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Abstract

In this thesis we present SIRUM: a system for Scalable Informative RUle Mining from multi-
dimensional data. Informative rules have recently been studied in several contexts, including data
summarization, data cube exploration and data quality. The objective is to produce a concise set
of rules (patterns) over the values of the dimension attributes that provide the most information
about the distribution of a numeric measure attribute. SIRUM optimizes this task for big, wide
and distributed datasets. We implemented SIRUM in Spark and observed significant performance
improvements on real data due to our optimizations.

iii



Acknowledgements

First, I would like to give the most sincere thanks to my supervisor, Professor Lukasz Golab,
for his invaluable support and guidance, his patience and encouragement. This thesis would not
have been possible without his help and dedication. My sincere thanks also go to Dr. Divesh
Srivastava for his insights and feedback.

I would also like to thank my committee members, Professor Tamer Özsu, Professor Khuza-
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Chapter 1

Introduction

In this thesis, we present the SIRUM system for Scalable Informative RUle Mining from big,
wide and distributed data. The input is a dataset with a number of categorical dimension attributes
and a numeric measure attribute m. The output is a list of rules, represented as conjunctions of
values of the dimension attributes, that provide the most information about the distribution of m
in the given dataset. We start with three sample applications of SIRUM as motivation.

Data Profiling and Summarization: For example, consider the multidimensional dataset as
presented in Table 1.1. Each row in the dataset represents a flight identified by its flight ID. The
other attributes record the amount of flight delay along with relevant information including the
day of flight (Day), the cities of departure and arrival (Origin and Destination). Suppose that a
data analyst plans to summarize the distribution of flight delay as a function of the different value
combinations of the other attributes, possibly in preparation for developing a prediction model.
She can treat the flight delay as the measure attribute and other attributes, except for the flight
ID, as the dimension attributes. We will discuss the columns labelled m̂i later.

Table 1.2 presents an example of informative rule set over the flight dataset. The rule set
contains 4 rules total, each identified by its rule ID. Note that a wild-card symbol (‘∗’) matches
all possible values of the attribute. A rule is also augmented with the following aggregate values:
(1) the average of measure attributes, AVG(Late), and (2) the number of tuples covered by the
rule, COUNT(*). For instance, the first rule states that the 14 flights in the flight dataset were
late by 10.4 minutes on average. The second rule states that the 4 flights arriving in London were
late by 15.3 minutes on average.

The informative rule set can be built incrementally. After the first rule covering all tuples is
added to the rule set, adding the second rule provides the greatest amount of additional informa-
tion content about the dataset. The intuition is twofold. First, there are a sufficiently large number
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Table 1.1: A flight delay report

Flight ID Day Origin Destination Delay m̂1 m̂2 m̂3

1 Fri SF London 20 10.4 15.3 22.4
2 Fri London LA 16 10.4 8.4 13.6
3 Sun Tokyo Frankfurt 10 10.4 8.4 7.8
4 Sun Chicago London 15 10.4 15.3 12.9
5 Sat Beijing Frankfurt 13 10.4 8.4 7.8
6 Sat Frankfurt London 19 10.4 15.3 12.9
7 Tue Chicago LA 5 10.4 8.4 7.8
8 Wed London Chicago 6 10.4 8.4 7.8
9 Thu SF Frankfurt 15 10.4 8.4 7.8
10 Mon Beijing SF 4 10.4 8.4 7.8
11 Mon SF London 7 10.4 15.3 12.9
12 Mon SF Frankfurt 5 10.4 8.4 7.8
13 Mon Tokyo Beijing 6 10.4 8.4 7.8
14 Mon Frankfurt Tokyo 4 10.4 8.4 7.8

of flights arriving in London. Second, the average delay for London-bound flights exhibits the
greatest deviation from the average delay of all flights. Following the same intuition, the third
rule is considered to have the greatest additional information content based on the distribution of
AVG(Late) entailed by the first two rules. We will formalize the notion of information content in
the following sections.

Table 1.2: An example of informative rule set over the flight dataset

Rule ID Day Origin Destination AVG(Late) count
1 * * * 10.4 14

2 * * London 15.3 4

3 Fri * * 18 2

4 Sat * * 16 2

Smart Exploration of Data Cubes: Informative rule mining helps guide the analyst explore
the data cube if the analyst possesses prior knowledge about the dataset such as a predefined
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set of interesting cells [29]. Returning to the flight dataset, suppose the analyst already knows
the average flight delay in the entire dataset and the average delay of flights out of SF. This
information corresponds to the first two rows in Table 1.3. SIRUM recommends the two rules
shown at the bottom of Table 1.3, namely (*, *, London) and (Fri, London, LA), as they provide
the most additional information about the distribution of flight delays. The analyst can then drill
down and examine the records corresponding to these two rules.

Table 1.3: Two tuples corresponding to a user’s prior knowledge, followed by two informative
rules, over the flight dataset

Day Origin Destination AVG(Late) count
* * * 10.4 14

* SF * 11.8 4

* * London 15.3 4

Fri London LA 16 1

Data Cleansing: Informative rule mining is useful in diagnosing data quality issues (see,
e.g., Data X-Ray [35] and Data Auditor [17]). In this problem, the measure attribute denotes the
quality of a tuple (e.g., 1=dirty and 0=clean) and the goal is to determine if data quality problems
are correlated with certain values of the dimension attributes. Here, SIRUM can identify subsets
of the data with an unusually high or low number of dirty records. For instance, Table 1.4 presents
a sample with 8 dimension attributes from the GDELT data set1. In each row, the dimension
attributes record the properties of a global event and the measure attribute outputs whether the
type of the second actor(s)2 of the event is missing. From the sample dataset, SIRUM is able to
produce the rules listed in Table 1.5 to highlight the ‘dirty’ records. It shows that events whose
attribute values match those in the second rule have an average of 1 in the measure value, which
is significantly higher than the overall average (0.33). An average value of 1 indicates that none
of these events record the type of the second actor(s).

Informative rule mining is interactive: a user may request an initial list of informative rules,
1GDELT is a real data set we will use to evaluate SIRUM in Chapter 5. It is published by a project that monitors

the world’s news media in print, broadcast and web formats [23]. It documents global events on a daily basis.
2Normally a GDELT event is recorded in an expanded version of the dynamic CAMEO format [31], capturing

two actors and the action performed by Actor1 upon Actor2.
3The CAMEO event codes are defined in a taxonomy of three levels. For events at the third level, the event

base code keeps track of its level two leaf node. For example, code “0251” (Appeal for easing of administrative
sanctions) would return an Event Base Code of “025” (Appeal to yield). It allows the project to aggregate events at
various resolutions of granularity. For events at the second or first level, this is the same as the Event Code [23].
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Table 1.4: A sample from GDELT data set

Event
ID

Actor1
Coun-
try

Actor1
Type

Is Root
Event

Event
Base
Code3

Event
Class

Actor1
Geo-
Type

Actor2
Geo-
Type

Action
Geo-
Type

Is Ac-
tor2
Type
Miss-
ing

1 US Media 1 112 Verbal
Con-
flict

US
STATE

US
CITY

US
CITY

0

2 US Media 1 173 Material
Con-
flict

US
CITY

US
CITY

US
CITY

1

3 US Media 1 173 Material
Con-
flict

US
CITY

US
STATE

US
CITY

1

4 US Political
Oppo-
sition

0 114 Verbal
Con-
flict

US
STATE

US
CITY

US
CITY

0

5 US Rebels 0 36 Verbal
Coop-
eration

US
CITY

US
CITY

US
CITY

0

6 US NGO 0 51 Verbal
Coop-
eration

WORLD
CITY

WORLD
STATE

WORLD
CITY

0

explore the data, and ask for more rules (for the same or a different measure attribute). This
motivates the need for efficiency. However, challenges arise when computing informative rules
over big data. Nowadays, it is common to collect very large volumes of data, both in terms of
the number of entities and in terms of the number of descriptive attributes about a given entity.
For example, a flight data set may contain millions of flights, with many dimension attributes
corresponding to the wide variety of information collected by airport processes and by scanning
passengers’ boarding passes at various points: weather, queues at the origin airport, runway
congestion, connecting flights, etc. This means that the input is tall (many rows) and wide (many
columns/dimension attributes), leading to a very large number of candidate rules.

Big data are typically processed using distributed computing platforms. Here, efficiency
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Table 1.5: An example of informative rules to highlight dimension attribute values correlated to
records without Actor2 Type

Actor1
Coun-
try

Actor1
Type

Is Root
Event

Event
Base
Code

Event
Class

Actor1
Geo-
Type

Actor2
Geo-
Type

Action
Geo-
Type

AVG
(Late)

count

* * * * * * * * 0.33 6
US Media 1 * Material

Con-
flict

US
CITY

* US
CITY

1 2

US * * 173 Material
Con-
flict

US
CITY

US
CITY

* 1 1

matters not only to enable interactive applications, but also to save money if the computation
happens on the cloud (e.g., using Amazon EC2 or Microsoft Azure) and costs are incurred based
on resource utilization. Unfortunately, distributed generation of informative rules is challenging
for several reasons. It is an iterative process, which repeatedly selects the next most informative
rule (details to follow in Chapter 2). This requires more careful optimization than traditional
batch processing, and may incur high disk I/O to repeatedly scan the input. Additionally, the
very large number of intermediate results (possible rules) may cause CPU and I/O overhead.

1.1 Contributions

Despite the recent interest in informative rule mining [16, 24, 29], existing techniques do not
scale to tall and wide datasets: they require multiple scans of large datasets and do not lever-
age parallel computation. The evaluation of these techniques has also been limited to short and
narrow datasets on centralized systems. Moreover, there are no distributed algorithms for infor-
mative rule mining that can work with data stored in a distributed file system in-situ. These are
exactly the issues we address with SIRUM. The contributions of this paper are as follows:

1. SIRUM: a distributed framework for Scalable Informative RUle Mining. We implemented
SIRUM on top of Spark [37], a main-memory platform for parallel iterative data process-
ing, with data stored in the Hadoop Distributed File System (HDFS). We justify our choice

5



of Spark in Chapter 5 by comparing it to versions of SIRUM implemented using a tradi-
tional MapReduce-based framework (Hive), SparkSQL and PostgreSQL.

2. A profiling study that reveals the bottlenecks of distributed informative rule generation
from tall and wide tables.

3. Optimizations for distributed informative rule generation from tall and wide tables, focus-
ing on reducing data shuffling, CPU and memory usage, and disk I/O.

4. Experimental evaluation of SIRUM compared to prior work [16, 29], showing up to an
order of magnitude performance improvements of rule mining and data cube exploration
on real datasets.

1.2 Outline

The rest of the thesis is structured as follows. Chapter 2 presents background information on
informative rule mining. Chapter 3 outlines a baseline implementation of SIRUM and profiles
its performance on real datasets. Chapter 4 presents various performance optimizations over
the baseline implementation of SIRUM. Chapter 5 presents our experimental results. Chapter 6
discusses previous work. Chapter 7 concludes the thesis.
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Chapter 2

Preliminaries

2.1 Definitions and Notations

Consider a relational data set D with d dimensional attributes, {A1, A2, . . . , Ad}, and a numeric
measure attribute, m. A tuple from D is denoted by t. The output is a list of k informative rules
R. The value of k is supposed to be small such that the rule list is interpretable by human beings.
A rule, denoted by r, is essentially a tuple from a multidimensional space, (dom(A1) ∪ {∗}) ×
· · ·× (dom(Ad)∪{∗}). We use t � r to denote the fact that t matches r, or equivalently r covers
t. t matches r if and only if either r[Aj] = ‘*’ or t[Aj] = r[Aj] for each dimension attribute Aj .
For instance, the tuple t6 in Table 1.1 matches rules r1, r2 and r4 in Table 1.2, but not r3.

We define the support set of a rule r, SD(r), to be the set of tuples covered by r, that is,
SD(r) = {t|t � r, t ∈ D}. For example, the support set of r3 in Table 1.2 contains t1 and t2 from
Table 1.1. We use m(r) to denote the average value of the measure attribute of tuples covered

by r, i.e., m(r) =
1

|SD(r)|
∑

t∈SD(r)

t[m]. In Table 1.2, the columns AVG(Late) and count(*) show

m(r) and |SD(r)| for each rule respectively.

Given a tuple t, we denote its estimated value of t[m] by t[m̂]. Similarly, the average esti-

mated value of the measure attribute of tuples covered by r is m̂(r) =
1

|SD(r)|
∑

t∈SD(r)

t[m̂]. We

will describe how to determine t[m̂] based on the set of matching rules in Section 2.2.

Given two tuples ti and tj , we further define the least common ancestor (LCA) of ti and tj .
Let r = lca(ti, tj) be the least common ancestor. For every Al ∈ {A1, A2, · · · , Ad}, r[Al] =

7



Table 2.1: Frequently used symbols in this paper

Symbol Meaning
D A dataset
t A tuple

t[Aj ] The value of the Aj attribute of tuple t
R The list of rules already generated
r A rule

SD(r) The set of tuples in D covered by r

k The number of rules to be generated
Aj A dimension attribute of D

dom(Aj) The active domain of Aj
d The number of dimension attributes
m A measure attribute of D
m̂ An estimate of m

m(r) Average value of t[m] of the tuples matching r

m̂(r) Average value of t[m̂] of the tuples matching r

ti[Ak] if ti[Al] = tj[Al]; otherwise, r[Al] = “∗”. For example, consider t1 and t6 from Table 1.1.
Their LCA is (*, *, London), which is exactly r2 in Table 1.2.

A rule r1 is disjoint from another rule r2 if they satisfy the following conditions: there exists
at least one Ai such that (1) r1[Ai] 6= ∗; (2) r2[Ai] 6= ∗; and (3) r1[Ai] 6= r2[Ai]. Equivalently,
r1 and r2 are overlapping if the condition fails to hold. Note that the relation is solely based
on their attribute values rather than their the support sets; two rules being disjoint implies that
their support sets are disjoint, but the converse is not true. For example, consider the following
pair of rules: (Fri, London, LA) and (*, SF, LA). Since they have different values in the ’Origin’
attribute, they are by definition disjoint and their support sets ({t2} and {t1, t11} respectively
from Table 1.1) must also be disjoint. On the contrary, consider another pair of rules (Wed, *, *)
and (*, *, London) and their corresponding support sets: {t8} and {t1, t4, t6, t11} from Table 1.1.
While their support sets are disjoint, the pair of rules is overlapping by definition because it is
possible to define a tuple (Wed, Chicago, London) that matches both rules.

Table 2.1 lists the symbols frequently used in the remainder of this paper.
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2.2 Maximum Entropy Principle

In Table 1.2, each rule is testable information, i.e., a statement about the average value of the
measure attribute with respect to the value combinations of dimension attributes. The set of rules
allows us to approximate the true distribution of the measure attribute. The estimated value of
measure attribute can be computed following the principle of maximum entropy, which states that
subject to testable information, the probability distribution which best represents the current state
of knowledge is the one with the highest entropy [18]. In the case of informative rule mining, the
maximum entropy approximation of t[m] is the solution to the following optimization problem.

minimize
∑
t∈D

−t[m̂] · log(t[m̂])

subject to
∑

t∈SD(r)

t[m] =
∑

t∈SD(r)

t[m̂] ∀r ∈ R

t[m̂] ≥ 0 ∀t ∈ D∑
t∈D

t[m̂] = 1

(2.1)

The use of maximum entropy implies that t[m] must satisfy the following conditions:

1. for all t ∈ D, t[m] ≥ 0

2.
∑
t∈D

t[m] = 1

If the measure attribute does not satisfy the conditions above, we can apply the following
transformations and reduce it to the optimization problem 2.1.

1. Suppose there exists at least one t[m] such that t[m] < 0. Since the number of tuples is
finite, there must exists a value M < 0 such that M ≤ t[m] for all t ∈ D. Let t[m′] =
t[m]−M . It follows that t[m′] ≥ 0 for all t ∈ D.

2. If
∑

t∈D t[m] = 0, define t[m′] = t[m] +
1

‖D‖
such that

∑
t∈D t[m

′] = 1.

3. If
∑

t∈D t[m] 6= 1 or 0, define t[m′] =
t[m]∑
t∈D t[m]

so that
∑

t∈D t[m
′] = 1.

9



Once the solution for t[m′] is found, we will perform a reverse transformation to calculate t[m].

In the following sections, we assume that r1 = (∗, ∗, · · · , ∗) is always the first rule selected.
It allows us to extend the second condition to

∑
t∈D t[m] = C where C 6= 0. Suppose that

t[m] satisfies the new condition, i.e.,
∑

t∈D t[m] = C 6= 0. First, we normalize t[m] to t[m′] =
t[m]

C
. It follows that

∑
t∈D t[m

′] = 1. Now we define a relaxed optimization problem from

optimization problem 2.1 by removing its last constraint,
∑

t∈D t[m̂] = 1. Let t[m̂′] be the
solution to the relaxed problem for t[m′]. Now we show that t[m̂′] also satisfies the constraint
that

∑
t∈D t[m̂

′] = 1. Since the first rule r1 covers all tuples, we have∑
t∈D

t[m̂′] =
∑

t∈SD(r1)

t[m̂′] =
∑

t∈SD(r1)

t[m′] =
∑
t∈D

t[m̂′] = 1

. It means t[m̂′] is indeed a solution to the optimization problem 2.1. It follows that t[m̂] = C ·
t[m̂′] is an approximation of t[m] based on the maximum entropy principle. Thus, if

∑
t∈D t[m] =

C 6= 0, selecting r1 = (∗, ∗, · · · , ∗) as the first rule allows us to find a solution for t[m] using the
maximum entropy principle.

Going back to the example in Table 1.1 and 1.2, the column labelled m̂1 shows the estimated
values of flight delay based on the first rule, which covers all tuples in the entire data set. Given
that the average flight delay is 10.4 in the entire dataset, the maximum-entropy solution sets
each t[m̂] to 10.4. After adding r2, t1, t4, t6 and t11 must be assigned t[m̂] = 15.3 to satisfy∑

t∈SD(r2)
t[m] =

∑
t∈SD(r2)

t[m̂], or m(r2) = m̂(r2). Moreover, the maximum-entropy solution
has to set the other t[m̂]’s to 8.4 each to satisfy m(r1) = m̂(r1) = 10.4, as shown in column m̂2.
Following the same strategy, the column m̂3 shows the maximum-entropy solution for the first
three rules.

Iterative Scaling

The optimization problem 2.1 can be solved using iterative scaling [7, 13]. For each tuple t,
t[m̂] can be expressed as

∏
r,t�r λ(r), where λ(r) is a multiplier associated with a rule r [12].

Algorithm 1 shows the procedure of iterative scaling. In SIRUM, the procedure is executed
whenever a new rule is appended to the rule list.

At the beginning when the rule list is empty, the estimated value of measure attribute is set
to 1 by default. As a rule r is first added to the list, λ(r) is initially set to 1 by default and m(r)
is computed. The optimization problem imposes the constraint that m(r) = m̂(r). However, it

is not uncommon to replace the constraint with
|m(r)− m̂(r)|
|m(r)|

< ε where ε is a small positive

number provided by the user (say, 0.01).
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Algorithm 1 Iterative Scaling

Input: D,R, λ,m(r) for all r ∈ R, ε
Output: m̂(r) for all r ∈ R

1: DIFF ← ARRAY (|R|, 0)
2: while true do
3: for i← 1 to |R| do

4: m̂(ri)←
1

|ri|
∑

t∈D,t�ri

t[m̂]

5: DIFF [i]← |m(ri)− m̂(ri)|
|m(ri)|

6: end for
7: next← argmax

i
DIFF [i]

8: if DIFF [next] > ε then

9: λ(rnext)← λ(rnext) ∗
m(rnext)

m̂(rnext)
10: for t � rnext do
11: t[m̂]←

∏
r,t�r λ(r)

12: end for
13: else
14: break
15: end if
16: end while

At this point, Algorithm 1 is ready to run as all inputs are in place. Line 1 of the algorithm
assigns zeros to all elements of the DIFF array, which maintains the difference between m(r)
and m̂(t). In lines 3 through 6, it computes the current m̂(r) values for each rule, as well as
their differences from the actual m(r)s. In line 7, it finds the rule with the greatest DIFF. If DIFF
is greater than the threshold ε, it scales the multiplier for this rule as shown in line 9. Next, it
must update the estimated values of measure attribute for all tuples matching this rule (line 11).
The loop keeps iterating until all the rules have DIFFs below ε which means the m̂(r)s have
converged to m(r)s.

Now we illustrate the procedure of iterative scaling using the running example.

1. After r1 is appended to the rule list, both λ(r1) and t[m̂] for all t ∈ D are set to 1 initially.

Thus m̂(r1) = 1. Since m(r1) = 10.4, Algorithm 1 sets λ(r1) = 1 ∗ 10.4
1

= 10.4 (line 3

11



to 6) and updates t[m̂] to 10.4 for all t ∈ D at line 11. At this point,
|m(r)− m̂(r)|
|m(r)|

< ε

holds and the algorithm exits the while loop at line 14 and terminates.

2. As r2 is appended to the list, λ(r2) is set to 1 initially and the algorithm scales it through

λ(r2) = λ(r2) ∗
m(r2)

m̂(r2)
= 1 ∗ 15.3

10.4
= 1.47. Consequently, t[m̂] for t1, t4, t6, and t11 must

be updated to t[m̂] = λ(r1) ∗ λ(r2) = 15.25 (line 11). At this point, m̂(r1) has changed
from 10.4 to 11.76 as a result of the updating t[m̂] and therefore now m(r1) 6= m̂(r1). So,

we scale λ(r1) by setting it to λ(r1)∗
m(r1)

m̂(r1)
= 10.4∗ 10.4

11.76
= 9.2. Note that t1, t4, t6, and

t11 now have t[m̂] = λ(r1) ∗ λ(r2) = 13.5, which causes m̂(r2) to change to 13.5. Now,

since m(r2) 6= m̂(r2), we set λ(r2) = 1.47 ∗ 15.25
13.5

= 1.67. After several more iterations,

we settle on λ(r1) = 8.4 and λ(r2) = 1.8, which gives the estimates shown in the m̂2

column of Table 1.1.

2.3 Kullback-Leibler Divergence

In this section we quantify the quality of a rule set by measuring the difference between t[m] and
t[m̂]. Kullback-Leibler divergence [21] (KL-divergence), also known as information gain, is a
widely used information-based measure of disparity among probability distributions. Given two
probability distributions P and Q defined over X , with Q absolutely continuous with respect to
P , the KL-divergence from P to Q is defined as

DKL(P ||Q) =
∫
p(x) log

p(x)

q(x)
dx

where p and q denote the density functions of P and Q.

In information theory, the entropy [32] of X , H(X), can be interpreted as the expected code
length for values of X according to optimal coding. The cross-entropy for Q on P , H(P,Q),
is the expected code length for values of X if a different distribution Q, rather than the true
distribution P , is used to obtain optimal coding. We can interpret KL-divergence as a measure
of the expected number of extra bits necessary if Q rather P is used to achieve optimal coding.
That is,

DKL(P ||Q) = H(P,Q)−H(Q) = −
∫
p(x) log q(x)dx− (−

∫
p(x) log p(x)dx)

12



KL-divergence satisfies the following key properties:

1. Non-negativity: DKL(P ||Q) ≥ 0 for all P , Q, with DKL(P ||Q) = 0 if and only if t[m] =
t[m̂] for all t ∈ D (based on Gibb’s inequality [27])

2. Self-similarity: DKL(P ||P ) = 0

3. Self-identification: DKL(P ||Q) = 0 only if P = Q

In this thesis, we use KL-divergence to measure the similarity between the distribution of
t[m] and the distribution of t[m̂]. Intuitively, the KL-divergence has a positive value if the two
distributions differ. As the estimation of t[m] improves, the KL-divergence is expected to con-
verge to zero, at which point t[m̂] has almost the same distribution as t[m].

Return to the example in Table 1.1. By normalizing the values of t[m] and t[m̂], KL-
divergence can be used to measure the difference between their distributions. Specifically, the
KL-divergence between t[m] and t[m̂1], after normalization, is

DKL(t[m]||t[m̂1]) =
∑
t∈D

t[m] log
t[m]

t[m̂1]
= 4.1× 10−3

. Similarly, for t[m̂2] we have

DKL(t[m]||t[m̂2]) =
∑
t∈D

t[m] log
t[m]

t[m̂2]
= 1.4× 10−3

. By adding the second rule into the rule set, SIRUM reduces the KL-divergence from 4.1×10−3

to 1.4× 10−3.

2.4 Informative-based Rule Mining with Binary Measure At-
tributes

The information-based rule mining problem with binary measure attribute on a centralized data
processing system has been studied in [16]. In particular, El Gebaly et al. prove that solving the
following problem is NP-hard in the size of D.

Problem 1. Given a threshold τ and a multidimensional data set D with a binary attribute m,
construct an informative rule list of the smallest size, with t[m̂] determined by the maximum
entropy principle defined in Formulation 2.1, such that DKL(t[m]||t[m̂]) < τ .
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A greedy heuristic [16] is to incrementally construct the rule list, adding one rule at a time. At
each step, the heuristic chooses the rule with the greatest reduction in KL-divergence, followed
by iterative scaling. Given the current rule set R, however, computing the KL-divergence for a
candidate rule r requires running iterative scaling over R ∪ {r}. Since the number of candidate
rules is very large, this approach is prohibitively expensive. Instead, we use an estimate of the
KL-divergence without the need to run iterative scaling as if the rule is selected. We consider the
difference between the sums of actual and estimated m values of only those tuples that match the
rule. We denote the estimate as the information gain of r, which is defined below:

gain(r) =
∑

t∈D,t�r

t[m] · log
∑

t∈D,t�r t[m]∑
t∈D,t�r t[m̂]

(2.2)

After a rule r is added to R, the first constraint in optimization problem 2.1 states that∑
t∈SD(r) t[m] =

∑
t∈SD(r) t[m̂], which means its gain gain(r) =

∑
t∈D,t�r t[m] · 0 = 0. Note

that any rule rω whose average m value of its support set is underestimated (
∑

t∈D,t�rω t[m] >∑
t∈D,t�rω t[m̂]) will be assigned a gain value greater than zero. Hence, the heuristic will not

select any r ∈ R again as long as such rω exists.

For instance, after r1 is added in the flight record example, the rule (London, *, *) has the
highest information gain out of all possible rules according to gain(r) above.

2.5 Multidimensional Data Mining using Cube Lattices

Recall from Section 2.1 that a rule is essentially an element in the multidimensional space
(dom(A1) ∪ {∗}) × · · · × (dom(Ad) ∪ {∗}). Following the notations in multidimensional data
mining, we further define the generalization/specialization order between rules to establish the
structure of a cube lattice [9]. A rule r is an ancestor of another rule r′ if and only if it satisfies
the following property: ∀Ai ∈ {A1, A2, · · · , Ad}, either r[Ai] = “ ∗ ” or r[Ai] = r′[Ai]. For
convenience, we also denote r′ as a descendant of r. By definition, every rule in the cube lattice
is its own ancestor and descendant. The immediate proper ancestors of a rule are the parent rules
while the immediate proper descendants are the child rules. For a given tuple t, we use CL(t) to
represent the cube lattice of a multidimensional database relation γ containing a single tuple t.

For example, consider a multidimensional database relation γ containing only the first tuple
in Table 1.1. Figure 2.1 shows the cube lattice of γ. The elements of the cube lattice correspond
to the cuboids in the data cube to which (Fri, SF, London) contributes. The bottom level of the
cube lattice is the tuple itself, the next level up corresponds to the elements with exactly one
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(Fri, SF, London)

(Fri,SF,*) (Fri,*,London) (*,SF,London)

(Fri,*,*) (*,SF,*) (*,*, London)

(*, *, *)

Figure 2.1: Cube lattice for a multidimensional database relation with a single tuple (Fri, SF,
London)

wildcard, and so on up to the (d + 1)-th level, where d is the number of dimension attributes.
Elements in the higher levels are the ancestors of those from the lower levels that are connected
to them through a path. For example, (*, *, *) is the only ancestor of (*, SF, *).

2.6 Data Processing Platforms

In this section, we introduce several alternatives for the data processing platform to support
SIRUM.

2.6.1 PostgreSQL

PostgreSQL is an open source object-relational database system, notable for its extensibility, ad-
vanced features and standards-compliance. PostgreSQL’s support for user-defined functions and
customized data types is critical for the implementation of SIRUM. Notice that computing the
cube lattice involves generating all possible ancestors from a base tuple or rule. It is challenging
to efficiently compute the result if only standard SQL queries are available.
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PostgreSQL is capable of storing and processing large-scale relational data sets [26]. For the
analytical queries used in large scale informative-rule rule mining, however, the major scalability
limitation for PostgreSQL is its lack of built-in support for intra-query parallelism. The evalua-
tion of algorithms in [16] only uses a single database session, which is limited to a single process
in PostgreSQL to execute the SQL queries. Moreover, the process cannot utilize more than one
CPU.

Another hurdle to scaling informative rule mining on PostgreSQL is its emphasis on optimiz-
ing disk-based access. But there is a potential performance gain by keeping frequently accessed
data in memory. For instance, caching the estimate values in memory during iterative scaling
reduces the amount of random write access to the disk.

Due to the limited scalability of PostgreSQL in dealing with analytical workloads, we con-
sider other alternative platforms, as discussed below.

2.6.2 Apache Hive

Apache Hive [33] is an open source Hadoop-based data warehouse infrastructure for processing
and managing large data sets on distributed storage systems such as Apache HDFS. It provides
an SQL-like query language, HiveQL, to facilitate data analysis. The HiveQL compiler translates
query statements into a directed acyclic graph of jobs and submits them to Hadoop YARN [34],
a resource management infrastructure, for execution. Currently, Hive supports three execution
engines: Apache Tez [28], Apache Spark [38], and MapReduce [14]. In this thesis, we only use
MapReduce to evaluate HiveQL queries.

2.6.3 Apache Spark

Apache Spark [38] is another open source cluster computing framework designed for large scale
data processing. At the core of Spark is a distributed memory abstraction called resilient dis-
tributed data set (RDD) [37]. The corresponding application programming interface is restricted
to coarse-grained transformations such as map and join for efficient implementation of fault tol-
erance. Compared to MapReduce, Spark provides a more efficient data sharing abstraction in
terms of data replication and serialization costs and support a wider range of cluster program-
ming models.

In section 5.2, we will experimentally compare the three platforms above. For future work,
we are planning to explore other options such as Tez and Cloudera Impala.
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Chapter 3

Profiling Baseline Implementations

In this chapter, we will start with a description of the baseline implementation of informative
rule mining, followed by a profiling study over the baseline implementation to uncover the per-
formance bottlenecks and opportunities for improvements. We will address the bottlenecks and
exploit the opportunities in Chapter 4.

3.1 Naive SIRUM

In this section we describe a naive implementation of SIRUM. At the high level, Naive SIRUM
is a greedy algorithm iteratively computing the best rule and adding it into the rule set R, as
shown in Algorithm 2. To begin with, Naive SIRUM first adds the rule that covers all tuples,
r1 = (∗, ∗, ..., ∗), into R. Then it performs iterative scaling to adjust λ(r) such that

∑
t[m] =∑

t[m̂] for all t � r1. Moving on to the next iteration, Naive SIRUM computes the information
gain of all possible rules, selects the one with the highest gain, r2, and add it to R, followed
by another round of iterative scaling to adjust λ(r) such that

∑
t�r t[m] =

∑
t�r t[m̂] for every

r ∈ R. For the following iterations, Naive SIRUM repeats the procedure above until rk+1 is
added to R. Note that a total of k rules are generated because the r1 is added as the first rule by
default. In each iteration, we distinguish the two major steps as candidate rule generation and
iterative scaling.

The rule generation step follows a simple MapReduce-based data cube algorithm presented
in [25]1. The group-by attributes are subsets of {A1, · · · , Ad} and the aggregate functions are

1The paper also presents an improved algorithm for holistic measures but the simple algorithm is shown to work
as well as the improved algorithm for algebraic measures such as the one in this thesis
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SUM(t[m]) and SUM(t[m̂]). Each element in the cube lattice corresponds to a candidate rule

whose gain is SUM(t[m])× log
SUM(t[m])

SUM(t[m̂])
.

The data cube algorithm starts by launching mappers to process tuples of the input dataset in
parallel. For each tuple t ∈ D, the mapper emits a key-value pair for each element in the cube
lattice of t, where the key is the element and the value is a tuple (t[m], t[m̂]). The mapper output
is then shuffled and delivered to the reducers. Each reducer processes a subset of the key-value
pairs: for each distinct key (i.e., each element in the cube lattice), computes the gain from the
partially-aggregated values produced by the mappers or combiners. The element with the highest
gain is chosen to be the most informative rule and added to R.

Algorithm 2 Computing Rule Set with Naive SIRUM
Input: D, k
Output: R

1: Add (*, · · · , *) to R
2: for i← 1 to k do
3: Identify the rule with the highest information gain, ri, from a set of candidate rules Ci

and add it to R
4: Update the current knowledge of distribution of m based on R using iterative scaling
5: end for

3.1.1 Sample-based Candidate Pruning

The set of all possible rules grows exponentially with respect to d, the number of dimensions.
Observe that the gain formula (Equation 2.2) does not satisfy the downward closure property [4],
a commonly used technique in association rule mining and to efficiently prune the search space.
Specifically, an ancestor rule being not informative does not imply that any of its descendants is
not informative. It follows that the ancestor rule and all of its descendants cannot be pruned as
the algorithm traverses through the cube lattice.

One way of addressing the deficiency above is to draw a random sample s from D and only
consider rules in the cube lattice of s [16]. The intuition is that rules with frequently-occurring
combinations of dimension attribute values are likely to appear in s and are more likely to have
high gain. we refer to this approach as sample-based candidate pruning, as opposed to exhaustive
candidate exploration that computes the gain of every possible rule.

To distinguish the rules selected by the two approaches, we refer to the one chosen by ex-
haustive candidate exploration as the most informative rule (MIR). The value of |s| dictates the
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size of the partial cube lattice from which the algorithm searches for a rule with the highest
gain. Intuitively, the best rule selected from a larger group of candidates is more likely to have
a gain closer to the gain of the MIR. We consider the value of |s| to be sufficiently large if the
KL-divergence of the eventual rule set is close to the one produced using exhaustive candidate
exploration.

The algorithm starts by drawing a random sample s from D and computing a cross-product
of s and D. For each pair of joined tuples, it outputs a rule that is the least common ancestor
(LCA) of the tuples, as defined in Section 2.1. We denote the result as LCA(s,D), which is
stored in an RDD. Next, it emits all possible ancestors of the LCAs (including the LCA itself)
and their aggregate values in the map stage. In the reduce stage, it computes the information gain
for the candidate rule set, which only contains the LCAs and their ancestors. Then, it computes
the cross-product of the candidate rule set and s to adjust the aggregate values. If a candidate
rule, r, matches more than one tuple in s, the corresponding tuple in D must have contributed its
aggregate value to r more than once. It follows that the aggregate value of r should be divided
by the number of matching tuples in s. Finally, the rule with the highest gain is added to R.
In the remainder of this thesis, unless otherwise specified, Naive SIRUM includes sample-based
candidate pruning.

For instance, suppose we sample two tuples from Table 1.1 and we get t4 and t9. Projected
onto their dimension attributes, these are (Sun, Chicago, London) and (Thu, SF, Frankfurt). For
each tuple in the sample, we compute the LCA of it and each tuple in D, where we replace non-
matching attribute values by stars. For example, the LCA of (Sun, Chicago, London) and (Fri, SF,
London) is (*, *, London). Using t4 and t9 as the sample, we get the following LCAs: (*, *, *),
(*, *, London), (*, *, Frankfurt), (*, Chicago, *), (*, SF, *), (Sun, *, *), (*, SF, Frankfurt), (Sun,
Chicago, London) and (Thu, SF, Frankfurt). Next, we generate all the ancestors of each LCA,
and use the LCAs and their ancestors as the candidate rules. In our example, the candidate set
is: (*, *, *), (*, *, London), (*, *, Frankfurt), (*, Chicago, *), (*, SF, *), (Sun, *, *), (Thu, *, *),
(Sun, Chicago, *), (Sun, *, London), (*, Chicago, London), (Thu, SF, *), (Thu, *, Frankfurt), (*,
SF, Frankfurt), (Sun, Chicago, London) and (Thu, SF, Frankfurt). This gives only 15 candidate
rules compared to 73 possible rules.

Now we analyze the complexity of sample-based candidate pruning. Computing LCA(s,D)
requires joining s and D, which means the complexity of this step is O(|s| · |D|). Let P (s) be the
set of all possible ancestors of tuples in s. The second and third step takesO(|P (s)|+ |P (s)| · |s|)
operations to compute. Choosing the top rule in the final step requires only a single scan and the
cost is O(P (s)). Therefore, the overall complexity is O(|s| · |D|+ |P (s)| · |s|).
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3.2 BJ SIRUM

In this section, we describe an improvement to the implementation of Naive SIRUM on dis-
tributed data processing platforms (i.e., Spark, Hive).

The key observation is that the number of tuples in R and s are much smaller than that in D.
It allows us to use Spark’s broadcast join [8, 10], i.e., map-side join, to compute the LCAs (which
requires s joining D) and to compute lines 3-6 of the iterative scaling algorithm (which requires
R joining D). Specifically, we create multiple copies of the smaller datasets on each mapper and
keep them in memory as broadcast variables. This eliminates the need to re-partition the join
inputs on the join attribute, and instead, each mapper can compute the join over its partition of
D locally. The performance gain stems from the observation that shuffling the partitions of the
larger dataset is likely more I/O-intensive than replicating the smaller dataset to all workers. We
refer to this implementation as BJ SIRUM (Broadcast Join SIRUM), which is the implementation
we use for the profiling results below. Unless otherwise specified, BJ SIRUM includes sample-
based pruning because it improves upon Naive SIRUM.

In the remainder of this thesis, unless stated otherwise, BJ SIRUM is the baseline implemen-
tation in experimental evaluations.

3.3 Profiling BJ SIRUM

In this section, we present preliminary experiment results of the baseline implementation (BJ
SIRUM) to reveal performance bottlenecks and provide guidance for improvement. In Chapter 4,
we will present performance optimizations based on the insights below.

Similar to Naive SIRUM, BJ SIRUM also has two major steps: candidate rule generation
(including gain computation) and iterative scaling. We measure the execution time of both steps
using the following real datasets that we will describe in Chapter 5: Income, GDELT, and SUSY.
The Income dataset has approximately 1.5 million tuples, 9 dimension attributes and a binary
measure attribute; The GDELT dataset has around 3.8 million tuples, 9 dimension attributes and
a numeric measure attribute; the SUSY dataset has 5 million tuples, 18 dimension attributes and
a binary measure attribute; and TLC has 160 million tuples and 9 dimension attributes. The
experimental setup of our profiling results is described in Section 5.1.

Figure 3.1 shows the execution time of BJ SIRUM for each dataset as well as the total execu-
tion time. A sample of 64 tuples are drawn from D to perform sample-based candidate pruning
and 10 rules, in addition to the rule with all wildcards, are added to R by the end of each exper-
iment. We set |s| to 64 because it is sufficiently large (as defined in Section 3.1.1) for all three
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data sets. It is also a recommended sample set size for the Income dataset in [16]. As shown in
the plot, both rule generation and iterative scaling account for a noticeable amount of overall ex-
ecution time but their weights vary depending on the dataset. One of the key observations is that
the major performance bottleneck shifts from iterative scaling to rule generation as the number
of dimension attributes increases from 9 to 18. We also experimented with a larger value of |s|,
which causes the execution time of rule generation to increase. For a sufficiently large value of
|s|, however, iterative scaling remains the major bottleneck for Income and GDELT. The total
runtime is highest, by far, for TLC, which is larger than the main memory of the cluster, and
therefore causes disk I/O during rule generation and each round of iterative scaling.
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Figure 3.1: Baseline SIRUM runtimes (k = 10, |s| = 64)

Now we dive into the workflow of candidate rule generation as the number of dimension
attributes increases. Specifically, candidate rule generation involves the following three steps:

1. Candidate pruning, i.e., computing the cross-product of s and D to get the LCAs.

2. Generating the ancestors of the LCAs by the mappers.

3. Computing the information gain of each LCA and its ancestors by the reducers.

We use the Income, GDELT datasets as well as projections of SUSY on the first 10, 14 and 18
dimension attributes. Figure 3.2 shows the relative and absolute execution time of BJ SIRUM
over the five datasets. First, observe that computing the information gain is relatively inexpen-
sive after the candidate rules are generated. But the cost increases if the number of LCAs and
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their ancestors grows. On the other hand, candidate pruning is the bottleneck for datasets with
relatively few dimension attributes, accounting for over 90 percent of the rule generation runtime
for Income and GDELT. For datasets with more dimension attributes, however, the ancestor
generation step becomes the bottleneck even though we are using sample-based candidate prun-
ing. The behaviour can be explained by the exponential growth in the number of ancestors with
respect to the number of dimension attributes. The runtime of gain computation step follows a
similar trend because it computes information gain for all rule output by the ancestor generation
step.
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Figure 3.2: Rule generation runtimes by step (k = 10, |s| = 64)

Motivated by these observations, in the next chapter we present performance improvements
that target each of iterative scaling, candidate pruning and ancestor generation.
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Chapter 4

Performance Improvements

In this chapter, we describe the following performance improvements over BJ SIRUM:

• A strategy to maintain only the necessary information for iterative scaling and avoid repet-
itive access to the input data set (Section 4.1)

• An inverted index to accelerate the computation of LCA rules (Section 4.2)

• A multi-stage ancestor generation pipeline that significantly reduces the overall output size
from the mappers (Section 4.3)

• Adding multiple disjoint rules at a time to reduce the total execution time (Section 4.4)

• Reducing disk I/O for datasets failing to fit in the main memory of the computing cluster

4.1 Fast Iterative Scaling

Recall that in Algorithm 1 we present the workflow of iterative scaling, which is executed when-
ever a new rule is added into R. In the profiling experiments of BJ SIRUM, iterative scaling
had to loop for approximately 10 times on average before the multipliers converged. Moreover,
scaling the multiplier of one rule can trigger other rules to scale their multipliers in order to re-
store the balance between

∑
t�r t[m] and

∑
t�r t[m̂], if their support sets overlap. It means the

number of iterations tends to increase as the size of R grows. Hence, improving the performance
and efficiency of iterative scaling is imperative to reducing the overall execution time of SIRUM.
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From Algorithm 1, observe that D is accessed twice per iteration: the first access happens
when computing m̂(ri) at lines 3-6 and the second access happens while updating t[m̂] at line 11.
Furthermore, when accessing D, the t � r condition is evaluated for every tuple, which com-
pares each of t’s attribute values to those of r; this is done even for rules that have been added
previously. Our improved iterative scaling technique is shown in Algorithm 3 and described
below.

First, Algorithm 3 caches the results of t � r for previously added rules. It maintains a bit
array BA for each tuple t, whose i-th entry, t.BA[i], is one if t � ri is true and zero otherwise.
For instance, in Table 1.1, t1 has t.BA = 1100 because it matches r1 and r2 from Table 1.2.
Algorithm 3 also associates a bit array with each rule ri ∈ R, ri.BA, which has a one in the
ith entry and zeros elsewhere. When a new rule rw is added to R, Algorithm 3 updates the BA
values of each tuple by testing t � rw (lines 1-5 in Algorithm 3). Afterwards, t � ri operations
become a bitwise AND of t.BA and ri.BA rather than attribute-by-attribute comparison.

Next, Algorithm 3 avoids repeatedly accessing D during iterative scaling. Recall that for a
given tuple t, t[m̂] is a product of the multipliers λ of each rule that matches it. Observe that
tuples with the same BA, i.e., those which match the same rules, have exactly the same t[m̂],
namely

∏
i,t.BA[i]=1 λ(ri). Now, return to Table 1.1 and suppose that r3 has just been generated.

The first step is to set t.BA[3] = 1 for all t � r3. The first two bits of the BA have already
been set when the r1 and r2 were generated. Next, we compute count(∗), SUM(t[m]) and
SUM(t[m̂]) grouped-by BA (line 6 in Algorithm 3). The result, to which we refer as a Rule
Coverage Table (RCT), is shown in Table 4.1. Note that the t[m̂] values used as input to the
above group-by query are as shown in the column m̂2 in Table 1.1. Also, note that the first bit of
every BA is one since every tuple matches the all-wildcards rule.
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Algorithm 3 Iterative Scaling with RCT

Input: D,R, λ, m(r) for all r ∈ R, ε, newly added rule rw
1: for t ∈ D do
2: if t � rw then
3: t.BA[w]← 1 # t.BA[w] default to 0
4: end if
5: end for
6: Group by t.BA and aggregate over COUNT (∗), SUM(t[m]), and SUM(t[m̂]) to compute

the RCT
7: while true do
8: DIFF ← ARRAY (|R|, 0)
9: for ri ∈ R do

10: m̂(ri)←
∑

p∈RCT,ri.BA&p.BA 6=0 p.SUM(t[m̂])∑
p∈RCT,ri.BA&p.BA 6=0 p.count

11: DIFF [i]← |m(ri)− m̂(ri)|
|m(ri)|

12: end for
13: next← argmax

i
DIFF [i]

14: if DIFF [next] > ε then
15: λold ← λ(rnext)

16: λ(rnext)← λ(rnext) ∗
m(rnext)

m̂(rnext)
17: for p ∈ RCT do
18: if p.BA & r.BA 6= 0 then

19: p.SUM(t[m̂])← p.SUM(t[m̂]) ∗ λ(rnext)
λold

20: end if
21: end for
22: else
23: for t ∈ D do
24: t[m̂]←

∏
r∈R,t�r λ(r)

25: end for
26: break
27: end if
28: end while

Each row of the RCT in Table 4.1 describes a subset of tuples fromD that is pairwise disjoint
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with every other row of the RCT, as illustrated in Figure 4.1. Each subset is uniquely defined by
the set of rules matched by the tuples inside. For example, BA = 1010 corresponds to tuples
that match only r1 and r3, i.e., tuple 2. A key observation is that all tuples in the same subset
share the same estimates; e.g., any tuple with BA = 1010 has the same t[m̂] = λ(r1) ∗ λ(r3).
This property allows the RCT to keep a minimal amount of information necessary for iterative
scaling.

Table 4.1: RCT after the third rule has been generated

BA count SUM(t[m]) SUM(t[m̂])
1000 9 68 75.6
1100 3 41 45.9
1010 1 16 8.4
1110 1 20 15.3

The RCT maintains pre-aggregated SUM(t[m̂]) values, making it easy to compute the m̂(ri)s
by merging the partial aggregates. To compute m̂(ri), we find all the rows in the RCT that have
the ith bit of BA set to one, and divide the sum of SUM(t[m̂]) by the sum of count of these
rows (line 10 in Algorithm 3). Then, after scaling λ(rnext) in line 16, instead of accessing D to
modify the affected t[m̂]s, we update the RCT by re-computing SUM(t[m̂]) for all the rows in
the RCT that have the next-th bit of the BA set to one (line 17 to 21). Overall, we only access
D twice in total (rather than twice per loop): once to compute the RCT and once to write out the
updated t[m̂]s after iterative scaling has converged (lines 23-25).

For the rule set to be interpretable by the data analyst, the maximum number of rules in R is
expected to be no more than 50. Moreover, the amount of reduction in KL-divergence per rule
tends to decrease as |R| grows because rules with higher gain are typically added to R first. It
means RCT is likely to be much smaller than D and can be replicated on each worker node, the
runtime of iterative scaling can thus decrease significantly (as we will show in Chapter 5).

Now we analyze the space efficiency of RCT. If |R| ≤ 50, RCT only requires a bit map of
at most 50 units for each t ∈ D and r ∈ R. It is a small overhead compared to the storage
requirement of the dimension and measure attribute values.
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BA=1110

Figure 4.1: Illustration of the RCT from Table 4.1

4.2 Fast Candidate Pruning

We now move to optimizing candidate rule processing. Recall from Section 3.3 that candidate
rule pruning and ancestor generation are the two expensive operations. In this section, we start
with improving the performance of candidate rule pruning.

Sample-based candidate pruning (Section 3.1.1) computes the LCA of each tuple from the
sample s with each tuple from the dataset D. For each LCA, it makes d comparisons, one for
each dimension attribute, to decide whether that attribute value of the LCA should be a wildcard,
which happens when the two tuples have different values of this attribute or a constant, which
happens when the values match. If s is much smaller than D and the distribution of attribute
value is not dominated by a single constant, then a particular attribute value of an LCA is more
likely than not to be a wildcard. This suggests a simple optimization: rather than computing the
LCA via a cross product of s and D, initialize all |s||D| LCAs to all-wildcards and then replace
wildcards with constants where necessary. If we can quickly locate the constants in the LCAs,
i.e., when the two tuples involved in the LCA agree on at least one attribute, we should be making
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fewer than d comparisons per LCA on average, thereby improving performance.

One solution to locate the positions of the constants is to pre-process s and build an inverted
index for each attribute, where each entry in an index consists of an attribute value and a list
of pointers to the tuples in which that value occurs in this particular attribute. With this index
replicated as a broadcast variable, each mapper can exploit it as follows. For each tuple t in
the fragment of D stored at this mapper, the mapper initializes a buffer of |s| LCAs with each
default to all-wildcards (each tuple from D produces exactly |s| LCAs, one for each tuple in
s). Note that the i-th LCA in the buffer corresponds to the output of the i-th tuple in s. Then,
for each dimension attribute Ai, it uses the index to look up the pointers to tuples ts ∈ s with
ts[Ai] = t[Ai]. Finally, it identifies the corresponding LCAs in the buffer and updates their Ai
attributes to t[Ai].

For example, suppose we sample two tuples from Table 1.1 and we get t4 and t9. An index
over the sample has an entry whose key is ‘Sun’ and the value contains pointers to t4. When
t3 ∈ D is joined with s, a buffer is first created with the following form: [(*, *, *), (*, *, *)].
Note that the t3’s value in the ‘Day’ attribute matches the index key ‘Sun’ and the index value
points to the first tuple in the sample (t4). We can update the buffer to [(Sun, *, *), (*, *, *)].
Hence, it requires 3 look-up operations rather 6 attribute-by-attribute comparison to output the
list of LCAs.

We now provide a brief analysis of the performance gain of fast candidate pruning. Let ti
be a tuple from D and sj be a tuple from the sample s. We will save one comparison operation
whenever ti[Ak] 6= sj[Ak]. Let dom(Ak) = {V1, V2, ..., Vm} and the relative frequency of Vn
in D be Fn. Assuming that s has approximately the same data distribution as D and that the
occurrence of ti[Ak] and sj[Ak] is independent, the probability that ti[Ak] = sj[Ak] = Vn is
Fn

2. Thus, the probability that ti[Ak] 6= sj[Ak] is 1 −
∑

n∈[1,m] Fn
2. Let h = argmax

n
Fn. Then

1 −
∑

n∈[1,m] Fn
2 ≥ 1 − Fh

2 − (1 − Fh)
2. Thus, even for a skewed dataset where Fh = 0.9,

we can still obtain an 18 percent improvement, and the improvement becomes more significant
if the distribution of values of Ak is less skewed.

4.3 Fast Candidate Rule Processing

In Section 3.3, the profiling results reports that as the number of dimension attributes increases,
ancestor generation becomes the bottleneck, even with sample-based candidate pruning. This
is because the simple data cube algorithm used by BJ SIRUM generates all the ancestors of
each LCA and computes the gain of each candidate rule, all in one map-reduce round. Even
though the number of distinct ancestors in the final output from the reducer is relatively small, the
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mapper emits as intermediate result a much larger number of key-value pairs before aggregation
or combination takes place. A large size of intermediate result leads to high CPU usage of the
mappers as well as high memory usage, resulting in stragglers, additional CPU overhead due to
garbage collection to free up memory, or even disk I/O.

To address this problem, we can split up the processing of candidate rules into multiple map-
reduce rounds, with each round generating a subset of the ancestors along the cube lattice. The
ancestors generated in the current map-reduce round will become the input to the next round to
generate senior ancestors, which is a more efficient way to produce candidate rules, as we will
elaborate below. This way, it reduces the load on both the mappers and reducers in each round,
but it incurs the overhead of starting up new map-reduce operation. Thus, it is also important to
limit the number of map-reduce rounds.

To split up the computation, we propose a simple extension of the distributed data cube
algorithm. First, we compute the LCAs, as before. Next, we randomly partition the dimension
attributes into g ordered parts: GrpList = (G1, G2, G3, . . . , Gg). Each part corresponds to a
separate map-reduce stage. For the first group, we take the LCAs and have the mappers generate
the subset of their ancestors that have wildcards in the attributes from G1. Next, the reducers
compute the gain only for this subset of candidate rules. In the second stage, we take in the
output of the first stage, namely the subset of elements from the cube lattice which has already
been computed, and we generate (and compute the gain of) all their ancestors that have wildcards
in the attributes from G2, and so on. At the end, we will have computed all the tuples in the data
cube corresponding to the LCAs and all their ancestors, i.e., all the candidate rules.

We illustrate the procedure using an example. Recall Table 1.1 and suppose that (Fri,SF,London)
is an LCA. BJ SIRUM performs a single map-reduce round. For each LCA, the mapper emits
all of its ancestors. Thus, for (Fri,SF,London), it generates all the ancestors shown in Figure 2.1.
The reducers then compute the gain for each candidate rule, i.e., each LCA and all of its ances-
tors. Now suppose we partition the dimension attributes into two groups: G1={Day,Origin}
and G2={Destination}. In the first map-reduce round that deals with G1, when a mapper pro-
cesses (Fri,SF,London), it only generates its ancestors that have wildcards in the Day or Origin at-
tributes, but not Destination. That is, the generated ancestors are: (Fri,*,London), (*,SF,London),
(*,*,London), as shown in Figure 4.2 and labelled “G1”. The reducers then compute the gain of
the LCAs and their ancestors generated in this round. Next, in the second round, we receive
all the rules computed in the first round as input, and compute the gain of the remaining candi-
date rules having a wildcard in the G2 attributes (labelled “G2” in Figure 4.2). When a mapper
encounters (Fri,SF,London) in this round, its gain will already have been computed. The map-
per generates only one ancestor, (Fri,SF,*), whose aggregate values correspond to

∑
t[m] and∑

t[m̂] of (Fri,SF,London). Similarly, the mapper responsible for (Fri,*,London) only gener-
ates the ancestor (Fri,*,*), the mapper responsible for (*,SF,London) only generates the ancestor
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(Fri,SF,*) (Fri,*,London) (*,SF,London)
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(*, *, *) G2
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G2

G1

G1

G1

G1

Figure 4.2: Computing candidate rules in two stages

(*,SF,*), and the mapper responsible for (*,*,London) generates (*,*,*). The reducers then com-
pute the gain for these candidate rules.

The extension reduces the total number of key-value pairs emitted by the mappers. Consider
two LCA rules ri and rj . Suppose that they share a common ancestor rω. Let rθ be any senior
ancestor of rω that is generated in a later stage than rω. For ri and rj , the total number of ancestors
emitted by the mappers in BJ SIRUM is CL(ri) + CL(rj) in which both rω and rθ are emitted
twice, once from CL(ri) and once from CL(rj). With the extension, rω is still emitted twice but
rθ is only emitted once because it is generated from CL(rω).

Now we use an example to illustrate the benefit this column grouping idea. Consider the
following two LCAs, (Mon, SF, London) and (Fri, SF, London). They share the ancestor (*,
SF, London) in common. Instead of emitting (*, SF, *) twice from the cube lattices of (Fri, SF,
London) and (Mon, SF, London), the extension allows (*, SF, *) to be emitted only once from
the cube lattice of (*, SF, London).

We provide a detailed study on the correctness of the column grouping in Appendix A.
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4.4 Generating Multiple Rule per Iteration

The optimizations in previous sections have focused on speeding up particular steps of SIRUM.
In this section, we present a way to reduce the total number of steps: rather than choosing
the most informative rule per iteration, choose multiple rules from the top of the list sorted by
information gain. To simplify the analysis, we consider the case where two rules are chosen
per iteration. This could potentially cut down the runtime by a half, independently of the other
optimizations, since half as many rule generation and iterative scaling runs are needed.

Notice that the second most informative rule in the i-th iteration may not be among the most
informative rules in the (i + 1)-st iteration, after the best rule from the i-th iteration has been
added. Specifically, suppose the support set of the second most informative rule overlaps with
that of the first one. Its information gain may drop drastically after adding the first rule into
the rule set. We can help avoid this problem by choosing the next most informative rule that is
disjoint from the most informative one; if the top rule is added, any rules that overlap with it
will have their information gain changed, but updating the information gain amounts to doing
iterative scaling and recomputing the m̂(r)s, which brings us back to choosing one rule per
iteration. Furthermore, SIRUM can demand that the next most informative rule has a sufficiently
high information gain—say, at least half the gain of the top rule—and/or is among the top, say,

one percent of the rules in the current iteration. Even then, if SIRUM performs
k

2
iterations of the

rule mining process and choose two rules at a time, it may end up with a higher KL Divergence
compared to choosing one rule at a time k times. Following a similar strategy, one can extend
it to choose three or more rules per iteration, as long as the rules are mutually disjoint. We will
experimentally explore this optimization in Chapter 5.

For example, suppose the top rule is (*, SF, *), followed by (Fri, SF, *) and (*, London, *).
By definition, the second best rule, (Fri, SF, *), overlaps with (*, SF, *) while the third best rule
is disjoint from (*, SF, *). After selecting (*, SF, *) into R, SIRUM can also add (*, London, *)
into R before proceeding to the next iteration.

4.5 Scaling towards Very Large Datasets

Even with the optimizations from the previous sections, SIRUM still requires access to D twice
per iteration: once to compute the LCAs in the candidate pruning step and once when updating
the bit arrays and computing the RCT. If D fails to fit in the main memory of the cluster, the per-
formance penalty of HDFS I/O may be significant. In Spark, this problem is further exacerbated
by the fact that Java objects often occupy more space in memory than data stored on disk.
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To illustrate this problem, we run SIRUM with Income as the input dataset and k = 10
with two different amounts of memory allocated to the executor: 3GB and 5GB. The rest of the
experimental setup is specified in Section 5.1. Only one worker node is used in this experiment;
the findings are similar with more nodes, as we will present in Section 5.7.3. By default, around
60 percent of the allocated memory can be used to store the RDDs while the rest is mostly used
for object creation. This gives roughly 1.8 and 3GB of RAM, respectively, for RDDs.

Figure 4.3 plots the memory used by RDDs as a function of elapsed time. With 5GB of
memory, SIRUM is twice as fast and uses more memory for RDDs. The poor performance
with only 3GB of memory is due to inadequate memory to cache the entire data set, causing
continuous data read from HDFS. With 5GB of memory, SIRUM stops reading data from HDFS
after the input data is fully loaded in memory.
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Figure 4.3: Memory usage over time: different memory allocations

Motivated by the need to reduce disk I/O, we design a strategy referred to as SIRUM on
sample data for very large datasets, in which we draw a random sample of D of size determined
by the amount of memory available, and use it instead of D during rule generation and iterative
scaling. In Figure 4.4, we plot the memory usage over time, with 3GB of memory for SIRUM
and SIRUM on sample data with 60 percent and 10 percent sampling rates. With either sampling
rate, the sampled datasets fit in memory (no disk I/O after they are fully loaded) and runtime
decreases significantly, especially with 10 percent sampling. The downside of sampling is that
the KL-divergence of SIRUM on sample data may be larger than that of SIRUM since the former
is not using all of D to compute information gain and iterative scaling. We will experimentally
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examine this trade-off in Chapter 5.
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Figure 4.4: Memory usage over time: SIRUM vs. SIRUM on sample data

4.6 Summary

To evaluate the effect of optimizations covered in this chapter, we implement multiple SIRUM
variants based on BJ SIRUM, as listed in Table 4.2. Each variant incorporates a single optimiza-
tion, except for Optimized SIRUM that combines the optimizations in order to achieve the best
performance. Note that SIRUM on sample data is a special measure to deal with datasets larger
than the memory capacity. Since it is not applicable when the dataset does fit in memory, it is
not considered a variant of SIRUM.
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Table 4.2: SIRUM Variants

Name Base Implementation Optimizations
Baseline SIRUM

(BJ SIRUM) Naive SIRUM Broadcast Join

RCT SIRUM Baseline SIRUM Rule Coverage Table
FastPruning SIRUM Baseline SIRUM Fast Candidate Pruning
FastAncestor SIRUM Baseline SIRUM Fast Candidate Rule Processing

Multi-rule SIRUM Baseline SIRUM Multi-rule Insertion

Optimized SIRUM Baseline SIRUM

Rule Coverage Table
Fast Candidate Pruning

Fast Candidate Rule Processing
Multi-rule Insertion
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Chapter 5

Evaluation

In this chapter we present our experimental results. We start by describing the experimental
environment and datasets used in Section 5.1. Next, we justify the use of Spark as a data pro-
cessing platform by comparing the performance of Baseline SIRUM on Spark, Hive, SparkSQL
and PostgreSQL (Section 5.2). From Section 5.3 to 5.5, we show the performance improvement
of the optimizations from Chapter 4. Then, we show the performance improvement of opti-
mized SIRUM for informative rule mining and data cube exploration (Section 5.6) compared to
straightforward distributed implementations of previous work [16, 29]. Finally, we evaluate the
scalability of optimized SIRUM and SIRUM on sample data in Section 5.7.

5.1 Experimental Setup

5.1.1 Experiment Environment

The evaluation of SIRUM was performed on a cluster of 16 nodes, each running CentOS 6.4
with 4 Intel Xeon E5-2620 2.10 GHz 6-core CPUs, 64 GB of DDR3 RAM and 2.7 TB of local
disk space. The cluster also has the following software packages installed: (1) Apache Hadoop
2.6; (2) Apache Spark 1.4.0; (3) PostgreSQL 9.4.4; and (4) Apache Hive 1.2.0.

We implemented the SIRUM variants listed in Table 4.2 on Apache Spark, which is chosen
as the ideal underlying platform based on the performance results presented in Section 5.2. They
were deployed as Spark applications in cluster mode on Hadoop YARN, the resource manage-
ment module in the Hadoop framework. If not stated otherwise, the configurations below are
used throughout this chapter:
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1. 16 Spark executors are launched with one per node.

2. 45 GB of memory is allocated to each executor. The other 19 GB on each node is reserved
for the operating system, Spark overhead, and the driver program (if needed), etc.

3. 8 GB of memory is allocated to the driver program, which resides on one of the cluster
nodes along with the executor, running inside the Application Master process managed by
YARN.

4. The input data RDD is initially divided into 384 partitions with each partitioned assigned
to a Spark task.

5. The threshold for iterative scaling, ε, is set to 0.01.

We repeated each experiment five times, dropped the highest and lowest runtimes, and took
the average of the remaining three. In some experiments, we also measured the information gain
of a set of rules, which we define as the KL-divergence using just the all-wildcards rule minus
the KL-divergence using the given set of rules.

5.1.2 Data sets

We use the following data sets to evaluate the effect of optimizations. All datasets are stored as
CSV files in HDFS with a replication factor of 3.

• Income contains U.S. Census data with household demographic attributes such as the
number of children and marital status, and a binary measure attribute to indicate if the
given household’s income exceeds $100, 000. This data set was downloaded from IPUMS-
USA at https://usa.ipums.org/usa/data.shtml/ and contains roughly 1.5
million tuples, 9 dimension attributes and 78 million possible rules. The dataset occupies
50 MB in HDFS.

• SUSY is generated using Monte Carlo simulations for distinguishing between a signal that
produces supersymmetric particles and a background process that does not [6]. The data set
was found at https://archive.ics.uci.edu/ml/datasets/SUSY and con-
tains roughly 5 million tuples, 18 dimension attributes and 68 billion possible rules. We
convert the attribute values from real numbers to discrete values through bucketing, with
three buckets per attribute. The dataset occupies 223 MB in HDFS.
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• GDELT is an extract from the GDELT Event Database [23] which records over 300 cat-
egories of events around the world such as riots and diplomatic exchanges, with nearly
60 attributes including location and actor backgrounds. The measure attribute is the num-
ber of mentions of an event. This data set was downloaded from gdeltproject.org/
data.html and contains roughly 3.8 million tuples, 9 dimension attributes and 12 billion
possible rules. The dataset occupies 141 MB in HDFS.

• TLC is provided by the New York City Taxi and Limousine Commission (TLC), and in-
cludes all trips completed by yellow taxis from 2009 to 2014. We selected 9 dimension
attributes including the month of year when the trip is recorded, the number of passen-
gers, payment method, longitude/latitude of pickup/dropoff locations, etc., and 1 measure
attribute, the total payment. This dataset contains 1.08 billion rows and was accessible
through www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
The dataset occupies 8.5 GB in HDFS.

We used the TLC dataset to evaluate the scalability of SIRUM with respect to the number of
data tuples. First, a sample of 160 million tuples, denoted by TLC 160m, were randomly drawn
from the full data set. TLC 160m is the largest sample dataset that can be entirely stored in the
allocated main memory of the cluster. Similarly, we drew another random sample of 80 million
tuples, denoted by TLC 80m, from TLC 160m and so on. The TLC dataset itself is only used
in Section 5.1 where we examine the performance of SIRUM as it takes as input a sample from
a very large data set to avoid frequent disk access, trading a small drop in accuracy for better
performance.

5.2 Choice of Data Processing Platforms

In Section 2.6, we discussed three candidates of data processing platforms to support the imple-
mentation of SIRUM: PostgreSQL, Apache Hive, and Apache Spark. In this section, we compare
Baseline (includes sample-based pruning and broadcast join) implemented on these platforms us-
ing real data sets to justify our choice of Spark as the underlying platform.

Figure 5.1 compares the runtime of Baseline SIRUM on Spark and PostgreSQL using a single
compute node with Income, whereas Figure 5.2 compares the runtime of Baseline SIRUM on
Spark and Hive using the entire cluster with TLC 160m. In the former, PostgreSQL is six times
slower likely because it is single-threaded and does not leverage multiple cores as Spark does
(and obviously because it runs on a single node). In the latter, Hive is an order of magnitude
slower. We found that the major bottleneck for SIRUM on Hive lies in the disk and network
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Figure 5.1: Baseline SIRUM on Spark vs.
PostgreSQL
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Figure 5.2: Baseline SIRUM on Spark vs.
Hive

I/O for saving and retrieving intermediate results. In contrast, Spark caches parts of, if not
all, intermediate results as RDDs in the cluster memory. We also observed that launching and
cleaning up tasks are slower for SIRUM on Hive.

While we only present the experiment results using k = 10 and |s| = 16 for sample-based
candidate pruning, we observed similar patterns as the value of k and |s| varied, which did not
alter the conclusion of our analysis.

We also implemented Baseline SIRUM using SparkSQL. The performance was worse than
our hand-optimized implementation using Spark data operators. Through further analysis, we
observed that SparkSQL translated queries into different execution plans that we believe were
less efficient than their counterparts using Spark data operators. Hence, we chose Spark data
operators in the following sections. It is part of our plan for future work to evaluate SIRUM on
newer versions of SparkSQL.

The experiments from Section 5.3 to Section 5.5 measure the performance improvements
of individual optimizations from Chapter 4 compared to Baseline SIRUM (except SIRUM on
sample data, which will be evaluated in Section 5.7 in the context of scalability).
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Figure 5.3: Performance improvement of RCT
(GDELT)
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Figure 5.4: Performance improvement of RCT
(SUSY)

5.3 Fast Iterative Scaling

We start by comparing the performance of Baseline SIRUM against RCT SIRUM for iterative
scaling. Figures 5.3 and 5.4 show the total running time of iterative scaling alone (without
rule generation, which is not affected by this optimization) for the GDELT and SUSY datasets,
respectively, as we gradually increase the number of rules added to the rule set, k. As shown in
both plots, RCT SIRUM is four to five times faster on both datasets for all tested values of k.

5.4 Fast Rule Generation

Next, we evaluate the two optimizations for rule generation: fast candidate pruning and fast
candidate rule processing. Figure 5.5 compares the total running time of rule generation alone
(without iterative scaling, which is not affected by this optimization) of Baseline SIRUM and
SIRUM with FastPruning SIRUM for different values of |s|. We used the GDELT dataset with
k=20. We observed similar results with other values of k in the range from 10 to 50. FastPruning
SIRUM is able to achieve roughly a factor of two speedup, and it appears that the speedup
increases as |s| increases.
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Figure 5.5: Performance improvement of fast
candidate pruning (k=20)
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Figure 5.6: Performance improvement of fast
rule generation (k = 20)

As shown in Figure 3.2, for the SUSY data set, the running time of rule generation is domi-
nated by ancestor generation, so fast candidate pruning has little impact on the overall running
time. Instead, we now evaluate fast candidate rule processing on the SUSY dataset. Figure 5.6
shows the total running time of rule generation for Baseline SIRUM and FastAncestor SIRUM
for different values of |s|, with k=20. The dimension attributes are partitioned evenly into two
groups in this experiment. The running time decreases by a factor of about 2.5.

In Figure 3.2, we tested different projections of SUSY and showed that as the number of at-
tributes increases, ancestor generation becomes the bottleneck in rule generation. In Figure 5.7,
we show the total running time of rule generation for Baseline SIRUM and FastAncestor SIRUM
for the SUSY datasets projected over 10 to 18 attributes; we set k=10 and |s|=64 but other values
of these parameters showed similar trends. As the number of dimension attributes increases, so
does the magnitude of speedup due to the optimization. This is because fast candidate rule pro-
cessing reduces the number of ancestors generated as intermediate results during rule selection,
as we show in Figure 5.8. Note that the y-axis is logarithmic.

Finally, we remark that increasing the number of column groups (recall Section 4.3) beyond
two only delivered a slight performance improvement (no more than 20%). The total number of
ancestors generated was smaller, but there was more overhead due to multiple stages of compu-
tation in Spark.
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Figure 5.8: Number of ancestors generated
versus the number of dimension attributes.

5.5 Adding Multiple Rules per Iteration

We now compare Baseline SIRUM against Multi-rule SIRUM, where l rules instead of one are
selected in each iteration, so long as the additional rules are mutually disjoint and lie within the
top 1% of rules when sorted by information gain. We test with l = 2 and l = 3.

Figure 5.9 shows the total running time of rule generation (without iterative scaling) for
different values of k using the GDELT dataset and |s| = 256. We also compare against the
running time of “l-rule*”, in which Multi-rule SIRUM keeps adding new rules into R until it
reaches a commensurate amount of reduction in KL-divergence as Baseline SIRUM; recall that
it may require more than k rules, when choosing two or more rules at a time, to obtain the same
KL-divergence as Baseline SIRUM which chooses one rule at a time k times. As expected, 2-
rule SIRUM reduces the running time of rule generation roughly by about a half (and has little
effect on the total running time of iterative scaling since the total number of rules generated is
still k). However, to obtain the same KL-divergence as Baseline SIRUM, 2-rule SIRUM needs
to generate more than k rules and therefore its performance improvement drops slightly. While
3-rule SIRUM further reduces the running time of rule generation, the improvement over 2-rule
SIRUM is marginal: there is the additional overhead of finding the top three non-overlapping
rules. Moreover, it takes slightly longer for 3-rule* to achieve the same KL-divergence than
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Figure 5.9: Performance of Multi-rule SIRUM
(GDELT)
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Figure 5.10: Performance of Multi-rule
SIRUM (SUSY)

2-rule* (i.e., more rules in total).

The number of additional rules required to match the KL-divergence of a one-rule-at-a-time
approach depends on the data. Figure 5.10 shows the corresponding plot for the SUSY dataset.
Similar to the result for the GDELT dataset, 2-rule SIRUM reduces the running time roughly in
a half. Furthermore, 2-rule* is even slower relative to Multi-rule than in Figure 5.9. That is,
2-rule SIRUM requires even more additional rules: e.g., for k = 50, multi-rule SIRUM requires
36 iterations, or up to 72 rules, to obtain the same KL-divergence as Baseline SIRUM which
performs 50 iterations and adds one rule at a time. As for 3-rule SIRUM, we observe a similar
pattern as in the GDELT dataset. However, it takes less time for 3-rule* to achieve the same
KL-Divergence than 2-rule*.

Since 3-rule SIRUM only provides marginal performance benefit to 2-rule SIRUM, we limit
the number of rules added per iteration to 2 for any optimizations involving Multi-rule SIRUM
in the rest of this chapter.
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5.6 Optimized SIRUM vs. Prior Work

In this section, we present experimental results of Optimized SIRUM to evaluate the compound
effect of all iterative scaling and rule generation optimizations (but not SIRUM on sample data)
on two applications: informative rule mining and data cube exploration. In particular, we com-
pare Optimized SIRUM to straightforward distributed implementations of existing techniques for
informative rule mining over binary measure attributes from [16] and smart data cube exploration
from [29].

5.6.1 Informative Rule Mining

In this application, the mining algorithm is generating a set of k informative rules assuming a bi-
nary measure attribute (and a slightly different definition of KL-divergence for binary attributes),
as detailed in [16]. We test the following implementations: Naive SIRUM, Baseline SIRUM
(using broadcast join) and Optimized SIRUM (including fast iterative scaling, fast candidate
pruning, fast ancestor generation, and selecting two rules at a time). We also test Optimized*,
which corresponds to running Optimized SIRUM until it reaches the same KL-divergence as
Naive and Baseline SIRUM which choose one rule at a time. Naive SIRUM corresponds to the
distributed implementations of the techniques from [16].

We start by showing the scalability of Optimized SIRUM on TLC 2m and larger samples of
TLC up to TLC 40m. Figure 5.11 shows the running times for k = 20 and |s| = 64. Base-
line SIRUM already significantly outperforms Naive SIRUM due to the use of broadcast joins,
and Optimized SIRUM further improves Baseline SIRUM by a factor of five. Even with one
rule inserted per iteration, Optimized SIRUM is still two to three times faster. Moreover, the
performance improvement increases as the data size increases.

In the remainder of this section, we omit Naive SIRUM and show the benefits of Optimized
SIRUM over Baseline SIRUM.

Next, we present the running time improvement for different values of k over the GDELT
(Figure 5.12; |s|=256) and SUSY (Figure 5.13; |s|=64) datasets. Observe that Optimized SIRUM
is consistently five times faster than the Baseline.

Finally, we examine the performance improvement for different values of |s|. Figure 5.14
plots the percentage of performance improvement as a function of |s| for the Income and SUSY
datasets. Optimized SIRUM consistently achieves 80 percent improvement, i.e., factor of five.
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Figure 5.11: Performance improvement on rule mining (TLC)

5.6.2 Data Cube Exploration

In this section we evaluate the performance of Baseline and Optimized SIRUM for data cube
exploration [29]. We assume that the user has examined the results of two group-by queries
(out of all the possible group-by queries on the dimension attributes) with the lowest cardinality.
Then SIRUM performs iterative scaling and present to the user the k most informative rules with
respect to what the user has seen so far. We do not use candidate pruning in this experiment, as it
was not originally implemented in [29]; thus, here Optimized SIRUM only includes fast iterative
scaling, fast ancestor generation and multi-rule selection.

Figure 5.15 shows the running time of data cube exploration implemented as Baseline and
Optimized SIRUM, as well as Optimized SIRUM without multi-rule insertion. We use the
GDELT dataset and k = 10. We also separately show the running time of iterative scaling and
rule generation. We observe a factor of 10 performance improvement for Optimized SIRUM and
about a factor of six improvement for Optimized SIRUM achieving the same level of information
gain as Baseline. The reason why Baseline spends so much time on iterative scaling is that we
followed implementation of the iterative scaling algorithm exactly as described in [29], which
turned out to be less efficient than Algorithm 1, even before applying the RCT optimization. The
main difference is that [29] resets all the λ’s to one and re-scales them whenever a new rule is
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Figure 5.12: Performance improvement on
rule mining (GDELT)
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Figure 5.13: Performance improvement on
rule mining (SUSY)

added, whereas Algorithm 1 carries over previous λ’s as new rules are being added.

5.7 Scalability

5.7.1 Strong Scalability

To measure strong scalability [19] of (Optimized) SIRUM, we keep the data size fixed and vary
the number of Spark executors. Figure 5.16 shows the results for TLC 2m and the 10 times
larger TLC 20m with |s| = 64 and k = 10. For the smaller data set, we observe only a factor
of 3 performance improvement as the number of executors increases from 2 to 16. The sub-
linear scalability likely means that Spark cannot make full use of additional resources and that
the communication overhead increases in proportion to the number of nodes. However, for
TLC 20m, SIRUM obtains a factor of 6 performance improvement as we scale the cluster 8
times larger. It is important to understand the super-linear scaling effect when the cluster size
grows from 2 to 4 executors. Further analysis shows that the size of the working set exceeds the
capacity of 2 executors but is less than that of 4 executors. Some of the cached RDD blocks in
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the working set are evicted from the main memory and have to be recomputed or retrieved from
disk afterwards.

5.7.2 Weak Scalability

To measure weak scalability [19], we gradually increase the data size and also proportionally
increase the number of executors. Figure 5.17 shows the results. The first data point corresponds
to 4 executors and TLC 40m, the second data point uses twice the data and twice the number of
executors (8 and TLC 80m), and the third data point again uses twice as much data and twice as
many executors. Ideally, the plot is expected to follow a straight horizontal line, but the actual
results show that the running time increases slightly as the data size increases, despite adding
more executors. To understand this, we measured the execution time of individual Spark tasks
running during the execution of SIRUM, each of which is scheduled on a separate “executor
core” in Spark. It turns out the variance is caused by stragglers; the median of task execution
time is the same but tasks on certain nodes take noticeably longer to complete. We believe
the problem could be mitigated with the help of speculative execution or full cloning of small
jobs [5].
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Figure 5.15: SIRUM performance on data cube exploration

5.7.3 SIRUM on Sample Data

In this section, we examine the utility of SIRUM on sample data proposed in Section 4.5. Recall
that the idea is to sample the dataset so that it fits in memory and run SIRUM as though the
sample were the full dataset. We now show that SIRUM on sample data is significantly faster
and can scale to larger data sets, and the KL-divergence penalty from working with a sample is
small.

Figures 5.18 and 5.19 illustrate the running time and information gain as we vary the sam-
pling rate from 100 percent down to 10, 1 and 0.1 percent. The former uses TLC and 16 X 45 GB
executor memory; the latter uses SUSY and 3 GB executor memory on a single node; both use
|s|=16. We ensure that in both cases, the dataset is larger than the available executor memory.
Note that the x-axis is logarithmic.

In both cases, there is a significant performance improvement (4X or higher) with a 10 percent
sample, which is small enough to be cached in memory. At the same time, the drop in information
gain is very small. In fact, even a one-percent sampling rate does not decrease the information
gain very significantly, but running time decreases further still. Eventually, though, information
gain suffers and running time no longer decreases, so there is a limit to how much we can sample
the data for the purpose of rule generation and iterative scaling. In particular, for the tested
datasets, it appears that one percent is the lowest reasonable sampling rate.
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Figure 5.16: Strong scaling of Optimized SIRUM
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Figure 5.17: Weak scaling of Optimized SIRUM
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Figure 5.18: Execution time and information gain of SIRUM on sample data over the TLC data
set (16 X 45 GB executor memory)
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Figure 5.19: Execution time and information gain of SIRUM on sample data over the SUSY data
set (8 GB executor memory)
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Chapter 6

Related Work

Informative rule mining has appeared in several contexts, including data summarization (e.g.,
of multidimensional data with a binary measure attribute [16] and itemset data [24]) and data
cube exploration [29]. Diagnosing data quality problems can also benefit from informative rule
mining, although previous work in this area such as Data X-Ray [35] and Data Auditor [17] used
different techniques. SIRUM may be used in all of these applications to improve performance
and scalability.

Some performance improvements proposed in existing work optimize specific sub-problems
(e.g., finding informative itemsets [24]). Others limit the space of candidate rules; e.g., by dis-
allowing overlapping rules unless one is contained within the other [29], or by only consider-
ing those which can be generated from a random sample, i.e., sample-based candidate pruning
[16]. SIRUM implements and further optimizes candidate pruning, and includes other novel op-
timizations of informative rule generation and iterative scaling. We know of no other work on
distributed informative rule mining.

Focusing on the operations involved in informative rule mining, optimizations of iterative
scaling have been proposed in [24], but in the context of itemsets; our optimizations are more
general. In terms of rule generation, our fast processing of candidate rules is conceptually similar
to optimizations of hash-based data cube algorithms (see, e.g., [3]), in that both re-use previously
computed parts of a data cube to compute other parts. However, we are not aware of prior ap-
plications of this idea to a map-reduce context. There is recent work on distributed data cube
computation that takes stragglers into account [25] and may be added to SIRUM to further im-
prove performance. There has also been work on sort-based rather than hash-based distributed
data cube computation [22], but it is not clear how to incorporate sample-based candidate prun-
ing into such an approach (if we sort the data and then prune the space of candidate rules, we
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are paying for sorting the entire data set anyway). Furthermore, there is earlier work on parallel
data cube computation (see, e.g., [11, 15]), but it is not clear if it can be adapted for Spark or
map-reduce. Finally, SIRUM on sample data is akin to other work on sample-based computation
over big data such as BlinkDB [2].
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Chapter 7

Conclusion

In this thesis we presented SIRUM, a scalable approach to informative rule mining. We proposed
several optimizations of the rule mining process and implemented them in the Spark distributed
processing system. Based on experiments on real data, we showed that an improved design of
SIRUM is more than an order of magnitude faster than a naive approach corresponding to prior
work, and five times faster than a baseline approach that incorporates straightforward improve-
ments such as broadcast joins.

As for future work, we are currently investigating several options to eliminate redundancy
in ancestor rule generation; if a rule has the same support set as one of its descendants, it is
unnecessary to evaluate it because its gain is the same as its descendant’s. In addition, it should
be possible to optimize the data cube operations in candidate rule generation (and also optimize
data cube computation in Spark). We are also interested in building a streaming version of
SIRUM (e.g., using Spark Streaming) that incrementally maintains informative rules as new data
arrive. Moreover, we are exploring possible extensions to the informative rule mining problem.
Specifically, it might be interesting to study the correlation among multiple measure attributes as
a function of the dimension attributes. Finally, we recognize that informative rule mining over
high-dimensional datasets is a challenging problem. Even with sample-based candidate pruning,
the number of candidate rules still grows exponentially with respect to the number of dimension
attributes.
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Appendix A

Correctness of Column Grouping

To examine the correctness of the column grouping optimization, it is necessary to show that it
satisfies the following properties. First, FastAncestor SIRUM should generate the same set of
ancestor rules from LCA(s,D) as Baseline SIRUM. Second, the aggregate values must remain
the same for each ancestor rule generated. The two properties together guarantee that SIRUM is
able to evaluate the same set of candidate rules with correct information gains after the column
grouping optimization is applied.

Theorem 1. Let X and Y be two sets of candidate rules generated from the same set of LCA
rules LCA(s,D) by FastAncestor SIRUM and Baseline SIRUM respectively, we have X = Y .
In addition, the aggregate values associated with the candidate rules are also the same.

Proof. We first prove that theX = Y . It is trivial to see that LCA(s,D) ⊆ X and LCA(s,D) ⊆
Y . We only need to show (1) for any generated ancestor rule r ∈ X , r ∈ Y ; and (2) for any
generated ancestor rule r ∈ Y , r ∈ X .

Suppose that FastAncestor SIRUM partitions the dimension attributes into n column groups
and process them following the order G1, G2, . . ., Gn. The set of ancestors generated after
processing Gi is denoted by Qi. For consistency we denote LCA(s,D) by Q0. It follows that

X =
n⋃
i=0

Qi.

1. Let r ∈ X . Since r /∈ LCA(s,D), there exists at least one Ql such that r ∈ Ql where
l > 0. Because rules in Ql are the ancestor rules generated from descendant rules in Ql−1
by replacing one or more non-wildcard values for attributes included in Gl, there exists at
least one descendant rule of r in Ql−1 that generates r; otherwise, r ∈ Ql−1 if all values of
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attributes in Gl are wildcards. Through induction, we can show that there exists an LCA
rule in r′ ∈ Q0 such that r is either an ancestor of r′ or r′ = r. Note that Y includes all
ancestor rules generated from rules in LCA(s,D). Hence, r ∈ Y .

2. Let r ∈ Y . By definition, for any r ∈ Y there exists at least one r0 ∈ LCA(s,D)
such that r is an ancestor generated from r0 by Baseline SIRUM. Let E = {l1, l2, . . . , lw}
be the set of attributes such that p[Ai] = r0[Ai] for i /∈ E whereas r[Ai] = ‘ ∗ ’ and
p[Ai] 6= ‘ ∗ ’ for i ∈ E. That is, r can be generated by replacing all attributes values of
Ai with wildcards where i ∈ E. After G1 is processed, Q1 includes all possible ancestor
rules generated by replacing zero or more non-wildcard values for attributes in G1. It
follows that there exists r1 ∈ Q1 such that r1 is generated by replacing p0’s non-wildcard
values for attributes in E ∩ G1. Similarly, there exists r2 ∈ Q2 such that r2 is generated
by replacing r1’s non-wildcard values for attributes in E ∩ G1. After Gn is processed,

the rn is generated by replacing non-wildcard values for attributes in
n⋃
i=1

(E ∩ Gi). Since

E ⊆ {A1, A2, . . . , Ad} =
n⋃
i=1

Gi, we have E =
n⋃
i=1

(E ∩ Gi). It follows that r = rn.

Therefore, r ∈ X .

Given that FastAncestor SIRUM generates the same set of ancestor rules from LCA(s,D)
as Baseline SIRUM, the aggregate values also remain the same for each ancestor rule as long
as an LCA rule generates only one instance for each of its ancestor rules. Let l′1, l′2, . . . , l′w
be a permutation of E = {l1, l2, . . . , lw}. An instance of an ancestor rule r is created when
r0[Al′1 ], r0[Al′2 ], . . . , r0[Al′w ] are replaced by wildcards in that order. Two instances of the same
ancestor are generated by an LCA rule only if there exist two distinct permutations of elements
in E. Note that the processing order G1, G2, . . ., Gn defines a partial order over l ∈ E. Within
each group, FastAncestor SIRUM follows a processing order based on the subscript value. For
example, r0[Al′i ] is replaced with a wildcard before r0[Al′j ] if and only if l′i < l′j . It follows that a
permutation is uniquely defined for each pair of r and r0. Therefore, an LCA rule generates only
one instance for each of its ancestor rules under FastAncestor SIRUM.
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