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Abstract

The aim of dynamic scheduling is to efficiently assign available resources to the most

suitable patients. The dynamic assignment of multi-class, multi-priority patients over time

has long been a challenge, especially for scheduling in advance and under non-deterministic

capacity. In this paper, we first conduct descriptive analytics on MRI data of over 3.7

million patient records from 74 hospitals. The dataset captures patients of four different

priority levels, with different wait time targets, seeking treatment for one of ten classes

of procedures, which have been scheduled over a period of 3 years. The goal is to serve

90% of patients within their wait time targets; however, under current practice, 67% of

patients exceed their target wait times. We characterize the main factors affecting the

waiting times and conduct predictive analytics to forecast the distribution of the daily

patient arrivals, as well as the service capacity or number of procedures performed daily

at each hospital. We then prescribe two simple and practical dynamic scheduling policies

based on a balance between the First-In First-Out (FIFO) and strict priority policies;

namely, weight accumulation and priority promotion. Under the weight accumulation

policy, patients from different priority levels start with varying initial weights, which then

accumulates as a linear function of their waiting time. Patients of higher weights are

prioritized for treatment in each period. Under the priority promotion policy, a strict

priority policy is applied to priority levels where patients are promoted to a higher priority

level after waiting for a predetermined threshold of time. To evaluate the proposed policies,

we design a simulation model that applies the proposed scheduling policies and evaluates

them against two performance measures: 1) total exceeding time: the total number of

days by which patients exceed their wait time target, and 2) overflow proportion: the

percentage of patients within each priority group that exceed the wait time target. Using

historical data, we show that, compared to the current practice, the proposed policies
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achieve a significant improvement in both performance measures. To investigate the value

of information about the future demand, we schedule patients at different points of time

from their day of arrival. The results show that hospitals can considerably enhance their

wait time management by delaying patient scheduling.
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Chapter 1

Introduction

Appointment scheduling is mainly used to manage access to services by matching the

existing resources to the most suitable demand. Many factors can influence the service

performance including patient arrivals, available resources, and scheduling policies. Pa-

tient arrivals can be influenced through, for example, online wait time announcement or

clustering. Capacity deficiencies, which are often caused by a mismatch between demands

and available resources, are mitigated through capacity optimization and resource alloca-

tion. The scheduling policy governs the process of assigning appropriate patients to the

available services units. A good scheduling policy leads to better queue management, more

efficient use of resources, and reductions in waiting times. Poor scheduling mechanisms,

however, cause inefficient allocation of resources and inadequate access to services, leading

to prolonged waiting times. In this paper, we mainly focus on the scheduling of multi-class,

multi-priority patients where different priority levels have different wait time targets, and

different classes have different service durations leading to uncertainty over daily number

of procedures performed.

We analyze over 3,700,000 records of data, gathered from 74 hospitals providing MRI

services over three years. Patients are of different priority and classes, with specific wait
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time targets for each class. The hospitals’ goal is to treat over 90% of patients within their

wait time target; however, based on the available data, the percentage of patients who

exceeded their target increased from 56% in 2012 to over 67% in 2015. To address this

gap in achieving wait time target, we propose practical scheduling policies that reduce the

waiting time compared to current scheduling mechanisms.

In order to better understand the true disparity between demand and capacity, we

first analyze two aspects of the data: the daily patient arrivals and the daily procedures

performed. Due to the variable durations of the different types of operation and the

randomness of which types are performed each day, the number of procedures performed

each day in MRI hospitals is non-deterministic. We use statistical distributions to estimate

and forecast patient arrivals and daily procedures performed. The historical data is tested

against a large number of standard distributions and, by means of various goodness-of-fit

tests, the best-fitting models are selected. Using training and validation sets to eliminate

overfitting and estimation errors, we construct a descriptive and predictive model that can

reflect the actual daily patient arrivals and forecast the future demand.

Even though there is no universal standardized scheduling policy, there are two com-

monly used appointment scheduling methods: First-In, First-Out (FIFO) and strict pri-

ority. Patients’ treatment order in the former policy is based solely on their arrival time,

while the latter gives preferential treatment to high-priority classes over lower-class pa-

tients. Under FIFO, the urgency and short wait time target of higher priority patients are

overlooked because patients from all priority classes are considered as equals. In contrast,

under the strict priority policy, lower priority groups are not treated until the pool of higher

priority patients is exhausted. Therefore, the prompt treatment of high priority patients

are often at the expense of lower priority ones. Sometimes, treating lower priority patients

before the higher priority ones is more efficient, as long as all higher priority patients are
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still treated within their wait time target. We aim to find a balance between the two

scheduling mechanisms, by obtaining a point in time when a lower priority patient, that

has been waiting for a long time, can be treated before a higher priority patient.

We prescribe two practical simple scheduling policies to determine such a point in

time; namely, weight accumulation and priority promotion. Under the weight accumula-

tion policy, patients from different priority levels start with different initial weights, and

accumulate more weight as a linear function of their waiting time. The accumulated weight

is a combination of the initial score, which is a function of the patients’ priority levels, and

rate of increase, which is a function of their waiting time. The weight is used to determine

the order of treatment for patients, whereby those patients with higher weights are treated

first. For the priority promotion policy, we propose a strict priority scheduling policy with

non-static priorities. The time-dependent and dynamically changing priority allow patients

to be promoted to a higher priority group after waiting for a predetermined threshold of

time. The markedly different average waiting time, as experienced by different priority

groups under strict priority, is reduced by the priority promotion policy.

In addition to the scheduling policy, another important but often overlooked factor

that influences the performance of a scheduling process is the timing of the scheduling. We

analyze two common practices in dynamic scheduling: allocation scheduling and advance

scheduling. Under the allocation scheduling policy, we delay the patient scheduling to the

actual procedure date when all the information regarding the patient pool is available. The

more predominate choice in the real world is advance scheduling of patients where they are

scheduled several days prior to their service date. However, when based on the forecasted

model, advance scheduling can result in sub-optimal performance in the service system.

We compare the results of scheduling on the day of treatment with scheduling various days

in advance, including on the day of arrival, to examine the value of information lost due
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to advance scheduling. This demonstrates that, as we schedule further in advance, there is

more unknown information regarding the daily patient arrivals and capacity, causing the

occurrence of inefficient allocations and increased waiting times. When scheduling on the

day of arrival, the smallest amount of information is known, which necessitates the greatest

level of estimations and leads to the highest uncertainty and longest average waiting time.

The gradual shift from complete lack of information when scheduling on the day of arrival,

to comprehensive information under allocation scheduling demonstrates the improvement

in average waiting time with the availability of additional pieces of information. The value

of information can be exploited by hospitals to determine the optimal scheduling time in

order to achieve a balance between efficient usage of resources and the benefits of advance

planning.

Utilizing the data and forecasted distributions, we construct a discrete-time, multi-

period simulation model. The simulation model replicates the patient inflow from the

forecasted demand, determines the order of treatment based on the proposed scheduling

policies, obtains daily procedures based on the forecasted distributions, and evaluates the

results against the proposed performance measures. The two measures proposed incorpo-

rate intricacies arising from the existence of multiple priority classes with different wait

targets. The exceeding time performance measure calculates the total number of days by

which patients exceed their wait time target, while the overflow proportion performance

measure computes the percentage of patients within each priority level that exceed their

target.

By implementing the proposed scheduling policies in the simulation and evaluating

them based on the performance measures, we achieve an improvement of over 30% in the

rate of timely treatments. The results are validated against all 74 hospitals and similar

level of improvement is observed in 72 of the hospitals.
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Chapter 2

Literature Review

There has been a significant number of operations management studies on the appointment

scheduling process and its effects on patient waiting time. It is concluded by Chakraborty

et al. (2010) that poor scheduling has been a major source of operational inefficiency, while

a good scheduling policy helps to set the pace of access to service. Viewed from the resource

perspective, a well-established scheduling process helps to achieve a more efficient use of

existing resources (Lowery and Martin 1989). A flexible and dynamic scheduling system

can accommodate the rapid changes in demand and ensure that services are conducted in

a timely fashion (Ahn and Hyun 1989). Our paper mainly focuses on dynamic allocation

and advance scheduling policies for multi-priority multi-class patients with different wait

time targets under a non-deterministic daily capacity.

In general, multi-period dynamic scheduling can be divided into allocation scheduling

and advance scheduling. Multi-period dynamic allocation scheduling is studied fairly ex-

tensively. One method of dynamic appointment scheduling is resource allocation. Gerchak

et al. (1996) implement dynamic scheduling for two classes of patients: emergency and
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elective surgery cases. Their paper analyzes the means of determining the number of elec-

tive surgeries of uncertain durations to accept each day, under random daily emergency

surgery requirements. Qu et al. (2007) meanwhile assess the optimal static percentage of

daily resources allocated to patients from different priority groups. The daily capacity is

distributed between open-access and scheduled patients to determine the optimal resource

allocation methods. In Gupta and Wang (2008), instead of static daily allocation, allocated

spots are dynamically changed to satisfy the daily needs and are dependent on requests

from previous periods. Ayvaz and Huh (2010), using a dynamic programming approach,

design a model that handles multiple classes of patients with different reactions to delayed

services under a limited capacity. Luo et al. (2012) consider an appointment scheduling

problem with no-shows and service interruption and investigate the consequences of pa-

tients not attending an appointment by analyzing the wasted appointment spaces. More

recently, Truong and Ruzal-Shapiro (2015) combine these ideas to design a decision pro-

cess to dynamically assign daily resources to patients from different priority classes with

various wait time targets. Feldman et al. (2014) incorporate the patient’ preferences into

the decision process to enhance service experiences. The patients are no longer assumed

to accept all appointment times offered; they can either choose from a range of available

appointments or wait for a later time.

Another method of dynamic appointment scheduling is the priority queue whereby

the patients’ priorities are used to determine the order of treatments. Kleinrock and

Finkelstein (1967) introduces the idea of a priority queue scheduling method that modified

the classical structures of FIFO and strict priority. The proposed time-dependent priority

queue changes the perception that low priority patients cannot receive service until all the

high-priority patients have been served. Later, Hay and Valentin (2006) combine the idea

of an initial score and accumulated priority as a linear function of the patients’ waiting
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time to determine the order of treatments. Stanford et al. (2014) further improves this

model to incorporate multiple priority groups and analyze the waiting time distribution

to obtain a maximum priority process. Min and Yih (2014) also employ a time-dependent

priority to schedule patients based on their initial urgency as well as their waiting time.

The effects of this policy have been tested under various conditions and over an infinite

time horizon.

Unlike the allocation scheduling, there are few papers in the literature that consider

advance scheduling. Kopach et al. (2007) introduce the idea of open access where patients

are treated close to their appointment request date to avoid no-shows. They analyze how

scheduling closer to treatment dates can help to improve the patients’ access and reduce

uncertainty. Gocgun and Ghate (2012) model the advance scheduling problem as a Markov

decision process and develop an approximate dynamic programming method to solve it.

This model is extended by Liu et al. (2012) to consider advance scheduling with no-

shows and cancellations. Patrick (2012) further demonstrates that the dynamic advance

scheduling model with no-shows can be improved with shorter booking windows.
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Chapter 3

Problem Definition

Patients’ health status can deteriorate over time; therefore, timely treatment is an ongoing

concern for hospitals. Each MRI (magnetic resonance image) patient, based on their

priority level, has a wait time target which, if exceeded, can lead to dissatisfaction and

health deterioration. It is recommended in the National Maximal Wait Time Access Target

for Medical Imaging that the 90th percentile treatment rate is the “preferred retrospective

measure” within each priority level. However, our data analysis of 74 hospitals show that

under current practice, over 67% of patients exceed their wait time target and many exceed

it by more than 100 days.

There are two methods of tackling the issue of prolonged waiting time: capacity expan-

sion and improvement on the scheduling policy. In 74 hospitals that we study, the number

of patients requiring MRI scans has been rapidly increasing in recent years; however, the

available equipment and facility capacities have not kept up with the increases in demand.

The shortfall in capacity has exacerbated wait times. Therefore, the limitation on capacity

constitutes the first obstacle to reducing the waiting time. Another factor affecting waiting
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time is the scheduling policy. Currently, hospitals employ a loosely enforced prioritization

strategy, aiming to treat higher priority patients first, regardless of how long lower priority

patients have been waiting. This leads to a considerably longer wait time for the lower pri-

ority patients. In summary, the inefficient usage of resources, combined with the mismatch

between demand and capacity, causes prolonged waiting times for MRI patients.

The higher priority patients, if served within their respective wait time target, are not

in imminent danger. Therefore, lower priority patients, who have been waiting for a long

time, can be treated first as long as the higher priority patients are still treated within

their wait time target. We aim to determine the point at which a lower priority patient

can be treated before a higher priority one. In this way, we will enable a high number of

patients to be treated within their wait time target and reduce the total number of days

patients exceed their wait time target.

First we conduct descriptive analytics on patient data from 74 hospitals to understand

the provision of MRI services under current practice. We provide some insights into how

the existence of different classes of scans increase the variability in the available capacity

and how different mix of priority levels impact the waiting time at each hospital. We

then conduct predictive analytics to forecast the daily demand patient arrivals for the

MRI services and estimate the daily capacity (number of procedures) at each hospital,

considering that the length of service varies based on the class of scan.

Finally, we conduct prescriptive analytics to provide practical solutions to improving

the MRI services. Specifically, we model the problem as a dynamic scheduling problem that

reduces the total percentage of patients exceeding their wait time target for multi-class,

multi-priority patients with different wait time targets. There are two aspects of scheduling

to be considered: the dynamic process of assigning patients with different priority levels to

the required services, and the time at which patients are scheduled for their appointments.
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We propose two practical, simple, and efficient policies that consider both the number of

patients in each priority level who are waiting for treatment and the the waiting time of

each patient at each point in time. The policies can dynamically assign patients of different

priority level to a treatment time that reduces the total number of overflow patients. The

timing of scheduling determines whether we employ allocation scheduling, in which we

schedule on the actual procedure date, or advance scheduling, whereby appointments are

scheduled several days in advance.

Even though we cannot fully eliminate the overflow patients, we can mitigate the prob-

lem significantly without the need for additional capacity. In order to satisfy the hospitals’

goal of a 90% treatment rate, additional capacities are required. We also provide an esti-

mation of the minimum capacity required to satisfy the 90% service rate.
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Chapter 4

MRI Operation Flow: Descriptive

Analytics

This section briefly describes the MRI operational process flow of the 74 MRI hospitals

based on the data analyzed. A total of 13 entries without a treatment date, regardless of

abandonment, no-shows, or postponement till later time, are excluded from the dataset.

We do not distinguish between returning patients and new a patient arrivals; all individuals

arriving at hospital are treated equally, without preference for returning patients.

4.1 Type of Admission

Patients are referred to one of the 74 hospitals for MRI treatment by their primary physi-

cians who typically choose a hospital that is closest to the patient’s residential location or

by patients’ location preference. Patients are assigned one of four priority levels based on

their clinical urgency. The most significant distinction among the priority level are their
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Figure 4.1: Proportion of Each Priority level

wait time targets. Priority 1, the highest priority levels, has a target of 24 hours, while the

target for priorities 2, 3, and 4 are 48 hours, 10 days and 28 days, respectively. Figure 4.1

shows the four priority levels and the respective ratio of their demands based on our data

analysis.

Figure 4.1 shows that over 77% of the patient arrivals are Priority 4 patients, while

only 2% are Priority 1. However, despite the small population of Priority 1 patients, their

extremely short wait time target makes their treatment a top priority in all hospitals.

The percentage of patients exceeding their wait time target is more important than the

actual number of patients exceeding. The average waiting time for 10 sample hospitals are

calculated and summarized in Table 4.1.

As shown in Table 4.1, the average waiting time across hospitals varies significantly. For

example, Hospital 6 and 7, each with two scanners available, operate for 8 hour every day.
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Table 4.1: Average Waiting Time (in days) for 10 Sample Hospitals by Priority level

Hospital Average WT P1 Avg. WT P2 Avg. WT P3 Avg. WT P4 Avg. WT

1 15.41 0.16 1.20 6.91 17.51

2 39.97 0.80 2.74 10.46 43.69

3 49.36 1.79 5.77 27.81 61.28

4 40.44 0 3.36 12.00 42.43

5 41.47 0.20 5.10 24.54 49.91

6 54.65 1.54 2.11 13.08 61.71

7 71.21 0.07 2.50 20.19 75.85

8 23.19 2.18 1.79 13.06 25.30

9 41.09 0.51 6.48 28.24 62.21

10 32.86 0.28 1.59 9.97 35.96

Hospital 6 has the highest average daily patient arrivals of 71.81 patients while Hospital 7

only has 20.25 average daily patient arrivals. However, Hospital 6’s average treatment time

of 54.65 days is much shorter than Hospital 7’s 71.21 days. Therefore, the hospitals with

high patient arrivals do not necessarily have longer waiting times, and small hospitals with

fewer patient arrivals cannot necessarily guarantee quicker treatment. It is also observed

in the data that hospitals within close proximity to each other do not necessarily have the

same wait time. For example, Hospitals 8 and 9 are 20 minutes of driving distance apart,

but differ in average waiting time to a notable degree.

The hospitals offer 10 classes of procedures: Abdomen, Breast, Cardiac, Extremities,

Brain, Head and Neck, Pelvis, Peripheral Vascular, Spine and Thorax. The average pro-
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portions of each class of procedures, for all hospitals, are illustrated in Figure 2. The actual

scan durations may deviate from the scheduled duration. For example, heart procedure

durations vary from 35 to 55 minutes and routine procedures’ durations also fluctuate

between 10 and 30 minutes.

29%

29%

27%

6%

3%

2% 3%

1%

0%

0%

Percentage of Different Types

Brain

Extremities

Spine

Abdomen

Pelvis

Breast

Head and Neck

Cardiac

Thorax

Peripheral Vascular

Figure 4.2: Proportion of Procedure Classes

As we can see from Figure 4.2, the most common MRI procedures performed are

Head(Brain), Extremities and Spine. Even though the daily operating hours and aver-

age duration for each procedure is standardized, the class of procedures performed daily

in each hospital does not follow any specific pattern. Therefore, the number of procedures

performed daily in each hospital is not deterministic. On days with large quantities of long

procedures, the total number of procedures performed that day will be significantly lower

than on other days.
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4.2 Performance

Historically, scheduling problems use waiting time, the time elapsed between the decision to

order/request received date and the actual service date, as the most common performance

measure in evaluating different scheduling policies. However, for patients with different

wait time target, waiting time becomes a less effective performance measure. Column 2 in

Table 4.1 displays the average overall waiting time for 10 sample hospitals. As indicated

by the rest of the columns in Table 4.1, due to the varying wait time target for different

priority levels, the comparison of average waiting time across patient priority levels is not

meaningful. Hospital 2 and 4, for instance, display similar overall average wait times but

significantly different levels of wait times by priority levels. Accordingly, we propose two

additional performance measures that can be used to evaluate waiting time.

4.2.1 Exceeding Time

As displayed in Table 4.1, different priority levels’ waiting times vary significantly. We

propose exceeding time (ET), defined as the difference between the actual waiting time

and their wait time target, as a more useful measure of the scheduling process than the wait

time. One day of exceeding time indicates the same delay in service for all priority levels,

while one day of waiting time has a different meaning among different priority levels. Table

4.2 displays the weighted average exceeding time for the same 10 hospitals as in Section

4.1 (weighted by the relative proportion of number of patients within each priority levels)

and the average exceeding time for each priority levels within each hospital.
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Table 4.2: Average Exceeding Time for 10 Sample Hospitals by Priority Levels

Region Average ET P1 Avg. ET P2 Avg. ET P3 Avg. ET P4 Avg. ET

1 25.51 0.80 1.51 8.26 29.03

2 19.97 0.63 1.64 4.31 21.85

3 29.35 1.38 4.35 19.21 35.56

4 17.94 0 2.23 4.60 18.49

5 22.04 0.14 3.42 16.13 25.57

6 31.49 1.20 0.88 6.82 35.67

7 47.72 0 1.09 13.27 50.80

8 6.36 1.82 0.89 5.33 6.68

9 36.09 0.61 4.31 22.21 46.35

10 12.19 0.06 0.82 3.97 13.31

4.2.2 Overflow Proportion

When a patient exceed their wait time target, the patient is considered to be an overflow

patient. Reducing the number of such patients is a main priority for hospitals. One way to

assess the difference between overflow patients in different priority levels is by considering

the overflow proportion, defined as the portion of patients within each priority levels that

exceed their target. Using this as a performance measure, we can determine the gap

between the hospital’s target and its actual performance. The hospitals claim that the

majority of their patients stay longer than their target wait time. This claim is supported

by the observations from the data that over 67% of the patients exceed their target.
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We observe that on average, the Priority 1 levels only has an overflow rate of 8.8%,

while Priority 2, 3, and 4 have rates of 13.4%, 62%, and 71%, respectively. It can be

concluded that the majority of the hospitals give significant preference to high priority

patients while less emphasis is placed on and fewer preferential treatments are provided

to the lower priority levels. The main reason for such decisions is that the high priority

patients’ health conditions may quickly deteriorate, whereas lower priority patients do not

have high expectations or need for timely treatment and their health conditions do not

tend to drastically change while they are waiting.
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Chapter 5

MRI Demand and Capacity:

Predictive Analytics

In this section, historical data analysis is provided and predictive models for forecasting

the daily demand and capacity (number of procedures) are developed. The key dependent

variable is the waiting time. There are two main factors that affect the dependent variable:

daily patient arrivals and daily procedures performed. For the purpose of demonstration, a

sample hospital (hereafter referred to as Hospital R), with average patient flow, is selected

(we discuss the results obtained for the other 73 hospitals in Chapter 7). Historical data

from Hospital R is used to forecast daily demand and capacity, as well as to evaluate the

proposed scheduling policies outlined in the following sections. The research setting and

the information contained in the data is discussed in Section 5.1. The estimation and

prediction of the daily patient arrivals and daily procedures performed are demonstrated

in Section 5.2 and Section 5.3, respectively.

18



5.1 Data Description

We use approximately two years’ worth of MRI data for 18,105 patients treated in Hospital

R with arrival dates starting from January 2, 2011 and continued for 642 days until October

5, 2012. The treatment dates could fall outside this time period. The records contain

patient-level information including, but not limited to, the following: 1) priority score: a

number between 1 to 4 that is assigned to patients upon arrival, indicating their clinical

urgency; 2) wait time target: the number of days patients can wait without imminent risk

to their current health condition, which is determined based on patient’s priority score;

3) decision-to-treat date: the date the patient was added to the wait list (arrival date);

4) actual treatment date: the date the patient actually received their MRI procedures;

5) Class of MRI procedure: one of the ten classes of MRI procedures that patients may

undergo. The waiting time is computed as the difference between the decision-to-treat

date and the actual treatment date, while the exceeding time is computed as the difference

between the waiting time and the wait time target.

5.2 Arrival Process

The patient arrival is the process of adding a request for an MRI procedures to the wait list.

Understanding the pattern of patient arrivals and its fluctuations can help to construct the

policies that bridge the gap between demand and capacity. In this section, we estimate

the total number of arrivals per day independent of their priority levels. Then, in the

simulation model discussed in Section 6.2, we use a Multinomial random variable based

on the realized aggregate number of arrivals and the probability that a patient belongs to

each priority levels to obtain the daily number of arrivals of each priority levels.
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A wide range of discrete and continuous distributions are selected to compare against

the historical data of Hospital R. First, we excluded the obvious mismatches, including Bi-

nomial, Degenerative, Geometric, and the like. A list of continuous distributions, including

Beta, Logarithm, Gamma, Weibull, Normal, Half-Normal, LogNormal, and Exponential

distributions are tested against the data. Only four of these, namely Gamma, LogNor-

mal, Normal and Weibull, fitted the empirical data with relatively high accuracy and are

analyzed in further detail.

The empirical distribution is fitted by the Maximal Likelihood Estimation (L(θ) =∏n
i=1 f(xi|θ)) (Le Cam 1990). Using statistical tools, we are able to obtain the estimated

parameters, the estimated standard error, the loglikelihood, and the Akaika and Bayesian

information criteria.

Figure 5.1 includes four graphs that demonstrate the goodness-of-fit for the four selected

distributions. The density plot represents the density function of the fitted data against the

empirical histogram distribution. The CDF graph plots the cumulated density function of

both empirical data and fitted distribution. The Q-Q graph plots the fitted distribution’s

quantiles against the empirical data’s quantiles. The P-P plot represents the empirical

distribution function evaluated at each data point (y-axis) against the fitted distribution

function (Delignette-Muller 2014).

Tables 5.1 and 5.2 provide summaries of the estimated parameters of the four selected

distributions and their goodness-of-fit evaluation results. Three different testing meth-

ods, including the Kolmogorov-Smirnov Test (sup|Fn(x)− F (x)|), Cramer-von Mises Test

(n
∫∞
−∞(Fn(x)− F (x))2dx), and Anderson-Darling Statistic (n

∫∞
−∞

(Fn(x)−F (x))2

F (x)(1−F (x))
dx) are per-

formed (Delignette-Muller 2014). It can be observed that the Normal distribution fits the

data with the highest degree of accuracy.
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Figure 5.1: Four Goodness-of-fit Plots for Four Distributions Fitted to Hospital R’s Em-

pirical Data for Arrival

Therefore, a Normal distribution with parameters of µ =41.30 and σ = 12.81 is used

to estimate Hospital R’s daily number of patients’ arrival. The Kolmogorov-Smirnov test

provides a p-value of 0.718. In Kolmogorov-Smirnov tests, the p-value indicates the degree

of compatibility between two distributions. The p-value represents the probability that the

two cumulative frequency distributions will be similar if randomly sampled from identical

populations. Therefore, a high p-value (larger than 0.5) indicates that the selected dis-

tribution can represent the empirical data to a high degree of accuracy (Lehmann 2006).

The level of compatibility indicates that the estimated model is sufficient to replace the
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Table 5.1: Goodness-of-fit Statistic for Daily Arrivals

Statistic Test Gamma Weibull Lognormal Normal

Kolmogorov-Smirnov 0.07694506 0.03834422 0.1004437 0.033568

Cramer-von Mises 0.47500763 0.0605623 0.9713341 0.04980234

Anderson-Darling 2.859687621 0.37056458 5.8741806 0.31821658

Goodness-of-fit Criteria Gamma Weibull Lognormal Normal

Aikake’s Info Criteria 3428.719 3399.640 3469.135 3401.443

Bayesian Info Criteria 3426.837 3407.758 3477.254 3409.561

historical data in the simulation models. Since the daily patient arrival generated by the

normal distribution can be a decimal value, it is truncated to the closest integer value.

In order to use the estimation of the historical data to forecast the future demand, we

partition the data into training and validation sets. The first year’s data is used as the

training set and the remainder is used as the validation set. The estimation generated by

the training set is cross-validated with those generated by the validation set to obtain an

estimate with a low classification error. This error measures the estimated model against

either a false negative where the estimated model reflects an event that did not happen or

false positive response where the estimated model fails to capture an event that occurred.

5.3 Daily Procedures

The number of procedures performed each day reflects the capacity of the hospital and

is a variable that influences the waiting time. Although each hospital has fixed operating
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Table 5.2: Statistic Parameters for Daily Arrivals

Estimated Parameters Standard Error Loglikelihood

Gamma k = 9.042 0.607 -1712.359

θ = 0.219 0.015 -1712.359

Weibull k = 3.561 0.133 -1697.82

λ = 45.850 0.656 -1697.82

Lognormal Meanlog = 3.665 0.017 -1732.568

sdlog = 0.355 0.012 -1732.568

Normal µ = 41.304 0.619 -1698.721

σ = 12.808 0.438 -1698.721

hours, due to the different durations for each class of procedures, the total number of

procedures the hospital can perform each day is non-deterministic (as depicted in Figure

4.2 for Hospital R). Scan durations vary from 10 minutes for a minor assessment to over 4

hours for a particularly difficult heart MRI procedures.

Even though the daily classes of procedures and their respective durations cannot be

accurately predicted, the daily number of procedures performed can be reliably estimated

as the occasional long duration procedures can be offset by the short duration procedures.

From the data, it is observed that the average daily procedures that hospital R performs

can be described with a statistical distribution.

The same selections process as mentioned in Section 5.2 is utilized here. Again, the

four statistical distributions, Gamma, LogNormal, Normal, and Weibull, fit the empirical

data closely and are therefore analyzed in more details.
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Figure 5.2: Four Goodness-of-fit plots for four distributions fitted to Hospital R’s empirical

Data for Average Daily Procedures Performed

Figure 5.2 includes the four graphs that are used to demonstrate the goodness-of-fit of

the four selected distributions. The Weibull distribution is the best fit, with parameters

k = 4.58 and λ = 32.89. The Normal distribution with parameters µ =30.05 and σ = 7.47

can also be used as its goodness-of-fit is very close to Weibull.

Table 5.3 and 5.4 contain summaries of the estimated distribution parameters and their

goodness-of-fit evaluation results. The tests mentioned in Section 5.2 are performed for the

goodness-of-fit. Compared to the daily patient arrivals, the daily number of procedures
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Table 5.3: Goodness-of-fit Statistic

Statistic Test Gamma Weibull Lognormal Normal

Kolmogorov-Smirnov 0.09238612 0.04150228 0.1077583 0.05828262

Cramer-von Mises 0.92945912 0.13441592 1.5445012 0.23519675

Anderson-Darling 6.01227153 0.86836601 10.0074602 1.43810988

Goodness-of-fit Criteria Gamma Weibull Lognormal Normal

Aikake’s Info Criteria 4160.118 4092.201 4216.335 4099.544

Bayesian Info Criteria 4168.902 4100.985 4255.119 4108.328

performed are more scattered and have more outliers. This is due to the different mix

of classes of procedures performed each day as well as the fact that even though there is

an expected duration for different classes of procedures, the actual treatment duration is

rarely consistent with the expected duration and varies considerably; resulting in a highly

variable daily number of procedures performed. Therefore, the results of the goodness-of-

fit tests for estimating the number of daily procedures performed are not as strong as those

for the estimations of daily patient arrivals. However, the distributions can be used as the

basis for a rough estimation of the number of daily performed procedures that is required

for simulation experiments in the latter sections.
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Table 5.4: Statistic Parameters

Estimated Parameters Standard Error Loglikelihood

Gamma k = 13.928 0.797 -2078.056

θ = 0.463 0.027 -2078.056

Weibull k = 4.583 0.146 -2044.101

λ = 32.892 0.309 -2044.101

Lognormal Meanlog = 3.367 0.012 -2106.168

sdlog = 0.284 0.008 -2106.168

Normal µ = 30.055 0.306 -2047.772

σ = 7.472 0.216 -2047.772

26



Chapter 6

Dynamic Scheduling: Prescriptive

Analytics

In this section, we first propose two simple, practical dynamic scheduling policies that can

be applied at any point from a patient’s arrival until his or her actual service date, namely

weight accumulation policy and priority promotion policy. We then apply these policies to

the patient-level data of Hospital R on the date of the procedure, assuming that patients

are kept on a waiting list meanwhile. Finally, we use the proposed policies to schedule

patients in advance, at any time between the date of arrival and the actual procedure

date. The numerical examples we obtained, based on the historical data, demonstrate the

efficiency of the proposed policies compared to the current practice.
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6.1 Scheduling Policies

In Section 6.1.1, we introduce a weight accumulation policy whereby the patient’s weight,

which is a function of their priority as well as the waiting time, is used to determine the

order of treatment. In Section 6.1.2, we propose a priority promotion policy which is

a strict priority policy with time-dependent priorities. Both policies provide a dynamic

scheduling mechanism that can efficiently allocate the available resources.

6.1.1 Weight Accumulation Policy

This policy provides a mechanism to determine the point at which a lower priority patient

can be treated before one of higher priority patient by finding a balance between the

patients’ priority and their waiting time.

Patients of Priority 1, 2, 3, and 4 arrive at the hospital at the beginning of each period.

Upon arrival, they begin to accumulate weight at the following rate:

Wi(t) = α · pi + β · (t− Ai) (6.1)

where Wi(t) represents the accumulated weight of Patient i at time t. The arrival date

of Patient i is denoted by Ai and their priority level upon the arrival is represented by

pi. The accumulated weight is used to determine the order of treatment, whereby patients

with the highest accumulated weights are treated first.

The weight accumulation function is composed of two parts: the initial weight score

and the accumulation rate. The former is a function of the patient’s base priority while

the latter is a function of the waiting time. Parameter α ·pi denotes the initial weight score

and parameter β indicates the rate at which the patient accumulates weight throughout

their waiting time.
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Note that when β is zero, the weight accumulation becomes the strict prioritization

based on which high priority patients are always treated first. When α is zero, the accu-

mulation function becomes a strictly FIFO policy wherein patients from all priority levels

form a single queue, based purely on their arrival time.

6.1.2 Priority Promotion Policy

Based on this policy, patients are promoted to a higher priority level after waiting in the

queue for a predetermined threshold of time, allowing them to be served sooner. Thresholds

depend on the priority level and are determined so that the proportion of patients treated

within their wait time targets is maximized.

Recall that a priority level is assigned to patients upon their arrival at the hospital and

each priority level has a different wait time target. We define a threshold value Ti(i−1) for

priority level i (= 2, 3, 4), so that once a patient’s waiting time exceeds the threshold, they

will be promoted to a higher priority level. This means that T21 represents the amount of

time that Priority 2 patients will wait before they are promoted to Priority 1, T32 is the

number of days taken for Priority 3 patients to be promoted to Priority 2, and T43 is the

threshold for promoting Priority 4 individuals to Priority 3.

6.2 Simulation Model

We simulate the problem as a finite horizon multi-period scheduling system in which each

period is defined as one day. At the beginning of each period, we forecast the total number

of new patient arrivals based on the demand distribution obtained in Chapter 4. As

mentioned, we then use a Multinomial random variable based on the realized total number
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of arrivals and the probability that a patient belongs to each priority level to obtain the

daily number of arrivals in each priority level. The new arrivals are added to the current

queue, and their priority level is recorded. The patients’ wait time targets are assigned

according to their priority level. These patients will form the pool of all eligible patients

available for treatment. The simulation model then uses the eligible patient pool as the

input for the scheduling process. The information is fed to the proposed scheduling policies

and the order of treatments is determined accordingly.

We assume that the scheduling system assigns patients of four priority groups to avail-

able servers in order to perform one of the ten classes of procedures. The scanners operate

in parallel to and independent of each other, and each can perform all classes of procedures.

Patients within each priority level are considered to be homogeneous in terms of clinical

urgency and receive the same preference for treatment.

Once the patients receive their procedures, their final waiting time in the queue is

recorded. The recorded wait times of all patients are then used to calculate the performance

measures and evaluate the improvements brought by the proposed policies. The simulated

results of the policies are then compared to those of the historical data to demonstrate the

reduction in wait times.

6.3 Policy Evaluation

In this section we first define the objective function under each performance measure and

obtain the thresholds as well as coefficients required to implement the scheduling policies.

We then use the simulation model to evaluate the efficiency of the policies compared to

the current practice.
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6.3.1 Exceeding Time Measure

The exceeding time performance measures the total number of days exceeded by all patients

in the given time horizon. The objective is to compare the proposed policies with the

current practice under the exceeding time performance measure which is defined as,

min
p∈Π

T∑
D=1

D × E(MD) (6.2)

where T represents the total number of days in the time horizon, in the case of Hospital

R, T = 642. Set Π represents the set of policies, including the proposed policies and the

hospital’s current practice. The number of days past the target date is denoted by D,

while MD is a random variable representing the number of patients who exceeded their

wait time target by D days.

We first obtain the optimal thresholds and coefficients required to apply the proposed

policies. For the weight accumulation function, there are two unknown coefficients, α

and β, associated with it. Based on historical data from Hospital R, the set of (α, β)

that minimizes the weight accumulation function under the exceeding time performance is

(6.063, 1.667). For the priority promotion policy, the thresholds obtained for the exceeding

time measure are T21 = 2, T32 = 3, and T43 = 3. These thresholds mean that, for example,

under the exceeding time measure the Priority 4 patients are promoted to Priority 3 after

waiting in the queue for only 3 days. This is intuitively reasonable since for the exceeding

time measure we are aiming to reduce the total number of days exceeding the target wait

time. In Appendix A we discuss how we determine α, β, and Ti(i−1) for i = 2, 3, 4.

Using the thresholds and coefficients obtained above, the two proposed policies are

applied in the simulation model to determine the total exceeding time. To reduce the
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variance in the simulation output for the total exceeding time, we take the average of the

exceeding time for repeated simulation runs. We observe by taking the average of the

output of 10 or more simulation runs the results converge such that the discrepancies in

the outputs are negligible. Therefore, all the results discussed in the following sections are

obtained as an average over 10 simulations runs. The results for the average number of

patients exceeding their target by various number of days are summarized in Table 6.1.

Table 6.1: Exceeding Day Detail Data Analysis

Policy < 10 Days 10-19 Days 20-29 Days 30-39 Days 40-49 Days ≥ 50 Days

Empirical 2,111 1,927 2,642 2,274 2,213 2,239

Weight 2,326 1,296 1,621 1,349 308 15

Priority 2,351 1,848 1,352 1,032 228 0

The first column in Table 6.1 represents the policies and the rest of the columns display

the number of patients exceeding their wait time target by the given number of days. For

example, 2351 patients exceeded their wait time target for a duration fewer than 10 days

under the priority promotion policy and 1621 patients exceeded their wait time target

by 20-29 days under the weight accumulation policy. As shown in Table 7, both policies

outperform the current practice. Under the priority promotion policy, no patient exceeded

their wait time target by more than 50 days, and significantly fewer patients exceeded

their wait time target by more than 30 days. Under the weight accumulation policy, fewer

patients exceeded their wait time target by 10 to 20 days, but more exceeded their wait

time target by 30 days or more.

The results of the simulation performed under the exceeding time measure are plotted
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in Figure 6.1 which illustrates the number of patients exceeding their wait time target

versus the number of days they exceeded their wait time target by.
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Figure 6.1: Graphic Comparison of the Historical Result vs. the Proposed Policies for

Exceeding Time

The solid red line represents the exceeding time from the historical data evaluated under

the exceeding time performance measure. The dashed line represents the results obtained

using the weight accumulation policy, while the dotted line represents the results from the

priority promotion policy. Considering that under the exceeding time measure the goal is

to reduce the area under the curves depicted in Figure 6.1, it is evident that both proposed

scheduling policies outperform the historical data.

Note that the proposed policies may increase the number of patients exceeding their

wait time target for a few days as illustrated in Figure 6.1. But, they significantly reduce

the number of patients who have exceeded their wait time target for a long time. Table
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6.1 demonstrates that there is no significant differences between the performances of the

proposed policies under the exceeding time measure and Figure 6.1 also shows that the

area under the dashed curve is almost the same as the one under the dotted curve.

6.3.2 Overflow Proportion

In this section, we examine the performance of the overflow proportion measure. Under

this measure, once patients exceed their wait time target, the number of exceeding days is

no longer relevant. To reduce the proportion of patients exceeding their wait time target

for each priority level, we use the following objective function

min
p∈Π

4∑
i=1

ci × E(
Si

Ni

) (6.3)

where ci indicates the relative importance of each priority level, Si is a random variable

representing the number of priority i patients who exceed their wait time target date, and

Ni is a random variable that represents the total number of patients of priority level i

that arrive at the hospital throughout the time horizon. The objective function calculates

the weighted percentage of patients over all priority level that exceeded their wait time

target. The value of ci demonstrates the penalty of overflow for the various priority groups

and acts as weighting factor in the weighted average. In our numerical examples, we set

the values of ci’s relative to their wait targets, c1 = 28/41, c2 = 10/41, c3 = 2/41, and

c4 = 1/41 where 41 is the total wait targets of all classes (1+2+10+28=41). The longer

the wait time target, the less urgency is placed upon the patients’ procedure times as their

health is not likely to drastically deteriorate.

Using the objective function defined in 6.3, we obtain coefficients α = 10.067 and
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β = 0.667 for the exceeding time performance measure as well as promotion thresholds

T21 = 2, T32 = 8, and T43 = 21 for the priority promotion performance measure. Note

that under the overflow proportion measure more emphasis is placed on higher priority

level, as the relative importance of the lower priority level exceeding wait time target is

low. Therefore, the threshold at which patients of Priority 4 are promoted to Priority 3

under the overflow proportion measure, T43 = 21, is much higher than the one under the

exceeding time measure, T43 = 3.
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Figure 6.2: Graphic Comparison of the Historical Result vs. the Proposed Policies for

Overflow Proportion

As Figure 6.2 illustrates, both proposed scheduling policies increase the number of

patients who wait less than 15 days more than their wait targets compared to the current

practice. However, they reduce the number of patients with a long waiting time notably.

Table 6.2 shows the decrease of overflow proportion under the proposed policies. In
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Table 6.2: Overflow Proportion Detail Data Analysis

Policy Exceed P1 Exceed P2 Exceed P3 Exceed P4 Overflow Treatment

Empirical 68 (21%) 589 (46%) 2,539 (68%) 10,210 (80%) 0.3514 26%

Weight 13 (4%) 460 (36%) 1,560 (42%) 4,882 (38%) 0.1787 61.81%

Priority 15 (5%) 467 (36%) 1,525 (41%) 4,802 (37%) 0.1842 62.40%

Table 6.2, Columns 2-5 display the number and percentage of patients within each priority

level that exceeded their wait time target. The treatment rate, displayed in the last

column, is defined as the percentage of all patients treated within their wait time target

(independent of their priority level).

As it is evident from the table, both policies outperform the current practice against the

overflow proportion measure and there is no significant difference between the performances

of the proposed policies.

Comparing the two proposed policies based on Table 6.2, we observe that under the

priority promotion policy, slightly more high priority patients (Priority 1 and 2) exceeded

their wait time target in exchange for a reduction in the number of Priority 3 and 4 patients

who did so. By promoting lower priority patients, some high priority patients are treated

a few days late, while more low priority patients can receive treatment sooner.
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6.4 Advance Scheduling

The results discussed in Section 6.3 are obtained based on the allocation scheduling,

whereby we schedule the patients on the actual procedure date. However, a more pre-

dominant paradigm in general practice is advance scheduling.

6.4.1 General Structure

Hospitals serve four priority levels of patients from which Priority 1 and 2 require immediate

care, Priority 3 patients need to be served within 10 days, and Priority 4 patients can wait

up to 28 days. We consider a dynamic advance scheduling model with two patient groups;

an urgent demand class, who should be served on the day of arrival, and a regular demand

class, who can be served at a future date. The urgent class includes Priority 1 and 2

patients while the regular class encompasses Priority 3 and 4. At the beginning of each

period, the patients from the urgent class are scheduled for treatment on that day, while

the patients from the regular class are kept in the queue until they can be scheduled for

service. The number of days by which we are scheduling in advance determines when the

regular class patients can receive notification for their treatment. For example, if we are

scheduling two days in advance, patients will be notified on day t that they will be treated

on day t + 2. We assume that patients will take the earliest appointments offered and

expect to receive service on the day of their appointment.

A fixed amount of the daily capacity is always set aside for the patient arrivals of urgent

class of patients. This allocation will not be used for other purposes, regardless of whether

the daily patient arrivals in the urgent class exhaust the allocation. The purpose of this
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allocation is to ensure that the urgent class patients can receive treatment immediately.

Advance scheduling policies are not applied to urgent class patients, as they are scheduled

upon their arrival and treated on the same day.

The detailed procedure for the advance scheduling process used in the simulation is as

follows.

1. Advance scheduling policies are not applied to urgent class patients, as they are sched-

uled upon their arrival and treated the same day. Therefore, a fixed amount of the daily

capacity is always set aside for the urgent class of patients. Due to capacity limitation or

other factors, if some urgent class patients are not treated on the day of their arrivals, they

will treated as soon as possible as it is explained below.

2. Due to over-scheduling or machine malfunction inefficient scheduling, etc., delays in

the treatment process including deviations from expected durations of procedures, or other

complications, it is possible that not all scheduled patients or urgent patients are treated on

their appointment date. Therefore, we then schedule patients who were scheduled for the

previous periods and have not been treated. This allocation is used to ensure all patients

left from previous periods are treated as soon as possible.

3. Regular class patients are scheduled several days prior to their appointment. At

the end of each period, a group of patients with the highest priority as determined by the

proposed policies are scheduled for an appointment on a promised date. Due to uncertainty,

if some scheduled patients are not treated on their appointment day, they will be treated

as soon as possible as it is discussed in 2.
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6.4.2 Results of Advance Scheduling

The analysis performed in Section 6.3 forms the base case for advance scheduling, wherein

we schedule 0 days in advance, also known as allocation scheduling. Scheduling further

in advance requires better forecasting and creates higher uncertainty, resulting in more

inefficient planning. Therefore, the main concern is whether the trade-off between early

notification and delays in the treatment process is acceptable.

We perform the simulation for scheduling on the day of treatment, 2, 4, 6, 8, and 10

days in advance, as well as scheduling on the day of arrival. In Figure 6.3, a graphical

display of the result is generated and the trade-off between the number of days to schedule

in advance and the increase in waiting time is demonstrated. However, to better illustrate

the increase in waiting time, only the allocation policy, 2 days and 8 days in advance

scheduling policy, and the historical data are displayed in the figure.

The solid line represents the historical data. The dashed line denotes the allocation

policy on the day of treatment, the dotted line represents scheduling 2 days in advance,

and the diamond one embodies scheduling 8 days in advance.

From Figure 6.3, we observe that the gap between the current practice and the proposed

scheduling policies decreases as the number of days that the patients are scheduled in

advance increases. For scheduling on the day of arrival, the area under the historical data

is total 337,782 days for all patients, and the area under the diamond line is 242,853 days.

The 94,929 days reduction in total exceeding time is a result of the additional information

obtained over the 10 days prior to the day of the treatment. The gap between scheduling

8 days in advance and 2 days in advance is 84,121 days of exceeding time. Similarly, the

exceeding time reduced by 43,040 days when we switched from scheduling two days in
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Figure 6.3: Results of Scheduling 0, 2 and 8 days in Advance

advance to scheduling on the day of operation.

It can be observed from Table 6.3 that the number of Priority 2 patients exceeding their

wait time target date decreases under the advance scheduling policy for 2 days and 4 days.

This is due to the urgent class allocation, which ensures that the majority of higher priority

level patients are treated immediately. However, the regular class patients tend to wait

longer under advance scheduling, and their waiting time increases as we schedule further in

advance. The value of information is the main reason for the differences between the waiting

times for the various number of days by which we schedule in advance. Scheduling on the

date of treatment (allocation scheduling) allows for the greatest amount of information

to be gathered, therefore enabling most efficient allocation of resources. However, when

scheduling in advance, incomplete information can lead to inefficient scheduling.

As Table 6.4 indicates, regardless of the performance measure used, the waiting time
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Table 6.3: Scheduled Allocation Detail Data Analysis

Priority Promo 2 Days 4 Days 6 Days 8 Days 10 Days On Arrival

Priority 1 13 14 14 15 16 16 18

Priority 2 457 455 455 458 457 462 582

Priority 3 1,572 1,689 1,854 1,982 2,134 2,546 3,171

Priority 4 4,848 5,871 5,964 6,061 6,098 6,358 9,523

Table 6.4: Scheduled Allocation Results

Weight 2 Days 4 Days 6 Days 8 Days 10 Days On Arrival

Exceeding 115,692 158,732 182,742 209,265 242,853 274,334 337,782

Overflow 0.1787 0.1830 0.1854 0.1902 0.1941 0.2013 0.2532

and number of patients exceeding their wait time target increases as we schedule further in

advance. Therefore, it is up to the hospital and the patients to determine to what degree

they are willing to delay their treatment in exchange for greater convenience in scheduling.
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Chapter 7

Sensitivity Analysis and Aggregation

of Result

In this section, we analyze how the waiting time can be influenced by changes in the

parameters and distributions. We also examine the robustness of the proposed policies

by applying them to data from other hospitals. In section 7.1, the sensitivity of the

inputs used in the scheduling policies, including the distribution of the daily number of

performed procedures and the daily patient arrivals, is discussed. In section 7.2, the policies

are applied to others hospitals and the generalizability of the results is discussed. We

demonstrate that the majority of the hospitals display similar patterns of improvement,

regardless of the parameters of their input data and available capacity.
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7.1 Sensitivity Analysis

7.1.1 Capacity

As mentioned in the first section, the limitation on the daily performed procedures is one of

the bottlenecks of the congestion problem. Capacity expansion can be achieved through two

methods: extending the daily operating hours or increasing the number of MRI scanners

available at each hospital. However, there are constraints on the daily operating hours and

each MRI scanner is extremely costly. Therefore, it is crucial to analyze the impact on

waiting time per unit of increase in capacity.

First, we analyze how a change in capacity influences the weight accumulation policy

under the two objective functions. Keeping all other input values constant, including the

daily patient arrival rate, the following results regarding various capacities are obtained.

All the results obtained are an average of ten simulation runs and are subjected to minor

variations due to randomness of the numbers generated.

In Table 7.1, the first, third, fifth and seventh rows display the number of Priority

1, 2, 3, and 4 patients that exceeded their wait time target, respectively. The second,

fourth, sixth and eighth rows represent the percentage of Priority 1, 2, 3, and 4 patients

that exceeded their wait time target, respectively. In Table 7.1, ℵ(µ, σ2) denotes a normal

distribution with mean µ and variance σ2. The second column (“Current”) indicates the

values obtained under Hospital R’s current capacity and the next four columns indicate the

overflowing results for four different average daily procedures performed. We observe that

the overflow proportion is very sensitive to changes in the daily treatment numbers. When

the current daily capacity with the average of 30.05 days is reduced by three procedures, the
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Table 7.1: Sensitiveness of Capacity

Number of Patients Current ℵ(27.5, 7.5) ℵ (31.5, 7.5) ℵ (35.5, 7.5) ℵ (40.5, 7.5)

Priority 1’s Overflow 13 27 11 4 0

% Overflow 4.00% 8.31% 3.38% 1.23% 0

Priority 2’s Overflow 460 621 358 289 0

% Overflow 35.63% 48.64% 27.73% 22.39% 0

Priority 3’s Overflow 1560 2312 1218 872 0

% Overflow 41.83% 62.00% 32.66% 23.38% 0

Priority 4’s Overflow 4882 6924 4966 4721 0

% Overflow 38.26% 54.26% 38.92% 37.00% 0

overflow percentage increases significantly. When the average daily number of treatments

reaches 40.5, all patients will be treated within their wait time target. However, to increase

the average capacity from the current level of 30.05 to the desired level of 40.5, we either

need to extend the operation hour from 8 hours per day to 10.5 hours or to increase the

number of MRI scanners.

Another important factor in improving the wait time is reducing the variance of the

daily performed procedure number. In the following table, the sensitivity of waiting times

to changes in variance is displayed.

From Table 7.2, the first, third, fifth and seventh rows display the number of Priority

1, 2, 3, and 4 patients that exceed their wait time target, respectively. The second, fourth,

sixth and eighth rows represent the percentage of Priority 1, 2, 3, and 4 patients that

44



Table 7.2: Sensitiveness of Variance in Capacity

Number of Patients Current ℵ(30.05, 7.47) ℵ(30.05, 4.50) ℵ(30.05, 2.47)) ℵ(30.05, 0)

Priority 1’s Overflow 13 13 11 10

% Overflow 4.00% 4.00% 3.38% 3.08%

Priority 2’s Overflow 460 405 386 379

% Overflow 35.63% 31.37% 29.90% 29.36%

Priority 3’s Overflow 1560 1485 1348 1296

% Overflow 41.83% 39.82% 36.15% 34.75%

Priority 4’s Overflow 4882 5187 4963 4818

% Overflow 38.26% 40.65% 38.89% 37.76%

exceeded their wait time target, respectively. The first column indicates the values obtained

under Hospital R’s current capacity and the second, third and fourth columns indicate the

overflowing results for the same average daily performed procedures but different variances

in the distribution. It is observed that the overflow proportion is relatively insensitive to

the change in variance.

7.1.2 Capacity Required to Satisfy 90% of Patients within Their

Targets

As mentioned before, the hospital’s target is to treat over 90% of its patients within the
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target waiting time. However, as calculated in Section 6.3 with the proposed scheduling

policies, regardless of the timing of the policy (allocation scheduling or advance scheduling),

we are unable to satisfy the desired 90% treatment rate. Therefore, it is important to

estimate the capacity that can achieve the desired level of patient treatment. We observe

that once the average capacity (number of performed procedures) increases to 38.5, the

percentage of patients treated within their wait time target rises to 90%. Also, if the

average capacity is increased to 36.75 while the variance decreases to 4.5, 90% of patients

are satisfied within their wait time target. The results of the simulation under the new

capacities are summarized in Table 7.3.

Table 7.3: Required Capacity for 90% Patients Treatment

Number of Patients Current ℵ(30.05, 7.47) ℵ(38.5, 7.47) ℵ(36.75, 4.50)

Priority 1’s Overflow 13 0 0

% Priority 1 Overflow 4.00% 0 0

Priority 2’s Overflow 460 13 14

% Priority 2 Overflow 35.63% 10.00% 10.1%

Priority 3’s Overflow 1,560 378 379

% Priority 3 Overflow 41.83% 10.14% 10.16%

Priority 4’s Overflow 4,882 1,240 1,245

% Priority 4 Overflow 38.19% 9.72% 9.76%

Our numerical results show that if the hospital extends its operating hour by an addi-

tional 1.5 hours, 90% of patients will be satisfied within their wait time target. Variance

reduction, accompanied by a smaller increase in capacity, is beneficial in the long-run as it

46



establishes a stable pattern that can be continued in the future.

7.2 Robustness of the Proposed Policies

The given dataset contains 74 hospitals, each with a different patient arrival rate and

capacity. In the previous sections, Hospital R is randomly selected to test the effectiveness

of the data. It is observed that the proposed scheduling policies, regardless of allocation

scheduling or advance scheduling method, are able to reduce the overflow percentage. These

policies are applied to the other 73 hospitals, of which 71 hospitals show a similar level

of improvement in the exceeding time and the overflow proportion performance measures.

The reason for the two exceptions is that one hospital has an extremely low daily patient

arrival rate. Under their current systems, the daily patient arrivals often cannot fully

exhaust their capacity. Therefore, there is no visible improvement under our proposed

policies. Another hospital performs a significantly lower number of daily procedures than

the capacity is able to handle. This can be the result of malfunctioning MRI machines.

There is no significant improvement in this hospital under our proposed policies since the

high congestions cannot be eliminated without significant capacity expansions or better

scanner operation.

Several other hospitals, each with a different patient pool and MRI capacity, are ana-

lyzed and evaluated. The results of the two policies applied on the day of treatment are

summarized in the following table.

Table 7.4 displays the results obtained from four randomly selected hospitals. The

total number of days exceeded by all patients for the given time horizon, the number

of patients exceeding their wait time target, and the proportion of patients exceeding
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Table 7.4: Aggregated Results

Hospital R Hospital V Hospital T Hospital S

Overflow Proportion (Current) 0.3514 0.3278 0.0573 0.2169

Overflow Proportion (Weight) 0.1787 0.1117 0 0.1395

Overflow Proportion (Priority) 0.1842 0.1155 0 0.1486

Exceeding Number (Current) 436,165 287,854 1,268 20,265

Exceeding Number (Weight) 115,692 194,532 3 11,105

Exceeding Number (Priority) 109,759 185,633 0 9,843

their wait time target are significantly reduced under allocation scheduling policies of both

weight accumulation and priority promotion policies. Similar results are also obtained for

advance scheduling, but the details are not discussed here. It is concluded that the policies

can be applied to, but not limited to, all hospitals with similar MRI scheduling structures

and selection methods. The only differences in each hospital are the coefficients of the

accumulation functions, the thresholds for priority promotion, and the relative importance

of each priority level. Once those values are obtained, the evaluation and selection process

will be identical for every hospital.
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Chapter 8

Discussion and Conclusion

This study contributed to our understanding of how scheduling policies can be applied

to effectively reduce the waiting time in MRI hospitals, so that the gaps between actual

waiting times and wait time target for all priority levels are reduced. The essence of

our contribution is to understand the current status of MRI services based on data from

74 hospitals, forecast the demand for MRI services, and provide two practical scheduling

policies that can drastically reduce wait times compared to current practice.

We first analyzed patient-level MRI data from 74 hospitals and found that variability

in the daily capacity (number of daily performed procedures) is very high, since the service

durations for different types of procedures vary significantly. In addition, we observed that

patients of Priority 1 and 2, who should be treated in 24-48 hours, respectively, account

for a small proportion of patients. We then estimated the distributions of the number

of daily patient arrivals at each hospital and showed that the accuracy of the estimation

was high. Since the service duration varies for different classes of procedures and their

future demand is unknown, we also estimated the distribution of the number of performed
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procedures each hospital can perform daily.

We finally proposed two scheduling policies that aim to reduce the waiting time for

the patients: the weight accumulation policy and the priority promotion policy. The

weight accumulation policy assigned patients from various priority level a different initial

score based on their priority level. Throughout their wait in the queue, they accumulated

weight as a function of their waiting time. The total accumulated weight is a function of

the combination of their priority and their waiting time. For the priority promotion policy,

we used a modified version of strict priority scheduling. After waiting in the queue for

a predetermined threshold of time, the patients were promoted to a higher priority level.

This policy was implemented and formed a desirable ratio between high and lower priority

patients’ treatments.

We introduced two performance measures: the exceeding time and the overflow pro-

portion. The former evaluated the total number of days by which the patients exceeded

their wait time target. The latter calculated the percentage of patients within each prior-

ity level who exceeded their wait time target. These two performance measures were used

to evaluate the effectiveness of the proposed policies. It was concluded that under both

measures, the two scheduling policies outperformed the current practice. The overflow

percentage decreased from 67% to less than 34%, while the waiting times were reduced

from over 200 days for some patients to less than 54 days for all patients. When comparing

the two scheduling policies, we observed that the total number of patients exceeding their

wait time target in both policies was very similar. Under a more detailed analysis, the

composition of the overflow patients changed. The priority promotion policy had more

Priority 1 patients exceeding their wait time target by a short period of time in exchange

for a greater number of Priority 4 patients reducing their waiting time significantly.

The timing of scheduling also played an important role. For allocation scheduling, the
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patients were scheduled on the actual procedure date, while for advance scheduling, they

were scheduled a varying number of days in advance. We observed a gradual reduction in

the number of patients treated in their wait targets as we shifted from scheduling on the

day of arrival to doing so on the actual procedure date. The shifts reflected the additional

information gained by delaying the scheduling of patients: as we schedule further in ad-

vance, we have less information regarding the patient arrivals and the available resources.

The trade-off between the convenience of advance planning and the increased waiting time

under advance planning should be considered by hospitals in determining the optimal time

to schedule.

A sample hospital R was used to demonstrate how we successfully forecasted the future

demand and the daily number of performed procedures. Using the estimations, we con-

structed a simulation that reflected the process of deciding which patients to treat. The

simulation demonstrated reductions in prolonged waiting times and the high proportion of

overflow patients under proposed scheduling policies. The simulation also demonstrated

the trade-off between the days to schedule in advance and the increase in the waiting time.

In order to achieve the hospitals’ goal of serving over 90% of patients within their

wait time target, we analyzed the sensitivity of the controlled parameters. The capacities

required by each hospital to achieve their goal were computed. The extension of the

operation hour by 1.5 hours each day resolved the congestion problem for hospital R and

ensured a smooth patient inflow and outflow. Unfortunately, the increase in capacity is

quite expensive and assessing its feasibility is beyond the scope of our analysis.

In general, our model efficiently resolved the problem of prolonged waiting times by

proposing a standardized selection process. Even though we were not able to achieve

the goal of a 90% service rate, we reduced the waiting time. Through our discrete-time,

multi-period simulation model, we validated our policies against all 74 hospitals. Similar
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rates of improvements and significant reductions were demonstrated in 72 of the hospital,

indicating that our proposed scheduling process may help to resolve the current congestion

problems in MRI hospitals in Ontario.
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Chapter 9

Future Work

Firstly, in order to incorporate multi-class, multi-priority patients with non-deterministic

capacity, we utilize simulation models to validate our model and obtain numerical results.

For both allocation and advanced scheduling, we use data to validate the improvements

in waiting time. However, we are unable to obtain an analytical solution. Based on the

capacity constraint and scheduling targets, we hope to find a close-form, analytical solution

to the two proposed objective functions in the future.

Secondly, for application purposes, the dynamic scheduling models of resource assign-

ments are simplified. The transition phase between the current stage and future stage is

not optimal. The current advance scheduling policy allows for fixed daily allocations to the

urgent class and the regular class patients. However, the daily requirement for urgent class

patients is not stationary. It will improve the performance further if the daily allocation

of resources to each group can be dynamically determined and recursively generated.

Thirdly, as mentioned before, grid search methods are used to find the optimal α, β, and

Ti(i−1)s. However grid search methods often suffer from the “curse of dimensionality” when

53



the dataset becomes too large. We hope to improve the parameter searching techniques by

incorporating other innovative machine learning methods including Bayesian optimization

or genetic algorithms. This way we can increase the accuracy of the optimal parameters,

reduce the computation time, and obtain better results under the performance measures.

Fourthly, resource pooling is the next step we will pursuit to further reduce the waiting

time. We can view the 74 hospitals or a subset of the hospitals as a network. The

resources and patients can be shared and transferred between the hospitals. Currently, the

hospitals operate independent of each other and information are not exchanged between

them. Some hospitals’ MRI scanners are idling while a neighbouring hospital is suffering

from overcrowding. By forming a resource pooling between the hospitals, we can integrate

the available MRI scanners together to achieve optimality on the aggregated level.

Lastly, we do not partition the patients base on their scan types during the scheduling

process. The patients are divided into four priority groups and assume to be homogenous

within each priority group. However, a further classification of patients based on both pri-

ority groups and scan classes can reduce the uncertainty in the daily number of procedures

performed and the overall exceeding time. A clustering mechanism can be employed to

divide the patients into groups where they share similar patterns.
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Appendix A

A.1 Optimal α and β

In-order to obtain the set of α and β that creates the optimal solution, a traditional hyper-

parameter optimization approach is employed (Bergstra 2012). Hyperparameter optimiza-

tion is where a set of hyperparameters is selected for a model with the goal of optimizing

the results of such algorithm. In this case, a grid search method (parameter sweep) is

used to obtain the optimal parameters. There are two inputs associated with grid search

techniques: the boundary and the grid step. The boundary is the upper and lower bounds

of the parameter values. The grid step determines the number of steps we need to cycle

through to obtain an optimal solution.

The boundary of the grid space for optimal set of (α, β) is determined as follows. The

lower bound of the grid space is (0,0), since the parameters cannot take a negative value. To

determine the upper bound, we first realize that the waiting time and exceeding proportion

both converge. The point of convergence is at α = 16, β = 2. For all α ≥ 16 and β ≥ 2,

the weight accumulation policy would produce the same result for the objective function.

Therefore, the boundary of the grid space is set as α ∈ [0, 16], β ∈ [0, 2]. The grid step
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is set as 1/6 which means the solution space is divided into 96 × 12 small grid steps for

determining the optimal coefficients.

The parameter sweep starts with the obvious worst choice α = 0, β = 0, where all

patients are selected at random to receive treatments. The value obtained through random

selection is assigned as the cross-validating set where the value found from next evaluation

cycle can be compared against. The grid search then cycle through (α, β) determined by

the grid steps and updates the cross-validating set each time a set of better performing

parameters is found. After the completion of the grid search, the optimal coefficient pair is

obtained. The optimal coefficients are unique to each hospital and different when calculated

under different performance measures.

A.2 Optimal Ti(i−1)

As defined before Ti(i−1), i = 2, 3, 4 are the thresholds of days Priori ty i patients have

to wait before promoted to Priority i − 1. The lower boundaries for all Ti(i−1) are 0 as

the patients cannot be promoted before they arrive at the queue. The upper boundary

of each Ti(i−1) are defined as the target wait time for priority i + 1 patients. The reason

for the upper bound is that once the patients overstay their target, there is no reason to

promote them to a higher priority group. Therefore, the range for Ti(i−1)’s are as follows:

T21 ∈ [0, 2], T32 ∈ [0, 10], and T43 ∈ [0, 28]. The size of the grid steps is set to 1, since the

priority promotion only happens at the beginning of each period.

The parameter sweep starts with the obvious worst choice of T21 = 2, T32 = 10,

T43 = 28, the patients are never promoted to a higher priority group before they had

already exceeded their target waiting time. The value obtain through random selection is
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assigned as the cross-validating set where the value obtained from next evaluation cycle can

be compared against. The grid search then cycle through (T21, T32 and, T43) determined

by the grid steps and updates the cross-validating set. Similar to parameters α and β, the

optimal Ti(i−1)’s are unique to each hospital and different when calculated under different

performance measures.
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