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Abstract

Understanding when and how computational complexity can be used to protect elec-
tions against different manipulative actions has been a highly active research area over
the past two decades. Much of this literature, however, makes the assumption that the
voters or agents specify a complete preference ordering over the set of candidates. There
are many multiagent systems applications, and even real-world elections, where this as-
sumption is not warranted, and this in turn raises a series of questions on the impact of
partial voting on the complexity of manipulative actions. In this thesis, we focus on two
of these questions. First, we address the question of how hard it is to manipulate elections
when the agents specify only top-truncated ballots. Here, in particular, we look at the
weighted manipulation problem—both constructive and destructive manipulation—when
the voters are allowed to specify top-truncated ballots, and we provide general results for
all scoring rules, for elimination versions of all scoring rules, for the plurality with runoff
rule, for a family of election systems known as Copelandα, and for the maximin protocol.
Subsequently, we also look at the impact on complexity of manipulation when there is
uncertainty about the non-manipulators’ votes. The second question we address is the
question on what the impact of top-truncated voting is on the complexity of manipulative
actions in electorates with structured preference profiles. In particular, we consider elec-
torates that are single-peaked or nearly single-peaked and we show how, for many voting
protocols, allowing top-truncated voting reimposes the NP-hardness shields that normally
vanish in such electorates.
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Chapter 1

Introduction

Preference aggregation is an important problem in multiagent settings as there are many
scenarios where a group of agents has to make a common decision. The process of arriving
at this decision, in turn, has to accommodate the needs and preferences of all the partici-
pating agents. A natural, and commonly used, mechanism to achieve this is voting, where
all the agents specify their preferences and a previously agreed-upon procedure—called the
election system or voting protocol—is used to arrive at the decision. Election problems
abound in human contexts. From electing a government to hiring within a CS department
to choosing a winner in television reality shows, they are everywhere. Such problems have
also been increasingly ubiquitous in multiagent settings. For instance, it has been proposed
as a mechanism for web spam reduction [17], for collaborative filtering and recommender
systems [41], and for multiagent planning [19].

Given the fact that it is useful and a widely used mechanism, voting, naturally, has
been extensively studied and it has been found that it is not without its problems. In
fact, the theory of social choice, which focuses on the study of collective decision making
processes and procedures, has a number of impossibility results surrounding fundamental
issues that arise in running elections. Among many such issues, one natural worry that
can arise is “What if the agents try to manipulate the outcome of an election by, say,
misreporting their true preferences?”. From the perspective of designing voting systems,
this question has been answered through the Gibbard-Satterthwaite Theorem [32, 42] and
its generalizations (like the Duggan-Schwartz Theorem [16]) which essentially say that
there are no reasonable voting systems which aren’t manipulable. However, despite such
results, there still remains the question of how to achieve these manipulations. Starting
with the seminal work of Bartholdi, Orlin, Tovey, and Trick through a series of papers
[5, 4, 3], there has been much work that has raised this question and has looked into how
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computational complexity can be used as a barrier to protect elections against different
manipulative actions (see [26, 23] for fairly recent surveys). This thesis too tries to address
the question of when computational complexity can be used to protect elections, and in
particular we consider the case when the agents are allowed to submit truncated ballots—
meaning that they are not obligated to specify their ranking of all the candidates but need
to do so only for any subset of them.

Now, the first question that could arise here is: “why truncated ballots?”; after all, there
has been a flurry of papers in computational social choice that has studied the complexity of
manipulative actions under the assumption that the agents submit complete rankings over
the set of candidates. There are a number of reasons why looking at partial preferences
in general is important. First, expecting the agents to provide complete ballots is only
practical when the number of candidates is small and in practice there are many situations
where this might not be the case. As an instance, consider the problem of building a meta-
search engine as outlined by Dwork et al. [17] by combining search results from individual
search engines. In this case, for a given query, if the search results of a particular search
engine denotes its “vote”, and the candidates are all the possible search results, then it is
easy to see that the votes have to be necessarily truncated before combining. Second, even
if the number of candidates were not very large, agents might just be unable to specify
a complete ordering because they do not have enough information on them. Third, there
are many real-world elections in which voters are allowed to submit partial orderings. For
example, apart from the fact that most political elections use the plurality rule where
every agent only specifies their most favourite candidate, the elections for the President
of Ireland and for the legislative assembly in the Australian Capital Territory uses the
Single Transferable Vote where an agent can rank any subset of the candidates. Thus,
it is important to understand the repercussions of having partially specified preferences
(“partial votes”) in general. While a “partial vote” can refer to any partial ordering over
the set of candidates, here we focus on one kind of “partial vote”, namely top-truncated
votes. Top-truncated votes are natural in many settings where an agent is certain about its
most preferred candidates but is indifferent among the remaining ones or is unsure about
them.

In particular, this thesis tries to address the following two questions about elections
with truncated ballots.

• While, as outlined above, allowing voters to submit top-truncated ballots can be ex-
tremely useful, one of the foremost questions that arises here is: “What happens to
the complexity of manipulation if the agents reveal only top-truncated preference or-
derings?”. It is this question that we try to address first, in Chapter 3. Specifically,
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we study the weighted manipulation problem—both constructive and destructive
manipulation—when the voters are allowed to specify top-truncated ordering and we
provide many general results. Subsequently, we remove the assumption that the ma-
nipulators have complete information and instead look at the impact on complexity
of manipulation when there is uncertainty about the non-manipulators’ votes.

• Given the set of candidates, one of the most common assumptions made is that they
can specify any partial ordering over them. In fact, this is also the assumption based
on which the first question, as outlined above, is addressed. However, there are many
elections scenarios where the agents have structured preferences—meaning that there
are some valid votes that are never cast. It is these type of preferences that we study
next. Here, we consider two of the most widely studied such structured preferences,
namely single-peaked preferences and nearly single-peaked preferences, and we ask
the following question: “What happens to the complexity of manipulative actions
when agents have structured preferences and are allowed to submit top-truncated
ballots?”. In particular, in Chapter 4, we look at the problem of weighted manipula-
tion and weighted bribery in single-peaked and nearly single-peaked electorates, and
we show a number of surprising results regarding the impact of top-truncated ballots
on the complexity of these manipulative actions in such electorates.

In trying to address the above mentioned questions, our work attempts to take the line
of research which focuses on complexity of manipulative actions in new directions, and
improve one existing direction, through the following contributions:

1. We (in Sections 3.1 and 3.2) provide general results for all scoring rules, for elimi-
nation versions of all scoring rules, for the plurality with runoff rule, for a family of
election systems known as Copelandα, and for the maximin protocol, thus extending
the preliminary work of Narodytska and Walsh on the impact of top-truncated voting
on complexity of manipulation [38].

2. We (in Section 3.3), for the first time, look at the impact on complexity of manip-
ulation when there is uncertainty about the non-manipulators’ votes and when the
voters are allowed to submit top-truncated ballots.

3. We, for the first time, systematically study the impact of partial voting on manipu-
lative actions in structured preference profiles. In particular, we look at the problem
of manipulation and bribery in single-peaked and nearly single-peaked settings when
top-truncated ballots are allowed.

3



4. We (in Sections 4.2 and 4.3) show a number of surprising results where allowing top-
truncated voting seems to reinstate combinatorial protections (that normally vanish
when voters are only allowed to present complete orders) for many voting rules against
manipulation and bribery. In particular, under the assumption that the voters submit
complete ballots, we first provide polynomial time algorithms for manipulation and
weighted-bribery for certain voting rules in single-peaked and nearly single-peaked
settings, thus extending the works of Faliszewski et al. for manipulation [27], Brandt
et al. for bribery [9], and Faliszewski et al. for nearly single-peaked electorates [24].
We then show how these polynomial-time problems become NP-complete when top-
truncated ballots are allowed.

The rest of this thesis is organized as follows. In the next section we outline the
works that are most related to our results here. Following that, in Chapter 2 we provide
the basic definitions regarding elections and the different manipulative action problems
considered here. In Chapter 3 we discuss the impact on complexity of manipulation when
top-truncated ballots are allowed. Subsequently, in Chapter 4 we move on to scenarios
where agents’ preferences have a particular structure and discuss the impact of allowing
top-truncated voting on the complexity of manipulation and bribery. Finally, Chapter 5
provides some conclusions and discussions on future work.

1.1 Related Work

The study of computational complexity for two manipulative actions, namely manipula-
tion and control (we do not consider control in this thesis; see, for instance, the paper
by Hemaspaandra et al. [34] and the references therein), was started through a series of
papers by Bartholdi, Orlin, Tovey, and Trick [5, 4, 3]. Subsequently, there has been a
flurry of work in this domain of research which has studied the computational complexity
of manipulative actions in many different settings and has introduced the study of new
manipulative actions—like bribery, as by Faliszewski et al. [22]. The reader can refer to
some recent surveys for discussions on the evolution of this domain [26, 23].

Broadly, there are two lines of research that are closely related to our work. First is
the work on election problems when the agents are allowed to specify partial preferences.
Among them, the papers that are most related to our results here are those of Narodytska
and Walsh [38], and Fitzsimmons and Hemaspaandra [29]. Narodytska and Walsh were
the first to look at complexity of constructive manipulation under top-truncated voting
and they provided an analysis for weighted and unweighted elections using three particular
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voting protocols, namely Borda, STV, and the Copeland rule [38]. In fact, results in
Section 3.1 of this thesis can be considered as a direct extension to their work. The other
most relevant work is that of Fitzsimmons and Hemaspaandra where they looked into
how the complexity of bribery, control, and manipulation is affected when different types
of partial preferences are allowed [29]. While both the above mentioned papers and our
results in Chapter 3 assumes the general setting (i.e. one where there is no restriction on
the structure of the agents’ preferences), Chapter 4 of this thesis looks at the complexity
of manipulation and bribery with top-truncated ballots when the preferences of the agents
have some structure.

Additionally, there has also been some work in this line of research that has looked at
other election problems when preferences are only partially specified. Among these, the
work of Konczak and Lang introduced the possible and necessary winners problem [35],
and Xia and Conitzer extended this further to study the possible and necessary winners
problem for many different voting rules when the number of candidates are unbounded and
the elections unweighted [44]. Furthermore, Lu and Boutilier looked at the multi-winner
problem when only partial preferences are provided [37], and Baumeister et al. discussed
planning various kinds of campaigns in settings where the ballots can be truncated at the
top, bottom, or both [6]. The extension-bribery problem they introduced in that paper is
closely related to the manipulation problem with top-truncated ballots.

The second line of research that is closely related to results here is the work on struc-
tured preference profiles. This line of research has mainly looked at single-peaked prefer-
ences and more recently at nearly single-peaked preferences. The notion of single-peaked
preferences was introduced by Black [7] and subsequently there has been a lot of work in
the social choice literature on the same. Among these, in particular, we note the work
of Cantala [10] who introduced the concept of “single-peaked with outside options” which
is similar to the notion of single-peaked with top-truncated ballots that we study here in
Chapter 4, and the work of Barberá who discussed how properties of different variants of
single-peaked preferences change for varying amounts of indifference permitted [1].

In computational social choice, three papers that are in this line of research and are
most related to our work are those of Faliszewski et al. [27], Brandt et al.[9], and Faliszewski
et al. [24]. The first two discuss manipulation and control, and bribery, respectively, and
show how most of the NP-hardness shields for these manipulative actions vanish in single-
peaked settings. The third paper studies the complexity of manipulative actions in nearly
single-peaked electorates and shows how in many cases the hardness results evaporate. Our
work in Chapter 4, in contrast to all the ones above, follows the theme of reinstating these
combinatorial protections by allowing top-truncated voting.
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Finally, although the above mentioned papers are by far the most related to our work, it
is worth noting that one problem which has received considerable attention from researchers
in computational social choice is that of single-peaked consistency where, informally, the
task is to determine if a given set of preferences is single-peaked or otherwise (see [2, 15,
21, 20, 36]).
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Chapter 2

Preliminaries

The literature on computational social choice typically models an election as a pair E =
(C, V ), where C = {c1, · · · , cm} is the set of candidates and V = {v1, · · · , vn} is the set
of voters and their preferences (also sometimes referred to as the set of votes or ballots).
Each voter in turn is modeled as a pair vi = (�i, wi), where �i is the preference order
of vi over C and wi is a positive integer weight associated with them. �i is said to be
a complete order (or a complete vote) when it is antisymmetric, transitive, and a total
ordering on C. On the other hand, �i is said to be a top-truncated order (or simply, a
top order) when it can be a linear order over any non-empty subset of C and where all the
unranked candidates are tied and are assumed to be ranked below the ranked candidates.
Throughout, a strict preference between two candidates is denoted by “>”, while a tie
between them is denoted by “∼”.

Example 1. Consider an election scenario with C = {c1, c2, c3, c4}. A voter vi who prefers
c4 the best, c2 second best, and dislikes c1 the most has a complete ordering �i which
is represented by (c4 > c2 > c3 > c1), while another voter vj who likes c3 the most,
c4 second, but has no opinion on c1 and c2 has a top-truncated ordering �j given by
(c3 > c4 > c1 ∼ c2).

A preference profile is a vector P = 〈�1, · · · ,�n〉 of individual preferences. An election,
E , is said to be unweighted if for all vi ∈ V , wi = 1. On the other hand, it is said to be
weighted if ∃vi ∈ V such that wi > 1.
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2.1 Voting Protocols

An election system or a voting protocol takes in a preference profile, P , as input and it
outputs a collection W ⊆ C called the winner set. The following are the commonly-studied
voting rules that we consider in this thesis. We first present their original definitions which
is on complete orders and then discuss how top orders can be handled.

1. Positional scoring rules: A positional scoring rule is defined by a scoring vector
α = 〈α1, · · · , αm〉, where α1 ≥ · · · ≥ αm. For each voter v ∈ V , a candidate receives
αi points if it is ranked in the ith position by v. In a scoring rule, all the candidates
with highest total score form the winner set. Some examples of scoring rules are the

plurality rule with α = 〈1,
m−1︷ ︸︸ ︷

0, · · · , 0〉, the Borda rule with α = 〈m− 1,m− 2, · · · , 0〉,

and the veto rule with α = 〈
m−1︷ ︸︸ ︷

1, · · · , 1, 0〉.

2. Scoring elimination rules: Let X be any scoring rule. Given a complete ordering,
eliminate(X) is the rule that successively eliminates the candidate with the lowest
score according to X. Once a candidate is eliminated, the rule is then repeated with
the reduced set of candidates until there is a single candidate left. The elimination
order, e, for an elimination rule is the order in which the candidates are successively
eliminated. For instance, e = (c1, · · · , cn) implies that c1 was the first candidate to
be eliminated while cn was the last. Here, we mainly consider two scoring elimination
rules: eliminate(Borda)—which is also known as Baldwin’s rule or Fishburn’s version
of Nanson’s rule [40]—and eliminate(veto).

3. Plurality with runoff: The plurality with runoff rule proceeds in two steps. In the
first step, all the candidates except the top two with the most number of first votes
are eliminated. This is followed by a second round where the winner is determined
by a pairwise comparison between the top two candidates.

4. Copelandα: Let α ∈ Q, 0 ≤ α ≤ 1. In Copelandα (introduced by Copeland [14] for
α = 1

2
and parameterized by Faliszewski et al. [22]), for each pair of candidates, the

candidate preferred by the majority receives one point and the other one receives a
0. In case of a tie, both receive α points. Here all the candidates whose total score
is at least as high as that of all the other candidates form the winner set.

5. Maximin: Let NP (ci, cj) denote the number of voters who prefer ci over cj in the
preference profile, P . Then the maximin score of ci is si = minj 6=iNP (ci, cj). The
winners in the maximin rule are the ones with the highest score.
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To deal with top-truncated orders in positional scoring rules where a voter ranks only
k out of the m candidates (k < m), we use the following three schemes that were used
by Narodytska and Walsh in their preliminary work on manipulation with top orders [38]
(Emerson [18] also used the same schemes for the Borda rule).

1. Round-up: A candidate ranked in the ith position (i ≤ k) receives a score of αi,
while all the unranked candidates receive a score of αm. For any positional scoring
rule X, we denote this by X↑.

2. Round-down: A candidate ranked in the ith position (i ≤ k) receives a score of
αm−(k−i)−1, while all the unranked candidates receive a score of αm. For any positional
scoring rule X, we denote this by X↓.

3. Average score: A candidate ranked in the ith position (i ≤ k) receives a score of αi,

while all the unranked candidates receive a score of

∑
k<j≤m αj
m−k . For any positional

scoring rule X, we denote this by Xav.

Example 2. Let C = {c1, c2, c3, c4} and let v be a voter with top-truncated order �v:
(c3 > c1 > c4 ∼ c2). Then, in the round-up case, c3 receives a score of α1, c1 receives a
score of α2, and both c2 and c4 receive α4. In the round-down case, c3 receives a score of
α2, c1 receives a score of α3, and both c2 and c4 receive a score of α4, and in the average
score case, c3 receives a score of α1, c1 receives a score of α2, and both c2 and c4 receive a
score of α3+α4

2
.

In scoring elimination rules and plurality with runoff rule, top-truncated votes are dealt
by using the round-up scheme described above. Here, we consider a vote to be valid only
until at least one of the candidates listed in it is remaining in the election. In other words,
we simply ignore a vote once all the candidates listed in it are eliminated. In the case of
Copelandα and the maximin rule, top orders are dealt by just keeping to the definition
which assumes that all the unranked candidates are tied and are ranked below the ranked
candidates.

Condorcet-consistent voting rules. An important property of a candidate is that of
being a Condorcet winner. A candidate is said to be a Condorcet winner (respectively, a
weak-Condorcet winner) if it is preferred over every other candidate by a strict majority
of the voters (respectively, by at least half of the voters). While it is not necessary that
every election instance has a Condorcet winner or even a weak Condorcet winner, a voting
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rule which, on every input that has a weak-Condorcet winner, outputs the set of all weak-
Condorcet winners as the set of winners is said to be weak-Condorcet consistent. Among
the voting rules defined above, the maximin rule [28] and Copeland1 [9] are examples of
weak-Condorcet consistent rules.

2.2 Preferences

Most work in computational social choice assumes no particular structure for an agent’s
preference—i.e. given the set of candidates, C, it is assumed that an agent can specify any
linear order over C or a non-empty subset of it (in the case of truncated orders). In fact,
this is the assumption that we make for all the results in Chapter 3. However, there are
many election scenarios where the preferences of agents have an underlying structure and
therefore there are some admissible votes that would never be cast. So, in this context,
here, in Chapter 4 of this thesis, we consider two of the most widely studied (see for e.g.
[9], [27], [24]) such notions—single-peaked preferences and near single-peaked preferences.

2.2.1 Single-peaked Preferences

The notion of single-peaked preferences, first introduced by Black [7], captures settings
where the preferences of a voter are based on a one-dimensional axis. The basic idea here
is that every voter has a peak (their most preferred alternative) and that their utility for
an alternative decreases the further it is away from this peak. More formally, a preference
profile, P , where the preference, �v, of each v ∈ V is a linear order over C, is said to be
single-peaked if there exists a linear order L over C such that for every triple of candidates
a, b, and c it holds that

(a L b L c ∨ c L b L a) =⇒ (∀v ∈ V ) [a >v b =⇒ b >v c] .

Although the above definition of single-peakedness assumes that the voters have com-
plete orders, when voters are allowed to present top-truncated ballots, this notion of single-
peakedness essentially captures those scenarios where they have a continuous range over
L over which their preferences are single-peaked and outside of which they are indifferent
among the alternatives. In social choice theory, this notion of single-peaked with top-
truncated preferences has been captured as “single-peaked with outside options” in the
context of choosing a level of public good by Cantala [10].
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Example 3. Let C = {c1, c2, c3, c4} and c2 L c4 L c3 L c1 be a linear order over C. Then,
the preference orders (c4 > c3 > c2 > c1) and (c4 > c2 > c3 > c1) are both valid complete
single-peaked orders, while the preference order (c4 > c1 > c2 > c3) is not a valid single-
peaked order. Also, with respect to the given linear order, (c4 > c3 > c2 ∼ c1) and (c4 �
c2 > c3 ∼ c1) are both valid top-truncated single-peaked orders, while (c4 � c1 > c2 ∼ c3)
is not.

While the single-peaked model has been extensively studied and has been broadly
considered as a useful model for capturing a number of important scenarios like the U.S.
presidential elections and elections in committees (see for e.g. [8], [39]), it is not without its
demerits. Primarily, it does not capture any electorate that is driven by multidimensional
concerns, and even in the case of a unidimensional electorate (one which is focused on a
single issue) it is always plausible that there might be a few ‘maverick’ voters who do not
conform to single-peakedness. Therefore, although well studied, single-peakedness is often
considered an extreme model.

2.2.2 Nearly Single-peaked Preferences

As noted above, although single-peaked preferences are an interesting domain to study, it
is often the case that real-world electorates are not truly single-peaked, but are only close
to being single-peaked. The notion of “near” single-peakedness was first raised by Conitzer
[12] and Escoffier et al. [21], and was subsequently systematically studied by Faliszewski
et al. [24] and Erdélyi et al. [20]. Although there are different notions of “nearness” (see
[20] for a discussion on the other notions), here we look at only one such notion, namely
the maverick notion which is defined below.

Definition 1 (k-maverick SP Electorate). A collection of votes is called a k-maverick SP
electorate if all but at most k of the voters are single-peaked consistent with respect to the
societal order L.

When discussing results for manipulative action problems (defined in the next section)
in single-peaked and nearly single-peaked electorates, we will follow the model proposed
by Walsh [43] and hence assume that the societal order, L, is given as part of the input—
or in other words, we assume that the unidimensional issue of concern to an electorate
is publicly known (for a more in-depth discussion on why this is a reasonable, and often
useful, assumption, see, for example, [9, section 2] and [24, section 4]).
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2.3 Manipulative Actions

In this thesis, we consider two weighted manipulative action problems: manipulation and
bribery. In particular, we study the Constructive Coalitional Weighted Manipulation
(CWCM) problem, the Destructive Coalitional Weighted Manipulation (DWCM) problem,
and the Weighted-bribery problem. CWCM and DWCM were first studied by Conitzer
et al. [13] and are described below. Informally, the main objective in CWCM is to decide
if it is possible for a certain set of voters (manipulators) to vote in such a way that it will
result in a preferred candidate winning, while in DWCM it is to decide if it is possible for
the manipulators to vote in such a way so as to ensure that a particular disliked candidate
will not be a winner.

Definition 2 (CWCM). Given a set of candidates, C, a set of weighted votes, S (prefer-
ences of the non-manipulators), the weights for a set of votes, T (manipulators’ votes), and
a preferred candidate, p, we are asked if there exists a way to cast the votes in T (i.e. for
all v ∈ T , determine their �v) so that p is a winner in the election E = (C, S ∪ T ).

Definition 3 (DWCM). In Destructive Weighted Coalitional Manipulation (DWCM),
given a set of weighted votes S (votes of the non-manipulators), the weights for a set
of votes T (manipulators’ votes), and a disliked candidate, h, we are asked if there exists
a way to cast the votes in T so that h does not win the election.

The complexity-theoretic study of the bribery problem was first introduced by Fal-
iszewski et al. [22]. The main objective in the bribery problem is to decide if there exists
a subset of voters whose votes can be changed, within a certain budget, to make a pre-
ferred candidate win. Here we look at the weighted version of the bribery problem which
is described below.

Definition 4 (Weighted-bribery). Given a set of candidates, C, the set of weighted votes,
V , a preferred candidate, p, and a limit, k ∈ N, we are asked if there exists a way to change
the votes of at most k of the voters in V so that it results in p being a winner.

While there are two possible models—the unique winner model, where the objective
is to make the preferred candidate the unique winner, and the non-unique winner model,
where the objective is to make the preferred candidate a winner—under which the problems
defined above can be studied, throughout, unless otherwise specified, we use the non-unique
winner model as our standard model.

12



2.4 Computational Complexity

For most of the NP-hardness results in this thesis, we use reductions from either the well-
known NP-complete problem Partition (see for e.g. [31]), from a variant of the Partition
problem (Partition’), or from a variant of the subset sum problem (Fixed-Difference Subset
Sum).

Definition 5 (Partition). Given a set of non-negative integers S = {ai}1≤i≤n summing to
2K, we are asked if there exists a subset S1 of S which sums to K.

Definition 6 (Partition’). Given a set of non-negative integers S = {ai}1≤i≤n such that∑
i ai = 2nK and ai ≥ K, for 1 ≤ i ≤ n, we are asked if there exists a subset S1 such that∑
S1 = nK.

The NP-completeness of Partition’ can be shown by reduction from the Partition
problem.

Lemma 1. Partition’ is NP-complete.

Proof. It is easy to see that Partition’ is in NP . To prove NP-hardness, we show a
reduction from an arbitrary instance of the Partition (P1) problem. Let the arbitrary
instance be {a1, · · · , an} with

∑
i ai = 2M . Now, construct the following instance of

Partition’(P2):

1. For each ai, construct bi = ai + 2M2 and b′i = 2M2.

2. Construct X1 = X2 = 2M2n+ 4M2 −M .

Now, it can be seen that
∑

i(bi + b′i) + X1 + X2 = 2 · (2n + 2) · 2M2 and that each of
bi, b

′
i, X1, X2 ≥ 2M2.

Suppose there exists a partition S1, S2 for P1. Then it is easy to see that P2 also has a
partition T1, T2 such that

∑
T1 =

∑
T2 = (2n+2)2M2, where T1 = {bi}i|ai∈S1∪{b′i}i|ai∈S2∪

{X1} and T2 = {bi}i|ai∈S2 ∪ {b′i}i|ai∈S1 ∪ {X2}.
Conversely, suppose there exists a partition for P2. This implies that there exists two

subsets T1, T2 such that
∑
T1 =

∑
T2 = (2n + 2)2M2. Now, the first thing to observe is

that both X1, X2 cannot belong to the same set, because if so then the sum of the rest of
the elements = 4nM2 + 2M < (2n+ 2)2M2. So let us assume that X1 ∈ T1 and X2 ∈ T2.
Also, since X1 > bi,∀i, we can remove X1 and X2 from the two subsets. Removing them
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we have
∑
T1 −X1 =

∑
T2 −X2 = M + 2nM2. So now we can construct S1, and S2 as

follows:

S1 = {ai}i|bi∈T1
S2 = {ai}i|bi∈T2

This in turn implies that P1 has a partition.

Definition 7 (Fixed-Difference Subset Sum). Given a set of non-negative integers S =
{ai}1≤i≤n summing to 2K, we are asked if there exists two disjoint subsets S1, S2 of S such
that

∑
S1 −

∑
S2 = K, where

∑
Si denotes the sum of all the elements in the set Si.

The NP-completeness proof of Fixed-Difference Subset Sum is very similar as to the
one for Partition’.

Lemma 2. Fixed-Difference Subset Sum is NP-complete.

Proof. It is easy to see that Fixed-Difference Subset Sum is inNP . To proveNP-hardness,
we show a reduction from an arbitrary instance of the Partition (P1) problem. Let the
arbitrary instance be {k1, · · · , kt} with

∑
i ki = 2K. Now, construct the following instance

{l1, · · · , lt, l′1, · · · , l′t} of Fixed-Difference Subset Sum(P2), where li = ki + 2n+i, l′i = 2n+i,
and n = dlog 2Ke.

Suppose there exists a partition S1, S2 for P1. Then P2 has subsets T1, T2 such that∑
T1 −

∑
T2 = K +

∑t
i=1 2i+n, where T1 = {li}i|ki∈S1 ∪ {l′i}i|ki∈S2 and T2 = ∅.

Conversely, suppose there exists subsets T1, T2 in P2 such that
∑
T1 −

∑
T2 = K +∑t

i=1 2i+n. Now, it is easy to argue that none of li or l′i for i = 1, · · · , t can belong to
T2, because if so then the second term (

∑t
i=1 2i+n) of

∑
T1 −

∑
T2 will not be attainable.

Therefore, we can construct S1 and S2 such that S1 = {ki}i|li∈T1 and S2 = {ki}i|li /∈T1 , and
this in turn implies that P1 has a partition.
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Chapter 3

Complexity of Manipulation in
Elections with Top-truncated Ballots

A common assumption in much of the research in computational social choice is that the
agents fully specify their preferences by providing a complete preference ordering over all
the candidates or alternatives. However, there are many practical situations where the
agents may not be able to determine a complete ranking over all the candidates or even
if they can specify a complete ranking, the voting rule used may not insist that one be
provided. Thus, it is important to understand the repercussions of having “partial votes”
in general, and in this context one of foremost questions that arises is: “How hard is it to
manipulate elections if the agents reveal only partial preference orderings?”. It is this ques-
tion we try to address in this chapter. In particular, we look at the weighted manipulation
problem—both constructive and destructive manipulation—when the voters are allowed
to specify one kind of “partial vote”, namely top-truncated votes. Top-truncated votes are
natural in many settings where an agent is certain about its most preferred candidates but
is indifferent among the remaining ones or is unsure about them.

While there has been some work that has looked at election problems when preferences
are only partially specified (see the related work section in Chapter 1), there are three
papers in particular that are closely related to the results in this chapter. First is the work
by Baumeister et al. which discusses planning various kinds of campaigns in settings where
the ballots can be truncated at the top, bottom, or both [6]. In this work, they introduced
the extension-bribery problem, a special case of which is closely related to the manipulation
problem with top-truncated ballots that we consider here (see Section 3.3.1). Second is the
work of Narodytska and Walsh where they provide an analysis of constructive manipulation
(for both weighted and unweighted voters) for three particular voting protocols, namely
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Borda, STV, and the Copeland rule [38]. Finally, there is also a paper by Fitzsimmons and
Hemaspaandra which looks into how the complexity of bribery, control, and manipulation
is affected when ties are allowed [29]. We note that except for one theorem (Theorem 10),
none of our other results overlap with their’s as all their results are derived using only one
the following protocols: Borda, plurality, t-approval, and Copelandα.

The rest of this chapter is organized as follows. In Section 3.1 and Section 3.2, we look
at broader classes of voting rules and we study constructive and destructive manipulation
in weighted elections, respectively. In doing so, we provide general results for the com-
plexity of manipulation for all scoring rules, for elimination versions of all scoring rules,
for the plurality with runoff rule, for a family of election systems known as Copelandα,
and for the maximin protocol. Finally, in Section 3.3, we also look at the impact on com-
plexity of manipulation with top-truncated ballots when there is uncertainty about the
non-manipulators’ votes.

3.1 Constructive Manipulation

In this section, we look at the complexity of constructive manipulation when top-truncated
ballots are allowed. We begin by looking at scoring rules and we completely characterize
the complexity of manipulation for all 3-candidate scoring rules when using each of the
evaluation schemes defined before (see Section 2.1). Note that in the complete votes case,
all scoring rules except plurality are known to be NP-complete for m ≥ 3 candidates
[13, 33].

3.1.1 Scoring Rules

We start with a simple result which shows how computing if a coalition of manipulators
can manipulate X↑ (for any scoring rule X), plurality↓, pluralityav, and veto↓ takes only
polynomial time.

Theorem 1. Computing if a coalition of manipulators can manipulate X↑, veto↓, plurality↓,
or pluralityav, where X is any positional scoring rule, with weighted top-truncated votes
takes polynomial time (for any number of candidates).

Proof. For the X↑, veto↓, and pluralityav, the manipulators can simply check if all of them
voting for p alone will make it a winner. If not, they cannot make p a winner.
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In case of plurality↓, they can check if all of them placing p at the top and all the other
candidates in arbitrary order can make p a winner.

Next, we look at complexity of manipulation for any scoring rule that is not isomorphic
to plurality or veto (we say that a scoring rule is isomorphic to another if the scoring vector
of one is a linear transformation of the other) and when using the round-down evaluation
scheme.

Theorem 2. For any 3-candidate positional scoring protocol X that is not isomorphic to
plurality or veto, CWCM with top-truncated votes in X↓ is NP-complete.

Proof. Since there are only three candidates, the scoring vector for the corresponding
positional scoring rule is defined by 〈α1, α2, α3〉, where α1 > α2 > α3 = 0 (because α1 = α2

is isomorphic to veto, α2 = α3 is isomorphic to plurality, and α3 can be taken to be zero
since translating the scores in a scoring rule does not affect the outcome of the rule). Also,
note that if the three candidates are p, a, and b, each manipulator votes in one of the
following ways: (p > a ∼ b), (p > a > b), (p > b > a), where for (p > a ∼ b) candidate p
gets a score α2.

The problem is in NP since winner determination for any scoring rule can be done
in polynomial time. To show NP-hardness, we proceed by considering three cases: 1)
α1 > 3

2
α2 2) α1 < 3

2
α2 3) α1 = 3

2
α2. For the first two cases, we reduce an arbitrary

instance of the Partition problem to an instance of CWCM, and for the third case we show
a reduction from the Fixed-Difference Subset Sum problem.

Case 1: α1 >
3
2
α2. Given a Partition instance {ki}1≤i≤t summing to 2K, construct the

following instance of CWCM, where p, a, and b are the three candidates. In S, let there be
two voters, each of weight (2α1 − α2)K, voting (a > b > p) and (b > a > p), respectively.
As a result, a and b have a score of (2α1 − α2)(α1 + α2)K each. In T , let each ki have a
vote of weight (α1 + α2)ki.

Suppose there exists a partition. Let those manipulators in one partition vote (p > a >
b) and those in the other vote (p > b > a). Then the score of p, a and b, is 2α1(α1 +α2)K,
and so p is a winner (since all of them have the same score and we are considering the
non-unique winner model).

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be the
sum of the ki’s of the manipulators in T who vote (p > a > b), (p > b > a), and (p > a ∼ b),
respectively. So now, the score of p is ((x+ y)α1 + zα2)(α1 + α2), while that of a and b is
((2α1−α2)K + xα2)(α1 +α2) and ((2α1−α2)K + yα2)(α1 +α2), respectively. Since there
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exists a successful manipulation, score of p should be at least as large as that of a, and so
we have ((x+ y)α1 + zα2)(α1 + α2) ≥ ((2α1 − α2)K + xα2)(α1 + α2). Using the fact that
x+ y + z = 2K, this simplifies to

(K − x)α2 ≥ z(α1 − α2). (3.1)

Again, the score of p should be at least as large as that of b, so we have

(K − y)α2 ≥ z(α1 − α2). (3.2)

Adding (3.1) and (3.2) and simplifying it, we have z(2α1 − 3α2) ≤ 0. Now, since we
assumed α1 >

3
2
α2, this implies that z ≤ 0. But z cannot be less than 0, so it has to be

equal to 0. Plugging z = 0 in (3.1) and (3.2), we have x ≤ K and y ≤ K respectively.
This together with the fact that x + y + z = 2K implies that x = y = K, and therefore
there exists a partition.

Case 2: α1 <
3
2
α2. Given a Partition instance, construct the following instance of CWCM.

In S, let there be a voter of weight 15K voting (b > a > p), a voter of weight 5K voting
(b > p > a), a voter of weight 11K voting (a > p > b), a voter of weight 9K voting
(a > b > p), and a voter of weight 7K voting (p > b > a) and (p > a > b) each. As a
result, the scores of a, b, and p are (20α1 + 22α2)K, (20α1 + 16α2)K, and (14α1 + 16α2)K
respectively. In T , let each ki have a vote of weight 6ki.

Suppose there exists a partition. Let those manipulators in one partition (who weight
to 6K) vote (p > b > a) and those in the other vote (p > a ∼ b). Then the score of all the
three candidates is 20α1K + 22α2K, and so p is a winner.

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be the
total weight of manipulators in T who vote (p > a > b), (p > b > a), and (p > a ∼ b)
respectively. So now, the score of p is (x + y)α1 + zα2 + (14α1 + 16α2)K, while that of a
and b is (20α1 + 22α2)K + xα2 and (20α1 + 16α2)K + yα2 respectively. Since there exists
a successful manipulation, the score of p should be at least as large as that of a, and so
we have (x+ y)α1 + zα2 + 14α1K + 16α2K ≥ (20α1 + 22α2)K + xα2. Using the fact that
x+ y + z = 12K, this simplifies to

6(α1 − α2)K − xα2 ≥ z(α1 − α2). (3.3)

Again, the score of p should be at least as large as that of b, so we have

6α1K − yα2 ≥ z(α1 − α2). (3.4)
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Adding (3.3) and (3.4) and simplifying it, we have (6K−z)(2α1−3α2) ≥ 0. Now, since we
assumed α1 <

3
2
α2, this implies that (6K − z) ≤ 0, or z ≥ 6K. Plugging z ≥ 6K in (3.3)

and (3.4), we have x ≤ 0, and y ≤ 6K, respectively. But then x cannot be less than 0, so
it has to be equal to 0, and this in turn results in z ≤ 6K in (3.3). But again, z cannot
not be both greater than and lesser than equal to 6K. So, z has to be equal to 6K, and
since x+ y + z = 12K, y = 6K. This implies there exists a partition.

Case 3: α1 = 3
2
α2. Consider the same instance of CWCM as in case 2. The scores of a,

b, and p are (20α1 + 22α2)K, (20α1 + 16α2)K, and (14α1 + 16α2)K respectively. In T , let
each ki have a vote of weight 6ki.

Suppose there exists S1, S2 such that
∑
S1 −

∑
S2 = K. Let those manipulators

who are in S1 vote (p > b > a), those in S2 vote (p > a > b), and let all the remaining
manipulators vote (p). If x, y, and z denote the sum of ki’s of the manipulators who vote
for (p > a > b), (p > b > a), and (p > a ∼ b), respectively, then the scores of p, a, and b
are 9(x + y)α2 + 6zα2 + 37α2K, 52α2K + 6xα2, and 46α2K + 6yα2, respectively. Now if
there existed a manipulation, then the score of p has to be at least as large as that of a
and b. Let us consider p and a first. Whatever follows can be replicated for b. Suppose
score(p) ≥ score(a). This implies 9(x+y)α2+6zα2+37α2K ≥ 52α2K+6xα2. Simplifying
this we have, x + 3y + 2z ≥ 5K. But since y − x = K and x + y + z = 2K, we know
that x+ 3y+ 2z = 5K, and hence our assumption that score(p) ≥ score(a) is true. Doing
the same with respect to p and b, we will see that score(p) = score(b). As a result, we
can conclude that existence of S1, S2 such that

∑
S1 −

∑
S2 = K results in a successful

manipulation for p.

Conversely, suppose there exists a manipulation in favour of p. This implies that the
score of p is at least as much as that of a, and from above we know that this in turn results
in the inequality x+3y+2z ≥ 5K. Using the fact that x+y+z = 2K, we have y−x ≥ K.
Similarly, comparing p and b we have, y− x ≤ K. But then, y− x cannot be both greater
and lesser than equal to K at the same time. So y − x has to be equal to K, and this in
turn implies that there exists two sets S1, S2 such that

∑
S1−

∑
S2 = K, where y =

∑
S1

and x =
∑
S2.

Our final result for scoring rules is when the evaluation scheme used is average score.

Theorem 3. For any 3-candidate positional scoring protocol X that is not isomorphic to
plurality, CWCM with top-truncated votes in Xav is NP-complete.

Proof. Like in Theorem 2, since there are only three candidates, the scoring vector for the
corresponding positional scoring rule is defined by 〈α1, α2, α3〉, where α1 ≥ α2 > α3 = 0.
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Also, note that if the three candidates are p, a, and b, each manipulator votes in one of the
following ways: (p > a ∼ b), (p > a > b), (p > b > a), where for (p > a ∼ b) candidate p
gets a score α1, a and b receive a score of (α2/2).

The proof uses a reduction from the Fixed-Difference Subset Sum problem and is very
similar to the one in case 3 of Theorem 2. Given an instance of Partition, construct
the following instance of CWCM where in S we have a voter of weight (4α1 + α2)K
voting (b > a > p), a voter of weight (2α1 − α2)K voting (a > b > p), and a voter
of weight 2(α1 + α2)K voting (a > p > b). As a result, the scores of a, b, and p are
(4α1 + α2)(α1 + α2)K, (4α1 − α2)(α1 + α2)K, and 2α2(α1 + α2)K, respectively. In T, let
each ki have a vote of weight 2(α1 + α2)ki.

Suppose there exists S1, S2 such that
∑
S1 −

∑
S2 = K. Let those manipulators who

are in S1 vote (p > b > a), those in S2 vote (p > a > b), and let all those remaining
vote (p > a ∼ b). If x, y, and z denote the sum of the ki’s of the manipulators who vote
(p > a > b), (p > b > a), and (p > a ∼ b), respectively, then the scores of p, a, and b are
(4α1 + 2α2)(α1 + α2)K, ((4α1 + α2)K + 2(xα2 + zα2/2))(α1 + α2), and ((4α1 − α2)K +
2(yα2 + zα2/2))(α1 + α2), respectively. Now if there existed a manipulation, then the
score of p has to be at least as large as that of a and b. Let us consider p and a first.
Whatever follows can be replicated for b. Suppose score(p) ≥ score(a). This implies that
(4α1 + 2α2)K ≥ (4α1 + α2)K + 2xα2 + zα2. Simplifying this we have, 2x + z ≤ K. But
since y−x = K and x+ y+ z = 2K, we know that 2x+ z = K, and hence our assumption
that score(p) ≥ score(a) is true. Doing the same with respect to p and b, we will see
that score(p) = score(b). As a result, we can conclude that existence of S1, S2 such that∑
S1 −

∑
S2 = K results in a successful manipulation for p.

Conversely, suppose there exists a manipulation in favour of p. This implies that the
score of p is at least as much as that of a, and from above we know that this in turn results
in the inequality

2x+ z ≤ K. (3.5)

Similarly, comparing p and b we have,

2y + z ≤ 3K. (3.6)

Now, using the fact that x+y+z = 2K, we know that inequality (3.5) reduces to y−x ≥ K
and inequality (3.6) reduces to y − x ≤ K. But then, y − x cannot be both greater and
lesser than equal to K at the same time. So y − x has to be equal to K, and this in turn
implies that there exists two sets S1, S2 such that

∑
S1−

∑
S2 = K, where y =

∑
S1 and

x =
∑
S2.
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3.1.2 Scoring Elimination Rules

We now consider scoring elimination rules and first look at how top-truncated voting affects
the complexity of manipulation in eliminate(veto). Following that we prove a general result
for all scoring elimination rules.

Theorem 4. For eliminate(veto), in the unique winner model, any manipulation that
can be achieved by casting top-truncated votes can be achieved if only complete votes were
allowed.

Proof. Consider an arbitrary set W of top-truncated votes which—along with the set S of
non-manipulators’ votes—results in an elimination order e = (c1, c2, · · · , cm = p), where p is
the preferred candidate, and ci is the candidate eliminated in the ith round. Now, consider
the set of votes X such that each vote in W is replaced by (p = cm > cm−1 > · · · > c1).
X along with S results in the same elimination order e. Therefore, we see that any
manipulation that can be achieved by a set of top-truncated votes can be achieved by
casting an equivalent set of complete votes.

Since top-truncated voting does not encourage more strategic voting, it follows that
for bounded number of candidates—i.e. when there are only a (small) fixed number of
candidates—we can use the result by Coleman and Teague who showed that CWCM for
eliminate(veto) is in P when the votes are complete [11].

Corollary 5. In the unique winner model, computing if a coalition of manipulators can
manipulate eliminate(veto) with weighted top-truncated votes takes polynomial time for
bounded number of candidates.

Next, we consider elimination versions of 3-candidate scoring rules in general and show
that CWCM with top-truncated votes is NP-complete for elimination version of any scor-
ing rule that is not isomorphic to veto. For this, we first show that top-truncated voting
does not change the complexity of a related problem, Anti-WCM, for any scoring rule.

Definition 8 (Anti-WCM). Given a set, S, of weighted votes, the weights for a set of
votes, T , and a disliked candidate, d, we are asked if there exists a way to cast the votes in
T so that it results in d receiving the lowest score.

Theorem 6. Top-truncated voting does not change the worst-case complexity of Anti-WCM
for any scoring protocol.
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Proof. Assume there exists an arbitrary set W of top-truncated votes which results in d
receiving the lowest score. For each of the top-truncated votes in W , let us complete them
in the following way: If d is included in the vote, append all the other candidates who
are not part of it in any arbitrary order. If d is not there, place d at the bottom of the
preference ordering (as the mth preferred candidate) and the rest in any arbitrary order.
Completing the votes as above does not change the candidate with the lowest score.

As a result of the above theorem, we have the following corollary which says that for any
scoring rule not isomorphic to veto, Anti-WCM with top-truncated votes is NP-complete.
Note that the corollary here is based on the result of Coleman and Teague who proved
that Anti-WCM is NP-complete for all scoring rules not isomorphic to veto [11, Corollary
10.1].

Corollary 7. For any scoring rule with α = 〈α1, · · · , αm〉, Anti-WCM with top-truncated
votes is in P if α1 = · · · = αm−1 and is NP-complete otherwise.

Next, we use the above result to show our main result concerning all scoring elimination
rules except eliminate(veto).

Theorem 8. For any 3-candidate scoring rule X that is not isomorphic to veto, CWCM
with top-truncated votes in eliminate(X) is NP-complete.

Proof. Since there are only three candidates and the corresponding positional scoring rule
is not isomorphic to veto, the scoring vector for the same is defined by 〈α1, α2, α3〉, where
α1 > α2 ≥ α3 = 0. Showing that the problem is in NP is easy. To show NP-hardness,
we use a reduction from an arbitrary instance of Anti-WCM〈S, T, h〉 with 3 candidates,
where a, b, and h are the three candidates, and h is the disliked candidate. In the CWCM
instance we construct, we use the same set of candidates, the same set of manipulators T ,
and to the S from the Anti-WCM instance we add the following set S ′ of voters such that
K is greater than the sum of the weights in S and T combined. In each case, we add 1
voter of the corresponding type and weight specified below.

K : (a > b > h)

K : (b > h > a)

K : (h > a > b)

We set a to be the preferred candidate in the CWCM instance.

Suppose there was a way to make h receive the lowest score in the Anti-WCM instance.
This implies that h receives the lowest score in the CWCM instance since all the three
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candidates a, b, and h are tied in S ′ (each of them receive a score of α1K + α2K from S ′).
Therefore, h will be eliminated in the first round, and following that the votes in S ′ would
be:

K : (a > b)

K : (b > a)

K : (a > b)

And now since there are only two candidates, for any scoring rule X, eliminate(X) is equiv-
alent to eliminate(veto). Hence, the candidate with the most number of last preferences
will be eliminated next. In our case this is b since it has K extra last preferences. Therefore,
a wins, thus ensuring a successful manipulation in the CWCM instance.

Conversely, suppose there exists a successful constructive manipulation for a in the
CWCM instance. Now, this is possible only if h is eliminated in the first round, because
otherwise if b is eliminated in the first round, then a will have K extra last preferences
thus resulting in its elimination in the second round. This in turn implies that there is a
successful manipulation against h in the Anti-WCM instance.

Since the plurality with runoff rule is the same as STV when there are only three
candidates, we have the following corollary.

Corollary 9. For the 3-candidate plurality with runoff rule, CWCM with top-truncated
votes is NP-complete.

3.1.3 Copelandα

Narodytska and Walsh showed that CWCM with top-truncated votes in the Copeland rule
(Copeland0.5) is NP-complete for four candidates [38]. Additionally, they also conjectured
that the result holds when the number of candidates is three. Here we prove that conjecture,
and also show that our hardness result holds for all rational α ∈ [0, 1). We note that the
following result has also been independently obtained by Fitzsimmons and Hemaspaandra
[29].

Theorem 10. Let α be a rational number with 0 ≤ α < 1. For Copelandα, CWCM with
top-truncated votes is NP-complete for three candidates.

Proof. It is easy to show that the problem is in NP . To show that it is NP-hard, we use
a reduction from an arbitrary instance of Fixed-Difference Subset Sum problem. Let p, a,
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and b be the three candidates. In S, let there be a voter of weight 3K voting (a > b > p)
and a voter of weight K voting (b > a > p). In T , let each ki have a vote of weight 2ki.

Suppose there exists S1, S2 such that
∑
S1 −

∑
S2 = K. In Copelandα, it can be

assumed that all the manipulators rank p first. So, let the manipulators in S1 vote (p >
b > a), those in S2 vote (p > a > b), and let the rest vote for (p > a ∼ b). IfNV (r, s) denotes
the total number of votes in V which rank r prior to s and DV (r, s) = NV (r, s)−NV (s, r),
then DS∪T (p, a) = 0 and DS∪T (p, b) = 0. Therefore, the score of p, score(p) = 2α. Also
since

∑
S1−

∑
S2 = K, DT (a, b) = −2K, while DS(a, b) = 2K. Therefore, DS∪T (a, b) = 0

and so, both receive a score 2α. Since all of them have the same score, p is a winner.

Conversely, suppose there exists a successful manipulation in favour of p. If x, y, and
z, denote the sum of ki’s of the manipulators in T who vote (p > a > b), (p > b > a), and
(p > a ∼ b), respectively, then without taking into account the pairwise election between a
and b in T , the score of p, a, and b is 2α, 1 +α, and α, respectively. Now since 2α < 1 +α
for all rational α ∈ [0, 1), therefore, the only way p would win this is if including the
pairwise election between a and b in T results in a tie between them. So this implies that
DS∪T (a, b) = 2K + 2x− 2y = 0 and that y− x = K. This in turn implies that there exists
sets S1 and S2 such that

∑
S1 −

∑
S2 = K, where y =

∑
S1 and x =

∑
S2.

3.1.4 Maximin

Although we have seen instances like in scoring rules with the round-up evaluation scheme
(Theorem 1) where top-truncated voting decreases the complexity of manipulation (as
compared to the complete votes case), they aren’t really conclusive in the sense that one
could question the choice of the evaluation scheme that in turn caused the result. Clearly,
the round-up evaluation scheme isn’t a good choice as what we’re essentially doing by
employing the same is to encourage the manipulators to treat it just as a plurality-type
rule. Therefore, one question that could arise is: “Is there a voting system for which no
matter how the top-truncated votes are dealt with the complexity of manipulation with
top-truncated ballots decreases?”. We answer this question below in the affirmative. We see
that as long as all the unranked candidates are considered tied and are assumed to be ranked
below the ranked candidates (which is the natural definition of a top-truncated vote), the
complexity of manipulation with top-truncated ballots is in P for the maximin rule. Note
that CWCM for the maximin rule is known to be NP-complete for four candidates when
we consider only complete votes [13, Theorem 8]1.

1Although Conitzer et al. uses the unique winner model [13], it can be verified that the result holds for
non-unique winner model as well.
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Theorem 11. Computing if a coalition of manipulators can manipulate the maximin proto-
col with weighted top-truncated votes takes polynomial time (for any number of candidates).

Proof. Let W be an arbitrary set of top-truncated votes which—along with the set S of
non-manipulators’ votes—results in p being a winner. Since in the maximin rule moving
p to the top will never hurt p, we can safely assume that all the votes in W have p at the
top. Now for every vote in W , replace it by (p > c1 ∼ · · · ∼ cm−1), where c1, · · · , cm−1 are
the other candidates in an m-candidate election. By doing so we see that p’s score does
not change. Also, note that for all the other candidates their scores can only decrease or
stay the same, but can never increase. Therefore, any constructive manipulation achieved
for p can be achieved if all manipulators just vote (p > c1 ∼ · · · ∼ cm−1).

3.2 Destructive Manipulation

In this section, we look at the complexity of destructive manipulation when top-truncated
ballots are allowed. We begin by looking at a broad class of rules for which top-truncated
voting has no impact on strategic voting. This class consists of all voting rules where the
candidates are assigned numerical scores based on the votes and are monotone, meaning
that if a voter vi changes his or her vote (from � to �′) in such a way that {b : a > b} ⊆
{b : a >′ b}, then a’s score will not decrease (or informally, more support for a candidate
will not decrease it’s score). Note that although elimination versions of scoring rules like
STV and the Baldwin’s rule are based on numerical scores, they are not monotone, and
hence aren’t part of the class of voting rules we consider in the theorem below.

Theorem 12. For any voting rule that is monotone and is based on numerical scores,
any destructive manipulation that can be achieved by casting top-truncated votes can be
achieved if only complete votes were allowed.

Proof. Consider a voting rule X that is monotone and is based on numerical scores. Let
the destructive manipulation be against the candidate h. Now, suppose there exists an
arbitrary set of top-truncated votes W that—along with the set S of non-manipulators’
votes—results in the destructive manipulation of h in X. Since X is based on scores we will
have a final ordering of the candidates after the election. Let e : c1(6= h) > c2 > · · · > cm
denote that ordering. Next, consider the set of votes W ′ which is formed by completing the
votes in W in the following way: replace each vote in W by placing c1 at the top, h at the
bottom (i.e. at the mth position), and the rest of the candidates in any arbitrary order.
Since X is monotone, W ′ along with S cannot result in the score of c1 decreasing and
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nor can it result in the score of h increasing. Therefore, if W resulted in the destructive
manipulation of h, then so should W ′.

Since top-truncated voting has no impact on destructive manipulation in rules that
are monotone and are based on numerical scores, it follows that for bounded number of
candidates we can use the result by Conitzer et al. who showed that DWCM was in P for
all of them when only complete votes are allowed [13].

Corollary 13. DWCM with top-truncated votes is in P for all scoring rules, for the max-
imin rule, and for Copelandα.

Next, we consider the elimination versions of all 3-candidate scoring rules and we show
how for all scoring rules that are not isomorphic to veto DWCM is NP-complete. We prove
this by using a similar reduction as in Theorem 8 from an arbitrary instance of Anti-WCM.

Theorem 14. For any 3-candidate positional scoring rule X that is not isomorphic to
veto, DWCM in eliminate(X) with top-truncated votes is NP-complete.

Proof. Since there are only three candidates, the scoring vector for the corresponding
positional scoring rule is defined by 〈α1, α2, α3〉, where α1 > α2 ≥ α3 = 0. Showing that
the problem is in NP is easy. To show NP-hardness, we use a reduction from an arbitrary
instance of Anti-WCM〈S, T, h〉 with 3 candidates (see Corollary 7), where a, b, and h are
the three candidates, and h is the disliked candidate. In the DWCM instance we construct,
we use the same set of candidates, the same set of manipulators T , and to the S from the
Anti-WCM instance we add the following set S ′ of voters such that K is greater than the
sum of the weights in S and T combined. In each case, we add 1 voter of the corresponding
type and weight specified below.

K : (a > h > b)

2K : (h > a > b)

K : (b > h > a)

2K : (h > b > a)

3K : (a > b ∼ h)

3K : (b > a ∼ h)

We set h to be the disliked candidate in the DWCM instance.

Suppose there was a way to make h receive the lowest score in the Anti-WCM instance.
If scoreS(a) denotes the score candidate a receives from S, then this implies that scoreS∪T (a)
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> scoreS∪T (h), and scoreS∪T (b) > scoreS∪T (h). Also, note that all the three candidates
a, b, and h are tied in S ′ as each of them receive a score of 4α1K + 2α2K. This in turn
implies that h receives the lowest score in the DWCM instance, and so will be eliminated
in the first round. Thus, existence of a successful manipulation in the Anti-WCM instance
ensures the existence of a successful manipulation in the DWCM instance.

Conversely, suppose there exists a successful destructive manipulation against h in the
DWCM instance. We first show that this is possible only if h is eliminated in the first
round in eliminate(X). To do so, let us assume it were not the case and that one of a or
b was eliminated in the first round. Let us consider a first. If a was eliminated in the first
round then the votes in S ′ would now be:

K : (h > b)

2K : (h > b)

K : (b > h)

2K : (h > b)

3K : (b > h)

Since the elimination of a means that they are only two candidates remaining, from
now on we can assume our protocol to be equivalent to plurality (since any scoring rule
is equivalent to plurality when there are only two candidates). So now, scoreS′(h) −
scoreS′(b) = K and since K is greater than sum of the weights in S and T combined this
implies that in the subsequent round b will be eliminated, thus resulting in h winning the
DWCM instance. Therefore, there cannot be a destructive manipulation against h in the
DWCM instance if a is eliminated in the first round. Similarly, by doing things identically
for candidate b, we can see that a destructive manipulation against h will not be possible
if b is eliminated in the first round. This in turn leads us to conclude that a successful
destructive manipulation against h is possible only if h is eliminated in the first round.
But then, since all the three candidates are tied in S ′, the only way this can happen is if
h receives the lowest score in S. Or in other words, a successful destructive manipulation
against h in the DWCM instance is possible only if there exists a successful manipulation
against h in the Anti-WCM instance.

Again, since the plurality with runoff rule is equivalent to STV when there are only
three candidates, we have the following corollary.

Corollary 15. For the 3-candidate plurality with runoff rule, DWCM with top-truncated
votes is NP-complete.
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3.3 Impact on Complexity when there is Uncertainty

about the Non-manipulators’ Votes

So far, we have looked at the complexity of manipulation with top-truncated ballots when
the manipulators have complete information on the non-manipulators’ votes. Although
this is a useful setting to study, given that it enables us to look at the hardness of manip-
ulation without having to worry about the complexities that are introduced as part of the
uncertainty model, the assumption that the manipulators will have complete information
isn’t always realistic. Therefore, we now look at how incomplete information about the
non-manipulators impacts the complexity of manipulation with top-truncated ballots.

To model the incomplete information setting, we consider the following two scenarios
and we study each of them separately. Note that the second setting has been studied by
Conitzer et al. for the case of complete votes [13].

1. What if only top-truncated preference orderings of the non-manipulators were visible
to the manipulators?

2. What if the manipulators have only probabilistic information on the votes of the
non-manipulators?

3.3.1 When only top orders of the non-manipulators are visible

Before we look at the problem of manipulation, let us introduce two other problems: i) the
problem of evaluating a candidate’s winning probability when there’s uncertainty about
the votes and ii) the weighted version of the extension-bribery problem which in turn was
introduced by Baumeister et al. [6].

Definition 9 (Evaluation under Top-truncated Uncertainty). We are given a set, S, which
is a partially-revealed top-truncated set of votes of a certain set, S ′ (which in turn may
contain complete or top-truncated ballots themselves), the weights of each of the voters, a
candidate, p, and a number r ∈ [0, 1]. We are asked if the probability of p winning in the
original election (where S ′ is the set of votes cast) is greater than r.

Definition 10 (Weighted Extension-bribery). We are given a set S of votes which are
possibly top-truncated, the weights of each of the voters in V , a collection ∆ = (δ1, · · · , δn)
of extension-bribery cost functions, a preferred candidate, p, and a budget, B. We are
asked if there exists an extension to the votes in S with cost ≤ B such that p is the winner.
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Informally, the Weighted Extension-bribery problem essentially tries to figure out if it
is possible to extend a partially specified vote—as in, if it is possible to increase the number
of ranked candidates specified in the preference order by suitably filling it up—so as to
ensure that a preferred candidate, p, wins.

Now, we show that the Evaluation under Top-truncated Uncertainty problem with
r = 0 (henceforth also referred to as the Evaluation problem) is equivalent to a special
case of the Weighted Extension-bribery problem namely, Weighted Extension-bribery with
zero costs (i.e. when δi = 0, 1 ≤ i ≤ n).

Theorem 16. For a given voting protocol, Weighted Extension-bribery with zero costs is
NP-hard if and only if the Evaluation under Top-truncated Uncertainty problem (with
r = 0) is NP-hard.

Proof. Consider an arbitrary instance of the Weighted Extension-bribery with S and p,
and the same instance for the Evaluation problem. Now, it is clear that if there exists
an extension in Weighted Extension-bribery problem, then p wins with probability greater
than zero in the Evaluation problem. Conversely, if p wins with non-zero probability in
the Evaluation problem, then this implies that there is at least one extension where it
wins.

Next, before we look at the complexity of Weighted Extension-bribery with zero costs
(and hence of Evaluation) for all the voting rules considered in this chapter, consider the
following version (CWCM∗) of CWCM with top-truncated votes where the only difference
is that here we make it necessary for the non-manipulators to always have complete ballots
(i.e. in CWCM∗ only the manipulators can cast top-truncated votes).

Definition 11 (CWCM∗). CWCM∗ with top-truncated votes is the same problem as
CWCM with top-truncated votes, with the additional restriction that the non-manipulators
always have complete preference orders.

The first thing to observe here is that all the NP-complete results for CWCM with top-
truncated votes from Section 3.1 hold for CWCM∗ as well, since a close look at the proofs
for Theorem 2, Theorem 3, Theorem 8, and Theorem 10 reveal that in all the cases we
showed reductions to instances which always had complete orders for the non-manipulators.
Hence, we have the following theorem.

Theorem 17. CWCM∗ with top-truncated votes is NP-complete for 3-candidate X1
↓ , 3-

candidate X2
av, eliminate(X3), 3-candidate Copelandα for α ∈ [0, 1), and 3-candidate plu-

rality with runoff rule, where X1 represents all scoring rules except plurality and veto, X2

represents all scoring rules except plurality, and X3 represents all scoring rules except veto.
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The second observation to make regarding CWCM∗ with top-truncated votes is that it
is a special case of Weighted Extension-bribery with zero costs, where some the ballots are
complete (those of the non-manipulators) and some are empty (those of the manipulators).
Therefore, any hardness result for CWCM∗ carries over for Weighted Extension-bribery
with zero costs (and also for the Evaluation problem as a consequence of Theorem 16),
and so we have the following theorem.

Theorem 18. Weighted extension-bribery problem with zero costs (and hence even the
Evaluation problem) is NP-complete for 3-candidate X1

↓ , 3-candidate X2
av, eliminate(X3),

3-candidate plurality with runoff, and 3-candidate Copelandα for α ∈ [0, 1), where X1

represents all scoring rules except plurality and veto, X2 represents all scoring rules except
plurality, and X3 represents all scoring rules except veto.

Additionally, we also have the following result which shows that Weighted Extension-
bribery with zero costs is in P for certain voting rules considered here.

Theorem 19. Weighted Extension-bribery with zero costs (and hence even the Evaluation
problem) is in P for X↑, plurality↓, veto↓, pluralityav, and the maximin protocol, where X
is any positional scoring rule.

Proof. For all the above mentioned protocols except plurality↓, the best we can do is to
extend each top-truncated vote by placing p at its end (i.e. place p as kth candidate if k−1
candidates are already ranked), if it isn’t already present. In case of plurality↓, the best
strategy is to complete each of the top-truncated votes by placing p at the topmost position
possible followed by all the other as-yet unranked candidates in any arbitrary order.

Next we show that if Evaluation is hard then constructive manipulation with even a
single manipulator is hard.

Definition 12 (CWIM-TTU). In Constructive Weighted Individual Manipulation under
Top-truncated Uncertainty (CWIM-TTU), we are given a set, S, of partially-revealed top-
truncated ballots of the non-manipulators (which in turn may contain complete or top-
truncated ballots themselves), the weight of the manipulator, a preferred candidate, p, and
a number r ∈ [0, 1]. We are asked if the manipulator can cast his vote in such a way so as
to ensure p wins with a probability greater than r.

Theorem 20. If Evaluation under Top-truncated Uncertainty is NP-hard for a given
protocol with k candidates, then CWIM-TTU with top-truncated votes is also NP-hard for
it with k candidates.
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Proof. Construct an instance of CWIM-TTU from an Evaluation instance by just adding
a manipulator of weight 0.

Combining Theorem 18 and Theorem 20, we have the following result which says that
for all the protocols considered in Section 3.1 for which CWCM with top-truncated ballots
was hard, even individual manipulation with top-truncated votes is hard when there is
uncertainty about the non-manipulators’ votes.

Theorem 21. CWIM-TTU with top-truncated votes is NP-complete for 3-candidate X1
↓ ,

3-candidate X2
av, eliminate(X3), 3-candidate plurality with runoff rule, and 3-candidate

Copelandα for α ∈ [0, 1), where X1 represents all scoring rules except plurality and veto,
X2 represents all scoring rules except plurality, and X3 represents all scoring rules except
veto.

Finally, we conclude this section by showing that the CWIM-TTU with top-truncated
votes is in P for eliminate(veto) (it is easy to see that it is also in P for all the rules
mentioned in Theorem 19). We show this by first proving that Weighted Extension-bribery
with zero costs (and hence Evaluation) is in P for eliminate(veto).

Theorem 22. In the unique winner model, Weighted Extension-bribery with zero costs
(and Evaluation) is in P for eliminate(veto) when the number of candidates is bounded.

Proof. Suppose there was an arbitrary extension W which resulted in p winning. Let
the corresponding elimination order be e = (c1, c2, · · · , cm = p), where ci is the candidate
eliminated in the ith round. Now, we claim that the same elimination order can be achieved
by doing the following:

• In each of the top-truncated votes, complete it by placing the candidates in the
reverse order in which they appear in e. That is, place p if not already present,
followed by cm−1 if not present, and so on until c1.

Doing the above results in the same elimination order as e. This can be shown through
an inductive argument. When there are m candidates, c1 which is eliminated first in e has
been placed last wherever possible and this in turn will result in it getting eliminated first
in our completion. Once c1 is eliminated, we have m − 1 candidates with c2 placed last
wherever possible and therefore c2 will be eliminated next. Continuing this way, guarantees
the elimination order e.

To solve Weighted Extension-bribery, the campaign manager can try out all possible
elimination orders, extend the votes as outlined above, and see if any of them results in
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p winning. Doing so will only take polynomial time since the number of candidates are
bounded.

Theorem 23. In the unique winner model, CWIM-TTU with top-truncated votes (with
r = 0) is in P for eliminate(veto) when the number of candidates is bounded.

Proof. Since the Evaluation problem is in P , the manipulator can try out all possible
complete orders to check if manipulation is possible. This is enough because, for elimi-
nate(veto), any manipulation that can be achieved by top-truncated votes can be achieved
by completing the vote appropriately (see Theorem 4).

The above result also implies that, in the unique winner model, CWCM under Top-
truncated Uncertainty and with top-truncated votes (with r = 0) is in P for eliminate(veto)
when the number of candidates is bounded, since in eliminate(veto) any manipulation that
can be induced by an arbitrary set of the manipulators’ vote can be induced if all the
manipulators vote in the same way [11, Lemma 12].

3.3.2 When there is only probabilistic information on the non-
manipulators

Manipulation under probabilistic uncertainty was introduced by Conitzer et al. [13]. In
their work they introduced the Weighted Evaluation problem which, given a probability
distribution on the votes, and a number r ∈ [0, 1], asks if the probability of a candidate
winning is greater than r. Subsequently, they also proved that if CWCM (with complete
votes) for a voting protocol is hard then so is Weighted Evaluation [13, Theorem 15]. Now,
since we additionally allow top-truncated votes, we can state the following result which is
almost equivalent to [13, Theorem 15] with the only difference being that the “set of all
possible votes” would now contain top-truncated votes as well and that the reduction here
is from CWCM with top-truncated votes. In fact, most of the results in this section are
only extensions to the corresponding result from Conitzer et al.’s paper [13] that arise as
a result of allowing top-truncated voting.

Theorem 24. If CWCM with top-truncated votes is NP-hard for a given protocol with
k candidates, then Weighted Evaluation when top-truncated votes are allowed is also NP-
hard for it (with k candidates) even if r = 0, the votes are drawn independently, and only
the following types of distributions are allowed: (1) the vote’s distribution is uniform over
all possible votes, or (2) the vote’s distribution puts all of the probability mass on a single
vote.
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Proof. We can proceed exactly as in [13, Theorem 15] to prove this result. To begin,
consider an arbitrary instance of CWCM with top-truncated votes with the set S of non-
manipulators, T of manipulators, and p, the preferred candidate. Let the Weighted Evalua-
tion instance be the same, with r = 0, and p being the candidate to be evaluated. Now, for
the voters in S, since their votes are already given in the CWCM instance, in the Weighted
Evaluation instance its distribution places all of the probability mass on that given vote.
On the other hand, if the voter was in T, then its vote is drawn uniformly from the set of
all the possible votes. Now, it is easy to see that p wins the probability greater than zero
in the Weighted Evaluation instance if and only if there exists some way to cast votes for
voters in T such that there will a successful constructive manipulation in favour of p in the
CWCM instance.

Corollary 25. Weighted Evaluation when top-truncated votes are allowed is NP-hard for
3-candidate X1

↓ , 3-candidate X2
av, eliminate(X3), 3-candidate plurality with runoff, and

3-candidate Copelandα for α ∈ [0, 1), when the votes are drawn independently, and the
distributions allowed are: (1) uniform over all possible votes, or (2) the vote’s distribution
puts all of the probability mass on a single vote, where X1 represents all scoring rules except
plurality and veto, X2 represents all scoring rules except plurality, and X3 represents all
scoring rules except veto.

Next, we show a relation between the Weighted Evaluation and manipulation with a
single manipulator as in [13]. Note that the difference between CWIM with Uncertainty
(CWIM-U) that we define below and CWIM-TTU that we defined in the Section 3.3.1 is
in how the partial information about the non-manipulators’ votes are specified.

Definition 13 (CWIM-U). In Constructive Weighted Individual Manipulation under Un-
certainty (CWIM-U), given a distribution over all the non manipulators’ votes, the weights
of the non-manipulators, the weight of the manipulator, a preferred candidate, p, and a
number r ∈ [0, 1], we are asked if the manipulator can cast his vote in such a way so as to
ensure p wins with a probability greater than r.

Theorem 26. If Weighted Evaluation with top-truncated votes is NP-hard for a proto-
col with k candidates and some restrictions on the distribution, then CWIM-U with top-
truncated votes is also NP-hard for it with k candidates and the same restrictions on the
distribution.

Proof. Construct an instance of CWIM-U from an arbitrary Weighted Evaluation instance
by just adding a manipulator of weight 0.
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Finally, we show that Weighted Evaluation when top-truncated votes are allowed can be
hard even if CWCM with top-truncated votes is in P . To do so, we consider eliminate(veto)
for which CWCM with top-truncated votes was shown to be in P for bounded number of
candidates (see Corollary 5).

Theorem 27. In 3-candidate eliminate(veto), Weighted Evaluation when top-truncated
votes are allowed is NP-hard even if r = 0, the votes are drawn independently, and the
distribution over each vote has a positive probability for at most 2 of the votes.

Proof. We show this by a reduction from an arbitrary instance of the Partition problem
to the following instance of Weighted Evaluation. Let a, b, and p be three candidates. Let
there be a vote of weight 1 for (p > a > b). For each ki in the partition instance, let it
have a weight ki and vote for (a > p > b) and (b > p > a) with probability 1/2 each.

Now, we can see that p wins if and only if (a > p > b) and (b > p > a) are voted by
exactly K of the vote weight, because failing to do so would mean that p will be eliminated
in the second round. But then this is possible if and only if there exists a partition.

3.4 Conclusion

In this chapter, we studied the problem of manipulation of weighted elections when the
agents are allowed to specify top-truncated preferences and also looked at the impact on
complexity of manipulation when there is uncertainty about the non-manipulators’ votes.
Regarding the first problem, we provided general results for constructive and destructive
manipulation in all scoring rules, elimination versions of all scoring rules, the plurality with
runoff rule, a family of election systems known as Copelandα, and the maximin protocol.
These results are summarized in Table 3.1. As was also noted by Narodytska and Walsh
in their study of manipulation with top-truncated votes for Borda, STV, and Copeland0.5

[38], there are three broad trends that we can observe. First is the case where top-truncated
voting has a strong impact on manipulation and it in turn results in a decrease in the worst-
case complexity of manipulation as compared to the complete votes case. Examples of this
are all the scoring rules when using the round-up evaluation scheme and the maximin rule.
Second is the case where top-truncated voting has some impact on manipulation and in
fact even causes more strategic voting, but yet the worst-case complexity of manipulation
remains the same as compared to the complete votes case. Some examples of voting rules
which fall into this category are the Copelandα, X↓ for any scoring rule X that is not
isomorphic to plurality or veto etc. Lastly, we also see that there are voting rules for
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Voting Rule
CWCM DWCM

(#cand) (#cand)

X↑ P

P

Plurality↓ P
Veto↓ P
X1
↓ NP-complete (3)

Pluralityav P
X2

av NP-complete (3)

eliminate(Veto) P P
eliminate(X3) NP-complete (3) NP-complete (3)

Plurality
with runoff

NP-complete (3) NP-complete (3)

Copelandα,
α ∈ [0, 1)

NP-complete (3) P

Maximin P P
X : All scoring rules X1 : All scoring rules except plurality and veto

X2 : All scoring rules except plurality X3 : All scoring rules except veto

Table 3.1: Complexity of CWCM and DWCM with Top-truncated Votes. The entries in
bold indicate that there is a change in complexity of CWCM as compared to the case of
complete votes, the non-highlighted ones indicate that there is no change to the worst-case
complexity as compared to the case of complete votes, and the italicized entries indicate
those rules for which there is more opportunity for manipulation but for which the worst-
case complexity is still the same as compared to the case of complete votes.

which top-truncated voting has no impact whatsoever on strategic voting. For instance,
top-truncated voting has no impact on STV and eliminate(veto).

Following this, we ended this chapter by exploring the second problem i.e. when there
is uncertainty about the non-manipulators’ votes. Here we discussed two possible ways in
which the uncertainty can be modeled and we also showed that in both cases even individual
manipulation under uncertainty was hard when constructive coalitional manipulation was
hard. To the best of our knowledge, we are the first to study the impact on manipulation
with top-truncated ballots when there is uncertainty about the non-manipulators’ votes.
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Chapter 4

Reinstating Combinatorial
Protections for Manipulation and
Bribery in Single-Peaked and Nearly
Single-Peaked Electorates

In the previous chapter we looked at the complexity of manipulation when the voters are
allowed to cast top-truncated ballots. The fundamental assumption in all of the results
was that there is no particular structure in the agents’ preferences, and so, given the set of
candidates, C, it was assumed that an agent can specify any linear order over C or a non-
empty subset of it. However, there are many election scenarios where the preferences of
agents have an underlying structure, meaning that there is a subset of admissible votes that
are never cast. For instance, there have been studies that have shown that many important
election scenarios like the U.S. presidential elections and elections in committees are close
to having a single-peaked structure (see, for example, [8], [39]).

One natural question that arises in the above context is: “What happens to the host
of results in computational social choice where NP-hardness shields were obtained for
different voting rules using constructions on combinatorially rich structures such as par-
titions and covers? Do they still hold when the electorate has structured preferences?”.
This question was first raised by Walsh [43] and was subsequently studied in detail by
Faliszewski et al. for manipulation and control in single-peaked electorates [27], by Brandt
et al. for bribery in single-peaked electorates [9], and by Faliszewski et al. [24] for manip-
ulation, bribery, and control when the electorate is nearly single-peaked. The overarching
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theme in all these papers was that the previously obtained combinatorial protections van-
ish when the voters have structured preferences—i.e. many of the NP-hardness results fall
into polynomial time.

In light of the above results, our results in this chapter take this line of research in a new
direction by looking at the impact of partial preferences on manipulative actions in single-
peaked and nearly single-peaked electorates. In particular, we consider top-truncated pref-
erences, and we look at their impact on manipulative actions in single-peaked and nearly
single-peaked settings. In doing so, we arrive at a number of surprising results, which in
turn forms the theme of this chapter—of reinstating combinatorial protections by allowing
top-truncated voting. Although, as noted by Faliszewski et al. [24], polynomial time al-
gorithms for manipulative actions such as bribery and control are not always unethical or
“bad” (as it can be a valuable tool in the hands of, say, the campaign manager, commit-
tee chair etc.), in the majority of situations they aren’t socially “good” either and hence
we believe that it is important to have elections protected against them. This thought,
along with the “easiness” results previously obtained, and the fact that, among struc-
tured preference profiles, single-peaked and nearly single-peaked preferences are the most
widely studied, forms the main motivation of our work here. The overarching theme in this
chapter is that top-truncated voting is useful in reinstating combinatorial protections in
single-peaked and nearly single-peaked electorates, and we believe that these results form
a win-win scenario: allowing voters to specify top-truncated ballots (or partial preferences,
in general) is extremely useful and often necessary in many multi-agent systems applica-
tions and even in real-world elections, and allowing this additional flexibility in turn gives
us what we want in terms of making the complexity of many manipulative-action problems
hard.

The rest of this chapter is organized as follows. In Section 4.1 we outline our contri-
butions. In Section 4.2 we present all our results for manipulation when the electorate
is both single-peaked and nearly single-peaked. Following this we turn to the problem of
weighted bribery in Section 4.3. Finally, in Section 4.4, we address the question on whether
our observations—of top-truncated voting reinstating combinatorial protections—are uni-
versal and ask if there are voting rules for which top-truncated voting is not beneficial in
terms of increasing the complexity of manipulation.

4.1 Contributions

We, for the first time, systematically study the impact of partial voting on manipulative
actions in structured preference profiles. In particular, we look at the problem of manipu-
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lation and bribery in single-peaked and nearly single-peaked settings when top-truncated
ballots are allowed.

Second, under the assumption that the voters submit complete ballots, we first provide
polynomial time algorithms for manipulation and weighted-bribery for certain voting rules
in single-peaked and nearly single-peaked settings, thus extending the works of Faliszewski
et al. for manipulation [27], Brandt et al. for bribery [9], and Faliszewski et al. for nearly
single-peaked electorates [24]. We then show how these polynomial-time problems become
NP-complete when top-truncated ballots are allowed.

Third, we show an example of a natural voting rule where, contrary to intuition, the
complexity of manipulation actually increases when moving from the general case (i.e. when
there is no restriction on the preferences) to the single-peaked case. In particular, in Theo-
rem 32 we show how the complexity of manipulating eliminate(veto), when top-truncated
ballots are allowed, moves from being in P in the general case to being NP-complete in
the single-peaked case.

4.2 Manipulation

In this section we study CWCM with top-truncated votes in both single-peaked and nearly
single-peaked electorates. Since the theme here is the reinstatement of combinatorial pro-
tections by top-truncated voting, for all the voting rules considered in this section, we
present both the “easiness” result (if not already known from previous work) as well as
the subsequent “hardness” result that arises as a consequence of allowing top-truncated
ballots.

4.2.1 Single-Peaked Electorates

Walsh was the first to consider manipulation with single-peaked preferences and he showed
that STV remains NP-hard to manipulate for 3 candidates [43]. Subsequently, Faliszewski
et al. showed that for many voting protocols which are usually hard to manipulate, restrict-
ing the preferences to being single-peaked makes them easy [27]. In particular, they showed
that any 3-candidate scoring rule with (α1− α3) ≤ 2(α2− α3) is easy to manipulate. This
result was then extended to obtain a complete characterization for any m-candidate scoring
rule by Brandt et al. [9]. Here, we look at 3-candidate scoring rules again and study the
impact on complexity of manipulation when top-truncated voting is allowed. The following
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results for the case of 3-candidate Borda rule was also independently shown by Fitzsim-
mons and Hemaspaandra [29]. Additionally, we also note that the proofs for Theorem 28
and Theorem 29 in this chapter are very similar to the ones for Theorem 2 and Theorem 3
in Chapter 3.

Theorem 28. For any 3-candidate scoring rule X that is not isomorphic to plurality or
veto, in single-peaked electorates, CWCM with top-truncated votes in X↓ is NP-complete.

Proof. Since there are only three candidates, the scoring vector for the corresponding
positional scoring rule is defined by 〈α1, α2, α3〉, where α1 > α2 > α3 = 0 (because α1 = α2

is isomorphic to veto, α2 = α3 is isomorphic to plurality, and α3 can be taken to be zero
since translating the scores in a scoring rule does not affect the outcome of the rule).

It is easy to see that the problem is in NP . To prove NP-hardness, we proceed by
considering the following three cases. In all the cases we use a reduction from the Partition
problem.

Case 1: α2 < α1 < 2α2. Consider the following instance of CWCM, where a, b, and p are
the three candidates. Let p L a L b be the linear ordering over the candidates. This linear
ordering in turn restricts the set of allowed votes to {(p > a > b), (a > p > b), (a > b >
p), (b > a > p), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a vote of weight
K voting (a > b > p), (b > a > p), (b > a ∼ p), and (p > a ∼ b) each. As a result the
scores of a, b, and p are α1K +α2K, α1K + 2α2K, and α2K respectively. In T , let each ki
have a vote of weight ki.

Suppose there exists a partition. Let those manipulators in the first half vote (p > a >
b) and let the others vote (p > a ∼ b). Then the scores of a, b, and p are α1K + 2α2K,
α1K + 2α2K, and α1K + 2α2K respectively, and hence p wins by tie-breaking.

Conversely, suppose there exists a manipulation in favour of p. Let x and y denote the
total weight of the manipulators voting (p > a > b) and (p > a ∼ b), respectively. Since
there exists a successful manipulation in favour of p, the score of p should be at least as
much as that of a. Therefore, we have: xα1 + yα2 + α2K ≥ α1K + xα2 + α2K. Using the
fact that x+ y = 2K, this simplifies to (x−K)(α1− 2α2) ≥ 0. But since we assumed that
α1 < 2α2, we have x ≤ K. Similarly, the score of p should also be at least as much as b and
so we have xα1+yα2+α2K ≥ α1K+2α2K. Simplifying this we have (x−K)(α1−α2) ≥ 0,
and since we assumed that α2 < α1, therefore x ≥ K. But then, x cannot be both greater
than and lesser than K at the same time. So x has to equal to K and this in turn implies
that y = K and that there exists a partition.
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Case 2: α1 > 2α2. Consider the following instance of CWCM, where a, b, and p are
the three candidates. Let a L p L b be the linear ordering over the candidates. This
linear ordering in turn restricts the set of allowed votes to {(a > p > b), (p > a > b),
(p > b > a), (b > p > a), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a vote
of weight (2α1 − α2)K voting (a > p > b), and (b > p > a) each. As a result the scores of
a, b, and p are (2α1−α2)α1K, (2α1−α2)α1K, and 2(2α1−α2)α2K respectively. In T , let
each ki have a vote of weight (α1 − 2α2)ki.

Suppose there exists a partition. Let those manipulators in the first half vote (p > a >
b) and let the others vote (p > b > a). Then the scores of a, b, and p are all 2(α2

1 − α2
2)K,

and hence p wins by tie-breaking.

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be
the sum of the ki’s of the manipulators in T who vote (p > a > b), (p > b > a), and
(p > a ∼ b), respectively. Since there exists a successful manipulation in favour of p, the
score of p should be at least as much as that of a. Therefore, we have: 2(2α1 − α2)α2K +
(x+ y)α1(α1 − 2α2) + zα2(α1 − 2α2) ≥ (2α1 − α2)α1K + α1K + xα2(α1 − 2α2). Using the
fact that x+ y + z = 2K, this simplifies to

α2K − z(α1 − α2) ≥ xα2. (4.1)

Doing the same with respect to p and b we have,

α2K − z(α1 − α2) ≥ yα2. (4.2)

Adding (4.1) and (4.2) we have z(2α1 − 3α2) ≤ 0. Since we assumed that α1 > 2α2,
(2α1 − 3α2) > 0 and this in turn implies that z ≤ 0. But then z cannot be less than zero
and so it should be zero. Substituting z = 0 in (4.1) and (4.2) we have x ≤ K, and y ≤ K
respectively. Since x + y + z = 2K, this implies that x = K and y = K and that there
exists a partition.

Case 3: α1 = 2α2. Consider the following instance of CWCM, where a, b, and p are
the three candidates. Let a L p L b be the linear ordering over the candidates. This
linear ordering in turn restricts the set of allowed votes to {(a > p > b), (p > a > b),
(p > b > a), (b > p > a), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a vote
of weight 3K voting (a > b ∼ p), and (b > a ∼ p) each. As a result the scores of a, b, and
p are 3α2K, 3α2K, and 0 respectively. In T , let each ki have a vote of weight ki.

Suppose there exists a partition. Let those manipulators in the first half vote (p > a >
b) and let the others vote (p, b, a). Then the scores of a, b, and p are 4α2K 4α2K, and
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2α1K, respectively. Since α1 = 2α2, all of them have the same score and hence p wins by
tie-breaking.

Conversely, suppose there exists a manipulation in favour of p. Let x, y, and z be
total weight of the manipulators in T who vote (p > a > b), (p > b > a), and (p > a ∼ b),
respectively. Since there exists a successful manipulation in favour of p, the score of p should
be at least as much as that of a. Therefore, we have: (x+y)α1 +zα2 ≥ 3α2K+xα2. Using
the fact that x+ y+ z = 2K, and that α1 = 2α2 this simplifies to y ≥ K. Doing the same
with respect to p and b we have, x ≥ K. But then since x+ y + z = 2K, this implies that
x = K and y = K and that there exists a partition.

Theorem 29. For any 3-candidate scoring rule X that is not isomorphic to plurality, in
single-peaked electorates, CWCM with top-truncated votes in Xav is NP-complete.

Proof. Clearly, this problem is in NP . To show NP-hardness, we reduce from an arbitrary
instance of the Fixed-difference Subset Sum problem.

Consider the following instance of CWCM, where a, b, and p are the three candidates.
Let a L p L b be the linear ordering over the candidates. This linear ordering in turn
restricts the set of allowed votes to {(a > p > b), (p > a > b), (p > b > a), (b > p > a), (a >
b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a vote of weight 8K voting (a > b ∼ p),
and (b > a ∼ p) each, vote of weight 3K voting (p > b > a), and a vote of weight K voting
(p > a > b). As a result the scores of a, b, and p are 8α1K + 5α2K, 8α1K + 7α2K, and
4α1K + 8α2K respectively. In T , let each ki have a vote of weight 2ki.

Suppose there exists S1, S2 such that
∑
S1 −

∑
S2 = K. Let those manipulators who

are in S1 vote (p, a, b), those in S2 vote (p > b > a), and let all the remaining manipulators
vote (p > a ∼ b). If x, y, and z denote the sum of ki’s of the manipulators who vote
(p > a > b), (p > b > a), and (p > a ∼ b), respectively, then the scores of a, b, and p are
8α1K + 5α2K + 2xα2 + zα2, 8α1K + 7α2K + zα2, and 8α1K + 8α2K, respectively. Now,
since x − y = K and x + y + z = 2K, we see that scores of a, b, and p are the same and
hence p wins by tie-breaking.

Conversely, suppose there existed a successful manipulation for p. From above we know
that if x, y, and z denote the sum of ki’s of the manipulators who vote (p > a > b), (p > b >
a), and (p > a ∼ b), respectively, then the scores of a, b, and p are 8α1K+5α2K+2xα2+zα2,
8α1K+7α2K+zα2, and 8α1K+8α2K, respectively. Since there is a successful manipulation
the score of p should be at least as much as that of a, and so this in turn implies that
x − y ≤ K. Similarly, doing it with respect to p and b we have x − y ≥ K. But then
x − y cannot be both greater and smaller than K at the same time. So this implies that
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x− y = K and that there exists two subsets such that
∑
S1−

∑
S2 = K, where x =

∑
S1

and y =
∑
S2.

From Theorem 28 and Theorem 29, we can see that a relaxation of the complete votes
assumption by additionally allowing top-truncated votes actually increases the complexity
of CWCM for all 3-candidate scoring rules with (α1−α3) ≤ 2(α2−α3) from being inP [27]
to being NP-complete when either the round-down or average score evaluation schemes
are used. However, with the round-up evaluation scheme manipulation become easy for all
m-candidate scoring rules as shown below.

Theorem 30. In single-peaked electorates, computing if a coalition of manipulators can
manipulate plurality↓, veto↓, pluralityav, and X↑, for any scoring rule X, with weighted
top-truncated votes takes polynomial time (for any number of candidates).

Proof. For all the voting rules except plurality↓, the manipulators can simply check if all
of them voting (p > a ∼ b) will make p a winner. If not they cannot make p a winner.
In case of plurality↓, all the manipulators can vote for any single-peaked order consistent
with the societal order L that has p at the top.

Another interesting point to note here is that Theorem 28, Theorem 29, and Theorem
30 together also imply that the restriction of preferences to being single-peaked has no
effect on the complexity of manipulation with top-truncated ballots, since, as we have
already seen, the same corresponding results were obtained in Chapter 3.

Next, we look at CWCM in Copelandα and we present both the “easiness” and the
“hardness” result.

Theorem 31. In single-peaked electorates, for 3-candidate Copelandα, α ∈ Q, 0 ≤ α < 1,

1. CWCM with complete votes is in P.

2. CWCM with top-truncated votes is NP-complete.

Proof. We first prove the polynomial time result for CWCM with complete votes and then
show the NP-completeness of CWCM with top-truncated votes.

Let a, b, and p, be the three candidates. Without loss of generality, we need to consider
only the following two linear orderings L:

i) p L a L b: In this case, the only strategy for all the manipulators is to just vote
(p > a > b).
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ii) a L p L b: In this case, the linear ordering restricts the set of allowed votes to {(a > p >
b), (p > a > b), (p > b > a), (b > p > a)}. As a result, it can be seen that regardless
of the weights of the voters in S, p cannot lose to both a and b in a pairwise election.
Therefore, the only possibilities are p losing to a (respectively, b), but winning against
b (a), or p tying against both a and b. In the latter scenario all the manipulators
can either vote (p > a > b) or (p > b > a), while in the former all of them can vote
(p > b > a) (respectively, (p > a > b)).

For the second part, it is easy to see that the problem is in NP . To be prove NP-
hardness, we reduce from an arbitrary instance of the Fixed-difference Subset Sum problem.

Consider the following instance of CWCM, where a, b, and p are the three candidates.
Let a L p L b be the linear ordering over the candidates. This linear ordering in turn
restricts the set of allowed votes to {(a > p > b), (p, a, b), (p > b > a), (b > p > a), (a >
b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a vote of weight 6K voting (a > b ∼ p)
and (b > a ∼ p) each, and a vote of weight 2K voting (p > a > b). In T , let each ki have
a vote of weight 2ki.

Suppose there exists S1, S2 such that
∑
S1 −

∑
S2 = K. In Copelandα, it can be

assumed that all the manipulators rank p first. So, let the manipulators in S1 vote (p >
b > a), those in S2 vote (p > a > b), and let the rest vote (p > a ∼ b). If NV (r, s) denotes
the total number of votes in V which rank r prior to s, and DV (r, s) = NV (r, s)−NV (s, r),
then DS∪T (p, a) = 0 and DS∪T (p, b) = 0. Therefore, the score of p, s(p) = 2α. Also since∑
S1 −

∑
S2 = K, DT (a, b) = −2K, while DS(a, b) = 2K. Therefore, DS∪T (a, b) = 0 and

so, both receive a score 2α. As a result, p wins by tie-breaking.

Conversely, suppose there exists a successful manipulation in favour of p. If x, y, and
z, denote the sum of ki’s of the manipulators in T who vote (p > a > b), (p > b > a), and
(p > a ∼ b), respectively, then without taking into account the pairwise election between a
and b in T , the score of p, a, and b is 2α, 1 +α, and α, respectively. Now since 2α < 1 +α
for all rational α ∈ [0, 1), therefore, the only way p would win this is if including the
pairwise election between a and b in T results in a tie between them. So this implies that
DS∪T (a, b) = 2K + 2x− 2y = 0, or y − x = K.

Our final result for manipulation under single-peaked preferences is the very interesting
case of eliminate(veto).

Theorem 32. In single-peaked electorates, and in the unique winner model, for elimi-
nate(veto),
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1. CWCM with complete votes is in P when the number of candidates is bounded.

2. CWCM with top-truncated votes is NP-complete for even three candidates.

Proof. We first present the polynomial time algorithm for CWCM with complete votes.

Suppose there was an arbitrary set W of the manipulators’ votes which—along with
S—resulted in p winning. Let the corresponding elimination order be e = (c1, · · · , cm = p).
To prove this theorem, we need the following lemmas.

Lemma 3. During each round of the eliminate(veto), only the rightmost or the leftmost
candidate in the linear ordering L is eliminated.

Proof. Let c1 L c2 L · · · L cm be any arbitrary linear ordering. It is clear that in the first
round of eliminate(veto) only c1 or cm will be eliminated since all the votes only have either
of them placed at the end. Also, since the votes are single-peaked, for any candidate cj,
the only candidates which can be immediately on top of it in a vote where cj is placed last
are its right and left neighbours, where the right neighbour of the rightmost candidate is
the leftmost one and vice-versa. Therefore, in particular, if c1 is the candidate eliminated
in the first round then all its last votes gets transferred to either c2 or cm. Hence in the
subsequent round only one of c2 or cm will be eliminated. Continuing this way we can
see that at every round r only one of the corner candidates in L (which now is the linear
ordering over the remaining m− r + 1 candidates) will be eliminated.

Lemma 4. The reverse of e is a single-peaked order with respect to the given linear order
L.

Proof. Our claim is that O : (p = cm) > cm−1 > · · · > c1 is a valid single-peaked order
with respect to L. To prove this, let us assume the contrary. This implies that there exists
three candidates ci, cj, ck such that cj >O ci >O ck, but according to the linear ordering
L it is only possible that ci L · · · L ck L · · · L cj or cj L · · · L ck L · · · L ci. Now,
cj >O ci >O ck implies that, among ci, cj, and ck, ck is eliminated first, followed by ci, and
then cj. But then, since at any round r only the corner elements can be eliminated (Lemma
3), ck can never be eliminated before both ci and cj in either of the two linear orderings.
Hence e cannot be a valid elimination order if its reverse is not single-peaked.

Proof of Theorem 32 contd. Now since the reverse of every elimination order
e caused by any arbitrary manipulation in favour of p is single-peaked (Lemma 4), the
manipulators can try out all possible single-peaked orders which have p at the top and can
try to induce e by collectively voting for the same. This is enough because we know that in
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eliminate(veto) any elimination order that is achieved by an arbitrary set of manipulators’
votes can be achieved if all the manipulators vote the same way (by using the reverse of
the elimination order) [11, Lemma 12]. And since, when the number of candidates are
bounded, there are only polynomial number of single-peaked orders which have p at the
top, this can be done in polynomial time.

We now go on to show the hardness of CWCM with top-truncated votes for 3-candidate
eliminate(veto). Clearly, the problem is in NP . To show NP-hardness, we reduce from
an arbitrary instance of the Partition problem.

Consider the following instance of CWCM, where a, b, and p are the three candidates.
Let a L b L p be the linear ordering over the candidates. This linear ordering in turn
restricts the set of allowed votes to {(a > b > p), (b > a > p), (b > p > a), (p > b >
a), (a > b ∼ p), (b > a ∼ p), (p > a ∼ b)}. In S, let there be a voter of weight K + 2
voting (b > p > a), voter of weight K − 1 voting (b > a > p), a voter of weight 1 voting
(a > b > p), a voter of weight 2 voting (p > a ∼ b), and a voter of weight 3 voting
(a > b ∼ p). In T , let each ki have a vote of weight ki.

The first thing to observe is, p cannot be unique winner if a is eliminated in the first
round. This is because once a is eliminated, score(b) = score(p) = 2K + 2. Therefore, for
p to be a unique winner, b has to be eliminated in the first round. This in turn implies
that the total score of a and p should be at least 1 more than that of b (since we are in the
unique winner model). So we have,

scoreT (a) +K + 3 ≥ 2K + 3 + scoreT (b) =⇒ scoreT (a)− scoreT (b) ≥ K

scoreT (p) +K + 4 ≥ 2K + 3 + scoreT (b) =⇒ scoreT (p)− scoreT (b) ≥ K − 1.

where scoreT (p) is the score p receives from the votes in T .

Now, it is possible to show that the above equations can be satisfied only if b receives a
score of 0 from T . Therefore, this implies that all the votes are concentrated on (p > a ∼ b)
and (a > b ∼ p). As a result, given the equations above, we basically have two possibilities:
a total weight of K + 1 voting for (a > b ∼ p), K − 1 voting (p > a ∼ b), or a total weight
of K voting (a > b ∼ p) and (p > a ∼ b) each. In the first case it is easy to see that p
will be eliminated in the second round, while in the latter case p will be a unique winner.
Hence p can be a unique winner if and only if there exists a partition.

Theorem 32 is most interesting not because of the fact that it follows our theme of top-
truncated voting reinstating combinatorial protections, but for the following other reasons.
First is the very unusual behaviour that it is showing. Eliminate(veto), when there are
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only a bounded number of candidates and in the unique winner model, is known to be in
P for practically everything—from CWCM with complete votes in the general case [11],
to CWCM with top-truncated votes in the general case (see Corollary 5 in Chapter 3),
and even when there is only partial information (in the form of top-truncated votes) on
the non-manipulators’ votes (see Theorem 23 in Chapter 3 and the discussion following
that). However, here, with single-peaked preferences and with top-truncated votes, it is
NP-complete even when there are only three candidates. Second, what makes Theorem
32 even more interesting is the fact that this actually serves as a counterexample (with
the only caveat that, to be fair, they had considered only complete votes in that paper)
to a conjecture stated by Faliszewski et al. [27] where they say that they do not expect
the complexity of manipulation for “any existing, natural voting system” to increase when
moving from the general case (where there is no restriction on the preferences) to the
single-peaked case. But this is exactly what we are seeing here.

4.2.2 Nearly Single-Peaked Preferences

For nearly single-peaked electorates, Faliszewski et al. were the first to look at the com-
plexity of manipulation, bribery, and control [24]. In that paper, they introduced several
notions of nearness and among them was the k-maverick-SP-society where all but at most
k of the voters are consistent with the societal order L. As noted before, here we only
consider this notion of “nearness”. We start off by looking at 3-candidate scoring rules
and we show the impact of top-truncated voting on CWCM. Note that Faliszewski et al.
showed that for all 3-candidate scoring rules that are not isomorphic to plurality CWCM
for 1-maverick-SP-societies was NP-complete [24]. The NP-completeness proofs in this
section are all based on the corresponding results for the case of single-peaked electorates
in Section 4.2.1.

Theorem 33. In 1-maverick-SP societies, for any 3-candidate scoring rule X that is not
isomorphic to plurality or veto, CWCM with top-truncated votes in X↓ is NP-complete.

Proof. Proceed the same way as in Theorem 28 by considering three cases.

Case 1: α2 < α1 < 2α2. Construct the following instance of CWCM with p L a L b as
the linear ordering and with S having a vote of weight K voting (a > b > p), (b > p > a),
(a > b ∼ p), and (b > a ∼ p) each. Note that here (b > p > a) is the maverick. In T , let
each ki have a vote of weight ki. Use Partition for reduction.
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Case 2: α1 > 2α2. Construct the following instance of CWCM with a L p L b as the
linear ordering and with S having a vote of weight (2α1 − α2)K voting for (a > p > b),
(b > a > p) and (b > a ∼ p) each, and a vote of weight 2(2α1 − α2)K voting (p > a ∼ b).
Note that here (b > a > p) is the maverick. In T , let each ki have a vote of weight
(α1 − 2α2)ki. Use Partition for reduction.

Case 3: α1 = 2α2. Construct the following instance of CWCM with a L p L b as the
linear ordering and with S having a vote of weight K voting (b > a > p) and (b > a ∼ p)
each, and a vote of weight 2K voting (a > b ∼ p). Note that here (b > a > p) is the
maverick. In T , let each ki have a vote of weight ki. Use Partition for reduction.

Theorem 34. In 1-maverick-SP societies, for any 3-candidate scoring rule X that is not
isomorphic to plurality, CWCM with top-truncated votes in Xav is NP-complete.

Proof. Proceed the same way as in Theorem 29. Construct the following instance of CWCM
with a L p L b as the linear ordering and with S having a vote of weight 2K voting
(a > b > p), (b > p > a), (a > b ∼ p), and (b > a ∼ p) each. Note that here (a > b > p)
is the maverick. In T , let each ki have a vote of weight 2ki. Use Fixed-difference Subset
Sum for reduction.

Finally, it is also easy to see that the following theorem holds based on the algorithm
given in Theorem 30.

Theorem 35. In k-maverick-SP societies, computing if a coalition of manipulators can
manipulate X↑, for any 3-candidate scoring rule X, plurality↓, veto↓, pluralityav with
weighted top-truncated votes takes polynomial time (for any number of candidates).

Next, we look at eliminate(veto) and we show how top-truncated voting increases the
complexity of manipulation for eliminate(veto) in 1-maverick-SP electorates and that it
continues to portray the unusual behaviour noted earlier.

Theorem 36. In 1-maverick-SP electorates, and in the unique winner model, for elimi-
nate(veto),

1. CWCM with complete votes is in P when the number of candidates is bounded.

2. CWCM with top-truncated votes is NP-complete for even three candidates.

Proof. We first show how CWCM with complete votes is in P . To do the same, we will
use the following lemma.
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Lemma 5. Any successful manipulation for p caused by an arbitrary set of votes of the
manipulators can be achieved if all the manipulators vote for one of the single-peaked orders
(that is consistent with the input linear ordering L) that has p at the top.

Proof. Suppose there was an arbitrary set of votes W which resulted in a successful ma-
nipulation in favour of p. Let the corresponding elimination order be e = (c1, · · · , cm = p),
where ci is the candidate eliminated in round i. Now, if the electorate were perfectly
single-peaked, then from Lemma 3 we know that at each round only on of the rightmost
or the leftmost candidate in the linear ordering L will be eliminated. But here we have
exactly 1 maverick and so that claim is not always true. As a result, we have the following
cases to consider.

Case 1: The first case is when at each round only one of the candidates at the ends in L
is eliminated. This case is identical to the perfectly single-peaked case and from Lemma 4
we know that the reverse of the elimination order here will be single-peaked.

Case 2: Suppose there was some round i in which there was a candidate ci eliminated
such that ci was neither the leftmost nor the rightmost candidate in the L remaining after
i − 1 rounds. If LV (cj) denotes the number of last votes for cj, then the fact that ci was
eliminated in the ith round implies that LV (ci) > LV (cj), ∀j 6= i. Now, since ci was not
the rightmost or leftmost candidate in L, the only way ci can have last votes is if, in the
ith round, the vote of the maverick had ci at the end. But then, this also implies that
from the (i + 1)th round, the maverick is practically a dictator as for every round from i
only the candidate placed last (for that round) in the maverick’s vote will be eliminated.
Therefore, in this case, the only way p can win is if it is placed at the top by the maverick.
As a result, what we see here is that, if at all the manipulators’ votes have any significance
(it wouldn’t matter how they vote if the first candidate to be eliminated in the election
was a candidate not present at the either of the ends in L) in determining if p wins, that
significance holds only for the first i − 1 rounds. Also, since the first i − 1 rounds only
had one of the candidates at the ends in L eliminated, we know that there is at least one
single-peaked order that has p at the top and {c1, · · · , ci−1} in the last i− 1 places, where
cj is the candidate placed at the jth position from the bottom in the preference order.

In both the cases above, if the appropriate single-peaked order (which is the reverse
of the elimination order in case 1, and a single-peaked order with p at the top and
{c1, · · · , ci−1} in the last i − 1 places for case 2) is determined, then all the manipula-
tors can simply vote for that order and this in turn will result in a successful manipulation
in favour of p. Doing this is enough because we know that in eliminate(veto) any elimi-
nation order that is achieved by an arbitrary set of manipulators’ votes can be achieved if
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all the manipulators vote the same way (by using the reverse of the elimination order) [11,
Lemma 12].

Proof of Theorem 36 contd. As a consequence of Lemma 5, the manipulators can
now simply try out all possible single-peaked orders (that are consistent with L) which
have p at the top. Since there are only a polynomial number of such orders (when the
number of candidates are bounded), this can be done in polynomial time.

To prove the second part of the theorem, we can proceed the same way as in the second
part of Theorem 32. Construct the following instance of CWCM with a L b L p as the
linear ordering and with S having a vote of weight K + 2 voting (b > p > a), a vote of
weight K − 1 voting (b > a > p), a vote of weight 1 voting (a > b > p), a vote of weight
1 voting (p > a ∼ b), a vote of weight 1 voting (p > a > b), and a vote of weight 2 voting
(a > b ∼ p). Note that, here, (p, a, b) is the maverick. In T , let each ki have a vote of
weight ki. Use Partition for reduction.

4.3 Bribery

Faliszewski et al. were the first to look at the complexity of bribery in elections [22].
Subsequently, the problem was studied by Brandt et al. in single-peaked settings and
there they showed that many of the combinatorial protections for bribery vanish when
the preferences are restricted to being single-peaked [9]. Finally, Faliszewski et al. also
studied the problem when the preferences are nearly single-peaked [24]. Here, we revisit the
problem of bribery in single-peaked and nearly-single peaked settings and we try and see if
bribery too, like manipulation, fits into our theme of reinstating combinatorial protections
in single-peaked and nearly single-peaked elections through top-truncated voting.

4.3.1 Weighted-Bribery in Scoring Rules

Here, we first derive the results for 3-candidate scoring rules in single-peaked settings when
only complete votes are allowed. Subsequently, we do the same when top-truncated ballots
are allowed. The NP-completeness proofs here use an idea that is similar to the one used
by Faliszewski et al. in Theorem 4.9 [22], where they use a reduction from a modified
version of the weighted manipulation problem to show that α-weighted-bribery is NP-
complete when it isn’t the case that α2 = α3 = · · · = αm. Although it is possible to extend
the results of the complete votes case here to any m-candidate scoring rule, thanks to
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the complete characterization of weighted manipulation for scoring rules given by Brandt
et al. [9], we stick to the 3-candidate case here because, to the best our knowledge, such a
complete characterization is not yet known when top-truncated ballots are allowed.

Let us first define the modified version of manipulation that we will use to reduce to the
problem of weighted-bribery. The modified problem defined here is similar to the one used
by Faliszewski et al. [22], with the only difference that in their problem all the manipulators
need to have weights at least twice as much as the weight of the heaviest non-manipulator,
while in our case we require that all the manipulators need to have weights at least thrice
as much as the weight of the heaviest non-manipulator.

Definition 14 (CWCM’). CWCM’ is the same problem as CWCM with the restriction
that each manipulative voter has a weight at least thrice as much as the weight of the
heaviest non-manipulator.

Theorem 37. In single-peaked electorates, CWCM’ with complete votes is NP-complete
for 3-candidate scoring rules when (α1 − α3) > 2(α2 − α3).

Proof. To prove the above theorem for the complete votes case, we make use of Faliszewski
et al.’s proof of Theorem 4.4 [27] which shows how CWCM is NP-complete for 3-candidate
scoring rules when (α1 − α3) > 2(α2 − α3). The first observation to make here is that
the reduction in [27, Theorem 4.4] works even if we use Partition’. So, to prove the
NP-completeness of CWCM’, the only thing we need to do is to make sure that the
manipulators used in the reduction have weights at least thrice as that of the heaviest
non-manipulator. This in turn can be ensured if we can somehow replace every non-
manipulator who has a weight greater than the threshold (which here is one-third the
weight of the lightest manipulator) with several non-manipulators each of whose weight is
less than the threshold.

Again, in the proof of [27, Theorem 4.4], if we use Partition’ for reduction then there will
be 2n manipulators (instead of just 2 in the original proof) each of weight 3(2α1−α2)K such
that n of them vote for (a > p > b) and the other n vote (b > p > a). Additionally, each of
manipulators will now have a weight of 3(α1 − 2α2)ai, where {a1, · · · , an} is an arbitrary
instance of Partition’ with ai ≥ K, ∀i and

∑
i ai = 2nK (the rationale behind multiplying

an additional factor of 3 to the weights of each manipulator and non-manipulator will be
evident below). But now, since we need the weights of the manipulators to be at least
thrice as much as the weight of the heaviest non-manipulator, we will have to replace each
non-manipulator by at most ⌈

3(2α1 − α2)K⌊
1
3
(3(α1 − 2α2))amin

⌋⌉
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non-manipulators, where amin = argmini{ai}. Since amin ≥ K, and (α1 − 2α2) ≥ 1, we
have, ⌈

3(2α1 − α2)K⌊
1
3
(3(α1 − 2α2))amin

⌋⌉ ≤ ⌈3(2α1 − α2)K

amin

⌉
≤ dCe

where C = 3(2α1 − α2) is a constant. Now, since this splitting can be done in polynomial
time, that completes the proof of the theorem.

We now show the result for weighted-bribery in scoring rules.

Theorem 38. In single-peaked settings, weighted-bribery with complete votes is in P for
3-candidate scoring rules when (α1 − α3) ≤ 2(α2 − α3) and is NP-complete otherwise.

Proof. Let a, b, and p be the three candidates. Without loss of generality we can assume
that α3 = 0. We will discuss both cases (α1 ≤ 2α2 and α1 > 2α2) separately.

Case 1: α1 ≤ 2α2. Here we basically have two cases: i) when the input linear ordering
of the candidates is a L b L p and ii) when the input linear ordering of the candidates is
a L p L b. In scoring rules, it is reasonable to assume that the bribed voters will always
be made to vote in such a way that p will be at the top. Therefore, in the first case, since
there is only one vote (p > b > a) that has p placed at the top, all the bribed voters will
be bribed to vote (p > b > a). So now the only part remaining part here is to identify
who to bribe. This can be done in the following way. Let us suppose that there was a
successful bribery for a given instance. Since the only allowed votes for a L b L p are
{(a > b > p), (b > a > p), (b > p > a), (p > b > a)}, any successful bribery would
have resulted in bribing x1 voters initially voting (a > b > p), x2 voters initially voting
(b > a > p), and x3 voters initially voting (b > p > a). Now, to identify these x1, x2, and
x3, we simply need to iterate through all the feasible (a solution (x1, x2, x3) is feasible if
the input set of votes has at least x1 voters voting (a > b > p), at least x2 voters voting
(b > a > p), and at least x3 voters voting (b > p > a)) integral solutions of x1+x2+x3 ≤ k,
where k is the bribe limit, pick the x1 heaviest voters voting (a > b > p), the x2 heaviest
voters voting (b > a > p), the x3 heaviest voters voting (b > p > a), bribe all of them to
vote (p > b > a), and check if it makes p a winner. If yes, we accept. Else, we continue
on to the next set of solutions which satisfy the equation. Since there are only O(k3) such
solutions, and since k ≤ n, this can be done in polynomial time.

For the case a L p L b, the only allowed votes are {(a > p > b), (p > a > b), (p > b > a),
(b, p, a)}, and so we can bribe a voter to vote either (p > a > b) or (p > b > a). Therefore,
the main task here is to first identify the right voters to bribe and then decide on whether to
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make them vote (p > a > b) or (p > b > a). To do this, let us assume there was a successful
bribery in favour of p. This in turn would have resulted in bribing x1 voters initially voting
(a > p > b), x2 voters initially voting (b > p > a), x3 voters initially voting (p > a > b), and
x4 voters initially voting (p > b > a). Now, let F = {(x1, x2, x3, x4) | x1 + x2 + x3 + x4 ≤
k and (x1, x2, x3, x4) is feasible}. For each x = (x1, x2, x3, x4) ∈ F , pick the heaviest x1
voters voting (a > p > b), the heaviest x2 voters voting (b, p, a), the heaviest x3 voters
voting (p > a > b), and the heaviest x4 voters voting (p, b, a). Let S ′ be the set of all
these voters. Next, calculate the scores of p, a, and b considering all the votes in S − S ′,
where S is the set of all votes given as part of the input. Let these scores be denoted by
sS−S′(p), sS−S′(a), and sS−S′(b) respectively. Now for the case aLpLb, since α1 ≤ 2α2, for
any set of votes, p cannot lose to both a and b. Therefore the only possible cases for the
scores sS−S′(p), sS−S′(a), and sS−S′(b) are the following. For each of them we mention how
the bribery needs to be done.

1. sS−S′(p) ≥ sS−S′(a), sS−S′(p) ≥ sS−S′(b): In this case, for each voter in S ′, make him
or her vote either (p > a > b) or (p > b > a), if they aren’t already voting for either
of them.

2. sS−S′(b) > sS−S′(p), sS−S′(a) ≤ sS−S′(p): In this case, for each voter in S ′, make him
or her vote (p > a > b), if they aren’t already.

3. sS−S′(a) > sS−S′(p), sS−S′(b) ≤ sS−S′(p): Here, for each voter in S ′, make him or her
vote (p, b, a), if they aren’t already.

Doing the above takes only polynomial time since there are only O(k4) feasible solutions
and k ≤ n.

Case 2: α1 > 2α2. To show that weighted-bribery in this case is NP-complete, we use
a reduction from CWCM’. Note that to show this we use the linear ordering a L p L b
since there are polynomial time algorithms for both CWCM’ and weighted-bribery when
p is at one of the ends in the societal order. Now, given an arbitrary instance (C, S, T, p)
of CWCM’, we construct the following instance (C, V, p, k) where C is set of candidates,
V = S ∪ T ′ where T ′ is the set of voters from T voting either (a > p > b) or (b > p > a).
We set k = |T |.

It is easy to see that if a successful manipulation exists then bribery with at most
k = |T | bribes is possible. To prove the converse we basically need to show that any
bribery with at most |T | bribes is possible if we bribe only the voters from T ′. For this,
let us assume this were not the case and that there was a voter v ∈ V − T ′ who was part
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of the successful bribery in favour of p. By bribing v, the gain for p against a or b is at
most (α1 + (α1 − α2))w(v), where w(v) is the weight of voter v. On the other hand if a
voter v′ ∈ T ′ was bribed, then the gain for p against a or b is at least (α1 − α2)w(v′). But
then, according to the restriction imposed on CWCM’, any v′ ∈ T ′ has a weight at least
thrice as much as the heaviest voter in V ′ − T . This in turn implies that w(v′) ≥ 3w(v),
and so we might as well bribe v′ instead of v. As a result, any bribery in favour of p can be
achieved by bribing only the voters from T ′. Therefore, existence of a successful bribery
implies that a successful manipulation exists in CWCM’.

For the case of top-truncated ballots, we proved in Theorem 28 that, in single-peaked
settings, CWCM with top-truncated votes is NP-complete for all 3-candidate scoring
rules except plurality and veto when the evaluation scheme was round-down. Similarly, we
also showed in Theorem 29 that CWCM with top-truncated votes is NP-complete for all
3-candidate scoring rules except plurality when the evaluation scheme was average-score.
Based on these two theorems it is easy to see that we can make similar ‘splitting’ arguments
as in the proof of Theorem 37 to prove these results hold true even for CWCM’. As a result,
we can state the following results which can be proved by using a reduction from CWCM’
similar to the one shown in case 2 of Theorem 38.

Theorem 39. For any 3-candidate scoring rule X that is not isomorphic to plurality or
veto, in single-peaked electorates, weighted-bribery with top-truncated votes in X↓ is NP-
complete.

Theorem 40. For any 3-candidate scoring rule X that is not isomorphic to plurality, in
single-peaked electorates, weighted-bribery with top-truncated votes in Xav is NP-complete.

Note that we can similarly prove the corresponding results for nearly single-peaked
electorates as well.

4.3.2 Weighted-Bribery in Eliminate(veto)

Here we look at the problem of weighted-bribery in eliminate(veto). First, we study the
problem in single-peaked electorates and following that we look at the nearly single-peaked
case. In both cases, yet again, we observe that allowing top-truncated voting increases the
complexity of weighted-bribery from being in P to being NP-complete.

Theorem 41. In single-peaked electorates, and in the unique winner model, for 3-candidate
eliminate(veto),
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1. weighted-bribery with complete votes is in P.

2. weighted-bribery with top-truncated votes is NP-complete.

Proof. First we discuss the polynomial time algorithm for weighted-bribery when only
complete votes are allowed.

Let a, b, and p be the three candidates. Without loss of generality, we need to consider
only two linear orders: a L b L p and a L p L b.

i) a L b L p: For the given linear ordering, only the following elimination orders are
possible: {(a, b, p), (a, p, b), (p, a, b), (p, b, a)}, where (a, b, p) implies that a is eliminated in
the first round, followed by b, and then p (which is the winner). We will consider each of
these cases separately.

Case 1: (a, b, p). Here no bribery is required as p is already the winner.

Case 2: (a, p, b). In this case, it is easy to see that a simple greedy strategy would suffice.
Since b cannot be eliminated in the first round (as there is no vote with b at the end
according to L), we only need to make sure that p wins against b in the second round.
This can be ensured by doing the following:

Starting with the heaviest voter among all voters who do not rank p above b, bribe him
or her to vote (p > b > a). If p is the winner after the bribe, then accept. If not, continue
the same until number of voters bribed exceeds the limit k. If the limit exceeds, reject.

Case 3: (p, a, b). Here for p to win, it has to be saved from elimination in the first round,
and subsequently has to beat b in the second round. To do this, we can proceed in two
phases: In the first phase, starting with the heaviest voter among all voters who do not
rank a last, bribe them to vote (p > b > a). After each bribe, check if LV (a) > LV (p),
where LV (a) denotes the total weight of all the voters who have placed a last in their
preference ordering. Once that is done, i.e. once LV (a) > LV (p), we check if p is the
winner. If yes, we accept. Else, we move on to the second phase where starting from the
heaviest voter but now among all voters who do not rank p above b, we bribe them to vote
(p > b > a). Here again, after each bribe, we see if it results in p being the winner. If
it does, we accept. Otherwise, if at any point during this algorithm the number of voters
bribed exceeds the limit k, then we reject.

Case 4: (p, b, a). Follow the exact same algorithm as in case 3.

ii) a L p L b: Here, only the following elimination orders are possible: {(a, b, p), (a, p, b),
(b, a, p), (b, p, a)}. Again, we will consider each of these cases separately.
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Case 1: (a, b, p), (b, a, p). In both these cases no bribery is required as p is already the
winner.

Case 2: (a, p, b). Here the situation is a little more complicated since the voters can be
bribed to either induce the elimination order (a, b, p) or (b, a, p). But although this is the
case, it is possible to prove (see Lemma 6) that inducing (a > b > p) is enough as inducing
the other would require bribing more voters. So now, this case is similar to case 2 for the
linear order a L b L p and we can use the use the algorithm described there.

Case 3: (b, p, a). This is similar to case 2 above with a and b interchanged.

This concludes the proof of the first part.

To prove the second part, we show how Partition’ can be used to prove that weighted-
bribery is hard for eliminate(veto) when top-truncated votes are allowed. The proof es-
sentially follows an idea similar to the one used for proving the corresponding result for
manipulation in Theorem 32, only that we show this reduction through the modified par-
tition problem. The main motivation behind using the modified partition problem is to
basically facilitate a situation that will enable us to argue that the bribery can be restricted
to a certain set of voters (who correspond to the manipulators in the corresponding ma-
nipulation instance).

Now, it is easy to see that the problem is clearly in NP . To prove NP-hardness, we
show a reduction from an arbitrary instance {a1, · · · , an} of Partition’, where

∑
i ai = 2nK

and ai ≥ K, ∀i, to an instance of weighted-bribery (C, V, p, k), where C = {a, b, p} is the
set of candidates, aLbLp is the linear order of the candidates, and V is the set of the
following voters.

1. For each ai, construct a voter vi whose weight is ai and who votes for (b > a > p).
Let T be the set of all these voters.

2. Construct the following set of voters S: n voters of weight K each voting (b > p > a),
n voters of weight K−1 each voting (b > a > p), n−1 voters of weight 1 each voting
for (b > a > p), 1 voter of weight 1 voting (a > b > p), 1 voter of weight 2 voting
(b > p > a), 1 voter of weight 2 voting (p > a ∼ b), and 1 voter of weight 3 voting
(a > b ∼ p).

Set the bribe limit k = n and V = S ∪ T .

First thing to notice is that, if a is eliminated in the first round then p cannot be a
unique winner, no matter how we choose the n voters to bribe. Therefore the only way
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to make p a unique winner is by making sure that a does not get eliminated. Now since
the bribe limit is n, the maximum total weight of the voters bribed cannot exceed 2nK.
Also, using arguments similar to the one used in the proof of Theorem 32, we can see that
any bribery with at most n bribes is possible only if there is an equal weight of nK that
is assigned to both (p > a ∼ b) and (a > b ∼ p). Therefore, the only part that remains to
be argued is to show that this bribery with at most n bribes can be achieved if we bribe
only those voters in T .

Before we show this, let us see the objectives involved in the bribery of this instance.
First is that any bribe results in changing the vote of the corresponding voter to either
(p > a ∼ b) or (a > b ∼ p). Secondly, while bribing a voter, we always want the gain for p
against every other candidate to be as much as possible. And lastly, we also need to ensure
that while a is given enough score so that it is not eliminated in the first round, any bribe
to vote (a > b ∼ p) does not result in the score of p decreasing.

Now, having seen the objectives, let us suppose that there was a voter v ∈ S who was
part of a successful bribery in favour of p. Before the bribe, v has one among (b > p > a),
(b > a > p), (a > b > p), (p > a ∼ b), and (a > b ∼ p) has his or her vote. But given the
objectives, the only rational choice of a voter who has to be bribed is one who’s current vote
is (b > a > p) (bribing one with (a > b ∼ p) is irrational since to compensate the reduction
in the score of a we will have to bribe another voter; bribing a voter with (b > p > a) is
irrational since if this voter was bribed to vote (p > a ∼ b) then the gain for p would have
been more if instead a voter voting (b > a > p) would have been bribed, or otherwise if
he or she was bribed to vote (a > b ∼ p) then another voter would have to be bribed to
compensate the reduction in p’s score; bribing a voter with (a > b > p) is irrational since
bribing this voter has the same effect as bribing a voter with (b > a > p) and the weights
of all the voters voting (b > a > p) is at least as much as the weight of the voter voting
(a > b > p)). But then, all the voters in T are not only voting (b > a > p) initially, but
they also have weights which are at least as much as of those voters voting (b > a > p) in
S. Hence, any bribery that is possible with at most n bribes can be achieved if we bribe
only the voters from T . Now, since the total weight of all voters in T is equal to 2nK, this
implies that p is a unique winner if and only if there is a partition.

Lemma 6. For the linear order a L p L b, when the input elimination order is (a, p, b),
for a successful bribery it is enough to induce the elimination order (a, b, p).

Proof. Since the linear order is a L p L b, only the following votes are allowed: {(a > p > b),
(p > a > b), (p > b > a), (b > p > a)}. Let us assume that the total weight of all the
voters voting (a > p > b) is W1, those voting (p > a > b) is W2, those voting (p > b > a) is
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W3, and those voting (b > p > a) is W4. Now, since the input elimination order is (a, p, b),
we have the following inequalities: (1) W1 +W2 < W3 +W4 (since a is getting eliminated
in the first round, LV (a) > LV (b), where LV(a) is the total weight of all the voters who
place a at the end), and (2) W1 + W2 + W3 < W4 (since p gets eliminated in the second
round). A successful bribery for p can proceed in two ways. First is if the bribery induces
the elimination order (a, b, p) and the other way is to induce the elimination order (b, a, p).
The task here is to prove that inducing (a, b, p) is better than inducing (b, a, p), or in other
words, prove that inducing (b, a, p) requires bribing at least one more voter than what is
required to induce (a, b, p).

To prove this, let us consider the case when the elimination order (a, b, p) is induced.
Since the input already has a getting eliminated in the first round, we only need to look
at the second round and see how much total weight should be bribed so that p is saved
from elimination. Once a is eliminated, LV (b) = W1 + W2 + W3, and LV (p) = W4.
Therefore, for p to win in the second round, the weight of votes we need to bribe is at least

Dpb =
⌈
W4−(W1+W2+W3)

2

⌉
. Let this bribery require k1 voters to bribed. Moreover, note that

all the bribed votes are of the form (b > p > a) and they will be bribed to vote (p > b > a).

Now, let us consider the second elimination order (b, a, p). To induce this, that is to
make b get eliminated in the first round, the total weight of votes we need to bribe is at least

Dab =
⌈
(W3+W4)−(W1+W2)

2

⌉
=
⌈
2W3+W4−(W1+W2+W3)

2

⌉
= W3 +

⌈
W4−(W1+W2+W3)

2

⌉
= W3 +Dpb.

As a result, among voters voting (b > p > a) we need to bribe a weight of at least Dpb so
as to get b eliminated in the first round. But then, this bribery requires at least k1 voters
(from above), which in turn implies that we need at least one more voter to be bribed
here than in the case where the elimination order (a, b, p) was induced. Hence, when the
input elimination order is (a, p, b) and the linear order aLpLb, for a successful bribery it is
enough to induce the elimination order (a, b, p).

Next, we look at the complexity of bribery for eliminate(veto) in 1-maverick single-
peaked electorates.

Theorem 42. In 1-maverick single-peaked electorates, in the unique winner model, for
3-candidate eliminate(veto),

1. weighted-bribery with complete votes is in P.

2. weighted-bribery with top-truncated votes is NP-complete.
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Proof. To prove the first part, we proceed like in Theorem 41 and consider the two possible
input linear orderings a L b L p and a L p L b separately, where a, b, and p are the three
candidates.

i) a L b L p: Now as opposed to the case in single-peaked electorates, here b can be
eliminated in the first round (due to the presence of the maverick) and so, the following
elimination orders are possible: {(a, b, p), (b, a, p), (b, p, a), (a, p, b), (p, a, b), (p, b, a)}. We
will consider each of these separately.

Case 1: (a, b, p), (b, a, p). In both these cases, no bribery is required as p is already the
winner.

Case 2: (b, p, a). b can only be placed in the last place in his or her preference ordering
by the maverick. Therefore, here, the fact that b is getting eliminated in the first round
implies that the weight of the maverick is greater than the total weight of all voters who
have placed a at the end and the total weight of all voters who have placed p at the end.
This in turn implies that once b is eliminated, only the candidate above b in the maverick’s
preference order will get eliminated, or in other words the maverick in this scenario acts
like a dictator. Hence, the only voter who needs to be bribed is the maverick.

Case 3: (a, p, b), (p, a, b), (p, b, a). For all these cases, we can follow the exact same algo-
rithm as outlined in the proof of Theorem 41 for the case of single-peaked electorates.

While we have covered all the cases for the linear order a L b L p, one question that
could arise is: What if the input set of voters did not have a maverick? Is there anything
more that can be achieved if we introduce a maverick while bribing? The answer to this is
No. This is so because, consider the case if the input elimination order was (a, p, b). Then
the only rationale choice (among (a > p > b) and (p > a > b)) of vote for a bribery-induced
maverick according to L is (p > a > b). Now, let us suppose that we were to introduce
such a maverick through bribing. This in turn can result in two possibilities: i) b getting
eliminated in the first round ii) a remains the one to be eliminated in the first round.
In case i), the fact that b got eliminated in the first round as a result of introducing the
maverick implies that there already existed a voter in the input whose weight was so high
that bribing him alone would have anyway sufficed. And our greedy strategy would have
anyway identified such a voter and bribed him or her to vote (p > b > a). In the other
case, the only objective this achieves is that it lowers the gap between the scores of p and b,
which again would have been achieved by our greedy strategy as it always picks the heaviest
voter who does not rank p above b and makes him or her vote (p > b > a). Therefore there
is nothing more we are achieving by introducing a maverick through bribery. Similarly, we
can argue the same for the other elimination orders.
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ii) a L p L b: For this linear order if the input elimination order were (p, a, b) or (p, b, a)
then we can make the same argument as in the case 2 above to say that we need to bribe
only the maverick and make him or her vote (p > a > b) or (p > b > a). For all the
other cases we can proceed exactly as outlined in the proof of Theorem 41 for the case
of single-peaked electorates. Additionally, the question of introducing a maverick through
bribing does not arise here because both the maverick votes (a > b > p) and (b > a > p)
are irrational choices as they both have p placed at the end.

This concludes the proof of the first part of theorem.

Next, we show the NP-completeness result by using similar arguments as in the proof
of second part of Theorem 41 with only a slight modification to the construction of T .
Here, in T we have the following voters: n voters of weight K each voting (b > p > a),
n voters of weight K − 1 each voting (b > a > p), n − 1 voters of weight 1 each voting
(b > a > p), 1 voter of weight 1 voting (a > b > p), 1 voter of weight 1 voting (p > a ∼ b),
1 voter of weight 1 voting (p > a > b), 1 voter of weight 2 voting (b > a > p), and 1 voter
of weight 2 voting (a > b ∼ p). Note that the voter voting (p > a > b) is the maverick.

4.3.3 Is Weighted-Bribery for Weak-Condorcet Consistent Rules
Always Easy?

Brandt et al. [9] showed that in single-peaked electorates weighted-bribery is in P for all
weak-Condorcet consistent voting rules (see [9, Theorem 4.4] for a more general result).
The polynomial results in their theorem and the reason why it was possible to consider all
weak-Condorcet consistent voting rules together was because of the well-known property
of single-peaked electorates where it is guaranteed that there is always at least one weak-
Condorcet winner (the top choices of the “median” voters are always weak-Condorcet
winners). However, this property no longer holds when top-truncated votes are allowed.
As has also been pointed out by Cantala [10], it is not even necessary that a weak-Condorcet
winner exists in such settings. We illustrate this with the following example.

Example 4. Let C = {a, b, c, d, e} with a L b L c L d L e as the linear ordering. Let there
be 5 voters and let their votes be (a >v1 b >v1 c > d ∼v1 e), (b >v2 c > d ∼v2 e ∼v2 a),
(c >v3 d >v3 e ∼v3 b ∼v3 a), (d >v4 e >v4 a ∼v4 b ∼v4 c), and (e >v5 d >v5 c ∼v5 b ∼v5 a),
respectively. Now, it is easy to see that in the pairwise majority relation, a and b lose to
d, c loses to b, and both d and e lose to c. Since everyone loses at least once, there is no
weak-Condorcet winner.
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Because of the above we can no longer consider all weak-Condorcet consistent rules to-
gether as done by Brandt et al. [9] and exploit the connection between the weak-Condorcet
winner(s) and “median” voters to come up with polynomial time algorithms for weighted-
bribery. In fact, next we show that for 3-candidate Baldwin’s rule (also known as Fishburn’s
version of Nanson’s rule [40]), which is a weak-Condorcet consistent rule in single-peaked
electorates [9], weighted-bribery is NP-complete when top-truncated ballots are allowed.
To show this we use an idea similar to the one used in Theorem 41.

Theorem 43. In single-peaked electorates, weighted-bribery with top-truncated votes is
NP-complete for 3-candidate Baldwin’s rule.

Proof. The problem is clearly in NP . To prove NP-hardness, we show a reduction from
an arbitrary instance {a1, · · · , an} of Partition’, where

∑
i ai = 2nK and ai ≥ K, ∀i, to

an instance of weighted-bribery (C, V, p, k), where C = {a, b, p} is the set of candidates,
a L p L b is the linear order of the candidates, and V is the set of the following voters.

1. For each ai, construct a voter vi whose weight is 2ai and who votes for (b > a ∼ p).
Let T be the set of all these voters.

2. Construct the following set of voters S: n voters of weight 2K each voting (b > p > a),
n voters of weight 2K each voting (b > a ∼ p), n voters of weight K each voting
(a > b ∼ p), 2 voters of weight 1 each voting (b > p > a), 2 voters of weight 1 each
voting (a > b ∼ p), and 1 voter of weight 1 voting (p > a ∼ b).

Set the bribe limit k = n and V = S ∪ T .

First, observe that if a is eliminated in the first round then p cannot win, no matter
how we choose the n voters to bribe. Therefore the only way to make p a winner is by
making sure that a does not get eliminated. Now since the bribe limit is n, the maximum
total weight of the voters bribed cannot exceed 4nK. Also note that we need to bribe
at least 4nK weight because otherwise either p or a will be eliminated in the first round.
Additionally, it is possible to show that even now p can be a winner only if there is a
total weight of 2nK voting (p > a > b) and a total weight of 2nK voting (a > p > b)
(informally, this argument holds because failing to have equal votes on (p > a > b) and
(a, p, b) will cause either p or a to be eliminated in the first round). Therefore, the only
part that remains to be argued is to show that any bribery with at most n bribes can be
achieved if we only bribe the voters in T .

To prove this, let us assume the contrary and suppose that there was a voter v ∈ S
who was part of a successful bribery in favour of p. Before the bribe, v has one among
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(b > p > a), (b > a ∼ p), (p > a ∼ b) and (a > b ∼ p) has his or her vote. Now, given the
fact that we always want the gain for p to be as much as possible, and because a needs
to be given enough score to prevent it from being eliminated first, the only rational choice
of voter who has to be bribed is one who’s current vote is (b > a ∼ p) (bribing one with
(a > b ∼ p) is irrational since to compensate the reduction in the score of a we will have
to bribe another voter, bribing a voter with (b > p > a) is irrational since if this voter was
bribed to vote (p > a > b) or (a > p > b) then the gain for p would have been more if
instead a voter voting (b > a ∼ p) was bribed). But then, all the voters in T are not only
voting (b > a ∼ p) initially, but they also have weights which are at least as much as of
those voters voting (b > a ∼ p) in S. Hence, any bribery that is possible with at most n
bribes can be achieved if we bribe only the voters from T . Now, since the total weight of
all voters in T is equal to 4nK, this implies that p can be a winner if and only if there is
a partition in Partition’.

Note that almost the same proof as above can be used to show that in single-peaked
electorates CWCM with top-truncated ballots is NP-complete for 3-candidate Baldwin’s
rule.

4.4 Is Top-truncated Voting Always Beneficial in SP

Electorates?

Although we have seen instances, like in 3-candidate scoring rules with round-up evaluation
scheme, where the complexity of manipulation decreases as a result of moving from a purely
single-peaked setting to a setting where top-truncated votes are allowed, we haven’t really
seen examples of any other voting rule which shows this behaviour. Moreover, we also know
that with a different evaluation scheme like round-down or average-score this behaviour
is no longer seen for even 3-candidate scoring rules. Therefore, a natural question one
could ask is: “What role does the evaluation scheme play? Is it possible that given a
voting rule one can always construct an evaluation scheme so that it will be beneficial to
allow top-truncated voting in single-peaked electorates?”. Alternatively, one could also
ask: “Is there a voting system for which it is always easy to manipulate when top orders
are allowed?”. We answer the former question in the negative and the latter one in the
affirmative. We show that, as long as all the unranked candidates are assumed to be tied
and are assumed to be ranked below the ranked candidates (which is the natural definition
of a top-truncated vote), there is at least one voting system for which, irrespective of how
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the top-truncated votes are dealt with, it isNP-hard to manipulate in purely single-peaked
settings, but is easy to manipulate when top-truncated votes are allowed.

Theorem 44. There exists a voting system for which, in single-peaked settings,

1. CWCM with complete votes is NP-complete.

2. CWCM with top-truncated votes is in P.

Proof. Let us first define the (artificial) voting system that we consider here.

Definition 15 (Artificial Voting Rule (AVR)). Given the set, V , of voter preferences, the
score of each candidate c ∈ C is calculated as

s(c) =
∑
v∈V

∑
a∈C
a6=c
c>va

(m− pos(c))w(v)

where pos(c) is the position of candidate c in the preference order of v if it is ranked
(pos(c) = i if c is ranked in the ith position by v) and is m otherwise, m = |C|, w(v) is
the weight of voter v, and c >v a denotes that c is ranked above a by v.

Example 5. Let C = {a, b, c, d, e} be the set of candidates and let there be a single voter
of weight w with the preference ordering (d > b > a > e > c). Then the scores of the
candidates are s(a) = 4w, s(b) = 9w, s(c) = 0, s(d) = 16w, and s(e) = w.

So now we need to show that for AVR, in single-peaked settings, CWCM with complete
votes is NP-complete while CWCM with top-truncated votes is in P .

We show the first part by a reduction from Partition. Given an arbitrary instance
{ki}1≤i≤t,

∑
i ki = 2K, of Partition, construct the following instance of CWCM, where a, b,

and p are the three candidates and a L p L b is the linear ordering over the candidates. In S,
let there be two voters of weight 7K each voting (a > p > b) and (b > p > a) respectively,
and two voters of weight K each voting (p > a > b) and (p > b > a) respectively. In T ,
let each ki have a vote of weight ki. According to the rule defined above, the scores of a, b,
and p are 29K, 29K, and 22K respectively.

Suppose there exists a partition. Let those manipulators in one half vote (p > a > b)
while those in the other half vote (p > b > a). As a result the scores of a, b, and p are all
30K and hence p is a winner.

Conversely, suppose there exists a manipulation in favour of p. In AVR it is reasonable
to assume that all the manipulators place p first. So, now, let x and y be total weight of the
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manipulators in T who vote (p > a > b) and (p > b > a) respectively. Since there exists a
successful manipulation in favour of p, the score of p should be at least as much as that of
a. Therefore, we have: 22K + 4x + 4y ≥ 29K + x. Using the fact that x + y = 2K, this
simplifies to x ≤ K. Doing the same with respect to p and b we have, y ≤ K. But then
since x+ y = 2K, this implies that x = K and y = K and that there exists a partition.

For the second part, it is easy to see that the optimal strategy for the manipulators is
to just vote (p > a ∼ b).

4.5 Conclusion

The central theme of this chapter was the reinstatement of combinatorial protections in
single-peaked and nearly-single peaked electorates by allowing top-truncated voting. We
observed this behaviour first in the case of manipulation and showed how for different
voting protocols manipulation with complete votes was in P whereas manipulation with
top-truncated votes jumped to being NP-complete. These results are summarized in
Tables 4.1 and 4.2. Subsequently, we studied the problem of bribery where, again, similar
behaviour was observed. These results are summarized in Table 4.3. In addition to the

Single-Peaked Electorates

Voting Rule
CWCM

(complete orders)

3-X

P ,

if (α1 ≤ 2α2) [27]

NP-complete,

if (α1 > 2α2) [27]

eliminate(Veto) P
3-Copelandα P
α ∈ [0, 1)

Voting Rule
CWCM

(top-t orders)

3-X1
↓ NP-complete

3-X2
av NP-complete

eliminate(Veto) NP-complete

3-Copelandα, NP-complete
α ∈ [0, 1)

X : All scoring rules X1 : All scoring rules except plurality and veto

X2 : All scoring rules except plurality X3 : All scoring rules except veto

Table 4.1: Change in complexity of CWCM when moving from complete votes to top-
truncated votes in single-peaked electorates.
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above results, we also showed an instance of a natural voting system (eliminate(veto))
where, contrary to intuition, the complexity of manipulation, when top-truncated ballots
are allowed, actually increases from being in P in the general case to being NP-complete
in the single-peaked case. Finally, we concluded our discussion by showing the example of
a voting system where allowing top-truncated voting isn’t beneficial in the sense that it
actually results in a decrease in the complexity of manipulation.

k-maverick Single-Peaked Electorates

Voting Rule
CWCM

(complete orders)

3-X2 NP-complete [24]

eliminate(Veto) P

Voting Rule
CWCM

(top-t orders)

3-X1
↓ NP-complete

3-X2
av NP-complete

eliminate(Veto) NP-complete

X : All scoring rules X1 : All scoring rules except plurality and veto

X2 : All scoring rules except plurality X3 : All scoring rules except veto

Table 4.2: Change in complexity of CWCM when moving from complete votes to top-
truncated votes in k-maverick single-peaked electorates.

Single-Peaked Electorates

Voting Rule
CWCM

(complete orders)

3-X

P ,

if (α1 ≤ 2α2)

NP-complete,

if (α1 > 2α2)

eliminate(Veto) P
3-Baldwin’s rule P [9]

Voting Rule
CWCM

(top-t orders)

3-X1
↓ NP-complete

3-X2
av NP-complete

eliminate(Veto) NP-complete

3-Baldwin’s rule NP-complete

X : All scoring rules X1 : All scoring rules except plurality and veto

X2 : All scoring rules except plurality X3 : All scoring rules except veto

Table 4.3: Change in complexity of weighted-bribery when moving from complete votes to
top-truncated votes in single-peaked electorates.
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Chapter 5

Conclusions and Future Work

Collective decision making problems abound in human as well as multiagent contexts and
typically voting is used as a mechanism to aggregate the preferences of the participating
agents and to take a decision. However, voting is not without its problems as seminal results
have shown that all reasonable voting rules are manipulable. As a result, there has been a
lot of focus on circumventing such negative results and the goal of a recent body of literature
has been to understand if and when computational complexity can be used as a barrier
against different manipulative actions. While there have been many previous works which
has studied the complexity of different manipulative actions, a disproportionate number of
them have been under the assumption that the agents specify complete preference orderings
over the set of candidates. Although it is an interesting setting to study, there are many
practical situations where the agents may not be willing or may simply not be able to
provide this information. It is these kind of scenarios that we study here, and in particular,
we focus on situations where the agents are allowed to specify partial preferences in the
form of top-truncated ballots. Therefore, although our work in this thesis belongs to this
large domain of research, it is different in comparison to most of them since here we are
focusing on a more practical setting where the agents are allowed to partially specify their
preferences.

In looking at elections with top-truncated ballots, we addressed two related questions.
First was the question of what the impact on complexity of manipulation is when top-
truncated ballots are allowed. This was discussed in Chapter 3 and here we studied the
problem of manipulation—both constructive and destructive—in weighted elections when
the agents are allowed to specify top-truncated preferences and also looked at the impact
on manipulation when there is uncertainty about the non-manipulators’ votes. We de-
voted most of this chapter studying the first problem—i.e. when the manipulators have
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complete information on the non-manipulators—and in particular we provided general re-
sults for constructive and destructive manipulation in all scoring rules, elimination versions
of all scoring rules, the plurality with runoff rule, a family of election systems known as
Copelandα, and the maximin protocol. The remainder of this chapter was devoted to
exploring the second avenue i.e. when there is uncertainty about the non-manipulators’
votes. Here we discussed two possible ways in which the uncertainty can be modeled and
we also showed that in both cases even individual manipulation under uncertainty was
hard when constructive coalitional manipulation was hard. To the best of our knowledge,
we are the first to study the impact on manipulation with top-truncated ballots when there
is uncertainty about the non-manipulators’ votes.

The second issue we looked at is the question of what the impact of top-truncated bal-
lots are on the complexity of manipulation and bribery when the electorate has structured
preferences. In particular, we focused on single-peaked and nearly single-peaked prefer-
ences, and we observed a number of surprising results which in turn formed the theme
of Chapter 4—of reinstating combinatorial protections in single-peaked and nearly-single
peaked electorates by allowing top-truncated voting. We observed this behaviour first in
the case of manipulation and showed how for different voting protocols manipulation with
complete votes was in P whereas manipulation with top-truncated votes jumped to being
NP-complete. These results were followed by the results for bribery where, again, we
observed similar behaviour for the voting rules considered. In studying the above two,
we note that, to the best of our knowledge, we are the first to systematically look at
the impact on complexity of manipulative actions when the electorate is single-peaked or
nearly single-peaked and when top-truncated preferences are allowed. In addition to the
above results, we also showed an instance of a natural voting system (eliminate(veto))
where, contrary to intuition, the complexity of manipulation, when top-truncated ballots
are allowed, actually increases from being in P in the general case to being NP-complete
in the single-peaked case. Finally, we concluded our discussion in Chapter 4 by showing
the example of a voting system where allowing top-truncated voting isn’t beneficial in the
sense that it actually results in a decrease in the complexity of manipulation.

There are numerous possible avenues for future work. Foremost would be to consider
other types of partial preferences like bottom orders, weak orders etc. Although Fitzsim-
mons and Hemaspaandra have done some work in this direction [29], they only look at
specific protocols and moreover only consider the general setting—i.e. when the prefer-
ences of the agents do not have a particular structure. Especially in the case of structured
preferences, it would be interesting to see if similar observations as in Chapter 4 can be
made. Second, while studying the impact of top-truncated ballots on the complexity of
manipulative actions in structured electorates, we have only considered the problems of
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manipulation and bribery, but not control. Therefore, we feel that it would be worthwhile
to see if similar observations can be made for the problem of control as well. Third, while
considering nearly single-peaked preferences in this thesis, we have talked about only one
notion of nearness, namely the k-maverick notion. However, there are several other notions
of nearness (see the work of Erdélyi et al. [20]) and seeing if we can obtain similar results for
them as well would be interesting. Fourth, we have considered only weighted elections in
this work, but we believe that looking at the unweighted case would be even more insightful
as it would help us understand the inherent “hardness” that is embedded in the voting rule
itself. Often what seems to be happening in weighted elections is that the computational
complexity seems to be arising mainly from the weights themselves, thus denying us the
opportunity to understand the voting rule better. Therefore, it is definitely something to
be considered as a future research direction. With regards to the impact of partial voting
on the complexity of manipulative actions, to the best of our knowledge, there is only
one work by Narodytska and Walsh that has some results on unweighted elections [38].
Finally, a possible criticism regarding the results in this work (and in fact any work which
considers the same notions) could be that the results are in the worst-case and that we
use NP-hardness—which in many cases does not necessarily reflect the actual difficulty in
practice—as the complexity measure. Therefore, one long term research direction would
be to look at the average-case complexity for manipulative actions in elections. There has
been some work that has been done in this direction (for e.g. see the work of Friedgut
et al. [30]), but we believe that there is still scope for much more.
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