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Abstract

Formal design methodologies have the potential to accelerate the development and increase the

reliability of supervisory controllers designed within industry. One promising design framework

which has been shown to do so is known as supervisory control synthesis (SCS).

In SCS, instead of manually designing the supervisory controller itself, one designs models of

the uncontrolled system and its control requirements. These models are then provided as input to

a special synthesis algorithm which uses them to automatically generate a model of the supervisory

controller. This outputted model is guaranteed to be correct as long as the models of the uncon-

trolled system and its control requirements are valid. This accelerates development by removing

the need to verify and rectify the model of the supervisory controller. Instead, only the models of

the uncontrolled system and its requirements must be validated.

To address problems of scale, SCS can be applied in modular fashion, and implemented in

hierarchical and decentralized architectures.

Despite the large body of research confirming the benefits of integrating SCS within the devel-

opment process of supervisory controllers, it has still not yet found widespread application within

industry. In the author’s opinion, this is partly attributed to the non-user-friendly nature of the

automaton-based modelling framework used create the models of the uncontrolled system (and

control requirements in even-based SCS). It is believed that in order for SCS to become more ac-

cessible to a wider range of non experts, modelling within SCS must be made more intuitive and

user-friendly.

To improve the usability of SCS, this work illustrates how a graph transformation-based mod-

elling approach can be employed to generate the automaton models required for supervisory control

synthesis. Furthermore, it is demonstrated how models of the specification can be intuitively rep-

resented within our proposed modelling framework for both event- and state-based supervisory

control synthesis. Lastly, this thesis assesses the relative advantages brought about by the proposed

graph transformation-based modelling framework over the conventional automaton based modelling

approach.
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Chapter 1

Introduction

1.1 Opening remarks

When a company develops a system as a consumer product or for a specialized industrial

application, it is generally necessary to develop new generations of the system over time. The

company must do so to maintain its competitive edge in innovative business markets and keep up

with rapidly evolving consumer demand. As companies must be able to meet short and frequent

deadlines, they cannot afford to redesign systems from scratch. Instead, to decrease the

time-to-market of next generation designs, new features must be integrated into previously

existing system.

As such, a system’s complexity incrementally increases with each new release. As a system

matures, its increased complexity generally makes the modification and extension of its design

more troublesome. Furthermore, as a system acquires more functionality, more regression testing

must be performed in order to ensure that newly integrated functions do not interfere with or

break previously existing functionalities. In order to mitigate such difficulties, engineers must

develop systems in such a way that anticipated additions may be easily incorporated,

implemented and tested.

One way to increase the speed and efficiency with which new generations of a system are

developed is by adopting development methodologies which help streamline the different phases

involved in updating the system. New formal methods providing benefits such as these are

developed in the academic realm. One such formal method known as Supervisory Control

Synthesis(SCS), facilitates the design of specific types of controllers referred to as supervisory

controllers. In SCS, the engineer uses special synthesis algorithms to automatically generate

supervisory controllers for a specific class of systems known as discrete event systems (DES).

These synthesis algorithms are given models of the uncontrolled system behaviour (also known as
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the plant) and a model of the control requirements (also known as the specification) and return as

output a model of the supervisory controller.

As such, SCS eliminates the need to manually design the supervisory controller itself and allows

the engineer to focus his efforts on the design and debugging of the plant and specification models.

Moreover, the generated supervisory controller models are guaranteed to be correct given that the

plant and specification models are valid. This makes for a faster and more reliable supervisory

controller design procedure as compared with the manual design methodologies currently

employed within industry. This is because in SCS, it removes the need to verify and correct the

model of the supervisory controller; only the models of the uncontrolled system and its

specification must be checked and validated.

SCS is based on an abstract mathematical framework known as Supervisory Control Theory

(SCT). Although, SCS refers to the engineering design methodology which emerges from SCT, in

practice these terms tend to be used interchangeably. For the sake of uniformity, in the sequel, we

will use SCT to refer to both the engineering design methodology and underlying mathematical

framework itself.

SCT, also known as the Ramadge-Wonham framework, was initiated by Ramadge and Wonham in

the 1980s [23, 28]. Since its conception, the theory has gained significant popularity within the

academic community. In addition, a number of software tools implementing the framework have

been developed.

Despite commencing as an abstract mathematical theory, SCT has gradually matured into a

viable engineering design methodology for discrete event supervisory controllers. However,

although many aspects of the framework have become more practical, modelling has remained

relatively unintuitive. This is due to the fact that the mathematical constructs used to model DES

within SCT are finite state automata. Due to its simplicity, the finite state automaton is very

practical from a theoretical and computational standpoint. However, for the exact same reason it

is ill suited for modelling complex systems and requirements as will be shown later in this thesis.

In a synthesis-based controller development framework such as SCT, where synthesis algorithms

are responsible for generating the controllers, modelling is one of the engineer’s most important

roles. An intuitive and user-friendly approach to modelling is therefore key in making SCT more

accessible to non-experts.

Fortunately, alternative mathematical objects capable of modelling DES have been developed

within academia. These include rewriting systems (RS) or reduction systems, which have long

been studied within theoretical computer science. RS’s refer to a general class of mathematical

constructs which comprise a set of objects together with a binary relation that describes how the

objects can be transformed. A well known type of rewriting system is the context free grammar
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which has so called production rules that are used to specify how non-terminal symbols are

transformed into a group of terminal and non-terminal symbols [17].

A graph rewriting system (GRS) or graph transformation system (GTS) is another type of RS. In

a GRS, the manipulated objects are graphs and they are modified by so called graph

transformation rules. Note that in this context the term graph refers to the mathematical object

composed of nodes and edges, studied within the well known branch of mathematics called graph

theory. Due to their graphical nature, graphs provide a very intuitive and visual means for

representing the states of a system. When used for modelling purposes, GRS take advantage of

this fact by representing the system’s state with a graph and specify how it evolves via a set of

graph transformation rules. Despite the seemingly informal flavour of this pictorial approach to

modelling, GRS are based on rigorous and sound mathematical foundations [26]. GRS therefore

provide an intuitive yet rigorous means for modelling the dynamics of a system.

In this thesis it is demonstrated how the use of GRS models for the discrete event plant and

specification improve the usability of the SCT framework. Furthermore, it is shown how the

adoption of this GRS modelling approach facilitates and expedites the process of updating prior

plant and specification models, thereby increasing the framework’s capacity to accelerate the

integration of new system functionality within antecedent systems.

We would like to acknowledge the fact that using graph transformation systems to model systems

is not a novel idea, and is not a contribution of this thesis. The main contribution of this thesis is

demonstrating how a graph transformation modelling approach can be used to generate automaton

models for use in the SCT framework (see section 1.5 for the specific contributions of this thesis).

The next section familiarizes the reader with the domain of supervisory control. Section 1.3 then

introduces the the class of systems known as DES. In section 1.4 the general objective of this

thesis will be stated. Section 1.5 explicitly states the specific contributions made by this work.

Finally, section 1.6 provides an outline for the remainder of this work.

1.2 Supervisory control

The design of any automated system inevitably involves some form of control. A system operating

under control generally comprises physical and control components.

As shown in figure 1.1, the physical components include sensors, actuators and the underlying

structure which physically holds the system together. The sensors report physical quantities of

interest associated to the system’s environment or internal state. In a car, a sensor could measure

engine temperature or tire pressure. The actuators are responsible for converting the control

signals they receive into physical actions. They act directly on the system’s underlying structure.
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Figure 1.1: System breakdown [27]

The intake valve of a combustion engine is an example of an actuator. It closes and opens to

regulate the engine intake of the air fuel mixture based on control signals. The control

components, which constitute the brains of the system, must decide what instructions to send the

actuators based on the information reported by the sensors. Depending on the application, the

control components can be implemented as embedded systems, microprocessors or other

information technologies.

The control solution employed to automate a complex CPS is generally organized into a hierarchy

of control layers [3]. At the bottom of the control hierarchy one finds resource control also referred

to as low level control or regulative control. This level of control is responsible for ensuring that

simple processes are performed optimally. Low level control acts locally based on detailed

information pertaining to a specific part of the system. It generally involves regulating and

optimizing the behaviour of continuous-time processes. This is typically achieved via the

implementation of analogue controllers.

Above the resource layer, one finds the supervisory control layer which may itself be subdivided

hierarchically. Supervisory control, as the name suggests, is responsible for supervising and

orchestrating overall system activity. In particular, it ensures that tasks are executed in the

correct sequence. In doing so, it can prevent the system from coming to deadlock. Moreover, it

can ensure safety by preventing the execution of dangerous sequences of actions. A supervisory

controller (or supervisor) must interface with the resource layer in order to influence system

behaviour. In contrast to resource control, supervisory control acts globally based on abstracted

sensor information pertaining to various parts of the system.

Depending on the application, a supervisory controller may receive instruction from a user. The

user may be a human or another automated system. In a hierarchical supervisory control

architecture the user may even be another supervisor. The user typically operates the system by
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issuing commands to the supervisor via some predefined user interface. Based on these general

requests and the current state of the system, the supervisor issues an appropriate sequence of

control commands to the resource controllers. If the user requests the execution of a certain task

which should not be performed in the system’s current state, the supervisor can postpone its

execution until the system reaches a state in which the command can safely be executed. As such

a supervisor can act as a buffer between the user and resource layer which prevents the user from

mishandling the system.

To provide a concrete example of how a supervisor can fulfil this role, consider an automated

airlock system of a spacecraft. When an astronaut attempts to enter the spacecraft, he presses a

button which issues an “open outer door” request to the supervisory controller of the airlock

system. In order to maintain a safe cabin pressure, the supervisor forbids the servicing of the

“open outer door” request until the inner door is fully shut.

1.3 Discrete event systems

In control literature, the totality of a system’s components is referred to as the uncontrolled

system or plant. The plant, together with the control components form the controlled system. The

plant dynamics or uncontrolled system behaviour is a mathematical model describing how the

components of the system behave in the absence of control. Note that the term plant is sometimes

used to refer to the dynamics of the plant itself. The controlled system behaviour, is a subset of

the uncontrolled behaviour. It includes only those interactions possible in the presence of control.

The system’s control requirements or specification is a stipulation of what behaviours should and

should not be present within the controlled behaviour.

When designing any controller, it is necessary to first understand and define the system’s

uncontrolled behaviour and control requirements. Only once the latter two milestones are

achieved, is it possible to design a controller that yields a controlled behaviour compliant with the

specifications. To characterize the plant, a model describing the system’s uncontrolled behaviour

is created. However, the controller only requires an abstracted system model to base its control

decisions on. In other words, the controller need only be aware of the system details relevant to its

purpose. As a result, the level and type of control under consideration, determines the appropriate

degree of abstraction needed to create succinct plant models.

As supervisors are only responsible for ensuring tasks are executed in admissible sequences, they

need only be aware of the order events occur in. At the supervisory control level, the plant is

therefore most appropriately viewed as a discrete event system (DES) [5]. A DES is a discrete

state system whose state transitions are caused by the occurrence of events which are both

instantaneous and asynchronous in nature. In such systems, the initiation and termination of
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tasks are modelled as discrete events. It is important to note that in a DES there is no explicit

notion of time. Instead the passing of time is implied via the occurrence of events.

There exist several different approaches for modelling DES. In SCT, finite state automata are

traditionally used to represent the discrete event models of the plant and specification.

1.4 Research objective

The overall objective of this research is to improve the user-friendliness of modelling within the

SCT framework so that it may become more accessible to non-experts. This work attempts to

accomplish this by introducing graph transformation as an intuitive modelling front end for SCT.

The goal of this being, to dissociate the user from the current unintuitive automaton-based

modelling framework. It is hoped that this work can ultimately lead to the incorporation of graph

transformation tools (such as GROOVE) within the SCS software tool chain; or better yet to the

integration of graph transformation modelling capabilities within SCS software tools themselves.

1.5 Contributions

The specific contributions of this work are as follows:

• We propose using graph transformation as an intuitive modelling front end for the SCT

framework.

• We introduce a new graph-based front end model referred to as the implicit automaton.

• We illustrate how the implicit automaton can be used to generate the automaton models

needed to perform supervisory control synthesis.

• We illustrate how parametrized, typed and attributed graph transformation rules can be

used to concisely model the dynamics of discrete event systems. Furthermore, we show how

the event set of the generated automaton can be extrapolated from these compact rule sets

using so called interpretation of rules.

• In particular we illustrate how an implicit automaton can be used to model the plant in

both event- and state-based SCT.

• We show how implicit automata can be used to express specifications within event-based

SCT and how graph constraints can be used to specify mutual state exclusion specifications

within state-based SCT.
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• We illustrate the advantages and disadvantages of our proposed modelling approach over the

conventional automaton-based modelling approach used within SCT.

• We describe how this modelling approach can be used in conjunction with the modular

modelling techniques used within the SCT in order to alleviate the complexity demands

which burden this new modelling approach.

1.6 Organization of document

The remainder of this thesis is organized in the following manner. In Chapter 2, we succinctly

review the core concepts of supervisory control theory. In doing so we illustrate how modelling is

conventionally performed in SCT. In chapter 3, we begin by reviewing some preliminary concepts

used throughout the remainder of the thesis. We then present a particular approach to graph

rewriting known as the algebraic approach. This chapter is concluded with the presentation of

select graph rewriting extensions which are key to our proposed modelling approach. In chapter 4,

the heart of this work, we present the proposed graph rewriting modelling framework. In

particular, we illustrate how it is applied in event- and state-based supervisory control. Chapter 5

then discusses both the advantages and disadvantages of the proposed modelling approach over

the conventional automaton-based modelling framework. Lastly, chapter 6 summarizes and

concludes this thesis.
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Chapter 2

Supervisory control theory (SCT)

This chapter summarizes the formal concepts and results underlying the supervisory control

framework and illustrates its practical use. The original theory for supervisory control of discrete

event systems was initiated by Peter J. Ramadge and W. Murray Wonham in the 1980s [28, 23]

and has since been extended and optimized in a number of different ways. We refer the interested

reader to [5, 29] for a comprehensive presentation of the theory and its various extensions.

SCT studies the problem of modifying the behaviour of a discrete event plant via feedback control

in order to satisfy a set of specifications. In SCT, both the plant and supervisor are modelled as

DESs which communicate with one another via discrete signals. The plant continuously reports to

the supervisor the latest event that has occurred. Depending on the history of prior events, the

controller may issue a disablement command which forbids the plant from executing some

particular set of events. The closed-loop or controlled system formed by the dynamic interaction

between the plant and supervisor is depicted in figure 2.1.

Plant

Supervisor

Disable events
Report state and/or 

event history

Figure 2.1: Online relationship between discrete event plant and supervisor
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Note that, although supervisors may prohibit the occurrence of events, they are unable to coerce

the execution of enabled events. A consequence of the supervisor’s inability to force events is the

requirement that the plant be independently capable of initiating or generating events. This

assumption is often satisfied by the virtue of a human user operating the system.

As stated earlier, a supervisor is designed to yield a controlled system which meets a given set of

specifications. SCT considers both safety and liveness. Safety specifications dictate what

behaviours are prohibited by specifying what regions of the state space should be avoided or

which sequences of events should be prevented. On the other hand, liveness refers to the minimum

level of functionality the plant must retain under supervision.

Given a plant and a set of safety specifications, the goal is to create a supervisor which allows the

plant to retain a maximum level of functionality without violating any of the safety specifications.

Such a supervisor is referred to as maximally permissive or minimally restrictive with respect to

the given specification.

The design of the supervisor must also take into account the fact that certain events cannot be

disabled. The set of events the plant can generate must therefore be appropriately partitioned as

controllable and uncontrollable events based on the modeler’s intuitive understanding of the

events. For instance, events representing the triggering of sensors are typically modelled as

uncontrollable because a supervisor cannot prevent the system’s environment from triggering a

sensor. On the other hand, events involving actuation are viewed as controllable.

2.1 The plant and its representations

The plant (i.e. the uncontrolled system behaviour) can be given in terms of a formal language. In

formal language theory an alphabet Σ is defined as a finite set of distinct symbols {α, β, . . . , σ}. A

(non-empty) string or word over alphabet Σ is a finite sequence of symbols σ1σ2 . . . σk, where

k ≥ 1. The set of non-empty strings over alphabet Σ is denoted Σ+. The symbol ε /∈ Σ is used to

denote the empty sequence of symbols and is called the empty string. The set of strings over Σ, is

then denoted by Σ∗ and defined as Σ∗ = Σ+ ∪ {ε}. A language L over Σ is then defined as any

subset of Σ∗. Therefore, the empty set ∅ and Σ∗ itself are both languages over Σ.

By interpreting symbols as events and strings as sequences of events, a language can be used to

represent a set of sequences of events. As such, the behaviour of a plant is represented by a pair of

regular languages (L,Lm) where L,Lm ⊆ Σ∗(see [17] for a definition of regular languages). In this

context, Σ∗ is referred to as the event set or alphabet and specifies the set of events that the plant

can generate. The language L, referred to as the plant’s closed behaviour, represents the set of

sequences of events the plant can generate. The plant’s marked behaviour, Lm, is used to indicate
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a set of sequences in L which represent the successful completion of important tasks. As such, we

have Lm ⊆ L.

The prefix closure of a language L, denoted by L, is the language consisting of all prefixes of

strings contained in L. A language L is closed if L = L, i.e. it contains all the prefixes of all of its

strings. Any plant’s closed behaviour is necessarily a closed language, as the possibility of the

occurrence of a string (i.e. sequence of events) requires possibility of the occurrence of all of its

prefixes.

The language representation of the plant is advantageous from a theoretical perspective as it

facilitates the proof of theorems and allows for concise definitions. However, regular languages

may have an infinite number of strings and therefore cannot be explicitly represented as such.

Finite-state automata are finite mathematical models that can be used to represent regular

languages. Formally, a finite state automaton is a 5-tuple

A = (Q,Σ,∆, Q0, Qm)

where

Q is a finite set of discrete states,

Σ is a finite set of event labels,

∆ ⊆ Q× Σ×Q is the transition relation,

Q0 ⊆ Q is the set of initial states, and

Qm ⊆ Q is the set of marked states.

To define the languages generated and marked by an automaton, the extended transition relation

∆̂ ⊆ Q× Σ∗ ×Q is inductively defined according to

(i) (∀q ∈ Q) (q, ε, q) ∈ ∆̂

(ii) (∀q, q′′ ∈ Q)(∀s ∈ Σ∗)(∀σ ∈ Σ) (q, sσ, q′′) ∈ ∆̂ iff (∃q′ ∈ Q) (q, s, q′) ∈ ∆̂ & (q′, σ, q′′) ∈ ∆.

L(A), the language generated by the automaton A = (Q,Σ,∆, Q0, Qm) is then defined as

L(A) = {s ∈ Σ∗|(∃q0 ∈ Q0)(∃q ∈ Q) (q0, s, q) ∈ ∆̂}

and Lm(A) the language marked by A is given by
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Lm(A) = {s ∈ L(A)|(∃q0 ∈ Q0)(∃qm ∈ Qm) (q0, s, qm) ∈ ∆̂}

Accordingly, a plant with closed and marked behaviour (L,Lm) can be represented by an

automaton A whose generated and marked languages are equal to the closed and marked

behaviours of the plant, that is L = L(A) and Lm = Lm(A). Intuitively, the automaton can be

thought of as computational model which keeps track of the state of the plant as events occur. It

begins in an initial state q0 ∈ Q0, prior to occurrence of any event. Upon the occurrence of some

event σ ∈ Σ, the automaton’s state is updated according to the transition relation ∆. I.e., if the

automaton is in state q while σ occurs and (q, σ, q′) ∈ ∆, then the automaton transitions to state

q′. Events are assumed to occur asynchronously and instantaneously. Furthermore, it is assumed

that events occur non-deterministically, meaning they cannot be predicted. When the automaton

arrives at a marked state qm ∈ Qm it signifies the completion of an important task.

Intuitively, when the plant is in a specific state q and an event σ occurs, the plant should transition

to a unique state. This condition on the transition relation can be formally stated as follows

(∀q ∈ Q)(∀σ ∈ Σ)[(∃q′ ∈ Q)(q, σ, q′) ∈ ∆ =⇒ (∃!q′ ∈ Q)(q, σ, q′) ∈ ∆]

where ∃! is the uniqueness quantifier defined as

∃!xP (x) ≡ ∃x (P (x) ∧ ¬∃y(P (y) ∧ y 6= x))

When the transition relation ∆ satisfies this condition, it is a (partial) function. In this case, we

speak of a transition function δ : Q× Σ→ Q and write δ(q, σ) = q′ in place of (q, σ, q′) ∈ ∆.

Likewise, in place of an extended transition relation ∆̂, we speak of an extended transition

function δ̂ : Q× Σ∗ → Q and write δ̂(q, s) = q′ in place of (q, s, q′) ∈ ∆̂. In the latter case of the

extended transition function, we omit the accent on top of the extended transition function and

write δ in place of δ̂. In addition, we write δ(q, σ)! to indicate the transition function is defined

over an input (q, σ). This is equivalent to the statement (∃q′ ∈ Q) (q, σ, q′) ∈ ∆.

A deterministic finite state automaton (DFA) is a finite state automaton that has a single initial

state and a (partial) transition function instead of a relation. Formally a DFA is a 5-tuple

A = (Q,Σ, δ, q0, Qm) where q0 is now just a single element of Q. In standard supervisory control

theory, the plant is usually represented by a DFA G = (Q,Σ, δ, q0, Qm). The plant is sometimes

referred to as a generator, hence the use of the letter G.

Automata can be represented by graphs by using vertices to represent its states and edges to

represent its transitions. Event labels are associated to each edge to indicate what event occurs
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when a state transition takes place. Initial states are indicated by dangling incoming edges and

marked states are drawn as filled-in vertices. To differentiate controllable from uncontrollable

transitions, they are respectively drawn with solid and dashed edges. Figure 2.2 illustrates the

automaton model of a basic machine.

start_working

working

broken

idle

finish_working

b
r
e
a
k
d
o
w
n

re
pa
ir

Figure 2.2: An example of a DFA

In this DFA we have

Q ={working, idle, broken},
Σ ={start working, finish working, breakdown, repair},
q0 = idle,

Qm ={idle}.

2.2 Modular design of plant

Hypothetically, the plant may be produced by manually specifying the explicit state, transition

and marking structure of its automaton model. However, this approach is only feasible for

sufficiently simple plants. The number of states (and transitions) needed to model a system tends

to grow exponentially as its complexity increases. This is a well known issue referred to as the

state explosion problem. To circumvent this problem, one can create several automata which

represent the system’s components and obtain the complete plant model by computing the

synchronous composition of these constituent automata.

The synchronous composition (or parallel composition) of two DFA G1 = (Q1,Σ1, δ1, q01, Qm1) and

G2 = (Q2,Σ2, δ2, q02, Qm2), denoted by G1||G2, yields the automaton (Q,Σ, δ, q0, Qm) which is
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defined by

Q = Q1 ×Q2,

Σ = Σ1 ∪ Σ2,

q0 = (q01, q02),

Qm = Qm1 ×Qm2,

and (∀(q1, q2) ∈ Q)(∀σ ∈ Σ)

δ((q1, q2), σ) =


(δ1(q1, σ), δ2(q2, σ)) ifσ ∈ Σ1 ∩ Σ2, δ1(q1, σ)! and δ2(q2, σ)!

(δ1(q1, σ), q2) if σ ∈ Σ1 − Σ2 and δ1(q1, σ)!

(q1, δ2(q2, σ)) if σ ∈ Σ2 − Σ1 and δ2(q2, σ)!

undefined otherwise

The synchronous composition of two subsystems G1 and G2 represents the joint operation of both

subsystems in which the execution of shared events σ ∈ Σ1 ∩ Σ2 must occur simultaneously and

the execution of private events σ ∈ Σ1 ∪ Σ2 − Σ1 ∩ Σ2 occur independently. When Σ1 ∩ Σ2 = ∅,
the subsystems G1 and G2 are completely uncoupled and G1||G2 models the concurrent yet

independent operation of G1 and G2. This is sometimes referred to as shuffle or interleaving

composition of G1 and G2.

In this definition of the synchronous composition, the state set is defined to be Q = Q1 ×Q2. In

general however, only a subset of states q ∈ Q are accessible from the initial state. These

unreachable states are superfluous as they may be discarded without affecting the marked and

generated languages of G1||G2. Therefore in practice, only the accessible component of G1||G2, is

computed. The accessible component of an automaton G = (Q,Σ, δ, q0, Qm), is denoted by

Ac(G) = (Qac,Σ, δac, q0, Qacm) and defined by

Qac = {q ∈ Q|(∃s ∈ Σ∗) δ(q0, s) = q},
Qacm = Qac ∩Qm,

δac = δ|Qac×Σ,

where δ|Qac×Σ is the restriction of δ to Qac × Σ.

To illustrate these concepts, suppose one would like to model a system consisting of two machines

which operate independently (when unsupervised) and whose individual behaviours are given by

the automata depicted in figure 2.3.
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(a) DFA of M1
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(b) DFA of M2

Figure 2.3: Constituent automata

As the machines are assumed to function independently, their automaton models do not have any

events in common. The synchronous composition of these two automata is then computed to

obtain the complete plant model depicted in figure 2.4.

Recall, that the state set of an automaton resulting from a synchronous composition is given by

Q = Q1 ×Q2, where Q1 and Q2 are the state sets of the constituent automata. For instance, in

the example above q0 = (M1 idle, M2 idle). Note that in general Qac ⊆ Q. However, in this case,

all nine states of the synchronous composition are accessible - that is: Qac = Q. This is always the

case when the event sets of the constituent automata are disjoint.

2.3 Specification and admissible behaviour

A system specification is a list of behavioural requirements a controlled system must satisfy.

System specifications are initially specified in terms of natural language. Two examples of safety

specifications for the two-machine system modelled by the plant automaton illustrated in figure

2.4 are provided in table 2.1. Note that as an automaton model only specifies the dynamics of a

system, the underlying structure of the system is ambiguous. Therefore, the same automaton

model can be associated to structurally different systems possessing the same overall dynamics. In

this example, we assume that automaton depicted in figure 2.4 models a system comprising of two

machines which are part of the same work cell.

i) If both machines break down, machine 2 must be repaired before machine 1.

ii) Only one machine can work at a time.

Table 2.1: Examples of informal specifications

14



M2_start_working

M2_finish_working

M2_repair

M2_breakdown

M1_start_working

M1_finish_working

M1_repair
M1_breakdown

M2_start_working

M2_finish_working

M2_repair

M2_breakdown

M1_start_working

M1_finish_working

M1_repair

M1_breakdown

M2_start_working

M2_finish_working

M2_repair

M2_breakdown

M1_start_working

M1_finish_working

M1_repair

M1_breakdown

q0

q2q1

q3

q7q6

q4 q5

q8

Figure 2.4: Synchronous composition of constituent automata

A hypothetical motivation for the second specification for instance is that the machines will

interfere with one another if they operate at the same time.

The latter two statements are safety requirements because they indirectly stipulate how the

controlled system should not act. Statement i) indicates that machine 1 should not be repaired

before machine 2 and statement ii) indicates that both machines should not be working at the

same time.

In event-based SCT a system’s safety specifications are represented by a regular language

Lspec ⊆ Σ∗ where Σ is the event set of the related plant. The language Lspec contains all the

sequences of events in Σ∗ which do not violate the specifications it is meant to represent. Any

language representing a specification must be closed. Intuitively, this is because the prefix of a

legal sequence of events is necessarily itself a legal sequence of events. As with the plant, a

specification, is in practice represented using a DFA Hspec such that L(Hspec) = Lspec. For

instance, requirement i) given in table 2.1, is embodied by the DFA illustrated in figure 2.5. This

automaton permits all sequences except for those in which the event M1 repair occurs when

machine 2 is in a broken state.

The DFA which representing requirement ii) of table 2.1 can be obtained by removing state

(M1 working, M2 working) along with all of its incoming and outgoing transitions from the
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M2_start_working
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M1_repair
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M2_finish_working
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M1_finish_working

M1_breakdown

Figure 2.5: Automaton representation of repair priority requirement

synchronous composition of the two machines displayed in figure 2.4.

As system specifications typically consists of several behavioural requirements, the resulting

specification automaton, Hspec, tends to be quite complex. For this reason creating Hspec manually

is generally prohibitively difficult. As a result, modular approaches must be employed to construct

Hspec. One possibility is to construct separate sub-specification DFA’s, Hspec,1, Hspec,2, . . . , Hspec,n,

for each requirement in the specification and obtain Hspec by computing the product of these

sub-specification automata.

The product (or fully synchronous composition) of a DFA G1, G2, . . . , Gn with

Gi = (Qi,Σi, δi, q0i, Qmi), is denoted by G1 × . . .×Gn and defined as the automaton

G1 × . . .×Gn = Ac

(
Q1 × . . .×Qn,

n⋃
i=1

Σi, δ, (q01, . . . , q0n), Qm1 × . . .×Qmn

)

where δ : (Q1 × . . .×Qn)×
⋃n
i=1 Σi → (Q1 × . . .×Qn) is defined by

δ((q1, . . . , qn), σ) =

(δ1(q1, σ), . . . , δn(qn, σ)) if σ ∈
⋂n
i=1 Σi & δi(qi, σ)! for i = 1, . . . , n

undefined otherwise

The product G1 × . . .×Gn models the fully synchronized operation of G1, . . . , Gn in the sense

that it allows only the simultaneous execution of shared events. Logically, G1 × . . .×Gn then

executes exactly those sequences of events which all G1, . . . , Gn may execute. In fact, it can be be

shown that

L(G1 × . . .×Gn) =
n⋂
i=1

L(Gi), and

Lm(G1 × . . .×Gn) =
n⋂
i=1

Lm(Gi).

As each language L(Hspec,i) represents the set of legal sequences with respect to a single system

requirement, L(Hspec) = L(Hspec,1 × . . .×Hspec,n) =
⋂n
i=1 L(Hspec,i) represents the set of legal

sequences with respect to the entire system specification.
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The so-called admissible behaviour, represented by the pair of languages (La, Lam), represents the

sequences of events which are both possible with respect to the plant and legal with respect to the

specification. Formally it is defined as

La = L(Hspec) ∩ L(G)

Lam = Lm(Hspec) ∩ Lm(G)

La is a closed language because, intuitively, the admissibility of a sequence of events logically

implies the admissibility of its prefixes.

In practice, the admissible behaviour is represented by an automaton Ha such that La = L(Ha)

and Lam = Lm(Ha). This automaton is obtained by computing the product of the plant and

specification automaton Hspec ×G = Ha.

Note that when constructing Hspec one can ensure all of its states are marked so that the plant G

exclusively determines the marking in Ha. In this case, Lam is given by

Lam = Lm(Ha) = L(Hspec) ∩ Lm(G)

As will be seen in section 2.6, the goal will be to construct a supervisor which constrains the plant

to generate sequences of events within the admissible behaviour (La, Lam).

2.4 Supervisors & controlled systems

The supervisor issues disablement commands to the plant in order to restrict its behaviour within

a subset of the admissible behaviour. In the literature, a disablement command is formally

referred to as a control pattern and is mathematically represented by a set γ ⊆ Σ of enabled

events. As uncontrollable events cannot be disabled, a control pattern γ must be a superset of the

set of uncontrollable events Σu. As such, the set of all possible control patterns Γ is defined as

Γ = {γ ∈ Pwr(Σ)|γ ⊇ Σu}

A supervisor is a controller which generates control patterns based on sequences of events a plant

has undergone. Formally, a supervisor V for a plant G = (Q,Σ, δ, q0, Qm) is defined as any map

V : L(G)→ Γ

Given a sequence of events w ∈ Σ∗, a supervisor generates a control pattern V (w) ∈ Γ indicating

which events are enabled. It is assumed that supervisors can only disable controllable events since

control patterns are defined to be supersets of Σu.

The controlled system or closed-loop system V/G is the DES obtained from conjoining the

supervisor V and plant G according to the feedback configuration displayed in 2.1. When G is
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under supervision by V , following the generation of a string w, it is prevented from executing any

disabled event τ /∈ V (w). The closed behaviour of V/G, denoted L(V/G), represents the set of

sequences of events which G can still generate under the supervision of V . Formally, L(V/G) is

the language inductively defined as follows:

(i) ε ∈ L(V/G),

(ii) sσ ∈ L(V/G) if s ∈ L(V/G), σ ∈ V (s) and sσ ∈ L(G),

(iii) Any other string s ∈ Σ∗ is not in L(V/G).

The marked behaviour of V/G, denoted by Lm(V/G), represents the subset of tasks which can

still be completed under supervision. It is defined as

Lm(V/G) = Lm(G) ∩ L(V/G)

An important property of a supervisor is that it can guarantee the controlled system a minimum

level of functionality by ensuring that it will always allow for the completion of some subset of

important tasks. This leads to definition of a nonblocking supervisor.

Definition(Nonblocking): A supervisor V for a plant G is nonblocking if Lm(V/G) = L(V/G). In

this case, the controlled system V/G is also said to be nonblocking. Conversely V and V/G are

blocking if Lm(V/G) 6= L(V/G).

A nonblocking supervisor ensures that the plant can never arrive at a state from which it is

blocked from reaching a marked state. Intuitively, this means that a nonblocking supervisor

always prevents the plant from reaching a state from which it is blocked from completing

important tasks. As such, a certain degree of liveness can be ensured by requiring that the

supervisor is nonblocking.

2.5 Characterizing controlled systems

The behaviour of the controlled system is inherently shaped by the supervisor. Due to the

assumption that supervisors can only disable controllable events, it is not possible, in general, to

construct a supervisor V for G such that Lm(V/G) = Lm and L(V/G) = L for arbitrary choices of

Lm ⊆ Lm(G) and L ⊆ L(G). To characterize those languages which qualify as the marked and

closed behaviour of a controlled system, the controllability property is now introduced.

Definition(Controllability): A language K ⊆ Σ∗ is said to be controllable with respect to G if

(∀s ∈ Σ∗)(∀σ ∈ Σu) s ∈ K & sσ ∈ L(G) =⇒ sσ ∈ K
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In words, K is controllable if any string sσ ∈ L(G), which is created by appending an

uncontrollable event σ to one of K’s prefixes V , is also a prefix of K. When K is not controllable

with respect to G, it is said to be uncontrollable with respect to G.

Given an arbitrary plant G and a compatible supervisor V , the closed and marked behaviours of

the controlled system V/G are always controllable with respect G.

In practice, the controlled system is often required to be nonblocking in order to ensure a

minimum level of functionality. As such, it is important to identify what languages constitute the

marked behaviour of a nonblocking controlled system. The answer to this question is one of the

main results of SCT and is referred to as the “Nonblocking Controllability Theorem”.

Nonblocking Controllability Theorem: Let G be an arbitrary plant. If K ⊆ Lm(G) and

K 6= ∅ then there exists a nonblocking supervisor V for G such that Lm(V/G) = K if and only if

(i) K is controllable with respect to G,

(ii) K is Lm(G)-closed, meaning K = K ∩ Lm(G).

When K satisfies these conditions, the nonblocking supervisor V yielding the marked behaviour

Lm(V/G) = K is given by

V (w) = Σu ∪ {σ ∈ Σc|sσ ∈ K}

2.6 Optimal nonblocking supervision

Given a plant G and admissible behaviour La ⊆ L(G) and Lam ⊆ Lm(G) (obtained from the

specifications), the objective is to obtain a nonblocking supervisor V for G such that L(V/G) ⊆ La

and Lm(V/G) ⊆ Lam. In general, there may not exist a nonblocking supervisor V such that

L(V/G) = La and Lm(V/G) = Lam because La, Lam may not be controllable or because La 6= Lam.

This objective is met in an optimal fashion when L(V/G) is the largest (in the sense of subset

containment) controllable sublanguage of La such that L(V/G) = Lm(V/G). In other words, V is

optimal when for all other nonblocking supervisors S ′ for G for which L(S ′/G) ⊆ La we have

L(S ′/G) ⊆ L(V/G). In this case we say that V is maximally permissive.

To prove the existence of such a maximally permissive supervisor, one must prove the existence of

such a language. To this end, define the set of all sublanguages of language E that are controllable

with respect to G as

C(E) = {K ⊆ E|K is controllable w.r.t. G}
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Since the language ∅ is always controllable, C(E) is nonempty for arbitrary E. Moreover, C(E) is

closed under arbitrary unions, meaning K ∪K ′ ∈ C(E) (∀K,K ′ ∈ C(E)). From these two

statements, it follows that the supremal element of C(E), denoted by sup C(E) always exists.

Intuitively, sup C(E) is the largest controllable sublanguage of E. It is obtained as follows:

sup C(E) =
⋃

K ∈ C(E)

K

It can be shown that if E is Lm(G)-closed then so is sup C(E). Therefore, from the nonblocking

controllability theorem it follows that if Lam is Lm(G)-closed and sup C(Lam) 6= ∅, then there

exists a nonblocking supervisor V such that Lm(V/G) = sup C(Lam). Furthermore, this

nonblocking supervisor V yielding the controlled behaviour Lm(V/G) = sup C(Lam) ⊆ Lam and

closed behaviour L(V/G) = sup C(Lam) ⊆ La is maximally permissive.

2.7 Practical representation of supervisor

In practice, it is generally not possible to explicitly represent a supervisor for a plant

G = (Q,Σ, δ, q0, Qm) as a map V : L(G)→ Γ because its domain L(G) may have an infinite

number of strings. Instead, the map characterizing a supervisor for a plant G can be implicitly

represented by a DFA S = (Y,Σ, ζ, y0, Ym) which when composed with G via fully synchronous

composition yields an automaton S ×G such that

L(S ×G) = L(V/G), and

Lm(S ×G) = Lm(V/G).

The automaton S can be used to retrieve the relevant portion of V that is V |L(V/G), the restriction

of V to L(V/G). The remainder of the domain, L(G)− L(V/G), is unimportant as the

modification of the control patterns associated to these input strings has no effect on the closed

and marked behaviours of V/G. The control pattern V (w) associated to any string w ∈ L(V/G),

is obtained from S as follows

V (w) = {σ ∈ Σ|ζ(y0, wσ)!}

Intuitively, S acts as a state machine which keeps track of which events should be

enabled/disabled based on its current state. After the occurrence of the sequence w the plant and

supervisor will be in states δ(q0, w) = q and ζ(y0, w) = y respectively. At this point, the plant is

only permitted to execute an event σ if ζ(y, σ)!.

2.8 Supervisor synthesis algorithm

The development of SCT culminates in the design of synthesis algorithms which receive as input

automaton models of the plant and specification and return as output an automaton
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representation of a maximally permissive supervisor. To illustrate how these synthesis algorithms

are generally implemented an we present an example of a basic implementation.

The algorithm begins by computing the product of the plant and specification automata to yield

an automaton model of the admissible behaviour. In mathematical terms

Ha = G×Hspec = (Qp ×Qs, Σ, δ, (q0p, q0s), Qmp ×Qms)

where G = (Qp, Σ, δp, q0p, Qmp) and Hspec = (Qs, Σ, δs, q0s, Qms).

If L(Ha) is controllable and L(Ha) 6= Lm(Ha) then Ha constitutes the representation of a

nonblocking supervisor and the algorithm just returns Ha. However, Ha does not generally satisfy

these properties. In this case the main idea is to keep on removing states and transitions from Ha

until it becomes a valid representation of a nonblocking supervisor. To accomplish this, a subset

of states in Ha are flagged as bad. In particular, a state q = (qp, qs) ∈ Qp ×Qs is flagged if either

i) (∃σ ∈ Σu) δplant(qp, σ)! & δ(q, σ) is undefined or,

ii) (∀qm ∈ Qmp ×Qms)(@w ∈ Σ∗)δ(q, w) = qm.

Clause i) flags the states in Ha which cause L(Ha) to be uncontrollable with respect to G. Clause

ii) flags states which cause Ha to be blocking.

The algorithm then repeatedly executes a two-step iteration which flags additional states. The

first step flags states from which a bad state can be reached via an uncontrollable event. The

second step flags states from which a marked state cannot be reached via unflagged states. This

two-step iteration terminates when its execution can no longer flag additional states. The

algorithm subsequently deletes all flagged states from Ha. This is followed by the deletion of all

resultantly inaccessible states. Note that loose edges are gradually removed as their source or

target states are deleted.

The resulting automaton, which is the output of the algorithm, is a representation of a

nonblocking supervisor for the plant G given as input. Moreover, this supervisor is maximally

permissive with respect to the specification Hspec also given as input. The following series of

figures provides a generic example of an execution of the synthesis algorithm we have just

described. The example starts off with figure 2.6 which illustrates the automaton Ha whose bad

states have already been flagged.

2.9 State-based supervisory control

In section 2.3 we discussed how a system specification could be represented as a language by

interpreting its strings as the set of legal sequences the controlled system is permitted to execute.
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q0 q1 q2

q3q4q5

Figure 2.6: Mark bad states of Ha according to specification

q0 q1 q2

q3q4q5

Figure 2.7: Flag states leading to bad states via uncontrollable event

q0 q1 q2

q3q4q5

Figure 2.8: Flag states from which marked states cannot be reached via unflagged states

q0 q1 q2

q3q4q5

Figure 2.9: Remove bad states along with resultant loose edges

This approach is referred to as event-based SCT as control requirements are stated in terms of

legal sequences of events. In event-based SCT, the concepts of system state and state transition

did not play a fundamental role in the formulation of the problem statement. The (state-based)

automaton models were simply introduced to serve as finite representations of regular languages.

State-based SCT (see chapter 7 of [29]) is an alternative approach in which the plant is no longer

viewed in terms of languages but rather, in terms of the state-transition structure of an
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q0 q1

q5

Figure 2.10: Remove inaccessible states along with resultant loose edges

q0 q1

Figure 2.11: Resulting controlled behaviour

automaton. The advantage of regarding the plant as an automaton, is the ability to directly

reference subsets of its states and transitions. This allows for a system specification to be

expressed directly in terms of what states and transitions can be visited and executed respectively.

As the number of legal states and transitions tend to be much larger than the number of illegal

states and transitions, it is typically more convenient to express the specifications in terms of what

states and transitions should be avoided. As such, the following two types of specifications are

used: mutual state exclusion and state-event exclusion. Informally, a mutual state exclusion

specification indicates that a subset of the plant’s state set should be avoided. On the other hand,

a state-event exclusion specification indicates a subset of the plant’s transitions should not be

executed by specifying that a particular event should not be executed from a particular set of

states.

These two types of specifications are used in nonblocking supervisory control of state tree

structures (see chapter 4 of [19]). In the latter, a mutual state exclusion specification for a plant

with state set Q is defined as a (forbidden) state predicate PA : Q→ {true, false} such that

(∀q ∈ Q) PA(q) = true ⇔ q ∈ A

where A ∈ Pwr(Q). States q ∈ Q which yield PA(q) = 1, are forbidden states which must not be

visited. We will use Pred(Q) to denote the set of all predicates over the state set Q.

A state-event exclusion for a plant with state and event set Q and Σ, can be defined as a pair

(PA, σ) where PA ∈ Pred(Q) and σ ∈ Σ. Given a state-event exclusion (PA, σ) a transition

(q, τ, q′) should not be executed if PA(q) = true and σ = τ .

To illustrate these concepts, recall the two example specifications provided in table 2.1. The first
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requirement is modelled as the state-event exclusion:

(P{(M1 broken, M2 broken)}, M1 repair)

and the second requirement is modelled as the mutual state exclusion:

P{(M1 working, M2 working)}

These mutual state exclusion and state-event exclusion specifications are then used to respectively

flag bad states and transitions in the plant automaton they are intended for. For instance, the

latter two (state-based) specifications would be used to flag states and transitions in the

automaton depicted in figure 2.4.
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Chapter 3

Graph rewriting

In this chapter, the fundamental concepts of graph rewriting are presented. It is a vast and rich

topic which has been thoroughly studied by computer scientists. This presentation of the theory is

by no means complete. Rather, its objective is to familiarize the reader with the aspects of the

theory which are relevant to our application. Interested readers may refer to [26] for a more

exhaustive treatment of the topic.

The theory of graph rewriting or graph transformation was developed out of the desire to

generalize textual rewriting approaches, such as Chomsky grammars and term rewriting, to deal

with more complex structures. Some of the earliest developments in the field date back to the late

sixties and early seventies [21, 22].

Graph rewriting refers to the rule-based modification of graphs where so called graph

transformation rules are applied to graphs in order to obtain new graphs. Roughly speaking, one

can think of a graph transformation rule as consisting of a precondition and a set of instructions.

The precondition determines the rule’s applicability to a given graph and the set of instructions

specifies how the rule should transform the graph if it is applied. The following sentence therefore

roughly describes the semantics of a graph transformation rule: “If the graph has property X then

modify it according to the instructions in Y ”.

Our interest in graph transformation systems is motivated by the flexible and intuitive manner in

which they can be used to model a variety of discrete event systems. Modelling via graph

transformation is accomplished by using a graph to represent the system state and graph

transformations to represent state transitions. The generality of this graph based modelling

paradigm stems from the fact that any time a system’s state can be embodied by a finite set of

related entities, it can be captured by a graph in which nodes act as the entities and edges as

relationships between them. The system’s state evolves, as graph rewriting rules introduce or

remove entities and change their relationships.
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Various approaches to graph rewriting have been developed, each operating under different

assumptions. The Node replacement approach represents one of the simplest approaches to graph

rewriting as it only permits the replacement of individual nodes by subgraphs. In this approach

the newly integrated subgraph is connected to the remainder of the graph according to how the

node it replaced was originally connected. A more general approach is the so called algebraic

approach where an entire subgraph can be replaced by a new subgraph. In this approach, the

replacement of a subgraph with another is accomplished in two main steps. First, unwanted nodes

and edges are deleted from the original subgraph and then the new subgraph is glued along the

remaining portion of the old subgraph.

Delete

GlueDelete

G D H

K

Figure 3.1: Algebraic approach to graph transformation

The general format of a graph transformation within the algebraic approach is given in figure 3.1.

The operation performed in the second step, which is known as the gluing of graphs, is elegantly

formulated in terms of a notion from category theory known as the pushout. The entire

transformation, which involves both the deletion and gluing steps, was originally formulated as a

double pushout in the category of graphs and total graph morphisms. Later on however, a single

pushout in the category of graphs and partial graph morphism was shown to be an alternatively

valid description. The double and single pushout approaches are not completely equivalent from

an operational stand point. In particular, the conditions under which a transformation can be

applied are slightly more relaxed in the single pushout approach making it slightly more general.

Readers interested in a detailed presentation and comparison of the two approaches are referred to

chapters 3 and 4 of [26].

For the purposes of this work we have chosen the algebraic approach to graph rewriting as it

provides enough flexibility to express non-trivial system models and specifications. However, the

fundamental principle underlying this work which is to use rewriting systems to intensively specify

a system model and in turn generate its extensive counterpart, is independent of the rewriting

approach one chooses to employ.

The remainder of this chapter is devoted to explaining the fundamental concepts underlying the

algebraic approach to graph rewriting and is split up into three sections. Section 3.1 reviews

background mathematics which are heavily relied upon in the following two sections. Section 3.2
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then presents the fundamentals of the algebraic approach. Lastly, section 3.4 presents some key

extensions to graph rewriting which we make use of in our modelling framework.

3.1 Preliminaries

This preliminaries section has been included in order to make this monograph as self-contained as

possible. The first two subsections (3.1.1 and 3.1.2) respectively review concepts from graph

theory and category theory needed to present the algebraic approach. Subsection 3.1.3 reviews

notions of algebraic specification which are needed in defining typed attributed graphs discussed

in subsection 3.4.2.

3.1.1 Graph theory

Graph theory is a branch of discrete mathematics which studies mathematical structures known

as graphs [8]. Graphs, which are composed of vertices connected by edges, can be used to model

binary relationships relating a collection of entities. There are many different sub-branches of

graph theory which focus on different aspects of theory. In the following section, we review

concepts from graph theory pertaining to graph rewriting theory.

Definition (Directed and labelled graph): Let Λ = (ΛV ,ΛE) be a label alphabet consisting of a

set of node labels and edge labels. A directed graph over Λ is a 4-tuple G = (V,E, s, t, lv, le) where

V is a finite set of nodes, E is a finite set of directed edges, s, t : E → V are source and target

functions assigning source and target nodes s(e) and t(e) to every edge e ∈ E and lv : V → ΛV

and le : E → ΛE are labelling functions assigning labels lv(v) and le(e) to every node and edge

v ∈ V and e ∈ E respectively. The components of G can also be denoted by VG, EG, sG, tG, lvG

and leG. The set of all graphs over Λ is denoted by GΛ.

Figure 3.2: Directed graph with node and edge labels

In figure 3.2 an example of a graph directed graph with node and edge labels is given. In this

example we have:

Λ = (ΛV ,ΛE) = ({Input, Machine1, Buffer, Machine2, Output}, {takes from, gives to})
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V = {v1, v2, v3, v4, v5}

E = {e1, e2, e3, e4}

s(e1) = v2, t(e1) = v1

lv(v1) = Input, le(e1) = takes from

Definition (Order of graph): Let G = (V,E, s, t, lv, le) be a directed labelled graph. The order of

G, denoted by |VG|, is the number of nodes in G. The graph of order zero, i.e the graph on zero

nodes and zero edges will be denoted by K0.

Definition (Directed and unlabelled Graph): In this work, a directed and unlabelled graph G is

defined as a directed and labelled graph G = (V,E, s, t, lv, le) over the special label alphabet

Λ = (ΛV ,ΛE) = ({∗}, {∗}). The special symbol ∗ is referred to as the empty label. This label is

omitted in the drawings of graphs.

Definition (Graph morphism): Let G,H ∈ GΛ. A (total) graph morphism ψ : G→ H is a pair of

functions ψV : VG → VH and ψE : EG → EH that are structure preserving in the sense that

adjacent vertices in G are mapped to adjacent vertices in H and the nodes and edges in G are

mapped to nodes and edges in H with the same labels. More formally:

ψV ◦ sG = sH ◦ ψE,

ψV ◦ tG = tH ◦ ψE,

lvG = lvH ◦ ψV ,

leG = leH ◦ ψE.

The graphs G and H are domain and codomain of ψ, respectively. A morphism ψ is said to be

injective or surjective if both ψV and ψE are injective or surjective respectively. A graph

morphism from G to H is illustrated in figure 3.3. The dashed vertical arrows represent the

morphism’s node and edge mapping components and the dashed horizontal line simply delineates

the separation between domain G and codomain H. This morphism is injective but not surjective.

Definition (Graph isomorphism): A graph isomorphism from G to H is a graph morphism in

which ψV , ψE are bijective. We say G and H are isomorphic when there exists a graph

isomorphism between them and write G ∼= H.

Definition (Subgraph): Let G,H ∈ GΛ. G is a subgraph of H, denoted G ⊆ H, if there exists an

injective graph morphism ψ from G to H.

Definition (Match): Let G,H ∈ GΛ and m : G→ H be some a graph morphism. The match of G

in H with respect to the graph morphism m, is the image of G in H, m(G) ⊆ H. In this context,
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H

G

Figure 3.3: A graph morphism from G to H

the graph morphism m is referred to as a matching. The match m(G) is said to be injective if the

matching m is injective, in which case m(G) ∼= G.

Definition (Deletion of match): Let G,L ∈ GΛ be graphs and m : L→ G be a graph morphism.

The object G−m(L), obtained by deleting the match m(L) from G is defined as

G−m(L) = (VG−m(L), EG−m(L))

where VG−m(L) = VG −m(VL) and EG−m(L) = EG −m(EL) and the minus sign in this case is taken

to be set difference. Note that G−m(L) is not necessarily a graph as it may contain half edges or

even loose edges1.

3.1.2 Category theory

The aim of this section is to revise the category theory fundamentals which underlie the algebraic

approach and explain how these notions relate to graph rewriting. In particular, the notion of a

pushout is defined and its meaning within the context of graph rewriting is discussed. Readers are

referred to [4] for a comprehensive presentation of category theory.

Definition (Category): A category C is a collection ObC of objects denoted by a, b, c, ..., A,B,C, ...

and a collection MorC of morphisms (arrows) denoted by by f, g, h, ... equipped with:

• two operations dom, cod which assign to each morphism f two objects called the domain

(source) and codomain (target) of f respectively,

• an operation id assigning to each object b an identity morphism idb such that

dom(idb) = cod(idb) = b (idb is called the identity of b),

• a so called composition operation denoted ◦ assigning to each pair f, g of morphisms with

dom(f) = cod(g), a morphism f ◦ g such that dom(f ◦ g) = dom(g) and cod(f ◦ g) = cod(f),

1A half (resp., loose) edge is an edge incident on one (resp., zero) vertices.
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which follows the following axioms:

identity law : for any morphisms f, g such that cod(f) = b = dom(g), we have idb ◦ f = f

and g ◦ idb = g,

associative law : for any morphisms f, g, f such that dom(f) = b = cod(g) and

dom(g) = b = cod(h), we have (f ◦ g) ◦ h = f ◦ (g ◦ h).

The notation f : a→ b is used to express that the morphism f has dom(f) = a and cod(b). The

set of all morphisms with source a and target b is denoted by C[a, b]. As such f ∈ C[a, b] provides

an alternative means for expressing the domain and codomain of a morphism.

A few examples of categories are listed in table 3.1 below.

Category Collection of Objects Collection of Morphisms

Set sets functions

Rel sets relations

Grp groups group homomorphisms

GraphΛ Λ-labelled graphs (total) graph morphisms

GraphPΛ Λ-labelled graphs paritial graph morphisms

Table 3.1: Examples of categories

In the category Set the composition operation is simply the standard composition of functions

and identity morphism of a given set is the bijective function mapping each element to itself. In

the category Graph the composition of two morphisms ψ1 : G′ → G′′, ψ2 : G′′ → G′′′ yields a

third morphism ψ2 ◦ ψ1 = ψ : G′ → G′′′ given by ψ = (ψ2V ◦ ψ1V , ψ2E ◦ ψ1E). If the graph

morphisms are injective composition express the fact that G′ ⊆ G′′ ⊆ G′′′.

a a+ b b

c

qa

f h

qb

g

Figure 3.4: Commutative diagram for coproduct of a and b

Definition (Coproduct): Let C be a category and let a, b be objects in ObC. The coproduct of a

and b is an object denoted by a+ b equipped with two morphisms qa : a→ a+ b, qb : b→ a+ b

such that for any f ∈ C[a, b] and g ∈ C[b, c], there is a unique morphism h ∈ C[a+ b, c] such that

h ◦ qa = f and h ◦ qb = g or equivalently that the diagram in 3.4 commutes.
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In the category Set the coproduct of two sets A,B is isomorphic to their disjoint union, denoted

by A tB and defined as

A tB = (A× {0}) ∪ (B × {1}) = {(a, 0)|a ∈ A} ∪ {(b, 1)|b ∈ B}

Likewise, in the category Graph the coproduct of two graphs G,H is the disjoint union of the

two graphs denoted G+H where the morphisms qa, qb play the role of identifying which nodes

and edges in G+H were contributed by G and H respectively.

Definition (Pushout): Let f : a→ b and g : a→ c be two morphisms with a common domain. A

pushout of (f, g) is a triple (b+a c, g
′, f ′) consisting of an object b+a c and two morphisms

g′ : b→ b+a c and f ′ : c→ b+a c such that

i. g′ ◦ f = f ′ ◦ g : a→ b+a c, and

ii. for all other triples (d, g′′ : b→ d, f ′′ : c→ d) such that g′′ ◦ f = f ′′ ◦ g, there exists a

unique morphism u : b+a c→ d such that u ◦ g′ = g′′ and u ◦ f ′ = f ′′.

The commutative diagram shown in figure 3.5 illustrates the relationships involved in the pushout

construction.

d

b+a c c

b a
f

g

g′′

g′

f ′′

f ′

u

Figure 3.5: Commutative diagram of pushout construction

If a pushout of (f, g) exists, it is unique up to isomorphism. More precisely, if in the above

diagram, the triple (d, g′′, f ′′) is another pushout of (f, g), then u : b+a c→ d is an isomorphism.

In the category Set a pushout of two functions f : A→ B, g : A→ C is isomorphic to the triple

(P, g′ : B → P, f ′ : C → P ) where P = B tC/π and π is the finest equivalence relation such that

(∀a ∈ A) (f(a), 0) ≡ (g(a), 1) (modπ)
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and g′ and f ′ are canonical projections associated to π respectively mapping elements in B and C

to their corresponding equivalences classes.

Therefore in Set, the pushout can be thought of as a generalization of the disjoint union where

two elements in B,C are merged if they have a common preimage in A and distinguished

otherwise. Analogously in Graph, the pushout generalizes the disjoint union of graphs. The

pushout of two graph morphisms r : K → R, d : K → D is the triple (H, r∗,m∗) where H is the

graph obtained by fusing the nodes and edges of R,D which have a common preimage in K and

disjointly including those remaining. We say H is the graph obtained by gluing R and D along K.

For any other triple (H ′, r′∗,m′∗) such that r′∗ ◦ r = m′∗ ◦ d, the graph H ′ will be “over-fused”

with respect to K.

Lemma(Injective morphisms in graph pushouts): Let l : K → L and d : K → D be two graph

morphisms sharing a common domain K. Let (G,m : L→ G, l∗ : D → G) be pushout for (l, d) in

the category Graph.

K L

D G

l

d

l∗

m

Figure 3.6: Corresponding commutative diagram

If l is injective then l∗ is injective as well[9].

In chapter 3, this lemma will provide useful information about the so-called context graph.

Definition (Initial and final objects): Let u be an object of a category C. u is called initial if

there exits exactly one morphism from u to a for every object a in C. Conversely, u is called final

if there exits exactly one morphism from a to u for every object a in C.

Initial and final objects are also called universal objects. Universal objects do not always exist

within a category. However, when they do exist, it can be shown that they are unique up to

isomorphism. In the category Set, the empty set is an initial object and a singleton is a final

object.

3.1.3 Algebraic specification

In this section we define notions from algebraic specification such as data type signatures,

many-sorted algebras and term algebras. These notions will be used when defining attributed

graphs. The following presentation of these notions is largely based on [11].
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Definition (Signature): A signature SIG = (S,OP ) consists of a finite set of sorts S and a set of

constant and operation symbols OP . The set OP is the union of pairwise disjoint subsets Ks and

OPw,s for all s ∈ S and w ∈ S+.

OP =
⋃
s∈S

Ks ∪
⋃

w∈S+,s∈S

OPw,s

The set Ks is the set of constant symbols of sort s ∈ S. The set OPw,s is the set of operation

symbols with argument sort w ∈ S+ and range sort s ∈ S.

An example of a signature named natbool possessing the sorts nat and bool is given below. In

this signature True,False,0 ∈ Ks are constant symbols and ¬,∧, ..., < ∈ OPw,s are operation

symbols. Note that a signature is a purely syntactic structure as the sorts are not associated to

any sets and operation symbols are not associated to any functions.

natbool =

sorts: bool, nat

opns: True, False: → bool

0 : → nat

¬ : bool → bool

∧ : bool bool → bool

∨ : bool bool → bool

succ : nat → nat

+ : nat nat → nat

== : nat nat → bool

> : nat nat → bool

< : nat nat → bool

Definition (SIG-Algebra): An algebra A = (SA, OPA) of signature SIG = (S,OP ), or

SIG-Algebra for short, consists of two families SA = {As|s ∈ S} and OPA = {NA|N ∈ OP} where

i. As are sets for each s ∈ S, called base sets or carrier sets of A. In this work we assume that

all base sets are disjoint, that is, (∀s1, s2 ∈ S)As1 ∩ As2 ,

ii. for all constant symbols N ∈ Ks and s ∈ S, NA ∈ As are elements called constants of A, and

iii. for all operation symbols N ∈ OPs1...sn,s, s1...sn ∈ S+ and s ∈ S,

NA : As1 × As2 × ...× Asn → As are functions called operations of A.

An algebra over the signature natbool is obtained by associating to each sort a carrier set and to

each constant and operation symbol an element in a carrier set and a function respectively. An

example of an algebra over natbool is given by (B,N, T rue, False, 0,¬,∧, ..., <), where
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True, False ∈ B, 0 ∈ N and ¬,∧, ..., < are actual functions. Algebras such as natbool are referred

to as many sorted algebras as they possess several carrier sets.

Definition (SIG-Homomorphism): Let SIG = (S,OP ) be a signature and let both A,B be

SIG-algebras. A SIG-homomorphism is a family of functions {fs : As → Bs|s ∈ S} such that:

i. fs(NA) = NB for all N ∈ OP and s ∈ S, and

ii. fs(NA(a1, ..., an)) = NB(fs1(a1), ..., fsn(an)) for all N ∈ OP with N : s1...sn → s and all

a1 ∈ As1 , ..., an ∈ Asn .

The class of Sig-Algebras together with the class of Sig-Homomorphisms form a category denoted

by CAT(SIG). An algebra Z = (ZA, OPZ) whose base sets are singletons is final in CAT(SIG).

This is because SIG-homomorphisms are families of functions and there can only exist one

function from a given set to a singleton. Note that all final objects in CAT(SIG) are isomorphic

to one another.

Definition (Variables & Terms): Let SIG = (S,OP ) be a signature. For each s ∈ S let Xs be a

set called the variables of sort s where the sets Xs are assumed pairwise disjoint and also disjoint

with OP . The family X = {Xs|s ∈ S} is referred to as a sort-indexed family of sets of variables

for SIG.

For each s ∈ S inductively define the set of terms over X of sort s, TOP,s(X), by:

i. Xs ∪Ks ⊆ TOP,s(X) (basic terms)

ii. N(t1, ..., tn) ∈ TOP,s(X) (composite terms)

for all N ∈ OP with N : s1...sn → s and all terms t1 ∈ TOP,s1(X), ..., TOP,sn(X)

iii. No other terms belong to TOP,s(X).

The set of terms over ∅ (i.e. without variables) of sort s, TOP,s(∅), is denoted by TOP,s.

The set of terms over X and the set of terms without variables are respectively defined as

TSIG(X) =
⋃
s∈S

TOP,s(X) TSIG =
⋃
s∈S

TOP,s

Note that TSIG ⊆ TSIG(X). If A ∈ Xbool and x, y ∈ Xnat, then ¬A, x+ y, True ∈ Tnatbool(X) are

examples of terms.

For each x ∈
⋃
s∈S Xs, we inductively define the set of terms over X containing the variable x,

T xSIG(X) by:

34



i. x ∈ T xSIG(X) (base case)

ii. N(t1, ..., tn) ∈ T xSIG(X) (inductive case)

if N(t1, ..., tn) ∈ TSIG(X) and ∃i ∈ {1, ..., n} ti ∈ T xSIG(X)

iii. No other terms belong to T xSIG(X).

Clearly T xSIG(X) ⊂ TSIG(X) for all x ∈
⋃
s∈S Xs. Using the terms mentioned above we have

¬A, True /∈ T xSIG(X) and x+ y ∈ T xSIG(X).

Definition (Term Algebra): Let X be a sort-indexed family of set of variables for

SIG = (S,OP ). The special SIG-algebra (ST , OPT ) called the algebra of terms or term algebra is

defined purely based on X and SIG as follows:

i. ST = {TOP,s(X)|s ∈ S},

ii. OPT = {NT |N ∈ OP},

iii. for all s ∈ S and N ∈ Ks, NT ∈ TOP,s(X) is N , and

iv. for all N ∈ OPs1...sn,s, s1...sn ∈ S+ and s ∈ S,

NT : TOP,s1(X)× TOP,s2(X)× ...× TOP,s(X)→ TOP,s(X) is a function and is defined by

NT (t1, ..., tn) := N(t1, ..., tn) for all t1 ∈ TOP,s1(X), ..., tn ∈ TOP,sn(X).

In the literature this algebra is denoted by TSIG(X), the same notation used for set of terms over

X,SIG.

Definition (Variable Assignment): Let X be a sort-indexed family of sets of variables for

SIG = (S,OP ) and A be a SIG-Algebra. An assignment α for X is a family of functions

{αs : Xs → As|s ∈ S} assigning to each variable in X a value in A. The extended assignment or

simply extension of α, α is a family of functions {αs : TOP,s(X)→ As|s ∈ S} and is recursively

defined by:

i. αs(x) = asss(x) for all x ∈ Xs

ii. αs(N) = NA for all N ∈ Ks

iii. αs(N(t1, ..., tn)) = NA(αs(t1), ..., αs(tn)) for all N(t1, ..., tn) ∈ TSIG(X).

Note that the extended assignment α : TSIG(X)→ A is actually a SIG-homomorphism from

TSIG(X) to A. With x, y ∈ Xnat and αnat(x) = 4, αnat(y) = 6, we have αnat(x+ y + 0) =

(αnat(x) + αnat(y) + αnat(0)) = (αnat(x) + αnat(y) + 0) = (4 + 6) = 10.
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It can be shown that given a fixed X and assignment α, there is a unique SIG-homomorphism α

which makes the diagram in figure 3.7 commute where u : X ↪→ TSIG(X) is the inclusion map

u(x) = x [11]. Furthermore, this unique SIG-homomorphism α is the extended assignment defined

above. The converse statement, which is that given a SIG-homomorphism α : TSIG(X)→ A there

is a unique assignment α : X → A which makes the diagram in figure 3.7 commute, follows from

the fact that Xs ⊂ TOP,s(X) for all s ∈ S.

X A

TSIG(X)

α

αu

Figure 3.7: Satisfiability criterion for atomic constraints

3.2 Algebraic approach

Having presented the necessary graph theory and category theory fundamentals, we now present

the algebraic approach to graph rewriting. As mentioned above, there are two slightly different

variations of the algebraic approach, known as the double and single pushout approach. As the

double pushout variant conveys all the main ideas underlying the algebraic approach, we see no

added benefit in presenting its slightly more complex and general single pushout counterpart. For

the sake of simplicity, we chose to present the double pushout approach.

3.2.1 Double pushout approach

Definition (Graph transformation rule): A graph transformation (or production) rule (GTR)

t = 〈L l←− K
r−→ R〉2 over GΛ is a so-called rule span 〈L l←− K

r−→ R〉 consisting of three graphs

L,K,R ∈ GΛ along with two graph morphisms l : K → L and r : K → R where l is assumed to be

injective. A rule t is said to be injective if r is injective. The graphs L and R are called the left

hand side and right hand side respectively. K is referred to as the interface or gluing graph. The

interface K represents what the left and right hand sides have in common. If G ∈ GΛ and m is a

graph morphism of the form m : L→ G we say m is a matching for t in G.

Figure 3.8 gives an example of a graph transformation rule wp from M1 to Buffer and a matching

for it in G.

2This notation is used to emphasize the fact that both graph morphisms ψ1, ψ2 have the same domains.
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G L K R
m l r

wp_from_M1_to_Buffer

Figure 3.8: A graph transformation rule and its matching in G

Three graphs are technically required to explicitly specify a graph transformation rule. However,

in eliminating redundant information common to L,K and R, it is possible to express a rule via a

single graph. This compact graphical representation is employed within the graph transformation

tool known as GROOVE (see section 3.3). Figure 3.9 illustrates how the rule

wp from M1 to Buffer would be represented in GROOVE.

Figure 3.9: Compact representation of wp from M1 to Buffer

The elements of the graph drawn in black correspond to those of K. They are called readers

because they are matched and preserved by the rule. Those drawn in blue are called erasers as

they are matched and deleted by the rule. They belong to L− l(K). Those drawn in green are

called creators as they created by the rule. They belong to R− r(K). Rules will be represented in

this way throughout the remainder of this work.

Definition (Gluing condition): Let G ∈ GΛ, t = 〈L← K → R〉 be some transformation rule over

GΛ and m : L→ G be some matching for t in G. The matching m satisfies or maintains the gluing

condition for t if the following two sub-conditions are satisfied:

1. Dangling condition:(
∀e ∈ EG−m(L)

)
s(e) /∈ Vm(L−l(K)) ∧ t(e) /∈ Vm(L−l(K))
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In other words, the dangling condition stipulates that no edge in G−m(L) 3 is incident to a node

deleted by the rule. This has the effect that if a node is deleted, then so is any edge adjacent to it.

The dashed blue arrows in figure 3.8 indicate, m(L− l(K)), the portion of L in G which will be

deleted when the rule is applied. One can verify that the matching m satisfies the dangling

condition for wp from M1 to Buffer since the deletion of m(L− l(K)) from G does not leave

behind any dangling edges. If G also possessed an edge between the nodes labelled “Work Piece”

and “Input” for example, m would no longer satisfy the dangling condition for

wp from M1 to Buffer.

2. Identification condition:

(∀v, v′ ∈ VL) v 6= v′ =⇒
[
m(v) = m(v′) =⇒ v, v′ ∈ Vl(K)

]
(∀e, e′ ∈ EL) e 6= e′ =⇒

[
m(e) = m(e′) =⇒ e, e′ ∈ El(K)

]
This says that for all distinct nodes (edges) x, x′ in L, m(x) = m(x′) only if x, x′ are both in K.

More intuitively, a pair of nodes (edges) x, x′ ∈ L may only be mapped non-injectively, if neither

of the two nodes (edges) are erased by the rule. The reasoning behind the identification condition

is more subtle. It is essentially imposed to prevent matches which lead to ill-defined applications

of graph transformation rules. Note that the identification condition is always satisfied for

injective matchings.

Definition (Applicability of a graph transformation rule): Let G ∈ GΛ and t = 〈L← K → R〉 be

some transformation rule over GΛ. The graph transformation rule p is said to be applicable to a

source graph G if there exists a matching m : L→ G for t in G which satisfies the gluing condition.

If the existence of an injective matching is prerequired to apply t, then t is only applicable to G

when L ⊆ G, where L is the left hand side of t.

Definition (direct derivation): Let G,H ∈ GΛ, R be a set of graph transformation rules over GΛ

and t ∈ R be applicable to G. Say G directly derives H through t, denoted by G⇒t H if (1) and

(2) are graph pushouts in figure 3.10.

Simply put, a direct derivation G⇒t H is the application of a rule t to a source graph G, which

yields a target graph H. When necessary, the notation G⇒t,m,m∗ H can be used in order to

specify the matching m : L→ G, with respect to which the rule t is applied and the so called

comatch, m∗ : R→ H, of t in H. Both subscripts may be dropped when t,m are clear from

context or irrelevant. Write G⇒R H if there exists a t ∈ R such that G⇒t H.

3G−m(L) is the structure obtained by removing the contents of m(L) from G. Note that the resulting structure

is not necessarily a graph as there is no guarantee that all of its remaining edges will have both source and target

nodes.
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L K R

(1) (2)

G D H

m

l r

d m∗

l∗ r∗

Figure 3.10: Double push out requirement for direct derivation

Given a source graph G ∈ GΛ and a rule t over GΛ, applying t to G to obtain a graph H comprises

the following steps:

i. Find a matching m for t in G (or equivalently find a match of L in G, m(L)).

ii. Verify the match m does not violate the gluing condition.

iii. Remove m(L− l(K)) from G to obtain the so called context graph4 D and morphism d.

That is, D = G−m(L− l(K)) is the graph obtained by removing from G the nodes and

edges of L which are not in the image l.

iv. Construct the pushout of D
d←− K

r−→ R to obtain the target graph H. That is construct H

by gluing R and D along K according to morphisms r and d.

As morphism l is by definition injective for all transformation rules, it follows from the lemma of

section 3.1.2 that l∗ is also always injective. This implies that D ⊆ G. When a transformation

rule is injective(morphism r is injective), G ⊇ D ⊆ H.

Step i is by far the most computationally intensive step involved in this procedure. When only

injective matchings are permitted this step is simplified and involves solving an instance of the

subgraph isomorphism problem which is NP-complete [7]. When non-injective matchings are

accepted, find a matching involves solving an instance of the graph matching problem which is

also NP-complete [1]. In section 5.5, more information is provided on the complexity of each step

of a direct derivation.

To visualize step iii consider graph D in figure 3.11 and graphs G,L in figure 3.8. The portion of

L which has no preimage in K is deleted from G to obtain D. As for step iv, we illustrate in

figure 3.11 how R,D are glued along K to obtain H. Note that a rule may be applied to a given

graph via several different matchings.

4D is a graph, as the gluing condition ensures that the source and target nodes of each edge in D are also nodes

in D.
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K

D

R
d m

r

*

Figure 3.11: Construction of pushout of D ← K → R

Definition (Derivation): Let G,G0, G1, ..., Gn, H ∈ GΛ and R be a set of graph transformation

rules over GΛ. A derivation from G to H through R consists of a sequential composition of direct

derivations of the form G = G0 ⇒R G1 ⇒R ...⇒R Gn
∼= H. A derivation from G to H of

unspecified finite length over R is denoted by G
∗

=⇒R H. The relation
∗

=⇒R is the

transitive-reflexive closure of ⇒R. The notation G
n

=⇒R H may be used when the number of steps

in the transformation is made explicit.

Definition (Graph transformation systems): A graph transformation system (GTS) gts = (R,Λ)

over GΛ, consists of label alphabet Λ and a set of graph transformation rules R over GΛ. Given a

gts = 〈R,Λ〉 and a set of initial graphs G0 ⊆ GΛ, the set of reachable graphs, denoted R(gts,G0), is

defined as R(gts,G0) = {G ∈ GΛ|G0
∗

=⇒R G,G0 ∈ G0}.

Figure 3.12 displays a GTS called Machine. Subfigures 3.12a-3.12d illustrate Machine’s

transformation rules and subfigure 3.12e shows its initial graph.

Definition (Induced graph transition system): The graph transition system T = (S,→, S0)

induced by the graph transformation system gts = (R,Λ) equipped with initial graphs G0 ⊆ GΛ

consists of a state set S = {G|G ∈ R(gts,G0)} of reachable graphs, a transition relation

→⊆ S ×R×MORGraphΛ
× S,5 where (G, t,m,H) ∈→ iff G⇒t,m H ′ with H ′ ∼= H and an initial

state set S0 = G0 ⊆ S. We call T finite if |S| ∈ N and infinite otherwise.

A graph transition system is finite or infinite, depending on the GTS and the initial state set it is

induced by. If for example, a GTS possesses a rule which unconditionally always adds a node to

5Recall from section 3.1.2 that MORGraphΛ is the class of morphisms of the category GraphΛ.
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(a) rule start working (b) rule finish working (c) rule breakdown (d) rule repair

(e) Initial graph start

Figure 3.12: GTS Machine equipped with inital graph start

the source graph, it will induce an infinite graph transition system regardless of the initial states it

is paired with.

In figure 3.13 we illustrate the finite graph transition system induced by the pair (Machine,

start) which are displayed above in figure 3.12.

s2

s0

s1

Figure 3.13: Graph transition system induced by (Machine, start)

From a practical standpoint, a graph transition system is built by recursively applying all

applicable transformation rules (of the GTS it is induced by) starting from the set of initial

graphs. When identical states (isomorphic graphs) are encountered they are merged. This
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recursive process can potentially never end if the graph transition system is infinite. In the case

where it is finite, the process terminates when no new transitions can be explored. Note that the

order in which transitions are added to the graph transition system depends on the search

strategy employed i.e. depth first search, breadth first search, etc.

In order to represent a graph transition system more compactly, the graphs underlying the states

may be omitted and the rule spans associated to the transitions may be replaced by corresponding

rule names. Figure 3.14, illustrates how the graph transition depicted in figure 3.13 is compactly

represented.

Figure 3.14: Compact representation of the graph transition system induced by (Machine, start)

3.3 Graph transformation tools

Many graph transformation tools (GTT) implementing the algebraic approach have been

developed. These software tools are geared towards a variety of different applications including

but not limited to model transformation, model checking, rapid system prototyping and state

space exploration. In all cases, the primary function of these tools is to receive as input graph

transformation systems together with a set of initial graphs and automate the process of

constructing the induced graph transition system. Some of these tools comprise a graphical user

interface which can be used to graphically create and edit transformation rules and graphs. Others

are terminal-based and require the user to specify graphs and graph transformation rules textually.

GROOVE is one such graph transformation tool developed at the university of Twente. It

implements the single pushout approach[18] which is very similar to the double pushout approach.

It is intended as a multi-purpose tool which can be used for model checking, model analysis,

model transformation, rapid system prototyping, state space exploration, etc.

Due to its versatility GROOVE was chosen as the supporting GTT for this research. Although it

is not geared toward generating controlled DES models, it possesses all necessary features required

to illustrate how a GTT can be used to do so. Furthermore, its intuitive graphical user interface

helps illustrates the user-friendliness of this modelling approach.
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3.4 Extensions

New concepts extending the core of graph rewriting theory are continually developed in academia.

These theoretical extensions are progressively integrated into graph transformation tools such as

GROOVE in order to improve their modelling capabilities. In this section we present five features

integrated within GROOVE which play a key role within our proposed modelling framework.

Although these concepts are presented within the context of the double pushout approach, the

general ideas behind them are not specific to any particular approach.

3.4.1 Typed graphs

In graph rewriting a universe of discourse is established to specify what class of graphs is of

interest and what graphs are in some sense disallowed. Up until this point, we have assumed GΛ to

be our domain of discourse. That is, we have constrained all the involved graphs to be defined

over label alphabet Λ. However, specifying the domain of discourse via a label alphabet only

restricts which labels may appear on nodes and edges without imposing any restrictions on how

they may be connected to one another. For some applications, including ours, this mechanism

may not provide enough precision for choosing the domain of discourse. Type graphs constitute

an alternative means for specifying the allowable class of graphs. Type graphs generalize label

alphabets as they specify the set of allowable node and edge types as well as how these node and

edge types may be connected. The following presentation of typed graphs is based on [16].

Definition (Typed graph): Let TG be a fixed unlabelled graph. A TG-typed graph or a graph

typed over TG typically denoted (tG : G→ TG) consists of an unlabelled graph G and a graph

morphism tG : G→ TG called the typing morphism, which intuitively assigns a “type” to each

node and edge of G. We call TG a type graph and G an instance graph. We use GTG to denote the

set of all TG-typed graphs.

Note that when typing is employed graphs are not labelled. Instead, each node and edge of the

type graph is implicitly understood to represent a different type and the nodes and edges of an

instance graph are assigned one such type via the typing morphism. For convenience however, the

edges and nodes of type graphs are informally labelled to indicate the type of each edge and node.

Definition (Morphism of typed graphs): Let TG be a fixed type graph. A morphism of TG-typed

graphs ψ : (tG : G→ TG)→ (tH : H → TG) is a graph morphism ψ : G→ H which preserves

typing with respect to TG, i.e, tH ◦ ψ = tG.

The set of TG-typed graphs together with the set of morphisms of TG-typed graphs defines the

category GraphTG. In figure 3.15a we give an example of two TG-typed graphs (tG : G→ TG),

(tH : H → TG) and a TG-typed morphism ψ. In this figure (tG : G→ TG), (tH : H → TG)’s
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typing morphisms are explicitly represented. An informal alternative representation of the

TG-typed instance graphs is depicted in figure 3.15b, where the typing morphisms are implicitly

specified via labels indicating the types of the nodes and edges and respecting the constraints

embodied by the structure of TG. To avoid confusion we refer to these informal labels as type

labels.

G

TG

tG

tH
H

(a) Explicit representation of typing morphism

G

(b) Compact representation

Figure 3.15: Two TG-typed graphs (tG : G→ TG), (tH : H → TG) and a TG-typed morphism ψ

Definition (Typed graph transformation rule): Let TG be a fixed type graph. A TG-typed graph

transformation rule t = 〈L l←− K
r−→ R〉 is a graph transformation where L,K,R ∈ GTG and l, r are

morphisms of TG-typed graphs.

Definition (Typed graph transformation system): Let TG be a fixed type graph. A typed graph

transformation system (TGTS) tgts = (R, TG) over type graph TG, consists of a type graph TG

and a set of TG-typed graph transformation rules R. Given a TGTS tgts = 〈R, TG〉 and a set of

initial graphs G0 ⊆ GTG, the set of reachable graphs, denoted R(tgts,G0) ⊆ GTG, is defined as

R(tgts,G0) = {G ∈ GTG|G0
∗

=⇒R G,G0 ∈ G0}.

3.4.2 Typed attributed graphs

Heretofore, nodes have been used to represent any entity in a system. The theory of attributed

graphs introduces additional structure which distinguishes entities representing objects from those

representing object attributes (i.e information about objects). This is accomplished by using

designated data vertices to express information about objects and using object vertices to

represent the objects themselves. In this context, edges relating data and objects are referred to

as attributes and those relating two objects are referred to as links. Each attribute edge has a

name and a data type and the data vertex it is incident to holds a value of that type. The
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machinery of algebraic specification presented in section 3.1.3 is used to define the mathematical

structure of data types.

This treatment of attributed graphs closely follows that of [15]. In this formulation, attribute

edges may only originate from object nodes and lead to data vertices. Hence, these kinds of graphs

are referred to as node-attributed graphs. However, generalizations permitting edge-attribution

have also been developed [12] by employing so-called E-graphs which allow edges to originate from

other edges. To facilitate the presentation of these notions we first start by defining attributed

graphs without typing and then reintroduce typing and define typed attributed graphs.

Throughout the remainder of this thesis we fix SIG = (S,OP ) to be a specific data type signature

over sort set S and constant and operation symbol set OP . As such, all attributed graphs which

follow, are attributed over this data type signature.

Definition (Attributed graph): An attributed graph over the algebraic signature SIG or a

SIG-attributed graph AG = (GAG, AAG) consists of a graph GAG and SIG-Algebra

AAG = (SAAG
, OPAAG

) such that

i.
⋃
s∈S AAG,s ⊆ VGAG

, and

ii. (∀e ∈ EGAG
)s(e) /∈

⋃
s∈S AAG,s

where SAAG
= {AAG,s|s ∈ S}.

DVAG =
⋃
s∈S AAGs is referred to as the set of data vertices of AG and OVAG = VGAG

−DVAG is

referred to as the set of object vertices of AG. Note that there are no edges leaving data vertices.

The set of attributes of AG is defined as AttrAG = {e ∈ EGAG
|t(e) ∈ DVG} and the set of links of

AG is defined as LinkAG = EGAG
− AttrAG. For convenience we define the set of involved data

vertices as IDVAG = {d ∈ DVAG|(∃e ∈ AttrAG) t(e) = d}. The structural component of the graph

of AG is defined as Graph(AG) = GAG − (DVAG + AttrAG); it consists solely of objects and links.

Definition (Attributed graph morphism): Given two SIG-attributed graphs AG1 = (GAG1 , AAG1)

and AG2 = (GAG2 , AAG2), a SIG-attributed graph morphism ψ = (ψG, ψA) : AG1 → AG2 consists

of a graph morphism ψG = (ψV , ψE) : GAG1 → GAG2 and a SIG-homomorphism

ψA = {ψs : AAG1,s → AAG2,s|s ∈ S} : AAG1 → AAG2 such that
⊔
s∈S ψs ⊆ ψV where⊔

s∈S ψs : DVAG1 → DVAG2 is the function defined by

(∀s ∈ S)(∀a ∈ DVAG1)
⊔
s∈S

ψs(a) = ψs(a)

This notation is used because
⊔
s∈S ψs is obtained by taking the disjoint union of the functions ψs

6,

viewed as relations and
⊔
s∈S ψs ⊆ ψV means that the former function is a restriction of the latter.

6The disjoint union is used in place of regular union in order to ensure that the resulting relation is in fact a

function.
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The collection of SIG-attributed graphs together with the collection of SIG-attributed graph

morphisms form the category of SIG-attributed graphs AGraph(SIG).

Definition (Attributed type graph): A SIG-attributed type graph is a SIG-attributed graph

ATG = 〈TG,Z〉 over the final7 SIG-algebra Z possessing singleton carrier sets Zs = {s} for each

s ∈ S.

In figure 3.16a we give an example of an attributed type graph where the data vertices bool,

string and attributes broken, identity are explicitly drawn as nodes and edges respectively.

The Machine, Work Piece nodes are object vertices and the held by edge is a link. Note that

data vertices are drawn as ellipses to differentiate them from object nodes drawn as rectangles.

For convenience, attributes and their values may be inscribed within the object vertex they belong

to as demonstrated in figure 3.16b and 3.16c. This is referred to as attribute notation. In the

context of type graphs, an attribute’s associated data vertex specifies its sort not its value. In this

context, attributes are intended as attribute declarations which specify which attributes objects

can potentially have.

(a) Explicit representation of at-

tributes & data vertices

(b) Attribute notation (c) Instance graph

Figure 3.16: An attributed type graph ATG and an ATG-typed graph

Definition (Typed Attributed graph): Let ATG = 〈TG,Z〉 be a SIG-attributed type graph. An

ATG-typed graph 〈AG, ag〉 attributed over algebra AAG consists of a SIG-attributed graph

AG = (GAG, AAG) equipped with an attributed graph morphism ag = (agG, agA) where

agG : GAG → TG and agA : AAG → Z.

In figure 3.16c we have an example of a typed attributed instance graph. In general, attributed

instance graphs technically have an infinite number of vertices. This occurs when ever an infinite

data type is present such as N since the graph must possess a vertex for each n ∈ N. As will be

seen shortly however, it is assumed that data vertices are never deleted by rules. Therefore it is

only necessary to draw the involved data vertices d ∈ IDVAG. In our example, the instance graph

has infinite number of string data vertices. However, we only specify the string data vertices

"M1","M2".

7Z is called a final SIG-algebra because it is a final object in the category CAT(SIG).
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Definition (Typed Attributed graph morphism): Let ATG be a SIG-attributed type graph and

〈AG1, ag1〉, 〈AG2, ag2〉 be two ATG-typed graphs where

AGi = (GAGi
, AAGi

), for i = 1, 2

agi = (agi,G , agi,A), for i = 1, 2

A typed attributed graph morphism h : 〈AG1, ag1〉 → 〈AG2, ag2〉 is an attributed graph morphism

h = (hG, hA) which preserves typing, meaning

ag2,G ◦ hG = ag1,G

ag2,A ◦ hA = ag1,A

The class of ATG-typed graphs together with the class of ATG-typed graph morphisms defines

the category GraphATG.

Definition (Typed Attributed graph transformation rule): Let ATG be a SIG-attributed type

graph and X = {Xs|s ∈ S} be a sort-indexed family of sets of variables. An ATG-typed graph

transformation rule over X, t = 〈L l←− K
r−→ R〉, consists of three ATG-typed graphs L,K,R

attributed over the term algebra TSIG(X) and two ATG-typed graph morphisms l, r whose

homomorphism components, lA, rA are identities on TSIG(X). This is summarized by the following

equations:

L = 〈AGL, agL : AGL → ATG〉
K = 〈AGK , agK : AGK → ATG〉
R = 〈AGR, agR : AGR → ATG〉

AGL = (GL, TSIG(X))

AGK = (GK , KSIG(X))

AGR = (GR, TSIG(X))

l = (lG : GK → GL , la : TSIG(X)→ TSIG(X))

r = (lR : GK → GR , ra : TSIG(X)→ TSIG(X))

la = ra = idTSIG(X)

As such the data vertices of the interface and left- and right-hand sides of a rule are actually the

elements of TSIG(X). This includes all basic and composite terms over X with and without

variables. We say the graph transformation rule t has variables if (IDVL ∪ IDVR)− TSIG 6= ∅.

When an attributed graph transformation rule is applied according to the double push out

approach, the homomorphism components of matchings m, d,m∗, given by
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mA, dA,m
∗
A : TSIG(X)→ A, are in fact extended assignments and l∗A, r

∗
A are identities on A

(refer to figure 3.10 for double pushout diagram).

Recall from section 3.1.3 that an extended assignment α : TSIG(X)→ A uniquely determines a

variable assignment α : X → A and vice versa. Therefore, given a matching m for a rule t, there is

only one valid comatch m∗A such that m∗A ◦ u = α = mA ◦ u. Therefore, to apply a rule t with

respect to a matching m one must first extract the assignment α from mA and then use this

assignment to determine the unique comatch m∗ for which α = m∗A ◦ u.

When implementing graph transformation of attributed graphs within a GTT the matchings

m : L→ G and m∗ : R→ H involved in a derivation G⇒t,m,m∗ H are not explicitly represented.

This is because TSIG(X) often has an infinite number of terms in which case an infinite amount of

information is required to explicitly represent the SIG-homomorphism components

mA : TSIG(X)→ AG and m∗A : TSIG(X)→ AH . Fortunately, only the values of attributes are of

interest. That is, only the the images of the involved data vertices of L through mA and R

through m∗A are of concern. As a result, only the images of IDVL and IDVR through mA and m∗A
respectively are explicitly specified in the application of a transformation rule.

One issue with this is that the partial specification of the extended assignment mA does not

generally determine a unique variable assignment. As a result, there may be several different

possible comatches to chose from (which potentially map different values to IDVR).

To avoid this added complexity and other non-trivial issues in this work, we impose the following

two constraints on the involved data vertices of left- and right-hand sides of typed attributed

graph transformation rules:

i. (∀d ∈ IDVL) d ∈ TSIG(X)− TSIG =⇒ d ∈
⋃
s∈S Xs, and

ii. (∀d ∈ IDVR)(∀x ∈
⋃
s∈S Xs) d ∈ T xSIG(X) =⇒ (∃d′ ∈ IDVL) d′ = x.

Intuitively, the first constraint states that the involved data vertices of L may not be compounded

terms with variables, that is all variables must appear as basic terms. The first clause simplifies

the task of determining whether a matching m is applicable to a rule. To mention one example,

this avoids the need to solve a boolean satisfiability problem when attempting to decide the

applicability of a match m : L→ G when one of the involved data vertices on the left-hand side is

a boolean function (i.e. composite term involving exclusively boolean variables). The second

constraint states that if a variable x appears in a term which is an involved data vertex of R, then

the variable x must itself be an involved data vertex of L. This clause guarantees only one

assignment and in turn one comatch is possible for a given matching.

In figure 3.17 we give two examples of typed attributed graph transformation rules. To easily

distinguish attributes with constant values (i.e. terms in TSIG) from those associated to variables
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(i.e. terms in TSIG(X)), attribute notation is used to represent those with constant values and

explicit notation is used for those associated to variables. The same color scheme is used to

indicate whether attributes are erasers, readers and writers. In figure 3.17a and 3.17b the

attribute identity is a reader and the sort of its associated variable (which is string) is

inscribed within the data node.

Note that since lA, rA are required to be identities on TSIG(X), data vertices cannot be deleted by

transformation rules. To change the value of an attribute a rule must delete the attribute edge

and create a new edge with the same source node pointing to a new data vertex. This is exactly

what the rule repair does with the attribute broken in figure 3.17a.

(a) rule repair (b) rule break down

Figure 3.17: Two typed attributed graph transformation rules

Definition (Typed Attributed graph transformation system): Let ATG be a SIG-attributed type

graph and X = {Xs|s ∈ S} be a sort-indexed family of sets of variables. An ATG-typed graph

transformation system atgts = (SIG,ATG,X,R) consists of data type signature SIG, an

attributed type graph ATG, a family of variables X and a set of ATG-typed graph transformation

rules R over X.

Representation of composite terms in GROOVE

In the exemplary typed attributed transformation rules depicted in figure 3.17a and 3.17b the

involved data vertices are both basic terms. We now briefly explain how rules involving composite

terms can be represented.

Perhaps the most intuitive way of representing composite terms is by using infix notation as

illustrated in figure 3.18a. This rule increments the holding attribute of a buffer by one.

GROOVE does not represent composite terms in this manner. Instead it uses so-called product

nodes to represent operations which are applied to basic terms. In figure 3.18b we illustrate how

the exact same rule is constructed within GROOVE.

The product node is drawn as a diamond. The edge labelled π0 is called an argument edge.

Argument edges are used to indicate the arguments of operations. In this case, the second
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(a) Representation using infix notation

(b) Representation used in GROOVE

Figure 3.18: Representation of composite terms within GTR

argument is inscribed within the product node itself. 8 The edge labelled add is a so-called

operator edge. Its role is to indicate what operation the product node carries out. It is also used

to point to the data vertex which represents the result of the operation.

As an example, applying the rule depicted in figure 3.18b to the following graph shown in figure

3.19 would yield the derivation illustrated in figure 3.20.

Figure 3.19: Source graph

Figure 3.20: Derivation involving rule with a product node

A list of all the operations available within GROOVE can be found in its user manual which can

be download from GROOVE’s SourceForge Project Page.

8When an argument of a product node is a constant, it is sometimes inscribed within the product node itself.

This is another one of GROOVE’s particular conventions.
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3.4.3 Parametrized rules

With the introduction of rules with variables it is possible to model systems with fewer

transformation rules. This is because rules with variables are equivalent to a set of rules without

variables resulting from the substitution of the variables with the values of the appropriate data

type. However, when the induced graph transition system is generated there is an inherent

ambiguity associated to transitions corresponding to rules with variables. This is because the

values assigned to the variables are not explicitly specified within the graph transition system.

In order to remediate this issue but still retain the advantages provided by rules with variables,

the variables of rules may be designated as parameters. When a rule with parameters, occurs as a

transition the values assigned to its parameters are explicitly specified within the induced graph

transition system.

Definition (Parametrized transformation rules): Let ATG be a fixed SIG-attributed type graph

and n ∈ N+. An ATG-typed parametrized graph transformation rule,

p = (〈L← K → R〉, {y1, ..., yn}), consists of an ATG-typed rule span 〈L← K → R〉 and a set of

parameters {y1, ..., yn} = Y ⊆ (IDVL ∪ IDVR)− TSIG ⊆ TSIG(X)− TSIG. Note that since

Y ⊆ (IDVL ∪ IDVR)− TSIG, only rules with variables may be parametrized.

Figure 3.21: Parametrized graph transformation repair

In figure 3.21 an example of a parametrized graph transformation rule is given. This rule which is

also named repair is a parametrized version of the rule shown in figure 3.17a. The black box

labelled ?0 hovering over the top left of the data vertex indicates that this string variable is the

the rule’s first parameter. The nth parameter of a rule is labelled ?(n-1). This zero based

indexing of parameters is adopted as it is the indexing scheme employed by GROOVE.

Definition (Direct derivation via a parametrized rule): Let G,H ∈ GATG, and

p = (〈L← K → R〉, {y1, y2, ..., yn}) be an ATG-typed parametrized graph transformation rule. In

this case, G⇒p,m,m∗ H iff G⇒p′,m,m∗ H, where p′ = 〈L← K → R〉 is a non-parametrized

ATG-typed transformation rule with the same rule span as p. We call G⇒p,m,m∗ H a

parametrized direct derivation.

In figure 3.22a we give an example of a parametrized direct derivation via the parametrized rule

repair. In a parametrized direct derivation, the target graph is derived from the source graph in

the same manner as in the non-parametrized case.
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Definition (interpretation of a parametrized rule): Let G,H ∈ GATG and

p = (〈L← K → R〉, {y1, ..., yn}) be an ATG-typed parametrized graph transformation rule. Let d

be a direct derivation via a parametrized rule p given by G⇒p,m,m∗ H. The interpretation of p

with respect to d, is a (non-parametrized) ATG-typed graph transformation rule given by:

pz1,...,zn = 〈L′ ← K ′ → R′〉

where

L′ ∼= m(L),

K ′ ∼= m(l(K)) ∼= m∗(r(K)),

R′ ∼= m∗(R),

and

zi =

mA(yi) if yi ∈ IDVL
m∗A(yi) if yi ∈ IDVR

In the context of a parametrized direct derivation via a parametrized rule p, the assignment of the

values {z1, ..., zn} to the the parameters of p yields the interpretation pz1,...,zn . Note that different

derivations inducing the same parameter assignment for a given parametrized rule yield the same

interpretation. In figure 3.22b we display the interpretation of repair with respect to the

derivation shown in figure 3.22a.

As the interpretation of a rule is determined by the rule’s parameter assignment, we refer to the

interpretation via the rule’s name followed by a comma separated list of the assigned values. For

example, the interpretation depicted in figure 3.22b is referred to as repair("M1").

(a) Parametrized direct derivation via repair

(b) Interpretation repair("M1")

Figure 3.22: A Parametrized direct derivation & the corresponding interpretation

Definition (Parametrized graph transformation system): An ATG-typed parametrized graph

transformation system (PGTS) pgts = (SIG,ATG,X,R), consists of data type signature SIG, an

attributed type graph ATG, a family of variables X and a mixed set of ATG-typed graph

52



(a) rule start working (b) rule finish working (c) rule breakdown

(d) rule repair

(e) Type graph (f) Initial graph start

Figure 3.23: A parametrized graph transformation system Parametrized Machines and an initial

graph start

transformation rules over X, R = PR tNPR partitioned into parametrized rules PR and

non-parametrized rules NPR.

In figure 3.23 we give an example of a parametrized GTS named Parametrized Machines

equipped with an initial graph named start. In this example we have:

Parametrized Machines = (SIG, type, X, {start working, finish working, breakdown, repair})
PR = {start working, finish working, breakdown, repair}
NPR = ∅

Let G0 be a set of start graphs, pgts = (SIG,ATG,X,R, ATG) be a PGTS and p ∈ PR ⊆ R be

one of its parametrized rules. Define the set of parametrized direct derivations involving p as

PD(pgts,G0, p) = {G⇒p,m,m∗ H|G,H ∈ R(pgts,G0)}. Next define I(pgts,G0, p) as the set of

interpretations of p with respect to derivations in PD(pgts,G0). Now we can define the set of

interpretations of PR induced by (pgts,G0) as I(pgts,G0,PR) =
⋃
p∈PR I(pgts,G0, p).

Definition (Induced graph transition system of a parametrized graph transformation system):

The graph transition system T = (S,→, S0) induced by an ATG-typed parametrized graph

transformation system pgts = (SIG,ATG,X,R, ATG) equipped with initial graphs G0 ⊆ GATG
consists of a state set S = {G|G ∈ R(pgts,G0)} of reachable graphs, a transition relation

→⊆ S × [I(pgts,G0,PR) ∪NPR]×MORGraphATG
× S, where (G, t,m,H) ∈→ iff G⇒t,m,m∗ H

′

with H ′ ∼= H and an initial set S0 = G0 ⊆ S.

Figure 3.24 illustrates the graph transition system induced by (Parametrized Machines, start).

In this example, the set of interpretations of PR induced by (Parametrized Machines, start) is
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given by:

I(Parametrized Machines, start,PR) =

{start working("M1"), start working("M2"),

finish working("M1"), finish working("M2"),

breakdown("M1"), breakdown("M2"),

repair("M1"), repair("M2")}

As Parametrized Machines possesses only parametrized rules, all of the transitions are

interpretations.

Figure 3.24: A graph transition system induced by a parametrized graph transformation

It is important to note that the parametrization of a graph transformation system’s rule set causes

no structural changes to its induced graph transition system. Its only purpose is to allow for the

customization of transition based on the associated matches and comatches of the derivations

underlying each transition.
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3.4.4 Graph constraints

In many applications it is useful to determine what subset of graphs produced by a graph

transformation system share a certain property. For example, one could be interested in

determining the set of graphs which contain a particular subgraph G or the set of graphs that

have more than 2 nodes. This can be accomplished using so-called graph constraints. In this

work, graph constraints will be used firstly, to specify the subset of states of the induced graph

transition system which should be marked as final. Secondly, to specify the subset of states which

should be flagged as forbidden states in state-based synthesis.

The degree of generality with which this concept is defined determines its ability to express

properties concisely. The definition one chooses to employ ultimately depends on the needs

imposed by the application at hand. In this work we present perhaps the simplest definition of

graph constraints. More complex and powerful formulations of graph constraints can be found in

[10, 24].

Definition (Graph constraint): A positive (negative) atomic graph constraint is of the form

PC(C) (NC(C)) where C is some graph. A graph G satisfies the positive (negative) atomic

graph constraint PC(C) (NC(C)), written G |= PC(C) (NC(C)), iff there exists a (total)

morphisms m : C → G. Note that m need not be injective.

Atomic graph constraints may be combined via logical connectives to form graph constraints. As

such, every atomic graph constraint is a graph constraint and for every graph constraint c, ¬c is a

graph constraint and for every index set I and family (ci)i∈I of graph constraints, ∧i∈Ici and

∨i∈Ici are graph constraints. A graph G satisfies a graph constraint ¬c, written G |= ¬c iff G does

not satisfy c, written G 6|= c. G satisfies ∧i∈Ici (∨i∈Ici), written G |= ∧i∈Ici(∨i∈Ici), iff all (some) ci

with i ∈ I are satisfied by 〈AG, ag〉.

Note that the positive (negative) atomic graph constraint characterized by the graph of order

zero, PC(K0) (NC(K0)) is satisfied by all (no) graphs G because a total empty morphism always

exists from K0 to G.

For the sake of generality, the above definition of graph constraints does not reference any

overarching category. In practice however, the graph C characterizing a positive or negative

atomic graph constraint is an object from a fixed category C such as GraphΛ, GraphTG or

GraphATG. In this context, a positive (negative) atomic graph constraint can be viewed as a

(characteristic) function PC(C) (NC(C)) : ObC → {true, false} defined by

PC(C)(G) = true iff C[C,G] 6= ∅
NC(C)(G) = true iff C[C,G] = ∅

Recall from section 3.1.2 that C[C,G] is the set of all morphisms in MorC with domain and

codomain C and G respectively.
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This functional interpretation of atomic graph constraints can straightforwardly be generalized for

non-atomic graph constraints.

In figure 3.25 an example of a graph constraint over the category GraphATG is given. This

constraint consists of the logical conjunction of two atomic negative graph constraints. Intuitively,

a graph G (which is ATG-typed in this case) satisfies this constraint as long as it contains neither:

i. a node of type Machine with a broken attribute set to true

ii. nor a node of type Machine with a working attribute set to true.

(V( ((
NC NC

Figure 3.25: A typed and attributed graph constraint
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Chapter 4

Graph rewriting modelling framework

Having presented the fundamental concepts underlying the algebraic approach as well as some key

extensions to graph rewriting, this chapter now presents the graph-based modelling framework

which will be used to generate the finite state automaton models used within SCT. We begin by

defining the graph-based models about which our framework is centred in section 4.1. In section

4.2, we then provide an overview of how these graph-based models are used to obtain finite state

automata. In section 4.3 we discuss how they are used to model systems. Finally in section 4.4 we

explain how the proposed modelling framework is applied to generate the models required in both

event- and state-based supervisory controller synthesis.

4.1 Implicit and induced automata

Our proposed modelling framework revolves around two mathematical models referred to as the

implicit automaton and the induced automaton. Both of these structures are defined in terms of

GTS. The definition of these models may be adjusted to accommodate GTS which transform

graphs in different categories. To introduce advanced functionalities, we chose to define these

models in terms of typed attributed and parametrized graph transformation systems. These GTS

manipulate graphs in the category GraphATG.

Definition (Implicit automaton): An implicit automaton typed over ATG is a triple

ia = (pgts,G0, cm) consisting of an ATG-typed PGTS pgts = (SIG,ATG,X,R), a set of initial

graphs G0 ⊆ GATG and a special graph constraint cm over GATG referred to as a marking constraint.

Figure 4.1 provides an examples of an implicit automaton. Figures 4.1a-4.1d depict the graph

transformation rules, figure 4.1e shows its type graph, figure 4.1g illustrates its initial graph and

figure 4.1f displays its marking constraint.
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(a) rule start working (b) rule finish working (c) rule breakdown (d) rule repair

(e) Type graph

(V( ((
NC NC

(f) Marking constraint

(g) Initial graph start

Figure 4.1: An implicit automaton

The reasoning behind the terminology implicit automaton stems from the fact that although the

triple ia = (pgts,G0, cm) does not explicitly specify the state, transition and marking structure of

an automaton, it contains all the information required to construct one. This is demonstrated by

the definition of the induced automaton which follows.

Definition (Induced automaton): Let ia = (pgts,G0, cm) be an ATG-typed implicit automaton

with pgts = (SIG,ATG,X,R). The automaton induced by ia, A = (Q,Σ,∆, Q0, Qm), consists of

a set of states Q, event set Σ, transition relation ∆ ⊆ Q× Σ×Q, initial states Q0 and marked

58



states Qm where

Q = {q| q ∈ R(pgts,G0)},
Σ = I(pgts,G0,PR) ∪NPR,

Q0 = {q ∈ Q| q ∈ G0},
Qm = {q ∈ Q| q |= cm}, and

(∀q, q′ ∈ Q)(∀σ ∈ Σ)(q, σ, q′) ∈ ∆⇐⇒ (∃m ∈MORGraphATG
)q ⇒σ,m q′.

Once the induced automaton is generated, the event set may be partitioned as Σ = Σc t Σu, i.e.

into controllable and uncontrollable event sets. This partition of Σ is determined based on the

informal description of the system. Note that the set of interpretations of a parametrized rule

need not be exclusively controllable or uncontrollable. In other words, given a parametrized rule

p ∈ PR, one may have

I(pgts,G0, p) ∩ Σc 6= ∅ & I(pgts,G0, p) ∩ Σu 6= ∅

Definition (Partitionability of rule set): Let pgts = (SIG,ATG,X,R) be a PGTS. Let

A = (Q,Σ,∆, Q0, Qm) be the automaton induced by the implicit automaton ia = (pgts,G0, cm)

and Σ = Σc t Σu be a particular partition of its event set. The parametrized rule set R is

partitionable with respect to the partition Σ = Σc t Σu if and only if

(∀p ∈ PR) [I(pgts,G0, p) ⊆ Σc ∨ I(pgts,G0, p) ⊆ Σu]

When R is partitionable there exists a partition R = Rc tRu such that Σc = Rc and Σu = Ru.

Intuitively, a parametrized rule set is partitionable into controllable and uncontrollable events, if

each of its parametrized rules are controllable or uncontrollable independent of interpretation, i.e.

for each parametrized rule, all of its interpretations are either controllable or uncontrollable.

The state, transition and marking structure of the induced automaton is isomorphic to that of the

abstract automata defined in conventional automata theory. However, the induced automaton we

have defined is more concrete as its states and transitions are graphs and graph transformation

rules respectively.

As with conventional automata, the induced automaton may generally have several initial states,

possess an infinite state set and be non-deterministic. The induced automaton

A = (Q,Σ,∆, Q0, Qm) is a deterministic finite-state automaton (DFA) if

i. |Q| ∈ N (finite-state),

ii. |Q0| = 1 (single initial state), and

59



iii. (∀q ∈ Q)(∀σ ∈ Σ)[(∃q′ ∈ Q)(q, σ, q′) ∈ ∆ =⇒ (∃!q′ ∈ Q)(q, σ, q′) ∈ ∆] (deterministic).

As such, an implicit automaton ia = (pgts,G0, cm) is called DFA-inducing if the automaton it

induces A = (Q,Σ,∆, Q0, Qm), is a DFA. ia is DFA-inducing precisely when

i. |R(pgts,G0)| ∈ N,

ii. |G0| = 1, and

iii. (∀G,G′ ∈ R(pgts,G0))(∀σ ∈ Σ)

[(∃m ∈MORGraphATG
) G⇒σ,m G′ =⇒ (∃!m ∈MORGraphATG

)G⇒σ,m G′].

Intuitively, clause iii is satisfied when each event is involved in at most one derivation from each

state. Note that here, an event σ ∈ Σ = I(pgts,G0,PR) ∪NPR is either a non-parametrized

graph transformation rule or the interpretation of a parametrized transformation rule (which is

itself a rule). As such, a parametrized transformation rule may be involved in several derivations

from a given state as long as each of its interpretations in I(pgts,G0,PR) are involved in at most

one derivation from that state. Therefore, parametrization of rules can eliminate non-determinism

in the induced automaton.

4.2 Generating deterministic finite-state automata

The main objective of our modelling framework is to produce DFA models of systems for use by

the SCT framework. In this section we provide a high-level description of the procedure used to

obtain a DFA model starting from an informal description of the system.

The first step is translating the informal description into an implicit automaton model. The

implicit automaton is designed based on the modeller’s intuitive understanding of the informal

description. The modeller manually creates and edits the implicit automaton model using the

graphical user interface of a graph transformation tool.

Once its design is complete, the implicit automaton is used by the GTT to generate the

corresponding induced automaton. These automaton models can then be exported from the GTT

and submitted to SCT synthesis tools to synthesize supervisory controllers. Obviously, the files

exported by the GTT may need to be converted to the file format supported by the employed

SCT tool.

Depending on the implicit automaton model received as input, the resulting induced automaton

may have an infinite state space. When this is the case, the GTT will continue to compute the
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states and transitions of the induced automaton ad infinitum. It may also be the case that the

generated automaton is non-deterministic. In this particular application, where the goal is to

produce DFA models, both these scenarios indicate there are errors in the design of the implicit

automaton. As such, one objective when designing implicit automata is ensuring they are

DFA-inducing.

The process describing how deterministic finite-state automata are generated is summarized by

the process diagram shown in figure 4.2.

Design 
Implicit 

Automaton

(Re)Generate
Induced

Automaton

Debug
Implicit 

Automaton

Export
Induced

Automaton

DFA-
inducing?

Create 
informal 
system

description

Figure 4.2: Generating DFA via implicit automata

4.3 Modelling systems with implicit automata

In this section we focus on a particular step involved in the generation of DFA models, namely the

design of the implicit automaton. There is no systematic procedure which can be followed to

translate a system’s informal description into an implicit automaton. The design of the implicit

automaton is therefore a creative process which relies upon the modeller’s ability to intuitively

interpret the informal system description. We begin by discussing how attributed graphs should

be used to model the state of a system. We then discuss more generally how entire systems are

modelled with implicit automata by implicitly adopting so called modelling conventions. We then

elaborate on the role played by each of the implicit automaton’s components.

4.3.1 Best modelling practices for attributed graphs

A typed attributed graph consists of object vertices, data vertices, links and attributes (see section

3.4.2). Object vertices are used to represent the actual entities which comprise the system (at that

moment). Links, which are simply edges connecting two object nodes, are used to represent

relationships between two entities. Data vertices on the other hand, are used to express

information about system entities. Attributes, which are edges directed from object vertices to
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data vertices, associate information expressed by data vertices to specific system entities. In

addition, they also interpret the manner in which the associated information characterizes the

entity.

In physical systems, object vertices can be used to represent physical components and links can be

used to represent relationships among these physical components. For instance, in the machine

and buffer examples presented throughout chapter 3, object vertices were used to represent

machines, buffers and workpieces. However, object vertices are not limited to representing

physical components. They may also represent virtual components such as clocks which track

system time, or memories which track system history.

Before the introduction of attributed graphs, we used normal vertices and edges to associate

information to system entities. For example, in figure 3.12e a Machine vertex is connected to an

Idle vertex via an is edge to represent the fact that the machine is idle. Although this is not

strictly forbidden, it is considered bad practice to use object vertices and links in this manner.

Instead, data vertices and attributes should be used to represent information related to system

entities. An example of proper object metadata representation is illustrated in figure 3.23d, where

two Machine (object) vertices each have broken attributes with the values false to represent the

fact that both machines are not broken.

4.3.2 Modelling conventions

When modelling systems via implicit automata, the modeller implicitly creates modelling

conventions which guide him throughout the design. In this work, a modelling convention refers

to the designation of graph theoretical elements (such as vertices and or edges) to represent an

aspect of a system’s state. Listed below, are some of the modelling conventions implicitly relied

upon to design the implicit automaton illustrated in figure 4.1.

i. Machine vertex represents a machine in the system.

ii. Input Bin vertex represents the source of workpieces.

iii. Output Bin vertex represents the destination of workpieces.

iv. Buffer vertex represents a buffer in the system.

v. gives to and takes from edges indicate the direction in which a workpiece is transferred.

vi. Machine’s working attribute of type bool keeps track of whether a machine is working on a

workpiece or if it is idle.

vii. Machine’s identity attribute of type string distinguishes different machines in the system.
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viii. Machine’s broken attribute of type bool keeps track of whether a machine is broken or not.

Ideally, all modelling conventions should be defined in accordance with best modelling practices

discussed in section 4.3.1.

There are often several modelling conventions which may be used to model the exact same aspect

of a system’s state. For example, in the GTS shown in figure 3.12, the presence of an Idle vertex

incident to a Machine vertex is used to indicate the machine is idle. However, in the implicit

automaton example just discussed, a machine is understood to be idle when its working attribute

has the value false.

4.3.3 Creating implicit automata models

Formally, an implicit automaton consists of a pgts, a set of initial graphs and a marking

constraint. The pgts itself comprises a data type signature, a type graph, a set of parametrized

graph transformation rules and a sort-indexed set of variables. In practice, when the modeller

creates an implicit automaton he must only produce a type graph, a set of initial graphs, a set of

graph transformation rules and a marking constraint. This is because the data type signature is

technically defined by the GTT which provides a pre-established set of supported data types and

operations. When an implicit automaton is created, the modeller employs the data types and

operations necessary for that specific model. As for the sort-indexed set of variables, it is

implicitly defined via the creation of the graph transformation rules.

Type graph

The first component of the implicit automaton which is created is the type graph. The type graph

is essentially a metamodel the modeller creates prior to modelling the actual system which

stipulates the types of entities and relationships that can be present within the system’s state.

That is, it ensures that all graphs derived by the implicit automaton comprise only vertex and

edge types approved by the type graph. It accomplishes this by requiring initial graphs,

transformation rules and the marking constraint be properly typed.1 When the modeller creates

the remaining components of the implicit automaton, i.e. initial graphs, transformation rules and

marking constraint, the GTT verifies if they are properly typed and flags them as erroneous if

they are not. The GTT prevents the user from generating the induced automaton, if the implicit

automaton has any errors. Overall, type graphs make modelling less error-prone by informing the

modeller if he has included vertex or edge types in an initial graph, transformation rules or

marking constraint which he has not predefined in the type graph.

1Although rules deleting and or reading illegal vertex and or edge types cannot produce illegal graphs (if the

source graph is legal), they are never applicable and therefore prohibited.
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Initial graph

The initial graphs should be created second. They are primarily used to represent the initial states

of the system. When the objective is to generate a DFA, only one initial graph should be specified.

However, the specification of several initial graphs is permitted to make possible the generation of

state machines with several initial states such as holons. Initial graphs may also be used to

demonstrate a system’s architecture. For example, the initial graph in figure 4.1g illustrates how a

system comprising three machines, an input bin, a buffer and an output bin is structured.

Graph transformation rules

After the initial graphs are complete, graph transformation rules are created to express the

system’s dynamics. Intuitively, they describe the different kinds of events which may occur in the

system. As the implicit automata only explicitly specifies the initial states, the transformation

rules together with the initial graphs are used to determine the state and transition structure of

the induced automaton. The transformation rules are also used to define the event set of the

induced automaton. However, there is generally not a one-to-one correspondence between

transformation rules and events due to rule parametrization. Graph transformation rules can

generally be used to represent a group of similar events sharing some commonality. For example,

the rule depicted in figure 4.1d, represents the generic event of a machine being repaired but it can

be interpreted as the specific event of repairing machine "M1", "M2" or "M3". This type of

versatility exhibited by transformation rules is possible due to the data variables introduced in

section 3.4.2. When ever possible, variables should be used to minimize the number of rules

created to describe a system’s dynamics. This results in a more compact implicit automaton

model.

Although rules with variables can model events which are more generic, non-parametrized rules

with variables are also more ambiguous. This is because when a non-parametrized rule with

variables is applied as a transition in the induced automaton, the values assigned to its variables

are not specified. The application of this type of rule is therefore more ambiguous. To illustrate

this point more concretely, consider the non-parametrized version of the implicit automaton

displayed in figure 4.1, i.e. the implicit automaton obtained by unparametrizing all of its rules.

The automaton induced by this hypothetical implicit automaton would be defined over the event

set

Σ = {start working, finish working, breakdown, repair}.

As such, transitions representing the occurrence of one event with respect to different machines

are no longer differentiated. For example, the start working event indicates that either Machine

M1, M2 or M3 has started working.
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Perhaps this methodology of creating ambiguous system models may prove to be useful in

supervisory control under partial observation. However, in applications in which this type of

ambiguity is inappropriate it can always be removed by designating variables in a rule as

parameters(as shown in section 3.4.3). As such, the modeller can use rule parametrization to take

advantage of the compactness benefits provided by variables without introducing ambiguity in the

resulting automaton.

Marking constraint

The marking constraint is created last. It is used to concisely express which states are marked in

the induced automaton without having to explicitly specify a subset of its state set. When the

marking constraint is complex, the modeller can create it in a modular fashion by first creating

atomic graph constraints and then combining them via logical connectives.

4.4 Application to supervisory control

Heretofore, this chapter has simply described how graph rewriting can be leveraged to generate

DFA models. In this section, it is discussed how this modelling framework is used to generate the

models used as input in the standard SCT synthesis algorithms described in section 2.8. In

particular, in section 4.4.1 it is discussed how the proposed modelling framework should be used

with event-based SCT. Finally, in section 4.4.2 it is discussed how to do so with the state-based

approach.

4.4.1 Event-based synthesis

As mentioned in chapter 2 both the plant and specification are practically represented as

automata in event-based SCT. As a result, the modeller creates an implicit automaton for both

the plant and specification to generate their induced automaton models. Recall that the standard

SCT synthesis algorithms receive as input deterministic finite state automata, hence the modeller

must ensure the implicit automata are DFA-inducing as discussed in section 4.2. Once the

induced automata are generated the modeller partitions their events sets into controllable and

uncontrollable subsets as necessary.

To illustrate how the implicit plant and specification automata are obtained from the system’s

informal description we use the “Big Factory” example presented in chapter 4 of [29]. To this end,

we first provide the informal description of the Big Factory and its specification.
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Description of Big Factory:

The Big Factory consists of three machines M1, M2 and M3 and a single buffer. The input and

output relationships of the machines and buffer are shown in figure 4.3.

Input
Bin

Output
Bin

Mach1

Mach2
Mach3Buf

Figure 4.3: Architecture of Big Factory

A machine can take a workpiece from its corresponding input and begin work on it. Once it has

begun work a machine can transfer its workpiece to its corresponding output or it can break

down, in which case it must wait to be repaired before it can begin work on a new workpiece.

Machine M1 and M2 take their workpieces from an infinite input bin and machine M3 gives its

workpiece to an infinite output bin. A machine must be authorized by the Big Factory’s control

system before it can begin working on a new workpiece. Once a machine has begun working the

system has no control over when the machine finishes working.

Big Factory Specification:

i. The buffer has a capacity of two workpieces and must not overflow or underflow.

ii. Machine M3 has priority of repair over machines M1 and M2.

The implicit automaton of the plant was provided earlier in chapter 4, in figure 4.1. The induced

automaton generated by this implicit automaton is equivalent to the shuffle of 3 machine

automata. It has 27 states and 109 transitions. In this example, all four transformation rules are

parametrized and each rule has three interpretations, one for each machine. Hence there are 12

different events in the induced automaton of the Big Factory. In this case, the rule set is

partitionable into controllable and uncontrollable event sets as each rule is either controllable or

uncontrollable regardless of what machine it is applied to. The partition of R is given by

Rc = {start working, repair}, and

Ru = {finish working, breakdown}.

Σ is given by

Σc = {start working("M1"), start working("M2"), start working("M3"),

repair("M1"), repair("M2"), repair("M3")}, and

Σu = {finish working("M1"), finish working("M2"), finish working("M3"),

breakdown("M1"), breakdown("M2"), breakdown("M3")}.
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We now turn our attention to the specification. It is possible to create one implicit automaton

model which accounts for the entire specification. However, it is generally undesirable to do so as

the resulting model will typically be overwhelmingly complex and difficult to interpret.

Furthermore, the automaton induced by this monolithic implicit specification automaton may

take the GTT too long to generate. Instead, the specification automaton may be obtained in a

modular fashion as follows2:

1. Design a separate implicit automaton for each requirement listed in the specification.

2. Generate the induced automaton of each implicit automaton using a GTT.

3. Compute a minimal state realization of each generated automaton.

4. Self-loop each induced automaton with its associated complementary event set.

5. Compute the product of the constituent automata to obtain the complete specification

automaton.

To demonstate this modular approach an implicit automaton is designed for each of the Big

Factory’s sub-specifications. The implicit automaton for sub-specification i is illustrated in figure

4.4.

Intuitively, the implicit automaton of a (sub)specification models relevant aspects of the plant and

introduces additional memory elements when necessary. In this example, the initial graph only

includes elements of the model which pertain to the buffer specification. The attribute holding of

type int, is a memory element introduced to keep track of the number of workpieces the buffer is

holding and detect when underflow and overflow occurs. Furthermore, only rules relevant to the

sub-specification are included, namely start working and finish working.

Note that rules in an implicit plant and (sub)specification automaton, which are intended to

represent the same action must be given the same rule name. However, they may possess different

rule spans as is the case for rules start working and finish working.

In the context of buffer specification, the rule start working can decrement the holding

attribute of the buffer as long as holding > 0. Conversely, finish working increments holding

as long as holding < capacity.

The marking constraint is chosen to be PC(K0) so that every state in the induced automaton of

the buffer specification is marked. This allows the plant to determine the marking.

The automaton induced by the implicit automaton of the buffer specification is depicted in figure

4.5.

2This approach is applicable so long as the specification can be decoupled into independent sub-requirements.
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(a) rule start working (b) rule finish working

(c) Type graph

PC(K0)

(d) Marking constraint

(e) Initial graph start

Figure 4.4: Implicit automaton of buffer specification

Figure 4.5: Induced automaton of buffer specification

Shifting our focus to sub-specification ii, we depict its implicit automaton model in figure 4.6. In

this example a priority attribute of type int is introduced to keep track of repair priority. The

underlying modelling convention being that machines with greater priority attribute values are

repaired first and machines with equal values can be repaired in any order. In accordance with

this convention, the rule repair toggles a machine’s broken attribute from true to false if its

priority attribute value is greater than or equal to every other broken machine’s priority value.

Note that repair uses an advanced feature of GROOVE known as nested rules which is not

explained within this thesis. Readers interested in advanced features such as this, are referred to

GROOVE’s user manual which can be found at GROOVE’s SourceForge Project Page.

The priority attribute values of machines 1,2 and 3 are set to 1,1 and 2 respectively to give

machine 3 repair priority over machines 1 and 2 and give machines 1 and 2 equal priority (as per

the specification).

The automaton induced by the implicit automaton of the repair priority specification is illustrated
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(a) rule breakdown
(b) rule repair

(c) Type graph

PC(K0)

(d) Marking constraint

(e) Initial graph start

Figure 4.6: Implicit automaton of buffer specification

in figure 4.7.

Figure 4.7: Induced automaton of Repair priority specification
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4.4.2 State-based synthesis

As is the case in the event-based approach, the plant is also represented as an automaton in

state-based SCT (see section 2.9). As such, when the state-based approach is employed the plant

is once again modelled as an implicit automaton. The specification however, is no longer

represented as an automaton. Instead, it is expressed in terms of mutual state and state-event

exclusions. In this subsection it is illustrated how mutual state exclusion specifications are

represented using the tools available within the proposed modelling framework. The

representation of state-event exclusions will be left as future work.

Mutual state exclusions which are essentially state predicates can be represented using graph

constraints. This is formalized in the definition which follows.

Definition (State predicate induced by a graph constraint): Let A = (Q,Σ,∆, Q0, Qm) be the

automaton induced by an implicit automaton ia = (gts,G0, cm) and let c be a graph constraint.

The state predicate Pc for A, induced by graph constraint c is defined by

(∀q ∈ Q) q |= Pc ⇐⇒ q |= c

To identify those graph constraints used to model mutual state exclusions we refer to them as

forbidden state constraints.

To demonstrate how forbidden state constraints can be used to model mutual state exclusion

specifications we use the toy “Guideway” example taken from chapter 6 of [29]. To this end, let us

provide a brief informal description of the Guideway and its specification.

Description of Guideway:

Two stations A and B are situated along a guideway. Two vehicles V1 and V2 travel along a

one-way track from A to B. The track is separated into two sections with stoplights(∗) installed at

a subset of the section junctions as illustrated in figure 4.8.

TS1 TS2
Stn A Stn B

* *

Figure 4.8: Topology of track

Both vehicles begin at station A and travel along the track to reach station B. The guideway

control system may only prevent a vehicle from crossing a section junction at which a stoplight is

installed. Detectors are installed at section junctions to enable the guideway’s control system to

detect when a vehicle enters a new track section. This allows it to maintain what track each
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vehicle occupies. In this instance of the Guideway example, it is assumed that detectors are

installed at every junction.

Specification:

The guideway’s control system should operate the stoplights to prevent both vehicles from

travelling along the same section of track simultaneously.

An implicit automaton representing the plant of the Guideway is depicted in figure 4.9. The

initial graph depicted in figure 4.9d, encodes the topology of the track and initial positions of the

vehicles. The track sections are represented by TS nodes. The L edges joining the TS nodes express

how the track sections are linked as well as the direction of travel. To minimize the number of

rules needed to model dynamics, the stations are also represented by TS nodes. The vehicles are

represented using V nodes and their positions are expressed via the on edges.

(a) rule mv

(b) Type graph

( (PC

(c) Marking constraint
(d) Initial graph start

Figure 4.9: Implicit automaton of Guideway

The id attributes are used to distinguish different vehicles, track sections and stations. The

station attributes indicate which TS nodes represent stations. A TS node represents a station if it

has station=true. Each SLA attribute expresses whether or not a stoplight is installed at the

section junction which lies ahead. For instance, there is no stoplight installed between track

sections 1 and 2 because SLA=false for track section 1.

All of the guideway’s dynamics are expressed by the rule mv depicted in figure 4.9a. The rule mv,

which stands for move vehicle, moves a vehicle from one TS node to the next along the direction of

travel (dictated by the L edges). As both stations and track sections are represented by TS nodes,

mv can also moves vehicles from stations to adjacent track sections and vice versa.

The rule mv has four parameters. The first is used to identify which vehicle the rule is applied to.
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The latter two respectively indicate the vehicle’s origin and destination. The last parameter is

used to identify whether a stoplight is installed at the junction the vehicle has crossed.

The marking constraint for this example depicted in figure 4.9c, consists of a positive atomic

graph constraint. Intuitively this constraint is satisfied when both vehicles reach station B.

Next we discuss the Guideways specification which is modelled as the forbidden state constraint

shown in figure 4.10. ( (PC

Figure 4.10: Forbidden state constraint

Recall that a positive atomic graph constraint PC(C) is satisfied by a graph G if there exists a

graph morphism m : C → G, where m is not necessarily injective. However, in certain instances, it

is convenient to impose injectivity constraints on pairs of nodes in C which prevent them from

being mapped to same node in G. In GROOVE an injectivity constraint may be specified by

including a special edge labelled “!=” between the two nodes that should have different images in

G. As such, the forbidden state constraint illustrated above is intuitively satisfied when at least

two separate vehicles are travelling along the same section of track.

The above implicit automaton and forbidden state constraint are used by GROOVE to generate

the induced automaton and forbidden state predicate which are illustrated within the same view

in figure 4.11. The states of the induced automaton satisfying the forbidden state predicate

(states s3, s11) are automatically flagged by GROOVE as forbidden states during the generation

of the induced automaton. Remember that each state in the induced automaton is really a graph,

state s6 for example, being illustrated in figure 4.12.

The event set of the resulting induced automaton consists solely of interpretations of mv. Event

mv("ii","A","1",true) for instance, represents the transition of vehicle ii from station A to track

section 1. Moreover, the last parameter value indicates whether the vehicle crosses a stoplight

during the occurrence of the event. This last parameter is used to determine whether the event is

controllable or not. More specifically, any event whose last parameter is equal to true is

controllable and otherwise is uncontrollable. Note that the rule set R = {mv} is not partitionable

with respect to the aforementioned partition of the event set. This is because some interpretations

of mv are controllable while some are not.
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Figure 4.11: Induced plant automaton of Guideway

Figure 4.12: State s6 of the Guideway’s induced automaton

73



Chapter 5

Discussion

In chapter 4 it was illustrated how the proposed graph rewriting modelling framework can be used

to generate the models needed as input in both event- and state-based supervisor synthesis

algorithms. In this chapter we discuss the advantages and disadvantages of the proposed modelling

approach over the manual automaton design methodology described in chapter 2. In doing so, we

address the issues of user-friendliness, model intelligibility, model modifiability, susceptibility to

error as well as computational complexity. We then conclude the chapter by discussing the

feasibility and benefits of employing this modelling approach in an industrial setting.

To avoid confusion, in the remainder of this chapter we will refer to the graph rewriting modelling

framework as the “proposed modelling framework” and refer to the manual automaton

programming methodology as the “traditional modelling framework”.

5.1 User-friendliness

In both the event- and state- based approach, implicit automata are used to model the plant. The

implicit automaton model of a system is naturally derived from the informal description of the

system. Much like in object oriented programming, the modeller begins by defining the different

types of objects and relationships involved in the system’s state via the type graph. Using

instances of these specified objects and relationships, the initial state of the system is then

expressed via the initial graph. The initial graph is trivial to create as a system’s state is naturally

represented via (attributed) graphs.

The dynamics of the system are represented by a set of graph transformation rules. As they simply

specify how the entities and relationships of a system’s state must be modified, transformation

rules are also intuitively obtained from the informal system description. For example, in the
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Guideway problem presented in section 4.4.2, the crossing of a vehicle from one section of track to

the next is naturally represented by redirecting the vehicle’s position pointer (i.e. on edge) to the

TS node representing the section of track it has just entered (see rule mv depicted in figure 4.9a).

One of the major advantages brought about by representing system states as graphs is the ability

to probe the existence of substructures within these graphs using graph constraints. This enables

the modeller to concisely reference a subset of states which possess a common substructure of

interest. A good example which demonstrates the generality of graph constraints is the forbidden

state constraint displayed in figure 4.10. This forbidden constraint references all states in which

two or more vehicles are travelling along the same section of track irrespective of the number of

vehicles or the topology of the track. In the traditional framework, it is not possible to reference

subsets of the state space in terms of common substructures because the states of the constituent

automata used to construct the plant are atomic, i.e. they lack underlying structure. Instead, one

must exploit structure within the state space of the composite automaton1 that is the plant.

The inherently intuitive process of creating implicit automata is made even more user-friendly by

the graphical user interfaces provided by graph transformation tools such as GROOVE.

All of these aforementioned benefits are key as experience with applying SCT in an industrial

setting has shown that its successful application is contingent on the user-friendliness and

expressiveness of the modelling formalism[27, 14, 20, 2].

5.2 Model intelligibility

In the proposed modelling framework, the modeller can use the implicit automaton model to

understand the system under representation instead of the generated automaton model itself. One

of the main advantages of the implicit automaton is that it always explicitly expresses the overall

architecture/topology of the system via the initial graph.

In the traditional modelling framework, constituent automata are used to model different aspects

of the plant’s behaviour (and specification in event-based SCT). These constituent automata are

used to understand the system as the complete plant automaton obtained from their synchronous

composition is typically unintelligible. For instance, the Big Factory example presented in section

4.4.1, can be modelled by the constituent automata depicted in figure 5.1. The automata

illustrated in figure 5.1a represent the three machines and the automaton shown in figure 5.1b

represents the buffer specification.2

1A composite automaton is one constructed via a synchronous composition of many constituent automata. Its

state space comprises tuples of states of the constituent automata used to construct it.
2The automaton of the repair priority is omitted as it does not pertain to the argument at hand.
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(a) DFA of machine i = 1, 2, 3

M3_start_working

LoadedEmpty

M2_finish_working

M3_start_working

M2_finish_working

Full

M1_finish_working M1_finish_working

(b) DFA of buffer specification

Figure 5.1: Constituent automata of the Big Factory

In this case, it is clear from the constituent automaton representation that the Big Factory

comprises three machines and one buffer. However, this representation does not explicitly express

how these subsystems of plant are related to one another. As a result, it is not immediately clear

how the machines and buffers are connected. By contrast, a quick glance at the initial graph of

the implicit automaton of the Big Factory illustrated in figure 4.1g immediately reveals the overall

architecture of the system.

It is worth noting that the relative advantages held by the two modelling approaches under

discussion differ depending on the particular example at hand. Even though the proposed

modelling approach might yield a more intelligible model for the buffer and machine example it

may not be the case for all other examples. To gain more perspective on the matter, let us

examine the Guideway example presented in section 4.4.2.

Using the traditional modelling approach, the two-vehicle Guideway example can be modelled by

the two constituent automata depicted in figure 5.2. Automaton V1 models the dynamics of one

vehicle and V2 models the dynamics of the second.

The overall topology of the track is clearly represented within the automaton models of the

Guideway shown in figure 5.2. Hence for the Guideway example, the implicit automaton model
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V1_A_1

A 1 2 B

V1_1_2 V1_2_B

V1
V2_A_1

A 1 2 B

V2_1_2 V2_2_B

V2
Figure 5.2: Modular automaton model of Guideway

(figure 4.9) does not really provide any advantage over the traditional automaton model (figure

5.2) from an intelligibility perspective.

From these two examples we see that proposed modelling approach does not always provide a

clear advantage over the traditional automaton-based modelling approach with respect to model

intelligibility. Instead, the relative advantages of these two modelling approaches differs depending

on the system being modelled.

5.3 Model modifiability

When modifying or extending existing system models the modeller must translate informally

specified changes into concrete model modifications. In the proposed modelling framework, the

translation is usually straightforward and the changes are typically easy to make. This is

particularly true when making structural changes to the system which do not affect its general

dynamics. This is because the system architecture is decoupled from the dynamics and is

exclusively embodied within the initial graph. As a result, such structural changes lead to simple

and intuitive modifications in the initial graph.

Moreover, as graph constraints provide such general means of specifying subsets of the state space,

it is often possible to define them with enough generality that they need not be modified following

changes to an initial graph. As such, the modeller can define general marking and forbidden state

constraints when the system is initially modelled in order to alleviate model maintenance.

To demonstrate these claims, suppose we wish to modify the model of the Guideway by adding

new sections of track and an additional station according to figure 5.3 and an additional vehicle.

Note that this is a purely structural change which does not change the Guideway’s general

dynamics (i.e. how vehicles move from one section of track to next etc.).

To effect this change in the Guideway’s implicit automaton, one must simply update the initial

graph to reflect the new topology. The Guideway’s new initial graph is illustrated in figure 5.4.
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TS7

TS8 TS3

TS4TS5

TS6

Stn C

Figure 5.3: New topology of Guideway

There is no need to modify the type graph(figure 4.9b), the rule mv (figure 4.9a ) or the forbidden

state constraint (figure 4.10).

Figure 5.4: New initial graph of Guideway
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For argument’s sake, suppose we would like to update the marking constraint to ensure that all

vehicles are able to end up at a station (not just station B). To effect this change the Guideway’s

marking constraint is simply changed to the graph constraint depicted in figure 5.5.( (NC

Figure 5.5: New marking constraint of Guideway

Intuitively this graph constraint is unsatisfied whenever a vehicle is located on a section of track

which is not a station. In other words it is satisfied whenever all vehicles are located at stations.

Note that this new marking constraint is more general than the last and would not need to be

modified if additional changes were made to the the topology of the track.

Once all of these necessary changes are made to the implicit automaton, the modeller may simply

generate the new automaton model of the Guideway using the GTT. As such, this modelling

approach eliminates the need to make tedious, time-consuming and potentially nontrivial manual

changes to an automaton’s transition structure.

In contrast, suppose one wants to effect these types of changes in the Guideway’s automaton

model shown in figure 5.2. In this case, the modeller needs to first modify the state and transition

structure of the existing automaton models to reflect the changes in the topology of the track. He

then needs to create a copy of the automaton model for each newly introduced vehicle and

customize its transition labels to differentiate it from the automaton models of the other vehicles.

In general, if there are k sections of track and n vehicles, the implicit automaton model

representation has order k + n vertices because the implicit automaton only stores one copy of

track in the form of the initial graph. On the other hand, the automaton representation has order

k ∗ n states because it stores one copy of the track for each vehicle in the system. In this

particular example, we see how it is easier to modify the topology of the track and increase the

number of vehicles in the implicit automaton model than in the standard automaton model.

5.4 Susceptibility to error

In this section, we argue that the process of obtaining automaton models via implicit automata is

inherently less error prone than manually creating them. To convince the reader of this claim we

first analyse the process of manually designing automata and compare it to the proposed

modelling approach in which implicit automata are manually designed and in turn used to

automatically generate induced automata.
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The design of any automaton model can be decomposed into the following two main steps.

Manual construction of automata:

1. The modeller reads an informal description of the system and then fabricates a general and

informal model of the system’s state in his mind.

2. Using this general and informal model of the system’s state he constructs the explicit state,

transition and marking structure of the automaton.

The first step is an intuitive process which is common to the design of any type of formal model

which cannot be circumvented. The second step is specific to the design of formal models which

explicitly express the state and transition structure of the system. In this step the modeller

typically follows a design procedure which closely resembles how the GTT constructs the induced

automaton. That is, he begins by creating the initial state and gradually adds new states and

transitions. He decides whether or not an event is possible from a given state based on an abstract

understanding of the state’s internal structure. This is analogous to determining the applicability

of a graph transformation rule. To determine whether the occurrence of an event leads to a new or

already existing state he subconsciously performs the following two step procedure:

i. On the basis of his abstract understanding of the event, he modifies his informal model of the

source state to obtain a model of the target state of the transition. This step is analogous to

the construction of the target graph based on the source graph and transformation rule.

ii. He then compares this newly obtained informal model of the target state with that of all the

other states to verify that it does not already exist. If the model does not match that of any

other state, the transition leads to a new state. On the other hand, if the model does match

that of another state, the transition leads to this already existent state. This step is

analogous to the merging of isomorphic states in the construction of the induced automaton.

In this manner the modeller introduces new states and transitions until the automaton model is

complete.

Now consider the process involved in obtaining automaton models via implicit automata. This

process can be decomposed into the following three main steps.
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Generating induced automata via implicit automata:

1. The modeller reads an informal description of the system and fabricates a general and

informal model of the system’s state in his mind.

2. The modeller then formalizes this general and informal description of the system’s state in

the form of an implicit automaton.

3. The implicit automaton is then given as input to a GTT which automatically computes the

explicit state, transition and marking structure of the induced automaton.

In the second step of this modelling approach, the modeller translates his general and informal

understanding of the system into an implicit automaton. This process is intuitive and as a result

less error prone because the implicit automaton tends to correspond more closely with the general

manner in which the modeller informally understands the system. The exercise of specifying the

implicit automaton can also help reveal inconsistencies in the modeller’s understanding of the

system’s internal structure.

Furthermore, the implicit automaton contains a concrete model of the state, which is formally

related to the system’s dynamics via the set of graph transformation rules. Therefore, the GTT

always generates an induced automaton in which these specified relationship between the states

and graph transformation rules are respected. That is, the induced automaton is correct by

construction up to the validity of the implicit automaton.

To help ensure that the implicit automaton is itself correct, elements included in the initial

graphs, transformation rules and marking constraint which are not predefined within the type

graph are flagged as erroneous (see section 4.3.3).

Lastly, in certain instances, parametrized graph transformation rules can be used to automate the

labelling of the transitions within automata. This technique is demonstrated within the Guideway

example presented in section 4.4.2. In this example, the parametrized rule mv is used to

automatically label the transitions associated to each vehicle/origin/destination combination in

the induced automaton depicted in figure 4.11.

5.5 Computational complexity

This structured approach to generating automata does not come without a cost. The main issue

with this approach being the large time and space complexities of generating the induced

automaton. In this section we first discuss the time complexity associated to generating induced
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automata. With these computational limitations in mind, we then discuss the feasibility of

employing this modelling approach in an industrial setting and explain the benefits of doing so.

Readers seeking additional detail on complexity and implementation are referred to [25].

The generation of the induced automaton can be subdivided into two main steps.

1. Generating the graph transition system

2. Resolving the marked state set

1. Generating the graph transition system

The process of generating the graph transition system, as implemented in GROOVE, can itself be

decomposed into the following three phases:

i Computing rule matchings

ii Applying rules

iii Performing isomorphism checks

i. Computing rule matchings

Finding a match of the left-hand side of a rule within a source graph is an instance of the graph

matching problem(GMP) [1]. This problem is a generalization of the subgraph isomorphism

problem and is NP-complete in the size of the graph being matched. Luckily, the left-hand sides of

transformation rules tend be quite small alleviating the computational burden. The complexity of

this phase is exacerbated with the use of negative application conditions. In addition, the

complexity of this step is evidently linear in the number of transformation rules.

ii. Rule application

The process of actually modifying the source graph to obtain the target graph is typically the

least time consuming step. It involves simply deleting and or adding nodes and or edges to the

source graph.

iii. Isomorphism check

The task of verifying whether a newly generated state is isomorphic to existing states requires

solving an instance of the graph isomorphism problem (GIP). Although, the exact complexity of

the GIP is still unknown, it is thought to be NP-intermediate. Like the GMP, its complexity is

proportional to the size of the graphs under comparison. In this case, the size of the graphs can
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pose more significant problems as they represent the entire system state. It is worth noting

however, that much progress has been made in developing algorithms that efficiently solve the GIP

in practice [13]. Lastly, the maximum number of potential isomorphism checks grows quadratically

with the number of states. However, in practice it is possible to drastically reduce the number

necessary comparisons. GROOVE for example, uses so-called graph certificates, which are

necessary indicators of isomorphism, to reduce the number of executed isomorphism checks[25].

2. Resolving the marked state set

In this step, the GTT must resolve which states are satisfied by the marking constraint. To

confirm a particular state is marked the GTT must solve an instance of the GMP making this

step identical to the rule matching phase.

Note that although the aforementioned computational tasks are considered separately their

executions must in fact be interleaved.

5.6 Industrial relevance

Having considered the computational complexity of generating induced automata, it is concluded

that generating a monolithic induced automaton which models an industrial scale system is

intractable. However, one can borrow the modular design techniques employed within the

traditional framework to help alleviate this issue. This is accomplished in following manner:

i. First several implicit automata are designed to model the different subsystems of the plant.

ii. The corresponding induced automaton models of these subsystems are then generated using

a GTT.

iii. The synchronous composition of these induced automata is then computed using an SCT

tool to obtain the complete plant model.

As long as the system is decomposed into sufficiently small subsystems the induced automata can

be generated in reasonable amounts of time. This allows the modeller to take advantage of the

intuitive and user-friendly nature of this high-level modelling language without incurring the

associated computational penalty.

Furthermore, as the constituent automata are automatically generated by a GTT, the modeller no

longer needs to take into account the level of difficulty involved in constructing them. This gives

the modeller more freedom in deciding how to break up the system. This is because he is no

longer obligated to “over decompose” it in order to facilitate the manual creation of the
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constituent automata. In the proposed approach, the size of the subsystems are only constrained

by the amount of time needed to generate them.

To give the reader a general idea of the size of the subsystems which can be generated in

reasonable time, GROOVE can generate a graph transition system representing a system of 10

dining philosophers in 199 seconds[25]. This graph transition system has a total of 31,104 states

and 116,658 transitions. Each state has on average 37.7 and 113.8 nodes and edges respectively.

In the context of modelling, a 199 seconds is relatively small, as the modelling phase can easily

take hours if not days.

84



Chapter 6

Conclusion

Since its theoretical conception, SCT has matured into practical viable supervisory controller

design methodology. Despite having been shown to provide numerous advantages such as

accelerating the development of supervisory controllers and in turn helping support system

evolvability [27], SCT has still not yet found widespread application in industry. This is due in

part to its unintuitive automaton-based modelling framework which has rendered it inaccessible to

non-SCT experts.

In attempt to increase the user-friendliness of modelling within the framework, this thesis

proposes the use of a graph rewriting-based modelling approach. The proposed modelling

approach improves the usability of the SCT framework by discharging the modeller from task of

manually constructing the explicit state and transition structure of automata. Instead the

modeller is entrusted with designing a more intuitive, front-end model, referred to as the implicit

automaton. Once the implicit automaton is designed it is given as input to a graph

transformation tool which uses it to automatically generate the corresponding induced automaton

model. These induced automata can then be used as desired within SCT framework.

As the design of the implicit automaton is more intuitive and natural than that of the automaton

itself, modelling is made less error-prone and more user-friendly. Moreover, since the implicit

automaton explicitly represents the internal structure of the systems state, model intelligibility is

improved. Furthermore, as implicit automata decouple system architecture from system dynamics,

they are more amenable to modification. As a result, the proposed graph-based modelling

approach facilitates and expedites the process of updating prior plant and specification models,

increasing SCTs capacity to support system evolvability.

For these reasons, it is confidently believed that the proposed modelling approach can significantly

improve the usability of the SCT framework and in turn make it more accessible to a wide range

of potential users.

85



6.1 Future work

As the proposed modelling approach simply generates automaton models used within SCT, it is

(or can easily be made) compatible with the core features of SCT and its extensions. An example

of this, mentioned in section 5.6, is its compatibility with the modular design techniques used (in

the traditional modelling framework) to create composite plant and specification automata. As

another example, the proposed modelling approach could also be used in the context of partial

observation[6] by simply partitioning the induced automaton’s event set into observable and

unobservable events. Therefore, future work could include the integration of the proposed

modelling approach within other extensions of SCT. Furthermore, one could verify whether the

newly introduced structure of the state could be leveraged in that particular extension. For

example, in the state-based approach, the structure of the state is used to concisely express

mutual state specifications in terms of forbidden state constraints. One SCT extension in

particular, which could benefit from this modelling approach is supervisory control of state tree

structures [19].

In this thesis, we have chosen the algebraic approach to graph rewriting as the engine of our

proposed modelling approach. We have done so because it provides enough flexibility to express

nontrivial system models and specifications. However, the fundamental principle underlying this

work, which is to use rewriting systems (not necessarily graph-based) to implicitly specify a system

model and in turn generate its explicit counterpart, is independent of the rewriting approach one

chooses to employ. As such, another potential direction of future work could be to investigate the

use of other less computationally demanding rewriting systems to generate automaton models.
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