
Filtering News from Document
Streams: Evaluation Aspects and

Modeled Stream Utility

by

Gaurav Makhon Baruah

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirements for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Gaurav Makhon Baruah 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Events like hurricanes, earthquakes, or accidents can impact a large number of people.
Not only are people in the immediate vicinity of the event affected, but concerns about
their well-being are shared by the local government and well-wishers across the world. The
latest information about news events could be of use to government and aid agencies in
order to make informed decisions on providing necessary support, security and relief. The
general public avails of news updates via dedicated news feeds or broadcasts, and lately,
via social media services like Facebook or Twitter. Retrieving the latest information about
newsworthy events from the world-wide web is thus of importance to a large section of
society.

As new content on a multitude of topics is continuously being published on the web, spe-
cific event related information needs to be filtered from the resulting stream of documents.
We present in this thesis, a user-centric evaluation measure for evaluating systems that
filter news related information from document streams. Our proposed evaluation measure,
Modeled Stream Utility (MSU), models users accessing information from a stream of sen-
tences produced by a news update filtering system. The user model allows for simulating
a large number of users with different characteristic stream browsing behavior. Through
simulation, MSU estimates the utility of a system for an average user browsing a stream
of sentences. Our results show that system performance is sensitive to a user population’s
stream browsing behavior and that existing evaluation metrics correspond to very specific
types of user behavior.

To evaluate systems that filter sentences from a document stream, we need a set of
judged sentences. This judged set is a subset of all the sentences returned by all systems,
and is typically constructed by pooling together the highest quality sentences, as deter-
mined by respective system assigned scores for each sentence. Sentences in the pool are
manually assessed and the resulting set of judged sentences is then used to compute sys-
tem performance metrics. In this thesis, we investigate the effect of including duplicates of
judged sentences, into the judged set, on system performance evaluation. We also develop
an alternative pooling methodology, that given the MSU user model, selects sentences for
pooling based on the probability of a sentences being read by modeled users.

Our research lays the foundation for interesting future work for utilizing user-models
in different aspects of evaluation of stream filtering systems. The MSU measure enables
incorporation of different user models. Furthermore, the applicability of MSU could be
extended through calibration based on user behavior.

iii

Acknowledgements

This PhD was an interesting and enlightening journey, a journey that challenged me
on all fronts intellectual, professional, physical and spiritual. I was privileged to have Prof.
Mark D. Smucker as my supervisor and mentor for my PhD; his advice was invaluable
all throughout. I must accord my heartfelt thanks to Prof. Mark D. Smucker for his
encouragement, patience and understanding for all matters that affected my PhD. I was
also privileged to have worked with leading Information Retrieval (IR) scientists: Prof.
Charles L. A. Clarke, my co-supervisor who is always quick to help and develop ideas;
Prof. Jimmy Lin, who is always encouraging of ideas and is ever-ready to contribute to
and take research projects forward; and Prof. Olga Vechtomova, who collaborated with
me on two related research projects.

I was fortunate to have a PhD Examination committee that consisted of many IR
luminaries: Prof. Jay Aslam, whose Temporal Summarization research initiative formed
the bedrock of my thesis; Prof. Lukasz Golab, who helped me cement my understanding
of fundamentals; Prof. Gordon Cormack, who helped me to communicate research ideas
more effectively; Prof. Jimmy Lin, who cleared pathways to future work; Prof. Charles
Clarke, who advised on the core chapter of my thesis; and Prof. Mark Smucker, whose
advice helped make the thesis possible. My defense was a tremendous learning experience
for me; for this I sincerely thank my examination committee. I do humbly and happily
realize that the world of IR research is rich with opportunity; I sincerely hope that I am
able to apply the skills I learned for furthering the understanding of Information Retrieval.

An undertaking such as a PhD cannot really come to fruition without the help and
support of colleagues, friends and family. I would like to thank my colleagues and friends:
Aiman Al-Harbi, who had the same advisors as I did, and with whom I shared my office,
and we both kept each other going through tough times personal or professional during the
PhD; Adam Roegiest, with whom I co-authored two papers and whose advice was helpful
in navigating many issues be it research or otherwise; Maheedhar Kolla, whose advice
on what to do and what not to do was eye opening during the whole PhD journey and
beyond; Rakesh Guttikonda, for his collaboration on a research project that led into my
PhD thesis; Bahareh Sarrafzadeh, Adriel Dean-Hall, Ashif Harji, Haotian Zhang, Le Li,
Alexandra Vtyurina and Luchen Tan, all provided fascinating world views and wonderful
discussions on research and other topics all throughout my PhD.

I would like to especially thank Akshay K. Singh for being a great and wonderful friend
and Linda Schryer for sharing her pragmatic advice and life experience. Both were excellent
interlocutors for matters professional and personal, and they kept me grounded and sane

iv

when I needed it the most. For this I am eternally grateful to them. I thank my Indian
friend circle in Waterloo in helping me to partake in joy even when the going got tough at
times.

I would like to thank my mother, Nirupama Baruah for her unflinching and unwavering
support throughout my PhD, even as she experienced various travails in life, and my father,
Makhon Prasad Baruah who provided inspiring examples and anecdotes in order to keep
me motivated during my darkest hours. My parents have far exceeded their responsibilities
with regards to my education by supporting me financially or emotionally as need be and
I hope I have lived up to their expectations through this PhD. My wife, Hemangi Rai,
was always there; I thank her for accompanying me on my academic journey and for
contributing in whichever way she could. I thank both my in-laws Anirudh Muktinath Rai
and Minakshi Rai who were supportive of my decisions to educate myself; my father-in-law
greatly helped me during my admission process and helped to ensure that things were in
order back home. I must also thank my brother Anirudh, my extended family, and all the
friends I have had the pleasure to meet during my lifetime for all their prayers and well
wishes.

I must also thank those no longer with us: my grandmother, Sundarabai Sahadu Jad-
hav, a respected teacher and an inspiration to many, who not only cared for me but her
advice and blessings inspired me to pursue the quest for knowledge and aspire to the noble
profession of teaching; Mr. Menino Silveira taught me how to play the guitar well and he
also taught me a great many lessons for life, chief among which was instilling discipline
through the beats of a metronome.

Life is an ongoing learning experience; a PhD however, is the last recognized aca-
demic milestone and I would not have reached here without the encouragements of teach-
ers/mentors at the various schools/organizations that I have attended. I would like to
acknowledge and thank teachers at respective alma-maters: the many respected teachers,
house masters and matrons at the Sanjeewan Vidyalaya, Panchgani; the lecturers at the
Bharati Vidyapeeth’s College of Engineering, Pune; the esteemed professors at the In-
dian Institute of Technology (IIT), Guwahati; and the exceptional faculty at the Cheriton
School of Computer Science, University of Waterloo.

I would like to accord heartfelt thanks to Ganesh Bhutkar, Assistant Professor, Vish-
wakarma Institute of Technology, Pune—then at the Bharati Vidyapeeth’s College of En-
gineering, Pune—who allowed us to pursue a research oriented final year undergraduate
project even when the overall trend and overwhelming suggestions were to do a software
engineering project. Prof. G. Sajith and Prof. Diganta Goswami, my advisors at the In-
dian Institute of Technology, Guwahati, were instrumental in shaping my outlook towards

v

research as a career choice; I am highly grateful for their advice and thankful to them as
well as to Prof. Sukumar Nandi who motivated me to pursue a PhD.

I would also like to thank Prof. B. Ravi, Institute Chair Professor, Mechanical Engi-
neering Department, IIT, Bombay, who gave me my first break and working at the IIT
first exposed me to research in an academic setting. Dr. Shailesh Deshpande, Founder and
CEO at Intellection Software and Technologies, was an exceptional mentor; at Intellection,
I learned how to run a growing startup, translate research into workable solutions and more
importantly how be humble and resolute in the face of adversity in the professional as well
as personal spheres of life. Dr. Deshpande, in particular, was highly supportive of my purs-
ing higher education. Phaneendra Kumar D., Technical Lead at Cisco—then at Geodesic
Limited, Bangalore—was also a great mentor who not only guided me in managing a team
of engineers but was also highly encouraging of my PhD aspirations.

A graduate student not only works on research but also partakes in the day to day
activities of the university. I would like to thank Olga Zorin from the Instructional Sup-
port Group, for her advice, understanding and professionalism that she accorded to me
during my years as a Teaching Assistant and as an Instructional Apprentice for the CS 251
Computer Organization and Design course at the Cheriton School of Computer Science. I
would like to thank: Margaret Towell and her team at the CS Graduate Office for all their
support and quick resolution of administrative tasks; Gordon Boerke who facilitated quick
resolutions of IT related problems; Helen Jardine, and other administrative staff whom I
had the pleasure of meeting at the Cheriton School of Computer Science office; and the
extremely competent International Student Experience team at the University of Waterloo
who greatly helped simplify resolution of immigration related issues in a way that eased
the PhD process throughout.

Finally, I would like to extend my gratitude and acknowledge the various organizations
and agencies that provided facilities, infrastructure, support and funding that enabled me
to work on the research presented in my thesis. The research work for my thesis was
made possible by the facilities of the Shared Hierarchical Academic Research Computing
Network (SHARCNET) and Compute/Calcul Canada, and the facilities of the David R.
Cheriton School of Computer Science at the University of Waterloo, and was supported in
part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and
in part by the Google Founders Grant, and in part by the Graphics, Animation and New
Media Network of Centres of Excellence (GRAND NCE), and in part by an Amazon AWS
in Education Research Grant, and in part by the University of Waterloo.

I would at the very end like to thank all those whom I may have missed in this ac-
knowledgement.

vi

Dedication

Dedicated to all my Teachers (Gurus) — who create knowledge, sustain knowledge and
dispel ignorance.

vii

Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Motivation . 2

1.1.1 Temporal Summarization at TREC 3

1.2 Overview and Contributions . 5

1.2.1 Evaluation in the Presence of Duplicates 6

1.2.2 Modeled Stream Utility . 6

1.2.3 Simulation-based Pooling . 8

1.3 List of Contributions . 9

2 Related Research 12

2.1 Temporal IR: Systems and Evaluations . 13

2.1.1 Filtering . 15

2.1.2 Topic Detection and Tracking . 16

2.1.3 Streams . 17

2.1.4 Temporal Summarization . 19

2.1.5 Other TREC Tracks with Temporal Leanings 21

2.2 User-behavior Modeling and Simulation for Evaluation 23

viii

2.2.1 User-models and Derived Measures Evolution 24

2.2.2 Grounding User-Oriented Evaluation in Time 27

2.2.3 User-behavior and Temporal IR . 32

2.3 IR Evaluation: Test Collections and Evaluation Measures 35

2.3.1 Pooling and Test Collection Construction 39

2.3.2 Alternatives to Standard Depth-pooling 42

2.3.3 Evaluation Measures and Systems Comparisons 46

2.3.4 Nugget-based Test Collections . 47

2.3.5 User-models, Test Collections, and Evaluation Measures 49

3 The Temporal Summarization Track at TREC 52

3.1 Temporal Summarization Track 2013 . 53

3.1.1 Corpus, Tasks, Topics . 54

3.1.2 Evaluation Method and Measures 55

3.1.3 Participating Systems Overview . 61

3.2 Temporal Summarization Track 2014 . 63

3.2.1 Corpus, Tasks, Topics . 63

3.2.2 Evaluation Method and Measures 64

3.2.3 Participating Systems Overview . 66

3.3 Participation at TST 2013 . 68

3.3.1 Corpus Preprocessing . 69

3.3.2 Shortlisting Documents . 71

3.3.3 Selecting Sentences . 73

3.3.4 Query Expansion . 73

3.3.5 Constructing Runs . 77

3.3.6 Results . 81

3.3.7 Conclusion . 81

ix

4 Evaluation in the Presence of Duplicates 85

4.1 Expanding the Judged Set of Sentences . 87

4.2 Evaluating TST 2013 Runs using qrels Expanded with Duplicates 89

4.2.1 Effect of Variations in Duplicate Detection 92

4.2.2 Discussion . 95

4.3 Expansion of TST 2014 qrels with Duplicates 96

4.3.1 Evaluating TST 2014 Runs using qrels Expanded with Duplicates . 96

4.3.2 Discussion . 98

4.4 Conclusion . 104

5 Modeled Stream Utility 105

5.1 User Model for Streaming Information Access 106

5.1.1 Model Parameters for a Single User 106

5.1.2 Modeling a User Population . 107

5.1.3 Modeling User Behavior . 110

5.1.4 User Interface and User Interaction Behavior 111

5.2 MSU Evaluation Model . 112

5.2.1 Measuring Lateness . 113

5.2.2 Expressing Modeled Stream Utility 114

5.3 MSU Parameter Sweep . 117

5.3.1 MSU for Reasonable Users . 118

5.3.2 Exploring the User Model Parameters 123

5.3.3 MSU and Set-Oriented Metrics . 126

5.3.4 Everyone’s a Winner . 128

5.4 Discussion . 131

5.4.1 Evaluating Runs with MSU using qrels Expanded with Duplicates . 133

5.5 Conclusion . 134

x

6 Simulation-based Pooling 138

6.1 Motivation for Simulation-based Pooling 139

6.1.1 Proportions of Users not Reading Relevant Updates 142

6.2 Estimating the Probability of an Update being Read 145

6.2.1 Depth Pools with Balanced and Unbalanced Probabilities 149

6.3 Score vs. Probability Based Pooling . 149

6.4 Pooling using Probability Mass Cover . 152

6.5 Discussion and Future Work . 157

7 Conclusions and Future Work 158

7.1 Summary . 158

7.2 Limitations . 161

7.3 Future Work . 162

7.3.1 MSU Calibration and Extensions 162

7.3.2 Modeled Stream Utility for Different User Behaviors 165

References 168

xi

List of Tables

2.1 A TST 2013 nugget and its various representations in returned sentences as
confirmed by NIST assessors. 48

3.1 Topics at TST 2013 with their types, query durations and attributes for the
value tracking task. 57

3.2 Topics at TST 2014 with their types and query durations. 64

3.3 Choice of seed queries to generate expansion terms. Specific queries include
the topic query string. 75

3.4 Hour 2012-08-11-18: Expansion terms for the training topic “iran earth-
quake”, generated using seed queries of type Generic All Attributes (GAA)
and Specific All Attributes (SAA). 76

3.5 Hour 2012-08-11-21: Expansion terms for the training topic “iran earth-
quake”, generated using seed queries of type Generic All Attributes (GAA)
and Specific All Attributes (SAA). 76

3.6 Number of unique updates obtained for values of parameters c and k for the
training topic. Rows in bold represent submitted runs. 80

3.7 TST 13 Participation results for our runs. UWMDSqlec2t25 found the most
number of nuggets per topic on average. Both runs scored high on Latency
Comprehensiveness. Note that the average number of nuggets per topic is
119.67 (Table 5.3). 82

4.1 The number of sentences in the Original judged set vs. the Expanded set. . 88

4.2 Examples of Duplicate Sentences with high number of occurrences across all
topics for TST 2013. 90

xii

4.3 Rank correlation between Original Judged sentences vs Expanded set, for
TST 2013 measures. 95

4.4 Number of unique sentences in the pool, known duplicates (in the pool),
duplicates found within the submitted runs, for TST 2014. 97

4.5 Number of unique sentences in the pool, known duplicates (in the pool),
duplicates found within the submitted runs, for TST 2013. 97

4.6 TST 2014 measures, rank correlations between the standard and duplicates-
expanded qrels, and the number of runs that showed statistically significant
(p-value ≤ 0.05 over a paired t-test) changes in scores. 98

5.1 ELG, MSU and respective ranks for each run. 116

5.2 Parameter sets that resulted in Best Ranks for respective systems. 129

5.3 Nuggets identified, nuggets retrieved by all systems, and the nugget recall
per topic. Note that no single system retrieves all nuggets for a topic. . . . 132

5.4 MSU evaluation of runs for TST 2013, TST 2014; respective rank correla-
tions between standard and duplicate expanded qrels; number of runs with
statistically significant (p-value ≤ 0.05 over a paired t-test) changes in MSU
scores. 134

xiii

List of Figures

1.1 The Temporal Summarization Task at TREC. The red arrow indicates the
time at which the event occurred. A system returns a temporal summary
by emitting updates at various instants during the query duration. 4

2.1 An example of the pooling process for a topic. Given a document collection
and a query: (i) search engines return a ranked list of (document, score)
tuples; (ii) the top-k tuples from each ranked list are pooled together; (iii)
the pooled documents are assessed for relevancy by human assessors; (iv)
the resulting test collection is used to compute system performance over
appropriate evaluation metrics. 37

3.1 The Temporal Summarization task: Following a newsworthy event that oc-
curs at some point in time (red arrow), the system must find and emit
sentences concerning the event, from a time ordered stream of documents
(blue arrow), for as long as the user is interested in the event (the query
duration). 53

3.2 Training Topic supplied for TST 2013. 56

3.3 Growth in term weight (log(lC/lt)) of query terms for topic “Hurricane
Sandy”. The X-axis indicates hours in corpus time. The Y-axis shows
the weight values. The vertical dashed and dotted lines indicate the start
and end of the topic query duration respectively. The horizontal lines show
the mean term weight for the query string at the start and end of the query
duration, and the final mean term weight for the collection. 84

xiv

4.1 ELG scores for the systems using the duplicates-expanded set of judged
sentences vs. the ELG scores for the systems using the original set. The
original (track’s) system rank order is from right-to-left on the X-axis. The
green colored points indicate a statistically significant (p-value ≤ 0.05 over
a paired t-test) difference in absolute ELG score for the respective run. . . 93

4.2 LC scores for the systems using the duplicates-expanded set of judged sen-
tences vs. the LC scores for the systems using the original set. The original
(track’s) system rank order is from right-to-left on the X-axis. The green col-
ored points indicate a statistically significant (p-value ≤ 0.05 over a paired
t-test) difference in absolute LC score for the respective run. 94

4.3 HM(nELG, LC) scores for the systems using the expanded set of judged
sentences vs. the HM scores for the systems using the original set. The
original (track’s) system rank order is from right-to-left on the X-axis. The
green colored points indicate a statistically significant (p-value ≤ 0.05 over
a paired t-test) difference in absolute HM score for the respective run. . . . 99

4.4 nELG scores for the systems using the expanded set of judged sentences
vs. the nELG scores for the systems using the original set. The original
(track’s) system rank order is from right-to-left on the X-axis. The green
colored points indicate a statistically significant (p-value≤ 0.05 over a paired
t-test) difference in absolute nELG score for the respective run. 100

4.5 ELG scores for the systems using the expanded set of judged sentences vs.
the ELG scores for the systems using the original set. The original (track’s)
system rank order is from right-to-left on the X-axis. The green colored
points indicate a statistically significant (p-value ≤ 0.05 over a paired t-
test) difference in absolute ELG score for the respective run. 101

4.6 LC scores for the systems using the expanded set of judged sentences vs.
the LC scores for the systems using the original set. The original (track’s)
system rank order is from right-to-left on the X-axis. The green colored
points indicate a statistically significant (p-value ≤ 0.05 over a paired t-
test) difference in absolute LC score for the respective run. 102

5.1 The MSU Evaluation Process. 109

5.2 MSU vs ELG correlation for users reading updates for about 2 minutes every
3 hours on average. 120

5.3 MSU vs LC correlation for users reading updates for about 2 minutes every
3 hours on average. 122

xv

5.4 Maximum and minimum correlations of MSU with ELG. 125

5.5 Correlations MSU/sec is high regardless of total gain. 127

5.6 TST 2013 MSU scores for the systems using the duplicates-expanded set of
judged sentences vs. the MSU scores for the systems using the original set.
The original (track’s) system rank order is from right-to-left on the X-axis.
The green colored points indicate a statistically significant (p-value ≤ 0.05
over a paired t-test) difference in absolute MSU score for the respective run. 135

5.7 TST 2014 MSU scores for the systems using duplicates-expanded set of
judged sentences vs. the MSU scores for the systems using the original set.
The original (track’s) system rank order is from right-to-left on the X-axis.
The green colored points indicate a statistically significant (p-value ≤ 0.05
over a paired t-test) difference in absolute MSU score for the respective run. 136

6.1 Proportions of 100,000 simulated users reading updates emitted by the run
cluster1. The run returned 1,483 updates across all topics of which 497
were relevant; relevant updates are indicated as green dots in the figure. . . 140

6.2 Proportions of 100,000 simulated users reading updates emitted by the run
TuneExternal2. TuneExternal2 returned 7,195 updates across all topics of
which 214 were relevant. 141

6.3 Proportions of 100,000 simulated users reading all updates submitted across
all runs for topic 10 of TST 2013. Across all runs 418,332 updates were
submitted for topic 10 of TST 2013; 1,616 relevant updates were returned. 143

6.4 The number of relevant updates read by proportions of simulated users, for
topic 10 from the temporal summarization track, at TREC 2013. 144

6.5 An example of a read(i, j) matrix given users ui and updates dj. 146

6.6 Example illustrating the difference between balanced (Equation 6.3) and
unbalanced (Equation 6.4) formulations of P (read). Green colored dots
represent updates read by various users over the given System A. Updates
d2 and d3 are awarded higher probabilities by the unbalanced formulation
than the balanced formulation. 148

6.7 Overlap between the top-k probability-based pools created with balanced
and unbalanced probabilities. 150

6.8 Overlap between the top-k score-based and top-k unbalanced probability-
based pools. 151

xvi

6.9 Comparison of pool size and probability mass covered for both local and
global probability mass pooling strategies. 154

6.10 Local probability mass covered for all 26 runs submitted to TST 2013, when
global probability mass pooling is performed. 155

6.11 Overlap between pools created using global and local probability mass pool-
ing strategies when both target the same probability mass cover. 156

xvii

Chapter 1

Introduction

Information about recent noteworthy events is reported in the news. Significant news

events could be sensational, historic, groundbreaking or unpredictable. In many cases, news

events transpire over a period of time, for instance, a sporting event like the Olympics, or a

natural calamity like a hurricane, or the aftermath of an earthquake. Given a time ordered

document stream, such as the World Wide Web (Web)—wherein content is continuously

published via social media, blogs, or news reports—news updates for an event of interest

can be filtered/retrieved from the document stream as the event evolves over time.

In this thesis we focus on the evaluation of IR systems that retrieve or filter news

updates over a defined period of interest for a news event. Our main contribution is the

development of a user-model based evaluation measure for evaluating such systems. We

also investigate related aspects of system evaluation which could affect the performance

measurement of news filtering systems.

1

1.1 Motivation

The sudden onset of unpredictable events can generate related information needs amongst

affected people, first-responders, government agencies, aid providers, observer groups, di-

aspora around the world and other interested people. Such events could be unexpected like

earthquakes or accidents, holding public interest for varying periods of time. On the other

hand sporting events or elections often hold public interest for the duration of event, and

possibly, during the days leading up to the event. In both cases, as time progresses, more

information about the event may come to light, resulting in the events taking on a dy-

namic (or evolving) form. For instance a shooting incident is a sudden occurrence however

it sets into motion a chain of events such as law enforcement, government response, citizen

reactions, safety updates, post event investigations, and analysis. These events that follow

in the aftermath of the main event, are themselves newsworthy and can contain informa-

tion of interest to various users. Some events, like hurricanes or epidemics, are inherently

evolving events.

The news about events may have an impact on possibly large sections of society. Fol-

lowing an event, the Web as a publishing medium, can expect the addition of documents

or articles about the event, all generated in the hours/days following an event. Documents

relating to the event may come from social media (microblogs and social networks), news

services, personal blogs and other media. Together, these sources of information effectively

form an event-stream that contains content about an event. From an information retrieval

perspective, the event-stream is obtained by filtering an aggregate-stream of all documents

that are being generated and published over the Web in the same time period that contains

2

the event.

A concerned user on searching the web via a search engine, might expect to find docu-

ments from the event-stream to gain more information about the event. When consuming

documents about such events, users might need to know as many facts as possible at the

earliest. A concerned user may check back multiple times, in order to find out new in-

formation or important facts about the event. A user might realistically expect that the

latest information is novel and is returned with low latency. By low latency, we mean that

the time lag between actual occurrence of the event and the time at which the information

is presented to the user is as small as possible. Furthermore, shorter and to the point

information could be most helpful for the user.

In reality, users could be affected in different ways by an evolving news story. Users

in the government or health care, or users in the immediate vicinity of the event may

need extremely low latency information updates. Periodic or urgent updates may be more

desirable for long ranging events like hurricanes or epidemics. Moreover, interested users

may only be able to check back for updates as their time constraints allow.

1.1.1 Temporal Summarization at TREC

The Temporal Summarization Track (TST) (Aslam et al., 2013; Aslam et al., 2014) at

the Text Retrieval Conference (TREC), in particular, fosters the development and the

evaluation of systems that retrieve updates regarding news events over a specified duration

of time. The topics for the track in 2013 were news events of the type accident, bombing,

earthquake, shooting and storm. Later iterations of the track also included events of the

3

Figure 1.1: The Temporal Summarization Task at TREC. The red arrow indicates the time
at which the event occurred. A system returns a temporal summary by emitting updates
at various instants during the query duration.

type protest, impact event, hostage, riot and conflict.

The TST topics mainly comprise of a query string for an event and a specified query

duration (period of interest) following the event. Participating teams at the track were

required to submit runs (system results), consisting of topically related sentences filtered

from a time-ordered document stream, with each sentence having a timestamp indicating

the instant of retrieval. The set of sentences returned at various instants across the period

of interest forms a temporal summary of updates for the event (Figure 1.1). The returned

set of sentences were evaluated for their relevance—did the sentence contain a topically

relevant fact, latency—was the sentence returned with minimal delay following the actual

occurrence of the fact, and verbosity—does the sentence contain minimal extraneous con-

tent. Relevant sentences having low latency and low verbosity were preferred over other

submitted sentences.

The track utilized a nugget based evaluation framework. Important facts (i.e. nuggets)

about each news event were extracted from Wikipedia1. Each nugget was associated with

the timestamp at which the nugget first appeared in the event’s Wikipedia article’s edit

1https://en.wikipedia.org/

4

https://en.wikipedia.org/

history. Thus, an update (the returned sentence) is relevant if it contains a nugget. The

latency of the update is the time difference between the contained nugget’s timestamp

and the update’s timestamp. The verbosity of the update is the amount of non-nugget

content in the update (Section 3.1.2). Gain experienced on reading a relevant update is

discounted for latency. The track defines a precision analogous measure Expected Latency

Gain (ELG), that measures the latency discounted gain per verbosity normalized update.

The track also defines a recall analogous measure Latency Comprehensiveness (LC), that

measures the recall of the nuggets for the topic, given the latency discounted gain.

We participated in the Temporal Summarization Track at TREC 2013. Chapter 3

discusses the track in detail and presents an example of performing the TST task. Our

participation experience led to interesting directions of research. Specifically, we explored

various factors for the evaluation of temporal summarization systems, leading up to the de-

velopment of, a user-model oriented evaluation measure, for systems that produce streams

of updates for news events.

1.2 Overview and Contributions

In this thesis, Chapter 2 highlights related prior research on filtering systems and their

evaluation, different kinds of information streams for which information retrieval techniques

have been applied, such as news articles, documents and microblogs, as well as, various

applications of filtering such as topic detection and tracking (Allan et al., 1998), tracking

epidemics (Culotta, 2010), along with the retrieval/filtering methods and evaluations used

thereof. In Chapter 3, we describe the temporal summarization track, the track’s evaluation

5

measures, the participating teams’ approaches to temporal summarization as well as our

participation attempt at TST 2013.

1.2.1 Evaluation in the Presence of Duplicates

Following our participation at TST 2013, we observed a large number of duplicate sen-

tences in the track’s prescribed document collection, the KBA Stream corpus 2013 (Frank

et al., 2014). We hypothesized that duplicate sentences with earlier timestamps could help

improve the measured performance of the participating systems as the latency of returned

updates would reduce. We first explored the proliferation of duplicates of judged sentences

from the TST 2013 evaluation pool in the KBA stream corpus 2013. We then investigated

the effect of expanding the judged set of sentences with the found duplicates on the evalua-

tion of submitted participant systems at the track (Baruah, Roegiest, and Smucker, 2014).

Although the ranking of systems does not significantly change, adding duplicates allows

for more accurate computation of performance scores for systems (Chapter 4).

1.2.2 Modeled Stream Utility

The primary contribution of this thesis is the development of Modeled Stream Utility

(MSU) (Chapter 5), a user-model based evaluation measure for systems that produce event

related updates by filtering an aggregate stream (Baruah, Smucker, and Clarke, 2015).

Essentially, MSU utilizes a simple user model that simulates users accessing information

from a stream and measures gain based on updates read by modeled users, for evaluating

a system. The gain is a function of the number of relevant information nuggets read by a

6

user from a given system’s response; the average gain across all modeled users for a system

is the system’s modeled stream utility. MSU primarily builds on the time well spent work

by Clarke and Smucker (2014), and likewise, incorporates models of user-behavior over a

user-interface for effective user performance measurement (Clarke et al., 2013).

For TST 2013, there is a large variation in the volume of content returned by the

participating systems (Table 3.7). The number of updates returned across participating

systems, numbers from less than 200 to more than 2.8 million. The evaluation measures

of the Temporal Summarization track are analogous to precision (ELG) and recall (LC).

Systems that returned a higher number of sentences, scored higher on LC. Returning fewer

sentences resulted in higher ELG.

The best run as per ELG returned only 197 sentences (21.9 sentences per topic). How-

ever, the specified query duration was 10 days, i.e. the run returned approximately 2

updates per day to the user, with the total relevant content being 6.89 nuggets. However

the identified number of nuggets per event averages 119 nuggets per topic (Table 5.3). We

wondered if a user would be satisfied to receive less than 7 nuggets for a news topic when

the actual amount of relevant content could be much higher.

At the other end of the spectrum, the most updates returned by a run numbered 312,863

per topic over the 10 day query duration. Though, the expected recall is higher in this

case with 37.8 nuggets found, it is unlikely that the user would read 31,286.3 updates per

day. These examples lead us to the interesting questions of how a user might consume the

stream of updates? How many updates would a user prefer to read?

Our experiments show that the development and evaluation of systems that generate

7

streams of updates, would benefit by a cognizance of target user behavior. Accordingly,

for real world applications, user models would need calibration by observing real users.

1.2.3 Simulation-based Pooling

For the development of the MSU measure we utilized the pooled and judged set of sentences

from TST 2013. The evaluation pool for TST was constructed using a variant of depth-

pooling (Aslam et al., 2013). Standard depth-pooling selects a specified number of top-

scoring sentences from each participating run to construct the evaluation pool. On

simulating 10,000 users generated via the MSU user model (Section 5.1), we found that

very few relevant updates, as judged for TST 2013, were read by simulated users. In other

words, a large number of simulated users encountered very few relevant sentences in the set

of updates that they read. Almost a third of the relevant updates were read by less than

1% of the simulated users (Figure 6.4). The set of judged relevant sentences was found to

have little overlap with the set of sentences read by the simulated users.

Under evaluation by MSU, it may be beneficial for systems to have the updates that

are actually read by users, to be labeled by assessors. A user model for streaming infor-

mation access allows for recording which updates are actually read by users. With the

knowledge of which update is read by which modeled users, we are in a position to estimate

the probability of an update being read (Baruah, Roegiest, and Smucker, 2015). Given

the probabilities of updates being read, we propose two pooling methods: depth-pooling

with the probability as the selection criteria, and pooling based on probability mass cover

(Chapter 6).

8

To know how effective (or adequate) the probability based pooling methodologies are,

we need to acquire relevance judgements for the probability based pools. Analyses on the

quality of resulting pools, such as those done by Cormack and Lynam (2007) and Buckley

et al. (2007), is an interesting area for future work.

1.3 List of Contributions

1. We found that there are a large number of duplicate sentences in the KBA Stream

Corpus 2013; duplicates of judged sentences number 9,034,179, almost 1,000 times

the number of judged sentences, 9,113 (Chapter 4).

2. On including the duplicates into the judged set of sentences we found that, the

absolute scores for half (13 of 26) the participating systems show significant changes

over the track’s evaluation measures (Chapter 4).

3. The inclusion of duplicate sentences, however, does not affect the relative perfor-

mance of the systems significantly. The Kendall’s τ rank correlation between system

rankings induced by the track’s relevance judgements, and the system rankings in-

duced by the expanded set of judgements, remains high at 0.899 for ELG, and 0.942

for LC (Chapter 4).

4. We developed a user model for streaming information access. We model the behavior

of a user reading updates from a stream. The model simulates a user alternating be-

tween, (a) spending time reading updates from the filtered stream, and (b) spending

9

time away from the system. Depending on the user’s interest and time constraints,

the durations of (a) and (b) would vary (Chapter 5).

5. Given the user model for streaming information access, we develop an evaluation

measure (MSU) that measures how many nuggets are read on average by a user. The

method involves simulating a number of users given the user model with specified

parameters, and noting the relevant updates, and thereby the nuggets, read by each

user. Then, MSU is the number of nuggets read on average by a user from the

simulated user population (Chapter 5).

6. We demonstrate MSU using the test collection and participating systems of the Tem-

poral Summarization track at TREC 2013. Systems returned likely relevant sentences

as updates for a topic at various points in time. These updates produced at vari-

ous instants across the period of interest can be considered to be a stream of likely

relevant updates for a topic. Our experiments show that for a reasonably interested

user (who checks back for about 2 minutes every 3 hours on average), the relative

performance of systems does not correlate well with the track’s measures, ELG and

LC (Chapter 5).

7. On exploration of the parameter space for MSU’s user model, we find that parameter

values that induce a system ranking that is closest to the ranking produced by ELG,

represent a user population that reads updates for about 1 minute per day on average.

Such users would seem to be highly constrained for time, or, they lack interest in

the event. In other words, ELG caters to highly time constrained or selective users

(Chapter 5).

10

8. On simulating many different user populations, by varying the MSU user model pa-

rameters, we find that gain derived when using a system is sensitive to different

kinds of user behavior. Model parameters characterize user behavior, which deter-

mines amount of content consumed, which in turn determines system performance

(Chapter 5).

9. We propose novel pooling methodologies based on the probability of a sentence being

read, given a user model for streaming information access. We look at alternative

formulations to compute the probability of an update being read (Chapter 6).

10. We compare standard depth-pooling based on system assigned scores with probability

based depth-pooling. The respective pools have less than 45% overlap and are thus

quite different (Chapter 6).

11. Given probabilities, we can also pool updates based on probability mass cover. For

instance, for a specified value of probability mass, one could select updates into the

pool from a given system, till the contributed probability mass—as per the proba-

bilities of the updates selected into the pool—equals the specified probability mass.

The resulting pool would then contain the updates that are most likely to be read for

each of the contributing runs, up to the specified probability mass cover. Depending

on the desired probability mass cover and the size of the contributing runs, the size

of the pool and hence the assessing effort could differ. This is different from standard

depth-pooling in which each system contributes the top-k sentences to the pool.

11

Chapter 2

Related Research

This thesis builds upon 3 major themes of ongoing and previous research in information

retrieval and filtering:

• Information retrieval and evaluation in a temporal setting, and related applications

(Section 2.1).

• User-behavior driven evaluation (Section 2.2).

• Construction of test collections, and evaluation measures (Section 2.3).

Research in this thesis lies at the intersections of these broad areas of information

retrieval. We discuss in this chapter the salient research findings on which we build this

thesis. We also connect our research with related work and compare our methods with

similar approaches.

12

2.1 Temporal IR: Systems and Evaluations

Research in Temporal Information Retrieval (TIR) has seen growing impetus in recent

times (Kanhabua, Blanco, and Nørv̊ag, 2015; Berberich et al., 2015; Spaniol, Masanès,

and Baeza-Yates, 2014; Aslam et al., 2014). Although, Information Retrieval (IR) research

in a temporal context has been ongoing for over 2 decades (Voorhees, Harman, et al.,

2005; Allan, 2002; Soboroff, 2004), the problem has seen growing interest due to the

much larger scale of data as well as change in nature of the IR tasks and applications

(Frank et al., 2013; Aslam et al., 2013; Lin et al., 2014). Challenges and applications

for temporal information retrieval include, processing a dynamic—ever growing—corpus

(Kanhabua, Blanco, and Nørv̊ag, 2015), time aware rankings (Li and Croft, 2003; Dong

et al., 2010; Metzler et al., 2009), understanding temporality of query intents (Kulkarni

et al., 2011; Jones and Diaz, 2004), detecting events and trends (Allan et al., 1998; Zhu

and Shasha, 2003), summarizing the evolution of a topic over time (Swan and Allan, 2000;

McCreadie, Macdonald, and Ounis, 2014), monitoring epidemics (Ginsberg et al., 2009;

Paul and Dredze, 2011; Culotta, 2010), and disaster awareness (Imran et al., 2013; Earle

et al., 2010; Rogstadius et al., 2013; Vieweg et al., 2010).

Belkin and Croft (1992) first compare information filtering and information retrieval

problems and highlight that there is little difference between them. They point out that

timeliness of retrieved information is an important consideration, however temporal aspects

can be context dependent. They acknowledge that filtering could be concerned with long-

standing information needs. IR systems with temporal aspects have been researched at

TREC through various tracks over several years (Voorhees, Harman, et al., 2005). However,

13

there has been an exponential growth in the scale of document collections over time. In

recent years, the temporal summarization track at TREC looks at filtering information

from a stream of documents. The microblog track has in recent years also worked on

filtering (Lin et al., 2015) as well as the generation of timeline overview summaries (Lin

et al., 2014).

Apart from TREC, temporal IR has also seen support from evaluation workshops like

NTCIR and CLEF, as well as dedicated workshops running alongside major conferences.

The Temporalia track at NTCIR (Joho, Jatowt, and Blanco, 2014; Joho et al., 2014) fo-

cusses on temporal query intent and temporal information retrieval. The CLEF NewsREEL

task (Hopfgartner et al., 2014) focuses on news recommendations evaluated in a living-labs

(Balog et al., 2014) setting. The Time-aware Information Access (TAIA) workshop (Diaz

et al., 2012; Diaz et al., 2013; Diaz et al., 2014) has been running for 4 years alongside the

SIGIR conference, with a focus on time aware rankings, temporal summarization, real-time

search, event detection, as well as evaluation methodologies for time-aware systems. The

Temporal Web Analytics Workshop (TempWeb) has been running for 5 years (Baeza-Yates,

Masanès, and Spaniol, 2012; Baeza-Yates, Masanès, and Spaniol, 2013; Spaniol, Masanès,

and Baeza-Yates, 2014) alongside the WWW conference, with a similar research focus as

the TAIA workshop, as well as temporal data mining and predictive applications.

Diaz (2014), builds a case for a test collection for crisis informatics, an apt application

for temporal IR. The temporal summarization track (TST) at TREC can be considered

to be a step in this direction. The TST also works with a web-scale time ordered corpus

containing over a billion documents spanning 2 years (Frank et al., 2014).

14

In the following sections, we discuss the evaluation methodologies developed for tem-

porally inclined IR tasks. Specifically, we follow the evolution of IR tasks that relate

to filtering/retrieving documents/information from a temporally ordered stream of docu-

ments.

2.1.1 Filtering

The TREC Filtering track ran for 7 years (Voorhees, Harman, et al., 2005). Various it-

erations of the track focused on batch filtering and adaptive filtering, along with some

variations. The primary filtering task was to process a stream of documents and find doc-

uments relevant to a user profile. The user profile essentially represented a topic, however,

the profile also contained additional information such as a query for the information need,

appropriate thresholds for the filter, and kept track of already acquired information like

feedback from the user. Relevance judgments for filtered documents were instantaneously

made available to the system.

The filtering track differs from topic detection and tracking (Section 2.1.2) in that there

is no detection component to the problem. On the other hand, the filtering track resembles

TST (Chapter 3) in its use-case simulation, with some notable differences. TST works on

a web-scale dataset and TST does not incorporate concurrent judgments as provided by

the filtering track’s simulation. Instead, for TST, systems emit (filter) updates and assign

a confidence score to each emitted update. Updates from submitted systems are pooled

and then judged for relevancy after the fact. Essentially, there is no user-feedback aspect

to the profile for TST. Another difference is that the Filtering track requires that a system

15

should take the decision to filter the document as soon as it is processed. TST does not

have this constraint, i.e. the system can decide to emit any number of updates at any time

deemed appropriate by the system.

The evaluation of the filtering track was based on a notion of utility,

Utility = AR+ +BN+ (2.1)

where A is a positive constant, B is a negative constant, R+ is the set of retrieved-relevant

documents and N+ is the set of retrieved-non-relevant documents. TREC evaluation for

filtering later evolved into using a precision oriented F-measure. Both the KBA track

(Section 2.1.5) and the TST 2014 track (Section 3.2) evaluation measures currently have

a formulation of an F-measure that combines precision-like and recall-like measures for

evaluation of stream filtering systems.

Appropriate thresholding is a major issue for filtering systems (Voorhees, Harman, et

al., 2005; Robertson, 2002) and inappropriately chosen thresholds for a filtering decision

can affect system performance. This problem also manifests itself for recent temporal

summarization tasks (McCreadie, Macdonald, and Ounis, 2014).

2.1.2 Topic Detection and Tracking

The Topic Detection and Tracking (TDT) research encompassed topic detection, topic

tracking, link detection, first story detection and story segmentation from news related

media (Fiscus and Doddington, 2002). TDT research also led to the construction of 4

16

TDT corpora. The corpora consisted of news articles spanning multiple languages. TDT

systems detected and returned news stories that are relevant to the topic. TDT evaluation

centered around missed detection rate and false alarm rate. A missed detection occurs

when a news story is not detected as being relevant. A false alarm occurs when a relevant

news story is categorized as being non-relevant. To measure the performance of systems, a

detection cost function and a decision error trade-off curves were employed. Both measures

utilize the probabilities of missed detections and false alarms.

Allan, Gupta, and Khandelwal (2001) first formulate the problem of updating the user

with sentences containing information about an evolving news story. They were inspired

by prior topic detection and tracking research (Allan et al., 1998) which relates to tracking

documents about a running news story. They define evaluation measures that measure

usefulness (of event sentences), novelty (non redundant sentence content) and size of the

summary produced by a system. A summary is typically a set of sentences. The TST

uses similar evaluation criteria for evaluating the results returned by participating systems

(Section 3.1.2).

2.1.3 Streams

Kleinberg (2006) summarizes the state of the art (circa 2006) for methods and technolo-

gies that work on the temporal dynamics of information. He puts forth the view that

there exists data that can be perceived as a stream of information rather than a static

collection. Examples of data conforming to such a viewpoint are emails, scientific publi-

cations, patents, news, etc. Such information streams can be characterized as being (i)

17

bursty (episodic), such that topics can grow (or reduce) in intensity over a specified interval

of time, and (ii) the topics (or sub-topics) could be the subject of temporally co-located

documents, however, the user only sees the merged (braided) stream. A system that filters

information from a stream must therefore address these complexities.

Kleinberg (2006) highlights topic detection and tracking (Section 2.1.2) as being one of

the first attempts that aims to address problems posed while working with text information

streams. Typically the TDT methods tend to be based on (i) thresholding: characterizing

features occurring with more frequency than average (Swan and Allan, 2000), (ii) state-

based: finite-automata methods with states representing low/high intensities of topics

(Kleinberg, 2002), or (iii) trend-based: frequency of co-occurring terms/features. Apart

from TDT, these methods may find use in the processing of blogs, search engine query logs

and may also help gauge user-behavior via implicit feedback techniques.

Finally, Kleinberg (2006) outlines various issues in dealing with temporal information

streams that are arguably still valid today. The foremost of these are that the prediction of

bursts is hard especially in real-time deployments of a stream filtering system. For example,

for a news-stream, interest may quickly peak following a natural disaster, whereas, for

sporting-events or elections, there is usually a slow build-up followed by a quick decay in

traffic. Another problem is the temporal alignment of multiple information streams.

Most work on streams typically addresses the problem of burst detection/prediction

(Zhu and Shasha, 2003; Kifer, Ben-David, and Gehrke, 2004), or classification/filtering of

streams (Katakis, Tsoumakas, and Vlahavas, 2006; Hong et al., 2011). In recent years the

dataset of choice seems to be Twitter (Lee and Chien, 2013; Pozdnoukhov and Kaiser,

18

2011) as tweets essentially form an information stream containing user generated content

that can be mined for various applications. As such, the evaluation for such methods tends

to be typical of machine learning or data mining methods, e.g. Accuracy, Area Under Curve

(for Precision and Recall) and/or significant improvements over an existing baseline.

Techniques to enhance Situational Awareness, i.e., understanding the overall view dur-

ing critical situations like natural disasters, is a closely related research area. The use

of Twitter and social media (Vieweg et al., 2010; Rogstadius et al., 2013; Imran et al.,

2013; Earle et al., 2010) for improving situational awareness is an ongoing area of research.

Twitter has also been used for predicting the spread of epidemics and general population

health monitoring (Culotta, 2010; Paul and Dredze, 2011), which could be considered as

slowly evolving news events.

2.1.4 Temporal Summarization

The core temporal summarization task as detailed in Chapter 3 is first explored by Guo,

Diaz, and Yom-Tov (2013). They focus on updating users for time-critical events. The

scale of the data and urgency of the information requires the system to make an on-line

decision about filtering a likely relevant update. That is to say, the summarization is not

“after the fact” and takes place with minimal delay as more information becomes available.

Guo, Diaz, and Yom-Tov (2013) primarily focus on performing temporal summarization

for rapidly evolving news events for which the information need is urgent (or time-critical).

They consider an event to be composed of a number of subtopics. Their system filters

updates from a time ordered stream of documents. Each update may contain one or more

19

subtopics. Accordingly, precision and recall for each update may be computed given the

subtopics of the update and the subtopics of the event. They define measures expected

precision and expected recall of an event’s subtopics over the complete set of updates.

Evaluation measures for the temporal summarization track were based on the relevancy

of sentences as was done by Allan, Gupta, and Khandelwal (2001) and Guo, Diaz, and

Yom-Tov (2013). They both have notions of set-based evaluation, i.e., the metrics are

analogous to Precision and Recall. Expected Precision and Expected Recall as described

in Guo, Diaz, and Yom-Tov (2013), are precursors to Expected Latency Gain (ELG) and

Latency Comprehensiveness (LC) measures of TST, respectively. However ELG and LC

move on to a nugget based evaluation (Aslam et al., 2013), where a nugget replaces the

notion of subtopics as described by Guo, Diaz, and Yom-Tov (2013). A nugget identifies a

key relevant fact or information that may be represented in many forms across sentences

returned by systems. TST adds a notion of latency discounting, i.e., gain from an update

is penalized for being late.

McCreadie, Macdonald, and Ounis (2014) work on incremental update summarization,

where the focus is on producing relevant and novel sentences as updates over time. They

investigated adaptive filtering techniques and utilized the macro F1 of ELG and LC for

evaluation of their incremental update summarization system. For TST 2014, Aslam et al.

(2014) utilize an F1 measure of normalized ELG and LC for evaluation.

20

2.1.5 Other TREC Tracks with Temporal Leanings

Microblog Track

The Microblog track at TREC has seen 5 iterations since its inception in 2011 (Ounis

et al., 2011). The real-time ad-hoc search task at the microblog track required systems to

return recent and relevant tweets. The evaluation measure for this task was P@30; P@k

is the precision of the top-k documents (in this case, top-30 tweets) returned by a system

(Büttcher, Clarke, and Cormack, 2010). The 2012 iteration of the track ran a real-time

filtering pilot task (Soboroff et al., 2012). Microblog track 2014 (Lin et al., 2014) introduced

a temporally anchored version of real-time ad-hoc search. Systems were required to return

1000 likely relevant tweets up to a specific time instant. The evaluation was done using

MAP; however, P@30 was also reported.

Microblog track 2014 also introduced a tweet-timeline generation task, requiring sys-

tems to return relevant tweets that constitute a summary about a topic. The summary

was required to be a list of chronologically ordered tweets up to the time at which the

query was executed. For evaluation, two measures, cluster precision and cluster recall,

were formulated. Tweets containing the same information were grouped into semantic

clusters. The system was evaluated on how many clusters were represented by their re-

trieved tweets. The task is essentially one of generating a retrospective summary for a

topic using a chronologically ordered set of tweets. Wang et al. (2015) further analyzed the

semantic clustering method of evaluation and found that although assessors may differ in

their judgement of which tweets constitute a semantic cluster, the differences do not affect

relative performance measurement.

21

Microblog track 2015 introduced the real-time filtering task, requiring the systems to

(a) push likely relevant tweets to the user (at most 10 per day), or (b) compile a digest

of 100 tweets relating to a topic. The push task is quite similar in nature to the TST

except that the former is more stringent in its requirement of updates per day. Indeed, the

push task utilizes the TST metric of Expected Latency Gain with graded relevance for the

returned tweets. For the digest task, the evaluation was done using NDCG@k; NDCG@k is

the normalized discounted cumulative gain for the top-k documents returned by a system

(Büttcher, Clarke, and Cormack, 2010).

Novelty Track

The Novelty track at TREC (Soboroff and Harman, 2003) has some similarities with the

temporal summarization track. The main task for the novelty track was to find relevant and

novel sentences from an ordered document stream. A key difference between the novelty

track and TST is the scale of the corpus in TST and that latency was not accounted for

in the novelty track. The topics for the novelty track were relating to events or opinions.

The organizers provided relevant documents to participants from which the relevant and

novel sentences were to be identified. The 2004 iteration of the novelty track (Soboroff,

2004) supplied a number of non-relevant documents along with relevant documents to

participants. For evaluation, the novelty track matched system returned relevant/novel

sentences against assessor identified relevant/novel sentences. The primary evaluation

metric was the F1 of precision and recall of a system’s returned set of sentences.

22

Knowledge Base Acceleration Track

The Knowledge Base Acceleration (KBA) track promotes research on building a knowledge

base for a given entity. Specifically, for a given entity, KBA requires systems to return

content relating to the entity with the passage of time. For instance the cumulative citation

recommendation task at KBA (Frank et al., 2013) requires systems to return pages from a

time ordered corpus that are citation worthy in a given entity’s Wikipedia article. Other

tasks include finding changes in values for key entity properties or attributes (streaming

slot filling task). The KBA track also utilizes the F1 measure as its primary evaluation

metric.

2.2 User-behavior Modeling and Simulation for Eval-

uation

An important research area in IR is the study of how evaluation measures of IR tasks

are reflective of human performance. As per the Cranfield paradigm (Cleverdon, 1967),

an IR system can be evaluated by utilizing (i) a document collection, (ii) a set of topics,

(iii) relevance assessments for each document in the collection with respect to the set of

topics. The retrieved results from systems for each topic can then be evaluated against the

respective relevance judgements.

As IR tasks and corresponding user interfaces evolve, it is important to understand

how a user might use a system. There have been various studies on whether simpler

measures like precision and recall, and their derivative measures like average precision,

23

can adequately reflect user performance. Such studies typically aim to determine if real

users actually find benefit in using a system A that performs better on, say precision, than

another system B. Al-Maskari et al. (2008) show that system performance does correlate

with change in human performance, and that users can distinguish between systems that

are slightly different. Smucker and Jethani (2010) further substantiate this finding and

point out that users change their behavior when using systems having different precisions

for retrieved results. They further note that, Cranfield-style evaluation works well when

the IR task and user interface are affine to the corresponding Cranfield-style metrics. For

instance browsing down a ranked list of documents (no summaries), and assuming that each

document takes the same amount of time to read, then the precision of the list of documents

is indeed a valid metric to measure performance. However, a user’s behavior might

change if reading longer or shorter documents, or if reading a highly relevant document

after a non-relevant document, or when reading snippets that hint on relevancy only to

find contradicting content in the documents. Evaluation measures that are sensitive to

such user considerations may help to better measure system performance in terms of the

system’s utility for a user performing an IR task.

2.2.1 User-models and Derived Measures Evolution

One of the major changes in system evaluation was the shift to graded relevance judge-

ments and the conception of the Discounted Cumulative Gain (DCG) measure (Järvelin

and Kekäläinen, 2002). DCG evaluates systems based on their ability to return highly

relevant documents at high ranks. A discount is applied when higher grade documents

24

are found to appear below lower grade documents in the ranked list produced by the sys-

tem. A normalized version of DCG (nDCG) scores the DCG of a system relative to the

ideal ranking’s DCG for the system. The normalization enables comparison of system’s

performance across topics. From a user perspective, DCG models a user’s dissatisfaction

of finding a relevant document lower in the ranked list (or “later” in time), by discounting

the gain obtained on reading a document as a function of the rank at which the document

appears.

Moffat and Zobel (2008) introduce Rank-biased Precision (RBP), an evaluation measure

that utilizes a simple user model of a user examining the next document in a ranked list

with probability p, or exiting the search with probability 1 − p, to compute the average

utility gained by a user while reading a ranked list of documents. They point out that using

identified relevant documents in TREC-style pooling evaluation with low pooling depths

can result in Average Precision (AP) to be over-estimated. RBP, on the other hand, does

not require the knowledge of the number of relevant documents in the collection and only

observes the quality of the results returned by the system that are read by the user.

Chapelle et al. (2009) developed the Expected Reciprocal Rank (ERR) measure that

improves upon RBP as well as DCG. They point out that the DCG follows a position-based

model, in that the browsing behavior of the user solely depends on the current depth of

the ranked list that the user has reached. This model, however, fails to consider that a

user’s probability of reading a document at a given rank can depend on the quality of the

document at the previous rank (a cascade-based model). ERR effectively computes the

inverse of the expected effort required to satisfy the information need of a user. ERR was

shown to correlate well with data derived from click-logs of a web search engine, and as

25

such, is well suited to reflect user performance.

There have been many investigations conducted into observing users and understanding

the underlying models of user search behavior. Of late, Interactive Information Retrieval

(IIR) and its evaluation (Kelly, 2009) has received growing interest from researchers. The

user-interface of a system has emerged as a key aspect that influences user performance.

The simple model of a user browsing down a ranked list of documents is not necessarily

reflective of actual user behavior. Search interfaces can be faceted allowing for browsing

sublists from a ranked list (He et al., 2015). Search interfaces could also suggest similar

articles to browse, enabling the users to guide systems to return similar documents to

known relevant ones (Smucker and Allan, 2006). These interfaces are significantly different

from the “user browses down a ranked list” paradigm.

It is thus crucial to understand, what the user might actually do, in terms of interactions

with the system interface and retrieved results, in order to estimate a performance score

reflective of user performance. Clarke et al. (2013) and Azzopardi and Zuccon (2015)

collate excellent compendiums of research on modeling user behavior for evaluation. Clarke

et al. (2013) outline and discuss procedures for system evaluation using simulation of user-

behavior over a system’s interface. Azzopardi and Zuccon (2015) discuss and demonstrate

what underlying models drive the search processes a user might follow, and how they

can be used for understanding the user behavior over a given search system. For instance

Azzopardi (2014) examines how a user’s information search strategies align with economics

theory, and tries to predict optimal search behavior given a search system (retrieval method

in combination with the user interface).

26

2.2.2 Grounding User-Oriented Evaluation in Time

Smucker and Clarke (2012d) proffer the view that performance evaluation measures such

as nDCG, RBP, ERR, can be expressed in an abstract form as

1

N

∞∑
k=0

gkdk (2.2)

where, k is the rank, gk is the gain experienced after reading document at rank k, and dk

is the discount associated with the document at rank k. N is the normalization factor,

usually a value that constrains the final evaluation score to the interval [0,1]. The sum is

usually limited to a specified maximum rank depth K such that 1 ≤ k ≤ K. For instance,

for nDCG@10, one would set K = 10, gk would depend on the relevance grade of the

document, dk is 1/log2(1 + k), and N is the ideal value of gain achievable at rank K.

Smucker and Clarke (2012d) point out that these measures, though they incorporate a

model of user behavior, the model assumes that users take a uniform amount of time to

read each successive document in a presented ranked list. In reality, a user goes through

a sequences of events: reading a document surrogate (snippet), deciding if browsing the

document could be worthwhile, reading the document, going back to the ranked list if

document did not satisfy the information need, and repeating the process starting at the

next snippet. Thus, as the user interacts with the system, the user has the navigate through

multiple states (each having an associated cost) and each transition from state to state has

an associated probability (Fuhr, 2008).

Smucker and Clarke (2012d) develop the Time Biased Gain (TBG) measure for evaluat-

27

ing system performance, with the insight that the cost associate with each user interaction

can be represented with time, e.g. the time taken to read a snippet, read a document and

interact with the interface, in order to complete the search process. They go further, in

fact, modeling the time at which a user will stop the search process; done via estimating

the probability that a user will continue to search until time t, represented by a decay

function D(k). A reformulation of Equation 2.2 gives us

1

N

∫ ∞
k=0

dG

dt
D(t)dt (2.3)

where, dG/dt models the probability of gain being considered in full with the passage of

time. For instance, a user may not necessarily find it satisfactory to read one moderately

relevant document after reading 20 non-relevant ones.

Smucker and Clarke (2012d) acknowledge that measuring instantaneous gain could be

a hard endeavor and they suggest the more practical approximation

1

N

∞∑
k=0

gkD(T (k)) (2.4)

where, T (k) is the expected time required by a user to read documents up to rank k, and

gk is assumed to be uniform across all documents encountered. gk represents the benefit

or gain experienced on reading the document at rank k. Thus, TBG measures for an

evaluating system, its performance in terms of expected number of relevant documents

that can found by users.

Undoubtedly, TBG will change depending on the IR task, the system’s user interface,

28

and the associated user behavior. A key aspect for evaluation with TBG is the calibration

of the metric for the underlying user-model. Once calibrated, the TBG can return an

expected value of gain per user. The advantage with TBG is that calibration need only be

done for the amount of time that users spend for various sub-tasks (interactions, reading

retuned content) involved in using the search system.

Smucker and Clarke (2012b) first describe the user-model of a user browsing a ranked

list of summaries that link to documents. They then, calibrate (estimate costs of states, and

probabilities of transitions between states) this model of user behavior by analyzing data

from conducted user-studies. They finally estimate TBG via stochastic simulation of the

user model. Smucker and Clarke (2012a) extend this idea further; they posit that modeling

a whole population of users using multiple user models allows us to get a distribution of

expected gain (TBG values) for the population of users. This is advantageous because,

given how individual users use search systems differently, we can estimate how users with

different search behaviors might experience gain while using a system. The underlying

user model need not change, however, some users may only read summaries, some others

may search for a lesser time, some users may read slower (or faster) than others. Modeling

user variance allows system designers to observe how different classes of users might benefit

when using their system.

Clarke and Smucker (2014) move beyond the ranked list interface (and the correspond-

ing user-model) for TBG. They develop Time Well Spent (TWS), an evaluation measure

that essentially measures the time spent reading relevant content. Building on the prior

work, they also develop methods to enable pairwise comparisons between systems, given

the user population’s performance distribution. A key contribution of their work was the

29

development of a reading speed model for a user population. Utilizing a model of reading

speed within the TWS/TBG evaluation framework, allows the extension as well as the

application of this evaluation approach for other IR tasks. Chapter 5, develops a model for

user behavior for information access over a stream of updates produced by a system, and

demonstrates the use of this model to evaluate the performance of systems that produce a

stream of news updates.

A potential advantage in using the TBG/TWS evaluation framework is measurement of

expected gain for a given population of users. Given that most user interaction data is only

available to proprietary organizations, Balog et al. (2014) discussed the role that living

labs could play for system evaluation and observation of user behavior. Azzopardi and

Balog (2011) illustrate how living labs may benefit research groups by providing a common

platform to observe user interactions on IR systems, for a variety of tasks. Although the

benefits of a living labs evaluation cannot be under-stated, the logistics of the setup such

an evaluation can be challenging. The TWS paradigm provides an alternative, albeit

approximate, evaluation framework that can simulate populations of users working with

competing systems. The respective user-models and their calibration is a key requirement

for estimating user performance accurately using the TBG/TWS evaluation framework.

Grounding Evaluation in Text

The TBG/TWS evaluation framework grounds the evaluation in terms of time spent by a

user for a search task. An alternative approach is to ground the evaluation in term of the

text read by a user. Sakai and Dou (2013) propose a unified framework for evaluation of

30

sessions, summaries, ranked lists, all based on the text content that is read by a user. The

set of text strings, all concatenated in order that a user reads them, is termed as a trailtext.

A trailtext can contain, snippets, summaries, portions of documents, and even span across

sessions. Based on the amount and position of relevant content in the trail-text Ttrail, a

system’s response is evaluated using U-measure as

1

N

|Ttrail|∑
p=0

g(p)D(p) (2.5)

where, p is the index of a string in Ttrail, g(p) is the gain experienced when reading the

string at index p, and D(p) computes a discount that increases with p.

The U-measure incorporates a model of user-behavior to determine the text content

that a user might read. The authors describe methods to estimate trailtext for different

IR tasks and they acknowledge that eye-tracking of users might give a better estimate of

trailtext. Clarke and Smucker (2014) point out that although the U-measure is able to

incorporate models of user-behavior to estimate the text that is read, it does not account

for the cost of user interactions with the system’s interface, and also, it assumes that all

users read at the same pace. In contrast, the TBG/TWS evaluation framework subsumes

the cost of reading content as well as system interaction costs using time as the grounding

unit for the measurement of user performance.

31

2.2.3 User-behavior and Temporal IR

User behavior analysis for temporal IR tasks is relevant to the research done in this thesis.

Although there is no known model of user-behavior for streaming information access (to

the best of our knowledge), behavioral analysis of temporal IR tasks can help guide us

towards the development of an adequate approximation (cf. 5.1). Although not all discussed

research is directly applicable to our work, most of the discussed research potentially aids

in the development of future work.

Analysis of user behavior for news information access was previously undertaken over

news portals, such as the work done by Dezsö et al. (2006) wherein the authors analysed

visitation patterns of users over articles published on a news portal. They found that

users visit a particular news article with a power law distribution. Yom-Tov and Diaz

(2011) show that geographic distance from an event, as well as social separation, both

affect the information need of users for the topic. Using the query-logs from Yahoo for

3 major events, they tried to model the user preferences for information related to the

event. Joho, Jatowt, and Blanco (2015) utilized the NTCIR Temporalia TIR task data,

and observed past recent and future information needs of participants in a user study.

They found that current search engines work best for recent, then past, and worst for

future information needs. Users add temporal expressions to queries although the benefit

of doing so varies across topics. They identified areas for improvement in the detection

temporal intent, vocabulary evolution as topics evolve, future oriented searches such as

predictions, shopping or travel itineraries. Data like this may find use for calibrating MSU

(Section 7.3.1).

32

Teevan et al. (2013) provide some insight about the latency requirements of users while

performing search tasks and they construct a probability distribution over the time that a

user might wait for T minutes before giving up searching. The distribution has exponential

decay over time. This distribution is reminiscent of the decay function modeled in TBG.

Crescenzi, Kelly, and Azzopardi (2015) show that users under time constraints query more,

and view/examine fewer documents, than those not under time constraints. Understanding

user behavior and system responses in temporal contexts such as these, is key to developing

an evaluation measure predictive of user performance.

Azzopardi (2009) describes a stream of documents as an alternative perspective to the

ranked list presentations of the IR process; the documents that a user views during the

search process constitutes a stream. Such a perspective generalizes to different kinds of

interactive IR tasks. They lay the ground work for usage based evaluation measures in

temporal contexts. They identify the requirements for a stream-centric view of evalua-

tion; what exactly constitutes a stream, dealing with unjudged documents in the stream,

comparing streams of different lengths, how to model and predict user performance; the

necessity of observing users to estimate the model of usage-patterns. They explored mea-

sures based on batches, sliding windows, defined periods of time or sessions. They propose

a relevance frequency measure: the rate of encountering relevant documents in time. In-

terestingly, the idea that the user views a stream of documents is similar to the trailtext

idea from Sakai and Dou (2013) (wherein, the “documents” are strings that a user reads).

33

Sessions

Baskaya, Keskustalo, and Järvelin (2012) note that IR tasks are usually conducted in

sessions, and, the search interface and user search strategies, both influence the user per-

formance. They identify and measure the costs (in terms of time) involved for each sub-task

(e.g. scan result list, click on result, reformulate query) of a search session. Costs could be

higher for re-querying on a mobile device and thus users may reformulate less in order to

keep session costs lower. They show that search strategies change with the availability of

time. Also, a higher querying costs is correlated with longer result list scans.

A metric similar to MSU is the Expected Global Utility (EGU) measure developed by

Yang and Lad (2009). They present an algorithm and an evaluation method for informa-

tion distillation with the goal of optimizing utility of ranked lists over multiple sessions.

The novelty in EGU was that user interaction patterns over a ranked list of documents

were modeled, for computing the expected utility of a system by estimating probabilities

over users’ browsing paths. Kanoulas et al. (2011) further address evaluating multi-query

sessions and extend the simulation models of EGU, as well as the session-nDCG measure

(Järvelin et al., 2008). Baskaya, Keskustalo, and Järvelin (2013) further investigate the

modeling of query reformulation for multi-session evaluation.

The sessions for EGU were 12 days apart in a 4 month period as per the TDT4 corpus,

and for each session, a ranked list was presented to the uses. TST on the other hand

deals with updates closer to real-time and the evaluation measure considers the quality of

the returned content as a whole. MSU is closer in spirit to EGU, however, MSU adopts

a simpler user model (of a user reading updates in reverse chronological order at every

34

session), and the measure is designed to simulate a whole population of users who may not

necessarily access the system periodically.

Summarization

Summarization systems are generally evaluated using the ROUGE evaluation framework

(Lin, 2004) where system generated summaries are compared to a human generated gold

standard. TST builds a temporal summary over time (period of interest), and it may be

possible to have a human construct a gold standard summary after the fact. An interesting

approach to evaluate temporal summaries was put forth by Kedzie, McKeown, and Diaz

(2015). They construct a gold standard summary by concatenating all nuggets for a TST

topic. However, ROUGE requires that the model summary and the system generated

summary have the same number of sentences. They, therefore, sampled with replacement

system generated updates numbering equal to the number of sentences in the gold standard

summary. The final evaluation score was the average ROUGE score over 1000 sampled

summaries.

2.3 IR Evaluation: Test Collections and Evaluation

Measures

To create a test collection, the Cranfield paradigm of evaluation advocates the use of (i)

a document collection, (ii) a set of topics, and (iii) a set of relevance judgements for each

document against each topic. A test collection such generated can be an effective tool

35

to assess the performance of information retrieval systems. Needless to say, for a large

document collection and/or a large number of topics, finding a complete set—identifying

all relevant documents across topics—of relevance judgements can be a non-trivial, if not an

unfeasible, task. Sparck-Jones and Van Rijsbergen (1975) suggested pooling as a means of

finding relevant documents more efficiently; the pooling method has become the de-facto

standard method used at TREC to find relevant documents. At TREC, participating

systems submit a run—system output that is usually a set of (document, score) tuples,

where the score is a system’s estimate of the document’s likelihood of relevance. Given

a set of outputs of retrieval systems, a depth-pooling method selects from each system

output, a specified number of top ranked documents. The union of these sets of top

ranked documents forms the evaluation pool that assessors judge for relevancy, resulting

in a judged set of documents, i.e. the test collection. Systems return results and pooling

is performed for each topic in the test collection.

Figure 2.1 describes the pooling process for a single topic. For an ad-hoc search task,

given a document collection (or corpus), and a query string—that represents the search

topic, various search engines return a ranked list of documents that are likely relevant to

the query. For evaluation purposes the output of the system (the run) is representative of

the system itself. Each search engine may have different ranking criteria depending on the

specific methods used to compute similarity between the query and each document in the

corpus. The degree of similarity is usually expressed as a numeric score based on which

the documents are ranked. A document’s score can thus be considered as a surrogate for

the likelihood of relevance of the document for the given query. As Figure 2.1 shows, a

document could be ranked differently by various systems. Given a specified depth k, the

36

Document Collection (Corpus) containing documents di

query q for

topic T
Search Engine

A
Search Engine

B

d10 0.9

d9 0.8

d4 0.7

d6 0.54

d8 0.42

d5 0.24

d7 0.23

d3 0.16

d1 0.12

d2 0.05

d1 20

d15 15

d10 15

d3 10

d14 10

d11 5

d8 5

d2 4

d4 4

d7 5

Top
k

docs

d1

d3

d4

d6

d8

d9

d10

d14

d15

Test Collection : topic T

R

N

N

N

R

R

R

N

N

Run A : topic T
result list

Run B : topic T
result list

Evaluation
Pool

Relevance
Judgements

Metric Formulation System A System B
Precision |Relevant ∩Returned| / |Returned| 0.4 0.3
Recall |Relevant ∩Returned| / |Relevant| 1.0 0.75
P@k |Relevant ∩Returned[1..k]| / k 0.6 0.4

Average 1/|Relevant| ·
|Returned|∑

i

relevant(i) · P@i 0.761 0.524

Precision where, relevant(i) = 1 if the document
at rank i is relevant

Figure 2.1: An example of the pooling process for a topic. Given a document collection and
a query: (i) search engines return a ranked list of (document, score) tuples; (ii) the top-k
tuples from each ranked list are pooled together; (iii) the pooled documents are assessed for
relevancy by human assessors; (iv) the resulting test collection is used to compute system
performance over appropriate evaluation metrics.

37

top k ranked documents are selected from each run. These are then pooled together and the

documents in the pool are then adjudicated by qualified human assessors who determine

whether each document in the pool is relevant or not. The documents not in the pool

are assumed to be non-relevant. The adjudication process results in a test collection for

the given topic. The test collection, once constructed, is utilized to evaluate the quality

of the ranked lists returned by each system using appropriate evaluation metrics such as

Precision, Recall, P@k—Precision at top-k documents, and Average Precision (Büttcher,

Clarke, and Cormack, 2010).

A search engine is usually evaluated on its ability to return relevant documents over

non-relevant ones. A judged set of documents that is a representative sample of relevant

and non-relevant documents from the document collection may not work because of the

number of non-relevant documents far exceeds the number of relevant documents; modern

corpora range in the order of hundreds of millions of documents. Furthermore, labelling a

presumably large random sample could be expensive in terms of time and effort, especially

for multiple topics where each document needs to be judged for relevancy against each

topic. The intuition underlying depth-pooling is that top ranked documents are more

likely to be relevant, and thus relevant documents can potentially be found earlier/faster.

These top ranked documents allow us to better compare between systems; e.g., good search

engines would return more numbers of relevant documents at higher ranks. Salient research

findings regarding the pooling method are discussed in Section 2.3.1. Alternative pooling

methods and techniques to combat incompleteness in relevance judgements are highlighted

in Section 2.3.2.

A fixed depth k for pooling is assumed to provide a fair representation in the pool

38

for each system. The resulting test collection allows for repeatable experiments to be

performed and more importantly, it enables comparisons between systems through perfor-

mance measurement. System performance is measured via a performance metric, and thus

performance measures and their properties require careful consideration for any given IR

task, along with the underlying test collection.

Our work in Chapter 4 investigates the effects that duplicate sentences have on the

evaluation of temporal summarization systems, when they are added to the test collection.

In Chapter 5 we present a novel user-oriented evaluation measure for update filtering

systems, called modeled stream utility. In Chapter 6, we present an alternative pooling

strategy that uses the probability of a sentence being read, as the basis for selection into

the evaluation pool, rather than the system assigned score as is done for depth-pooling.

In this section we discuss the related work that influences or impacts our research with

regards to the evaluation measure, pooling and test collection construction.

2.3.1 Pooling and Test Collection Construction

Test collections mimic real usage scenarios in the form of topics and relevance judgements,

and help produce a mean performance evaluation over all topics for a system. Factors

affecting test collections and the resulting evaluation include the number and type (having

more or less number of relevant documents) of topics, as well as the depth up to which

result sets were pooled. Pooling is done with the objective of finding as many relevant

documents as would be needed, such that if the unjudged documents are assumed to be

non relevant, the judged set can be considered to be a complete set, i.e., a set that contains

39

all relevant documents for each topic. The construction of a true complete set requires a

judgement for every document in the collection with respect to every topic, which is a

formidable and likely an unfeasible task. However with ever larger corpora, it is harder to

generate a complete set of judgements because of the much smaller size of the judged set

relative to the document collection. The end goal is to have a set of relevance judgements

that allow for system performance to be measured over prescribed evaluation metrics so

as to find out which systems perform better than others.

Zobel (1998) investigated the TREC standard pooling methodology with regards to

(i) whether pooling up to limited depths produces reliable performance measurements

for systems that did not contribute to the pool, (ii) if depth-pooling finds most relevant

documents, and (iii) if the system comparisons can be trusted. They found that limited

depth-pooling can indeed produce reliable performance estimates for new systems given

large pool depths, and that system comparisons for statistically significant differences can

be trusted. However they observed that a large portion of the relevant document set were

not found by the depth-pooling method for shallow pool depths.

Voorhees (2000) demonstrated that comparative evaluation of systems remains sta-

ble even when the relevance judgements in the test collection are substantially varied.

For instance, for the TREC-6 ad-hoc test collection, 4 relevance judgement sets were com-

pared; the judged set generated by NIST, the relevance judgements generated by Cormack,

Palmer, and Clarke (1998), the intersection of these sets, and the union of these sets. They

found that relative performance measurement using the different relevance judgements does

not change significantly, i.e. the Kendall’s τ rank correlation between system rankings in-

duced by the different sets of relevance judgements remains greater than 0.8, as long as

40

at least 15 topics are represented in the test collection. For 25 topics, one can expect a

Kendall’s τ greater than 0.9.

During test collection construction, typically, a single assessor generates an information

need, formulates the topic (a description) for the same, and also assesses the pooled doc-

uments for the topic. Trotman and Jenkinson (2007) investigated the effect of assessing

a topic using multiple assessors and found no appreciable affect on evaluation of systems.

Bernstein and Zobel (2005) found that removing documents containing similar information

improves system performance on novelty based measures. Our experiments with including

duplicate documents shows that, at least for a temporal filtering task, precision (ELG)

and recall (LC) can both show differences in absolute performance for some systems. By

adding duplicates, we increase the size of the judged set, i.e., we vary the set of relevance

judgements for the test collection; however, there is no appreciable difference in the relative

performance of systems (Chapter 4). Quite possibly, pooling based on the probability of

updates being read (Chapter 6) may not change the relative performance measurement

in comparison to the standard depth-pooling. However, we leave this investigation for fu-

ture work, pending procurement of relevance judgements for pools created using respective

methods.

Retrieval methods perform differently on different topic types. Ideally, relevance judge-

ments for a large number of topics, and a stable effectiveness measure that produces appre-

ciable difference in scores of systems, would help in constructing a reliable test collection.

Voorhees and Buckley (2002) point out that more topics require procuring a large number

of relevance judgements, making the construction of the test collection costly and they

investigate by how much should system scores differ in order to produce a meaningful

41

comparison between systems.

Test collections can be biased, i.e., the algorithms used for retrieval by various systems,

may cause a disproportionate membership in the pool for documents returned using similar

methods. As a result, novel retrieval algorithms may not be fairly evaluated as the judged

set of documents may not adequately represent the set of relevant documents returned by

the new method. The problem is exacerbated when the judged set of documents is small.

Buckley et al. (2007) show that smaller sized pools are not immune to bias; comparing

systems that did not contribute to the pool with contributing systems is unfair to the

former. However the bias only impacts a score negatively (because of unjudged documents).

This does not necessarily impact the development of systems via improvements against a

baseline. However, some “external” systems (that did not contribute to the pool) may

not be able to show improvements because of the high numbers of unjudged documents.

Cormack and Lynam (2007) develop a method to estimate the power and bias of pooling

strategies. They investigate the power and bias of pools for different numbers of topics and

across various depths for pooling. They found that evaluation using MAP is better when

pool depth is shallow and topics are many, than otherwise. Analysis along similar lines

is necessary for our probability-based pools (Chapter 6). However, such analysis needs

relevance judgements for the respective pools, an exercise we leave for future work.

2.3.2 Alternatives to Standard Depth-pooling

Pooling results in test collections that are largely incomplete, i.e., all relevant documents

for each topic are not necessarily identified. As a consequence, there is much research

42

interest in whether incomplete sets of relevant judgements can adequately measure system

performance. A related line of research is the development of pooling methods that aid in

the construction of test collections more economically or expeditiously.

Alternative Pooling Methods

Zobel (1998) proposed a new pooling method based on the observation that queries for

which systems return a higher number of relevant documents in an initial depth pool are

more likely to have unjudged relevant documents. Judgements are effected incrementally

for such queries depending on the relative cost of procuring the new judgements against

an estimated number of new relevant documents likely to be found.

Cormack, Palmer, and Clarke (1998) developed 2 pooling strategies, Interactive Search-

ing and Judging (ISJ), and Move-to-Front (MTF). ISJ constructs a test collection by com-

bining the relevance judgements made by a group of people for given topics. Essentially,

a team of researchers uses an interactive search system; each user formulates queries for

topic and judges returned documents, until the user decides that the information need is

reasonably satisfied. MTF priorities judgements on documents from systems that have

most recently contributed relevant documents to the pool.

Aslam, Pavlu, and Savell (2003) develop an approach for result fusion, pooling and eval-

uation, based on the Hedge algorithm (Freund and Schapire, 1997). Systems are considered

as experts advising on relevance of documents. For every relevant document judged, trust

increases in all systems that returned that document. Correspondingly, for every non rel-

evant document, trust decreases in all systems that returned that non-relevant document.

43

Using trusted systems over many iterations of the hedge algorithm results in finding more

relevant documents than simply using the depth-pooling strategy.

Carterette, Allan, and Sitaraman (2006) create a strong connection between the evalua-

tion measure and test collection construction. They develop a method to select documents

to judge based on average precision in a way that the selected documents can help max-

imize the performance differences between systems. The resulting set of judgements can

be obtained expeditiously and result in a ranking of systems that matches the true rank-

ings with high confidence. Aslam, Pavlu, and Yilmaz (2006) propose a random sampling

method for pooling and evaluation of runs using standard effectiveness measures such as

MAP. They show that only 4% of a known depth-100 pool is required by their method in

order to get an accurate estimate of the effectiveness measure for systems.

Incomplete Relevance Judgements

Buckley and Voorhees (2004) investigate the effect of incomplete relevance judgements

on system evaluation and find that most evaluation metrics are not robust to incomplete

relevance judgements. They develop bpref, an evaluation measure that estimates the MAP

of a system when given an incomplete set of relevance judgements. Yilmaz and Aslam

(2006) improve upon bpref and develop induced AP, sub-collection AP and inferred AP.

Inferred AP in particular computes the expected precision at ranks for randomly selected

relevant documents from the collection; the average expected precision gives us the inferred

AP. Inferred AP gives a highly accurate estimate of AP even when 30% of the complete

relevance assessments are utilized.

44

Another way to deal with incomplete relevance judgements is to not consider for eval-

uation all those documents that have not been assessed. Sakai (2008b) and Sakai (2008a)

show that condensed-list relevance judgements—where unjudged documents are ignored for

evaluation purposes or elided—produce over estimated performance scores. In compari-

son, considering unjudged documents as non-relevant under estimates system performance.

They found that eliding unjudged documents is not an effective evaluation strategy in the

presence of system bias while pooling, i.e. the discriminative power (or the ability to detect

pairwise statistically significant differences) of measures utilizing such condensed-lists may

not be any better than simply utilizing a non eliding evaluation. They find that AP can

work well with elided judgements, and they advise that sampling methods need to be used

carefully in consideration with the evaluation measures.

Aslam and Yilmaz (2007) develop a method to infer a complete set of relevance judge-

ments, given a set of sampled and judged documents, by computing estimates of AP

of given systems and estimates of numbers of relevant documents. The inferred set of

judgements were found to yield a comparable evaluation as when using a complete set of

relevance judgements. Büttcher et al. (2007) utilize document classification techniques to

predict relevance of documents, given a set of incomplete and biased judgements (biased

towards contributing systems). They recommend that for new retrieval methods (that did

not contribute to pooled judgements) to benefit from the test collection, a classifier can be

trained on the known relevant documents and the relevance of documents returned by the

new methods can be predicted.

45

2.3.3 Evaluation Measures and Systems Comparisons

Along with test collections, evaluation measures and statistical comparison techniques are

an integral component of the IR evaluation toolkit. A good evaluation measure should

be robust (or stable)—be consistent in differentiating good systems from bad ones when

experimental settings are changed, as well as discriminative—be able to detect statistically

significant differences between systems.

Stability of an evaluation measure is the ability of the measure to produce consistent

measurements of relative performance across changes in experimental settings (e.g. change

in number of topics). Buckley and Voorhees (2000) investigate which evaluation measures

are stable, for instance, they find that MAP is more stable than P@k when the number of

topics is changed. They recommend a topic set size of at least 25 to obtain estimates of

performance having low error rates.

Sakai (2006) utilizes bootstrap hypothesis tests to measure the discriminativeness of

IR metrics. The bootstrap sampling method tries to estimate the distribution of the

data by re-sampling from observed data. Hypothesis tests based on the bootstrap do

not need the presumption of the data being normal or symmetric. The authors use the

bootstrap hypothesis test to compare retrieval methods. Smucker, Allan, and Carterette

(2007) further compare statistical significance tests (sign, Wilcoxon, t-test, bootstrap and

randomization) for pairwise system comparison. They recommend that randomization or

bootstrap be used for statistical significance tests, as these tests permit the use of any

appropriate test statistic (other than mean difference) to compare 2 systems.

IR experiments frequently require comparing ranked lists of systems. Yilmaz, Aslam,

46

and Robertson (2008) develop τAP, a rank correlation measure that considers differences in

top ranks as more important when comparing 2 ranked lists. This improves upon Kendall’s

τ in the sense that Kendall’s τ gives equal weight to a change in rank at any position in

the ranked list; however, for IR experiments, we are usually most interested in knowing

the changes at the top of the rankings.

2.3.4 Nugget-based Test Collections

Nuggets can be considered to be atomic facts about a topic. They are represented as natural

language strings that describe a concept that is relevant to an information need. Nuggets

have been utilized for evaluations of IR systems for the TREC Question-Answering tracks

(Voorhees, 2005; Voorhees, 2006; Dang, Lin, and Kelly, 2007) as well as the temporal sum-

marization tracks (Aslam et al., 2013; Aslam et al., 2014). Nugget-based test collections

(Pavlu et al., 2012; Rajput et al., 2012) have been shown to be scalable—provide for large

number of judgements, and reusable—work for novel systems and new documents in a

dynamic collection.

Evaluations based on nuggets acknowledge that the same concept can be represented

in natural language in multiple ways, for instance, strings representing the same concept

might differ in synonyms, paraphrasing, syntax, amongst other features (Table 2.1). The

representations of nuggets have evolved over the different IR tasks they have been used

for. The sources from which the nuggets are derived or extracted also differ across the

tracks. For the QA track, nuggets were extract from the returned system responses. For

47

Nugget: the train crashed at the buffer stop
Representations in text:
...train slammed into the end of the line...
...slammed into the end of the line...
...smash into a barrier...
...hit the barrier at the end of the platform...
...train plowed into a barrier...

Table 2.1: A TST 2013 nugget and its various representations in returned sentences as
confirmed by NIST assessors.

TST, nuggets were first extracted from Wikipedia1 (Section 3.1.2). Rajput et al. (2012)

developed a semi-automatic method to build a test collection by predicting document

relevance and finding nuggets for a topic. They considered sentences of relevant document

as candidate nuggets that were iteratively weighted to get a final list of nuggets for a topic.

At the NTCIR 1CLICK-task (Kato et al., 2013), nuggets are further broken down into

i-units. The 1CLICK task requires systems to return a short summary given the query,

rather than a list of results. i-units are manually extracted from nuggets and are relevant (to

the topic), atomic (further break down would result in loss of semantics) and/or dependent

(entailment of one or more i-units).

The primary advantage to using nuggets for building test collections is that they explic-

itly codify what information is relevant. This is in contrast to document oriented relevance

judgements wherein a very long document could be deemed relevant because it contains

one relevant sentence somewhere in its content. This problem is partly alleviated by using

graded relevance judgements, e.g., a scale of relevance: highly relevant, relevant, non-

relevant. However, with nuggets, the focus is not whether a document is relevant or not,

1www.wikipedia.org

48

www.wikipedia.org

but rather the focus is on finding and identifying relevant material. Knowledge of various

representations of relevant material (e.g. Table 2.1), can help (semi-)automate relevance

judgements. For instance, for the QA track, given a set of nuggets and system responses,

POURPRE (Lin and Demner-Fushman, 2005) and Nuggeteer (Marton and Radul, 2006)

are evaluation frameworks that automatically evaluate systems’ performances. Pavlu et al.

(2012) first showed that manually extracted nuggets can be used to infer the relevance

of documents given a set of nuggets. This helps in finding a much larger set of relevant

documents. They further show that system evaluation using inferred relevance judgements

is comparable with TREC-style evaluation. Rajput et al. (2012) extended this approach to

build a nugget-based test collection in a semi-automatic iterative method (manual nugget

extraction is eliminated), that results in a set of nuggets as well as a set of relevant docu-

ments for a topic.

2.3.5 User-models, Test Collections, and Evaluation Measures

Moffat, Webber, and Zobel (2007) develop methods that select documents to judge from

across submitted systems, to differentiate best systems from the others, when evaluating

over the RBP performance measure. In their methods, the judgement effort is shifted

towards documents that can help compare the best systems with each other. Given the

RBP user model, and the associated RBP score for a document at a given rank, documents

are weighted and appropriately selected for judgement by assessors. This work is similar

to our work in Chapter 6, wherein we utilize the MSU user model to select updates into a

pool for assessment, based on the probability of them being read.

49

Radlinski, Kurup, and Joachims (2008) show that implicit feedback can be utilized to

measure retrieval quality. Implicit feedback based measures include click through rates on

a Search Engine Result Page (SERP), the dwell time—time spent reading a document,

the number of page views, the abandonment rate, amongst others (Agichtein, Brill, and

Dumais, 2006). However, such methods are arguably more suited to systems having a wide

user-base.

Smucker and Clarke (2012c) outline that test-collections created using the Cranfield

paradigm need not be at odds with user-oriented evaluation measures. They point out that

evaluation measures inherently model the behavior of a user and predict user performance

over a given system. Better user models may lead to better evaluation measures that would

in turn lead to better estimates of user performance, provided that the test collection is

relatively unbiased and complete.

Recall curves over time (Smucker, Allan, and Dachev, 2012), which in turn are inspired

by recall curves over characters read (Lin, 2007) could serve as an alternative to the Latency

Comprehensiveness (or Recall) measure of TST. In a similar vein, the concept of trailtext

and U-measure (Sakai and Dou, 2013) could also serve as an alternative for TST-evaluation.

Yang and Lad (2009) demonstrate an evaluation method similar to ours (Chapter 5),

however it differs in user model and system interface, and it is has been developed over a

much smaller corpus than TST. It will be interesting to compare against their method by

calibrating MSU with a ranked interface presented at every session.

50

Evaluations over Time Intervals

Dietz, Dalton, and Balog (2013) put forth an approach for time-aware evaluation of stream-

ing data. They carry out their experiments in the context of the KBA time-ordered docu-

ment stream. Specifically, the documents should be “citable” by the Wikipedia article for

the topic. Dietz, Dalton, and Balog (2013) find that to keep evaluation of systems fair, the

evaluation should be aware of time intervals that contain bursts of intensity for a topic,

and propose that the final evaluation score of a run could be the average over the evalu-

ation scores at individual time slices. Kenter, Balog, and Rijke (2015) develop a metric

to measure performance of systems that filter documents from streams, in the context of

the KBA track, with applicability to similar stream filtering tasks. They demonstrate that

traditional metrics like MAP, F1, nDCG fail to address the performance of a system over

time. Their method essentially estimates the trends of F1 over batches (of time durations).

A line fitted through F1 scores of batches (a trend line) allows measurement of change in

performance with time. Such research is aligned with MSU with the primary difference

being that both the time granularity and bursty access is user-driven for MSU. However,

information regarding the effect of bursts on user-behavior can greatly help improve upon

MSU in its current form.

51

Chapter 3

The Temporal Summarization Track

at TREC

The TREC Temporal Summarization Track (TST) (Aslam et al., 2013; Aslam et al.,

2014) promotes research on the development and evaluation of IR systems designed for

retrieving updates about breaking news events. Figure 3.1 illustrates the general Temporal

summarization task. For each topic, a query duration determines the time interval for

which a user is interested in a topic. Given a time ordered document stream, a temporal

summarization system processes the documents in temporal order from the stream, and

outputs (emits) updates it deems as relevant to the topic. The primary constraint for the

task is that at any given time instant, retrieval (or processing) should not involve data from

the future, i.e., the retrieval algorithm should respect the temporal ordering of documents

for processing.

52

Figure 3.1: The Temporal Summarization task: Following a newsworthy event that occurs
at some point in time (red arrow), the system must find and emit sentences concerning
the event, from a time ordered stream of documents (blue arrow), for as long as the user
is interested in the event (the query duration).

The temporal summarization task can also be looked upon as an on-line filtering task

wherein sentences relevant to a topic are filtered from a stream of sentences. The number

of updates to emit and the time at which to emit them is decided by the system; e.g., a

system may emit a potentially relevant update as soon as it is processed, while another

system may emit a fixed number of updates at regular or suitable intervals.

3.1 Temporal Summarization Track 2013

TST 2013 was the first iteration of the temporal summarization Track at TREC. Topics

in the track were instances of event types: accident, bombing, earthquake, shooting and

storm. Given a topic’s query string, the track required that systems (runs) return sentences

(updates) that are relevant to the topic, from the TREC KBA Stream corpus 2013 (Frank

et al., 2014). Every update is associated with the timestamp at which it was emitted by

the system.

53

3.1.1 Corpus, Tasks, Topics

Corpus

TST 2013 prescribed the KBA Stream Corpus 20131 (Frank et al., 2014) from which topi-

cally relevant updates were to be retrieved. The corpus contains over 1 billion documents

with timestamps from 11,948 hours, spanning from October 2011 to January 2013. The

documents in the corpus are mainly of 3 types; social (blogs and forums), news (from

public news wires), and a subset of the links submitted to bitly.com (a URL shortening

service). The documents in the corpus were serialized using Apache Thrift2—a software

framework that allows cross-language development by enabling sharing of data structures

via well defined interfaces. Each document in the corpus, apart from its raw text, also

included named entity tags, detected language, and its tokenization into sentences and

words, all of which were made available using the thrift interface and data structures for

the corpus3. Although the thrift serialization made the corpus larger, extracting sentences

from the corpus was a simple matter of calling the appropriate thrift interface.

Tasks

There were two tasks at TST 2013:

• Sequential Update Summarization (SUS): systems were tasked to return likely rele-

vant updates for a topic.

1KBA Stream Corpus. http://trec-kba.org/kba-stream-corpus-2013.shtml. 2013.
2https://thrift.apache.org/
3https://github.com/diffeo/streamcorpus

54

bitly.com
http://trec-kba.org/kba-stream-corpus-2013.shtml
https://thrift.apache.org/
https://github.com/diffeo/streamcorpus

• Value Tracking (VT): systems were tasked with tracking change in values for one or

more event related attributes of the types: locations, deaths, injuries, displaced and

financial impact.

Topics

Topics were news events of the type accident, bombing, earthquake, shooting and storm.

There were initially 10 topics. Topic 7 was later discarded due to insufficient numbers of

relevant updates in the collection. TST 2013 sets the query duration to be 10 days for all

topics. Table 3.1 lists the topics for TST 2013.

The TST organizers also provided a training topic “iran earthquake” in order to aid

the participants develop systems for the first iteration of the track. Figure 3.2 shows the

training topic (as it would appear as a test topic). The topic contains the title, a description

(the URL to the event’s Wikipedia page), the query duration (<start> and <end> tags),

the query string, the type of event, as well as desired attributes for value tracking.

3.1.2 Evaluation Method and Measures

The underlying theme for the evaluation of TST runs is that updates about events should

be early, short and novel. Their evaluation measures compute a score for each system

using a combination of functions that test each submitted update for relevancy, latency,

verbosity and novelty. TST uses a nugget based evaluation framework. It has two main

metrics Expected Latency Gain (ELG) and Latency Comprehensiveness (LC). These are

analogous to precision and recall respectively. ELG (Equation 3.1) measures the average

55

<event>

<id>TRAIN-1</id>

<title>2012 East Azerbaijan earthquakes</title>

<description>

http://en.wikipedia.org/wiki/2012_East_Azerbaijan_earthquakes

</description>

<start>1344687797</start>

<end>1345551797</end>

<query>iran earthquake</query>

<type>earthquake</type>

<locations />

<deaths />

<injuries />

<displaced />

</event>

Figure 3.2: Training Topic supplied for TST 2013.

quality of an update while considering the latency and verbosity of each update. LC

(Equation 3.3) measures the latency discounted recall of nuggets for a topic. ELG and

LC were used to evaluate submissions to the sequential update summarization task. For

the value tracking task, scalar attributes were evaluated using Expected Error between

reported values and actual values across the query duration, and location attributes were

evaluated using the Vincenty distance. For this thesis, we do not focus on the value tracking

aspects of the TST.

Phase 1: Gold Nugget Extraction

For evaluating system performance, the TST assessors first identified nuggets about an

event from the Wikipedia article for the event. A nugget can be described as a short

56

id topic type query Attributes for
duration Value Tracking
(days)

1 2012 Buenos Aires Rail Disaster accident 10.0 locations, deaths, injuries.

2 2012 Pakistan garment factory fires accident 10.0 locations, deaths, injuries.

3 2012 Aurora shooting shooting 10.0 locations, deaths, injuries.

4 Wisconsin Sikh temple shooting shooting 10.0 locations, deaths, injuries.

5 Hurricane Isaac (2012) storm 10.0 locations, deaths, injuries,

displaced, financial impact.

6 Hurricane Sandy storm 10.0 locations, deaths, injuries,

displaced, financial impact.

7 June 2012 North American derecho storm 10.0 locations, deaths, injuries,

displaced, financial impact.

8 Typhoon Bopha storm 10.0 locations, deaths, injuries,

displaced, financial impact.

9 2012 Guatemala earthquake earthquake 10.0 locations, deaths, injuries,

displaced, financial impact.

10 2012 Tel Aviv bus bombing bombing 10.0 locations, deaths, injuries.

Table 3.1: Topics at TST 2013 with their types, query durations and attributes for the
value tracking task.

segment of text representing an atomic piece of relevant information. A timestamp was at-

tached to every nugget as determined by the first occurrence of the nugget in the Wikipedia

edit history for the event’s article. Although the nuggets in the TST qrels (relevance judge-

ments) have an importance grade assigned to them, the track’s official metrics compute

scores based on binary relevance of the nuggets, i.e., every nugget in an update contributes

to a gain increase of 1. The list of nuggets for every topic was prepared before participating

systems were evaluated.

57

Phase 2: Update Nugget Matching

In the second phase of TST evaluation, the top 60 updates as determined by system

assigned scores from each run (system) were pooled. This initial set was further expanded

using near-duplicate detection by the track organizers. In total, 9113 updates were pooled

and assessed by TST assessors across all topics. Assessors not only had to determine which

updates were relevant but they also had to match the relevant updates with contained

nuggets. Thus an update containing more than one nugget contributes more than one unit

of gain.

Evaluation Measures

The key evaluation criteria are that the updates should be early (low latency), short (low

verbosity) and novel (contain new information than was previously emitted). The latency

of reporting the nugget is the difference between the update’s timestamp and the nugget’s

timestamp. The latency of reporting a nugget is penalized by the TST metrics using a

discounting function that smoothly reduces unit gain by 80% for delays greater than one

day. It is possible for an update to be earlier than the nugget’s timestamp, in which case

the latency discount function awards the update a bonus for reporting the nugget early.

Once an update containing a nugget is emitted (i.e., a nugget is reported), subsequent

occurrence of the same nugget in later updates does not contribute to increase in gain.

Additionally, sentences are penalized for being overly verbose. For every sentence a

verbosity normalization (Equation 3.2) is computed that determines the extra number of

nuggets the sentence could have contained. The lower the number of terms not matching

58

a nugget, the lower is the verbosity normalization value for a sentence, with a minimum

verbosity normalization value of 1. Essentially, the verbosity penalization serves to inflate

the number of submitted updates and thus provides a better estimate of precision for the

total content returned by a system.

The TST evaluation has 2 primary metrics, Expected Latency Gain (ELG) which mea-

sures the gain per update while discounting latency and penalizing verbosity, and Latency

Comprehensiveness (LC) which measures the latency discounted coverage of nuggets re-

lating to the topic. ELG and LC are analogous to Precision and Recall respectively. In

effect, temporal summarization (TS) systems that produce early and shorter updates, are

ranked higher than others on ELG.

The TST track’s ELG metric, combines the latency, novelty and verbosity to generate

a score that represents the effectiveness of a temporal summarization system. Given a set

D of updates submitted by a system, ELG is defined as,

ELGV(D) =
1∑

d∈DV(d)

∑
d∈D

G(d,D) (3.1)

where,

G(d,D) is the latency discounted gain for update d. G(d,D) is non zero when d is earliest

update from the set D to report one or more nuggets for the topic and

V(d) = 1 +
|words in update d| − |words matching nuggets in d|

average length of nuggets
(3.2)

is the verbosity normalization of update d.

59

Thus gain is only experienced when reading the updates that report nuggets earliest.

Once a nugget is reported, it does not contribute to gain if it appears again in later updates.

If all the updates emitted by a system have a verbosity of 1, then ELG would essentially

give us the gain per update for the system.

The LC metric replaces the denominator in Equation (3.1), with
∑

n∈N R(n), where N

is the set of nuggets identified by the assessors and R(n) is the relevance for n based on

its importance (R(n) = 1 for binary relevance).

LC(D) =
1∑

n∈N R(n)

∑
d∈D

G(d,D) (3.3)

Essentially LC computes the recall of relevant information nuggets by the system. The

track used binary relevance of nuggets when reporting scores for participating systems.

As proposed by Sakai and Kando (2008), for evaluation scenarios where relevance judg-

ments are incomplete, the non-judged sentences are elided for TST evaluation. Eliding

seems appropriate to keep the evaluation fair because the number of updates emitted by

participating systems ranges from 107 to 2,815,770; however, the pool formed by taking

the top 60 updates (Aslam et al., 2013) from each run for each topic, consists of only 9,113

updates. The eliding however, causes the verbosity normalization in equation (3.1) to be

based on the number of judged updates rather than the number of updates submitted.

This conflation of eliding and verbosity normalization makes ELG difficult to interpret.

60

3.1.3 Participating Systems Overview

In all, 7 teams submitted 28 systems (runs) for evaluation at TST 2013 for the SUS task.

Two of the runs were in an inconsistent format and thus they were excluded from the

evaluation (these runs are excluded from our experiments as well). Runs scoring well on

ELG (analogous to Precision), score poorly on LC (analogous to Recall) and vice-versa.

Runs with fewer updates overall, scored higher on ELG, and runs with larger number of

updates scored higher on LC. Table 3.7 shows the submitted runs ordered by ELG.

The top run, cluster5, has an ELG of 0.136 with a total of 197 updates across all

topics, submitted over the course of 10 days (i.e. over the query duration). The run at

rank 2, run2, scored 0.127 on ELG with 844 updates submitted across all topics over 10

days. The top LC scoring run was rg1 with an LC score of 0.571.

Yang et al. (2013) [Group: BJUT] shortlisted documents using BM25 (Robertson and

Zaragoza, 2009). They then performed K-means clustering (K = 50) for the sentences of the

shortlisted documents and chose cluster centroids to be part of the summary. Unfortunately

their runs were formatted incorrectly.

Xu, Oard, and McNamee (2013) [Group: hltcoe] employed a sentence selection model

that was a linear combination of similarity (of query, sentence and documents) and novelty.

They also performed query expansion using Wikipedia.

Liu et al. (2013) [Group: ICTNET] shortlisted only those documents whose titles con-

tained query terms for the topics. They trained a “trigger” word (e.g. kill, die, injure)

model and selected sentences that contained trigger words from shortlisted documents.

Duplicate sentences were removed using the simHash algorithm (Charikar, 2002) and sen-

61

tences greater than length of 50 words were not included in the summary.

Baruah et al. (2013) [Group: UWMDS] first shortlisted documents from the corpus

using the Language Modeling with Dirichlet Smoothing (LMD) retrieval model. Then, 3

different approaches, the grep command, BM25 with NLP based query expansion, and

passage scoring (Büttcher, Clarke, and Cormack, 2010), were used to score sentences.

McCreadie et al. (2013) [Group: uog] shortlist 10 likely relevant documents per hour in

corpus time. They then experimented with various strategies for selecting sentences that

included MMR (Carbonell and Goldstein, 1998), query expansion using Wikipedia, and

adaptive techniques to decide the number of updates to emit every hour.

Xi et al. (2013) [Group: wim] shortlisted documents that contained all query terms and

had lesser than 40 sentences. Sentences were scored for importance and novelty and these

scores were further combined to create a confidence score. Sentences with lengths smaller

than 10 words or greater than 40 words were discarded.

Zhang et al. (2013) [Group: PRIS] trained a hierarchical-LDA (hLDA) model (Blei

et al., 2003) over training documents for query expansion. The authors manually selected

keywords from the resultant topics generated by the hLDA model. They scored sentences

using the overlap of the keywords with a sentence while discarding sentences greater than

20 words in length.

62

3.2 Temporal Summarization Track 2014

3.2.1 Corpus, Tasks, Topics

Corpus, Task

TST 2014 prescribed the KBA Stream Corpus 20144 (Frank et al., 2014) as the document

collection. The 2014 corpus improved upon the KBA Stream Corpus 2013 by, fixing times-

tamp inconsistencies, improved character encoding conversions as well as performing NLP

tagging for all English-like documents. The revised corpus also added more documents

spanning a total of 13,663 hours from October 2011 to April 2013. The track organizers

also provided a TST specific subset of the corpus where only the documents within topic

query durations were supplied.

TST 2014 required participating systems to return temporal summaries for specified

topics. The value tracking subtask was not continued in TST 2014 and the participants

only submitted runs for the sequential update summarization task.

Topics

TST 2014 had 15 topics (events) in total (Table 3.2). The track expanded the set of event

types to {accident, bombing, earthquake, hostage, impact event, protest, riot, shooting,

storm}. A major change in the topics was the difference in the query durations across

topics. For TST 2013, a systems ELG or LC score could be averaged across topics in order

4TREC KBA Stream Corpus. http://trec-kba.org/kba-stream-corpus-2014.shtml. 2014.

63

http://trec-kba.org/kba-stream-corpus-2014.shtml

id topic type query
duration

11 Costa Concordia disaster and recovery accident 18.1
12 Early 2012 European cold wave storm 27.0
13 2013 Eastern Australia floods storm 13.0
14 Boston Marathon bombings bombing 5.2
15 Port Said Stadium riot riot 10.0
16 2012 Afghanistan Quran burning protests protest 7.3
17 In Amenas hostage crisis hostage 4.0
18 2011-13 Russian protests protest 21.0
19 2012 Romanian protests protest 14.0
20 2012-13 Egyptian protests protest 13.0
21 Chelyabinsk meteor impact event 10.0
22 2013 Bulgarian protests against the Borisov cabinet protest 11.0
23 2013 Shahbag protests protest 18.0
24 February 2013 nor’easter storm 12.0
25 Christopher Dorner shootings and manhunt shooting 10.3

Table 3.2: Topics at TST 2014 with their types and query durations.

to measure the performance of the system. However, for TST 2014, non-uniform query

durations necessitate normalization of performance scores in order to be comparable across

topics.

3.2.2 Evaluation Method and Measures

Phase 1: Gold Nugget Extraction, Phase 2: Update Nugget Matching

The identification of topic nuggets and pooling procedures were the same as those for TST

2013.

64

Evaluation Measures

The evaluation metrics of TST 2014 differs from the evaluation metrics of TST 2013. TST

2014 defines a normalized Expected Latency Gain (nELG) (Equation 3.4) and Compre-

hensiveness (C) (Equation 3.5). The official track metric was the Harmonic Mean H of

normalized Expected Gain and Comprehensiveness. Additionally, TST 2014 utilizes the

importance grade of nuggets for evaluation rather than binary relevance as was done for

TST 2013. The normalized Expected Latency Gain is formulated as:

nELGV(D) =
1∑

d∈DV(d)

1

Z

∑
d∈D

G(d,D) (3.4)

where, Z is the maximum obtainable expected gain. The Comprehensiveness is formulated

as:

C(D) =
1∑

n∈N R(n)

∑
d∈D

G(d,D) (3.5)

where, N is the set of nuggets identified by the assessors and R(n) is the relevance for n

based on its importance.

A major change in the evaluation process is that unjudged updates are not elided for

TST 2014. All submitted updates that are not judged by assessors are considered to be non-

relevant. However, a key aspect of not eliding is its effect on the estimation of verbosity of

unpooled updates, which requires knowing the length of each submitted update. In total

1,353,971 updates were submitted to TST 2014 across all runs (6,224,775 updates were

submitted to TST 2013). Extracting lengths for over a million sentences from a corpus

containing over a billion documents can be a cumbersome exercise. As such, the verbosity

65

for unjudged updates was estimated to be 1 + 1/(avg.nugget.length) for each unjudged

update in the track’s evaluation script5.

For TST 2014 evaluation, the organizers identified exact duplicates of pooled updates

from the all submitted runs and release qrels extended with duplicates of judged updates.

Baruah, Roegiest, and Smucker (2014) first identified that a there are a large number of

exact duplicates in the corpus and suggested that they be included for evaluation. The

evaluation at TST 2013 did not consider a duplicate of a pooled update return by a

system as having the same relevance judgement. However, it was found that 13 out of

26 submitted systems experienced a statistically significant change in performance scores

when duplicates were included into the judged pool. We describe the effect of expanding

the qrels with duplicates in Chapter 4.

3.2.3 Participating Systems Overview

In all, 6 teams submitted 24 systems for evaluation at TST 2014. The top run, 2APSal,

has an H of 0.1162 with a total of 381.4 updates submitted per topic on average. The

track also tried out an Expected Latency metric that measured the average lateness of

returned updates. It was found that Expected Latency does not correlate well with the

official measure H, and systems, even if they deliver updates late, they may perform well

on the Harmonic mean of nELG and C.

Zhao et al. (2014) [Group: BJUT] indexed documents using the Lemur Toolkit6 and

5Evaluation script for Temporal Summarization 2014. http://trec.nist.gov/data/tempsumm/2014/
tseval.py. 2014.

6Lemur Project. http://www.lemurproject.org/.

66

http://trec.nist.gov/data/tempsumm/2014/tseval.py
http://trec.nist.gov/data/tempsumm/2014/tseval.py
http://www.lemurproject.org/

retrieved sentences using BM25 with query expansion. They refined the retrieved set of

sentences using a combination of text similarity and clustering, finally choosing the cluster

centroids for output. Their runs performed well in the track, especially for nELG.

Chen et al. (2014) [Group: ICTNET] shortlisted only those documents whose titles

contained all query terms from the topic’s query string. They utilized unsupervised (Latent

Dirichlet Allocation (Blei, Ng, and Jordan, 2003)), as well as supervised (Support Vector

Machines (Cortes and Vapnik, 1995)) learning methods to select terms for query expansion.

The expanded queries, along with their respective method derived weights, were used to

score sentences for output.

McCreadie et al. (2014) [Group: uog] develop a real-time filtering method, in contrast

to their TST 2013 method, where they emitted ranked updates every hour. The documents

are first classified as being on/off topic using a classifier trained on TST 2013 topics. Then

sentences from on-topic documents are classified as being useful or not using a supervised

classifier that checks for length of sentences, boilerplate sentences, emergency related con-

tent, presence of named entities, and other related features. Finally, sentences are checked

for novelty using cosine similarity with previously emitted sentences. The group also tried

to alleviate the vocabulary mismatch problem between topic query strings and the content

of the nuggets by selecting sentences in close proximity to the identified likely relevant

sentence.

Qi et al. (2014) [Group: BUPT PRIS] shortlisted documents within the query duration

that matched the query strings. They tried 3 different query expansion methods based on

Wordnet (Oram, 2001), Word2Vec (Mikolov et al., 2013) and neural networks, after which

67

sentences were scored using a combination of keyword overlap and latency discounting.

Abbes et al. (2014) [Group: IRIT] first construct an “event model” for terms that

might occur in likely relevant documents given the type of an event. The event model is

constructed using the topic nuggets of TST 2013. They then filter documents from the

KBA Stream corpus and note the top scoring documents for each hour. Finally, they select

sentences that contain less that 25 words, are novel, and match terms from the event model

and the query string.

3.3 Participation at TST 2013

A team of 3 students participated at the TREC 2013 temporal summarization track from

the University of Waterloo (Baruah et al., 2013). The team decided on a staged approach

for the retrieval of sentences. They first shortlisted likely relevant documents using query-

likelihood with Dirichlet smoothing (Equation 3.6). Thereafter, each team member utilized

a different approach to retrieve sentences. Our specific approach used a passage retrieval

technique (Equation 3.7) and we also experimented with query expansion for constructing

our runs. Our runs did not perform well on ELG, although they performed well on the LC

metric.

The track organizers provided a single training topic, “iran earthquake” (Figure 3.2),

which participants used to develop their systems, as did we.

68

3.3.1 Corpus Preprocessing

The KBA stream corpus contains over a billion documents. Each document has its own

timestamp. As per the constraints of the temporal summarization task simulation, retrieval

algorithms were not allowed to use term statistics from the “future”, i.e., any retrieval

methods could only use the set of documents containing a timestamp smaller than or

equal to the timestamp of the current document under processing. This constraint ruled

out creating single monolithic index for the whole corpus for temporal summarization.

Running Index

Instead, for each of the 11,948 hours spanning the corpus, we computed term statistics

for all the documents that had timestamps within the hour. This resulted in 11,948 files

(hour.counts), each containing the term counts for the vocabulary in that hour. Then,

given query terms, to get the term statistics to score a particular document d at its time

stamp, one simply needs to cumulatively sum the term counts in the hour.counts files,

starting from the first hour h0 to the hour hd−1, where hd is the hour containing document

d (Algorithm 1). Thus our term counts could be off by the term counts accumulated in at

most 59 minutes 59 seconds for our hd. Although, given the large number of hours between

the corpus start time and each event’s start time, the effect on document scores is minimal.

Given a set of terms T , Algorithm 1 returns the total number of occurrences of each

term in T , along with the number of occurrences of all terms in the vocabulary (lM), within

a specified time interval. Algorithm 1 cumulatively adds term counts by going over the

hour.counts files that lie within the specified time interval. With the Cumulative Counts

69

Algorithm 1 Compute term counts cumulatively between the time interval [hstart, hend].
T is the set of terms for which term counts are needed, V is the vocabulary, lM is the total
number of term occurrences in the interval [hstart, hend]

CumulativeCounts(T, hstart, hend)

if hstart > hend then
for all t ∈ T do

t.count = 0
end for
return T, 1

end if
lM = 0
h = hstart
while h < hend do

hour.counts ← read in hour.counts file for h
for all t ∈ T do

t.count = t.count+ hour.counts(t)
end for
for all w ∈ V do

lM = lM + hour.counts(w)
end for

end while
return T, lM

70

algorithm in place, we can compute the unigram probabilities of term occurrences within

a specified time period [hstart, hend], by dividing term counts for each term in T by lM

(Algorithm 2).

Algorithm 2 Compute the probabilities of term occurrences in the interval [hstart, hend].
T is the set of terms for which probabilities are needed

IntervalUnigramProbabilities(T, hstart, hend)

Require: hstart ≤ hend
P (T)← 0
T.counts, lM ← CumulativeCounts(T, hstart, hend)
for all t ∈ T.counts do

P (t)← t.count/lM
end for
return P (T)

3.3.2 Shortlisting Documents

We shortlisted documents using language modeling with Dirichlet smoothing ranking func-

tion as outlined by Büttcher, Clarke, and Cormack (2010),

scoreLMD =
∑
t∈q

qt · log
(

1 +
ft,d
µ
· lC
lt

)
− n ·

(
1 +

ld
µ

)
(3.6)

where, given a query q of length n, qt is the frequency of term t in q, n is the total number

of terms in the query, ft,d is the frequency of term t in the document d, lt is the number of

times term t appears in the corpus , lC is the total number of times any term appears in

the corpus (sum of lengths of all postings lists), ld is length of the document and µ is the

Dirichlet smoothing parameter. For our experiments we set µ to 2500.

71

For a given query we scored all documents within the query duration using Equation

3.6. We shortlisted all documents with scoreLMD > 0; these documents would contain

reasonably important query terms while being of reasonable length. The threshold is

rather arbitrarily set to balance the likely relevance with length of the document. We

chose a fixed threshold to shortlist documents for each hour (instead of, for instance, the

top-K documents per hour) because scoreLMD may vary hour-on-hour depending on the

documents within the hour, thereby causing the threshold to fluctuate. Using a threshold

based on a fixed document similarity score is useful instead of a fixed selection of top-K

documents because it allows us to process more (than K) likely relevant documents (if they

do exist) within each hour.

Additionally, shortlisting a fixed number of documents per hour (e.g. top-K as per

scoreLMD) would require waiting till the end of the hour to emit documents causing each

of the top-K documents to have the same timestamp (the end of the hour). Choosing

a fixed score threshold allows us to emit all shortlisted documents as soon as they are

scored, without any delays. Estimating the adequate threshold value would need training

but since TST 2013 was the pilot run of the track, we did not have past data to work with.

Furthermore, different thresholds may be required for different topics. Thus we chose to set

a threshold of scoreLMD = 0, as a generic filter for likely relevant documents of reasonable

length.

72

3.3.3 Selecting Sentences

While documents were shortlisted using Equation 3.6, sentences were shortlisted using 3

different strategies by the 3 team members. We used techniques based on regular expres-

sions, BM25 with query expansion and Passage Scoring (Baruah et al., 2013).

Specifically, our method scored sentences using a passage retrieval algorithm (Clarke,

Cormack, and Lynam, 2001) as described in Büttcher, Clarke, and Cormack (2010),

scorecover =
∑
t∈q′

(log(lC/lt))−m · log(l) (3.7)

where, q′ is a subset of the query term set, l is the length of the passage, and m is |q′|.

We considered each sentence as a passage for Equation 3.7. The subset q′ establishes

a “cover” of query terms in a given sentence. The scorecover is higher for covers that

contain important terms as per the term weight log(lC/lt), especially when the length of

the sentence is small. We threshold scorecover in a similar manner to scoreLMD in that we

do not emit sentences that have a scorecover ≤ 0, i.e. we want a likely relevant sentence

that is not overly long.

3.3.4 Query Expansion

Since the period of interest spans 10 days for each event, the topical discourse in the

document/sentence content may shift with the passage of time. The track provides the

type of the event and also highlights specific attributes of interest for each topic ({ injuries,

locations, deaths, displaced, financial impact}). Each of these attributes may have similar

73

or related terms appearing at various times in the discourse. These attributes provide

leeway for directed diversification of retrieved sentences, going beyond simply using the

query string for retrieval.

We first generated combinations of “seed” queries (Table 3.3). We selected expansion

terms from the top 20 documents for each seed query using the formula

nt,k · wt (3.8)

where, nt,k is the number of times term t appears in the top-k documents, and wt is the

inverse collection frequency (log(lC/lt)) of term t. Note that lt is the number of occurrences

of term t from the start hour of the corpus till the current hour that contains the top-20

documents. The expansion terms thus change with every passing hour since the length of

postings list for term t may not have a uniform rate of growth for every hour.

We observed the expansion terms generated by the different types of queries for suc-

cessive hours. We found that seed queries of type SSA and GSA did not produce good

expansion terms; most expansions were dominated by the type of the event (for GSA) or

the query string (SSA). On the other hand, the GAA seed query provided changing ex-

pansion terms for successive hours (Tables 3.4, 3.5). The SAA query type adds the query

string to the GAA query and thus produces expansion terms more related to the topic.

Though the expansion terms generated by SAA query type seemed related to the topic in

general, they did not seem diverse enough to capture more details about the event. For

instance, the SAA expansion terms do not show much variety within 3 hours (Table 3.4 and

Table 3.5), whereas the GAA expansion terms relate to technical information about the

74

query type seed query
Generic All Attributes (GAA) earthquake injuries locations deaths displaced financial impact

Generic earthquake injuries

Single earthquake locations

Attributes earthquake deaths

(GSA) earthquake displaced

earthquake financial impact

Specific All Attributes (SAA) iran earthquake injuries locations deaths displaced financial impact

Specific iran earthquake injuries

Single iran earthquake locations

Attributes iran earthquake deaths

(SSA) iran earthquake displaced

iran earthquake financial impact

Table 3.3: Choice of seed queries to generate expansion terms. Specific queries include the
topic query string.

earthquake e.g., ANSS7, RMSS8, shakemap9. However the SAA seed query does generate

names of affected towns (Haris, Ahar, Varzqan) early on (Table 3.4)

Fusing lists of expansion terms

In order to include expansion terms from both the SAA and GAA seed queries, we first

ranked the respective expansion term lists, as per Equation 3.8, and then generated a

combined list using Reciprocal Rank Fusion (RRF) (Cormack, Clarke, and Büettcher,

2009),

rrf(t) =
L∑
i

1

k + ri(t)
(3.9)

7ANSS: Advanced National Seismic System http://earthquake.usgs.gov/monitoring/anss/
8“RMSS: root-mean-square travel time residual in seconds” - source http://earthquake.usgs.gov/

earthquakes/glossary.php
9Shakemap: A map that presents information on the shaking of ground rather than epicenter and

magnitude. http://earthquake.usgs.gov/research/shakemap/

75

http://earthquake.usgs.gov/monitoring/anss/
http://earthquake.usgs.gov/earthquakes/glossary.php
http://earthquake.usgs.gov/earthquakes/glossary.php
http://earthquake.usgs.gov/research/shakemap/

Top 10 expansion terms for
training query type

GAA SAA RRF-fused
earthquake injured earthquake
quake earthquake injured
magnitude magnitude magnitude
injured haris quake
hundreds varzaqan killed
killed ahar hundreds
seismic quake haris
iran killed ahar
earthquakes hundreds varzaqan
northwestern iran iran

Table 3.4: Hour 2012-08-11-18: Expansion terms for the training topic “iran earth-
quake”, generated using seed queries of type Generic All Attributes (GAA) and Specific
All Attributes (SAA).

Top 10 expansion terms for
training query type

GAA SAA RRF-fused
earthquake earthquake earthquake
magnitude iran seismogram
seismogram villages anss
anss magnitude nsmp
nsmp least rmss
rmss northwestern magnitude
recenteqsww earthquakes recenteqsww
crustal tv crustal
shakemap injured shakemap
seismologist news seismologist

Table 3.5: Hour 2012-08-11-21: Expansion terms for the training topic “iran earth-
quake”, generated using seed queries of type Generic All Attributes (GAA) and Specific
All Attributes (SAA).

76

where, L is the number of lists to fuse, ri(t) is the rank of the term t in list i, and rrf(t)

is the fusion score for the term t. Büttcher, Clarke, and Cormack (2010) prescribe value

of k to be 60, which we use for our experiments.

A higher fusion score indicates that the term is highly ranked in both, SAA and GAA,

term expansion lists. We tried to incorporate this information by slightly modifying Equa-

tion 3.7 to

scorecover =
∑
t∈q′

(
log

(
lC
lt
· rrf(t)

))
−m · log(l) (3.10)

where, q′ now represents a subset of the expanded query. Note that multiplying the lC/lt

by rrf(t) drives down the importance of the term t while scoring. Thus, Equation 3.10

ensures that not only the general importance of the term is high but also the fusion score

of the term is high. The only exceptions were the original query terms, for which, the

rrf(t) was fixed at 1/(k + 1). Note that the length requirements for the selection of the

sentence became more stringent due to this modification.

Thus, given scorecover and the fused query term expansion list, our method had 2

parameters; r the number of query + expansion terms in total, and c the smallest allowable

cover of query term subsets in a sentence. For instance, if r = 25 and c = 4, then a sentence

would need to contain at least 4 query terms out of 25, to be even considered for retrieval.

3.3.5 Constructing Runs

There were 3 main hurdles for run construction. The first problem was that expansion

terms resulted in non-relevant sentences scoring high with scorecover. We reasoned that

77

since relevant terms could be spread across likely relevant documents, we could weight

the scorecover for each sentence with the scoreLMD of its source document. The weighted

scorecover × scoreLMD would help raise the sentences from relevant documents higher up

in the returned list.

The second problem was that term statistics for expansion terms were hard to compute

efficiently because of (i) our running hour-on-hour “index” and (ii) the fact that there were

different expansion terms generated for each hour (of the 240 hours) in the query duration.

Getting accurate term statistics for each new term would mean running CumulativeCounts

(Algorithm 1) for single terms rather than as a set. To alleviate this problem, we generated

a minimal background model, i.e. rather than computing query (and expansion) term

statistics from the start of the collection, we computed computed term statistics from a

much smaller Background Language model starting 2 days (20% of query duration) prior

to the query start time. We updated the Background model with the query and expansion

term counts from each hour that was processed for the query. Thus the background model

“grew” with time.

In hindsight this was a bad idea. Post-hoc analysis revealed that our chief estimator

of term importance, log(lC/lt), where both lC and lt are limited to the Background model,

does not stabilize until documents in 1000 hours were processed. Figure 3.3 shows the

growth of log(lC/lt) with the passage of time in the corpus. This growth pattern is typical

of all topic query strings. The figure shows that initially the term weights fluctuate as

they are computed over the documents within the first few hundred hours of the corpus.

The term weights stabilize after about 1000 hours. Then, as the as the sum total of

the occurrences of all vocabulary terms (lC) increases, if a term occurs with a higher

78

frequency in general (e.g. “hurricane”), its weight decreases after a time. Interestingly,

during the query duration, it can clearly be seen that the term weights for both “sandy”

and “hurricane”, drop considerably. This is because they occur at a much higher rate

within this interval.

Needless to say, a Background language model spanning 48 hours was highly inadequate

in order to compute term weights for query and expansion terms alike. This is a major

factor that may have hurt the performance of our runs.

The third hurdle was that we had to deal with the large number of duplicate sentences

in the corpus. We returned the earliest unique sentence identified by our system for each

run.

Our runs were constructed using the following procedure; Given an event with query Q

with a period of interest [qstart, qend], first generate a background term statistics model (B)

using IntervalUnigramProbabilities(Q, qstart− 48, qstart). Then for each hour from qstart to

qend,

1. Retrieve top-20 documents (Dh) for the current hour h.

2. Generate expansion terms (Eh) for hour h using Dh (as described in Section 3.3.4).

3. Select expansion terms to identify likely relevant sentences from hour h + 1 of the

query duration.

4. Remove duplicates.

5. Update background model B with term counts of Q and Eh, executing algorithm

79

c (Cover) r (#query terms) unique
sentences

2 25 7425
2 50 7699
2 100 5495
4 25 6111
4 50 7073
4 100 5446
10 25 3488
10 50 5047
10 100 5700

Table 3.6: Number of unique updates obtained for values of parameters c and k for the
training topic. Rows in bold represent submitted runs.

IntervalUnigramProbabilities(T , qstart − 48, h) if necessary for new terms T in {Q ∪

Eh}.

For the first hour, since there are no expansion terms, we returned likely relevant sentences

using the unexpanded query Q only.

We varied the cover of query terms c and the number of expansion terms r as shown

in Table 3.6 and observed the number of unique sentences returned for the training topic

(Figure 3.2). Our submissions were essentially recall oriented approaches as we were trying

to get as many information nuggets about the given attributes of the topics as possible. We

therefore selected the runs having parameters (c = 2, r = 25) and (c = 4, r = 50). These

parameter values gave us a large number of unique sentences as well as an opportunity to

check for differences in performance for a reasonable number of expansion terms.

80

3.3.6 Results

Admittedly, the design of our experiments for TREC 2013 temporal summarization needed

a more refined approach. Rather than change one factor at a time and evaluate iteratively,

many factors were changed, and we did not submit an adequate number of runs. Table 3.7

lists the results of the track. Our runs did achieve a high recall (LC) but performed poorly

on ELG (precision).

Of note, one of our runs, UWMDSqlec2t25, found the highest number of nuggets (38) per

topic, on average. The runs rg1 and rg2 also find close to 38 nuggets per topic. These runs

utilized distributional similarity for term expansion (Vechtomova, 2012), however, the seed

words for expansion were chosen manually (Baruah et al., 2013). In contrast, our query

term expansion method is completely automatic. Even though our runs return a higher

number of nuggets, the Latency Comprehensiveness is lower because not all nuggets were

delivered early enough.

For the ELG evaluation measure as formulated in Equation 3.1, returning a large num-

ber of updates would significantly impact the score on ELG. It is not a surprise that runs

with fewer overall updates score higher on ELG because the verbosity penalization is not

as heavy if the number of updates is small.

3.3.7 Conclusion

Our participation at the TREC 2013 temporal summarization track gave us an opportunity

to work on the interesting problem of information retrieval over a document stream. The

81

updates average # Judged # found
RunID ELG LC returned # updates Updates nuggets

per topic per topic per topic
cluster5 0.136 0.126 197 21.9 21.8 6.89
run2 0.127 0.251 844 93.8 55.3 16.89
run1 0.125 0.253 880 97.8 56.9 17.11
TuneExternal2 0.118 0.203 7,195 799.4 49.7 12.89
TuneBasePred2 0.114 0.244 24,265 2,696.1 74.8 15.11
cluster3 0.103 0.176 381 42.3 38.2 9.67
cluster2 0.074 0.260 1,099 122.1 89.0 16.00
uogTrNMTm1MM3 0.069 0.216 3,229 358.8 89.3 15.67
cluster1 0.067 0.288 1,483 164.8 100.9 17.00
cluster4 0.067 0.292 1,467 163.0 100.7 17.00
BasePred 0.067 0.368 79,116 8,790.7 167.7 22.00
Baseline 0.063 0.381 114,687 12,743.0 183.9 24.44
uogTrNSQ1 0.060 0.184 1,251 139.0 80.7 13.11
EXTERNAL 0.055 0.413 202,285 22,476.1 184.4 26.00
uogTrNMTm3FMM4 0.049 0.170 1,515 168.3 96.4 14.22
uogTrNMM 0.045 0.254 8,592 954.7 140.0 19.11
uogTrEMMQ2 0.040 0.259 18,700 2,077.8 147.6 19.00
SUS1 0.036 0.128 21,048 2,338.7 73.1 8.78
rg4 0.028 0.516 376,770 41,863.3 281.6 31.56
rg3 0.026 0.506 382,807 42,534.1 275.0 31.89
rg2 0.022 0.562 2,696,036 299,559.6 402.8 37.78
rg1 0.021 0.571 2,815,770 312,863.3 414.1 37.89
UWMDSqlec4t50 0.018 0.530 1,923,621 213,735.7 357.2 36.22
UWMDSqlec2t25 0.017 0.537 2,070,504 230,056.0 370.4 38.00
CosineEgrep 0.010 0.018 107 11.9 11.9 0.89
NormEgrep 0.001 0.061 1,362 151.3 65.3 3.56

Table 3.7: TST 13 Participation results for our runs. UWMDSqlec2t25 found the most num-
ber of nuggets per topic on average. Both runs scored high on Latency Comprehensiveness.
Note that the average number of nuggets per topic is 119.67 (Table 5.3).

82

algorithms not only needed to return likely relevant sentences but were also required to

do so in a timely manner. Poor results over ELG notwithstanding, analysis post track

participation led to interesting research projects:

1. The evaluation pool for TST 2013 was constructed taking the top sentences as per

system assigned confidence scores for each returned sentence. We observed a large

number of duplicate sentences in the corpus. What might happen if a system had

returned the duplicate of a pooled (and then judged) relevant sentence? We answer

this question in Chapter 4.

2. Some submitted runs returned a very large number of updates whereas some returned

very few. The specified period of interest for each topic was 10 days. The top ELG

run on average delivered only 22 updates per topic over a 10 day period returning

less than 7 nuggets on average (Table 3.7), whereas the average number of nuggets

per topic is 119. A typical user who is interested in the event for 10 days, may find 2

updates per day insufficient information, especially if the event impacts the user in a

personal capacity. On the other hand returning thousands of updates may inundate

the user. How can we effectively evaluate systems that filter event related updates

from a web-scale document stream, given various types of users that consume the

filtered updates? This question forms the core of this thesis and Chapter 5 presents a

detailed exposition of our research in developing a user-oriented evaluation measure

for update filtering systems.

83

0 2000 4000 6000 8000 10000 12000

0
5

10
15

hours

w
ei

gh
ts

hurricane
sandy
mean growth
final mean weight
wt at qstart time
wt at qend time

Q6 term weight growth

Figure 3.3: Growth in term weight (log(lC/lt)) of query terms for topic “Hurricane Sandy”.
The X-axis indicates hours in corpus time. The Y-axis shows the weight values. The
vertical dashed and dotted lines indicate the start and end of the topic query duration
respectively. The horizontal lines show the mean term weight for the query string at the
start and end of the query duration, and the final mean term weight for the collection.

84

Chapter 4

Evaluation in the Presence of

Duplicates

We observed a large number of duplicate sentences to be present in the KBA Stream

corpus. We found that the number of duplicates in the corpus could be as large as 1000x

their presence in the pool for TST 2013. In this chapter we investigate the effect of

expanding the evaluation pool by adding exact duplicates of the judged sentences from the

corpus.

The assessors pooled sentences from the participating systems to create an evaluation

pool. The sentences that were judged for relevancy form the judged set of sentences for

the track. The runs, however, were only required to submit the sentence identifier. Thus,

if a sentence d′ that is not in the pool is an exact duplicate of the sentence d which is in

the pool, then, a system returning d′ may not be fairly evaluated (if d == d′ is relevant or

85

otherwise), especially when d′ has an earlier timestamp than d.

Indeed, the track organizers found exact duplicates within the pool itself (Table 4.1;

#known duplicates). To account for the duplicates in the pool, the identifier of each

duplicate sentence was mapped to the identifier of a designated original sentence. This

mapping is preserved while computing scores for system evaluation. However this within-

pool mapping does not map the original sentence with all its duplicates from the corpus.

The aim of our experiment was to (i) expand the within-pool mapping of duplicates to

original sentence to include all duplicates from the corpus, and (ii) observe the change in

evaluation scores when using the duplicates-expanded qrels (judged set of sentences).

Our hypothesis was that, given the large number of duplicates, the evaluation scores

for systems would change considerably. Our experiments (Baruah, Roegiest, and Smucker,

2014) on expanding the judged set of sentences of TST 2013 show that the relative rank-

ing of systems (runs) is largely unaffected with the addition of duplicates. However, the

absolute system score changes significantly for 13 out of 26 systems on ELG and for 12 out

of 26 systems for LC respectively.

We conducted a similar experiment on the judged set of sentences of TST 2014 and

we found no significant differences in relative performance of systems. Also, the effect of

expanding the judged set of sentences with duplicates, is minimal for the absolute scores

of the systems, with only 3 runs showing statistically significant changes in score for the

Harmonic Mean measure of the TST 2014 (Section 3.2). The fewer changes in absolute

scores of runs can be attributed to the differences in the evaluation process between TST

2013 and TST 2014 (Section 4.3.2).

86

4.1 Expanding the Judged Set of Sentences

We first identified duplicates of all pooled sentences from the corpus and included them

into the pool by expanding the within-pool duplicates to original mapping. Table 4.1 shows

the change in the pool on its expansion using duplicates. The known-duplicates column

lists the total number of duplicates found within the pool for a given topic. The with-

duplicates-in-corpus column lists the number of sentences for which duplicates were found

in the corpus. For instance, for topic 1, 100 of the 779 pooled sentences are duplicates which

were found during the pooling process, and duplicates were found for 309 of 779 sentences

from within the corpus. Similarly for the relevant-with-duplicates-in-corpus column; it lists

the number of relevant sentences for which duplicates were found in the corpus.

The expanded-judged-set columns shows the total number of duplicates found in the

corpus for the pooled sentences of each topic. It can be seen that the judged set of sentences

expands by almost 1000 times (to 9,034,179 from the original 9,113) sentences.

87

Topic
Original Judged Set of Sentences Expanded Judged Set

#sentences #known #with duplicates #relevant #relevant with #sentences #relevant
duplicates found in corpus sentences dup.s in corpus sentences

1 779 100 309 431 146 833794 1445
2 912 180 474 381 202 2241589 6301
3 762 112 494 211 154 552145 25199
4 1463 276 946 410 260 264474 22587
5 1069 0 689 82 63 821897 17043
6 1517 187 905 493 270 730296 18661
8 1128 205 609 172 102 1057643 1741
9 873 172 423 168 97 2430455 2384
10 610 89 338 287 143 101886 1895

Total 9113 1321 5187 2635 1437 9034179 97256

Table 4.1: The number of sentences in the Original judged set vs. the Expanded set.

88

Table 4.2 lists the most frequently occurring duplicates for the topics of TST 2013. The

3 most frequently occurring duplicates constitute 67% of the total number of duplicates

found. These sentences appear to be headers or footers (boiler plate sentences) of web pages

or news articles. The most frequently occurring relevant sentence was found to occur 5,403

times. This relevant sentence, “National Hurricane Center in Miami said Isaac became a

Category 1 hurricane Tuesday with winds of 75 mph.”, describes “Hurricane Isaac” the

event of topic 6.

It is likely that the large number of duplicates found are due to news/web syndication

services. The KBA stream corpus contains documents sourced from various news wires,

and these news articles are the second largest subset of documents in the corpus, with

documents from social media/blogs/forums forming the largest constituent set. After a

news event, many articles might be expected to be written about it and these would be

expected to be distributed via syndication all over the web.

4.2 Evaluating TST 2013 Runs using qrels Expanded

with Duplicates

After the duplicates were identified from within the corpus, we included them into the

judged set of sentences while maintaining the mapping procedure put in place in the track

qrels, whereby, every duplicate sentence d′ is mapped to its corresponding prototype d.

With the expanded qrels, we re-evaluated ELG and LC for each submitted run to TST

2013.

89

Frequency Topics Duplicate Sentence
3376809 2,9,1 All rights reserved./All rights reserved
2013684 2,9,8 Yahoo!
673876 3 New User ?
529085 5 3.
294662 8 This material may not be published,

broadcast, rewritten or redistributed.
. . .

166557 6,9 U.S.
111503 8,9 Register Sign In Help New Firefox

r16 Optimised for Yahoo!
Notifications Help Mail My Y!

. . .
81985 6 Join Here .

Table 4.2: Examples of Duplicate Sentences with high number of occurrences across all
topics for TST 2013.

Figure 4.1 plots the ELG scores of runs, for the expanded vs. the original set of judged

sentences. The rank correlation between the 2 system rankings is quite high with a

Kendall’s τ = 0.899. However, the ELG scores for 13 runs are significantly different

(on a paired t-test with p-value ≤ 0.05).

Figure 4.2 plots the LC scores of runs, for the expanded vs. the original set of judged

sentences. The rank correlation between the 2 system rankings is also high with a Kendall’s

τ = 0.942. LC scores for 12 runs are significantly different (on a paired t-test with p-value

≤ 0.05).

Almost half the runs do not show any change in absolute score. This is primarily

because very few or no duplicate sentences were found for their contributions to the pool.

Additionally, these runs had fewer submitted sentences and were well represented in the

pool, whereas the larger runs (with more numbers of sentences) showed changes in scores

90

due to the addition of duplicates in the qrels. We observe that, in general, there is a decrease

in the ELG score. This is because the inclusion of duplicates increases the verbosity

normalization component of the ELG evaluation measure. Recall that the sentences not in

the pool were elided for evaluation (Section 3.1.2) and with the addition of duplicates, the

verbosity of any system that returns duplicates would increase. Only one run benefited

on ELG with the addition of duplicates, i.e., at least for one run, relevant and unjudged

duplicates were found from the corpus, thereby causing an increase in the ELG score,

although the increase in ELG is not statistically significant (Figure 4.1).

In contrast, a majority of the runs show an increase in LC. This is because the duplicates

in the run may have an earlier timestamp than the pooled and judged sentence. An earlier

timestamp for a duplicate would cause the LC to increase since the latency penalization

is lesser for early delivery of relevant material and in some cases the latency penalization

also awards a bonus (Section 3.1.2), if a sentence reports a nugget earlier than the nugget’s

timestamp. A nugget’s timestamp is extracted from the respective topic’s Wikipedia article

(Section 3.1.2).

It is interesting to draw attention to the two outliers at ranks 4 and 5 on the original

judged set ELG scale in Figure 4.1. These runs seem to show a relatively larger decrease

in ELG when the expanded set of judgements is used. The points correspond to runs

TuneExternal2 and TuneBasePred2 respectively. Table 3.7 shows that these runs submit-

ted 7,195 and 24,265 updates respectively. Aslam et al. (2013) report that these two runs

are revised (or fixed) runs. The hltcoe group submitted an initial version of these runs;

this version contributed updates to the pool; the group later submitted a revised version

of these runs after the evaluation pool was created. The updates from the revised runs

91

were not included into the evaluation pool. Although these revised runs did well on ELG

using the original pool, it appears that the runs contain many duplicates of the judged set,

causing a larger verbosity normalization to drive down the ELG score when using the ex-

panded set of judgements. In other words, eliding of unjudged updates helped the revised

runs since there were fewer common updates between the revised runs and the original

evaluation pool; however, when duplicates were considered, the impact of verbosity nor-

malization was harsher. Nevertheless, as the figure shows, the ranking of the runs changes

only by one position when the expanded set of judgements is used.

4.2.1 Effect of Variations in Duplicate Detection

Our experiments so far identified exact duplicates. We also tried variations based on sim-

ple transformations like lowercase-ing, whitespace-collapsing (reducing consecutive whites-

paces to single whitespace) and white-lower, a combination of lowercase and whitespace

collapsing. The lowercase transformation is a common normalization technique used while

indexing documents. The aim was to detect duplicates while ensuring minimal information

loss.

The lowercase-ing identified 10,872,223 duplicates, however only 44 new relevant dupli-

cates were found. The whitespace transformations did not produce new duplicates. The

Kendall’s τ between the lowercase-transformed-duplicates expanded set induced system

rankings and the track’s systems rankings is listed in Table 4.3. It is the same as the

Kendall’s τ between the exact-duplicates expanded set induced rankings and the track’s

rankings.

92

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Original Judged Set Expected Latency Gain

E
x
p

a
n

d
e

d
 S

e
t

E
x
p

e
c
te

d
 L

a
te

n
c
y
 G

a
in

Expanded vs. Original set Expected Latency Gain scores

Figure 4.1: ELG scores for the systems using the duplicates-expanded set of judged sen-
tences vs. the ELG scores for the systems using the original set. The original (track’s)
system rank order is from right-to-left on the X-axis. The green colored points indicate
a statistically significant (p-value ≤ 0.05 over a paired t-test) difference in absolute ELG
score for the respective run.

93

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Original Judged Set Latency Comprehensiveness

E
x
p

a
n

d
e

d
 S

e
t

L
a

te
n

c
y
 C

o
m

p
re

h
e

n
s
iv

e
n

e
s
s

Expanded vs. Original set Latency Comprehensiveness scores

Figure 4.2: LC scores for the systems using the duplicates-expanded set of judged sentences
vs. the LC scores for the systems using the original set. The original (track’s) system rank
order is from right-to-left on the X-axis. The green colored points indicate a statistically
significant (p-value ≤ 0.05 over a paired t-test) difference in absolute LC score for the
respective run.

94

Judged Sentences Kendall’s τ for Ranking Metric
expanded with E[LG] E[G] LC C
exact duplicates 0.899 0.894 0.942 0.937
lowercase duplicates 0.899 0.894 0.942 0.937

Table 4.3: Rank correlation between Original Judged sentences vs Expanded set, for TST
2013 measures.

4.2.2 Discussion

Although, the relative performance of the runs did not change, we can see that the addition

of duplicates to the qrels helps in estimating absolute scores more accurately. The evalua-

tion of TST 2013 follows the guidelines laid out by Sakai and Kando (2008), that suggest

eliding to be appropriate for test collections having highly incomplete sets of judgements,

which is indeed the case for the TST. It is indeed the case that the by adding duplicates,

we have expanded the judged set and therefore, increased the verbosity normalization com-

ponent. This would cause the ELG scores to go down, which is clearly the case as seen in

Figure 4.1.

However, ignoring the unjudged sentences for evaluation may not truly reflect user

experience. There should be a difference in the scores between systems that return 1000

updates vs. systems that return 100,000. Eliding causes the verbosity penalization to be

limited to the number of sentences in the pool which is a bonus for systems returning a

large number of sentences because very few of their sentences are present in the pool.

95

4.3 Expansion of TST 2014 qrels with Duplicates

For the TST 2014, the track organizers released an extended set of judged sentences along

with the judged set of sentences created for the track. The extended set of judged sentences

was created by identifying exact duplicates of pooled sentences from all the submitted runs.

These exact duplicates were then added to the qrels to create the extended set.

For evaluation of submitted runs with duplicates extended qrels, expanding the pool

using only the duplicates from the within the submitted runs is sufficient. This is in contrast

to the method described in Section 4.1, where duplicates were identified from within the

corpus (rather than from only the submitted runs). Table 4.4 lists the duplicates of pooled

(and judged) sentences identified from within the submitted runs for TST 2014. Table 4.5

similarly list the duplicates of pooled (and judged) sentences from within the submitted

runs for TST 2013. As can be seen, the number of submitted duplicates has a much lesser

dramatic volume than the duplicates found from the corpus.

4.3.1 Evaluating TST 2014 Runs using qrels Expanded with Du-

plicates

As was the case for TST 2013, when duplicates are added to the qrels, there is no significant

change in relative performance of the submitted systems for TST 2014. The relative

performance remains unchanged for the HM, nELG, ELG and LC measures of the TST

2014 track. Table 4.6 lists measures used for evaluation at TST 2014, and the respective

correlations, between the scores computed using the standard (original) qrels and the scores

96

#pooled #duplicates #submitted
topic unique in pool duplicates

updates

TS14.11 1,008 141 441
TS14.12 654 159 969
TS14.13 570 98 7,871
TS14.14 984 398 33,524
TS14.15 813 95 1,161
TS14.16 759 146 2,617
TS14.17 768 234 22,087
TS14.18 916 160 3,097
TS14.19 758 168 1,745
TS14.20 612 148 4,326
TS14.21 919 306 14,473
TS14.22 608 158 1,892
TS14.23 723 219 2,057
TS14.24 951 247 3,330
TS14.25 701 230 4,451

Total 11,744 2,907 104,041

Table 4.4: Number of unique sentences in the pool, known duplicates (in the pool), dupli-
cates found within the submitted runs, for TST 2014.

#pooled #duplicates #submitted #duplicates
topic unique in pool duplicates in corpus

updates

1 679 100 950 833,115
2 732 180 5,371 2,240,857
3 650 112 9,215 551,495
4 1,187 276 5,419 263,287
5 1,069 0 3,929 820,828
6 1,330 187 12,935 728,966
8 923 205 5,739 1,056,720
9 701 172 9,118 2,429,754
10 521 89 1,095 101,365

Total 7,792 1,321 53,771 9,026,387

Table 4.5: Number of unique sentences in the pool, known duplicates (in the pool), dupli-
cates found within the submitted runs, for TST 2013.

97

Evaluation Kendall’s #runs with stat. Sig.
Measure τ difference in score

HM(nELG, LC) 0.976 3
nELG 0.985 3
ELG 0.980 2
LC 0.949 7

Table 4.6: TST 2014 measures, rank correlations between the standard and duplicates-
expanded qrels, and the number of runs that showed statistically significant (p-value ≤
0.05 over a paired t-test) changes in scores.

computed used the duplicates expanded qrels.

Figures 4.3, 4.4, 4.5 and 4.6 show the correlations between the evaluation scores com-

puted using the original judged set (standard qrels), and, the judged set expanded with

duplicates, for the HM, nELG, ELG and LC metrics of the track respectively. As can be

seen, for HM, ELG and nELG the scores of the runs are highly correlated. Of particular

interest here is the fact that very few of the 24 submitted runs experienced a statistically

significant change in absolute score, for TST 2014. In comparison, half of the 26 submit-

ted runs experienced a statistically significant change in absolute scores, for TST 2013.

For TST 2014, only the LC scores (Figure 4.6) are affected when using the duplicates

expanded qrels, with only marginal differences in the scores found for the HM, ELG and

nELG measures.

4.3.2 Discussion

The effect of including duplicates for evaluation of temporal summarization runs remains

same with regards to the relative performance measurement across both TST 2013 and

98

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Original Judged Set HM

E
xp

an
de

d
S

et
 H

M

HarmonicMean(nELG, LC) TS 14

●
●

●

Figure 4.3: HM(nELG, LC) scores for the systems using the expanded set of judged sen-
tences vs. the HM scores for the systems using the original set. The original (track’s)
system rank order is from right-to-left on the X-axis. The green colored points indicate
a statistically significant (p-value ≤ 0.05 over a paired t-test) difference in absolute HM
score for the respective run.

99

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Original Judged Set nELG

E
xp

an
de

d
S

et
 n

E
LG

Normalized Expected Latency Gain TS 14

●
●

●

Figure 4.4: nELG scores for the systems using the expanded set of judged sentences vs.
the nELG scores for the systems using the original set. The original (track’s) system rank
order is from right-to-left on the X-axis. The green colored points indicate a statistically
significant (p-value ≤ 0.05 over a paired t-test) difference in absolute nELG score for the
respective run.

100

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

0.01 0.02 0.03 0.04 0.05

0.
01

0.
02

0.
03

0.
04

0.
05

Original Judged Set ELG

E
xp

an
de

d
S

et
 E

LG

Expected Latency Gain TS 14

●●

Figure 4.5: ELG scores for the systems using the expanded set of judged sentences vs.
the ELG scores for the systems using the original set. The original (track’s) system rank
order is from right-to-left on the X-axis. The green colored points indicate a statistically
significant (p-value ≤ 0.05 over a paired t-test) difference in absolute ELG score for the
respective run.

101

●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Original Judged Set LC

E
xp

an
de

d
S

et
 L

C

Latency Comprehensiveness TS 14

●

●

●●●

●

●

Figure 4.6: LC scores for the systems using the expanded set of judged sentences vs. the
LC scores for the systems using the original set. The original (track’s) system rank order is
from right-to-left on the X-axis. The green colored points indicate a statistically significant
(p-value ≤ 0.05 over a paired t-test) difference in absolute LC score for the respective run.

102

TST 2014. However, there is considerable difference in the number of runs that were

affected in terms of absolute scores. 13 (of 26) runs (Figure 4.1) showed a statistically

significant change in absolute scores for ELG in TST 2013, whereas only 2 (of 24) runs

(Figure 4.5) showed a significant change in absolute scores for ELG in TST 2014.

A major change in the evaluation process between TST 2013 and TST 2014 is that

TST 2014 does not elide unjudged sentences. Instead, sentences not in the evaluation

pool are considered non-relevant for TST 2014. For TST 2013, eliding limits the number

of sentences being considered for evaluation for each run, to the judged set of sentences.

Adding duplicates to the qrels increases the size of the judged set and hence it also increases

the verbosity penalization for ELG. For TST 2014, the non-eliding of unjudged sentences

helps to avoid any additional verbosity penalization because all the duplicates have already

been penalized for verbosity, thus causing minimal changes in scores even when duplicates

are considered in the qrels.

For LC, for TST 2013, 12 (of 26) runs (Figure 4.2) showed a statistically significant

change in absolute LC score. For TST 2014, all but 4 runs show a change in the LC score,

however, only 7 runs show a statistically significant difference. The reason for the change

in score, as was the case for TST 2013, is that runs encounter duplicate sentences having

earlier timestamps, thereby reducing the potential latency discount and thus increasing the

LC score. Regardless of the change in score for LC, the primary measure for TST 2014,

the harmonic mean of nELG and LC, does not show significant change in the relative

performance, and shows a significant change in absolute performance for only 3 runs when

duplicates are added to the qrels.

103

4.4 Conclusion

In tasks like temporal summarization where the same information may be available from

multiple sources (documents), identification of duplicates is essential in order to determine

which systems returned identified relevant information earlier than others. We investigated

the effect of expanding a judged set of sentences with their exact duplicates found from

the corpus (or submitted runs), on the evaluation of the temporal summarization tracks

at TREC 2013 and 2014.

We found that the addition of duplicates to qrels does not affect relative system per-

formance measurement across both tracks, and across various evaluation measures such as

ELG, LC, and the Harmonic Mean of nELG and LC. However, the addition of duplicates

to qrels does change the absolute scores for half the systems on ELG and LC, for TST

2013. The absolute scores on ELG change minimally for TST 2014, mainly because the

TST 2014 evaluation does not elide unjudged sentences.

Not eliding helps to alleviate the effect of including duplicates in qrels for measuring

relative performance. The absolute scores of runs are affected depending on the evaluation

measure. For instance, absolute scores of runs on ELG for TST 2014 remain largely

unaffected; however, LC scores are affected. It is advantageous to know that duplicates

have no appreciable effect on ranking a given set of systems; however, including duplicates

does help to measure absolute scores more accurately, over a variety of evaluation measures,

for temporal summarization.

104

Chapter 5

Modeled Stream Utility

Modeled Stream Utility (MSU) is a user oriented evaluation measure, designed to measure

the performance of systems that produce a stream of likely relevant updates about a break-

ing news event. MSU employs a model of user behavior for streaming information access

and utilizes it for measuring system performance. We describe the MSU evaluation model

in Section 5.1. We simulate users reading updates that were returned by the participating

systems at TST 2013 and we utilized the TST 2013 test collection to demonstrate system

performance measurement using MSU (Section 5.3). We also compare MSU with the TST

measures ELG and LC whilst varying the MSU user model parameters.

Our evaluation framework takes as input the updates emitted by a temporal summa-

rization system (Figure 5.1b). With the help of the track’s qrels (relevance judgements),

we map every relevant update to the nuggets it contains. We term this filtered stream of

time ordered updates (and their contained nuggets) as the update-trace (Figure 5.1c). We

105

simulate a user reading updates in sessions (Section 5.1.3) via an interface that presents

updates in a reverse chronological order (Section 5.1.4). The user model, the user interface

and the update-trace combined, enable us to evaluate systems for users having different

behaviours. We describe the formulation of MSU in Section 5.2 and demonstrate the

evaluation of systems using MSU in Section 5.3.

5.1 User Model for Streaming Information Access

A particular news event may hold different importance for different users. Users may also

be constrained by the amount of time they have available to keep up-to-date on an evolving

event. Thus, users may have different behaviours regarding when and how frequently they

decide to get updated about an event. We endeavour to capture these aspects of user

behaviour in our MSU user model for streaming information access.

5.1.1 Model Parameters for a Single User

We model a single user having 3 parameters

• average session duration D: The amount time a user spends with the system on

average.

• average time away A: The amount of time the user spends not using the system.

• reading speed V : The speed at which a user reads text.

106

A user is imagined to alternate between spending time with the system (D) and away from

the system (A). The number of updates a user reads in a given session is then determined

by the reading speed (V) of the user.

One can imagine a user checking back for updates from time to time. A typical

user may spend some time reading updates (a session), and then perform some other

daily/routine/specific task for a time (away time). The user may return for more sessions

at a later times, for as long as the topic holds the user’s interest. Thus, the average session

time and average away time, capture to some degree, the interest in the topic (event) as

well as the time availability of users for reading updates about an event.

5.1.2 Modeling a User Population

The single user’s model has 3 parameters, D—mean session duration, A—mean away

time, and V—the reading speed. To simulate a population of users, for each of whom the

parameters D, A and V would differ, we require appropriate parent distributions for the

respective parameters. We model the parent distributions as lognormal distributions over

the user population.

Log-normal distributions can reflect human performance adequately across various tasks

(Clarke and Smucker, 2014; Doherty, Massink, and Faconti, 2001). A log-normal distribu-

tion is a distribution of a random variable, the log of which, is normally distributed. A

log-normal distribution is parameterized by the mean (µ) and standard deviation (σ) of the

natural logarithm of the underlying data. If the underlying data has mean M and standard

deviation S, then, for the lognormal distribution, the variance is σ2 = log(1+S2/M2), and

107

(a) Input: A time ordered document stream.

(b) Output: Stream of updates d1..d10 emitted at various times by a system.

(c) Update-trace: Times of first occurrence of nuggets are identified. Updates containing
nuggets are noted.

(d) User-trace: Simulated behavior of a user who reads updates from the stream from time to
time.

(e) Reading-trace: Determines which updates are available to read for every session. e.g. d3, d2
are available to read at the start of session 2. The user’s reading speed V determines which

nuggets are actually read. Reading updates that contain nuggets adds to gain.

108

(f) α(n): Gain is discounted by Lα(n). α(n) is the number of sessions between the first occurrence
of nugget n and the current session within which an update reporting n is read by the user. α is
computed only if the update containing n is read by the user.

Figure 5.1: The MSU Evaluation Process.

the mean is µ = log(M)− 0.5σ2.

For session durations, we construct a parent log-normal distribution PlnD(MD, SD),

that represents the mean session durations for a user population. MD and SD are the

mean session duration and the standard deviation for the session duration across a user

population respectively. Similarly, we construct PlnA(MA, SA) to represent the mean away

times for the user population. Previous studies (Clarke and Smucker, 2014) have recorded

that users on average have a reading speed of 4.3 words per second. The distribution of

reading speed across users has been described as the log-normal distribution PlnV with

µ=1.29 and σ=0.558.

Thus to simulate a single user u, we sample from PlnD to get the mean session duration

D, we sample from PlnA to get the mean away time A and we sample from PlnV to get the

reading speed V respectively. Multiple samples from respective parent distributions give

us a simulated user population with each user having potentially different stream browsing

behavior.

109

5.1.3 Modeling User Behavior

Once we have the M and A time for user u, we can then simulate the user alternating

between spending time with the system and away from the system generating a user-trace

of reading and away times bounded by the query duration (Figure 5.1d).

A user can be expected not to have fixed session duration and away times; i.e., the

duration of each session or away time may vary about their respective means. We model

individual session and away durations using respective exponential distributions. For in-

stance, durations of individual sessions can be sampled from an exponential distribution

with the rate parameter 1/D (where D is the mean session duration for the user). A

random deviate sampled from this distribution is the length of a session and the mean of

all sampled deviates is D. Similarly, random deviates from an exponential distribution

parameterized by the rate parameter 1/A represent the lengths of time spent away from

the system. Using an exponential distribution has the advantage that it requires only one

parameter.

It may be the case that session durations follow a different distribution. Indeed, the

parent distributions could also be different than lognormals. For our experiments we

have assumed respective distributions based on prior research. The correct distributions,

however, may possibly be estimated after observing actual user behavior via a user study, or

through search log analysis (Section 7.3.1). To keep the model simple, we do not currently

model effects of day/night periods on browsing behavior that could affect session and away

durations.

110

5.1.4 User Interface and User Interaction Behavior

The user interface and interaction mechanism for the system may also affect user behaviour.

We therefore also simulate a simplistic user interface for reading updates wherein, for every

session, the user reads the latest update first, i.e., in reverse chronological order. Such user

interfaces are a common feature in social networking services like Twitter1, Facebook2,

Tumblr3, where most recent updates are presented first (at the top of the page or rank 1)

to the user with progressively older updates appearing lower in the presentation order.

MSU assumes the following user behavior and system interactions for evaluating a

system. A user first initializes the system with a query representing the breaking news

event, e.g., “hurricane sandy”. The system then starts filtering the input stream and emits

the latest updates that are likely relevant to the query. Users check the system as per

their user-trace to read the emitted updates, for as long as the user is interested in the

event (the length of the query duration). At the start of every session in the user-trace,

the updates emitted between the end of the last session and the start of the current session

are presented to the user in a reverse chronological order, so that most recent information

is available to read first. The user starts reading the latest update and then reads the next

older update, and so on, until he encounters an already read update and stops reading

further. In case the session ends, the last update that is partially read in the session is

considered as unread. The first session always starts immediately after the initialization

step. The number of updates a user reads in a session depends on the reading speed V for

1www.twitter.com
2www.facebook.com
3www.tumblr.com

111

www.twitter.com
www.facebook.com
www.tumblr.com

the user.

5.2 MSU Evaluation Model

TST 2013 uses a nugget based evaluation framework where nuggets represent key facts

of information that are pertinent to a given topic. If a returned update contains one or

more nuggets, then it is considered to be a relevant update. The ELG evaluation metric

measures the average quality of updates returned by a system (Section 3.1.2)

For MSU, we employ the notion of unit gain per nugget read by a modeled user. When

a user reads an update that contains a nugget we consider that nugget to be reported to

the user. We also maintain that an update containing a previously read nugget does not

contribute to an increase in gain.

We observe that for TST 2013, the nuggets can be extremely short (1 word) or long (180

words) with the mean nugget length of 11.67 across topics. In comparison, average length

of an update submitted to TST 2013 is 62.96 words. For shorter nuggets, the containing

sentence provides a context that helps determine relevancy. We therefore enforce that gain

for an update is only awarded if it is read completely. No gain whatsoever is awarded for

a partially read update.

By overlaying the user-trace over the update-trace, and by considering the reading

speed of users, we get a reading-trace. The reading-trace helps us to determine exactly

which updates have been read at every user session (as shown in Figure 5.1). A user is

considered to have experienced gain if the user reads a relevant update.

112

5.2.1 Measuring Lateness

At every session, a user would expect to see updates about what transpired between the

previous session and the current session (i.e., what new information came to light during

the just concluded away time). Therefore, we are now in a position to determine for every

reported nugget n, the function α(n), that measures how many sessions ago the nugget

should have been reported (Figure 5.1f). α(n) tries to capture the user’s perception of late

reporting of nuggets. As long as the latest nuggets are available to read at every session,

the user may find the system to be suitable; otherwise the user experiences a drop in the

gain from late reported nuggets.

We employ a notion of discounting gain by latency in a manner that aims to reflect a

user’s perception of lateness. A nugget, if reported late, would be considered less relevant,

the later it is reported. Ideally, this relation between lateness and relevance of a nugget

should be captured by a probability distribution. For now, we assume that this relation

follows an exponentially dropping probability distribution.

We compute the gain for every reported and read nugget n as,

g(n) = 1× Lα(n) (5.1)

where, L is the penalty for late reporting of nuggets. L is a pre-determined value repre-

senting the loss in gain of information if it is reported late. For instance, L = 0.5 indicates

that a nugget is half as likely to be considered relevant for every session in which it is not

reported. That is, L reflects a user’s preference for receiving nuggets as early as possible.

113

For our experiments, we vary L from 0 to 1, where 0 indicates that a nugget would be

considered non-relevant if it is not reported in the immediately following user session, and

1 indicates that the nugget remains relevant regardless of how late the reporting. L = 1

might be preferred by users who want to know all details about the news topic irrespective

of its time of occurrence; such users could be report writers, news summarizers, or analysts.

L = 0 might be preferred by users who are already in the know and would rather have the

very latest information; such users could be health responders, law enforcement officials,

or relief providers.

5.2.2 Expressing Modeled Stream Utility

With the knowledge of which updates were read by a user, MSU for the user is simply

the number of nuggets read by the user. The gain from each reported nugget is added up

to get the cumulative binary latency discounted gain for a user over the query duration.

Thus, the binary discounted gain for a simulated user for a given topic is

MSU =
∑
n

g(n) (5.2)

where, each n is a nugget that was read by the user. The MSU for a topic is the average

MSU for users and the MSU for a system is the average MSU over topics.

The simple formulation of MSU is afforded by the MSU user model that has 6 param-

eters in all. These are

1. Mean session duration across a user population (MD).

114

2. Standard deviation of session duration across a user population (SD).

3. Mean away time across a user population (MA).

4. Standard deviation of away time across a user population (SA).

5. Lateness Decay parameter (L) reflecting the loss in likelihood of a nugget being

considered relevant.

6. The reading speed (V) of a user.

Although the reading speed V has a lognormal distribution (Clarke and Smucker, 2014),

for our experiments, we assume that a user’s reading speed does not vary depending on

times of crisis or by level of interest. To the best of our knowledge, there is no prior

evidence to indicate that a user’s reading speed varies in times of crisis, or according to the

level of interest of the user. As such, we utilize the reading speed distribution described

by Clarke and Smucker (2014), without any modifications.

Thus given parameters MD and SD we can construct a distribution PlnD of session

durations, from which we sample D for users. Similarly, given parameters MA and SA,

we can construct a distribution PlnA of away times, from which we sample A for users.

We sample the reading speed from the reading speed distribution PlnV . L is a value

determined by the user.

115

average
Rank GroupID RunID ELG LC # updates MSU Rank

(by ELG) per topic (by MSU)

1 PRIS cluster5 0.136 0.126 21.9 4.35 17
2 ICTNET run2 0.127 0.251 93.8 9.45 4
3 ICTNET run1 0.125 0.253 97.8 9.46 3
4 hltcoe TuneExternal2 0.118 0.203 799.4 5.34 16
5 hltcoe TuneBasePred2 0.114 0.244 2696.1 5.49 15
6 PRIS cluster3 0.103 0.176 42.3 5.99 11
7 PRIS cluster2 0.074 0.26 122.1 9.31 5
8 uogTr uogTrNMTm1MM3 0.069 0.216 358.8 7.28 7
9 PRIS cluster1 0.067 0.288 164.8 9.57 1
10 hltcoe cluster4 0.067 0.292 163 9.55 2
11 PRIS BasePred 0.067 0.368 8790.7 5.84 13
12 hltcoe Baseline 0.063 0.381 12743 5.87 12
13 uogTr uogTrNSQ1 0.06 0.184 139 6.85 9
14 hltcoe EXTERNAL 0.055 0.413 22476.1 5.6 14
15 uogTr uogTrNMTm3FMM4 0.049 0.17 168.3 6.33 10
16 uogTr uogTrNMM 0.045 0.254 954.7 7.63 6
17 uogTr uogTrEMMQ2 0.04 0.259 2077.8 6.88 8
18 wim GY 2013 SUS1 0.036 0.128 2338.7 3.62 18
19 UWaterlooMDS rg4 0.028 0.516 41863.3 1.44 20
20 UWaterlooMDS rg3 0.026 0.506 42534.1 1.45 19
21 UWaterlooMDS rg2 0.022 0.562 299559.6 0.32 25
22 UWaterlooMDS rg1 0.021 0.571 312863.3 0.3 26
23 UWaterlooMDS UWMDSqlec4t50 0.018 0.53 213735.7 1.02 21
24 UWaterlooMDS UWMDSqlec2t25 0.017 0.537 230056 0.61 23
25 UWaterlooMDS CosineEgrep 0.01 0.018 11.9 0.55 24
26 UWaterlooMDS NormEgrep 0.001 0.061 151.3 0.73 22

Table 5.1: ELG, MSU and respective ranks for each run.

116

5.3 MSU Parameter Sweep

To better understand the parameters of MSU’s user model, we simulate user populations

with various characteristic behaviours. We simulate these users reading updates from the

runs submitted to TST 2013. Finally, we compare the various MSU rankings (induced

by various MSU model parameters) in terms of the rankings produced by ELG (Section

5.3.2).

We simulate users using our user model that has 6 parameters. 4 of these parameters

define the away time (mean MA, stdev SA) and session duration (mean MD, stdev SD)

of a user population. The decay parameter L, is representative of the severity for late

information as perceived by the user. The reading speed parameter V is sampled once

for every user from PlnV . For each user population, we measure system effectiveness

using MSU and compare the relative performance of systems over MSU with the relative

performance of systems over ELG.

For an initial realization of our user model we simulate 1000 users having a MD of 2

minutes (and SD of 1 minute), and a MA of 3 hours (and SA of 1.5 hours), with L set

as 0.5. We presume that these choices of parameters represent users who are reasonably

interested in the event.

We then proceed to explore our parameter space in order to better understand the

interplay between the parameters, i.e., how do users having different user-traces perform

when using various systems. We vary away time from 5 minutes to a day, session duration

from 30 seconds to 30 minutes, and L from 0 to 1, to generate 2646 parameter sets simu-

lating a total of 2,646,000 users. Our choices of parameter ranges are influenced in a large

117

part by the nature of the TST task, where the updates are essentially sentences. For appli-

cations where documents / passages / media form updates, the parameters would need to

be set/calibrated accordingly based upon the characteristics of the returned document. A

search through parameter space, allows us to see which types of users might have benefited

most (or performed the worst), based on TST’s ELG metric’s rank order.

5.3.1 MSU for Reasonable Users

We simulate 1000 users with parameters (MA= 3 hours, SA= 1.5 hours, MD= 2 minutes,

SD= 1 minute, L= 0.5) representing “reasonable” users. We construct the corresponding

log normal distributions for away time (PlnA) and session duration PlnD. We sample

PlnA and PlnD 1000 times for each user’s mean away time A, and mean session duration

D, respectively. Further we generate a user-trace for each of the 1000 modeled users using

their A and D parameters. Every run has 9 update-traces (one for each topic). For a run,

we merge one user-trace with the update-trace of every topic to create the reading-trace.

The reading-trace aids in the computation of user performance (MSU) for every topic. We

measure MSU for 1000 simulated users for each topic and compute the average MSU per

user for a topic. A system’s effectiveness is then simply the average MSU across topics.

Figure 5.2 shows the correlation of MSU with ELG. The runs are ordered as per their

rank on ELG, e.g., the right most point represents the top run at TST 2013. Thus going

from right to left along the ELG axis, we can see the ranking by ELG. Similarly, going

from top to bottom along the MSU axis, shows the relative ordering as per MSU. The

two metrics have a correlation of Kendall’s τ = 0.4708 for the reasonably interested users.

118

AP correlation (tAP), developed by Yilmaz, Aslam, and Robertson (2008) and extended

to handle ties by Smucker, Kazai, and Lease (2013), computes a correlation that treats

differences in high ranks as more important than low ranks. Our reasonable users have a

tAP = 0.4052. As we can see from the Figure 5.2, the runs in the middle-lower positions

of the ELG ranking show a spectacular jump to the top positions. For such a scenario

Kendall’s τ could be suitable as it equally weights all changes in rank positions. We use

Kendall’s τ for comparing MSU with ELG, however, we also report τAP .

Table 5.1 can help us understand this graph to some extent. The top ELG run cluster5

produces a gain of 6.889 with 21.889 updates emitted per topic over a 10 day query duration.

The simulated user spends about 2 minutes every 3 hours, i.e., about 160 minutes reading,

on average, over a 10 day query duration. With an average length of each update being

62.959 words, and the average reading speed being 4.3 words per second, it takes on average

just 318.63 seconds to read all the 21.889 updates of cluster5. The user, who is willing

to read for 160 minutes in total, thus derives very low gain from cluster5 on average.

On the other hand, with an adequate supply of updates, the user should be able to derive

more gain on using the system.

Runs cluster1 and cluster4, both emit on average, 164.7 and 163 updates per topic

respectively. They both have the same amount of cumulative gain over the query duration

(17 nuggets each, as per Table 3.7). They have also been submitted by the same team.

Over a thousand users, the 2 runs produced a MSU of 9.566 and 9.549 respectively. Note

that the users are potentially not reading all the updates. They are only reading updates

as per the session durations in their reading-traces (Figure 5.1).

119

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●●
●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
2

4
6

8

Expected Latency Gain (ELG)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 (

M
S

U
)

MSU vs ELG
Kendall's tau = 0.471 , tau_AP = 0.405

cluster5

run2run1

TuneExternal2
TuneBasePred2

cluster3

cluster2

uogTrNMTm1MM3

cluster1cluster4

BasePredBaseline

uogTrNSQ1

EXTERNAL

uogTrNMTm3FMM4

uogTrNMM

uogTrEMMQ2

SUS1

rg4rg3

rg2
rg1

UWMDSqlec4t50
UWMDSqlec2t25

CosineEgrep

NormEgrep

Figure 5.2: MSU vs ELG correlation for users reading updates for about 2 minutes every
3 hours on average.

120

Figure 5.3 shows the correlation of MSU with LC. The two measures have a correlation

of Kendall’s τ = -0.108. That is, MSU is slightly negatively correlated with LC. Note that

ELG and LC are themselves negatively correlated (Kendall’s τ = -0.28). The negative

correlation between ELG and LC is unsurprising as they are analogous to precision and

recall respectively. MSU is more positively correlated with ELG rather than LC which

is reasonable since both ELG and MSU explicitly count the number of nuggets in the

content read by the user and thus for remaining experiments, we compare MSU with ELG

only. The main difference between ELG and MSU is that the ELG assumes that the user

reads all the returned content which is also penalized for verbosity, while MSU considers

the subset of updates read by a user across sessions; in MSU the verbosity normalization

component is subsumed in the time spent reading an update.

This experiment demonstrates the necessity for accurately estimating the number of

updates read by a user in order for the user performance to be judged in correspon-

dence with the actual gain achieved. This leads to the question about number of updates

that a system should emit in order to improve upon user performance. Table 3.7 shows

that the maximum average number of nuggets returned per topic by a system is 38 (run

UWMDSqlec2t25). However it is extremely unreasonable to suppose that a user would read

230,056 updates per topic that were returned by the respective run. Obviously, the quality

of updates should be high, and, the number of updates should be reasonable. For the rea-

sonable users, the MSU top 5 runs have 90–163 likely relevant updates emitted per topic.

If the reasonable users relax parameter L from 0.5 to 1, then the maximum MSU across

all systems is 15.368 for run cluster4, which is close to its absolute cumulative gain of 17

nuggets over 10 days (Table 3.7).

121

●●

●

●

●●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

Latency Comprehensiveness (LC)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 (

M
S

U
)

MSU vs LC
Kendall's tau = −0.108 , tau_AP = −0.244

rg1
rg2

UWMDSqlec2t25
UWMDSqlec4t50

rg4rg3

EXTERNAL
BaselineBasePred

cluster1cluster4
cluster2

uogTrEMMQ2

uogTrNMM

run1
run2

TuneBasePred2

uogTrNMTm1MM3

TuneExternal2

uogTrNSQ1

cluster3
uogTrNMTm3FMM4

SUS1

cluster5

NormEgrep

CosineEgrep

Figure 5.3: MSU vs LC correlation for users reading updates for about 2 minutes every 3
hours on average.

122

5.3.2 Exploring the User Model Parameters

Our initial experiment suggests that users with different behaviours might perform differ-

ently with the TST systems. Therefore an exploration of various possible user behaviours is

warranted. We vary the MSU user model parameters MA, SA, MD, SD and L to construct

user populations having different characteristic behavior. We conduct the parameter sweep

by choosing the parameter values as follows;

• mean session durations MD from the set {0.5, 1, 2, 5, 15, 30} minutes.

• mean away times MA from the set {5, 10, 30 minutes, 1, 3, 6, 24 hours}.

• lateness penalty L from the set {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}.

We keep the sampled reading speeds the same across all parameter sets for respective

users. For the standard deviations (SD and SA) we choose a multiplier for the respective

means from the set {.5, 1, 2}. For instance, a mean session time of 30 seconds, will be

associated with standard deviations of 15, 30 and 60 seconds. Thus we generate a total

of 7 (mean away times) × 3 (away time stddev’s) × 6 (mean session durations) × 3

(session duration stddev’s) × 7 (lateness penalties) = 2646 parameter-tuples (points in the

parameter space). For instance, the parameter tuple (MA= 6 hours, SA= 3 hours,MD= 5

minutes,SD= 5 minutes, L = 1), is a point in the parameter space that represents users

who spend an average of 5 minutes every 6 hours on average reading updates and these

users do not discount relevance by lateness at all.

For each tuple in the parameter-set (selected point from the parameter space), we

simulate 1000 users, generate their user-traces, determine reading-traces, and compute the

123

MSU across users for that point. We then compute the correlation between the relative

user performance at each point with ELG.

Figure 5.4a compares the relative system performance at point (MA= 24 hours, SA=

12 hours, MD= 1 minute, SD= 2 minutes, L = 0.1), that has the maximum correlation of

MSU with ELG (Kendall’s τ = 0.6246), in our parameter set. It is thus likely that ELG

seemingly caters to highly time constrained and selective users with low tolerance for late

reporting. It is interesting to note that even when spending 60 seconds reading updates the

top ELG run (cluster5) performs below par. This is primarily because even at the very

low MD of 1 minute the users are able to read more material than delivered by cluster5.

With the average update length being 62.959 words, with an average reading speed of 4.3

words per second, in one minute an average user can read about 4.1 updates. Therefore,

reading 21.89 updates takes at most 5.33 minutes, assuming every update is read. Over a

period of 10 days a user spends 10 minutes reading on average. Thus cluster5 runs out

of updates for the user to read, making way for other runs to take the top position.

Figure 5.4b compares the relative system performance at point (MA= 5 minutes, SA=

10 minutes, MD= 30 minutes, SD= 15 minutes, L = 1), that has the minimum correla-

tion of MSU with ELG (Kendall’s tau = -0.04), in our parameter set. This set of users

seem inclined to spend almost all their time with the system reading updates taking a 5

minute break every 30 minutes on average, without any dissatisfaction for late reporting

of information. Unsurprisingly, these users achieve the highest amount of MSU (22.1131)

with run rg4. However, this data point seems unreasonable as no user would realistically

behave like this over a 10 day period.

124

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
1

2
3

4

Expected Latency Gain (ELG)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 (

M
S

U
)

MSU vs ELG
Kendall's tau = 0.625 , tau_AP = 0.522

cluster5

run2run1

TuneExternal2
TuneBasePred2

cluster3

cluster2

uogTrNMTm1MM3

cluster1cluster4

BasePred

Baseline

uogTrNSQ1

EXTERNAL

uogTrNMTm3FMM4

uogTrNMM

uogTrEMMQ2

SUS1

rg4rg3
rg2

rg1
UWMDSqlec4t50UWMDSqlec2t25

CosineEgrepNormEgrep

(a) Maximum correlation of MSU with ELG.

●

●●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
5

10
15

20

Expected Latency Gain (ELG)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 (

M
S

U
)

MSU vs ELG
Kendall's tau = −0.04 , tau_AP = 0.0362

cluster5

run2run1

TuneExternal2

TuneBasePred2

cluster3

cluster2uogTrNMTm1MM3

cluster1cluster4

BasePred
Baseline

uogTrNSQ1

EXTERNAL

uogTrNMTm3FMM4

uogTrNMM
uogTrEMMQ2

SUS1

rg4
rg3

rg2
rg1

UWMDSqlec4t50

UWMDSqlec2t25

CosineEgrep

NormEgrep

(b) Minimum correlation of MSU with ELG.

Figure 5.4: Maximum and minimum correlations of MSU with ELG.

125

This experiment outlines the necessity of including user behaviour models in the design

and evaluation of update systems. As Figure 5.4a shows, measuring relative performance

of systems by ELG seems is more suited to users who read updates for 1 minute, once

per day on average, at least for the participating systems at TST 2013. This short session

duration is evocative of simply reading a daily newspaper’s headlines (or lesser). Indeed,

the highest gain achieved in Figure 5.4a is by cluster2 (MSU of just 4.5306), over a 10

day query duration, or 1 relevant fact every 2 days.

5.3.3 MSU and Set-Oriented Metrics

We can divide MSU by the number of updates read, or the number of updates in the run,

or the time spent reading. The MSU/sec and MSU/updateRead in particular, are similar

to TST’s ELG measure. Since MSU depends on the time a user spends reading, we report

here our analysis for the MSU/sec measure.

In our experiments, we found that MSU/sec has the highest correlation (Kendall’s τ

= 0.7538) with ELG (Figure 5.5a), when users simulated with parameters (MA= 24 hours,

SA= 12 hours, MD= 1 minute,SD= 1 minutes, L = 0.1). However, plain MSU with the

same parameter settings ranks cluster5 at position 10. The run cluster5 scores high on

MSU/sec primarily because it has a very low number of updates submitted (198 updates

in total). For our simulated users, the sessions in the reading-traces over this run finish

earlier than usual because there is less (or no) material to read.

Figures 5.4b, 5.5b exemplify the problem with using set-oriented metrics for evaluation

of streams. Performance of users simulated with parameters (MA= 5 minutes, SA= 10

126

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●●●
●

●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
02

0.
04

0.
06

0.
08

Expected Latency Gain (ELG)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 p

er
 S

ec
on

d
(M

S
U

/s
ec

on
d)

MSU/second vs ELG
Kendall's tau = 0.754 , tau_AP = 0.599

cluster5

run2run1

TuneExternal2

TuneBasePred2

cluster3

cluster2

uogTrNMTm1MM3

cluster1cluster4

BasePred

Baseline

uogTrNSQ1

EXTERNAL

uogTrNMTm3FMM4

uogTrNMM
uogTrEMMQ2

SUS1

rg4
rg3

rg2
rg1

UWMDSqlec4t50
UWMDSqlec2t25

CosineEgrep
NormEgrep

(a) Maximum correlation of MSU/sec with ELG.

●

●●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●●●●●●

●

●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Latency Gain (ELG)

M
od

el
ed

 S
tr

ea
m

 U
til

ity
 p

er
 S

ec
on

d
(M

S
U

/s
ec

on
d)

MSU/second vs ELG
Kendall's tau = 0.668 , tau_AP = 0.539

cluster5

run2run1

TuneExternal2
TuneBasePred2

cluster3

cluster2

uogTrNMTm1MM3

cluster1cluster4

BasePred
Baseline

uogTrNSQ1

EXTERNAL

uogTrNMTm3FMM4

uogTrNMM

uogTrEMMQ2

SUS1

rg4
rg3

rg2
rg1

UWMDSqlec4t50
UWMDSqlec2t25

CosineEgrep

NormEgrep

(b) High correlation of MSU/sec with ELG, even when the model parameters result in
minimum correlation of MSU with ELG (Figure 5.4b).

Figure 5.5: Correlations MSU/sec is high regardless of total gain.

127

minutes, MD= 30 minutes, SD= 15 minutes, L = 1) has the lowest correlation (Kendall’s

τ = -0.04) for MSU vs ELG (Figure 5.4b), however MSU/sec remains correlated (Kendall’s

τ = 0.6677) with ELG. Consider a highly contrived case: a system, returning only 1 update

which is relevant, would score very high on MSU/sec, however, the absolute gain would

be extremely low (i.e. 1 nugget).

In reality, TST topics have upwards of 50 nuggets and while metrics like ELG (approx-

imating gain per update) and MSU/sec can identify systems having high precision, these

systems do not correspond to all user behaviours. The disparity in time available to read

and the actual amount of material available to read is more pronounced with users who

are desirous of spending more time with the system reading updates. Set oriented metrics

fail to measure user performance adequately for such scenarios.

5.3.4 Everyone’s a Winner

The disparity between the maximum and minimum Kendall’s τ of MSU with ELG (Figure

5.4) indicates that there could be specific kinds of user behaviour for which a particular

system (run) might be most suited. We therefore find instances in our parameter sweep

for which a particular system was ranked the highest across all parameter sets. We also

list the performance of the system at that parameter setting. Some systems achieved their

best rank for multiple parameter sets. In such cases, we chose the parameter set for which

the system had the highest MSU. Table 5.2 lists the highest rank achieved by each system.

The systems are ordered by their ELG rank order as in Table 5.1.

The relationship between time spent and user performance can be seen as we look

128

run (ELG rank order) Best Rank MSU Ma Sa Ms Ss L
cluster5 8 4.06 1 day 12 hrs 30 sec 30 sec 0.9
run2 1 9.27 1 day 12 hrs 5 min 2.5 min 0.1
run1 1 14.65 1 day 12 hrs 30 min 15 min 0.9
TuneExternal2 13 9.77 3 hrs 1.5 hrs 30 min 15 min 0.9
TuneBasePred2 11 9.89 1 hrs 30 min 15 min 7.5 min 0.9
cluster3 5 5.83 1 day 12 hrs 30 sec 15 sec 1.0
cluster2 1 12.02 3 hrs 1.5 hrs 30 sec 30 sec 1.0
uogTrNMTm1MM3 6 12.79 1 hrs 30 min 30 sec 15 sec 1.0
cluster1 1 16.45 5 min 10 min 30 sec 30 sec 1.0
cluster4 1 16.15 10 min 20 min 30 sec 30 sec 1.0
BasePred 1 14.17 6 hrs 6 hrs 30 min 15 min 0.9
Baseline 1 15.02 30 min 15 min 30 min 15 min 0.9
uogTrNSQ1 4 11.35 3 hrs 3 hrs 30 sec 15 sec 1.0
EXTERNAL 1 20.38 30 min 1 hrs 30 min 15 min 1.0
uogTrNMTm3FMM4 5 10.52 3 hrs 1.5 hrs 30 sec 15 sec 1.0
uogTrNMM 1 19.07 30 min 15 min 15 min 7.5 min 1.0
uogTrEMMQ2 2 18.55 30 min 15 min 15 min 15 min 1.0
SUS1 17 7.44 1 hrs 1 hrs 2 min 60 sec 1.0
rg4 1 22.11 5 min 10 min 30 min 15 min 1.0
rg3 2 21.54 5 min 5 min 30 min 15 min 1.0
rg2 18 14.02 5 min 10 min 30 min 15 min 1.0
rg1 19 13.39 5 min 10 min 30 min 15 min 1.0
UWMDSqlec4t50 6 12.20 5 min 5 min 30 min 15 min 0.9
UWMDSqlec2t25 14 15.87 5 min 10 min 30 min 15 min 1.0
CosineEgrep 19 0.30 1 day 12 hrs 60 sec 30 sec 0.3
NormEgrep 19 0.52 3 hrs 1.5 hrs 30 sec 15 sec 0.5

Table 5.2: Parameter sets that resulted in Best Ranks for respective systems.

129

at the parameter settings from top to bottom of Table 5.2. Systems that had very few

updates submitted, performed well for users who might visit a system about once a day for

30 seconds to 30 minutes on average. cluster2 seems to be the best performing system

for users who return to the system about every 3 hours for 30 seconds on average. As we

go lower, we see that spending more time reading (larger MD) and taking shorter breaks

(smaller MA) improves performance of systems that ranked lower on ELG. These systems

are typically those that submitted a large number of updates.

Reading updates once each day for 30 seconds (cluster5) is comparable to reading

headlines of a daily newspaper. Runs run1 and run2 fare much better in MSU than

cluster5, as their users are willing to spend slightly more time with the system. However

checking for updates once a day may only be suitable for users with low to moderate

interest in the event, or for if the event evolves with low dynamism (slowly). For rapidly

evolving events or more interested users checking back every 3 hours or so for 30 seconds,

cluster2 seems to work best.

For users who check back with very high frequency cluster1 and cluster4 perform

best. However, the average number of updates submitted by both these runs are 164.8 and

163 respectively, over a period of 10 days (or about 16 updates per day). This means that

for some sessions, when returning every 5 minutes for 30 seconds on average, there may be

no updates to read. However, it seems that the updates are of high quality, and since the

users are forgiving of lateness (L=1), they derive the highest gain from these systems.

Finally, for the users who want to gain as much information as possible, systems like

BasePred (reading for 30 minutes every 6 hours), EXTERNAL (reading for 30 minutes with

130

30 minute breaks), uogTrNMM (reading for 15 minutes with 30 minute breaks) and rg4

(reading for 30 minutes taking 5 minute breaks), result in the best user performance. It

is unreasonable to assume that a single user may spend 30 minutes reading with 5 minute

breaks over a period of 10 days. However the MSU is maximum for rg4 and it may be

possible for it to be deployed where teams of people are monitoring streams. A team

of users (as in government, aid providers or monitoring organizations) may monitor the

stream on a continuous basis and derive the maximum possible gain.

5.4 Discussion

The TST evaluation measures seem to be geared for evaluating systems that “push” the

most relevant updates to the user, i.e., the system decides the amount of information to

be presented via the updates. The intrinsic assumption is that the users would read every

update emitted by the system, necessitating the system to emit fewer but high quality

updates. This leads to measures that are analogous to Precision (ELG) and Recall (LC)

that measure the quality of a set of returned updates. However, for a long running evolving

event, it is hard to know how much relevant information exists or how much new informa-

tion would be generated in the future. In case of TST 2013, the number of nuggets varies

across topics from 37 to 418 (Table 5.3). Emitting updates containing multiple nuggets

would be optimal however, the (anxious) user may find the wait frustrating, whereas the

time constrained user would find it extremely convenient. That is to say that, a user ac-

tively seeking updates, may gain more in reading more number of updates, rather than

passively waiting for updates to be pushed by the system.

131

topic #nuggets #nuggets nugget
identified retrieved recall

by assessors by systems
1 56 45 0.80
2 89 47 0.53
3 139 75 0.54
4 97 55 0.57
5 108 41 0.38
6 418 106 0.25
8 88 58 0.66
9 45 29 0.64
10 37 28 0.76

Total 1077 484 –
Average 119.67 53.78 0.57

Table 5.3: Nuggets identified, nuggets retrieved by all systems, and the nugget recall per
topic. Note that no single system retrieves all nuggets for a topic.

We therefore propose a model of evaluation in which the user behaviour drives the

amount of gain that is possible to achieve. A user more interested in the event could/should

possibly derive more gain when using a system that generates a stream of updates. The

more the content presented to the user, the more time is required to read it. Thus, the

notion of verbosity penalization (of ELG) is essentially subsumed by the time spent reading

sentences. Moreover, if users read longer updates, they might experience lesser gain over

all as they are likely to miss reading other potentially relevant updates.

A key advantage of the MSU evaluation model is that it is possible to calibrate (and

re-calibrate) it by observing real user behavior. ELG, on the other hand, does not provide

an easy means to be calibrated to known user behavior. Our experiments and analysis

show that what matters is the amount of material read. By specifying the amount of

material in user terms, we have a way of then calibrating a measure once we know actual

132

user behavior. Observing actual user behaviour while evolving events are actually taking

place would involve observing users in a live setting. The sudden nature of news events

and the variable length of evolving events, makes a user study difficult to organize. Search

log-analysis may provide some indirect insight into user behaviour when such events are

running.

Our analysis also demonstrates that there is a case for personalization of stream filtering

systems for different user behaviours. Alternatively application-specific (or latency specific)

system development would require an evaluation calibrated for the specific task.

5.4.1 Evaluating Runs with MSU using qrels Expanded with Du-

plicates

In this section we look at how the duplicates expanded qrels affect evaluation of runs using

MSU. We simulate the “reasonable users” (Section 5.3.1) and evaluate the runs submitted

to TST 2013 and TST 2014 with MSU. We find that the relative performance of the systems

does not change significantly as measured by MSU (Table 5.4). However 13 (of 26) and 17

(of 24) runs show statistically significant changes in MSU scores for TST 2013 and TST

2014 respectively.

Figure 5.6 shows the correlation plot for the MSU scores for TST 2013 runs (duplicates

expanded qrels vs standard qrels). 15 runs experience an increase in MSU with 13 showing

a statistically significant change in MSU. In comparison, for TST 2014 (Figure 5.7), all 24

submitted runs experience an increase in MSU with 17 runs showing a statistically signifi-

cant change. The MSU score increases with the inclusion of duplicates in the qrels because

133

MSU evaluation Kendall’s #runs with stat. Sig.
for track τ difference in score

TST 2013 0.914 13
TST 2014 0.927 17

Table 5.4: MSU evaluation of runs for TST 2013, TST 2014; respective rank correlations
between standard and duplicate expanded qrels; number of runs with statistically signifi-
cant (p-value ≤ 0.05 over a paired t-test) changes in MSU scores.

some duplicates have an earlier timestamp than the sentences present in the original pool.

This reduces the effect of the late reporting penalty for each nugget (Section 5.2.1), as

relevant sentences are available to users in earlier user sessions rather than later ones.

Unlike ELG or LC, all the sentences are not assumed to be read by MSU, i.e., MSU

evaluates runs based on a subset of the submitted sentences that are read by simulated

users. Adding duplicates to the qrels helps MSU in producing a fairer evaluation because

the expanded qrels increase the likelihood of a relevant (judged or duplicate) sentence to

be present in the subset of submitted sentences that are read by the simulated users.

5.5 Conclusion

We introduce an evaluation measure that integrates a model of user behaviour for evaluat-

ing streams of filtered information. Our user model simulates a user checking back with the

system to read latest information from time to time. Users can check back with different

frequencies and for different amounts of time depending on various factors. We also find,

that for streams of updates, the gain is sensitive to the amount of content consumed by the

user. Our evaluation model is flexible, in that, it allows for evaluating stream generating

134

●●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●●

●

●

●

●

●

●

●

0 2 4 6 8

2
4

6
8

Original Judged Set MSU

E
xp

an
de

d
S

et
 M

S
U

Modeled Stream Utility TS13

●●●

●●

●●

●●

●

●

●

●

Figure 5.6: TST 2013 MSU scores for the systems using the duplicates-expanded set of
judged sentences vs. the MSU scores for the systems using the original set. The original
(track’s) system rank order is from right-to-left on the X-axis. The green colored points
indicate a statistically significant (p-value ≤ 0.05 over a paired t-test) difference in absolute
MSU score for the respective run.

135

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

0 5 10 15

5
10

15

Original Judged Set MSU

E
xp

an
de

d
S

et
 M

S
U

Modeled Stream Utility TS14

●

●
●

●

●

●

●●

●

●●

●●

●

●
●

●

Figure 5.7: TST 2014 MSU scores for the systems using duplicates-expanded set of judged
sentences vs. the MSU scores for the systems using the original set. The original (track’s)
system rank order is from right-to-left on the X-axis. The green colored points indicate
a statistically significant (p-value ≤ 0.05 over a paired t-test) difference in absolute MSU
score for the respective run.

136

systems for various user behaviours. A user model oriented evaluation provides a way to

calibrate metrics to effectively measure performance of stream filtering systems.

137

Chapter 6

Simulation-based Pooling

Given a model of user behavior, on simulation, it is possible to note which updates (sen-

tences) are read by each simulated user. Given a user population, one can compute the

likelihood of an update being read, for a sampled user from the population. This chapter

presents an alternative pooling methodology that utilizes the probability that an update is

read by a user, to select updates into the evaluation pool. The resulting probability-based

pools (Baruah, Roegiest, and Smucker, 2015) differ considerably from the pools constructed

using the TREC standard depth-pooling method (Voorhees, Harman, et al., 2005). We

present the intuition behind the probability based pooling idea in Section 6.1. We discuss

methods of estimating the probability that an update is read by a user (P (read)) in Section

6.2, depth-pooling based on P (read) in Section 6.3, and pooling based on probability mass

cover in Section 6.4.

138

6.1 Motivation for Simulation-based Pooling

Under the MSU user model, for any given system, some updates may be read by more users

than others in the period of interest (query duration). Figure 6.1 illustrates this effect for

the run cluster1; it shows the proportion of simulated users that read an update emitted

by the system at a given time. We simulated 100,000 users with the reasonable users

parameterization of the MSU user model (Section 5.3.1). The X-axis in Figure 6.1 spans

the 10 day query duration; the specified period of interest for each topic in the temporal

summarization track (TST) 2013 spanned 10 days (Section 3.1). The Y-axis shows the

proportion of the 100,000 simulated users that read each update.

As can be seen from Figure 6.1, most updates emitted by cluster1 are read by most

of the simulated users. Very few updates are read by a lower proportion of users; these

are updates that are read by between 20% to 40% of the users near the start of the query

duration. However, for other systems, depending on the number of updates and the times

at which the updates are emitted, the proportion of users reading each update differs.

For instance, Figure 6.2 shows that most updates are not read by a large proportion of

simulated users for the run TuneExternal2; very few relevant updates are read by a higher

proportion of users in comparison to cluster1.

The numbers of relevant updates read by proportions of users varies considerably across

submitted runs; in general we observed that very few of the most frequently read updates

are relevant. Since identified (judged) relevant updates are read by fewer users, estimation

of system performance may be inaccurate when evaluating with MSU. Ideally, runs should

have relevant updates read by a larger proportion of the user population; conversely, the

139

Proportions of users reading updates emitted by cluster1

Figure 6.1: Proportions of 100,000 simulated users reading updates emitted by the run
cluster1. The run returned 1,483 updates across all topics of which 497 were relevant;
relevant updates are indicated as green dots in the figure.

140

Figure 6.2: Proportions of 100,000 simulated users reading updates emitted by the run
TuneExternal2. TuneExternal2 returned 7,195 updates across all topics of which 214
were relevant.

141

updates that are read more often could be assessed for relevancy in order to better estimate

system performance. Accordingly, updates that are read more frequently by users could

better serve to evaluate systems using MSU.

6.1.1 Proportions of Users not Reading Relevant Updates

If we look at all the updates submitted by participating runs for a particular topic (Figure

6.3), we see that under the MSU user model for reasonable users, fewer relevant updates

are read by higher proportions of users, and many relevant updates are read by a lower

proportion of users . Other topics in the track show a similar spread of (relevant) updates

read by various proportions of users and we find that in general, many identified relevant

updates were read by fewer users. It could be the case that the subset of updates that are

read by a greater proportion of the simulated users could contain un-pooled and thereby

unjudged relevant updates.

TST 2013 utilized a variant of standard pooling (Aslam et al., 2013) wherein the top

60 updates, as determined by system assigned scores, were pooled together to create the

evaluation pool. However, most relevant updates, as identified by the NIST assessors, are

not read by modeled users when systems are evaluated using MSU. Figure 6.4 presents the

histogram of relevant updates read by proportions of simulated users; it is an alternative

time agnostic visualization for the data presented in Figure 6.3. Of the 1616 relevant

updates returned across all runs for topic 10: only 5 were read by all modeled users; 25

were read by more than 99% of the users; and 546 relevant updates were read by less than

1% of the users. However, as Figure 6.3 shows, there are many updates that are read by

142

Figure 6.3: Proportions of 100,000 simulated users reading all updates submitted across all
runs for topic 10 of TST 2013. Across all runs 418,332 updates were submitted for topic
10 of TST 2013; 1,616 relevant updates were returned.

143

greater than 90% of the users. Some of these updates are unjudged and they could contain

some number of relevant updates.

All other topics for the track have a similar distribution of relevant updates being read

by proportions of users. It may thus be beneficial to identify relevant updates within the set

of updates read more frequently by users when evaluating systems with MSU. This leads

us to the intuition that each submitted update has a probability of being read; in other

words, there could be a probability distribution over the updates indicating the likelihood

of a given update being read, given the modeled user population. Such a distribution may

allow us to pool updates that have higher probabilities of being read for constructing a

judged set of updates. A judged set thus constructed may be more suited for evaluation

using MSU.

Number of relevant updates read by proportions of users

Proportions of Users

#r
el

ev
an

t u
pd

at
es

 r
ea

d

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0
50

0

Figure 6.4: The number of relevant updates read by proportions of simulated users, for
topic 10 from the temporal summarization track, at TREC 2013.

144

6.2 Estimating the Probability of an Update being

Read

Computing the probability of an update being read involves simulating users reading up-

dates from a system. Assuming that the user population follows MSU’s “reasonable” user

population model (Section 5.3.1), 10,000 users were simulated from a population of users

that had a mean time spent reading of 2 ± 1 minutes and a mean time spent away of

3 ± 1.5 hours. Given the set U = {ui|1 ≤ i ≤ m} of m simulated users, and the set

D = {dj|1 ≤ j ≤ n} of n updates returned by a system, then

read(i, j) =

1, if user ui reads update dj.

0, otherwise.

(6.1)

indicates if a given user read a particular update. We can further imagine a matrix for the

read(i, j) indicator variable with rows corresponding to users and columns corresponding

to updates returned by a system (Figure 6.5). The read(i, j) matrix allows us to visualize

the computations of different kinds of probabilities of updates being read.

For instance, one may estimate the probability of an update dj being read (P (dj))

as the probability that a randomly selected user would read update dj. This probability

corresponds to the likelihood of ones in each column of Figure 6.5;

P (dj) =
1

|U |
∑
i

read(i, j), (1 ≤ i ≤ m) (6.2)

145

dj
0 0 1 1 0 0 . . . 0
0 1 0 0 1 0 . . . 0

1 1
. . .

ui 0 1
1 0
...

...
0 1

Figure 6.5: An example of a read(i, j) matrix given users ui and updates dj.

This formulation is essentially the proportion of users that read a given update dj. In fact,

the Y-axis in Figures 6.1, 6.2 and 6.3 represents this proportion when |U | is 100,000, under

the MSU reasonable user model.

Equation 6.2 considers each update in isolation and thus the probabilities of being read

are specific to individual updates. Under the MSU user model, each simulated user, either

reads an update or does not read it. The simulation allows us to record exactly which

updates are read and which are not. This read or not read knowledge about updates

allows us to build a probability distribution over the set of updates returned by a system,

where the distribution indicates the likelihood of an update being read. Updates not read

by the user have a probability mass of zero; whereas updates read by the user have a non

zero probability of being read. This non zero probability is the same for every update read

by the user and is the inverse of the number of updates read by the user because under the

MSU user model each update is read at most once. For instance, consider the first row of

Figure 6.5. The user represented by the first row reads only 2 updates; i.e., the probability

mass for each of these read updates is 1/2 and the remaining updates have a probability

146

mass of zero. The probability of an update dj being read can now be estimated as1

P (dj) =
1

|U |
∑
i

read(i, j)∑
q

read(i, q)
, (1 ≤ q ≤ n, 1 ≤ i ≤ m) (6.3)

Here, P (dj) estimates the probability that given a randomly selected user ui, what is the

likelihood that dj is an update read by ui. In terms of Figure 6.5, Equation 6.3 corresponds

to the random experiment: first pick a row at random, and then pick a 1 at random from

the row; what is the likelihood that the picked 1 was from column j. We refer to this

formulation of P (dj) as being balanced ; P (dj) is computed as an average over all users’

probability distributions of reading dj, i.e., the contribution for probability estimation is

balanced across each simulated user in Equation 6.3.

An alternative (and perhaps more intuitive) formulation of P (dj) is

P (dj) =

∑
i

read(i, j)∑
i

∑
q

read(i, q)
, (1 ≤ q ≤ n, 1 ≤ i ≤ m) (6.4)

where P (dj) is the probability that an update is read given all the updates that were read

by all simulated users. In terms of Figure 6.5, Equation 6.4 corresponds to the random

experiment: pick a 1 at random from the matrix; what is the likelihood that the picked 1

is from column j. This formulation also results in a probability distribution over updates;

a distribution that is reflective of the number of ones in each column of Figure 6.5. In

Equation 6.4, P (dj) is computed as the ratio of number of times dj is read to the number

1NOTE: Equation 6.3 is the corrected formulation for Equation (1) as defined in Baruah, Roegiest, and
Smucker (2015).

147

Figure 6.6: Example illustrating the difference between balanced (Equation 6.3) and un-
balanced (Equation 6.4) formulations of P (read). Green colored dots represent updates
read by various users over the given System A. Updates d2 and d3 are awarded higher
probabilities by the unbalanced formulation than the balanced formulation.

of times all updates are read, across all users. This formulation favors updates read by

users that read more, and we term it as unbalanced (in contrast to Equation 6.3 which is

balanced across users).

Figure 6.6 shows the difference in the two methods of computing P (dj). As can be seen,

the unbalanced (Equation 6.4) formulation distributes a higher amount of probability mass

to updates that are read less frequently than does the balanced (Equation 6.3) formulation.

Users that read more number of updates, read some updates that are read less frequently by

148

other users. The unbalanced formulation awards a higher P (read) to such less frequently

read updates, and thus, Equation 6.4 increases the likelihood of less frequently read updates

to be included into a probability-based pool, thus favoring users that read more updates

in general.

6.2.1 Depth Pools with Balanced and Unbalanced Probabilities

Balanced and unbalanced probabilities were estimated for each update of each run. Up-

dates were then ordered by their probabilities. At various depths (top-k probabilities),

pools were constructed by selecting the most probably read updates as ordered by the

balanced probabilities. Similarly pools were also constructed by using the unbalanced

probabilities at various depths of k. Figure 6.7 shows that there is minimal difference

in terms of overlap between the pools created using balanced probabilities and the pools

created using unbalanced probabilities, even at a pool depth of 1000.

Thus, even though the absolute values of the probabilities may differ, most updates are

common to both types of pools. Therefore, for our remaining experiments, we utilized the

unbalanced probabilities for constructing pools because of the simple underlying theory

and ease of implementation.

6.3 Score vs. Probability Based Pooling

In standard depth-pooling, documents are ordered by the system assigned scores for each

document, and the top-k documents are selected into the pool. Probability based pooling

149

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pool Depth (top−k most likely read updates)

O
ve

rla
p

Overlap between probability−based pools vs. Pool Depth

Overlap
Relevant overlap
Non−relevant overlap

Figure 6.7: Overlap between the top-k probability-based pools created with balanced and
unbalanced probabilities.

utilizes the probabilities of updates being read (P (read)) as the pool membership criterion,

rather than the system assigned document score. Updates are thus ordered by P (read),

and the top-k updates are selected into the evaluation pool, for probability based pooling.

We vary k from 1 to 1,000 (in steps of 5) and construct probability-based pools as well

as score-based pools. Figure 6.8 illustrates the difference between the 2 pooling methods

at various pool depths. It can be seen that many updates are not shared between the

pooling methods. The overlap remains below 45% between the probability-based pools

and the score-based pools constructed using the top-k updates ordered by P (read) and

system assigned scores respectively. The overlap of relevant documents remains below 70%

even at a pool depth of 1000. Note that the TST uses a pool depth of 60 to construct

evaluation pools.

150

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Pool Depth (top−k scores, top−k probabilities)

O
ve

rla
p

Overlap between score and probability based pools vs. Pool Depth

Overlap
Relevant overlap
Non−relevant overlap

Figure 6.8: Overlap between the top-k score-based and top-k unbalanced probability-based
pools.

Although score-based pooling (or depth-pooling) is performed in order to have a better

chance of finding relevant documents, perhaps, this method is not entirely suitable for user-

model oriented evaluation measures. As was seen in Figure 6.4, very few relevant updates

are read by users. Also, since the overlap between the probability-based and score-based

pools is low, it is quite likely that the updates in the probability based pools may contain

other unseen relevant updates. We leave further investigation to this regard for future

work.

151

6.4 Pooling using Probability Mass Cover

Given probabilities P (read), alternative pooling methods based on probability mass cover

can be explored. For instance, assessors may decide to adjudicate updates so that a

probability mass of 0.2 is covered for each run. In such a scenario, updates having the

highest probabilities of being read would be included into the pool. Additionally, these

updates’ probabilities would constitute 0.2 of the probability mass of P (read) distributed

across all updates in the run. If the updates in a given run are ordered by P (read), then

assessors could adjudge updates in order till a 0.2 probability mass cover for P (read) is

achieved for the run. Since the probability mass cover is different for each run, and because

a designated level of probability mass is covered for each run, we term this method of

pooling as local probability mass pooling.

Alternatively, the probability mass may be distributed across all the runs, in which case,

the pool would consist of updates that have a higher likelihood of being read in multiple

systems. In other words, the local probabilities of each update can be averaged across the

number of submitted runs. This would result in updates that are common to multiple runs

having higher global probabilities of being read. Then, to achieve a designated probability

mass cover, we order all submitted updates (across all runs) by their global probabilities

and adjudicate updates until the designated probability mass is covered. We term this

method as global probability mass pooling.

Depending on the size of individual runs, and the availability of assessing resources,

the amount of work and effort required for probability mass cover based pooling would be

different. Figure 6.9 shows probability mass covered as a function of pool size for global

152

as well as local pools. As can be seen, the local probability mass pools require many more

updates to cover a specified probability mass, than global probability mass pools.

This large difference in size of the respective pools is due to the large variation in

the size (the number of updates submitted by a run) of runs. As Table 3.7 shows, the

average number of updates returned per topic varies from 22 to 312,863. Figure 6.10 shows

the change in the local probability mass cover as a function of the global probability mass

cover, for each run submitted to TST 2013. Lines to the left of the plot indicate probability

mass cover for smaller runs, and lines to the right indicate the probability mass cover for

longer runs. As can be seen, the local probability mass grows much slower than the global

probability mass for larger runs (runs that returned a large number of updates). In other

words, updates with a higher probability of being read across all runs contribute more to

the global probability mass pooling method in terms of pool membership.

Figure 6.11 depicts the overlap between the local and global probability pools as the

desired probability mass cover varies from 0 to 1. The overlap is low for a lower specified

probability mass and it grows to 100% as the probability mass cover reaches 1, at which

point both pooling methods would include all submitted updates into the pool.

Pooling based on probability mass cover is an interesting alternative to depth pooling

based on probabilities of updates being read (cf. 6.3). It allows the judged set of sentences

to have increased cover for the subset of updates read by users. However, the utility of

probability mass cover based pooling is yet to be investigated and is left as an interesting

avenue of future work.

153

● ● ●●●●●●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●● ●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pool Size

P
ro

ba
bi

lit
y

M
as

s
C

ov
er

+ + +++++++
+++++

+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++++
+++

1 100 10000 1000000

●

+
global probability mass
local probability mass

Probability Mass Covered vs. Pool Size

Figure 6.9: Comparison of pool size and probability mass covered for both local and global
probability mass pooling strategies.

154

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Global Probability Mass Covered

Lo
ca

l P
ro

ba
bi

lit
y

M
as

s
C

ov
er

ed

Local vs Global Probability Mass Covered for TST 2013 runs

Figure 6.10: Local probability mass covered for all 26 runs submitted to TST 2013, when
global probability mass pooling is performed.

155

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability Mass Cover

O
ve

rla
p

Overlap between global & local probability mass cover based pools

Figure 6.11: Overlap between pools created using global and local probability mass pooling
strategies when both target the same probability mass cover.

156

6.5 Discussion and Future Work

How effective and reusable are probability-based pooling methods as compared to the

standard score-based pooling method, is an interesting question for future work. Tradi-

tional research on pooling focusses on depth-pooling based on system assigned scores for

documents (Cormack, Palmer, and Clarke, 1998; Sparck-Jones and Van Rijsbergen, 1975;

Carterette, Allan, and Sitaraman, 2006; Voorhees, Harman, et al., 2005). Furthermore, it

is yet unclear how analyses on the quality of pools (Cormack and Lynam, 2007; Buckley

et al., 2007) can be applied to probability based pooling methods.

One potential disadvantage of the probability based pools is that, some users may

never encounter relevant updates. Since the probabilities are averaged across users and

runs, the resultant pools may not contain updates that are read by a very small fraction

of users. Some of these updates could be relevant but since they would be absent from the

evaluation pool, MSU may report inaccurate values of system performance. One possible

solution could be to combine P (read) and the system assigned score for every update to

compute a “pool membership” score. A pool can then be formed by using pool membership

scores for every update.

Relevance assessments are required for the probability-based pools to enable pertinent

effectiveness analyses and further experiments. Any line of future work is hindered con-

siderably by the lack of relevance judgements for the probability based pools. Procuring

relevance judgements for the probability based pooling methods is essential for comparing

probability based pooling with standard (score-) depth-based pooling.

157

Chapter 7

Conclusions and Future Work

In this thesis, we mainly looked at how we can evaluate systems that produce a stream of

news updates, from a user-oriented perspective. We also explored factors that might affect

the evaluation of such systems.

7.1 Summary

Following from the user-model oriented evaluation paradigm (Clarke and Smucker, 2014;

Clarke et al., 2013; Smucker and Clarke, 2012d), we developed modeled stream utility

(Baruah, Smucker, and Clarke, 2015) (MSU), a user-oriented evaluation measure for the

evaluation of news filtering systems. We demonstrated our measure using the participant

systems of the temporal summarization track (TST) 2013. MSU differs considerably from

ELG and LC, the evaluation measures developed for TST.

158

We developed a simple user model for the behavior of a user accessing information

a stream of updates. Essentially, the MSU user model simulates a user alternating be-

tween spending time reading updates, and spending some time away from the system. We

simulated users reading content from the stream of updates produced by a system and

measured gain for every information nugget contained in relevant updates that were read.

Our experiments show that, the performance of a system can vary considerably depending

on the users that use the system. Different characteristic user behaviors (users that spend

different amounts of time reading, and away from the system), lead to different amounts

of gain experienced by users. This finding shows that system developers would greatly

benefit by knowing the behavior of their target user population.

We observed that duplicate sentences can exist in very large numbers in a web-scale

corpus, specifically, the KBA stream corpus (Frank et al., 2014). We investigated the effect

of including the duplicates of judged sentences into the qrels, on the evaluation of stream

filtering systems, specifically the participating systems at TST 2013 and TST 2014. We

compared the evaluation with duplicates included, to the respective tracks’ evaluation, for

the measures ELG, LC and MSU. Our key finding was that the relative ranking of runs does

not change significantly, which is noteworthy given the fact that the duplicates of judged

updates in the corpus can number 1000 times the judged updates. However, even though

the relative performance of systems is not appreciably affected, the absolute scores of the

systems changes significantly for over half the systems across the three different metrics

for TST 2013. In contrast, TST 2014 runs do not show much change in performance over

the track’s measures even when duplicates are added to the qrels. This is mainly because,

TST 2014 evaluation does not elide unjudged sentences but instead considers them to be

159

non-relevant. However, the performance of TST 2014 runs does change when evaluated

using MSU when duplicates are added to the qrels.

The MSU user model essentially simulates users reading updates in sessions. The

number of updates each modeled user reads in a session depends on the respective user’s

reading speed. If the user encounters a relevant update, the user gets gain. We observed

that a large proportion of simulated users do not encounter all the judged relevant updates.

About a third of the judged relevant updates are read by less than 1% of the modeled

users. For evaluating a system, it may be beneficial to judge those updates that are read

by most modeled users. Accordingly, we investigated pooling of updates for adjudication,

using the probability of an update being read by users, as the pooling selection criterion.

We explored alternative formulations for the probability of an update being read, and

investigated depth-pooling based on probabilities as well as pooling based on probability

mass cover.

We found that pools constructed using the TREC-standard depth based pooling based

on updates’ scores, have less than 45% overlap with the pools constructed using probabil-

ities of updates being read. Furthermore, the overlap for the number of known relevant

updates between the two pools does not exceed 70%, even for pools with a depth of 1000.

Ascertaining the usefulness of pooling based on user-model induced probabilities is an in-

teresting avenue of future work. Although such pooling methods may help to alleviate

retrieval algorithm bias, they may turn out not to be reusable if the user model changes.

160

7.2 Limitations

Our evaluation measure was demonstrated with the help of a parameter sweep (Section

5.3). The parameter sweep allowed us to see how different types of users might experience

gain differently using the stream filtering systems. However, we have no clear idea yet

about the actual parameter values that reflect a real (and observed) user population. An

obvious future work for MSU is its calibration to observed user behavior (Section 7.3.1).

MSU produces an easily interpretable score, e.g. an MSU of 8.3 for a system indicates

that “users of the system can expect to get 8.3 units of gain on average”. For TST 2013,

all the topics had a uniform query duration length of exactly 10 days. This facilitated

the computing of the MSU for a system as a simple average of the MSU scores for the

topics of the track. However, for TST 2014, the topics have varying query durations.

Although MSU computes the average expected gain over topics, the varying length of the

query duration does not necessarily make MSU scores comparable across topics. Some

form of normalization would be needed in order to compare MSU across topics and query

durations.

Pooling using probabilities of sentences being read, or in the general case, pooling based

on user-model induced probabilities, though an interesting thought experiment, can have

many issues in reality. The primary issue is that the resulting test-collection could become

unusable if the user model changes. A user may change his browsing behavior depending

on the time of day, interest in the topic, the importance of the content read. At the very

least, pooling by probabilities should be initiated only after calibration of the evaluation

measure.

161

7.3 Future Work

7.3.1 MSU Calibration and Extensions

To our knowledge, an estimate of the distributions of time spent away from an IR system

specifically when topics deal with evolving events, is not yet known. Estimating actual dis-

tributions of session and away times may require user studies and/or sessions log analyses.

The sudden onset of news events makes user studies or recording user browsing behaviour

in a live-setting logistically difficult. Search engine query-log based session analysis for

news related information needs, may provide hints for actual user behaviour during an

evolving news event, however, such data is hard to obtain and, identifying topic related

queries may need manual annotation.

Search Engine Query Logs Analysis

Search engine query logs could help to identify patterns of search for breaking news events.

There has been previous work on temporal analysis given a query log. Jones and Diaz

(2004) classified queries as being atemporal, temporally ambiguous/unambiguous. Kulka-

rni et al. (2011) investigated how query intent changes with time. Query logs have also

been used to detect trends, e.g. Ginsberg et al. (2009) modeled the spread of an influenza

epidemic using queries submitted to Google. We may need to combine ideas from temporal

analysis of query logs (Kanhabua, Ngoc Nguyen, and Nejdl, 2015) with session detection

techniques (Gayo-Avello, 2009; Hagen, Stein, and Rb, 2011; Lucchese et al., 2011), in order

to estimate parameters for MSU’s user model.

162

Search log analysis may also help provide insight into the session/away behavior of

users. News topics can be bursty, i.e., there can be periods of intense activity leading to

availability of information at a faster rate than normal, especially immediately following

an event. Correspondingly, users may have frequent sessions during bursts. On the other

hand there would be quieter periods of user activity during nights/early morning hours.

Investigations on how MSU’s user model would change depending on successful calibration

of the metric and an elaborate analysis of realistic user behavior.

User Browsing History

Web browsing histories of a sample of users could also help augment our understanding of

user search behaviour when searching for breaking news and/or evolving events. However,

this approach may be ethically nonviable due to privacy issues. An alternative approach

would be to deploy a stream filtering system and have users use it. The data thus gathered

may shed some light on actual user browsing behavior for streaming information access.

Novelty vs. Redundancy Tuning for Evaluation

Based on requirements of users, it is possible to envision a tuning parameter for evaluation

of filtered streams that balances novelty and redundancy. (Baruah, Roegiest, and Smucker,

2014) found that there could be a large number of exact duplicates in the KBA corpus.

Indeed, it is possible that many near-duplicates exist as well. Although, updates that

do not contain new information do not contribute gain, reading the same information

repeatedly could cause a loss in perceived usefulness of a system.

163

Previous work that balances novelty/redundancy with relevance includes, the applica-

tion of maximal marginal relevance for evaluating summaries by Goldstein and Carbonell

(1998), redundancy measures and their application to adaptive filtering techniques by

Zhang, Callan, and Minka (2002). Allan, Wade, and Bolivar (2003) found that measuring

novelty depends on the quality of relevance results. We could also apply the α-NDCG mea-

sure proposed by Clarke et al. (2008) to reward those systems that return novel updates,

however, the effect of user sessions and/or presentation order of updates might need to be

investigated for application of α-NDCG to MSU.

Normalization and Preference Ratios

MSU reports the expected gain a user may experience when using a system. However, MSU

does not differentiate between varying lengths of topic query durations (which is indeed

the case, for TST 2014). Computing the mean MSU across topics that have different query

durations can potentially obfuscate the effect of the query duration on expected gain. The

standard way to deal with such an issue would be to normalize the computed MSU with

the “ideal” MSU.

Defining ideal MSU is ambiguous. If ideal MSU is considered to be the number of

nuggets found (all delivered in time), then it could be hard to compare between a system

that returns only 1 nugget, with a system that returns more than one. Another definition

of ideal could be the number of unique nuggets found across all runs. Normalizing MSU

with the number of unique nuggets found by all runs, essentially tells us the percentage of

retrievable nuggets that can be expected to be found by the system in the specified query

164

duration.

A yet another way of normalization could be to divide the computed MSU by time

units, e.g. MSU/day. However, day is an arbitrary unit of time and may not work well

for query durations spanning a few hours. Section 5.3.3 demonstrates that normalization

with time units may not reflect true system performance. Perhaps, an appropriate way to

compare MSU across topics is to compute a preference ratio. Clarke and Smucker (2014)

describe a pairwise comparison between 2 systems using preference ratios, which is the

fraction of topics for which simulated users prefer one system over another.

7.3.2 Modeled Stream Utility for Different User Behaviors

Gain with different presentation orderings

There are variations possible in the order in which the updates are presented to the user.

A system may present the updates in chronological order, reverse chronological order, or

order them by a confidence score (ranked order) that indicates the importance of an update.

Depending on factors that affect user behaviour the user may experience different amounts

of gain for different result presentation orders. However, each change in presentation order

necessitates a corresponding change in the user interfaces and thereby the user-model.

For instance, Comarela et al. (2012) studied user interactions with their Twitter timeline

and identified factors that influence replies to tweets and re-tweets. They investigated

changes to the default reverse-chronological tweet presentation order. They found that

their method of re-ranking tweets increases the percentage of replies and re-tweets by more

than 50%.

165

For the news updates filtering task, we are more interested in finding updates that are

of value to the user. The reverse-chronological order for presenting retrieved updates was

modeled in our current approach (Section 5.1.4). A chronological order for updates may

be desirable when the user wishes to know how the story evolved in the time spent away

from the system. In comparison, a (system generated) ranked ordering may be preferable

to users who are concerned with getting the most important information earliest. A ranked

interface might also need careful analysis of the effect of graded levels of relevance assigned

to respective nuggets.

Using push models with MSU

With the proliferation of push notifications by web and mobile applications to update

users about latest content, developing a model of user behaviour with regards to push

notifications is an exciting and a pertinent prospect. Online social networks, like Twitter1

and Facebook2, routinely push notifications of updates to users’ Timelines3 and NewsFeeds4

respectively. News services and applications likewise, push notifications for news events.

The TREC 2015 Microblog track had a specific task concerning the timeliness of push

notifications for tweets about a topic (Lin et al., 2015).

The MSU user-model, in its current form, is a realization of a pull model. The users

decide when they want to get updated about news events, i.e., the model is entirely user

driven. Consider a user wanting to browse event related tweets using their mobile phone.

1https://www.twitter.com
2https://www.facebook.com
3https://support.twitter.com/articles/164083
4https://www.facebook.com/help/210346402339221

166

https://www.twitter.com
https://www.facebook.com
https://support.twitter.com/articles/164083
https://www.facebook.com/help/210346402339221

If the application does not push any notifications, and, the user opens the application to

browse event related tweets, then the current MSU user model is applicable (after due

calibration). A push user model involves considering the system as an active component

that can influence user behavior. On receiving a push notification, a user may decide to

(i) open the application immediately to read the updates, (ii) open the application at a

later point in time, or (iii) ignore the notification. The characteristic user behavior changes

considerably due to every single push notification because the user may have consciously

made a note of the notification. The frequency of notifications and the amount of content

presented with each notification may affect the gain experienced by the users. From an

evaluation perspective, MSU not only needs to measure the gain encountered but also

gauge the worthiness of the notifications.

167

References

[1] Rafik Abbes, Karen Pinel-Sauvagnat, Nathalie Hernandez, and Mohand Boughanem.
“IRIT at TREC Temporal Summarization 2014.” In: TREC. 2014.

[2] Eugene Agichtein, Eric Brill, and Susan Dumais. “Improving Web Search Ranking
by Incorporating User Behavior Information”. In: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’06. Seattle, Washington, USA: ACM, 2006, pp. 19–26. isbn: 1-
59593-369-7. doi: 10.1145/1148170.1148177. url: http://doi.acm.org/10.
1145/1148170.1148177.

[3] Azzah Al-Maskari, Mark Sanderson, Paul D. Clough, and Eija Airio. “The good
and the bad system: does the test collection predict users’ effectiveness?” In: SIGIR.
2008, pp. 59–66.

[4] James Allan, ed. Topic Detection and Tracking: Event-based Information Organiza-
tion. Norwell, MA, USA: Kluwer Academic Publishers, 2002. isbn: 0-7923-7664-1.

[5] James Allan, Rahul Gupta, and Vikas Khandelwal. “Temporal Summaries of News
Topics.” In: SIGIR. 2001, pp. 10–18.

[6] James Allan, Courtney Wade, and Alvaro Bolivar. “Retrieval and Novelty De-
tection at the Sentence Level”. In: Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion Retrieval.
SIGIR ’03. Toronto, Canada: ACM, 2003, pp. 314–321. isbn: 1-58113-646-3. doi:
10.1145/860435.860493.

[7] James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and Yim-
ing Yang. “Topic detection and tracking pilot study final report”. In: (1998).

[8] Javed A. Aslam, Virgiliu Pavlu, and Robert Savell. “A unified model for metasearch,
pooling, and system evaluation.” In: CIKM. 2003, pp. 484–491.

168

http://dx.doi.org/10.1145/1148170.1148177
http://doi.acm.org/10.1145/1148170.1148177
http://doi.acm.org/10.1145/1148170.1148177
http://dx.doi.org/10.1145/860435.860493

[9] Javed A. Aslam, Virgiliu Pavlu, and Emine Yilmaz. “A statistical method for system
evaluation using incomplete judgments.” In: SIGIR. 2006, pp. 541–548.

[10] Javed A. Aslam and Emine Yilmaz. “Inferring document relevance from incomplete
information.” In: CIKM. 2007, pp. 633–642.

[11] Javed A. Aslam, Matthew Ekstrand-Abueg, Virgil Pavlu, Fernando Diaz, and Tet-
suya Sakai. “TREC 2013 Temporal Summarization.” In: TREC. 2013.

[12] Javed A. Aslam, Matthew Ekstrand-Abueg, Virgil Pavlu, Fernando Diaz, Richard
McCreadie, and Tetsuya Sakai. “TREC 2014 Temporal Summarization Track Overview.”
In: TREC. 2014.

[13] Leif Azzopardi. “Modelling Interaction with Economic Models of Search”. In: Pro-
ceedings of the 37th International ACM SIGIR Conference on Research & De-
velopment in Information Retrieval. SIGIR ’14. Gold Coast, Queensland, Australia:
ACM, 2014, pp. 3–12. isbn: 978-1-4503-2257-7. doi: 10.1145/2600428.2609574.

[14] Leif Azzopardi. “Usage based effectiveness measures: monitoring application per-
formance in information retrieval.” In: CIKM. 2009, pp. 631–640.

[15] Leif Azzopardi and Krisztian Balog. “Towards a living lab for information retrieval
research and development”. In: Multilingual and Multimodal Information Access
Evaluation. Springer, 2011, pp. 26–37.

[16] Leif Azzopardi and Guido Zuccon. “Building and Using Models of Information Seek-
ing, Search and Retrieval: Full Day Tutorial”. In: Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval, Santiago, Chile, August 9-13, 2015. 2015, pp. 1107–1110. doi: 10.1145/
2766462.2767874.

[17] Ricardo Baeza-Yates, Julien Masanès, and Marc Spaniol. Proceedings of the 3rd
International Temporal Web Analytics Workshop (TempWeb 2012). 2012.

[18] Ricardo Baeza-Yates, Julien Masanès, and Marc Spaniol. Proceedings of the 3rd
International Temporal Web Analytics Workshop (TempWeb 2013). 2013.

[19] Krisztian Balog, David Elsweiler, Evangelos Kanoulas, Liadh Kelly, and Mark D.
Smucker. “Report on the CIKM workshop on living labs for information retrieval
evaluation.” In: SIGIR Forum 48.1 (2014), pp. 21–28.

[20] Gaurav Baruah, Adam Roegiest, and Mark D. Smucker. “Pooling for User-Oriented
Evaluation Measures.” In: ICTIR. 2015, pp. 341–344.

169

http://dx.doi.org/10.1145/2600428.2609574
http://dx.doi.org/10.1145/2766462.2767874
http://dx.doi.org/10.1145/2766462.2767874

[21] Gaurav Baruah, Adam Roegiest, and Mark D. Smucker. “The effect of expanding
relevance judgements with duplicates”. In: The 37th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’14,
Gold Coast , QLD, Australia - July 06 - 11, 2014. 2014, pp. 1159–1162. doi: 10.
1145/2600428.2609534.

[22] Gaurav Baruah, Mark D. Smucker, and Charles L. A. Clarke. “Evaluating Streams
of Evolving News Events.” In: SIGIR. 2015, pp. 675–684.

[23] Gaurav Baruah, Rakesh Guttikonda, Adam Roegiest, and Olga Vechtomova. “Uni-
versity of Waterloo at the TREC 2013 Temporal Summarization Track”. In: Proceed-
ings of The Twenty-Second Text REtrieval Conference, TREC 2013, Gaithersburg,
Maryland, USA, November 19-22, 2013. Ed. by Ellen M. Voorhees. Vol. Special
Publication 500-302. National Institute of Standards and Technology (NIST), 2013.

[24] Feza Baskaya, Heikki Keskustalo, and Kalervo Järvelin. “Modeling behavioral fac-
tors in interactive information retrieval”. In: Proceedings of the 22nd ACM inter-
national conference on Conference on information & knowledge management.
CIKM ’13. San Francisco, California, USA: ACM, 2013, pp. 2297–2302. isbn: 978-
1-4503-2263-8. doi: 10.1145/2505515.2505660.

[25] Feza Baskaya, Heikki Keskustalo, and Kalervo Järvelin. “Time drives interaction:
simulating sessions in diverse searching environments.” In: SIGIR. 2012, pp. 105–
114. url: http://doi.acm.org/10.1145/2348283.2348301.

[26] Nicholas J. Belkin and W. Bruce Croft. “Information Filtering and Information
Retrieval: Two Sides of the Same Coin?” In: Commun. ACM 35.12 (1992), pp. 29–
38.

[27] Klaus Berberich, James Caverlee, Miles Efron, Claudia Hauff, Vanessa Murdock,
Milad Shokouhi, and Bart Thomee. “SIGIR 2015 Workshop on Temporal, Social
and Spatially-aware Information Access (#TAIA2015)”. In: Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’15. Santiago, Chile: ACM, 2015, pp. 1149–1150. isbn: 978-1-4503-
3621-5. doi: 10.1145/2766462.2767860.

[28] Yaniv Bernstein and Justin Zobel. “Redundant documents and search effectiveness.”
In: CIKM. 2005, pp. 736–743.

[29] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation.”
In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.

170

http://dx.doi.org/10.1145/2600428.2609534
http://dx.doi.org/10.1145/2600428.2609534
http://dx.doi.org/10.1145/2505515.2505660
http://doi.acm.org/10.1145/2348283.2348301
http://dx.doi.org/10.1145/2766462.2767860

[30] David M. Blei, Thomas L. Griffiths, Michael I. Jordan, and Joshua B. Tenenbaum.
“Hierarchical Topic Models and the Nested Chinese Restaurant Process.” In: NIPS.
2003, pp. 17–24.

[31] Chris Buckley and Ellen M. Voorhees. “Evaluating evaluation measure stability.”
In: SIGIR. 2000, pp. 33–40.

[32] Chris Buckley and Ellen M. Voorhees. “Retrieval evaluation with incomplete infor-
mation.” In: SIGIR. 2004, pp. 25–32.

[33] Chris Buckley, Darrin Dimmick, Ian Soboroff, and Ellen M. Voorhees. “Bias and
the limits of pooling for large collections.” In: Inf. Retr. 10.6 (2007), pp. 491–508.

[34] Stefan Büttcher, Charles Clarke, and Gordon V. Cormack. Information Retrieval:
Implementing and Evaluating Search Engines. The MIT Press, 2010. isbn: 0262026511,
9780262026512.

[35] Stefan Büttcher, Charles L. A. Clarke, Peter C. K. Yeung, and Ian Soboroff. “Reli-
able Information Retrieval Evaluation with Incomplete and Biased Judgements”. In:
Proceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’07. Amsterdam, The Nether-
lands: ACM, 2007, pp. 63–70. isbn: 978-1-59593-597-7. doi: 10.1145/1277741.
1277755. url: http://doi.acm.org/10.1145/1277741.1277755.

[36] Jaime Carbonell and Jade Goldstein. “The use of MMR, diversity-based reranking
for reordering documents and producing summaries”. In: Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in in-
formation retrieval. ACM. 1998, pp. 335–336.

[37] Ben Carterette, James Allan, and Ramesh K. Sitaraman. “Minimal test collections
for retrieval evaluation.” In: SIGIR. 2006, pp. 268–275.

[38] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. “Expected re-
ciprocal rank for graded relevance.” In: CIKM. 2009, pp. 621–630.

[39] Moses Charikar. “Similarity estimation techniques from rounding algorithms.” In:
STOC. 2002, pp. 380–388.

[40] Lei Chen, Hainan Zhang, Siying Li, Zhiyuan Ji, Qian Liu, Yue Liu, Dayong Wu,
and Xueqi Cheng. “ICTNET at Temporal Summarization Track TREC 2014.” In:
TREC. 2014.

[41] Charles L. A. Clarke and Mark D. Smucker. “Time well spent”. In: Fifth Information
Interaction in Context Symposium, IIiX ’14, Regensburg, Germany, August 26-29,
2014. 2014, pp. 205–214. doi: 10.1145/2637002.2637026.

171

http://dx.doi.org/10.1145/1277741.1277755
http://dx.doi.org/10.1145/1277741.1277755
http://doi.acm.org/10.1145/1277741.1277755
http://dx.doi.org/10.1145/2637002.2637026

[42] Charles L. A. Clarke, Luanne Freund, Mark D. Smucker, and Emine Yilmaz. “Re-
port on the SIGIR 2013 workshop on modeling user behavior for information re-
trieval evaluation (MUBE 2013).” In: SIGIR Forum 47.2 (2013), pp. 84–95.

[43] Charles LA Clarke, Gordon V Cormack, and Thomas R Lynam. “Exploiting redun-
dancy in question answering”. In: Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval. ACM.
2001, pp. 358–365.

[44] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. “Novelty and Diversity in Informa-
tion Retrieval Evaluation”. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’08. Singapore, Singapore: ACM, 2008, pp. 659–666. isbn: 978-1-60558-164-4. doi:
10.1145/1390334.1390446.

[45] Cyril Cleverdon. “The Cranfield tests on index language devices”. In: Aslib proceed-
ings. Vol. 19. 6. MCB UP Ltd. 1967, pp. 173–194.

[46] Giovanni Comarela, Mark Crovella, Virgilio Almeida, and Fabrcio Benevenuto. “Un-
derstanding factors that affect response rates in twitter.” In: HT. 2012, pp. 123–132.
url: http://doi.acm.org/10.1145/2309996.2310017.

[47] Gordon V Cormack, Charles LA Clarke, and Stefan Büettcher. “Reciprocal rank fu-
sion outperforms condorcet and individual rank learning methods”. In: Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval. ACM. 2009, pp. 758–759.

[48] Gordon V. Cormack and Thomas R. Lynam. “Power and bias of subset pooling
strategies.” In: SIGIR. 2007, pp. 837–838.

[49] Gordon V. Cormack, Christopher R. Palmer, and Charles L. A. Clarke. “Efficient
Construction of Large Test Collections”. In: SIGIR. 1998, pp. 282–289.

[50] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learn-
ing 20.3 (1995), pp. 273–297.

[51] Anita Crescenzi, Diane Kelly, and Leif Azzopardi. “Time Pressure and System
Delays in Information Search.” In: SIGIR. 2015, pp. 767–770.

[52] Aron Culotta. “Towards detecting influenza epidemics by analyzing Twitter mes-
sages”. In: Proceedings of the first workshop on social media analytics. ACM. 2010,
pp. 115–122.

172

http://dx.doi.org/10.1145/1390334.1390446
http://doi.acm.org/10.1145/2309996.2310017

[53] Hoa Trang Dang, Jimmy Lin, and Diane Kelly. “Overview of the TREC 2006 Ques-
tion Answering Track”. In: Proceedings of TREC 2006. 2007.

[54] Zoltan Dezsö, Eivind Almaas, András Lukács, Balázs Rácz, István Szakadát, and
A-L Barabási. “Dynamics of information access on the web”. In: Physical Review E
73.6 (2006), p. 066132.

[55] Fernando Diaz. “Experimentation Standards for Crisis Informatics.” In: SIGIR Fo-
rum 48.2 (2014), pp. 22–30.

[56] Fernando Diaz, Susan Dumais, Miles Efron, Kira Radinsky, Maarten de Rijke,
and Milad Shokouhi. “SIGIR 2013 Workshop on Time Aware Information Access
(#TAIA2013)”. In: Proceedings of the 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’13. Dublin, Ire-
land: ACM, 2013, pp. 1137–1137. isbn: 978-1-4503-2034-4. doi: 10.1145/2484028.
2491802.

[57] Fernando Diaz, Claudia Hauff, Vanessa Murdock, Maarten de Rijke, and Milad
Shokouhi. “SIGIR 2014 Workshop on Temporal, Social and Spatially-aware Infor-
mation Access (#TAIA2014)”. In: Proceedings of the 37th International ACM SI-
GIR Conference on Research & Development in Information Retrieval. SIGIR
’14. Gold Coast, Queensland, Australia: ACM, 2014, pp. 1298–1298. isbn: 978-1-
4503-2257-7. doi: 10.1145/2600428.2600740.

[58] Fernando Diaz, Susan Dumais, Kira Radinsky, Maarten de Rijke, and Milad Shok-
ouhi. “#TAIA2012”. In: SIGIR Forum 46.2 (2012), pp. 102–106. issn: 0163-5840.
doi: 10.1145/2422256.2422270.

[59] Laura Dietz, Jeffrey Dalton, and Krisztian Balog. “Time-aware evaluation of cumu-
lative citation recommendation systems”. In: Proceedings of SIGIR 2013 Workshop
on Time-aware Information Access, TAIA. Vol. 2013. 2013.

[60] Gavin Doherty, Mieke Massink, and Giorgio Faconti. “Reasoning about interactive
systems with stochastic models”. In: Interactive Systems: Design, Specification, and
Verification. Springer, 2001, pp. 144–163.

[61] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang,
Karolina Buchner, Ciya Liao, and Fernando Diaz. “Towards recency ranking in web
search”. In: Proceedings of the third ACM international conference on Web search
and data mining. ACM. 2010, pp. 11–20.

[62] Paul Earle, Michelle Guy, Richard Buckmaster, Chris Ostrum, Scott Horvath, and
Amy Vaughan. “OMG earthquake! Can Twitter improve earthquake response?” In:
Seismological Research Letters 81.2 (2010), pp. 246–251.

173

http://dx.doi.org/10.1145/2484028.2491802
http://dx.doi.org/10.1145/2484028.2491802
http://dx.doi.org/10.1145/2600428.2600740
http://dx.doi.org/10.1145/2422256.2422270

[63] Evaluation script for Temporal Summarization 2014. http://trec.nist.gov/

data/tempsumm/2014/tseval.py. 2014.

[64] Jonathan G. Fiscus and George R. Doddington. “Topic Detection and Tracking”.
In: ed. by James Allan. Norwell, MA, USA: Kluwer Academic Publishers, 2002.
Chap. Topic Detection and Tracking Evaluation Overview, pp. 17–31. isbn: 0-7923-
7664-1.

[65] John R Frank, Steven J Bauer, Max Kleiman-Weiner, Daniel A Roberts, Nilesh
Tripuraneni, Ce Zhang, Christopher Re, Ellen Voorhees, and Ian Soboroff. Eval-
uating Stream Filtering for Entity Profile Updates for TREC 2013 (KBA Track
Overview). Tech. rep. DTIC Document, 2013.

[66] John R. Frank, Max Kleiman-Weiner, Daniel A. Roberts, Ellen M. Voorhees, and
Ian Soboroff. “Evaluating Stream Filtering for Entity Profile Updates in TREC
2012, 2013, and 2014.” In: TREC. 2014.

[67] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting”. In: J. Comput. Syst. Sci. 55.1
(Aug. 1997), pp. 119–139. issn: 0022-0000. doi: 10.1006/jcss.1997.1504. url:
http://dx.doi.org/10.1006/jcss.1997.1504.

[68] Norbert Fuhr. “A probability ranking principle for interactive information retrieval”.
In: Information Retrieval 11.3 (2008), pp. 251–265.

[69] Daniel Gayo-Avello. “A survey on session detection methods in query logs and a
proposal for future evaluation.” In: Inf. Sci. 179.12 (2009), pp. 1822–1843.

[70] Jeremy Ginsberg, Matthew H Mohebbi, Rajan S Patel, Lynnette Brammer, Mark S
Smolinski, and Larry Brilliant. “Detecting influenza epidemics using search engine
query data”. In: Nature 457.7232 (2009), pp. 1012–1014.

[71] Jade Goldstein and Jaime Carbonell. “Summarization: (1) Using MMR for Diversity
- Based Reranking and (2) Evaluating Summaries”. In: Proceedings of a Workshop
on Held at Baltimore, Maryland: October 13-15, 1998. TIPSTER ’98. Baltimore,
Maryland: Association for Computational Linguistics, 1998, pp. 181–195. doi: 10.
3115/1119089.1119120.

[72] Qi Guo, Fernando Diaz, and Elad Yom-Tov. “Updating Users about Time Critical
Events.” In: ECIR. 2013, pp. 483–494.

[73] Matthias Hagen, Benno Stein, and Tino Rb. “Query session detection as a cascade.”
In: CIKM. 2011, pp. 147–152. url: http://doi.acm.org/10.1145/2063576.
2063602.

174

http://trec.nist.gov/data/tempsumm/2014/tseval.py
http://trec.nist.gov/data/tempsumm/2014/tseval.py
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.3115/1119089.1119120
http://dx.doi.org/10.3115/1119089.1119120
http://doi.acm.org/10.1145/2063576.2063602
http://doi.acm.org/10.1145/2063576.2063602

[74] Jiyin He, Marc Bron, Arjen de Vries, Leif Azzopardi, and Maarten de Rijke. “Un-
tangling Result List Refinement and Ranking Quality: A Framework for Evaluation
and Prediction”. In: Proceedings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. SIGIR ’15. Santiago,
Chile: ACM, 2015, pp. 293–302. isbn: 978-1-4503-3621-5. doi: 10.1145/2766462.
2767740.

[75] Liangjie Hong, Byron Dom, Siva Gurumurthy, and Kostas Tsioutsiouliklis. “A time-
dependent topic model for multiple text streams”. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM.
2011, pp. 832–840.

[76] Frank Hopfgartner, Benjamin Kille, Andreas Lommatzsch, Till Plumbaum, Tor-
ben Brodt, and Tobias Heintz. “Benchmarking News Recommendations in a Living
Lab.” In: CLEF. 2014, pp. 250–267.

[77] Muhammad Imran, Shady Mamoon Elbassuoni, Carlos Castillo, Fernando Diaz,
and Patrick Meier. “Extracting information nuggets from disaster-related messages
in social media”. In: Proc. of ISCRAM, Baden-Baden, Germany (2013).

[78] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-based Evaluation of IR
Techniques”. In: ACM Trans. Inf. Syst. 20.4 (2002), pp. 422–446. issn: 1046-8188.
doi: 10.1145/582415.582418.

[79] Kalervo Järvelin, Susan L. Price, Lois M. L. Delcambre, and Marianne Lykke
Nielsen. “Discounted Cumulated Gain Based Evaluation of Multiple-query IR Ses-
sions”. In: Proceedings of the IR Research, 30th European Conference on Advances
in Information Retrieval. ECIR’08. Glasgow, UK: Springer-Verlag, 2008, pp. 4–15.
isbn: 3-540-78645-7, 978-3-540-78645-0.

[80] Hideo Joho, Adam Jatowt, and Roi Blanco. “NTCIR temporalia: a test collection
for temporal information access research.” In: WWW (Companion Volume). 2014,
pp. 845–850.

[81] Hideo Joho, Adam Jatowt, and Roi Blanco. “Temporal information searching be-
haviour and strategies.” In: Inf. Process. Manage. 51.6 (2015), pp. 834–850.

[82] Hideo Joho, Adam Jatowt, Roi Blanco, Hajime Naka, and Shuhei Yamamoto.
“Overview of NTCIR-11 Temporal Information Access (Temporalia) Task.” In: NT-
CIR. 2014.

[83] Rosie Jones and Fernando Diaz. Temporal profiles of queries. Tech. rep. ACM Trans.
Inf. Syst, 2004.

175

http://dx.doi.org/10.1145/2766462.2767740
http://dx.doi.org/10.1145/2766462.2767740
http://dx.doi.org/10.1145/582415.582418

[84] Nattiya Kanhabua, Roi Blanco, and Kjetil Nørv̊ag. “Temporal Information Re-
trieval”. In: Found. Trends Inf. Retr. 9.2 (2015), pp. 91–208. issn: 1554-0669. doi:
10.1561/1500000043.

[85] Nattiya Kanhabua, Tu Ngoc Nguyen, and Wolfgang Nejdl. “Learning to Detect
Event-Related Queries for Web Search”. In: Proceedings of the 24th International
Conference on World Wide Web. WWW ’15 Companion. Florence, Italy: ACM,
2015, pp. 1339–1344. isbn: 978-1-4503-3473-0. doi: 10.1145/2740908.2741698.

[86] Evangelos Kanoulas, Ben Carterette, Paul D. Clough, and Mark Sanderson. “Eval-
uating multi-query sessions.” In: SIGIR. 2011, pp. 1053–1062.

[87] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. “Dynamic feature
space and incremental feature selection for the classification of textual data streams”.
In: Knowledge Discovery from Data Streams (2006), pp. 107–116.

[88] Makoto P. Kato, Matthew Ekstrand-Abueg, Virgil Pavlu, Tetsuya Sakai, Takehiro
Yamamoto, and Mayu Iwata. “Overview of the NTCIR-10 1CLICK-2 Task.” In:
NTCIR. 2013.

[89] KBA Stream Corpus. http://trec-kba.org/kba-stream-corpus-2013.shtml.
2013.

[90] Chris Kedzie, Kathleen McKeown, and Fernando Diaz. “Predicting Salient Updates
for Disaster Summarization.” In: ACL (1). 2015, pp. 1608–1617.

[91] Diane Kelly. “Methods for evaluating interactive information retrieval systems with
users”. In: Foundations and Trends in Information Retrieval 3.12 (2009), pp. 1–224.

[92] Tom Kenter, Krisztian Balog, and Maarten de Rijke. “Evaluating document filtering
systems over time.” In: Inf. Process. Manage. 51.6 (2015), pp. 791–808.

[93] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. “Detecting change in data
streams”. In: Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. VLDB Endowment. 2004, pp. 180–191.

[94] Jon Kleinberg. “Bursty and Hierarchical Structure in Streams”. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’02. Edmonton, Alberta, Canada: ACM, 2002, pp. 91–101. isbn:
1-58113-567-X. doi: 10.1145/775047.775061.

[95] Jon Kleinberg. “Temporal Dynamics of On-Line Information Streams”. In: IN DATA
STREAM MANAGEMENT: PROCESSING HIGH-SPEED DATA. 2006.

[96] Anagha Kulkarni, Jaime Teevan, Krysta Marie Svore, and Susan T. Dumais. “Un-
derstanding temporal query dynamics.” In: WSDM. 2011, pp. 167–176.

176

http://dx.doi.org/10.1561/1500000043
http://dx.doi.org/10.1145/2740908.2741698
http://trec-kba.org/kba-stream-corpus-2013.shtml
http://dx.doi.org/10.1145/775047.775061

[97] Chung-Hong Lee and Tzan-Feng Chien. “Leveraging microblogging big data with a
modified density-based clustering approach for event awareness and topic ranking”.
In: Journal of Information Science (2013), p. 0165551513478738.

[98] Lemur Project. http://www.lemurproject.org/.

[99] Xiaoyan Li and W. Bruce Croft. “Time-based Language Models”. In: Proceedings of
the Twelfth International Conference on Information and Knowledge Management.
CIKM ’03. New Orleans, LA, USA: ACM, 2003, pp. 469–475. isbn: 1-58113-723-0.
doi: 10.1145/956863.956951.

[100] Chin yew Lin. “Rouge: a package for automatic evaluation of summaries”. In: Text
summarization branches out: Proceedings of the ACL-04 workshop. 2004, pp. 25–26.

[101] Jimmy Lin and Dina Demner-Fushman. “Automatically evaluating answers to defi-
nition questions”. In: Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics. 2005, pp. 931–938.

[102] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. “Overview of the
TREC-2014 Microblog Track”. In: TREC 2014, Gaithersburg, Maryland, USA,
2014. 2014.

[103] Jimmy Lin, Miles Efron, Yulu Wang, Garrick Sherman, and Ellen Voorhees. “Overview
of the TREC-2015 Microblog Track”. In: TREC 2015, Gaithersburg, Maryland,
USA, 2015. 2015.

[104] Jimmy J Lin. “Is Question Answering Better than Information Retrieval? Towards
a Task-Based Evaluation Framework for Question Series.” In: HLT-NAACL. 2007,
pp. 212–219.

[105] Qian Liu, Yue Liu, Dayong Wu, and Xueqi Cheng. “ICTNET at Temporal Summa-
rization Track TREC 2013”. In: Proceedings of The Twenty-Second Text REtrieval
Conference, TREC 2013, Gaithersburg, Maryland, USA, November 19-22, 2013.
Ed. by Ellen M. Voorhees. Vol. Special Publication 500-302. National Institute of
Standards and Technology (NIST), 2013.

[106] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and Gabriele
Tolomei. “Identifying task-based sessions in search engine query logs.” In: WSDM.
2011, pp. 277–286.

[107] Gregory Marton and Alexey Radul. “Nuggeteer: Automatic Nugget-Based Evalua-
tion using Descriptions and Judgements.” In: HLT-NAACL. 2006.

177

http://www.lemurproject.org/
http://dx.doi.org/10.1145/956863.956951

[108] Richard McCreadie, Craig Macdonald, and Iadh Ounis. “Incremental Update Sum-
marization: Adaptive Sentence Selection based on Prevalence and Novelty”. In:
(2014).

[109] Richard McCreadie, M-Dyaa Albakour, Stuart Mackie, Nut Limsopatham, Craig
Macdonald, Iadh Ounis, and Bekir Taner Dinçer. “University of Glasgow at TREC
2013: Experiments with Terrier in Contextual Suggestion, Temporal Summarisation
and Web Tracks”. In: Proceedings of The Twenty-Second Text REtrieval Conference,
TREC 2013, Gaithersburg, Maryland, USA, November 19-22, 2013. Ed. by Ellen
M. Voorhees. Vol. Special Publication 500-302. National Institute of Standards and
Technology (NIST), 2013.

[110] Richard McCreadie, Romain Deveaud, M-Dyaa Albakour, Stuart Mackie, Nut Lim-
sopatham, Craig Macdonald, Iadh Ounis, Thibaut Thonet, and Bekir Taner Diner.
“University of Glasgow at TREC 2014: Experiments with Terrier in Contextual Sug-
gestion, Temporal Summarisation and Web Tracks.” In: TREC. 2014. url: http:
//trec.nist.gov/pubs/trec23/papers/pro-uogTr_cs-ts-web.pdf.

[111] Donald Metzler, Rosie Jones, Fuchun Peng, and Ruiqiang Zhang. “Improving Search
Relevance for Implicitly Temporal Queries”. In: Proceedings of the 32Nd Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’09. Boston, MA, USA: ACM, 2009, pp. 700–701. isbn: 978-1-60558-
483-6. doi: 10.1145/1571941.1572085.

[112] Tomas Mikolov, Kai Chen 0010, Greg Corrado, and Jeffrey Dean. “Efficient Estima-
tion of Word Representations in Vector Space”. In: arXiv preprint arXiv:1301.3781
(2013).

[113] Alistair Moffat, William Webber, and Justin Zobel. “Strategic system comparisons
via targeted relevance judgments.” In: SIGIR. 2007, pp. 375–382.

[114] Alistair Moffat and Justin Zobel. “Rank-biased precision for measurement of re-
trieval effectiveness.” In: ACM Trans. Inf. Syst. 27.1 (2008).

[115] Peter Oram. WordNet: An electronic lexical database. Christiane Fellbaum (Ed.).
Cambridge, MA: MIT Press, 1998. Pp. 423. 2001.

[116] Iadh Ounis, Craig Macdonald, Jimmy Lin, and Ian Soboroff. “Overview of the
TREC-2011 microblog track”. In: TREC 2011, Gaithersburg, Maryland, USA, 2011.
2011.

[117] Michael J Paul and Mark Dredze. “You are what you Tweet: Analyzing Twitter for
public health.” In: ICWSM. 2011, pp. 265–272.

178

http://trec.nist.gov/pubs/trec23/papers/pro-uogTr_cs-ts-web.pdf
http://trec.nist.gov/pubs/trec23/papers/pro-uogTr_cs-ts-web.pdf
http://dx.doi.org/10.1145/1571941.1572085

[118] Virgiliu Pavlu, Shahzad Rajput, Peter B. Golbus, and Javed A. Aslam. “IR system
evaluation using nugget-based test collections.” In: WSDM. 2012, pp. 393–402.

[119] Alexei Pozdnoukhov and Christian Kaiser. “Space-time dynamics of topics in stream-
ing text”. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on
location-based social networks. ACM. 2011, pp. 1–8.

[120] Yuanyuan Qi, Qinlong Wang, Chuchu Huang, Bo Tang, Weiran Xu, Guang Chen,
and Jun Guo. “The Information Extraction systems of BUPT PRIS at TREC2014
Temporal Summarization Track.” In: TREC. 2014.

[121] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. “How does clickthrough
data reflect retrieval quality?” In: CIKM. 2008, pp. 43–52.

[122] Shahzad Rajput, Matthew Ekstrand-Abueg, Virgiliu Pavlu, and Javed A. Aslam.
“Constructing test collections by inferring document relevance via extracted relevant
information.” In: CIKM. 2012, pp. 145–154.

[123] Stephen Robertson. “Threshold Setting and Performance Optimization in Adaptive
Filtering”. In: Information Retrieval 5.2 (2002), pp. 239–256. issn: 1573-7659. doi:
10.1023/A:1015702129514.

[124] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework:
BM25 and Beyond”. In: Found. Trends Inf. Retr. 3.4 (Apr. 2009), pp. 333–389.
issn: 1554-0669. doi: 10.1561/1500000019. url: http://dx.doi.org/10.1561/
1500000019.

[125] J. Rogstadius, M. Vukovic, C.A. Teixeira, V. Kostakos, E. Karapanos, and J.A.
Laredo. “CrisisTracker: Crowdsourced social media curation for disaster awareness”.
In: IBM Journal of Research and Development 57.5 (2013), 4:1–4:13. issn: 0018-
8646. doi: 10.1147/JRD.2013.2260692.

[126] Tetsuya Sakai. “Comparing Metrics Across TREC and NTCIR:: The Robustness
to Pool Depth Bias”. In: Proceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval. SIGIR
’08. Singapore, Singapore: ACM, 2008, pp. 691–692. isbn: 978-1-60558-164-4. doi:
10.1145/1390334.1390454. url: http://doi.acm.org/10.1145/1390334.

1390454.

[127] Tetsuya Sakai. “Comparing metrics across TREC and NTCIR: the robustness to
system bias.” In: CIKM. 2008, pp. 581–590.

[128] Tetsuya Sakai. “Evaluating evaluation metrics based on the bootstrap.” In: SIGIR.
2006, pp. 525–532.

179

http://dx.doi.org/10.1023/A:1015702129514
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1147/JRD.2013.2260692
http://dx.doi.org/10.1145/1390334.1390454
http://doi.acm.org/10.1145/1390334.1390454
http://doi.acm.org/10.1145/1390334.1390454

[129] Tetsuya Sakai and Zhicheng Dou. “Summaries, ranked retrieval and sessions: a
unified framework for information access evaluation.” In: SIGIR. 2013, pp. 473–
482.

[130] Tetsuya Sakai and Noriko Kando. “On information retrieval metrics designed for
evaluation with incomplete relevance assessments.” In: Inf. Retr. 11.5 (2008), pp. 447–
470.

[131] Mark D Smucker and James Allan. “Find-similar: similarity browsing as a search
tool”. In: Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM. 2006, pp. 461–468.

[132] Mark D. Smucker, James Allan, and Ben Carterette. “A comparison of statistical
significance tests for information retrieval evaluation.” In: CIKM. 2007, pp. 623–
632.

[133] Mark D. Smucker, James Allan, and Blagovest Dachev. “Human question answer-
ing performance using an interactive document retrieval system”. In: Information
Interaction in Context: 2012, IIix’12, Nijmegen, The Netherlands, August 21-24,
2012. 2012, pp. 35–44. doi: 10.1145/2362724.2362735.

[134] Mark D. Smucker and Charles L. A. Clarke. “Modeling user variance in time-biased
gain”. In: Human-Computer Information Retrieval Symposium, HCIR 2012, Cam-
bridge, MA, USA, October 4-5, 2012. 2012, p. 3. doi: 10.1145/2391224.2391227.

[135] Mark D. Smucker and Charles L. A. Clarke. “Stochastic simulation of time-biased
gain.” In: CIKM. 2012, pp. 2040–2044.

[136] Mark D. Smucker and Charles L. A. Clarke. “The Fault, Dear Researchers, is not
in Cranfield, But in our Metrics, that they are Unrealistic.” In: EuroHCIR. 2012,
pp. 11–12.

[137] Mark D. Smucker and Charles L. A. Clarke. “Time-based calibration of effectiveness
measures”. In: The 35th International ACM SIGIR conference on research and de-
velopment in Information Retrieval, SIGIR ’12, Portland, OR, USA, August 12-16,
2012. 2012, pp. 95–104. doi: 10.1145/2348283.2348300.

[138] Mark D. Smucker and Chandra Prakash Jethani. “Human performance and retrieval
precision revisited.” In: SIGIR. 2010, pp. 595–602.

[139] Mark D Smucker, Gabriella Kazai, and Matthew Lease. Overview of the TREC 2013
Crowdsourcing Track. Tech. rep. 2013.

[140] Ian Soboroff. “Overview of the TREC 2004 Novelty Track.” In: TREC. 2004.

180

http://dx.doi.org/10.1145/2362724.2362735
http://dx.doi.org/10.1145/2391224.2391227
http://dx.doi.org/10.1145/2348283.2348300

[141] Ian Soboroff and Donna Harman. “Overview of the TREC 2003 Novelty Track.” In:
TREC. 2003, pp. 38–53.

[142] Ian Soboroff, Iadh Ounis, Craig Macdonald, and Jimmy Lin. “Overview of the
TREC-2012 Microblog Track”. In: Proceedings of The Twenty-First Text REtrieval
Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9, 2012. 2012.

[143] Marc Spaniol, Julien Masanès, and Ricardo Baeza-Yates. “The 4th Temporal Web
Analytics Workshop (TempWeb’14)”. In: Proceedings of the 23rd International Con-
ference on World Wide Web. WWW ’14 Companion. Seoul, Korea: ACM, 2014,
pp. 863–864. isbn: 978-1-4503-2745-9. doi: 10.1145/2567948.2579047.

[144] K. Sparck-Jones and C.J. Van Rijsbergen. “Report on the need for and provision
of an “ideal” information retrieval test collection”. In: (1975).

[145] Russell Swan and James Allan. “Automatic Generation of Overview Timelines”. In:
Proceedings of the 23rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’00. Athens, Greece: ACM, 2000,
pp. 49–56. isbn: 1-58113-226-3. doi: 10.1145/345508.345546.

[146] Jaime Teevan, Kevyn Collins-Thompson, Ryen W White, Susan T Dumais, and
Yubin Kim. “Slow Search: Information Retrieval without Time Constraints”. In:
Proceedings of the Symposium on Human-Computer Interaction and Information
Retrieval. ACM. 2013, p. 1.

[147] TREC KBA Stream Corpus. http : / / trec - kba . org / kba - stream - corpus -

2014.shtml. 2014.

[148] Andrew Trotman and Dylan Jenkinson. “IR evaluation using multiple assessors per
topic”. In: ADCS (2007).

[149] Olga Vechtomova. “A Semi-supervised Approach to Extracting Multiword Entity
Names from User Reviews”. In: Proceedings of the 1st Joint International Workshop
on Entity-Oriented and Semantic Search. JIWES ’12. Portland, Oregon, USA: ACM,
2012, 2:1–2:6. isbn: 978-1-4503-1601-9. doi: 10.1145/2379307.2379309.

[150] Sarah Vieweg, Amanda L. Hughes, Kate Starbird, and Leysia Palen. “Microblogging
During Two Natural Hazards Events: What Twitter May Contribute to Situational
Awareness”. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’10. Atlanta, Georgia, USA: ACM, 2010, pp. 1079–1088. isbn:
978-1-60558-929-9. doi: 10.1145/1753326.1753486.

[151] Ellen M. Voorhees. “Overview of the TREC 2004 Question Answering Track”. In:
Proceedings of TREC 2004. 2005.

181

http://dx.doi.org/10.1145/2567948.2579047
http://dx.doi.org/10.1145/345508.345546
http://trec-kba.org/kba-stream-corpus-2014.shtml
http://trec-kba.org/kba-stream-corpus-2014.shtml
http://dx.doi.org/10.1145/2379307.2379309
http://dx.doi.org/10.1145/1753326.1753486

[152] Ellen M. Voorhees. “Overview of the TREC 2005 Question Answering Track”. In:
Proceedings of TREC 2005. 2006.

[153] Ellen M. Voorhees. “Variations in relevance judgments and the measurement of
retrieval effectiveness.” In: Inf. Process. Manage. 36.5 (2000), pp. 697–716.

[154] Ellen M. Voorhees and Chris Buckley. “The effect of topic set size on retrieval
experiment error.” In: SIGIR. 2002, pp. 316–323.

[155] Ellen M Voorhees, Donna K Harman, et al. TREC: Experiment and evaluation in
information retrieval. Vol. 1. MIT press Cambridge, 2005.

[156] Yulu Wang, Garrick Sherman, Jimmy Lin, and Miles Efron. “Assessor Differences
and User Preferences in Tweet Timeline Generation”. In: Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 2015, pp. 615–624.

[157] Yaoyi Xi, Bicheng Li, Jie Zhou, and Yongwang Tang. “ZZISTI at TREC2013 Tem-
poral Summarization Track”. In: Proceedings of The Twenty-Second Text REtrieval
Conference, TREC 2013, Gaithersburg, Maryland, USA, November 19-22, 2013.
Ed. by Ellen M. Voorhees. Vol. Special Publication 500-302. National Institute of
Standards and Technology (NIST), 2013.

[158] Tan Xu, Douglas W. Oard, and Paul McNamee. “HLTCOE at TREC 2013: Tem-
poral Summarization”. In: Proceedings of The Twenty-Second Text REtrieval Con-
ference, TREC 2013, Gaithersburg, Maryland, USA, November 19-22, 2013. Ed. by
Ellen M. Voorhees. Vol. Special Publication 500-302. National Institute of Standards
and Technology (NIST), 2013.

[159] Yiming Yang and Abhimanyu Lad. “Modeling Expected Utility of Multi-session In-
formation Distillation”. In: Advances in Information Retrieval Theory, Second In-
ternational Conference on the Theory of Information Retrieval, ICTIR 2009, Cam-
bridge, UK, September 10-12, 2009, Proceedings. 2009, pp. 164–175. doi: 10.1007/
978-3-642-04417-5_15.

[160] Zhen Yang, Fei Yao, Huayang Sun, Yun Zhao, Yingxu Lai, and Kefeng Fan. “BJUT
at TREC 2013 Temporal Summarization Track”. In: Proceedings of The Twenty-
Second Text REtrieval Conference, TREC 2013, Gaithersburg, Maryland, USA,
November 19-22, 2013. Ed. by Ellen M. Voorhees. Vol. Special Publication 500-
302. National Institute of Standards and Technology (NIST), 2013.

[161] Emine Yilmaz and Javed A. Aslam. “Estimating average precision with incomplete
and imperfect judgments.” In: CIKM. 2006, pp. 102–111.

182

http://dx.doi.org/10.1007/978-3-642-04417-5_15
http://dx.doi.org/10.1007/978-3-642-04417-5_15

[162] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. “A new rank correlation
coefficient for information retrieval.” In: SIGIR. 2008, pp. 587–594.

[163] Elad Yom-Tov and Fernando Diaz. “Out of sight, not out of mind: on the effect of
social and physical detachment on information need.” In: SIGIR. 2011, pp. 385–394.

[164] Chunyun Zhang, Weiyan Xu, Fanyu Meng, Hongyan Li, Tong Wu, and Lixin Xu.
“The Information Extraction Systems of PRIS at Temporal Summarization Track”.
In: Proceedings of The Twenty-Second Text REtrieval Conference, TREC 2013,
Gaithersburg, Maryland, USA, November 19-22, 2013. Ed. by Ellen M. Voorhees.
Vol. Special Publication 500-302. National Institute of Standards and Technology
(NIST), 2013.

[165] Yi Zhang, James P. Callan, and Thomas P. Minka. “Novelty and redundancy de-
tection in adaptive filtering.” In: SIGIR. 2002, pp. 81–88.

[166] Yun Zhao, Fei Yao, Huayang Sun, and Zhen Yang. “BJUT at TREC 2014 Temporal
Summarization Track.” In: TREC. 2014.

[167] Yunyue Zhu and Dennis Shasha. “Efficient elastic burst detection in data streams”.
In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 2003, pp. 336–345.

[168] Justin Zobel. “How Reliable Are the Results of Large-Scale Information Retrieval
Experiments?” In: SIGIR. 1998, pp. 307–314.

183

	List of Tables
	List of Figures
	Introduction
	Motivation
	Temporal Summarization at TREC

	Overview and Contributions
	Evaluation in the Presence of Duplicates
	Modeled Stream Utility
	Simulation-based Pooling

	List of Contributions

	Related Research
	Temporal IR: Systems and Evaluations
	Filtering
	Topic Detection and Tracking
	Streams
	Temporal Summarization
	Other TREC Tracks with Temporal Leanings

	User-behavior Modeling and Simulation for Evaluation
	User-models and Derived Measures Evolution
	Grounding User-Oriented Evaluation in Time
	User-behavior and Temporal IR

	IR Evaluation: Test Collections and Evaluation Measures
	Pooling and Test Collection Construction
	Alternatives to Standard Depth-pooling
	Evaluation Measures and Systems Comparisons
	Nugget-based Test Collections
	User-models, Test Collections, and Evaluation Measures

	The Temporal Summarization Track at TREC
	Temporal Summarization Track 2013
	Corpus, Tasks, Topics
	Evaluation Method and Measures
	Participating Systems Overview

	Temporal Summarization Track 2014
	Corpus, Tasks, Topics
	Evaluation Method and Measures
	Participating Systems Overview

	Participation at TST 2013
	Corpus Preprocessing
	Shortlisting Documents
	Selecting Sentences
	Query Expansion
	Constructing Runs
	Results
	Conclusion

	Evaluation in the Presence of Duplicates
	Expanding the Judged Set of Sentences
	Evaluating TST 2013 Runs using qrels Expanded with Duplicates
	Effect of Variations in Duplicate Detection
	Discussion

	Expansion of TST 2014 qrels with Duplicates
	Evaluating TST 2014 Runs using qrels Expanded with Duplicates
	Discussion

	Conclusion

	Modeled Stream Utility
	User Model for Streaming Information Access
	Model Parameters for a Single User
	Modeling a User Population
	Modeling User Behavior
	User Interface and User Interaction Behavior

	MSU Evaluation Model
	Measuring Lateness
	Expressing Modeled Stream Utility

	MSU Parameter Sweep
	MSU for Reasonable Users
	Exploring the User Model Parameters
	MSU and Set-Oriented Metrics
	Everyone's a Winner

	Discussion
	Evaluating Runs with MSU using qrels Expanded with Duplicates

	Conclusion

	Simulation-based Pooling
	Motivation for Simulation-based Pooling
	Proportions of Users not Reading Relevant Updates

	Estimating the Probability of an Update being Read
	Depth Pools with Balanced and Unbalanced Probabilities

	Score vs. Probability Based Pooling
	Pooling using Probability Mass Cover
	Discussion and Future Work

	Conclusions and Future Work
	Summary
	Limitations
	Future Work
	MSU Calibration and Extensions
	Modeled Stream Utility for Different User Behaviors

	References

