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Abstract 

DNA-functionalized nanomaterials have shown versatile applications in biosensor 

development, biomedical diagnostics, therapy, and catalysis. DNA is attractive for this 

purpose for its programmable structure, molecular recognition function, and ease of 

modification. Various nanomaterials, including noble metals, carbons, metal oxides, soft 

polymeric nanostructures, and metal organic frameworks have been conjugated with DNA. 

Among them, metal oxide nanoparticles (MONPs) exhibit unique magnetic, catalytic, and 

surface properties. Most previously reported DNA/MONP conjugates were prepared with 

the help of surface coating layers or linkers. While such conjugation provides stable hybrid 

materials, the intrinsic surface properties of MONPs are often masked. The primary focus 

of this thesis is to interface DNA oligonucleotides with pristine MONPs to provide critical 

insights into the fundamental understandings at these bio-nano interfaces and to design 

functional biosensors towards environmentally and biologically important analytes.  

In Chapter 2 the interaction between indium-doped tin oxide nanoparticles (ITO 

NPs) and fluorescently labeled single-stranded DNA (ssDNA) is systematically studied. 

While electrochemical and photochemical biosensors based on ITO for DNA detection 

have been developed, little is known about the biointerface chemistry. The DNA adsorption 

and fluorescence quenching capability of ITO NPs is first confirmed. Salt concentration, 

pH, DNA sequence and length affect DNA adsorption. The adsorption mechanism is found 

to be through the phosphate backbone using displacement assays. ITO NPs but not In2O3 

can discriminate ssDNA and double stranded DNA (dsDNA) based on the difference in 

their chain flexibility.  
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In Chapter 3, the interaction between fluorescently labeled DNA and iron oxide 

nanoparticles is investigated. Fe3O4 NPs adsorb DNA via the phosphate backbone and 

quench the fluorescence. With the strong affinity between arsenate and Fe3O4, a highly 

sensitive arsenate sensor is demonstrated based on the displacement of fluorescently 

labeled DNA by arsenate. Arsenate displaces adsorbed DNA to increase fluorescence, 

allowing the detection of arsenate down to 300 nM. The sensor design represents a new 

way of using DNA: analyte recognition relying on metal oxide while DNA is used only as 

a signaling molecule.   

In Chapter 4, following the work in Chapter 2 and 3, a total of 19 MONPs are 

screened for their ability to adsorb DNA, quench fluorescence, and release adsorbed DNA 

in the presence of a few common anions. These MONPs have different fluorescence 

quenching properties, DNA adsorption affinity, and different sensitivity toward anions 

probed by DNA desorption. Finally, CeO2, Fe3O4, and ZnO are used to form a sensor array 

to discriminate phosphate, arsenate, and arsenite from the rest using the linear discriminant 

analysis method. The study not only provides a solution for anion discrimination using 

MONPs and DNA but also insights into the interface of metal oxides and DNA.  

In Chapter 5, a fluorescently labeled DNA is used as a probe to investigate the 

interaction between a biologically important molecule, H2O2, and a nanozyme, nanoceria. 

Nanoceria has been previously reported to bind DNA strongly. I demonstrate that the 

adsorbed DNA can be readily displaced by H2O2, resulting in over 20-fold fluorescence 

enhancement. The displacement mechanism instead of oxidative DNA cleavage is 

confirmed by denaturing gel electrophoresis and surface group pKa measurements. This 

system can sensitively detect H2O2 down to 130 nM. When coupled with glucose oxidase, 
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glucose is detected down to 8.9 µM in buffer. Detection in serum is also achieved with 

results comparable with that from a commercial glucose meter. With an understanding of 

the ligand role of H2O2, new applications in rational materials design, sensor development, 

and drug delivery can be further exploited.  

In Chapter 6, I demonstrate the feasibility of using DNA in promoting the 

peroxidase activity of iron oxide nanoparticles. The effect of DNA length, sequence, 

surface coating are systematically studied. The rate enhancement is more significant with 

longer DNA. The negatively charged phosphate backbone and bases of DNA can increase 

the substrate binding, thus facilitating the oxidation reaction in the presence of H2O2. The 

role of DNA in modulating the peroxidase activity of iron oxide provides insights into the 

mechanism the nanozymes.  

Overall, the adsorption mechanism of DNA by various oxides, the controlling of 

the catalytic activity of oxides, and the related biosensor applications have been extensively 

studied in this thesis. 
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Chapter 1 Introduction 

1.1 DNA as a Functional Molecule 

1.1.1 The structure of DNA 

Deoxyribonucleic acid (DNA) is the genetic information carrier of living organisms. 

Investigation into its biological functions has revolutionized human’s insights into nature. 

In the past decades, DNA has also shown potential in chemistry, physics, material science, 

energy, and even computer science.1,2,3,4 The wide applications are attributable to the 

versatile functionalities of DNA, including molecular recognition, catalysis, constructing 

nanostructures, to name a few. From a chemical viewpoint, all of such functions are rooted 

from the unique structure of DNA. 

1.1.1.1 Chemical components  

DNA is a thread-like linear biopolymer and it has an extensive secondary structure. 

Two strands run in opposite directions (antiparallel, B-form) and twisted together to form 

a right-handed double helix (Figure 1.1A). Each strand is made up of four types of units 

called nucleotides (Figure 1.1B). A nucleotide is constructed from three components: a 

heterocyclic base or nucleobase, a pentose sugar, and a phosphate residue. The nucleobases 

for DNA are adenine (A), guanine (G), cytosine (C), and thymine (T) (Figure 1.1C). 

Nucleosides are the combination of a nucleobase and a monosaccharide (ribose in 

ribonucleic acid, RNA and 2-deoxyribose in DNA) (Figure 1.1D) Nucleotides are the 

phosphate esters of nucleosides, in which phosphate is typically joined to 5′ position of the 
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sugar ring (Figure 1.1B). In DNA, nucleotides are linked via the phosphodiester bonds 

between the phosphate of one nucleotide and the 3′ hydroxyl group of another one. 

 

Figure 1.1 Chemical structures of DNA. (A) The double helix structure of double-stranded 

DNA. (B) A single-stranded DNA. (C) Four types of nucleobases in DNA. (D) Nucleosides 

composed of a nucleobase and a sugar. (E) Nucleotides composed of a phosphate, a 

nucleobase and a sugar. 

 

The diameter of the most common B-DNA is 20 Å, and the vertical distance 

between adjacent DNA base pairs is 3.4 Å. Natural DNA typically contains thousands to 

millions of base pairs (bps) with a coiled or super-coiled structure in the biologically 

environment. However, short oligonucleotides can form persistent double helix up to 46-

50 nm (i.e., 140-150 bps).5 Beyond that, DNA can no longer be treated as a rigid rod. My 

research is mainly focused on using short ssDNA (< 50-mer) as functional molecules in 

nanotechnology. Therefore, the following introduction will be mainly focused on short 

ssDNA or oligonucleotide, simply referred as DNA. 

In the double helix structure, the sugar and phosphate backbone of the two DNA 

strands are exposed to the environment, whereas the nucleic bases are embedded. To hold 
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the two strands together, both hydrogen bonds and π–π stacking are involved. Hydrogen 

bonds are formed specifically between purine and pyrimidine bases. The A-T base pair 

possesses two hydrogen bonds, while G forms three hydrogen bonds with C (Figure 1.2A). 

Besides these canonical Watson-Crick base pairing, many other base pairings, for example 

Hoogsteen pairing, have also been identified.6 Stacking from adjacent DNA bases also 

makes contributions and even plays a dominant role in stabilizing the DNA duplex. Pi-

stacking (π–π stacking) is the non-covalent attraction between aromatic rings with different 

modes (Figure 1.2B). In DNA structures, the bases are positioned face-to-face with offset 

orientation (Figure1.2B, model ii).6  

 

Figure 1.2 Interaction forces between DNA bases. (A) Canonical hydrogen bonds. (B) 

Typical π–π stacking modes: i) parallel face-centred, ii) parallel offset, and iii) 

perpendicular T-shaped. 

 

1.1.1.2 Physicochemical properties of DNA 

DNA is an anionic polymer in a physiological environment. The negative charge is 

mainly due the phosphate backbone, which has a pKa around 2.7 At the same time, the 2-

deoxyribose are not charged. Protonation/deprotonation of DNA bases occur when the pH 
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is altered. For example, the N(7) of adenine can be half protonated when lowering the pH 

down to 3.5, resulting in a positive DNA base. A DNA strand rich in adenine (A), therefore, 

has a lower negative charge density at acidic environment. Such pH-dependent charge 

alternation is important in understanding the interaction between DNA and other 

biomolecules or materials.  

With three distinct components, phosphate, sugar and bases, DNA provides 

multiple interaction modes with incoming substances.7,8 The negative charged phosphate 

backbone offers electrostatic interaction forces with positively charge molecules (e.g., 

proteins, metal ions). The nucleophilic phosphate residue can also bind to some hard Lewis 

acid via coordination bonds. The sugar ring in DNA lacks interaction sites with other 

molecules. DNA bases can form hydrogen bonds either as donor or as acceptors or both. 

The base ring can also achieve π-π stacking with aromatic molecules or materials rich in π 

electrons. The exocyclic keto group and base ring nitrogen can bind to certain metal ions 

by donating lone-pair electrons to form dative bonds.  

1.1.1.3 DNA synthesis and modification 

Long dsDNA can be isolated from cell nuclei. Modern molecular biology also 

provides methods (e.g., polymerase chain reaction, PCR) in synthesizing DNA. However, 

with these methods, only a small amount of long DNAs is obtained. For nanotechnology, 

short ssDNA is required. Thanks to chemical synthesis, solid-phase synthesis in particular, 

DNA with arbitrary sequence and length can now be readily prepared. Providers can 

deliver purchased DNA with high quality within days.   

Furthermore, functional groups can be incorporated at specific positions of a DNA 

sequence during the chemical synthesis process. Typical functional groups include organic 
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fluorophores and linking groups. Fluorescence is a widely used technique in monitoring 

biomolecules with high sensitivity. However, DNA is intrinsically non-fluorescent. 

Organic fluorophores can be easily attached to DNA, making them tractable. Another 

important modification is the attaching of a linking group. For example, thiolated DNA 

now is routinely used in constructing DNA-modified gold nanoparticles (AuNPs), 

electrodes, and microarrays. Amino-modified DNA can be used to conjugate with 

molecules containing a carboxyl group. Biotin-modified DNA can be strongly attached to 

a target substance with a streptavidin based on the well-established biotin-streptavidin 

chemistry.9  

1.1.2 Functional DNA 

DNA had been considered to be chemically inert for a long time due to the stable 

double helix structures. Since the early 1990s, DNA has found versatile chemical functions 

in a diverse range of fields. Some typical functionalities are introduced to illustrate the use 

of DNA in molecular recognition and nanotechnology.  

1.1.2.1 Base pairng 

DNA can hybridize to its complementary strands based on the Watson-Crick base 

pairing, which forms the basis of many DNA detection technologies (e.g., DNA 

microarray). Aside from the Watson–Crick base pairing or canonical base pairing, non-

canonical base pairing also exists in DNA, for example, G-quadruplexes and i-motif 

structures (Figure 1.3).10 G-quadruplexes are formed in guanine-rich nucleic acids. Four G 

bases composes a G-tetrapad via Hoogsteen hydrogen bonding (Figure 1.3A), and this 

square plane can be further stabilized by certain cations (e.g., K+). DNA rich in cytosine 
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can form quadruple-stranded structure (i.e., i-motif) under acidic conditions. In 1993, 

Gehring et al. discovered four strands of oligonucleotide (TCCCCC) form the 

intermolecular i-motif.11 The strands are hold together by hydrogen bonding formed 

between cytosine and protonated cytosine (Figure 1.3B). Intramolecular i-motif can also 

be formed in C-rich DNA (Figure 1.3D). To form the i-motif, one of the cytosine bases in 

the base pairs requires to be protonated. Reversible folding and unfolding can be achieved 

by adjusting the solution pH.12  

 

Figure 1.3 Typical structures formed by non-canonical base pairing. (A) A G-quadruplex 

plane composed by four G bases in the presence of metal ions. (B) Base pairing between 

two C with one protonated. (C) A schematic of G-quadruplex formed by G-rich DNA, (D) 

A schematic of i-motif structure formed by C-rich DNA. 

1.1.2.2 DNA aptamers 

Aptamers are single-stranded DNAs or RNAs that can bind to analytes beyond 

complementary sequences with high affinity and specificity. DNA aptamers can recognize 

various targets, including metal ion, small molecules, proteins, and even cells.13,14 In 1992, 

Bock and co-workers isolated the first DNA thrombin aptamer with a binding affinity (Kd) 
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in the range 25-200 nM thrombin.15 Structural investigation revealed that the ssDNA forms 

an intramolecular G-quadruplex (Figure 1.4A). The selection of a DNA aptamer for ATP 

was reported in 1995 by Huizenga and Szostak.16 This aptamer can also bind adenosine 

and AMP with a similar affinity. It was indicated two targets molecules (red dots in Figure 

1.4 B) bind to one aptamer by forming a non-canonical G-A base pair.17 Over the last two 

decades a large number of DNA aptamers have been isolated and a few searchable aptamer 

databases were established.18,19,20  

 

Figure 1.4 Examples of DNA aptamers. (A) A protein thrombin aptamer with a G- 

quadruplex structure. (B) A adenosine aptamer binds two targets with G-A base pair, 

Figure adapted with permission from ref (21). Copyright © Royal Society of Chemistry. 

 

Aptamers are sometimes called chemical antibodies. Compared to real antibodies, 

aptamers exhibit similar even better binding affinity and specificity.4 At the same time, 

aptamers can be prepared in a more cost-effective way with large quantities using chemical 

synthesis. In addition, aptamers, especially DNA aptamers, are more thermal stable. Upon 

heating, antibodies may lose their secondary structures and hence functionality. But DNA 

can maintain its functionality even after several cycles of heating and cooling.4 
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1.1.2.3 DNAzymes 

DNA can also function as enzymes with catalytic functions.4 In the early 1980s, 

Cech22 and Altman23 discovered that natural RNA (ribozymes) can act as enzymes, 

catalyzing a lot of chemical reactions. More than a decade later, catalytic DNA 

(DNAzymes) was found by in vitro selection.24 A diverse range of reactions, including 

RNA cleavage, DNA cleavage, RNA ligation, DNA ligation, DNA phosphorylation, and 

amide hydrolysis can now be catalyzed by DNAzymes.25 These discoveries have 

revolutionized the long-lasted concept of enzymes.  

1.1.2.4 DNA nanostructures 

The simple base pairing principle can not only be used in cDNA detection, but also 

in constructing DNA-based nanostructures. In early 1980s, Seeman and co-workers first 

reported the self-assembly of four ssDNAs into a four-way junction.26,27 The branched 

DNA junctions further assembled into 2-D lattice via the sticky ends (Figure 1.5A). In 2009, 

the Seeman group successfully obtained the 3-D DNA crystals using well designed 

connectors with proper sticky ends.28 Another interesting DNA nanostructure is DNA 

origami. In 2006, Rothemund reported that he was able to assemble a 7-kilobase ssDNA 

with over 200 short ssDNAs into various 2-D shapes (Figure 1.5C).29 After this seminal 

work, several groups reported the assembly of DNA origami with 3-D structures.30,31,32 
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Figure 1.5 DNA as building blocks to form nanostructures. (A) Four ssDNA assembled 

into a four-way junction and further into 2-D lattice.33 (B) 3-D DNA crystals formed by 

DNA with sticky-ends (top, the motif structure; bottom, the optical image of the crystal).28 

(C) Atomic force microscopy (AFM) images of DNA origami nanostructures with different 

shapes (from left to right): square, rectangle, star, and smiley face.29 Figure adapted with 

permission from: (A) ref (33) Copyright © Nature Publishing Group; (B) ref (28) Copyright 

© Nature Publishing Group; and (C) ref (29) Copyright ©Nature Publishing Group.  

 

1.2 DNA in Bionanotechnology 

The last few decades have witnessed the rapid development of nanotechnology. 

Nanomaterials generally refer to materials whose scales, at least one dimension, are 

between 1-100 nm. The nanoscale materials exhibit dramatic different electronic, 

mechanical, and optical properties compared to their bulk counterparts. One of the major 
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features of nanomaterials is the high surface-to-volume ratios, which allows the further 

modification with functional molecules. The convergence of nanotechnology and biology 

has resulted in the development of bionanotechnology. These “value-added” bio-nano 

conjugates combine the recognition property of biomaterials and the unique catalytic, 

electronic and optical features of nanomaterials and find promising values in tissue 

engineering, drug and gene delivery, biosensing and imaging, diagnostics, and cancer 

therapy.9,34 

DNA has been extensively coupled to nanomaterials in biological and medical 

applications.4,10,35,36,37 As mentioned above, DNA can hybridize with its complementary 

strands. DNA aptamers can recognize versatile targets with high sensitivity and selectivity, 

such as metal ions, cancer biomarkers, proteins, and even cells. DNAzymes are able to 

catalyze chemical reactions in the presence of cofactors. On the other hand, the 

nanomaterials possess optical, magnetic, and mechanical properties. DNA-modified 

nanomaterials combine the functions of each component. DNA-functionalized AuNPs is 

perhaps the most mature example in bionanotechnology. Here, using DNA/AuNPs as an 

example, I will introduce the conjugation strategies, properties, and some typical 

applications in biosensing.  

1.2.1 Interfacing AuNPs with thiolated DNA  

1.2.1.1 Modifying AuNPs with thiolated DNA 

In 1996, the Mirkin group38 and the Alivisatos group39 first reported the coupling 

of DNA with AuNPs and controlled assembly. To prepare the conjugates, thiolated DNA 

was used in both works since thiol forms a strong dative bond with gold.9 However, the 
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commonly used AuNPs have negatively charged citrate ions on the surface. DNA is also 

negatively charged because of its phosphate backbone. The conjugation of DNA with 

AuNPs is, as a result, inhibited by electrostatic repulsion. While adding NaCl can inhibit 

this charge repulsion, it may also cause irreversible aggregation of AuNPs. To solve this 

problem, Mirkin and coworkers proposed a salt-aging strategy to obtain DNA/AuNPs with 

retained colloidal stability.40 In the method (Figure 1.6A), NaCl is gradually added to 

facilitate DNA attaching and to avoid particle aggregation. Furthermore, AuNPs with a 

small amount of DNA strands can withstand the addition of more NaCl. Finally, AuNPs 

with a high DNA density are obtained. Approximately 180 strands of thiolated DNA can 

be attached on a 20 nm AuNP when the concentration of NaCl is close to 1 M.40 Based on 

the calculation of DNA footprint on AuNPs surface, a standing-up conformation of DNA 

strands was proposed.41 The high density and resulted standing-up conformation of DNA 

is important in achieving the collective effect of DNA-functionalized AuNPs in biosensing, 

assembly, and cellular uptake.  

While the salt-aging method has been generally accepted in preparing DNA/AuNPs, 

the process is quite time-consuming (~ 2 days). Several alternative methods were then 

raised to shorten the preparation process. Protection agents (e.g., surfactants) were used to 

replace citrate ions on AuNPs surface.42 In this way, NaCl can be added quickly to the 

DNA/AuNPs mixture without aggregating AuNPs. However, these methods still need a 

long incubation time, and remaining capping agents can be potentially toxic in a biological 

environment. Zhang and co-workers reported a facile method to prepare reliable 

DNA/AuNPs within 3 min.43 After mixing DNA with AuNPs, they simply adjusted the 

solution pH to 3 using a citrate buffer and achieved instantaneous attachment of thiolated 
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DNA to AuNPs. The mechanism was proposed to be a synergistic effect between pH and 

salt. At lower pH, both DNA and citrate-capped AuNPs can be partially protonated. The 

charge repulsion is then significantly reduced and the strong bonding between gold and 

thiol takes place. This convenient method has also been successfully applied in 

functionalizing gold nanorods44 and silver nanoparticles45 with thiolated DNA. 

 

Figure 1.6 Schematics of conjugating thiolated DNA with AuNPs. (A) The salt-aging 

method. (B) The low pH method. Figure adapted with permission from ref (43). Copyright 

© American Chemical Society. 

 

1.2.1.2 Features of AuNPs with thiolated DNA 

The DNA/AuNPs conjugates combine the properties of each component. Using 

thiolated DNA, a high DNA density on AuNPs surface can easily be achieved. With this 

DNA layer, the conjugates exhibit some improved and even distinct properties.  

Improved colloidal stability. Due to the large surface-to-volume ratio and high 

free energy, colloidal nanoparticles tend to aggregate. The unwanted particle aggregation 

should be avoided since it may dramatically alter the physiochemical properties of 

nanomaterials. DNA is a negatively charged biopolymer. Once attaching DNA strands onto 
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the nanoparticles surface, the stability of colloidal nanoparticles can be improved via two 

stabilization mechanisms: electrostatic repulsion and steric effect. For example, the 

commonly used AuNPs are capped and stabilized by the weakly adsorbed citrate ions. 

Simply adding NaCl results in irreversible particle aggregation indicated by the color 

change and precipitation. However, with a DNA modification layer, AuNPs maintain the 

colloidal stability.40,43,46,47 This improved stability highlights the importance of the 

negative DNA layer in withstanding the increased ionic strength. Furthermore, even 

aggregated by adding a higher concentration of NaCl, the AuNPs precipitate can well re-

disperse in water without aggregation. The re-dispersion of AuNPs precipitates suggests 

that the DNA layer also provides steric effect and prevents AuNPs interacting with each 

other.  

The conjugation of DNA with nanomaterials not just improves the stability of 

nanomaterials, but also inhibits the degradation of DNA by enzymes (e.g., DNase I). 

Compared to the free DNA in solution, DNA attached on AuNPs showed a slower 

digestion.48 This protection effect is particularly important in gene delivery, which requires 

a long pathway before arriving at the targeting sites.  

Enhancing molecular recognition. In homogenous solution, DNA molecules are 

uniformly dispersed. However, on the surface of nanomaterials, a high local DNA density 

is achieved. It has been reported that this high density DNA can function cooperatively and 

fundamentally alter the recognition process, also known as synergism. DNA immobilized 

on the surface of AuNPs also showed improved binding affinity towards its cDNA 

compared to the molecular counterpart.49 In the seminal work, Mirkin and co-workers 

proved that the melting of spherical nucleic acid (DNA-modified spherical AuNPs) 
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occurred in a much narrower temperature window. The sensing platform was designed by 

modifying 13-nm AuNPs with two distinct probe ssDNAs (Figure 1.7A, blue and red 

strands). The linking DNA was designed to have two blocks, each of which was 

complementary to the probe DNA on AuNPs surface. In the absence of DNA target, the 

AuNPs were well separated, showing red color in solution. Once introducing DNA target, 

AuNPs aggregates were formed, showing blue color. If the temperature was increased, the 

DNA-AuNPs aggregates can disperse in solution again, resulting in the recovery of red 

color. This melting behavior was also monitored by the variation of absorbance at 260 nm 

(Figure 1.7C). The melting curves were much sharper compared to that of conventional 

fluorophore-labeled DNA.  

A detailed study of the melting behavior of DNA/AuNPs aggregates was carried 

out by the Mirkin group.50 Several parameters, including salt concentration, DNA surface 

density, length of linker DNA, and particle size, may affect the melting curves. It was 

observed that particles size significantly affect the sharpness of melting profiles. A 

cooperative melting model was provided to explain the sharp melting profiles. The high 

density of DNA probes on AuNPs offer multiple links between nanoparticles. Also, the 

high local salt concentration of DNA/AuNPs conjugates determines the melting 

temperature.  
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Figure 1.7 Cooperative effect in the DNA/AuNPs assembly/melting process. (A) 

Schematics of the modification of AuNPs with two probe DNA, blue and red. The linker 

DNA has two parts, each one complementary to the probe DNA. (B) Color change of 

DNA/AuNPs in the absence and presence of DNA target. (C) The melting curves of 

DNA/AuNPs and DNA. The right panel shows the color change spotted in a silica support. 

Figure adapted with permission from ref (51). Copyright © American Chemical Society. 

 

Facilitating cellular uptake. The condensation on nanomaterials surface can 

fundamentally alter the way DNA interacts with cells. Gene therapy needs the successful 

delivery of nucleic acids into the specific sites. Since both nucleic acids and cell 

membranes are negatively charged, the crossing of nucleic acid is inhibited. To facilitate 

the delivery, transfection agents are typically required. Mirkin and co-workers reported 

that DNA-modified AuNPs, even with a negative surface charge, can enter cells with high 

efficiency.48,52 Further studies showed that the dense DNA layer is important for the 
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enhanced cellular uptake.53,54,55 AuNPs without DNA layer or with other modification did 

not enter cells with equally high efficiency. Furthermore, highly dense DNA on other 

nanoparticles56 or even without core materials57 still exhibit high transfection efficiency. 

1.2.2 Interfacing AuNPs with non-thiolated DNA 

1.2.2.1 Modifying AuNPs with non-thiolated DNA 

Non-thiolated DNA has also shown promising values in functionalizing AuNPs. 

Compared to thiolated DNA, non-thiolated DNA is more cost effective. The major 

attraction forces between AuNPs and non-thiolated DNA arise from the bases-Au 

interaction. Coordination bonds can be formed between DNA bases with soft Lewis acid 

gold (Figure 1.8). The DNA bases adsorption by gold measured by temperature-

programmed desorption-infrared reflection absorption spectroscopy (TPD-IRAS) and 

temperature-programmed desorption-mass spectroscopy (TPD-MS)58,59 indicates that the 

adsorption energy is over 100 kJ/mol. G binds to gold the most strongly followed by A, C, 

and T. 
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Figure 1.8 Interaction between DNA bases and AuNPs. The blue lines indicate interaction 

sites (the dashed lines suggest a possible weak interaction). Figure adapted with permission 

from ref (7). Copyright © Royal Society of Chemistry. 

 

The adsorption of non-thiolated DNA onto AuNPs was also inhibited by 

electrostatic repulsion. To screen the charge repulsion, salt (e.g., NaCl) is often added to 

increase the ionic strength.60,61,62,63 The adsorption kinetics and capacity of non-thiolated 

DNA is dependent on the salt concentration.60 At high salt concentration, DNA compacts 

more tightly and occupies less space, resulting in more DNA binding to the gold surface. 

Furthermore, salts also affect the DNA adsorption process beyond adjusting ionic strength. 

Monovalent cations (Li+, Na+, K+, Rb+, Cs+) exhibit increasing ability in destabilizing 

AuNPs and promoting the initial DNA adsorption as the ionic radius increases.64  

The adsorption of DNA onto AuNPs strongly depends on the DNA sequence. 

DNAs rich in A or C bind are more easily to be adsorbed than those rich in T. The 

sequences determine the conformation and capacity of DNA on AuNPs surface. While 

more than 120 strands of poly A15 adsorb on each 13 nm AuNP, only ca. 20 strands of poly 
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T15 on each particle. This large difference can be explained by different affinities between 

DNA bases and gold surface. It may also indicate that poly A15 adapts a standing-up 

conformation, since the capacity is close of thiolated DNA. This model was further 

confirmed the high adsorption capacities of DNA with terminal A or C.61 

1.2.2.2 Features of AuNPs with non-thiolated DNA 

AuNPs modified with non-thiolated DNA have also found interesting properties 

and applications in biosensing. Similar to thiolated DNA, non-thiolated DNA can also 

protect AuNPs from salt-induced aggregation.46 However, dsDNA with embedded bases 

has a much lower affinity with AuNPs. Based on this discrimination ability of AuNPs, Li 

and Rothberg developed a DNA biosensor (Figure 1.9). This colorimetric sensor can detect 

target DNA with high sensitivity ( < 100 femtomoles) and high selectivity (single base 

mismatch) in 5 min.  

 

Figure 1.9 Schematics of DNA detection using AuNPs. AuNPs can adsorb ssDNA but not 

dsDNA. AuNPs with ssDNA are still red even after adding NaCl. DNA duplex is formed 

in the presence of cDNA, and further adding NaCl results in a blue color.  
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Non-thiolated DNA strands adsorb onto AuNPs mainly through bases and those 

rich in A bind more strongly. It is possible then to design a poly-A block as an anchoring 

group. Zhang and co-workers were able to control the DNA loading density and polarity 

on AuNPs.61 Based on this strategy, colorimetric detection of DNA63 and surface-enhanced 

resonance Raman scattering detection of Hg2+65 have been achieved.  

1.3 Metal Oxide Nanomaterials 

Metal oxides nanomaterials encompass a large number of important materials, for 

instance, iron oxide, cerium oxide, zinc oxide, tin oxide, zirconium oxide, and titanium 

oxide. These nanosized metal oxides exhibit interesting optical, catalytic, and magnetic 

properties and provide surface modification sites for further biomolecules immobilization. 

Protein enzymes and functional DNA, for example, have been combined with various 

metal oxides to construct bioelectronics sensors.66 In this section, three important 

properties of metal oxides will be introduced, including DNA immobilization, anions 

adsorption (arsenic as an example), and enzyme-mimic activities. 

 

1.3.1 Metal oxide-solution interface 

Once dispersed in aqueous solution, the surface of metal oxides become charged. 

The metal ions on surface possess a lower coordination number compared to that in the 

bulk. As a result, chemisorption of water occurs (Figure 1.10A). The surface could be 

positive, negative or neutral depending on the property of the oxide, and also solution pH. 
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When dispersed in buffer solutions with counterions, similar to other colloidal systems, 

metal oxides exhibit an electric double-layer structure (Figure 1.10B).  

 

Figure 1.10 Surface properties of metal oxides in aqueous solutions.  

 

1.3.2 Interfacing metal oxides with DNA 

Over the last decades, DNA-functionalized metal oxide nanoparticles (MONPs) 

have been explored in biosensing, drug delivery, cancer diagnostics and therapy. DNA can 

be attached onto metal oxide nanoparticles either indirectly via a linker or a coating layer 

or directly by adsorption.  

1.3.2.1 Attaching DNA on MONPs “indirectly” 

With a modification layer, MONPs show improved stability as well as additional 

functional groups. DNA can then attached by electrostatic interaction or covalent bonds. 
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For example, Scherer et al. reported that gene delivery can be achieved using a 

polyethyleneimine (PEI) encapsulated Fe3O4 NPs.67 DNA was simply adsorbed on the 

positive charged PEI surface via electrostatic attraction. Another common strategy is using 

the silane chemistry by forming silicon-oxygen bond with the oxides surface. Typically, 

MONPs are treated with bifunctional organosilanes to introduce amine or thiol groups. 

Further attachment of DNA can be achieved by physisorption68 or forming covalent bonds.9 

A thick coating layer may undermine the intrinsic properties of the nanomaterials.69 

In this regard, small molecules as linkers are preferred. Mirkin and co-workers developed 

a DNA/Fe3O4 conjugate with a high DNA density (up to 70 strands per 10 nm particle) via 

click chemistry.56 This composite exhibited characteristic features of spherical nucleic 

acids, such as cooperative melting and high cellular uptake.52 The electrophilic surface of 

many metal oxides (e.g., iron oxide) can bind nucleophilic molecules through the metal’s 

empty orbitals.9 In this respect, cross linkers with functional groups, including phosphate, 

sulfate, carbonate, and hydroxyl groups can be used for DNA linking. Paunesku et al. 

prepared DNA/TiO2 nanocomposites using dopamine as the linker.70 Dopamine can bind 

strongly to metal oxides71 and the remaining primary amine is available for DNA 

attachment.70,72 The obtained composite exhibited multiple activities, including 

photocatalytic activity, molecular recognition ability, and light-responsive DNA 

endonuclease activity.70  

1.3.2.2 Adsorbing DNA on MONPs “directly” 

Pristine metal oxides have also been used to interface with non-modified DNA. The 

phosphate backbone of DNA can bind to the metal oxide surface via electrostatic 

interaction and/or coordination bonds. Compared to the indirect strategy, interfacing DNA 
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with oxides directly has shown several unique features and found applications in 

biosensing, gene delivery, and photocatalysis.  

By directly interfacing DNA with metal oxides, the oxidation of bases, 

hybridization with cDNA, and forming complex with targets can be detected. 

Electrochemical detection of nucleic acids relied on the attaching of DNA on the electrodes. 

Thorp and co-workers reported that long strands of DNA (over 1000 bps) can be directly 

adsorbed on the indium tin oxide (ITO) electrode without cross linkers or surface coating 

layers.73,74,75 The adsorbed DNA can resist repeated washing and heating operations. 

Electrocatalytic oxidation of guanine by Ru(bpy)3
3+ (bpy = 2,2′-bipyridine) can then be 

detected with high sensitivity. The binding mode was proposed to be metal-phosphate 

interaction. Metal oxides (e.g., ZrO2) can also be used to as a linker to immobilize DNA 

on glassy carbon electrode, which cannot adsorb DNA directly.76 If the probe DNA was 

first adsorbed on the electrode, cDNA-induced hybridization can be detected. Using this 

strategy, Malhotra and co-workers66,77,78 have developed electrochemical sensors for 

bacteria.  

Fluorescent biosensors based on functional DNA and pristine metal oxides have 

also been developed. Several metal oxides can adsorb fluorescently labeled and quench the 

fluorescence. Adding cDNA or target analytes then induces the probe desorption and 

fluorescence recovery. Alternatively, pre-formed dsDNA or aptamer-target complexes 

have lower affinities to the metal oxides than ssDNA. Zhang and co-workers evaluated the 

differential adsorption of ssDNA and dsDNA on TiO2, and found that the latter can be 

adsorbed less efficiently.79 Control experiments showed non-target DNA did not induce 

significant inhibition, suggesting the specificity of TiO2 in DNA detection. Using a similar 
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strategy, Song and co-workers developed a sensitive DNA sensor (LOD below nM) based 

on the pristine α-Fe2O3 NPs.80 DNA labeled with various organic dyes can be effectively 

adsorbed and quenched by α-Fe2O3 NPs. Liu and co-workers developed a fluorescence 

turn-on biosensor for thrombin using the thrombin aptamer and Fe3O4 NPs.81 The LOD 

was as low as 0.5 nM. Some 2-D layered metal oxide nanomaterials also show capability 

in discriminating ssDNA and dsDNA and have been utilized as biosensors and gene 

delivery vehicles. Zou and co-workers reported that MnO2 nanosheets can effectively 

adsorb ssDNA but not dsDNA. The fluorescence quenching ability of MnO2 made it 

possible to design DNA-based biosensor for cDNA and adenosine.82  

Another feature of directly interfacing DNA with metal oxides is that the surface 

activities of the nanomaterials can be modulated. Ibuki and co-workers evaluated the role 

of DNA adsorption on the removal and degradation of organic dyes by TiO2.83 They found 

that DNA-modified TiO2 can adsorb several organic dyes with significant improved 

efficiency. While only 5.8% of crystal violet, for example, was removed by pristine TiO2, 

96.8% was removed by DNA/TiO2. In addition, the photocatalytic activity of TiO2 in 

degrading the dyes was also enhanced. While it seems not a cost-effective way of using 

DNA in removing organic dyes, this study provided interesting insights into surface 

chemistry of DNA-modified metal oxides.  

The surface redox property of nanomaterials can also be inhibited by DNA 

adsorption. Pautler and co-workers reported that the oxidase-like behavior of nanoceria 

was inhibited by DNA adsorption.84 The presence of DNA blocked the direct interaction 

between the substrate and the nanoceria surface. As a result, the substrate oxidation was 

slowed down.  
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Metal oxides may dissociate in a reducing environment. Tan and co-workers 

reported a DNAzyme/MnO2 nanocomposite for gene silencing.85 Several roles of the MnO2 

nanosheets were highlighted. First, MnO2 can adsorb DNAzyme directly and act as a 

fluorescence quencher. Second, MnO2 protected DNA from enzymatic digestion. Third, 

MnO2 nanosheets can be reduced to Mn2+ after interfacing with intracellular glutathione 

(GSH). The free Mn2+ further activated the released DNAzyme.  

1.3.3 Interfacing metal oxides with arsenic  

MONPs have been widely used in water treatment due to the excellent adsorption 

and removal capability.86,87,88 They can efficiently remove a diverse range of contaminants, 

including heavy metal ions, oxyanion, and organic molecules. Many oxyanions (e.g., 

phosphate, arsenate, chromate, silicate) are harmful when the concentrations are higher 

than the permissible limit. Metal oxides are extremely efficient in removing these anions 

via forming surface complexes. For example, iron oxide,86 aluminum oxide,86 titanium 

oxide,89 zirconium oxide,90 nickel oxide,91 have been used to remove arsenic from water. 

Iron oxide is particularly interesting because of the low cost, biocompatibility, and 

magnetic properties. Here, using arsenic adsorption as an example, the importance of 

materials as well as interaction mechanisms will be introduced.   

1.3.3.1 Arsenic contamination 

Arsenic (As) is a ubiquitous element in nature. It has been found in the earth crust, 

soil, natural water, and living organism. Humans have also used arsenic in medicine, 

agriculture, livestock, electronics, and metallurgy for a long history.92 Both organic and 

inorganic species of arsenic are extremely toxic; long-term exposure to even low 
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concentrations of arsenic results in many adverse health effects, damaging the skin, heart, 

stomach, and nervous system.92,93,94,95 The wide distribution of arsenic poses great threats 

to human health. Drinking water in many countries (e.g., Argentina, Bangladesh, China, 

India, Mexico, and Myanmar) are contaminated by arsenic.96 Given the chronic effects of 

arsenic in drinking water, many organizations and governments have reduced the 

recommended value of arsenic. The guideline value for arsenic was initially set to be 50 

µg/L (0.67 µM). In 2001 the World Health Organization (WHO) adjusted it to 10 µg/L 

(0.13 µM). The US Environmental Protection Agency (US-EPA) has also reduced the limit 

from 50 µg/L to 10 µg/L in 2001. However, many developing countries still use the 0.67 

µM limit since their water arsenic level is too high but they cannot afford the resources to 

purify water to the lower limit. The most common arsenic species in water include arsenate 

(As(V), AsO4
3-) and arsenite (As(III), AsO3

3-).97 Under oxidizing conditions, arsenate is 

the dominating form and its protonation state is a strong function of pH. At neutral pH, 

H2AsO4
- and HAsO4

2- co-exist.98 

1.3.3.2 Adsorption and removal of arsenic by iron oxide 

Iron oxides/hydroxides have been used to remove As(V) and As(III) via adsorption 

for a long time. Early works were focused on studying the effects of arsenic concentration, 

ionic strength, pH on the adsorption and removal by different iron oxides/hydroxides. 

Pierce and co-workers investigated the adsorption of arsenic on amorphous iron hydroxide. 

The adsorption was found to obey the Langmuir model by examining the adsorption 

isotherms.99,100 Raven and co-workers101 tested the adsorption of arsenic on ferrihydrite 

under different pH. The adsorption of As(V) was more favored at low pH in the range of 
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4-9. With increasing pH, As(III) adsorption was enhanced with an adsorption maximum at 

ca. pH 9.0. 

The size of iron oxide/hydroxide used in the early works was not well controlled, 

although nanosized particles may exist. Nanoscale metal oxides are potentially more 

efficient in adsorbing arsenic with large surface-to-volume ratios and more binding sites. 

Mayo and co-workers evaluated the effect of size of Fe3O4 NPs on the adsorption of 

arsenic.102 When the particle size was decreased from 300 nm to 12 nm, a 200 times 

enhancement in arsenic adsorption was achieved. The authors suggested both increased 

surface area and binding sites contributed to the improvement. Hristovski and co-workers 

examined 16 commercial metal oxide nanoparticles in arsenic removal. Fe2O3 NPs and 

other three oxides exhibited the highest efficiency.91 

While nanoparticles are more effective in adsorption, aggregation may occur due 

to the unmodified surface. To avoid the aggregation, iron oxide nanoparticles composites 

have been developed. One common strategy is to anchor nanoparticles in supports, for 

example, sand,103 bentonite,104 zeolite,105 and silica.106 Yang and co-workers encapsulated 

γ-Fe2O3 (ca. 6 nm) in macroporous silica.106 By anchoring the nanoparticles in the silica 

matrix, aggregation can be avoided during the arsenic adsorption process. The composite 

can efficiently adsorb both As(V) and As(III), reducing the concentration from 100 μg/L 

to 2 μg/L. 

1.3.3.3 Interaction mechanism 

The interaction mechanism between arsenic and iron oxide has also been 

investigated using several spectroscopic methods. Anions could bind the particle surface 

by forming outer-sphere complexes or inner-sphere complexes (Figure 1.10A). In the 
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outer-sphere complexes, anions adsorb on the hydration shell of the particles via 

electrostatic interaction. In the inner-sphere complexes, anions bind specifically on the 

particle surface by coordination bonds. Both arsenate and arsenite can form inner-sphere 

complexes with various iron oxides based on extended X-ray absorption fine structure 

spectroscopy measurement.107,108,109,110 Goldberg and co-workers examined the interaction 

mechanism of As(V) and As(III) with amorphous iron oxide using in situ Raman and 

Fourier transform infrared (FTIR).108 In their model, As(V) forms inner-sphere surface 

complexes, whereas As(III) forms both inner- and outer-sphere complexes with iron oxide.  

More specifically, three types of binding modes between arsenate and iron oxides 

have been proposed (Figure 1.10B). The bidentate binuclear mode appears to be the 

dominant complex.107,108,109,110,111,112 Other two modes have also been observed. Fendorf 

and co-workers claimed that the binding mode is dependent on the surface coverage of 

arsenate.109 When the coverage is low, arsenate mainly binds to the surface by forming 

monodentate complex. However, when the coverage is high, the bidentate binuclear 

complex dominates. Both complexes exists at intermediate coverage. As(III) also mainly 

forms bidentate binuclear complex with the oxide surface.107  
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Figure 1.11 Schematics of interaction mechanisms of anion with iron oxides. (A) Outer-

sphere and inner-sphere complexes. (B) Different binding modes between arsenate and iron 

oxides: i) monodentate mononuclear, ii) bidentate mononuclear, and iii) bidentate 

binuclear.  

 

Since both As(V) and As(III) form stable complexes with iron oxides, the 

adsorption of both species may be competitive. Jain and coworkers revealed that As(V) 

bound more strongly to ferrihydrte than As(III).113 Qi and Pichler also evaluated the co-

adsorption of As(V) and As(III) onto ferrihydrite as a function of pH.114 At acidic 

conditions (pH 4), the adsorption of As(V) was favoured, whereas at pH above 6, the 

adsorption of As(III) was preferred. Other common anions existing in environment may 

also affect the adsorption of arsenic. Frau and co-workers evaluated the influence of four 

major anions, phosphate, carbonate, sulfate, and chloride, on the arsenate adsorption by 
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ferrihydrite.115 The kinetic studies showed anions have a competitive role in arsenate 

adsorption by the following order: phosphate>carbonate>sulfate>chloride. While other 

anions have a moderate effect, phosphate can strongly affect arsenate adsorption, since it 

shares a similar chemical structure with arsenate.  

Two models have been proposed to explain the experimental data regarding the 

competitive adsorption of phosphate and arsenate. In the first model, phosphate and 

arsenate share the binding sites on the oxides surface. Within this model, phosphate 

inhibition of arsenate adsorption or arsenate inhibition of phosphate adsorption were 

observed on several iron oxides.116,117,118 The binding affinity of arsenate with iron oxide 

was slightly stronger than that of phosphate.119 In the second model, the particle surface is 

not homogeneous. While arsenate binds only to one type of site, phosphate binds to two 

types of sites on the particle surface. This model was proposed by Zeng and co-workers.120 

They found that more phosphate can be adsorbed by ferrihydrite than arsenate in single-

component experiments. In addition, the presence of phosphate did not significantly affect 

the arsenate adsorption as expected. The exact interaction mechanisms between anions and 

iron oxides (and other oxides) still need more investigations.110 

1.3.4 Metal oxides with enzyme-like activities  

1.3.4.1 Introduction to nanozymes 

Nanomaterials as enzyme mimics (nanozymes) have received considerable 

attention recently.121,122,123 These nanozymes have found diverse applications in biosensing, 

cancer diagnostics and therapy, stem cell growth, and neuroprotection. Until now, a wide 

range of nanomaterials, including gold nanoparticles,124,125 metal oxides,126,127,128,129 and 



30 
 

carbon-based nanomaterials,130,131 have been reported to possess oxidase, peroxidase, 

catalase, and superoxide dismutase like activities.  

The first series of nanomaterials reported with enzyme-like activities are fullerene 

and its derivatives. In 1990s, soluble fullerene derivatives were reported to cleave DNA,132 

and scavenge free radicals.133,134 More recently, other carbon-based nanomaterials, for 

example, carbon nanotube,135,136 graphene oxide,130,137,138,139,140 and carbon dots140,141 have 

also been reported to exhibit peroxidase-like activity. The terminology “nanozyme” was 

not coined until 2004 by Scrimin and co-workers to describe the ribonuclease-like, 

esterase-like activity of functionalized AuNPs.142,143,144,145,146 However, the catalytic 

activity of modified AuNPs was actually from the surface monolayer rather than the 

particle core. In 2004, Rossi and co-workers124 reported that the “naked” gold nanoparticles 

without a surface coating layer exhibited glucose oxidase (GOx) like activity. Nanozyme 

was then widely accepted to represent nanomaterials with intrinsic enzyme-like activates.  

Compared to natural enzymes, nanozymes have several advantages. First, 

nanozymes are much more stable compared to natural protein enzymes. Heating protein 

enzymes may result in the loss of their secondary structures and hence the catalytic 

functionality. However, nanomaterials can maintain the high activity even after thermal 

treatment.121,122,123 Second, the preparation of nanozymes is more efficient and cost-

effective. While the preparation of natural enzymes is very complex, the synthesis of 

nanozymes can be easily achieved with low cost and large quantities. Third, the surface of 

nanozymes can be further modified with functional biomolecules using different 

conjugating chemistry. Lastly, the intrinsic optical, magnetic properties of nanomaterials 

can be further incorporated with the enzyme-like activity. 
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1.3.4.2 Metal oxide with oxidase-like activity 

Oxidase catalyses the oxidization reaction of the substrate using dissolved oxygen 

rather H2O2 as the oxidizing agent. Currently, few metal oxide nanoparticles have been 

reported with oxidase-like activity. In 2009, Asati et al. first demonstrated that cerium 

oxide nanoparticles (nanoceria) exhibited oxidase-like activity.127 Chromogenic substrates 

were used to evaluate the activity (Figure 1.11A). Higher activity was found be at lower 

pH (pH 4) using smaller size (~5 nm) with a thin coating layer. Aside from nanoceria, 

MnO2 nanowire,147 Mn3O4 NPs,148 CoFe2O4 NPs,149 MoO3 NPs129 have also been identified 

as oxidase-mimics. 

MONPs with oxidase-like activities can be used to construct immunoassays. Asati 

and co-workers modified nanoceria with folic acid, which could specifically recognize 

tumor cells (Figure 1.11B).127 After binding to the target cells, nanoceria can induce 

3,3',5,5'-tetramethylbenzidine (TMB) oxidation, producing a blue color. Using this strategy, 

lung cancer cell was successfully detected. Control experiment was performed with H9c2 

cardiac myocytes, in which TMB oxidation was not observed.  
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Figure 1.12 Nanoceria with oxidase-like activity. (A) The oxidation of different substrates, 

TMB, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and dopamine 

(DA) catalysed by nanoceria. (B) A schematic of using nanoceria in constructing 

immunoassays. Figure adapted with permission from ref (127). Copyright © John Wiley and 

Sons. 

 

1.3.4.3 Metal oxides with peroxidase-like activity 

Peroxidase catalyzes the substrate oxidation in the presence of H2O2. In 2007, Yan 

and co-workers discovered that magnetic Fe3O4 NPs exhibit peroxidase-like activity.126 

Fe3O4 NPs can catalyze the oxidization of TMB, 3,3'-diaminobenzidine (DAB), and o-

phenylenediamine dihydrochloride (OPD) by H2O2. The authors evaluated Fe3O4 with 

different sizes (30, 50, and 300 nm) and found that smaller particles have higher activity. 

Comparison of Fe3O4 with natural enzyme horseradish peroxidase (HRP) was carried out. 

Similar to HRP, the nanozyme activity is dependent on reaction pH and temperature. 
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However, the nanozyme can retain the activity after incubation at a wide range of pH and 

temperature. Enzyme constants were obtained based on steady-state kinetics assays. The 

Michealis-Menten constant (Km) indicates the binding affinity of the substrate to the 

enzyme. While H2O2 has higher affinity to HRP than that to Fe3O4, the other substrate 

TMB binds to Fe3O4 more strongly than HRP. Rate constant (Kcat) indicates the catalytic 

rate of enzymes. The nanozyme shows a 40-time higher rate constant, which is attributed 

the multiple catalytic sites of nanoparticles. This seminal work by Yan and co-workers 

stimulated many groups to investigate the enzyme-like activity of nanomaterials. Some 

typical examples of metal oxide nanoparticles with peroxidase-like activity are listed in 

Table 1.1.  

A straightforward application of nanozymes with peroxidase-like activity is to 

detect H2O2 based on the color change of the co-substrate (e.g., ABTS, TMB).150 Using 

this colorimetric method, H2O2 around 1 µM can be detected. Jiang and co-workers 

improved the detection sensitivity (LOD < 10 nM) using a fluorescent dye, Rhodamine 

B.151 The oxidation of Rhodamine B by H2O2 catalyzed Fe3O4 NPs induced the 

fluorescence quenching. When glucose oxidase (GOx) is combined with nanozymes, 

selective and sensitive detection of glucose can be achieved. GOx catalyzes the glucose 

oxidation by oxygen with H2O2 as the product. By detecting generated H2O2 using 

ABTS/Fe3O4, Wei and Wang developed a colorimetric sensor for glucose as low as 30 

µM.150 Applications of metal oxide nanozymes in immunoassays,126 bacteria detection,152 

and biofilm elimination153,154 have also been developed.  
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Figure 1.13 Schematics of sensing H2O2 and glucose using nanozymes with peroxidae-

like activity and GOx.  

 

1.3.4.4 Metal oxides with catalase- and/or SOD-like activity 

Reactive oxygen species (ROS) and free radicals are the by-products in a wide 

range of physiological reactions. Excess ROS can induce oxidative damage to 

biomolecules.155 Nature has developed several enzymes (e.g., catalase and superoxide 

dismutase, SOD) to diminish ROS and other free radicals. The enzyme SOD catalyzes the 

dismutation of superoxide anions (O2·-) into H2O2 and O2. The enzyme catalase catalyzes 

the decomposition of H2O2 into O2 and H2O. In 2007, Self and co-workers reported that 

nanoceria acts as SOD based on a competitive assay.156 The enzyme activity is comparable 

to natural enzymes. In a later work, the same group reported that nanoceria also mimics 

catalase in diminishing H2O2.157 It is interesting to note the activity is strongly dependent 

on the ratio of Ce3+/Ce4+. At a low Ce3+/Ce4 ratio, the catalase activity dominated; at a high 

Ce3+/Ce4 ratio, the SOD activity prevailed. While some models were proposed to elucidate 

the mechanisms, experimental evidences are still in lack.122,123   

With catalase and SOD activities, nanoceria has been used to protect cells from 

oxidative stress. Radiation therapy is widely used in treating cancer. While the technique 

is efficient in killing cancer cells, it also generates free radicals, which cause damage to 
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normal cells. Seal and co-workers reported that nanoceria could protect normal cells 

against radiation but not cancer cells.158  

Aside from nanoceria, iron oxide159,160 and cobalt oxide128,161,162 have also been 

reported to have catalase-like activity. Gu and co-workers found that both Fe3O4 and γ-

Fe2O3 exhibited the capability in decomposing H2O2 at neutral conditions (pH 7.4).159 The 

authors suggested that iron oxide nanoparticles could be potentially used in protecting cells 

from H2O2-induced damage In a recent study, Fan and co-workers demonstrated the 

catalase-like activity of iron oxide nanoparticles in vivo.160 Some other applications of 

catalase-like nanozymes are summarized in Table 1.1.  

 

Table 1.1 Metal oxide nanoparticles as enzyme-mimics 

Activity Material Application References 

Oxidase 

CeO2 Immunoassay for cancer cell detection 127 

CoFe2O4 Sulfite detection in white wines 149 

MnO2 Immunoassay for bacteria detection 147 

Mn3O4 Phenol detection 148 

MoO3 Recovery of sulphite oxidase activity  129 

Peroxidase 
Fe3O4 

Immunoassays 126 

H2O2 and glucose detection 150 

Pesticide and nerve agent detection 163 

Strip for Ebola detection 152 

Biofilm elimination 153 

α- Fe2O3 NA 164 
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γ-Fe2O3 Enhance H2O2-induced cell damage 159 

Co3O4 

NA 165 

Immunohistochemical assay for vascular 

endothelial growth factor detection  

128 

V2O5 Prevent biofilm formation 154 

CuO H2O2 and glucose detection 166 

CoFe2O4 H2O2 and glucose detection 167 

Catalase 

CeO2 

Antioxidants 168 

Anti-inflammatory property 169 

Radical scavenger 170 

Promote stem cell growth 171 

Anti-apoptotic activity 172 

H2O2 and glucose detection 173 

Drug delivery 174 

Degradation of Nerve Agents 175 

Fe3O4 
Diminishing cytotoxicity (γ-Fe2O3) 159 

Antioxidant 160 

Co3O4 
NA 165 

H2O2 detection 161 

SOD CeO2 NA 156 
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 1.4 Research Goals and Thesis Outline 

Previous studies have shown that DNA is a versatile biomolecule in interfacing 

with inorganic nanomaterials. However, the majority of previous work has focused on 

coupling DNA with nanomaterials indirectly. While the colloidal stability of nanomaterials 

is improved, one should realize that the surface activity of many materials is actually 

sacrificed. For example, many unique functions of pristine metal oxide nanoparticles are 

relied on the direct interaction of reactive surface sites with substrates. Therefore, the 

primary focus of this thesis is to interface DNA with pristine MONPs directly to highlight 

the surface properties of materials. MONPs studied in this thesis include ITO, Fe3O4, CeO2, 

Al2O3, CoO, Co3O4, Cr2O3, Fe2O3, In2O3, Mn2O3, NiO, SiO2, SnO2, anatase-TiO2 (a-TiO2), 

rutile-TiO2 (r-TiO2), WO3, Y2O3, ZnO, and ZrO2. The major goals of this thesis are to 

understand the surface chemistry in DNA adsorption process, and in DNA desorption in 

the presence of interference analytes, such as cDNA, oxyanions, and H2O2. Based on the 

fundamental understandings, I also propose the design of functional sensors for 

envrionmental and/or biological targets. The thesis consists of seven chapters with a 

common focus of studying DNA adsorption and desorption from MONPs surface.  

Chapter 2 describe the adsorption of fluorescently labeled ssDNA by ITO NPs. The 

adsorption behavior as a function of pH, salt concentration, DNA sequence and length, 

materials composition are systematically studied. In addition, the interaction mechanism 

are investigated via displacements assays. Lastly, cDNA-induced DNA recovery is 

evaluated for further biosensor design. While electrochemical and photochemical 

biosensors based on ITO for DNA detection have been developed, such a fundamental 

study is lacking.  
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Chapter 3 describes the interaction between DNA and Fe3O4 NPs using a same 

methodology outlined in chapter 2. More importantly, desorption of DNA as a function of 

anions are evaluated. A sensitive arsenate sensor bases on displacement reaction is 

constructed. With this sensor design, DNA probe can be creatively used to detect anions.  

Chapter 4 describes the interaction between DNA and 19 MONPs listed above. The 

behaviors of DNA adsorption, fluorescence quenching, and DNA desorption upon adding 

anions are investigated step-by-step. Finally, three oxides CeO2, Fe3O4, and ZnO are 

screened to construct a sensor array to discriminate similar anions: arsenate, arsenite, and 

phosphate. As a proof of concept, the sensor array further improves the displacement sensor 

in chapter 3 in terms of discriminating multiple similar analytes.  

Chapter 5 describes a DNA release behavior from nanoceria surface in the presence 

of H2O2, a biologically important ROS. DNA desorption as a function of pH, salt 

concentration, DNA sequence and length are systematically evaluated. Gel electrophoresis, 

surface functional titration, and surface charge measurement are carried out to investigate 

the reaction mechanism. Finally, DNA/nanoceria as a H2O2 and glucose sensor is tested in 

terms of sensitivity, selectivity, and response time. Such a DNA/nanoceria sensor 

represents a new way to detect ROS.  

Chapter 6 describes the using of DNA in modulating the peroxidase activity of iron 

oxide nanoparticles. The effect of DNA length, sequence, surface coatings are 

systematically studied. Mechanistic investigation is performed by carrying out gel 

electrophoresis, surface charge measurement, and altering reaction substrate. While 

functional sensors have been based on the peroxidase activity of Fe3O4 for DNA detection, 

such a fundamental study is lacking. 
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Chapter 7 describes the conclusion in each chapter of this thesis, contribution of 

this research, and recommendations for future studies.  

 

 



40 
 

Chapter 2 DNA Adsorption by Indium Tin Oxide (ITO) 

Nanoparticles  

The results presented in this chapter have been published as: 

Biwu Liu and Juewen Liu, DNA Adsorption by Indium Tin Oxide (ITO) Nanoparticles. 

Langmuir, 31, 371–377, 2015. 

2.1 Introduction 

DNA-functionalized nanomaterials have attracted extensive research interests. 

These hybrid materials combine the molecular recognition and programmable property of 

DNA with the physical properties of inorganic nanoparticles, showing promising 

applications in many fields including biosensing,4,51,176,177,178 drug delivery,179 materials 

science,180,181 and nanotechnology.182,183,184,185 Over the past two decades, many 

nanomaterials, such as metallic nanoparticles,38 semiconductor quantum dots,186 and 

nanoscale carbon materials (e.g., carbon nanotubes and graphene oxide),187 have been 

modified with DNA. Each type of material has its own interaction force for DNA 

adsorption.  

A key step in constructing such materials is the attachment of DNA to the particle 

surface. Depending on the surface chemistry, several conjugation methods have been 

developed, including covalent bonding, metal coordination, and physisorption.9 While 

covalent attachment provides a strong linkage with DNA, physisorption is attractive due to 

its simplicity, cost-effectiveness and reversible binding. For examples, DNA is readily 

adsorbed onto the graphene oxide surface via π-π stacking, and the complementary DNA 

(cDNA) induces DNA desorption by forming a duplex.187,188 For gold nanoparticles 



41 
 

(AuNPs), while thiolated DNA is the main reagent for attachment, non-thiolated DNA has 

recently emerged as an alternative.63,189  

Indium-doped tin oxide (ITO) is a very important material because it is both 

transparent and conductive.190 ITO electrodes are used in electrical191 and 

photolectrochemical192 biosensors for DNA as well as other targets. For example, Gao et 

al. developed a photoelectrochemical DNA sensor by conjugating an aldehyde-modified 

capture DNA onto a silanized ITO electrode.193 The cDNA hybridization was followed by 

tagging a photoactive intercalator and the increased photocurrent. In other applications, 

direct DNA/ITO interaction was utilized for the detection of cDNA,73 DNA methylation,194 

and pathogen.195 At the same time, nanoscale ITO particles are particular interesting in 

making electrodes.196 Some DNA-ITO nanoparticle (NP) conjugates have been made into 

conductive networks for DNA detection.197 

In spite of these analytical applications, little is known about the fundamental 

interactions between DNA and ITO. In this chapter, we study the adsorption of DNA 

oligomers on ITO NPs as a function of pH, salt concentration, and DNA sequence. By 

changing the oxide composition and displacement experiments, we also proposed the 

adsorption mechanism. Finally, ITO was used to achieve DNA induced DNA desorption.  

2.2 Results and Discussion 

2.2.1 Characterization of nanoparticles 

To have a complete understanding, in addition to ITO, we also studied In2O3 and 

SnO2, which are the basic ingredient of ITO. Instead of studying bulk planar surfaces, we 

chose to use their NPs to achieve a large surface area and high adsorption capacity. In 
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addition, NP interaction with DNA can be conveniently followed by optical spectroscopy 

in the solution phase. From TEM images (Figure 2.1), the diameters of three NPs are 

around 50 nm with a wide distribution. All these NPs appear aggregated, which is also 

reflected from their hydrodynamic sizes (e.g., > 200 nm) by dynamic light scattering (DLS, 

Figure 2.2A). Aggregation is attributed to the lack of strong capping ligands and weak 

surface charge (vide infra). We are interested in studying DNA interaction with the native 

oxide surface, and intentionally avoided adding strong ligands. 

 

Figure 2.1 TEM micrographs of NPs used in this work. (A) ITO NPs, (B) In2O3 NPs, (C) 

SnO2 NPs. The scale bar is 100 nm. 

 

Since DNA is highly negatively charged, the surface charge of the oxides is likely 

to be important for determining the interaction force. We next measured the ζ-potential of 

the NPs as a function of pH (Figure 2.2B). All the three NPs are positively charged at low 

pH and negatively charged at high pH. The point of zero charge (PZC) is however different 

for each oxide. The ITO NPs are negatively charged when pH is higher than 7 and its PZC 

is between pH 6 and 7. Interestingly, the PZC of SnO2 is close to 4 and In2O3 is between 7 

and 8. This suggests that the surface charge of ITO might be controlled by either tuning 

pH or by changing the Sn/In ratio. Most oxides are capped by hydroxide groups in water, 
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and their surface charge normally comes from the (de)protonation of these surface 

hydroxyl groups. 

 

Figure 2.2 Dynamic light scattering measurement of three NPs. (A) Hydrodynamic sizes 

of three NPs. (B) ζ-potential of three NPs as a function of pH (4, 5, 6, 7, 8). The NPs were 

dispersed in designed buffers (10 mM).  

 

2.2.3 Effect of pH 

After understanding surface charge of NPs, we tested the effect of pH for DNA 

adsorption. We employed an Alexa Fluoro 488 (AF) labeled 12-mer DNA (Alexa-DNA1, 

sequence in Table 2.1) and this fluorophore maintains its fluorescence intensity even at 

acidic conditions. At pH 4, all the three NPs quenched the fluorescence (Figure 2.3A). This 

indicates two important facts. First, DNA can be adsorbed by all these NPs at pH 4. Second, 

these NPs can quench adsorbed fluorophores, which provides a convenient method for 

subsequent studies. This is consistent with that all the NPs are positively charged at pH 4. 

At pH 7, almost no quenching was observed for SnO2, and ITO showed moderate 

quenching. Full quenching was achieved only with In2O3. This trend also agrees with the 
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surface charging of the NPs at pH 7. This simple experiment established that AF-labeled 

DNA is a useful probe for studying DNA adsorption.  

 

Figure 2.3 Effect of pH on DNA adsorption by ITO NPs. (A) Photographs showing 

fluorescence quenching of Alexa-DNA1 (100 nM) by the three oxide NPs (500 µg/mL) at 

pH 7 and pH 4. The blank groups are the free DNA without any oxides. The photographs 

were taken under a Blue-Light Transilluminator. Effect of pH on the (B) adsorption 

kinetics, (C) loading capacity, and (D) desorption kinetics of Alexa-DNA1 on ITO. The 

buffer concentration is 10 mM in the absence of additional salt.  

 

For a quantitatively study, we measured the kinetics of DNA adsorption (Figure 2.3B). 

At pH 8, almost no DNA was adsorbed onto ITO NPs as indicated by stable fluorescence 

signals. However, a dramatic fluorescence decrease was observed at pH 6 attributable to 
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the change of surface charge of ITO NPs from negative to positive. The rate of adsorption 

is quite fast, approaching equilibrium in ~1 min at pH 6, while slower adsorption occurred 

at pH 7. The effect of pH was also studied by measuring the DNA loading capacity at 

various pHs (Figure 2.3C). Using a higher concentration of DNA (30 nM) and after 2 h 

incubation, over 95% DNA adsorption was achieved at low pH, while less than 5% DNA 

was adsorbed at pH 8.  

Next we studied the reversibility of DNA adsorption. When the pH of the prepared 

DNA/ITO conjugates was adjusted back to neutral or basic, a fast fluorescence increase 

was observed (Figure 2.3D), suggesting DNA desorption. Combined with the ζ-potential 

measurement in Figure 2.2B, we conclude that electrostatic interaction plays a critical role 

in DNA adsorption. 

2.2.3 Effect of ionic strength 

Since most DNA assays are performed at neutral or physiological pH, next we 

studied DNA adsorption at pH 7.6. At this pH, both DNA and ITO NPs are negatively 

charged, and adding salt might be useful for screening charge repulsion. Figure 2.4A shows 

the adsorption kinetics as a function of NaCl concentration. In the absence of NaCl, there 

is a fast initial fluorescence drop followed by a slow decrease. The addition of NaCl indeed 

increased the adsorption rate. However, salt concentration did not appear to very important, 

where similar adsorption was achieved with 30 mM and 300 mM NaCl. The effect of NaCl 

on DNA loading capacity is also similar (Figure 2.4B). With over 30 mM salt, the capacity 

reached saturation. This study suggests that the electrostatic repulsion is quite weak 

between DNA and ITO at pH 7.6 and it can be effectively screened with just 30 mM NaCl.  
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From the DNA loading capacity data, we reason that the electrostatic repulsion 

among DNA is also weak on ITO. For example, adsorption of thiolated DNA by AuNPs is 

strongly influenced by NaCl concentration and the highest adsorption capacity was 

achieved at 700 mM NaCl.40 Such high salt is mainly used to screen the repulsion among 

the dense DNA layer that are in an upright conformation. For ITO, the DNA capacity at 

neutral pH is much lower (vide infra) and salt only needs to screen the DNA/ITO repulsion.  

The effect of NaCl was further highlighted by studying the desorption kinetics of 

DNA from ITO NPs at pH 4 (Figure 2.4C). As discussed above, at pH 4, ITO NPs are 

positively charged, and adsorb DNA through electrostatic interactions. This interaction can 

be weakened by increasing the NaCl concentration. From 0 to 300 mM NaCl, a gradual 

increase in DNA desorption occurred. It is also interesting to note that only less than 10% 

DNA desorbed even with 300 mM NaCl, suggesting the strong interaction of DNA with 

ITO NPs at low pH.  

Next, we compared the adsorption kinetics of FAM-labeled DNA2 by the three NPs 

(Figure 2.4D). While it is difficult to compares nanoparticles with different sizes, we herein 

chose to use the same mass concentrations of three materials. The surface area is in much 

excess if DNA can be efficiently adsorbed compared to AuNPs with the similar size. As 

expected, In2O3 is the most effective in DNA adsorption, while SnO2 is the slowest, leaving 

ITO in between. This again agrees with the surface charging property. SnO2 is highly 

negatively charged at pH 7.6 and the added NaCl was insufficient to screen the repulsion. 
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Figure 2.4 Effect of ionic strength on DNA adsorption and desorption by ITO NPs. (A) 

Adsorption kinetics  and (B) loading capacity of FAM-DNA2 on ITO NPs as a function of 

NaCl concentration (10 mM HEPES, pH 7.6). (C) Desorption kinetics of Alexa-DNA1 on 

ITO NPs at pH 4 at various concentrations of NaCl. (D) The DNA adsorption kinetics onto 

various oxides. 

 

To further understand the mechanism of adsorption, the adsorption isotherm by ITO 

NPs was measured (Figure 2.5). It exhibits a typical Langmuir type of adsorption behavior, 

indicating monolayer and reversible adsorption. The highest DNA loading coverage is ca. 

12 nM for a 24-mer DNA (FAM-DNA2) onto 50 µg/mL ITO NPs. Assume the NPs are 50 

nm in diameter and 50 µg/mL of ITO NPs is ca. 0.178 nM. Therefore each ITO NP adsorbs 
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68 molecules of 24-mer DNA. Compared thiolated DNA onto 50 nm AuNPs (640 80 

DNAs per particles),41 this coverage is much lower. This suggests that the DNA wraps 

around ITO instead of adopting an upright conformation as in the case of AuNPs. 

 

Figure 2.5 DNA (FAM-DNA2) adsorption isotherm by ITO NPs. 

 

2.2.5 Effect of DNA length and sequence 

One advantage of DNA-based assays is that the length and sequence of DNA can 

be readily controlled, which may provide further mechanistic insights. The loading of FAM 

labeled homo 15-mer DNA at pH 7.6 (NaCl 150 mM) and at pH 4 was performed (Figure 

2.6A). The loading capacities of all DNA at pH 4.0 are 50-100 folds of those at pH 7.6, 

highlighting the importance of surface charge of the oxides. Since poly-A and poly-C DNA 

can be partially protonated at pH 4, they showed higher capacity than the poly-G and poly-

T DNA.  

Next, we studied the effect of DNA length (Figure 2.6B). At pH 4, the A15 DNA 

adsorbed the most. Although its loading is only ~20% more than that for A5, its number of 

adenine nucleotide is ~300% more. We reason that the 5-mer DNA is too short and it has 
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very weak affinity. On the other hand, the 30-mer DNA is too long and it occupies more 

footprints on the particle surface. The capacity of the 30-mer DNA is roughly 50% of the 

15-mer and therefore, they adsorb a similar number of nucleotides. At pH 7.6, all the DNAs 

were adsorbed with a very low capacity, and this is again attributed to the strong charge 

repulsion with the ITO surface. 

 

Figure 2.6 DNA adsorption as a function of sequence and length. The effect of DNA (A) 

sequence and (B) length on loading capacity onto ITO NPs at pH 4.0 and 7.6. The initial 

concentration of DNA added at pH 7.6 and 4.0 are 30 nM and 200 nM, respectively.  

 

2.2.6 Mechanistic investigation 

A DNA has two main components that could be responsible for adsorption: 

phosphate and the nucleobases. To understand the adsorption mechanism, a series of 

displacement experiments were carried out. The DNA/ITO conjugates were exposed to 

nucleosides and several anions. No significant DNA desorption was observed in the 

presence of the nucleosides at pH 7.6, suggesting the lack of strong interaction between the 

bases and ITO (Figure 2.7A). We also tested the effect of various common anions (Figure 

2.7B). Citrate and phosphate displaced adsorbed DNA quickly while the other anions had 
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no effect. Therefore, it is likely that the phosphate on DNA backbone is responsible for 

DNA adsorption. The interaction was further confirmed by measuring the ζ-potential of 

ITO NPs in the presence of phosphate. At pH 4, phosphate can displace the surface 

hydroxyl groups by forming inner-sphere complexes with the low-coordinated In and/or 

Sn on ITO NPs surface. Such displacement alters the surface charge from positive to 

negative (Figure 2.7C). Taken together, the phosphate backbone of DNA electrostatically 

adsorb onto ITO. 

 

Figure 2.7 Mechanistic investigation of DNA on ITO NPs. Displacement of DNA by (A) 

1 mM nucleosides and (B) 1 mM various anions. (C) ζ-potential of ITO NPs as a function 

of phosphate concentration. The NPs were dispersed in acetate buffer (pH 4, 20 mM).  

 

2.2.7 DNA-induced desorption 

After understanding DNA adsorption, we next studied cDNA induced desorption. 

The FAM-labeled probe DNA was first adsorbed onto ITO. Addition of cDNA induced a 

concentration-dependent fluorescence recovery (Figure 2.8A). As low as 0.7 nM cDNA 

can be detected based on signal greater than 3 times of background variation (inset). This 

performance is comparable to that reported with GO for a similar detection scheme.187,198 

It is interesting to note that at high cDNA concentration (e.g., 60 nM); the released FAM-
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DNA2 was only 66% of the adsorbed. The remaining probe were still adsorbed. This 

suggests that the surface of ITO might be heterogeneous and the places with more indium 

component might adsorb DNA more stably and cannot be released by the cDNA. 

To test the specificity of this cDNA induced probe release, we also added a DNA 

with the same sequence as the probe DNA but non-labeled (named sDNA, Figure 2.8B). 

In this case, the released probe DNA was negligible, suggesting that formation of duplex 

is a driving force for DNA desorption. Since duplex DNA still maintains negatively 

charged property, it suggests that rigid duplex binding to ITO surface is less favorable 

compared to the flexible single-stranded DNA (Figure 2.8E, i). To compare ITO with its 

components, we adsorbed FAM-labeled DNA onto In2O3. SnO2 was not included since it 

does not adsorb DNA at pH 7.6. Then cDNA was added. It is interesting to note that In2O3 

exhibits a low response in the presence of cDNA (Figure 2.8D), which might be related to 

its positive surface charge and can further adsorption the cDNA. It is likely that SnO2 has 

a modulation effect to weaken adsorption capability. Our ITO NPs contain 10% SnO2 and 

90% In2O3, meaning that a small doping can significantly adjust the adsorption affinity 

(Figure 2.8 E, ii). 
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Figure 2.8 DNA detection using DNA/ITO conjugates. (A) Fluorescence recovery as a 

function of cDNA concentration. (B) Fitting the linear part of (A). (C) Comparison of 

cDNA and sDNA (same DNA, no fluorophore) induced probe DNA release. (D) 

Comparison of ITO and In2O3 in cDNA-induced DNA recovery. (E) Proposed models in 

cDNA-induced DNA recovery from ITO NPs.  

2.3 Materials and Methods 

2.3.1 Chemicals 

All of the DNA samples were purchased from Eurofins Scientific (Huntsville AL). 

Their sequences and modifications are shown in Table 1. The indium oxide NPs (In2O3, 

20-70 nm, stock # US3250), tin dioxide NPs (SnO2, 18 nm, stock # US3470) and indium 

tin oxide NPs (In2O3: SnO2 = 90: 10, 20-70 nm, stock # US3855) were purchased from US 

Research Nanomaterials, Inc. (Houston, TX). Sodium acetate, sodium citrate, sodium 

phosphate, sodium chloride, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid 
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(HEPES), 2-(N-morpholino) ethanesulfonic acid (MES) and nucleosides were from 

Mandel Scientific (Guelph, ON, Canada). Milli-Q water was used for all of the experiments.  

Table 2.1 The sequences and modification of DNA used in this work 

DNA names Sequences (from 5 to 3) and modifications 

Alexa-DNA1 TCA CAG ATG CGT-Alexa Fluoro 488 

FAM-DNA2 FAM-ACG CAT CTG TGA AGA GAA CCT GGG 

sDNA ACG CAT CTG TGA AGA GAA CCT GGG 

cDNA CCC AGG TTC TCT TCA CAG ATG CGT 

FAM-A5 FAM-AAA AA  

FAM-A15 FAM-AAA AAA AAA AAA AAA 

FAM-T15 FAM-TTT TTT TTT TTT TTT 

FAM-C15 FAM-CCC CCC CCC CCC CCC 

FAM-G15 FAM-GGG GGG GGG GGG GGG 

FAM-A30 FAM-AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA  

2.3.2 Transmission electron microscopy and dynamic light scattering measurements 

Transmission electron microscopy (TEM) images of the three metal oxide NPs 

were acquired using a Philips CM10 transmission electron microscope. Samples were 

prepared by dropping oxides dispersion into a copper grid, and put in a fume hood at room 

temperature overnight. The ζ-potential of oxide dispersions was measured by dynamic light 

scattering (DLS) using Malvern Nanosizer ZS90. To measure the ζ-potential of NPs at 

different pH, the oxides were dispersed in designed pH buffers (10 mM, acetate buffer for 

pH 4 and 5, MES for pH 6, and HEPES for pH 7 and 8). The hydrodynamic size of metal 
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oxides dispersed in HEPES (pH 7.6, 10 mM) was also measured by the same instrument. 

The temperature was maintained at 25 C during measurement. The final concentration of 

oxide NPs was 50 µg/mL.  

2.3.3 DNA adsorption and desorption kinetics 

To study the effect of pH on adsorption kinetics, Alexa-DNA1 (10 nM) was 

dissolved into buffers at different pH (10 mM). The initial fluorescence of free DNA (F0) 

was monitored for 3 min (excitation at 485 nm, emission at 535 nm) using a microplate 

reader (Infinite F200Pro, Tecan). After a quick addition of ITO NP dispersion (final 

concentration 50 μg/mL), the fluorescence was monitored for another 20 min. The 

fluorescence intensity (F) was then normalized based on F0. The DNA adsorption kinetics 

as a function of NaCl concentration (FAM-DNA2 10 nM, ITO 50 μg/mL) was performed 

in a similar way. Adsorption kinetics of FAM-DNA2 (10 nM) onto three oxides (ITO, 

In2O3, and SnO2) was carried out in HEPES buffer (pH 7.6, NaCl 150 mM) using the same 

mass concentration of materials (50 μg/mL).  

To study desorption of DNA from ITO NP surface, the DNA-ITO conjugates were 

prepared as described above at designed conditions. To test the effect of pH on DNA 

desorption, for example, the DNA-ITO conjugates were prepared by incubating Alexa-

DNA1 (300 nM) with ITO NPs (500 µg/mL) at pH 4 for 1 h. After diluting the conjugated 

with Mill-Q water 10 times and monitoring the background fluorescence for 3 min, the pH 

was adjusted by adding 20 mM pH 7 or pH 8 HEPES buffer. The fluorescence was 

monitored for another 30 min.  
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To study the displacement of adsorbed DNA by nucleosides or inorganic anions, 

FAM-DNA2 (10 nM) was adsorbed onto ITO NPs at pH 7.6 (HEPES 10 mM, NaCl 150 

mM). Nucleosides or anions (1 mM) were introduced to induce DNA desorption. The 

released DNA was calculated based on the free DNA in the same buffer conditions. 

2.3.4 DNA loading capacity 

The DNA loading capacity was measured based on the fluorescence decrease upon 

adding ITO or other oxides under various designed conditions. To test the effect of NaCl 

on DNA loading capacity at pH 7.6, for example, FAM-DNA2 (30 nM) was incubated with 

ITO (50 μg/mL) at varying concentrations of NaCl. After 2 h incubation, the fluorescence 

was measured to calculate adsorbed DNA. The pH dependent loading capacity was 

determined in a similar way by adsorbing Alexa-DNA1 (30 nM) onto ITO (50 μg/mL) at 

designed buffer conditions in the absence of additional NaCl.  

2.3.5 DNA induced desorption  

To study cDNA induced DNA desorption, FAM-DNA2 (10 nM) was incubated 

with ITO NPs (50 μg/mL) for 2 h and then dispersed in buffer solution (HEPES 10 mM, 

pH 7.6, NaCl 150 mM). After adding cDNA and 1 h reaction, the fluorescence was 

recorded. For the selectivity study, same amount of cDNA and the same DNA (10 nM) was 

added. To compare ITO with In2O3, the DNA-oxides conjugates were prepared in the same 

buffer condition. The concentration of probe DNA (FAM-DNA2) and cDNA were both 10 

nM. The concentrations of In2O3 was 50 μg/mL. 
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2.4 Summary 

In summary, a systematic study was carried out to understand DNA adsorption by 

ITO NPs. We show that fluorescently labeled ssDNA can be adsorbed by ITO NPs, 

inducing fluorescence quenching. The surface charge of ITO is important in maximizing 

the DNA loading. From displacement experiments, DNA adsorption is mainly through the 

phosphate backbone via electrostatic interaction with the ITO surface. The ITO-DNA 

conjugate can be used to detect cDNA down to 0.7 nM. Interestingly, ITO shows an 

averaged behavior of SnO2 and In2O3. Doping the tin component has weakened DNA 

binding affinity, making it possible to directly detect cDNA. This study provided 

fundamental insights into DNA interaction with ITO, which is an important transparent 

electrode material useful for biosensor development. 
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Chapter 3 DNA Adsorption by Magnetic Iron Oxide 

Nanoparticles and Its Application for Arsenate Detection 

The results presented in this chapter have been published as part of: 

Biwu Liu and Juewen Liu, DNA Adsorption by Magnetic Iron Oxide Nanoparticles and Its 

Application for Arsenate Detection. Chemical Communications, 50, 8568-8570, 2014. 

3.1 Introduction 

Magnetic iron oxide nanoparticles have been intensively developed for 

environmental applications, including removal of heavy metal ions, oxyanion, and organic 

contaminants.86 Removal of arsenic by iron oxide has been studied for decades. Iron oxide 

is ideal for this purpose because of its strong adsorption affinity and magnetic property, 

allowing for convenient separation. This method works in natural water samples, implying 

selectivity for arsenic in the environmental sample matrix. The interaction between arsenic 

species and iron oxide has been well-characterized by a diverse range of spectroscopic 

methods (see Section 1.3.2).  

Arsenic is an extremely toxic element and arsenic contamination in many wells, 

lakes and rivers has caused serious adverse health effects,92,94,95 damaging skin, heart, liver 

and kidney and even leading to cancer and death.199 To manage the arsenic poisoning 

problem, detection of arsenic is crucial. Currently, the detection task is mainly carried out 

using analytical instruments such as atomic emission200 or absorption spectroscopy,201 

inductively coupled plasma mass spectrometry (ICP-MS),202 quartz crystal 

microbalance,203 surface enhanced Raman scattering, or electrochemistry.204 However, 

regions with arsenic contamination problems often lack centralized labs or equipment for 



58 
 

water analysis. In this regard, developing cost-effective biosensors might provide a more 

practical solution.  

There are a few commercial kits based on simple inorganic reactions, which involve 

reducing arsenic species by zinc to produce highly toxic arsine (Gutzeit reaction).205 

However, these sensors fail to measure arsenic accurately for various reasons.205 Therefore, 

efforts are still devoted to develop new sensors. On the biosensor side,93 genetically 

engineered bacterial cells have been reported.206 In addition, assays were developed based 

on the inhibition of acetylcholinesterase,207 or cytochrome c activity by arsenic species.208 

On the chemical sensor side, colorimetric assays were developed; they took advantage of 

the strong interaction between arsenite and thiol or noble metals. 

Phosphate shares similar solution chemistry with arsenate and the free phosphate 

concentration in groundwater is very low (typically below 1 M).209 We reason it may be 

possible to design sensors based on this. For example, DNA is a polyphosphate and it may 

be adsorbed by iron oxide, and then arsenate can displace the adsorbed DNA. Given the 

vast amount of knowledge on DNA detection, high sensitivity might be achieved. In this 

chapter, we report DNA-functionalized magnetic iron oxide nanoparticle for arsenate 

detection. 

3.2 Results and Discussion 

3.2.1 Sensor design and proof of concept 

Given the similarity between phosphate and arsenate, we reason that DNA may also 

adsorb in a comparable way. Based on this assumption, we propose a scheme of sensor 

design (Figure 3.1D). Using a fluorescently labeled DNA, adsorption onto iron oxide 
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results in fluorescence quenching; arsenate competition then releases DNA and restores 

fluorescence, providing simultaneous arsenate detection and removal. 

To test this hypothesis, we employed Fe3O4 NPs with an average size of ~25 nm 

(see Figure 3.1C for TEM). These NPs carry a negative charge at neutral pH (-potential 

= -10 mV in 10 mM HEPES buffer, pH 7.6). Mixing Fe3O4 with a FAM-labeled DNA 

indeed resulted in strong fluorescence quenching (Figure 3.1E), indicating that DNA can 

be adsorbed and Fe3O4 is a fluorescence quencher. Addition of arsenate produced strong 

fluorescence, suggesting displacement of the adsorbed DNA by arsenate as shown in 

Figure 3.1E. In the subsequent work, we aim to optimize the DNA adsorption/desorption 

conditions and study the sensor performance. 

 

Figure 3.1 Design and proof of concept for arsenate sensor using DNA/Fe3O4 NPs. (A) 

Adsorption of arsenate by iron oxide. (B) The structure of DNA, where its phosphate 

backbone can also bind to iron oxide. (C) TEM micrograph of iron oxide nanoparticles. 
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The scale bar is 100 nm. (D) Schematics of sensing and removal of arsenate by DNA-

functionalized iron oxide NPs. DNA fluorescence is quenched upon adsorption. The NPs 

with adsorbed arsenate can be collected with a magnet. (E) Fluorescence photographs 

demonstrating the sensing scheme in (D) using a FAM-labelled 24-mer DNA (500 nM 

DNA in 25 mM HEPES, pH 7.6). Fe3O4 = 10 mg/mL; final arsenate concentration = 40 

mM. 

3.2.2 Optimization of DNA adsorption 

We first optimized the salt concentration. Fluorescence quenching provides a 

convenient assay to study DNA adsorption. In addition to iron oxide, many other 

nanomaterials also quench fluorescently labeled DNA, such as graphene oxide,187 carbon 

nanotubes,210 metal oxides,79,84 and AuNPs.211 Since both DNA and Fe3O4 NPs are 

negatively charged, no DNA was adsorbed in the absence of salt due to the charge repulsion 

(Figure 3.2A). Fast adsorption was achieved at higher ionic strength. We chose to perform 

DNA adsorption with 300 mM NaCl to achieve high adsorption efficiency. Next we studied 

the effect of DNA length (Figure 3.2B). Considering the scheme in Figure 3.1D, an ideal 

sensor should use shorter DNA to achieve a high probe density. The probe needs to cover 

the NP surface as much as possible, so that arsenate can directly compete with DNA 

binding instead of occupying free surface sites. However, FAM-A5 adsorbed much less 

than FAM-A15, which is attributed to the weaker affinity of shorter DNA. In other words, 

longer DNA is needed to achieve a stable multivalent interaction. FAM-A30 also adsorbed 

less DNA, which is attributed to its larger size and thus occupying more footprint. 

Therefore, 15-mer DNA is an optimal length. 
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Using 15-mer DNA, the effect of DNA sequence was further studied (Figure 3.2C). 

We assumed that adsorption takes place via the phosphate backbone, and therefore DNA 

sequence should play a minor role. Indeed, all the four types of homopolymers can be 

adsorbed by Fe3O4 NPs. FAM-C15 adsorbed with the fastest rate, giving also the lowest 

background. However, only ~60% FAM-G15 was adsorbed. This may be caused by the 

formation of a G-quadruplex structure, impeding DNA adsorption.  

DNA adsorption isotherm was next measured using FAM-C15 (Figure 3.2E). When 

the added DNA was below 30 nM (Fe3O4 concentration = 25 μg/mL), adsorption was 

quantitative. Further increase of DNA concentration resulted in an overall Langmuir type 

of isotherm, which is reasonable since the adsorption should stop at a monolayer of DNA 

and adsorption is reversible based on the above phosphate displacement assay. The final 

capacity is 105 nM DNA for Fe3O4 NP of 25 μg/mL, corresponding to 55 FAM-C15 DNA 

molecules per 20 nm Fe3O4 NP. This capacity is lower than adsorption of thiolated DNA 

by gold NPs, where each 20 nm NP can adsorb ~200 DNA.41 This lower capacity also 

indicates that DNA wraps around Fe3O4 NPs instead of adopting an upright conformation 

as in the AuNP system. 
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Figure 3.2 DNA adsorption behaviour by Fe3O4 NPs. (A) Adsorption kinetics of FAM-

labeled 24-mer DNA by Fe3O4 NPs in the presence of different NaCl concentrations. (B) 

Adsorption capacity of FAM-labeled poly-A DNA as a function of DNA length. The NP 

concentration was 25 g/mL and the DNA concentration was 50 nM. The buffer contains 

10 mM HEPES, pH 7.6 with 300 mM NaCl. (C) Adsorption of FAM-labeled 15-mer DNA 

with different sequences. (D) Adsorption isotherm of FAM-C15 DNA. 

 

To further confirm the adsorption mechanism, a displacement assay was performed. 

FAM-T15 was first adsorbed and the sample was treated with free phosphate or thymidine 

(Figure 3.3). Strong fluorescence enhancement was observed only with phosphate. 

Therefore, the base is unlikely to be important for DNA adsorption by iron oxide.   



63 
 

 

Figure 3.3 Desorption of the FAM-T15 from Fe3O4 NPs by free phosphate or thymidine, 

demonstrating DNA adsorption occurs via the phosphate backbone. 

3.2.3 Sensor performance 

After optimizing DNA adsorption by Fe3O4 NPs for sensor preparation, we next 

studied the sensor performance in arsenic detection (Figure 3.4). The sensor was prepared 

using FAM-C15. Since both arsenate and arsenite can bind to Fe3O4 NPs, we tested the 

sensor response for both species. As shown in Figure 3.4A and D, without arsenate or 

arsenite, the DNA/Fe3O4 NPs conjugate has a consistent and low signal, indicating the 

probe DNA adsorption was stable. In the presence of arsenate or arsenite, the sensor 

fluorescence gradually increased. The kinetics was initially fast followed by a slower phase. 

A large signal was achieved in just 10 min. Higher concentration of arsenate or arsenite 

produced stronger fluorescence enhancement. The signal increase reached ~35-fold with 

500 µM arsenate and ~25-fold with 500 µM arsenite. This is among the highest signal 

increase in DNA-based sensors.212,213,214 The dynamic range goes up to 100 µM arsenate 

(Figure 3.4B) and the detection limit (LOD) was determined to be 300 nM based on the 

signal higher than three times of background variation (Figure 3.4C). The sensor is less 



64 
 

sensitive for arsenite, with a linear range up to 500 µM (Figure 3.4E). However, it has a 

weak response in the low concentration range (below 5 µM, Figure3.4F). Therefore, our 

sensor is preferred to arsenate detection. The LOD is slightly higher than the current 130 

nM WHO guideline, but below the 670 nM action limit by many developing countries. 

Another method to further improve sensitivity will be discussed next.  

 

Figure 3.4 Performance of FAM-C15/Fe3O4 conjugates as a sensor for arsenate and 

arsenite. Kinetics of sensor fluorescence increase with increasing of (A) arsenate and (D) 

arsenite. Sensitivity of FAM-C15/Fe3O4 conjugates in (B) arsenate and (E) detection. The 

initial part Figure (B) an (D) are plotted in Figure (C) and (F), respectively.  

 

To test the selectivity of the sensor, we incubated the prepared DNA/Fe3O4 NPs 

with various anions and only phosphate showed a high response (Figure 3.5A). This is 

expected since phosphate can also bind to the surface. Systematic comparison of phosphate 

and arsenate adsorption by iron oxide was previously reported, with arsenate adsorbing 
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slightly more strongly.119 Since the buffer already contained 300 mM NaCl, we did not test 

the further addition of chloride. Other common anions such as bromide, iodide, nitrate, 

perchlorate, acetate, bicarbonate, sulphate and sulphite did not produce much signal. As 

mentioned above, arsenite showed a relatively low response at the tested concentration. 

Therefore, this sensor is the most selective for arsenate.  

 

Figure 3.5 Selectivity of sensor in arsenate detection. (A) Selectivity against 10 µM other 

anions. The buffer contained 300 mM NaCl, 10 mM HEPES, pH 7.6. (B) Response of the 

sensor to other 1 mM anions with or without 10 µM arsenate. 

 

Since phosphate is a limiting nutrient for organism growth and it can be easily 

precipitated by many cations, its concentration in water is very low (e.g., 1 µM being the 

upper limit in normal potable water).209 For other water samples with higher phosphate 

concentrations, a pre-treatment to precipitate phosphate or a separate phosphate sensor will 

be needed. We next tested a higher concentration of other anions (1 mM each) and still 

none of them showed much response (Figure 3.5B). When 10 µM arsenate was added to 

these samples, a high response was observed. The response in the presence of sulfite was 
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even higher than that in the absence. This might be related to its weak blocking effect to 

allow arsenate specifically displacing DNA instead of binding to the free iron oxide 

surface.115  

3.2.4 Improved sensitivity 

An alternative method is to incubate iron oxide NPs with the water sample first, 

where high removal capacity can be achieved with a large quantity of NPs. Adsorption of 

arsenate might inhibit DNA adsorption to achieve detection (Figure 3.6A). After harvesting 

the NPs with a magnet, only a small portion of the NPs needs to be used for detection. For 

the sensing aspect, this method also allows higher sensitivity since a large volume of water 

sample can be used without worrying about diluting DNA. Indeed, using the method, the 

detection limit was improved to 50 nM arsenate (Figure 4B). This sensitivity is comparable 

with those of many other arsenic sensors.206,215,216,217 In addition, the arsenate in solution 

was simultaneously removed by the adsorption process. We confirmed the removal 

efficiency using ICP-MS. After adsorption by Fe3O4 NPs, the arsenate concentration was 

below the detection limit (< 0.1 µg/L). We further tested the sensor response when it was 

dispersed in Lake Ontario water samples (Figure 3.6C). A similar response curve was 

observed. 
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Figure 3.6 Improved sensitivity by pre-adsorbing arsenate. (A) A scheme of detecting 

arsenate by adsorbing it first before adding probe DNA. This allows high capacity arsenate 

removal and only a small portion of the NP is needed for detection. (B) Sensitivity of 

arsenate detection by this arsenate pre-adsorption method. (C) Sensor response in the Lake 

water matrix.  

3.3 Materials and Methods 

3.3.1 Chemicals 

All of the DNA samples were purchased from Integrated DNA Technologies (IDT, 

Coralville, IA) and were purified by standard desalting. Their sequences and modifications 

are FAM-24 mer (FAM-ACG CAT CTG TGA AGA GAA CCT GGG), FAM-A15 (FAM-

AAA AAA AAA AAA AAA), FAM-T15 (FAM-TTT TTT TTT TTT TTT), and FAM-C15 

(FAM-CCC CCC CCC CCC CCC). For the DNA homopolymers, FAM was labeled on 

the 5′-end. Sodium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium 

bicarbonate, sodium acetate, sodium citrate, sodium phosphate dibasic heptahydrate, and 

4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) were from Mandel 

Scientific (Guelph, ON, Canada). Sodium (meta)arsenite, sodium arsenate dibasic 

heptahydrate, sodium sulfate, sodium sulfite, sodium perchlorate were purchased from 

Sigma. Milli-Q water was used for all of the experiments. 

3.3.2 Characterization of Fe3O4 NPs 

To measure the -potential of Fe3O4 NPs, 100 µg/mL Fe3O4 NPs was dispersed in 

10 mM buffer (HEPES, pH 7.6). The -potential was then recorded using Zetasizer Nano 
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90 (Malvern). The TEM image was acquired on a Philips CM10 transmission electron 

microscope.  

3.3.3 DNA adsorption by Fe3O4 NPs 

To study the effect of NaCl concentration on DNA adsorption kinetics, FAM-24 

mer (10 nM) was dissolved in HEPES buffer (pH 7.6, 10 mM) containing varying 

concentration of NaCl. After quickly adding the Fe3O4 NPs, the fluorescence was 

monitored for 30 min by a microplate reader (Infinite F200 Pro, Tecan). To study the effect 

of DNA length, 50 nM FAM-labeled DNA (A5, A15, or A30) was dissolved in buffer A (10 

mM HEPES, pH 7.6, 300 mM NaCl). After adding Fe3O4 NPs (final concentration = 25 

µg/mL) and 30 min incubation, the fluorescence was recorded and compared to the initial 

intensity to calculate the adsorbed DNA. To test the effect of DNA sequence, 10 nM FAM-

A15, T15, C15, or G15 was used. To obtain the adsorption isotherm, FAM-C15 was used. For 

the displacement experiment, 2 mM phosphate or thymidine was added to the FAM-

T15/Fe3O4 NPs conjugate in buffer A followed by fluorescence recording for 40 min. 

3.3.4 Arsenate detection (method 1) 

The sensor was prepared by adsorbing FAM-C15 (30 nM) onto Fe3O4 NPs (25 

µg/mL) in buffer A in a total volume of 10 mL. The adsorption was allowed to take place 

for 1 h. This mixture was then divided into 100 µL aliquots in a 96-well plate. Then a small 

volume (1-5 µL) of arsenate with designed concentrations was added into 100 µL of the 

conjugate to induce desorption. The kinetics were obtained by monitoring the fluorescence 

for 3 h in triplicate. The response of arsenite was carried out using the same method.  
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For the selectivity test, a final concentration of 10 µM anions (arsenate, arsenite, 

phosphate, bromide, iodide, nitrate, perchlorate, acetate, carbonate, sulfate, or sulfite) were 

added, and the fluorescence was recorded after 1 h. The detection of arsenate (10 µM) in 

the presence of high anion concentration (1 mM) was also tested.  

3.3.5 Arsenate detection (method 2)  

Alternatively, Fe3O4 NPs (25 µg/mL) were incubated with various concentrations 

of arsenate in buffer A with a volume of 10 mL for 1 h. After that, the samples were agitated 

to fully disperse the Fe3O4 NPs, and 100 L was taken out to mix with FAM-C15 probe 

DNA (30 nM). The fluorescence was measured after 1 h incubation. Lake Ontario water 

samples were collected from Colonel Samuel Smith Park in Toronto, Ontario, Canada. 

Arsenate was spiked into the Lake water sample and other operations were the same. 

3.3.6 Arsenate removal  

Arsenate (1 µM) was incubated with Fe3O4 NPs (10 µg/mL) 25 at pH 7 with a 

volume of 40 mL. After overnight incubation, the Fe3O4 NPs was precipitated using a 

magnet and the supernatant was diluted to 120 mL. The concentration of arsenic was tested 

by ICP-AES in the ALS facility in Waterloo, Ontario. 

3.4 Summary 

In summary, we studied DNA adsorption by iron oxide and demonstrated its 

application for detecting arsenate from water. DNA has been widely used to develop 

biosensors in the past two decades.4 In particular, many metal ions are detected using 
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aptamers and DNAzymes,4,218 where the DNA bases play a crucial role for metal 

recognition. Since DNA is a polyanion, DNA has not been very successful in detecting 

anions, possibly due to charge repulsion. Although arsenate aptamers have been claimed,219 

and a few related sensors have been developed,220 the binding mechanism responsible has 

not been elucidated. This work provides a new direction for anion sensing using DNA. 

DNA adsorption by nanomaterials is a popular way of signaling. Compared to adsorption 

reported previously for most other nanomaterials, the mechanism here is quite different. 

Binding of DNA to iron oxide is through the phosphate group, which is different from 

binding to gold (chemisorption through base nitrogen) or carbon (pi-pi stacking and 

hydrophobic force).7 Despite this simple interaction, the sensitivity and specificity of the 

sensor is quite remarkable. This is attributed to the strong affinity between arsenate and 

iron oxide.  
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Chapter 4 A Comprehensive Screen of Metal Oxide 

Nanoparticles for DNA Adsorption, Fluorescence Quenching, 

and Anion Discrimination 

The results presented in this chapter have been published as part of: 

Biwu Liu and Juewen Liu, A Comprehensive Screen of Metal Oxide Nanoparticles for 

DNA Adsorption, Fluorescence Quenching, and Anion Discrimination. ACS Applied 

Materials & Interfaces, 7, 24833-24838, 2015. 

4.1 Introduction 

DNA is highly attractive for designing hybrid materials due to its programmability, 

cost-effectiveness, ease of modification, and ability to recognize a broad range of 

analytes.51,176,178,221,222,223 While DNA has been interfaced with metal and carbon-based 

nanomaterials,4,7,51,224 limited work was carried out on metal oxide nanoparticles 

(MONPs).79,82,83,84,85,197,225,226,227,228,229 MONPs represent a very important class of 

materials due to their unique electronic, optical, magnetic and catalytic properties. DNA-

functionalized MONPs might be useful as a sensor platform for anion detection. For 

example, when a fluorescently labeled DNA is adsorbed by iron oxide nanoparticles, the 

fluorescence is quenched.226 Arsenate adsorbs very strongly on iron oxide,108,119 displacing 

adsorbed DNA and regaining fluorescence.  

We hypothesize that other metal oxides might have different adsorption affinity 

trends towards different anions, allowing their distinction using a sensor array. Array-based 

sensing is a strategy to differentiate multiple targets with high similarities. It mimics the 
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mammalian olfaction and is called “chemical nose”.230 Typically, the sensor array is 

composed of sets of receptors. Analytes are exposed to the sensor array to generate patterns 

of response. Then statistical analysis tools (e.g., linear discriminant analysis, LDA) are 

used to process the data. Different MONPs may have different affinities with DNA. At the 

same time, they also adsorb anions differently. Such differences may allow a pattern-

recognition-based sensor array for anion discrimination. Arsenic is a highly toxic heavy 

metalloid inorganic arsenic exists in two forms in water: As(V) (arsenate) and As(III) 

(arsenite). For environmental science, it is important to know arsenic speciation.231 

Detection of phosphate is important on its own. Most river water has a low phosphate level, 

and elevated phosphate leads to water eutrophication problem.232 

In this chapter, we screen a total of 19 MONPs with the intention to find different 

adsorption affinity patterns as a general way for anion discrimination. While various array-

based methods have been reported,233,234,235,236,237,238,239,240 this is the first based on metal 

oxides.  

4.2 Results and Discussions 

4.2.1 Rationale of sensor design 

Our experiment design is described in Figure 4.1. We started with nineteen 

commercially available MONPs, covering early and later transition metals as well as 

lanthanides. The detailed information about the nanomaterials are listed in Table 4.1. The 

final candidates need to offer different adsorption affinities for arsenate, arsenite, and 

phosphate. At the same time, they need to adsorb DNA, quench adsorbed fluorophore and 
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allow displacement of adsorbed DNA by target anions. Therefore, our screen of the 

MONPs is based on these criteria. 

 

Figure 4.1 Schematics of the sensing strategy. Nineteen commercial MONPs were 

individually tested for adsorbing DNA and quenching fluorescence, from which eight were 

selected. These eight MONPs were tested with the different anions for DNA displacement, 

selectivity, and signalling. Finally, data from CeO2, ZnO and Fe3O4 were used for 

discriminating arsenate, arsenite and phosphate using linear discriminant analysis. The 

numbers in red indicate the remaining number of MONPs after each screening step. The 

signalling scheme is included on the left side of the figure. 
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Table 4.1 Information of metal oxides nanoparticles (MONPs) used in this work 

Materials Size*a 

(d, nm) 

Hydrodynamic 

Size (d, nm) 

ζ-Potential  

(mV) 

Vendor*b Catalog  

Number 

Al2O3 30-60  234.1 ± 3.03 -68.27 ± 1.69 S 642991 

CeO2 5 5.86 ± 0.39 -4.23 ± 0.55 S 289744 

CoO 50 591.17 ± 145.00 -21.43 ± 3.18 U. US3051 

Co3O4 10-30 127.57 ± 21.34 -30.53 ± 1.27 U US3056 

Cr2O3 60 614.2 ± 47.31 -29.80 ± 0.88 U US3060 

Fe2O3 50 321.47 ± 27.30 -29.80 ± 1.19 U US3200 

Fe3O4 50 534 ± 23.58 -29.08 ± 2.99 S 637106 

In2O3 20-70 282.83 ± 38.70 -22.08 ± 2.02 U US3250 

ITO 20-70 332.17 ± 11.29 -32.83 ± 1.10 U US3855 

Mn2O3 30 285.67 ± 14.26 -50.00 ± 0.92 U US3340 

NiO 10-20 433.5 ± 81.65 17.23 ± 0.21 U US3356 

SiO2 12 171.9 ± 16.55  -38.07 ± 0.74 S 718483 

SnO2 18 261.83 ± 1057 -40.5 ± 1.65 U. US3470 

a-TiO2 (anatase) 25 255.63 ± 9.99 -25.80 ± 0.41 S 637254 

r-TiO2 (rutile) 30 175.87 ± 24.37 -41.77 ± 0.67 U US3520 

WO3 23-65 179.6 ± 4.75 -49.6 ± 1.41 U US3540 

Y2O3 20-40 701.8 ± 283.97 -8.79 ± 0.38 U US3550 

ZnO 35 70.19 ± 3.90 23.45 ± 0.68 S 721077- 

ZrO2 100 174.5 ± 105.15 -32.33 ± 1.96 S 544760 

a: the information is provided the vendors. 
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b: U is US Research Nano, S is Sigma-Aldrich. 

4.2.2 Screen for DNA adsorption 

We first screened the MONPs for DNA adsorption and fluorescence quenching. A 

FAM (6-carboxyfluorescein) labeled DNA (named FAM-24 mer) was incubated with each 

MONP at pH 7.6. The buffer also included 300 mM NaCl to screen electrostatic 

interactions. After centrifugation to precipitate the MONPs, the samples were observed 

under 470 nm excitation (Figure 4.2A). The supernatant in each sample was also measured 

using a microplate reader for quantification of DNA adsorption efficiency (Figure 4.2B, 

black bars). Little DNA adsorbed on Al2O3, SiO2, SnO2, WO3 or ZrO2. The rest of the 

MONPs adsorbed DNA to various degrees. To test whether the poor DNA adsorption by 

some MONPs is attributable to insufficient particle concentration, we also measured the 

DNA adsorption at a lower pH (pH adjusted with 10 mM HCl). MONPs are more 

protonated at lower pH and should bind negatively charged DNA more tightly. Indeed, all 

the samples achieved quantitative DNA adsorption using the same amount of MONPs 

(Figure 4.2B, red bars), indicating the lack of adsorption at pH 7.6 (e.g., Co3O4, and r-TiO2) 

is not related to surface area. Since we intend to use the sensors at neutral pH, Al2O3, SiO2, 

SnO2, WO3, ZrO2, Co3O4, and r-TiO2 were ruled out after this step of screening.  

The remaining MONPs are divided into two groups. Most MONPs strongly quench 

fluorescence upon DNA adsorption as indicated by the dark pellets and dark supernatants 

in Figure 4.2A. The remaining four (In2O3, ITO, Y2O3, and ZnO) display fluorescent pellets 

and dark supernatant, indicating that these MONPs might be poor fluorescence quenchers. 

A low quenching efficiency is attributed to a large band gap and disfavored electron 
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transfer (e.g., band gap of Y2O3 = 5.85 eV).241,242 Among these four oxides, In2O3 can 

adsorb DNA and quench fluorescence better than ITO.225 We are particularly concerned 

about Y2O3 and ZnO, since they can efficiently adsorb DNA and are potential good 

candidates for anions sensing. After dispersing in buffer, the quenching efficiency of ZnO 

and Y2O3 was quantified to be ~90% and ~50%, respectively (Figure 4.3). Since quenching 

is critical for our sensor design, Y2O3 and ITO were also ruled out. After this round of 

screening, only ten MONPs were left (Figure 4.1).  

 

Figure 4.2 DNA adsorption and fluorescence quenching by various MONPs. The FAM-

24 mer DNA (200 nM) was mixed with each MONP (0.5 mg/mL) in Buffer A (HEPES 10 

mM, pH 7.6, 300 mM NaCl). (A) Photographs showing the samples under LED light 

excitation (470 nm) after centrifugation. Bright pellets indicate DNA adsorption with poor 

quenching, while bright supernatants indicate poor DNA adsorption. (B) Quantitative 

measurement of adsorbed DNA based on the free DNA remaining in the supernatant in 
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Buffer A (black bars) and in in HCl solution (10 mM). The error bars represent the standard 

deviation from three independent measurements.  

 

Figure 4.3 Fluorescence quenching efficiency of the FAM-24 mer DNA by ZnO NPs and 

Y2O3 NPs. The DNA/MONP conjugates were prepared by incubating 200 nM DNA with 

ZnO or Y2O3 (0.5 mg/mL) in Buffer A. The fluorescence was measured without 

centrifugation.  

 

4.2.3 Screen for DNA desorption 

After efficient DNA probe adsorption and fluorescence quenching, the adsorbed 

probe needs to be displaced by target anions for signaling (see the left side of Figure 4.1 

for the sensing scheme). Therefore, we next measured anion-induced DNA release using 

the remaining ten MONPs. For this experiment, we started with the free FAM-24 mer DNA, 

which displayed strong fluorescence (the black spectra in Figure 4.4). After adding each 

MONP, all the samples were quenched efficiently (the red spectra in Figure 4.4); this is 

consistent with our above screening results. Then 0.5 mM phosphate was added to each 

sample to induce DNA displacement (green spectra in Figure 4.4). The DNA on CoO and 
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NiO was not displaced much by phosphate (less than 5%) and these two were ruled out for 

further studies (Figure 4.4B,H). It is likely that they interact too strongly with DNA. All 

other MONPs released the DNA probe upon adding phosphate, and they might be useful 

candidates for further biosensor development.  

This displacement assay is also useful for understanding the interaction mechanism 

between DNA and MONPs. DNA has two structural elements for adsorption by surfaces: 

1) negatively charged phosphate and 2) nucleobases. For metallic nanoparticles (e.g., 

AuNPs) and carbon-based nanomaterials (e.g., graphene oxide and carbon nanotubes), 

DNA adsorption is achieved mainly via base interaction.7,60,224,243,244 For example, adding 

phosphate has little effect on DNA adsorbed by these materials. Many MONPs (e.g., TiO2, 

CeO2, ITO) adsorb DNA mainly via the phosphate backbone.79,84,225,227 Here, we confirmed 

that phosphate backbone binding is also important for DNA adsorption onto Cr2O3, Mn2O3 

and ZnO.  
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Figure 4.4 Phosphate-induced DNA release from various MONPs: (A) CeO2, (B) CoO, 

(C) Cr2O3, (D) Fe2O3, (E) Fe3O4, (F) In2O3, (G) Mn2O3, (H) NiO, (I) a-TiO2, and (J) ZnO. 

The ten MONPs were added to FAM-24 mer DNA (100 nM) in Buffer A to achieve 

fluorescence quenching (red spectra). After adding phosphate (0.5 mM) and centrifugation, 

the fluorescence spectra of the DNA in the supernatant were then measured (green spectra). 

The free DNA spectra are in black. 

 

In addition to phosphate, we also tested DNA displacement by other common 

oxyanions: arsenate, arsenite, and silicate (Figure 4.5A). They are all environmentally 

important analytes and may share a similar binding mechanism on MONPs. Interestingly, 

it is difficult to displace DNA from CoO and NiO using any of these anions. Other oxides 

allowed easier DNA displacement. Anion adsorption was also confirmed by the ζ-potential 

change of MONPs (Figure 4.5B). For example, the slightly negative charged CeO2 (-4.23 
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± 0.55 mV) becomes much more negative (~ 50 mV) after adsorbing oxyanions. The 

positive surface of ZnO becomes negative after adsorbing phosphate, arsenate, or arsenite.  

 

 

Figure 4.5 Effect of other oxyanions on DNA desorption. (A) Fluorescence images of 

anion-induced DNA desorpiton from MONPs. FAM-24 mer DNA (100 nM) was incubated 

with various MONPs (CeO2 0.01 mg/mL, CoO 0.25 mg/mL, Cr2O3 0.25 mg/mL, Fe2O3 0.1 

mg/mL, Fe3O4 0.15 mg/mL, In2O3 0.4 mg/mL, Mn2O3 0.4 mg/mL, NiO 0.1 mg/mL, a-TiO2 

0.1 mg/mL, and ZnO 0.12 mg/mL) in Buffer A. After DNA adsorption, the fluorescence 

was quenched. Besides phosphate anion, other anions (arsenate, arsenite, and silicate) were 

also tested. The concentration of all anions was 0.5 mM. (B) ζ-potential of eight MONPs 

in the absence and presence of various anions. MONPs were dispersed in HEPES buffer 
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(10 mM, pH 7.6). The ζ-potential measurement was carried out after incubating each 

MONPs with each anion (0.5 mM) for 1 h. 

 

While many MONPs enhanced fluorescence upon anion addition, they do so in a 

non-specific way; various anions can all produce fluorescence signal. Therefore, it is 

difficult to use single DNA/MONP complexes for selective anion detection, and the 

remaining eight MONPs were used to form a sensor array to solve the selectivity problem.  

4.2.4 Sensor optimization 

After screening for DNA adsorption and desorption, we next optimized the 

signaling conditions. First, we evaluated the effect of DNA sequence. While the interaction 

between DNA and MONPs are mainly through the DNA phosphate backbone, DNA 

sequence may still be important due to possible secondary structures and weak base 

interactions. The previously used FAM-24 mer is a random DNA containing all the four 

types of nucleobases. We then compared FAM-A15, FAM-T15, and FAM-C15 as probes for 

signalling. FAM-G15 was not tested since poly-guanine strongly quenches fluorescence. A 

fixed concentration of phosphate (50 µM) was added to induce DNA desorption. The fold 

of fluorescence enhancement (F/F0-1) is plotted for various MONPs (Figure 4.6A). 

Interestingly, DNA sequence indeed has a huge influence on sensor signaling. The DNA 

sequence induced the largest signal enhancement was chosen for further sensor 

development (i.e., A15 for Cr2O3; C15 for In2O3; T15 for Mn2O3, a-TiO2, and ZnO). We did 

not study the other three MONPs here since they were optimized in previous work; the 
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optimal sequences are T15 for CeO2; and C15 for Fe3O4 and Fe2O3.226,227 Therefore, DNA 

bases also appear to influence DNA adsorption and desorption.  

For sensing applications, signaling kinetics are also a very important parameter and 

this was tested next (Figure 4.6B). After 4 min background fluorescence scan, phosphate 

was added and the kinetics of fluorescence increase were monitored. All the samples 

showed fast fluorescence recovery, achieving a plateau within 10 min (Figure 4.6B). 

Therefore, we quantified the fluorescence signal at 5 min after adding target anions for 

further investigation. 

 

Figure 4.6 Optimization of sensor performance. Effect of (A) DNA sequence and (B) 

reaction time for different metal oxides. DNA (15-mer poly-A, T, C) was incubated with 

five MONPs. Phosphate (50 µM) was used to induce fluorescence recovery.  

 

4.2.5 Array-based anion sensing 

After screening MONPs and optimizing DNA sequence, we next tested the sensor 

responses in the presence of various common anions. To obtain a training data set, each 

target anion (phosphate, arsenate, and arsenite) was repeated six times, and other anions 
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were run in triplicates. As shown in Figure 4.7, each MONP shows a differential response 

to each target anion. As reported previously, DNA/Fe3O4 (Figure 4.7E) and Fe2O3 (Figure 

4.7D) have the strongest response to arsenate.226 A main goal of this work is to screen for 

MONPs with preferred binding towards phosphate and arsenite. After several steps of 

screening, we indeed found MONPs with selectivity for phosphate over arsenate, including 

CeO2 (Figure 4.7A), ZnO (Figure 4.7H), Cr2O3 (Figure 4.7B), In2O3 (Figure 4.7F), and a-

TiO2 (Figure 4.7G). However, other anions caused significant interference. For example, 

fluoride, carbonate, and sulfite resulted in even more DNA desorption than phosphate using 

Cr2O3. Carbonate also induced significant fluorescence enhancement in the Fe2O3 and 

In2O3 samples. Furthermore, while Mn2O3 shows a slightly higher affinity to arsenite 

(Figure 4.7C), bromide, nitrate, and sulfate also induce similar signal enhancement. 

Therefore, these MONPs were also ruled out and only three were selected in this final step. 
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Figure 4.7 Signal enhancement of FAM-labeled DNA adsorbed onto various MONPs: (A) 

CeO2, (B) Cr2O3, (C) Mn2O3, (D) Fe2O3, (E) Fe3O4, (F) In2O3, (G) a-TiO2, and (H) ZnO 
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NPs for various anions. The concentration of phosphate, arsenate, arsenite and silicate was 

10 µM, and that of all other anions was 1 mM.  

 

While the selectivity of a single DNA/MONP sensor is limited, this difference 

might be large enough to form a pattern recognition based detection method. Our main goal 

is to identify phosphate, arsenate and arsenite. We chose to use an array formed by CeO2, 

Fe3O4, and ZnO. They gave selective responses to arsenate, arsenite and phosphate, while 

other anions do not give much signal. Using this array, we obtained a training set of data. 

As a proof of concept, it is quite easy to separate the three anions and other anions using 

the canonical score plot (Figure 4.8). 

 

Figure 4.8 The canonical score plot for fluorescence enhancement using three 

DNA/MONP (CeO2, Fe3O4, and ZnO) sensors for the discrimination of phosphate, 

arsenate, and arsenite in the presence of interference anions. The ‘other anions’ include 

fluoride, bromide, iodide, silicate, carbonate, nitrate, sulfite, sulfate, and perchlorate. 
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4.3 Materials and Methods 

4.3.1 Chemicals 

All of the DNA samples were purchased from Integrated DNA Technologies (IDT, 

Coralville, IA) and were purified by standard desalting. Their sequences and modifications 

are FAM-24 mer (FAM-ACG CAT CTG TGA AGA GAA CCT GGG), FAM-A15 (FAM-

AAA AAA AAA AAA AAA), FAM-T15 (FAM-TTT TTT TTT TTT TTT), and FAM-C15 

(FAM-CCC CCC CCC CCC CCC). For the DNA homopolymers, FAM was labeled on 

the 5′-end. Metal oxide nanoparticles (MONPs) were purchased from Sigma or US 

Research Nano. The detailed information of the MONPs is shown in Table 4.1. Sodium 

fluoride, sodium chloride, sodium bromide, sodium iodide, sodium nitrate, sodium 

bicarbonate, sodium acetate, sodium citrate, sodium phosphate dibasic heptahydrate, and 

4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) were from Mandel 

Scientific (Guelph, ON, Canada). Sodium (meta)arsenite, sodium arsenate dibasic 

heptahydrate, sodium sulfate, sodium sulfite and sodium perchlorate were purchased from 

Sigma. Sodium silicate solution (40 wt %) was from Ward's Science. Milli-Q water was 

used for all of the experiments. 

4.3.2 Instrumentation 

The hydrodynamic size and ζ-potential of MONPs in the aqueous environment 

were measured using Zetasizer Nano 90 (Malvern). Typically, 50 µg/mL of MONPs were 

dispersed in Milli-Q water for the size measurement or in HEPES buffer (10 mM, pH 7.6) 

for the ζ-potential measurement. To evaluate the effect of anion adsorption on surface 
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charge, 0.5 mM of anions (phosphate, arsenate, arsenite, and silicate) were incubated with 

each MONP for 1 h before the measurement.  

4.3.3 DNA adsorption capability of MONPs.  

To screen MONPs for effective DNA adsorption, 200 nM of FAM-24 mer DNA 

was mixed with different MONPs (0.5 mg/mL) in Buffer A (HEPES 10 mM, pH 7.6, NaCl 

300 mM). After 2 h incubation, each MONP was centrifuged (CeO2, 100,000 rpm for 10 

min; other nanoparticles, 10,000 rpm for 10 min). The DNA/MONP conjugates were 

prepared in a similar way for the following experiments unless otherwise indicated. The 

fluorescence images were taken using a digital camera under the 470 nm LED light 

excitation. The fluorescence intensity of the supernatant after adsorption was measured 

using a microplate reader (Infinite F200 Pro, Tecan; excitation: 485 nm, emission: 535 nm). 

The DNA adsorption on MONPs at low pH was performed using a similar procedure and 

the same DNA/particle ratio. pH was adjusted by adding HCl to a final of 10 mM. After 

10 min incubation and centrifugation, the pH of supernatant was adjusted to neutral by 

adding NaOH (10 mM). Next, the fluorescence of supernatant was measured after dilution 

with Buffer A.  

4.3.4 DNA desorption by anions.  

To measure the DNA displacement by anions, the DNA/MONP conjugate was 

firstly prepared using the method as described above. Typically, FAM-24 mer DNA (100 

nM) was mixed with MONPs (CeO2, 0.01 mg/mL; CoO, 0.25 mg/mL; Cr2O3, 0.25 mg/mL; 

Fe2O3, 0.1 mg/mL; Fe3O4, 0.15 mg/mL; In2O3, 0.4 mg/mL; Mn2O3, 0.4 mg/mL; NiO, 0.1 
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mg/mL; a-TiO2, 0.1 mg/mL; and ZnO, 0.12 mg/mL) in Buffer A and the mixtures were 

incubated for 1 h. Afterwards, phosphate (1 mM) was introduced to the DNA/MONP 

conjugates. After another 1 h incubation and centrifugation, the fluorescence spectra from 

the supernatants were recorded. The fluorescence images of DNA/MONP in the presence 

of different anions (0.5 mM each) were taken using the camera under 470 nm light 

excitation.  

4.4.5 Effect of DNA sequence on desorption.  

To evaluate the effect of DNA sequence on the signal enhancement, FAM A15, T15, 

or C15 (10 nM each) was incubated with five MONPs (Cr2O3, 0.05 mg/mL; In2O3, 0.05 

mg/mL; Mn2O3, 0.03mg/mL; a-TiO2, 0.03 mg/mL; and ZnO, 0.02 mg/mL) in Buffer A, 

respectively. Phosphate (50 µM) was added to induce fluorescence recovery. Desorption 

kinetics were recorded for 1 h. The fluorescence enhancement (F/F0-1) was plotted as a 

function of DNA sequence.  

4.4.6 Sensor array for anion discrimination.  

The response of each sensor is plotted by the fluorescence enhancement (F/F0-1) 

from different anions. The concentrations of MONPs and DNA are listed in Table 4.2. The 

concentration of target anions (PO4
3-, As(V), and As(III)) was 10 µM, and all other anions 

was 1 mM. Target anions were replicated six times, and other anions were in triplicate. The 

fluorescence was recorded after adding the anions for 10 min. The training data were 

analyzed using canonical discriminate analysis from the software OriginLab. 
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Table 4.2 DNA sequences and concentrations for MONPs in the final sensor array. 

MONP [MONP] (µg/mL) DNA sequence [DNA] (nM) 

CeO2 2.5 FAM-T15 50 

Cr2O3 50 FAM-A15 10 

Fe2O3 20 FAM-C15 30 

Fe3O4 25 FAM-C15 30 

In2O3 50 FAM-C15 10 

Mn2O3 30 FAM-T15 10 

a-TiO2 30 FAM-T15 30 

ZnO 20 FAM-T15 30 

4.4 Summary 

In summary, we demonstrated a large potential for using DNA and MONPs for 

anion discrimination and sensing. We screened nineteen types of common MONPs for their 

DNA adsorption, fluorescence quenching, and anion-induced DNA displacement property. 

Based on the anion selectivity pattern, we chose to use CeO2, Fe3O4, and ZnO to form a 

sensor array, which successfully discriminated phosphate, arsenate, arsenite and other 

interference anions. This study provides a comprehensive understanding on the interaction 

between DNA and metal oxides, and the influence of environmentally important analytes 

on DNA adsorption. 



90 
 

Chapter 5 DNA/Cerium Oxide Nanoparticles with Catalase-

like Activity: Detection of H2O2 and Glucose 

The results presented in this chapter have been published as part of: 

Biwu Liu, Ziyi Sun, Po-Jung Jimmy Huang and Juewen Liu, Hydrogen Peroxide 

Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. Journal 

of the American Chemical Society, 137, 1290-1295, 2015. 

5.1 Introduction 

Cerium oxide nanoparticles (nanoceria, CeO2) possess a few types of enzyme-like 

activities.245,246,247,248 This is probably related to the co-existence of both Ce3+ and Ce4+ on 

the surface, where the Ce3+ species is coupled with oxygen vacancies. As an oxidase mimic, 

nanoceria oxidizes many common substrates including TMB.127,249 It also has peroxidase, 

superoxide dismutase, and catalase activities under different conditions.247,250 Its reaction 

with reactive oxygen species (ROS) makes it useful as an anti-oxidant.123,170,251,252  

Hydrogen peroxide (H2O2) plays critical roles in a diverse range of biological 

processes including biosynthesis, host defense, and cell signaling.253 An elevated H2O2 

concentration often links to oxidative stress. In addition, being an incomplete reduction 

product of oxygen, H2O2 is a by-product of many enzymatic reactions. The most well-

known example is the oxidation of glucose by glucose oxidase (GOx), where H2O2 is the 

actual target molecule of most glucose sensors. For these reasons, detecting H2O2 has long 

attracted the interest of many chemists,254 and a number of sensing methods were 

developed. For example, as a co-substrate for peroxidases, H2O2 can be measured using 

chromogenic substrates such as Amplex Red or TMB. Intracellular detection relies on 
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fluorescent probes that light up by reacting with H2O2.255 When nanoceria is mixed with 

H2O2, its color changes to orange. Direct detection of H2O2 based on this color change was 

reported.173 However, the sensitivity is limited since an obvious color change requires a 

high H2O2 concentration. In addition, a similar color change may arise by reacting 

nanoceria with other biological molecules such as ascorbate and dopamine.256 These 

reactions may interfere with color-based detection.  

With the progresses of nanoceria as enzyme-mimics, our fundamental 

understanding on the interaction between H2O2 and nanoceria is still far from complete, 

which hinders further developments. While many spectroscopic methods have been used, 

we reason that DNA might be a simple probe to study surface interactions.176 Since cerium 

is a hard metal that likes phosphate containing ligands, nanoceria strongly binds to DNA 

and nucleotides.84,246 The tunable length and sequence of DNA also facilitates systematic 

studies. In this chapter, we probed H2O2 and nanoceria interaction using DNA. Although 

H2O2 is often linked to oxidative DNA damage in the presence of redox metals (e.g., in the 

Fenton chemistry), we emphasize on a simple ligand role of H2O2, displacing adsorbed 

DNA without cleavage. This study contributes new knowledge to the interaction between 

H2O2 and inorganic surfaces and also expands the scope of DNA-based sensing.176 With a 

DNA/nanoceria complex, we detected H2O2 and glucose (when coupled with the GOx) 

with very high sensitivity and selectivity. 
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5.2 Results and Discussions  

5.2.1 Sensor rationale and proof of concept 

Our nanoceria has a size of ~5 nm as characterized by high resolution transmission 

electron microscopy (HR-TEM, Figure 5.1A). Dynamic light scattering (DLS) indicates a 

similar average size with a relatively high polydispersity (Figure 5.1B). Upon addition of 

H2O2, the color of nanoceria changes from colorless to orange (Figure 5.1C,D), which is 

also reflected by UV-vis measurement (Figure 5.1F).173,257 The increased absorption at 

~400 nm explains the orange color, allowing H2O2 to be detected down to ~10 µM.173 Due 

to the small UV-vis spectral shift and high background, we reason that better sensitivity 

might be achieved using fluorescence-based detection. Figure 5.1E (left panel) shows the 

fluorescence image of a FAM (carboxyfluorescein) labeled DNA. After adding nanoceria, 

the fluorescence was completely quenched, suggesting DNA adsorption. Interestingly, the 

fluorescence was fully recovered immediately after adding H2O2. The fluorescence spectra 

of these samples are shown in Figure 5.1G. This proof-of-concept study indicates the 

possibility of using DNA-functionalized nanoceria to directly detect H2O2 (Figure 5.1C), 

which may allow much higher sensitivity compared to the colorimetric detection. At the 

same time, DNA can serve as a mechanistic probe. 
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Figure 5.1 Fluorescent sensing H2O2 by a DNA/nanoceria complex. (A) HR-TEM image 

and (B) hydrodynamic size of nanoceria. (C) Schematics of H2O2 inducing the color change 

of nanoceria, and displacing DNA from nanoceria surface. (D) A photo of the untreated 

nanoceria (1 mg/mL) and after reacting with H2O2 (10 mM) and (F) the corresponding UV-

vis absorbance spectra (25 times diluted). (E) A fluorescence photo of free FAM-A15 DNA 

(200 nM), after adding nanoceria (10 µg/mL) and then adding H2O2 (10 mM). The 

corresponding spectra were shown in (G). The scale bar in A is 10 nm. 
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5.2.2 Effect of ionic strength 

Nanoceria is slightly negatively charged at neutral pH (-potential = -6.2 mV). 

Efficient DNA adsorption occurred even in the absence of additional salt and complete 

adsorption was achieved with just 30 mM NaCl (Figure 5.2A). This indicates a strong 

affinity between DNA and nanoceria. Such low background fluorescence is ideal for 

sensing since it allows a large signal increase and low noise. After adsorbing DNA, the 

H2O2 signaling kinetics as a function of salt concentration were measured. All the samples 

maintained a stable background in the absence of H2O2 (Figure 5.2B). At 2 min, H2O2 was 

added. It is interesting to note that a higher salt concentration produced stronger 

fluorescence enhancement, while barely any fluorescence was generated in the absence of 

salt. It is unlikely that the interaction between nanoceria and H2O2 is affected by such low 

NaCl concentrations. We reason that the salt effect is mainly on the DNA. With a higher 

ionic strength, DNA tends to adopt a more compact structure (e.g., screening 

intramolecular charge repulsion), thus reducing the number of contacting points on 

nanoceria and facilitating DNA desorption. 
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Figure 5.2 Effect of salt concentration on DNA recovery by H2O2. (A) Adsorption kinetics 

and (B) H2O2-induced desorption kinetics of FAM-A15 as a function of NaCl concentration 

at pH 7.6.  

5.2.3 Effect of pH 

The effect of pH is also very pronounced (Figure 5.3A). H2O2 induces the fastest 

signaling at pH 8, and this first-order rate decreases by 4-fold at pH 7. Barely any 

fluorescence change occurs at pH 6 or lower. To understand this, we measured the ζ-

potential of nanoceria as a function of pH, and the point of zero charge (PZC) is between 

pH 6 to 7 (Figure 5.3B, black dots). We reason that as the surface of nanoceria becomes 

more positively charged at lower pH, electrostatic attraction inhibits DNA release. Since 

pH 8 already shows some background signal, we did not test even higher pH. The optimal 

value should be between pH 7 and 8, which is ideal for detecting H2O2 in physiological 

conditions.  
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Figure 5.3 Effect of pH on DNA recovery by H2O2. (A) Desorption kinetics as a function 

of pH. (B) ζ-potential of nanoceria as a function of pH in the absence of and presence of 

H2O2, respectively. Alexa Fluor 488-labeled DNA was used at different pH (150 mM 

NaCl). 

5.2.4 Effect of DNA sequence and length 

The effect of DNA sequence was studied next. Ideally, short DNA should be used, 

allowing higher probe density and thus better sensitivity. Therefore, 5-mer FAM-labeled 

DNAs were tested (Figure 5.4A). Since guanine is a quencher, FAM-G5 has very low 

fluorescence intensity as a free DNA, while the other three give much stronger emission 

(blue bars). After adding nanoceria, T5 and C5 quenched most significantly (red bars). 

Fluorescence recovery was achieved after adding H2O2 for all the samples (green bars), but 

the increase with C5 and G5 was very moderate. Overall, A5 and T5 appears to be optimal. 
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Figure 5.4 Effect of DNA and length. Fluorescence quenching by CeO2 (red bars) and 

recovery by H2O2 (green bars) as a function of DNA (A) sequence and (B) length (all with 

FAM labels).  

 

To test the effect of DNA length, a few poly-A DNAs were employed (Figure 5.4B). 

More efficient adsorption was observed with A15 and A30 compared to A5, possibly due to 

more interaction points, leading to stronger adsorption and lower background. However 

A45 showed a high background and poor fluorescence recovery by H2O2, which might be 

related to its large size and some fluorophores are far away from the nanoceria surface after 

DNA adsorption. 

5.2.5 Mechanistic investigations 

It is quite unexpected that H2O2 enhances the fluorescence. Two mechanisms may 

explain this: 1) oxidative DNA cleavage, or 2) H2O2-induced DNA desorption. H2O2 is 

reservoir for ROS and it can convert to more reactive hydroxyl radicals in the presence of 

redox active metals to oxidatively cleave DNA (e.g. Fenton chemistry with Fe2+). Given 

the redox property of cerium, oxidative DNA cleavage appears to be a quite possible 

mechanism.  
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To test this, a gel electrophoresis experiment was carried out (Figure 5.5). The first 

lane is a ladder of 30, 15 and 5-mer FAM-labeled poly-A DNA. Lane 2 is the FAM-A30 

DNA without any treatment. Lane 3 is the DNA incubated with 1 mM H2O2. Lane 4 is the 

DNA/nanoceria complex, and Lane 5 is DNA/nanoceria treated with 1 mM H2O2, 

mimicking the sensing condition. However, no DNA cleavage was observed for any of 

these samples. Therefore, the oxidative DNA cleavage mechanism is ruled out and the 

reaction is likely to be simply H2O2-induced DNA desorption. In fact, some reports show 

that nanoceria can decrease the oxidative stress by reacting with ROS,258 thus avoiding 

DNA cleavage. However, the oxidative damage to the DNA bases without backbone 

cleavage cannot be excluded in this stage. 

 

Figure 5.5 Gel electrophoresis to check DNA integrity. [H2O2] = 1 mM.  

 

The nanoceria surface becomes more negatively charged after the H2O2 treatment 

compared to the original nanoceria (e.g., PZC = ~5, Figure 5.3B). This could explain its 

decreased DNA binding affinity. To further understand the surface chemistry of CeO2 after 

H2O2 treatment, a pH and conductivity titration experiment was performed to measure the 

pKa of surface groups on nanoceria. Untreated nanoceria has a pKa of 8.62, while after the 

H2O2 treatment; two pKa’s were observed (Figure 5.6). The one at 8.85 is similar to the 

untreated sample, and the other value is 7.61. This new and more acidic group on nanoceria 
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after the H2O2 treatment explains the shift of the PZC to lower pH from the -potential 

measurement in Figure 5.3B. 

 

Figure 5.6 Potentiometric and conductometric titration of  (A) nanoceria and (B) H2O2 

treated nanoceria . (C) and (D) are the corresponding second derivative of curve (A) and 

(B), respectively, to determine the pKa values. 

 

To further explore the mechanism of DNA desorption, we followed pH change in 

a non-buffered solution. After mixing H2O2 and nanoceria, pH dropped by ~1 unit in less 

than 1 min (black squares, Figure 5.7), and this initial pH drop was also observed by 

others.259 This time scale agrees with that for the color change and DNA desorption. It is 

generally accepted that the color change is due to oxidation of Ce3+ to Ce4+.173,247,252,260 

However, the pH drop cannot be explained by direct oxidation by H2O2. Instead, pH should 



100 
 

have increased if H2O2 were to oxidize Ce3+ (e.g. H2O2 + 2e-  2OH-). This pH change 

was very moderate (equal to producing ~40 µM protons), and is completely masked by 10 

mM HEPES (red circles, Figure 5.7). We reason this initial pH drop might be due to the 

remaining acetic acid in our nanoceria sample or nanoceria reacting with a trace amount of 

OH radicals.168 

 

Figure 5.7 Kinetics of pH change after mixing H2O2 and nanoceria (1.5 mg/mL) in water 

or in 10 mM HEPES (pH 7.6) (left axis) and kinetics of H2O2 decomposition with 3 μg/mL 

nanoceria (right axis). 

 

We also monitored the rate of H2O2 decomposition using UV-vis spectrometry 

(Figure 5.7, blue triangles). In 2 h, ~10 mM H2O2 was decomposed with 3 µg/mL nanoceria 

(the rate is faster with more nanoceria). Therefore, H2O2 decomposition does not involve 

pH change.123,259 Ghibelli and co-workers proposed a Ce4+/Ce3+ cycle for H2O2 

decomposition.123 However, based on a rigorous spectroscopy study, Cafun et al. argued 

that the catalase activity of nanoceria does not involve discrete Ce3+ centers;259 Ce4+ species 

in the whole particle acts as an electron sponge to perform catalysis.  
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Taken together, we reason that after adding H2O2, Ce3+ is quickly oxidized to Ce4+, 

producing the orange color. The Ce4+ surface is further capped by H2O2 (Figure 5.8), 

producing a more acidic peroxo proton (pKa = 7.61). This capping reaction on one hand 

shields the cerium center from DNA phosphate binding, and on the other hand, increases 

the negative charge density. The peroxo ligand was reported in small molecule cerium 

complexes as well.261 It was also reported that phosphate affinity with Ce4+ is much weaker 

than that with Ce3+.262 All these factors favor DNA desorption. Note that after DNA 

desorption occurs in the first minute. Once desorbed, further decomposition of H2O2 should 

proceed as free nanoceria. The peroxo capped species is relatively stable. After consuming 

all H2O2, it slowly converts back to the original light colored state over many days.168,259 
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Figure 5.8 A proposed mechanism of H2O2-induced DNA release by capping the nanoceria 

surface. For the three time scales marked in the scheme, DNA release is related to the one 

on the order of 1 min.  

 

5.2.6 Detection of H2O2 and glucose 

After the mechanistic work, we next tested this system as a biosensor for H2O2. 

Using FAM-T5 as the probe, the fluorescence intensity was followed after adding various 

concentrations of H2O2 (Figure 5.9A). With a high concentration of H2O2 (e.g., 1 mM), 

saturated signal was achieved in less than 1 min. The signal-to-background ratio 

reaches >20-fold, and over 80% of adsorbed DNA can be released. The fluorescence 

intensity at 5 min is plotted as a function of the H2O2 concentration (Figure 5.9B). The 

dynamic range reached ~1 mM H2O2, and the detection limit is 130 nM H2O2 (4.4 ppb, 
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3/slope, inset). This is one of the most sensitive sensors for H2O2 based on nanoparticle 

optical detection (e.g. ~80-fold more sensitive than the previous colorimetric detection). 

For selectivity test, we measured a few common metabolites (1 mM each, Figure 5.9C). 

Only ascorbate gave an obvious signal, but 50 µM ascorbate (the physiological 

concentration) is silent, indicating highly specificity. 

 

Figure 5.9 Sensor performance in H2O2 detection. (A) Kinetics of sensor signaling. 

Arrowhead indicates H2O2 addition. (B) Sensor calibration curve. Inset: the initial linear 

response. (C) Selectivity test of H2O2 detection towards sugars, L-amino acids, 

nucleosides, and other metabolites (1 mM). The last bar is ascorbate at 50 µM. 
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Given the sensor performance for H2O2, we next tested glucose detection. H2O2 

was in situ generated using GOx and glucose. By varying the glucose concentration, a 

linear response was observed with a detection limit of 8.9 µM glucose in buffer (Figure 

5.10A). Only glucose produced signal, while the other sugars were silent (Figure 5.10B), 

consistent with the high specificity of GOx. Finally, we challenged the sensor by glucose 

measurement in blood serum. A commercial glucose meter was used to determine the 

concentration of glucose in undiluted serum and a value of 4.57  0.06 mM was obtained. 

The serum was then analyzed by our sensor based on the GOx reaction. Due to its opaque 

optical appearance, we diluted the serum in buffer. Since our sensor is highly sensitive, 

accurate measurement was still possible after dilution. The standard addition method was 

used to minimize the sample matrix effect and a value of 4.37  0.32 mM was obtained 

(see Figure 5.10C for the titration). Within the error range, this result is the same as that 

from the glucose meter, indicating this sensor works in complex sample matrix.  
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Figure 5.10 Sensor performance for glucose detection. (A) Sensor calibration curve for 

glucose detection in buffer. (B) Sensor selectivity test for glucose detection in buffer. 

Glucose concentration = 0.5 mM and the other sugars are 5 mM. (C) Titration of glucose 

into serum sample to determine the glucose concentration using the DNA/nanoceria based 

sensor. (D) Detection of glucose in serum by the nanoceria/DNA based sensor and by a 

commercial glucose meter. 
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5.3 Materials and Methods 

5.3.1 Chemicals 

All of the DNA oligomers were purchased from Integrated DNA Technologies 

(IDT, Coralville, IA, USA). The DNA sequences and modifications are listed in Table 5.1. 

Sodium acetate, sodium chloride, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid 

(HEPES), 2-(N-morpholino) ethanesulfonic acid (MES), the amino acids, and nucleosides 

were from Mandel Scientific (Guelph, ON, Canada). Glucose, fructose, galactose, sucrose, 

30 wt% H2O2 solution, dopamine, sodium ascorbate, amino acids and nanoceria dispersion 

(catalog number: 289744, 20% dispersed in 2.5% acetic acid) were purchased form Sigma-

Aldrich. The solution pH was controlled using designated buffers (acetate buffer for pH 4 

and 5, MES for pH 6, and HEPES for pH 7 and 8) for most experiments unless otherwise 

specified. Milli-Q water was used for all the experiments. 

 

Table 5.1 The sequences and modification of DNA used in this work 

DNA Sequences (from 5 to 3) and modifications 

Alexa-DNA TCA CAG ATG CGT-Alexa Fluoro 488 

FAM-A5 FAM-AAA AA  

FAM-T5 FAM-TTT TT  

FAM-C5 FAM-CCC CC  

FAM-G5 FAM-GGG GG  

FAM-A15 FAM-AAA AAA AAA AAA AAA 

FAM-A30 FAM-AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA  
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FAM-A45 FAM-AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA 

AAA AAA AAA AAA AAA  

5.3.2 Washing CeO2 nanoparticles 

Our nanoceria sample was a 20% suspension containing 2.5% acetic acid as 

stabilizer. For applications related to pH change measurement, it was washed three times 

using ultracentrifugation (rpm 10, 000 10 min). For other applications, the nanoceria was 

much diluted and the effect of acetic acid is minimal. 

5.3.3 Transmission electron microscopy and UV-vis spectroscopy 

The size and morphology of nanoceria were studied using high resolution 

transmission electron microscopy (HR-TEM) (Zeiss Libra 200MC). The TEM sample was 

prepared by dropping nanoceria dispersion (10 µg/mL) on a copper grid. The grid was 

allowed to dry overnight at room temperature. The UV-vis spectra of nanoceria were 

acquired using a UV-vis spectrometer (Agilent 8453A). To obtain the orange colored 

product, nanoceria (1 mg/mL) was incubated with H2O2 (10 mM) for 15 min. The photo 

was taken by a digital camera and the sample was diluted 25 times (40 µg/mL) for the UV-

vis measurement.  

5.3.4 Kinetics of H2O2 decomposition 

To obtain the reaction kinetics of H2O2 decomposition, nanoceria (3 μg/mL) was 

added into 50 mM H2O2 solution. The UV-vis absorbance of the solution was then followed 

at 240 nm. 
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5.3.5 Dynamic light scattering (DLS) measurement 

The hydrodynamic diameter and ζ-potential of nanoceria were measured using a 

Malvern Nanosizer ZS90. To obtain pH-dependent ζ-potential values, normal or washed 

nanoceria (50 µg/mL) was dispersed in designed buffer solutions of various pH (10 mM). 

The solution pH was controlled using designated buffers (acetate buffer for pH 4 and 5, 

MES for pH 6, and HEPES for pH 7 and 8). The temperature was maintained at 25 °C for 

all the measurements. 

5.3.6 DNA adsorption kinetics and capacities 

To study salt-dependent DNA adsorption, FAM-A15 (50 nM) was dissolved in 

HEPES buffer (pH 7.6, 10 mM) containing varying concentration of NaCl. After scanning 

the free DNA for 2 min (excitation at 485 nm, emission at 535 nm) using a microplate 

reader (Infinite F200Pro, Tecan), a small volume of nanoceria (final concentration = 3 

µg/mL) was added to induce DNA adsorption. The fluorescence was recorded for another 

20 min by the microplate reader. The fluorescence intensity was normalized based on the 

initial intensity before adding nanoceria. The DNA loading capacity as a function of pH 

was measured by comparing the fluorescence before and after adding nanoceria (3 µg/mL) 

to an Alexa Fluoro 488 labeled DNA (Alexa-DNA, 200 nM, see Table 5.1 for sequence).   

5.3.7 H2O2-induced DNA desorption 

The desorption kinetics were obtained in a similar way as the adsorption kinetics. 

Typically, the DNA-nanoceria conjugate was first prepared at designed conditions as 

described above, and after recording the background, H2O2 was added to induce DNA 
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desorption. In the NaCl concentration and pH dependent studies, the final concentration of 

H2O2 added was 1 mM. To investigate the effect of DNA sequence and length, homo FAM-

labeled DNA (5-mer poly A, poly T, poly C, poly G, and 15-mer, 30-mer, 45-mer poly A) 

(50 nM) were respectively adsorbed onto nanoceria (4 µg/mL) in buffer (HEPES 10 mM, 

pH 7.6, NaCl 150 mM). After 1 h incubation, H2O2 was introduced to release DNA. The 

fluorescence intensity at each state (free DNA, after DNA adsorption, and after desorption) 

was recorded. The fluorescence picture of H2O2 induced DNA release from nanoceria was 

taken under a UV lamp (365 nm excitation). FAM-A15 (200 nM) was used as the probe 

DNA and the final H2O2 concentration was 10 mM. The corresponding fluorescence 

spectra were collected using a Varian Eclipse fluorometer. To test the sensitivity of DNA-

nanoceria for H2O2 detection, various concentrations of H2O2 (from 100 nM to 5 mM) were 

added into the FAM-T5 DNA/nanoceria conjugate solution. The fluorescence intensity at 

5 min after H2O2 addition was plotted as a function of H2O2 concentration. Sugars (sucrose, 

galactose, fructose, and glucose), L-amino acids (serine, histidine, glutamic acid, lysine, 

leucine, and cysteine), sodium ascorbate, dopamine and nucleosides (guanosine, cytidine, 

uridine, and adenosine) were also used to test the selectivity. The concentrations of all these 

molecules are 1 mM (50 µM of sodium ascorbate was also tested). 

5.3.8 Potentiometric and Conductometric Titration. 

Conductivity and pH were measured simultaneously using a Metrohm 809 Titrando 

autotitrator. The stock nanoceria and H2O2 treated nanoceria were centrifuged for 10 min 

(100,000 rpm) to remove the supernatant and then dispersed in Milli-Q water. This is to 

remove the free acetic acid present in the original solution. Then, the pH of the nanoceria 
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sample (0.1 wt%) was adjusted to ~3 by adding HCl. The sample was then titrated with 

0.02 M NaOH until the pH approached a plateau. The pKa values were calculated after 

taking the second derivative of the titration traces.  

5.3.9 Gel Electrophoresis 

For denaturing gels, DNA-nanoceria in the absence or the presence of H2O2 was 

dispersed in 15% glycerol and loaded onto 10% polyacrylamide gel with 8 M urea. The 

conjugate was prepared by mixing FAM-A30 (200 nM) and nanoceria (15 µg/mL) in 

HEPES buffer (pH 7.6, 10 mM, NaCl 150 mM) and 10 mM H2O2 was added to induce 

DNA desorption. The gels were then imaged using blue LED epi excitation (Bio-Rad, 

Chemidoc MP). 

5.3.10 pH monitoring. 

Washed nanoceria (1.5 mg/mL, 0.15 wt %) was used to react with H2O2 (50 mM) 

and the pH of the reaction solution was monitored by a pH meter for 2 h at various time 

points. In addition, the same reaction was carried out in 10 mM HEPES (pH 7.6) (nanoceria 

3 μg/mL, H2O2 50 mM). 

5.3.11 Detection of glucose in buffer and in serum 

Detection of glucose in buffer solution was performed as following steps: (1) 

various concentrations of glucose (from 10 µM to 500 µM) was incubated with glucose 

oxidase (GOx, 50 µg/mL) in HEPES buffer (pH 7, 20 mM) at 37 °C for 40 min; (2) 50 µL 

of the solution after incubation was added into 50 µL DNA-nanoceria conjugate. The 
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fluorescence intensity after 5 min was recorded. For the selectivity test, 5 mM fructose, 

galactose, and sucrose were respectively incubated with GOx in the same way, and the 

fluorescence was compared with that of glucose (500 µM). To test the feasibility of sensing 

glucose in serum, fetal bovine serum (FBS) was chosen as the incubation matrix and the 

standard addition method was used to derive the glucose concentration in FBS. Glucose 

was added into the FBS with varying concentration (0.5 mM to 6 mM). Then, 10 µL of 

FBS with or without additional glucose was added into 990 µL of incubation buffer 

containing GOx (50 µg/mL) in HEPES buffer (pH 7, 20 mM) at 37 °C for 40 min as 

mentioned above. The calculated value was multiplied by 100 to obtain the glucose 

concentration in serum. For comparison, a commercial glucose meter (BAYER, Contour® 

next EZ) was used to measure the glucose in FBS following the vendor recommended 

protocol. 

5.4 Summary 

In summary, by studying the interaction between H2O2 and nanoceria using DNA, 

we developed a highly sensitive sensor for H2O2. H2O2 acts as a capping ligand and it 

quickly releases DNA from the particle surface, generating fluorescence signal for H2O2 

and glucose detection even in blood serum samples. This study opens up many new ways 

of using H2O2 for interfacing with inorganic nanoparticles, and also expands the scope of 

DNA-based biosensors. 
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Chapter 6 DNA/Iron Oxide Conjugates with Enhanced 

Peroxidase-like Activity 

The results presented in this chapter have been published as part of: 

Biwu Liu and Juewen Liu, Accelerating Peroxidase Mimicking Nanozymes Using DNA. 

Nanoscale, 33, 13831-13835, 2015. 

6.1 Introduction 

Nanomaterials as enzyme mimics (nanozymes) have received considerable 

attention recently.121,122,123 A wide range of nanomaterials including gold 

nanoparticles,124,125 metal oxides,126,127,128,129 and carbon-based materials130,131 have been 

reported to have oxidase, peroxidase, catalase, and superoxide dismutase like activity. 

Among these nanozymes, iron oxide nanoparticles (e.g., Fe3O4 NPs) are particularly 

interesting because of their unique magnetic properties and applications in magnetic 

resonance imaging, drug delivery, and separation.122 Fe3O4 NPs were first reported to have 

peroxidase activity in 2007.126 Based on the peroxidase activity of Fe3O4 NPs, colorimetric 

biosensors for H2O2 detection have been developed using chromogenic substrates.150 When 

glucose oxidase is combined with Fe3O4 NPs, glucose can also be selectively detected.263 

For practical applications and fundamental mechanistic understanding, factors affecting 

the peroxidase activity need to be fully addressed.164,264,265,266 For example, the surface Fe2+ 

content was found to be vital in its oxidation activity.126 Prussian blue modified γ-Fe2O3 

NPs have an elevated surface Fe2+ content and thus a higher enzymatic activity.265 Also, 

the role of surface charge on substrate oxidation was investigated and electrostatic 

interaction was found to be crucial for substrate binding.264 The activity of unmodified 



113 
 

particles is often quite low, and an important challenge in this field is to promote their 

catalytic activity. We reason this goal might be achieved via understanding the surface 

chemistry of the reactions. 

DNA-functionalized NPs represent an important hybrid material in 

bionanotechnology.2,10,37,52 Since the seminal work by the Mirkin and the Alivisatos 

groups,38,39 a plethora of DNA-NP conjugates have been reported for various applications, 

such as directed assembly of nanostructures,182,185,267 biosensing,4,51,176,187 and drug 

delivery.179 DNA functionalization not only improves the colloidal stability of NPs, but 

also provides additional molecular recognition ability (e.g. aptamers) toward metal ions, 

small molecules and proteins.4,221,223 DNA-functionalized Fe3O4 NPs have been 

successfully used for detecting arsenate ions,226 and biomolecules.80 However, the effect 

of DNA modification on the intrinsic properties of Fe3O4 NPs is less explored. In this 

chapter, we report that DNA-modified Fe3O4 NPs exhibit significantly enhanced 

peroxidase activity for TMB oxidation compared the bare NPs. Further studies show that 

both surface charge and DNA base composition are important for modulating the substrate 

affinity to Fe3O4 NPs, and thus the catalytic activity. 

6.2 Results and Discussions 

6.2.1 Characterization of Fe3O4 NPs  

We first characterized our Fe3O4 NPs using TEM (Figure 6.1A). The NPs are 

roughly spherical and have a size around 25 nm (also see Chapter 3). Aggregation was 

observed attributable to the unmodified surface. We are interested in studying naked NPs 

without strong capping ligands, so that the surface property can be better controlled. No 
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obvious light absorption features were observed using UV-vis spectroscopy in the visible 

region from 400 to 800 nm (Figure 6.1B). At low NP concentrations used in this study, this 

low background absorption does not interfere with visual observation of color change from 

chromogenic substrates or quantitative spectroscopic measurements. Surface charge is 

another important parameter in determining the property of colloidal nanoparticles. 

Therefore, we also measured the ζ-potential of Fe3O4 NPs at various conditions (Table 6.1) 

and the surface of bare Fe3O4 NPs show a positive charge at pH 4.   

 

Figure 6.1 Characterization of Fe3O4 NPs used in this work. (A) TEM and (B) UV-vis 

absorbance spectroscopy. 

 

Table 6.1 ζ-potential of iron oxide NPs at various conditions 

pH Nanoparticles Buffer Surface 
Modification 

Substrate ζ-potential 
(mV) 

4.0 Fe3O4 Acetate No No 12.91 ± 3.66 

4.0 Fe3O4 Acetate No TMB 28.70 ± 0.98 

4.0 Fe3O4 Acetate DNA No -36.68 ± 1.71 
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4.0 Fe3O4 Acetate DNA TMB -25.30 ± 0.14 

4.0 Fe3O4 Acetate PAA No -34.80 ± 1.17 

4.0 Fe3O4 Acetate PSS No -34.80 ± 1.28 

4.0 Fe3O4 Phosphate No No -20.37 ± 0.23 

7.6 Fe3O4 HEPES No No -27.40 ± 0.61 

7.6 Fe3O4 Phosphate No No -47.60 ± 1.15 

4.0 Fe2O3 Acetate No No 12.33 ± 0.67 

4.0 Fe2O3 Acetate DNA No -34.17 ± 0.51 

 

6.2.2 Proof of concept 

Peroxidase can catalyse the oxidation reaction in the presence of H2O2. TMB is a 

commonly used peroxidase substrate. It is colorless in the reduced state and blue in the 

oxidized sate. We next tested the effect of DNA adsorption on the oxidation of TMB by 

H2O2 using Fe3O4 NPs as a peroxidase mimic. In the presence of unmodified Fe3O4 NPs, 

TMB was slowly oxidized by H2O2, producing a moderate blue colour after 15 min (Figure 

6.2A). Interestingly, a strong blue color appeared when DNA was added to the reaction 

mixture. The change of absorbance at 652 nm is around 8-fold higher with DNA than that 

with only the unmodified Fe3O4 NPs (Figure 6.2B). The difference in TMB oxidation 

indicates that DNA has promoted the activity of Fe3O4 NPs as a peroxidase. To verify the 

role of DNA, more control tests were performed (Figure 6.2C,D) Without Fe3O4 NPs, the 
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TMB oxidation by H2O2 was slow, and adding DNA did not accelerate the reaction. Also, 

Fe3O4 NPs or DNA alone did not oxidize TMB. Therefore, the enhanced TMB oxidation 

was due to DNA promoted peroxidase activity of Fe3O4 NPs. 

 

Figure 6.2 Proof of concept study of the effect of DNA on the TMB oxidization. (A) 

Accelerated oxidation of TMB using the C30 DNA-modified Fe3O4 NPs as a peroxidase 

mimic. The photographs of the reaction substrate and product are shown. (B) UV-vis 

spectra of the reaction products with and without DNA after 15 min reaction. Control 

experiments showing the TMB oxidation (C) in the absence and (D) presence of DNA, 

respectively.  
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6.2.3 Effect of DNA sequence, length, and concentration 

Our previous work has indicated that DNA is tightly adsorbed by Fe3O4 NPs mainly 

via the phosphate backbone of DNA at neutral pH (Chapter 3).226 From ζ-potential 

measurement, Fe3O4 NPs carry a negative charge at pH 7.6 and a positively charge at pH 

4 (Table 6.1). Our TMB oxidation experiment was carried out at pH 4, and thus electrostatic 

interaction might also contribute to DNA adsorption. To evaluate the effect of DNA on the 

peroxidase property of Fe3O4 NPs, we first tested the kinetics of TMB oxidation as a 

function of DNA sequence. Fe3O4 NPs were incubated with 15-mer homo DNAs (A15, T15, 

C15, G15) at pH 4 (acetate buffer, 10 mM) for 10 min, followed by adding the substrate 

TMB. In the absence of H2O2, oxidation of TMB was slow and the added DNA did not 

alter the reaction (Figure 6.2D). After adding H2O2, the reaction showed a DNA sequence 

dependent kinetics (Figure 6.3A). The order of reaction kinetics is: C > G > T > A > No 

DNA. The initial rate of the C15-Fe3O4 NP conjugate is 9 times faster than that of 

unmodified Fe3O4 NPs, showing a significant enhancement effect. While we reported the 

major binding between DNA and Fe3O4 NPs are from the phosphate backbone, the 

secondary structure of homo-DNAs may cause different interactions. C15 was also found 

to be the most effective probe used for arsenate detection.226 The pKa of cytosine is 4.5, 

and a large fraction of the base at pH 4 is protonated, which may assist charge neutralization 

on the particle surface and reduce repulsion among DNA, allowing the packing of more 

DNA and accelerate the oxidation activity. 
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Figure 6.3 Effects of DNA on the kinetics of TMB oxidation catalysed by DNA-modified 

Fe3O4 NPs as a function of (A) sequence, (B) length, and (C) concentration. (D) The initial 

reaction rate as a function of DNA concentration.  

 

Next, we tested the effect of DNA length on the rate enhancement. By fixing the 

total concentration of nucleosides, we used poly Cn (n = 5, 10, 15, and 30) to modify Fe3O4 

NPs (e.g. the concentration of C5 is six times higher than that of C30). The initial rate 

exhibits a DNA length-dependent increase (Figure 6.3B). Poly C30, the longest DNA tested 

here, shows the largest enhancement, even though its molar concentration is the lowest. 

Longer DNAs have higher affinity with the Fe3O4 NPs due to the presence of more binding 

sites (e.g., polyvalent binding effect). This experiment strongly indicates that DNA 
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adsorption affinity is crucial for activity enhancement. The fact that longer DNA provided 

higher activity suggests that the activity enhancement is from surface bound DNA.  

We further examined the effect of DNA concentration. As shown in Figure 6.3C, 

higher DNA concentration induced faster TMB oxidation. When the concentration is 

higher than 500 nM, the enhancement is less significant, likely due to surface saturation 

(Figure 6.3D). This experiment also indicates that it is the surface adsorbed DNA instead 

of free DNA in this system to increase the peroxidase activity of Fe3O4 NPs.  

6.2.4 Effect of pH 

Since the peroxidase activity of Fe3O4 NPs is pH-dependent126 and pH may affect 

DNA adsorption, the effect of pH on the TMB oxidation was also tested. For the free Fe3O4 

NPs (Figure 6.4A), the reaction is more effective at lower pH (e.g., pH 4) as reported in 

the literature. The presence of DNA does not alter the pH-dependent activity trend (Figure 

6.4B). To compare the DNA effect at each pH, we plotted the absorbance (652 nm) after 1 

h reaction. It clearly shows that the DNA adsorption enhanced the TMB oxidation at each 

pH (Figure 6.4C). Notice that at pH 6, the color change of TMB with DNA modified NPs 

is comparable to that at pH 4 with the unmodified Fe3O4 NPs. Attaching DNA can expand 

the application of Fe3O4 NPs over a broader pH range.  



120 
 

 

Figure 6.4 Effects of pH on the DNA-induced enhancement. Reaction kinetics of TMB 

oxidation as a function of pH in the (A) absence and (B) presence of DNA, respectively. 

(C) The variation of absorbance at 652 nm as a function of pH after 1 h reaction. 

6.2.5 Mechanistic investigation 

Using polymer coatings to modulate nanozymes activity was also reported in a few 

other systems.264 In those examples, electrostatic interaction between Fe3O4 NPs and the 

substrates (TMB and ABTS) was found to be important for the enzyme activity. If TMB 

(positively charged) was used as a substrate, more negatively charged particles showed 

higher kcat values.264 In another example, DNA from PCR products was reported to inhibit 

o-phenylenediamine oxidation, as the electrostatic interaction between the positively 

charged substrate and the negatively charged Fe3O4 NP surface is blocked by free DNA in 

solution and on particle surface.268 To understand the mechanism here, we first studied 

whether H2O2 and TMB can compete with DNA adsorption. We recently reported that 

H2O2 can efficiently displace DNA adsorbed by CeO2 NPs due to the strong affinity 

between H2O2 and CeO2.227 However, H2O2 only inhibited DNA adsorption by Fe3O4 NPs 

at a very high concentration (1 M) and no adsorption inhibition was observed at our 

experimental conditions (Figure 6.5A). TMB did not block and even slightly facilitated 

DNA adsorption onto Fe3O4 NPs (Figure 6.5B).  
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Figure 6.5 Kinetics of Alexa-DNA (50 nM) adsorption onto Fe3O4 NPs (25 µg/mL) at pH 

4 (acetate buffer, 10 mM) in the presence of varying concentrations of (A) H2O2 and (B) 

TMB. The lack of obvious kinetic changes indicate that H2O2 and TMB do not inhibit DNA 

adsorption.  

 

Second, we examined the integrity of DNA by gel electrophoresis. One concern is 

that DNA might be degraded in the presence of H2O2 and iron species (e.g. via the Fenton 

chemistry). The control group (Fe2+/H2O2, lane 6, Figure 6.6) indeed shows that the 

fluorophore tag on DNA (6-carboxyfluorescein, FAM) might be damaged due to generated 

hydroxyl free radicals indicated by the weak fluorescence intensity. However, DNA on the 

Fe3O4 NPs surface was not cleaved and the fluorophore was not damaged at our 

experimental conditions (lane 5, Figure 6.6). Combined with fluorescence-based results, 

DNA remained intact on the surface during and after the peroxidase reaction. 
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Figure 6.6 Gel image of DNA-Fe3O4 treated with H2O2. Lane 1 is a DNA ladder with 

FAM-A5, FAM-A15 and FAM-A30. Lane 2 is an untreated FAM-labeled 24 mer DNA. Lane 

3-6 are the FAM DNA treated with various chemicals as indicated in the lanes. Acetate 

buffer (pH 4, 10 mM) was used for all samples. FAM-24 mer DNA (200 nM) was incubated 

with Fe3O4 NPs (25 µg/mL) or Fe2+ (50 µM) and H2O2 (10 mM) was added if necessary. 

 

One possibility is that DNA facilitates the adsorption of TMB by Fe3O4 NPs. With 

two amino groups, the non-oxidized TMB has a pKa of ~ 4.2 and is partially positive 

charged at pH 4 (Figure 6.7A). This may explain its affinity for DNA. If this hypothesis is 

true, the activity of Fe3O4 NPs should decrease when a negatively charged substrate is used. 

To test this hypothesis, we then employed another peroxidase substrate, ABTS. ABTS is 

negative charged due to the dual sulfate anions (Figure 6.7A). As shown in Figure 6.7A, 

after adding H2O2 (10 min), ABTS was oxidized by the unmodified Fe3O4 NPs but not by 

the DNA-modified Fe3O4 NPs. DNA modification alters the surface charge of Fe3O4 NPs 

from positive to negative (Table 6.1). The charge repulsion between ABTS and DNA 

surface inhibits the oxidation reaction. To further prove the charge repulsion mechanism, 

we monitored the oxidation of ABTS at different ionic strengths. In the absence of DNA, 

increasing NaCl concentration slightly inhibited TMB oxidation. In the presence of DNA, 

we found that the enzymatic performance was gradually recovered by increasing NaCl 
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concentration to screen charge repulsion and the activity is even higher than unmodified 

Fe3O4 NPs without additional NaCl (Figure 6.7C,D). 

 

Figure 6.7 Effect of electrostatic interaction on the DNA-induced enhancement. (A) 

Chemical structures of TMB and ABTS. (B) A photograph showing oxidation of ABTS (1 

mM) in the presence of Fe3O4 NPs (50 µg/mL) at pH 4 producing a green colour. Kinetics 

of ABTS oxidation at various NaCl concentrations catalysed by (C) bare Fe3O4 NPs and 

(D) DNA-capped Fe3O4 NPs, respectively. The absorbance at 420 nm was monitored. 

 

Aside from the negatively charged backbone, DNA can also provide hydrogen 

bonding, π-π interactions via DNA bases. To test if DNA bases are involved in substrate 

binding, we compared DNA with other negatively charged polymers for coating Fe3O4 NPs. 

Polyacrylic acid (PAA) and polystyrene sulfonate (PSS) were respectively used to modify 

Fe3O4 NPs. The surface charge alternation at pH 4 was confirmed by ζ-potential 
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measurement and all modified Fe3O4 NPs exhibit similar negative charge values (Table 

6.1). Compared to unmodified Fe3O4 NPs, negatively charged NPs all enhanced the activity 

and DNA modification provides the highest enhancement, followed by PSS and PAA 

(Figure 6.8A). To further emphasize the importance of DNA bases, we compared Fe3O4 

NPs modified by phosphate, guanosine monophosphate (GMP), and G15 (Figure 6.8B). 

Phosphate also changes the surface charge of Fe3O4 NPs to be negative (Table 6.1); 

however, the activity increase is minimal. As expected, GMP-modified Fe3O4 NPs 

facilitate TMB oxidation, confirming the role the DNA bases. The further increased 

activity by G15 functionalization is consistent with our observation that the enhancement is 

DNA length-dependent (Figure 6.3B). We propose that DNA bases also facilitate the 

substrate binding via hydrogen bonding with the amino groups of TMB, and/or the 

nucleobase interacting with the benzene rings of TMB via π- π stacking. 

 

 

Figure 6.8 Effect of surface coating the peroxidase activity of Fe3O4 NPs. Comparison of 

the peroxidase activity of DNA-Fe3O4 NPs with (A) various negatively charged polymers 

coated Fe3O4 NPs and (B) phosphate and GMP modified Fe3O4 NPs.  
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Now that we have changed the polymer coating and substrate, we finally also tested 

a different type of NP, CeO2 NPs. We previously reported that the oxidase activity of CeO2 

is inhibited by adsorbed DNA for oxidation of TMB.84 However, the peroxidase activity 

of CeO2 is actually enhanced by DNA modification (Figure 6.9). This might be attributed 

to that TMB needs to be directly adsorbed by CeO2 to be oxidized in the absence of H2O2 

(i.e., CeO2 surface works as an oxidizing agent).249 However, in the presence of H2O2, 

CeO2 can mediate the oxidation at a distance from the surface. As an oxidase, the substrate 

TMB needs to get onto the particle surface since the oxidizing agent is the particle surface. 

As a peroxidase, the actual oxidizing agent is derived from H2O2 (e.g., reactive oxygen 

species), which can diffuse near the particle surface. The activity of Fe3O4 NPs we studied 

here is the peroxidase activity. In this case, the surface is likely to react with H2O2 and then 

the reactive oxygen species produced in this process is used to oxidize TMB. H2O2 is a 

much smaller molecule and DNA does not block its access to the Fe3O4 NPs. 

 

Figure 6.9 Effect of DNA on the oxidase and peroxidase-like activity of nanoceria. 
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6.3 Materials and Methods 

6.3.1 Chemicals 

All of the DNA samples were from Integrated DNA Technologies (IDT, Coralville, 

IA, USA). Their sequences and modifications are shown in Table S1. Fe3O4 NPs (637106), 

nanoceria (catalog number: 289744, 20% dispersed in 2.5% acetic acid), 3,3',5,5'-

tetramethylbenzidine (TMB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 

diammonium salt (ABTS), 30 wt % H2O2 solution, polystyrene sulfonate (PSS, catalog 

number: 527483), polyacrylic acid, sodium salt (PAA, catalog number: 416037), guanosine 

monophosphate (GMP) were purchased from Sigma-Aldrich. Fe2O3 NPs (Stock number: 

US3200) were purchased from US Research Nanomaterials. Sodium acetate, sodium 

citrate, sodium phosphate, sodium chloride, 4-(2-hydroxyethyl) piperazine-1-

ethanesulfonic acid (HEPES), 2-(N-morpholino) ethanesulfonic acid (MES) were from 

Mandel Scientific (Guelph, ON, Canada). Milli-Q water was used for all of the experiments 

  

Table 6.2 The sequences and modification of DNA used in this work 

DNA names Sequences (from 5 to 3) and modifications 

Alexa-DNA TCA CAG ATG CGT-Alexa Fluoro 488 

FAM-A5 FAM-AAA AA  

FAM-A15 FAM-AAA AAA AAA AAA AAA 

FAM-A30 FAM-AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA  

FAM-24 mer FAM-ACG CAT CTG TGA AGA GAA CCT GGG 

A5 AAA AA 
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C5 CCC CC  

C10 CCC CCC CCC C 

A15 AAA AAA AAA AAA AAA 

T15 TTT TTT TTT TTT TTT 

C15 CCC CCC CCC CCC CCC 

G15 GGG GGG GGG GGG GGG 

C30 CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC 

6.3.2 Modification of iron oxide NPs 

To coat Fe3O4 NPs with polymers, PSS or PAA (final concentration 10 mg/mL) 

was mixed with 1 mg/mL of NPs. After overnight stirring, excess polymer was removed 

by centrifugation (10, 000 rpm, 10 min) and the conjugates were washed with Milli-Q 

water three times. PSS modified Fe2O3 NPs were prepared in a similar way. Phosphate (1 

mM), GMP (1 mM), and DNA (G15, 500 nM) modified nanoparticles were prepared by 

incubating designed concentration of Fe3O4 NPs and capping agents at acetate buffer (pH 

4) for at least 10 min without further purification.  

6.3.3 Transmission Electron Microscopy (TEM) and UV-vis spectroscopy 

The particle size and morphology of Fe3O4 NPs was studied using TEM (Philips 

CM10). The TEM sample was prepared by dropping Fe3O4 NPs dispersion (50 µg/mL) 

into a copper grid and was allowed to dry overnight at room temperature. The UV-vis 

spectra of Fe3O4 NPs, TMB and oxidized TMB were scanned after reacting H2O2 (20 mM) 

with TMB (0.5 mM) at different conditions for 15 min using a UV-vis spectrometer 
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(Agilent 8453A). Poly C30 (500 nM) was used to modify Fe3O4 NPs. The concentration of 

Fe3O4 NPs was 50 µg/mL for most experiments unless otherwise specified. The visual 

images were taken by a digital camera. 

6.3.4 ζ-potential measurement  

The ζ-potential was measured by dynamic light scattering (DLS) using Malvern 

Nanosizer ZS90. Effects of pH, buffer, and surface modification on the ζ-potential of Fe3O4 

NPs and Fe2O3 NPs were tested and the reaction conditions were specified in Table S2. 

The temperature was maintained at 25 C during measurement. 

6.3.5 Inhibition of DNA adsorption 

To study the effect of H2O2 and TMB on adsorption kinetics, Alexa-DNA (50 nM) 

was dissolved into the pH 4 buffer (acetate buffer, 10 mM) with varying concentrations of 

H2O2 or TMB. The initial fluorescence of free DNA (F0) was monitored for 3 min 

(excitation at 485 nm, emission at 535 nm) using a microplate reader (Infinite F200Pro, 

Tecan). After a quick addition of Fe3O4 NPs dispersion (final concentration 25 μg/mL), the 

fluorescence was monitored for another 30 min. The fluorescence was then normalized 

based on the initial intensity (F/F0). 

6.3.6 Peroxidase activity assays of Fe3O4 NPs 

In a typical assay, 1 µL of TMB in DMSO solution (50 mM) was added into 100 

µL of Fe3O4 NPs (final concentration 50 µg/mL) with or without DNA at pH 4 (acetate 

buffer, 10 mM), followed by a quick mixing to avoid TMB precipitation. The absorbance 
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at 652 nm was recorded in a kinetic mode using a microplate reader. Afterwards, H2O2 (10 

mM) was added to induce the reaction and the absorbance was monitored for another 30 

min. The effect of DNA sequence was studied using homo poly DNAs with different bases 

(A15, T15, C15, G15 concentration = 500 nM). Poly Cn (n = 5, 10, 15, 30) was used to 

investigate the DNA length effect. The total concentration of nucleosides of cytosine was 

set as 3 µM. For the DNA concentration and pH effect studies, C30 was used as the capping 

agent. The solution pH was controlled by using designed buffers (acetate buffer for pH 4 

and 5, MES for pH 6, and HEPES for pH 7 and 8). The oxidation kinetics of ABTS at 

various salt concentrations were studied in a similar way expect that the final concentration 

of ABTS was 1 mM. The absorbance at 420 nm was recorded. NaCl was used to adjust the 

ionic strength of the reaction. 

6.3.7 Activity of CeO2 NPs 

DNA (A5, 5 µM) was incubated with CeO2 NPs (0.1 mg/mL) for 15 min before 

adding TMB (1 mM). To study the DNA effect on the peroxidase activity of CeO2, a 

mixture of TMB and H2O2 solution was added into CeO2 or DNA-CeO2. The final 

concentration of H2O2 was 10 mM. All reactions were performed at pH 4 acetate buffer. 

The photographs were taken after 30 min. 

6.3.8 Gel electrophoresis 

For denaturing gels, DNA-Fe3O4 NPs in the absence or the presence of H2O2 was 

dispersed in 15% glycerol and loaded onto 15% polyacrylamide gel with 8 M urea. The 

conjugate was prepared by mixing FAM-24 mer (200 nM) and Fe3O4 NPs (25 μg/mL) in 
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acetate buffer (pH 4.0, 10 mM) and 10 mM H2O2 was added. As a control, 50 µM of Fe2+ 

was used to cleave DNA at the same reaction condition. The gels were then imaged using 

blue LED epi excitation (Bio-Rad, Chemidoc MP). 

6.4 Summary 

In summary, we observed a significant rate enhancement brought by DNA for the 

peroxidase activity of Fe3O4 NPs for TMB oxidation. Such a rate enhancement will make 

such a nanozyme a better material for biosensor development and catalysis. Starting from 

this observation, we investigated the effect of DNA adsorption on enhancing the 

peroxidase-like activity of Fe3O4 NPs. DNA/Fe3O4 forms a stable hybrid material, and 

neither H2O2 nor TMB can displace DNA from the particle surface under our experimental 

conditions. Among all the tested anionic polymers, DNA affords the highest rate 

enhancement. This is attributed to both electrostatic attraction and aromatic stacking with 

the substrate TMB. The hypothesis is further supported by using a negative charged 

substrate ABTS and with CeO2 NPs. The insight from this work will be useful for further 

rational improving nanozyme activity via surface modification. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

DNA can be used as a functional molecule to interface with nanomaterials to 

construct bio-nano conjugates. The majority of previous work on DNA/MONPs has 

focused on indirect conjugation  with the help of cross-linkers or surface coating layers. 

Previous work also focused on metal nanoparticles and carbon-based nanomaterials, while 

relatively little was explored for MONPs. In this thesis, I explored the direct adsorption of 

DNA by naked MONPs, including ITO, Fe3O4, CeO2, and other sixteen oxides.  

In Chapter 2, I have systematically investigated the adsorption of DNA by ITO NPs. 

ITO NPs are shown to adsorb fluorescently labeled DNA and quench fluorescence. DNA 

adsorption is more efficient at acidic conditions due to the positive surface charge of ITO. 

DNA binds to ITO mainly through the phosphate backbone based on displacement assays. 

Interestingly, cDNA can induced desorption of adsorbed DNA, allowing DNA detection 

down to 0.7 nM. Doping the tin component into In2O3 has weakened the DNA binding 

affinity, making it possible to directly detect cDNA. The study in this chapter provided 

fundamental insights into DNA interaction with ITO NPs, which is an important 

transparent electrode material useful for biosensor development. 

In Chapter 3, I have studied DNA adsorption by Fe3O4 NPs and demonstrated its 

application for detecting arsenate from water as low as 130 nM. The work in this chapter 

provides a new direction for sensing anions using DNA. Different from DNA adsorption 

by gold or carbon nanomaterials, binding of DNA to iron oxide is through the phosphate 

group.  
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In Chapter 4, I have screened nineteen types of MONPs for the DNA adsorption, 

fluorescence quenching, and anion-induced DNA desorption. Three oxide, CeO2, Fe3O4, 

and ZnO, were obtained to form a sensor array to successfully discriminate phosphate, 

arsenate, arsenite and other interference anions. This study is an extension of the study of 

Chapter 2, and provides a comprehensive understanding on the interaction between DNA 

and MONPs.  

In Chapter 5, I have studied the interaction between H2O2 and nanoceria using DNA. 

A highly sensitive sensor for H2O2 has been developed. I demonstrated that H2O2 acts as 

a capping ligand and it displaces the surface adsorbed DNA quickly. The fluorescently 

labeled DNA serves as signaling molecule. H2O2 and glucose detection in blood serum 

samples were achieved based on the DNA release induced fluorescence recovery. The 

study opens up many new ways of using H2O2 for interfacing with nanozymes, and also 

expands the scope of DNA-based sensors.  

In Chapter 6, I have investigated the role of DNA in enhancing the peroxidase-like 

activity of of Fe3O4 NPs for TMB oxidation. As demonstrated in Chapter 3, DNA/Fe3O4 

forms a stable hybrid, and neither H2O2 nor TMB can displace DNA from the particle 

surface. DNA exhibits the highest enhancing effect among various modification methods. 

The rate enhancement is attributed to both electrostatic and aromatic stacking with the 

substrate. The insight from this work will be useful for further rational improving 

nanozyme activity via surface modification. 
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7.2 Original Contributions 

This thesis provides important insights into the surface chemistry of bio-nano 

interface, and offers new strategy to analytical chemistry in designing sensors to detect 

some challenging analytes.  

First, I have further established the methodology used in investigating the 

interaction between DNA and nanomaterials. Methods used in previous works are time-

consuming, need complicated sample preparation, and mostly perform under non-aqueous 

environment. In my thesis, fluorescently labeled DNA were used to probe the in situ 

adsorption and desorption processes on MONPs with high sensitivity. Importantly, several 

MONPs I tested, for example, ITO, Fe3O4, and CeO2, are fluorescence quenchers. Using 

this fluorescence method, both kinetic and thermodynamic information of the surface 

reaction can be easily obtained.  

Second, the fundamental interaction between DNA and MONPs provide important 

insights into bio-nano interface. These understandings serve as baseline for the further 

design of functional biosensors. For example, the adsorption kinetics and capacity of probe 

DNA on ITO surface, as revealed in Chapter 2 rely on the solution pH, ionic strength, probe 

sequence and length. To design a biosensor with high sensitivity, all of these parameters 

should be examined. Also, even though ITO NPs bind to DNA via the phosphate backbone, 

they still can differentiate ssDNA and dsDNA. The difference may be due to the flexibility 

of DNA strands that ssDNA is more flexible than dsDNA. As a result, ssDNA have more 

binding sites on oxides surface. This interesting finding could server as the basis in cDNA 

detection biosensors. Actually, after our work, several groups have reported the design of 

DNA/oxides biosensors for DNA and protein detection.80,81 While the sensors are 
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constructed successfully, the underling mechanism is studied by us. A common feature for 

all these oxides is that they adsorb DNA via the DNA phosphate backbone. 

Third, functional sensors have been developed with some unique features. DNA 

probe has been widely used as the recognition element to construct biosensor. While DNA 

can recognize a wide range of targets, such as metal ions, small molecules (e.g., adenosine), 

and proteins (e.g., thrombin), it still fails to target certain analytes (e.g., anions, H2O2, 

glucose). These analytes either repel DNA due to the like-charge or lack functional groups 

to interface with DNA. This problem can be partially solved by using modified DNA bases 

or cofactors to increase the binding affinity.237,269 But only certain research groups can 

perform this now. In my thesis, I have developed a simple strategy to solve this problem. 

Rather directly interfacing DNA with targets, I chose to use fluorescently DNA as signaling 

molecule. The recognition processes rely on the surface activity of MONPs. In Chapter 3, 

the arsenate adsorption ability of iron oxide was utilized to displace DNA. One minor issue 

of such design is that the selectivity. Phosphate is very similar to arsenate, and may also 

induce false positive signal. This problem was solved by designing a chemical sensor array 

to discriminate the three similar anions, phosphate, arsenate, and arsenite, which is 

described in Chapter 4. As a proof of concept, I demonstrate the first metal oxide based 

sensing array for anion discrimination. In Chapter 5, based on the strong interaction 

between H2O2 and nanoceria, I developed another sensor for H2O2 with high sensitivity 

and selectivity. While many organic dyes have been used to probe H2O2, the sensor 

proposed here represent a new design strategy. 

Another feature of using nanomaterials rather than DNA as recognition element is 

the ability to remove molecules from water. With surface adsorption and magnetic 
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separation of iron oxide, arsenate is water can be removed down to the safe level. With 

surface capping and decomposition ability of nanoceria, toxic H2O2 can de scavenged. 

Therefore, the sensing platforms developed in this thesis provide: 1) a new sensing strategy; 

2) sensitive sensors for analytes previously difficult to detect with DNA; and 3) 

simultaneous detection and removal of toxins.  

Last but not least, I have demonstrated a new way to modulate the peroxidase-like 

of iron oxide using DNA. Different from the sensors developed in Chapter 3, 4, and 5, 

DNA used here is not displaced by the two substrates. Alternatively, DNA serves as a 

promoter in enhancing the substrate affinity. The effect of DNA revealed here suggest that 

it is possible to improve the selectivity of nanozymes by combing the recognition ability 

of DNA. 

7.2 Future Work 

The results presented in this thesis have proved that interfacing DNA with non-

modified MONPs has both fundamental and practical importance. Extension of current 

work can be carried out in the future.  

First, more mechanistic work is needed to understand the interaction between DNA 

and MONPs. For example, the phosphate backbone has been shown to be the main binding 

sites. However, it is also suggested that DNA bases facilitate the adsorption.85 MONPs 

compass a large range of materials, and they may adsorb DNA differently. In addition, the 

size, shape, and structure of MONP affect the DNA adsorption.  

Second, MONPs are able to adsorb not only anions, but also heavy metal ions.87 

Such metal ions adsorption is expected to alter the surface chemistry of MONPs. The 
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alternation can be probed again by fluorescently labeled DNA. In this way, we expanded 

the use of DNA/MONPs to both small anions and cations.  

Third, the functionality of DNA has not been incorporated into the DNA/metal 

oxide conjugates. Further investigation may combine aptamer binding to improve the 

substrate oxidation reaction. In Chapter 6, I have demonstrated that DNA serves as linker 

to facilitate the substrate binding. If an aptamer rather than random DNA is used, the 

specific oxidation of substrate can be expected. For example, dopamine has been used as 

chromogenic substrate, the corresponding aptamer has also been identified. The definition 

of nanozymes has always been challenged due to the lack of substrate specificity. However, 

if receptors, such as DNA aptamers, antibodies, and molecular imprinted polymers, can be 

involved in the design of nanozyme-based assays, nanozymes will have competitive 

activity to real protein enzymes.  

Fourth, DNAzymes can also be coupled to MONPs to obtain functional hybrids. 

Some other nanomaterials, for example, AuNPs, GO have been conjugated with aptamers 

and DNAzymes. But metal oxides surface provides a chemically different interaction 

modes with the DNA. Whether such binding affects DNAzymes activity needs careful 

studies.  

Last but not least, DNA can be used as template to assemble hybrid nanomaterials. 

For example DNA has been shown to assemble AuNPs on graphene oxides surface using 

the multiple interaction sites.270 At the same time, DNA has been used as template to grow 

various nanostructures.271,272,273 However, no hybrid materials have involved both the 

phosphate backbone and DNA bases.  
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