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Abstract

This thesis is concerned with statistical modeling and prediction of disease processes sub-

ject to intermittent observation. Times of disease progression are interval-censored when

progression status is only known at a series of assessment times. This situation arises rou-

tinely in clinical trials and cohort studies when events of interest are only detectable upon

imaging, based on blood tests, or upon careful clinical examination. The work that follows

is motivated by the study of demographic, genetic and clinical data available from the

University of Toronto Psoriasis Registry and the University of Toronto Psoriatic Arthritis

Registry, each involving cohorts of several hundred patients with the respective diseases.

Chapter 2 deals with the problem of selecting important prognostic biomarkers from

a large set of candidates biomarkers when the status with respect to an event of interest

(e.g. disease progression) is only known at irregularly spaced and individual-specific assess-

ment times. Penalized regression techniques (e.g. LASSO, adaptive LASSO and SCAD)

are adapted to deal with the interval-censored event times arising from this observation

scheme. An expectation-maximization algorithm is developed which is demonstrated to

perform well in extensive simulation studies involving independent and correlated contin-

uous and binary covariates. Application to the motivating study of the development of

arthritis mutilans in patients with psoriatic arthritis is given and several important human

leukocyte antigen (HLA) variables are identified for further investigation. Extensions of

this algorithm are developed for settings in which data from different sources with dis-

tinct disease-related entry conditions are to be synthesized. The extended Turnbull-type

expectation-maximization algorithm is based on a complete data likelihood which incorpo-

rates missing information from individuals not meeting the entry criteria of the respective

registries. Simulation studies demonstrate good empirical performance and an applica-

tion to the motivating study identifies HLA markers associated with the onset of psoriatic
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arthritis among individuals with psoriasis. This analysis is carried out using data from a

psoriasis registry in which the times to psoriatic arthritis are left-truncated, and psoriatic

arthritis registry in which the onset times are right-truncated.

Chapter 3 deals with the challenge of assessing the accuracy of a predictive model when

response times are interval-censored. Inverse probability weighted (IPW) and augmented

inverse probability weighted (AIPW) estimators of predictive accuracy are developed and

evaluated based on the mean prediction error and the area under the receiver operating

characteristic curve. The weights are estimated from a multistate model which jointly

considers the event process, the inspection process, and the right-censoring processes. We

investigate the performance of the proposed methods by simulation and illustrate their

application in the context of a motivating rheumatology study in which HLA markers are

used for predicting disease progression in psoriatic arthritis.

A two-phase model is developed in Chapter 4 for chronic diseases which feature an

indolent phase followed by a phase with more active disease resulting in progression and

damage. The time-scales for the intensity functions for the active phase are more naturally

based on the time since the start of the active phase, corresponding to a semi-Markov for-

mulation. In cohort studies for which the disease status is only known at a series of clinical

assessment times, transition times are interval-censored which means the time origin for

phase II is interval-censored. Weakly parametric models with piecewise constant baseline

hazard and rate functions are specified and an expectation-maximization algorithm is de-

scribed for model fitting. A computationally faster two-stage estimation procedure is also

developed and the asymptotic variances of the resulting estimators are derived. Simula-

tion studies examining the performance of the proposed model show good performance

under both maximum likelihood and two-stage estimation. An application to data from

the motivating study of disease progression in psoriatic arthritis illustrates the procedure,
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and identifies new human leukocyte antigens associated with the duration of the indolent

phase, and others associated with disease progression in the active phase.

Open problems and topics for ongoing and future research are discussed in Chapter 5.
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Chapter 1

Introduction

1.1 Motivating Research Program

1.1.1 Overview

This research is directed at the development of innovative statistical models and methods

to address challenging problems arising in research at the Centre for Prognosis Studies

in Rheumatic Diseases at the Toronto Western Hospital. This centre created the Univer-

sity of Toronto Psoriasis Clinic (UTPC) in 2008 to study the course of psoriasis (Ps), a

chronic inflammatory skin condition which affects up to 3% of the population (Schäfer,

2006). Screened patients identified as having psoriasis are recruited to this clinical registry

and upon entry they undergo a detailed clinical examination, provide samples for genetic

testing, are then followed prospectively according to a standardized protocol; clinical as-

sessments are planned to take place every 6-12 months, but ultimately there is considerable

variation in the times of the follow-up assessments.
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Approximately 30% of psoriasis patients develop psoriatic arthritis (PsA), a rheuma-

tological disorder featuring inflammatory psoriatic disease as well as inflammation and

damage in and around the joints of several areas including the wrists, hands, knees, an-

kles, lower back, and neck (Chandran et al., 2010). The University of Toronto Psoriatic

Arthritis Clinic (UTPAC) was launched in 1977 to study this complex disease (Gladman

et al., 2008). While patients are recruited to this registry for a variety of reasons, a pri-

mary method is through the use of a population-based screening tool in the form of a 10

item questionnaire (Tom et al., 2015). Individuals suspected of having psoriatic arthritis

based on this tool are invited to attend the clinic for a more definitive diagnosis, and those

found to have the disease are invited to join the UTPAC. Upon entry to UTPAC, as in

the UTPC, a detailed history is taken, patients undergo a thorough clinical and radiologi-

cal examination, and samples are collected for genetic testing. The genotypes of HLA-A,

HLA-B, HLA-C, HLA-DR and HLA-DQ alleles were collected in both cohorts. Patients are

then scheduled to undergo detailed annual clinical examinations and biannual radiological

examinations.

1.1.2 Psoriasis and Psoriatic Arthritis

Patients with psoriasis which is uncomplicated with arthritis (PsC) at the screening time

were recruited into the University of Toronto Psoriasis Cohort. To date, it has enrolled

several hundred patients, but the analyses reported here are based on data from 580 pa-

tients in the registry as of 2013; there are 250 women and 330 men. The age at clinic entry

has a mean of 46.4 and standard deviation 13.5 years. The median time from clinic entry

to the last visit is 1.2 years with maximum of 7.1 years, and the number of visits ranges

from 1 to 8 with a median of 2 visits. And the mean (sd) of age of diagnosis of Ps is 30.4
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(16.2) years.

The University of Toronto Psoriatic Arthritis cohort recruited patients with psoriatic

arthritis at the screening time, it has over 1000 patients so far. Among the 1215 patients

in the registry as of 2013, there are 524 women and 691 men. The mean age at clinic entry

is 44.1 years with a standard deviation of 13.0 years. The median time from clinic entry

to the last visit is 4.9 years with maximum of 36.7 years, and the number of visits ranges

from 1 to 57 with a median of 6 visits. The mean (sd) of age of diagnosis of Ps and PsA

is 28.6 (14.7) and 37.2 (13.4) years respectively.
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Figure 1.1: Lexis diagram of event and assessment times on the scale of calendar time

(horizontal axis) and the time since initiating event (the vertical axis).

Identification of genetic factors putting psoriasis patients at elevated risk of PsA is

important as it will enable high risk psoriasis patients to be monitored more closely to
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ensure treatments geared toward the prevention of damage from arthritis are administered

in a timely fashion. Such predictive models can also help guide the selection of high risk

patients for inclusion in clinical trials of experimental prophylactic treatments. With the

increasing availability of large prospective disease registries, scientists studying the course

of chronic conditions often have access to multiple data sources, with each source generated

based on its own entry conditions. The different entry conditions of the various registries

may be explicitly based on the response process of interest, in which case the statistical

analysis must recognize the unique truncation schemes. Moreover, intermittent assessment

of individuals in the registries can lead to interval-censored times of interest.

Figure 1.1 is a Lexis diagram we introduce to illustrate the point that in the Ps cohort,

the time from Ps onset to PsA onset is subject to left-truncation and interval-censoring.

In this diagram the onset of Ps is the initiating event and the onset of PsA is the event

of interest. The date of screening and recruitment to the Ps registry is denoted by A0,

and the follow-up assessments are denoted by A1, A2 and A3. Since an individual will only

be recruited to the Ps registry if they are PsA-free then the time L = A0 − E0 is the

left-truncation time for the time T = E1 − E0 of interest. The last PsA-free assessment

and the first assessment after the onset of PsA define the left (L) and right (R) endpoints

of the censoring interval respectively. These latter times are depicted on the vertical axis of

Figure 1.1. For patients in the PsA registry there are analogous right-truncation conditions

which must be addressed. We develop, evaluate and apply methods for variable selection

with left- and right-truncated data with event times subject to interval-censoring.
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1.1.3 Arthritis Mutilans

Psoriatic arthritis can be classified into 5 distinct sub-types according to the phenotypic

presentations. Arthritis mutilans is considered to be the most severe form of PsA in which

patients experience deformity and severe destruction of the joints. While there is no clinical

agreement on how to precisely define arthritis mutilans, it represents a state of significant

joint damage arising from an extreme form of arthritic component of the disease; here we

define it as present if an individual has 5 or more joints with the advanced stage of damage

according to the modified Steinbrocker score. It is important to identify clinical predictors

and biomarkers for arthritis mutalins in order to prevent further joint destruction. Data

from 604 patients in the PsA registry are used in these analyses. A total of 96 HLA markers

were used in the study, but 20 of these markers had a frequency in the sample of less than

1% and so were excluded from further consideration, leaving 76 markers to select from. We

expand on the description of the problems and approaches in the following subsections.

1.2 General Introduction to Research Topics

The previous section gave a brief overview of the disease processes of interest and the

data available for analysis. The following is a similarly brief overview of the types of

methodological problems to be considered in the future chapters. A literature review,

notation and other details are contained in the respective chapters, which for the most

part are self-contained.
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1.2.1 Penalized Regression for Interval-Censored Times of Dis-

ease Progression

In the context of time to event analysis, much of the methodological work on variable

selection has been carried out for right-censored data. When events of interest are only

detectable upon imaging, as is the case for joint damage which is assessed radiologically

at periodic examination times, times of joint damage are interval-censored. Truncation is

also often a factor in life history analysis when using data from different registries or other

sources, and truncation conditions must be recognized for analyses to be valid.

We propose an algorithm for penalized regression (e.g. LASSO, adaptive LASSO and

SCAD) to handle truncated and interval-censored times in Chapter 2. A flexible parametric

model with piecewise constant baseline hazard function is adopted and an expectation-

maximization algorithm is described which is empirically shown to perform well. The

developments are presented in two stages motivated by two distinct problems. We first

develop an algorithm dealing with interval-censored responses with a view to identifying

markers associated with the development of arthritis mutilans in patients with PsA. Several

important human leukocyte antigen (HLA) variables are identified for further investigation.

An extension is then described and evaluated to deal with truncated data using a

a penalized Turnbull-type complete data likelihood which incorporates information from

individuals who did not satisfy the selection criteria. Simulation studies demonstrate good

empirical performance and an application to the motivating study identifies HLA markers

associated with the onset of psoriatic arthritis in patients with psoriasis from both the Ps

and PsA cohorts. Both left- and right-truncation must be dealt with in analyses using

data from both cohorts.
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1.2.2 Assessing the Accuracy of Predictive Models with Interval-

Censored Data

Assessing the statistical performance of a prediction model is important for establishing the

validity of a prognostic model and hence in directing medical and clinical decisions. There

has been a lot of work directed at the evaluation of predictive models with right-censored

data. Methods include estimation of overall prediction error by using loss functions, and

evaluation of discriminative ability through use of the receiver operating characteristic

(ROC) curves for event status.

In Chapter 3, inverse probability weighted (IPW) and augmented inverse probability

weighted (AIPW) estimators are developed and evaluated based on the mean prediction

error and the area under the receiver operating characteristic curve to evaluate the per-

formance of predictive models for interval-censored response. The weights are estimated

through the use of a multistate model facilitating the joint consideration of the event,

inspection and drop-out processes. We empirically investigate the performance of the

proposed methods and illustrate their application in the context of a motivating rheuma-

tology study in which HLA markers are used for predicting disease progression in psoriatic

arthritis patients.

1.2.3 A Two-Phase Model for Chronic Disease Processes Under

Intermittent Inspection

In many chronic diseases, there is often considerable variation in the course of disease.

In rheumatoid arthritis, for example, the length of inactive disease may vary extensively

between individuals. Moreover, once the disease becomes “active”, some individuals expe-
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rience rapid progression while others experience minimal disease activity. One approach to

deal with this kind of situation is using models with multiple components. In Chapter 4,

we propose a two-phase model which has one component for the time from disease occur-

rence to the onset of damage, and another component which characterizes the nature of the

damage process once it begins. This model can be used to separately examine prognostic

factors for the length of the inactive phase as well as factors prognostic for the nature and

rate of damage in the active phase. It can therefore be used to obtain a more appropriate

representation of a complex multi-phase disease process, can help identify different types

of risk factors, and could yield more accurate prediction models.

With interval-censored recurrent event data, all we known are counts of the occurrences

of events between assessments. Therefore, the two-phase model involves modeling interval-

censored times of the precipitating event (i.e. the first joint to become damaged) and

panel count data with a latent time origin. Simulation studies are conducted to examine

the performance of the proposed approach to model fitting. Application to data from the

motivating study of disease progression in psoriatic arthritis is also given.
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Chapter 2

Penalized Regression for

Interval-Censored Times of Disease

Progression

2.1 Introduction

2.1.1 Variable Selection and Penalized Regression

The literature on statistical methods for variable selection has developed considerably over

the last twenty years. Breiman (1996) pointed out that the traditional method of best

subset selection was unstable and that this instability could lead to poor performance

regarding prediction. While ridge regression (Hoerl and Kennard, 1970) imposes some

shrinkage which leads to more stable models, it does not set any coefficients to zero and

therefore does not “select” key variables. Tibshirani (1996) proposed a “least absolute
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shrinkage and selection operator”, widely known by the acronym “LASSO”. The LASSO

attempts to maintain the advantages of both subset selection and ridge regression by

shrinking some coefficients and setting other coefficients to zero through the addition of

a particular penalty function to the log-likelihood. Several other penalty functions have

been developed and studied over the last decade to cope with high dimensional predictor

spaces, including the smoothly-clipped absolute deviation (SCAD) (Fan and Li, 2001; Zou

and Li, 2008), the adaptive LASSO (Zou, 2006), the elastic net (Zou and Hastie, 2005),

the grouped LASSO (Yuan and Lin, 2005), the fused LASSO (Tibshirani et al., 2005) and

the minimax concave penalty (MCP) (Zhang, 2010).

While much of the work on variable selection techniques was initially carried out in the

context of continuous responses (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006), advances

have been made to deal with binary responses (Park and Hastie, 2007; Friedman et al.,

2010) and time to event responses (Tibshirani, 1997; Fan and Li, 2002; Zhang and Lu,

2007). For the latter, the penalty term is typically applied to the partial likelihood (Cox,

1975) arising from a semiparametric Cox regression model (Cox, 1972) when data are

right-censored.

Witten and Tibshirani (2009) give an excellent overview of the challenges arising with

particularly high dimensional covariate data in settings with censored outcomes and provide

an extensive discussion of the specific objectives one might have in particular scientific

contexts; another useful account can be found in Li and Ma (2013). The inherent difficulty

in obtaining robust and generalizable findings from samples with censored responses and

high dimensional covariates is evident from the inconsistency of findings across seemingly

similar patient populations and the modest gains that have been made despite considerable

advances in biotechnology and statistical methods (McShane et al., 2005a). The limitations

analysts face due to inadequate sample size of individual studies (Polley et al., 2013) and
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the inconsistency of findings across studies has led to an increased interest in synthesizing

findings over multiple studies. Assimilating information from several sources can be helpful,

but it is important to clearly understand the differences between the frameworks and goals

of the studies contributing to this synthesis. Guidelines have been developed for reporting

findings from biomarker studies with this in mind, which advocate clear statements of study

objectives, study design, methods of processing samples, and the approach to statistical

analysis (McShane et al., 2005b; Altman et al., 2012).

Many prospective studies, however, have the added complication that the event times

of interest are subject to interval-censoring. In clinical trials involving cancer patients at

risk of metastases, for example, new lesions are only detectable when imaging assessments

are carried out (Hortobagyi et al., 1996), and the precise time from randomization to the

development of a new lesion is unavailable. In patients infected with cytomegalovirus,

the time from infection to viral shedding in the blood is only known to lie between the

last negative and first positive serum sample (Betensky and Finkelstein, 1999; Cook et al.,

2008). Vertebral fractures in patients with osteoporosis are often asymptomatic, and their

occurrence is only detected upon a radiographic examination yielding evidence of a new

fracture (Riggs et al., 1990). Sun (2006) gives an excellent account of statistical methods

for parametric and semiparametric analysis of interval-censored failure time data.

We consider the problem of variable selection in the context of interval-censored time

to event data. We adopt a flexible piecewise exponential model (Friedman, 1982) for the

event of interest and penalize the complete data likelihood constructed by treating the

interval-censored failure times as known. An expectation-maximization (EM) algorithm

(Dempster et al., 1977) is then used for variable selection through optimization of the

penalized observed data likelihood. The LASSO, adaptive LASSO and SCAD penalty

functions are considered.
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The remainder of this chapter is organized as follows. In Section 2.1.2 we describe

the motivating study with the goal of identifying key human leukocyte antigens associated

with the development of arthritis mutilans in a cohort of individuals with psoriatic arthri-

tis. In Section 2.2 we describe a penalized expectation-maximization algorithm based on a

piecewise exponential response model, for which existing techniques for variable selection

can be exploited to handle interval-censored event times. This is the primary contribution

of this chapter. Simulation studies involving multivariate normal covariates vectors are

reported in Section 2.3, which demonstrate superior performance of the proposed method

over analyses based on mid-point imputation (Lindsey and Ryan, 1998). Additional sim-

ulation studies for correlated binary covariates are described in Appendix 2.A and studies

of different criteria for selection of tuning parameters (Bradic et al., 2011) are given in Ap-

pendix 2.B. The data from the psoriatic arthritis clinic are analyzed in Section 2.4 using a

variety of penalty functions, and concluding remarks are given in Section 2.5. An extension

of this algorithm is described and evaluated to deal with truncated data in Section 2.6.

2.1.2 Prognostic HLA Markers in Psoriatic Arthritis

The University of Toronto Psoriatic Arthritis Clinic is a tertiary referral center for individ-

uals with psoriatic arthritis (PsA), an immunological condition which features both skin

and joint involvement (Chandran et al., 2010). A registry was created in 1976, which has

been recruiting and following patients continuously since its inception, making it one of

the largest cohorts of patients with PsA in the world.

Patients undergo a detailed clinical and radiological examination upon entry to the

clinic, and provide serum samples for genetic testing. Follow-up clinical and radiological

assessments are scheduled annually and every two years respectively in order to track
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changes in joint damage. At each radiological assessment the degree of damage is recorded

in sixty-four joints on a five-point scale (Rahman et al., 1998). Arthritis mutilans is a

particularly aggressive form of arthritis characterized here by five or more joints with the

highest grade of damage. Identification of genetic features associated with this aggressive

form of arthritis is important to help identify patients warranting prophylactic treatment

with more effective but costly anti-TNF therapy (Kyle et al., 2005) and to help guide the

selection of high risk patients for inclusion in clinical trials of experimental treatments.

The aim of the current analysis is to identify key human leukocyte antigens which are

associated with increased risk of arthritis mutilans in this cohort of patients.
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Figure 2.1: Plots of the estimated cumulative distribution functions for the time from

psoriatic arthritis diagnosis and clinic entry (Kaplan-Meier estimate) and the times be-

tween radiological assessments based on a semi-Markov model with a gamma frailty (panel

(a)) and the Turnbull estimate with a pointwise 95% confidence band for the marginal

cumulative distribution function of the time from disease onset to arthritis mutilans (panel

(b)).
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To date, 1191 patients have been recruited to the University of Toronto Psoriatic Arthri-

tis Clinic, and 604 of these have undergone genetic testing to determine their human leuko-

cyte antigen profile. A total of 96 human leukocyte antigen covariates were available for

study but 20 of these markers had a frequency in the sample of less than 1% and so were

excluded from further consideration. Among the 604 patients the median time from clinic

entry to last radiological assessment is 6.3 years and there is a median of 3 radiological

assessments per patient. To give a sense of the variability in the times between radiologi-

cal assessments, the estimated cumulative distribution functions of the times between the

first 10 radiological assessments are displayed in Figure 2.1a. To account for the between

individual variation in the propensity to attend the clinic (or equivalently, to account for

the within-individual dependence in the gap times), the estimated cumulative distribution

functions were obtained by fitting a semi-Markov model stratified on the cumulative num-

ber of radiological assessments and with an individual-specific gamma distributed frailty

term (Klein, 1992; Nielsen et al., 1992). The median inter-assessment times range from

2.7 years for the first two or three assessments after clinic entry, to over 6 years for later

assessments. Also plotted is a marginal Kaplan-Meier estimate of the time from diagnosis

of psoriatic arthritis to clinic entry; the median of this distribution is roughly similar to

the median times between assessments but there are more observations in the right tail of

this distribution.

Five hundred and seven (83.9%) of the 604 individuals in this dataset were not observed

to develop arthritis mutilans and hence provided right-censored times, whereas 97 (16.1%)

individuals were known to develop arthritis mutilans and so yielded interval-censored times.

Figure 2.1b contains a nonparametric estimate of the cumulative distribution function

for the time from disease onset to arthritis mutilans based on the Turnbull algorithm

(Turnbull, 1976) along with pointwise 95% confidence bands. The estimate reflects a

14



steadily increasing risk with roughly 23% developing the condition within 20 years of

disease onset.

2.2 Variable Selection with Interval-Censored Data

2.2.1 Notation and the Penalized Complete Data Likelihood

Here we consider the problem of variable selection with interval-censored data. In many

settings, including the motivating study, a natural time origin is the time of disease onset.

We let Ti denote the time from disease onset to the event of interest for individual i in a

sample of m independent individuals, i = 1, . . . ,m. We assume individuals are examined

at assessment times governed by an independent inspection process (Grüger et al., 1991;

Cook and Lawless, 2014) and let Ci = [Li, Ri) denote the interval known to contain the

event for subject i, i = 1, . . . ,m. For left-censored data Li = 0, for right-censored data

Ri = ∞, and for interval-censored data 0 < Li < Ri < ∞. We let Xi = (Xi1, . . . , Xip)
′

denote a p× 1 covariate vector.

We wish to examine the relation between the covariates and the time of interest based

on a proportional hazards model with h(t|Xi; θ) = h0(t;α) exp(X ′iβ) where α parameterizes

the baseline hazard, β = (β1, . . . , βp)
′, and θ = (α′, β′)′. We adopt a weakly parametric

piecewise constant baseline hazard function which requires specification of the number and

location of times the hazard changes value; we subsequently refer to these as break-points.

If 0 = b0 < b1 < · · · < bK−1 < bK =∞ denote K break-points, the baseline hazard function

is h0(s;α) = exp(αk), for s ∈ Bk = [bk−1, bk), k = 1, . . . , K. The survivor function is then

F(t|Xi; θ) = exp{−H(t|Xi; θ)} where H(t|Xi; θ) =
∫ t

0
h(s|Xi; θ)ds. Given the covariate
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vector Xi and an independent inspection process, the observed (partial) likelihood is

L(θ) ∝
m∏
i=1

{F(Li|Xi; θ)−F(Ri|Xi; θ)}

and the corresponding observed data log-likelihood is

logL(θ) ∝
m∑
i=1

log {F(Li|Xi; θ)−F(Ri|Xi; θ)} . (2.1)

When viewing this as a variable selection problem, we are specifically interested in

identifying the component covariates for which the respective regression coefficients are

non-zero. Many common methods of variable selection are based on a penalized likelihood

of the form

logLPEN(θ) =
1

m
logL(θ)− pγ,λ(β) , (2.2)

where the function pγ,λ(β) determines the extent of the penalty for each value of β, mod-

ulated by the tuning parameters (γ, λ). Ridge regression (Hoerl and Kennard, 1970) is

implemented with the L2 penalty pγ,λ(β) = λ
∑p

j=1 β
2
j and the LASSO (Tibshirani, 1996)

uses the L1 penalty pγ,λ(β) = λ
∑p

j=1 |βj|; there is no tuning parameter γ in these penalty

functions. The value of the scalar λ is typically found by cross-validation (Shao, 1993)

or generalized cross-validation (Golub et al., 1979). The adaptive LASSO uses adaptively

weighted L1 penalties of the form

pγ,λ(β) =

p∑
j=1

λj|βj| , (2.3)

with small penalties λj chosen for large coefficients to reduce their shrinkage, and large

penalties for small coefficients to address the selection objective (Zou, 2006). One option

is to set λj = λ/|β̃j|, where β̃ = (β̃1, β̃2, . . . , β̃p)
′ is the maximum likelihood estimate (Zou,

2006; Zhang and Lu, 2007). Alternatively, the penalties can be updated iteratively. In this
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case, at the (`+ 1)st implementation, λj is set to λ
(`)
j = λ/|β̃(`)

j | where β̃(`) is obtained on

the `th iteration; when ` = 0, we set λ
(0)
j = λ/|β̃j| as in the first implementation (Fan and

Lv, 2010). We investigate the iterative implementation of the adaptive LASSO in the next

section.

The smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li

(2001) is defined by

p′γ,λ(β) = λ

p∑
j=1

{
I(|βj| ≤ λ) +

(γλ− |βj|)+

(γ − 1)λ
I(|βj| > λ)

}
,

where γ > 2 and y+ = I(y ≥ 0)×y. This penalty function is continuously differentiable on

(−∞, 0) ∪ (0,∞), but singular at 0 with its derivatives zero outside the range [−γλ, γλ].

Therefore, the SCAD penalty results in “small” coefficients being set to zero, “moderate”

coefficients being shrunk towards zero, and “large” coefficients retained as they are. In

principle, the optimal pair (γ, λ) could be obtained using a two-dimensional grid search by

cross validation or generalized cross validation. From empirical work, Fan and Li (2001)

suggest γ = 3.7 is a reasonable choice for a variety of problems and we use this in what

follows and select λ by (generalized) cross validation.

2.2.2 An Expectation-Maximization Algorithm

We develop here an expectation-maximization algorithm for optimizing (2.2) using avail-

able algorithms for penalized regression (Dempster et al., 1977). We do this by considering

a complete data likelihood in which the latent event time is treated as known rather than

interval-censored.

Let Dk(u) = I(u ∈ Bk) denote whether or not the time u is in the interval Bk and

Wk(u) =
∫ u

0
Ik(s)ds denote the duration at risk in interval k over [0, u). If the event time

17



ti were known, then under the piecewise constant model and given a covariate vector Xi,

the complete data log-likelihood logLCOMP(θ) would be

m∑
i=1

K∑
k=1

[Dk(ti) {log(ρk) +X ′iβ} −Wk(ti)ρk exp(X ′iβ)] . (2.4)

Let Zik` = I(k = `) indicate k = `, ` = 1, . . . , K and let Zik = (Zik1, . . . , ZikK)′ denote the

corresponding vector of these indicator functions, k = 1, . . . , K; thus Zi1 = (1, 0, . . . , 0)′,

Zi2 = (0, 1, . . . , 0)′, . . ., Zik = (0, 0, . . . , 1)′. If αk = log ρk for k = 1, . . . , K, and α =

(α1, . . . , αK)′, we can write

logLCOMP(θ) =
m∑
i=1

K∑
k=1

{Dk(ti)V
′
ikθ −Wk(ti) exp(V ′ikθ)} . (2.5)

where Vik = (Z ′ik, X
′
i)
′ and θ = (α′, β′)′. Since the penalty in (2.2) is simply a function of

the regression parameters, maximization of the penalized likelihood (2.2) can be achieved

by applying the EM algorithm to the penalized complete data likelihood

1

m
logLCOMP(θ)− pγ,λ(β) . (2.6)

The expectation-maximization algorithm proceeds as follows:

The E-step

We let Di = (Li, Ri, Xi) represent the observed data from individual i and D = {Di, i =

1, . . . ,m} denote the observed data for the full sample. The conditional expectation of

(2.6) at the (r + 1)st iteration is evaluated as

QPEN(θ; θ(r)) = E
{

logLCOMP(θ)|D; θ(r)
}
− pγ,λ(β) , (2.7)

where θ(r) is the estimate obtained from the rth iteration. The required conditional expec-

tations are therefore ∆̂
(r)
ik = E[Dk(Ti)|Di; θ

(r)] and ω̂
(r)
ik = E[Wk(Ti)|Di; θ

(r)].
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Let Cik = Ci ∩ Bk = [Lik, Rik) denote the sub-interval of the censoring interval Ci
contained within Bk. When Cik = ∅, the required expectations are relatively easy to

compute since, for instance, it is clear that Dk(ti) = 0 and ∆̂
(r)
ik = 0. Moreover, if bk < Li,

then it is known that individual i was at risk for the entire interval Bk so Wk(ti) = ω̂
(r)
ik =

bk − bk−1, and if Ri < bk−1, then Wk(ti) = ω̂
(r)
ik = 0 since they are known to have failed

prior to the start of interval Bk. If, on the other hand, Cik 6= ∅ then we have:

∆̂
(r)
ik =

F(Lik|Xi; θ
(r))−F(Rik|Xi; θ

(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
(2.8)

ω̂
(r)
ik = max(Li − bk−1, 0) (2.9)

+

∫ min(Ri,bk)

max(Li,bk−1)

F(s|Xi; θ
(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
ds .

Given these results, (2.7) can be written more explicitly as

m∑
i=1

K∑
k=1

{
∆̂

(r)
ik V

′
ikθ − ω̂(r)

ik exp(V ′ikθ)
}
− pγ,λ(β) . (2.10)

The M-step

The objective function (2.10) has the form of a penalized Poisson likelihood (McCullagh

and Nelder, 1989). The value θ(r+1) that maximizes (2.10) can therefore be obtained

using software for penalized Poisson regression by creating a dataset comprised of pseudo-

individuals indexed by (i, k). If Ri ≥ bk−1, then at the (r+1)st iteration this dataset should

include a contribution from pseudo-individual (i, k) with pseudo-count ∆̂
(r)
ik and offset

log ω̂
(r)
ik ; if Ri < bk−1 then no such contribution is required. The function QPEN(θ; θ(r)) is

then maximized with respect to θ using standard software for penalized Poisson regression

(e.g. the glmnet(.) function (R Core Team, 2013; Friedman et al., 2010) or SIS(.) (Fan

et al., 2010)).
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This optimization procedure is repeated iteratively with updated values of (2.8) and

(2.9) in (2.10) until the difference between successive estimates becomes small enough to

satisfy convergence criterion. In our implementation the iterations were terminated when

max
j

(|θ(r+1)
j − θ(r)

j |/|θ(r)
j |) < ε ,

where ε = 10−6.

Selection of the Optimal Tuning Parameter λopt

The criterion for selecting the optimal λ is similar to the traditional cross validation. Here

we use G-fold cross validation and so partition the dataset into G subsamples S1, . . . ,SG;

we refer to Sg and S − Sg as the gth test and training sets, g = 1, . . . , G. For the SCAD

penalty we fixed γ = 3.7. For a given λ, the cross-validation statistic is

ĈV (λ) =
G∑
g=1

{
logL(θ̂−g(λ))− logL−g(θ̂−g(λ))

}
. (2.11)

where L−g is the observed data likelihood (2.1) for the gth training dataset and θ̂−g(λ) is

the estimate for the gth training data, obtained through the penalized EM algorithm. The

optimal λ maximizes ĈV (λ).

Simulation studies reported in Appendix 2.B assess the relative performance of cross-

validation, use of the Bayesian information criterion, and the sparse generalized cross-

validation (Bradic et al., 2011). While it is difficult to make general statements, the

different penalty functions yielded good performance under cross-validation (i.e. good

sensitivity for picking up important factors) and small mean squared error (MSE) of the

β parameter estimates, with a slightly higher tendency to claim association when there is

none). Since there is often strong interest in identifying important variables for further

study, it is reasonable to place more importance on the sensitivity and MSE criteria and
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so we adopt the standard cross-validation approach to selection of the tuning parameter

in the the following empirical studies; this statistic is also used in the R package glmnet.

2.3 Design and Interpretation of Simulation Studies

In this section, we report on the results of simulation studies designed to assess the per-

formance of the penalized expectation-maximization algorithm for variable selection with

interval-censored data. We consider a sample size of m = 500 to correspond roughly

to the size of the sample in the psoriatic arthritis study. In the first setting, p = 100

and Xi ∼ MVNp(0,Σ) are i.i.d. where the (j, k) element of Σ is Σjk = ρ|j−k|, with

ρ = 0.3 or 0.6 to represent a mild or strong autoregressive dependence respectively,

i = 1, 2, . . . ,m. The conditional hazard for Ti is based on a Weibull regression model where

h(t|Xi; θ) = κη(ηt)κ−1 exp(X ′iβ). We set βj = 0.5 for j = 1, . . . , 5 and j = 96, . . . , 100, so

that high values of Xi,1, . . . , Xi,5, Xi,96, . . . , Xi,100 are associated with shorter times to the

event, and βj = 0, j = 6, . . . , 95 so that Ti ⊥ (Xi,6, . . . , Xi,95)|Xi,1, . . . , Xi,5, Xi,96, . . . , Xi,100.

The elements of Xi with non-zero coefficients were chosen to give both weak and strong

dependence within the set of important covariates.

We consider a study with follow-up planned over [0, 1], where for each of κ = 1.0 and

1.25, we solve for η so that P (Ti < 1|Xi = 0; θ) = 0.95. We let Ni denote the number of

assessments for individual i, generated according to a Poisson distribution with mean µ,

truncated to ensure at least one follow-up assessment, given by

P (Ni = n|Ni ≥ 1;µ) =
µn exp(−µ)

n! {1− exp(−µ)} , n = 1, . . . .

The ni inspection times 0 < ai1 < · · · < aini
< 1 were then generated uniformly over

[0, 1]. The left and right endpoints of the censoring interval for individual i are then
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Li = max(aij · I(aij < ti)) and Ri = min(aij · I(aij > ti)) respectively. One hundred

datasets were then simulated (nsim = 100) for µ = 10 and 20 respectively.

For each dataset, variable selection was carried out based on the penalized expectation-

maximization (P-EM) algorithm of Section 2.2 with the LASSO, adaptive LASSO (ALASSO)

and SCAD penalty (γ = 3.7). For each analysis, 5-fold cross validation was carried out

to select the unknown tuning parameter. Analyses were conducted based on proportional

hazards models with a piecewise constant baseline hazards with four pieces where the

break-points were chosen to correspond to the quartiles of the baseline survival function.

For comparison with a simple alternative approach, datasets were created by an ad hoc

mid-point imputation approach (Lindsey and Ryan, 1998) in which event times for individ-

uals with Ri <∞ were taken to be t∗i = (Li +Ri)/2. The resulting datasets were analysed

based on the proportional hazards assumption with piecewise constant baseline hazards

with the same break-points as used in the P-EM analyses; the corresponding results are

labeled MID. The more traditional methods of variable selection based on forward selec-

tion and backward elimination were also considered under the true parametric Weibull

regression model where we used p = 0.10 for inclusion or removal of terms; the R func-

tion survreg (R Core Team, 2013; Therneau, 2013) was used in this case as it handles

parametric modeling with interval-censored data.
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µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 14.80 0.312 (0.126) 10.00 14.83 0.261 (0.105)

MID 10.00 13.05 1.346 (0.286) 10.00 12.05 0.912 (0.251)

ALASSO P-EM 10.00 0.12 0.057 (0.047) 10.00 0.07 0.047 (0.040)

MID 9.69 0.30 0.953 (0.328) 10.00 1.57 0.499 (0.201)

SCAD P-EM 9.98 0.36 0.059 (0.073) 9.99 0.24 0.050 (0.048)

MID 9.39 0.96 0.946 (0.354) 9.91 1.01 0.521 (0.213)

FORWARD 10.00 9.17 0.218 (0.088) 10.00 9.50 0.201 (0.082)

BACKWARD 10.00 15.35 0.322 (0.130) 10.00 14.80 0.289 (0.099)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 14.88 0.291 (0.118) 10.00 14.13 0.245 (0.109)

MID 10.00 15.28 1.037 (0.271) 10.00 12.94 0.685 (0.216)

ALASSO P-EM 9.99 0.23 0.055 (0.050) 10.00 0.08 0.045 (0.031)

MID 9.75 0.29 0.724 (0.327) 10.00 1.25 0.314 (0.160)

SCAD P-EM 9.98 0.29 0.055 (0.052) 9.99 0.13 0.044 (0.036)

MID 9.53 0.76 0.741 (0.336) 9.97 0.91 0.317 (0.167)

FORWARD 10.00 8.66 0.324 (0.089) 10.00 8.81 0.313 (0.089)

BACKWARD 10.00 14.35 0.383 (0.092) 10.00 14.17 0.363 (0.092)

Table 2.1: Empirical results for interval-censored data with normally distributed covariates

(p = 100, E(Xij) = 0, V ar(Xij) = 1 and corr(Xij, Xik) = ρ|j−k|, where ρ = 0.5) summa-

rizing the number of correctly (TP) and incorrectly (FP) selected variables along with the

median and the standard deviation (SD) of the mean squared error (MSE); P-EM denotes

analyses based on the proposed penalized EM method and MID denotes analyses based on

a pseudo-dataset obtained by mid-point imputation; the tuning parameter is selected by

five-fold cross-validation.

The number of variables selected was recorded. Among those that are truly associated

with the response, the average number selected across all simulated datasets is reported

as the mean number of true positive (TP) selections; the correct number of non-zero
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coefficients is given in parentheses in the column headings as TP(10). Among the covariates

having no (conditional) association with the event time, the number selected for each

dataset was averaged and reported as the mean number of false positive (FP) selections;

the number of truly independent covariates is given in parentheses as FP(90). These

statistics, along with the mean squared error (β̂−β)′Σ(β̂−β), and the empirical standard

errors of the mean square error, are reported in Table 2.1 based on 100 simulations.

All three penalty functions generally led to selection of the ten covariates associated with

the response for the P-EM and MID implementations, with slightly worse performance of

the ALASSO and SCAD penalty functions following mid-point imputation. The ALASSO

and SCAD penalty functions had the lowest FP values which were lower in the P-EM

implementation than following mid-point imputation. For any particular penalty function

the mean squared error and the respective standard deviation were always lower when

the penalized EM algorithm was used rather than mid-point imputation. These findings

point to the advantages of the proposed method which include slightly lower FP values and

substantially lower mean squared errors. The forward and backward selection algorithms

also featured high FP values. There were little differences between the findings with the

exponential (κ = 1) and Weibull (κ = 1.25) regression models.

24



µ = 10 µ = 20

Method TP(10) FP(90) MSE (SD) TP(10) FP(90) MSE (SD)

Shape parameter: κ = 1

LASSO P-EM 10.00 12.49 0.304 (0.068) 10.00 15.30 0.201 (0.052)

MID 10.00 17.64 0.690 (0.117) 10.00 19.01 0.436 (0.086)

ALASSO P-EM 9.88 0.82 0.071 (0.067) 9.98 0.26 0.039 (0.033)

MID 9.18 0.78 0.491 (0.149) 9.83 0.49 0.255 (0.097)

SCAD P-EM 9.94 0.54 0.063 (0.063) 10.00 0.10 0.038 (0.031)

MID 9.02 0.96 0.505 (0.166) 9.79 0.40 0.254 (0.102)

FORWARD 10.00 11.14 0.244 (0.078) 10.00 11.09 0.183 (0.057)

BACKWARD 10.00 15.18 0.299 (0.083) 10.00 14.64 0.231 (0.064)

Shape parameter: κ = 1.25

LASSO P-EM 10.00 12.04 0.277 (0.064) 10.00 15.65 0.186 (0.053)

MID 9.99 18.15 0.609 (0.100) 10.00 17.91 0.374 (0.074)

ALASSO P-EM 9.98 0.59 0.051 (0.042) 10.00 0.22 0.034 (0.023)

MID 9.59 0.60 0.404 (0.116) 9.97 0.26 0.186 (0.064)

SCAD P-EM 10.00 0.48 0.053 (0.038) 10.00 0.16 0.033 (0.021)

MID 9.54 0.93 0.414 (0.118) 9.95 0.42 0.186 (0.064)

FORWARD 10.00 10.86 0.198 (0.060) 10.00 10.81 0.180 (0.045)

BACKWARD 10.00 14.49 0.233 (0.064) 10.00 13.76 0.195 (0.052)

Table 2.2: Empirical results for interval-censored data with correlated binary covariates

(p = 100, E(Xij) = 0.2 and corr(Xij, Xik) = ρ|j−k| if Xij, Xik are in the same block as

discussed in Section 2.3 and ρ = 0.2) summarizing the number of correctly (TP) and

incorrectly (FP) selected variables along with the median and the standard deviation (SD)

of the mean squared error (MSE); P-EM denotes analyses based on the proposed penalized

EM method and MID denotes analyses based on a pseudo-dataset obtained by mid-point

imputation; the tuning parameter is selected by five-fold cross-validation.

In a second simulation study, we considered correlated binary covariates with p = 100

to more closely represent the dimension of the HLA variables in the psoriatic arthritis
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study. We set P (Xij = 1) = 0.20, j = 1, . . . , 100. For the dependence structure we

considered the covariates as arising in ten independent blocks such that the correlation

between covariates Xij and Xik within the same block is corr(Xij, Xik) = ρ|j−k| with

ρ = 0.2. Ten covariates were identified to have coefficients equal to one, where these were

chosen to give a combination of pairwise independence as well as weak, moderate and

strong associations between important covariates; all other covariate effects were set to

zero. The results displayed in Table 2.2 again demonstrate that all methods tend to select

the covariates with the non-zero coefficients on average, although the methods based on the

adaptive LASSO and SCAD penalties have negligibly lower TP values. As in the previous

simulations, the false positive selection rate is lower with the adaptive LASSO and SCAD

penalty functions compared to the LASSO as well as the forward and backward selection

algorithms. The respective mean squared errors are always substantially lower in the

penalized EM algorithms compared to the respective implementation following mid-point

imputation.
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Figure 2.2: Box plots of the error for the estimated regression coefficients β̂k − βk, k =

5, 22, 95, 96, for each penalty function for datasets with correlated binary covariates (p =

100) with κ = 1.25, µ = 20.

Figure 2.2 contains box plots of the errors in estimates (i.e. β̂k − βk) for four of the
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hundred coefficients in the setting with binary covariates, κ = 1.25, and µ = 20; β5 and β95

(both zero) and β22 and β96 (both 1.0). For each penalty function the estimates for the P-

EM and MID methods are displayed, along with estimates from an analysis using the true

failure time subject only to administrative right censoring (RC) at C = 1; the latter analysis

is only possible in a simulation study, but is presented for comparison purposes since it

provides a natural benchmark for assessing the performance of the proposed algorithm for

interval-censored data. It is important to note that different datasets are used for the

P-EM, MID and RC analyses, with only the former corresponding to the observed data.

In Appendix 2.A, we present the results of further simulation studies with multivariate

normal and correlated binary covariates when p = 10. Here we consider analyses with

an exponential (time homogeneous) regression model and a piecewise constant baseline

hazards (4 pieces) model. The former is included to examine the effect of having a more

elaborate (four piece) baseline hazard when a single piece is sufficient as is the case when

κ = 1.0, as well as the effect of gross misspecification of the baseline hazard when κ = 1.25.

When κ = 1.0 and the P-EM algorithm is used, the PWC-4 model yields a very slightly

higher MSE than was seen for the exponential model, but the results suggest there is little

price to pay when the piecewise constant model is used unnecessarily.

When κ = 1.25, the piecewise constant model (PWC-4) had a slightly lower rate of

false positive selections and a lower MSE than the exponential model. A similar study was

conducted with binary covariates (p = 10) with findings that suggest that the adaptive

LASSO and SCAD penalties are again preferable to the LASSO since they generally lead

to smaller MSE; among these two methods the relative performance tends to depend on

the criteria used (TP, FP or MSE) but they appear broadly comparable overall.
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2.4 HLA Markers and Risk of Arthritis Mutilans

Patients are classified as suffering from arthritis mutilans upon the occurrence of their

fifth damaged joint, and interest lies in identifying which among the 76 human leukocyte

antigen markers are associated with increased risk of reaching this stage from the time

of diagnosis with psoriatic arthritis. The first, second and third quartiles for the closed

censoring intervals for the 97 individuals known to have developed arthritis mutilans were

2.50, 8.06 and 15.00 years respectively. These quantiles are much wider than one might

expect from a protocol in which radiological assessments are to be scheduled every two

years because of the variation between individuals in the propensity to attend the clinic,

as well as the potentially long delay from the onset of psoriatic arthritis to clinic entry; see

Figure 2.1a. We also remark that the proportion of individuals generating interval-censored

times to arthritis mutilans is smaller than that represented in the simulation study, and

that the variability in the width of the censoring intervals is considerable; the algorithm

can accommodate this setting.

We seek to identify which of the 76 human leukocyte antigens have prognostic value,

while controlling for 6 clinical predictors including age at clinic entry, sex, age at onset

of psoriasis, age at onset of PsA, family history of psoriasis (yes/no), and family history

of psoriatic arthritis (yes/no). We report here on the results of applying the penalized

EM algorithm to the interval-censored time of arthritis mutilans among patients in the

University of Toronto Psoriatic Arthritis Clinic, using the LASSO, adaptive LASSO and

SCAD penalty functions. For comparison purposes, results are also reported based on a

right-censored dataset obtained by using midpoint imputation (MID) as examined in the

simulation studies. Given the findings from the simulation studies; however, we restrict

our attention primarily to the results from the penalized expectation-maximization proce-
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dure. The standard errors of the estimates are calculated using the bootstrap (Efron and

Tibshirani, 1994); details are given in Appendix 2.C.

The break-points for the piecewise constant hazard functions were chosen based on

the nonparametric estimate of the marginal cumulative probability distribution function

for the time from disease onset to arthritis mutilans; see Figure 2.1b. The cumulative

probability is about 35% over 28 years so the break-points chosen were 6.5, 10.5, 18, and

22 years corresponding to the cumulative probabilities of 7%, 14%, 21% and 28%.

The union of all HLA variables selected by any method are listed in Table 2.3, where

it can be seen that the SCAD penalty function with the P-EM procedure selected the

fewest HLA markers including HLA-A11, HLA-A29, HLA-B27 and HLA-DQB1-02; HLA-

B27 and HLA-DQB1-02 are two factors well known to incur increased risk of joint damage

and we found that the presence of HLA-A11 and HLA-A29 has a protective effect. Un-

der the P-EM algorithm the LASSO penalty function also selected HLA-C04, and the

corresponding implementation of the ALASSO further selected HLA-A25, HLA-A30 and

HLA-DRB1-10. With the ALASSO penalty the same variables were selected whether the

P-EM or mid-point imputation was used; for the other penalty functions more variables

were selected under mid-point imputation than with the P-EM procedure, as found in

the empirical investigations. The findings are in broad agreement with those from recent

analyses (Chandran et al., 2012) and a validation exercise is currently underway involving

three independent cohorts from Spain, Ireland and Newfoundland, Canada. The empirical

correlations among the union set of all variables selected by any method range from -0.105

to 0.198.
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LASSO ALASSO SCAD

P-EM MID P-EM MID P-EM MID

HLA Marker β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β) β s.e.(β)

HLA-A11 -0.135 0.199 -0.280 0.263 -0.516 0.629 -0.556 0.836 -1.021 0.746 -0.922 0.947

HLA-A25 -0.232 0.288 -3.265 0.707 -3.229 1.529

HLA-A29 -0.216 0.254 -0.502 0.353 -1.388 1.284 -1.385 1.440 -1.605 2.376 -1.658 2.482

HLA-A30 0.101 0.260 0.494 0.417 0.494 0.525

HLA-B27 0.249 0.232 0.397 0.272 0.588 0.356 0.595 0.547 0.763 0.312 0.725 0.425

HLA-C04 -0.012 0.134 -0.170 0.233 -0.578 0.492 -0.569 1.086 -0.637 0.611

HLA-DQB1-02 0.134 0.164 0.270 0.205 0.514 0.307 0.503 0.540 0.609 0.276 0.623 0.415

HLA-DRB1-10 -2.713 1.007 -2.714 1.725

Table 2.3: Selected HLA markers and their effects obtained by variable selection with

interval-censored data disease progression data in psoriatic arthritis using the LASSO,

ALASSO and SCAD penalty functions.
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Figure 2.3: Plots of the cross validation statistics and shrinkage of coefficients in the PsA

dataset based on piecewise constant hazard model via EM algorithm with the LASSO,

ALASSO and SCAD penalty functions.

The upper panels of Figure 2.3 contain plots of the cross-validation statistic to re-

veal how the optimal values of the tuning parameters are found for the LASSO, adaptive

ALASSO and SCAD functions; the plots in the lower panels of Figure 2.3 give the profile

plots of the coefficients, showing the degree of shrinkage and selection of covariates as a

function of the tuning parameter. The stage at which each variable is selected conveys
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the relative importance of the covariates; the optimal value of the tuning parameter is

designated by the vertical dotted lines.

2.5 Summary of Findings on Penalized Regression for

Interval-Censored Data

Thus far in this chapter we have proposed a simple adaptation of existing algorithms for

variable selection to deal with interval-censored failure time data. A complete data log-

likelihood form based on a proportional hazards model with a piecewise constant baseline

hazard is augmented by including one of several possible penalty terms. The simulation

studies showed that the proposed algorithm led to better performance for each penalty

function compared to simple methods using mid-point imputation. We experienced no

convergence problems with the penalized expectation-maximization algorithm; Wu (1983)

should help assess whether this can be relied upon generally. The adaptive LASSO, as

implemented here with iteratively updated weights, had perhaps the best performance.

The relative performance of the different penalty functions depended heavily on the method

for selecting the optimal tuning parameter in the penalty functions. It can be seen in Table

B.2 of the Appendix 2.B, for example, that the performance of the LASSO in terms of FP

was much better when tuning parameter λ was chosen by BIC or SGCV. The purpose of

this chapter is not to carry out an exhaustive study of variable selection techniques based

on the different penalty functions, but further study of the various options for choosing

the tuning parameters seems worthwhile.

An application of PsA data was conducted, and the results agree quite well with the

previous analysis. Lockhart et al. (2014) point out the properties of coefficients obtained
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following variable selection are not well understood. In Appendix 2.C we explore techniques

for variance estimation following variable selection, but we rely on bootstrap standard

errors in the application.

The piecewise exponential model is a simple, flexible and weakly parametric approach

to dealing with interval-censored data. We set K = 4, following the observation of Lawless

and Zhan (1998) that a modest number of pieces is usually sufficient, particularly when

inferences about covariate effects are of greatest interest. More flexible semiparametric

methods could be considered in this setting, including methods based on local likelihood

(Betensky et al. 2002; Braun et al. 2005) or penalized splines (Cai and Betensky, 2003).

These, and other semiparametric methods (Sun, 2006), may offer a more suitable framework

for studying the limiting behaviour of these algorithms and the resultant estimators.

A natural extension of this work is for the analysis of recurrent events observed subject

to interval-censoring. In many clinical settings, events can recur over time. In osteoporo-

sis, for example, patients can have fractures repeatedly over time and these may only be

detectable upon periodic radiographic examination. In the psoriatic arthritis clinic, when

interest lies in modeling the cumulative number of damaged joints, this count is often based

upon damage scores determined by radiographic examination. The resulting data, consist-

ing of a series of assessment times and counts representing the number of events occurring

between consecutive assessments, is often called panel count data (Sun and Kalbfleisch,

1995). Lawless and Zhan (1998) develop the likelihood and estimating functions for the

analysis of such data for mixed Poisson models with piecewise-constant rate functions

(Cook and Lawless, 2007). The former can be naturally adopted to allow variable selection

based on penalized likelihood for recurrent event data. Given the individual patient level

random effect, the penalized likelihood has a similar form to the one in Section 2.2. While

the observed data likelihood can be penalized, a complete data likelihood involving a more
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detailed recording of the counts and the patient level random effect is very appealing and

can exploit existing software. See He et al. (2009) for a semiparametric implementation

of a similar algorithm. Tong et al. (2009) develop penalized estimating functions for vari-

able selection with panel count data and Wu and He (2012) propose and study a fast and

efficient coordinate ascent algorithm for the same problem.

2.6 Penalized Regression for Truncated and Censored

Data

2.6.1 The Motivating Study and Sample Selection Conditions

The goal of this research is to identify genetic factors associated with rapid onset of psoriatic

arthritis (PsA) among individuals with psoriasis (Ps) using data from disease registries with

different selection conditions: the University of Toronto Psoriasis Clinic (UTPC) and the

University of Toronto Psoriatic Arthritis Clinic (UTPAC).

Figure 2.4 contains two Lexis diagrams characterizing the selection criteria for patients

into the UTPC and UTPAC cohorts for a hypothetical individual; the horizontal axis

represents the timing of events in calendar time while the vertical axis conveys the times

since the development of psoriasis. We let Bi denote the date of birth of individual i, Ei0

denote the calendar time of the onset of psoriasis, and let Ei1 denote the calendar time

psoriatic arthritis developed. The time from the onset of Ps to the onset of PsA is denoted

Ti = Ei1 − Ei0.

The calendar time at which individuals are screened is denoted by A0. For the UTPC

cohort individuals are required to have psoriasis at the time of screening but cannot have
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Figure 2.4: Lexis diagrams of the calendar times of birth (B), onset of psoriasis (E0) and

onset of psoriatic arthritis (E1), along with screening times (A0) for UTPC (left panel) and

the UTPAC (right panel).

developed PsA, so patients are recruited to this registry subject to the constraint Ei0 <

A0 < Ei1 (left panel Figure 2.4). Given Ei0, this can be equivalently expressed as the

constraint Ti ≥ Li where Li = A0 − Ei0 is the left-truncation time for Ti. For the PsA

cohort, only screened subjects who are determined to have PsA are included in the registry,

so in this cohort, subjects are sampled subject to the constraint Ei1 < A0, or equivalently

given Ei0 subject to Ti ≤ Ri where Ri = A0−Ei0 is the right-truncation time for Ti (right

panel Figure 2.4). To unify the notation for the two cohorts we let Ai = [Li,Ri) denote

the truncation interval for individual i, such that 0 < Li < Ri =∞ for individuals in the

UTPC, and 0 = Li < Ti < Ri for individuals in the UTPAC.

Upon recruitment to each cohort patients are examined intermittently and we let Ai1 <

Ai2 < · · · < Aini
denote the calendar times of ni follow-up assessments for individual i

realized over [A0, A] where A is the date the databases are locked for analysis. If Ei1 ∈
[Ai,j−1, Aij] for some j = 1, . . . , ni then PsA is known to have developed, but it is subject

to interval-censoring. We let Ci = [Li, Ri) denote the interval containing Ti where Li =
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Ai,j−1−Ei0 and Ri = Aij−Ei0. When Ti is interval-censored 0 < Li < Ri <∞, if it is right-

censored Ri =∞, and if Ti is observed then Li = Ri = Ti. We take the dates of diagnosis

of psoriatic arthritis in medical records as known; with respect to the onset time of PsA

only the retrospective data are used from the UTPAC. If Xi = (Xi1, . . . , Xip)
′ denotes a

p × 1 covariate vector associated with individual i, the observed data from individual i

are denoted by Di = (Ai, Ci, Xi) and the observed data for a pooled sample of size m is

D = {Di, i = 1, . . . ,m}.

Under the proportional hazards model h(t|Xi; θ) = h0(t;α) exp(X ′iβ), α parameterizes

the baseline hazard, β = (β1, . . . , βp)
′, and we let θ = (α′, β′)′. With independent trun-

cation and independent, non-informative censoring (Klein and Moeschberger, 2003), the

partial likelihood given Xi is

L(θ) ∝
m∏
i=1

F(Li|Xi; θ)−F(Ri|Xi; θ)

F(Li|Xi; θ)−F(Ri|Xi; θ)
,

where H(t|Xi; θ) =
∫ t

0
h(s|Xi; θ)ds and F(t|Xi; θ) = exp{−H(t|Xi; θ)} is the survivor

function.

When the dimension p is large it is customary to adopt some form of penalty for model

complexity to help in the selection of important variables for further investigation. Most

such penalized log-likelihoods can be written in the form `PEN(θ) = m−1 logL(θ)−pγ,λ(β),

where pγ,λ(β) determines the extent of the penalty for each value of β, modulated by the

tuning parameters (γ, λ). We consider three penalty functions, the LASSO, the adaptive

LASSO and the SCAD penalties as described in the previous sections.
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2.6.2 A Turnbull-Type EM Algorithm

Let Ji denote the number of “missing” individuals who have the same characteristics as

the ith sampled individual except they did not satisfy the selection criteria (i.e. their event

times fall in Aci). We further let Tij ∈ Aci be the event time of the jth unselected individual

corresponding to individual i, so a Turnbull-type (Turnbull, 1976) complete data likelihood

is

LC(θ) ∝
m∏
i=1

{
h(Ti|Xi; θ) exp(−H(Ti|Xi; θ))

Ji∏
j=1

h(Tij|Xi; θ) exp(−H(Tij|Xi; θ))

}
.

The reason for considering this form is that by introducing the unobserved failure

times and adopting a weakly parametric piecewise constant baseline hazard model via EM

algorithm, the maximization step of the complete data likelihood will be simplified.

Under a weakly parametric piecewise constant baseline hazard function, the number

and location of break-points at which the baseline hazard changes value must be specified.

If 0 = b0 < b1 < · · · < bK−1 < bK = ∞ denote K break-points, we let h0(s;α) = exp(αk),

for s ∈ Bk = [bk−1, bk), k = 1, . . . , K. Let Dk(u) = I(u ∈ Bk) denote whether or not the

time u is in the interval Bk and Wk(u) =
∫ u

0
Dk(s)ds denote the duration of [0, u) over

interval k, k = 1, . . . , K. Then under the piecewise constant model and given a covariate

vector Xi, the complete data log-likelihood would be

logLC(θ) ∝
m∑
i=1

K∑
k=1

{
Dk(Ti) (αk +X ′iβ)−Wk(Ti) exp(αk +X ′iβ)

+

Ji∑
j=1

[Dk(Tij) (αk +X ′iβ)−Wk(Tij) exp(αk +X ′iβ)]

}
.

(2.12)

If Zik` = I(k = `) and Zik = (Zik1, . . . , ZikK)′ denotes the corresponding vector of

indicator functions, k = 1, . . . , K; thus Zi1 = (1, 0, . . . , 0)′, Zi2 = (0, 1, . . . , 0)′, . . .,
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Zik = (0, 0, . . . , 1)′. Then if α = (α1, . . . , αK)′ and θ = (α′, β′)′, we can write

logLC(θ) =
m∑
i=1

logLCi(θ) ,

where upon letting X̄ik = (Z ′ik, X
′
i)
′ we can write logLCi(θ) as

K∑
k=1

{
Dk(Ti)X̄

′
ikθ −Wk(Ti) exp(X̄ ′ikθ) +

Ji∑
j=1

[
Dk(Tij)X̄

′
ikθ −Wk(Tij) exp(X̄ ′ikθ)

]}
.

At the E-step of the EM algorithm, the conditional expectation of the penalized com-

plete data log-likelihood function at the (r + 1)st iteration is evaluated as

QPEN(θ; θ(r)) =
m∑
i=1

Qi(θ; θ
(r))− pγ,λ(β) , (2.13)

whereQi(θ; θ
(r)) = E

{
logLCi(θ)|D; θ(r)

}
and θ(r) is estimated by maximizingQPEN(θ; θ(r−1)).

The required conditional expectations are therefore ∆̂
(r)
ik = E[Dk(Ti)|Di; θ

(r)], Ŝ(r)
ik =

E[Wk(Ti)|Di; θ
(r)], ι̂

(r)
ik = E[Dk(Tij)|Di; θ

(r)], ω̂
(r)
ik = E[Wk(Tij)|Di; θ

(r)] and J (r)
i = E[Ji|Di; θ

(r)].

Let Cik = Ci ∩ Bk = [Lik, Rik) denote the sub-interval of the censoring interval Ci
contained within Bk. When Cik = ∅, the required expectations are relatively easy to

compute since, for instance, it is clear that Dk(ti) = 0 and ∆̂
(r)
ik = 0. Moreover, if bk < Li,

then it is known that individual i was at risk for the entire interval Bk so Wk(ti) = Ŝ(r)
ik =

bk − bk−1, and if Ri < bk−1, then Wk(ti) = Ŝ(r)
ik = 0 since they are known to have failed

prior to the start of interval Bk. If Cik 6= ∅,

∆̂
(r)
ik =

F(Lik|Xi; θ
(r))−F(Rik|Xi; θ

(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
, (2.14)

Ŝ(r)
ik = max(Li − bk−1, 0) +

∫ Rik

Lik

F(s|Xi; θ
(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
ds , (2.15)

where F(t|Xi; θ) = exp
{
−
(∑K

k=1 exp(αk)Wk(t)
)

exp(X ′iβ)
}

.
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Let Aik = Aci ∩Bk = [Lik,Rik) be the sub-interval of the complement of the truncation

interval Aci contained within Bk, if Aik = ∅, then ι̂
(r)
ik = 0. Moreover, if Aci = [0,Li),

then ω̂
(r)
ik = 0 since they are known to have failed prior to the start of interval, and if

Aci = (Ri,∞), then the individual i was at risk for the entire interval Bk so ω̂
(r)
ik = bk−bk−1.

If Aik 6= ∅,

ι̂
(r)
ik =

F(Lik|Xi; θ
(r))−F(Rik|Xi; θ

(r))

1−F(Li|Xi; θ(r)) + F(Ri|Xi; θ(r))
, (2.16)

ω̂
(r)
ik = Lik − bk−1 +

∫ Rik

Lik

F(s|Xi; θ
(r))

1−F(Li|Xi; θ(r)) + F(Ri|Xi; θ(r))
ds . (2.17)

Also

Ĵ (r)
i = E[Ji|Di; θ

(r)] =
1−F(Li|Xi; θ

(r)) + F(Ri|Xi; θ
(r))

F(Li|Xi; θ(r))−F(Ri|Xi; θ(r))
. (2.18)

Given these results, (2.7) can be written more explicitly as

m∑
i=1

K∑
k=1

{[
∆̂

(r)
ik X̄

′
ikθ − Ŝ(r)

ik exp(X̄ ′ikθ)
]

+ Ĵ (r)
i

[
ι̂
(r)
ik X̄

′
ikθ − ω̂(r)

ik exp(X̄ ′ikθ)
]}
− pγ,λ(β) .

(2.19)

Since (2.19) has the form of a penalized Poisson likelihood, the M-step can be carried

out using software for penalized Poisson regression. This can be implemented by creating

an augmented pseudo-dataset with individual i contributing up to K lines with weight 1

and K lines (for the corresponding unselected individuals) with weight Ĵ (r)
i , i = 1, . . . ,m.

Classical variable selection methods are often based on the Akaike information criterion

(AIC) or the Bayesian information criterion (BIC), while more recently cross-validation

(CV) and generalized cross-validation (GCV) techniques have been advocated. The tra-

ditional G-fold CV statistic is defined as ĈV (λ) =
∑G

g=1[logL(θ̂−g(λ)) − logL−g(θ̂−g(λ))]

where L−g is the observed data likelihood for the gth training dataset and θ̂−g(λ) is the
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estimate for the gth training data, obtained through the EM algorithm; the optimal λ

maximizes ĈV (λ).

2.6.3 Simulation Studies and Application to the Psoriasis and

Psoriatic Arthritis Registries

We considered a sample size of m = 1200 with m1 = 400 of the subjects left-truncated

and m2 = 800 right-truncated and the number of covariates is p = 100. Xij’s are binary

covariates with P (Xij = 1) = 0.5, i = 1, . . . ,m, j = 1, . . . , p. There are eight covariates

specified to have coefficients not equal to zero and all other covariate effects were set to zero,

that is βj = log(2) = 0.6931, j = 1, 2, 9, 10 and βj = log(0.5) = −0.6931, j = 17, 18, 19, 20

and βj = 0, otherwise. The conditional hazard for Ti is based on a Weibull regression

model where

h(t|Xi; θ) = κη(ηt)κ−1 exp(X ′iβ) ,

where κ = 1.25. We consider a study with median event time equal to 1, thus for each of

κ = 1 and 1.25, we solve for η so that

P (Ti < 1; θ) = EX [P (Ti < 1|X; θ)] = 0.5 .

Let tQ25, tQ50 and tQ75 be the quartiles of the marginal distribution of Ti and the truncation

times are drawn from these quartiles with equal probabilities. For each subject i, it has

either a left-truncated right-censored event time (Ps cohort) or a right-truncated event

time (PsA cohort).

For the ith subject, i = 1, . . . ,m1, which are subject to left-truncation, we generate

the left-truncation time Li which is randomly drawn from the quartiles with equal prob-

abilities. To ensure the sample covariate distribution is compatible with the truncation
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scheme, we generate Xi using the conditional distribution P (Xi|Ti > Li). We then gen-

erate Ui ∼ Uniform(0, 1) and solve for the event time Ti that satisfies P (T ≥ Ti|T ≥
Li,Li = li, Xi; θ) = Ui. For the ith subject, i = m1 + 1, . . . ,m, whose times are subject to

right-truncation, we generate the right-truncation time Ri uniformly from the quartiles,

Xi is generated from P (Xi|Ti < Ri), solve for Ti in the constraint P (T < Ti|T < Ri,Ri =

ri, Xi; θ) = Ui where Ui ∼ Uniform(0, 1). We consider this study with duration of follow-up

planned to be τ = A− A0, where τ is obtained from P (T ≥ Li + τ |T ≥ Li; θ) = 0.5. For

simplicity, we consider a fixed number of inspections ni = 5, i = 1, . . . ,m, and the follow-up

inspection times are generated uniformly from [Li,Li + τ ], j = 1, . . . , 5, i = 1, . . . ,m.

For each dataset, variable selection was carried out based on the penalized EM (P-EM)

algorithm with the LASSO, adaptive LASSO (ALASSO) and SCAD (γ = 3.7) penalty

functions. The tuning parameter was selected in each case using the AIC, the BIC or

using a 5-fold cross-validation statistic. Analyses were conducted based on proportional

hazards models with a piecewise constant baseline hazards; hazard functions with four

pieces (PWC-4) where the break-points were based on the quantiles of the baseline survival

function.

Table 2.4 displays the performance of LASSO, ALASSO and SCAD for each method of

selecting the tuning parameter in the setting with some trend in the baseline hazard and for

a time homogeneous model. The probability that an important variable is appropriately

selected is generally very high for all methods, but false positive rates are quite high under

the LASSO penalty regardless of how the tuning parameter is selected; all methods have

high false positive rates when AIC is used for the selection of the tuning parameter. The

ALASSO and SCAD penalty functions perform very well when the tuning parameter is

selected by BIC or 5-fold cross-validation; the performance is slightly better for the CV

than with the BIC criterion.
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Figure 2.5: Plots of the BIC (1st column), 5-fold cross-validation statistic (2nd column)

and shrinkage estimates of coefficients (3rd column) against the tuning parameter from

penalized regression of the PsA dataset based on a piecewise constant hazard model (PWC-

4) fitted via an EM algorithm with the LASSO, ALASSO or SCAD penalty. The fixed

covariates are gender and the onset age of psoriasis.

The data from the UTPC and UTPAC are comprised of 338 and 603 individuals with

left- and right-truncated PsA onset times respectively along with data on 76 human leuko-

cyte antigen (HLA) markers. Among the 338 individuals in the UTPC cohort 38 yielded

onset dates for psoriatic arthritis. Given the high false positive selection rate of the LASSO

and of all methods when the tuning parameter is selected based on the AIC criterion, in

this application we use the ALASSO and SCAD penalty functions and select the tuning

parameter based on the BIC and 5-fold CV statistic. The basic model involves a piecewise

(4-piece) constant baseline hazard and all models control for age and gender.
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The findings based on the BIC suggest HLA-DRB-16 is protective for the development

of PsA with coefficients estimated as -0.9284 for the ALASSO and -0.9317 for the SCAD

penalty functions. When the 5-fold CV statistic is used to select the tuning parameter, we

find HLA-DRB1-10 and HLA-DRB-16 are both identified using ALASSO (coefficient esti-

mates of -0.7144 and -0.9749 respectively) and SCAD (-0.7160 and -0.9771 respectively).

See Figure 2.5 for plots of the cross-validation statistics and traces of the parameter esti-

mates.

2.6.4 Discussion

In this section we develop methods for variable selection based on truncated and interval-

censored data. Increasingly often scientists have two or more large datasets available with

each providing information on chronic disease processes. Such datasets typically have

different criteria for the inclusion of patients which routinely leads to truncated data. A

natural question arises regarding the value of left and right-truncated data in identifying

genetic risks for disease. For right-truncated data all event times may be known with

some uncertainty since they may be retrospectively recorded with error. For left-truncated

data the key factor is the duration of follow-up and the number of individuals going on to

experience the event of interest. A third type of data may be available to enhance efficiency

in estimation and identification of key genetic risk factors. Cross-sectional examination of

individuals with diabetes with known onset times can be useful if their retinopathy status

can be determined along with genetic samples.
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Appendix 2.A Supplementary Simulation Studies

Here we conduct simulation studies with a relatively small number of covariates (p =

10). The generating procedure for the normally distributed covariates is the same as

described in Section 2.3 with p = 100 multivariate normal covariates. We set βj = 0.5,

j = 1, 2, 9, 10 and βj = 0, j = 3, . . . , 6. In Table 2.A.1, we report the results of applying

the penalized expectation-maximization algorithm (P-EM) to proportional hazards models

with exponential (EXP) and piecewise constant baseline hazards with four pieces (PWC-4).

We also report corresponding results following mid-point imputation when the resulting

data are treated as right-censored (MID). Traditional methods of variable selection based

on forward selection and backward elimination are also considered based on the correct

parametric Weibull regression model.

For the case of correlated binary covariates, the data are generated using a series of

conditional binary probability mass functions as described by Preisser et al. (2002). We

set the marginal probabilities such that E(Xij) = 0.05, j = 1, . . . , 5 and E(Xij) = 0.20,

j = 6, . . . , 10, using a 10× 10 correlation matrix with entry corr(Xij, Xik) = ρ|j−k|, where

ρ = 0.3 or 0.6. The coefficients in the proportional hazards model are set to βj = 1 for

j = 1, 2, 9, 10 and βj = 0, j = 3, . . . , 6. The analyses are the same as those used for the

multivariate normal covariates; and Table 2.A.2 shows the results which is analogous to

Table 2.A.1.

When comparing the results between the midpoint imputed and interval-censored datasets

with the PWC-4 model in Table 2.A.1 and Table 2.A.2, there is generally a comparable

ability to detecting important covariates (TP) and number of false positive (FP) selec-

tions, but the proposed P-EM algorithm leads to lower MSE. The results from traditional

variable selection methods also feature high mean squared errors and slightly higher FP
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values.

Figure 2.A.1 contains box plots of the empirical estimation errors (β̂j − βj) for four

of the ten coefficients (β1 and β2 (both equal to 1) and β3 and β5 (both equal to zero))

when data are simulated with κ = 1.25, µ = 10 and ρ = 0.3. We report on results for an

exponential and piecewise constant baseline hazard, for datasets featuring by mid-point

imputation (MID), interval-censoring (P-EM), and for the case where the actual event time

is used, subject only to right-censoring (RC). The performance of the piecewise constant

model is generally better than the exponential model since κ 6= 1, and for this hazard

function, the P-EM algorithm leads to performance which is more like the analysis using

the right-censored (RC) failure time; the latter analysis is only possible in a simulation

study such as this where the interval-censored time is actually known.
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ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Model Penalty MethodTP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD)

Shape parameter: κ = 1

EXP LASSO P-EM 4.00 3.08 0.021 (0.012) 4.00 2.51 0.019 (0.013) 4.00 2.15 0.020 (0.014) 4.00 2.48 0.020 (0.012)

MID 4.00 2.73 0.077 (0.029) 4.00 2.38 0.033 (0.018) 4.00 2.09 0.117 (0.037) 4.00 2.59 0.044 (0.029)

ALASSOP-EM 4.00 0.52 0.012 (0.013) 4.00 0.30 0.012 (0.011) 4.00 0.45 0.014 (0.012) 4.00 0.68 0.012 (0.013)

MID 4.00 0.45 0.048 (0.023) 4.00 0.31 0.018 (0.013) 4.00 0.53 0.084 (0.029) 4.00 0.66 0.029 (0.018)

SCAD P-EM 4.00 0.51 0.010 (0.013) 4.00 0.40 0.012 (0.012) 4.00 0.33 0.013 (0.011) 4.00 0.61 0.011 (0.012)

MID 4.00 0.38 0.048 (0.023) 4.00 0.35 0.018 (0.012) 4.00 0.44 0.082 (0.029) 4.00 0.55 0.028 (0.019)

PWC-4LASSO P-EM 4.00 3.05 0.026 (0.017) 4.00 2.54 0.020 (0.015) 4.00 2.10 0.027 (0.018) 4.00 2.38 0.022 (0.015)

MID 4.00 2.84 0.057 (0.030) 4.00 2.50 0.029 (0.019) 4.00 2.19 0.085 (0.038) 4.00 2.55 0.037 (0.024)

ALASSOP-EM 4.00 0.45 0.012 (0.012) 4.00 0.21 0.013 (0.014) 4.00 0.45 0.015 (0.013) 4.00 0.59 0.013 (0.014)

MID 4.00 0.29 0.029 (0.021) 4.00 0.34 0.015 (0.013) 4.00 0.38 0.052 (0.029) 4.00 0.56 0.019 (0.017)

SCAD P-EM 4.00 0.45 0.012 (0.013) 4.00 0.31 0.014 (0.014) 4.00 0.34 0.015 (0.013) 4.00 0.56 0.012 (0.013)

MID 4.00 0.34 0.029 (0.021) 4.00 0.46 0.015 (0.012) 4.00 0.38 0.052 (0.029) 4.00 0.59 0.020 (0.017)

FORWARD 4.00 0.57 0.014 (0.012) 4.00 0.46 0.017 (0.011) 4.00 0.45 0.017 (0.012) 4.00 0.47 0.014 (0.011)

BACKWARD 4.00 0.65 0.014 (0.012) 4.00 0.48 0.017 (0.011) 4.00 0.60 0.018 (0.012) 4.00 0.65 0.016 (0.011)

Shape parameter: κ = 1.25

EXP LASSO P-EM 4.00 2.80 0.057 (0.022) 4.00 2.53 0.057 (0.023) 4.00 2.26 0.063 (0.026) 4.00 2.50 0.064 (0.022)

MID 4.00 2.68 0.113 (0.034) 4.00 2.47 0.076 (0.025) 4.00 2.10 0.157 (0.039) 4.00 2.39 0.094 (0.029)

ALASSOP-EM 4.00 0.47 0.030 (0.017) 4.00 0.33 0.032 (0.017) 4.00 0.48 0.038 (0.021) 4.00 0.72 0.041 (0.018)

MID 4.00 0.38 0.082 (0.028) 4.00 0.35 0.047 (0.020) 4.00 0.57 0.123 (0.034) 4.00 0.55 0.068 (0.023)

SCAD P-EM 4.00 0.59 0.030 (0.018) 4.00 0.32 0.032 (0.017) 4.00 0.35 0.039 (0.021) 4.00 0.52 0.040 (0.018)

MID 4.00 0.60 0.082 (0.028) 4.00 0.42 0.049 (0.020) 4.00 0.47 0.123 (0.033) 4.00 0.53 0.067 (0.023)

PWC-4LASSO P-EM 4.00 2.94 0.025 (0.015) 4.00 2.52 0.021 (0.016) 4.00 2.26 0.023 (0.017) 4.00 2.45 0.022 (0.014)

MID 4.00 3.04 0.043 (0.027) 4.00 2.78 0.028 (0.017) 4.00 2.27 0.066 (0.033) 4.00 2.54 0.031 (0.022)

ALASSOP-EM 4.00 0.42 0.010 (0.012) 4.00 0.27 0.012 (0.012) 4.00 0.44 0.015 (0.014) 4.00 0.58 0.011 (0.013)

MID 4.00 0.46 0.022 (0.020) 4.00 0.30 0.014 (0.011) 4.00 0.29 0.038 (0.023) 4.00 0.53 0.017 (0.014)

SCAD P-EM 4.00 0.48 0.010 (0.012) 4.00 0.28 0.013 (0.012) 4.00 0.41 0.016 (0.013) 4.00 0.55 0.011 (0.013)

MID 4.00 0.41 0.022 (0.020) 4.00 0.41 0.015 (0.011) 4.00 0.32 0.038 (0.023) 4.00 0.52 0.017 (0.015)

FORWARD 4.00 0.53 0.060 (0.022) 4.00 0.51 0.060 (0.022) 4.00 0.47 0.076 (0.028) 4.00 0.61 0.073 (0.024)

BACKWARD 4.00 0.69 0.061 (0.023) 4.00 0.51 0.060 (0.022) 4.00 0.62 0.078 (0.028) 4.00 0.72 0.072 (0.024)

Table 2.A.1: Empirical results for interval-censored data with normally distributed co-

variates (p = 10, E(Xij) = 0, V ar(Xij) = 1 and corr(Xij, Xik) = ρ|j−k|) summarizing the

number of correctly (TP) and incorrectly (FP) selected variables along with the median

and the standard deviation (SD) of the mean squared error (MSE); P-EM denotes the

analyses based on the proposed penalized EM method and MID denotes an analysis based

on a pseudo-data set obtained by mid-point imputation; the tuning parameter is selected

by five-fold cross validation.
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ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Model Penalty MethodTP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD)

Shape parameter: κ = 1

EXP LASSO P-EM 4.00 2.48 0.293 (0.230) 3.99 2.77 0.263 (0.225) 3.99 2.43 0.292 (0.227) 4.00 2.12 0.256 (0.176)

MID 3.99 2.53 0.826 (0.353) 3.99 2.56 0.451 (0.217) 3.96 2.35 1.102 (0.481) 4.00 2.02 0.506 (0.276)

ALASSOP-EM 3.82 0.77 0.250 (0.486) 3.93 0.90 0.208 (0.313) 3.84 1.44 0.287 (0.300) 3.93 0.79 0.162 (0.409)

MID 3.79 0.73 0.611 (0.451) 3.92 0.88 0.263 (0.300) 3.64 0.83 0.968 (0.573) 3.88 0.63 0.317 (0.276)

SCAD P-EM 3.84 0.62 0.200 (0.465) 3.91 0.79 0.217 (0.402) 3.71 1.16 0.337 (0.339) 3.89 0.58 0.217 (0.300)

MID 3.78 0.45 0.573 (0.459) 3.94 0.77 0.261 (0.280) 3.61 0.79 0.961 (0.578) 3.84 0.58 0.331 (0.283)

PWC-4LASSO P-EM 4.00 2.34 0.314 (0.239) 4.00 2.47 0.262 (0.217) 3.99 2.21 0.305 (0.238) 4.00 1.91 0.265 (0.193)

MID 4.00 2.43 0.602 (0.320) 3.99 2.48 0.363 (0.208) 3.97 2.35 0.844 (0.440) 4.00 1.97 0.381 (0.254)

ALASSOP-EM 3.79 0.65 0.276 (0.567) 3.92 0.82 0.223 (0.328) 3.80 1.13 0.309 (0.428) 3.88 0.73 0.215 (0.426)

MID 3.72 0.48 0.343 (0.635) 3.92 0.61 0.218 (0.297) 3.60 0.84 0.729 (0.735) 3.88 0.49 0.220 (0.397)

SCAD P-EM 3.85 0.69 0.210 (0.481) 3.95 0.89 0.213 (0.301) 3.75 1.18 0.314 (0.444) 3.89 0.69 0.236 (0.310)

MID 3.74 0.52 0.351 (0.599) 3.92 0.73 0.229 (0.295) 3.63 0.87 0.720 (0.638) 3.88 0.43 0.221 (0.275)

FORWARD 3.99 0.63 0.216 (0.318) 3.97 0.67 0.227 (0.272) 3.79 0.59 0.269 (0.335) 3.91 0.56 0.202 (0.339)

BACKWARD 3.99 0.64 0.216 (0.315) 3.97 0.69 0.227 (0.275) 3.79 0.78 0.275 (0.332) 3.91 0.81 0.223 (0.334)

Shape parameter: κ = 1.25

EXP LASSO P-EM 4.00 2.36 0.544 (0.254) 4.00 2.70 0.443 (0.222) 3.98 2.34 0.536 (0.275) 3.99 2.04 0.508 (0.217)

MID 4.00 2.32 0.994 (0.303) 4.00 2.56 0.613 (0.221) 3.96 2.17 1.303 (0.412) 3.99 2.19 0.771 (0.244)

ALASSOP-EM 3.89 0.77 0.296 (0.468) 3.93 0.77 0.252 (0.275) 3.82 1.19 0.383 (0.281) 3.90 0.74 0.312 (0.219)

MID 3.91 0.73 0.721 (0.343) 3.97 0.93 0.423 (0.238) 3.76 0.82 1.036 (0.443) 3.92 0.72 0.553 (0.238)

SCAD P-EM 3.88 0.54 0.270 (0.426) 3.94 0.64 0.247 (0.265) 3.75 0.97 0.428 (0.299) 3.88 0.70 0.314 (0.244)

MID 3.87 0.47 0.718 (0.317) 3.96 0.75 0.425 (0.243) 3.68 0.68 1.049 (0.385) 3.83 0.39 0.550 (0.291)

PWC-4LASSO P-EM 3.99 2.15 0.284 (0.240) 3.99 2.32 0.249 (0.197) 3.98 2.18 0.308 (0.222) 3.99 1.86 0.245 (0.184)

MID 4.00 2.51 0.489 (0.251) 4.00 2.70 0.304 (0.181) 3.95 2.28 0.617 (0.383) 3.99 2.00 0.332 (0.217)

ALASSOP-EM 3.83 0.56 0.173 (0.561) 3.94 0.62 0.153 (0.307) 3.83 1.17 0.271 (0.293) 3.91 0.76 0.182 (0.267)

MID 3.88 0.57 0.279 (0.317) 3.95 0.64 0.159 (0.267) 3.69 0.70 0.480 (0.568) 3.88 0.72 0.210 (0.247)

SCAD P-EM 3.84 0.55 0.165 (0.514) 3.95 0.74 0.156 (0.299) 3.81 1.19 0.282 (0.292) 3.88 0.69 0.148 (0.280)

MID 3.85 0.62 0.288 (0.336) 3.94 0.57 0.159 (0.271) 3.70 0.66 0.480 (0.437) 3.88 0.63 0.189 (0.255)

FORWARD 3.96 0.61 0.326 (0.234) 3.98 0.70 0.303 (0.197) 3.80 0.61 0.372 (0.297) 3.92 0.59 0.345 (0.213)

BACKWARD 3.96 0.65 0.326 (0.233) 3.98 0.73 0.303 (0.198) 3.80 0.76 0.395 (0.289) 3.91 0.82 0.383 (0.233)

Table 2.A.2: Empirical results for interval-censored data with correlated binary covariates

(p = 10, E(Xij) = 0.2 and corr(Xij, Xik) = ρ|j−k|) summarizing the number of correctly

(TP) and incorrectly (FP) selected variables along with the median and the standard

deviation (SD) of the mean squared error (MSE); P-EM denotes the analyses based on

the proposed penalized EM method and MID denotes an analysis based on a pseudo-data

set obtained by mid-point imputation; the tuning parameter is selected by five-fold cross

validation.
49



LASSO ALASSO SCAD

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

E
rr

o
r 

(β^
1

−
β

1
) 

Estimation of β1 = 1 

MID−EXP
P−EM−EXP
RC−EXP

MID−PWC
P−EM−PWC
RC−PWC

(a)

LASSO ALASSO SCAD

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

E
rr

o
r 

(β^
2

−
β

2
) 

Estimation of β2 = 1 

(b)

LASSO ALASSO SCAD

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

E
rr

o
r 

(β^
3

−
β

3
) 

Estimation of β3 = 0 

(c)

LASSO ALASSO SCAD

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

E
rr

o
r 

(β^
5

−
β

5
) 

Estimation of β5 = 0 

(d)

Figure 2.A.1: Box plots of the error for the estimated regression coefficients β̂k − βk, k =

1, 2, 3, 5, for each penalty function for datasets with correlated binary covariates (p = 10)

with κ = 1.25, µ = 10, ρ = 0.3.
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Appendix 2.B Comparison of Methods for Choosing

the Optimal Tuning Parameter

The selection of the tuning parameter λ is an important step in analyses based on penalized

likelihood; when λ = ∞, none of the variables will be selected and when λ = 0, all of the

variables will be selected in the usual fashion. Classical model selection methods are often

based on the Akaike information criterion (AIC) or the Bayesian information criterion

(BIC) and more recent strategies have been based on cross-validation (CV) and generalized

cross-validation (GCV). The traditional G-fold CV statistic is defined as

ĈV (λ) =
G∑
g=1

[
logL(θ̂̂θ̂θ−g(λ))− logL−g(θ̂̂θ̂θ−g(λ))

]
where L−g is the likelihood for the gth training dataset and θ̂̂θ̂θ−g(λ) is the estimate for the

gth training data, obtained through the EM algorithm; the optimal λ maximizes ĈV (λ).

Bradic et al. (2011) mentioned that the measure of information contained in the full

Cox partial likelihood is biased with respect to the number of nonzero elements and proper

normalization is required. They proposed a sparse approximation to the generalized cross-

validation statistic (SGCV) as

ŜGCV (λ) =
G∑
g=1

[
logL(θ̂̂θ̂θ−g(λ))

m (1− ŝ−g(λ)/m)2 −
logL−g(θ̂̂θ̂θ−g(λ))

m−g (1− ŝ−g(λ)/m−g)
2

]

where m−g is the sample size of the gth training dataset and ŝ−g(λ) is the number of

non-zero coefficients. The optimal λ minimizes ŜGCV (λ).

Here we compare three methods of selecting tuning parameters: cross-validation (CV),

Bayesian information criterion (BIC) and sparse generalized cross-validation (SGCV). Ta-

ble 2.B.1 shows the results of comparisons of three methods for proportional hazards models
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with a piecewise constant baseline hazards with four pieces (PWC-4) for datasets with cor-

related binary covariates of dimension p = 10; Table 2.B.2 shows the corresponding results

for datasets with multivariate normal covariates of dimension p = 100 .

From these two tables, we see that for the LASSO penalty, SGCV shows some improve-

ments in terms of a smaller number of incorrectly selected variables (FP); however, it also

results in a smaller number of correctly selected variables (TP) and a larger mean squared

error (MSE).

Compared with SGCV, both BIC and CV show good performance in terms of selecting

tuning parameters for the ALASSO and SCAD penalties; BIC shows a smaller number

of incorrectly selected variables (FP) than CV for LASSO penalty. Since, the R package

glmnet uses cross-validation, we report the corresponding implementation of our algorithm

using cross-validation to select tuning parameter.
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ρ = 0.3 ρ = 0.6

µ = 10 µ = 20 µ = 10 µ = 20

Penalty Method TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD) TP(4)FP(6) MSE (SD)

Shape parameter: κ = 1

LASSO CV 4.00 2.34 0.314 (0.239) 4.00 2.47 0.262 (0.217) 3.99 2.21 0.305 (0.238) 4.00 1.91 0.265 (0.193)

BIC 3.99 0.86 0.447 (0.305) 3.98 0.99 0.329 (0.251) 3.94 0.96 0.406 (0.315) 3.99 0.92 0.287 (0.231)

SGCV 2.90 0.49 3.025 (1.411) 3.09 0.93 1.125 (1.463) 1.23 0.29 6.543 (2.290) 2.81 0.56 3.709 (1.982)

ALASSOCV 3.79 0.65 0.276 (0.567) 3.92 0.82 0.223 (0.328) 3.80 1.13 0.309 (0.428) 3.88 0.73 0.215 (0.426)

BIC 3.75 0.08 0.188 (0.502) 3.85 0.08 0.150 (0.373) 3.53 0.07 0.576 (0.355) 3.70 0.07 0.207 (0.377)

SGCV 1.74 0.03 2.659 (1.564) 1.39 0.06 3.511 (1.591) 1.86 0.06 3.272 (2.079) 1.96 0.10 3.223 (2.006)

SCAD CV 3.85 0.69 0.210 (0.481) 3.95 0.89 0.213 (0.301) 3.75 1.18 0.314 (0.444) 3.89 0.69 0.236 (0.310)

BIC 3.73 0.06 0.176 (0.505) 3.85 0.07 0.148 (0.373) 3.48 0.04 0.670 (0.358) 3.65 0.05 0.237 (0.366)

SGCV 1.50 0.00 3.516 (1.121) 1.60 0.02 3.511 (1.252) 1.44 0.02 3.914 (1.610) 1.38 0.03 3.908 (1.773)

Shape parameter: κ = 1.25

LASSO CV 3.99 2.15 0.284 (0.240) 3.99 2.32 0.249 (0.197) 3.98 2.18 0.308 (0.222) 3.99 1.86 0.245 (0.184)

BIC 3.99 0.82 0.364 (0.320) 3.98 0.91 0.303 (0.257) 3.94 0.68 0.371 (0.308) 3.98 0.83 0.269 (0.243)

SGCV 2.95 0.30 2.235 (1.409) 3.09 0.85 1.157 (1.475) 2.97 0.75 2.111 (1.905) 2.97 0.71 1.756 (1.952)

ALASSOCV 3.83 0.56 0.173 (0.561) 3.94 0.62 0.153 (0.307) 3.83 1.17 0.271 (0.293) 3.91 0.76 0.182 (0.267)

BIC 3.84 0.05 0.127 (0.361) 3.87 0.14 0.141 (0.341) 3.49 0.03 0.653 (0.349) 3.67 0.02 0.166 (0.306)

SGCV 1.83 0.02 2.624 (1.565) 1.44 0.02 3.511 (1.466) 1.33 0.08 3.846 (2.126) 2.29 0.07 3.203 (2.001)

SCAD CV 3.84 0.55 0.165 (0.514) 3.95 0.74 0.156 (0.299) 3.81 1.19 0.282 (0.292) 3.88 0.69 0.148 (0.280)

BIC 3.81 0.06 0.130 (0.380) 3.86 0.14 0.141 (0.356) 3.48 0.02 0.656 (0.402) 3.66 0.01 0.182 (0.308)

SGCV 1.53 0.02 3.518 (1.314) 1.58 0.02 3.511 (1.326) 1.41 0.00 3.914 (1.564) 1.42 0.02 3.903 (1.557)

Table 2.B.1: Comparison of three methods of choosing tuning parameter: cross-validation

(CV), Bayesian information criterion (BIC) and sparse generalized cross-validation

(SGCV). Analyses were based on interval-censored responses with correlated binary co-

variates (p = 10) by using proportional hazards models with a piecewise constant baseline

hazards with four pieces (PWC-4) and results are summarized in terms of the number

of correctly (TP) and incorrectly (FP) selected variables and the median and standard

deviation of the mean squared error (MSE).
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µ = 10 µ = 20

Penalty Method TP (10) FP (90) MSE (SD) TP (10) FP (90) MSE (SD)

Shape parameter: κ = 1

LASSO CV 10.00 14.80 0.312 (0.126) 10.00 14.83 0.261 (0.105)

BIC 10.00 3.34 0.624 (0.199) 10.00 3.94 0.512 (0.184)

SGCV 9.72 5.36 1.405 (0.823) 9.79 5.12 1.246 (0.692)

ALASSO CV 10.00 0.12 0.057 (0.047) 10.00 0.07 0.047 (0.040)

BIC 10.00 0.72 0.084 (0.072) 10.00 0.84 0.076 (0.057)

SGCV 8.25 43.21 1.178 (1.329) 8.55 46.99 0.992 (1.011)

SCAD CV 9.98 0.36 0.059 (0.073) 9.99 0.24 0.050 (0.048)

BIC 10.00 0.84 0.082 (0.081) 10.00 0.79 0.068 (0.064)

SGCV 9.55 58.93 1.275 (0.690) 9.51 53.23 0.940 (0.784)

Shape parameter: κ = 1.25

LASSO CV 10.00 14.88 0.291 (0.118) 10.00 14.13 0.245 (0.109)

BIC 10.00 3.37 0.604 (0.184) 10.00 3.78 0.501 (0.164)

SGCV 9.81 0.96 1.277 (0.707) 9.64 2.70 1.227 (0.877)

ALASSO CV 9.99 0.23 0.055 (0.050) 10.00 0.08 0.045 (0.031)

BIC 10.00 0.59 0.068 (0.075) 10.00 0.90 0.071 (0.047)

SGCV 9.54 62.70 1.024 (0.766) 7.14 29.37 0.983 (1.501)

SCAD CV 9.98 0.29 0.055 (0.052) 9.99 0.13 0.044 (0.036)

BIC 10.00 0.62 0.070 (0.085) 10.00 0.90 0.069 (0.058)

SGCV 7.45 49.44 1.207 (1.987) 8.93 35.06 0.716 (0.735)

Table 2.B.2: Comparison of three methods of choosing tuning parameter: cross-

validation (CV), Bayesian information criterion (BIC) and sparse generalized cross-

validation (SGCV). Analyses were based on interval-censored responses with multivariate

normal covariates (p = 100) by using proportional hazards models with a piecewise con-

stant baseline hazards with four pieces (PWC-4) and results are summarized in terms of

the number of correctly (TP) and incorrectly (FP) selected variables and the median and

standard deviation of the mean squared error (MSE).
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Appendix 2.C Variance Estimation

It is difficult to obtain an accurate estimate of the standard errors of the penalized estimator

since the estimate is a non-linear and non-differentiable function of the responses, even for

a fixed tuning parameter. Moreover, the sampling distribution would have a point mass at

zero and it is even unclear how one could use a standard error for inference. Some authors,

however, estimate the variance by using approximations or the bootstrap and we consider

this here. This work was motivated by a referee comment in a manuscript (Wu and Cook,

2015).

For the LASSO penalty, Tibshirani (1996, 1997) suggested estimating standard errors

using either the bootstrap with either a fixed or an unfixed tuning parameter, or using

an approximate form derived from ridge regression. For the SCAD penalty, Fan and Li

(2001) suggested that for moderate sample sizes, a sandwich-type variance formula derived

from a local quadratic approximation (LQA) could be used for the covariance matrix,

with modifications for large sample sizes. For the adaptive LASSO penalty, Zou (2006)

also used a LQA sandwich formula to approximate the variance of the estimators from

penalized likelihood.

In the main paper, we propose an approach to variable selection for interval-censored

failure times via a piecewise exponential model; it is not easy to derive an approxi-

mate approach to estimate standard errors. Therefore, we have employed a bootstrap

approach to calculate standard errors of the penalized estimators. We draw a random

sample DDD∗ of size m = 500 with replacement from the original dataset DDD and we can

obtain the penalized estimates βββ∗ = (β∗1 , . . . , β
∗
p) from DDD∗ by using the proposed method

with tuning parameter fixed at the optimal value that was determined from the original

dataset DDD. We repeat this process 500 times and get 500 bootstrap penalized estimates
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βββ∗(1), . . . ,βββ∗(500), so the bootstrap standard errors of the penalized estimators will be given

by SE(β
∗(1)
1 , . . . , β

∗(500)
1 ), . . . , SE(β

∗(1)
p , . . . , β

∗(500)
p ). Table 2.C.1 shows the empirical biases,

the average of the bootstrap standard errors, the empirical standard errors for the sim-

ulated datasets with p = 10, κ = 1.25, µ = 10, ρ = 0.3 for both multivariate normal

covariates and multivariate binary covariates. We can see that for the non-zero coefficients

(β1, β2, β9, β10), the ASE and ESE agree well; for the zero coefficients, the ASE tends to be

bigger than the ESE. We note that although we can calculate the standard errors based

on the bootstrap or approximate approaches, it remains challenging to conceive how one

would construct a confidence interval or compute a p−value based on a standard Wald-

based pivotal or test statistic.
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Penalty β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Multivariate Normal Covariate

LASSO EBIAS -0.042 -0.043 0.008 -0.004 -0.002 0.000 0.005 -0.004 -0.052 -0.048

ASE 0.057 0.057 0.035 0.036 0.036 0.035 0.036 0.036 0.058 0.057

ESE 0.058 0.050 0.028 0.031 0.035 0.029 0.037 0.034 0.053 0.048

ALASSO EBIAS 0.004 0.003 0.003 -0.001 0.001 0.000 0.002 -0.003 -0.006 -0.003

ASE 0.061 0.062 0.043 0.045 0.046 0.044 0.045 0.045 0.062 0.060

ESE 0.059 0.052 0.018 0.023 0.027 0.024 0.034 0.028 0.052 0.047

SCAD EBIAS 0.004 0.002 0.005 -0.001 0.001 0.001 0.001 -0.003 -0.006 -0.003

ASE 0.061 0.062 0.047 0.047 0.048 0.047 0.047 0.048 0.063 0.061

ESE 0.059 0.052 0.020 0.021 0.029 0.020 0.036 0.030 0.052 0.048

Multivariate Binary Covariate

LASSO EBIAS -0.155 -0.231 0.033 0.032 0.020 0.008 0.003 0.005 -0.097 -0.100

ASE 0.240 0.249 0.142 0.135 0.139 0.069 0.073 0.075 0.132 0.133

ESE 0.258 0.258 0.122 0.118 0.100 0.059 0.057 0.075 0.132 0.139

ALASSO EBIAS -0.011 -0.071 0.018 0.036 0.016 0.005 0.001 -0.001 0.012 0.010

ASE 0.259 0.273 0.182 0.170 0.175 0.094 0.096 0.095 0.143 0.141

ESE 0.392 0.372 0.148 0.146 0.127 0.050 0.061 0.084 0.140 0.141

SCAD EBIAS -0.002 -0.071 0.018 0.031 0.007 0.005 -0.002 -0.003 0.013 0.009

ASE 0.259 0.272 0.182 0.179 0.181 0.094 0.099 0.099 0.142 0.141

ESE 0.381 0.366 0.145 0.139 0.119 0.042 0.053 0.083 0.142 0.141

Table 2.C.1: Variance estimation by bootstrap for the simulated dataset with multivariate

normal covariates and multivariate binary covariates for κ = 1.25, µ = 10, ρ = 0.3.
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Chapter 3

Assessing the Accuracy of Predictive

Models with Interval-Censored Data

3.1 Introduction

3.1.1 Overview

In the context of time to event data, we obtain flexible prediction models and often evaluate

their predictive value on the same set of data, or a validation data. The purpose of assessing

the predictive accuracy of a regression model is to establish whether a prognostic model can

be used to reliably predict patients’ event status and provide a basis for clinical decision

making. Predictive accuracy can also be used as a strategy for model selection.

There has been a lot of research conducted focusing on prediction with time to event

data where the event times are subject to right-censoring. Various ways and aspects to

assess the predictive performance of a statistical model have been studied by many authors;
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two typical outcomes of interest are the event time and patients’ status at a particular time.

In health-related research, scientists are often interested in predicting patients’ future status

based on covariates; for example, the presence of progression in 2 years after the onset of

disease for a patient with age of 60 at clinical entry.

Common approaches to quantify the overall performance of the prediction model are

using the measures such as the explained variation, the Brier score and the loss functions. In

order to determine whether a predictor Ŷ predicts well of Y , we consider a loss function,

which measures the distance between the predicted and true values. The loss function,

when averaged over all possible values of the data yields a measure of the prediction

error. The absolute loss function is L(Y, Ŷ ) = |Y − Ŷ | and the squared loss function is

L(Y, Ŷ ) = (Y − Ŷ )2. The difficulty in assessing predictive accuracy due to censoring has

been studied by several authors. Korn and Simon (1990) proposed a bounded loss function

to be used for predicting survival time. Inverse probability weighting (IPW) approach used

by Graf et al. (1999), Hothorn et al. (2006), Gerds and Schumacher (2006), Lawless and

Yuan (2010) to deal with censored outcomes.

When the response is a binary indicator of the survival status at a specific time t0, a

key component of assessing the predictive performance is the ability of correctly classifying

individuals with respect to their status at time t0. The features of interest include the

sensitivity P (Ŷ = 1|Y = 1) and specificity P (Ŷ = 0|Y = 0). The discriminative ability

can then be quantified through construction of a receiver operating characteristic (ROC)

curve, which is obtained by plotting the true positive rate (sensitivity) against the false

positive rate (1 - specificity) for different thresholds. Akritas (1994) proposed an estimator

based on a nearest neighbor algorithm for the bivariate distribution function P (Ŷ , Y ),

which can guarantee the monotonicity in terms of sensitivity and specificity; an alternative

simple estimator which does not guarantee monotonicity (Heagerty et al., 2000) based on
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the sensitivity and specificity involves the Kaplan-Meier estimate. Yuan (2008) discussed

an estimator for right-censored data which does guarantee monotonicity based on inverse

probability of censoring weights.

3.1.2 Estimating Prediction Error

Let Ti and Ci denote the event time of interest and the right censoring time for individual i

respectively; we observe min(Ti, Ci) and δi = I(Ti ≤ Ci). If Xi denotes a p×1 covariate vec-

tor for individual i, then the data from a training sample of n independent individuals are

denoted by D = {(min(Ti, Ci), δi, Xi), i = 1, . . . , n}. A corresponding validation dataset of

m−n independent individuals is denoted by D̄ = {(min(Tj, Cj), δj, Xj), j = n+1, . . . ,m}.

If t0 denotes a specific landmark time, one can define a binary status indicator Y =

I(T > t0), which indicates that an individual is event-free at t0; we let Ŷ (X; θ) denote a

prediction for Y which is based on a model for Y |X indexed by θ. To examine the predic-

tive accuracy of such models with a binary response, traditional methods often involve a

summary statistic reflecting overall predictive performance such as the mean squared error

(Efron, 1983) or a concordance statistic for discriminative ability such as the area under a

receiver operating characteristic curve (Hanley and McNeil, 1982).

Overall Predictive Performance

The prediction error based on a squared error loss function is defined as

PE = E[{Y − Ŷ (X; θ̂)}2] , (3.1)

where θ̂ = θ̂(D) is the estimated parameter of the prediction model. The expectation in

(3.1) is taken with respect to (i) the response variable Y , (ii) the covariate vector X, and
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(iii) the training data D. The distribution of the covariates X is typically unknown and it

is undesirable for the prediction error to be dependent on specification of a possibly high

dimensional covariate distribution, so the empirical distribution of X is usually used for

the expectation with respect to X to estimate the prediction error.

The optimal predictor is the one that minimizes the predictor error. For (3.1), the

optimal predictor is the conditional probability of survival to t0 given the covariate which

is Ŷ (X; θ̂) = P (T > t0|X; θ̂) . If we focus on the predictor with the same support as Y

then we use

Ŷ (X; θ̂) = I(P (T > t0|X; θ̂) > c) , (3.2)

which is the optimal binary predictor when the threshold c = 0.5 is used; we focus on the

binary predictor from here on.

With a validation dataset, the prediction error can be estimated empirically by

P̂E(t0) =
1

m− n
m∑

j=n+1

{
Yj − Ŷj(Xj; θ̂)

}
. (3.3)

When there is no validation dataset, there are three broad approaches for estimating the

prediction error: an apparent loss-based estimator, an estimator based on cross-validation,

and a model-based estimator. We define these three approaches in what follows.

The apparent loss error is defined as

P̂E(t0) =
1

n

n∑
i=1

{
Yi − Ŷi(Xi; θ̂)

}2

. (3.4)

When a validation dataset is not available, a naive estimate of the apparent loss based on

the training data tends to underestimate the true loss because Yi and Ŷi(Xi; θ̂) are posi-

tively correlated (Efron, 1986). That is, the apparent loss approach compares predictions

based on the same observations as are used for the development of the prediction model;
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for flexible prediction rules, this negative bias could be a serious issue (Gerds and Schu-

macher, 2007). Many approaches have been developed to estimate this bias and obtain

bias-corrected measures of the prediction error in different regression settings and with

different loss functions (Mallows, 1973; Efron, 1983, 1986, 2004).

Cross-validation is a widely used technique to estimate prediction error in the absence

of a validation sample. In this setting the data D is split into G subsamples S1, . . . ,SG;

we refer to Sg and S − Sg as the gth test and training sets, g = 1, . . . , G. The G-fold

cross-validation estimate for the prediction error is defined as

P̂E(t0) =
1

n

G∑
g=1

∑
i∈Sg

{
Yi − Ŷi(Xi; θ̂−g)

}2

, (3.5)

where θ̂−g is the estimate for the gth training data. A variant of this approach is to use

bootstrap cross-validation, wherein instead of splitting the training data into distinct sub-

samples, B bootstrap samples D∗1, . . . , D
∗
B of size n are drawn with replacement from the

original data D. The estimate of the prediction error is then

P̂E(t0) =
1

B

B∑
b=1

1

nb

∑
i:i 6∈D∗b

{
Yi − Ŷi(Xi; θ̂

∗
b )
}2

, (3.6)

where θ̂∗b is the estimate for the bth bootstrap sample and nb denotes the number of

observations in {i : i 6∈ D∗b}. The cross-validation estimators tend to slightly overestimate

the prediction error, especially when the sample size of the training datasets is smaller than

the sample size n (Gerds and Schumacher, 2007; Yuan, 2008). Some other estimators aim

to retain the advantages of both the apparent loss method and cross-validation methods,

such as the 0.632+ bootstrap estimator (Gerds and Schumacher, 2007).

The model-based estimate of the prediction error is defined by

P̂E(t0) =
1

n

n∑
i=1

EY

{(
Yi − Ŷi(Xi; θ̂)

)2
}
. (3.7)
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When the prediction model is misspecified, this model-based estimator may be seriously

biased (Lawless and Yuan, 2010).

3.1.3 Estimating Prediction Error for Censored Data

Inverse Probability of Censoring Weights

While the prediction Ŷi can be always obtained from a prediction model, the response Y

may be unknown due to censoring (i.e. when Ci < t0). Either weighting or imputation is

used to deal with this situation. Inverse probability of censoring weights (IPCW) can be

useful to estimate the prediction error and the IPCW estimator of the apparent loss (3.4)

is

P̂E(t0) =
1

n

n∑
i=1

∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2

, (3.8)

where ∆i = I(Ci > min(Ti, t0)) indicates Yi is known, and πi = E(∆i|Ti, Xi) is the

conditional expectation of ∆i given (Ti, Xi). Given (Ti, Xi) the only random quantity in

∆i is Ci, so πi = P (Ci > min(Ti, t0)|Ti, Xi) = G(min(Ti, t0)|Ti, Xi), where G(·) is the

survivor function of the right censoring time. The motivation for this IPCW approach is

explained as follows:

ET,C,X

[
P̂E(t0)

]
= ET,X

{
EC|T,X

[
1

n

n∑
i=1

∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2
]}

= ET,X

{
1

n

n∑
i=1

EC|T,X [∆i]

πi

{
Yi − Ŷi(Xi; θ̂)

}2
}

= ET,X

{
1

n

n∑
i=1

{
Yi − Ŷi(Xi; θ̂)

}2
}
.

In practise, G(c|Ti, Xi) and πi are unknown; but a consistent estimate of (3.8) is obtained

if a
√
n-consistent estimate of πi is used. Such an estimate can be obtained by using a
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regression modelling approach based on the Cox model (Cox, 1975) or additive models

(Aalen, 1989), for example.

ROC Curve and Estimation of the AUC

Another approach to examine the performance of a classification for survival status is based

on the receiver operating characteristic (ROC) curve. Consider a set of binary predictors of

survival status at a fixed time t0, Ŷ (X; θ) = I(F(t0|X; θ̂) > c), where F(·) is the survivor

function of the event time and c ∈ (0, 1). The true positive rate (TPR) and false positive

rate (FPR) are defined as

TPR(c) = P (Ŷ = 1|Y = 1) =
P (F(t0|X; θ̂) > c, T > t0)

P (T > t0)
,

FPR(c) = P (Ŷ = 1|Y = 0) =
P (F(t0|X; θ̂) > c, T ≤ t0)

P (T ≤ t0)
.

(3.9)

The ROC curve is obtained by plotting TPR(c) against FPR(c) for values of c increasing

from 0 to 1. The best possible prediction method would yield a point in the upper left corner

at coordinate (0,1) of the ROC space (representing 100% sensitivity and 100% specificity).

While a point along a diagonal line (the so-called line of no-discrimination) corresponds

to a prediction scheme no better than a random guess. The area under curve (AUC) is a

summary measure of ROC curve, which is equal to the probability that a predictor will

rank a randomly chosen positive instance higher than a randomly chosen negative one.

These probabilities can be estimated using an inverse probability of censoring weighting

approach as well. For example,

P̂ (F(t0|X; θ̂) > c, T > t0) =
1

n

n∑
i=1

∆i

π̂i
I(F(t0|Xi; θ̂) > c, Ti > t0) .
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An alternative approach is to consider a C-statistic (concordance statistic) (Heagerty and

Zheng, 2005; Uno et al., 2011), which is defined as

ÂUC = P (g(Xi; θ̂) < g(Xj; θ̂) | Ti > Tj) , (3.10)

where g(X) can be the linear predictor X ′β.

3.2 Prediction for Interval-Censored Data

Here we propose methods for characterizing the predictive accuracy of a regression model

when the outcome of interest is an interval-censored event time. We let [Li, Ri] denote

the censoring interval known to contain the event time Ti for subject i, then the observed

data is D = {(Li, Ri, Xi), i = 1, . . . , n}. When data are incomplete, either weighting or

imputation are commonly used. The model-based and imputation-based estimators of the

prediction error are defined as follows:

P̂EModel-Based(t0) =
1

n

n∑
i=1

E

[{
Yi − Ŷi(Xi; θ̂)

}2

|Xi

]
, (3.11)

P̂EImputed(t0) =
1

n

n∑
i=1

{
∆i

{
Yi − Ŷi(Xi; θ̂)

}2

+ (1−∆i)E

[{
Yi − Ŷi(Xi; θ̂)

}2

|Ti ∈ [Li, Ri], Xi

]}
. (3.12)

These two estimators are entirely based on the prediction model, so their performance

depends on the correct response model specification and consistent parameter estimation.

We also consider the use of weighting. For right-censored data, the observed data is a

function of both the event process and the censoring process. For the interval-censored

case, the observed data is also influenced by the inspection process. In the sections that

follow, we consider a multistate framework for joint consideration of the event, inspection
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and censoring (drop-out) processes, and discuss inverse weighted and augmented inverse

weighted techniques. We begin with a discussion of the joint model for the response and

observation process.

3.2.1 Notation and Formulation of Observation Process Models

We consider a single individual, let 0 = V0 < V1 < · · · < Vn denote the times of assessments

since disease onset, and let N(u) =
∑∞

r=1 I(Vr ≤ u) count the number of assessments at

time u. Let C be a random drop-out time and C(u) = I(u ≤ C) indicate whether this

individual is in cohort or not at time u. We also let T be the event time, X be a p × 1

fixed covariate vector, {X(s), 0 < s} be a time-dependent covariate process, X̄(u) ={
X(a1), . . . , X(aN(u−))

}
be the history of the observed value at time u > 0, and W̄ (u) ={

W (a1), . . . ,W (aN(u−))
}

denote the recorded event status at the process assessment here

where W (u) = I(T < u). The complete history observed at time s is then H(s) ={
(dN(u), C(u)), 0 < u < s,X, X̄(s), W̄ (s)

}
. Since the goal is to use genetic data to predict

the development of PsA, it is inappropriate to control for time-varying markers in the causal

pathway in the model for the response process. Here we adopt a simple hazard function of

the form

lim
∆t↓0

P (T < t+ ∆t|T ≥ t,X)

∆t
= I(t ≤ T )h(t|X)

for the response model. The intensities for the inspection and censoring processes are

meant to provide good representations of the data and so conditioning on all available

data is appropriate; we let

lim
∆t↓0

P (∆N(t) = 1|H(t))

∆t
= C(t)λ(t|H(t)) ,

lim
∆t↓0

P (C < t+ ∆t|H(t))

∆t
= C(t)λc(t|H(t))
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represent the inspection and censoring intensities.

We define a multistate process {Z(s), 0 < s} with a state space

S =
{
V0,V1,V2, . . . ,VE

1 ,VE
2 , . . . ,C1,C2, . . . ,CE

1 ,CE
2 , . . . ,E

}
for joint consideration of the event, inspection and censoring processes; see Figure 3.1.

Here E denotes the event, Vr denotes the state of having had the rth assessment without

previously having experienced the event, VE
r denotes the rth assessment occurring imme-

diately after the event, Cr denotes the random drop-out after the (r − 1)st assessment

without the event, and CE
r denotes the random drop-out after the (r−1)st assessment and

after the event; note here the convention where we use a superscript E to denote the states

after the process has been passed through E.

C1 C2 Cr

V0 V1 V2 Vr−1 Vr VR

E CE
1 E CE

2 E CE
r

VE
1 VE

2 VE
r VE

R

λc(t)

λ(t)
h(t)

λc
E(t)

λE(t)

λE(t)

λc
E(t)

Figure 3.1: A multistate diagram for joint consideration of event, random drop-out and

assessment times.

Following the occurrence of many transitions into non-absorbing states in S, the next

transition to occur is governed by a competing risk process. The transition intensities

are defined above with possible transition depicted by the arrows in Figure 3.1. We use

a subscript E to denote an intensity post-event, that is, the intensity for an inspection
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post-event is λE(t) and the intensity for random drop-out post-event is λcE(t). If the

event process is (conditionally) independent of the inspection process, then λE(t) = λ(t),

otherwise, we may assign a different intensity such as λE(t) = λ(t) exp(αs). Similarly, if

the event process is independent of the censoring process, then λcE(t) = λc(t), otherwise,

we may assign a different intensity such as λcE(t) = λc(t) exp(αc).

3.2.2 Inverse Probability Weighted Estimator

Timet0

•
•

•
•

•
•

•

Y = 0, ∆ = 1

Y = 0, ∆ = 0

Y = 1, ∆ = 0

Y = 1, ∆ = 1

Y = 0, ∆ = 0

Y = 1, ∆ = 0

Y = 1, ∆ = 1

A

B

C

D

E

F

G

Figure 3.2: Four schematic diagram enumerating possible combinations of (Y,∆); the solid

lines denote observations in which the event status is known at t0 and the dashed lines

denote individual whose event status cannot be classified and hence who are excluded from

the sum in (3.13); the solid dots denote the (unobserved) exact event times.

Figure 3.2 shows all the possible combinations of the event status and observation status

indicators (Y,∆). The IPW estimator of the prediction error is

P̂E(t0) =
1

n

n∑
i=1

∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2

, (3.13)
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where ∆i = I(Yi is known) = I(t0 6∈ [Li, Ri]) and the weight is πi = E(∆i|Yi, Xi) which is

the conditional expectation of ∆i given (Yi, Xi). Here the random variable ∆i depends on

the inspection process, the censoring process and the event process. The weight can then

be written as

πi = E(∆i|Yi, Xi) = EN,C,T |Y,X [∆i] = P (∆i = 1|Yi, Xi) . (3.14)

The motivation for this IPW approach is explained by noting that

EN,C,T,Y,X

[
P̂E(t0)

]
= EY,X

{
EN,C,T |Y,X

[
1

n

n∑
i=1

∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2
]}

= EY,X

{
1

n

n∑
i=1

EN,C,T |Y,X [∆i]

πi

{
Yi − Ŷi(Xi; θ̂)

}2
}

= EY,X

{
1

n

n∑
i=1

{
Yi − Ŷi(Xi; θ̂)

}2
}
.

We explore this expectation in more detail separately for the case of T ≤ t0 and T > t0.

Expectations Under the Condition T ≤ t0

After the occurrence of the event of interest (i.e. entry to an E state), the next event to

occur can be a visit (i.e. entry to a VE
r state) or censoring (i.e. entry to a CE

r state). If

Y is known, then a post-event assessment must be made before t0. Thus P (∆i = 1|Yi =

0, Xi) = P (∆i = 1|Ti ≤ t0, Xi) can be written as∫ t0

0

[∫ t0

t

λE(u|H(u)) exp

{
−
∫ u

t

λE(v|H(v)) + λcE(v|H(v))dv

}
du

]
×f(t|Ti ≤ t0, Xi) exp

{
−
∫ t

0

λc(s|H(s))ds

}
dt .

(3.15)
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If we assume λE(t) = λ(t) and λcE(t) = λc(t), then (3.15) becomes∫ t0

0

[∫ t0

t

λ(u|H(u)) exp

{
−
∫ u

t

λ(v|H(v)) dv −
∫ u

0

λc(v|H(v))dv

}
du

]
×f(t|Ti ≤ t0, Xi) dt .

Expectations Under the Condition T > t0

If Y is known to be one, in this case then there must be an assessment without disease

after t0, which can be represented by an entry to a Vr state, r = 1, 2, . . .. Therefore

Z(t−0 ) = Vr−1 for some r and the next transition to occur can be a transition into states

Vr, Cr or E. In this case, P (∆i = 1|Yi = 1, Xi) = P (∆i = 1|Ti > t0, Xi) is∫ ∞
t0

λ(u|H(u)) exp

{
−
∫ u

t0

[λ(v|H(v)) + h(v|Z)] dv −
∫ u

0

λc(v|H(v)) dv

}
du . (3.16)

3.2.3 Augmented Inverse Probability Weighted Estimator

The augmented inverse probability weighted (AIPW) estimator of the prediction error is

defined as

P̂EAIPW(t0) =
1

n

n∑
i=1

[
∆i

π̂i

{
Yi − Ŷi(Xi; θ̂)

}2

+

(
1− ∆i

π̂i

)
Ψ(Xi)

]
,

where Ψ(Xi) = E

[{
Yi − Ŷi(Xi; θ̂)

}2

|Xi

]
.

Usually when augmented inverse weighted estimators are defined a so-called “double-

robustness” property is discussed which states that if the weight model or the response

(prediction) model is correct then a consistent estimator for the parameter of interest

is obtained. In the present setting the weight is dependent on the response model and
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therefore if the response model is incorrect then the weight model must be incorrect.

Therefore in the present setting the double robustness property is not present; see Section

5.3 for further comments. There is merit to investigating the empirical bias and relative

efficiency of the estimator above however and we do so in what follows.

Properties of P̂EAIPW(t0)

If the weight is correctly modeled (i.e. we correctly jointly model (dN,C, T ) on the test

data), then

E
{

P̂EAIPW

}
=EY,X

[
EN,C,T |Y,X

{
1

n

n∑
i=1

[
∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1− ∆i

πi

)
Ψ(Xi)

]}]

=EY,X

[
1

n

n∑
i=1

[
EN,C,T |Y,X(∆i)

πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1−

EN,C,T |Y,X(∆i)

πi

)
Ψ(Xi)

]]

=EY,X

[
1

n

n∑
i=1

[
P (∆i = 1|Yi, Xi)

πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1− P (∆i = 1|Yi, Xi)

πi

)
Ψ(Xi)

]]

=EY,X

[
1

n

n∑
i=1

{
Yi − Ŷi(Xi; θ̂)

}2
]
.
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However if only the prediction model is correctly modeled (i.e. only f(ti|xi) is correctly

modeled on training data), then

E
{

P̂EAIPW

}
=EY,X

[
EN,C,T |Y,X

{
1

n

n∑
i=1

[
∆i

πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1− ∆i

πi

)
Ψ(Xi)

]}]

=EY,X

[
1

n

n∑
i=1

[
EN,C,T |Y,X(∆i)

πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1−

EN,C,T |Y,X(∆i)

πi

)
Ψ(Xi)

]]

=EY,X

[
1

n

n∑
i=1

[
π∗i
πi

{
Yi − Ŷi(Xi; θ̂)

}2
+

(
1− π∗i

πi

)
EY |X

[{
Yi − Ŷi(Xi; θ̂)

}2
]]]

=EY,X

[
1

n

n∑
i=1

EY |X

[{
Yi − Ŷi(Xi; θ̂)

}2
]]

+ EY,X

[
1

n

n∑
i=1

π∗i
πi

({
Yi − Ŷi(Xi; θ̂)

}2
− EY |X

[{
Yi − Ŷi(Xi; θ̂)

}2
])]

=EY,X

[
1

n

n∑
i=1

{
Yi − Ŷi(Xi; θ̂)

}2
]
.

The AIPW method therefore yields a consistent estimator of the prediction error under

the usual condition that only the response model need be correct. It therefore represents

an alternative approach to the direct model-based approach of (3.11) or the imputation

approach of (3.12).

3.2.4 ROC Curves and the Area Under the Curve

The ROC curves and the AUC statistic can also be estimated by the IPW and AIPW ap-

proaches, as in the case of right-censoring. The weighting scheme and then the calculation

of weights are the same as Section 3.2.2. Similarly, we can estimate those probabilities
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separately using inverse weighting methods. For example,

1

n

n∑
i=1

∆i

π̂i
I(F(t0|Xi; θ̂) > c, Ti > t0) ,

1

n

n∑
i=1

{
∆i

π̂i
I(F(t0|Xi; θ̂) > c, Ti > t0) +

(
1− ∆i

π̂i

)
EY |X

[
I(F(t0|Xi; θ̂) > c, Ti > t0)

]}
are the IPW and AIPW estimators of P (F(t0|X; θ̂) > c, T > t0) respectively.

3.3 Simulation Studies

3.3.1 Design and Results of Studies for Poisson Processes

We consider the setting with three covariates denoted Xi1, Xi2 and Xi3. In one sce-

nario they have marginal standard normal distributions with Xi1 ⊥ Xi2, Xi1 ⊥ Xi3, and

corr(Xi2, Xi3) = 0 or 0.5. In a second scenario the covariates are binary with P (Xij =

1) = 0.5, j = 1, 2, 3. The event time Ti follows a Weibull distribution given (Xi1, Xi2) with

β1 = log(2), β2 = log(1.5) and shape κ = 1.25; that is,

F(t|Xi1, Xi2; θ) = exp {−(λt)κ exp (Xi1β1 +Xi2β2)} ,

where θ = (λ, κ, β1, β2)′; the value of λ is determined so that P (T > 1) = 0.5, where

P (T > 1) = E{F(t|Xi1, Xi2; θ)}. We consider an administrative censoring time τ such

that F(τ) = 0.9. A time homogeneous Poisson process is used for the inspection process

with rate

λ(s|Xi1, Xi3; γ) = exp(γ0 +Xi1γ1 +Xi3γ2) ,

where γ1 = log(1.1) and γ2 = log(1.5) for the normal covariates and γ1 = log(2) and

γ2 = log(2.5) for the binary covariates; γ0 is determined to ensure that the average number

of assessments by τ is controlled at µ = 10 where µ = E{
∫ τ

0
λ(s|Xi1, Xi3; γ)ds}.
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Let 0 = v0 < v1 < . . . < vn ≤ τ denote the inspection times, then the left and right

endpoints of the censoring interval are L = max(vr · I(vr < t)) and R = min(vr · I(vr >

t)) respectively. In the application there is no recorded right censoring time and so the

expressions of (3.15) and (3.16) simplify to the following expressions (3.17) and (3.18)∫ t0

0

[∫ t0

t

λ(u|H(u)) exp

{
−
∫ u

t

λ(v|H(v)) dv

}
du

]
× f(t|Ti ≤ t0, Xi) dt , (3.17)∫ τ

t0

λ(u|H(u)) exp

[
−
∫ u

t0

{λ(v|H(v)) + h(v|X)} dv

]
du . (3.18)

Thus the weights are estimated by modeling the event and inspection processes as de-

scribed in the discussion of the simulation study. Datasets with sample sizes of m = 500

are simulated 100 times (nsim = 100) for each scenario. For each simulated dataset, para-

metric analyses were carried out to model the event time by using a Weibull distribution;

both parametric and semiparametric analyses were used to model the gap times between

two consecutive inspection times by an exponential distribution and Anderson-Gill model.

The unweighted, model-based and imputed estimators are only based on the modeling of

the event process; while the IPW and AIPW estimators depend on both the event and

inspection processes, so the corresponding estimators are denoted as IPW-EXP, AIPW-

EXP for parametric modeling and IPW-AG, AIPW-AG for semiparametric modeling. The

empirical bias (EBIAS), the empirical standard error (ESE) and the relative empirical bias

(%BIAS) of these estimators of the prediction error at time t0 are summarized in Table 3.1

and Table 3.2, where t0 values are taken to be the quartiles of the marginal distribution of

T . The true prediction errors are estimated according to the formal definition evaluating
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the expectation at the true parameter values. That is, we compute

PE = EY,X

[
{Y − Ŷ (X; θ)}2

]
= EX

{
EY |X

[
{Y − Ŷ (X; θ)}2

]}
=

∫
x

[
{1− Ŷ (X; θ)}2P (T > t0|X; θ) + {0− Ŷ (X; θ)}2P (T ≤ t0|X; θ)

]
p(x)dx .

Under correct specification of the inspection model, the proposed IPW and AIPW

estimators have relatively small biases compared to the unweighted estimators, while the

variability (in terms of ESE) is greater. The AIPW estimators are more efficient than

the IPW estimators; moreover none of the weighted estimators are as efficient as the

model-based or imputation-based estimators. The misspecification of inspection model

was next investigated by omitting one important covariate. In broad terms we found, as

one would expect, that there was a consequent increase in the empirical bias of the IPW

estimators, but that this bias remains smaller than that of the unweighted estimator for

the misspecification considered here. Since the response model is correctly specified, the

AIPW estimators under a misspecified inspection model have a comparable performance

with those under correct specification of the inspection model; the bias remains small

and the standard errors are very slightly lower in many cases than in the case when the

inspection model is correctly specified.

3.3.2 Design and Results of Studies for Renewal Processes

Here we consider another scenario that the inspection process is governed by a non-Markov

renewal process to further explore the influences of model misspecification of inspection

process. The event times are generated as described in Section 3.3.1. The gap times

between two consecutive inspections are generated by a Gamma distribution with shape
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η and rate exp(γ0 + Xi1γ1 + Xi3γ2), where η = 1.25, 1.5 and 2 and the configurations

of the other parameters are kept to be the same as in Section 3.3.1 for both the normal

and binary covariates. For each combination of parameter configuration, 100 datasets with

sample sizes equal to m = 500 are simulated.

Since the inspection process is non-Markov, the further the shape parameter η is from

1, the more different it is from a time homogeneous Poisson process and hence the greater

the extent of misspecification. From Table 3.3, Table 3.4, Table 3.5 and Table 3.6, we found

that empirical biases of the IPW-EXP and IPW-AG estimators increase as η increases, but

the AIPW-EXP and AIPW-AG estimators maintain relatively small bias. The empirical

standard errors of the AIPW estimators are smaller than those of the IPW estimators,

which again demonstrates the improved efficiency of the AIPW estimators. As before none

of the weighted or augmented weighted estimators perform as well as the model-based or

imputation-based estimators of the prediction error since the correct response model is

always used in the simulation studies.

We comment more on the possible utility of the augmented inverse probability weighted

estimators in the settings where a validation sample is available in Chapter 5.

3.4 Application to the Psoriatic Arthritis Cohort

Our interest lies in identifying which among the 76 HLA markers are associated with in-

creased risk of developing arthritis mutilans from the time of diagnosis of psoriatic arthritis

and assessing the predictive performance of the models obtained by penalized regression

through application of the methods in Section 3.2. While there is no clinical agreement on

how to precisely define arthritis mutilans, it represents a state of significant joint damage

arising from an extreme form of the disease; here we define it as present if an individual has
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5 or more joints with the advanced stage of damage according to the modified Steinbrocker

score. We consider data from 604 patients in the University of Toronto Psoriatic Arthritis

Clinic with the median time from the diagnosis of PsA to last assessment being 12.5 years

(lower quartile = 5.1, upper quartile = 21.5). Ninety-seven patients were known to develop

arthritis mutilans because they had a visit with a damaged joint count of 5 or greater. The

25th, 50th and 75th percentiles of the censoring interval lengths for these individuals were

2.50, 8.06 and 15.00 years respectively. We adopt a proportional hazards model with a

piecewise constant (5-piece) baseline hazard with cut points at years 6.5, 10.5, 18 and 22.

All models controlled for 6 clinical predictors including age at clinic entry, sex, age at onset

of psoriasis, age at onset of PsA, family history of psoriasis and family history of psoriatic

arthritis. The findings of all HLA variables selected by any method are listed in Table 2.3

of Chapter 2, the sign of the coefficients are consistent in the various final models.

We next apply the inverse weighting approach to estimate the prediction errors and the

discriminative abilities for all the models. Semiparametric analysis was carried out to model

the inspection process, that is, modeling the gap times between two consecutive inspection

times by Anderson-Gill model. The covariates in the inspection process model are sex, age

and the set of the 8 HLA markers. Figure 3.3 shows the results in terms of prediction error

curves by using the unweighted, IPW and AIPW approaches (upper panels) and model-

and imputation-based approaches (bottom panels), where time t0, ranging from 0 to 40

years after the diagnosis of psoriatic arthritis. It is obvious that the unweighted estimates

are greater than the weighted estimates since the unweighted estimators do not account

for the unclassified portion in the sample. The estimates of the area under the ROC curves

against time t0 = 5, 10, . . . , 60 by using unweighted, IPW and AIPW approaches are shown

in Figure 3.4. The ROC curves at time t0 = 10, 20 and 30 years after diagnosis of psoriatic

arthritis for all three models with IPW (upper three panels) and AIPW (bottom three
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panels) methods are shown in Figure 3.5; the summary statistic AUC is also given in the

legend. We can conclude from these figures that the model by using ALASSO penalty has

a better predictive performance in terms of a higher AUC compared with the models using

LASSO and SCAD penalty functions.

3.5 Discussion and Future Research

In this chapter, we extend the methods of inverse probability weighting used for right-

censored data to deal with interval-censored data arising from intermittent inspection of

individuals. The simulation studies demonstrated that the proposed IPW and AIPW

estimators led to better performance compared to simple methods of using the unweighted

estimators. Note that many datasets involving interval-censored data report only the left

and right endpoints of the censoring intervals; such information are insufficient to model the

inspection process and implement the proposed method. Implementation hinges critically

on the availability of all inspection times over the course of observation. In the data from

the motivating study such data are available, and the proposed methods were illustrated by

an application in which penalized regression was used to select the prediction model using

methods of Wu and Cook (2015). The weighting methods were then applied to compare

the performance of each model chosen using the different penalty functions.

Wu and Cook (2016) develop methods for variable selection with truncated and interval-

censored data. While we have dealt with the latter complication here, it is less clear how

one might assess predictive accuracy when samples are chosen subject to truncation, but

this feature is often present in problems involving large datasets. We therefore plan to

consider this in future research.

The availability of external validation data is also crucial when we consider the assess-
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ment of the predictive performance. When there are no validation data, we can consider

use of our proposed method as a tuning criterion for model/variable selection. While when

the validation data are available, our proposed method can be used to examine the utility

of the prediction model, which can be considered for use in adapting medical therapy based

on patients individual risk. A common aim is to assess predictive accuracy using external

validation samples. There are several clinical registries of individuals with psoriatic arthri-

tis in Spain (Queiro et al., 2003), Ireland (Winchester et al., 2012), and Newfoundland

(Rahman et al., 2011), most of which are devoted to some form of genetic research aiming

to identify prognostic markers. We may consider use of these three external validation

datasets and are currently investigating the extent of follow-up in these registries. An

issue with the Newfoundland cohort is that the distribution of genetic markers and other

attributes among the members of this registry is different than those individuals in the

Toronto registry. As a result we might expect the estimated prediction error based on

such an external validation sample to be quite different than the estimates obtained by

cross-validation based on the Toronto registry.
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Figure 3.4: Plots of the estimates of the AUC against t0 with a binary predictor I(P (T >

t0) > c), where c ranging from 0 to 1. The response models are obtained from penalized

regression with the LASSO, ALASSO and SCAD penalty functions.
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Chapter 4

A Two-Phase Model for Chronic

Disease Processes Under

Intermittent Inspection

4.1 Introduction

4.1.1 Disease Processes with Delayed Activity

Many chronic disease processes feature considerable variability in their course which must

be dealt with in statistical analysis for valid inference. Regression modeling and regression

diagnostics play a central role in explaining this variation in such a way that scientific

understanding can be advanced. Another avenue is to generalize the family of stochas-

tic models considered as the basis for analysis. Finite mixture models, for example, offer

an appealing generalization as they involve conceptualization of two or more subpopula-
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tions of individuals, each with different stochastic models generating the response process.

When models are directed at dynamic aspects of disease processes the simplest and perhaps

most studied mixture model accommodates a non-susceptible sub-population of individuals

whose status will never change, while individuals in the complementary sub-population ex-

perience the disease process. Such models are often called cure-rate models when modeling

the time to an event (Farewell, 1986) or mover-stayer models when considering multistate

disease processes (Goodman, 1961; Frydman, 1984).

In many contexts it is unnatural to envision diseased individuals as being indefinitely at

zero risk of disease progression. An alternative, and less extreme assumption is to consider

two phases of the disease course: an inactive phase I during which diseased individuals do

not experience clinically meaningful disease activity or damage and an active phase II of

disease progression. Chronic diseases whose course can be represented in this way include

HIV/AIDS where phase I represents the phase of HIV infection prior to the experience of

AIDS defining events, and phase II represents the onset of opportunistic infections or death.

In diabetes there may be a long phase I period during which no symptoms are evident,

followed by a second phase during which there is evidence of retinopathy, nephropathy or

other circulatory impairment. Individuals with hepatitic C infection may go a long time

without experiencing any liver cirrhosis but will ultimately experience progressive liver

damage. Finally, arthritis patients may simply have elevated markers of inflammation for

some time before there is any evidence of joint damage, but once joint damage begins the

risk of continued damage is substantially greater.

Phase I ends upon the occurrence of a precipitating event which signals the beginning

of a fundamentally different phase (phase II) in which activity and damage are realized.

The length of the phase I period may vary extensively between individuals and regression

modeling techniques for time to event analysis can be adopted to explain this variation.
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Once the period of morbidity begins, the nature of the morbidity process will drive the

specification of the stochastic model for this phase. Often the dynamics of the disease

process are sufficiently distinct in this phase that it is natural to define the time origin

as the time of the transition from phase I to phase II. With this in mind we formulate

a partially semi-Markov two-phase model in which one part is for the duration of phase

I and another characterizes the dynamic disease process during phase II with the time

origin being the start of the phase II. The term partially semi-Markov is because the time

origin is only redefined once at the start of phase II. This model can be used to separately

examine prognostic factors for the length of the inactive phase as well as factors prognostic

for the nature and rate of change in the active phase. In some settings this will offer a

more appropriate representation of complex multi-phase disease processes, can help identify

different types of risk factors, and could yield more accurate prediction models.

The remainder of this chapter is organized as follows. In the next sub-section we

describe the data from the University of Toronto Psoriatic Arthritis Cohort which motivates

this work. In Section 4.2 we define notation and describe the two-phase model using a

general multistate process to characterize the second phase where the time origin for the

second phase is the time of the precipitative event. We also discuss likelihood construction

when individuals are examined intermittently rendering the time of the precipitating event

and subsequent transition interval-censored. In Section 4.3 we consider a special case of the

general phase II model of Section 4.2 which is specified to correspond to the data from the

motivating study. Specifically, the response of interest is intermittent counts of the number

of damaged joint experienced by patients with a rheumatological disease, so we consider an

analysis based on proportional rate models. We then develop an expectation-maximization

algorithm (Dempster et al., 1977) for estimation under a model with piecewise constant

intensities. A computationally more convenient two-stage estimation procedure is discussed
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in Section 4.4 in which the parameters in the hazard for the end of phase I are estimated

using standard likelihood for interval-censored data. The results of simulation studies

examining the finite sample performance of estimators obtained by maximum likelihood

and the two-stage procedure are given in Section 4.5, along with an application to the

motivating study. Concluding remarks and topics for further research are provided in

Section 4.6.

4.1.2 The University of Toronto Psoriatic Arthritis Cohort

The Centre for Prognosis Studies in Rheumatic Disease is a tertiary care center at the

Toronto Western Hospital which treats patients with a variety of rheumatological condi-

tions and maintains several clinic registries with prospective follow-up. One registry is of

patients with psoriatic arthritis (PsA), an immunological disease which features both skin

(psoriasis) and joint (arthritis) involvement. The psoriatic aspect of the condition arises

from an overproduction of new skin cells resulting in red and white scaly patches of skin

frequently located on the elbows, knees and scalp. As with other arthritic conditions, this

disease can result in considerable inflammation and ultimately destruction of joints, which

can lead to serious disability and poor quality of life (Chandran et al., 2010). This registry

was established in 1976 and has been recruiting and following patients since its inception,

and today it is one of the largest cohorts of patients with PsA in the world.

Patients in this registry undergo a detailed clinical and radiological examination upon

entry to the clinic, and provide serum samples for genetic testing. Follow-up clinical and

radiological assessments are scheduled annually and biannually respectively in order to

track changes in joint damage. At each radiological assessment the degree of damage is

recorded in sixty-four joints on a five-point scale (Rahman et al., 1998). To date 1191
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patients have been recruited to the University of Toronto Psoriatic Arthritis Clinic. Of

these 604 have undergone genetic testing to determine their human leukocyte antigen

profile. Among these individuals the median time from clinic entry to the last radiological

assessment is 6.3 years with a median of 3 radiological assessments per patient.
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Figure 4.1: Plot of assessment times (hatch marks) and time of radiological damaged joints

detected between assessments (solid points) from onset of psoriatic arthritis for a selected

sample of patients from University of Toronto Psoriatic Arthritis Clinic. The dashed line

denotes time from disease onset to first occurrence of joint damage, and the solid line

denotes the period of disease progression following onset of damage.

We focus our modeling here on the accumulation of joint damage reflected by the

total number of joints with at least grade 4 damage according to the Steinbrocker scoring
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system (Wu and Cook, 2015). Figure 4.1 shows the time course of damage for a sample

of five individuals. The horizontal axis is the time from disease onset and the length of

the individual lines reflects the extent of follow-up of each individual; visits at which joint

counts are made are represented by vertical tick marks. The dashed portion of each line

reflects the period in which no joint damage is manifest and the solid lines reflect time

following the occurrence of the first damaged joint. The precise times the joints became

damaged are not available so for graphical illustration times were assigned by uniformly

distributing them over the intervals during which they were known to occur; the dots

are located at the resulting times. It is apparent that there are some individuals who

experience active disease shortly after diagnosis (e.g. individuals 1 and 4) and some who

enjoy a long period of time without damage (e.g. individuals 2 and 5). Moreover, once a

patient develops their first damaged joint, some rapidly develop damage in other joints and

for some individuals the rate of subsequent damage is very slow. These types of variation in

manifestation of disease are what we accommodate with the two-phase model we describe

in the next section.

4.2 Model Formulation and Likelihood under Inter-

mittent Observation

4.2.1 General Formulation of a Two-Phase Model

We consider chronic diseases that feature a variable and potentially long phase I during

which there are no clinically important manifestations of disease in affected individuals.

If t denotes the time since disease onset, we let T1 be a random variable representing the

duration of phase I with t1 representing its realization. During phase II where t1 < t, in
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general disease activity, it is evident through the occurrence of exacerbations or flares of

symptoms, disability, or in the motivating context, joint damage and destruction. The

variable duration of phase I and the distinct nature of the activity in the second phase

suggests the use of t∗ = t − t1 as the time scale for the process in phase II, which is the

time since the end of phase I. We let {Z(t∗), 0 < t∗} be a multistate process with state space

{1, 2, . . . , } reflecting the stage of the disease process in phase II. In Section 4.1 we consider

the special case of a progressive multistate model which can alternatively be viewed as a

recurrent event process.
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Figure 4.2: Lexis diagram of event and assessment times on the scale of disease duration

(t) on the horizontal axis and the time since start of phase II (t∗) on the vertical axis.

To unify the notation for the two phases we augment the state space for the process

in phase II to include a state 0 representing the status prior to T1, and write Z̄(t) =

Z(t∗)I(t1 ≤ t) and consider models for the stochastic process
{
Z̄(t), 0 < t

}
; note that

Z(t∗) = Z̄(t1 + t∗). We let X be a p × 1 vector of fixed covariates. The two-phase model
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can be defined by first considering the hazard for the end of phase I, defined by

lim
∆t↓0

P (t ≤ T1 < t+ ∆t|t ≤ T1, X)

∆t
= h(t|X) . (4.1)

Covariate effects can be modeled using proportional (Cox, 1972), additive (Aalen, 1989),

or hybrid Cox-Aalen models (Martinussen and Scheike, 2007).

We let H(t∗) = {Z(u), 0 < u < t∗, x} be the history of the process in phase II, and

dynamic aspects of the process can be modeled through intensity functions (Andersen

et al., 2012) given by

lim
∆t↓0

P (Z (t∗ + ∆t−) = k|Z(t∗−) = j,H(t∗))

∆t
= Yj(t

∗)λjk(t
∗|H(t∗)) , (4.2)

where Yj(t
∗) = I(Z(t∗−) = j), j ∈ {1, 2, . . .}. If H̄(t) =

{
Z̄(u), 0 < u < t, x

}
denotes the

history since the time of disease onset, then the intensity

lim
∆t↓0

P
(
Z̄(t+ ∆t−) = k|Z̄(t−) = j, H̄(t)

)
∆t

= Ȳj(t)λ̄jk(t|H̄(t)) , (4.3)

governs the full process from disease onset, where Ȳj(t) = I(Z̄(t−) = j) indicates whether

an individual is at risk of a transition out of state j ∈ {0, 1, . . .} at time t. Note that

if we denote (4.1) as λ01(t|H̄(t)}, then we can write λ̄jk(t|H̄(t)) = λjk(B(t)|H̄(t)) where

B(t) = I(t ≤ t1)t + I(t1 < t)(t − t1). Thus the process {Z̄(t), 0 < t} has a countable

number of states in the state space and a semi-Markov feature in that the relevant time

scale for the second phase of the disease process is the time since the end of phase I. With

this time scale the process in phase II is Markov, but we refer to the process as a whole as

partially semi-Markov.

The probability of a particular path P of this multistate process given X = x is

∞∏
j=0

∏
k∈Zj

 ∏
tr∈D̄jk

λ̄jk(tr|H̄(tr))

 exp

(
−
∫ ∞

0

Ȳj(u)λ̄jk(u|H̄(u))du

) , (4.4)
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where Zj is the set of states that can be entered directly from state j and D̄jk is the set of

j → k transition times (Andersen and Keiding, 2002) . This can be written more explicitly

as

λ01(t1|x) exp

(
−
∫ ∞

0

Ȳ0(u)λ01(u|x)du

)

×

 ∞∏
j=1

∏
k∈Zk

 ∏
t∗r∈Djk

λjk(t
∗
r|H(t∗r))

 exp

(
−
∫ ∞

0

Yj(u)λjk(u|H(u))du

) ,

(4.5)

where if tr ∈ D̄jk, each t∗r ∈ Djk can be expressible as t∗r = tr − t1. A slightly modified

version of this probability expression can be derived for likelihood contributions when

processes are under conditionally independent and non-informative censoring. Instead of

pursuing this we consider next the problem of estimation and inference when such processes

are under intermittent observation so that all event times are interval-censored.

4.2.2 Intermittent Assessment and Interval-Censored Data

Here we consider the case in which individuals are assessed intermittently and discuss the

construction of the likelihood contribution for a single individual. Let a0 = 0 denote the

onset time of disease and a1 < · · · < aR denote the times of the R assessments at which

point the individual’s condition, and hence response status, is determined. The observed

history at a−r is denoted by H(ar) =
{

(a`, Z̄(a`)), ` = 0, 1, . . . , r − 1, X
}

, where we use a

standard font for H(·) to distinguish it from the history of the process in continuous time.

With fixed covariates, the full likelihood is

L ∝ P
(
Z̄(a0), A0 = a0, X

)
×

R∏
r=1

P
(
Z̄(ar), Ar = ar|H(ar)

)
. (4.6)

We can omit the first term in the full likelihood if we condition on the covariate and

the state occupied (0) at the onset of disease. We also assume the “sequential missing at
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random” condition (Hogan et al., 2004) holds so that if an individual is observed up to

ar−1, then conditional on the event history at that time, the probability they are lost to

follow-up and not observed at ar cannot depend on events in [ar−1, ar). We also assume the

event process and inspection process are conditionally independent and that the inspection

process is non-informative. Under these assumptions, we can focus on the partial likelihood

of the form

L ∝
R∏
r=1

P
(
Z̄(ar)|H(ar)

)
. (4.7)

This observed data partial likelihood (4.7) can be maximized directly, but this can be

challenging if the dimension of parameters is high and the expression of this likelihood

is complicated due to intermittent assessment. Therefore, an expectation-maximization

(EM) algorithm (Dempster et al., 1977) can alternatively be used with a complete data

likelihood analogous to observed data likelihood where missing variables, in this case the

transition time from phase I to phase II, are part of the complete data. This is a particularly

attractive approach for the setting of piecewise constant intensities which we consider in

the next section.

4.3 Piecewise Constant Baseline Functions and the

EM Algorithm

4.3.1 Complete Data Log-Likelihood

The complete data likelihood (4.5) is given in general form for the case in which we consider

the event times as observed, or subject at most to right-censoring. In this section, we

redefine the notation by giving a superscript 1 or 2 to denote the phase. Here we consider
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the setting with interval-censored data in phase II and let a1
0 = 0 denote the onset of disease

and a1
1 < · · · < a1

R1
denote the times of R1 assessments at which point the individual’s

disease stage is determined. For information in phase II it is helpful to let a2
0 = 0 denote

the start time of phase II and a2
1 < · · · < a2

R2
denote the times of the R2 radiological

assessments during phase II. With the process in phase II a recurrent event process we can

also let nr = Z̄(a2
r)−Z̄(a2

r−1) denote the number of events over the interval Ar = (a2
r−1, a

2
r],

r = 1, . . . , R2.

We adopt a Poisson process model for phase II such that λk,k+1(t∗|H(t∗)) = ρ(t∗|x) and

write the complete data likelihood (4.5) as

L ∝ λ01(t1|X) exp

(
−
∫ ∞

0

Ȳ0(u)λ01(u|X)du

)
×

R2∏
r=1

[
1

nr!

{∫ a2r

a2r−1

ρ(u|X)du

}nr

exp

{
−
∫ a2r

a2r−1

ρ(u|X)du

}]
.

(4.8)

We consider multiplicative models of the form λ01(t1|X; θ1) = h0(t1;α1) exp(X ′β1) for

T1|X and λk,k+1(t∗|H(t∗)) = ρ0(t∗;α2) exp(X ′β2) for the recurrent event process in phase

II, where k ≥ 1, where α1 indexes the baseline hazard function, α2 indexes the baseline

rate function, θ1 = (α′1, β
′
1)′, θ2 = (α′2, β

′
2)′ and θ = (θ′1, θ

′
2)′. A weakly parametric piecewise

exponential baseline hazard is adopted for the duration of phase I and a piecewise constant

baseline rate model is adopted for the recurrent event process during phase II. These require

specification of break-points where the baseline hazard and rate functions can take on

different values and we denote these by 0 = b1
0 < b1

1 < · · · < b1
K1

and 0 = b2
0 < b2

1 < · · · < b2
K2

respectively. Then we let

h0(t;α1) = α1k if t ∈ B1
k = [b1

k−1, b
1
k) k = 1, . . . , K1,

ρ0(t∗;α2) = α2k if t∗ ∈ B2
k = [b2

k−1, b
2
k) k = 1, . . . , K2 ,

(4.9)
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respectively. We consider all the subintervals Crk = Ar∩B2
k of length urk and let nrk denote

the unobserved number of events over Crk such that
∑K2

k=1 nrk = nr r = 1, . . . , R2. Since

Nrk|T1, X ∼ Poisson(µrk) , where µrk = α2kurk exp(X ′β2), then

E (Nrk|T1, X,Nr) = nr · α2kurk/
∑K2

k=1 α2kurk .

The complete data log likelihood is then

logLC(θ) = logLC1(θ1) + logLC2(θ2) , (4.10)

where

logLC1(θ1) = δ1

{
K1∑
k=1

Ik(t1) (logα1k +X ′β1)−
K1∑
k=1

α1kWk(t1)eX
′β1

}

− (1− δ1)

K1∑
k=1

α1kWk(aR1)e
X′β1 , (4.11)

logLC2(θ2) = δ1

{
R2∑
r=1

K2∑
k=1

nrk (logα2k +X ′β2)−
R2∑
r=1

K2∑
k=1

α2kurke
X′β2

}
, (4.12)

Ik(u) = I(u ∈ B1
k) and Wk(u) =

∫ u
0
Ik(s)ds is the total time at risk in B1

k over the interval

(0, u], k = 1, . . . , K1.

4.3.2 The EM Algorithm for Maximum Likelihood Estimation

At the vth iteration of the expectation-maximization (EM) algorithm, the E-Step is to

take the conditional expectation

Q(θ; θ(v)) = Q1(θ1; θ(v)) +Q2(θ2; θ(v)) , (4.13)

whereQ1(θ1; θ(v)) = E
[
logLC1(θ1)|D; θ(v)

]
andQ2(θ2; θ(v)) = E

[
logLC2(θ2)|D; θ(v)

]
, where

the observed data is D =
{

(ar, Z̄(ar)), r = 0, 1, . . . , R1, X
}

. The unobserved quantities in
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the complete data log likelihood Ik(t1), Wk(t1), nrk and urk are all functions of T1. Thus,

their conditional expectations given the current estimates of parameters and the observed

data D can be evaluated through

ft1|D(t1|D; θ) =

f1(t1)×
R2∏
r=1

f2(nr|t1)∫ R1

L1

f1(u1)×
R2∏
r=1

f2(nr|u1) du1

, (4.14)

where

f(t1|X) =

K1∏
k=1

{
[α1k exp(X ′β1)]

Ik(t1) · exp (−α1kWk(t1) exp(X ′β1))
}

and

f2(nr|t1, X) =

[
K2∑
k=1

α2kurk exp(X ′β2)

]nr

· exp

(
−

K2∑
k=1

α2kurk exp(X ′β2)

)
.

The M-Step involves maximizing Q(θ; θ(v)) with respect to θ and gets the updated estimate

θ(v+1). By reparametrization, we can write Q(θ; θ(v)) in the form of a Poisson log-likelihood

and use existing software for generalized linear model to maximize following the creation

of a pseudo-dataset. We iterate between the E-step and M-step until the convergence

criterion
∣∣(θ(v+1) − θ(v)

)
/θ(v)

∣∣ < ε is achieved where ε is the user-specified tolerance. The

details of the EM algorithm and the calculation of conditional expectations are given in

Appendix 4.A.

4.3.3 Louis’ Method for Estimates Obtained by Simultaneous

Maximization

Here we describe how to implement Louis’ (Louis, 1982) method based on the identity

IOBS(θ) =
m∑
i=1

E[ICi(θ)|Di]−
m∑
i=1

E[Si(θ)S
′
i(θ)|Di]+

m∑
i=1

E[Si(θ)|Di]{E[Si(θ)|Di]}′ . (4.15)
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For simplicity, hereafter we drop the subscript i and only consider a single observation.

Then the complete data score function, obtained from (4.10), is

S(θ) = (S ′1(θ1), S ′2(θ2))
′
, (4.16)

where S1(θ1) = (S ′11(θ1), S ′12(θ1))′ with S11(θ1) = ∂ logLC(θ)/∂α1 and S12(θ1) = ∂ logLC(θ)/∂β1,

and S2(θ2) = (S ′21(θ2), S ′22(θ2))′ with S21(θ2) = ∂ logLC(θ)/∂α2 and S22(θ2) = ∂ logLC(θ)/∂β2.

The corresponding contribution to the complete data information matrix is then

Ii = −



∂2 logLC(θ)

∂α1∂α
′
1

∂2 logLC(θ)

∂α1∂β
′
1

0 0

∂2 logLC(θ)

∂β1∂α
′
1

∂2 logLC(θ)

∂β1∂β
′
1

0 0

0 0
∂2 logLC(θ)

∂α2∂α
′
2

∂2 logLC(θ)

∂α2∂β
′
2

0 0
∂2 logLC(θ)

∂β2∂α
′
2

∂2 logLC(θ)

∂β2∂β
′
2



.
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For the specific models we consider,

∂ logLC(θ)

∂α1k

= δ1

{
Ik(t1)

α1k

− α1kSk(t1)ex
′β1

}
− (1− δ1)α1kSk(aR1)e

x′β1 , k = 1, 2, . . . , K1 ,

∂ logLC(θ)

∂β1

= δ1

{
K1∑
k=1

(
Ik(t1)− α1kSk(t1)ex

′β1
)}

x− (1− δ1)

{
K1∑
k=1

α1kSk(aR1)e
x′β1

}
x ,

∂ logLC(θ)

∂α2k

= δ1

R2∑
r=1

(
nrk
α2k

− urkex
′β2

)
= δ1

R2∑
r=1

(
nrurk∑K2

j=1 α2jurj
− urkex

′β2

)
, k = 1, 2, . . . , K2 ,

∂ logLC(θ)

∂β2

= δ1

R2∑
r=1

K2∑
k=1

(
nrk − α2kurke

x′β2
)
x = δ1

(
n−

R2∑
r=1

K2∑
k=1

α2kurke
x′β2

)
x ,

− ∂2 logLC(θ)

∂α1j∂α1k

= 0 , j 6= k ,

− ∂2 logLC(θ)

∂α2
1k

= δ1
Ik(t1)

α2
1k

, k = 1, 2, . . . , K1 ,

− ∂2 logLC(θ)

∂β1∂α1k

= δ1Sk(t1)ex
′β1x+ (1− δ1)Sk(aR1)e

x′β1x ,

− ∂2 logLC(θ)

∂β1∂β
′
1

= δ1

{
K1∑
k=1

α1kSk(t1)ex
′β1

}
xx
′
+ (1− δ1)

{
K1∑
k=1

α1kSk(aR1)e
x′β1

}
xx
′
,

− ∂2 logLC(θ)

∂α2k∂α2`

= δ1

R2∑
r=1

nrurkur`(∑K2

j=1 α2jurj

)2 , k, ` = 1, 2, . . . , K2 ,

− ∂2 logLC(θ)

∂β2∂α2k

= δ1

R2∑
r=1

K2∑
k=1

urke
x′β2x ,

− ∂2 logLC(θ)

∂β2∂β
′
2

= δ1

R2∑
r=1

K2∑
k=1

α2kurke
x′β2xx

′
.

The conditional expectations can be evaluated by Gaussian Quadrature described above

and based on the conditional probability density function (4.14). To obtain the variance

estimate, we need the inverse of the observed information matrix, thus in this case, we

need to invert a high dimensional matrix. Instead of using the solve function, we used ginv

function in MASS library (or chol2inv function).
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4.4 Two-Stage Estimation

4.4.1 Description of Two-Stage Procedure

Instead of simultaneously estimating all the parameters in the full likelihood function

(4.10), a two-stage estimation procedure can be adopted. Under this approach in the first

stage we note that we can simply view T1 as an interval-censored failure time with a hazard

function indexed by θ1. For this the pertinent data can be denoted by C1 = [L1, R1), the

interval known to contain T1, and X. Here we let QI(·) denote the corresponding function

in (4.13) under a two-stage procedure where

QI(θ1; θ
(v)
1 ) = δ1

[
K1∑
k=1

ι̂
(v)
k

(
logα1k +X ′β1

)
−

K1∑
k=1

ω̂
(v)
k α1ke

X′β1

]
− (1− δ1)

K1∑
k=1

α1kWk(aR1)eX
′β1 ,

(4.17)

ι̂
(v)
k = E{Ik(t1)|C1, x; θ

(v)
1 } and ω̂

(v)
k = E{Wk(t1)|C1, x; θ

(v)
1 }. The conditional distribution

of T1 given C1 and X takes on a simpler form in this framework with f(t1|C1, X; θ
(v)
1 ) =

f1(t1)/
∫ R1

L1
f1(u1)du1 given by

f(t1|C1, X; θ
(v)
1 ) =

[
K1∏
k=1

α
Ik(t1)
1k ]× exp(−∑K1

k=1 α1kWk(t1) exp(X ′β1))∫ R1

L1
[
∏K1

k=1 α
Ik(u1)
1k ]× exp(−∑K1

k=1 α1kWk(u1) exp(X ′β1))du1

. (4.18)

The expectations are therefore easier to carry out, and the maximization step is as before.

Specifically (4.17) can be written as a Poisson log-likelihood and existing software can be

used to maximize it following the creation of a pseudo-dataset.

In the second stage, θ2 can be estimated via a modified expectation-maximization

algorithm defined by plugging in the estimates of θ̂1 from stage one into the function

QII(θ2; θ̂1, θ
(v)
2 ) defined as

QII(θ2; θ̂1, θ
(v)
2 ) =

R2∑
r=1

K2∑
k=1

δ1

{
n̂

(v)
rk (logα2k +X ′β2)− α2kû

(v)
rk exp(X ′β2)

}
, (4.19)
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where ûrk = E[urk|D; θ̂1, θ
(v)
2 ] and n̂

(v)
rk = E[nrα

(v)
2k urk/

∑K2

k=1 α
(v)
2k urk|D; θ̂1, θ

(v)
2 ]. The condi-

tional expectations in the second stage are based on (4.14) evaluated at θ̂1 and θ
(v)
2 given

the full set of observed data D. The objective function (4.19) can be rewritten to take

the form of a Poisson log-likelihood and maximized using existing software as before. This

two-stage estimation approach is quite similar to the method of simultaneous estimation

we described in Section 4.3.2; however, this approach is computationally easier especially

when the number of parameters is large. We comment further on the potential uses of this

two-stage procedure in the Discussion.

4.4.2 Variance Estimation following Two-Stage Estimation

We estimate the asymptotic covariance matrix in the spirit of parametric two-stage es-

timation procedure (Newey and McFadden, 1994). The complete data score functions

are shown in (4.16). For the simultaneous estimation approach, we solve the following

estimating functions:

U(θ) = 0 ,

where

U(θ) =


U11(θ1, θ2)

U12(θ1, θ2)

U21(θ1, θ2)

U22(θ1, θ2)

 =


E [S11(θ1)|D; θ1, θ2]

E [S12(θ1)|D; θ1, θ2]

E [S21(θ2)|D; θ1, θ2]

E [S22(θ2)|D; θ1, θ2]

 . (4.20)

For the two-stage estimation approach, in the first stage we solve

U∗1 (θ1) =

 U∗11(θ1)

U∗12(θ1)

 =

 E [S11(θ1)|C1, X; θ1]

E [S12(θ1)|C1, X; θ1]

 = 0 , (4.21)
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and in the second stage we solve

U∗2 (θ2) =

 U∗21(θ2)

U∗22(θ2)

 =

 E[S21(θ2)|D; θ̂1, θ2]

E[S22(θ2)|D; θ̂1, θ2]

 = 0 . (4.22)

Thus, at the second stage of the two-stage procedure we plug θ̂1 into (4.20) and estimate

θ2 by solving the resulting equation. Let U1(θ1, θ2) = (U ′11(θ1, θ2), U ′12(θ1, θ2))′, U2(θ1, θ2) =

(U ′21(θ1, θ2), U ′22(θ1, θ2))′, and U∗2 (θ2) = U2(θ̂1, θ2). Then if θ0 = (θ′10, θ
′
20)′ denotes the true

value of θ, consider the Taylor expansion of the score function U∗2 (θ2) around θ0 and evaluate

it at θ̂2 giving,

0 = U∗2 (θ̂2) = U2(θ̂1, θ̂2)

= U2(θ10, θ20) +
∂U2(θ10, θ20)

∂θ1

(
θ̂1 − θ10

)
+
∂U2(θ10, θ20)

∂θ2

(
θ̂2 − θ20

)
+ op(n

1/2) .

Also

0 = U∗1 (θ̂1) = U∗1 (θ10) +
∂U∗1 (θ10)

∂θ1

(
θ̂1 − θ10

)
+ op(n

1/2) ,

therefore, U∗1 (θ10)

U2(θ10, θ20)

 = −

 ∂U∗1 (θ10)

∂θ1

0

∂U2(θ10, θ20)

∂θ1

∂U2(θ10, θ20)

∂θ2


 θ̂1 − θ10

θ̂2 − θ20

 .

As n→∞, by the law of large numbers

− 1

n

 ∂U∗1 (θ10)

∂θ1

0

∂U2(θ10, θ20)

∂θ1

∂U2(θ10, θ20)

∂θ2

 p−→

 I∗11 0

I21 I22

 , A ,

and by the central limit theorem,

1√
n

 U∗1 (θ10)

U2(θ10, θ20)

 d−→ N(0, B) , where B =

 I∗11 0

0 I22

 .
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Therefore,

√
n

 θ̂1 − θ10

θ̂2 − θ20

 d−→ N(0, A−1BA−1′) .

4.5 Simulation Studies and Application

4.5.1 Design and Interpretation of Simulation Studies

In this section, a simulation study is conducted to demonstrate the performance of proposed

two-phase model. For each individual i, a p × 1 covariate vector Xi is generated from a

multivariate normal distribution with mean 0 and a covariance matrix Σ, where p = 2,

Σij = %|i−j| and % = 0.5. The duration of the indolent phase T1 is generated from an

exponential distribution with rate α1 exp(X ′iβ1). We set β1 = (0.5, 0.5)′ and solve for the

value of the baseline rate α1 such that F (C) =
∫
x
P (T1 < C|x)P (x)dx = 0.8, where C = 50

is the administrative censoring time. The gap times between the consecutive events are

generated by an exponential distribution with rate α2 exp(X ′iβ2), where β2 = (−0.5,−0.5)

and α2 = 0.5.

We let Ri denote the number of assessments for individual i, which is generated ac-

cording to a truncated Poisson distribution to ensure at least one follow-up assessment,

with

P (Ri = ri|Ri ≥ 1;µ) =
µri exp(−µ)

ri! {1− exp(−µ)} , ri = 1, . . . .

where µ = 10. The Ri inspection times 0 < ai1 < · · · < aiRi
< 1 are then uniformly

distributed over [0, C]. The number of events occuring between assessments are then

mir =
∑ni

j=1 I(ai,r−1 < tij ≤ ai,r), r = 1, . . . , Ri. We consider a sample size of m = 500
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EM-MLE EM-TS

PIECE PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

PHASE I: ONSET OF DAMAGE

[0.00, 5.38) α11 -0.014 0.447 0.431 94.6 -0.005 0.475 0.457 93.8

[5.38, 13.05) α12 0.008 0.445 0.452 95.6 0.004 0.484 0.496 95.4

[13.05, 25.26) α13 0.021 0.413 0.427 95.6 0.008 0.447 0.458 96.4

[25.26, 50.00) α14 0.042 0.450 0.440 94.4 0.052 0.456 0.451 94.4

β11 0.968 6.491 6.494 95.4 1.000 6.449 6.538 95.6

β12 0.654 6.431 6.447 96.6 0.621 6.467 6.488 97.2

PHASE II: PROGRESSION OF DAMAGE

[0.00, 9.23) α21 -0.163 1.626 1.622 95.2 -0.167 1.626 1.623 95.0

[9.23, 18.46) α22 0.031 1.763 1.815 95.6 0.030 1.760 1.815 95.6

[18.46, 27.68) α23 0.104 2.071 1.994 94.8 0.103 2.068 1.994 94.8

[27.68, 50.00) α24 -0.003 1.781 1.702 93.2 -0.003 1.780 1.702 93.2

β21 -0.117 1.669 1.691 95.4 -0.118 1.669 1.691 95.2

β22 0.039 1.617 1.686 96.4 0.037 1.617 1.686 96.4

† EBIAS, ESE and ASE reported are ×102

Table 4.1: Empirical performance† of estimators; sample size m = 500, number of simu-

lations nsim = 500, α1 = 0.036, α2 = 0.5, β1 = (0.5, 0.5), β2 = (−0.5,−0.5); ASE are

average of standard errors estimated via methods in Section 4.3.3 (EM-MLE) and Section

4.4.2 (EM-TS).
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and simulate five hundred datasets (nsim = 500). For each dataset, we fit the proposed

two-phase model by the EM algorithm under both simultaneous (maximum likelihood) and

two-stage estimation; these are denoted by EM-MLE and EM-TS in Table 1 respectively.

The break-points for both phases are chosen to correspond to the quartiles of the baseline

survival function. Standard errors for the maximum likelihood estimators were obtained

by Louis (Louis, 1982) (see Section 4.3.3) and using estimating function theory (see Sec-

tion 4.4.2). The empirical coverage probabilities were computed as the proportion of all

simulated datasets for which the 95% confidence interval contained the true parameter

value.

The empirical performance of the estimators using both estimation approaches are

shown in Table 4.1, where the empirical biases (EBIAS) are generally small. There is

good agreement between the empirical standard errors (ESE) and average standard errors

(ASE) obtained by Louis (Louis, 1982) or the methods of Section 4.4.2 respectively and

the empirical coverage probabilities (ECP) are all compatible with the nominal level. From

the simulation results, we can conclude that both estimation approaches give good perfor-

mance; the empirical biases are relatively small and the empirical coverage probabilities are

all compatible with the nominal 95% level. There is relatively little price to pay in terms

of efficiency when the two-stage estimation procedure is used over maximum likelihood

estimation.

4.5.2 Application of Psoriatic Arthritis Data

Here we consider the data on joint damage in patients with psoriatic arthritis from the

University of Toronto Psoriatic Arthritis Registry. Specific interest lies in examining the

effects of human leukocyte antigen (HLA) markers on the duration of the indolent phase

109



following diagnosis and on the rate of joint damage following the end of the indolent phase.

The break-points for the model of the duration of the indolent phase are 3.5, 9.2, 13.7 and

26 years, derived from the nonparametric estimate of the cumulative probability function

for the time to the precipitating event (first joint known to become damaged). The break-

points for the second part were taken as 8.2, 12.6, 17.0 and 23.5 years likewise derived from

the mean function for the cumulative number of events estimated by isotonic regression.

We examine the effects of HLA markers selected based on the results of Wu and Cook (Wu

and Cook, 2015), while controlling for gender and patient age.

As in the empirical studies, we find from the results in Table 4.2 that there is good

agreement in the estimates obtained by the EM-MLE and EM-TS algorithms. We therefore

discuss the results of maximum likelihood estimation here. Among the HLA markers,

HLA-A11, HLA-A25, HLA-A29, HLA-A30, HLA-C03 and HA-DRB1-10 had insignificant

association with the duration of the indolent phase but their presence was associated with a

significant reduction of the rate of damage in the active phase of the disease.. For HLA-A11

for example, the relative rate of damage in the active phase associated with the presence of

HLA-A11 is RR = 0.70 (95% CI : 0.53, 0.91; p = 0.0087); the corresponding relative rates

for the other markers were HLA-A25 RR = 0.07 (95% CI : 0.01, 0.53; p = 0.0096), HLA-

A29 RR = 0.25 (95% CI : 0.15, 0.43; p < 0.0001), HLA-A30 RR = 0.78 (95% CI : 0.63,

0.97; p = 0.0235), HLA-C03 RR = 0.57 (95% CI : 0.47, 0.70; p < 0.0001), and HLA-DRB1-

10 RR = 0.04 (95% CI : 0.01, 0.27; p = 0.0011). Moreover, there is significant evidence

that the effect of HLA-A25, HLA-A30, HLA-C03, and HLA-DRB1-10 on the duration of

the indolent phase and on damage progression are different; see the last column of Table

2 for the homogeneity p−values. HLA-B27 is a known risk factor for disease progression

in PsA and here we find its presence is associated with both a shorter indolent phase and

more rapid disease progression; the same can be said for HLA-DQB1-02.
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PHASE I PHASE II

HLA Marker METHOD EST SE p EST SE p p†

HLA-A11 EM-MLE -0.280 0.274 0.3079 -0.363 0.138 0.0087 0.7876

EM-TS -0.315 0.274 0.2506 -0.358 0.139 0.0098 0.8905

HLA-A25 EM-MLE -0.211 0.597 0.7242 -2.627 1.014 0.0096 0.0407

EM-TS -0.159 0.597 0.7900 -2.614 1.015 0.0100 0.0378

HLA-A29 EM-MLE -0.597 0.371 0.1076 -1.377 0.270 < 0.0001 0.0899

EM-TS -0.601 0.371 0.1055 -1.375 0.270 < 0.0001 0.0925

HLA-A30 EM-MLE 0.458 0.295 0.1208 -0.250 0.110 0.0235 0.0256

EM-TS 0.364 0.299 0.2243 -0.249 0.110 0.0244 0.0564

HLA-B27 EM-MLE 0.468 0.183 0.0105 0.235 0.067 0.0004 0.2333

EM-TS 0.490 0.183 0.0074 0.237 0.067 0.0004 0.1957

HLA-C03 EM-MLE 0.014 0.219 0.9480 -0.563 0.103 < 0.0001 0.0178

EM-TS 0.017 0.220 0.9367 -0.566 0.103 < 0.0001 0.0169

HLA-C04 EM-MLE -0.012 0.224 0.9576 -0.120 0.106 0.2565 0.6650

EM-TS 0.011 0.225 0.9606 -0.122 0.107 0.2568 0.5985

HLA-DQB1-02 EM-MLE 0.386 0.164 0.0187 0.249 0.062 < 0.0001 0.4365

EM-TS 0.394 0.164 0.0163 0.252 0.063 < 0.0001 0.4215

HLA-DRB1-10 EM-MLE 0.203 0.594 0.7326 -3.280 1.002 0.0011 0.0028

EM-TS 0.195 0.594 0.7428 -3.275 1.002 0.0011 0.0029

p† a p-value from a test of homogeneity.

Table 4.2: Results of fitting piecewise constant baseline hazard model for the duration of

the indolent period and piecewise constant baseline rate model for the occurrence of joint

damages under simultaneous (EM-MLE) and two-stage (EM-TW) estimation; p−values

are based on Wald tests.
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Figure 4.3: Estimates of the probability of having at least one damaged joint as measured

from the time since disease onset (left panel) and the expected number of damaged joints

for the time since disease onset (right panel).

4.6 Discussion

There are several avenues for generalizations of this work including the use of semipara-

metric models for the time from disease onset to the event signalling the beginning of the

second phase of the process. Much work has been done in the last twenty years on the

development of flexible regression methodology and statistical theory for the analysis of

interval-censored failure time data (Sun, 2006). A more challenging generalization would

be to relax the Markov assumption for the second phase process given the intermittent ob-

servation process. In the general multistate formulation of Section 4.2 much work has been

done on methods for fitting and assessing Markov models in this setting but semi-Markov

and models with hybrid time scales have seen little development. Mixed effect models

which are Markov conditional on latent random effects however, have been developed and

render more elaborate dependencies on the process history. The conditional Markov prop-

erty enables one to fit these models even when the historical information is unobserved
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due to the intermittent observation process. For the recurrent event model we consider

in Section 4.3 this would correspond to a mixed Poisson model for the second phase of

the process which would be negative binomial if a gamma distributed random effect were

introduced. Large data sets would be required to estimate parameters in this more flexible

model.

We have carried out tests of the null hypothesis of common coefficients for the phase I

and II regression models. It would also be of interest to assess whether there is evidence

of a need for the two-phase model because estimation, inferences and model interpretation

would be so much easier if the second phase model were adequate. Such a test would

be analogous to tests for the need to accommodate a non-susceptible fraction in cure rate

models, but in this context this is more challenging since the timescale for the second phase

model is defined as the time from the precipitating event.

Identification of important genetic and soluble biomarkers is of primary interest in

psoriatic arthritis and the two-phase model offers an important opportunity to identify

factors that may be prognostic for different aspects of the disease process. Given that a

marker may be entertained in both phases one could consider the use of the group LASSO

(Yuan and Lin, 2005; Wang and Leng, 2008) by defining pairs of coefficients for each

marker, with one coefficient defined in the regression model for the phase I duration and

another defined in the phase II model.

Often cohort data are created from registries which required individuals to have ex-

perienced some disease manifestation for enrolment. This can lead to a biased sampling

scheme arising due to truncation of the disease process. Researchers may require indi-

viduals to not have experienced disease activity or damage to be eligible for an inception

cohort, which would result in right-truncated interval-censored duration times for the first

phase. Cohorts of individuals with advanced disease may require progression to some ad-
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vanced state of the second phase process yielding right-truncated phase I and II data. The

expectation-maximization algorithm we describe can be adapted to accommodate left-,

right- and interval-truncation by the conceptualization of “ghosts” in the spirit of Turnbull

(Turnbull, 1976). Such a complete data likelihood will be possible to fit with penalty terms

using standard software for penalized Poisson regression.
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Appendix 4.A Evaluation of Q(θ; θ(v)) for Maximum

Likelihood Estimation

4.A.1 Details of EM Algorithm

Here we show the details of the EM algorithm we described in Section 3.2. At vth iteration,

we proceed as follows:

1. Evaluate ι̃
(v)
k = E[Ik(t1)|D; θ(v)] and ω̃

(v)
k = E[Wk(t1)|D; θ(v)]. Then

Q1(θ1; θ(v)) = δ1

{
K1∑
k=1

ι̃
(v)
k (logα1k + x′β1)−

K1∑
k=1

α1kω̃
(v)
k ex

′β1

}

−(1− δ1)

(
K1∑
k=1

α1kWk(aR1)e
x′β1

)
.

(4.A.1)

2. Maximize Q1(θ1; θ(v)) to get the updated estimate of θ1, θ
(v+1)
1 .

Let Zk = (Zk1, . . . , ZkK1)
′ denote the indicator function, where Zk` = I(k = `), ` =

1, . . . , K1. Let αk = logα1k, k = 1, . . . , K1 and α = (α1, . . . , αK1)
′, then we can write

Q1(θ; θ(v)) =

K1∑
k=1

[
δ1

{
ι̃
(v)
k (z′kα + x′β1)− ω̃(v)

k ez
′
kα+x′β1

}
− (1− δ1)Wk(aR1)e

z′kα+x′β1
]
.

(4.A.2)

We note that (4.A.2) has a Poisson form of log likelihood function, then we can use

existing software (glm) to maximize it by creating a pseudo-dataset in the following

format, as shown in Table 4.A.1.

3. Evaluate ũ
(v)
rk = E[urk|D; θ

(v+1)
1 , θ

(v)
2 ] and ñ

(v)
rk = nrE[α

(v)
2k urk/

∑K2

k=1 α
(v)
2k urk|D; θ

(v+1)
1 , θ

(v)
2 ].
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ID (i) piece (k) Zk1 Zk2 · · · ZkK1 X1 · · · Xp Response Offset

δ1 = 1

i 1 1 0 · · · 0 x1 · · · xp ι̃
(v)
1 log ω̃

(v)
1

i 2 0 1 · · · 0 x1 · · · xp ι̃
(v)
2 log ω̃

(v)
2

...
...

...
...

...
...

...
...

...

i K1 0 0 · · · 1 x1 · · · xp ι̃
(v)
K1

log ω̃
(v)
K1

δ1 = 0

i 1 1 0 · · · 0 x1 · · · xp 0 logW1(aR1)

i 2 0 1 · · · 0 x1 · · · xp 0 logW2(aR1)
...

...
...

...
...

...
...

...
...

i K1 0 0 · · · 1 x1 · · · xp 0 logWK1(aR1)

Table 4.A.1: Pseudo-dataframe for the maximization of Q1.

Then

Q2(θ2; θ
(v+1)
1 , θ

(v)
2 )

=ET1ENrk|T1

[
logLC2(θ2)|D; θ

(v+1)
1 , θ

(v)
2

]
=δ1E

[
R2∑
r=1

K2∑
k=1

{
nr

α
(v)
2k urk∑K2

k=1 α
(v)
2k urk

(logα2k + x′β2)− α2kurk exp(x′β2)

}
|D; θ

(v+1)
1 , θ

(v)
2

]

=

R2∑
r=1

K2∑
k=1

δ1

{
ñ

(v)
rk (logα2k + x′β2)− α2kũ

(v)
rk exp(x′β2)

}
.

(4.A.3)
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4. Maximize Q2(θ; θ
(v+1)
1 , θ

(v)
2 ) to get the updated estimate of θ2, θ

(v+1)
2 . Let Zk =

(Zk1, . . . , ZkK2)
′ denote the indicator function, where Zk` = I(k = `), ` = 1, . . . , K2.

Let γk = logα2k, k = 1, . . . , K and γ = (γ1, . . . , γK1)
′, then we can write

Q2(θ; θ
(v+1)
1 , θ

(v)
2 ) =

R2∑
r=1

K2∑
k=1

δ1

{
ñ

(v)
rk (z′kγ + x′β2)− ũ(v)

rk exp(z′kγ + x′β2)
}
. (4.A.4)

We note that (4.A.4) has a Poisson form of log likelihood function, then we can use

existing software (glm) to maximize it by creating a pseudo dataset in the following

format, as shown in Table 4.A.2.

ID (i) assess (r) piece (k) Zk1 Zk2 · · · ZkK2 X1 · · · Xp Response Offset

i 1 1 1 0 · · · 0 x1 · · · xp ñ
(v)
11 log ũ

(v)
11

i 1 2 0 1 · · · 0 x1 · · · xp ñ
(v)
12 log ũ

(v)
12

...
...

...
...

...
...

...
...

...

i 1 K2 0 0 · · · 1 x1 · · · xp ñ
(v)
1K2

log ũ
(v)
1K2

...
...

...
...

...
...

...

i R2 1 1 0 · · · 0 x1 · · · xp ñ
(v)
R2,1

log ũ
(v)
R2,1

i R2 2 0 1 · · · 0 x1 · · · xp ñ
(v)
R2,2

log ũ
(v)
R2,2

...
...

...
...

...
...

...
...

...

i R2 K2 0 0 · · · 1 x1 · · · xp ñ
(v)
R2,K2

log ũ
(v)
R2,K2

Table 4.A.2: Pseudo-dataframe for the maximization of Q2.
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4.A.2 Evaluations of the Conditional Expectations in the E-Step

Since all the unobserved quantities are related to T1, we need conditional expectations in

the form of ∫ R1

L1

f(x)dx .

Due to the complicated nature of the function f(x), closed form expressions are not avail-

able so we use numerical integration. Here we describe the Gaussian Quadrature which we

used in the analyses.

First we can use a linear transformation to change this integration into a new integration

on the interval (−1, 1).

Let x = φ(y) = {y(R1− L1) + L1 +R1} /2, so∫ R1

L1

f(x)dx =

∫ 1

−1

f(φ(y))φ′(y)dy .

Then using Chebyshev quadrature (Golub and Welsch, 1969) of the 1st kind with the

weight function w(y) = 1/
√

1− y2 , we approximate the integration by:∫ R1

L1

f(x)dx =

∫ 1

−1

f(φ(y))φ′(y)dy =

∫ 1

−1

w(y)
f(φ(y))φ′(y)

w(y)
dy

.
=

∫ 1

−1

w(y)g(y)dy =
N∑
s=1

wsg(ys) ,

where ws and ys are the weights and nodes that are picked based on weight function w(y).

Monte Carlo methods with rejection sampling could alternatively be used to approximate

these expectations by simulation.
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Chapter 5

Discussion and Future Research

5.1 Penalized Regression for Interval-Censored Times

Much of the work on variable selection techniques was initially carried out in the context

of continuous responses, but advances have been made to deal with binary responses and

time to event responses. For the latter, when times are right-censored, the penalty term

is typically applied to the partial likelihood arising from a semiparametric Cox regression

model. Many prospective studies, however, involve event times subject to interval censoring

(Sun, 2006). In cancer clinical trials, for example, new metastatic lesions are often only

detectable by imaging (Hortobagyi et al., 1996), so the time from randomization to the

development of a new lesion is unknown. As another example, in patients infected with

cytomegalovirus, the time from infection to viral shedding in the blood is only known to

lie between the last negative and first positive serum sample (Betensky and Finkelstein,

1999). Finally, the occurrence of an asymptomatic fracture in osteoporosis patients is only

detected by radiographic examination (Riggs et al., 1990).
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In Chapter 2, we considered the problem of variable selection in the context of interval-

censored time to event data. We adopt a flexible piecewise exponential model (Friedman,

1982) for the event of interest and penalize the complete data likelihood constructed by

treating the interval-censored failure times as known. An expectation-maximization (EM)

algorithm (Dempster et al., 1977) is then used for variable selection through optimization of

the observed data likelihood incorporating the LASSO, adaptive LASSO or SCAD penalty

function.

Important topics of future work include use of more flexible semiparametric methods in

this setting, including methods based on local likelihood (Betensky et al., 2002) or penalized

splines (Cai and Betensky, 2003). The properties of coefficients obtained following variable

selection are not well understood, but Lockhart et al. (2014) represents a recent advance.

Derivation of the limiting behaviours of estimators resulting from semiparametric models

will be important.

A natural extension of this work is for the analysis of recurrent events observed sub-

ject to interval-censoring. In the psoriatic arthritis clinic, when interest lies in modeling

the cumulative number of damaged joints, this count is often based upon damage scores

determined only upon radiographic examination. The resulting data, consisting of a series

of assessment times and counts representing the number of events occurring between con-

secutive assessments, is often called panel count data (Sun and Kalbfleisch, 1995). Lawless

and Zhan (1998) develop the likelihood and estimating functions for the analysis of such

data for mixed Poisson models with piecewise-constant rate functions (Cook and Lawless,

2007). The former can be naturally adapted to allow variable selection based on penal-

ized likelihood for recurrent event data. Given the individual patient level random effect,

the penalized likelihood has a similar form to the one we have in this setting. While the

observed data likelihood can be penalized, a complete data likelihood involving a more
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detailed recording of the counts and the patient level random effect is very appealing and

could still exploit existing software. See He et al. (2009) for a semiparametric implementa-

tion of a similar algorithm. Tong et al. (2009) develop penalized estimating functions for

variable selection with panel count data and (Wu and He, 2012) propose and study a fast

and efficient coordinate ascent algorithm for the same problem.

5.2 Penalized Regression for Truncated and Censored

Times

The availability of large disease registries with longitudinal follow-up has lead to increased

interest in utilizing such data for scientific inquiry about the genetic basis for disease onset

and progression. In disease processes with multiple stages it is often the case that one

registry may require individuals to be in an early phase of a disease process while another

may have selection criteria requiring individuals be in a more advanced stage.

There are many clinical trials and cohort studies which involve event times subject

to truncation due to biased sampling schemes. There are three truncation schemes: left-

truncation, right-truncation and interval-truncation. For example, the time from the onset

of psoriasis (Ps) to the onset of psoriatic arthritis (PsA) is the event time of interest and

two cohort studies are available to be used: psoriasis (Ps) and psoriatic arthritis (PsA)

cohorts. In the Ps cohort, only patients who have been diagnosed of Ps before the study

starts are included in the sample, then when the date of psoriasis onset is to be used as the

time origin, this sample is left-truncated. In the PsA cohort, only patients who have been

diagnosed of PsA before the study starts are included in the sample, so this yields right-

truncation. In Section 2.6, we consider the problem of variable selection in the context
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of truncated samples and propose an expectation-maximization algorithm to deal with

truncated event times by using a Turnbull-type (Turnbull, 1976) complete data likelihood

which involves the pseudo-individuals in the population who did not satisfy the truncation

conditions and incorporating the LASSO, adaptive LASSO or SCAD penalty function. We

describe a penalized EM algorithm based on a piecewise exponential response model, for

which existing techniques for variable selection can be exploited to handle truncated event

times.

Future work includes a natural extension of this work to deal with multistate process.

For example, we consider another motivating problem involving the disease course in pso-

riatic arthritis, represented in the following multistate diagram. The states are numbered

Healthy
(0)

Psoriasis
(1)

Arthritis
(2)

Psoriatic
Arthritis

(3)

h10(t) exp(X
′β1)

h20(t) exp(X
′β2)

h10(t) exp(γ1 +X ′β1)

h20(t) exp(γ2 +X ′β2)

Figure 5.1: Multistate diagram illustrating the course of disease in psoriatic arthritis cohort.

from 0 to 3, with 0 denoting a healthy condition, 1 denoting psoriasis, 2 denoting arthritis

and 3 denoting psoriatic arthritis. Patients are included into the PsA registry if they have

developed psoriatic arthritis by the time they are screened; that is, they are in state 3 at

time R. While our focus in Chapter 2 was on the waiting time from psoriasis to psoriatic
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arthritis necessarily focussing on those known to have developed psoriasis first, patients

can develop either psoriasis or arthritis first. If one has psoriasis before arthritis then this

patient makes transitions in the path 0→ 1→ 3; if one has arthritis before psoriasis then

this patient make transitions 0→ 2→ 3 path.

Let T1 denote the time of psoriasis and T2 denote the time of arthritis, so the time to

PsA is max(T1, T2). The observed data likelihood in this case is

Lobs ∝ fT1,T2(t1, t2|max(T1, T2) < R, X) .

A Turnbull-type complete data likelihood is then of form

LC ∝ fT1,T2(t1, t2|X)×
2∏
r=0

P (Z(R) = r|Z(0) = 0, z)J0r ,

where Z(s) reflects the state occupied at time s > 0, J0r is an unknown variable, which

represents the number of “ghosts” who are in state r at time R, r = 0, 1, 2. A penalized

complete data log-likelihood can be defined to be

1

m
logLC(θ)− pγ,λ(β) ,

where pγ,λ(β) is the penalty function with form

λ

p∑
j=1

√
β2

1j + β2
2j ,

(1− γ)λ

p∑
j=1

√
β2

1j + β2
2j + γλ

p∑
j=1

{|β1j|+ |β2j|}

for group LASSO and sparse group LASSO respectively. The estimation procedure can

be done through creating a pseudo-dataset at each expectation step and maximizing the

penalized likelihood by existing software of group LASSO and sparse group LASSO at each

maximization step.
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5.3 Assessing the Accuracy of Predictive Models with

Interval-Censored Data

A related research project following the variable selection from Chapter 2 involved the

development of techniques for assessing the predictive accuracy of models when interest

lies in the time of an event which is interval-censored through use of inverse weighting

probability of censoring techniques.

In the survival context, we obtain flexible prediction models and often evaluate their

predictive value on the same set of data; or better still, based on an external validation

data set. The purpose of assessing the predictive accuracy of a regression model is often

to establish whether a prognostic model can be used to reliably predict patients event

status at a particular time and to provide a basis for clinical decision making. There has

been a lot of research conducted focusing on prediction with time to event data subject to

right-censoring. Chapter 3 considers the challenge of assessing the accuracy of a predictive

model when response times are interval-censored. Inverse probability weighted (IPW) and

augmented IPW estimators are developed and evaluated based on the mean prediction

error and the area under the receiver operating characteristic curve. The weights are

estimated from multistate model which jointly considers the event, the inspection and the

censoring processes.

We remark that with an independent validation sample one could retain the prediction

model obtained from a training dataset but based weights on a new inspection model,

censoring model and a new response model. In this case if the response model obtained

based on the validation sample is correct and leads to correct specification of the weights,

then the double robustness property can be realized. That is, if the prediction model from

the training sample is correct a consistent estimator of the prediction error is obtained, and
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alternatively if the model for the weights selected independently based on the validation

data is correct, a consistent estimator of the prediction error is obtained. As an independent

validation sample is not available at this point we do not explore this double robustness

property further here but it represents an interesting and important area of future research.

In future research, we also plan to consider the case of truncated and interval-censored

data. While we have dealt with the interval-censored data here, it is less clear how one

might assess predictive accuracy when samples are chosen subject to truncation, but this

feature is often present in problems involving large datasets. Another avenue of research

to generalize this work is to consider taking the inverse probability weighting into con-

sideration along with variable selection to adjust for the effect of informative inspection

process.

5.4 Statistical Models for Complex Life History Pro-

cesses

Many chronic disease processes feature considerable variability in their course which must

be dealt with in statistical analysis for valid inference. Regression modeling and regression

diagnostics play a central role in explaining this variation in such a way that scientific

understanding can be advanced. There are lots of work that have been done to accom-

modate such variations; for example, mixture models and cure rate models. In Chapter

4, we formulated a two-phase model in which phase I incorporates an initial time from

disease onset to the commencement of phase II, and a second part which characterizes

the nature of the process during phase II. This model can be used to separately examine

prognostic factors for the length of the inactive phase as well as factors prognostic for the
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nature and rate of change, for example, in the active phase. In some settings this will

offer a more appropriate representation of complex multi-phase disease processes, can help

identify different types of risk factors, and could yield more accurate prediction models.

Use of semiparametric models for the time from disease onset to the event signalling,

the beginning of the second phase of the process is one way to generalize this work. There

has been much work on the development of flexible regression methodology and statistical

theory for the analysis of interval-censored failure time data (Sun, 2006). A more challeng-

ing generalization would be to relax the Markov assumption for the second phase process

given the intermittent observation process.

One primary interest in the psoriatic arthritis cohort study is to identify important

genetic and soluble biomarkers associated with the disease progression. The proposed two-

phase model offers an important opportunity to identify factors that may be prognostic for

different aspects of the disease process. Given that a marker may be entertained in both

parts of the model one could consider the use of the group LASSO (Yuan and Lin, 2005;

Wang and Leng, 2008) by defining pairs of coefficients for each marker, with one coefficient

defined in the regression model for the phase I duration and another defined in the phase

II model. Variations of this such as the sparse group LASSO (Simon et al., 2013) could be

useful in selecting variables by group and within group.

0 1 2 3 4 5
Commencement of Damage

Damage Progression
Disease
Onset

Onset of
Damage

Figure 5.2: Multistate diagram illustrating the two phases of the disease process.

A penalized complete data log-likelihood can be defined to be

1

m
logLC(θ)− pγ,λ(β) ,
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where logLC(θ) is in the form of (4.10) and pγ,λ(β) is the penalty function for group LASSO

and sparse group LASSO. The estimation procedure can be done through using the EM

algorithm proposed in Chapter 4 along with using existing software of group LASSO and

sparse group LASSO at each maximization step.

Researchers may require individuals to not have experienced disease activity or dam-

age to be eligible for an inception cohort, which would result in right-truncated interval-

censored duration times for the first phase. Cohorts of individuals with advanced disease

may require progression to some advanced state of the second phase process yielding right-

truncated phase I and II data. The expectation-maximization algorithm we describe can

be adapted to accommodate left-, right- and interval-truncation by the conceptualization

of “ghosts” in the spirit of Turnbull (Turnbull, 1976). Such a complete data likelihood

will be possible to fit with penalty terms using standard software for penalized Poisson

regression.

Finally, the more general two-phase model accommodates a more complex disease pro-

cess and as a consequence one might expect it to perform better in terms of prediction of

outcomes. Use of the model- or imputation-based procedures for estimating the predic-

tion error would be good to investigate in simulation, along with the inverse probability

weighted and augmented inverse probability weighted estimators of prediction error.
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Grüger, J., Kay, R., and Schumacher, M. (1991). The validity of inferences based on

incomplete observations in disease state models. Biometrics, 47:595–605.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143(1):29–36.

He, X., Tong, X., and Sun, J. (2009). Semiparametric analysis of panel count data with

correlated observation and follow-up times. Lifetime Data Analysis, 15(2):177–196.

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent roc curves for

censored survival data and a diagnostic marker. Biometrics, 56(2):337–344.

Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and roc curves.

Biometrics, 61(1):92–105.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67.

Hogan, J. W., Roy, J., and Korkontzelou, C. (2004). Handling drop-out in longitudinal

studies. Statistics in Medicine, 23(9):1455–1497.

132



Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., Wheeler,

H., Simeone, J. F., Seaman, J., and Knight, R. D. (1996). Efficacy of pamidronate in

reducing skeletal complications in patients with breast cancer and lytic bone metastases.

New England Journal of Medicine, 335(24):1785–1792.
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