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Abstract 

The present work investigates the effect of forming temperature and forming speed on the formability of 

AA3003 aluminum alloy brazing sheet in three temper conditions (O, H22 and H24) and two different 

thicknesses (0.2 and 0.5 mm). Limiting Dome Height (LDH) experiments were conducted from which 

Forming Limit Curves (FLCs) were developed using the “linear best fit time-dependent method” (due to 

Volk and Hora, 2010) at room temperature (RT), 150 °C, 200 °C and 250 °C and forming speeds of 0.4 

and 1.6 mm/s.  

Limiting dome height (LDH) experiments performed on 0.5 mm O temper AA3003 brazing sheet  

showed an increase in the biaxial dome height (from 29.3 mm to 38 mm) for an increase in temperature 

from RT to 250 °C, a 28% increase. For the thinner 0.2 mm material, the corresponding improvement in 

LDH for the same temperature increase was 30%, 29% and 26% for the O, H22 and H24 tempers, 

respectively.  

The measured FLCs were found to decrease with a decrease in sheet thickness and with increases in the 

initial hardness (temper). The plane strain limit strain (FLC-0 strain) of the O temper materials decreased 

by 24% at RT and 35% at 250 °C, when the thickness is reduced from 0.5 mm to 0.2 mm. For the 0.2 mm 

H22 and H24 materials, the RT FLC-0 strains are observed to be 31% and 39% lower than that of 0.2 mm 

O temper sheet. At 250 °C the respective drop in FLC-0 for the two tempers are 39% and 48%, 

respectively.  

The increase in forming speed from 0.4 mm/s to 1.6 mm/s had very little effect on forming limits at 

RT, but resulted in a 6-9% drop in the FLCs at 250 °C.   

M-K analyses were used to predict the FLCs. It was found that the M-K model is able to capture the 

temperature dependent formability behavior for the considered brazing sheets when the forming 

temperature increased from RT to 250 °C. However, the effect of punch speed is not captured as well and 

this is thought to be a function of the adopted Voce-based material model. 
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Chapter 1 

Introduction 

In order to address increasing environmental concerns, the governments of North America and Europe 

have established specific targets for fuel efficiency, to reduce the exhaust emissions from vehicles. For 

instance, the U.S. government has directed an enhancement in the average automobile fuel efficiency 

from 27.5 miles per gallon in 2012 to 54.4 miles per gallon in 2025 (www.nhtsa.gov). Similarly, the aim 

of European governments is to reduce average vehicular emissions from 130 grams of carbon dioxide per 

kilometer in 2015 to 95 grams of carbon dioxide per kilometer by 2021 (www.aluminiumleader.com). 

Therefore, automotive manufacturers have been considering various approaches to generate more fuel 

efficiency and one of them is reducing the weight of their cars. Steel was known to be the leading 

candidate in the automotive applications since 1920s (Cole and Sherman, 1995). Recently, there has been 

an escalating debate over the use of steel versus aluminum alloys in the automotive manufacturing 

industry. Some of the prominent physical properties of aluminum alloys such as low density and 

moderate strength (as compared to steel) have encouraged the use of aluminum as a suitable replacement 

for mild steel (Miller et al., 2000). At present, aluminum and its alloys have been increasingly used to 

produce internal car parts such as wheels, bumpers, suspension parts, transmission bodies and also 

external body parts such as hoods, doors and frames and therefore the market share for aluminum in cars 

is increasing. Figure 1.1 shows several applications of aluminum alloys within passenger vehicles but one 

of the important applications of aluminum alloys lies within heat exchangers (Figure 1.2).  

One application of aluminum alloys, the focus of the current research, is within automotive thermal 

management systems. Figure 1.2 shows a typical heat exchanger construction which comprises stamped 

“core plates” which are stacked and brazed to fabricate the heat exchanger assembly. Aluminum alloys 

have been the material of choice within heat exchangers because of their excellent corrosion resistance, 

high thermal conductivity and strong braze performance. They also have good recycling properties with 

high scrap value which can deliver significant environmental and commercial benefits. In the current 

scenario, a modified core 3003
1
 aluminum alloy with AA4045 clad layer brazing sheet is commonly used 

for the fabrication of heat exchangers. The brazing sheet generally comprises of a core alloy clad on 1 or 

2 sides with a lower melting aluminum-silicon (Al-Si) alloy, generally AA4045. The clad layer melts and 

flows during the brazing process to provide upon cooling a metallic bond between the components 

(Figure 1.3). 

                                                      
1
 Table 1.1 shows some common major alloying elements to aluminum 

http://www.aluminiumleader.com/
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Figure 1.1 Applications of aluminum in passenger vehicles (www.drivealuminum.org).  

 

 

 

http://www.drivealuminum.org/
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Figure 1.2 Schematic of a heat exchanger plate component incorporating the cup shape feature at the end 

(www.plateandfinheatexchanger.com; Bagheriasl et al., 2012). 

 

 

 

Figure 1.3 An example of a brazing sheet (www.aluminium-brazing.com). 

 

Table 1.1 Common aluminum alloys and their applications 

Aluminum 

Alloy 

Main Alloy Properties Common Applications 

AA 1100 None High corrosion resistance, 

formability  

Food and packaging 

industry 

AA 2014 Copper High strength, low corrosion 

resistance, non-weldable 

Airframes, automotive 

parts 

AA 3003 Manganese High ductility, excellent 

corrosion resistance, Good 

brazability 

Heat exchangers, motor 

vehicle radiators 

AA 4043 Silicon good weldability Welding electrodes, 

brazing alloy 

AA 5182 Magnesium Good formability and 

corrosion resistance 

Sheet metal work, 

appliances, automobile 

frames 

AA 6063 Magnesium and 

Silicon 

High strength, good 

corrosion resistance 

Window frames, 

architectural extrusions 

AA 7075 Zinc Very high strength, good Aircraft industries, 

http://www.plateandfinheatexchanger.com/
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One drawback of aluminum alloys, particularly brazing sheet, it poor room temperature formability 

(ability to deform plastically without necking) which limits application over steels for complex shapes 

like automotive body parts where greater strength matters. 

The current work is focused on the AA3003 brazing sheet which is used to fabricate the heat 

exchangers for passenger vehicles, in particular, examining the potential to increase the formability of 

these alloys by warm forming. The balance of this chapter provides a review of pertinent literature on 

warm forming of aluminum alloys. 

 

1.1 Formability of Aluminum Alloy Sheets 

Despite the high strength to weight ratio and excellent corrosion resistance offered by aluminum alloy 

sheet, its poor formability at room temperature compared with steel has created a major barrier to 

widespread adoption use in the automotive industry. Since, the inferior room temperature formability of 

aluminum alloys makes it more difficult and expensive to use in mass production of structural and body 

parts, i.e., the maximum attainable strain in one process step is less than that for mild steel along the same 

strain path (Kurukuri et al., 2009). One of the techniques to improve the formability of aluminum sheet is 

combining the mechanical loading with a thermal component. A particular example is warm forming, i.e. 

utilization of the increased formability of aluminum at elevated temperatures up to the recrystallization 

temperature. In this process, parts of the tools are heated and other parts are cooled which makes it 

possible to manipulate local flow behavior, in order to increase the formability (Li and Ghosh, 2004; van 

den Boogaard and Huétink, 2006; Abedrabbo et al., 2007; Kurukuri et al., 2009; Bagheriasl et al., 2014). 

Another example from the aerospace industry is stretch forming of aluminum (AA2024) parts in a 

number of stages with intermediate annealing steps and a final solution heat treatment, quenching and 

ageing (Kurukuri et al., 2011).  It is widely accepted in several studies (Li and Ghosh, 2004; van den 

Boogaard and J. Huétink, 2006; Abedrabbo et al., 2007; Toros et al., 2008, Kurukuri et al., 2009; 

McKinley et al., 2010; Ghavam et al., 2014; Bagheriasl et al., 2014) that the formability of aluminum 

alloy sheet is strongly influenced by the deformation temperature and the forming speed; therefore, 

various forming techniques have been investigated to determine the appropriate conditions of temperature 

and deformation speed to achieve better forming capabilities.  

The warm forming process has been studied for several years (Shehata et al., 1978; and Wilson, 1988) 

and this process has some significant advantages when compared with other conventional methods. 

corrosion resistance recreation equipment 
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Firstly, the forming limit strains increase with increasing temperature (below recrystallizing temperature). 

Secondly, this method provides freedom to fabricate aluminum alloys into complex shapes with fewer die 

progressions to form a specified geometry. This process also offers the potential to reduce spring-back 

because forming is performed at lower stress levels.  

 

1.2 Elevated temperature formability of aluminum alloys 

There have been extensive studies by Shehata et al. (1978) with aluminum 5000 series Al-Mg alloys 

(AA5082 and AA5005) and by performing uniaxial tension testing and punch stretching tests. They 

observed that below 300 °C, the elongation to failure of Al-Mg alloy increases with increasing 

temperature at low strain rate (~1.7×10
-4

 s
-1

). They also studied the effect of Mg weight percentage in the 

alloy and observed an increase in the elongation to failure with increasing Mg content at all temperatures 

and strain rates. The flow stress is observed to be reduced under warm conditions. The drawability of 

5000-series alloys at elevated temperatures was tested by Schmoeckel (1994, 1995) and they observed a 

profound temperature influence on the stamping process. Further investigations in their experiments with 

uniform heating and partial non-uniform heating of the tool led them to conclude that that even the 

limiting drawing ratio (LDR) increases with increasing temperature, the material formability is much 

better in case of partial heating than that with uniform heating. 

Naka and Yoshida (1999) have focused a particular type of Al-Mg alloy of aluminum 5000 series 

(AA5083) where they investigated the deep drawability (pressing on the inner region of the sheet by a 

punch tool, whereas the side material is held by a blank holder) at different forming temperatures and 

forming speeds. The range for forming temperature and forming speed was fixed between 20–180 C and 

0.2–500 mm/min, respectively. They observed that the limiting drawing ratio (LDR) increases with 

increasing die/punch temperature whereas it decreases with increasing forming speed at all temperatures 

(Figure 1.4). Figure 1.5 represents the relationship between the maximum drawing force (punch load) and 

the forming speed (punch speed) at different temperatures. It is evident from the figure that the drawing 

forces are nearly equal at high speed (higher than 100 mm/min), but decrease to an extent with forming 

temperature at lower punch speed. 
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Figure 1.4 Influence of forming speed on the limiting drawing ratio at different forming temperatures 

(Naka and Yoshida, 1999). 

 

 

 

Figure 1.5 Relationship between the maximum punch force and punch speed at various forming 

temperatures (Naka and Yoshida, 1999). 
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Bolt et al. (2001) studied the feasibility of warm forming processes; they used three different aluminum 

alloy series (1050-H14 Al99.5, 5754-O AlMg3 and 6016-T4 AlMg0.4Si1.2) and did a comparative study of 

their formability, within the temperature range of 100-250 °C. Two different products have been analyzed 

in their work considering the application of deep drawing and stretching under 1000 kN hydraulic punch. 

They found a strong influence of temperature on the forming parameters in deep drawing experiments on 

box shaped and conical rectangular products and observed that the forming of aluminum at elevated 

temperature provides an increase in the product height (Figure 1.6). 

 

 

 

 

Figure 1.6 Effect of die temperature on the maximum attainable product height (Bolt et al., 2006). 

 

Takuda et al. (2002) considered a cylindrical punch for their deep drawing experiments on AA5182-O 

aluminum alloy. A proper numerical simulation compared with the experimental results is described in 

this work. Their study shows that in order to achieve higher limiting drawing ratio (LDR), the temperature 

dependent flow stress should be uniformly distributed throughout the sheet. Both the experimental and 

numerical results showed that the LDR in warm deep drawing improves with die profile radius as shown 

in Figure 1.7. 
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Figure 1.7 Forming limits in the warm deep drawing experiments at an elevated temperature of 250 °C 

(Takuda et al., 2002). 

 

Li and Ghosh (2003) studied the uniaxial tensile deformation behavior of three different aluminum 

alloy sheets AA5182+1% Mn, AA5754 and AA6111-T4 in the temperature range of 200-350 C and in 

the strain-rate range of 0.015–1.5 s
-1

. They chose their forming process parameters carefully so that the 

post-forming properties don’t deteriorate. The key finding of their work is the increase in the uniaxial 

tensile elongation with increasing temperature and decreasing strain-rate. They also observed an increase 

in strain rate sensitivity as well as decrease in the strain hardening with increasing temperature which 

accounts for the improvement in ductility at higher temperatures. The results depict that the warm 

formability for 5000 series is better than 6000 series. 

Li and Ghosh (2004) have further extended their studies with a different approach to the biaxial warm 

forming process for the same alloys using a heated rectangular die/punch of cross-sectional area of 110 

mm×50 mm, with all the other parameters kept the same as the previous study. In this second study, they 

investigated the formability of aluminum alloys by creating rectangular parts at a rapid rate of 1 s
-1

 using 

heated tooling under both isothermal and non-isothermal conditions and observed similar formability as 

previously reported for uniaxial forming for all three alloys where formability increases at elevated 
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temperatures and in similar fashion the 5000 series (AA5182+1% Mn, AA5754) alloys shows 

considerably greater improvement than AA6111-T4. Applying a gradient of temperature between the die 

and punch was favorable in promoting better formability. The forming limit curves (FLCs) under elevated 

temperature forming conditions were also derived and used specifically to predict the part depth (die 

cavity). The influence of temperature on the FLCs of all three alloys is shown in Figure 1.8. From the 

figure, it is observed that the formability of aluminum alloys increases with the increase in forming 

temperatures. It is also observed that the aluminum alloy AA5754 is more sensitive to forming 

temperature as compared to other two. 

 

 

 

Figure 1.8 Influence of forming temperature on FLD (Li and Ghosh, 2004). 
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Using the material (Al5182+Mn) data published in Li and Gosh (2003; 2004) mentioned above, Kim et 

al. (2006) further extended their elevated temperature forming study using a thermo-mechanically 

coupled finite element analysis (FEA) considering the forming process with rectangular cups at different 

temperature levels (250, 300, 350 °C) and displayed the data using forming limit diagrams (FLDs), as 

shown in Figure 1.9. In this work, they mainly focused on parameters like maximum load, minimum 

thickness and thickness ratio to optimize the criteria for onset of failure.  Their model predicted that a 

high temperature gradient between die and punch provides better formability and the strain limit increases 

with increasing the forming temperature, in general accord with the experiments. 

 

 

 

Figure 1.9 Influence of forming temperature on FLDs and contrast between FEA and experimental 

results (Kim et al., 2006). 

 

Abedrabbo et al. (2007) performed LDH experiments on two aluminum alloys, AA5182-O and 

AA5754-O, using a double action hydraulic press. They used the experimental setup to form 101.6 mm 

diameter hemispherical cups from 177.8 mm diameter circular blanks. Pure stretch experiments were 

performed at elevated temperatures in the range of 25-260 °C. In their work they calculated strain based 
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FLD curves (ε-FLD) (Figure 1.10) at different temperatures for AA5182-O and observed that increasing 

the temperature effectively raises the forming limit curves.  

 

 

 

Figure 1.10 FLDs for AA5182-O at several elevated temperatures (Abedrabbo et al., 2007). 

 

Palumbo and Tricarico (2007) studied the warm deep drawing (WDD) process using both experimental 

and numerical approaches and chose their specimen to be a 0.8 mm thick sheet of aluminum 5000 series 

alloy (AA5754-O). Temperature levels at the center of the blank specimen and the forming speed were 

selected as process parameters and the specimens were coated with a standard grease lubricant before the 

experiments. The key findings of their study are as stated below: 

I. Punch speed greatly affects the warm deep drawing process. 

II. Temperature in the blank center controls the process feasibility as well as formability in so 

much as the simulation results revealed the strong influence of the temperature gradient 

between the center and the flange on the strain concentration and failure as shown in Figure 

1.11. The limiting drawing ratio (ratio of blank diameter Db to punch diameter Dp, =
𝐷𝑏

𝐷𝑝
 ) is 

much greater (increased up to 44 %) at 110 °C for a punch speed of 1mm/min, as compared to 

that at room temperature. 
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Figure 1.11 Test results showing both successes and failures for warm deep drawing operation (Palumbo 

and Tricarico, 2007). 

 

Kaya et al. (2008) studied non-isothermal deep drawing of AA5754-O, AA5052-H32, and AZ31B-O 

sheets with sheet thicknesses of 1.3, 1.3, and 1.2 mm respectively. They investigated the effect of constant 

and variable punch velocity and temperature on the deformation mechanics. In their study the die and the 

blank holder were heated to 310 °C while the punch was cooled to 65 °C. The maximum punch velocities 

for the Al and Mg alloys were observed to be 35 mm/s at 300 °C and 300 mm/s at 275 °C, respectively. 

They concluded that increased temperature tends to reduce the thinning at the corner of the cup bottom 

reduces Al alloys but not for the Mg alloys. They also developed a numerical model using the finite 

element method (FEM) to correlate the process parameters such as strain-rate (punch velocity), 

temperature and physical properties of the material obtained from two different suppliers.  

 

1.3 Formability of Aluminum Brazing Sheet 

McKinley et al. (2010) investigated the effects of warm forming on Novelis X926 clad aluminum brazing 

sheet, the class of materials investigated in the current work, by performing deep drawing experiments. 

They observed no significant changes in material behavior between RT–150 °C, but the material 
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properties changed rapidly between 150–250 °C. When the temperature was increased from 150 °C to 

250 °C the following observations were made: 

– Elongation to failure increased by over 200% 

– Flow stress decreased by 35% or greater 

– With increasing strain rate, there was an increase in the flow stress and decrease in total elongation 

– Very large post–uniform elongations occurred at 250 °C 

Bagheriasl et al. (2011, 2012, 2014) studied the isothermal warm formability of a fully annealed 0.5 

mm thick, AA3003 aluminum alloy brazing sheet. They developed forming limit curves (shown in Figure 

1.12) using two different parameters such as forming temperature levels (RT, 100, 200, 250 and 300 °C) 

and forming speed/strain-rate levels (0.003, 0.018, 0.1 s
-1

). In their study, they observed that the 

formability of the sheet can be improved significantly by increasing the temperature, with gains of up to 

200% for this temperature range. They also observed that the forming speed has a mild effect on 

formability. 

 

 

 

Figure 1.12 FLD of 0.5 mm thick AA3003 at 1.6 mm/s (Bagheriasl et al., 2012). 
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1.4 Influence of strain-rate on the formability of aluminum alloy sheet 

Smerd et al. (2005) carried out experiments on AA5754 and AA5182 Al-Mg alloy sheets using a tensile 

split Hopkinson bar (TSHB) apparatus at room temperature and elevated temperatures in order to examine 

the constitutive response and damage evolution at strain-rates of 600, 1100 and 1500 s
-1

. Despite of the 

low strain-rate sensitivity for both the alloys, AA5754 showed a mild increase in flow stress with strain-

rate below 300 °C, while AA5182 was insensitive to strain-rate at room temperature. However, the final 

elongation was observed to decrease for both the alloys at 1500 s
-1

 and 300 °C (Figure 1.13). 

 

 

 

Figure 1.13 (a) Elongation versus temperature at a strain-rate of 1500 s
-1 

 for AA 5754 (left) and AA 5182 

(right) (b) Elongation versus temperature at a strain-rate of 1500 s
-1 

(Smerd et al., 2005). 

 

Picu et al. (2005) studied the strain-rate sensitivity of 1 mm thick, non-heat treatable commercial 

AA5182-O aluminum alloy sheets at temperatures ranging from -120 to 150 °C and strain rates from 10
-6 

to 10
-1 

s
-1

 by performing uniaxial tension tests. They investigated the effect of dynamic strain aging on the 



15 

 

ductility and strain hardening by measuring the process parameters such as strain-rate sensitivity in 

constant and jump strain-rates which was observed to be negative for all strains at room temperature and 

50 °C. They further developed a numerical model to compare with the experimental results. The variation 

of strain-rate sensitivity parameter (m) with strain at three different temperature levels is shown in Figure 

1.14.   

 

 

 

Figure 1.14 Strain-rate sensitivity (m) variations with strain at three different temperatures (Picu et al., 

2005). 

 

Lademo et al. (2010) carried out steady-state tensile tests for two different types of aluminum alloys, 

namely AA1200 and AA3103 at several strain-rates in range from 10
-4 

to 1 s
-1

 and investigated the 

instantaneous rate sensitivity and rate sensitivity of strain hardening during the constant strain-rate and 

strain-rate jump tests. From the test results shown in Figure 1.15, it was established that the instantaneous 

rate sensitivity is independent of strain while the rate sensitivity of strain hardening increase with 

increasing strain-rate for both the alloys. They also observed that the yield stress is nearly invariant to 

strain-rate, whereas strain hardening at low strains increases markedly with increasing strain-rate. Little 

effect of strain-rate on the strain at necking was observed because of the fact the work-hardening rate at 

these strains is mainly independent of the strain-rate.  
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Figure 1.15 Tensile test results from the constant strain-rate tests for AA3103; Cauchy stress versus 

logarithmic plastic strain curves up to incipient necking from tensile tests at nominal strain-rates of 10
-4

 s
-

1 
- 1 s

-1
 (Lademo et al., 2010). 

 

 

Kabirian et al. (2014) investigated aluminum alloy AA5182-O in temperature range from 23-150 °C 

and strain-rate from 10
-4 

to 3500 s
-1

. They summarized the AA5182-O stress-strain responses into three 

systems: 

I. At temperatures lower than 100 °C and the quasi-static domain, negative strain-rate sensitivity 

dominates and turns into a positive number when loading rate comes into the dynamic domain. 

II. At 100 °C, zero strain-rate sensitivity in quasi-static region is replaced by a positive number at 

dynamic loadings. 

III. At temperatures more than 100 °C, positive strain-rate sensitivity dominates over the whole 

range of loading. 

 

Rahmaan et al. (2015, 2016) performed room temperature tensile and shear tests at strain rates ranging 

from 0.01 s
-1

 to 600 s
-1

 for AA5182-O sheet using DIC techniques. AA5182 exhibited PLC bands (King 
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et al., 1981; Kang et al., 2006) leading to negative rate sensitivity for strain rates below 1 s
-1

. Above this 

rate, PLC bands are suppressed and positive rate sensitivity is observed, which likely accounts for the 

increase in ductility at high rates reported by Hadianfard et al. (2008).  

 

1.5 Forming Limit Diagram 

The Forming Limit Diagram (FLD) was originally proposed by Keeler and Backofen (1963) for the 

tension–tension domain and extended by Goodwin (1968) to the tension–compression domain. It is 

broadly utilized for characterizing the extent to which metal sheets can be deformed without localized 

necking or fracture. Figure 1.16 is a representation of in-plane strain state of the material sheet and the 

FLD represents the boundary between safe deformations and the beginning of plastic instability, 

determined experimentally by varying the forming conditions and evaluating the forming limits. Some 

common parametric conditions are balanced biaxial tension, in-plane plane strain and combined 

tensile/compressive (draw) strain states. Previous research have shown the methods to determine the 

major forming limit strain and minor forming limit strain (limit strain is described as the maximum strain 

of the material before the necking onset) in order to develop FLD. Detailed explanation of different 

methods to determine forming limit strains is provided in section 1.7. 

 

 

 

Figure 1.16 Representation of the forming limit curve (FLC) and typical strain paths obtained in sheet 

metal formability tests utilized for determining the FLC (Hasan et al., 2011). 
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Nakazima et al. (1968), for the first time, measured and compared the forming limit strains for strips of 

varying widths to measure forming limit strains. Hecker et al. (1978) further developed the method, using 

a specimen that is well lubricated and then firmly clamped and stretched over a 101.6 mm (4 inch) 

diameter punch. The load is applied to the strip through the punch until localized necking is detected and 

thus the maximum load is identified. The strain ratios and limit strains are measured near the necking area 

using etched circles or grids which deform during deformation from which the forming limit curve (FLC) 

can be constructed. Dinda et al. (1981) combined the above two techniques of Nakazima and Hecker and 

developed a method to generate FLDs. Harvey et al. (1984) presented a computer-image analysis method 

to avoid the uncertainties during the manual measurements. 

 

1.6 Formability experiments 

Formability can be defined as the ability of the metal work piece (sheet in this case) to undergo plastic 

deformation (stamped/formed) without any damage. The forming behavior of any metal sheet is analyzed 

by performing many different mechanical tests such as bulging and uniaxial or biaxial tensile experiments 

(Marciniak et al., 1965; Hasek, 1973; Ghosh et al., 1985). There are various factors which can cause 

uncertainty in the results, including variations in material flow properties, die material, die/punch shape, 

press speed, lubricants etc. (Cockroft et al., 1968; Marciniak, 1984; Banabic et al., 1992). Each of these 

can cause failure in the material separately; therefore, it is rare to develop a single formability test to 

quantify all other forming applications. One of the basic parameters to analyze formability and ductility 

during the formability test is fracture strain. Some of the parameters contributing high drawability (by 

resisting thinning) include high strain hardening exponent (n) and high value of strain-rate sensitivity 

index (m). Lower yield strength promotes lower spring back. Different methods have been considered to 

provide insight into material performance under actual forming/stamping conditions; some of these are 

discussed in the following. 

 

1.6.1 Formability evaluation experiments 

Stretching and drawing are the two primary modes of sheet metal deformation used in industrial stamping 

processes. The Swift cup test (Chung and Swift, 1951), the Erichsen/ Olsen dome tests (Erichsen, 1912; 

Olsen 1920), and Limiting Dome Height (LDH) test (Hecker, 1974 and Ghosh, 1975) are tests frequently 

used for formability characterization. The details of these experiments are discussed in the following 

sections.  
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 Swift Cup test (Chung and Swift, 1951) 

This experiment investigates the drawability of a well lubricated sheet metal by forming a vertical 

cylindrical drawing using a small flat-bottomed cup (Figure 1.17) with differing blank diameters to 

determine the limiting drawing ratio (LDR). The LDR is defined as the ratio of the maximum diameter of 

the blank that can be drawn without fracturing to the diameter of the punch. This test is suitable to predict 

the performance of sheet metals in deep-drawn products, however, it is inaccurate when predicting the 

behavior in stretching processes and it is also time consuming. 

 

 

 

Figure 1.17 Swift’s cup drawing test (Narasimhan et al., 1996). 

 

 The Erichsen (1914) and the Olsen (1920) tests 

Erichsen (1912) was the first to develop tests for evaluating the forming behavior of sheet metal in 

stretching conditions. Hemispherical punch was used to press the sheet metal (clamped between two 

polished flat plates with a hole of 25.4 mm diameter) until failure occurs as shown in Figure 1.18. Olsen 

(1920) then introduced a test similar to that proposed by Erichsen (1914) but with a different size of tools. 
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Because of the poor reproducibility and lack of correlation with other mechanical properties these tests 

were not widely accepted.  

 

 

Figure 1.18 Schematic of Erichsen and Olsen tests (Ghosh et al., 1975). 

 

 Limiting Dome Height test (Hecker, 1974 and Ghosh, 1975) 

Hecker (1974) attributed the poor reproducibility of the Erichsen/Olsen test to the high bending strains 

using such a small punch and insufficient clamping using small, smooth dies. He recommended using a 

bigger hemispherical punch and dies (102 mm diameter) with a lock bead to prevent draw-in. Later 

Ghosh (1975) modified the Hecker test in order to simulate plane-strain conditions (under which most of 

metal forming failure occurs) by using varying-width strip specimens. This test is known as the Limiting 

dome height (LDH) test. 

This method uses a 102 mm hemispherical punch to press the sheet-metal specimen with different strip 

widths, rigidly clamped in a blank-holder and stretched over the punch (Figure 1.19). The metal strips are 

marked with a grid of small circles (2.5 mm diameter) and the width strain at the fracture site is measured 
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from the closest intact circle to the fracture. The width strain is smallest at a critical blank-width and the 

height where the fracture occurs in the dome is called limiting dome height. LDH test is one of the most 

popular tests in the industry because of its ability to simulate the most critical strain state (plane-strain 

conditions) observed during stamping but still comes with some drawbacks. Recently, this technique has 

been losing interest because of its inconsistency and large scatter in the dome height values. Story (1982) 

analyzed and explained the significant effect of the sheet thickness and the punch radius ratio on the limit 

strain. Therefore, the LDH values should not be compared for sheets of completely different thicknesses. 

Vegter et al., (1985) proposed the use of smaller punch (other than normally used 102 mm punch) and 

they observed an increase in the limit strain by decreasing the punch diameter. This encouraged an 

important supportive effort by the North American Deep Drawing Research Group (NADDRG, 1987), 

leading to a recommended standard practice. The lock bead is also an important component, which has a 

vital role to ensure a pure stretching operation during the formability test. 

 

 

 

Figure 1.19 Schematic of dome height test, where a and aʹ indicate the positions of punch before and after 

deformation of the sheet corresponding to b and bʹ (Ayers et al., 1975). 
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1.7 Different methods for forming limit strain evaluation 

Considerable effort has been expended to develop reliable procedures to quantify the limit strains of 

different sheet metals (Hayashi, 1997; Montfort and Novello, 1999; Hotz et al., 2001; Geoffrey, 2003). In 

the late 60’s, Takashina (1968) presented a simple three circle method to determine the limit strains which 

was then improved further by Veerman et al. (1972), but the most precise method for measuring the limit 

strains was developed by Bragard et al. (1972) who incubated the interpolation technique (Figure 1.20). 

 

 

 

Figure 1.20 Interpolation method (Bragard method) to determine the limit strain (Bragard et al., 1972). 

 

Hecker (1974, 1975) recommended a technique based on the determination of three types of ellipses 

around the fracture as shown in Figure 1.21. In this method, the major and minor strains of different types 

of ellipses were determined near the fracture on the deformed specimen and then transposed onto FLC. 

Hotz et al. (2006) has introduced a new method which is termed an ‘in-process measurement’ method 

(Figure 1.22) to determine the forming limit curve which was explained in detail by Libertz et al. (2004). 

A similar process is applied as the Bragard method where they used a video camera system to film the 

forming process and the fracture analysis and strain distribution was observed based on the film.  
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Figure 1.21 Hecker method to measure the limit strain (Hecker, 1975). 
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Figure 1.22 IDDRG method to determine the limit strain (Hotz et al., 2006). 

 

Later the determination of FLDs was standardized within the International Standard Organization ISO 

12004-2 (2008) “Metallic materials - sheet and strip - Determination of forming-limit curves”. This 

standardized method identifies the testing conditions to be used when generating forming limit curves at 

room temperature, by using linear strain paths. This procedure is recommended for flat metallic sheets 

with thicknesses between 0.3 mm and 4 mm as proposed in the Marciniak (1965) and Nakazima (1967) 

methods. In this technique, the strain across the deformed specimen is calculated and the measured strains 

are sorted in a way that the failed area is eliminated from the results. By removing the strain points in the 

necked area, the strain distribution just before the onset of necking is created again in this region by curve 

fitting on both sides of the neck (Figure 1.23). The maximum strain that can be imposed on the material 

without failing is determined through interpolation and the maximum of the interpolated curve is called 

the forming limit. 
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Figure 1.23 ISO 12004 – cross section method to determine the limit strain. 

 

Some instances of measured strain distributions which lead to unrealistic forming limit values can 

occur when using the ISO method. For example, if friction conditions are such that necking does not 

occur at the center of the dome, the strain distribution will no longer by symmetrical leading to a 

distortion of the interpolation shown in Figure 1.23. In such cases, the ISO method will not provide a 

good representation of the strain conditions at onset of necking.  
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1.7.1 Time-dependent methods 

Optical strain measurement methods, such as the Digital Image Correlation (DIC) technique due to Smith 

(1998) are have been widely adopted to measure the strain distribution over the entire surface of the 

sample for the complete duration of the test. In the DIC method, a high contrast random speckle pattern is 

applied to the specimen surface which is tracked during deformation using stereo cameras from which the 

strain distribution history can be extracted. The drawbacks of the ISO method discussed above as well as 

the new ability to obtain continuous strain data through DIC have prompted the establishment of time-

dependent methods for determining the FLC, as an alternative to position-dependent methods for which 

the onset of necking is determined by studying a single instant in the process (ISO 12004 method). Time-

dependent methods include those developed by Volk and Hora (2010), Merklein et al. (2010) and 

Martínez-Donaire et al. (2014), as described in the following text. 

 Linear best fit time-dependent method (Volk and Hora, 2010) 

The linear best fit method was proposed by Volk and Hora (2010) based on the temporal analysis of the 

thickness strain, 𝜀3 and its first derivative (the thickness strain rate, 𝜀3̇) at locations within the failure 

region (Figure 1.24). Two straight lines are calculated using regression analysis along the representative 

thinning rate evolution, one through the stable deformation stage and the other through the last stage just 

before specimen failure. The intersection of these two lines is identified as the onset of the plastic 

instability, as shown in Figure 1.24. In order to reduce the noise in the time derivative of thickness strain, 

a least squares parabolic fit is made for seven points and the time derivative of thickness strain is 

calculated from this parabolic equation at the given time step, as described in ISO 12004-2 (2016). 

Similar to the ISO 12004-2 (2016) approach, the method described above is applied to five adjacent 

locations in the localized necking zone and the final limit strain is considered as the average value of the 

strains determined in the aforementioned locations. 
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Figure 1.24 Determination of onset of instability by linear curve fitting method with least square method 

where “No. of picture” refers to the image number just prior to fracture (Volk and Hora, 2010).  

 

 Moving correlation coefficient method (Merklein et al., 2010, Merklein et al., 2014) 

The moving correlation coefficient method due to Merklein et al. (2010) is based on the analysis of the 

rate of change of the major strain of selected positions in the area where the unstable necking will happen. 

The time history of the second time derivative of the major strain, averaged over all points inside the 

selected area around the necking zone, is analyzed to detect the instant of the beginning of the unstable 

necking. In this method, the major and minor limit strains are objectively determined by a mathematical 

function called the coefficient of correlation as follows: 

𝑟 =
∑(𝑡 − 𝑡̅)(𝜀1̈ − 𝜀1̅̈)

√∑(𝑡 − 𝑡̅)2 ∑(𝜀1̈ − 𝜀1̅̈)2
 

where t (x-axis) represents the time in seconds and 𝜀1̈ (y-axis) represents the second derivative with 

respect to time (acceleration) of the principal strain. The correlation coefficient should be close 1  when 

the data are distributed near a line and should tend to 0 when randomly distributed like a cloud of points. 

However, for the correlation coefficient calculated from the rate of major strain rate versus time data, the 

inverse is happening since the data at the beginning of the experiment is horizontal and the correlation 

coefficient r  is undefined for horizontal and for vertical distributions since those conditions correspond 

to 00 / condition. To eliminate the starting correlation coefficient at 0r  , Merklein et al. (2014) 
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proposed a linear time function with slope n  between 10.  and 1  which is added to the rate of major 

strain rate curve and the correlation coefficient becomes 0r  . In this method, the correlation coefficient 

is calculated by taking a series of different subsets of constant size over the full data set (using a selected 

area around the necking zone) in a manner similar to a moving or gliding average data filter. The 

correlation coefficient is nearly 1  when it is far away from the necking zone and the coefficient becomes 

smaller than 1  when the acceleration deflects to high values and grows again towards 1 when the 

acceleration is tending to infinity (Figure 1.25). The instant when the correlation coefficient traces a 

minimum is indicative of the onset of necking, as shown in Figure 1.25, and the corresponding major and 

minor strain values represent the data point for the FLC. 

 

 

 

Figure 1.25 Determination of onset of necking using the coefficient correlation time-dependent method 

(Kurukuri et al., 2015). 

 

 Necking zone method (Martínez-Donaire et al., 2014) 

Martinez-Donaire (2014) proposed a time-dependent methodology called the “necking zone method”. 

First, the width of the necking region is identified from the deformed sample by calculating the major 

strain rates at various locations near to the final fracture location, as illustrated in Figure 1.26. During 
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loading, the first time derivative of (𝜀1 ) in the necking zone (Point B, in Figure 1.26) monotonically 

increases until fracture occurs. The onset of necking is associated with a decreasing strain rate in the 

material adjacent to the necking region, which vanishes before fracture occurs. Therefore, the necking 

process begins when the strain rate at the boundary of the instability region (point A in Figure 1.26) 

reaches a local maximum value (𝜀1̇,𝑚𝑎𝑥
𝐴 ). From this moment, the strain rate at the limit of the necking 

region begins to decrease to zero, signaling the start of the strain localization process inside the region. 

The corresponding major and minor strains in the necking zone are considered as limit strains. 

 

 

 

Figure 1.26 Determination of onset of necking using the necking zone time-dependent method (Martínez-

Donaire et al., 2014). 

 

1.8 Lubrication in warm forming conditions 

Lubricants properties are generally affected by die/sheet interfaces and temperatures during warm 

forming. Hence it is essential for a warm forming lubricant to provide enough lubricity at temperature 

ranges from 25 °C to 250 °C or higher. Very little research has been reported on the warm forming 

lubricants; therefore ideal lubricants for the warm forming of aluminum alloy sheet are yet to be 

discovered. Biaxial deformation experiments of 5083 Al alloy sheet into a rectangular die cavity with or 

without lubrication were conducted by Wu et al. (2006). They observed that decreasing the interfacial 

friction by the lubricant enhanced the metal flow when the die surface touches the deformed sheet.  
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Kaya et al. (2008) performed deep drawing experiments on three different aluminum alloys namely, 

AA1050, AA5754 and AA6016 as well as AZ31 magnesium sheet using Teflon (PTFE) film, a grease 

with 7.5% boron nitride and a grease without boron nitride as lubricants. They reported that: 

- Teflon sheet resulted in a more uniform sheet thickness than the other non-PTFE lubricants. 

- Non-PTFE lubricants caused smoke and left a burnt residue on the tooling.  

Bagheriasl et al. (2012) reported the influence of lubricant on the formability of aluminum alloy sheet 

at temperatures greater than or equal to 150 °C by conducting LDH experiments on 0.5 mm thick 

AA3003 brazing sheet. They compared two different lubricants (Dasco Cast and Teflon sheet) by 

measuring the coefficients of friction using the Twist Compression Test (TCT) at three sliding velocities 

of 1.6, 8 and 40 mm/s (Figure 1.27). They observed that Dasco Cast lubricant shows better performance 

in the higher temperature range while Teflon sheet lubricant enhances the performance over the entire 

range of temperatures tested. 

 

 

 

Figure 1.27 Comparison of Dasco Cast and Teflon sheet for the sliding velocities of 1.6, 8 and 40 mm/s 

(Bagheriasl et al., 2012). 

 

Boba et al. (2012, 2014) conducted cylindrical cup deep drawing experiments on 1.6 mm thick AZ31B 

and ZEK100 magnesium sheets using Teflon sheet and dry film lubricant (Forge Ease AL 278 from 

FUCHS) on a 203 mm blank at temperatures ranges from 100-250 °C. Figure 1.28 shows the measured 
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load-displacement response from punch. They observed that the punch force was 5% greater for dry film 

lubricant than Teflon sheet for all tested temperatures. 

 

 

 

Figure 1.28 Punch load plotted against displacement for a draw ratio (DR) of 2.0 comparing Teflon and 

Fuchs dry lubricant (Boba et al., 2014). 

 

1.9 Current research 

An extensive body of research has been reported on the room temperature formability of aluminum 

alloys; however, the literature review presented in this chapter indicates that less information exists 

regarding the warm formability of aluminum alloy sheet. Moreover, studies considering the warm 

forming of AA3003 brazing sheet, the focus of the current research, are limited.  

Prior research by McKinley et al. (2010) and Bagheriasl et al. (2011, 2012, 2014) on formability of 

brazing sheet focused on sheet thickness on the order of 0.5 mm, which corresponds to that used in so-

called “core plates” used to fabricate heat exchangers for automotive engine and transmission thermal 

management systems. Recent application of brazing sheet materials has expanded to include battery 

cooler assemblies for use in electric vehicle applications. Such applications utilize much thinner sheet, on 

the order of 0.2 mm, mandating characterization of brazing sheet in this thickness range and 

understanding the influence of thickness on formability of this class of aluminum sheet. 
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Current practice mandates use of brazing sheet in a fully annealed O-temper condition in order to 

increase formability and to reduce springback (Verma, 2016).  For heat exchanger applications, the rather 

thin nature of the sheet material (0.2 mm) makes it very difficult to handle without causing indentation or 

damage to the sheet; hence, there exists a strong motivation to form heat exchanger components at higher 

hardness levels such as the strain hardened tempers H22 or H24, referred to as “half hard” or “fully hard”, 

respectively. Such tempers would also increase the strength of the as-formed product (Cobden et al., 

1994).  

Hence, the objective of the current research is to experimentally investigate the influence of forming 

temperature and forming speed on the formability of AA3003 brazing sheet, comprising an AA3003 core 

with a clad layer of AA4045. Two thickness/cladding configurations were considered, one a double side 

cladded 0.5 mm thick sheet in O temper condition used in core plate applications and the other a single 

side cladded 0.2 mm thick sheet used in batter plate applications. The core plate material was tested in the 

O temper condition and was used as a baseline material to assess the influence of sheet thickness. The 

battery plate material was tested in in the O, H22 and H24 temper conditions to assess the effect of initial 

temper on formability. Due to the rather low formability of O temper material reported by Bagheriasl et 

al. (2012), the current work focusses on characterization of the warm formability of these sheet materials 

under warm conditions in the range of room temperature to 250 °C. Given the strong rate sensitivity of 

aluminum alloy sheet at elevated temperature, the effect of forming speed is also examined. 

The balance of this thesis is organized as follows. Chapter 2 presents a description of the tested 

materials and experimental techniques, whereas Chapter 3 includes the results of the limiting dome height 

experiments and forming limit curves generated for all the materials considered. Chapter 4 presents 

predicted FLC results obtained using the Marciniak-Kuczynski (Marciniak and Kuczynski, 1967) analysis 

software developed by Kurukuri (2016) and comparison with the measured FLCs from Chapter 3. 

Chapter 5 lays out the conclusions from the current study and Chapter 6 proposes next steps for future 

work. 
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Chapter 2 

Limiting Dome Height Experimental techniques 

2.1 Materials Studied 

The materials considered in the current research were AA3003 brazing sheet in three different temper 

conditions, namely O (0.5 mm, 0.2 mm), H22 (0.2 mm) and H24 (0.2 mm). The 0.2 mm thick aluminum 

brazing sheet has a single side clad layer and the 0.5 mm thick O temper sheet is clad on both sides. 

Some basic temper conditions are F (As-Fabricated), O (Annealed), H (Strain-Hardened), W (Solution 

Heat Treated) and T (Thermally treated to produce stable tempers other than F, O, or H). In the current 

research, tempers O (Annealed) and H (Strain-Hardened) were studied. Some divisions of the H temper 

are listed in Table 2.1. The nominal chemical compositions of the AA3003 alloy sheet and AA4045 clad 

layer are shown in Table 2.2 and Table 2.3. 

 

Table 2.1 Subdivisions of H temper (Strain Hardened) 

First digit indicates basic operations: 

H1 – Strain Hardened only 

H2 – Strain hardened and partially annealed 

H3 – Strain hardened and stabilized 

H4 – Strain hardened, lacquered or coated 

Second digit indicates degree of strain hardening: 

HX2 – Quarter hard 

HX4 – Half hard 

HX8 – Full hard 

HX9 – Extra hard 

 

Table 2.2 Nominal chemical composition of AA3003 alloy sheet 

Weight (%) Al Cu Si Fe Mn Zn Others 

AA3003 Remaining 0.05-0.20 0.60 0.70 1.0-1.5 0.10 0.05 each 

 

Table 2.3 Nominal chemical composition of AA4045 sheet  

Weight (%) Al Cu Si Fe Mn Zn Others 

AA4045 Remaining 0.30 0.09-0.11 0.80 0.05 0.10 0.05 each 
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2.2 Tensile Properties  

Detailed characterization of the sheet materials considered in this research was performed by Verma 

(2016) and Kurukuri (2016) as part of related work on the same batches of material. Verma (2016) 

considered the 0.2 mm O, H22 and H24 temper sheet, while Kurukuri (2016) considered the 0.5 mm O 

temper sheet. Both studies comprised uniaxial tensile experiments at strain rates of 0.002 or 0.02 s
-1

 and 

temperatures ranging from 25-250 °C. The tests were conducted on an Instron universal testing machine 

located at the CanmetMATERIALS facility in Hamilton, Ontario. The test set-up is shown in Figure 2.1, 

while the specimen geometry used in both studies is shown in Figure 2.2.  A biaxial video extensometer 

was used to measure the longitudinal and transverse strain in the specimen during testing, as shown in 

Figure 2.3, which shows the specimen mounted in the grips with the extensometer markers. The 

experiments were started once the temperature had stabilized to the desired test temperature (10, 15 and 

20 minutes to reach 150, 200, and 250 °C, respectively). 

 

 

 

Figure 2.1 The test set-up for the tensile experiments at CanmetMATERIALS (Verma, 2016). 
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Figure 2.2 Schematic of the tensile test specimen used by Verma (2016) and Kurukuri (2016). All 

dimensions are in inches. 

 

 

 

Figure 2.3 Tensile test specimen mounted on the experimental set-up (Verma, 2016). 
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Figure 2.4 shows the effect of material temper on the true stress-strain curves at RT, 0.02 s
-1

 in the 

rolling direction (RD) (Verma, 2016; Kurukuri, 2016). As seen from the figure, the H24 temper showed 

higher yield strength of ~210 MPa as compared to the H22, O temper materials. The H22 and H24 

tempers also showed lower ductility as compared to both fully annealed O temper sheet materials (0.5 and 

0.2 mm). The two O temper sheets had similar behavior and strong work hardening relative to the H22 

and H24 tempers. 

 

 

 

Figure 2.4 Comparison of flow curves for different material tempers at RT, 0.02 s
-1

. 

 

Verma (2016) and Kurukuri (2016) examined the effect of temperature and strain rate on the tensile 

response of these materials, as shown Figure 2.5. They observed that all three temper conditions exhibited 

an increase in the ductility and reduction in strength with an increase in the temperature. The fully 

annealed O temper sheets maintained a positive work hardening over the entire temperature range, 

whereas the H22 and H24 sheet showed negative hardening behavior at elevated temperatures. The 

materials were not very sensitive to strain rate at RT; however, Verma (2016) and Kurukuri (2016) 

observed strong positive strain rate sensitivity at elevated temperatures.  
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Figure 2.5 Flow curves comparing two strain rates of 0.002 s
-1

 and 0.02 s
-1

 for different temper 

conditions at RT, 150 °C, 200 °C and 250 °C. 

 

2.3 Experimental Apparatus and Tooling 

All LDH experiments performed as part of this research were conducted on a servo-controlled hydraulic 

press located in the High Pressure Laboratory, at the University of Waterloo (Figure 2.6). The tooling was 

affixed within a die set mounted on the sliding platens on the hydraulic press to ensure the alignment.  
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Figure 2.6 Photograph of the LDH experimental setup (left) and computer control rack (right). 

 

  The warm tooling, shown in Figure 2.7, was developed by Bagheriasl et al. (2012) and was used in the 

current work to perform the high temperature LDH experiments. Each tooling component was equipped 

with cartridge heaters capable of heating the tooling to 400 °C. The punch contains six 9.5 mm diameter, 

600 Watt resistance cartridge heaters. Ceramic insulation is used to limit the heat transfer between tooling 

and the rest of the frame. Figure 2.8 shows a close up schematic view of the warm forming tooling. 

During the experiments, the punch and blank holder were moved by two hydraulic actuators and the die 

was fixed. Load cells inserted between the actuators and their respective tooling measured the actuator 

force which has a maximum capacity of 890 kN (200 kip). The displacements were measured using linear 

variable differential transformer (LVDT) transducers.  

The maximum clamp and punch force capacities are 750 kN (168 kip) and 890 kN (200 kip). 

Thermocouples were attached to the tooling near the tooling surface to permit more accurate temperature 

control via temperature controllers (Omega CNi3254-C24). The punch was under displacement control 

and both displacement and load were recorded; the blank holder was under load control and displacement 

and load were recorded. The actuators were controlled via MTS 407 servo controllers and a customized 
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LabView program controls the function of the entire apparatus. A data acquisition card (DAQ) by 

National instruments was attached to PC to record experimental data, such as binder and punch force and 

displacement, and provide program signals to the servo controllers. 

 

 

 

Figure 2.7 Schematic diagram of the LDH tooling set (Bagheriasl et al., 2013). 

 

 

 

Figure 2.8 Close up view of the warm forming tooling. 
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2.3.1 Lubrication 

All testing was done using 0.05 mm thick Teflon sheet as a lubricant. The Teflon sheet was placed 

between the punch and the blank for all of the LDH experiments. From the previous studies by Bagheriasl 

et al. (2013), the room temperature coefficient of friction for the Teflon sheet was found as 0.043 for 

AA3003 brazing sheet. The elevated temperature coefficients are yet to be ascertained. As there is a 

difference in the sheet thicknesses and the considered temperature ranges involved in the current research, 

the number of Teflon sheets needed between the samples also varies. By conducting series of experiments 

with different number of Teflon sheets, it was observed that placing 4-5 layers of Teflon sheet promotes 

near center failure, especially for soft tempered (O temper) biaxial specimens (203.2 mm x 203.2 mm). 

Table 2.4 shows the number of Teflon sheet used for the various temperatures and sheet thicknesses. In 

general, it was found that additional Teflon layers were needed for soft (O temper) brazing sheet material 

at higher temperatures in order to promote failure near the center of the punch. 

 

Table 2.4 Comparison of amount of Teflon sheets required for various temperatures and thicknesses 

Thickness of the sheet Number of Teflon sheets used at 

RT 150 °C 200 °C 250 °C 

0.2 mm 

(H22, H24 and O temper) 

4 4 4 5 

0.5 mm (O temper) 4 4 5 5 

 

Teflon film is not a widely accepted lubricant material in industrial production processes because of 

cost and complexity of its use in those processes. It is used often for formability studies, however, due to 

the low friction coefficient it provides which promotes failure of the sheet material at the center of the 

punch region, in accord with ISO 12004 formability testing standards

To investigate alternate lubricants for high temperature forming, a number of experiments were 

performed using water/oil-based lubricants that have a higher potential for use in industrial production 

processes since they are applied directly on to the surface of the material to be formed. A limited study 

was done to compare the influence of friction on the dome height of an O temper (0.5 mm) 203.2 mm x 

203.2 mm biaxial stretch specimen at 0.4 mm/s, 200 °C. Five types of dry film lubricants, namely OKS 

536, Lubrodal F 400, Diacut NCL, MXC 2187 and Teflon (referred as 3T - 3 sheets of Teflon), were 

considered in the study, shown in Figure 2.9. The dome height at failure measured for Teflon sheet was 

lower by up to 3% for all tested lubricants except for the OKS and Lubrodal. In spite of having higher 
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dome heights, Diacut and MXC were found to be too smoky at higher temperatures whereas Lubrodal and 

OKS evaporated and had too high friction at higher temperatures. Therefore, Teflon was considered the 

best choice as a lubricant to use for the balance of the current research. 

 

 

 

Figure 2.9 Effect of friction on the dome height at failure of an O temper biaxial specimen at 200 °C. 

 

2.3.2 Specimen geometry 

As per ISO-12004, it is necessary to use the blanks with different widths to obtain different strain paths 

(different ratios between major and minor true strain, ɛ1 and ɛ2, respectively) to produce the FLDs. Figure 

2.10 shows the different specimen geometries (ISO-12004-2) used in the current investigation, namely 

25.4 mm (1 in.) dog-bone, 50.8 mm (2 in.) dog-bone, 76.2 mm (3 in.) dog-bone, and 203.2 mm x 203.2 

mm (8 in. х 8 in.) biaxial stretch. A 25.4 mm (1 in.) dog-bone specimen when placed on the die, along 

with the inner and outer radii of the die is shown schematically in Figure 2.11. The specimen geometries 

represented uniaxial stretching (25.4 mm dog-bone, ɛ1 = -2ɛ2), intermediate tensile strain (50.8 mm dog-

bone), plane strain (76.2 mm dog-bone, ɛ2 = 0) and biaxial stretching (203.2 mm x 203.2 mm, ɛ1 = ɛ2). All 
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the samples considered in this work were machined by aligning the specimen major axis with the rolling 

direction. 

 

 

 

Figure 2.10 Schematic of the Limiting dome height (LDH) test geometries as per ISO-12004-2 (All 

dimensions are in mm). 

 

 

 

Figure 2.11 Schematic showing the positioning of the 25.4 mm (1 in.) dog-bone specimen relative to the 

die outline (all dimensions are in mm). 
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2.4 Experiments 

Limiting Dome Height (LDH) experiments were performed to obtain formability data for the AA3003-O, 

AA3003-H22, and AA3003-H24 brazing sheet alloys. The LDH test involves stretching of a sheet 

specimen over a hemispherical punch until necking and failure/fracture occurs. The dome height of the 

stretched sample is then recorded as the Limiting Dome Height (LDH) for that particular material and 

specimen width (strain state). All of the LDH experiments carried out for this thesis, involved different 

specimen geometries and Digital Image Correlation (DIC) techniques were used for strain measurements 

on deformed specimens. These experiments were used to produce Forming Limit Curves (FLCs) for the 

considered range of temperatures and forming speeds. 

 

2.4.1 Binder force 

Initially the LDH tooling used a die and blank holder that incorporated a set of lock beads (Figure 2.12) to 

minimize the effect of material draw in. Unfortunately, the lock bead resulted in tearing of the sheet at the 

lock bead. Instead, the LDH experiments were performed using flat dies without lock beads in order to 

avoid tearing of these rather thin (0.2-0.5 mm), soft specimens.  

 

 

 

Figure 2.12 Initial LDH tooling with the engagement of lock bead (left); LDH tooling used in the current 

investigation without lock bead (right). 

 

 



44 

 

Preliminary experiments were performed to select the appropriate binder force (also known as the 

Blank Holder Force, BHF) prior to performing the LDH experiments. Excessive binder force can cause 

cracking at the dome edge due to tearing whereas low binder forces can result in wrinkling of sheet 

material in the flange area. The following criteria were applied used to select the appropriate Blank 

Holder Force (BHF): 

 BHF should be high enough to stop the specimen from drawing into the dome 

 BHF should be low enough to not cause fracture at the edge of the dome. 

A series of experiments were conducted to evaluate suitable binder forces for each specimen geometry, 

sheet thickness and temperature condition, from which it was concluded that binder forces higher than 

320 kN caused fracture at the dome edge, while forces lower than 280 kN resulted in the increased dome 

height and draw in (Figure 2.13). Therefore, for all the specimen geometries, thicknesses and 

temperatures, a BHF of 300 kN was adopted. 

 

 

 

Figure 2.13 Graphical representation of the effect of binder force on dome height at 250 °C for O temper, 

0.5 mm thick sheet. 
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2.4.2 Temperature distribution 

Experiments were performed to identify the time required for the specimen to reach the desired test 

temperature. These experiments were performed using specimens instrumented with thermocouples to 

record the temperature transients during heating (Figure 2.14). For this study, thermocouple wires were 

attached to the specimen using screws. It is recognized that the thermal mass of the screws could delay 

the specimen temperature reaching the desired temperature (locally); however, it is thought that the time 

to reach temperature determined in this manner should be conservative. The instrumented specimens had 

thermocouple wires positioned at C1, C2 (center of the specimen) and C3 (as shown in Figure 2.14), that 

were connected to an Omega OMB-DAQ-55 personal DAQ system.  

 

 

 

Figure 2.14 Photograph of a 203.2 mm x 203.2 mm specimen used in the temperature distribution study. 

 

Firstly, the LDH tooling set was heated to the desired temperature (confirmed by thermocouples 

installed on each tooling component) and the instrumented specimen was loaded onto the die. At this 

point, the recording of the temperature begins using the thermocouples and DAQ system. The specimen 

was then clamped by the blank holder and the punch was lowered to engage the specimen with an offset 
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of 0.5 or 0.2 mm, corresponding to the sheet thickness. Figure 2.15 shows the temperature time histories 

for a range of blank thicknesses and die temperature conditions. The times at which the punch first 

contacts the blank and when the blank holder and die were closed together are indicated in Figure 2.15 by 

the vertical dashed lines. After the tools closed, the specimen was then given time to reach the desired test 

temperature (100 seconds for the 0.2 mm material and 120 seconds for the 0.5 mm material). As seen 

from Figure 2.15, the heating curves start at room temperature and then there was a rise in the temperature 

between the times at which the specimen was clamped and the punch was positioned before forming 

starts.  

 

 

 

Figure 2.15 The heating time profile for a 203.2 mm x 203.2 mm specimen. 



47 

 

2.5 Experimental procedure 

The warm formability experiments require heating of the tooling to isothermal conditions. The die, blank 

holder and punch are heated prior to each test to the targeted temperature and allowed sufficient time to 

attain equilibrium temperature and become stable. The temperature level was confirmed prior to every 

test. For each of the LDH experiments, the following procedure was followed: 

 Load the blank into the press and start the LabView program. 

 Clamp the dies to a predetermined binder force. 

 Lower the punch to contact the blank in place and apply a pre-displacement equal to sheet 

thickness to heat the central region of the blank. 

 Allow adequate heating time (100 seconds for the 0.2 mm material and 120 seconds for the 0.5 

mm material) to reach the targeted temperature.  

 Initiate punch movement at the specified speed (0.4 or 1.6 mm/s) to deform the sheet specimen. 

Simultaneously start the DIC data collection system. 

 Stop the test upon visible failure of the specimen occurs. 

Forming speeds of 0.4 and 1.6 mm/s and temperature values of 25 °C, 150 °C, 200 °C and 250 °C were 

investigated in the current work. LDH tests for each condition considered were repeated three times to 

check the repeatability of the results. Teflon sheets were placed on the uncoated side of the brazing sheet 

(except O temper-0.5 mm thick sheet which was coated on both sides) for all experiments.  

 

2.6 Digital Image Correlation (DIC) technique 

The three dimensional DIC technique is an optical in-situ strain measurement method, which capture 

images during mechanical testing and analyzes them using the mathematical correlation method (Sutton 

et al., 2009). In the present work, two high-resolution 4.1 MP Point Grey Gazelle cameras (Model: GZL-

CL-41C6M-C) with a maximum resolution of 2048x2048 pixels and maximum framing rate of 150 

frames per second (fps) were used to capture images of the speckled specimens during deformation 

(Figure 2.16). The cameras were situated underneath the die opening to capture images of the blank 

throughout the forming process (Figure 2.17). After testing, DIC analysis using the Vic-3D software, 

from Correlated Solutions Inc., was used to calculate the forming strain history. The specimen was 

illuminated using LED lights which were adjusted to deliver even illumination across the entire specimen. 

The DIC system allows for adjusting processing parameters like subset size and step size at the start of 
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each analysis which allows balance between processing speed and resolution. The subset size of the DIC 

system indicates the pixel quantities used for comparison of two consecutive images and corresponds to a 

size of 2.5 mm on the blank surface which is equivalent to the size of the grid used in the circle grid 

analysis technique for measuring strains in forming experiments. The step size is related to the resolution 

of the analysis; a step size of 1 means correlation analysis will be performed on every pixel of the area of 

interest and a step size of 7 means it will be performed on every 7
th
 pixel in the area of interest. The DIC 

analysis conducted on the current work used a subset and step size of 29 pixels and 7 pixels, respectively, 

chosen to provide an acceptable projection error in the range of 0.007-0.034. The “exhaustive search 

option” was adopted which causes the DIC software Vic-3D to repeat a coarse search for matches after 

each time the correlation fails and results in more data recovery but increased processing time. The 

deformation history recorded using the DIC system for each specimen was later used to determine the 

failure strains and the onset of necking (detailed description is provided in chapter 3).  

 

 

 

Figure 2.16: Schematic image of the DIC cameras and LDH tooling arrangement. 
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Figure 2.17 (a) Picture of the DIC cameras mounted under the LDH tooling, (b) Photograph of the DIC 

computer control rack. 
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2.6.1 Specimen preparation  

The DIC system detects the geometrical changes on the area of interest which is speckled to provide a 

high contrast image with randomly distributed black dots over a white background. The speckle pattern 

was applied by coating the AA3003 sample with a layer of white paint (high temperature white paint was 

used for elevated temperature). Later, black speckles were applied by spraying a black paint.  Figure 2.18 

shows images of the four specimen geometries after speckling. 

 

 

 

Figure 2.18 Photograph of the speckled specimens. 
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Chapter 3  

Forming Results and Discussions 

Experimental results from warm formability characterization of the AA3003 brazing sheet for the three 

temper conditions and two thicknesses considered in this work are presented in this chapter. The materials 

considered include 0.5 mm O-temper sheet and 0.2 mm sheet in the O- H22- and H24-temper conditions. 

Formability data was acquired at temperatures ranging from room temperature (RT) to 250°C, at forming 

speeds of 0.4 and 1.6 mm/s.  

Measured Limiting dome height (LDH) values are presented first, after which the results from the limit 

strain determination is presented. Forming limit curves (FLCs) were developed using limit strain values 

extracted using the linear best fit time-dependent method (Volk and Hora, 2010).  

3.1 Experimental data processing – detection of limit strains 

In the LDH experiments, the different sample geometries used to develop the FLDs were deformed until 

fracture. The onset of necking was determined using the strain measurements obtained from the DIC 

system as outlined in the following. Figure 3.1 shows the images of fractured (a) biaxial specimens, (b) 

50.8 mm (2 in.) wide dog-bone specimens deformed at RT, 0.4 mm/s with a clamping force of 300 kN. 

Figure 3.2 shows the images of fractured (a) biaxial specimens (b) 50.8 mm (2 in.) wide dog-bone 

specimens deformed at 250 °C with a punch speed of 0.4 mm/s and clamping force of 300 kN. In general, 

fracture occurred near the pole of the punch, but was often offset from the pole by 13-15 mm. These 

observations suggest that the lubrication scheme was working relatively well. 
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Figure 3.1 Image showing fracture of (a) 203.2 mm x 203.2 mm (biaxial) specimens, (b) 50.8 mm (2in.) 

dog-bone specimens formed at RT, 0.4 mm/s for different materials. 

 

 

 

Figure 3.2 Image showing fracture of (a) 203.2 mm x 203.2 mm (biaxial) specimens, (b) 50.8 mm (2in.) 

dog-bone specimens formed at 250 °C, 0.4 mm/s for different materials. 
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The strains are calculated, the major and minor strain fields were determined for all the captured 

images and results such as major and minor strain components and displacements can be presented in 2-D 

and 3-D contour plots. Figure 3.3 shows typical 2-D and 3-D plots of displacement for a 76.2 mm (3 in.) 

wide dog-bone specimen.  

 

 

 

Figure 3.3 2-D and 3-D displacement contour plots for 0.2 mm thick H24 plane strain (76.2 mm wide 

dog-bone) specimen. 

 

The DIC system records the history of the field variables throughout the forming process. The contour 

plots of major strain ( 1e ) distribution for a 76.2 mm (3 in.) wide dog-bone specimen formed at RT and 

250 °C with a punch speed of 1.6 mm/s and clamping force of 300 kN are presented in Figure 3.4. For 

both temperatures, the contour plots are presented at dome heights of 7 mm, 15 mm and 19.9 mm. As 

seen from Figure 3.4, the major strain distributions at RT localized earlier in the deformation process and 

presented a lower dome height at failure relative to the 250 °C sample. On the whole, increasing the 

temperature to 250 °C increased the dome height and formability for AA3003 brazing sheet. 
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Figure 3.4 Contour plots of major strain distribution for an O temper (0.5 mm thick), 76.2 mm wide dog-

bone sample at a forming speed of 1.6 mm/s. 
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The measured major versus strains from the formability tests were plotted in strain space to produce a 

strain path history. Figure 3.5 shows detailed strain path histories for 0.2 mm thick O-temper samples 

tested at 250 °C as extracted by the DIC system. Three repeat experiments were performed for each 

condition and the median curve is shown in Figure 3.5. Similar strain path histories were observed for 

other tested materials (H22, H24 and 0.5 mm thick O temper). 

 

 

 

Figure 3.5 Strain path histories for O-temper (0.2 mm thick) samples at 250 °C, 0.4 mm/s. 

 

Initially the ISO method (cross-section method) was adopted in the present work to measure the 

forming limit strains. The steps followed in the ISO method are given in section 1.7.1. As seen in Figure 

3.6, due to multiple peaks in the specimen, the left best-fit window can contain a part of the second peak 

leading to an incorrect or skewed fit of the inverse parabola. Therefore, the major limit strain obtained in 

this case was greater than the actual fracture strain at the crack location which is not correct. To avoid this 

issue,  time-dependent FLC determination methods based on the time history of measured strains were 

considered to determine the forming limits. One of the time-dependent FLC evaluation methods termed 

the “linear best fit method” proposed by Volk and Hora (2010) was adopted (a detailed description is 

given in section 1.7.1). 
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Figure 3.6 ISO method showing (a) Major limit, and (b) Minor limit identification for a 76.2 mm dog-

bone 0.2 mm, H24 material. 

 

The linear best fit method is based on the temporal analysis of the thickness strain, 3e and its first 

derivative (the thickness strain rate, 3e  ) at positions in the failure region. The thickness stain is 

determined from the measured in-plane strain components using a volume constancy assumption; 

thickness strain, 3e = - (major strain, 1e + minor strain, 2e ), due to volume constancy 1e + 2e + 3e = 0.    

Two straight lines are calculated using regression analysis along the representative thinning rate 

evolution over the last 30 images before specimen failure for a punch speed of 1.6 mm/s and 60 images 

for 0.4 mm/s. One line is fit to the data from the stable deformation stage and the other through the last 

stage just before specimen failure. The intersection of these two lines is identified as the onset of the 

plastic instability as shown in Figure 3.7. In order to reduce the noise in the time derivative of thickness 

strain, a least squares parabolic fit is made for seven points in a manner similar to a moving or running 

average data smoothing. The time derivative of thickness strain is calculated from this parabolic equation 

at the given time step, as described in ISO 12004-2 (2008). Similar to the ISO 12004-2 (2008) approach, 

the method described above is applied to five adjacent locations in the localized necking zone and the 

final limit strain is considered as the average value of the strains determined in the aforementioned 

locations. 
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Figure 3.7 Procedure for the identification of onset of plastic instability of a 25.4 mm wide dog-bone 

sample using the linear best fit time–dependent method. 

 

3.2 Influence of temperature on limiting dome height 

LDH experiments were conducted on the 0.5 mm O-temper and 0.2 mm O-, H22-, and H24-temper 

material at RT, 150 °C, 200 °C and 250 °C to observe the effect of temperature on dome height. The 

experiments were performed using a clamping force of 300 kN, forming speed of 0.4 mm/s and Teflon 

film as a lubricant. Dome heights at necking were recorded from the images captured by the DIC system 

during the forming. The dome heights are reported for the image that was identified as the onset of 

necking. These dome height measurements showed good agreement with the measured punch force 

versus punch displacement data (Figure 3.8) recorded using the Labview program during the forming 

experiments at each temperature and material condition. The sharp decline in load seen in Figure 3.8 

indicated the fracture of the specimen, whereas, the slope reduction during forming at elevated 

temperatures was found to be related to the material softening and necking. Similar trends were observed 

in the punch force versus punch displacement data for other tested material tempers and thickness.  
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Figure 3.8 Punch force against the punch displacement of a 203.2 mm x 203.2 mm biaxial sample at a 

forming speed of 0.4 mm/s for different temperatures. 

 

Figure 3.9 shows the average measured dome height plotted against the considered range of forming 

temperatures. Dome height measurements at the onset of necking were repeated three times for each 

condition to examine the scatter for three repeat tests which was judged acceptable. As seen from Figure 

3.9, larger dome heights were obtained by increasing the forming temperature to 250 °C. In general, the 

thinner sheet exhibited lower formability compared to the thicker O temper material. The maximum dome 

height of 38 mm was measured for the 0.5 mm thick O temper sheet at 250 °C. Overall, the improvement 

in dome height with an increase in temperature from RT to 250 °C was 26-30% for the range of materials 

and thicknesses considered. An increase in hardness from O-temper to H24-temper resulted in a drop in 

LDH of 38% at RT and 40% at 250 °C. 
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Figure 3.9 Influence of temperature on LDH for 203.2 mm x 203.2 mm biaxial sample at a forming speed 

of 0.4 mm/s for different temperatures, material thickness and temper. 

 

3.3 Influence of forming speed on limiting dome height 

In order to study the effect of forming speed on the dome height of formed specimens, the RT and 250 °C 

LDH experiments in Section 3.2 performed at 0.4 mm/s were repeated at a speed of 1.6 mm/s. Figure 3.10 

shows the average of the measured dome heights at two temperatures, RT and 250 °C, for all four sheet 

conditions.  In general, there was a decrease in dome height to failure of approximately 1.5-3 mm as the 

punch speed increased from 0.4 to 1.6 mm/s for all temperatures and material conditions. The effect of 

punch speed was somewhat higher at elevated temperature versus RT conditions.  
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Figure 3.10 Influence of forming speed on the measured dome heights at RT and 250 °C for all four 

material conditions using a 203.2 mm x 203.2 mm (biaxial sample) at a forming speed of 0.4 and 1.6 

mm/s. 

 

3.4 Influence of sample geometry on limiting dome height 

Figures 3.11-3.14 shows the LDH values recorded for each specimen geometry as a function of 

temperature. As described in Section 3.2, four geometries were considered, 25.4 mm (1 in.), 50.8 mm (2 

in.) and 76.2 mm (3 in.) dog-bones and 203.2 mm x 203.2 mm square biaxial samples. As observed in 

Figure 3.11, dome height increased with increasing sample width for the 0.5 mm O-temper samples. The 

thinner samples exhibited lower dome heights and the higher hardness samples had relatively lower 

variation in the measured dome height with sample width (Figures 3.12-3.14).  

 



61 

 

 

 

Figure 3.11 Influence of different sample geometries on the measured dome heights at different 

temperatures for O temper (0.5 mm) at a forming speed of 0.4 mm/s. 

 

 

 

Figure 3.12 Influence of different sample geometries on the measured dome heights at different 

temperatures for O temper (0.2 mm) at a forming speed of 0.4 mm/s. 
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Figure 3.13 Influence of different sample geometries on the measured dome heights at different 

temperatures for H22 (0.2 mm) at a forming speed of 0.4 mm/s. 

 

 

 

Figure 3.14 Influence of different sample geometries on the measured dome heights at different 

temperatures for H24 (0.2 mm) at a forming speed of 0.4 mm/s. 
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3.5 Influence of lubrication condition on dome height 

Limiting dome height experiments were conducted without lubricant to investigate the effect of 

lubrication on the measured dome heights. The experiments considered 0.5 mm O-temper and 0.2 mm H-

24 biaxial samples (203.2x203.2mm) and the forming speed was 0.4 mm/s. Figure 3.15 and Figure 3.16 

show the dome height values measured for the two sample types as a function of temperature, with or 

without Teflon sheet lubricant. As can be seen from these figures, the limiting dome height was reduced 

for the samples without Teflon sheet lubricant for all temperatures tested. Increases in forming 

temperature were still seen to provide a positive effect on formability even without lubrication. The 

average dome height of the non-lubricated samples was 21% lower than that of the lubricated samples 

formed at RT for O temper (0.5 mm). At 250 °C, the dome height of the non-lubricated samples was 25% 

lower than the height of the lubricated samples. 

 

 

 

Figure 3.15 Influence of friction on the measured dome heights at different temperatures for O temper 

(0.5 mm), 203.2 mm x 203.2 mm biaxial sample at a forming speed of 0.4 mm/s. 

 

In the same way for the 0.2 mm H24 samples (Figure 3.16), the average dome height of the non-

lubricated samples reduced by nearly 11% when compared to the lubricated samples. At 250 °C, dome 

height of the non-lubricated samples was only 7% lower as compared to the dome height of lubricated 

samples. 
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Figure 3.16 Influence of friction on the measured dome heights at different temperatures for H24 (0.2 

mm), 203.2 mm x 203.2 mm biaxial sample at a forming speed of 0.4 mm/s. 

 

3.6 Forming limit curves (FLCs) 

Major and minor limit strains (e1 and e2) were calculated for the 0.5 mm and 0.2 mm AA3003 brazing 

sheet over a range of temperatures (RT, 150 °C, 200 °C and 250 °C) and forming speeds (0.4 mm/s and 

1.6 mm/s). Figures 3.16-3.19 depict the FLCs obtained for a forming speed of 0.4 mm/s for the 0.5 mm 

O-temper, and 0.2 mm O-temper, H22 and H24 samples, respectively. As observed from the four graphs, 

formability improved significantly for all cases with an increase in temperature from RT to 250 °C.  

The effect of temperature is most pronounced for the O-temper, 0.5 mm FLCs at 200 and 250 °C FLCs 

(Figure 3.17) which are 94% and 129% higher than the RT levels (based on percentage increase of the 

plane strain intercept). There is also a “flattening” of the FLCs at the two higher temperatures relative to 

RT as seen in the smaller difference between the plane strain forming limit (referred to herein as the 

“FLC-0 strain”) versus the biaxial or draw limit strains. The benefit of forming at a temperature of 150 °C 

is not as strong, with only a 23.5% increase in the plane strain intercept over the RT value. Similar gains 

in formability with temperature increase are achieved for the thinner (0.2 mm) O-temper sheet. The 

higher hardness tempers show less relative increase in formability with temperature (Figures 3.18-3.20). 
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For example, the increase in the plane strain intercept for the 0.2 mm H24 material was 62.5% compared 

to 92.3% for the O-temper material of the same gauge from RT to 250 °C.  

 

 

 

Figure 3.17 FLD for 0.5 mm O-temper AA3003 brazing sheet at 0.4 mm/s for different temperatures. 

 

 

 

Figure 3.18 FLD for 0.2 mm O-temper AA3003 brazing sheet at 0.4 mm/s for different temperatures. 
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Figure 3.19 FLD for 0.2 mm H22 AA3003 brazing sheet at 0.4 mm/s for different temperatures. 

 

 

 

Figure 3.20 FLD for 0.2 mm H24 AA3003 brazing sheet at 0.4 mm/s for different temperatures. 
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3.6.1 Influence of material thickness and temper on FLC 

Figure 3.21 present comparisons of FLC-0 major limit strain for all four sheet materials at different 

temperatures for forming speeds of 0.4 mm/s. It can be seen that the 0.5 mm O-temper material exhibits 

higher FLC-0 limit strains at all temperatures when compared to the 0.2 mm O-temper material. The 

effect of initial hardness in reducing formability is quite pronounced at both RT and at elevated 

temperature; the 0.2 mm H24 sheet has a 48% lower FLC-0 major strain than the 0.2 mm O-temper 

material at 250 °C. Interestingly, the FLC-0 strains for the H22 and H24 conditions are similar.  The 

reduction in formability of the H-tempers versus the O-temper condition can largely be attributed to the 

loss in work hardening due to cold rolling (see Figure 2.4 and Figure 2.5 for stress-strain curves for these 

sheet materials). The similar formability of the H22 (half hard) and H24 (fully hard) conditions is 

consistent with the similar hardening rates observed in their stress-strain behavior. 

 

 

 

Figure 3.21 Comparison of FLC-0 major limit strain for the four different AA3003 brazing sheet 

materials at different temperatures, 0.4 mm/s. 
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3.6.2 Influence of forming speed (punch velocity) on FLC 

Figure 3.22 and Figure 3.23 show the effect of punch velocity on the FLCs evaluated for RT and 250 °C. 

At RT (Figure 3.22), the effect of punch speed is rather small, with only a slight decrease in formability at 

the higher punch speed of 1.6 mm/s versus 0.4 mm/s. However at 250 °C (Figure 3.23), a significant 

decrease in the limit strains was observed at the higher forming speed of 1.6 mm/s for all temper 

conditions.  The increased effect of punch speed at higher temperatures is consistent with the coupled 

nature of strain rate and temperature sensitivity for aluminum alloys. As seen in Figure 2.6, at RT rate 

sensitivity is low, whereas at elevated temperature strain rate sensitivity increases (Verma, 2016; 

Kurukuri, 2016); these trends are consistent with the formability results report herein. 

 

 

 

Figure 3.22 Influence of forming speed on the RT FLCs for the four different AA3003 brazing sheet 

materials. 
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Figure 3.23 Influence of forming speed on the 250 °C FLCs for the four different AA3003 brazing sheet 

materials. 
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Chapter 4  

FLC prediction for warm forming 

4.1 Motivation 

Though the forming limit curve has been an effective tool in sheet metal forming industry and research 

laboratories, the experimental determination of an FLC is comparatively expensive as it involves 

specialized tooling and experienced personnel. It is also very time consuming to perform formability tests, 

measure the strains and consistently interpret where actually the plastic instability begins with an 

adequate level of accuracy. Also the selection of forming limit evaluation method is critically important to 

minimize the subjective nature of the experimental determination of FLCs, since it is used to establish the 

quality of large production volumes of stamped parts. It is also well known that many industrial stamping 

operations are multi-stage, i.e., the sheet material undergoes complex nonlinear strain paths during 

stamping and the as-received experimental FLC cannot be used to assess the forming severity of parts that 

were formed. Because, each material point in such a component potentially has a different FLC. It is 

obviously not possible to develop an FLC experimentally for every nonlinear strain path in a given part. 

Hence, researchers have been encouraged to create reliable theoretical methods to predict sheet forming 

limits. The main advantage of predictive methods is that an FLC can instantly be obtained at very little 

cost using known mechanical properties that can easily be determined by standard tests.  

A number of theoretical models have emerged for the calculation of forming limit curves (FLCs). In the 

current work, the effectiveness of the analytical formulation implemented in software form by Kurukuri 

(2015) to predict formability under warm forming conditions is considered. This software considers the 

analytical Marciniak-Kuczynski (1967) approach, along with a non-quadratic yield function, the Barlat 

YLD-2000 (Barlat et al., 2003) and a rate- and temperature-dependent modified Voce hardening model 

(Rahmaan et al., 2016; Verma, 2016). The predicted forming limits are validated against the experimental 

FLC data presented in Chapter 3. 

 

4.2 FLC Prediction Methodology 

Analytical prediction of the forming limits was undertaken using the MK analysis software called “vFLC” 

developed by Kurukuri (2015). This section describes the material modelling aspects of the analysis and 

formulation of the MK (Marciniak and Kuczynski, 1967) predictions. Much of the model development 

presented herein is due to Kurukuri (2015), but is presented here for completeness. 
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4.2.1 Constitutive Model (Hardening Response) 

The constitutive data utilized in the M-K simulations are based on the tensile experiments by Verma 

(2016) and by Kurukuri (2016) on the 0.2 mm and 0.5 mm sheet considered in this work, respectively. 

This tensile data is presented in Chapter 2 of this thesis (Figures 2.4 and 2.5). From that work, it was 

observed that the AA3003 brazing sheet exhibits a significant amount of thermal softening and strain rate 

dependency at elevated temperatures. Hence, a material model which is sensitive to temperature and 

strain rate is needed to capture the observed material response.  

Kurukuri (2016) and Verma (2016) found that the Voce (1948) hardening law captured the flow 

stresses for all the material conditions relatively well, but noted that this model was independent of strain 

rate. Therefore the constitutive model developed by (Rahmaan et al., 2016) was adopted in which a strain 

rate-sensitive term was added to the Voce (1948) strain hardening response, the final version referred as 

the Modified-Voce model. The constitutive equation for Modified-Voce model is as follows: 

Original Voce Model:  𝜎𝑣(𝜀𝑃) = [𝜎𝑠𝑎𝑡 + (𝜎𝑦 − 𝜎𝑠𝑎𝑡)𝑒
(−

𝜀𝑝

𝜀𝑟
)
]              4.1 

Modified-Voce Model:  𝜎̅(𝜀𝑝, 𝜀̇) = 𝜎𝑣(𝜀𝑝) 𝑥(𝜀̇)                 4.2 

Strain rate Term:  𝑥(𝜀̇) = [𝐴 ln(𝜀̇) + (1 + 𝜀̇)𝐵]             4.3 

where, 𝜎𝑠𝑎𝑡 represents the saturation stress, 𝜎𝑦 represents the yield stress, 𝜀𝑟 is the relaxation strain, 𝜀𝑝 is 

the plastic strain, and parameters A and B describe the rate sensitivity. 

Kurukuri (2016) used the uniaxial stress-strain data obtained from tensile experiments on the 0.5 mm O 

temper sheet and the experiments by Verma (2016) on the 0.2 mm sheet to fit the constitutive parameters 

of the Modified-Voce model for strain rates of 0.002 and 0.02 s
-1

 at RT, 150 °C, 200 °C, and 250 °C. The 

resulting values of constitutive parameters (Kurukuri, 2016) for each temper condition/sheet thickness 

(0.5 mm O temper and 0.2 mm O, H22, and H24 temper) are listed in Table 4.1, 4.2, 4.3 and 4.4, 

respectively. Figures 4.1-4.4, due to Kurukuri (2016), show a comparison of the predicted (solid lines) 

and measured (dashed lines) flow curves for the corresponding sheet conditions. A reasonable fit between 

the flow stress response predicted by the Modified-Voce model and the experimental data can be seen in 

the plots. The variation between the Modified-Voce model and experimental stress-strain response was 

greater at 250 °C when compared with temperatures less than 200 °C. The maximum variation of 18% 

between the true stress values at a strain-rate of 0.02 s
-1 

for the strain-hardened H24 temper was observed 

at 250 °C. It is also noted that as a consequence of adopting the modified Voce model, the observed 

negative hardening rate for the harder tempers at high temperature cannot be captured since the modified 

Voce model imposes a saturation hardening rate of zero. This approach was adopted intentionally since a 
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negative hardening rate causes numerical difficulties when modelling this material, as noted by Verma 

(2016). 

 

Table 4.1 The Modified-Voce constitutive model parameters for O temper (0.5 mm) 

 RT 150 °C 200 °C 250 °C 

𝜎𝑠𝑎𝑡 (MPa) 166 147 106 68 

𝜎𝑦 (MPa) 82 84 75 52 

𝜀𝑟  0.06 0.15 0.12 0.13 

A 0.004 0.011 0.06 0.062 

B 0.2 3 5 6 

 

Table 4.2 The Modified-Voce constitutive model parameters for O temper (0.2 mm) 

 RT 150 °C 200 °C 250 °C 

𝜎𝑠𝑎𝑡 (MPa) 175 138 115 83 

𝜎𝑦 (MPa) 58 65 65 50 

𝜀𝑟  0.059 0.075 0.065 0.15 

A 0.005 0.015 0.07 0.056 

B 0.4 5 4 10 

 

Table 4.3 The Modified-Voce constitutive model parameters for H22 temper (0.2 mm) 

 RT 150 °C 200 °C 250 °C 

𝜎𝑠𝑎𝑡 (MPa) 183 143 116.75 85.75 

𝜎𝑦 (MPa) 150 135 116 85.15 

𝜀𝑟  0.04 0.043 0.008 0.107 

A 0.00001 0.008 0.015 0.002 

B 0.624 2.437 4 10.243 

 

 

 



73 

 

Table 4.4 The Modified-Voce constitutive model parameters for H24 temper (0.2 mm) 

 RT 150°C 200°C 250°C 

𝜎𝑠𝑎𝑡 (MPa) 250 173.33 144 104 

𝜎𝑦 (MPa) 209.51 175 143.5 101.6 

𝜀𝑟  0.076 0.07 0.13 0.25 

A 0.003 0.007 0.018 0.006 

B 0.01 3.81 5.96 13.785 

 

 

 

 

Figure 4.1 Fitted true stress-strain curves for O temper (0.5 mm) at a strain rate of (a) 0.002 s
-1

 and (b) 

0.02 s
-1

 for various temperatures. 
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Figure 4.2 Fitted true stress-strain curves for O temper (0.2 mm) at a strain rate of (a) 0.002 s
-1

 and (b) 

0.02 s
-1 

for various temperatures. 

 

 

 

Figure 4.3 Fitted true stress-strain curves for H22 (0.2 mm) at strain rate of (a) 0.002 s
-1

 and (b) 0.02 s
-1 

for various temperatures. 
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Figure 4.4 Fitted true stress-strain curves for H24 (0.2 mm) at strain rate of (a) 0.002 s
-1

 and (b) 0.02 s
-1

 

for various temperatures. 

 

4.2.2 Yield Criterion 

Kurukuri (2016) adopted the Barlat Yld2000 yield function (Barlat et al., 2003) to capture the anisotropic 

yield behavior of the AA3003 brazing sheet. The yield function for plane stress in the x-y (sheet) plane 

can be expressed in the general form as equation 4.4,  

a
aaa

XXXXXX  222 ''
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''
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where 8a  for FCC material,   is the flow stress (given by equations 4.1-4.3) and
'

1X ,
'

2X ,
''

1X and
''

2X  

are the principal values of the X and X  , which are the linear transformations of the stress tensor. The 

linear transformation matrices are defined by eight independent coefficients, k (k=1-8), needed to 

describe the anisotropy of the material (for isotropic case they are equal to 1). These coefficients can 

analytically be determined based upon the measured flow stress ratios and r values in the three sheet 

orientations (rolling, transverse and diagonal directions) as well as from the biaxial stress and strain 

ratios. Since the biaxial experimental data was unavailable, biaxial stress and strain ratios are considered 

as the average of the transverse and diagonal stress and strain ratios, following the approach of Bagheriasl 

(2012). Figure 4.5 shows Barlat Yld2000 yield loci for the 0.5 mm, O temper AA3003 brazing sheet at 

different temperatures and a strain rate of  0.002 s
-1

. The yield surface shows a contraction with 
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temperature due to thermal softening. The shape of the yield loci was assumed to remain constant with 

changes in temperature and strain rate. 

 

 

 

Figure 4.5 Barlat Yld2000 yield loci at different temperatures for 0.5 mm O temper AA3003 brazing 

sheet (Kurukuri, 2016). 

 

4.2.3 Marciniak and Kuczynski (M-K method) 

The FLC predictions developed by Kurukuri (2015) utilize the Marciniak and Kuczynski (1967) analysis 

to identify the localized necking under biaxial tension. This analysis considers a sheet with an 

imperfection or initial defect with reduced thickness (Figure 4.6). Parameters referring to the sheet 

imperfection are given an index B and quantities referring to the rest of the sheet are given an index A. 

The thickness of the sheet metal in the imperfection is Bt while the thickness outside the imperfection is

At . Necking is often observed to run perpendicular to the direction of the major strain (generally for

02  ), thus, the initial imperfection is aligned with the minor strain in the Marciniak-Kuczynski (M-

K) analysis.  
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Figure 4.6 Principle of M-K theory (a) plate with defect, and (b) strain increments inside and outside of 

defect. 

 

Outside the imperfection or groove a proportional deformation path is assumed.  

0A3A10A2                                                                        

  A10A3A10A2 1    

Here 0 and 0 are stress and strain ratios respectively. The compatibility condition between the 

uniform part A and the imperfection B requires that BA dd 22   . The force per unit sheet length in 

direction 1 (T1) must be transmitted through the imperfection; hence 

fttT ABBBAA 11111   ,where 
AB

ttf  is the current thickness ratio or coefficient 

of geometrical non-homogeneity. Provided that 1f , the stress ratio 
0  approximately holds for both 

regions A and B. As the stress B1  in the imperfection is greater than A1  in the uniform part, the material 

in the imperfection reaches the yield surface first. In Figure 4.6 (b) this is approximately at position M. 

Because of the constraint equation BA dd 22   , no yielding takes place, since the uniform region is still 

fully elastic. The stress state in region B will move along the yield locus to position N, until also region A 

reaches the yield locus at position M. This situation is depicted in Figure 4.6 (b). In that condition B1  
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has increased and B2  has decreased, hence the stress ratio  has decreased and proportional deformation 

is not possible in the imperfection (Van den Boogaard et al., 2002).  

With the stress state in A and B at two different positions on the yield locus, the normal to the yield 

surface is different and because of the constraint BA dd 22   , the strain perpendicular to the neck must 

be larger in the neck than in the uniform part. As a consequence, the thickness decreases more in region B 

( 0ff  ). The analysis of the deformation can further be developed numerically. The drawing region can 

be included in the analysis by assuming an inclined imperfection, as predicted by Hill (1952). Strain 

increments A are prescribed on region A, respecting the proportionality ratio 0 . For every increment

A , strain increment B  is calculated iteratively, such that the forces acting in the sheet normal to and 

tangential to the imperfection in the region A and B are in equilibrium. The forces acting in the sheet (per 

unit length) can be calculated from the stresses and the local thickness of sheet as 
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The sheet is considered to have failed if the strain increment in the imperfection is larger than a 

prescribed multiple of the strain increment in the uniform region. The strain in the uniform region at the 

time of failure is considered to be the limiting strain for that particular strain ratio 0 . In this work, the 

analysis will terminate if the strain increment in the imperfection is more than 10 times the strain 

increment in the uniform region and the corresponding strain in the uniform region is considered as the 

limiting strain. 

 

4.3 Predictions of FLC 

The analytical M-K FLC predictions were performed using the FLC software developed by Kurukuri 

(2015) which incorporates the Barlat Yld-2000 yield function (Barlat et al., 2003) and rate and the 

temperature dependent Modified-Voce hardening law constitutive equation (Voce, 1948; Rahmaan, 

2015). One of the major concerns of the conventional M-K approach is the somewhat arbitrary 

determination of initial thickness ratio, since the value of initial thickness ratio (imperfection factor), 0f , 

chosen in the M-K analysis has a strong influence on the predicted limit strains. For instance, Figure 4.7 

depict the predicted forming limit curves using different initial thickness ratios (0.98, 0.985, 0.99 and 

0.995) along with the measured experimental limit strains at room temperature for all four materials. It 
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can clearly be seen that with the imperfection factor of 0.995 yields better room temperature FLC 

predictions for all materials.  

 

 
 

 

Figure 4.7 Effect of initial thickness ratio in M-K analysis, predicted (solid lines) FLCs using different 

initial thickness ratios compared with measured limit strains (symbols) at RT. 

 

The FLCs predicted at a temperature of 250 °C with different initial thickness ratios are shown in 

Figure 4.8, along with the measured limit strains. Comparison between the predicted and measured limit 

strains indicates that an initial thickness ratio of 0.99 results in a good approximation for H22 and H24 

materials, whereas an initial thickness ratio of 0.98 found to be a good choice for O-tempered materials. 

Hence from this parametric study, it is decided to select an initial thickness ratio, 995.00 f , for room 

temperature predictions for all materials, whereas an initial thickness ratio of 990. was adopted for 

temperatures of 150 °C and above for the H22 and H24 materials. On the other hand, an initial thickness 
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ratio of 980. was adopted for the elevated temperature FLC predictions for O temper materials. Thus, no 

single value of initial thickness imperfection could be found that was suitable for all material conditions. 

 

 

 

Figure 4.8 Effect of initial thickness ratio in M-K analysis; predicted (solid lines) FLCs using different 

initial thickness ratios compared with measured limit strains (symbols) at 250 °C. 

 

Figures 4.9-4.12 present comparisons between the predicted FLCs (using M-K analysis with the 

temperature dependent Modified-Voce hardening model and the Barlat Yld2000 yield function) with the 

experimental FLCs at RT, 150 °C, 200 °C and 250 °C and forming speed of 0.4 mm/s.   
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Figure 4.9 Predicted (solid lines) FLCs using M-K analysis compared with experimentally measured 

limit strains (symbols) for different temperatures at 0.4 mm/s. 

 

 

 

Figure 4.10 Predicted (solid lines) FLCs using M-K analysis compared with experimentally measured 

limit strains (symbols) for different temperatures at 0.4 mm/s. 
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Figure 4.11 Predicted (solid lines) FLCs using M-K analysis compared with experimentally measured 

limit strains (symbols) for different temperatures at 0.4 mm/s. 

 

 

 

Figure 4.12 Predicted (solid lines) FLCs using M-K analysis compared with experimentally measured 

limit strains (symbols) for different temperatures at 0.4 mm/s. 
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From Figures 4.9-4.12, it is evident that the M-K model is able to capture the temperature dependent 

formability behavior for the considered brazing sheets. It is observed that the limit strains increased 

significantly when the forming temperature increased from RT to 250 °C. The model is also able to 

capture the flattening of the FLCs at elevated temperature observed for the softer temper conditions.  

Figure 4.13 depicts the effect of punch velocity on the predicted forming limit curves compared with 

the corresponding measured limit strains for the 0.5 mm thick O-temper sheet at RT and 250 °C. At RT, 

the effect of punch speed on the predicted FLCs is negligible, in agreement with the experiments. 

However, at 250 °C, a decrease in the measured limit strains is observed at the higher forming speed of 

1.6 mm/s, but only a small change is seen in the predicted FLC. A similarly low predicted rate effect was 

observed for the other material conditions. Future studies should perhaps consider alternate material 

models to ascertain whether this lack of rate effect in the model can be corrected. 

 

 

 

Figure 4.13 Influence of forming speed on the predicted FLCs (solid lines) compared with the 

experimentally measured limit strains (symbols) for the 0.5 mm thick, O-tempered AA3003 brazing sheet 

material at RT and 250 °C. 

 

From the results presented in this chapter, the predicted forming limit strains are very sensitive to the 

value chosen for the initial geometrical imperfection factor used in the M-K method. In order to overcome 

this shortfall of the  M-K method, the thickness imperfection can perhaps be associated with a measurable 

source of heterogeneity such as the change in surface roughness of the sheet material with forming 

temperature or material inhomogeneities, for example changing microstructure due to forming conditions. 



84 

 

However, such approaches are left for future work. Nonetheless, the M-K models are able to capture the 

observed increase in FLC with temperature rather well. 
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Chapter 5  

Conclusions 

Limiting dome height experiments were conducted on AA3003 brazing sheet for three different temper 

conditions (O, H22 and H24) and two thicknesses (0.2 and 0.5 mm) at temperatures in the range RT - 250 

°C and forming speeds of either 0.4 mm/s or 1.6 mm/s. The effect of temperature, forming speed, 

specimen geometry and lubricant on the limiting dome heights was examined. Forming limit curves 

(FLCs) were developed for each condition and the influence of material temper, forming speed and 

temperature were studied. The main conclusions resulting from the present investigation are as follows: 

1. Five types of dry film lubricants, namely OKS 536, Fuchs Lubrodal F 400, Diacut NCL, MXC 2187 

and Teflon sheets were studied in the present work. The OKS and Lubrodal F 400 resulted in a lower 

dome height than the Teflon. The MXC and Diacut had higher dome heights, but were too smoky at 

250 °C. Hence, Teflon was selected as the lubricant over the range of temperatures tested. 

2. Limiting dome height (LDH) experiments using 0.5 mm O temper AA3003 brazing sheet revealed 

that increasing the temperature from RT to 250 °C increases the biaxial dome height from 29.3 mm to 

38 mm, a 27.6 % increase..  The corresponding increases for the 0.2 mm material in the O, H22 and 

H24 tempers were 30%, 29% and 26%, respectively. 

3. A reduction in thickness resulted in a decrease in the measured FLCs. For example, the plane strain 

limit strain or FLC-0 strain of the O temper materials decreased by 24% at RT when the thickness 

decreased from 0.5 mm to 0.2 mm and a corresponding decrease of 35% was measured at 250 °C. 

4. An increase in hardness also caused a reduction in formability. The RT FLC-0 strains for the 0.2 mm 

H22 and H24 materials were 31% and 39% lower than the corresponding value for the 0.2 mm O 

temper sheet. The corresponding reductions at 250 °C were 39% and 48%. 

5. The effect of an increase in forming speed from 0.4 mm/s to 1.6 mm/s on the RT FLC was small for 

all material conditions considered. A larger drop in formability, in the range 6-9% was observed at 

250 °C for this increase in forming speed. 

6. The Marciniak-Kuczynski (M-K) analysis was able to capture the temperature dependent formability 

behavior, however, the influence of forming speed on the FLCs was not as strong as was observed in 

the experiments. It was not possible to find a single value of initial imperfection ratio that could be 

used for all of the material conditions considered. The calibrated M-K predictions, for a given 

thickness and temper, did capture the increase in the FLC with temperature rather well. 
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Chapter 6 

Future Work 

The following future work is proposed based upon the results of the current research: 

1. FLCs at higher forming speeds (representative of stamping operations) should be determined to 

investigate the influence of strain-rate on the formability of AA3003 brazing sheet at higher 

temperatures. Such efforts would require fast material handling systems and high speed cameras to be 

used with the DIC system. 

2. Further investigation of time-dependent methods for the detection of onset of necking (or limit strain 

determination) should be pursued for materials with thickness ≤ 0.5 mm.  

3. An investigation of appropriate warm forming lubricants that display desirable lubricity without build 

up on forming dies is necessary. A warm friction testing capability should be developed, likely based 

upon the current twist compression friction testing apparatus, to better characterize the warm 

performance of lubricants. 

4. There is a need to implement the failure criteria at elevated temperatures, which involves calculation 

of stress-based FLDs from the current measured strain-based FLDs. Stress‐based FLCs may prove 

useful to capture the effects of changes in strain path. 

5. An appropriate material model should be developed that better accounts for strain rate and 

temperature sensitivity and the negative work hardening behavior observed for the H22 and H24 

sheet at elevated temperatures. 

6. The predicted forming limit strains are very sensitive to the imperfection value used in the M-K 

method. A more rationale method for determining the thickness imperfection should be developed, for 

example, relating the imperfection to measurable sources of heterogeneity such as surface roughness. 
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