploration: The activity of discovering and evaluating design al-
ternatives, captured by design specifications, during system development (adapted
from [34]).

• Design Specification: A set of one or more design decisions, constraints, and objectives
joined together by Boolean logic formed over a architectural model to specify the
desired candidate architectures.

• Design Decision: A restriction on the variability allowed by one or more components
in the modeled architecture.

• Design Constraint: A restriction on the value for a system or component quality in
the modeled architecture such as mass or latency.

• Design Objective: An optimization goal for a system quality in the modeled archi-
tecture in which to maximize or minimize.

We consider two classes of design space exploration scenarios. The first class uses a single
design specification. Scenarios 2, 4, and 5 from the previous section fall into this class.
A common example of this class would be causal analysis where a certain specification is
made in order to observe the resulting possible candidates. The second class uses multiple
design specifications. Comparative analysis would be a common example of this class where
two or more sets of designs (captured by design specifications) are compared. Scenarios 1,
3, and 6 from the previous section fall into this class.

30

In order to analyze the set of exploration scenarios afforded by the reference model, we
first characterize the range of possible specifications. This, in turn, requires characterizing
the possible decisions, constraints, and objectives. We achieve this goal using specification
templates.

Table 4.1 contains the templates that express a subset of all possible design decisions that
can be made when using the reference model and first-order logic. The parameters X and
Y in each of the templates are names of elements such as features, functions, devices, etc.,
present in the model. In the templates we capture all possible presence variability for the
the elements (DD1, DD3, DD4, DD8, DD9, DD11). Additionally, device nodes and bus
connectors have associated types (DD7, DD14), functions have implementation decisions
(DD5), and connectors have endpoints that can be variable (DD6, DD10, DD15). Lastly,
the deployment can also be variable with respect to function and their connectors (DD2,
DD12, DD13). This is a subset because we do not capture arbitrary Boolean formulas
between the deployment of a set to another in this characterization; however, note that
Clafer can express arbitrary Boolean expressions should a particular scenario need it. In
Chapter 5 we show how it is possible to capture each of these variable design decisions in
our implementation.

Table 4.2 contains the templates for a subset of all design constraints that can be made
when using the reference model. The constraints that we consider are simple inequalities
that involve individual values or sums of mass, part cost, part warranty cost (DC5 –
DC13), and latency for end-to-end latency (DC1, DC3). Input synchronization (DC2,
DC4) additionally use maximum of a set of values. The parameter X in the templates is a
quality associated with an element such as a device node mass or the latency of a timing
chain, and parameters Y and Z are numbers.

Table 4.3 then shows a subset of the possible design objectives that can be captured when
using the reference model. Parameter X is a quality associated with an element, as in
the previous table, and parameter Y is a number. Although Clafer allows using arbitrary
numeric expressions as objectives, we only focus on the subset in the table. The objectives
that we consider are additive with respect to the mass, part cost, and part warranty cost
as well as timing margins. We define total mass as the summation of mass for all elements
(that define mass). Total part cost and total part warranty cost are defined in a similar
manner.

In order to combine the design decisions, constraints, and objectives together to form
design specifications, we use a workflow diagram shown in Figure 4.2. The design decisions
and constraints are joined together using Boolean operations. In the next subsection we
show concretely, how these templates can be used to build a set of design specifications to

31

Table 4.1: A set of decision templates based on the reference architecture model

Reference Model
Concept

Design Decision Template ID

Features Feature X <is|is not> present in the system DD1
Functions &
Connectors

Function X is deployed to device node(s) Y(1) or Y(2) or
. . . Y(m)

DD2

Function X <is|is not> present in the system DD3
Function connector X <is|is not> present in the system DD4
Function X is implemented in <hardware|software> DD5
Function connector X is provided <to|from> function(s) Y(1)
or Y(2) or . . . Y(m)

DD6

Device Nodes Device node X is <smart|electric/electronic|power> DD7
Device node X <is|is not> present in the system DD8

Power Connectors <Load|Device> power connector X <is|is not> present in the
system

DD9

The <load|device> power connector X is provided <to|from>
device node(s) Y(1) or Y(2) or . . . Y(m)

DD10

Communication
Connectors

<Bus|Discrete|Analog> connector X <is|is not> present in
the system

DD11

Function connector X does not use a hardware connector to
communicate

DD12

Function connector X uses connector(s) Y(1) or Y(2) or
. . . Y(m) to communicate

DD13

Bus Connector X is of type <LIN|Low Speed CAN|High
Speed CAN|FlexRay>

DD14

The <bus|discrete|analog> connector X should have device
node(s) Y(1) or Y(2) or . . . Y(m) as endpoints

DD15

32

Table 4.2: A set of constraint templates based on the reference architecture model

Quality
Attribute

Design Constraint Template ID

Timing
(End-to-End
Latency)

The timing chain latency X must be less than or equal to Y DC1
The maximum difference for timing chain latencies X(1), X(2), . . . ,
X(n) must be less than or equal Y

DC2

Timing
(Margin)

The margin between timing chain latency X and the required latency
Y must be greater than or equal to Z

DC3

For all margins between the timing chain latencies X(1), X(2), . . . X(n)
and the requirement latencies Y(1), Y(2), . . . Y(n) the minimum must
be greater than or equal to Z

DC4

Mass

The total mass of the system must be less than or equal to Y DC5
The mass of X must be less than or equal Y DC6
The sum of mass for components X(1), X(2), . . . X(n) must be less than
or equal to Y

DC7

Part Cost

The total cost of the system must be less than or equal to Y DC8
The cost of X must be less than or equal to Y DC9
The sum of cost for components X(1), X(2), . . . X(n) must be less than
or equal to Y

DC10

Warranty
Part Cost

The total parts warranty cost of the system must be less than or equal
to Y

DC11

The parts warranty cost of X must be less than or equal to Y DC12
The sum of parts warranty cost for components X(1), X(2), . . . X(n)
must be less than or equal to Y

DC13

33

Table 4.3: A set of the design objective templates based on the reference architecture model

Quality
Attribute

Template Design Objectives ID

Timing
(margins)

<Maximize|Minimize> the margin between the timing chain X end-
to-end latency and the requirement latency of Y

DO1

<Maximize|Minimize> the <smallest|largest> margin between the
timing chain(s) X(1), X(2), . . . X(n) end-to-end latency(s) and the
requirement latency(s) Y(1), Y(2), . . . Y(n)

DO2

Mass <Maximize|Minimize> the total mass of the system DO3
Parts Cost <Maximize|Minimize> the total cost of the system DO4
Warranty
Parts Cost

<Maximize|Minimize> the total parts warranty cost of the system DO5

explore a concrete model constructed using the reference model.

4.3 Example Design Exploration using Templates

Returning to Emily’s hypothetical design exploration scenarios in Section 4.1, we can now
use the templates to form a set of specifications to be used in the exploration. As an
example, we use scenario 4:

Emily is tasked with designing the power window for a higher end car in which cost is
irrelevant but mass should be minimized; she would like to explore the possible designs.
Additionally, since its a high end car, all features should be included. Lastly, the end-to-
end latency for pinch detection to react and reverse the motor should be less than 200 ms.

This exploration requires just one design specification which includes one decision for
wanting all features (i.e., having the feature expressUp), one constraint for the latency
requirement, and one objective for minimizing the mass. Using template DD1, we can write
the design decision as “Feature expressUp is present in the system”, which we abbreviate
with a shorthand notation as DD1(expressUp, is). This notation replaces the arguments
inside the parentheses with the configurable parameters in the template, in the same order
as they appear. The design constraint “The timing chain latency PinchDetection_TC must
be less than or equal to 200 ms” can then be written as DC1(PinchDetection_TC, 200 ms) in

34

Design Decision/

Design Constraint Design Objective
Design Decision/

Design Constraint
If and only if

XOR

Implies

OR

AND

AND

NOTNOT

Figure 4.2: A workflow diagram for combining design decisions, constraints, and objectives
together to create a design specification.

shorthand notation, where PinchDetection_TC is the latency for a timing chain constructed
from the PositionSensor functional device to the WinMotor (Figure 3.8). Lastly, the design
objective can be written as “Minimize the total mass of the system”; DO3(Minimize) in
shorthand notation.

We construct the design specification by combining the instantiated templates use the flow
diagram in Figure 11: “Feature expressUp is present in the system AND the timing chain
latency PinchDetection_TC must be less than or equal to 200 ms AND Minimize the total
mass of the system” or “DD1(expressUp, is) AND DC1(PinchDetection_TC, 200 ms) AND
DO3(Minimize)” in shorthand notation.

In a different scenario, Emily may want the latency of pinch detection to be met only if
the feature expressUp is present. This conditional design specification can be constructed
using an implication between the two decisions as follows: “Feature expressUp is present
in the system IMPLIES the timing chain latency PinchDetection_TC must be less than or
equal to 200 ms” or “DD1(expressUp, is) IMPLIES DC1(PinchDetection
_TC, 200 ms)” in shorthand notation.

35

Chapter 5

Encoding the Reference Model in
Clafer

In the previous sections, we defined a reference model for early design and showed a subset
of the possible design specifications that can be formed over a design-space model built
using the reference model from Chapter 3. In this section, we present how to encode the
reference model and design-space models (a model built using the reference model) using
Clafer [4] in order to support the design specifications from Chapter 4.

Recall from Chapter 2, Clafer’s language support for variability modeling using cardinali-
ties and group cardinalities. Thus, when the reference model is encoded, there is no longer
a separate variability model as there is with current EAST-ADL modeling tools. Thus,
Figure 5.1 shows a unified view of the reference model diagram shown earlier. The uni-
fication symbolizes that the variability, and other perspectives are present in the Clafer
encoding of each of the layers.

Next, we describe the implementation of each of the reference model layers in Clafer as
well example use cases in the context of Emily’s power window.

36

Figure 5.1: A unified view of the reference model used for early design of automotive E/E
systems architecture

5.1 Encoding of Reference Model Layers in Clafer

The encoding for the feature model layer is shown in Listing 5.1. It defines two abstract
clafers, FeatureModel1 and Feature, for feature model and feature respectively. Neither
clafer has quality attributes since they are not expressed at the feature model layer (as
shown in Figure 5.1).

Listing 5.1: Clafer encoding of reference model concepts for the feature model layer
abstract FeatureModel
abstract Feature

Using these components, Emily can model her feature model (with variability) in Clafer
as shown in Listing 5.2. With nesting, Emily is able to model the implication between the
features express and expressUp and expressDown. Note, that anytime a cardinality is not
shown it is assumed to be 1..1 by the compiler.

Listing 5.2: Power window feature model example
PowerWindowFM : FeatureModel

basic : Feature
express : Feature ?

expressDown : Feature
expressUp : Feature ?

By annotating features with some variable cardinality (such as, 0..1) we support design
decision DD1 (Feature X <is|is not> present in the system).

1We use bold typeface to refer to a clafer in a listing

37

Encoding the FAA layer requires defining abstract clafers for analysis function, func-
tional device, and function connector, which we define in Chapter 3. Listing 5.3 shows
how we use inheritance, denoted by a colon (lines 12,13) to model common “proper-
ties” or attributes of analysis functions and functional devices in a common super clafer
FunctionalAnalysisComponent. Design decisions DD3 and DD4 (Function/Function
connector X <is|is not> present in the system) are possible, similar as with features, by
using cardinality 0..1 (i.e., optional) when declaring the function or connector; this can be
seen on line 8 of Listing 5.4, which is a fragment of Emily’s power window FAA. For design
decision DD5 (Function X is implemented in <hardware|software>), we capture the two
alternatives using mutually exclusive group cardinality (xor) on line 4 of Listing 5.3. Note
that in Clafer constraints are enclosed in brackets.

To capture the deployment of functions and function connectors to the hardware architec-
ture, we need a relation between the two. This relation is captured using the reference
deployedTo on lines 3 and 18 of Listing 5.3 (denoted by ->). In Clafer, a reference can also
be given a cardinality, which allows for a reference to point to a variable size set of targets.
Furthermore, consider the constraint on line 4 of Listing 5.4; one can loosely restrict that
the target of a reference must be in a set of possibilities. Thus, an instance of WinControl
would be deployed to either DoorModule or Switch. This mechanism supports the de-
sign decision “Function X is deployed to device node(s) Y(1) or Y(2) or . . . Y(m)” (DD2).
Further, since the endpoints of a function connector are references, it supports the deci-
sion “Function connector X is provided <to|from> function(s) Y(1) or Y(2) or . . . Y(m)“
(DD6).

Additionally, constraints nested in the reference model concepts ensure that each use of the
concept must satisfy the constraints (for a satisfiable instance). For example, the constraint
on line 9 of Listing 5.3 enforces that functions implemented in software are deployed to a
device that must have type (a child clafer of DeviceNode in Listing 5.5) must be smart.
Note, the . operator navigates to the target of a reference or to a child of a clafer (see [15]
for the full semantics).

In order to augment the FAA layer with the latency perspective, we explicitly define a
latency property (captured by a child integer reference clafer) for functions and function
connectors (lines 11 and 22 of Listing 5.3). Currently the Clafer backend solver is limited
to working with integer values so all quality attributes have to be modeled using only
integers. The constraints on lines 7, 10, and 24 along with the clafer baseLatency enforce
the relationships between latency and hardware factors, as we described in Chapter 3.
Recall that a designer only typically specifies the base latency for a function; however,
since Clafer is a constraint language, the designer can also leave the base latency of one or

38

Listing 5.3: Clafer encoding of reference model concepts for the functional analysis ar-
chitecture layer. Comments are denoted by “//” and the unit of the quality attribute is
enclosed in the square brackets in the comments.

1 abstract FunctionalAnalysisArchitecture
2 abstract FunctionalAnalysisComponent
3 deployedTo -> DeviceNode
4 xor implementation
5 hardware
6 [deployedTo .type in (EEDeviceType , SmartDeviceType)]
7 [latency = baseLatency]
8 software
9 [deployedTo .type in SmartDeviceType]

10 [latency = baseLatency * deployedTo . speedFactor]
11 latency -> integer // [ms]
12 baseLatency -> integer // [ms]
13 abstract AnalysisFunction : FunctionalAnalysisComponent
14 abstract FunctionalDevice : FunctionalAnalysisComponent
15 abstract FunctionConnector
16 sender -> FunctionalAnalysisComponent
17 receiver -> FunctionalAnalysisComponent
18 deployedTo -> HardwareDataConnector ?
19 [parent in this. deployedFrom]
20 [(sender . deployedTo .dref , receiver . deployedTo .dref) in (deployedTo .

endpoint .dref)]
21 [(sender . deployedTo .dref = receiver . deployedTo .dref) <=> no this.

deployedTo]
22 latency -> integer // [us]
23 messageSize -> integer // [byte]
24 [if (deployedTo) then (latency = messageSize * deployedTo .

transferTimePerSize) else (latency = 0)]

39

Listing 5.4: Power window FAA example
1 PowerWindowFAA : FunctionalAnalysisArchitecture
2 WinControl : AnalysisFunction
3 [baseLatency = 2]
4 [deployedTo in (PowerWindowDN .DoorModule , PowerWindowDN . Switch)]
5 WinMotor : FunctionalDevice
6 [latency = 10]
7 [deployedTo = (PowerWindowDN .Motor)]
8 PinchDetection : AnalysisFunction ?
9 [baseLatency = 2]

10 [deployedTo = (PowerWindowDN . DoorModule)]
11 winCmd : FunctionConnector
12 [sender = WinControl && receiver = WinMotor]
13 [messageSize = 2]
14 [deployedTo in (PowerWindowCT . logicalSwitchMotorDisc , PowerWindowCT .

logicalMotorDoorModuleDisc)]

more functions opened and to be determined by the underlying solver.

The device node classification layer encoding is shown in Listing 5.5, where a device node
has multiple properties to express mass, part cost, part warranty cost, and type. The
integer properties explicitly augment the device node classification with the latency, mass,
part cost, and part warranty cost. Design decision DD7 (Device node X <is|is not>
present in the system) is afforded by using cardinality 0..1 (i.e., optional) when declaring
the node. The target of reference type on line 6 of Listing 5.5 can be one (by the cardinal-
ity 1..1) of the types from the set DeviceNodeType. The set contains three possibilities:
smart, electric/electronic, and power (see line 2 of Listing 5.5). This forms a mutually
exclusive selection, identical to using an xor group cardinality as done for the implementa-
tion choice for a function; thus, supporting the design decision “Device node X is of type
<smart|electric/electronic|power>” (DD7)

Mass, cost, ppm (part per million), replacement cost, and speed factor are all specified by
the system designer. The part warranty cost is then constrained to be the number of failures
per million (ppm) multiplied by the replacement cost, shown on line 10 of Listing 5.5.

Listing 5.6 shows part of the device node classification for Emily’s power window, con-
taining the nodes Switch and DoorModule. In order to show the variability that Emily has
both a smart and electric/electronic Switch, we can use the constraint on line 3, which
has identical form as a variable deployment constraint. Additionally, to express that the
device node DoorModule is optional, a cardinality of 0..1 is expressed on line 9. Also take

40

Listing 5.5: Clafer encoding of reference model concepts for the device node classification.
1 abstract DeviceNodeClassification
2 enum DeviceNodeType = SmartDeviceType | EEDeviceType | PowerDeviceType
3 abstract DeviceNode
4 type -> DeviceNodeType
5 speedFactor -> integer // unitless
6 mass -> integer // [g]
7 cost -> integer // [dollar]
8 ppm -> integer // unitless
9 replaceCost -> integer // [dollar]

10 warrantyCost -> integer = ppm* replaceCost // [dollar per million]
11 [(type in (PowerDeviceType , EEDeviceType)) => (speedFactor = 0)]

note that quality attribute values do not have to be assigned to one possible value by the
modeler: on line 7 it shows how the device node type can be used to select between two
values for ppm.

For the power and communication topologies, we need an encoding for the different types
of connectors. Similar to the FAA layer encoding, we use inheritance in Listings 5.7 and
5.9 to model the various connectors and capture similar properties.

Using constant integer values such as Data.MassPer
Length.LoadPowerConnector, the total mass and cost of the different connectors can be
computed given their length. Both the load power connector and device power connector
define a source and sink reference, which allow the endpoints of the connectors to vary.
Similar to before, these references allow design decision DD10 (“The <load|device> power
connector X is provided <to|from> device node(s) Y(1) or Y(2) or . . . Y(m)”), and the
presence variability can be captured via cardinalities, allowing for DD8 (“<Load|Device>
power connector X <is|is not> present in the system”).

Using the clafers from Listing 5.7, Emily can express a fragment of her power topology for
the motor in Listing 5.8. The fragment shows the device power connector for the motor,
that is optional, and is present if and only if the device node Motor is smart. It also shows
the load power connector for the motor (the connector source is not shown).

Listing 5.9 shows the communication topology modeled in Clafer, which consists of multi-
ple data connectors that we introduced in Chapter 3. Recall that the discrete and analog
data connectors were abstractions; in order to improve the accuracy of cost and mass, the
constraint on lines 7 and 9 shows how the number of function connectors deployed to a
hardware connector is used to represent the number of connectors in the bundle. Similar to

41

Listing 5.6: Power window device node classification example.
1 PowerWindowDN : DeviceNodeClassification
2 Switch : DeviceNode
3 [type in (SmartDeviceType , EEDeviceType)]
4 [mass = 173]
5 [cost = 110]
6 [replaceCost = 110]
7 [if (type in SmartDeviceType) then (ppm = 50) else (ppm = 10)]
8 [(type in SmartDeviceType) => (speedFactor = 10)]
9 DoorModule : DeviceNode ?

10 [type = SmartDeviceType]
11 [mass = 368]
12 [cost = 300]
13 [ppm = 50]
14 [replaceCost = 300]
15 [speedFactor = 10]

Listing 5.7: Clafer encoding of reference model concepts for the device node classification.
abstract HardwareConnector

length -> integer // [cm]
mass -> integer // [mg]
cost -> integer // [dollar per thousand]

abstract PowerConnector : HardwareConnector
source -> DeviceNode
sink -> DeviceNode

abstract LoadPowerConnector : PowerConnector
[mass = Data. MassPerLength . LoadPowerConnector * length]
[cost = Data. CostPerLength . LoadPowerConnector * length]

abstract DevicePowerConnector : PowerConnector
[mass = Data. MassPerLength . DevicePowerConnector * length]
[cost = Data. CostPerLength . DevicePowerConnector * length]

42

Listing 5.8: Example power topology for power window.
PowerWindowPT : PowerTopology

MotorLoadPowerConnector : LoadPowerConnector
[sink = PowerWindowDN .Motor]

MotorDevicePowerConnector : DevicePowerConnector ?
[source = PowerWindowDN . DoorInline]
[sink = PowerWindowDN .Motor]
[length = 45]

[MotorDevicePowerConnector <=> (PowerWindowDN .Motor.type =
SmartDeviceType)]

PowerWindowCT : CommunicationTopology
logicalLowSpeedBus : BusConnector ?

[type.LIN || type. LowSpeedCAN]
[length = 70]
[endpoint in (PowerWindowDN .Motor , PowerWindowDN . DoorModule)]

logicalMotorDoorModuleDisc : DiscreteWireConnector ?
[endpoint = (PowerWindowDN .Motor , PowerWindowDN . DoorModule)]
[length = 30]

power and function connectors, the endpoints of a data connector are references; however,
the encoding allows for two or more endpoints to support the design decision DD15. Fur-
ther, we support four types of common buses, where each has a different mass per length,
cost per length, and transmission rate. This encoding uses a group cardinality, similar to
the function implementation encoding, allowing the design decision “Bus Connector X is
of type <LIN|Low Speed CAN|High Speed CAN|FlexRay>” (DD14). Lastly, the function
connector deployment is modeled similar to functions (DD13), with the exception that it
can be optional, supporting design decision DD12.

Listing 5.10 shows a fragment of the communication topology for the power window. The
fragment shows two alternatives, in which the device nodes Motor and DoorModule can
be connected at the hardware level. The selection of the alternatives is based on the
constraints on line 11 of Listing 5.9, which enforces that all device nodes used as endpoints
for the bus connector have to be smart. Therefore, if the device node Motor is smart then
the bus will be used, otherwise the discrete wire will be synthesized.

In the following subsection, we show an example for how element-level qualities can be
aggregated to support the design constraints and objectives from Chapter 4. Additionally,
we include an example for joining multiple decisions, constraints, and objectives together,

43

Listing 5.9: Clafer encoding of reference model concepts for the communication topology
1 abstract HardwareDataConnector : HardwareConnector
2 endpoint -> DeviceNode 2..*
3 deployedFrom -> FunctionConnector 1..*
4 [this. deployedTo = parent]
5 transferTimePerSize -> integer // [us/byte]
6 abstract DiscreteDataConnector : HardwareDataConnector
7 [mass = length *(# deployedFrom)*Data. MassPerLength . DiscreteDataConnector

]
8 [transferTimePerSize = 0]
9 [cost = Data. CostPerLength . DiscreteDataConnector * length *(# deployedFrom)

]
10 abstract BusConnector : HardwareDataConnector
11 [all e : endpoint | e.type = SmartDeviceType]
12 xor type
13 LowSpeedCAN
14 [transferTimePerSize = Data. TimePerSize . LowSpeedCANBus]
15 [mass = Data. MassPerLength . LowSpeedCANBus * length]
16 [cost = Data. CostPerLength . LowSpeedCANBus * length]
17 HighSpeedCAN
18 ...
19 LIN
20 ...
21 FlexRay
22 ...
23 abstract LogicalBusBridge
24 transferTimePerSize -> integer // [us/byte]
25 bus -> BusConnector 2
26 gatewayTransferTimePerSize -> integer // [us/byte]
27 [transferTimePerSize = gatewayTransferTimePerSize + bus.

transferTimePerSize]

44

Listing 5.10: Example communication topology for power window.

PowerWindowCT : CommunicationTopology
logicalLowSpeedBus : BusConnector ?

[type.LIN || type. LowSpeedCAN]
[length = 70]
[endpoint in (PowerWindowDN .Motor , PowerWindowDN . DoorModule)]

logicalMotorDoorModuleDisc : DiscreteWireConnector ?
[endpoint = (PowerWindowDN .Motor , PowerWindowDN . DoorModule)]
[length = 30]

in accordance to the earlier workflow diagram.

5.1.1 Using Clafer to Model a Simplified Power Window

Recall, from Chapter 4 that many of the design constraints and objectives were a summa-
tion of component values such as device node masses or function latencies. To showcase
how these constraints and objectives can be written in Clafer, we simplify Emily’s power
window. We do so by showing the WinControl and WinMotor functions, with their con-
nection, and two device nodes, DoorModule and Motor, as well as the possible media that
connect them. Listing 5.11 shows the Clafer model for this simplified architecture.

Using the simplified model, we model a timing chain latency by adding the latency values
of WinControl, WinMotor, and winCmd as shown on line 1 of Listing 5.12. Then using the
timing chain, we encode the design constraint “The end-to-end latency for timing chain X
must be less than or equal to Y” (DC1) on line 2 of Listing 5.12. Similarly, if we wanted
to minimize the total mass of the architecture, as in DO3, we would need to sum up the
device node and hardware connector masses. Line 3 shows how we can define a total mass,
and line 4 then shows the Clafer encoding to minimize the value. Lastly, our example
specification could state that we do not want the WinControl function to be deployed to
the door module. This can be done using the quantifier no, as shown on line 5. The
result of this specification would be an instance including only the motor, which is smart
to contain the WinControl function, and no discrete data connector.

Listing 5.12: Example design specification encoding
1 exampleTC -> integer = WinControl . latency + winCmd . latency + WinMotor . latency
2 [exampleTC <= 34]

45

Listing 5.11: Simplified power window E/E architecture
WinControl : AnalysisFunction

[implemented . software]
[baseLatency = 2]
[deployedTo in (DoorModule , Motor)]

WinMotor : FunctionalDevice
[implemented . hardware]
[baseLatency = 10]
[deployedTo = Motor]

winCmd : FunctionConnector
[sender = WinControl & receiver = WinMotor]
[deployedTo in (doorModuleMotorDisc)]

DoorModule : DeviceNode ?
[type = SmartDeviceType]
[mass = 100]
[cost = 100]
[replaceCost = 100]
[ppm = 50]
[speedFactor = 10]

Motor : DeviceNode
[type in (SmartDeviceType , EEDeviceType)]
[mass = 100]
[cost = 100]
[replaceCost = 100]
[ppm = 50]
[(type in SmartDeviceType) => (speedFactor = 10)]

doorModuleMotorDisc : DiscreteDataConnector ?
[endpoint = (Motor , DoorModule)]
[length = 50]

46

3 totalMass -> integer = DoorModule .mass + Motor.mass + doorModuleMotorDisc
.mass

4 << minimize totalMass >>
5 [WinControl . deployedTo != DoorModule]

5.2 The Supporting Reasoner and Tools

Recall from Chapter 2 that chocosolver is a part of the Clafer toolchain. It compiles the
model written in the Clafer modeling language down to a set of variables and constraints
from the Choco constraint programming library [55]. Constraint programming is a power-
ful paradigm from artificial intelligence for performing search efficiently over a large search
space. The Choco library is a notable open source constraint programming implementation
and has won awards in the past three MiniZinc challenges (2013, 2014, 2015). Chocosolver
extends the Choco library to handle Clafer-specific features, such as reasoning over rela-
tional logic and multi-objective optimization, in which the guided improvement algorithm
(GIA) [33] is implemented. Additionally, any solution in the Choco domain gets mapped
back to a solution in the Clafer domain.

Chocosolver explores the search space for solutions by incrementally assigning variables in
hope of finding a complete solution. After each assignment, the solver will perform prop-
agation by using the currently assigned variables to deduce the values of other variables,
thus pruning the search space. If the solver detects that the current assignment of variables
precludes all complete solutions, it will backtrack to an earlier state by unassigning some
of the variables. This systematic backtracking search can be done efficiently by a combina-
tion of optimized data structures, efficient propagation of constraints, and effective search
heuristics.

The solutions, or candidate architectures in our context that chocosolver finds can then
be visualized using Clafer Web Tools [13, 50], another part of the Clafer toolchain. Clafer
Multiple-Objective Optimization (MOO) Visualizer is one of the web tools that allows for
visualizing optimal candidates using bubble front charts – a multi-dimensional bubble chart
for visualizing up to four quality objectives simultaneously – and parallel coordinate charts
– a visualization in which each instance is represented by a polyline connecting parallel
quality objective axes. Additionally, the candidates can be filtered using the feature quality
matrix in order to visualize only ones that contain certain features, functions, deployments,
etc.

47

Chapter 6

Modeling Two Case Studies in Clafer

6.1 Power Window

The first case study we present in this thesis is the E/E architecture for a power window
system in a car. First a single driver side door system is presented and then a second system
for the front passenger side door power window is added with communication between
the two. This case study has been developed and presented in two previous works, one
by Murashkin [49] and one by Akhtar [8]. The case study presented in this work is an
extension of the former while the latter uses the case study for a comprehensive design
analysis, not just exploration. Further details for how we extend Murashkin’s earlier work
is discussed in the related work (Chapter 9).

The reason for choosing the power window as a case study is that it was self-contained and
not overly complex. The material for the architecture designs and sources of variability
was obtained through publicly available service manuals from companies such as Nissan,
Infinity, BMW, and GM. The quality attribute information for cost and mass was obtained
from OEM part supply websites and Amazon.com. Latency quality attributes were mainly
created artificially using typical values as a base line (based on domain expertise). Lastly,
the reliability attributes (ppm) were obtained from standard values and handbook calcu-
lations. In the last part of this section, we give details on how the values were formatted
as inputs to the model.

48

6.1.1 Single Door: Driver

Feature Model

The features that are considered for the single door power window are as follows:

• Basic Up/Down The basic operation of the power window. When the switch is held
in the up position the window retracts until closed or release of the switch. There is
an identical reverse operation for holding the switch down.

• Express The express down feature in which when a user pushes the button down into
an express position, the window opens until the window is completely open without
the user having to continue pressing down the switch.

• Express Up The express up feature is similar to that of the express down except for
the reverse operation. Additionally, if an object is detected in the window travel path
then the window should stop and retract to be fully open again.

Figure 6.1 is the feature model for the system, note that for expressUp to exist the feature
express must be present. This relationship can be captured using nesting in Clafer and
is highlighted in Listing 6.1. Additionally, using clafer multiplicities the features express
and expressUp are made optional.

Listing 6.1: Clafer feature model for single door power window
DWinSysFM : FeatureModel

basicUpDown : Feature
express : Feature ?

expressUp : Feature ?

Figure 6.1: The feature model for a single door power window

49

Functional Analysis Architecture

The functional analysis architecture for the power window needs to support two sets of
functions, one for the basic operation and one for detecting obstacles for the express up fea-
ture. Figure 6.2 shows the FAA for the system using a graphical domain-specific language
(the legend is shown in Figure 6.3) that can be translated to Clafer.

Figure 6.2: The functional analysis architecture for a single door power window. The
“HW” or “SW” in upper right corner of a function indicates the implementation choice in
hardware or software respectively. “HW/SW” indicates the function can be implemented
in either software or hardware.

Figure 6.3: Legend for the graphical domain-specific language (DSL) for describing the
FAA for E/E architectures

The functions present in the FAA and their allowed implementations are as follows:

• WinSwitch: A sensor functional device that reads the switch position requested by
the user. Allowed implementation(s): hardware

• WinArbiter: An analysis function that arbitrates which incoming signal should be
sent to the controller. For the driver window this component is not needed since

50

only one input is present, however we still model it. Allowed implementation(s):
hardware, software

• WinControl: The main control logic of the power window. It takes the switch posi-
tion request, the current value from the motor and if an object is present (if pinch
detection is required) and translates it to a command to send to the motor. Allowed
implementation(s): software

• WinMotor: The actuator that takes the desired command from the controller and
translates it to moving the motor to close and open the window. Allowed implemen-
tation(s): hardware

• CurrentSensor: A sensor placed on the motor to measure the current being pulled
by the motor. This is used to ensure that the motor does not “stall” by continuing
to move in a direction in which it can no longer move (i.e. the window is fully open
or closed). Allowed implementation(s): hardware

• PositionSensor: A sensor to detect the current position of the window in the path
of travel. Allowed implementation(s): hardware

• PinchDetection: Another piece of control logic that takes the position sensor reading
and determines if an object is present or not. Allowed implementation(s): software

The PinchDetectionFAA is a functional analysis architecture nested inside the driver power
window FAA and it is optional (since the express up feature is). By putting the PositionSensor
and PinchDetection and the two function connectors in the FAA it allows for those com-
ponents to be removed when Pinch DetectionFAA is not present.

Listing 6.2 shows a fragment of the FAA encoded using Clafer for the single door power
window. Note the use of nesting for the components inside of PinchDetectionFAA.

Listing 6.2: Snippet of Clafer model for single door functional analysis architecture
1 DWinSysFAA : FunctionalAnalysisArchitecture
2 WinSwitch : FunctionalDevice
3 [implementation . hardware]
4 [baseLatency = 20]
5 WinController : AnalysisFunction
6 [implementation . software]
7 [baseLatency = 2]
8 WinMotor : FunctionalDevice
9 [implementation . hardware]

10 [baseLatency = 10]
11 ...

51

12 winReq : FunctionConnector
13 [sender = WinArbiter && receiver = WinController]
14 [messageSize = 1]
15 winCmd : FunctionConnector
16 [sender = WinController && receiver = WinMotor]
17 [messageSize = 2]
18 PinchDetectionFAA : FunctionalAnalysisArchitecture ?
19 PinchDetection : AnalysisFunction
20 [implementation . software]
21 [baseLatency = 2]
22 PositionSensor : FunctionalDevice
23 [implementation . hardware]
24 [baseLatency = 10]
25 object : FunctionConnector
26 [sender = PinchDetection && receiver = WinController]
27 [messageSize = 2]
28 ...
29 [DWinSysFAA . PinchDetectionFAA <=> DWinSysFM . express . expressUp]

The constraint on line 29 of Listing 6.2 expresses equivalence between the PinchDetectionFAA
and the feature expressUp in the feature model, which ensures that pinch detection func-
tionality is present if and only if the feature express up is present.

Device Node Classification

The device node classification consists of local nodes, which belong to the system, and
remote nodes which are shared among many systems. The local nodes that belong to the
driver door power window system are:

• Switch: The physical switch sensor that is present on the door for the driver to
control their window. Allowed type(s): smart, electric/electronic

• Motor: The motor that moves the window armature to open and close the window.
Allowed type(s): smart, electric/electronic

• Door Module: An optional ECU that is housed inside the door. Allowed type(s):
smart

• Door Inline: An interconnect that connects the wiring from the main body harness
to the door harness. Allowed type(s): power

The remote nodes in the system are:

52

• BCM (Body Control Module): The main ECU that houses much of the body control
software. Allowed type(s): smart

• EC (Electric Center): The main fuse box that is the primary source of power Allowed
type(s): power

A fragment of the device node classification encoding in Clafer is shown in Listing 6.3. In
order to model the shared components, a clafer Car is defined which houses any remote
components to the model. Then, the concrete BCM and EC are declared in Car. Inside
the definition of the device node classification for the driver system, two references are
defined to point to the central components. Using a reference instead of local declaration
represents the fact that the driver device node classification has to be able to access the
BCM and EC; however, since the BCM reference is optional, the driver system might not
need it.

Listing 6.3: Snippet of Clafer model for single door device node classification
1abstract SwitchNode : DeviceNode
2numSwitches -> integer
3
4DWinSysDN : DeviceNodeClassification
5BCM -> DeviceNode ?
6EC -> DeviceNode
7Switch : DeviceNode
8[type in (SmartDeviceType , EEDeviceType)]
9[mass = 173]
10[cost = 110]
11[replaceCost = 110]
12[if (type in SmartDeviceType) then (ppm = 50) else (ppm = 10)]
13[(type in SmartDeviceType) => (speedFactor = 10)]
14[numSwitches = 2]
15Motor : DeviceNode
16[type in (SmartDeviceType , EEDeviceType)]
17...
18DoorInline : DeviceNode
19[type = PowerDeviceType]
20...
21DoorModule : DeviceNode ?
22[type = SmartDeviceType]
23...
24[BCM = Car.BCM]
25[EC = Car.EC]
26
27Car
28BCM : DeviceNode ?

53

29[type = SmartDeviceType]
30...
31EC : DeviceNode
32[type = PowerDeviceType]
33...

Listing 6.3 also contains a sub-type of DeviceNode, namely SwitchNode. This subtype allows
the modeling of a general type of switch panel on a car and denotes the number of switches
on the panel. The number of switches could have been captured by multiplicities but the
solver exhibits a performance slow down.

Power Topology

The power topology for the power window models two types of power, load and device.
The device power topology is quite straight forward; if a device node is smart then it must
have a connection from the EC to the device node using a device power connector. The
topology is modeled by defining optional power connectors from the EC to the door inline
and then from the door inline to the respective nodes. Figure 6.4 shows the power topology
for the single door window and the two sets of power connectors. Figure 6.5 is a legend for
understanding the graphical symbols used to model the hardware architecture elements.

Figure 6.4: The power topology for a single door power window. The inside dotted box
for the BCM denote that it is an optional remote device node.

In order to have the correct device power connectors present in the architecture the fol-
lowing rules are applied:

• Rule 1: A device power connector between a local device node and the door inline
must exist if the device node is smart.

54

Figure 6.5: Legend for the graphical domain specific language (DSL) for describing the
hardware architecture for E/E architectures.

• Rule 2: A device power connector between the EC and the door inline must exist if
there is at least one device power connector leaving the door inline.

The second power connector that is of interest is the load power connector. Load power is
required by the motor in order to move the window glass. The configuration of the load
power is driven by the deployment of the WinControl analysis function. This is because
the WinControl function acts as a driver for the motor. Therefore, a load power connector
must be defined from each of the device nodes that can be smart to the motor (as seen
in Figure 6.4). Secondly, the load power must get from the EC to the device node that
has the WinControl function deployed. This results in four concrete topologies for the load
power which can be described by the following rules:

• Rule 3: If the control is deployed to the motor then a load power connector must
be present from the door inline to the motor and the EC to the door inline.

• Rule 4: If the control is deployed to the switch or door module, then a load power
connector must exist from the door inline to the local device node, from the local
device node to the motor, and the EC to the door inline.

• Rule 5: If control is deployed to the BCM then a load power connector must exist
from the door inline to the motor, BCM to the door inline, and EC to the BCM.

Listing 6.4 shows a fragment of the power topology encoded in Clafer with the quality
attribute values as well. Comments are used to show which constraint capture what rules
for defining the allowed configurations. A group cardinality xor is used in order to model
the exclusive configurations outlined in rules 3, 4, and 5.

Listing 6.4: Snippet of Clafer model for single door power topology
DWinSysPT : PowerTopology

55

dn -> DWinSysDN
MotorLoadPowerWire : LoadPowerConnector

[sink = dn.Motor]
SwitchLoadPowerWire : LoadPowerConnector ?

[source = dn. DoorInline && sink = dn. Switch]
[length = 45]

DoorModuleLoadPowerWire : LoadPowerConnector ?
[source = dn. DoorInline && sink = dn. DoorModule]
[length = 35]

DoorInlineLoadPowerWire : LoadPowerConnector
[sink = dn. DoorInline]

xor MotorLoadPowerConfig
SwitchIsMotorDriver //R4

[MotorLoadPowerWire . source = dn. Switch]
[MotorLoadPowerWire . length = 40]
[DoorInlineLoadPowerWire . source = dn.EC.dref]
[DoorInlineLoadPowerWire . length = 40]
[SwitchLoadPowerWire && DoorInlineLoadPowerWire && no

DoorModuleLoadPowerWire]
DoorModuleIsMotorDriver //R4

...
BCMIsMotorDriver //R5

...
MotorIsMotorDriver //R3

...

switchInlineDP : DevicePowerConnector ?
[source = dn. DoorInline && sink = dn. Switch]
[length = 45]

motorInlineDP : DevicePowerConnector ?
...

[switchInlineDP <=> (dn. Switch .type in SmartDeviceType)] //R1
[motorInlineDP <=> (dn.Motor.type in SmartDeviceType)] //R1
[ha.pt. inlineECDP <=> some(motorInlineDP , switchInlineDP ,

doorModuleInlineDP)] //R2

Communication Topology

The communication topology contains two mediums for communication, a bus and dis-
crete connectors. For the driver door power window there is a single bus that allows for
communication between the BCM and the local device nodes. The discrete connectors, as
stated in the reference model, represent bundles of wires between two nodes. Unlike the

56

power topology, a single connector is modeled between two communicating nodes so the
door inline does not play any part in routing the connectors and it is abstracted away.
Making this assumption allows for simpler models which accommodates early design.

Figure 6.6 shows the communication topology for the power window. Note that there is
no possible discrete connector between the door module and BCM due to the assumption
made that if a device is smart (when both are) they must use the bus.

Figure 6.6: The communication topology for a single door power window

Listing 6.5 shows a fragment of the corresponding encoding in Clafer along with the quality
attributes. The endpoints constraint on line 7 restricts the possible device nodes that can
be connected to the bus. The endpoint constraints for the discrete wires explicitly gives the
two endpoints for the connector such that the solver along with the constraint on line 16
in Listing 5.3 can synthesize the correct connectors needed. The deployment rules for the
function connectors to the communication topology is then shown in the following section.

Listing 6.5: Snippet of Clafer model for single door communication topology
1 DWinSysCT : CommTopology
2 dn -> DWinSysDN
3
4 logicalLowSpeedBus : BusConnector ?
5 [type.LIN || type. LowSpeedCAN]
6 [length = 70]
7 [endpoint in (dn.Motor , dn.Switch , dn.DoorModule , dn.BCM.dref)]
8
9 logicalSwitchMotorDisc : DiscreteDataConnector ?

10 [length = 40]
11 [endpoint = (dn.Switch , dn.Motor)]
12
13 logicalSwitchBCMDisc : DiscreteDataConnector ?
14 ...

57

Deployment

To complete the single door power window case study the last part needing to be modeled is
the deployment of the functional analysis architecture onto the hardware architecture. The
deployment consists of only rules (or constraints) that details what the allowed mappings
of functions to nodes and function connectors to mediums. The rules that need to be
modeled are as follows:

• Rule 1: The analysis functions can be deployed to any of the local or central nodes.

• Rule 2: The WinMotor, CurrentSensor, and Position Sensor must be deployed to
the Motor.

• Rule 3: The function connectors can be deployed to any of the possible discrete
connectors or the bus.

The rules can then be encoded using constraints in Clafer; a fragment of the model is shown
in Listing 6.6. Additionally on lines 12-15 the power topology configuration is constrained
based on the deployment of the controller as detailed earlier.

Note the use of implication “=>” in the constraints pertaining to the pinch detection
elements. This is such that the deployment constraints do not restrict that the pinch
detection FAA must be present (these constraints are conditional on the presence of the
pinch detection FAA).

6.1.2 Two Door: Driver & Front Passenger

In this section, the previous system is scaled up to a two door system. When building
the second system, we observed that the passenger door was very close in structure to the
driver. So in the first subsection this commonality is addressed and abstract clafers are
used to generalize the core elements. The following section then gives the specifics for how
the case study extends the common core to model the passenger door.

Generalizing the Core Elements

The passenger door is almost identical to the driver door with the exception of an added
function and some additional communication. Thus, the generalized elements turn out to
be the same as the driver system. Starting with the feature model, the Clafer model in

58

Listing 6.6: Snippet of Clafer model for single door deployment
1DWinSysDpl : Deployment
2fa -> DWinSysFAA
3ha -> DWinSysHA
4
5[fa. WinArbiter . deployedTo .dref in (ha.dn.BCM.dref , ha.dn.Switch , ha.dn.

Motor , ha.dn. DoorModule)]
6[fa. PinchDetectionFAA => (fa. PinchDetectionFAA . PinchDetection .

deployedTo .dref in (ha.dn.BCM.dref , ha.dn.Switch , ha.dn.Motor , ha.
dn. DoorModule))]

7[fa. WinSwitch . deployedTo .dref = ha.dn. Switch]
8[fa. PinchDetectionFAA => (fa. PinchDetectionFAA . PositionSensor .

deployedTo .dref = ha.dn.Motor)]
9
10[(fa. WinController . deployedTo .dref = ha.dn. Switch) <=> ha.pt.

MotorLoadPowerConfig . SwitchIsMotorDriver]
11[(fa. WinController . deployedTo .dref = ha.dn.Motor) <=> ha.pt.

MotorLoadPowerConfig . MotorIsMotorDriver]
12[(fa. WinController . deployedTo .dref = ha.dn.BCM.dref) <=> ha.pt.

MotorLoadPowerConfig . BCMIsMotorDriver]
13[(fa. WinController . deployedTo .dref = ha.dn. DoorModule) <=> ha.pt.

MotorLoadPowerConfig . DoorModuleIsMotorDriver]
14
15[(fa. localWinReq . deployedTo .dref in (ha.ct. logicalLowSpeedBus , ha.ct.

logicalSwitchMotorDisc , ha.ct. logicalSwitchBCMDisc , ha.ct.
logicalMotorBCMDisc , ha.ct. logicalSwitchDoorModuleDisc , ha.ct.
logicalMotorDoorModuleDisc))]

16...

Listing 6.1 can be modified to be abstract and have two separate concretizations of it, as
shown in Listing 6.7.

Listing 6.7: Generalized feature model and two concretizations
abstract WinSysFM : FeatureModel

basicUpDown : Feature
express : Feature ?

expressUp : Feature ?

DWinSysFM : WinSysFM
PWinSysFM : WinSysFM

The same can be done for the remaining layers presented in the single door power window.

59

Listing A.2 in Appendix A.2 shows the full generalized architecture.

Extending for the Passenger System

The passenger door system requires some extensions to the base model which are not
present in the driver door system. Starting with the feature model, it only makes sense
for the passenger to have less features than the driver. The following rules can be derived
then:

• Rule 1: The passenger should not have the feature express if the driver does not
have it.

• Rule 2: The passenger should not have the feature expressUp if the driver does not
have it.

These rules turn into constraints captured in the specialization of the passenger feature
model in Listing 6.8.

Listing 6.8: Clafer feature model for two door system
DWinSysFM : WinSysFM
PWinSysFM : WinSysFM

[express => DWinSysFM . express]
[express . expressUp => DWinSysFM . express . expressUp]

The functional analysis architecture for the passenger system needs to include the addi-
tional switch and connector which models the driver side switch controlling the passenger
window. Since the generalized FAA contains all other functionality, the only thing the pas-
senger concretization needs is a functional device to represent the driver side switch and
a function connector from the switch to the arbiter. Figure 6.7 shows such architecture
and the corresponding Clafer model is shown in Listing 6.9. Observe that the arbiter can
now always prefer the input from the driver-side switch, which will override the passenger’s
input.

Listing 6.9: Clafer functional analysis architecture for a two door system
DWinSysFAA : WinSysFAA

[DriverWinSys . DWinSysFM . express . expressUp <=> DWinSysFAA .
PinchDetectionFAA]

PWinSysFAA : WinSysFAa
[PassengerWinSys . PWinSysFM . express . expressUp <=> PWinSysFAA .

PinchDetectionFAA]

60

Figure 6.7: The functional analysis architecture for a passenger door power window system

DWinSwitch : FunctionalDevice
[deployedTo . hardware]
[baseLatency = 10]

driverWinReq : FunctionConnector
[sender = DWinSwitch && receiver = WinArbiter]
[messageSize = 1]

The only difference for the passenger device node classification is an addition of a reference
to the driver side device node Switch. This is shown on lines 113 and 114 of Listing A.3
in Appendix A.3.

For the power topology, there are no extensions for either system from the generalized
topology. However, the communication topology requires some additional connectors which
is shown in Figure 6.8.

Listing 6.10 shows the concretization of the two common communication topologies and
the extension for the passenger. Note the use of a logical bus bridge in order to model the
communication between the passenger local bus and the driver local bus.

The added communication topology and additional functional device requires the deploy-
ment for the passenger system to be extended as well. Listing 6.11 gives a fragment of the
Clafer model for the two deployments.

61

Listing 6.10: Clafer communication topology for two door system
DWinSysCT : WinSysCT

...
PWinSysCT : WinSysCT

logicalDoorBusBridge : LogicalBusBridge ?
[bus = (PWinSysCT . logicalLowSpeedBus , DWinSysCT . logicalLowSpeedBus)]
[gatewayTransferTimePerSize = 10]
[endpoint in (PWinSysDN .Motor , PWinSysDN .Switch , PWinSysDN .DoorModule

, PWinSysDN .BCM.dref , DWinSysDN .Motor , DWinSysDN .Switch ,
DWinSysDN . DoorModule)]

logicalDriveSwitchPassSwitch : DiscreteDataConnector ?
[length = 260]
[endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA . PWinSysDN .

Switch)]
logicalDriveSwitchPassMotor : DiscreteDataConnector ?

[length = 260]
[endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA . PWinSysDN .

Motor)]
logicalDriveSwitchPassDoorModule : DiscreteDataConnector ?

[length = 250]
[endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA . PWinSysDN .

DoorModule)]
logicalDriveSwitchBCM : DiscreteDataConnector ?

[length = 85]
[endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA . PWinSysDN .

BCM.dref)]
...

Listing 6.11: Clafer functional analysis architecture for two door system
DWinSysDpl : WinSysDpl

...
PWinSysDpl : WinSysDpl

[PWinSysFA . DWinSwitch . deployedTo .dref = PWinSysHA . PWinSysDN . DSwitch .
dref]

[PWinSysFA . dWinReq . deployedTo .dref in (
PWinSysHA . PWinSysCT . logicalDoorBusBridge ,
PWinSysHA . PWinSysCT . logicalDriveSwitchPassSwitch ,
PWinSysHA . PWinSysCT . logicalDriveSwitchPassMotor ,
PWinSysHA . PWinSysCT . logicalDriveSwitchPassDoorModule ,
PWinSysHA . PWinSysCT . logicalDriveSwitchBCM)]

...

62

Figure 6.8: The communication topology for the passenger door power window system.
The “Driver” bus is shown as a reference for the bridge between the two buses. It is
assumed that any node connected to the “Passenger” bus can use the bridge to send a
message over the bridge to the “Driver" bus.

6.1.3 Quality Attributes & Timing Analysis

Normalizing the Quality Attributes

As stated earlier, Clafer and chocosolver can currently reason over integers only. Therefore
the gathered values for mass, cost, etc. must be scaled and rounded to provide meaningful
numerical results while working with integers.

The first step is to choose some unit base for the different qualities such as grams for mass.
Next, all the values are observed in the converted unit base and a check is made for any
values that are less than 1. If any such values do exist then they must be scaled upwards
in order to increase precision. For example, if a transfer rate was 0.0001ms/byte then it
could be converted to 1µs/byte. Then, any other qualities that are summed with the new
unit base would need to be converted as well (i.e. all of the data connection latencies due
to buses). If a unit is not scalable such as dollars, one can change the unit to be dollars
per thousand.

An issue that arises with working with chocosolver is that the total of any summation or
multiplication can not overflow. The overflow can happen in one of two ways:

63

• The result of a computation can not exceed the bounds set to be used by chocosolver.
This is a result of using a CSP-based solver.

• The bounds set for the use of the chocosolver can’t exceed the 32-bit integer maximum
for any arithmetic expression.

Thus, care needs to be expressed when changing the base of numbers such that the numbers
do not become too large to work with.

End-to-End Latency Constraints

For both power window systems there exist two end-to-end latency constraints that are of
interest to model and constrain; they are as follows:

• TR1: The time it takes for the switch to read the pressed value to the time the
motor begins actuation must be less than 750ms.

• TR2: The time it takes for the position sensor to read a value to the time the motor
begins actuation must be less than 500ms.

• TR3: The time it takes the switch and position sensor to read the data and be sent
to the control must be synchronized to less than 50ms.

The requirements are captured by creating two timing chains, one from WinSwitch to
WinMotor and another from PositionSensor to WinMotor. These chains are captured in
lines 12-26 for the driver power window in Listing A.3 in Appendix A.3. The requirements
are then modeled in lines 29-32 of the same Listing.

For TR3 a input synchronization constraint must be modeled using Clafer which the frag-
ment of interest is shown in Listing 6.12. The use of the set min and max are use to get the
smallest and largest latencies from the three chains.

Listing 6.12: Snippet of Clafer to show the encoding of TR4.
ControlInputDifference -> integer
[ControlInputDifference = (max(SwitchToControlLatency .dref ,

PositionSensorToControlLatency .dref)
- min(SwitchToControlLatency .dref , PositionSensorToControlLatency .dref)

)]

Also of interest to engineers is the margin that exists between the end-to-end latency
requirement and the actual end-to-end latency. This is a good optimization parameter

64

when optimizing latency as it increases the robustness of the system when the margin is
maximized by allowing more room for error. Lines 35-41 capture the margins for the driver
power window in Listing A.3.

6.2 Door Locks

The second case study we present in this report is a E/E architecture for a central door locks
system. Only the locking control for the driver and three passenger doors was considered;
not the trunk or fuel lid. In this case study, we considered features such as remote key
access (where a remote control is used to unlock and lock the car) and passive key entry
(where a key fob is used to lock and unlock without touching the remote).

We chose this system in order to build on the power window by modeling a second system
in the body domain. With two such systems, future work can be done in incorporating the
two systems together and exploring trade-offs when sharing components.

Similar to the power window case study, the material was gathered from OEM service
manuals such as GM, BMW, and Nissan. The domain knowledge for the passive key entry
was obtained from various articles and suppliers.

6.2.1 Feature Model

The door locks system contains many more features than the power window which is
expected since it is more complex. Figure 6.9 shows the feature model for the door locks
system and the variability that exists. The feature model layer alone encodes 16 variants
of the system.

The description for the features is as follows:

• Basic: The basic operation of the door locks system using the inside lock switch and
cylinder key switch. It also includes unlocking all doors when the car is in park.

• Speed Smart Lock: The feature that will lock the car when a certain threshold speed
has been reached.

• Lock Switch Position: The feature that dictates where the inside lock switch will
be located. The possibilities are a lock switch on the driver and front passenger door
or a shared switch in the center (i.e., the console).

65

Figure 6.9: The feature model for a central door locks system

• Remote Key Access (RKA): The feature that allows a car to unlock and lock when a
remote control button is pressed.

• Passive Key Entry (PKE): The feature that allows a car to unlock/lock when the
door handle is touched/button pressed without touching the key fob.

• Outside Door Handle Sensor: The feature for what type of sensor is used to detect
that the user wishes to lock/unlock the car using PKE. The capacitive sensor is a
touch device that detects when a user has grabbed/touched the door handle. The
button sensor is a physical push button placed on the outside door handle of the car.

Listing 6.13 shows the feature model encoded in Clafer. Note that instead of using an xor
grouping for the LockPositionSwitch, a cardinality 0..1 was chosen to reduce the feature
model size.

Listing 6.13: Clafer feature model for door locks
DLockFM : FeatureModel

Basic : Feature
IndividualLockSwitch : Feature ?
SpeedSmartLock : Feature ?

RKA : Feature ? // Remote Key Access
PKE : Feature ? // Passive Key Entry

xor OutsideDoorHandleSensor
ButtonSensor : Feature
CapacitiveSensor : Feature

[PKE => RKA]

66

Figure 6.10: The functional analysis architecture for the basic features in the door locks
system

6.2.2 Functional Analysis Architecture

The functional analysis architecture for the door locks is split into three fragments based on
the features (Basic, RKA, and PKE). Figure 6.10 shows the basic functionality. For readability
purposes, the common functional components that are identical across the four (or two)
doors are grouped together with a single connector. Additionally, the connectors are not
named for readability.

The following is a detailed description of the basic functional components (only one from
a grouping is explained):

• [Central]DoorLockButton1 A door lock button placed in the respective location to
lock and unlock all doors. Allowed implementation(s): hardware

• SpeedSensor A functional device that reads the current speed of the car which is
needed for the feature SpeedSmartLock. Allowed implementation(s): hardware

• GearPositionSensor A functional device that detects the current gear position of the
car (Park, Reverse, Drive, etc.). Allowed implementation(s): hardware

• [Driver]DoorLockMotor A functional device that locks and unlocks the door. Allowed
1We use the square brackets to denote the variable portion of the name

67

implementation(s): hardware

• [Driver]DoorCylinderSwitch A functional device the detects the position of the cylin-
der switch when a key is inserted and turned. Allowed implementation(s): hardware

• [Driver]DoorContact A functional device that detects if the door is ajar or closed.
Allowed implementation(s): hardware

• [Driver]DoorLockSensor A functional device that detects the current position of the
lock for the door (i.e. the door is locked or unlocked). Allowed implementation(s):
hardware

• DoorLockControl The control function that reads in the sensor inputs and gives the
appropriate signal to the motors for locking/unlocking the doors. Allowed implemen-
tation(s): software

The second functional analysis fragment is for the RKA feature which is shown in Fig-
ure 6.11. The DoorLockControl analysis function is replicated as it is the only shared
component with the basic FAA fragment.

Figure 6.11: The functional analysis architecture for the RKA fragment in the door locks
system

The functions for the RKA FAA are as follows:

• CentralRFAntenna A radio frequency (RF) antenna that receives signals from the
key remote and are sent to a receiver/transciever for decoding. Allowed implemen-
tation(s): hardware

• CentralRFReceiver A receiver that decodes the antenna signal. Allowed implemen-
tation(s): hardware

• IDAuthentication The analysis function that takes the decoded signal from the re-
ceiver and determines if the key that sent the signal has permission to unlock/lock
the car. Allowed implementation(s): software

The last functional analysis fragment, shown in Figure 6.12, contains the functionality for
the PKE feature. The functions are described as follows:

68

• [Driver]SideOutsideLFAntenna A low frequency (LF) antenna that broadcasts a sig-
nal generated by the transmitter to the outside perimeter of the [driver] side door.
Allowed implementation(s): hardware

• [Driver]SideLFTransmitter Transmitter that encodes a signal from the control to
send to the antenna. Allowed implementation(s): hardware

• Inside[Front]LFAntenna A low frequency antenna that broadcasts a signal gener-
ated by the transmitter inside [front] region of the car. Allowed implementation(s):
hardware

• InsideLFTransmitter Transmitter that encodes a signal from the control to send to
the inside antennas. Allowed implementation(s): hardware

• [Driver]SideDoorHandleButtonSensor A functional device that detects when the but-
ton on the outside door handle has been pressed. Allowed implementation(s): hard-
ware

• [Driver]SideDoorHandleCapacitiveSensor A functional device that detects when the
handle is grabbed/touched. Allowed implementation(s): hardware

• PKEControl The control function that takes the inputs and determines what mes-
sages to broadcast to the antennas and dictates to the door lock control what the
lock/unlock request is. Allowed implementation(s): software

The three fragments then can be encoded using Clafer with their links to the feature model.
A fragment of the functional analysis architecture for the door locks is shown in Listing
6.14. The complete FAA can be found in Listing A.4 in Appendix A.4.

Listing 6.14: Clafer functional analysis architecture fragment for door locks

abstract DoorLockFAA : FunctionalAnalysisArchitecture
// -- Core Components --//
// Cylinder Switches
DriverDoorCylinderSwitch : FunctionalDevice

[implementation . hardware]
[baseLatency = 10]

...
// Door Lock Control
DoorLockControl : AnalysisFunction

[implementation . software]
[baseLatency = 4]

...
// -- Optional Fragments / Components --//

69

Figure 6.12: The functional analysis architecture for the PKE fragment in the door locks
system

// Speed Smart Lock FA Components
SpeedSmartLockFA : FunctionalAnalysisArchitecture ?

SpeedSensor : FunctionalDevice
[implementation . hardware]
[baseLatency = 10]

speed : FunctionConnector
[messageSize = 1]
[sender = SpeedSensor && receiver = DoorLockControl]

// Central or Distributed Lock Switch
xor DoorLockButtonFA : FunctionalAnalysisArchitecture

IndividualLockSwitchFA : FunctionalAnalysis
DriverDoorLockButton : FunctionalDevice

[implementation . hardware]
[baseLatency = 10]

PassDoorLockButton : FunctionalDevice
...

CentralLockSwitchFA : FunctionalAnalysis
CentralLockButton : FunctionalDevice

...
RemoteKeyAccessFA : FunctionalAnalysisArchitecture ?

CentralRFAntenna : FunctionalDevice

70

...
PassiveKeyEntryFA : FunctionalAnalysisArchitecture ?

DriverOutsideLFAntenna : FunctionalDevice
...

xor OutsideDoorHandleSensor
ButtonSensor

DriverDoorButtonSensor : FunctionalDevice
...

CapacitiveSensor
DriverDoorCapacitiveSensor : FunctionalDevice

...

DLockFAA : DoorLockFAA
[DoorLockButtonFA . IndividualLockSwitchFA <=> DLockFM .Basic.

IndividualLockSwitch]
[SpeedSmartLockFA <=> DLockFM .Basic. SpeedSmartLock]
[RemoteKeyAccessFA <=> DLockFM .RKA]
[PassiveKeyEntryFA <=> DLockFM .PKE]
[PassiveKeyEntryFA . OutsideDoorHandleSensor . ButtonSensor <=> DLockFM .PKE

. OutsideDoorHandleSensor . ButtonSensor]
[PassiveKeyEntryFA . OutsideDoorHandleSensor . CapacitiveSensor <=> DLockFM

.PKE. OutsideDoorHandleSensor . CapacitiveSensor]

Similarly to the power window, a functional analysis architecture fragment is defined for an
optional feature. This allows for a group of functions and connectors to be made optional
by just having the fragment being optional. In addition to just defining fragments, the
door locks FAA is also using xor groupings to model exclusive functions that stem from
the feature model which was not done for the power window.

6.2.3 Device Node Classification

Similar to the functional analysis architecture, the device node classification splits the local
device nodes into three fragments. In addition to the local nodes, there exists four remote
nodes which are shared with other systems. Two of the four are the electric center and
BCM which were described in the power window case study. A detailed description of each
of the local device nodes and their allowed types is as follows:

• [Driver]SideDoorLockMotorAssembly: A hardware device that contains the motor
and various sensors for the locking mechanism. Allowed type(s): electric/electronic.

71

• [Driver]LockPowerSwitch: A physical switch that can lock or unlock the car. Allowed
type(s): electric/electronic.

• CentralRFAntennaModule: A hardware module that contains an RF antenna, a re-
ceiver, and some processing power. Allowed type(s): smart.

• Transmitter: A transmitter hardware module. Allowed type(s): electric/electronic.

• PassiveKeyModule: An ECU dedicated for PKE functions. Allowed type(s): smart.

• [Driver]DoorButtonHandleModule: A hardware module embedded in the door handle
that contains an LF antenna and a button sensor. Allowed type(s): electric/elec-
tronic.

• [Driver]DoorCapacitiveHandleModule: A hardware module embedded in the door
hanlde that contains a LF antenna and a capacitive sensor. Allowed type(s): elec-
tric/electronic.

• Inside[Front]LFAntenna: An LF antenna hardware device. Allowed type(s): elec-
tric/electronic.

In contrast to the power window case study, the device nodes are of fixed types. The only
variability that exists at the device node level is the presence. The remote device nodes
that are unique to the door locks case study are as follows:

• Transmission Control Module (TCM) A device node responsible for handling any con-
trol associated with the transmission. For this case study it is used to house the gear
position sensor functional device. Allowed type(s): smart.

• Combination Meter A hardware device responsible for measuring the current speed
of the car. Allowed type(s): smart.

The Clafer encoding of the device node classification is different than in the power window
since for the door locks it is split into multiple fragments to group the nodes associated
with the features. A fragment of the Clafer is shown in Listing 6.15. Like the FAA, xor
groupings are used to model the exclusive sets of device nodes that follow from the feature
model.

Listing 6.15: Clafer device node classification fragment for door locks
abstract DoorLockDN : DeviceNodeClassification

//-- Core Device Nodes --//
DriverDoorLockMotorAssembly : DeviceNode

...

72

TCM -> DeviceNode
BCM -> DeviceNode
EC -> DeviceNode
// -- Optional Device Nodes --//
// Speed Smart Lock Nodes
CombinationMeter -> DeviceNode ?
// Central or Individual Lock Nodes
xor DoorLockButtonDN

IndividualLockSwitchDN : DeviceNodeClassification
DriverLockPowerSwitch : DeviceNode
...

CentralLockSwitchDN
CenterLockPowerSwitch : DeviceNode

...
RemoteKeyAccessDN : DeviceNodeClassification ?

CentralRFAntennaModule : DeviceNode
...

PassiveKeyEntryDN : DeviceNodeClassification ?
Transmitter : DeviceNode ?

...
xor OutsideDoorHandleSensor

ButtonSensor
DriverDoorButtonHandleModule : DeviceNode
...

CapacitiveSensor
DriverDoorCapacitiveHandleModule : DeviceNode
...

InsideFrontLFAntenna : DeviceNode
...

DLockDN : DoorLockDN
[BCM = Car.BCM]
[TCM = Car.TCM]
[EC = Car.EC]
[CombinationMeter => CombinationMeter = Car. CombinationMeter]
[DoorLockButtonDN . IndividualLockSwitchDN <=> DLockFM .Basic.

IndividualLockSwitch]
[CombinationMeter <=> DLockFM .Basic. SpeedSmartLock]
[RemoteKeyAccessDN <=> DLockFM .RKA]
[PassiveKeyEntryDN <=> DLockFM .PKE]
[PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor <=> DLockFM .PKE

. OutsideDoorHandleSensor . ButtonSensor]
[PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor <=> DLockFM

.PKE. OutsideDoorHandleSensor . CapacitiveSensor]

73

6.2.4 Power Topology

In the device node classification, the inline that was modeled in the power window was
not for the door locks. An inline was not modeled in this case study as there was no
interesting power configurations that were affected by the door inline as there were in the
power window. The power topology for the door locks did not contain load configurations,
as with the power window, due to the DoorLockControl analysis function always being
deployed to the BCM.

The power topology, shown in Figure 6.13 contains no variability itself as the only optional
components are driven by the selection of the device nodes used (i.e. there is no variability
in the configuration of the topology given a set of device nodes). The only unique piece to
the door locks is the need for a device power connector when using a capacitive sensor.

Figure 6.13: The power topology for the door locks system

The full Clafer encoding of the power topology is shown in Listing A.4 in Appendix A.4.

6.2.5 Communication Topology

As opposed to the power topology, the communication topology is interesting and also
larger than the power window. In order to manage the size and complexity, it is split into
three figures. First, Figure 6.14 shows the communication topology fragment for the basic
and RKA features. Two buses are needed: the first is a high speed bus (which would be
either high speed CAN or FlexRay) which handles safety critical nodes; the second is a

74

low speed bus (either low speed CAN or LIN) which handles the non-critical body domain
nodes. This low speed bus is assumed to be routed through the main body harness and
not to the doors as was so in the power window.

Figure 6.14: The communication topology for the door locks system basic and RKA frag-
ments

The other two figures (Figures 6.15 and 6.16) show two views which can be overlaid to de-
scribe the complete communication architecture of the PKE feature. The first view shows
the possible communication connectors needed when the BCM acts as a LF transmitter (i.e.
the DriverSideLFTransmitter, PassengerSideLFTransmitter, and InsideLFTransmitter are
all deployed to the BCM). The second view, shows when the transmitter device node is used
instead.

The full Clafer encoding of the communication topology is shown in Listing A.4 in Appendix
A.4.

6.2.6 Deployment

To complete the door locks case study, the last part to be modeled is the deployment. As
in the power window, the deployment for the door locks is just a set of constraints that
restricts the set of possible targets for the functional analysis components. The unique
part of the door locks encoding is using fragments to split up the deployment by features.

75

Figure 6.15: The communication topology for the door locks system PKE fragment which
uses the BCM as a transmitter

It allows us to drop the repeated use of implication (denoted by =>) in the constraints.
For example, the Clafer fragments shown below are identical for modeling the deployment
constraints. Listing 6.16 shows how the constraint is written using an implies (as in the
power window model), whereas Listing 6.17 shows how the constraints can be nested inside
a fragment.

Listing 6.16: Using implies in constraint expression to handle conditional deployment.
[DLockFM .PKE => (fa. PassiveKeyEntryFA . DriverLFTransmitter . deployedTo in (

ha.dn. PassiveKeyEntryDN . Transmitter , ha.dn.BCM.dref))]

Listing 6.17: Nesting the constraint under a fragment to handle conditional deployment.
PassiveKeyEntryDpl ?

[fa. PassiveKeyEntryFA . DriverLFTransmitter . deployedTo in (ha.dn.
PassiveKeyEntryDN . Transmitter , ha.dn.BCM.dref)]

[PassiveKeyEntryDpl <=> DLockFM .PKE]

The full Clafer encoding for the deployment is shown in Listing A.4 in Appendix A.4.

76

Figure 6.16: The communication topology for the door locks system PKE fragment which
uses the transmitter device node

6.2.7 Quality Attributes & Timing Analysis

Similar to that of the power window case study, the values for the different quality at-
tributes were obtained from various sources then normalized so that they could be used
in integer operations. Also, for the door locks case study end-to-end timing constraints
were constructed for three requirements as well as an input synchronization constraint as
follows:

• TR1: The time it takes for the individual switch to read the pressed value to the
time the motor begins to move to lock/unlock the door must be less than 500ms.

• TR2: The time it takes for the central switch to read the pressed value to the time
the motor begins to move to lock/unlock the door must be less than 500ms.

• TR3: The time it takes for the handles sensor the read the user request to the time
the motor begins to lock/unlock the door must be less than 750ms.

• TR4: The time it takes the door contacts, door sensors, and the lock switch to read
the data and send to the control must by synchronized to less than 50ms.

TR1 through TR3 are end-to-end timing constraints that are quite similar to that of the
power window. Lines 700-731 in Listing A.4 in Appendix A.4 shows the required Clafer to

77

encode the requirements.

78

Chapter 7

Evaluation

We had three main objectives for evaluating the use of the reference model and Clafer and
its supported tool-chain to synthesize and explore automotive E/E architectures:

1. Comparison to state-of-the-art tools

2. Role of multiple layers

3. Performance evaluation

Then, to meet these objectives we formulated a set of research questions, which are as
follows:

• RQ1: What aspects of our reference model are unique and not found in current
meta-models for E/E architecture or are found but not supported by reasoning?

• RQ2: What exploration scenarios that are supported by the presented reference
model and Clafer encoding are not possible with other existing reference models and
tools?

• RQ3: Does considering a subset of the layers from our reference model, when ex-
ploring the candidate architectures, produce different candidates in comparison to
when considering all layers? If so, how different are these sets of candidates?

• RQ4: Is it feasible to explore the individual design decisions, constraints, and objec-
tives put forth in Chapter 4 for realistic models? We define feasible as the ability for
the solver to find the first 10 non-optimal solutions in less than 10 minutes and the
first 10 optimal solutions within 45 min. We want to obtain a handful of instances

79

within minutes to enable quick iterations for engineers, and therefore we pick 10
instances in 10 minutes. We give a higher time budget to optimization since it is
a harder problem; we pick 45 minutes since waiting for hours would seriously slow
down the exploration process.

• RQ5: Is it feasible to explore the example design scenarios we presented in Chapter 4
using realistic power window models?

The first two research questions target our first objective: comparing Clafer to state-of-
the-art tools. The third research question focuses on the second objective, whereas the
last two are centered around evaluating the performance of using Clafer and its supported
tools. In the following section, we outline our methodology for each objective. We follow
it up with our findings for each research question.

7.1 Research Methodology

As a part of our research methodology, we modeled two automotive E/E architectures in
the body domain: a power window system and a central door locks system, as presented
in Chapter 6. We chose to model these two systems as they are self-contained and provide
a rich design space to explore potentially interesting tradeoffs.

7.1.1 Comparison to State-of-the-Art Tools

To compare using Clafer and its supported tool-chain to state-of-the-art tooling, we first
conducted a literature review. We searched journal and conference proceedings in the fol-
lowing digital libraries: IEEE Xplore, Google Scholar, Elsevier Science Direct, Springer
Digital Library, and ACM Digital Library. The literature was collected using the follow-
ing set of keywords: E/E architecture, architecture modeling, design space exploration,
optimization, and tool support. From the gathered literature, we selected only tool-supp-
orted approaches targeting architectural modeling and design exploration for automotive
E/E systems and similar domains, such as avionics, railway systems, building and factory
automation, and oil and gas exploration.

Using the selected tools, we then attempted to model the single door variant of the power
window system. Next, we attempted to explore the models using the Clafer supported
decision, constraint, and objective templates from Chapter 4. For each template, we deter-

80

mined if it was natively possible, meaning without changing the tools’ original capabilities,
and commented why.

7.1.2 Role of Multiple Layers

To investigate the role of multiple layers in design space exploration, we systematically
applied the following procedure:

1. Remove one of the following from the single door power window design-space model:
feature model, power topology, or communication topology. Additionally, remove all
dependencies to the removed layer from the remaining layers.

2. Identify the quality attributes associated with the removed layer.

3. Write a design specification that minimizes mass, part cost, and part warranty cost
qualities. Additionally, constrain the end-to-end latency for the timing chain con-
structed from the switch to the motor to be less than 500 ms. Gather the resulting
instances for the single door power window design-space model that has a layer re-
moved (step 1) and the given specification.

4. Gather the resulting instances for the complete single door power window design-
space model and the given specification.

5. Compare the identified quality attributes, from step 2, for both sets of instances
(steps 3 and 4).

We did not consider removing the functional analysis architecture or device node classifi-
cation since the remaining information would not be sufficient for meaningful exploration.

7.1.3 Performance Evaluation

To evaluate the performance of exploring realistic models using Clafer, and its supported
tool-chain, we use the power window and central door locks system design-space mod-
els as benchmarks. In order for readers to appreciate the size and complexity of the
models, Table 7.1 shows the number of concrete components for a given reference model
element, number of deployment configurations (for functions to device nodes), and number
of possible candidates. For the concrete components, we give how many contain presence
variability; that is, the component may or may not exist in the synthesized architecture.

81

Table 7.1: Number of concrete components for each reference model element, number of
deployment configurations, and number of possible candidates for each design-space model.
(n) denotes that n of the concrete components have presence variability.

Single Door
Power Window

Two Door
Power Window

Central Door
Locks

Features 3 (2) 6 (4) 7 (6)
Analysis Functions 3 (1) 6 (2) 3 (2)
Functional Devices 4 (1) 9 (2) 33 (15)
Function Connectors 6 (2) 7 (4) 33 (18)
Device Nodes 6 (2) 10 (3) 21 (14)
Discrete/Analog Connectors 13 (13) 18 (18) 34 (30)
Bus Connectors 1 (1) 2 (1) 2 (1)
Power Connectors 8 (6) 16 (12) 9 (5)
Deployment Configurations 64 4096 96
Possible Architectures 32,000 959,714,800 2,028

82

Table 7.2: Size of Clafer encoding for each model. The design-space model numbers are
reported minus the reference model elements.

Reference
Model

Single Door
Power Window

Two Door
Power Window

Central Door
Locks

Abstract clafers 25 8 8 6
Concrete clafers 66 85 114 195
Constraints 64 161 211 444
References 50 33 47 28

For the number of possible candidate architectures, expressed by the design-space model,
we were able to run the solver and find all solutions for both the single door variant of the
power window and for the central door locks. The solver was run with no latency constraint
specified. For the two door variant, we computed the number of possible solutions using
the single door variant and taking into account the allowed feature variants between the
two doors (e.g., the passenger door can not have the feature express if the driver door does
not).

Table 7.2 gives statistics for encoding the models in Clafer. The table indicates a large
number of constraints for the central door locks model in comparison to both variants
of the power window model. As a result of the constraints, there are significantly fewer
possible candidate architectures as seen in Table 7.1.

Using these models as benchmarks, we constructed two experiments for research questions
RQ4 and RQ5. In the first experiment, we measured the time taken to find the first 10
instances for each of the design decision, constraint and objective templates. However, we
did not test each one with each of its possible parameters due to the exponential number of
combinations. Rather, we tested each decision using a single selection of parameters (i.e.,
either the device was chosen to be smart or EE, not both); for constraints and objectives,
we only tested one of the mass, part cost, and part warranty cost constraints due to their
similar nature. We did, however, test each of the latency constraints with a single selection
of the parameters. For both the single and two door variant of the power window model,
the same parameters were selected for the template specification.

The time to find the first 10 instances was measured ten times and the average, standard
deviation, and number of instances found was recorded. A timeout was reported if the first
10 instances could not be found in 10 minutes or under, for the non-optimal specifications,

83

and 45 minutes or under for the optimal specifications. If a timeout occurred, the number
of instances found before time expired was reported. As mentioned earlier, we wanted to
obtain a handful of instances within minutes to enable quick iterations for engineers, and
therefore we pick 10 instances in 10 minutes. We gave a higher time budget to optimization
since it is a harder problem; we pick 45 minutes since waiting for hours would seriously
slow down the exploration process.

The second experiment measured the time taken to find the first 10 instances for each
of the example power window design specifications found in Chapter 4. For each of the
multiple design specification scenarios (1, 3, and 6), we split the scenario into multiple
specifications and measured the solving time individually. Additionally, for scenario 6,
we do not consider the single door power window model as a distributed vs. centralized
tradeoff is not applicable to a single window. Lastly, both experiments were carried out on
a laptop with the following specs:

• Intel R© CoreTM i7-3520M CPU @ 2.90 GHz

• 4.00 GB RAM

• Windows 10 - 64 bit

7.2 Comparison to State-of-the-Art Tools

We selected four tools, as a result of our literature review, to compare with Clafer. The
description, version used in the evaluation, and other relevant details is provided in Ta-
ble 7.3.

84

Tool
Name

Version
Used
For
Evalua-
tion

Description Targeted
Domain

Tool
Re-
leased
to Pub-
lic?

Sources

Arche/-
Opterix

Not Pro-
vided

A tool that supports mod-
eling software components,
communication between
software components,
ECUs, buses, and services.
Additionally, the tool can
optimize the deployment
of software components to
ECUs using objectives such
as redundancy allocation,
energy consumption, and
cost.

Automotive
E/E Ar-
chitecture

Yes [2,9,42–
46]

85

Tool
Name

Version
Used
For
Evalua-
tion

Description Targeted
Domain

Tool
Re-
leased
to Pub-
lic?

Sources

Auto/-
FOCUS –
AF3

2.9 A model-based development
tool that supports architec-
ture modeling from the re-
quirements to code gener-
ation. Additionally, the
tool can synthesize hard-
ware platform architectures,
given a functional archi-
tecture based on objectives
such as end-to-end latency
and number of nodes. The
tool is also able to synthe-
size and explore optimal de-
ployments and schedules.

Automotive
E/E Ar-
chitecture

Yes [3, 64,
65]

OSATE 2.2.1 A model-based development
tool that implements the
AADL (architecture anal-
ysis & design language),
and supports modeling both
aerospace and automotive
systems. It does not
have any optimization sup-
port; however, it supports
model checking, schedula-
bility analysis, and flow la-
tency analysis.

Automotive/
Aerospace
E/E Ar-
chitecture

Yes [26,59]

86

Tool
Name

Version
Used
For
Evalua-
tion

Description Targeted
Domain

Tool
Re-
leased
to Pub-
lic?

Sources

AAOL N/A A domain-specific con-
straint language used for
modeling and optimization
of automotive E/E archi-
tectures. The supporting
tool can optimize based on
user-defined objectives, and
support design constraints,
such as memory capacity,
ASIL requirements, and
predefined deployments.

Automotive
E/E Ar-
chitecture

No [36]

Table 7.3: Details for selected state-of-the-art tools to compare with Clafer

For ArcheOpterix, AutoFOCUS – AF3, and OSATE, we modeled the power window system
(the single door variant) up to what was supported by the tool. For AAOL, the tool was
not publicly available so it was not possible to recreate the power window system. Instead,
the evaluation was done using the published details about the language and case study, a
four door power window [36].

When modeling the single door variant of the power window system, we developed a single
domain-space model (as we did with Clafer, c.f. [56]) for the system. For example, in
ArcheOpterix a single domain-space model consisted of one XML file containing the model
elements and their qualities. If variability for a certain element could not be captured,
we did not consider the possibility of creating a second XML file with the new variant
since the underlying solver accepted a single file. In the context of AF3 a single domain-
space model consisted of one component architecture and one platform architecture. For
OSATE, we considered a single system implementation to be one domain-space model as
the analyzers worked only with one implementation at a time. In AAOL, we consider a
single domain-space model to consist of a single set of constraints, objectives, and orders;
however, since the constraints can be written over a set of software architectures and
hardware architectures we allow for multiple of both.

87

Table 7.4 shows the limitations we encountered when modeling using each of the tools.
The resulting models are available for readers online.1

ArcheOpterix AutoFOCUS –
AF3

OSATE AAOL

Feature
Model

The tool did not
allow for modeling
the features of the
system.

The tool did not
allow for modeling
the features of the
system.

The tool did not
allow for modeling
the features of the
system.

The tool did not
allow for modeling
the features of the
system.

FAA The design-space
model had to
contain a fixed
FAA. There was
no distinction
between func-
tional devices or
analysis functions,
only software
components were
considered. It was
also not possible
to model func-
tions implemented
in hardware.

The design-space
model had to
contain a fixed
FAA. There was
no distinction
between func-
tional devices or
analysis functions,
only software
components were
considered. It was
also not possible
to model func-
tions implemented
in hardware.

The design-space
model had to
contain a fixed
FAA. There was
no distinction
between func-
tional devices or
analysis functions,
only processes
and threads were
considered.

The tool made
no distinction be-
tween functional
devices or analysis
functions.

1https://github.com/ross2jd/Thesis_PWModels/

88

ArcheOpterix AutoFOCUS –
AF3

OSATE AAOL

Device
Node
Clas-
sifica-
tion

The design-space
model had to
contain a fixed
hardware archi-
tecture including
its type. Also,
E/E and power
devices could
not be modeled,
all nodes were
considered smart.

The design-space
model had to
contain a fixed
hardware archi-
tecture, including
its type. When
using the gen-
erated hardware
architecture, it
was not possible
to model node
qualities. Lastly,
power devices
could not be
modeled.

The design-space
model had to
contain a fixed
hardware archi-
tecture. The
device node clas-
sification was not
entirely separate
from the FAA
since the switch
and motor were
devices — an
AADL concept
representing an
actuator or sensor
— and could be
used in both lay-
ers. Lastly, power
devices could not
be modeled.

The tool did not
consider power de-
vices.

Power
Topol-
ogy

The tool did not
allow for model-
ing distribution
of power from
sources to devices.

The tool did not
allow for model-
ing distribution
of power from
sources to devices.

The tool did not
allow for model-
ing distribution
of power from
sources to devices.

The language did
not allow for mod-
eling distribution
of power from
sources to devices.

Comm.
Topol-
ogy

The tool did not
allow for variable
communication
media.

The tool did not
allow for variable
communication
media. Addi-
tionally, the tool
did not consider
discrete/analog
connectors.

The tool did not
allow for variable
communication
media. Addi-
tionally, the tool
did not consider
discrete/analog
connectors.

There were no lim-
itations in model-
ing this layer.

89

ArcheOpterix AutoFOCUS –
AF3

OSATE AAOL

Deploy-
ment

The tool did not
allow for modeling
restrictions on
deployments for
function connec-
tors to hardware
data connectors.

The tool did not
allow alternatives
to be specified for
deployments of a
software compo-
nents connector.
Additionally, de-
ployment of soft-
ware components
to E/E devices
was disallowed.

There were no lim-
itations in model-
ing this layer.

The tool did not
allow for model-
ing a restriction
for what set, size
greater than 1, of
buses a software
component could
produce traffic on.

Object-
ives &
Con-
straints

The tool did not
consider mass
and part war-
ranty cost as
objectives. Also,
no end-to-end
latency or input
synchronization
constraint could
be specified.

The tool did not
consider mass,
part cost, or
warranty part
cost as objectives.
No end-to-end
latency or input
synchronization
constraint could
be specified.

The tool did
not support op-
timization over
any objective.
Constraints for
part cost, mass
and warranty part
cost were also
unsupported.

The input syn-
chronization
constraint could
not be expressed
in the tool.

Table 7.4: Limitations we encountered when modeling the single door variant of the power
window system introduced in Chapter 3

7.2.1 Research Question 1

Using Table 7.4, the unique elements along with a short explanation for each, are as follows:

• Feature model and features: Feature models and features were not explicitly a
part of any reference model; however, in AADL there is a concept, feature, but it
does not match our definition from Chapter 3. Rather, an AADL feature is used to
model the incoming and outgoing data for a process, thread, or device.

90

• Power Topology: The distribution of power from sources to devices was not con-
sidered by any of the tools.

• Power Devices: None of the tools allowed modeling a device for relaying or dis-
tributing power, such as the door inline in the power window.

• Deployment of Function Communication: None of the tools allowed restricting
the possible targets for which a function connector should be deployed, while taking
account both buses and discrete/analog connectors.

While our reference model does contain unique elements not found in the surveyed tools,
we also want to state that the surveyed tools contain elements not found in our reference
model. For example, we do not consider energy consumption, bus reliability, memory
capacity, or schedulability; these could be incorporated in future work.

7.2.2 Research Question 2

Table 7.5 shows our findings for what decision templates are supported, indicated by a
“Yes” in the table, by each of the surveyed tools. If the decision was not supported, we
listed one of two reasons for why:

1. The template pertained to a model element that was not supported by the tool.

2. The tool could not capture the variability associated with the model element in the
template.

Table 7.6 shows the supported constraint and objective templates, indicated with a “Yes”
in the table, for each of the surveyed tools. As with the decisions, we listed one of two
reasons for why the template was unsupported:

1. The template considered a quality attribute that was not supported by the tool.

2. The template contained a quantifier or optimization objective that was not supported
by the tool.

Both tables show that none of surveyed tools are able to capture all decisions, constraints,
and objectives that are possible when using Clafer.

In summary, the difference between Clafer and the compared tools is: Clafer synthesizes
the valid candidate architectures based on a set of constraints and objectives, and allows
modeling variability at all layers. The compared tools, ArcheOpterix, OSATE, and AF3,
only allow for variability in the deployment of functions to device nodes. AAOL is limited

91

Table 7.5: Supported (Yes) and unsupported (No) decision templates for each of the sur-
veyed tools. If the decision is unsupported, one of the following reasons is listed: 1) Model
element not supported 2) Variability not captured.

ID Arche-
Opterix

AF3 OSATE AAOL

DD1 No (1) No (1) No (1) No (1)
DD2 Yes Yes Yes Yes
DD3 No (2) No (2) No (2) Yes
DD4 No (2) No (2) No (2) No (1)
DD5 No (1) No (1) No (2) No (1)
DD6 No (2) No (2) No (2) No (1)
DD7 No (1) No (1) No (1) No (1)
DD8 No (2) No (2) No (2) Yes
DD9 No (1) No (1) No (1) No (1)
DD10 No (1) No (1) No (1) No (1)
DD11 No (2) No (2) No (2) Yes
DD12 No (2) No (2) Yes No (1)
DD13 No (2) No (2) Yes No (1)
DD14 No (1) No (1) No (1) No (2)
DD15 No (2) No (2) No (2) Yes

92

Table 7.6: Supported (Yes) and unsupported (No) constraint and objective templates for
each of the surveyed tools. If unsupported, one of the following reasons is listed: 1) Quality
not supported 2) Expression not supported.

ID Arche-
Opterix

AF3 OSATE AAOL

DC1 No (1) No (2) Yes Yes
DC2 No (1) No (2) No (2) No (2)
DC3 No (1) No (1) Yes Yes
DC4 No (1) No (1) No (2) No (2)
DC5 No (1) No (1) No (1) Yes
DC6 No (1) No (1) No (1) Yes
DC7 No (1) No (1) No (1) Yes
DC8 No (2) No (1) No (1) Yes
DC9 No (2) No (1) No (1) Yes
DC10 No (2) No (1) No (1) Yes
DC11 No (1) No (1) No (1) Yes
DC12 No (1) No (1) No (1) Yes
DC13 No (1) No (1) No (1) Yes
DO1 No (1) No (1) No (2) Yes
DO2 No (1) No (1) No (2) No (2)
DO3 No (1) No (1) No (1) Yes
DO4 No (2) No (1) No (1) Yes
DO5 No (1) No (1) No (1) Yes

93

by the elements considered in the language, rather than being able express variability as
evident from Table 7.5. However, expressing the presence variability for components such as
functions and device nodes required defining multiple software and hardware architectures
to be used by the solver.

7.3 Role of Multiple Layers (Research Question 3)

In Table 7.7, we show the results of our experiment in removing the feature model, power
topology, and communication topology from the single door variant of the power window
system model. Each row of the table shows the resulting quality attribute values when
minimizing mass, part cost, and warranty part cost, while ensuring a end-to-end latency
of 500 ms from the switch to the motor.

From the table, we found that the feature model layer does not play a role in the qualities,
which we expected since no quality attributes were captured in this layer; however, the
feature model layer contributed additional candidate architectures that were possible. The
power topology, we found, did affect the mass, part cost, and warranty part cost. Further-
more, by removing the power topology, a tradeoff was introduced, meaning that two sets of
candidate architectures existed on the Pareto front with differing quality attributes. The
two sets of values are captured by curly braces in Table 7.7. This shows the importance
of including the power topology in the overall model, as it eliminates designs that are not
optimal when considering the full model. Lastly, by removing the communication layer,
we found the values for mass and part cost were reduced. This was expected since less of
the model is present; however, it was interesting to see no difference in the margin latency.
The reason for this is due to the loss of precision when working with integers to represent
smaller quantities.

7.4 Performance Evaluation

7.4.1 Research Question 4

Table 7.8 contains the results from running our outlined experiment on the design decision
and constraint templates. The results show that for the single door variant of the power
window and the door locks models, all sample templates tested for each of the decisions
and constraints were considered feasible. The two door variant, however, did experience

94

Table 7.7: Resulting quality attribute values when removing portions of the power window
model (single door variant). The margin latency is for the timing chain from the switch to
the motor. The margin latency value is given as a range denoting the smallest and largest
values for the reported instances. We use the curly braces to denote an ordered set of
values when more than one set of values exists on the Pareto front.

Removed
Portion

Associated
Quality
Attributes

Number
of In-
stances

Quality Attribute Values
Mass (g) Parts

Cost ($)
Warranty
Parts
Cost
($ per
million)

Margin
Latency
(ms)

None Mass, Parts
Cost, War-
ranty Parts
Cost, Margin
Latency

9 837 223 6452 440-445

Feature
Model

None 6 837 223 6452 44-445

Power Topol-
ogy

Mass, Parts
Cost

41 {813,811} {221,223} {6452,
10852}

{440-
445,439-
445}

Communicat/-
ion Topology

Mass, Parts
Cost, Margin
Latency

9 833 222 6452 440-445

95

limitations in which one of the templates was not feasible. DD15 experiences a timeout
because by requiring certain devices to communicate via the bus it increases the possible
deployment targets for function connectors on both doors. We see this design decision
that experiences scalability issues since this decision is more challenging for the single door
variant, as well, evidenced by taking 3.5 times longer, on average, than the other decisions.

Single Door
Power Window

Two Door Power
Window

Door Locks

Design
Spec.

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

DD1 6 0.6 10 20 1.4 10 314 7 10
DD2 6 1.2 10 20 1.9 10 91 2.2 10
DD3 6 0.3 10 21 3.3 10 315 7.8 10
DD4 6 0.3 10 20 2.8 10 476 7.9 10
DD5 6 0.2 10 20 2.1 10 93 1.4 10
DD7 5 0.1 10 19 1.3 10 313 9.2 10
DD8 6 0.8 10 503 16.4 10 317 8.1 10
DD9 5 0.4 10 18 1.2 10 27 1.5 10
DD10 6 0.3 10 20 1.3 10 94 2.3 10
DD11 6 0.4 10 17 2.2 10 32 2.2 10
DD12 6 0.3 10 19 1.3 10 101 1.6 10
DD13 6 0.7 10 19 2.9 10 96 4.2 10
DD14 6 0.9 10 18 1.0 10 33 3.4 10
DD15 21 1.1 10 Timeout – 0 92 5 10
DC1 5 0.5 10 17 2.5 10 93 1.5 10
DC2 6 1 10 18 2.5 10 94 2.4 10
DC3 6 0.9 10 20 2.3 10 94 2.7 10
DC4 6 0.6 10 19 2.4 10 94 4.6 10

96

Single Door
Power Window

Two Door Power
Window

Door Locks

Design
Spec.

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

DC5 6 0.8 10 19 1.9 10 116 3.7 10
DC6 6 0.9 10 19 1.2 10 92 3.1 10
DC8 7 1 10 19 2.0 10 339 4.8 2

Table 7.8: Design decision and constraint solving time for three case study models. A
timeout is reported if the solver takes more than 10 minutes to find the first 10 non-optimal
solutions.

Table 7.9 shows the results from executing the same experiment as before, but for the
optimization templates. From the table, we see that each model does experience some lim-
itations in performance. Observing the different specifications, we see that DO1 and DO2
(optimization over the latency qualities) have by far the worst performance. Additionally,
we see that as the models grow in the amount of variability (the two door variant encodes
overs 959 million variants opposed to roughly 32 thousand for the single door), it is no
longer feasible to optimize with respect to one or more objectives. As the models grow in
size (the door locks contains over 133 concrete elements), we find the design decision and
constraint specifications, on average, take longer than in the smaller models (36 concrete
elements for the single power window and 70 for the two door power window); however
they are all still feasible. Future work is needed to investigate techniques to improve the
scalability in order for all optimization and decision templates to be considered feasible.

7.4.2 Research Question 5

From Table 7.10, we see that again it is feasible to ask all design exploration scenarios for
the single door variant of the power window. For the two door variant, we see that only one
out of the six scenarios are feasible. The reason for this is related to our earlier observation
that due to the encoding of the large number of variants, the chocosolver is unable to
feasibly find the first 10 optimal instances for single or multiple objectives. Therefore, we
find that it is feasible to ask Emily’s design scenarios only if we are considering a smaller

97

Table 7.9: Design objective solving time for three case study models. A timeout is reported
if the solver takes more than 45 minutes to find the first 10 optimal solutions.

Single Door
Power Window

Two Door Power
Window

Door Locks

Design
Spec.

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

DO1 2690 0 10 Timeout – 0 Timeout – 0
DO2 Timeout – 0 Timeout – 0 Timeout – 0
DO3 59 1.5 9 Timeout – 0 314 9.7 1
DO3,
DO4,
DO5

56 1.2 9 Timeout – 0 Timeout – 1

model such as the single door power window which still encodes roughly 32 thousand
candidate architectures.

98

Table 7.10: Design exploration scenario specification solving time for the power window
case study models. A timeout is reported if the solver takes more than 10 minutes to find
the first 10 non-optimal solutions and more than 45 minutes to find the first 10 optimal
solutions.

Single Door Power Window Two Door Power Window
Scenario Solving

Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

Solving
Time
(s)

Std.
Dev.
(s)

Number
of In-
stances

1 - With ECU 176 2.7 10 Timeout - 0
2 - No ECU 24 0.4 10 Timeout - 0
2 6 0.3 10 20 1.8 10
3 - Smart 86 3.6 10 Timeout - 0
3 - Dumb 26 0.8 6 Timeout - 0
4 26 0.6 3 Timeout - 0
5 25 1.1 10 Timeout - 0
6 - Central-
ized

- - 0 Timeout - 0

6 - Dis-
tributed

- - 0 Timeout - 0

99

Chapter 8

Threats to Validity

8.1 Research Questions 1 & 2

In our comparison to state-of-the-art we have two main threats to validity; the first being
an incomplete literature review. We mitigated this threat by consulting multiple search
engines, in addition to using a previously done systematic literature review by Aleti et.
al. [10].

The second threat, is a potential bias in our expertise with Clafer opposed to the compared
state-of-the-art tools. It is to the best of our knowledge that our attempted models of the
power window are accurate, and demonstrate the full capabilities of the tool, in the scope of
design space exploration, as we have consulted with tutorials, user guides, and published
works for each tool. However, in future work the threat could be further mitigated by
having an expert, for each tool carry, out the exercise of modeling and exploring the power
window system.

8.2 Research Question 3

The main threat to validity for the third research question is the sensitivity of quality
attribute values used in the comparison between the original and partial design-space
models. We were able to partially mitigate this by using real-world quality attribute values
found from OEM part supply stores, reliability handbooks, and other online shopping

100

sites such as Amazon. Since Clafer, currently, can work only with integer values, a loss
of precision was introduced when encoding these values. In the accompanying technical
report [56], we detail how the values are scaled.

8.3 Research Questions 4 & 5

We have three main threats in our evaluation of performance for Clafer. The first is a
lack of full coverage for the decision, constraint, and objective templates tested in the
first experiment. We were able to mitigate this threat by ensuring we covered each of the
decision templates, and each objective at least once. In the experiment, not all constraints
were tested since mass, parts cost, and part warranty cost all had the same expression, but
with different values. Additionally, not all parameters were tested for research question
four, and a bias could have been introduced for the choice of parameters selected. We
attempted to mitigate this threat by choosing similar parameters between each of the
tested models; however, future work could be done to measure the sensitivity of the selected
parameters. For the attribute values, we also ensured that at least 1 instance would be
found, such that we did not report a trivially unsatisfiable result.

The second threat is a bias towards the current implementation of Clafer and its supported
tool-chain, the release 0.4.3. Since Clafer and its tools are continually evolving over time,
our results may become invalid; however, the results are valid for the chosen release.

The last threat is the use of a CSP based solver, chocosolver, opposed to a possibly more
suitable one such as an SMT or ILP solver. We chose to use a CSP over SMT solver
since our earlier work of encoding Clafer models to the SMT solver Z3 resulted in a worse
performance compared to chocosolver. In particular, the Clafer backend using chocosolver
has been optimized using custom constraint propagators, which are not available in SMT.
However, a more efficient encoding of Clafer to SMT might have achieved better perfor-
mance and should be investigated, along with an efficient encoding to ILP, in future works.
Furthermore, a direct encoding of the case studies to SMT or ILP was not considered since
one of the objectives of this work was to create high-level models.

101

Chapter 9

Related Work

9.1 Survey of Architecture Optimization

In 2013, Aleti et. al. [10] conducted a survey of the current literature in the area of
architecture optimization. In the review, they considered not only embedded systems but
also information systems. Many of the works surveyed are related to ours; however, in this
section we highlight works with the most decisions, constraints, and objectives.

From the survey, we found the most design decisions (also known as degrees of freedom
or points of variability) simultaneously considered by any work, in the embedded systems
domain, was four [18,19,53]. These works considered degrees of freedom such as: allocation,
component selection, hardware selection, software selection, software replication, hardware
replication, and scheduling. In our work, we consider additional degrees of freedom (see
Table 4.1); however, we do not take into account software or hardware replication.

From the survey, we found the most qualities considered in optimization, in the embedded
systems domain, was four. This was work by Dave and Jha [21], in which they optimized
the allocation of a hierarchal task graph to hardware, and its schedule with respect to
performance, cost, reliability, and energy. In our work, we consider a simplified set of opti-
mization objectives using mainly aggregation; however, we consider 15 degrees of freedom
in our optimization while Dave and Jha only consider three.

Lastly, we found that many of the works considered constraints over qualities such as:
performance, cost, realiabilty, energy, safety, and weight. However, from the surveyed
works, in the embedded systems domain, they only considered a handful of constraints; on

102

the other hand, in our work we consider 13 different quality constraints.

9.2 Recent Advances in E/E Architecture Evaluation
& Optimization

Li et. al. [38] presented a framework which takes as input an AADL model, using OSATE,
and optimizes with respect to cost, processor utilization, and data latency. This framework
is limited by only considering the removal or addition of a processor or bus to the system,
allocation of services, and replacement between hardware components; compared to our
work, which we take into account feature variability and variable types of physical media.
As stated earlier in Chapter 7, Aleti et. al. [9] also used OSATE to create AADL models
and then translated them to their optimization framework, ArcheOpterix, to optimize
based on data transmission reliability and communication overhead using evolutionary
algorithms. Our work differed by covering variability and multiple layers and also using
an exact optimization method.

Zeller et. al. [66] compared SAT-solving and different heuristic search algorithms, in which
they do not optimize but rather synthesize a satisfying deployment given a set of con-
straints. The constraints they consider are timing, resource utilization, and schedulability.
They do not optimize, or consider variable hardware topologies, analog/discrete wires for
communication, or quality constraints such as mass, part cost, and warranty parts cost.

Glaß et. al. [28] optimized hardware topologies w.r.t. area cost, power consumption,
and reliability using evolutionary algorithms. However, they do not consider variability
in the functional architecture, which could potentially lead to different optimal topologies
due to deployment based on what functions are present. Additionally, they only consider
networked topologies, whereas in this work we consider both buses and discrete/analog
connectors.

Lin et. al [41] considered the wire routing problem, in which they optimized w.r.t cost,
which was dependent on wire selection, wire length, and number of splices used. This
work goes into more detail of the wire selection and routing through the vehicle, which we
disregarded given our focus on early design.

As stated in Chapter 7, Kugele and Pucea introduced AAOL in [36]. The case study used
in their work was a power window system, similar to ours; however, ours considered more
than two concrete designs. In our model, the single door variant alone encoded over 36,000

103

different candidate architectures as a result of being able to augment architectural elements
with variability.

Walla et. al. [29] present a novel framework for early design exploration with respect to
power consumption by ECUs. This work generates the inputs needed for their earlier work
of simulating the power consumption and also provides some visualizations of the results.
However, this exploration is less automated than ours since users have to clone a modeled
E/E architecture and then make modifications to add differences. On the other hand,
Clafer only models the structure of the architectures and does not support simulation or
behavioral analysis.

In [27], Florentz and Huhn present meta-models to describe embedded systems architec-
tures as well as an evaluation method. The case study used to demonstrate is similar to our
power window model in which they consider two distinct variants and only two objectives:
cost and performance. In comparison to our work, we provide an automated approach
using a backend reasoner such that we can synthesize the candidates rather than having
to explicitly model the variants.

Brandt et. al. in [16] present an optimization approach for cost of an automotive E/E
architecture and consider variable deployments and number of ECUs. Unlike in our work,
they consider a comprehensive cost metric including development and manufacturing costs.
However, their work is not tool supported and does not consider optional functions as we
do in our work.

In [58] Schäuffele presents PREEvision for E/E architecture modeling and optimization.
In this work, Schäuffele shows a rich modeling environment that captures the architecture
in a multi-layered approach as we do in Clafer as well as multiple optimization objective
such as weight and cost. While this work considers more layers (wire routing and layout),
it does not model variability for architectural elements and consequently does not support
synthesis of functional designs and device topologies; rather, the architectural variants to
be compared have to be modeled explicitly.

Overall, these works only considered a limited amount of variability, only very few per-
spectives, and many did not consider the entire multi-layer architecture when doing the
optimization (from the features down to the hardware topology).

104

9.3 Extensions to Previous Work

This paper extends work previously done by Murashkin in [49] in the following ways:

• Extended the original power window case study by adding:

– Latency and warranty cost quality attributes;

– Implementation choice in the definition of a analysis function and functional
device.

• Revised the original reference model by providing structure for the power and commu-
nication topology layers, adding the deployment of function connectors to hardware
connectors, and adding quality attributes into the reference model;

• Additional case study model for a central door locks system;

• Systematic characterization of the possible exploration scenarios using specification
templates;

• Evaluation addressing five research questions;

• Scalability of the optimization improved by optimizing the chocosolver in response
to the experience with the case studies;

• New strategies of using visualizer tools (such as including the design decisions in the
parallel coordinate diagrams).

105

Chapter 10

Conclusions & Future Work

We presented a workflow using the Clafer modeling language and its supported tool chain
to synthesize multi-level, multi-perspective candidate E/E architectures for two automotive
body domain sub-systems. Additionally, we defined a reference model that supports early
design such that models can be created with limited amount of information. We then used
the reference model and gave the full details for two automotive body domain sub-systems:
a power window system and a door locks system This work also allows for synthesizing
candidates with variability at all layers of the E/E architecture (i.e. features, functions,
deployment, etc.) and not just deployment or a single layer as with many previous works.
By considering all layers and augmenting elements with variability in each of them, we are
able to synthesize globally optimal candidate architectures captured by the reference model.
Furthermore, by using Clafer, we are able to synthesize candidates based on many types
of design decision, constraints, and objectives to support much richer design exploration
scenarios compared to other tools.

In the future, we would like to improve on the solving performance of chocosolver to make
it feasible to construct and find solutions for models of larger size and variability. One
possibility is to exploit the modularity of systems in the models, such that individual
sub-systems are solved first and then the results are used to explore their composition.
By improving the solver, larger and more intricate case studies can be explored such as
combining the power window and door locks systems as well as modeling the remainder
of the body domain. In addition, new perspectives such as safety, memory, and energy
consumption should be added to the reference model to further enrich the design space
exploration possibilities.

106

APPENDICES

107

Appendix A

Full Source Code for Clafer Models

A.1 Reference Model

Listing A.1: Complete reference model
1 //---------------------------- Meta -Model Elements

--------------------------//
2 // Meta -Model Elements - This section contains all meta -model elements

that
3 // are used to model a general automotive E/E architecture . Most of the
4 // elements are adapted from the EAST -ADL v2 specification .
5
6 // System is our version of the EAST -ADL " System Model ". The two are

similiar
7 // but have a couple differences :
8 // - The implementation level is ignored .
9 // - The analysis level and design level have been combined into the

10 // architecture
11 abstract System
12 abstract FeatureModel
13 abstract Architecture
14 abstract FunctionalAnalysis
15 abstract HardwareArchitecture
16 abstract DeviceNodeClassification
17 abstract CommTopology
18 abstract PowerTopology
19 abstract Deployment
20

108

21 // Some generic "types" of clafers . Some types don ’t have properties but
22 // are used to improve readability
23 abstract Feature
24
25 abstract FunctionalAnalysisComponent
26 deployedTo -> DeviceNode
27 xor implementation
28 hardware
29 [latency = baseLatency]
30 [deployedTo .type in (EEDeviceType , SmartDeviceType)]
31 software
32 [latency = baseLatency * deployedTo . speedFactor]
33 [deployedTo .type in SmartDeviceType]
34 baseLatency -> integer // [ms]
35 latency -> integer // [ms]
36 abstract AnalysisFunction : FunctionalAnalysisComponent
37 abstract FunctionalDevice : FunctionalAnalysisComponent
38 abstract FunctionConnector
39 sender -> FunctionalAnalysisComponent
40 receiver -> FunctionalAnalysisComponent
41 deployedTo -> HardwareDataConnector ?
42 [parent in this. deployedFrom]
43 [(sender . deployedTo .dref , receiver . deployedTo .dref) in (

deployedTo . endpoint .dref)]
44 [(sender . deployedTo .dref = receiver . deployedTo .dref) <=> no this.

deployedTo]
45 latency -> integer // [us]
46 messageSize -> integer // [byte]
47 [if (deployedTo) then (latency = messageSize * deployedTo .

transferTimePerSize) else (latency = 0)]
48
49
50 enum DeviceNodeType = SmartDeviceType | EEDeviceType | PowerDeviceType
51
52 abstract DeviceNode
53 type -> DeviceNodeType
54 speedFactor -> integer // unitless
55 mass -> integer // [g]
56 cost -> integer // [dollar]
57 ppm -> integer // unitless
58 replaceCost -> integer // [dollar]
59 warrantyCost -> integer = ppm* replaceCost // [dollar per million]
60 [(type in (PowerDeviceType , EEDeviceType)) => (speedFactor = 0)]
61
62 // Hardware Connection Mediums

109

63 abstract HardwareConnector
64 length -> integer // [cm]
65 mass -> integer // [mg]
66 cost -> integer // [dollar per thousand]
67 abstract PowerConnector : HardwareConnector
68 source -> DeviceNode
69 sink -> DeviceNode
70 abstract LoadPowerConnector : PowerConnector
71 [mass = Data. MassPerLength . LoadPowerConnector * length]
72 [cost = Data. CostPerLength . LoadPowerConnector * length]
73 abstract DevicePowerConnector : PowerConnector
74 [mass = Data. MassPerLength . DevicePowerConnector * length]
75 [cost = Data. CostPerLength . DevicePowerConnector * length]
76
77 abstract HardwareDataConnector : HardwareConnector
78 endpoint -> DeviceNode 2..*
79 deployedFrom -> FunctionConnector 1..*
80 [this. deployedTo = parent]
81 transferTimePerSize -> integer // [us/byte]
82
83 abstract DiscreteDataConnector : HardwareDataConnector
84 [mass = length *(# deployedFrom)*Data. MassPerLength .

DiscreteDataConnector]
85 [transferTimePerSize = 0]
86 [cost = Data. CostPerLength . DiscreteDataConnector * length *(#

deployedFrom)]
87
88 abstract AnalogDataConnector : HardwareDataConnector
89 [mass = length *(# deployedFrom)*Data. MassPerLength . AnalogDataConnector

]
90 [transferTimePerSize = 0]
91 [cost = Data. CostPerLength . AnalogDataConnector * length *(# deployedFrom)

]
92
93 abstract BusConnector : HardwareDataConnector
94 [endpoint .type = SmartDeviceType]
95 xor type
96 LowSpeedCAN
97 [transferTimePerSize = Data. TimePerSize . LowSpeedCANBus]
98 [mass = Data. MassPerLength . LowSpeedCANBus * length]
99 [cost = Data. CostPerLength . LowSpeedCANBus * length]

100 HighSpeedCAN
101 [transferTimePerSize = Data. TimePerSize . HighSpeedCANBus]
102 [mass = Data. MassPerLength . HighSpeedCANBus * length]
103 [cost = Data. CostPerLength . HighSpeedCANBus * length]

110

104 LIN
105 [transferTimePerSize = Data. TimePerSize . LINBus]
106 [mass = Data. MassPerLength . LINBus * length]
107 [cost = Data. CostPerLength . LINBus * length]
108 FlexRay
109 [transferTimePerSize = Data. TimePerSize . FlexRayBus]
110 [mass = Data. MassPerLength . FlexRayBus * length]
111 [cost = Data. CostPerLength . FlexRayBus * length]
112
113 abstract LogicalBusBridge : HardwareDataConnector
114 [endpoint .type = SmartDeviceType]
115 bus -> BusConnector 2
116 gatewayTransferTimePerSize -> integer // [us/byte]
117 [transferTimePerSize = gatewayTransferTimePerSize + sum(bus.

transferTimePerSize)]
118 [length = 0]
119 [mass = 0]
120 [cost = 0]
121
122
123 // ---------------------- Quality Attribute Data

-----------------------------//
124 Data
125 MassPerLength // [mg/cm]
126 LoadPowerConnector -> integer = 185
127 DevicePowerConnector -> integer = 104
128 DiscreteDataConnector -> integer = 110
129 AnalogDataConnector -> integer = 110
130 LowSpeedCANBus -> integer = 20
131 HighSpeedCANBus -> integer = 20
132 LINBus -> integer = 20
133 FlexRayBus -> integer = 40
134 CostPerLength // [dollar per thousand / cm]
135 LoadPowerConnector -> integer = 9
136 DevicePowerConnector -> integer = 9
137 DiscreteDataConnector -> integer = 13
138 AnalogDataConnector -> integer = 13
139 LowSpeedCANBus -> integer = 52
140 HighSpeedCANBus -> integer = 104
141 LINBus -> integer = 26
142 FlexRayBus -> integer = 208
143 TimePerSize // [us/byte]
144 LowSpeedCANBus -> integer = 64
145 HighSpeedCANBus -> integer = 32
146 LINBus -> integer = 400

111

147 FlexRayBus -> integer = 1
148 ReferenceSpeedFactor -> integer = 10

A.2 Generalized Power Window

Listing A.2: Complete generalized E/E architecture for power window
1 //------------------- Power Window Abstract Clafer

--------------------------//
2 // Power Window Abstract Clafer - This section contains all abstract

clafers
3 // that detail a generic system / component that can be used in the

concerete
4 // system model.
5
6 abstract WinSysFM : FeatureModel
7 basicUpDown : Feature
8 express : Feature ?
9 expressUp : Feature ?

10
11 abstract WinSysFA : FunctionalAnalysis
12 WinSwitch : FunctionalDevice
13 [implementation . hardware]
14 [baseLatency = 20]
15 WinArbiter : AnalysisFunction
16 [baseLatency = (if implementation . software then 1 else 5)]
17 WinController : AnalysisFunction
18 [implementation . software]
19 [baseLatency = 2]
20 WinMotor : FunctionalDevice
21 [implementation . hardware]
22 [baseLatency = 10]
23 CurrentSensor : FunctionalDevice
24 [implementation . hardware]
25 [baseLatency = 5]
26
27 localWinReq : FunctionConnector
28 [sender = WinSwitch && receiver = WinArbiter]
29 [messageSize = 1]
30 winReq : FunctionConnector
31 [sender = WinArbiter && receiver = WinController]
32 [messageSize = 1]
33 winCmd : FunctionConnector
34 [sender = WinController && receiver = WinMotor]

112

35 [messageSize = 2]
36 current : FunctionConnector
37 [sender = CurrentSensor && receiver = WinController]
38 [messageSize = 1]
39
40 PinchDetectionFA : FunctionalAnalysis ?
41 PinchDetection : AnalysisFunction
42 [implementation . software]
43 [baseLatency = 2]
44 PositionSensor : FunctionalDevice
45 [implementation . hardware]
46 [baseLatency = 10]
47 object : FunctionConnector
48 [sender = PinchDetection && receiver = WinController]
49 [messageSize = 2]
50 position : FunctionConnector
51 [sender = PositionSensor && receiver = PinchDetection]
52 [messageSize = 1]
53
54 abstract WinSysDN : DeviceNodeClassification
55 BCM -> DeviceNode ?
56 EC -> DeviceNode
57 Switch : SwitchNode
58 [type in (SmartDeviceType , EEDeviceType)]
59 [baseMass = 173]
60 [cost = 110]
61 [replaceCost = 110]
62 [if (type in SmartDeviceType) then (ppm = 50) else (ppm = 10)]
63 [(type in SmartDeviceType) => (speedFactor = 10)]
64 Motor : DeviceNode
65 [type in (SmartDeviceType , EEDeviceType)]
66 [mass = 453]
67 [if (type in SmartDeviceType) then (cost = 107) else (cost = 122)

]
68 [if (type in SmartDeviceType) then (ppm = 50) else (ppm = 20)]
69 [if (type in SmartDeviceType) then (replaceCost = 107) else (

replaceCost = 122)]
70 [(type in SmartDeviceType) => (speedFactor = 10)]
71 DoorInline : DeviceNode
72 [type = PowerDeviceType]
73 [mass = 10] // TODO: Not a realistic number
74 [cost = 4] // TODO: Not a realistic number
75 [ppm = 1]
76 [replaceCost = 2] // TODO: Not a realistic number
77 DoorModule : DeviceNode ?

113

78 [type = SmartDeviceType]
79 [mass = 368]
80 [cost = 300]
81 [ppm = 50]
82 [replaceCost = 300]
83 [speedFactor = 10]
84
85 abstract WinSysPT : PowerTopology
86 dn -> WinSysDN
87
88 inlineECDist -> integer
89 inlineBCMDist -> integer
90
91
92 MotorLoadPowerWire : LoadPowerConnector
93 [sink = dn.Motor]
94 SwitchLoadPowerWire : LoadPowerConnector ?
95 [source = dn. DoorInline && sink = dn. Switch]
96 [length = 45]
97 DoorModuleLoadPowerWire : LoadPowerConnector ?
98 [source = dn. DoorInline && sink = dn. DoorModule]
99 [length = 35]

100 DoorInlineLoadPowerWire : LoadPowerConnector
101 [sink = dn. DoorInline]
102
103 xor MotorLoadPowerConfig
104 SwitchIsMotorDriver
105 [MotorLoadPowerWire . source = dn. Switch]
106 [MotorLoadPowerWire . length = 40]
107 [DoorInlineLoadPowerWire . source = dn.EC.dref]
108 [DoorInlineLoadPowerWire . length = inlineECDist]
109 [SwitchLoadPowerWire && DoorInlineLoadPowerWire && no

DoorModuleLoadPowerWire]
110 DoorModuleIsMotorDriver
111 [MotorLoadPowerWire . source = dn. DoorModule]
112 [MotorLoadPowerWire . length = 30]
113 [DoorInlineLoadPowerWire . source = dn.EC.dref]
114 [DoorInlineLoadPowerWire . length = inlineECDist]
115 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire &&

DoorModuleLoadPowerWire]
116 BCMIsMotorDriver
117 [MotorLoadPowerWire . source = dn. DoorInline]
118 [MotorLoadPowerWire . length = 45]
119 [DoorInlineLoadPowerWire . source = dn.BCM.dref]
120 [DoorInlineLoadPowerWire . length = inlineBCMDist]

114

121 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire && no
DoorModuleLoadPowerWire]

122 MotorIsMotorDriver
123 [MotorLoadPowerWire . source = dn. DoorInline]
124 [MotorLoadPowerWire . length = 45]
125 [DoorInlineLoadPowerWire . source = dn.EC.dref]
126 [DoorInlineLoadPowerWire . length = inlineECDist]
127 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire && no

DoorModuleLoadPowerWire]
128
129 switchInlineDP : DevicePowerConnector ?
130 [source = dn. DoorInline && sink = dn. Switch]
131 [length = 45]
132
133 motorInlineDP : DevicePowerConnector ?
134 [source = dn. DoorInline && sink = dn.Motor]
135 [length = 45]
136
137 doorModuleInlineDP : DevicePowerConnector ?
138 [source = dn. DoorInline && sink = dn. DoorModule]
139 [length = 35]
140
141 [doorModuleInlineDP <=> dn. DoorModule]
142
143 inlineECDP : DevicePowerConnector ?
144 [source = dn.EC.dref && sink = dn. DoorInline]
145 [length = WinSysPT . inlineECDist]
146
147 abstract WinSysCT : CommTopology
148 dn -> WinSysDN
149 inlineBCMDist -> integer
150
151
152 logicalLowSpeedBus : BusConnector ?
153 [type.LIN || type. LowSpeedCAN]
154 [length = 70+ inlineBCMDist]
155 [endpoint in (dn.Motor , dn.Switch , dn.DoorModule , dn.BCM.dref)]
156
157 logicalSwitchMotorDisc : DiscreteDataConnector ?
158 [endpoint = (dn.Switch , dn.Motor)]
159 [length = 40]
160 logicalSwitchBCMDisc : DiscreteDataConnector ?
161 [endpoint = (dn.Switch , dn.BCM.dref)]
162 [length = 45+ inlineBCMDist]
163 logicalMotorBCMDisc : DiscreteDataConnector ?

115

164 [endpoint = (dn.Motor , dn.BCM.dref)]
165 [length = 45+ inlineBCMDist]
166 logicalSwitchDoorModuleDisc : DiscreteDataConnector ?
167 [endpoint = (dn.Switch , dn. DoorModule)]
168 [length = 25]
169 logicalMotorDoorModuleDisc : DiscreteDataConnector ?
170 [endpoint = (dn.Motor , dn. DoorModule)]
171 [length = 30]
172
173 abstract WinSysHA : HardwareArchitecture
174 dn -> WinSysDN
175 pt -> WinSysPT
176 ct -> WinSysCT
177
178
179 abstract WinSysDpl : Deployment
180 fa -> WinSysFA
181 ha -> WinSysHA
182
183 // The most general deployment constraint that we have is that the
184 // FunctionalAnalysisComponents must be deployed to its own

HardwareTopology
185 [fa. WinArbiter . deployedTo .dref in (ha.dn.BCM.dref , ha.dn.Switch , ha.

dn.Motor , ha.dn. DoorModule)]
186 [fa. WinController . deployedTo .dref in (ha.dn.BCM.dref , ha.dn.Switch ,

ha.dn.Motor , ha.dn. DoorModule)]
187 [fa. PinchDetectionFA => (fa. PinchDetectionFA . PinchDetection .

deployedTo .dref in (ha.dn.BCM.dref , ha.dn.Switch , ha.dn.Motor , ha
.dn. DoorModule))]

188
189 // More specific constraints on functional analysis component ...
190 [fa. WinSwitch . deployedTo .dref = ha.dn. Switch]
191 [fa. WinMotor . deployedTo .dref = ha.dn.Motor]
192 [fa. CurrentSensor . deployedTo .dref = ha.dn.Motor]
193 [fa. PinchDetectionFA => (fa. PinchDetectionFA . PositionSensor .

deployedTo .dref = ha.dn.Motor)]
194
195 // Constraints pertaining to the power topology selection based on

analysis function deployment
196 [(fa. WinController . deployedTo .dref = ha.dn. Switch) <=> ha.pt.

MotorLoadPowerConfig . SwitchIsMotorDriver]
197 [(fa. WinController . deployedTo .dref = ha.dn.Motor) <=> ha.pt.

MotorLoadPowerConfig . MotorIsMotorDriver]
198 [(fa. WinController . deployedTo .dref = ha.dn.BCM.dref) <=> ha.pt.

MotorLoadPowerConfig . BCMIsMotorDriver]

116

199 [(fa. WinController . deployedTo .dref = ha.dn. DoorModule) <=> ha.pt.
MotorLoadPowerConfig . DoorModuleIsMotorDriver]

200
201 [ha.pt. switchInlineDP <=> (ha.dn. Switch .type in SmartDeviceType)]
202 [ha.pt. motorInlineDP <=> (ha.dn.Motor.type in SmartDeviceType)]
203 [ha.pt. inlineECDP <=> some(ha.pt. motorInlineDP , ha.pt. switchInlineDP ,

ha.pt. doorModuleInlineDP)]
204
205 // Constraints pertaining to the communication topology selected

based on analysis function deployement
206 [(fa. localWinReq . deployedTo .dref in (ha.ct. logicalLowSpeedBus , ha.ct.

logicalSwitchMotorDisc , ha.ct. logicalSwitchBCMDisc , ha.ct.
logicalMotorBCMDisc , ha.ct. logicalSwitchDoorModuleDisc , ha.ct.
logicalMotorDoorModuleDisc))]

207 [(fa. winReq . deployedTo .dref in (ha.ct. logicalLowSpeedBus , ha.ct.
logicalSwitchMotorDisc , ha.ct. logicalSwitchBCMDisc , ha.ct.
logicalMotorBCMDisc , ha.ct. logicalSwitchDoorModuleDisc , ha.ct.
logicalMotorDoorModuleDisc))]

208 [(fa. winCmd . deployedTo .dref in (ha.ct. logicalLowSpeedBus , ha.ct.
logicalSwitchMotorDisc , ha.ct. logicalSwitchBCMDisc , ha.ct.
logicalMotorBCMDisc , ha.ct. logicalSwitchDoorModuleDisc , ha.ct.
logicalMotorDoorModuleDisc))]

209 [(fa. current . deployedTo .dref in (ha.ct. logicalLowSpeedBus , ha.ct.
logicalSwitchMotorDisc , ha.ct. logicalSwitchBCMDisc , ha.ct.
logicalMotorBCMDisc , ha.ct. logicalSwitchDoorModuleDisc , ha.ct.
logicalMotorDoorModuleDisc))]

210 [(fa. PinchDetectionFA . object . deployedTo .dref in (ha.ct.
logicalLowSpeedBus , ha.ct. logicalSwitchMotorDisc , ha.ct.
logicalSwitchBCMDisc , ha.ct. logicalMotorBCMDisc , ha.ct.
logicalSwitchDoorModuleDisc , ha.ct. logicalMotorDoorModuleDisc))]

211 [(fa. PinchDetectionFA . position . deployedTo .dref in (ha.ct.
logicalLowSpeedBus , ha.ct. logicalSwitchMotorDisc , ha.ct.
logicalSwitchBCMDisc , ha.ct. logicalMotorBCMDisc , ha.ct.
logicalSwitchDoorModuleDisc , ha.ct. logicalMotorDoorModuleDisc))]

212
213 abstract SwitchNode : DeviceNode
214 numSwitches -> integer
215 baseMass -> integer
216 [mass = baseMass * numSwitches]

A.3 Two Door Power Window

Listing A.3: Complete E/E architecture for two door power window case study

117

1 //-------------------- Power Window System Model
----------------------------//

2 // Power Window System Model - This section is the concrete model of the
power

3 // window system . This is the model that instances will be generated for.
It

4 // will heavily use the previous two sections .
5
6 // Driver Window System
7 DriverWinSys : System
8 DWinSysFM : WinSysFM
9 DWinSysFA : WinSysFA

10 [DriverWinSys . DWinSysFM . express . expressUp <=> DWinSysFA .
PinchDetectionFA]

11 // Timing Chains
12 SwitchToControlDeviceLatency -> integer = WinSwitch . latency +

WinArbiter . latency
13 ControlToMotorDeviceLatency -> integer = WinController . latency +

WinMotor . latency
14 SwitchToControlCommLatency -> integer = localWinReq . latency +

winReq . latency
15 ControlToMotorCommLatency -> integer = winCmd . latency
16 SwitchToMotorEndToEndLatency -> integer =

SwitchToControlDeviceLatency + ControlToMotorDeviceLatency +
(SwitchToControlCommLatency + ControlToMotorCommLatency)/1000

17
18 PositionSensorToControlDeviceLatency -> integer = PositionSensor .

latency + PinchDetection . latency
19 PositionSensorToControlCommLatency -> integer = position . latency

+ object . latency
20 PositionSensorToMotorEndToEndLatency -> integer =

PositionSensorToControlDeviceLatency +
ControlToMotorDeviceLatency + (
PositionSensorToControlCommLatency + ControlToMotorCommLatency)
/1000

21
22 SwitchToControlLatency -> integer = SwitchToControlDeviceLatency

+ SwitchToControlCommLatency /1000
23 PositionSensorToControlLatency -> integer =

PositionSensorToControlDeviceLatency +
PositionSensorToControlCommLatency /1000

24 ControlInputDifference -> integer
25 [ControlInputDifference = (max(SwitchToControlLatency .dref ,

PositionSensorToControlLatency .dref)
26 - min(SwitchToControlLatency .dref ,

118

PositionSensorToControlLatency .dref))]
27
28 // End -to -End Timing Constraint (s)
29 [(TimingRequirements . BasicEndToEndLatency) => (

SwitchToMotorEndToEndLatency <= TimingRequirements .
BasicEndToEndLatency)]

30 [(PinchDetectionFA && TimingRequirements .
PinchDetectionEndToEndLatency) => (
PositionSensorToMotorEndToEndLatency <= TimingRequirements .
PinchDetectionEndToEndLatency)]

31 // Input Synchronization Contraint (s)
32 [(PinchDetectionFA && TimingRequirements . ControlInputSynchLatency

) => ControlInputDifference <= TimingRequirements .
ControlInputSynchLatency]

33
34 // Timing Margins
35 BasicEndToEndLatencyMargin -> integer ?
36 [if TimingRequirements . BasicEndToEndLatency then (

BasicEndToEndLatencyMargin = (TimingRequirements .
BasicEndToEndLatency - SwitchToMotorEndToEndLatency))

37 else (no BasicEndToEndLatencyMargin)]
38 PinchDetectionEndToEndLatencyMargin -> integer ?
39 [if TimingRequirements . PinchDetectionEndToEndLatency then (
40 PinchDetectionEndToEndLatencyMargin = (TimingRequirements .

PinchDetectionEndToEndLatency -
PositionSensorToMotorEndToEndLatency))

41 else (no PinchDetectionEndToEndLatencyMargin)]
42 DWinSysHA : WinSysHA
43 DWinSysDN : WinSysDN
44 [this.BCM = Car.BCM]
45 [this.EC = Car.EC]
46 [this. Switch . numSwitches = 2]
47 DWinSysPT : WinSysPT
48 [dn = DWinSysDN]
49 [inlineECDist = 40]
50 [inlineBCMDist = 40]
51 DWinSysCT : WinSysCT
52 [dn = DWinSysDN]
53 [inlineBCMDist = 40]
54 [dn = DWinSysDN]
55 [pt = DWinSysPT]
56 [ct = DWinSysCT]
57 DWinSysDpl : WinSysDpl
58 [fa = DWinSysFA]
59 [ha = DWinSysHA]

119

60
61
62 // Passenger Window System
63 PassengerWinSys : System
64 PWinSysFM : WinSysFM
65 [express => DriverWinSys . DWinSysFM . express]
66 [express . expressUp => DriverWinSys . DWinSysFM . express . expressUp]
67 PWinSysFA : WinSysFA
68 [PassengerWinSys . PWinSysFM . express . expressUp <=> PWinSysFA .

PinchDetectionFA]
69 DWinSwitch : FunctionalDevice
70 [implementation . hardware]
71 [baseLatency = 10]
72 dWinReq : FunctionConnector
73 [sender = DWinSwitch && receiver = WinArbiter]
74 [messageSize = 1]
75
76 // Timing Chains
77 SwitchToControlDeviceLatency -> integer = WinSwitch . latency +

WinArbiter . latency
78 ControlToMotorDeviceLatency -> integer = WinController . latency +

WinMotor . latency
79 SwitchToControlCommLatency -> integer = localWinReq . latency +

winReq . latency
80 ControlToMotorCommLatency -> integer = winCmd . latency
81 SwitchToMotorEndToEndLatency -> integer =

SwitchToControlDeviceLatency + ControlToMotorDeviceLatency +
(SwitchToControlCommLatency + ControlToMotorCommLatency)/1000

82
83 PositionSensorToControlDeviceLatency -> integer = PositionSensor .

latency + PinchDetection . latency
84 PositionSensorToControlCommLatency -> integer = position . latency

+ object . latency
85 PositionSensorToMotorEndToEndLatency -> integer =

PositionSensorToControlDeviceLatency +
ControlToMotorDeviceLatency + (
PositionSensorToControlCommLatency + ControlToMotorCommLatency)
/1000

86
87 SwitchToControlLatency -> integer = SwitchToControlDeviceLatency

+ SwitchToControlCommLatency /1000
88 PositionSensorToControlLatency -> integer =

PositionSensorToControlDeviceLatency +
PositionSensorToControlCommLatency /1000

89 ControlInputDifference -> integer

120

90 [ControlInputDifference = (max(SwitchToControlLatency .dref ,
PositionSensorToControlLatency .dref)

91 - min(SwitchToControlLatency .dref ,
PositionSensorToControlLatency .dref))]

92
93 // End -to -End Timing Constraint (s)
94 [(TimingRequirements . BasicEndToEndLatency) => (

SwitchToMotorEndToEndLatency <= TimingRequirements .
BasicEndToEndLatency)]

95 [(PinchDetectionFA && TimingRequirements .
PinchDetectionEndToEndLatency) => (
PositionSensorToMotorEndToEndLatency <= TimingRequirements .
PinchDetectionEndToEndLatency)]

96 // Input Synchronization Contraint (s)
97 [(PinchDetectionFA && TimingRequirements . ControlInputSynchLatency

) => ControlInputDifference <= TimingRequirements .
ControlInputSynchLatency]

98
99 // Timing Margins

100 BasicEndToEndLatencyMargin -> integer ?
101 [if TimingRequirements . BasicEndToEndLatency then (

BasicEndToEndLatencyMargin = (TimingRequirements .
BasicEndToEndLatency - SwitchToMotorEndToEndLatency))

102 else (no BasicEndToEndLatencyMargin)]
103 PinchDetectionEndToEndLatencyMargin -> integer ?
104 [if TimingRequirements . PinchDetectionEndToEndLatency then (
105 PinchDetectionEndToEndLatencyMargin = (TimingRequirements .

PinchDetectionEndToEndLatency -
PositionSensorToMotorEndToEndLatency))

106 else (no PinchDetectionEndToEndLatencyMargin)]
107
108 PWinSysHA : WinSysHA
109 PWinSysDN : WinSysDN
110 [this.BCM = Car.BCM]
111 [this.EC = Car.EC]
112 [this. Switch . numSwitches = 1]
113 DSwitch -> SwitchNode
114 [DSwitch = DriverWinSys . DWinSysHA . DWinSysDN . Switch]
115 PWinSysPT : WinSysPT
116 [dn = PWinSysDN]
117 [inlineECDist = 130]
118 [inlineBCMDist = 130]
119 PWinSysCT : WinSysCT
120 [dn = PWinSysDN]
121 [inlineBCMDist = 130]

121

122 logicalDoorBusJoin : LogicalBusBridge ?
123 [bus = (PWinSysCT . logicalLowSpeedBus , DWinSysCT .

logicalLowSpeedBus)]
124 [gatewayTransferTimePerSize = 10] // This is the time to

transfer a unit size over the gateway
125 [endpoint in (PWinSysDN .Motor , PWinSysDN .Switch ,

PWinSysDN .DoorModule , PWinSysDN .BCM.dref , DWinSysDN .
Motor , DWinSysDN .Switch , DWinSysDN . DoorModule)]

126 logicalDriveSwitchPassSwitch : DiscreteDataConnector ?
127 [length = 260]
128 [endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA .

PWinSysDN . Switch)]
129 logicalDriveSwitchPassMotor : DiscreteDataConnector ?
130 [length = 260]
131 [endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA .

PWinSysDN .Motor)]
132 logicalDriveSwitchPassDoorModule : DiscreteDataConnector ?
133 [length = 250]
134 [endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA .

PWinSysDN . DoorModule)]
135 logicalDriveSwitchBCM : DiscreteDataConnector ?
136 [length = 85]
137 [endpoint = (PWinSysHA . PWinSysDN . DSwitch .dref , PWinSysHA .

PWinSysDN .BCM.dref)]
138 [dn = PWinSysDN]
139 [pt = PWinSysPT]
140 [ct = PWinSysCT]
141 PWinSysDpl : WinSysDpl
142 [fa = PWinSysFA]
143 [ha = PWinSysHA]
144 [PWinSysFA . DWinSwitch . deployedTo .dref = PWinSysHA . PWinSysDN .

DSwitch .dref]
145 [PWinSysFA . dWinReq . deployedTo .dref in (
146 PWinSysHA . PWinSysCT . logicalDoorBusJoin ,
147 PWinSysHA . PWinSysCT . logicalDriveSwitchPassSwitch ,
148 PWinSysHA . PWinSysCT . logicalDriveSwitchPassMotor ,
149 PWinSysHA . PWinSysCT . logicalDriveSwitchPassDoorModule ,
150 PWinSysHA . PWinSysCT . logicalDriveSwitchBCM)]
151
152 //----------------------------- Car System Model

----------------------------//
153 Car
154 BCM : DeviceNode ?
155 [type = SmartDeviceType]
156 [mass = 408]

122

157 [cost = 460]
158 [ppm = 50]
159 [replaceCost = 460]
160 [speedFactor = 10]
161 EC : DeviceNode
162 [type = PowerDeviceType]
163 [mass = 0]
164 [cost = 0]
165 [ppm = 10]
166 [replaceCost = 0]
167
168
169 totalCarMass -> integer = sum(DeviceNode .mass) + (sum(HardwareConnector .

mass) /1000)
170 totalCarCost -> integer = sum(DeviceNode .cost) + (sum(HardwareConnector .

cost) /1000)
171 totalCarWarrantyCost -> integer = sum(DeviceNode . warrantyCost)
172
173
174 // Timing Requirements
175 TimingRequirements
176 BasicEndToEndLatency -> integer ?
177 PinchDetectionEndToEndLatency -> integer ?
178 ControlInputSynchLatency -> integer ?
179
180 // Optimization Goals:
181 // Comment out these goals if optimization should not be perfromed (no

other modifications are necessary)
182 // << minimize totalCarMass >>
183 // << minimize totalCarCost >>
184 // << minimize totalCarWarrantyCost >>

A.4 Central Door Locks

Listing A.4: Complete E/E architecture for central door locks case study
1 //------------------- Door Lock Abstract Clafer

--------------------------//
2 // Door Lock Abstract Clafer - This section contains all abstract clafers
3 // that detail a generic system / component that can be used in the

concerete
4 // system model.
5 abstract DoorLockFA : FunctionalAnalysis
6 // ------- Core Components ---------------//

123

7 // Cylinder Switches
8 DriverDoorCylinderSwitch : FunctionalDevice
9 [implementation . hardware]

10 [baseLatency = 10]
11 PassDoorCylinderSwitch : FunctionalDevice
12 [implementation . hardware]
13 [baseLatency = 10]
14 driverCylReq : FunctionConnector
15 [messageSize = 1]
16 [sender = DriverDoorCylinderSwitch && receiver = DoorLockControl]
17 passCylReq : FunctionConnector
18 [messageSize = 1]
19 [sender = PassDoorCylinderSwitch && receiver = DoorLockControl]
20 // Door Contacts
21 DriverDoorContact : FunctionalDevice
22 [implementation . hardware]
23 [baseLatency = 10]
24 PassDoorContact : FunctionalDevice
25 [implementation . hardware]
26 [baseLatency = 10]
27 RearRightPassDoorContact : FunctionalDevice
28 [implementation . hardware]
29 [baseLatency = 10]
30 RearLeftPassDoorContact : FunctionalDevice
31 [implementation . hardware]
32 [baseLatency = 10]
33 driverContactSignal : FunctionConnector
34 [messageSize = 1]
35 [sender = DriverDoorContact && receiver = DoorLockControl]
36 passContactSignal : FunctionConnector
37 [messageSize = 1]
38 [sender = PassDoorContact && receiver = DoorLockControl]
39 rearRightPassContactSignal : FunctionConnector
40 [messageSize = 1]
41 [sender = RearRightPassDoorContact && receiver = DoorLockControl]
42 rearLeftPassContactSignal : FunctionConnector
43 [messageSize = 1]
44 [sender = RearLeftPassDoorContact && receiver = DoorLockControl]
45 // Door Lock Sensors
46 DriverDoorLockSensor : FunctionalDevice
47 [implementation . hardware]
48 [baseLatency = 10]
49 PassDoorLockSensor : FunctionalDevice
50 [implementation . hardware]
51 [baseLatency = 10]

124

52 RearRightPassDoorLockSensor : FunctionalDevice
53 [implementation . hardware]
54 [baseLatency = 10]
55 RearLeftPassDoorLockSensor : FunctionalDevice
56 [implementation . hardware]
57 [baseLatency = 10]
58 driverLockPosition : FunctionConnector
59 [messageSize = 1]
60 [sender = DriverDoorLockSensor && receiver = DoorLockControl]
61 passLockPosition : FunctionConnector
62 [messageSize = 1]
63 [sender = PassDoorLockSensor && receiver = DoorLockControl]
64 rearRightPassLockPosition : FunctionConnector
65 [messageSize = 1]
66 [sender = RearRightPassDoorLockSensor && receiver =

DoorLockControl]
67 rearLeftPassLockPosition : FunctionConnector
68 [messageSize = 1]
69 [sender = RearLeftPassDoorLockSensor && receiver =

DoorLockControl]
70 // Door Lock Control
71 DoorLockControl : AnalysisFunction
72 [implementation . software]
73 [baseLatency = 4]
74 driverLockCmd : FunctionConnector
75 [messageSize = 1]
76 [sender = DoorLockControl && receiver = DriverDoorLockMotor]
77 passLockCmd : FunctionConnector
78 [messageSize = 1]
79 [sender = DoorLockControl && receiver = PassDoorLockMotor]
80 rearRightLockCmd : FunctionConnector
81 [messageSize = 1]
82 [sender = DoorLockControl && receiver =

RearRightPassDoorLockMotor]
83 rearLeftLockCmd : FunctionConnector
84 [messageSize = 1]
85 [sender = DoorLockControl && receiver = RearLeftPassDoorLockMotor

]
86 // Door Lock Motor
87 DriverDoorLockMotor : FunctionalDevice
88 [implementation . hardware]
89 [baseLatency = 10]
90 PassDoorLockMotor : FunctionalDevice
91 [implementation . hardware]
92 [baseLatency = 10]

125

93 RearRightPassDoorLockMotor : FunctionalDevice
94 [implementation . hardware]
95 [baseLatency = 10]
96 RearLeftPassDoorLockMotor : FunctionalDevice
97 [implementation . hardware]
98 [baseLatency = 10]
99 // Gear Position Sensor

100 GearPositionSensor : FunctionalDevice
101 [implementation . hardware]
102 [baseLatency = 10]
103 gearPostion : FunctionConnector
104 [messageSize = 1]
105 [sender = GearPositionSensor && receiver = DoorLockControl]
106
107 // ----- Optional Fragments / Components --------//
108 // Speed Smart Lock FA Components
109 SpeedSmartLockFA : FunctionalAnalysis ?
110 SpeedSensor : FunctionalDevice
111 [implementation . hardware]
112 [baseLatency = 10]
113 speed : FunctionConnector
114 [messageSize = 1]
115 [sender = SpeedSensor && receiver = DoorLockControl]
116 // Central or Distributed Lock Switch
117 xor DoorLockButtonFA
118 IndividualLockSwitchFA : FunctionalAnalysis
119 DriverDoorLockButton : FunctionalDevice
120 [implementation . hardware]
121 [baseLatency = 10]
122 PassDoorLockButton : FunctionalDevice
123 [implementation . hardware]
124 [baseLatency = 10]
125 driverDoorLockReq : FunctionConnector
126 [messageSize = 1]
127 [sender = DriverDoorLockButton && receiver =

DoorLockControl]
128 passDoorLockReq : FunctionConnector
129 [messageSize = 1]
130 [sender = PassDoorLockButton && receiver =

DoorLockControl]
131 CentralLockSwitchFA : FunctionalAnalysis
132 CentralLockButton : FunctionalDevice
133 [implementation . hardware]
134 [baseLatency = 10]
135 centralDoorLockReq : FunctionConnector

126

136 [messageSize = 1]
137 [sender = CentralLockButton && receiver = DoorLockControl

]
138
139 RemoteKeyAccessFA : FunctionalAnalysis ?
140 CentralRFAntenna : FunctionalDevice
141 [implementation . hardware]
142 [baseLatency = 10]
143 CentralRFReceiver : FunctionalDevice
144 [implementation . hardware]
145 [baseLatency = 10]
146 IDAuthentication : AnalysisFunction
147 [implementation . software]
148 [baseLatency = 4]
149
150 centralAntennaSignal : FunctionConnector
151 [messageSize = 1]
152 [sender = CentralRFAntenna && receiver = CentralRFReceiver]
153 centralReceiverMsg : FunctionConnector
154 [messageSize = 1]
155 [sender = CentralRFReceiver && receiver = IDAuthentication]
156 authenticationMsg : FunctionConnector
157 [messageSize = 1]
158 [sender = IDAuthentication && receiver = DoorLockControl]
159
160 PassiveKeyEntryFA : FunctionalAnalysis ?
161 DriverOutsideLFAntenna : FunctionalDevice
162 [implementation . hardware]
163 [baseLatency = 10]
164 DriverLFTransmitter : FunctionalDevice
165 [implementation . hardware]
166 [baseLatency = 10]
167 PassOutsideLFAntenna : FunctionalDevice
168 [implementation . hardware]
169 [baseLatency = 10]
170 PassLFTransmitter : FunctionalDevice
171 [implementation . hardware]
172 [baseLatency = 10]
173 InsideFrontLFAntenna : FunctionalDevice
174 [implementation . hardware]
175 [baseLatency = 10]
176 InsideCenterLFAntenna : FunctionalDevice
177 [implementation . hardware]
178 [baseLatency = 10]
179 InsideRearLFAntenna : FunctionalDevice

127

180 [implementation . hardware]
181 [baseLatency = 10]
182 InsideLFTransmitter : FunctionalDevice
183 [implementation . hardware]
184 [baseLatency = 10]
185
186 driverTransMsg : FunctionConnector
187 [messageSize = 1]
188 [sender = DriverLFTransmitter && receiver =

DriverOutsideLFAntenna]
189 passTransMsg : FunctionConnector
190 [messageSize = 1]
191 [sender = PassLFTransmitter && receiver =

PassOutsideLFAntenna]
192 insideFrontTransMsg : FunctionConnector
193 [messageSize = 1]
194 [sender = InsideLFTransmitter && receiver =

InsideFrontLFAntenna]
195 insideCenterTransMsg : FunctionConnector
196 [messageSize = 1]
197 [sender = InsideLFTransmitter && receiver =

InsideCenterLFAntenna]
198 insideRearTransMsg : FunctionConnector
199 [messageSize = 1]
200 [sender = InsideLFTransmitter && receiver =

InsideRearLFAntenna]
201
202
203 xor OutsideDoorHandleSensor
204 ButtonSensor
205 DriverDoorButtonSensor : FunctionalDevice
206 [implementation . hardware]
207 [baseLatency = 10]
208 PassDoorButtonSensor : FunctionalDevice
209 [implementation . hardware]
210 [baseLatency = 10]
211 CapacitiveSensor
212 DriverDoorCapacitiveSensor : FunctionalDevice
213 [implementation . hardware]
214 [baseLatency = 10]
215 PassDoorCapacitiveSensor : FunctionalDevice
216 [implementation . hardware]
217 [baseLatency = 10]
218
219 PKEControl : AnalysisFunction

128

220 [implementation . software]
221 [baseLatency = 4]
222
223 driverDoorHandleReq : FunctionConnector
224 [messageSize = 1]
225 [sender in (OutsideDoorHandleSensor . ButtonSensor .

DriverDoorButtonSensor ,
226 OutsideDoorHandleSensor . CapacitiveSensor .

DriverDoorCapacitiveSensor) && receiver = PKEControl]
227 passDoorHandleReq : FunctionConnector
228 [messageSize = 1]
229 [sender in (OutsideDoorHandleSensor . ButtonSensor .

PassDoorButtonSensor ,
230 OutsideDoorHandleSensor . CapacitiveSensor .

PassDoorCapacitiveSensor) && receiver = PKEControl]
231 driverPKEReq : FunctionConnector
232 [messageSize = 1]
233 [sender = PKEControl && receiver = DriverLFTransmitter]
234 passPKEReq : FunctionConnector
235 [messageSize = 1]
236 [sender = PKEControl && receiver = PassLFTransmitter]
237 insidePKEReq : FunctionConnector
238 [messageSize = 1]
239 [sender = PKEControl && receiver = InsideLFTransmitter]
240 doorLockControlReq : FunctionConnector
241 [messageSize = 1]
242 [sender = DoorLockControl && receiver = PKEControl]
243
244 abstract DoorLockDN : DeviceNodeClassification
245 //---------- Core Device Nodes ----------------//
246 DriverDoorLockMotorAssembly : DeviceNode
247 [type = EEDeviceType]
248 [cost = 144]
249 [ppm = 20]
250 [replaceCost = 144]
251 [mass = 104]
252 PassengerDoorLockMotorAssembly : DeviceNode
253 [type = EEDeviceType]
254 [cost = 144]
255 [ppm = 20]
256 [replaceCost = 144]
257 [mass = 104]
258 RearRightPassengerDoorLockMotorAssembly : DeviceNode
259 [type = EEDeviceType]
260 [cost = 144]

129

261 [ppm = 20]
262 [replaceCost = 144]
263 [mass = 104]
264 RearLeftPassengerDoorLockMotorAssembly : DeviceNode
265 [type = EEDeviceType]
266 [cost = 144]
267 [ppm = 20]
268 [replaceCost = 144]
269 [mass = 104]
270 TCM -> DeviceNode
271 BCM -> DeviceNode
272 EC -> DeviceNode
273
274 // ------- Optional Device Nodes ---------------//
275 // Speed Smart Lock Nodes
276 CombinationMeter -> DeviceNode ?
277
278 // Central or Individual Lock Nodes
279 xor DoorLockButtonDN
280 IndividualLockSwitchDN : DeviceNodeClassification
281 DriverLockPowerSwitch : DeviceNode
282 [type = EEDeviceType]
283 [cost = 23]
284 [replaceCost = 23]
285 [ppm = 10]
286 [mass = 28]
287 PassLockPowerSwitch : DeviceNode
288 [type = EEDeviceType]
289 [cost = 23]
290 [replaceCost = 23]
291 [ppm = 10]
292 [mass = 28]
293 CentralLockSwitchDN
294 CenterLockPowerSwitch : DeviceNode
295 [type = EEDeviceType]
296 [cost = 23]
297 [replaceCost = 23]
298 [ppm = 10]
299 [mass = 28]
300
301 RemoteKeyAccessDN : DeviceNodeClassification ?
302 CentralRFAntennaModule : DeviceNode
303 [type = SmartDeviceType]
304 [mass = 91]
305 [cost = 57]

130

306 [ppm = 50]
307 [replaceCost = 57]
308 [speedFactor = 10]
309
310 PassiveKeyEntryDN : DeviceNodeClassification ?
311 Transmitter : DeviceNode ?
312 [type = EEDeviceType]
313 [mass = 397]
314 [cost = 239]
315 [ppm = 50]
316 [replaceCost = 293]
317 PassiveKeyModule : DeviceNode ?
318 [type = SmartDeviceType]
319 [mass = 408]
320 [cost = 191]
321 [ppm = 50]
322 [replaceCost = 191]
323 [speedFactor = 50]
324 xor OutsideDoorHandleSensor
325 ButtonSensor
326 DriverDoorButtonHandleModule : DeviceNode
327 [type = EEDeviceType]
328 [mass = 408]
329 [cost = 41]
330 [ppm = 10]
331 [replaceCost = 41]
332 PassDoorButtonHandleModule : DeviceNode
333 [type = EEDeviceType]
334 [mass = 408]
335 [cost = 41]
336 [ppm = 10]
337 [replaceCost = 41]
338 CapacitiveSensor
339 DriverDoorCapacitiveHandleModule : DeviceNode
340 [type = EEDeviceType]
341 [mass = 198]
342 [cost = 218]
343 [ppm = 10]
344 [replaceCost = 218]
345 PassDoorCapacitiveHandleModule : DeviceNode
346 [type = EEDeviceType]
347 [mass = 198]
348 [cost = 218]
349 [ppm = 10]
350 [replaceCost = 218]

131

351 InsideFrontLFAntenna : DeviceNode
352 [type = EEDeviceType]
353 [mass = 198]
354 [cost = 57]
355 [ppm = 10]
356 [replaceCost = 57]
357 InsideCenterLFAntenna : DeviceNode
358 [type = EEDeviceType]
359 [mass = 198]
360 [cost = 57]
361 [ppm = 10]
362 [replaceCost = 57]
363 InsideRearLFAntenna : DeviceNode
364 [type = EEDeviceType]
365 [mass = 198]
366 [cost = 57]
367 [ppm = 10]
368 [replaceCost = 57]
369
370 abstract DoorLockPT : PowerTopology
371 dn -> DoorLockDN
372
373 // Motor Load Power
374 driverMotorLP : LoadPowerConnector
375 [length = 10]
376 [source = dn.BCM.dref && sink = dn. DriverDoorLockMotorAssembly]
377 passMotorLP : LoadPowerConnector
378 [length = 15]
379 [source = dn.BCM.dref && sink = dn. PassengerDoorLockMotorAssembly

]
380 rearRightPassMotorLP : LoadPowerConnector
381 [length = 25]
382 [source = dn.BCM.dref && sink = dn.

RearRightPassengerDoorLockMotorAssembly]
383 rearLeftPassMotorLP : LoadPowerConnector
384 [length = 30]
385 [source = dn.BCM.dref && sink = dn.

RearLeftPassengerDoorLockMotorAssembly]
386
387 // Remote Key Access Device Power
388 centralRFModuleDP : DevicePowerConnector ?
389 [length = 10]
390 [source = dn.EC.dref && sink = dn. RemoteKeyAccessDN .

CentralRFAntennaModule]
391

132

392 // Passive Key Entry Device Power
393 pkeModuleDP : DevicePowerConnector ?
394 [length = 4]
395 [source = dn.EC.dref && sink = dn. PassiveKeyEntryDN .

PassiveKeyModule]
396 transmitterDP : DevicePowerConnector ?
397 [length = 5]
398 [source = dn.EC.dref && sink = dn. PassiveKeyEntryDN . Transmitter]
399 driverCapacitiveSensorDP : DevicePowerConnector ?
400 [length = 11]
401 [source = dn.EC.dref && sink = dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule]

402 passCapacitiveSensorDP : DevicePowerConnector ?
403 [length = 16]
404 [source = dn.EC.dref && sink = dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . CapacitiveSensor .
PassDoorCapacitiveHandleModule]

405
406 abstract DoorLockCT : CommTopology
407 dn -> DoorLockDN
408
409 // Busses
410 logicalLowSpeedBus : BusConnector ? // This is the logical bus

connecting lower priority ECU ’s such as in the body domain
411 [type.LIN || type. LowSpeedCAN]
412 [length = 45]
413 [endpoint in (dn.BCM.dref , dn. RemoteKeyAccessDN .

CentralRFAntennaModule , dn. PassiveKeyEntryDN . PassiveKeyModule
)]

414 logicalHighSpeedBus : BusConnector // This is the logical bus
connecting high priority ECU ’s such as vehicle control

415 [type. HighSpeedCAN || type. FlexRay]
416 [length = 30]
417 [endpoint in (dn.BCM.dref , dn.TCM.dref , dn. CombinationMeter .dref)

]
418
419 // Logical Discrete Wires
420 logicalBCMDriverMotorAssemblyDW : DiscreteDataConnector
421 [length = 12]
422 [endpoint = (dn.BCM.dref , dn. DriverDoorLockMotorAssembly)]
423 logicalBCMPassMotorAssemblyDW : DiscreteDataConnector
424 [length = 17]
425 [endpoint = (dn.BCM.dref , dn. PassengerDoorLockMotorAssembly)]
426 logicalBCMRearRightPassMotorAssemblyDW : DiscreteDataConnector

133

427 [length = 27]
428 [endpoint = (dn.BCM.dref , dn.

RearRightPassengerDoorLockMotorAssembly)]
429 logicalBCMRearLeftPassMotorAssemblyDW : DiscreteDataConnector
430 [length = 32]
431 [endpoint = (dn.BCM.dref , dn.

RearLeftPassengerDoorLockMotorAssembly)]
432 logicalBCMDriverLockPowerSwitchDW : DiscreteDataConnector ?
433 [length = 14]
434 [endpoint = (dn.BCM.dref , dn. DoorLockButtonDN .

IndividualLockSwitchDN . DriverLockPowerSwitch)]
435 logicalBCMPassLockPowerSwitchDW : DiscreteDataConnector ?
436 [length = 19]
437 [endpoint = (dn.BCM.dref , dn. DoorLockButtonDN .

IndividualLockSwitchDN . PassLockPowerSwitch)]
438 logicalBCMCenterLockPowerSwitchDW : DiscreteDataConnector ?
439 [length = 3]
440 [endpoint = (dn.BCM.dref , dn. DoorLockButtonDN . CentralLockSwitchDN

. CenterLockPowerSwitch)]
441
442 logicalBCMDriverCapacitiveSensorModule : AnalogDataConnector ?
443 [length = 15]
444 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule)]

445 logicalBCMPassCapacitiveSensorModule : AnalogDataConnector ?
446 [length = 20]
447 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . CapacitiveSensor .
PassDoorCapacitiveHandleModule)]

448 logicalBCMDriverButtonSensorModule : AnalogDataConnector ?
449 [length = 15]
450 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . ButtonSensor .
DriverDoorButtonHandleModule)]

451 logicalBCMPassButtonSensorModule : AnalogDataConnector ?
452 [length = 20]
453 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . ButtonSensor .
PassDoorButtonHandleModule)]

454
455 logicalPKEModuleDriverCapacitiveSensorModule : DiscreteDataConnector

?
456 [length = 15]
457 [endpoint = (dn. PassiveKeyEntryDN . PassiveKeyModule , dn.

134

PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule)]

458 logicalPKEModulePassCapacitiveSensorModule : DiscreteDataConnector ?
459 [length = 20]
460 [endpoint = (dn. PassiveKeyEntryDN . PassiveKeyModule , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor .
PassDoorCapacitiveHandleModule)]

461 logicalPKEModuleDriverButtonSensorModule : DiscreteDataConnector ?
462 [length = 15]
463 [endpoint = (dn. PassiveKeyEntryDN . PassiveKeyModule , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor .
DriverDoorButtonHandleModule)]

464 logicalPKEModulePassButtonSensorModule : DiscreteDataConnector ?
465 [length = 20]
466 [endpoint = (dn. PassiveKeyEntryDN . PassiveKeyModule , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor .
PassDoorButtonHandleModule)]

467
468 logicalTransmitterDriverCapacitiveSensorModule : AnalogDataConnector

?
469 [length = 15]
470 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule)]

471 logicalTransmitterPassCapacitiveSensorModule : AnalogDataConnector ?
472 [length = 20]
473 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor .
PassDoorCapacitiveHandleModule)]

474 logicalTransmitterDriverButtonSensorModule : AnalogDataConnector ?
475 [length = 15]
476 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor .
DriverDoorButtonHandleModule)]

477 logicalTransmitterPassButtonSensorModule : AnalogDataConnector ?
478 [length = 20]
479 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor .
PassDoorButtonHandleModule)]

480
481 logicalPKEModuleTransmitter : DiscreteDataConnector ?
482 [length = 5]
483 [endpoint = (dn. PassiveKeyEntryDN . PassiveKeyModule , dn.

PassiveKeyEntryDN . Transmitter)]
484

135

485 logicalBCMInsideFrontAntenna : AnalogDataConnector ?
486 [length = 13]
487 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

InsideFrontLFAntenna)]
488 logicalTransmitterInsideFrontAntenna : AnalogDataConnector ?
489 [length = 1]
490 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . InsideFrontLFAntenna)]
491 logicalBCMInsideCenterAntenna : AnalogDataConnector ?
492 [length = 6]
493 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

InsideCenterLFAntenna)]
494 logicalTransmitterInsideCenterAntenna : AnalogDataConnector ?
495 [length = 4]
496 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . InsideCenterLFAntenna)]
497 logicalBCMInsideRearAntenna : AnalogDataConnector ?
498 [length = 14]
499 [endpoint = (dn.BCM.dref , dn. PassiveKeyEntryDN .

InsideRearLFAntenna)]
500 logicalTransmitterInsideRearAntenna : AnalogDataConnector ?
501 [length = 12]
502 [endpoint = (dn. PassiveKeyEntryDN . Transmitter , dn.

PassiveKeyEntryDN . InsideRearLFAntenna)]
503
504
505
506 abstract DoorLockHA : HardwareArchitecture
507 dn -> DoorLockDN
508 pt -> DoorLockPT
509 ct -> DoorLockCT
510
511 abstract DoorLockDpl : Deployment
512 fa -> DoorLockFA
513 ha -> DoorLockHA
514
515 // Cylinder Switch Deployment
516 [fa. DriverDoorCylinderSwitch . deployedTo = ha.dn.

DriverDoorLockMotorAssembly]
517 [fa. PassDoorCylinderSwitch . deployedTo = ha.dn.

PassengerDoorLockMotorAssembly]
518
519 // Door Contacts Deployment
520 [fa. DriverDoorContact . deployedTo = ha.dn. DriverDoorLockMotorAssembly]
521 [fa. PassDoorContact . deployedTo = ha.dn. PassengerDoorLockMotorAssembly

136

]
522 [fa. RearRightPassDoorContact . deployedTo = ha.dn.

RearRightPassengerDoorLockMotorAssembly]
523 [fa. RearLeftPassDoorContact . deployedTo = ha.dn.

RearLeftPassengerDoorLockMotorAssembly]
524
525 // Door Lock Sensors Deployment
526 [fa. DriverDoorLockSensor . deployedTo = ha.dn.

DriverDoorLockMotorAssembly]
527 [fa. PassDoorLockSensor . deployedTo = ha.dn.

PassengerDoorLockMotorAssembly]
528 [fa. RearRightPassDoorLockSensor . deployedTo = ha.dn.

RearRightPassengerDoorLockMotorAssembly]
529 [fa. RearLeftPassDoorLockSensor . deployedTo = ha.dn.

RearLeftPassengerDoorLockMotorAssembly]
530
531 // Door Lock Control Deployment
532 [fa. DoorLockControl . deployedTo = ha.dn.BCM.dref]
533
534
535 // Door Lock Motor Deployment
536 [fa. DriverDoorLockMotor . deployedTo = ha.dn.

DriverDoorLockMotorAssembly]
537 [fa. PassDoorLockMotor . deployedTo = ha.dn.

PassengerDoorLockMotorAssembly]
538 [fa. RearRightPassDoorLockMotor . deployedTo = ha.dn.

RearRightPassengerDoorLockMotorAssembly]
539 [fa. RearLeftPassDoorLockMotor . deployedTo = ha.dn.

RearLeftPassengerDoorLockMotorAssembly]
540
541 // Gear Position Sensor Deployment
542 [fa. GearPositionSensor . deployedTo = ha.dn.TCM.dref]
543
544 // Speed Sensor Deployment
545 [fa. SpeedSmartLockFA => (fa. SpeedSmartLockFA . SpeedSensor . deployedTo =

ha.dn. CombinationMeter .dref)]
546
547 // Power Button Unlock Deployment
548 [fa. DoorLockButtonFA . IndividualLockSwitchFA => (fa. DoorLockButtonFA .

IndividualLockSwitchFA . DriverDoorLockButton . deployedTo = ha.dn.
DoorLockButtonDN . IndividualLockSwitchDN . DriverLockPowerSwitch)]

549 [fa. DoorLockButtonFA . IndividualLockSwitchFA => (fa. DoorLockButtonFA .
IndividualLockSwitchFA . PassDoorLockButton . deployedTo = ha.dn.
DoorLockButtonDN . IndividualLockSwitchDN . PassLockPowerSwitch)]

550 [fa. DoorLockButtonFA . CentralLockSwitchFA => (fa. DoorLockButtonFA .

137

CentralLockSwitchFA . CentralLockButton . deployedTo = ha.dn.
DoorLockButtonDN . CentralLockSwitchDN . CenterLockPowerSwitch)]

551
552 // Remote Key Access Deployment
553 [fa. RemoteKeyAccessFA => (fa. RemoteKeyAccessFA . CentralRFAntenna .

deployedTo = ha.dn. RemoteKeyAccessDN . CentralRFAntennaModule)]
554 [fa. RemoteKeyAccessFA => (fa. RemoteKeyAccessFA . CentralRFReceiver .

deployedTo = ha.dn. RemoteKeyAccessDN . CentralRFAntennaModule)]
555 [fa. RemoteKeyAccessFA => (fa. RemoteKeyAccessFA . IDAuthentication .

deployedTo in (ha.dn.BCM.dref , ha.dn. RemoteKeyAccessDN .
CentralRFAntennaModule , ha.dn. PassiveKeyEntryDN . PassiveKeyModule)
)]

556
557 // Passive Key Entry Deployment
558 PassiveKeyEntryDpl ?
559 xor OutsideDoorHandleSensor
560 ButtonSensor
561 [ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .

ButtonSensor && fa. PassiveKeyEntryFA .
OutsideDoorHandleSensor . ButtonSensor]

562 [fa. PassiveKeyEntryFA . OutsideDoorHandleSensor .
ButtonSensor . DriverDoorButtonSensor . deployedTo = ha.
dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .
ButtonSensor . DriverDoorButtonHandleModule]

563 [fa. PassiveKeyEntryFA . OutsideDoorHandleSensor .
ButtonSensor . PassDoorButtonSensor . deployedTo = ha.dn.
PassiveKeyEntryDN . OutsideDoorHandleSensor .
ButtonSensor . PassDoorButtonHandleModule]

564 [fa. PassiveKeyEntryFA . DriverOutsideLFAntenna . deployedTo =
ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .

ButtonSensor . DriverDoorButtonHandleModule]
565 [fa. PassiveKeyEntryFA . PassOutsideLFAntenna . deployedTo =

ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .
ButtonSensor . PassDoorButtonHandleModule]

566 CapacitiveSensor
567 [ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .

CapacitiveSensor && fa. PassiveKeyEntryFA .
OutsideDoorHandleSensor . CapacitiveSensor]

568 [fa. PassiveKeyEntryFA . OutsideDoorHandleSensor .
CapacitiveSensor . DriverDoorCapacitiveSensor .
deployedTo = ha.dn. PassiveKeyEntryDN .
OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule]

569 [fa. PassiveKeyEntryFA . OutsideDoorHandleSensor .
CapacitiveSensor . PassDoorCapacitiveSensor . deployedTo

138

= ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .
CapacitiveSensor . PassDoorCapacitiveHandleModule]

570 [fa. PassiveKeyEntryFA . DriverOutsideLFAntenna . deployedTo =
ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .

CapacitiveSensor . DriverDoorCapacitiveHandleModule]
571 [fa. PassiveKeyEntryFA . PassOutsideLFAntenna . deployedTo =

ha.dn. PassiveKeyEntryDN . OutsideDoorHandleSensor .
CapacitiveSensor . PassDoorCapacitiveHandleModule]

572
573
574 [fa. PassiveKeyEntryFA . DriverLFTransmitter . deployedTo in (ha.dn.

PassiveKeyEntryDN . Transmitter , ha.dn.BCM.dref)]
575 [fa. PassiveKeyEntryFA . PassLFTransmitter . deployedTo in (ha.dn.

PassiveKeyEntryDN . Transmitter , ha.dn.BCM.dref)]
576
577 [fa. PassiveKeyEntryFA . InsideFrontLFAntenna . deployedTo = ha.dn.

PassiveKeyEntryDN . InsideFrontLFAntenna]
578 [fa. PassiveKeyEntryFA . InsideCenterLFAntenna . deployedTo = ha.dn.

PassiveKeyEntryDN . InsideCenterLFAntenna]
579 [fa. PassiveKeyEntryFA . InsideRearLFAntenna . deployedTo = ha.dn.

PassiveKeyEntryDN . InsideRearLFAntenna]
580 [fa. PassiveKeyEntryFA . InsideLFTransmitter . deployedTo in (ha.dn.

PassiveKeyEntryDN . Transmitter , ha.dn.BCM.dref)]
581
582 [fa. PassiveKeyEntryFA . PKEControl . deployedTo in (ha.dn.BCM.dref ,

ha.dn. PassiveKeyEntryDN . PassiveKeyModule)]
583
584 // Power Topology Deployment
585 [ha.pt. pkeModuleDP <=> ha.dn. PassiveKeyEntryDN . PassiveKeyModule]
586 [ha.pt. driverCapacitiveSensorDP <=> ha.dn. PassiveKeyEntryDN .

OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveHandleModule]

587 [ha.pt. passCapacitiveSensorDP <=> ha.dn. PassiveKeyEntryDN .
OutsideDoorHandleSensor . CapacitiveSensor .
PassDoorCapacitiveHandleModule]

588 [ha.pt. centralRFModuleDP <=> ha.dn. RemoteKeyAccessDN]
589 [ha.pt. transmitterDP <=> ha.dn. PassiveKeyEntryDN . Transmitter]
590
591 // Communication Deployment
592 [fa. driverCylReq . deployedTo = ha.ct. logicalBCMDriverMotorAssemblyDW]
593 [fa. passCylReq . deployedTo = ha.ct. logicalBCMPassMotorAssemblyDW]
594
595 [fa. driverContactSignal . deployedTo = ha.ct.

logicalBCMDriverMotorAssemblyDW]
596 [fa. passContactSignal . deployedTo = ha.ct.

139

logicalBCMPassMotorAssemblyDW]
597 [fa. rearRightPassContactSignal . deployedTo = ha.ct.

logicalBCMRearRightPassMotorAssemblyDW]
598 [fa. rearLeftPassContactSignal . deployedTo = ha.ct.

logicalBCMRearLeftPassMotorAssemblyDW]
599
600 [fa. driverLockPosition . deployedTo = ha.ct.

logicalBCMDriverMotorAssemblyDW]
601 [fa. passLockPosition . deployedTo = ha.ct. logicalBCMPassMotorAssemblyDW

]
602 [fa. rearRightPassLockPosition . deployedTo = ha.ct.

logicalBCMRearRightPassMotorAssemblyDW]
603 [fa. rearLeftPassLockPosition . deployedTo = ha.ct.

logicalBCMRearLeftPassMotorAssemblyDW]
604
605 [fa. driverLockCmd . deployedTo = ha.ct. logicalBCMDriverMotorAssemblyDW]
606 [fa. passLockCmd . deployedTo = ha.ct. logicalBCMPassMotorAssemblyDW]
607 [fa. rearRightLockCmd . deployedTo = ha.ct.

logicalBCMRearRightPassMotorAssemblyDW]
608 [fa. rearLeftLockCmd . deployedTo = ha.ct.

logicalBCMRearLeftPassMotorAssemblyDW]
609
610 [fa. gearPostion . deployedTo = ha.ct. logicalHighSpeedBus]
611
612 [fa. SpeedSmartLockFA => (fa. SpeedSmartLockFA .speed. deployedTo in (ha.

ct. logicalHighSpeedBus))]
613
614 [fa. DoorLockButtonFA . IndividualLockSwitchFA => (fa. DoorLockButtonFA .

IndividualLockSwitchFA . driverDoorLockReq . deployedTo = ha.ct.
logicalBCMDriverLockPowerSwitchDW)]

615 [fa. DoorLockButtonFA . IndividualLockSwitchFA => (fa. DoorLockButtonFA .
IndividualLockSwitchFA . passDoorLockReq . deployedTo = ha.ct.
logicalBCMPassLockPowerSwitchDW)]

616 [fa. DoorLockButtonFA . CentralLockSwitchFA => (fa. DoorLockButtonFA .
CentralLockSwitchFA . centralDoorLockReq . deployedTo = ha.ct.
logicalBCMCenterLockPowerSwitchDW)]

617
618 [fa. RemoteKeyAccessFA => (no fa. RemoteKeyAccessFA .

centralAntennaSignal . deployedTo)]
619 [fa. RemoteKeyAccessFA => (fa. RemoteKeyAccessFA . centralReceiverMsg .

deployedTo in (ha.ct. logicalLowSpeedBus))]
620 [fa. RemoteKeyAccessFA => (fa. RemoteKeyAccessFA . authenticationMsg .

deployedTo in (ha.ct. logicalLowSpeedBus))]
621
622 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . driverTransMsg .

140

deployedTo in (ha.ct.
logicalTransmitterDriverCapacitiveSensorModule , ha.ct.
logicalTransmitterDriverButtonSensorModule , ha.ct.
logicalBCMDriverCapacitiveSensorModule , ha.ct.
logicalBCMDriverButtonSensorModule)]

623 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . driverPKEReq . deployedTo
in (ha.ct. logicalPKEModuleTransmitter , ha.ct. logicalLowSpeedBus)

]
624 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . passTransMsg . deployedTo

in (ha.ct. logicalTransmitterPassCapacitiveSensorModule , ha.ct.
logicalTransmitterPassButtonSensorModule , ha.ct.
logicalBCMPassCapacitiveSensorModule , ha.ct.
logicalBCMPassButtonSensorModule)]

625 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . passPKEReq . deployedTo
in (ha.ct. logicalPKEModuleTransmitter , ha.ct. logicalLowSpeedBus)]

626 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . insideFrontTransMsg .
deployedTo in (ha.ct. logicalTransmitterInsideFrontAntenna , ha.ct.
logicalBCMInsideFrontAntenna)]

627 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . insideCenterTransMsg .
deployedTo in (ha.ct. logicalTransmitterInsideCenterAntenna , ha.ct
. logicalBCMInsideCenterAntenna)]

628 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . insideRearTransMsg .
deployedTo in (ha.ct. logicalTransmitterInsideRearAntenna , ha.ct.
logicalBCMInsideRearAntenna)]

629 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . insidePKEReq . deployedTo
in (ha.ct. logicalPKEModuleTransmitter , ha.ct. logicalLowSpeedBus)

]
630 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . driverDoorHandleReq .

deployedTo in (ha.ct. logicalPKEModuleDriverButtonSensorModule , ha
.ct. logicalPKEModuleDriverCapacitiveSensorModule , ha.ct.
logicalBCMDriverButtonSensorModule , ha.ct.
logicalBCMDriverCapacitiveSensorModule)]

631 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . passDoorHandleReq .
deployedTo in (ha.ct. logicalPKEModulePassButtonSensorModule , ha.
ct. logicalPKEModulePassCapacitiveSensorModule , ha.ct.
logicalBCMPassButtonSensorModule , ha.ct.
logicalBCMPassCapacitiveSensorModule)]

632 [fa. PassiveKeyEntryFA => fa. PassiveKeyEntryFA . doorLockControlReq .
deployedTo in (ha.ct. logicalLowSpeedBus)]

633
634
635 //-------------------- Door Lock System Model

----------------------------//
636 DoorLockSys : System
637 DLockFM : FeatureModel

141

638 Basic : Feature
639 IndividualLockSwitch : Feature ? // This feature is to

determine if the driver and passenger should have
individual door lock switches or use a central lock
switch .

640 SpeedSmartLock : Feature ? // This feature is if the door
should lock when the car is above a certain speed.

641 RKA : Feature ? // Remote Key Access
642 PKE : Feature ? // Passive Key Entry
643 xor OutsideDoorHandleSensor
644 ButtonSensor : Feature
645 CapacitiveSensor : Feature
646 [PKE => RKA]
647 DLockFA : DoorLockFA
648 [DoorLockButtonFA . IndividualLockSwitchFA <=> DLockFM .Basic.

IndividualLockSwitch]
649 [SpeedSmartLockFA <=> DLockFM .Basic. SpeedSmartLock]
650 [RemoteKeyAccessFA <=> DLockFM .RKA]
651 [PassiveKeyEntryFA <=> DLockFM .PKE]
652 [PassiveKeyEntryFA . OutsideDoorHandleSensor . ButtonSensor <=>

DLockFM .PKE. OutsideDoorHandleSensor . ButtonSensor]
653 [PassiveKeyEntryFA . OutsideDoorHandleSensor . CapacitiveSensor <=>

DLockFM .PKE. OutsideDoorHandleSensor . CapacitiveSensor]
654
655 // Timing Chains
656 DriverSwitchToControl -> integer
657 [if (DLockFM .Basic. IndividualLockSwitch) then (
658 this = DoorLockButtonFA . IndividualLockSwitchFA .

DriverDoorLockButton . latency +
659 DoorLockButtonFA . IndividualLockSwitchFA . driverDoorLockReq

. latency /1000
660) else (
661 this = DoorLockButtonFA . CentralLockSwitchFA .

CentralLockButton . latency +
662 DoorLockButtonFA . CentralLockSwitchFA . centralDoorLockReq .

latency /1000
663)]
664 DriverContactToControl -> integer = DriverDoorContact . latency +

driverContactSignal . latency /1000
665 DriverLockSensorToControl -> integer = DriverDoorLockSensor .

latency + driverLockPosition . latency /1000
666
667 DriverSwitchToMotor -> integer
668 [if (DLockFM .Basic. IndividualLockSwitch) then (
669 this = DoorLockButtonFA . IndividualLockSwitchFA .

142

DriverDoorLockButton . latency +
670 DoorLockControl . latency +
671 DriverDoorLockMotor . latency +
672 ((driverLockCmd . latency + DoorLockButtonFA .

IndividualLockSwitchFA . driverDoorLockReq . latency)
/1000)

673) else (
674 this = DoorLockButtonFA . CentralLockSwitchFA .

CentralLockButton . latency +
675 DoorLockControl . latency +
676 DriverDoorLockMotor . latency +
677 ((DoorLockButtonFA . CentralLockSwitchFA . centralDoorLockReq

. latency + driverLockCmd . latency) /1000)
678)]
679
680 ControlInputDifference -> integer
681 [ControlInputDifference = (max(DriverSwitchToControl .dref ,

DriverContactToControl .dref , DriverLockSensorToControl .dref)
682 - min(DriverSwitchToControl .dref , DriverContactToControl .dref

, DriverLockSensorToControl .dref))]
683
684 PassiveKeyCapacitiveSensorToMotor -> integer ?
685 [if (DLockFM .PKE. OutsideDoorHandleSensor . CapacitiveSensor) then (
686 PassiveKeyCapacitiveSensorToMotor = PassiveKeyEntryFA .

OutsideDoorHandleSensor . CapacitiveSensor .
DriverDoorCapacitiveSensor . latency +

687 PassiveKeyEntryFA . PKEControl . latency +
688 PassiveKeyEntryFA . DriverLFTransmitter . latency +
689 PassiveKeyEntryFA . DriverOutsideLFAntenna . latency + 50 +
690 RemoteKeyAccessFA . CentralRFAntenna . latency +
691 RemoteKeyAccessFA . CentralRFReceiver . latency +
692 RemoteKeyAccessFA . IDAuthentication . latency +
693 DoorLockControl . latency +
694 DriverDoorLockMotor . latency +
695 ((PassiveKeyEntryFA . driverDoorHandleReq . latency +

PassiveKeyEntryFA . driverPKEReq . latency +
PassiveKeyEntryFA . driverTransMsg . latency +

696 RemoteKeyAccessFA . centralAntennaSignal . latency +
RemoteKeyAccessFA . centralReceiverMsg . latency +

697 RemoteKeyAccessFA . authenticationMsg . latency +
driverLockCmd . latency) /1000))

698 else (no PassiveKeyCapacitiveSensorToMotor)]
699
700 // Timing Constraints
701 // Driver lock switch to driver motor timing constraint

143

702 [(DLockFM .Basic. IndividualLockSwitch && DoorLockRequirements .
TimingRequirements . BasicIndividualSwitchLatency) => (

703 DriverSwitchToMotor <= DoorLockRequirements .
TimingRequirements . BasicIndividualSwitchLatency

704)]
705 // Central lock switch to driver motor timing constraint
706 [(no DLockFM .Basic. IndividualLockSwitch && DoorLockRequirements .

TimingRequirements . BasicCentralSwitchLatency)=> (
707 DriverSwitchToMotor <= DoorLockRequirements .

TimingRequirements . BasicCentralSwitchLatency
708)]
709 // Switch Unlock Input Synchronization Timing Constraint
710 [DoorLockRequirements . TimingRequirements .

SwitchUnlockInputSynchLatency => (
711 ControlInputDifference <= DoorLockRequirements .

TimingRequirements . SwitchUnlockInputSynchLatency
712)]
713 // Passive Key Capacitive Sensor to Motor Timing Constraint
714 [(DoorLockRequirements . TimingRequirements . PKELatency && DLockFM .

PKE. OutsideDoorHandleSensor . CapacitiveSensor) => (
715 PassiveKeyCapacitiveSensorToMotor <= DoorLockRequirements .

TimingRequirements . PKELatency
716)]
717
718 // Timing Margins
719 BasicIndividualSwitchLatencyMargin -> integer ?
720 [if DoorLockRequirements . TimingRequirements .

BasicIndividualSwitchLatency then (
BasicIndividualSwitchLatencyMargin = (DoorLockRequirements .
TimingRequirements . BasicIndividualSwitchLatency -
DriverSwitchToMotor))

721 else (no BasicIndividualSwitchLatencyMargin)]
722 BasicCentralSwitchLatencyMargin -> integer ?
723 [if DoorLockRequirements . TimingRequirements .

SwitchUnlockInputSynchLatency then (
BasicCentralSwitchLatencyMargin = (DoorLockRequirements .
TimingRequirements . SwitchUnlockInputSynchLatency -
DriverSwitchToMotor))

724 else (no BasicCentralSwitchLatencyMargin)]
725 SwitchUnlockInputSynchLatencyMargin -> integer ?
726 [if DoorLockRequirements . TimingRequirements .

SwitchUnlockInputSynchLatency then (
727 SwitchUnlockInputSynchLatencyMargin = (DoorLockRequirements .

TimingRequirements . SwitchUnlockInputSynchLatency -
ControlInputDifference))

144

728 else (no SwitchUnlockInputSynchLatencyMargin)]
729 PKELatencyMargin -> integer ?
730 [if DoorLockRequirements . TimingRequirements . PKELatency then (

PKELatencyMargin = (DoorLockRequirements . TimingRequirements .
PKELatency - PassiveKeyCapacitiveSensorToMotor))

731 else (no PKELatencyMargin)]
732
733 DLockHA : DoorLockHA
734 DLockDN : DoorLockDN
735 [BCM = Car.BCM]
736 [TCM = Car.TCM]
737 [EC = Car.EC]
738 [CombinationMeter => CombinationMeter = Car. CombinationMeter]
739 [DoorLockButtonDN . IndividualLockSwitchDN <=> DLockFM .Basic.

IndividualLockSwitch]
740 [CombinationMeter <=> DLockFM .Basic. SpeedSmartLock]
741 [RemoteKeyAccessDN <=> DLockFM .RKA]
742 [PassiveKeyEntryDN <=> DLockFM .PKE]
743 [PassiveKeyEntryDN . OutsideDoorHandleSensor . ButtonSensor <=>

DLockFM .PKE. OutsideDoorHandleSensor . ButtonSensor]
744 [PassiveKeyEntryDN . OutsideDoorHandleSensor . CapacitiveSensor

<=> DLockFM .PKE. OutsideDoorHandleSensor . CapacitiveSensor]
745 DLockPT : DoorLockPT
746 [dn = DLockDN]
747 DLockCT : DoorLockCT
748 [dn = DLockDN]
749 [dn = DLockDN]
750 [pt = DLockPT]
751 [ct = DLockCT]
752 DLockDpl : DoorLockDpl
753 [fa = DLockFA]
754 [ha = DLockHA]
755 [DLockFM .PKE <=> PassiveKeyEntryDpl]
756
757 DoorLockRequirements
758 TimingRequirements
759 BasicIndividualSwitchLatency -> integer ?
760 BasicCentralSwitchLatency -> integer ?
761 SwitchUnlockInputSynchLatency -> integer ?
762 PKELatency -> integer ?
763
764 Car
765 BCM : DeviceNode
766 [type = SmartDeviceType]
767 [mass = 408]

145

768 [cost = 261]
769 [ppm = 50]
770 [replaceCost = 261]
771 [speedFactor = 10]
772 TCM : DeviceNode
773 [type = SmartDeviceType]
774 [mass = 204]
775 [cost = 117]
776 [ppm = 50]
777 [replaceCost = 117]
778 [speedFactor = 10]
779 CombinationMeter : DeviceNode ?
780 [type = SmartDeviceType]
781 [mass = 198]
782 [cost = 649]
783 [ppm = 50]
784 [replaceCost = 649]
785 [speedFactor = 10]
786 EC : DeviceNode
787 [type = PowerDeviceType]
788 [mass = 0]
789 [cost = 0]
790 [ppm = 10]
791 [replaceCost = 0]
792
793 totalCarMass -> integer = sum(DeviceNode .mass) + sum(HardwareConnector .

mass)/1000
794 totalCarCost -> integer = sum(DeviceNode .cost) + sum(

HardwareDataConnector .cost)/1000
795 totalCarWarrantyCost -> integer = sum(DeviceNode . warrantyCost)/1000
796
797 // Optimization Goals:
798 // Comment out these goals if optimization should not be perfromed (no

other modifications are necessary)
799 // << minimize totalCarMass >>
800 // << minimize totalCarCost >>
801 // << minimize totalCarWarrantyCost >>

146

References

[1] alloy: a language and tools for relational models. http://alloy.mit.edu/alloy/.

[2] Archeopterix. http://users.monash.edu.au/~aldeidaa/ArcheOpterix.html.

[3] Autofocus 3. http://af3.fortiss.org.

[4] Clafer. http://clafer.org.

[5] Clafer configurator. http://t3-necsis.cs.uwaterloo.ca:8093/.

[6] Clafer moo visualizer. http://t3-necsis.cs.uwaterloo.ca:8092/.

[7] Road vehicles – local interconnect network (lin) – part 6: Protocol conformance test
specification, 2015.

[8] Zubair Akhtar. Model based automotive system design: A power window controller
case study. Master’s thesis, University of Waterloo, 2015. https://uwspace.uwaterloo.
ca/handle/10012/9215.

[9] A. Aleti, S. Bjornander, Lars Grunske, and I. Meedeniya. Archeopterix: An extendable
tool for architecture optimization of aadl models. In Model-Based Methodologies for
Pervasive and Embedded Software, 2009. MOMPES ’09. ICSE Workshop on, pages
61–71, 2009.

[10] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software archi-
tecture optimization methods: A systematic literature review. IEEE Transactions on
Software Engineering, 39(5):658–683, 2013.

[11] A. Aleti, Lars Grunske, I. Meedeniya, and I. Moser. Let the ants deploy your software
- an aco based deployment optimisation strategy. In Automated Software Engineering,
2009. ASE ’09. 24th IEEE/ACM International Conference on, pages 505–509, 2009.

147

http://alloy.mit.edu/alloy/
http://users.monash.edu.au/~aldeidaa/ArcheOpterix.html
http://af3.fortiss.org
http://clafer.org
http://t3-necsis.cs.uwaterloo.ca:8093/
http://t3-necsis.cs.uwaterloo.ca:8092/
https://uwspace.uwaterloo.ca/handle/10012/9215
https://uwspace.uwaterloo.ca/handle/10012/9215

[12] Aldeida Aleti and Indika Meedeniya. Component deployment optimisation with
bayesian learning. In Proceedings of the 14th International ACM Sigsoft Symposium
on Component Based Software Engineering, CBSE ’11, pages 11–20, 2011.

[13] Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin, Rafael Olaechea, Jia Liang, and
Krzysztof Czarnecki. Clafer tools for product line engineering. In Software Product
Line Conference, 2013.

[14] Alessandro Biondi, Marco Di Natale, and Youcheng Sun. Moving from single-core
to multicore: Initial findings on a fuel injection case study. Technical report, SAE
Technical Paper, 2016.

[15] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: Unifying class and feature modeling. Software and Systems Mod-
eling, 2014. The final publication is available at Springer via DOI.

[16] LS Brandt, N Krämer, J Metzger, U Lindemann, et al. Optimization approach for
function-partitioning in an automotive electric electronic system architecture. In
DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference,
Dubrovnik, Croatia, 2012.

[17] Manfred Broy. Challenges in automotive software engineering. In 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006,
pages 33–42, 2006.

[18] D. W. Coit and A. E. Smith. Redundancy allocation to maximize a lower percentile of
the system time-to-failure distribution. IEEE Transactions on Reliability, 47(1):79–87,
1998.

[19] David W. Coit and Alice E. Smith. Solving the redundancy allocation problem using a
combined neural network/genetic algorithm approach. Comput. Oper. Res., 23(6):515–
526, 1996.

[20] P. Cuenot, DeJiu Chen, S. Gerard, Henrik Lonn, M.-O. Reiser, David Servat, C.-
J. Sjostedt, R.T. Kolagari, M. Torngren, and M. Weber. Managing complexity of
automotive electronics using the east-adl. In Engineering Complex Computer Systems,
2007. 12th IEEE International Conference on, pages 353–358, 2007.

[21] B. P. Dave and N. K. Jha. Cohra: hardware-software cosynthesis of hierarchical
heterogeneous distributed embedded systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(10):900–919, 1998.

148

[22] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area
network (can) schedulability analysis: Refuted, revisited and revised. Real-Time Syst.,
35(3):239–272, 2007. http://dx.doi.org/10.1007/s11241-007-9012-7.

[23] Marco Di Natale. Understanding and using the controller area network. inst. eecs.
berkeley. edu/˜ ee249/fa08/Lectures/handout_canbus2. pdf, 2008.

[24] J. Drake, M. Harbour, J. Gutierrez, P. Martinez, J. Medina, and J. Palencia. Modeling
and analysis suite for real time applications. http://mast.unican.es/mast_description.
pdf, 2014.

[25] EAST-ADL Association. EAST-ADL domain model specification, version V2.1.12,
2013. http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

[26] Peter Feiler and Jörgen Hansson. Flow latency analysis with the architecture anal-
ysis and design language (aadl). Technical Report CMU/SEI-2007-TN-010, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2007. http:
//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8229.

[27] Bastian Florentz and Michaela Huhn. Embedded systems architecture: Evaluation
and analysis. In Proceedings of the Second International Conference on Quality of
Software Architectures, QoSA’06, pages 145–162, Berlin, Heidelberg, 2006. Springer-
Verlag.

[28] M. Glaß, M. Lukasiewycz, R. Wanka, C. Haubelt, and J. Teich. Multi-objective
routing and topology optimization in networked embedded systems. In Embedded
Computer Systems: Architectures, Modeling, and Simulation, 2008. SAMOS 2008.
International Conference on, pages 74–81, 2008.

[29] Sebastian Graf, Michael Glaß, Jürgen Teich, and Christoph Lauer. Multi-variant-
based design space exploration for automotive embedded systems. In Proceedings of
the Conference on Design, Automation & Test in Europe, DATE ’14, pages 7:1–7:6,
3001 Leuven, Belgium, Belgium, 2014. European Design and Automation Association.

[30] A. Hamann. Iterative Design Space Exploration and Robustness Optimization for
Embedded Systems. Cuvillier, 2008.

[31] Kabsu Han, Yongseop Kwon, Wooyeon Kim, and Jeonghun Cho. Distributed hierar-
chical service network for automotive embedded system. In Information Networking
(ICOIN), 2012 International Conference on, pages 188–192, 2012.

149

http://dx.doi.org/10.1007/s11241-007-9012-7
http://mast.unican.es/mast_description.pdf
http://mast.unican.es/mast_description.pdf
http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8229
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8229

[32] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Design optimization of time- and cost-
constrained fault-tolerant distributed embedded systems. In Design, Automation and
Test in Europe, 2005. Proceedings, pages 864–869 Vol. 2, 2005.

[33] Daniel Jackson, H Estler, Derek Rayside, et al. The guided improvement algorithm
for exact, general-purpose, many-objective combinatorial optimization. 2009.

[34] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design
space exploration. In Foundations of Computer Software. Modeling, Development, and
Verification of Adaptive Systems, pages 33–54. Springer, 2010.

[35] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-
TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1990.

[36] Stefan Kugele and Gheorghe Pucea. Model-based optimization of automotive e/e-
architectures. In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, CSTVA 2014, pages 18–29, New York,
NY, USA, 2014. ACM.

[37] Sadan Kulturel-Konak, David W. Coit, and Fatema Baheranwala. Pruned pareto-
optimal sets for the system redundancy allocation problem based on multiple priori-
tized objectives. Journal of Heuristics, 14(4):335–357, 2008.

[38] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chaudron. An evolutionary
multiobjective optimization approach to component-based software architecture de-
sign. In Evolutionary Computation (CEC), 2011 IEEE Congress on, pages 432–439,
2011.

[39] Jia Liang. Solving clafer models with choco. (GSDLab-TR 2012-12-30), 2012. http:
//gsd.uwaterloo.ca/node/509.

[40] Yun-Chia Liang and Min-Hua Lo. Multi-objective redundancy allocation optimization
using a variable neighborhood search algorithm. Journal of Heuristics, 16(3):511–535,
2009.

[41] C. W. Lin, L. Rao, P. Giusto, J. D’Ambrosio, and A. L. Sangiovanni-Vincentelli.
Efficient wire routing and wire sizing for weight minimization of automotive systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(11):1730–1741, 2015.

150

http://gsd.uwaterloo.ca/node/509
http://gsd.uwaterloo.ca/node/509

[42] Indika Meedeniya. Architecture Optimisation of Embedded Systems under Uncertainty
in Probabilistic Reliability Evaluation Model Parameters. PhD thesis, Swinburne Uni-
versity of Technology, Melbourne, Australia, 2012.

[43] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske. Architecture-
driven reliability and energy optimization for complex embedded systems. In Pro-
ceedings of the 6th International Conference on Quality of Software Architectures:
Research into Practice - Reality and Gaps, QoSA’10, pages 52–67, 2010.

[44] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske. Reliability-
driven deployment optimization for embedded systems. J. Syst. Softw., 84(5):835–846,
2011.

[45] Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske. Architecture-based
reliability evaluation under uncertainty. In Proceedings of the Joint ACM SIGSOFT
Conference – QoSA and ACM SIGSOFT Symposium – ISARCS on Quality of Software
Architectures – QoSA and Architecting Critical Systems – ISARCS, QoSA-ISARCS
’11, pages 85–94, 2011.

[46] J. Montgomery and I. Moser. Parallel constraint handling in a multiobjective evolu-
tionary algorithm for the automotive deployment problem. In e-Science Workshops,
2010 Sixth IEEE International Conference on, pages 104–109, 2010.

[47] Ralph Moritz, Tamara Ulrich, and Lothar Thiele. Evolutionary exploration of e/e-
architectures in automotive design. In Operations Research Proceedings 2011, pages
361–366. Springer, 2012.

[48] I. Moser and S. Mostaghim. The automotive deployment problem: A practical ap-
plication for constrained multiobjective evolutionary optimisation. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1–8, 2010.

[49] Alexandr Murashkin. Automotive electronic/electric architecture modeling, design
exploration and optimization using Clafer. Master’s thesis, University of Waterloo,
2014. https://uwspace.uwaterloo.ca/handle/10012/8780.

[50] Alexandr Murashkin, Michał Antkiewicz, Derek Rayside, and Krzysztof Czarnecki.
Visualization and exploration of optimal variants in product line engineering. In
Software Product Line Conference, 2013.

[51] Alexandr Murashkin, Michał Antkiewicz, Derek Rayside, and Krzysztof Czarnecki.
Visualization and exploration of optimal variants in product line engineering. In
Software Product Line Conference, Tokyo, Japan, 2013.

151

https://uwspace.uwaterloo.ca/handle/10012/8780

[52] Alexandr Murashkin, Luis Silva Azevedo, Jianmei Guo, Edward Zulkoski, Jia Liang,
Krzysztof Czarnecki, and David Parker. Automated decomposition and allocation of
automotive safety integrity levels using exact solvers. In SAE 2015 World Congress
& Exhibition, Detroit, Michigan, USA, 2015. SAE, SAE. http://papers.sae.org/
2015-01-0156/.

[53] Mark Nicholson, Alan Burns, and Yo Dd. Emergence of an architectural topology for
safety-critical real-time systems, 1997.

[54] Yiannis Papadopoulos and Christian Grante. Evolving car designs using model-based
automated safety analysis and optimisation techniques. J. Syst. Softw., 76(1):77–89,
2005.

[55] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco3 Documenta-
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2014.

[56] Jordan Ross. Case studies on E/E architectures for power window and central door
locks systems, 2016. http://gsd.uwaterloo.ca/node/667.

[57] Vladimir Rupanov, Christian Buckl, Ludger Fiege, Michael Armbruster, Alois Knoll,
and Gernot Spiegelberg. Early safety evaluation of design decisions in e/e architec-
ture according to iso 26262. In Proceedings of the 3rd international ACM SIGSOFT
symposium on Architecting Critical Systems, pages 1–10. ACM, 2012.

[58] Jörg Schäuffele. E/e architectural design and optimization using preevision. Technical
report, SAE Technical Paper, 2016.

[59] Software Engineering Institute. OSATE, version 2. http://osate.github.io/.

[60] Thilo Streichert, Michael Glaß, Christian Haubelt, and Jürgen Teich. Design space
exploration of reliable networked embedded systems. Journ. on Systems Architecture,
pages 751–763, 2007.

[61] H. A. Taboada, J. F. Espiritu, and D. W. Coit. Moms-ga: A multi-objective multi-
state genetic algorithm for system reliability optimization design problems. IEEE
Transactions on Reliability, 57(1):182–191, 2008.

[62] Heidi A. Taboada, Fatema Baheranwala, David W. Coit, and Naruemon Wat-
tanapongsakorn. Practical solutions for multi-objective optimization: An applica-
tion to system reliability design problems. Reliability Engineering & System Safety,
92(3):314 – 322, 2007. Selected Papers Presented at the Fourth International Confer-
ence on Quality and ReliabilityICQR2005Fourth International Conference on Quality
and Reliability.

152

http://papers.sae.org/2015-01-0156/
http://papers.sae.org/2015-01-0156/
http://gsd.uwaterloo.ca/node/667
http://osate.github.io/

[63] Heidi A. Taboada and David W. Coit. Data clustering of solutions for multiple ob-
jective system reliability optimization problems. Quality Technology & Quantitative
Management Journal, pages 35–54, 2007.

[64] S. Voss, J. Eder, and B. Schaetz, editors. Scheduling Synthesis for Multi-Period SW
Components, 2016.

[65] S. Voss and B. Schatz. Deployment and scheduling synthesis for mixed-critical shared-
memory applications. In Engineering of Computer Based Systems (ECBS), 2013 20th
IEEE International Conference and Workshops on the, pages 100–109, 2013.

[66] Marc Zeller and Christian Prehofer. Modeling and efficient solving of extra-functional
properties for adaptation in networked embedded real-time systems. J. Syst. Archit.,
59(10):1067–1082, 2013.

153

	List of Tables
	List of Figures
	Introduction
	Clafer Background
	Types of clafers and inheritance
	Instance generation

	Clafer multiplicity and group cardinality
	References
	Writing Basic Constraints
	Working with Integers
	Optimization Objectives

	Reference Model
	Reference Model Layers
	Reference Model Perspectives

	Characterizing the Possible Design Scenarios
	Possible Design Exploration Scenarios
	Generalizing the Possible Design Exploration Scenarios
	Example Design Exploration using Templates

	Encoding the Reference Model in Clafer
	Encoding of Reference Model Layers in Clafer
	Using Clafer to Model a Simplified Power Window

	The Supporting Reasoner and Tools

	Modeling Two Case Studies in Clafer
	Power Window
	Single Door: Driver
	Two Door: Driver & Front Passenger
	Quality Attributes & Timing Analysis

	Door Locks
	Feature Model
	Functional Analysis Architecture
	Device Node Classification
	Power Topology
	Communication Topology
	Deployment
	Quality Attributes & Timing Analysis

	Evaluation
	Research Methodology
	Comparison to State-of-the-Art Tools
	Role of Multiple Layers
	Performance Evaluation

	Comparison to State-of-the-Art Tools
	Research Question 1
	Research Question 2

	Role of Multiple Layers (Research Question 3)
	Performance Evaluation
	Research Question 4
	Research Question 5

	Threats to Validity
	Research Questions 1 & 2
	Research Question 3
	Research Questions 4 & 5

	Related Work
	Survey of Architecture Optimization
	Recent Advances in E/E Architecture Evaluation & Optimization
	Extensions to Previous Work

	Conclusions & Future Work
	APPENDICES
	Full Source Code for Clafer Models
	Reference Model
	Generalized Power Window
	Two Door Power Window
	Central Door Locks

	References

