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Abstract

The problem of map enumeration is one that has been studied intensely for the past
half century. Early work on this subject included the works of Tutte for various types of
rooted planar maps (e.g. [9, 36, 37]) and the works of Brown [7, 8] for non-planar maps.
Furthermore, the works of Bender, Canfield, and Richmond [2, 3] as well as Bender and
Gao [4] give asymptotic results for the enumeration of various types of maps.

This subject also attracted the attention of physicists when they independently discov-
ered that map enumeration can be applied to quantum field theory. The results of ’t Hooft
[35] established the connection between matrix integration and map enumeration, which
allowed algebraic techniques to be used. Other examples of this application can be found
in the papers of Itzykson and Zuber [5, 10, 20].

One result of particular significance is the Harer-Zagier formula [19], which gives the
genus series for maps with one vertex. This result has been proved many times in the
literature, a selection of which includes the proofs of Goulden and Nica [17], Itzykson and
Zuber [21], Jackson [23], Kerov [24], Kontsevich [25], Lass [27], Penner [29], and Zagier
[42]. An extension of this result to locally orientable maps on one vertex can be found in
Goulden and Jackson [16], while another extension to two vertex maps can be found in
Goulden and Slofstra [18].

In this thesis, we will extend the combinatorial techniques used in the papers of Goulden
and Nica [17] and Goulden and Slofstra [18], so that they can be applied to maps with
an arbitrary number of vertices, when the graph being embedded is a tree with loops and
multiple edges. This involves defining a new set of combinatorial objects that extends
the ones used in Goulden and Slofstra, and develop new techniques for handling these
objects. Furthermore, we will simplify some of the techniques and results in the existing
literature. Finally, we seek to relate the techniques used in this thesis to techniques in other
map enumeration problems, and briefly discuss the potential of applying our techniques to
those problems.
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Chapter 1

Introduction and Background

1.1 Thesis Outline

The study of maps, or graphs embedded on surfaces, is as old as graph theory itself. The
early results on maps are mainly topological, such as the classic formula by Euler that
relates the number of vertices, edges, and faces of a map with the genus of the surface
in which it is embedded. However, much work on the combinatorial aspect of maps has
been done in the past half century, with the enumeration of maps. Various types of rooted
planar maps have been enumerated by Tutte, e.g. [9, 36, 37], and several types of non-
planar maps were enumerated by Brown [7, 8]. A survey of the enumeration of maps of
arbitrary genus can be found in the census paper by Walsh and Lehman [40]. Furthermore,
there has been much research done on the asymptotics of map enumeration, such as the
papers by Bender, Canfield, and Richmond [2, 3], or Bender and Gao [4]. The result of
Edmonds [13] allowed maps to be encoded combinatorially as permutations, using objects
called combinatorial maps. This allows for the use of various algebraic and combinatorial
techniques.

The popularity of this subject grew when physicists independently discovered that map
enumeration can be applied to quantum field theory. Some examples of such application
can be found in the papers of Itzykson and Zuber [5, 10, 20], and more recently Zograf [43]
and Eynard [14]. In particular, ’t Hooft [35] established the connection between matrix
integration and map enumeration.

One result derived from the matrix integration technique is the Harer-Zagier formula
[19], which gives the genus series for maps with one vertex. The result has been proved

1



many times in the literature, using various algebraic and combinatorial techniques. A
selection of the proofs can be found in Goulden and Nica [17], Itzykson and Zuber [21],
Jackson [23], Kerov [24], Kontsevich [25], Lass [27], Penner [29], and Zagier [42]. An
extension of this result to locally orientable maps on one vertex can be found in Goulden
and Jackson [16]. The particular proof we are interested in is the combinatorial proof by
Goulden and Nica, as their proof was extended to two vertex maps in the paper of Goulden
and Slofstra [18]. This thesis will generalize Goulden and Slofstra combinatorial approach
to maps with an arbitrary number of vertices, as well as provide simplifications to both
the approach and objects used.

This thesis is organized as follows.

In Chapter 1, we discuss the basic background and notation used in this thesis. We
start by introducing the notation necessary to cover the other sections. Next, we introduce
generalized hypergeometric series, which are important functions in combinatorics as they
can be used to express most summations. We will present the tools for manipulating and
simplifying these series, and show how they can be used to simplify algebraic expressions
involving sums. Then, we introduce the symmetric group and the notation we will use for
describing permutations. Finally, we introduce maps, first as a topological object, then as
a combinatorial object. We will show how the two objects are related to each other, and
how the combinatorial map can be represented using the symmetric group. This allows
us to present the main focus of this thesis, as a problem about enumerating combinatorial
maps by genus.

In Chapter 2, we discuss the background and historical context surrounding map enu-
meration. We start by formally defining the problem introduced in Chapter 1 using the
notation of the symmetric group, then give some elementary results. Next, we introduce
the paired function, which is also called the N -coloured map in some parts of the liter-
ature. The paired function is a combinatorial object that is used in both the algebraic
and combinatorial approaches to map enumeration, and counting these objects is sufficient
for giving the generating series for our problem. Then, we discuss one of the algebraic
techniques used in the literature, known as the matrix model. The matrix model is the
integral on Gaussian measure over the space of Hermitian matrices. We are interested in
the one matrix model, for which we will introduce the necessary background and notation,
as well as the theorems we can use to evaluate the integrals that result from using this
model. In the following section, we apply the one matrix model to the one vertex case of
our problem, which gives us the results of the Harer-Zagier formula [19]. Subsequently,
we extend the one matrix model into the two matrix model, which allows us to derive the
result of Goulden and Slofstra [18] algebraically. Finally, we give further context to our
problem by discussing several related problems in enumerating maps and permutations.
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Chapter 3 is an extension to the work in Goulden and Slofstra [18], modified so that it
fits our definition of the paired function. First, we give a pictorial description of the paired
functions, which are presented in the form of labelled arrays. Then, we can strip the labels
from the labelled arrays, which gives us our main combinatorial object, the paired arrays.
We introduce the various terminology and lemmas for describing paired arrays, including
the balance and forest conditions. In particular, we will discuss some of the differences
between our definition of paired arrays and the definition in Goulden and Slofstra. By
using these lemmas, we can provide a bijection between paired arrays and labelled arrays,
which shows that this preserves the necessary information for reconstruction. Finally, we
develop some of the tools needed to decompose paired arrays, and start the first step of
our decomposition by decomposing paired arrays into minimal arrays.

Chapter 4 introduces the arrowed array, which is an new extension to the paired array
defined in Chapter 3. First, we define the arrowed array as a combinatorial object, then
extend the notation used for paired arrays to arrowed arrays. Next, we introduce the arrow
simplification lemmas, which is a set of lemmas that allow us to reduce arrowed arrays to
specific forms. This allows us to partition the set of arrowed arrays into substructures,
and describe these substructures using a number of parameters. Furthermore, the arrow
simplification lemmas can be used to reduce one substructure to another. This allows us
to count the numbers of arrowed arrays that satisfy the substructures we have defined, by
using induction and the arrow simplification lemmas on substructures.

Chapter 5 continues the discussion on arrowed arrays by introducing more types of sub-
structures. Each new type of substructure introduced is the aggregate of the substructures
of the previous type. This allow us to derive formulas for the new types of substructures
by summing over the formulas for the previous ones. For each type of substructure, we will
present two results, which correspond to the two decompositions we will give in the next
chapter. This culminates in a pair of formulas that can be used for further decomposing
paired arrays.

Chapter 6 continues the decomposition started in Chapter 3, where we will use the
results derived in the previous two chapters to completely decompose the paired array.
We start by decomposing minimal arrays into vertical arrays, using an alternate proof to
Goulden and Slofstra that does not rely on the forest completion algorithm. This gives
us a formula for the number of paired arrays in terms of the number of vertical arrays,
which is applicable regardless of whether the underlying graph is a tree. In cases where
the graph is a tree with loops and multiple edges, we can recursively decompose vertical
arrays, and use induction to derive an expression for the number of vertical arrays that
can be substituted into the previous formula. To end this chapter, we demonstrate that
the expression we have derived for paired arrays is a polynomial, which allows us to use
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this expression as the generating series to the main problem.

Finally, Chapter 7 discusses the application of results derived in this thesis, as well as
other miscellaneous results. We start off by showing how the result in this thesis can be
specialized into the one and two vertex cases covered in Chapter 2. Then, we give a further
simplification to the formula of Goulden and Slofstra by using Pfaff’s identity. Next, we
discuss some results for when the underlying graph is not a tree, and show how they can
be used to derive the series computationally for the main problem in this thesis. Finally,
we talk about the possible directions to go forward, as well as the potential for applying
the techniques in this thesis to other enumeration problems.

Among the many results that appear in this thesis, the main new contributions are given
by Definition 4.1, Definition 4.9, Theorem 4.13, Theorem 6.7, and Theorem 6.9. Together,
these give our extension of the paired array, called the arrowed array, the partitioning of
arrowed arrays into irreducible substructures, and the key steps for using arrowed arrays to
enumerate the number of vertical arrays. We can then combine these results with previous
work to obtain the generating series for the main problem.

1.2 Basic Notation

In this section, we will describe basic combinatorial notation and results used in this thesis.
In particular, we will focus on those relating to sets, functions, and graphs. Let n and k be
integers such that 0 ≤ k ≤ n. We use [n] to denote the set {1, . . . , n}, [n]k to denote the
Cartesian product of [n] with itself k times, and [n; k] to denote the set of all k-subsets of
[n]. Suppose S is a set of size n, where n is even. A pairing µ of S is a partition of S into
disjoint subsets of size 2. In this context, the set S is called the support of µ. Furthermore,
the set of all pairings of [n] is denoted as Pn. Next, suppose k is a non-negative integer,
and S is a set of size at least 2k. A partial pairing T of S is a pairing on a subset S ′ ⊆ S
of even cardinality. If |S ′| = 2k, then T is called a k-partial pairing of S. As with pairings,
the set S ′ is called the support of the partial pairing T . Finally, the set of all k-partial
pairings of [n] is denoted as Tn,k.

Next, we will introduce a number of standard notations for expressing the cardinalities
of the above sets. Let n ≥ 0 be an integer. The factorial of n, denoted n!, is defined by

n! = n (n− 1) · · · 3 · 2 · 1

for n ≥ 1, with 0! = 1 by convention. Similarly, the double factorial of n, denoted as n!!,
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is defined by

n!! =

{
n (n− 2) · · · 5 · 3 · 1 n odd

n (n− 2) · · · 6 · 4 · 2 n even

for n ≥ 1, with 0!! = (−1)!! = 1 by convention. By rewriting the double factorial in terms

of normal factorials, we see that for n = 2k − 1 odd, we have (2k − 1)!! = (2k)!
2kk!

, and for
n = 2k even, we have (2k)!! = 2kk!

Now, for a complex number n and an integer k ≥ 0, the rising factorial n(k) is defined
by

n(k) = n (n+ 1) · · · (n+ k − 1)

for k ≥ 1, with n(0) = 1. Note that for n ≥ 0 an integer, we have n! = 1(n). Furthermore,
for a fixed integer k, n(k) is a polynomial in n of degree k. With the rising factorial defined,
the binomial coefficient

(
n
k

)
is defined by(

n

k

)
=

(n− k + 1)(k)

k!

with
(
n
k

)
= 0 for integer n ≥ 0 and k < 0 by convention. If n and k are integers and

0 ≤ k ≤ n, we have
(
n
k

)
= n!

k!(n−k)!
. As with rising factorials, for a fixed integer k,

(
n
k

)
is a

polynomial in n of degree k. Unlike in most of the combinatorial literature, we will use the
rising factorial instead of the falling factorial defined by (n)k = n (n− 1) · · · (n− k + 1).
The reason will become apparent when we define the hypergeometric series in Section 1.3.
Furthermore, we will also elaborate on how we use the factorial function and rising factorial
in that section.

With the values defined above, we can now give the cardinalities of the sets introduced
earlier in this section. Let s1, . . . , sn be the elements of S. Notice that in a pairing µ of
S, the element s1 must be paired with some element si, where 2 ≤ i ≤ n. Suppose µ′ is µ
with the pair {s1, si} removed, then µ′ is a pairing of S\ {s1, si}. Conversely, any pairing
µ′ of S\ {s1, si} can be made into a pairing µ of S by adding the pair {s1, si}. Therefore,
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by doing some elementary counting, we obtain the following cardinalities.

|[n; k]| =

(
n

k

)
|Pn| = (n− 1)!!

|Tn,k| =

(
n

2k

)
(2k − 1)!!

=
n!

2kk! (n− 2k)!

Next, we will describe various notation involving sets described by multiple integers.
Let p and n be positive integers. We use [p]n to denote the set

{
1
n
, 2

n
, . . . , p

n}
, whose

elements in, i = 1, . . . , p, are regarded as a labelled version of the integer i, labelled by the
“n” in the superscript position. Then, suppose p = (p1, . . . , pn) is a vector of length n of
positive integers, we let [p1, . . . , pn] to be the set [p1]1 ∪ · · · ∪ [pn]n. For example, [3, 5, 2] is

the set
{

1
1
, 2

1
, 3

1
, 1

2
, 2

2
, 3

2
, 4

2
, 5

2
, 1

3
, 2

3
}

. Furthermore, if p1 + · · ·+pn is even, then the set

of all pairings of [p1, . . . , pn] is denoted as Pp1,...,pn . Now, if µ is a pairing of [p1, . . . , pn], then
a pair

{
xi, yk

}
in µ is a mixed pair if i 6= k, and a non-mixed pair otherwise. To describe

the number of mixed and non-mixed pairs in a pairing µ, we introduce the parameters
q and s defined as follows. Let q = (q1, . . . , qn) be a vector of length n, where qi is the
number of non-mixed pairs of the form {xi, yi} in µ, and s = (s1,2, s1,3, . . . , sn−1,n) be an
n× n strictly upper triangular matrix, where si,k is the number of mixed pairs of the form{
xi, yk

}
in µ. For ease of notation, we let si,k = sk,i for i > k, and let si =

∑
k 6=i si,k.

Equivalently, s is a symmetric matrix with zeroes on its diagonal, and si is the sum of
row i of that matrix. For convenience, we will also sometimes treat s as a vector of length
n(n−1)

2
. As each non-mixed pair {xi, yi} has 2 elements of [pi]

i, and each mixed pair
{
xi, yk

}
has 1 element of [pi]

i, we see that pi = 2qi + si for 1 ≤ i ≤ n. Finally, given a strictly
upper triangular matrix s, the support graph of s is the graph G with the vertex set [n],
such that {i, k} is an edge of G if and only if si,k > 0.

For example, µ =
{{

1
1
, 3

1
}
,
{

2
1
, 2

2
}
,
{

1
2
, 2

3
}
,
{

3
2
, 4

2
}
,
{

5
2
, 1

3
}}

is a pairing of

[3, 5, 2]. The parameters for this pairing are (q1, q2, q3) = (1, 1, 0) and (s1,2, s1,3, s2,3) =
(1, 0, 2), which gives us (p1, p2, p3) = (3, 5, 2). The support graph of s is a graph with
vertices {1, 2, 3}, and edges {1, 2} and {2, 3}, as seen in Figure 1.1.

Our next step is to partition the pairings of Pp1,...,pn according to the parameters q and
s. Let q = (q1, . . . , qn) and s = (s1,2, s1,3, . . . , sn−1,n) be vectors of non-negative integers
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1

2

3

Figure 1.1: Support graph of s = (1, 0, 2)

such that pi = 2qi + si is positive for 1 ≤ i ≤ n. We define P(q;s)
n ⊆ Pp1,...,pn to be the

subset of the pairing such that for µ ∈ P(q;s)
n , µ has qi non-mixed pairs of the form {xi, yi}

and si,k mixed pairs of the form
{
xi, yk

}
. As the parameters pi’s are now redundant, we

can drop them from the definition of P(q;s)
n . However, we will keep the parameter n, to be

consistent with other objects defined later in this thesis, where the parameter will be used
to decompose those objects.

To conclude this section, we will discuss some of the auxiliary notation that we will be
using in this thesis. A graph G = (V,E) is a pair consisting of a vertex set V and edge set
E, where each edge e ∈ E is a pair of vertices u, v ∈ V . A graph is directed if each pair
e ∈ E is ordered, denoted as e = (u, v). The out-degree of a vertex v in a directed graph
is the number of edges e of the form e = (v, u). If G is a directed graph where each vertex
has out-degree at most one, then G is a rooted forest if it is acyclic, in other words, if G
does not contain a directed cycle. The root vertices of G are the vertices with out-degree
0. Note that this includes the isolated vertices of G. The rooted forest will be used later
to help define one of our combinatorial objects. In general, we will introduce lemmas on
graphs as they are needed, since most results are only needed once.

Finally, we will briefly cover the notation we use for partial functions. Let X and Y
be two sets. A function f is a partial function from X to Y , denoted f : X 9 Y , if f is
a function from a subset X ′ ⊆ X to Y . By definition, all functions are partial functions.
Now, given a partial function f : X 9 X, the functional digraph of f is a directed graph
G with X as its vertex set, and (u, v) is a directed edge of G if and only if f (u) = v.
Furthermore, suppose f : X 9 X is a partial function that is defined on the set X ′ ⊆ X,
and Y is a subset of X that contains X ′ ∪ f (X ′). Then, f is a partial function from Y to
Y . Therefore, we can take the functional digraph of f with respect to the vertex set Y .
This means that we consider f as a function f : Y 9 Y , and take the functional digraph
of this function.

For example, the function f (1) = 3, f (2) = 5, f (5) = 6, f (6) = 5 is a partial function
f : [8] 9 [8] that is defined on X ′ = {1, 2, 5, 6}. Then, Y = {1, 2, 3, 5, 6, 8} is a subset of
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1 2

3 5

6 8

Figure 1.2: Functional digraph of a partial function

[8] that contains X ′ and f (X ′). So, f : Y 9 Y is a partial function that has the functional
digraph shown in Figure 1.2.

1.3 Generalized Hypergeometric Series

In this section, we begin by describing notation related to generalized hypergeometric series
that will be used in this thesis. Most of the definitions in this section are taken from the
book Special Functions by Andrews, Askey, and Roy [1], with some notation adjusted to
match the notation commonly used in combinatorics. Then, we introduce an elementary
but useful technique for manipulating these series that allows us to bypass difficulties
arising when the series are undefined. Finally, we introduce four hypergeometric identities
that we will be using in the later chapters of the thesis.

Recall that for n ≥ 0 an integer, the factorial of n is defined by n! = n (n− 1) · · · 3 ·2 ·1
for n ≥ 1, with 0! = 1. To extend this definition, we introduce the gamma function, which
can be defined as a limit. For x a complex number with x 6= 0,−1,−2, . . . , the gamma
function Γ (x) is defined by

Γ (x) = lim
k→∞

k!kx−1

x(k)

This function was originally discovered by Euler, and has several equivalent definitions.
One alternative definition, also by Euler, is to define the gamma function as an infinite
integral for positive real values x, and then extend it analytically to all complex numbers.
By taking the ratio of the limits Γ(x+1)

Γ(x)
, we can obtain the identity Γ (x+ 1) = xΓ (x).

Combined with Γ (1) = 1, the gamma function satisfies Γ (n+ 1) = n! for all non-negative
integer n. Also, note that the limit of the reciprocal exists for all complex values x, with

1
Γ(x)

= 0 for all non-positive integers x. Therefore, with a slight abuse of notation, we

will use factorials and gamma functions interchangeably, and define 1
x!

to be 0 if x is a
negative integer. However, note that a term of x! in the numerator is undefined if x is a
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negative integer. Furthermore, the reciprocal of the gamma function is entire, which means
it has a complex derivative everywhere. This implies that 1

Γ(x)
is continuous at all complex

numbers, and Γ (x) is continuous except at the points x 6= 0,−1,−2, . . . .

Our first application of the gamma function is to rewrite rising factorials as normal
factorials. Recall that for a complex number n and an integer k ≥ 0, the rising factorial
n(k) is defined by n(k) = n (n+ 1) · · · (n+ k − 1). If n is an integer, then we can rewrite
the rising factorial to obtain

n(k) =

{
(n+k−1)!

(n−1)!
n > 0

(−1)k (−n)!
(−n−k)!

n ≤ 0

In the case where −k < n ≤ 0, the denominator of the second expression contains the
factorial of a negative integer, which gives n(k) = 0, as desired. Furthermore, by replacing
the factorials in these expressions with their equivalent gamma functions and using the
identity Γ (x+ 1) = xΓ (x), we see that the expressions remain valid for non-integer values
of n. Note that despite the piecewise representation, n(k) is continuous as a function of n,
since n(k) is a polynomial in n for fixed k.

Considering again the case of n an integer and −k < n ≤ 0, note that we can rewrite
n(k) as (−1)k (−n− k + 1)(k). This gives n(k) = (n+k−1)!

(n−1)!
with the above formula. Hence, if

we have integers n and k such that n ≥ 0, we can write

n!

(n− k)!
= (n− k + 1)(k)

regardless of whether n− k is non-negative. This will be useful later in the thesis.

Another reason for defining 1
x!

to be 0 when x is a negative integer is that this matches
up well with the values of the binomial coefficient. Recall that for a complex number n and

an integer k ≥ 0, the binomial coefficient
(
n
k

)
is defined by

(
n
k

)
= (n−k+1)(k)

k!
. By rewriting

it as a ratio of gamma functions, we have(
n

k

)
=

Γ (n+ 1)

Γ (k + 1) Γ (n− k + 1)

=
n!

k! (n− k)!

if we are to write the gamma functions as factorials. Notice that if n is an integer, the
denominator contains the factorial of a negative integer if and only if k < 0 or k > n,
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precisely when
(
n
k

)
= 0.

With the preliminaries defined, we can now introduce the key tool which we will use to
manipulate summations. This is the hypergeometric series, which is given by the following
definition

Definition 1.1. A generalized hypergeometric series is a series
∑∞

k=0 ck such that ck+1

ck
is

a rational function of k. Each of the terms ck is referred to as a hypergeometric term. By
factoring the numerator and denominator of ck+1

ck
as polynomials in k, we obtain

ck+1

ck
=

(k + a1) (k + a2) · · · (k + ap)x

(k + b1) (k + b2) · · · (k + bq) (k + 1)

for some non-negative integers p and q, and some constant x independent of k. If the factor
k + 1 does not occur naturally in the denominator, we add it to both the numerator and
the denominator of ck+1

ck
. Then, the series can be normalized by factoring out c0, which

gives
∞∑
k=0

ck = c0

∞∑
k=0

a
(k)
1 · · · a

(k)
p

b
(k)
1 · · · b

(k)
q

· x
k

k!
=: c0 · pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
where we define pFq as the sum in the middle. From the definition, we see that the bi
cannot be non-positive integers.

Historically, the term (ordinary) hypergeometric series refers to hypergeometric series
of the form 2F1

(
a,b
c

;x
)
. This was first coined by John Wallis in the work Arithmetica Infin-

itorum (1655), and was later studied by Euler, Gauss, and Kummer [32]. For convenience,
we will refer to both ordinary and generalized hypergeometric series simply as hypergeo-
metric series. Many of the special functions and theorems can be expressed in terms of

hypergeometric series. For example, we can write ex = 0F0

(—
—;x

)
, sinx = x0F1

(
—
3/2

; −x
2

4

)
,

and cosx = 0F1

(
—
1/2

; −x
2

4

)
. Further examples of expressing common functions as hyper-

geometric series can be found in the book Special Functions [1]. However, one particular
example we will consider here is the binomial theorem, as this helps to explain some of the
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techniques used later in this thesis. For n ≥ 0, (1− x)n can be expressed as

(1− x)n =
n∑
k=0

(−1)k
(
n

k

)
· xk

=
∑
k≥0

(−1)k n!

k! (n− k)!
xk

= 1F0

(
−n
—

;x

)
In the second line, we take advantage of the fact that 1

(n−k)!
= 0 for k > n, which allows

us to raise the upper bound of the sum to infinity. To arrive at the third line, we first
substitute in k = 0 to obtain c0 = 1. Then, by taking the ratio of successive terms, we
obtain ck+1

ck
= k−n

k+1
. This shows that the sum is a 1F0, with a1 = −n, as desired.

Note that if one of the ai in pFq

(
a1,...,ap
b1,...,bq

;x
)

is a non-positive integer −n, then the

series is a polynomial in x, and is a finite sum with n + 1 terms. This means that if we
have a finite sum

∑n
k=0 ck such that the ratio ck+1

ck
has n − k as one of its factors in the

numerator, we can write it as the hypergeometric series pFq

(
−n,a2,...,ap
b1,...,bq

;x
)

, without first

raising the upper bound of the sum to infinity as shown above. Conversely, if n is a non-
negative integer, a series

∑
k≥0 ck that contains 1

(n−k)!
in its denominator has an implicit

upper bound of n. The requirement that the bi cannot be non-positive integers poses a
problem when dealing with combinatorics, as most combinatorial parameters are integers.
There are several methods of bypassing this issue. One method is to define an alternative
series that allows the bi to be non-positive integers. For example, we can divide the series
by Γ (b1) · · ·Γ (bq), which transforms the denominator into Γ (b1 + k) · · ·Γ (bq + k). This
approach can be found in the book Generalized Hypergeometric Functions by Slater [32].
A second method is to modify our definition of hypergeometric series to allow for non-
positive integers bi if there are corresponding non-positive integers aj that are smaller in
absolute value. Computer Algebra Systems (CAS) such as Maple use this technique [28].
However, both methods require us to rederive the hypergeometric identities presented in
this section, so that they hold for these alternate definitions. Therefore, instead of using
one of these methods, we will apply the following technique, adapted from Section 2.7 of
Special Functions. This allows us to use the identities in Special Functions as stated.

Fact 1.2. Let A : Rk → R and B : Rk → R be functions continuous at a point t =
(t1, . . . , tk), and α ∈ Rk. If there exists r ∈ R such that A (t + εα) = B (t + εα) for
all 0 < ε < r, then A (t) = B (t).

11



While Fact 1.2 is elementary, it is extremely useful. Let t, α ∈ Rk, r ∈ R, and N =
{t + εα | 0 < ε < r} be a path approaching t. Suppose we have functions A (x) and B (x)
that are continuous at t, and functions Â (x) and B̂ (x) such that A (x) = Â (x) = B̂ (x) =
B (x) for all x ∈ N , then A (t) = B (t). In particular, we can let A (x) and B (x) be
functions that are expressed as sums, and are continuous at t. Then, let Â (x) and B̂ (x)
be A (x) and B (x), respectively, but written as hypergeometric series. While Â (x) and
B̂ (x) may not be defined at t, we can choose α in such a way that the bottom parameters of
the hypergeometric series in Â (x) and B̂ (x) are non-integers. This gives us A (x) = Â (x)
and B (x) = B̂ (x) for all points x ∈ N . Finally, we can prove that Â (x) = B̂ (x) for x ∈ N
using a hypergeometric transformation, and use Fact 1.2 to deduce that A (t) = B (t).

As an example of this technique, we next present the Chu-Vandermonde identity in its
hypergeometric form, then show how to derive the combinatorial form from it. Both forms
of the identity will be used later in the thesis for simplifying certain summations.

Proposition 1.3. Let N ≥ 0 be a non-negative integer, and a, c ∈ C where c is not a
non-positive integer. Then the Chu-Vandermonde identity is given by

2F1

(
−N, a
c

; 1

)
=

(c− a)(N)

c(N)

Example 1.4. Let a, b, and n be non-negative integers, and consider the identity A (b) :=∑n
k=0

(
a
k

) (
b

n−k

)
=
(
a+b
n

)
=: B (b), where we consider both sides of the identity as a function
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of b. By using the Chu-Vandermonde identity, we obtain

n∑
k=0

(a
k

)( b

n− k

)
=

n∑
k=0

a!b!

k! (a− k)! (n− k)! (b− n+ k)!

=
b!

n! (b− n)!
2F1

(
−n,−a
b− n+ 1

; 1

)
=

b!

n! (b− n)!
· (a+ b− n+ 1)(n)

(b− n+ 1)(n)

=
b!

n! (b− n)!
· (a+ b)! (b− n)!

(a+ b− n)!b!

=
(a+ b)!

n! (a+ b− n)!

=

(
a+ b

n

)
By the conventions described at the beginning of this section, we are using x! to represent
Γ (x+ 1) and 1

x!
= 0 for integers x < 0. This choice of notation makes lines 1, 2, 6,

and 7 well defined for all values of a, b, and n in consideration. However, if n > b, then
b!

n!(b−n)!
= 0 and 2F1

(−n,−a
b−n+1

; 1
)

is undefined in line 3. To remedy this, we replace b with b+ε

and let ε tend to 0. At b+ ε, each line of the equation is well defined. As A (b) and B (b) as
expressed in lines 2 and 6 are continuous on b ∈ (−1,∞), letting b tend to a non-negative
integer value gives us A (b) = B (b), even when n is an integer greater than b, as desired.

This example can be generalized to other identities involving hypergeometric series,
and in the thesis we will implicitly assume the application of this fact when we carry
out hypergeometric manipulations. Furthermore, this example shows that hypergeometric
series and their transforms are in general incredibly robust. The above proof holds even
if A or B are series whose initial terms are 0. The only issue that we need to watch out
for in proving hypergeometric identities is to ensure that the hypergeometric terms in the
initial and final series are defined. In particular, we need to ensure that there are no terms
with negative factorials in the numerator. Even in cases where this factor can be cancelled
out by a factor in the denominator, the bounds implied by the summation may change,
rendering the identity invalid. This is the other reason why we avoid allowing the bi’s to be
non-positive integers. Normally, if there exists ai and bj such that ai = bj in a pFq series,
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we can remove both ai and bj to obtain a p−1Fq−1 series. However, if there exists some
ai and bj such that ai = bj, and they are the smallest negative integer in absolute value,
then cancelling out ai and bj will change where the series terminates. In most cases, the
hypergeometric functions that we use satisfy the following conditions. For our purposes, x
is generally 1, −1, or 1

2
, and the ai and bi are generally integers. As our series are generally

finite, there will be at least one ai that is a non-positive integer.

To end this section, we present two hypergeometric identities that we will use later in
this thesis, both of which can be found in Andrews, Askey, and Roy [1]. The first is a 3F2

identity that holds when x = 1 and a1 = −N is a non-positive integer.

Theorem 1.5. Let N be a non-negative integer, and a, b, c, d ∈ C. Then, the identity

3F2

(
−N, b, c
d, e

; 1

)
=

(d− c)(N)

d(N) 3F2

(
−N, e− b, c

1−N − d+ c, e
; 1

)
holds when both sides are well defined.

This identity can be found as a part of the proof for Sheppard’s identity, on pg. 142
of Andrews, Askey, and Roy. By applying this identity to itself repeatedly, we can arrive
at a group of 18 transformations, including the identity transform. The second identity is
Pfaff’s identity, found on pg. 68 of the same book.

Theorem 1.6. Let a, b, c, z ∈ C. Then, Pfaff’s identity is given by

2F1

(
a, b

c
;x

)
= (1− x)−a 3F2

(
a, c− b

c
;

x

x− 1

)
when both sides are well defined and converge.

Note that if a is a non-positive integer and x 6= 1, then both sides of Pfaff’s identity are
polynomials in x. Furthermore, Pfaff’s identity belongs to a group of 24 transformations
(including the identity), known as Kummer’s 24 solutions. These two identities will be
instrumental in transforming our summations into forms where we can apply the Chu-
Vandermonde identity.

1.4 Symmetric Group

This section covers the background of the symmetric group, as well as some of the notation
and elementary results used in this thesis. The exposition of the symmetric group is taken
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from the book The Symmetric Group by Sagan [30]. Let X = {x1, . . . , xn} be a set with
n elements, a permutation π of X is a bijective function from X to X. The symmetric
group on X, denoted SX , is the set of all permutations of X, with the group action being
function composition. In the case X = [n], we will use Sn to denote S[n]. In this thesis, we
will multiply elements of SX from right to left. That is, given permutations π and σ, the
permutation πσ is the bijection obtained from first applying σ, then π.

Traditionally, there are three notations for describing a permutation π ∈ SX . The first
of these is the two-line notation, given by the array

x1 x2 · · · xn
π (x1) π (x2) · · · π (xn)

The second notation, applicable when X = [n], is called the one-line notation. For
this notation, we implicitly let xi = i, which allows us remove the first row, leaving
π (1) , π (2) , · · · , π (n) as the result. The last notation, which for our purposes is the
most important, is the cycle notation. As π is a bijection from X to X, each vertex of
the functional digraph G of π has in-degree and out-degree 1. Therefore, G is the union
of a number of directed cycles. Now, let C be a directed cycle in G of length p, and i be
an element of C. Then, C contains the elements i, π (i) , π2 (i) , . . . , πp−1 (i) in order, with
πp (i) = i. We can write this as(

i, π (i) , π2 (i) , . . . , πp−1 (i)
)

By writing each cycle of G in this manner and joining the results, we arrive at the cycle
notation. Note that the representation of a permutation in cycle notation is not unique.
In particular, neither changing the order of the cycles, nor changing the elements which
start the cycles, changes the permutation. For example, the permutation

1 2 3 4 5 6
3 4 1 5 2 6

is written as 3, 4, 1, 5, 2, 6 in the one-line notation, and (13) (245) (6) in the cycle notation.
This permutation can also be written as (452) (31) (6) in the cycle notation.

Now, one advantage of the cycle notation is that permutations of an arbitrary set X can
be written compactly, as the elements of X are implicitly defined. Another advantage is
that the cycles of a permutation can be assigned combinatorial meaning, as we shall see in
the next section. Furthermore, if a permutation π is given by the set of cycles C1, . . . , Cr,
then π can be broken up into the product of its cycles, each taken as a permutation by
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itself. That is, we can write π as the product π = π1 · · · πr, where for 1 ≤ t ≤ r, πt
is the permutation such that πt (i) = π (i) if i ∈ Ct, and πt (i) = i otherwise. Note
that the permutations π1, . . . , πr commute. Furthermore, given a subset {i1, . . . , it} ⊆ [r],
the product π′ = πi1 · · · πit consists of the cycles Ci1 , . . . , Cit , and can be treated as a
permutation on the elements of Ci1 ∪ · · · ∪Cit alone. For example, by taking the first and
third cycle of (13) (245) (6), we have that π′ = (13) (6) is a permutation of {1, 3, 6}.

If a permutation π has r cycles of length p1, . . . , pr ≥ 1 in the cycle notation, then
we say that π has cycle type {p1, . . . , pr}. Furthermore, if (i, π (i) , π2 (i) , . . . , πp−1 (i)) is a
cycle of π, and σ ∈ SX is any permutation, we have

σCσ−1 =
(
σ (i) , σ (π (i)) , σ

(
π2 (i)

)
, . . . , σ

(
πp−1 (i)

))
This means that conjugating by σ relabels each element i of π by σ (i) in the cycle nota-
tion, so the cycle type of π is invariant under conjugation. Furthermore, if we have two
permutations π and ρ that have the same cycle type, we can match the cycles in the two
permutations by their cycle lengths as follows

π = (π1,1, . . . , π1,`1) · · · (πr,1, . . . , πr,`r)
ρ = (ρ1,1, . . . , ρ1,`1) · · · (ρr,1, . . . , ρr,`r)

and let σ (πi,j) = ρi,j be the permutation such that σπσ−1 = ρ. Therefore, the subset of
all permutations in SX that has the same cycle type as π forms a conjugacy class , which
we denote Kπ, or alternatively Kp1,...,pr if the cycle type of π is {p1, . . . , pr}. Now, the
centralizer of π, denoted Zπ, are the elements σ ∈ SX such that σπσ−1 = π. Furthermore,
there is a bijection between the cosets of Zπ and the elements of Kπ, so that

|Kπ| =
|SX |
|Zπ|

Now, let π be a permutation with cycle type {p1, . . . , pr}, and for i ≥ 1, let mi be the
number of elements pj such that pj = i. Then, we have

|Zπ| = 1m1m1!2m2m2! · · ·nmnmn!

where n = p1 + · · · + pr. This result follows from the cycle notation. Any permutation
σ ∈ Zπ must send a cycle of length i to a cycle of the same length. So, there are mi! ways
to permute the mi cycles of length i in π. Then, for each of those cycles, we can perform a
cyclic rotation in i ways, independent of the other cycles. Combining this result with the
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formula for Kπ, we have

|Kp1,...,pr | =
n!

1m1m1!2m2m2! · · ·nmnmn!

where n = p1 + · · ·+ pr, as desired.

A permutation π of a set X is a transposition if there exists x, y ∈ X such that π (x) = y,
π (y) = x, and π (z) = z for all z ∈ X, z 6= x, y. In other words, π has exactly one cycle of
length 2, namely (x, y), and all other cycles of π have length 1. To simplify the notation,
we will drop the cycles of length 1 if the context for X is clear. As the remaining cycle of
π is simply an unordered pair of X, we will write the transposition π as π = {x, y}. We
now have the following elementary proposition.

Proposition 1.7. Let π be a permutation of a set X with L cycles, and σ be a transposition
{x, y} of X. Then, σπ has L + 1 cycles if x and y are in the same cycle of π, and L− 1
cycles otherwise.

Proof. Suppose x and y are in the same cycle C. Without loss of generality, let C =
(x, π (x) . . . , y, . . . ). Then, applying σ to π will break C into the cycles (x, . . . , π−1 (y))
and (y, . . . , π−1 (x)), while leaving the other cycles unchanged. Therefore, the permutation
σπ has L+ 1 cycles.

Similarly, suppose x is in the cycle C1 and y is in the cycle C2, where C1 = (x, π (x) , . . . )
and C2 = (y, π (y) , . . . ). Then, applying σ to π will merge C1 and C2 into the cycle
(x, . . . , π−1 (x) , y, . . . , π−1 (y)), again leaving other cycles unchanged. Therefore, the per-
mutation σπ has L− 1 cycles.

A permutation µ of a set X is an involution if µ2 is the identity, and is a fixed-point
free involution if µ is an involution that does not contain a fixed point. That is, µ is a
fixed-point free involution of if for all elements i ∈ X, µ2 (i) = i and µ (i) 6= i. As all cycles
in a fixed-point free involutions have length 2, fixed-point free involutions of a set X are in
direct bijection with pairings of X. Similarly, any involutions of a set X with k cycles of
length 2 are in direct bijection with k-partial pairings of X. Therefore, in this thesis, we
will often refer to transpositions as pairs, involutions as partial pairings, and fixed-point
free involutions as pairings. Furthermore, we will generally use µ to denote fixed-point
free involutions. This terminology with pairings will be particularly helpful when we use
combinatorial objects to enumerate permutations later in this thesis.

Finally, we will look at the case X = [p1, . . . , pn] and introduce several permutations
of interest. Let p1, . . . , pn be positive integers, let Sp1,...,pn to be the symmetric group over
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[p1, . . . , pn]. If the sum of the pi’s is even, then the set of pairings Pp1,...,pn is the set of fixed-
point free involutions of Sp1,...,pn . Recall from Section 1.2 that for vectors of non-negative

integers q = (q1, . . . , qn) and s = (s1,2, s1,3, . . . , sn−1,n), P(q;s)
n is the subset of pairings such

that for µ ∈ P(q;s)
n , µ has qi non-mixed pairs of the form {xi, yi} and si,k mixed pairs

of the form
{
xi, yk

}
. As discussed previously, P(q;s)

n can also be considered as the set of
fixed-point free involutions satisfying the parameters q and s.

A permutation γ is a long cycle if γ contains only one cycle in its cycle notation. The
canonical long cycle of Sn, denoted as γn, is given by γn = (1, 2, . . . , n). Similarly, the

canonical long cycle of S[pi]
i is denoted as γipi , and is given by γipi =

(
1
i
, 2

i
, . . . , p

i

i

)
. We

can now define the canonical permutation of Sp1,...,pn . Given positive integers p1, . . . , pn,
the canonical permutation γp1,...,pn of Sp1,...,pn is defined by

γp1,...,pn = γ1
p1
γ2
p2
· · · γnpn

=
(

1
1

, 2
1

, . . . , p
1

1

)(
1
2

, 2
2

, . . . , p
2

2

)
· · ·
(
1
n

, 2
n

, . . . , p
n

n

)
The permutations µ ∈ Pp1,...,pn and the canonical permutation γp1,...,pn will be of particular
importance when we discuss maps in surfaces in the next section.

1.5 Maps in Surfaces

In this section, we will be describing maps and surfaces. The background and definitions
are generally taken from the survey papers of Walsh and Lehman [40], Zvonkin [44], and
the book Graphs on Surfaces and Their Applications by Lando and Zvonkin [26]. For a
more rigorous treatment of combinatorial maps, as well as a more general construction
applicable to maps in non-orientable surfaces, see Chapter 10 of Graph Theory by Tutte
[38]. We will first define the map as a topological object, then describe a way to transform
it into a combinatorial object. This will allow us to relate the problem of embedding maps
in surfaces to that of counting permutations in the symmetric group. As the problem will
become combinatorial in nature, we will be sketchy with the topological definitions, and
only define what is necessary.

For the purpose of describing maps, we allow graphs to contain loops and multiple
edges. In this context, a graph G = (V,E, I) is a triple consisting of a vertex set V , an
edge set E, and an incidence relation I between the vertex set and the edge set. Each edge
e ∈ E is either incident to 2 vertices u, v ∈ V , or is incident to a single vertex v ∈ V . In
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the latter case, e is a loop edge of v, and is considered to be incident to v twice. This is
different from the definition of graphs used in Section 1.2, where the incidence relation is
implicitly defined by E. The separation of the edges and incidence relation is needed here
to allow for loops and multiple edges.

Definition 1.8. Let G = (V,E, I) be a connected graph. A map M is an embedding of
G in an orientable surface X without boundary such that

• The vertices are distinct points of X.

• The edges are curves on X that only intersect at the vertices they are incident to.

• X\M is a set of regions each homeomorphic to an open disc, which are called faces.
The set of faces is denoted F .

Given a map M , the degree of a vertex v ∈ V , denoted deg (v), is the number of edges
incident to v, where loop edges incident to v are counted twice. Similarly, the degree of
a face f ∈ F , denoted deg (f), is the number of edges incident to the f , where an edge e
is counted twice if f is incident to both sides of e. In graph theoretic terms, bridges are
counted twice for the face they are contained in. Observe that unlike the vertex degrees,
both the number of faces and the face degrees of a map are dependent upon the surface
X and the way the graph is embedded. Then, by counting the number of edges incident
to each vertex, we have

∑
v∈V deg (v) = 2 |E|. Similarly, by counting the number of edges

incident to each face, we have
∑

f∈F deg (f) = 2 |E|.
One of the most important attributes of a map is the genus , denoted g, which is defined

to be the genus of the underlying surface. The genus of an orientable surface X is a non-
negative integer, given by the maximum number of closed curves that can be cut on X
without disconnecting it. Equivalently, it is the number of handles on the surface. For
example, the sphere is a surface of genus 0, while the torus is a surface of genus 1. Note
that a map embedded in a surface of genus zero can be presented as a map embedded in the
plane, and graphs that have plane embeddings are called planar graphs . An example of a
planar graph and two possible plane embeddings can be found in Figure 1.3 and Figure 1.4.
Note that the face degrees of the two embeddings are different, and that the exterior of
these maps constitute faces. Furthermore, one can check that the embeddings satisfy the
vertex and face degree formulas.

To relate the above concepts together, we have the Euler characteristic, which is given
by

χ (M) = |V | − |E|+ |F |
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Figure 1.3: A graph with its vertex degrees labelled
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Figure 1.4: Two embeddings of the graph in Figure 1.3, with face degrees labelled

For a map M embedded in an orientable surface of genus g, χ (M) is equal to 2−2g. Note
that the maps in Figure 1.4 satisfy the Euler characteristic with g = 0.

Now, two maps M1 ⊂ X1 and M2 ⊂ X2 are isomorphic if and only if there exists an
orientation preserving homeomorphism u : X1 → X2 such that the restriction of u on M1

and M2 is a graph isomorphism from G1 to G2. Note that this is a more general definition
than continuous deformation. In Figure 1.5, we have two maps that are isomorphic, even
though they cannot be continuously deformed from one to the other. Furthermore, as the
surface of the map is orientated, a map and its reflection are in general not isomorphic. To
avoid complications arising from maps with non-trivial automorphisms, combinatorialists
generally count rooted maps instead. A rooted map is a map with a distinguished edge
e ∈ E and a direction associated with that edge. Two rooted maps M1 ⊂ X1 and M2 ⊂ X2

with distinguished edges e1 and e2 are isomorphic if and only if there exists an orientation
preserving homeomorphism u : X1 → X2 that is a map isomorphism between M1 and M2,
and u maps e1 to e2 in such a way that preserves the directions associated with them.
As we shall see, assigning a root edge to a map removes all non-trivial automorphisms.
In Figure 1.6, we have the three non-isomorphic rooted maps with 1 vertex and 2 edges.
The first two maps are embedded in the plane and have genus 0, while the third one is
embedded in a torus and has genus 1.

Before discussing rooted maps, we will first motivate and describe labelled maps. Given
a map M and a vertex v in M of degree pv, observe that in the neighbourhood of v, there
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Figure 1.5: Two pictures of the same map

Figure 1.6: Non-isomorphic rooted maps with 1 vertex, 2 edges

are pv pieces of edges coming out of v. We call these edge pieces half-edges , and the vertex v
with its half-edges a star . As M is embedded in an orientable surface, these half-edges are
arranged in some cyclic order. Furthermore, each half-edge in M must be joined to some
other half-edge, dictated by the underlying graph of M . Therefore, if we label half-edges
of M with a set S, we can describe both the edges and their ordering around the vertices
by a pair of permutations.

Formally, let M be a map, and D = E×{+,−} be the set of half-edges of M . That is,
each element (e,±) ∈ D represents a distinct end of e ∈ E. A labelled map is a map M and
a labelling of D with a set S of size 2 |E|. As the half-edges incident to each vertex v are
in cyclic order, we can write the labels of those half-edges as a cycle in a permutation of S.
By doing this for each vertex v ∈ V and combining these cycles, we obtain a permutation
γ of S, which we call the vertex permutation of M . By convention, the cycles of γ describe
the cyclic orderings of the half-edges in counterclockwise order. Also, note that each half-
edge in M is paired with another half-edge to form the edges of the map. This pairing of
half-edges gives a pairing on S, which can be viewed as a fixed-point free involution. We
call this involution the edge permutation of M , which we denote as µ. Finally, observe that
the faces of M can be read off from the product δ = µγ−1. Consider a half-edge labelled
s that is incident to a vertex v in M . Then, γ−1 (s) is the half-edge incident to v that is
to the right of s, and µγ−1 (s) is the other end of that half-edge. As seen in Figure 1.7,
both s and µγ−1 (s) are incident to the same face of M on their right, labelled as F in
the diagram. Furthermore, the edge containing µγ−1 (s) is counterclockwise to the edge
containing s with respect to F . Therefore, by successively applying µγ−1 to s, we can trace
out the face F . As this can be done with all half-edges of M , the cycles of µγ−1 represent
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F

sµ (s)

γ−1 (s)

µγ−1 (s)

Figure 1.7: Applying µγ−1 on a half-edge e

the faces of M . Hence, we call µγ−1 the face permutation of M , and we denote it with δ.

Now, given a permutation γ and a fixed-point free involution µ on a set S, we can
attempt to reconstruct the labelled map M as follows. Let each cycle of γ describes a
vertex, where a cycle C of length pv represents a vertex v with degree pv. This is graphically
depicted as a star with pv half-edges, labelled with elements C in counterclockwise order.
Then, for each pair of µ, we join together the two half-edges labelled with the elements of
the pair, which becomes an edge of the graph. Note that this always constructs a graph
G with all its half-edges labelled with elements of S, regardless of whether γ and µ were
extracted from a map. Furthermore, the orbits of the subgroup generated by γ and µ
describes the half-edges reachable from a given half-edge by moving along the vertices and
edges of G. That is, each orbit is a component of G, so G is connected if and only if the
subgroup generated by γ and µ is transitive. Finally, given two permutation pairs (γ1, µ1)
and (γ2, µ2), the two half-edge labelled graphs constructed in this manner will be the same
if and only if µ1 = µ2, and the cycles of γ1 and γ2 contain the same elements.

Suppose that the subgroup generated by γ and µ is transitive, then this reconstruction
always produces a unique, valid map. This follows from Edmonds [13], which states that
given a graph with its half-edges labelled, any cyclic ordering of half-edges around each
vertex uniquely determines an embedding of the graph into a surface. Furthermore, we note
that two distinct pairs (γ1, µ1) and (γ2, µ2) cannot produce the same labelled map. This is
because any label preserving map homeomorphism must preserve neighbourhoods of the
vertices, as well as the pairings of the half-edges. Hence, the cycles in the permutations γ
and µ must remain the same. Therefore, each pair (γ, µ) represents one distinct labelled
map and vice-versa, so we can count pairs of permutations instead of maps on surfaces.
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Figure 1.8: Labelled map with 3 vertices and 5 edges

For example, consider the group S3,5,2 and permutations γ3,5,2 and µ where

µ =
(

1
1

3
1
)(

2
1

2
2
)(

1
2

2
3
)(

3
2

4
2
)(

5
2

1
3
)

γ3,5,2 =
(

1
1

2
1

3
1
)(

1
2

2
2

3
2

4
2

5
2
)(

1
3

2
3
)

This pair of permutation describes a map with 3 vertices and 5 edges, where the vertices
have degrees 2, 5, and 3. The faces of this map are given by the product δ = µγ−1

3,5,2, which
is

µγ−1
3,5,2 =

(
1
1
)(

2
1

3
1

2
2

2
3

5
2

3
2
)(

1
2

1
3
)(

4
2
)

Therefore, this map has 4 faces, with face degrees 1, 1, 2, and 6. A diagram of this map
can be found in Figure 1.8. The labels of the half-edges are placed on the right hand side
of their respective half-edges, to make it easier to trace the face permutation.

Remark 1.9. Some authors may use a different direction for the permutation γ, or a different
combination of µ and γ, such as δ = γµ, to describe the faces of the map M . In terms of
enumerating maps, these are all equivalent. The only differences between these alternate
conventions are the relative positions of the faces with respect to the edges they are incident
to, and the direction with which we trace the edges incident to the faces. By graph duality,
the roles of γ and δ can be inverted as well, with γ describing the faces and δ the vertices.
Pictorially, this can be seen as gluing faces along their edges together, as opposed to the
gluing of half-edges we have described here. A more detailed description of this alternate
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picture can be found in Chapter 3 of Lando and Zvonkin [26], where they discuss the
enumeration of one vertex maps.

Given that we can describe labelled maps uniquely as pairs of permutations, we will
now dispense with the topology and describe maps in purely combinatorial terms.

Definition 1.10. Let S be a set of size 2d for some d ≥ 1. A combinatorial map with n
vertices, d edges, and L faces is a pair of permutations (γ, µ) such that

• γ is a permutation of S with n cycles.

• µ is a fixed-point free involution of S.

• δ = µγ−1 is a permutation of S with L cycles.

• The subgroup generated by γ and µ is transitive.

As noted above, a labelled map is equivalent to a combinatorial map. Furthermore,
the vertices of the combinatorial map have degrees p1, . . . , pn if the cycles of γ have length
p1, . . . , pn, and the faces of the combinatorial map have face degrees h1, . . . , hL if the cycles
of δ have length h1, . . . , hL. For convenience, we will sometimes include pairs (γ, µ) such
that the subgroup generated by γ and µ is not transitive in our discussion of combinatorial
maps. When we need to distinguish between the two, we will call (γ, µ) a connected
combinatorial map if the subgroup generated by γ and µ is transitive, and a disconnected
combinatorial map otherwise. In general, disconnected combinatorial maps correspond to
graphs that have multiple components, so they do not correspond to rooted maps. One way
to view disconnected maps topologically is to view each component as a map embedded
in its own surface, and the genus of the map is given by the sum of the genera of the
components. This way of defining the genus for disconnected maps is consistent with the
Euler characteristic, when applied to all components of the map as a whole.

Next, we will show the relationship between rooted maps and combinatorial maps. Let
M be a rooted map with d edges. We want to label M with a set S of size 2d in (2d− 1)!
ways. Note that in constructing the rooted map M , we are choosing an edge e ∈ E and a
direction for that edge. This is equivalent to picking a half-edge of M as the root half-edge,
which we will take to be the half-edge on e that is away from the direction of the root. Now,
to label the map M with the set S, we will label the root half-edge with 1 if S = S2d, or 1

1

if S = Sp1,...,pn . Then, we can label the remaining 2d− 1 half-edges arbitrarily in (2d− 1)!
ways. Each of these labellings corresponds to a combinatorial map (γ, µ). Furthermore, if
two labellings M1 and M2 of M give the same combinatorial map (γ, µ), then M1 and M2
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Figure 1.9: A rooted map and two ways of labelling its half-edges

must in fact be the same. By construction, the root half-edge is labelled with 1 in both
M1 and M2. Next, if a half-edge of M is labelled by the same element s ∈ S in M1 and
M2, then the half-edge counterclockwise to it must be labelled γ (s) in both M1 and M2.
Similarly, the half-edge that forms the other end of this half-edge must be labelled µ (s) in
both M1 and M2. As the subgroup generated by γ and µ is transitive, all of the half-edges
of M must be labelled the same between M1 and M2. Conversely, given any combinatorial
map, we can obtain a rooted map by first creating a labelled map using Edmonds’ result,
then use the label 1 to recover the root edge and its direction. Therefore, for every root
map M with d edges, there are exactly (2d− 1)! combinatorial maps corresponding to it.
As an example, we have a rooted map and two ways to label the half-edges in Figure 1.9.

Note that this also shows that a rooted map cannot have any non-trivial automorphisms.
To prove this fact, we arbitrary label the rooted map to obtain a labelling M1. Then, we
can apply an automorphism to the rooted map to obtain another labelling M2. As the root
edge is preserved, both M1 and M2 have the same label on the root half-edge. Furthermore,
the automorphism preserves the neighbourhoods of the vertices and the pairings of the half-
edges, so both M1 and M2 must give the same combinatorial map (γ, µ). Therefore, we
have that M1 = M2, so the automorphism must in fact be trivial.

In the literature of combinatorial maps, we generally count maps where the number of
vertices and their degrees are given. Furthermore, we generally enumerate maps according
to their genus, or equivalently, their number of faces. Formally, for p1, . . . , pn ≥ 1, let Mp

n

be the set of possibly disconnected combinatorial maps (γ, µ) such that γ has cycle type
p = {p1, . . . , pn}. Then, for L ≥ 1, let Mp

n,L ⊆ Mp
n be the subset of maps such that for

(γ, µ) ∈ Mp
n,L, µγ−1 has exactly L cycles. Finally, let Mp

n ⊆ Mp
n and Mp

n,L ⊆ Mp
n be

the subsets of maps that are connected. Now, one method to make the counting of these
maps easier is to fix the permutation γ, then count over the permutations µ subjected to
certain restrictions, depending on the type of maps that is being counted. To this end,
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Figure 1.10: Feynman diagrams of 1 vertex maps with 2 edges

we say that a combinatorial map is canonical if γ = γp1,...,pn for some p1, . . . , pn ≥ 1. As
µ ranges over all pairings in Pp1,...,pn , there are exactly d = p1+···+pn

2
possibly disconnected

maps with these parameters. We let Cpn,L ⊆ Pp1,...,pn be the subset of pairings such that

for µ ∈ Cpn,L, µγ−1
p1,...,pn

has exactly L cycles, and let Cpn,L ⊆ C
p
n,L be the subset of pairings

such that for µ ∈ Cpn,L, the map (γp1,...,pn , µ) is connected. For example, the labelled map
in Figure 1.8 corresponds to a canonical combinatorial map with its elements in S3,5,2.
For simplicity, all references to combinatorial maps in later chapters implicitly refer to
canonical combinatorial maps.

One way to represent canonical combinatorial maps is to use Feynman diagrams , also
known as ribbon graphs. Instead of representing each half-edge with a single line, we
represent them with a ribbon. For each edge, we label the adjacent corner using the
element of S that represents the edge, and glue the ribbons together without twisting.
For example, a 4-star and all three of its possible gluings are represented in Figure 1.10.
Note that in this example, we take S = {i, j, k, `}. This set of labels and the method of
labelling corners will be useful when we discuss the algebraic method of enumerating maps
in Chapter 2. Furthermore, we will later show that the Feymann diagrams can be used to
describe and enumerate maps in locally oriented surfaces in Section 2.5.

Next, we will show the relationship between the number of canonical combinatorial
maps and the number of combinatorial maps in general using the following proposition

Proposition 1.11. Let (γ, µ) be a pair of permutations on a set S such that µ is a fixed-
point free involution. Then, (γ′, µ′) = (σγσ−1, σµσ−1) is also a pair of permutations on S,
where γ, µ, and µγ−1 have the same cycle types as γ′, µ′, and µ′ (γ′)−1, respectively. Fur-
thermore, (γ, µ) represents a connected combinatorial map if and only if (γ′, µ′) represents
one.

Proof. From our discussion in Section 1.4, conjugating a permutation π by σ does not
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change the cycle type of π, so γ and µ have the same cycle types as γ′ and µ′, respectively.
Then, we see that µ′ (γ′)−1 = σµγ−1σ−1, so µγ−1 have the same cycle type as µ′ (γ′)−1.
Now, let π1, . . . , πt ∈ {γ, µ} be a sequence of permutations. Then,

π1π2 · · · πt (i) = j

σπ1π2 · · · πtσ−1 (σ (i)) = σ (j)

σπ1σ
−1σπ2σ

−1 · · ·σπtσ−1 (σ (i)) = σ (j)

This means that if a sequence of permutations using γ and µ maps i to j, then the same
sequence of permutations using γ′ and µ′ maps σ (i) to σ (j), and vice-versa. Therefore,
the subgroup generated by γ and µ is transitive if and only if the subgroup generated by
γ′ and µ′ is transitive, so (γ, µ) is connected if and only if (γ′, µ′) is also connected.

In the cycle notation, conjugating γ and µ by σ is the same as replacing each element
s ∈ S in their cycles by σ (s). In topological terms, this is the same as relabelling each
half-edge s of the labelled map represented by (γ, µ) with σ (s). Hence, (γ, µ) and (γ′, µ′)
represent the same map if we ignore the labels.

For each fixed permutation γ0 ∈ Kp1,...,pr , we know from Section 1.4 that there exists σ ∈
Sp1,...,pn such that σγ0σ

−1 = γp1,...,pn , as γ0 and γp1,...,pn have the same cycle type. So, for each
pairing µ ∈ Pp1,...,pn , the pair (γ0, µ) is a combinatorial map if and only if (γp1,...,pn , σµσ

−1)
is also a combinatorial map. Furthermore, by Proposition 1.11, µγ−1

0 has the same number
of cycles as (σµσ−1) γ−1

p1,...,pn
. This gives a genus preserving bijection between canonical

combinatorial maps and combinatorial maps of the form (γ0, µ). Therefore, if we are to
fix a permutation σγ ∈ Sp1,...,pn for each γ ∈ Kp1,...,pn such that σγγ (σγ)

−1 = γp1,...,pn , then

every pairing in Cpn,L corresponds to |Kp1,...,pn| combinatorial maps in Mp
n,L. So, if we let

Rp
n,L be the number of rooted maps with degree sequence {p1, . . . , pn} and L faces, then

(2d− 1)!
∣∣∣Rp

n,L

∣∣∣ =
∣∣∣Mp

n,L

∣∣∣ =
(2d)!(∏

jmj!
)

(
∏

i i
mi)

∣∣∣Cpn,L∣∣∣
∣∣∣Rp

n,L

∣∣∣ =
2d(∏

jmj!
)

(
∏

i i
mi)

∣∣∣Cpn,L∣∣∣
where d = p1+···+pn

2
, and for i ≥ 1, mi is the number of elements pj such that pj = i.

Furthermore, the same proof shows that this relation holds for Rp
n,L and Cpn,L as well. A

brief discussion of how to enumerate canonical combinatorial maps of this type by genus
can be found in Section 2.5.
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Our main focus in this thesis is the enumeration of rooted maps for a fixed underlying
graph. Given a graph G with vertices labelled 1, . . . , n that allows for loops and multiple
edges, we can uniquely describe it with a vector q = (q1, . . . , qn) of length n and a strictly
upper triangular matrix s = (s1,2, s1,3, . . . , sn−1,n) of size n × n. We do this by simply
letting qi be the number of loop edges on vertex i, and si,k be the number of edges between
vertices i and k. For convenience, we let si,k = sk,i if i > k, and pi = 2qi +

∑
k 6=i si,k as

in Section 1.2. By construction, pi is the degree of vertex i in G. Furthermore, the set
of pairings P(q,s)

n can be used to represent the set of canonical combinatorial maps that
satisfies these conditions. Hence, we can let A(q,s)

n,L ⊆ P
(q,s)
n be the subset of pairings such

that for µ ∈ A(q,s)
n,L , µγ−1

p1,...,pn
has L cycles. Note that it is unnecessary to specify whether

we count disconnected maps, as connectivity of the maps is given by the connectivity of
G.

Now, let M(q,s)
n be the set of combinatorial maps such that for (γ, µ) ∈ M(q,s)

n , the

map represent by (γ, µ) is an embedding of G. In other words, if (γ, µ) ∈ M(q,s)
n , then

there exists a labelling φ of the cycles of γ with 1, . . . , n such that the following holds: For
1 ≤ i ≤ n, there are qi pairs {x, y} in µ where both x and y are in the i’th cycle of γ.
Also, for i < k, there are si,k pairs {x, y} in µ such that x is in the i’th cycle of γ and

y is in the k’th cycle of γ. In topological terms, M(q,s)
n is the set of maps such that for

(γ, µ) ∈M(q,s)
n , there is a labelling φ of the vertices so that (γ, µ) represents an embedding

of the labelled graph G. Note that we can view φ as a function φ : [p1, . . . , pn] → [n]
that maps two elements to the same output if and only if they belong to the same cycle.
Additionally, we can deduce that if a cycle is labelled i by φ, then it must have length pi
regardless of the value of µ.

Next, let M(q,s)
n,L ⊆M

(q,s)
n to be the subset of maps such that for (γ, µ) ∈M(q,s)

n,L , µγ−1

has L cycles. Furthermore, let B(q,s)
n,L be the set of triples (γ, µ, φ) such that (γ, µ) ∈M(q,s)

n,L ,
and φ is a labelling of the cycles of γ that makes (γ, µ) satisfy the conditions of q and s in the

previous paragraph. Finally, let D(q,s)
n,L ⊆ B

(q,s)
n,L be the subset of triples (γ, µ, φ) such that

γ = γp1,...,pn . Note that each graph automorphism of G is a labelling of the vertices, so it
corresponds to a permutation of the output of φ that preserves the conditions given by q and
s. Therefore, each map (γ, µ) ∈ M(q,s)

n,L corresponds to |aut (G)| triples (γ, µ, φ) ∈ B(q,s)
n,L ,

which gives the relation
∣∣∣B(q,s)

n,L

∣∣∣ = |aut (G)|
∣∣∣M(q,s)

n,L

∣∣∣.
As with counting maps with fixed vertex degrees, we know that for each fixed permu-

tation γ0 ∈ Kp1,...,pr , there exists σ ∈ Sp1,...,pn such that σγ0σ
−1 = γp1,...,pn . This means that

for a given triple (γ0, µ, φ) ∈ B(q,s)
n,L , we can conjugate γ and µ with σ to replace each ele-

ment s of the map (γ0, µ) with σ (s). To preserve the labelling of the cycles, we apply σ−1
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to undo the effect of the conjugation before applying φ, which gives us φσ−1. Combining
these together gives us (σγ0σ

−1, σµσ−1, φσ−1), and we can use the elements σ (s) to verify
that it satisfies the conditions of q and s. We can also verify that both the labelling of
the cycles and the number of cycles in µγ−1 are preserved. Furthermore, by replacing σ
with σ−1, we see that a triple (γ0, µ, φ) is in B(q,s)

n,L if and only if (γp1,...,pn , σµσ
−1, φσ−1) is

in D(q,s)
n,L . This gives a bijection between the set D(q,s)

n,L and the subset of B(q,s)
n,L such that

γ = γ0. Therefore, if we are to fix a permutation σγ ∈ Sp1,...,pn for each γ ∈ Kp1,...,pn such

that σγγ (σγ)
−1 = γp1,...,pn , then every triple in D(q,s)

n,L corresponds to |Kp1,...,pn| triples in

B(q,s)
n,L . In other words, we have

∣∣∣B(q,s)
n,L

∣∣∣ = |Kp1,...,pn|
∣∣∣D(q,s)

n,L

∣∣∣.
Let φ0 : [p1, . . . , pn]→ [n] and suppose φ (xi) = ki, where 1 ≤ i, ki ≤ n, is a labelling of

the cycles of γp1,...,pn . For there to exist a µ ∈ Pp1,...,pn such that (γp1,...,pn , µ, φ0) ∈ D(q,s)
n,L ,

the cycle labelled i must have length pi for 1 ≤ i ≤ n. Now, let ρ ∈ Sp1,...,pn be the
permutation such that ρ (xi) = xki . Then, we get that φρ−1

(
xki
)

= ki for 1 ≤ i ≤ n, which
can also be expressed as the function φI : [p1, . . . , pn] → [n] such that φI (xi) = i for all
xi ∈ [p1, . . . , pn]. By the same reason as in the previous paragraph, we can apply ρ to get

that (γp1,...,pn , µ, φ0) ∈ D(q,s)
n,L if and only if (γp1,...,pn , ρµρ

−1, φI) ∈ D(q,s)
n,L . Furthermore, note

that if we fix γ = γp1,...,pn and φI to be such that φI (xi) = i for all i, then µ ∈ A(q,s)
n,L if and

only if (γp1,...,pn , µ, φI) ∈ D
(q,s)
n,L by definition. Therefore, we have a bijection between the

set A(q,s)
n,L and the subset of D(q,s)

n,L such that φ = φ0. Now, if we let mi to be the number of
elements pj such that pj = i, then there are m1! · · ·mn! functions φ : [p1, . . . , pn] → [n] to

label γp1,...,pn such that the cycle labelled i has length pi. Therefore, every pairing µ ∈ A(q,s)
n,L

corresponds to m1! · · ·mn! triples in D(q,s)
n,L . Combining this with the previous result gives∣∣∣D(q,s)

n,L

∣∣∣ = (2d)!
p1···pn

∣∣∣A(q,s)
n,L

∣∣∣.
Finally, if R(q,s)

n,L is the number of rooted embeddings of G with L faces, then we have
these two relationships

(2d− 1)!
∣∣∣R(q,s)

n,L

∣∣∣ =
∣∣∣M(q,s)

n,L

∣∣∣
|aut (G)|

∣∣∣M(q,s)
n,L

∣∣∣ =
∣∣∣B(q,s)

n,L

∣∣∣ =
(2d)!

p1 · · · pn

∣∣∣A(q,s)
n,L

∣∣∣
Combining these gives ∣∣∣R(q,s)

n,L

∣∣∣ =
2d

p1 · · · pn · |aut (G)|

∣∣∣A(q,s)
n,L

∣∣∣
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as desired. This gives the number of rooted maps that are embeddings of the graph G
in terms of the number of canonical combinatorial maps. In the next chapter, we will
formally state this problem purely in the language of permutations, and show some of the
techniques used to solve restricted cases of this problem.
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Chapter 2

Techniques in Map Enumeration

In the last chapter, we saw that we can describe the problem of enumerating maps on
surfaces as one about multiplying permutations. We will therefore begin this chapter
by stating the problem of enumerating maps corresponding to specific graphs formally,
in terms of multiplying permutations together. We will then provide some elementary
results that allow us to restrict our attention to certain sets of permutations, as well as
set up a framework that is used in the multiple approaches to tackling this problem. In
the subsequent sections, we will discuss the special cases corresponding to maps with one
or two vertices, as well as surveying some of the previous techniques used in deriving
these results. The techniques presented here are mainly algebraic, in contrast to the main
approach used later in this thesis. In the final section, we will briefly cover some of the
other map enumeration problems that can be solved by encoding them as problems of
multiplying permutations.

2.1 Problem Statement

Let n be a positive integer, q = (q1, . . . , qn) be a vector of length n, and s =
(s1,2, s1,3, . . . , sn−1,n) be a strictly upper triangular matrix of size n × n, where the qi’s
and si,k’s are non-negative integers for 1 ≤ i, k ≤ n, with i < k. For convenience, let

sk,i = si,k, si =
∑

k 6=i si,k, and pi = 2qi + si, as in Chapter 1. Let P(q;s)
n be the set of

pairings of [p1, . . . , pn] with qi non-mixed pairs of the form {xi, yi} and si,k mixed pairs
of the form

{
xi, yk

}
. Let γp1,...,pn be the canonical cycle permutation of Sp1,...,pn , given by

γp1,...,pn =
(

1
1
, . . . , p

1

1

)
· · ·
(
1
n
, . . . , p

n

n

)
. For L ≥ 1, we define A(q;s)

n,L ⊆ P
(q;s)
n to be the subset
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of pairings such that for µ ∈ A(q;s)
n,L , µγ−1

p1,...,pn
has exactly L cycles, and let a

(q;s)
n,L =

∣∣∣A(q;s)
n,L

∣∣∣.
Then, our goal is to determine an expression for the generating series

A(q;s)
n (x) =

∑
L≥1

a
(q;s)
n,L xL

for given values of n, q, and s. Equivalently, the series can also be written as

A(q;s)
n (x) =

∑
µ∈P(q;s)

n

xw(µ)

where w is the weight function on P(q;s)
n , defined such that for µ ∈ P(q;s)

n , w (µ) is the
number of disjoint cycles in the permutation µγ−1

p1,...,pn
.

In the language of enumerating maps, this generating series counts the number of
combinatorial maps with n vertices and L faces, such that there are qi loop edges incident
to vertex i, and si,j edges between vertices i and j. Furthermore, the combinatorial maps
counted in this series are connected if and only if the support graph of s is connected. As in
Chapter 1, we let d = 1

2

∑n
i=1 pi be the total number of pairs of µ, which also represents the

total number of edges in the combinatorial map. By Proposition 1.7, the number of cycles
of a permutation changes parity whenever it is multiplied by a transposition, so µγ−1

p1,...,pn

has the same parity as n+d. Therefore, A
(q;s)
n (x) is a polynomial with non-negative integer

coefficients, which is an even polynomial if n+ d is even, and is an odd polynomial if n+ d
is odd.

We will now state a few elementary propositions related to the problem statement
above, which will in turn allow us to state an assumption that we will use for the rest
of the thesis. Although these results are more easily proved within the context of maps
and graph theory, we will prove them in the context of multiplying permutations, so as to
abstract the problem from its graph theoretical roots.

Proposition 2.1. Let µ be a pairing in P(q;s)
n , where the support graph of s has r compo-

nents. Then, µγ−1
p1,...,pn

has at most 2r − n+ d cycles.

Proof. Let G be the support graph of s, and C1, . . . , Cr be the components of G. Let
T1, . . . , Tr be the spanning trees of C1, . . . , Cr, and observe that the r trees have n − r
edges in total. If e = {i, k} is an edge of Ti, then µ must contain at least one pair of the
form

{
xi, yk

}
. Hence, for each edge e = {i, k} in T1∪· · ·∪Tr, we can take an arbitrary pair

of the form
{
xi, yk

}
, and denote the transposition consisting of that pair as µe. As discussed
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in Section 1.4, we can decompose µ into a product of transpositions consisting of the d pairs
of µ, which commute with each other. Therefore, we can write µ = µ̄µen−r · · ·µe1 , where the
transpositions µe1 , . . . , µen−r are given by the edges of T1 ∪ · · · ∪ Tr, and µ̄ = µµen−r · · ·µe1
is an involution consisting of the d− n+ r remaining pairs of µ.

Let Gt be the graph on n vertices and edge set e1, . . . , et for 0 ≤ t ≤ n − r. We will
now show inductively that each cycle of µet · · ·µe1γ−1

p1,...,pn
corresponds to a component of

Gt. Recall that γ−1
p1,...,pn

contains n cycles, each of the form
(

1
i
, . . . , p

i

i

)
. As G0 has no

edges, each component of G0 is a single vertex, so the base case holds. Assume that this
holds for µet−1 · · ·µe1γ−1

p1,...,pn
and Gt−1, and let et = {i, k}. Then, µet is a transposition

of the form
(
xi, yk

)
by construction. As the edges e1, . . . , en−r form a forest, i and k

must be in two different components of Gt−1, so xi and yk must be in different cycles of
µet · · ·µe1γ−1

p1,...,pn
. By Proposition 1.7, multiplying by µet merges these two cycles into one.

Similarly, adding et to Gt−1 merges these two components into one in Gt. As all the other
cycles and components are unchanged, this proves our statement.

From this, we deduce that µen−r · · ·µe1γ−1
p1,...,pn

has r cycles. By Proposition 1.7, multi-
plying µen−r · · ·µe1γ−1

p1,...,pn
by each of the d−n+ r transpositions in µ̄ can at most increase

the number of cycles by 1. Therefore, µγ−1
p1,...,pn

contains at most 2r − n + d cycles, as
desired.

This gives an upper bound on the degree of A
(q;s)
n (x), which can be useful in computing

the polynomial A
(q;s)
n (x). In graph theoretic terms, permutations µ such that µγ−1

p1,...,pn
has

2r− n+ d cycles are the maps of genus 0. As such, A
(q;s)
n (x) may not necessary attain its

maximal degree, since doing so requires the underlying graph to be planar.

Proposition 2.2. Let µ be a pairing in P(q;s)
n , such that the support graph of s has r

components C1, . . . , Cr. Suppose the component Ct contains the vertices ct−1 + 1, . . . , ct for

1 ≤ t ≤ r, where 0 = c0 < c1 < · · · < cr = n. Then, A
(q;s)
n = A

(q1;s1)
c1−c0 × · · · × A

(qk;sk)
cr−cr−1

,

where qt =
(
qct−1+1, . . . , qct

)
is the vector of length ct − ct−1 containing the ct−1 + 1 to ct

entries of q, and st is the submatrix consisting of the diagonal block of s between rows and
columns ct−1 + 1 to ct.

Proof. Let St =
[
pct−1+1

]ct−1+1 ∪ · · · ∪ [pct ]
ct for 1 ≤ t ≤ r, and Pt be the set of pairings

of St such that for µt ∈ Pt, µt has qi non-mixed pairs of the form {xi, yi} and si,k mixed
pairs of the form

{
xi, yk

}
, where ct−1 + 1 ≤ i, k ≤ ct and i < k. Then, if µe =

{
xi, yk

}
is a pair of µ ∈ P (q;s)

n , then i and k must be in the component of the support graph of s,
as we have either i = k or si,k 6= 0. Therefore, both elements of µe are in the same St for
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some t. Now, let µt be the product of all transpositions where both elements are in St for
1 ≤ t ≤ r. Then, we have µt ∈ Pt by counting the number of mixed and non-mixed pairs,
and µ can be decomposed as µ = µ1µ2 · · ·µr. Conversely, given µt ∈ Pt for 1 ≤ t ≤ r, we
have that µ = µ1µ2 · · ·µr is an element of P(q;s)

n , as the pairs of µ1, . . . , µr do not have any
element in common. Together, we conclude that P(q;s)

n = P1 × · · · × Pr.

Similarly, we let γi =
(

1
i · · · pi

i

)
for 1 ≤ i ≤ n, and let γt = γct−1+1 · · · γct be the

canonical permutation of St. By multiplying the permutations together, we see that
γ−1
p1,...,pn

= γ−1
1 γ−1

2 · · · γ−1
r . Now, as the non-trivial cycles µt and γt′ are disjoint unless

t = t′, we have

µγ−1
p1,...,pn

= µ1µ2 · · ·µrγ−1
1 γ−1

2 · · · γ−1
r

= µ1γ
−1
1 µ2γ

−1
2 · · ·µrγ−1

r

where each µtγ
−1
t is a permutation of the subset St. Since the sets St partition [p1, . . . , pn],

the number of cycles in µγ−1
p1,...,pn

is the sum of the number of cycles in µtγ
−1
t . That is,

if we let wt (µt) be the number of cycles in µtγ
−1
t in St, then w (µ) = w1 (µ1) + · · · +

wr (µr). By noting that P(q;s)
n decomposes into the product P1×· · ·×Pr, we conclude that

A
(q;s)
n (x) = A1 (x)A2 (x) · · ·Ar (x), where At (x) =

∑
µt∈Pt

xwt(µt). Finally, by relabelling

the elements of St with elements of
[
pct−1+1, . . . , pct

]
=
[
pct−1+1

]1 ∪ · · · ∪ [pct ]
ct−ct−1 , we see

that At (x) = A
(qt;st)
ct−ct−1

(x), which proves the proposition.

Proposition 2.2 allows us to assume that the support graph of s is connected. While
some of the results do not depend on this assumption, we will assume this throughout the
rest of the thesis for consistency, as there are no drawbacks in doing so. In particular, this
means that pi ≥ si > 0 for 1 ≤ i ≤ n. Later, we will focus our attention on cases where
the support graph of s is a tree, but we will explicitly point out when we need the tree
assumption.

From this point on, we will assume that the support graph of s is connected.

As we shall see in the following sections, the one and two vertex cases of this problem
have been studied by numerous people, with both algebraic and combinatorial methods.
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The common technique that is used in both styles of proof is to colour each cycle of
µγ−1

p1,p2,...,pn
with one of K colours. For this, we will use a combinatorial object called

paired functions, which is related to the paired surjections introduced in Goulden and
Solfstra [18]. The reason for choosing this combinatorial object over the more conventional
treatments is so that we can define the colouring without referring to maps, and this it
fits well with the combinatorial approach we will use in later chapters. See Remark 2.5 for
more details.

Definition 2.3. Let n,K ≥ 1, q = (q1, . . . , qn) ≥ 0, s = (s1,2, s1,3, . . . , sn−1,n) ≥ 0, and

pi = 2qi +
∑

k 6=i sk,i for 1 ≤ i ≤ n. An ordered pair (µ, π) is a paired function if µ ∈ P(q;s)
n

and π : [p1, . . . , pn]→ [K] is a function satisfying

π (µ (v)) = π (γp1,p2,...,pn (v)) for all v ∈ [p1, . . . , pn]

We denote the set of paired functions satisfying the parameters n, K, q, and s as F (q;s)
n,K ,

and we let f
(q;s)
n,K =

∣∣∣F (q;s)
n,K

∣∣∣.
An example of a paired function, as well as its graphical representation, can be found

at the beginning of Section 3.1, where we go into detail on how to represent such an
object. By substituting in u = γp1,p2,...,pn (v), we have π (u) = π

(
µγ−1

p1,p2,...,pn
(u)
)

for all
u ∈ [p1, . . . , pn]. This implies that the cycles of µγ−1

p1,p2,...,pn
are preserved by π. Hence, for

any given pairing µ ∈ A(q;s)
n,L , there are KL functions π : [p1, . . . , pn]→ [K] such that (µ, π)

is a paired function. Furthermore, by applying the definition to all pairs
{
xi, yk

}
of µ, we

have that (µ, π) is a paired function if and only if(
π
(
µ
(
yk
))
, π
(
γp1,p2,...,pn

(
xi
)))

=
(
π
(
γp1,p2,...,pn

(
yk
))
, π
(
µ
(
xi
)))(

π
(
xi
)
, π
(

(x+ 1)i
))

=
(
π
(

(y + 1)k
)
, π
(
yk
))

(2.1)

holds for all pairs
{
xi, yk

}
of µ, where addition is done modulo pi and pk on the left and

right hand side, respectively.

We will now demonstrate that the generating series A
(q;s)
n (x) can be used to describe

the number of paired functions f
(q;s)
n,K . Recall that a

(q;s)
n,L is the number of pairings µ ∈ P(q;s)

n

such that µγ−1
p1,p2,...,pn

has exactly L cycles. For each of these pairings, there areKL functions
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π such that (µ, π) is a paired function. Therefore, for K ≥ 1, we have

A(q;s)
n (K) =

∑
L≥1

a
(q;s)
n,L KL

=
∑

µ∈P(q;s)
n

Kw(µ)

= f
(q;s)
n,K (2.2)

where w (µ) is the number of cycles in µγ−1
p1,p2,...,pn

. Conversely, if we can find an expression

for f
(q;s)
n,K that is a polynomial in K, then this expression agrees with A

(q;s)
n (x) for all

positive integer values of K. As A
(q;s)
n (x) is also a polynomial, they must in fact be the

same. Therefore, we can substitute K = x into the expression for f
(q;s)
n,K to obtain A

(q;s)
n (x).

This is summarized by the following fact.

Fact 2.4. Let n ≥ 1, q ≥ 0, and s ≥ 0. If there exists an expression p (K) such that

f
(q;s)
n,K = p (K) for all K ≥ 1, and p is a polynomial in K, then A

(q;s)
n (x) = p (x).

As we shall see, Fact 2.4 will be the basis of all approaches used to compute A
(q;s)
n (x)

in this thesis. In the next few sections of this chapter, we will compute f
(q;s)
n,K for n = 1 and

n = 2 using algebraic techniques involving the integration of Gaussian measures. Then,
from Chapter 3 to Chapter 6, we will compute f

(q;s)
n,K for general n using combinatorial

methods, focusing on cases where the support graph of s is a tree. This corresponds to
graphs that are trees with loops and multiple edges.

Remark 2.5. In the literature where this problem is treated using algebraic techniques,
paired functions are often referred to as N-coloured maps , which we will call K-coloured
maps to match with variable K in this section. A K-coloured map is a map where each
face is assigned one of K colours, without restrictions on the colours of adjacent faces.
An alternative way of counting K-coloured maps is to colour each corner of a map with
one of K colours, then only count the coloured maps where colouring of the corners is the
same for each face. By associating each corner of the map with the half-edge incident to
its left, this method of colouring is equivalent to using a function π to assign the elements
xi of µ ∈ P(q;s)

n with elements of [K]. As the faces of a map are given by the cycles of
µγ−1

p1,p2,...,pn
, the condition that the colouring is consistent is equivalent to (µ, π) satisfying

(2.1) for all pairs
{
xi, yk

}
of µ.

36



2.2 Background on Matrix Integrals

In this section, we introduce the background to the matrix integral techniques that we will
be using in Section 2.3 and Section 2.4, where we will survey the algebraic techniques used
to approach the main problem stated in Section 2.1 for n = 1, 2. Our presentation will
mostly follow that of Lando and Zvonkin [26], with facts related to the Hermite polynomials
modified from Szegö [34]. Furthermore, as our approach for larger n in this thesis is
combinatorial, we will again only define what is necessary. Consequently, the terminologies
defined in this section are only relevant for this chapter, so we will be reusing some of our
notations in other parts of this thesis.

We start off by defining the standard Gaussian measure, denoted µ, which is the mea-
sure with the density

dµ (x) =
1√
2π
e−

x2

2 dx

For convenience of notation, for any function f : X → R, we let 〈f〉X =
∫
X f(x)dµ(x)∫

X dµ(x)
denote

the mean, or average, of f with respect to the measure µ on X. Note that if
∫
X
dµ (x) = 1,

then µ is called a probability measure, and 〈f〉X =
∫
X
f (x) dµ (x). As in the physics

literature, µ and X are usually omitted if the context is clear. We can check that µ
as defined above is a probability measure, and with respect to dµ (x), we have 〈1〉 = 1,
〈x〉 = 0, and 〈x2〉 = 1. Therefore, µ is a measure with mean 0 and variance 1. Also, using
integration by parts, we obtain〈

xk
〉

=

∫ ∞
−∞

xk · 1√
2π
e−

x2

2 dx

= −xk−1 · 1√
2π
e−

x2

2

∣∣∣∞
−∞

+ (k − 1)

∫ ∞
−∞

xk−2 · 1√
2π
e−

x2

2 dx

= (k − 1)
〈
xn−2

〉
This gives 〈x2n〉 = (2n− 1)!! and 〈x2n+1〉 = 0 for all integers n ≥ 0. Hence, 〈p (x)〉
converges for any polynomial p. Finally, we can check by substitution that∫

e−
bx2

2 dx =
1√
b

∫
e−

x2

2 dx

holds for any positive real number b.
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Next, we define the Gaussian measure on a vector space as follows. Let B be a positive
definite matrix of size k × k and dv (x) = dx1dx2 · · · dxk. We define

dµ (x) = (2π)−
k
2 (detB)

1
2 exp

{
−1

2
(Bx, x)

}
dv (x)

where (x, y) = xTy = x1y1 + · · · + xkyk is the inner product on Rn. Note that if we take
i’th entry of x to be xi and the entries of B to be bij for 1 ≤ i ≤ j ≤ N , then expanding
the inner product gives

(Bx, x) = xTBTx

=
N∑
i=1

biix
2
ii +

∑
i<j

2bijxixj (2.3)

To show that dµ (x) is a probability measure, we apply an orientation preserving or-
thogonal transformation x = Oy to diagonalize B. That is, O is an orthogonal matrix with
detO = 1 such that D = O−1BO is a diagonal matrix. Applying this transform gives us∫

Rk

dµ (x) =

∫
Rk

(2π)−
k
2 (detB)

1
2 exp

{
−1

2

(
O−1BOy, y

)}
dv (Oy)

=

∫
Rk

(2π)−
k
2 (detB)

1
2

k∏
i=1

exp

{
−1

2
diy

2
i

}
dv (y)

= (2π)−
k
2 (detB)

1
2

k∏
i=1

(
2π

di

) 1
2

= 1

where the di’s are the diagonal entries of D, which are also the eigenvalues of B. Integrating
each variable separately and noting that detB = detD =

∏k
i=1 di finishes the proof.

In probability theory, the matrix C = B−1 is called the covariance matrix, and for any
xi and xj, we have 〈xi〉 = 0 and 〈xixj〉 = cij. To prove these results, we first note that
it holds true for diagonal matrices B and C, as we can integrate each variable separately.
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Then, by writing xi as eTi x and applying the transformation x = Oy as above, we have

〈xi〉 =

∫
Rk

(2π)−
k
2 (detB)

1
2 eTi x exp

{
−1

2
(Bx, x)

}
dv (x)

=

∫
Rk

(2π)−
k
2 (detB)

1
2 eTi Oy

k∏
n=1

exp

{
−1

2
(Dy, y)

}
dv (y)

where ei is the i’th standard basis vector. As eTi Oy is a linear combination of the yn’s, 〈xi〉
is a linear combination of the averages 〈yn〉, taken with respect to D. Therefore, we can
use the result for diagonal matrices to get 〈xi〉 =

∑k
n=1 cn 〈yn〉 = 0 for some constants cn,

as desired.

Now, let Pij be the matrix that has 1 at position (i, j), and 0 elsewhere. Then, by
writing xixj as xTPijx and applying the transformation x = Oy as above, we have

〈xixj〉 =

∫
Rk

(2π)−
k
2 (detB)

1
2 xTPijx exp

{
−1

2
(Bx, x)

}
dv (x)

=

∫
Rk

(2π)−
k
2 (detB)

1
2 yTOTPijOy exp

{
−1

2
(Dy, y)

}
dv (y)

=

∫
Rk

(2π)−
k
2 (detB)

1
2

(
k∑

m,n=1

ymoimojnyn

)
exp

{
−1

2
(Dy, y)

}
dv (y)

since
(
OTPijO

)
mn

= oimojn. As the off-diagonal entries of D are zero, we can use the result
for diagonal matrices to get that 〈ymyn〉 = 0 for m 6= n. Therefore, the only terms which
can survive the integration are the square terms, which reduces the above sum to

〈xixj〉 =

∫
Rk

(2π)−
k
2 (detB)

1
2

k∑
n=1

oinojny
2
n exp

{
−1

2
(Dy, y)

}
dv (y)

= (2π)−
k
2 (detB)

1
2

k∑
n=1

oinojn
dn

k∏
i=1

(
2π

di

) 1
2

=
k∑

n=1

oinojn
dn

where we obtain 〈yii〉 = 1
di

using the results on diagonal matrices. Finally, note that

B−1 = OD−1O−1, so we have cij =
∑k

n=1
oinojn
dn

= 〈xixj〉, as desired.
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Finally, we define the Gaussian measure on the space of Hermitian matrices as follows.
A Hermitian matrix H is an K×K matrix such that for all 1 ≤ i, j ≤ K, hij = hji, where
hji is the complex conjugate of hji. Now, let HK be the space of all K × K Hermitian
matrices. Since the diagonal entries of a Hermitian matrix must be real, we can let hii = xii
for all diagonal entries of H, and hij = hji = xij + iyij for all i < j, where xii, xij, yij ∈ R.
Hence, we can treat HK as a vector space of dimension K2, which allows us to define
the ordinary measure of HK as dv (H) =

∏
dxii

∏
dxijdyij. Now, let dµ (H), commonly

referred to as the one matrix model , be the measure defined by the quadratic form

tr
(
H2
)

=
K∑

i,j=1

hijhji

=
K∑

i,j=1

(xij + iyij) (xij − iyij)

=
K∑
i=1

x2
ii + 2

∑
i<j

(
x2
ij + y2

ij

)
That is, we let tr (H2) represent a matrix B such that (Bx, x) = tr (H2), where x is the
vector containing the variables xii, xij, and yij in order, with 1 ≤ i, j ≤ K and i < j. By
comparing the coefficients with (2.3), we can deduce that B is a diagonal matrix with 1’s
for the first K diagonal entries, and 2’s for the remaining K2 −K entries. This gives us
detB = 2K

2−K , which gives

dµ (H) = (2π)−K
2/2 2(K2−K)/2 exp

{
−1

2
tr
(
H2
)}

dv (H)

By computing C = B−1, we see that 〈x2
ii〉 = 1 and

〈
x2
ij

〉
=
〈
y2
ij

〉
= 1

2
. From this,

we deduce that 〈h2
ii〉 = 〈x2

ii〉 = 1,
〈
h2
ij

〉
=
〈
x2
ij + 2ixijyij − y2

ij

〉
= 0, and 〈hijhji〉 =〈

x2
ij + y2

ij

〉
= 1, for all i < j. For all other i, j, k, l ∈ [K], we have (i, j) 6= (k, l). This gives

〈hijhkl〉 = 0, as the terms in the product only involve off-diagonal entries of the covariance
matrix.

Next, we introduce two theorems related to integrating over the space of Hermitian
matrices. We will state these theorems without proof as they be found in Lando and
Zvonkin [26].
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Theorem 2.6. (Wick’s formula) Let f1, f2, . . . , f2n be a set of (not necessarily distinct)
linear functions of x1, . . . , xk. Then

〈f1f2 · · · f2n〉 =
∑
µ∈P2n

〈fp1fq1〉 〈fp2fq2〉 · · · 〈fpnfqn〉

where the sum is taken over all (2n− 1)!! pairings µ = {{p1, q1} , . . . , {pn, qn}} of [2n].

This theorem allows us to reduce the integral of a product into a sum of the products
of quadratic terms, which we can evaluate using results from the above discussion of the
one matrix model. Conversely, if we have linear functions f1, . . . , f2n such that the sum
of their averages over all pairings counts some meaningful quantity, we can convert it into
a single integral over the set of Hermitian matrices, which can then be evaluated using
algebraic techniques.

Theorem 2.7. Suppose F is a unitary invariant function on HK. That is, suppose
F (U−1HU) = F (H) holds for any unitary matrix U and Hermitian matrix H. Then∫

HK

F (H) dµ (H) = cK

∫ ∞
−∞
· · ·
∫ ∞
−∞

F (Λ)
∏

1≤i<j≤K

(λi − λj)2 dµ (λ1) · · · dµ (λK)

where cK = 1
K!(K−1)!···1!

, Λ is the diagonal K×K matrix with entries λ1, . . . , λK, and dµ (λi)
is the standard Gaussian measure.

Theorem 2.7 was originally stated by Weyl, and the proof of this can be found in Section
3.2 of Lando and Zvonkin. The computation of the constant cK can be found in Section
3.5 of the same book. Note in particular that the dimension of the integral is reduced from
K2 to K.

To facilitate our integration over the measure dµ, we introduce the Hermite polynomials ,
defined by

Hn (x) = n!

bn2 c∑
k=0

(−1)k

k! (n− 2k)!
· x

n−2k

2k

The Hermite polynomials are monic polynomials of degree n that are orthogonal with
respect to the measure dµ. For m,n ≥ 0, they satisfy the relation∫

HmHndµ (x) = δm,nn!
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where δm,n = 1 if m = n, and 0 otherwise. The Hermite polynomials also have the
exponential generating series given by∑

i≥0

Hi (x)wi

i!
= exp

{
xw − w2

2

}
Using this exponential generating series, we can obtain a formula that allows us to rewrite a
product of Hermite polynomials as a sum. This relation was first discovered by Feldheim,
but the technique shown here is by Watson [41]. By taking the coefficient of wmzn in

exp
{
xw − w2

2
+ xz − z2

2

}
, we obtain

Hm (x)Hn (x)

m!n!
= [wmzn] exp

{
xw − w2

2

}
exp

{
xz − z2

2

}
= [wmzn] exp

{
x (w + z)− 1

2
(w + z)2

}
exp {wz}

= [wmzn]

(∑
i≥0

∑
j≥0

Hi (x)

i!

(
i

j

)
wjzi−j

)(∑
k≥0

wkzk

k!

)

=

min(m,n)∑
k=0

Hm+n−2k (x)

(m− k)! (n− k)!k!

where we take j = m − k and i = m + n − 2k to arrive at the coefficient of wmzn. In
particular, by letting m = n and reversing the summation order, we obtain

Hn (x)2 = n!2
n∑
k=0

H2k (x)

k!2 (n− k)!
(2.4)

Next, we will develop an inversion formula that allows us to write the monomial xn in
terms of the Hermite polynomials. Combined with the above formula, this will allow us
to evaluate the integral 〈x2nH2m (x)〉. The technique presented here is sketched out in pg.
385-386 of Szegö.

Lemma 2.8. Let gn and fn be two sequences of integers. Then, one of the relations

gn =

bn2 c∑
i=0

fn−2i

i!
fn =

bn2 c∑
i=0

(−1)i gn−2i

i!
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holds for all n if and only if the other holds for all n.

Proof. Note that the odd and even indexed terms are independent of each other. Hence,
we can let dbn2 c = gn and cbn2 c = fn for all n of a given parity. Then, by inclusion-exclusion

(see pg. 66 of Enumerative Combinatorics, Volume 1, Stanley [33]), we have

bm =
m∑
i=0

(
m

i

)
ai ⇐⇒ am =

m∑
i=0

(
m

i

)
(−1)m−i bi

bm
m!

=
m∑
i=0

1

i!

am−i
(m− i)!

⇐⇒ am
m!

=
m∑
i=0

(−1)i

i!

bm−i
(m− i)!

dm =
m∑
i=0

cm−i
i!

⇐⇒ cm =
m∑
i=0

(−1)i dm−i
i!

where we let cm = am
m!

and dm = bm
m!

for all m. Substituting back in m =
⌊
n
2

⌋
gives the

result as desired.

Now, note that we can rewrite the Hermite polynomial as

Hn (x)
√

2n

n!
=

bn2 c∑
k=0

(−1)k

k!
· x

n−2k
√

2n−2k

(n− 2k)!

for all n ≥ 0. Using Lemma 2.8, we can obtain

xn
√

2n

n!
=

bn2 c∑
k=0

1

k!
· Hn−2k (x)

√
2n−2k

(n− 2k)!

xn = n!

bn2 c∑
k=0

Hn−2k (x)

2kk! (n− 2k)!
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Finally, we can evaluate the value of 〈x2nH2m (x)〉. For n ≥ m, we have∫ ∞
−∞

x2nH2m (x) dµ (x) =

∫ ∞
−∞

(2n)!
n∑
k=0

H2n−2k (x)

2kk! (2n− 2k)!
H2m (x) dµ (x)

=

∫ ∞
−∞

(2n)!
H2m (x)2

2n−m (n−m)!m!
dµ (x)

=
(2n)!

2n−m (n−m)!
(2.5)

as only the summation term containing H2n (x) can survive the integration. This also
shows that the integral is zero for n < m.

Remark 2.9. Further discussion of the Hermite polynomials can be found in Orthogonal
Polynomials by Szegö [34]. However, the reader should be aware that the Hermite poly-
nomial defined here is called Hen (x) in some texts (for example, see Chihara [12]), and

Hn (x) is instead defined as Hn (x) = n!
∑bn2 c

k=0
(−1)k(2x)n−2k

k!(n−2k)!
. The two functions are related

by Hn (x) = 2
n
2Hen

(√
2 · x

)
. The difference in definition stems from the field of study. In

particular, our definition of Hn (x) is common in probability theory, as it is consistent with
the measure dµ (x).

2.3 Enumeration of One Vertex Maps

In this section, we will examine the simplest non-trivial case of the problem statement
in Section 2.1. This is when n = 1, which is the enumeration of one vertex maps. The
problem was first solved by Harer and Zagier [19], using a matrix integral technique. In
this case, there are no mixed pairs, so we have p1 = 2q1, and s is the 1 × 1 matrix [0],
which we can omit. Using the notation we have developed, the Harer-Zagier formula can
be written as follows.

Theorem 2.10. (Harer-Zagier [19]) Let q be a positive integer, and A(q)
L be the subset of

pairings of P2q such that for µ ∈ A(q)
L , µγ−1

2q has exactly L cycles. If we let a
(q)
L =

∣∣∣A(q)
L

∣∣∣,
then the generating series for a

(q)
L is given by

A(q) (x) = (2q − 1)!!
∑
k≥1

2k−1

(
q

k − 1

)(
x

k

)
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There are numerous proof of this formula in the literature, both algebraic and combi-
natorial. A selection of the proofs can be found in the papers by Goulden and Nica [17],
Itzykson and Zuber [21], Jackson [23], Kerov [24], Kontsevich [25], Lass [27], Penner [29],
and Zagier [42]. As we will be giving a combinatorial proof in the later chapters on a gen-
eralized result, we will not pursue it here. Instead, we will be surveying an algebraic proof
to demonstrate some of the techniques used in the literature. Again, our presentation here
will mostly follow Chapter 3 of Lando and Zvonkin [26], but we will also be using parts
of Jackson [23] for certain computations. This approach encodes the pairing of half edges
as an integral over Hermitian matrices, and then evaluates the integral using techniques
presented in Section 2.2. Note that in our presentation, we will be using paired functions
instead of N -coloured maps. See Remark 2.5 for further details.

Let H ∈ HK be the Hermitian matrix such that hii = xii for all diagonal entries of H,
and hij = hji = xij + iyij for all i < j, where xii, xij, yij ∈ R. By considering the integral
of trH2q over the measure dµ (H) and expanding the product, we have

〈
trH2q

〉
=

〈
K∑

i1,...,i2q=1

hi1i2hi2i3 · · ·hi2qi1

〉

=
K∑

i1,...,i2q=1

〈
hi1i2hi2i3 · · ·hi2qi1

〉
=

∑
π : [2q]→[K]

〈
hπ(1)π(2)hπ(2)π(3) · · ·hπ(2q)π(1)

〉
where we treat the multi-sum of i1, . . . , i2q as the sum over all functions π : [2q] → [K],
with π (u) = iu for 1 ≤ u ≤ 2q. By Wick’s formula in Theorem 2.6, we have〈

hπ(1)π(2)hπ(2)π(3) · · ·hπ(2q)π(1)

〉
=

∑
µ∈P2q

∏
{uj ,vj}∈µ

〈
hπ(uj)π(uj+1)hπ(vj)π(vj+1)

〉
where the sum is taken over all pairings µ = {{u1, v1} , . . . , {uq, vq}} of [2q], with addition
being taken modulo 2q. As described in Section 2.2 with Gaussian measures on Hermi-
tian matrices, each term

〈
hπ(uj)π(uj+1)hπ(vj)π(vj+1)

〉
is 1 if and only if (π (uj) , π (uj + 1)) =

(π (vj + 1) , π (vj)) for 1 ≤ j ≤ q. Since this is the same condition as (2.1), the summation
term is 1 if and only if (µ, π) is a paired function. Therefore, 〈trH2q〉 counts the number

of paired functions, so by (2.2), we have 〈trH2q〉 = f
(q)
1,K = A(q) (K).

Example 2.11. Let q = 2, and let i, j, k, ` represent i1, . . . , i4. Then by Wick’s formula,
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we have

〈
trH4

〉
=

K∑
i,j,k,`=1

〈hijhjkhk`h`i〉

=
K∑

i,j,k,`=1

〈hijhjk〉 〈hk`h`i〉+ 〈hijhk`〉 〈hjkh`i〉+ 〈hijh`i〉 〈hjkhk`〉

The three terms here correspond to the three maps in Figure 1.10, from left to right
respectively.

Notice that for any unitary matrix U , tr (U−1HU)
2q

= tr (U−1H2qU) = trH2q, so trH2q

is unitary invariant. By applying Theorem 2.7, we obtain〈
trH2q

〉
= cK

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
λ2q

1 + · · ·+ λ2q
K

) ∏
1≤i<j≤K

(λi − λj)2 dµ (λ1) · · · dµ (λK)

where cK = 1
K!(N−1)!···1!

.

Now,

∏
1≤i<j≤K

(λi − λj)2 =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
λ1 λ2 · · · λK
...

...
...

λK−1
1 λK−1

2 · · · λK−1
K

∣∣∣∣∣∣∣∣∣
2

is the square of the Vandermonde determinant . By taking linear combinations of the
rows of this matrix, we can replace each λji by the Hermite polynomials Hj (λi) without
changing the value of the determinant. If we then expand the determinant using the
cofactor expansion, we can arrive at

〈
trH2q

〉
= cKK

∫ ∞
−∞
· · ·
∫ ∞
−∞

λ2q
1

(∑
σ∈SK

H0

(
λσ(1)

)
· · ·HK−1

(
λσ(K)

))2

dµ (λ1) · · · dµ (λK)

where by symmetry we have replaced λi with λ1 for 1 ≤ i ≤ K. Note that the only terms
which can survive the integration are ones where we take the same permutation in both
copies of

∑
σ∈SK H0

(
λσ(1)

)
· · ·HK−1

(
λσ(K)

)
, as

∫∞
−∞Hi (λk)Hj (λk) dµ (λk) = 0 if i 6= j.
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Therefore, we can simplify the expression to〈
trH2q

〉
= cKK

∫ ∞
−∞
· · ·
∫ ∞
−∞

λ2q
1

∑
σ∈SK

H0

(
λσ(1)

)2 · · ·HK−1

(
λσ(K)

)2
dµ (λ1) · · · dµ (λK)

= cKK

∫ ∞
−∞

λ2q
1

∑
σ∈SK

(K − 1)! · · · 1!0!

(σ−1 (1)− 1)!
·Hσ−1(1)−1 (λ1)2 dµ (λ1)

=
K−1∑
i=0

∫ ∞
−∞

Hi (λ1)2 λ2q
1

i!
dµ (λ1)

by integrating all the variables except λ1. The subsequent simplification then comes from
noting that for 1 ≤ i ≤ K, there are (K − 1)! permutations σ ∈ SK such that σ−1 (1) = i.

To integrate this directly, we use the approach presented in Jackson [23]. Using (2.4)
and (2.5), we have

〈
trH2q

〉
=

K−1∑
i=0

∫ ∞
−∞

i∑
k=0

i!H2k (λ1)λ2q
1

k!2 (i− k)!
dµ (λ1)

=
K−1∑
i=0

i∑
k=0

i! (2q)!

k!2 (i− k)!2q−k (q − k)!

=
K−1∑
k=0

K−k−1∑
j=0

(2q)!

k!2q−k (q − k)!

(
j + k

k

)

=
K−1∑
k=0

(2q)!

k!2q−k (q − k)!

(
K

k + 1

)
= (2q − 1)!!

∑
k≥1

2k−1

(
K

k

)(
q

k − 1

)
where in the third line we switch the two sums and let j = i − k. We can also drop the
upper summation bound as

(
K
k

)
= 0 for k > K. Since this is a polynomial expression in K

of degree q + 1, by Fact 2.4, we can substitute K = x to obtain A(q) (x). Hence, we have
proved the Harer-Zagier formula stated in Theorem 2.10.
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2.4 Enumeration of Two Vertex Maps

The next non-trivial case of the problem statement in Section 2.1 is n = 2, which is the
enumeration of two vertex maps. This was first given in Goulden and Slofstra [18] by a
combinatorial technique that we will be extending later. Therefore, in this section, we will
survey an algebraic proof that uses a similar technique as the one in Section 2.3. This
was carried out by Carrell [11] and communicated to me privately via e-mail. Note that
for n = 2, the matrix s contains only one non-zero entry, which we denote s. Using the
notation we have developed, the theorem of Goulden and Slofstra can be written as follows.

Theorem 2.12. (Goulden-Slofstra [18]) Let q1 and q2 be non-negative integers, and s be a

positive integer. Let A(q1,q2;s)
L be the subset of pairings of P(q1,q2;s) such that for µ ∈ A(q1,q2;s)

L ,

µγ−1
2q1+s,2q2+s has exactly L cycles. If we let a

(q1,q2;s)
L =

∣∣∣A(q1,q2;s)
L

∣∣∣, then the generating series

for a
(q1,q2;s)
L is given by

A(q1,q2;s) (x) = p1!p2!
d+1∑
k=1

b 12p1c∑
i=0

b 12p2c∑
j=0

1

2i+ji!j! (d− i− j)!

(
x

k

)(
d− i− j
k − 1

)
∆

(q1,q2;s)
k

where p1 = 2q1 + s, p2 = 2q2 + s, d = q1 + q2 + s, and

∆
(q1,q2;s)
k =

(
k − 1

q1 − i

)(
k − 1

q2 − j

)
−
(

k − 1

q1 + s− i

)(
k − 1

q2 + s− j

)
In this expression, p1 and p2 are the degrees of vertices 1 and 2, respectively, and d is

the total number of pairs in the pairing.

As in the case n = 1, we want find a matrix integral that encodes (2.1), so that we

can count the number of paired functions in F (q1,q2;s)
2,K . Since there are two vertices in this

version of the problem, our matrix model will contain two matrices, with one representing
each vertex. Let (G,H) ∈ HK ×HK be a pair of Hermitian matrices. As in Section 2.2,
we let hii = xii for all diagonal entries of H, and hij = hji = xij + iyij for all i < j,
where xii, xij, yij ∈ R. Additionally, we let gii = zii for all diagonal entries of G, and
gij = gji = zij + iwij for all i < j, where zii, zij, wij ∈ R. Similar to the n = 1 case, we can
treat HK×HK as a vector space of dimension 2K2, and the ordinary measure of HK×HK

can be defined as dv (H,G) =
∏
dxiidzii

∏
dxijdyijdzijdwij. However, we need to choose

a quadratic form that can encode the number of loop and non-loop edges on each vertex.
To this end, we let c be an indeterminate, and let tr (H2) + tr (G2) − 2ctr (HG) be our
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quadratic form. Expanding the traces yield

tr
(
H2
)

=
K∑
i=1

x2
ii + 2

∑
i<j

(
x2
ij + y2

ij

)
tr
(
G2
)

=
K∑
i=1

z2
ii + 2

∑
i<j

(
z2
ij + w2

ij

)
tr (HG) =

K∑
i=1

xiizii + 2
∑
i<j

(xijzij + yijwij)

Note that in the quadratic form, the xii terms only appear together with the zii terms,
the xij with the zij terms, and the yij with the wij terms. Therefore, to make it easier to
describe the matrix B for this quadratic form, we arrange the variables of the vector x in
the order x11, z11, x22, z22, . . . , xKK , zKK , followed by x12, z12, y12, w12, x13, z13, y13, w13, . . . ,
yK−1,K , wK−1,K , which groups correlated terms together. Since we need (Bx, x) = tr (H2)+
tr (G2)−2ctr (HG), by comparing the coefficients with (2.3), we have that B is a 2K2×2K2

matrix with blocks of size 2× 2 on the diagonal, and 0 everywhere else. Furthermore, the
first 2K diagonal entries of B correspond to the coefficients of x2

ii and z2
ii, which are both

1. Likewise, the coefficients of xiizii are −2c, so their corresponding entries in B are −c.
Therefore, the first K blocks of B are given by[

1 −c
−c 1

]
Similarly, the coefficients of x2

ij, y
2
ij, z

2
ij, and w2

ij are all 2, and the coefficients of xijzij and
yijwij are −4c. Therefore, the remaining K2 −K blocks of B are given by[

2 −2c
−2c 2

]
This gives us detB = 24(K2−K) (1− c2)

K2

, which gives

dµ (H,G) = (2π)−K
2

22(K2−K) (1− c2
)K2

×

exp

{
−1

2

(
tr
(
H2
)

+ tr
(
G2
)
− ctr (HG)

)}
dv (H,G)

We can then compute the covariance matrix C = B−1 by taking the inverse of each
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block. By treating c as an indeterminate, we see that C is a matrix with K2 blocks, where
the first K blocks are of the form

1

1− c2

[
1 c
c 1

]
while the other blocks are of the form

1

2
· 1

1− c2

[
1 c
c 1

]
This gives us the set of averages as follows〈

x2
ii

〉
=

1

1− c2

〈
x2
ij

〉
=
〈
y2
ij

〉
=

1

2
· 1

1− c2〈
z2
ii

〉
=

1

1− c2

〈
z2
ij

〉
=
〈
w2
ij

〉
=

1

2
· 1

1− c2

〈xiizii〉 =
c

1− c2
〈xijzij〉 = 〈yijwij〉 =

1

2
· c

1− c2

From this, we deduce that〈
h2
ii

〉
=
〈
x2
ii

〉
=

1

1− c2

〈
g2
ii

〉
=
〈
z2
ii

〉
=

1

1− c2〈
h2
ij

〉
=
〈
x2
ij + 2ixijyij − y2

ij

〉
= 0

〈
g2
ij

〉
=
〈
z2
ij + 2izijwij − w2

ij

〉
= 0

〈hijhji〉 =
〈
x2
ij + y2

ij

〉
=

1

1− c2
〈gijgji〉 =

〈
z2
ij + w2

ij

〉
=

1

1− c2

〈hiigii〉 = 〈xiizii〉 =
c

1− c2

〈hijgij〉 = 〈xijzij + iyijzii + ixijwij − yijwii〉 = 0

〈hijgji〉 = 〈xijzij + iyijzii − ixijwij + yijwii〉 =
c

1− c2

holds for all 1 ≤ i, j ≤ n, and i < j. As with the case n = 1, all other correlations are zero,
as those correlations only involve entries not on the 2× 2 diagonal blocks of the covariance
matrix.

By considering the integral of trHp1trGp2 over the measure dµ (H,G) and expanding
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the product, we have

〈trHp1trGp2〉 =

〈
K∑

i1,...,ip1=1

K∑
j1,...,jp2=1

hi1i2hi2i3 · · ·hip1 i1gj1j2gj2j3 · · · gjp2j1

〉

=
K∑

i1,...,ip1=1

K∑
j1,...,jp2=1

〈
hi1i2hi2i3 · · ·hip1 i1gj1j2gj2j3 · · · gjp2j1

〉
=

∑
π : [p1,p2]→[K]

〈
h
π(1

1)π(2
1)hπ(2

1)π(3
1) · · ·hπ

(
p
1
1

)
π(1

1)
×

g
π(1

2)π(2
2)gπ(2

2)π(3
2) · · · gπ

(
p
2
2

)
π(1

2)

〉
where we treat the multi-sums of i1, . . . , ip1 and j1, . . . , jp2 as the sum over all functions
π : [p1, p2] → [K], with π (x1) = ix for 1 ≤ x ≤ p1 and π (y2) = jy for 1 ≤ y ≤ p2. Then,
to simplify our notation, we let t : [p1, p2]→ {hij, gij | 1 ≤ i ≤ j ≤ K} be defined as

t (uj) =

hπ(x1),π((x+1)1) if uj = x1 for some 1 ≤ x ≤ p1

gπ(y2),π((y+1)2) if uj = y2 for some 1 ≤ y ≤ p2

where addition of the x1 and y2 are being taken modulo p1 and p2, respectively. By using
Wick’s formula in Theorem 2.6 on the product, we have〈

h
π(1

1)π(2
1) · · · gπ

(
p
2
2

)
π(1

2)

〉
=

∑
µ∈Pp1,p2

∏
{uj ,vj}∈µ

〈t (uj) t (vj)〉

where the sum is taken over all pairings µ = {{u1, v1} , . . . , {ud, vd}} in Pp1,p2 .

Let
{
xi, yk

}
be a pair in µ. By enumerating the possibilities of i and k, we have

〈
t
(
xi
)
t
(
yk
)〉

=


〈
hπ(x1)π((x+1)1)hπ(y1)π((y+1)1)

〉
if i = k = 1〈

gπ(x2)π((x+1)2)gπ(y2)π((y+1)2)

〉
if i = k = 2〈

hπ(x1)π((x+1)1)gπ(y2)π((y+1)2)

〉
if i = 1, k = 2

In all three cases,
〈
t (xi) t

(
yk
)〉

is non-zero if and only if
(
π (xi) , π

(
(x+ 1)i

))
=
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(
π
(

(y + 1)k
)
, π
(
yk
))

, which is the same condition as if (µ, π) is a paired function, as

shown in (2.1). Furthermore, if (µ, π) is a paired function, then
〈
t (xi) t

(
yk
)〉

= c
1−c2 if

i 6= k, and
〈
t (xi) t

(
yk
)〉

= 1
1−c2 otherwise. Hence, if µ have s mixed pairs, then the

summation term is precisely cs

(1−c2)d
. Therefore,

f
(q1,q2;s)
2,K = [cs]

(
1− c2

)d 〈trHp1trGp2〉

counts the number of paired functions (µ, π) such that µ ∈ P(q1,q2;s)
2 and π ∈ [p1, p2]→ [K].

As in the n = 1 case, this also gives an expression for A(q1,q2;s) (K).

To evaluate this expression, we use what is commonly called the two matrix model . Let
r1, r2 be positive integers, the two matrix model, denoted by Mr1,r2 , is given by

ZK (s, t, g) =

∫
H2

K

exp {trU} dv (G,H)

where U = V1 + V2 + gHG, V1 =
∑r1

i=1 tiH
i, and V2 =

∑r2
i=1 sjG

j. In our case, we take
r1 = r2 = 2, which yields V1 = t1H + t2H

2 and V2 = s1G + s2G
2. Then, let m,n ≥ 0 be

integers. By Appendix A of Bonora, Constantinidis, and Xiong [6], we have

〈trHntrGm〉

=
n∑
`=0

`/2∑
k=0

(`−2k)/2∑
r=0

m∑
p=0

p/2∑
q=0

min(`−2k,p−2q)∑
j=0

n!m!

2k+q (n− `)! (m− p)!k!q!
×(

1

r!j!
(
r + k − q + 1

2
(p− `)

)
! (`− 2k − r − j)!

(
1
2

(`+ p)− k − q − r − j
)
!
−

1

j! (`− 2k − r)! (r − j)!
(

1
2

(`+ p)− k − q − r
)
!
(

1
2

(p− `)− q + k + r − j
))×(

1

2
(`+ p)− k − q − j

)
!

(
K

1
2

(`+ p)− k − q − j + 1

)
×

α
(p−`)/2+k+r
2 βn−`1 βm−p2 γk+r

1 γ
(p+`)/2−k−r
2
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where 〈·〉 is the average with respect to the model ZK (s, t, g), and

α2 = −2t2
g
, β1 =

gs1 − 2s2t1
4s2t2 − g2

, β2 =
gt1 − 2t2s1

4s2t2 − g2
, γ1 =

2s2

g2 − 4s2t2
, γ2 =

g

4s2t2 − g2

This is called the 2 point correlation function of the model M2,2. Note that if we let
U be −1

2
(tr (H2) + tr (G2)− ctr (HG)), then the model ZK (s, t, g) differs only from the

model dµ (H,G) in the normalization factor detB. Therefore, the averages are the same
between the two models, since the normalization factor cancels out. By equating dµ (H,G)
with U , we see that t1 = s1 = 0, t2 = −1

2
, s2 = −1

2
, and g = c. This gives

α2 =
1

c
, β1 = β2 = 0, γ1 =

1

1− c2
, γ2 =

c

1− c2

Since β1 = β2 = 0, the only terms that can contribute to the sum are the ones where ` = n
and p = m. Specializing the above equation and substituting in n = p1 and m = p2 gives

〈trHp1trGp2〉

=

p1/2∑
k=0

(p1−2k)/2∑
r=0

p2/2∑
q=0

min(p1−2k,p2−2q)∑
j=0

p1!p2!

2k+qk!q!
×(

1

r!j!
(
r + k − q + 1

2
(p2 − p1)

)
! (p1 − 2k − r − j)!

(
1
2

(p1 + p2)− k − q − r − j
)
!
−

1

j! (p1 − 2k − r)! (r − j)!
(

1
2

(p1 + p2)− k − q − r
)
!
(

1
2

(p2 − p1)− q + k + r − j
)
!

)
×(

1

2
(p1 + p2)− k − q − j

)
!

(
K

1
2

(p1 + p2)− k − q − j + 1

)
×

cp1−2k−2r

(1− c2)(p1+p2)/2

To obtain f
(q1,q2;s)
2,K , we take the coefficient [cs] (1− c2)

d 〈trHp1trGp2〉, where we recall that

d = p1+p2
2

. By comparing the exponent on c, we must have k + r = p1−s
2

. Doing these
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substitutions and removing the summation index r gives

f
(q1,q2;s)
2,K

=

p1/2∑
k=0

p2/2∑
q=0

min(p1−2k,p2−2q)∑
j=0

p1!p2!

2k+qk!q!j!
×(

1(
1
2

(p1 − s)− k
)
!
(

1
2

(p2 − s)− q
)
!
(

1
2

(p1 + s)− k − j
)
!
(

1
2

(p2 + s)− q − j
)
!
−

1(
1
2

(p1 + s)− k
)
!
(

1
2

(p1 − s)− k − j
)
!
(

1
2

(p2 + s)− q
)
!
(

1
2

(p2 − s)− q − j
)
!

)
×

(d− k − q − j)!
(

K

d− k − q − j + 1

)
Next, we rewrite p1 and p2 using the fact that p1 = 2q1 + s and p2 = 2q2 + s. The above
expression then simplifies to

f
(q1,q2;s)
2,K =

p1/2∑
k=0

p2/2∑
q=0

min(p1−2k,p2−2q)∑
j=0

p1!p2!

2k+qk!q!j!
×(

1

(q1 − k)! (q2 − q)! (q1 + s− k − j)! (q2 + s− q − j)!
−

1

(q1 + s− k)! (q1 − k − j)! (q2 + s− q)! (q2 − q − j)!

)
×

(d− k − q − j)!
(

K

d− k − q − j + 1

)
For the penultimate step, we replace k by i, q by j, and j by r, so that it better matches
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the formula given by Goulden and Slofstra, thus obtaining

f
(q1,q2;s)
2,K =

p1/2∑
i=0

p2/2∑
j=0

min(p1−2i,p2−2j)∑
r=0

p1!p2!

2i+ji!j!r!
×(

1

(q1 − i)! (q2 − j)! (q1 + s− i− r)! (q2 + s− j − r)!
−

1

(q1 + s− i)! (q1 − i− r)! (q2 + s− j)! (q2 − j − r)!

)
×

(d− i− j − r)!
(

K

d− i− j − r + 1

)
Observe that for the inner terms to be non-zero, the factorials in the denominator must

be non-negative. Therefore, we must have q1 − i ≥ 0 and q1 + s − i − r ≥ 0 for the first
term, and q1 + s − i ≥ 0 and q1 − i − r ≥ 0 for the second. In both cases, this adds up
to 2q1 + s − 2i − r ≥ 0, or r ≤ p1 − 2i. The same argument shows that we must have
r ≤ p2 − 2j for the inner terms to be non-zero. Therefore, the upper bound of r can
be raised to d − i − j without changing the sum. By raising the bound and doing the
substitution r = d− i− j − k + 1, we obtain

f
(q1,q2;s)
2,K =

p1/2∑
i=0

p2/2∑
j=0

d−i−j+1∑
k=1

p1!p2!

2i+ji!j! (d− i− j − k + 1)!
×(

1

(q1 − i)! (q2 − j)! (k − 1− q2 + j)! (k − 1− q1 + i)!
−

1

(q1 + s− i)! (k − 1− q2 − s+ j)! (q2 + s− j)! (k − 1− q1 − s+ i)!

)
×

(k − 1)!

(
K

k

)
From here, we can raise the summation bound on k to d + 1, as we have the term
(d− i− j − k + 1)! in the denominator. Writing the expression using binomial coefficients
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yields

f
(q1,q2;s)
2,K =

p1/2∑
i=0

p2/2∑
j=0

d+1∑
k=1

(
K

k

)(
d− i− j
k − 1

)
p1!p2!

2i+ji!j! (d− i− j)!
×((

k − 1

q1 − i

)(
k − 1

q2 − j

)
−
(

k − 1

q1 + s− i

)(
k − 1

q2 + s− j

))
which is a polynomial expression in K that matches the formula of Goulden and Slofstra.
Using Fact 2.4 and substituting K = x completes the proof.

2.5 Other Map Enumeration Problems

In this section, we will briefly examine some related map enumeration problems that exist
in the literature, as well as the techniques used to solve them. The first two problems are
in some ways extensions to the Harer-Zagier formula in Section 2.3, and we will treat them
using the algebraic techniques previously discussed in this chapter. The third problem is
the enumeration of bicoloured maps, which we will treat using a combinatorial approach
similar to the one used later in this thesis. In all three cases, we are more interested in the
approaches used to solve these problems, rather than the technicalities. Therefore, we will
omit proofs and details that are not important to understanding the approaches used.

The first problem we will discuss is the enumeration of maps by genus, according to
vertex degrees. This is essentially the same as the main problem of this thesis, with
the key difference being that there are no restrictions on how the edges are connected
between vertices. The way which we will approach this problem is taken from Section 3.3
of Lando and Zvonkin [26], as well as from the earlier sections of this chapter. When we
set this problem up as a problem about multiplying permutations, it is similar to the one
in Section 2.1. However, instead of having the parameters q and s, we simply have the
parameter p, as we do not need to keep track of the number of edges between each pair
of vertices. Formally, let n be a positive integer, and p = (p1, . . . , pn) ≥ 1 be a vector
of length n. Then, let Pp1,...,pn be the set of pairings of [p1, . . . , pn], and γp1,...,pn be the
canonical cycle permutation of Sp1,...,pn , as defined in Chapter 1. For L ≥ 1, we define
Cpn,L ⊆ Pp1,...,pn to be the subset of pairings such that for µ ∈ Cpn,L, µγ−1

p1,...,pn
has exactly L

cycles, and let cpn,L =
∣∣Cpn,L∣∣. Then, our goal is to determine an expression for the generating
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series

Cp
n (x) =

∑
L≥1

cpn,Lx
L

=
∑

µ∈Pp1,...,pn

xw(µ)

for given values of n and p, where w is the weight function on Pp1,...,pn , defined such that
for µ ∈ Pp1,...,pn , w (µ) is the number of disjoint cycles in the permutation µγ−1

p1,...,pn
.

One key difference between this problem and the one in Section 2.1 is that Cp
n (x)

counts all permutations µ ∈ Pp1,...,pn , regardless of whether the subgroup generated by µ
and γp1,...,pn is transitive. Therefore, in the language of enumerating maps, this generating
series counts the number of possibly disconnected combinatorial maps with n vertices
and L faces, such that there are exactly pi edges incident to vertex i. As in Chapter 1,
we let d = 1

2

∑n
i=1 pi be the total number of pairs of µ, which also represents the total

number of edges in the combinatorial map. The fact that Cp
n (x) also counts disconnected

combinatorial maps is undesirable from a topological standpoint, and while this issue can
be remedied in some cases, there is no known method in general. For now, we will view
this problem simply as one about multiplying permutations, without concerning ourselves
with whether the permutations we are enumerating represent combinatorial maps.

Analogous to Definition 2.3, for µ ∈ Pp1,...,pn and π : [p1, . . . , pn] → [K], we can define
an ordered pair (µ, π) to be a paired function if

π (µ (v)) = π (γp1,p2,...,pn (v))

holds for all v ∈ [p1, . . . , pn], and let Dp
n,K to be the set of all paired functions satisfying the

parameters n, K, and p, with dpn,K =
∣∣Dp

n,K

∣∣. Then, by the same logic used in Section 2.1,
we can obtain results analogous to (2.1), (2.2), and Fact 2.4 for this definition of paired
function. In particular, we have that (µ, π) is a paired function if and only if(

π
(
xi
)
, π
(

(x+ 1)i
))

=
(
π
(

(y + 1)k
)
, π
(
yk
))

(2.6)

holds for all pairs
{
xi, yk

}
of µ, where addition is done modulo pi and pk on the left and

right hand side, respectively. Then, we have Cp
n (K) = dpn,K for all k ≥ 1. Finally, we

can conclude that finding a polynomial expression for dpn,K is sufficient for determining the
generating series Cp

n (x).

As with the case n = 1 in Section 2.3, we will use the one matrix model, described
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in Section 2.2. Let H ∈ HK be the Hermitian matrix such that hii = xii for all diagonal
entries of H, and hij = hji = xij + iyij for all i < j, where xii, xij, yij ∈ R. By expanding
trHpi , we have

trHpi =
∑

π : [pi]→[K]

h
π(1

i)π(2
i)hπ(2

i)π(3
i) · · ·hπ

(
p
i

i

)
π(1

i)

Therefore, if we consider the integral of trHp1 · · · trHpn over the measure dµ (H), we have

〈trHp1 · · · trHpn〉 =
∑

π : [p1,...,pn]→[K]

〈
h
π(1

1)π(2
1) · · ·hπ

(
p
1
1

)
π(1

1)
×

h
π(1

2)π(2
2) · · ·hπ

(
p
2
2

)
π(1

2)
· · ·hπ(pnn)π(1

n)

〉
=

∑
π : [p1,...,pn]→[K]

∑
µ∈Pp1,...,pn

∏
{xi,yk}∈µ

〈
hπ(xi),π((x+1)i)hπ(yk),π((y+1)k)

〉

where we used Wick’s formula in Theorem 2.6 to expand the product. As in the case

n = 1, each term
〈
hπ(xi),π((x+1)i)hπ(yk),π((y+1)k)

〉
is 1 if and only if (2.6) holds. There-

fore, 〈trHp1 · · · trHpn〉 counts the number of paired functions. In other words, we have
〈trHp1 · · · trHpn〉 = dpn,K = Cp

n (K). Note that this formula is a direct generalization of the
one in Section 2.3, though unlike the n = 1 case, there is no known method for evaluating
this in general.

Now, in the case where each vertex has degree r, we can write the generating series
for the number of connected combinatorial maps in terms of the generating series for the
number of possibly disconnected combinatorial maps. Recall from Section 1.5 that one
of the conditions for µ being a combinatorial map is that the subgroup generated by µ
and γp1,...,pn is transitive. Let Crn,L ⊆ C

(r,...,r)
n,L be the subset of pairings that satisfies this

condition, and crn,L =
∣∣Crn,L∣∣ is the number of combinatorial maps with n vertices and L

faces, with each vertex having degree r. Then, the generating series for the number of
combinatorial maps is given by

Cr
n (x) =

∑
L≥1

crn,Lx
L

For convenience, let Cr
n (x) = C

(r,...,r)
n (x) be the generating series for the number of possibly

disconnected combinatorial maps with n vertices and L faces, with each vertex having
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degree r, as described at the beginning of this section.

Now, let Drn,K = D(r,...,r)
n,K be the set of paired functions (µ, π) such that µ is a pairing on

[r, . . . , r] (n times) and π is the colouring function π : [r, . . . , r]→ [K]. The set of connected
paired functions Drn,K ⊆ Drn,K is the subset of paired function such that the subgroup
generated by µ and γrn = γr,...,r is transitive. By following the same proof as Section 2.1,
we see that Cr

n (K) =
∣∣Drn,K∣∣. Furthermore, let DrK =

⋃
n≥0Drn,K and DrK =

⋃
n≥1Drn,K be

the unions of these sets of paired functions. Then, our objective is to provide a relation
between these two sets, and express that using exponential generating series. Background
on exponential generating series can be found in Combinatorial Enumeration by Goulden
and Jackson [15].

For i ≥ 1, we let Si =
{

1
i
, . . . , r

i
}

be a set labelled i, which corresponds to vertex i

of a map. Now, a pairing µ is a permutation on S1 ∪ · · · ∪ Sn for some n, so µ can be
treated as an object with labels 1, . . . , n, with the weight of µ being n, denoted v (µ) = n,
to distinguish it from the weight given by the number of cycles in µγ−1. In terms of graph
theory, a pairing µ has weight n if the possibly disconnected map that µ represents has
n vertices. As the product and composition lemmas for labelled objects use exponential
generating series, we will use these series to enumerate the sets DrK and DrK , where the
weight of (µ, π) ∈ DrK is given by v (µ). Let Cr (t,K) and Cr (t,K) be the exponential
generating series for DrK and DrK , respectively. Then, we have

Cr (t,K) =
∑

(µ,π)∈Dr
K

tv(µ)

n!

=
∑
n≥0

Cr
n (K) · t

n

n!

and

Cr (t,K) =
∑

(µ,π)∈Dr
K

tv(µ)

n!

=
∑
n≥1

Cr
n (K) · t

n

n!

Note that Cr (t,K) does not contain the term Cr
0 (K), which is important for the compo-

sition of exponential generating series.

59



Consider a paired function (µ, π) ∈ DrK , observe that each orbit O of the subgroup
generated by µ and γrn is a union of some sets Sj1 ∪ · · · ∪ Sjt . In the language of maps,
O represents a component containing the vertices j1, . . . , jt. By noting that each pair{
xi, yk

}
of µ must either be contained in or disjoint from O, we see the paired function

condition, given by (2.6), still holds if we restrict µ and π to Sj1 ∪ · · · ∪ Sjt . Therefore,
(µ, π) restricted to the subset Sj1 ∪ · · · ∪ Sjt is a paired function. We can relabel the
superscripts j1, . . . , jt of the elements in µ and π to 1, . . . , t, which gives us the paired
function (µ′, π′) ∈ Drt,K . Furthermore, the subgroup generated by µ′ and γrt is transitive,

so (µ′, π′) ∈ DrK . This means that paired functions (µ, π) ∈ DrK can be decomposed into
zero or more connected paired functions, each given by the restriction of (µ, π) to an orbit
of the subgroup generated by µ and γrn.

Conversely, given connected paired functions (µ1, π1) , . . . , (µk, πk) and a partition φ of
[n] with k parts, such that the i’th part of φ has size v (µi), we can construct (µ, π) ∈ DrK
as follows. For each (µi, πi), if the i’th part of φ is {j1, . . . , jt}, where t = v (µi), we relabel
the set of elements S1 ∪ · · · ∪ St in µi and πi with Sj1 ∪ · · · ∪ Sjt . As φ is a partition
of [n], the connected paired function (µi, πi) gets labelled with different sets of elements,
and together they contain all of S1 ∪ · · · ∪ Sn. Therefore, we can obtain a pairing µ on
[r, . . . , r] (n times) and a colouring function π : [r, . . . , r] → [K] by combining µ1, . . . , µk
and π1, . . . , πk together. Furthermore, we can check the paired function condition holds for
(µ, π) by noting that (2.6) holds for all pairs

{
xi, yk

}
of µ, as each pair is in some paired

function (µi, πi). This gives us (µ, π) ∈ DrK .

Using the language of Goulden and Jackson, we can write this decomposition as DrK =
{∅, [1] , [2] , . . . }~DrK . As the generating series for {∅, [1] , [2] , . . . } is ex, and the generating
series for the composition of labelled objects is given by the composition of functions, we
have

Cr (t,K) = exp
{
Cr (t,K)

}
Note that Cr

0 (K) = 0 is required for Cr (t,K) to be well defined. By using Cp
n (K) =

〈trHp1 · · · trHpn〉 and simplifying the expression, we obtain

Cr (t,K) = log {Cr (t,K)}

= log

{∑
n≥0

〈(trHr)n〉 · t
n

n!

}

= log

{〈∑
n≥0

(t · trHr)n

n!

〉}
= log {〈exp {t · trHr}〉}
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Note that the variables in the summand are independent of the integral, so we can move
them inside the sum as above. Also, if we can take the tn

n!
coefficient of this series, then

the substitution K = x gives us Cr
n (x). Further discussion of the application of this result

can be found in Lando and Zvonkin [26].

The second problem we will discuss is the enumeration of maps in locally orientable
surfaces by their genus. As with the first problem, we will place no restrictions on how the
edges are connected between vertices. One way to represent these is to represent each edge
with 4 elements of a permutation, instead of the 2 we have for maps in orientable surfaces.
This approach was used in Graph Theory by Tutte [38], and we can rigourously define the
problem in terms of multiplying permutations as in Section 1.5 and Section 2.1 if we so
desire. However, for the sake of brevity, we will be less formal and instead describe maps
in locally orientable surfaces using Feymann diagrams and K-coloured maps. The method
used here is taken from the exercises in Chapter 3 of Lando and Zvonkin [26], as well as
the paper by Goulden and Jackson [16].

In our discussion in Section 1.5, we know that labelled maps can be described as a set of
vertices with half-edges attached to them. Furthermore, we know that the pairing of these
half-edges uniquely determines a labelled map. To visualize labelled maps, we introduced
Feymann diagrams, which are diagrams of maps where the edges are represented as ribbons.
Each corner in the diagram is labelled with the half-edge adjacent to it, which helps to
visualize which corners of the map belong to the same faces when the half-edges are glued
together.

Note that for maps in orientable surfaces, there is an orientation for the stars, ribbons,
and spaces between the ribbons. Therefore, we have to glue the ribbons representing half-
edges together without twisting them, to preserve their orientations. Now, to construct
maps in locally orientable surfaces, we allow each ribbon to have zero or one twist, where
the direction of the twist is irrelevant. Since our definition of map isomorphism is based
on having an orientation preserving homeomorphism of the faces, it is sufficient to only
consider these two ways of twisting the ribbons.

Analogous to Remark 2.5, a twisted K-coloured map is a map in a locally orientable
surface, where each face is assigned one of K colours, without restrictions on the colours
of adjacent faces. As with K-coloured maps, we can count twisted K-coloured maps by
colouring each corner of a locally orientable map, then only count the maps where the
colouring of the corners is the same for each face. To represent twisted K-coloured maps
as combinatorial objects, we will use the symmetric group, similar to what we did with
K-coloured maps. Given an n vertex map such that vertex i has degree pi, we use the
canonical cycle permutation γp1,...,pn of Sp1,...,pn to represent the vertices, and we use the
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pairing µ ∈ Pp1,...,pn to represent the half-edges. Furthermore, we will introduce the twisting
function φ : µ → {0, 1}, such that for a pair

{
xi, yk

}
in µ, φ

({
xi, yk

})
is 1 if the ribbon

joining xi and yk is twisted, and 0 otherwise. Finally, the colouring of the corners will be
represented by π : [p1, . . . , pn] → [K]. By observing how the ribbons are joined together,
we see that the colouring of the corners is consistent if and only if

(
π
(
xi
)
, π
(

(x+ 1)i
)
, φ
({
xi, yk

}))
=


(
π
(

(y + 1)k
)
, π
(
yk
)
, 0
)

OR(
π
(
yk
)
, π
(

(y + 1)k
)
, 1
) (2.7)

holds for all pairs
{
xi, yk

}
of µ. We call the triples (µ, π, φ) that satisfy this condition

triple functions . Furthermore, if for a given µ and π there exist at least one φ such that
(µ, π, φ) is a triple function, then the number of φ’s such that (µ, π, φ) is a triple function is

2t, where t is the number of pairs
{
xi, yk

}
in µ such that π (xi) = π

(
(x+ 1)i

)
= π

(
yk
)

=

π
(

(y + 1)k
)

.

To enumerate triple functions algebraically, we take the approach in Section 2.2 and
Section 2.3. However, instead of using a Hermitian matrix H, we use a symmetric matrix
M with entries mij = mji. By computing the determinant, we get

tr
(
M2
)

=
K∑
i=1

m2
ii + 2

∑
i<j

m2
ij

That is, we let tr (M2) represent a matrix B such that (Bx, x) = tr (M2), where x is the
vector containing the variables mii and mij in order, with 1 ≤ i, j ≤ K and i < j. By
comparing the coefficients with (2.3), we can deduce that B is a diagonal matrix with 1’s
for the first K diagonal entries, and 2’s for the remaining K2−K

2
entries. This gives us

detB = 2(K2−K)/2, which gives

dµ (M) = (2π)−(K2+K)/4 2(K2−K)/4 exp

{
−1

2
tr
(
M2
)}

dv (M)

By computing C = B−1, we see that 〈m2
ii〉 = 1 and

〈
m2
ij

〉
= 〈mijmji〉 = 1

2
for all i < j.

For all other i, j, k, l ∈ [K], we have (i, j) 6= (k, l). This gives 〈mijmkl〉 = 0, as the terms
in the product only involve off-diagonal entries of the covariance matrix.

As with the problem of enumerating maps in orientable surfaces, if we consider the
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integral of trMp1 · · · trMpn over the measure dµ (M), we have

〈trMp1 · · · trMpn〉 =
∑

π : [p1,...,pn]→[K]

∑
µ∈Pp1,...,pn

∏
{xi,yk}∈µ

〈
mπ(xi),π((x+1)i)mπ(yk),π((y+1)k)

〉

by using Wick’s formula in Theorem 2.6 to expand the product. Also, each term〈
mπ(xi),π((x+1)i)mπ(yk),π((y+1)k)

〉
is 1

2
if
(
π (xi) , π

(
(x+ 1)i

))
is equal to exactly one of(

π
(
yk
)
, π
(

(y + 1)k
))

or
(
π
(

(y + 1)k
)
, π
(
yk
))

, and is 1 if it is equal to both. By com-

paring with (2.7), we see that 2d
〈
mπ(xi),π((x+1)i)mπ(yk),π((y+1)k)

〉
counts the number of φ’s

such that (µ, π, φ) is a triple function, where d = p1+···+pn
2

is the total number of edges.
Therefore, 2d 〈trMp1 · · · trMpn〉 counts the number of triple functions. As with the case
of maps in orientable surfaces, there is no known method of evaluating this in general.
However, in the case of n = 1, we can evaluate the integral and obtain the generating
series

B(p) (x) = p!

p∑
k=0

22p−k
p∑
r=0

(
p− 1

2

p− r

)(
k + r − 1

k

)(
1
2

(x− 1)

r

)
+

(2p)!

2pp!

p∑
k=0

2k
(p
k

)(x− 1

k + 1

)
that counts the number of one vertex maps with p edges in locally orientable surfaces,
sorted by genus. Notice that the second part of the sum is A(p) (x− 1), where A(p) (x) is
given by the Harer-Zagier formula in Theorem 2.10. As the derivation for B(p) (x) is quite
involved, we will not cover it in this thesis. Any reader interested in this result is referred
to Goulden and Jackson [16].

The third problem we will discuss is the enumeration of unicellular bicoloured maps .
The approach we use here is taken from Schaeffer and Vassilieva [31], and is a combinatorial
proof that has much in common with Goulden and Nica [17]. By extension, this proof is
related to the work in this thesis, with which we will draw several comparisons later. Recall
from Section 1.5 that the set of all one vertex maps with q edges can be encoded using the
pairings of P2q. For µ ∈ P2q, we can let γ2q = (1, . . . , 2q) represent the vertex, µ represent
the edges, and α = µγ−1

2q represent the faces of the map. By using map duality, we can

instead let γ2q represent the single face of the map, µ represent the edges, and α = µγ−1
2q

represent the vertices. Therefore, the set of pairings of P2q also encode all maps with
one face and q edges. Hence, the enumeration of one vertex maps is also known as the
enumeration of unicellular maps in some parts of the literature.
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1 2

3
45

6

Figure 2.1: Rooted unicellular bicoloured map with p = 3, q = 4, and 6 edges

Now, a unicellular bicoloured map is an embedding of a bipartite graph in a surface
such that the embedding has exactly one face, and a rooted unicellular bicoloured map is a
unicellular bicoloured map with a distinguished edge e. Unlike in our description of rooted
maps from Section 1.5, we do not choose a direction for this edge ourselves, but instead
orient the edge going from the white vertex to the black vertex. Without loss of generality,
we can label the edges around the face of the map with a canonical labelling, in a similar
manner to how we labelled the half edges in a rooted map. This is done by tracing the
face of the map and labelling every other edge with the labels 1, . . . , d, starting from the
right hand side of the root edge. As there is only one face, each edge is traversed exactly
twice, once from each direction. Furthermore, this procedure can only label an edge on
the white to black direction, so each edge is labelled exactly once.

To enumerate unicellular bicoloured maps, we will use the following encoding. Let M
be a rooted unicellular bicoloured map with m white vertices, n black vertices, and d edges.
We represent M as a pair of permutations (α, β) ∈ Sd×Sd such that γd = αβ. Each cycle
of α represents a white vertex, and the elements of the cycle are the edges incident to it,
in counterclockwise order. Similarly, each cycle of β represents a black vertex, and the
elements of the cycle are the edges incident to it, also in counterclockwise order. Note that
β = α−1γd, so β is actually determined by α. Furthermore, this form of the expression
suggests that unicellular bicoloured maps are in some way related to unicellular maps.
Further discussion on the relationship between maps and bipartite maps can be found in
the paper by Schaeffer and Vassilieva, as well as Section 1.5 of Lando and Zvonkin [26].

As an example, consider the rooted unicellular bicoloured map on the left diagram of
Figure 2.1. This is a map with 3 white vertices, 4 black vertices, and 6 edges. By giving
it a canonical labelling using the procedure described above, we obtain the labelled map
on the right. Then, by letting each vertex be represented as a cycle in a permutation, we
obtain α = (156) (2) (34) and β = (124) (3) (5) (6). We can verify that αβ = γ6 indeed
holds.

In the remainder of this section, we will give a sketch of a combinatorial proof to the
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following theorem, which allows us to enumerate unicellular bicoloured maps.

Theorem 2.13. (Schaeffer-Vassilieva [31]) Let d be a positive integer, and for m,n > 0,
let B (m,n, d) be the number of permutation pairs (α, β) ∈ Sd×Sd such that α and β have
m and n cycles, respectively, and γd = αβ. Then, the generating series for the numbers
B (m,n, d) is given by∑

m,n≥1

B (m,n, d) ymzn = d!
∑
p,q≥1

(d− 1)!

(p− 1)! (q − 1)! (d− p− q + 1)!

(
y

p

)(
z

q

)

The general case of this problem was studied earlier by Jackson, using an algebraic
approach with the evaluation of characters of the symmetric group. Using our notation,
the result can be written as follows.

Theorem 2.14. (Jackson [22]) Let d be a positive integer, and B (m1, . . . ,mk, d) be the
number of factorizations of γd = (1, 2, . . . , d) into a product of k permutations with respec-
tively m1, . . . ,mk cycles. Then, the generating series for the numbers B (m1, . . . ,mk, d) is
given by ∑

m1,...,mk≥1

B (m1, . . . ,mk, d) zm1
1 · · · z

mk
k

=d!Φ
{
z1 · · · zk ((1 + z1) · · · (1 + zk)− z1 · · · zk)d−1

}
where Φ is the linear operator on polynomials defined by

Φ
(
z`11 · · · z

`k
k

)
=

(
z1

`1

)
· · ·
(
zk
`k

)
The proof of Schaeffer and Vassilieva begins by partitioning the cycles of α and β into

blocks. Let π1 and π2 be partitions of [d] with p and q blocks respectively, and α ∈ Sn.
The triple (π1, π2, α) is a partitioned unicellular bicolored map if

• Each block of π1 is a union of cycles of α, and

• Each block of π2 is a union of cycles of β = α−1γd

By letting Cp,q,d be the set of such triples, and C (p, q, d) = |Cp,q,d|, we have

C (p, q, d) =
∑

m≥p,n≥q

S (m, p)S (n, q)B (m,n, d)
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where S (m, p) and S (n, q) are the Stirling numbers of the second kind, which satisfies∑a
b=1

(
x
b

)
b!S (a, b) = xa. By summing over p and q, we can obtain

∑
m,n≥1

B (m,n, d) ymzn =
∑
p,q≥1

C (p, q, d)

(
y

p

)(
z

q

)
p!q! (2.8)

This technique of partitioning the cycles of α and β, then using Stirling numbers to
write the generating series, is the same as the one used in Goulden and Nica. It is also
similar to the function π we have defined in Section 2.1 for paired functions. However,
we do not have the implicit requirement that π is a surjection, unlike the partitions π1

and π2 used here. A further discussion on this non-empty condition with respect to paired
functions can be found in Section 7.1.

Now, let BT (p, q) be the set of ordered rooted bicoloured trees with p white vertices,
q black vertices, and a white root. Then, the cardinality of BT (p, q) is given by

|BT (p, q)| = p+ q − 1

pq

(
p+ q − 2

p− 1

)2

Let PP (d, d− 1, d− p− q + 1) be the set of partial permutations from a (d− p− q + 1)-
subset of [d] to a (d− p− q + 1)-subset of [d− 1]. That is, σ ∈ PP (d, d− 1, d− p− q + 1)
is an injective partial function σ : [d] → [d− 1] such that σ is defined on d − p − q + 1
elements of [d]. Then, the cardinality of PP (d, d− 1, d− p− q + 1) is given by

|PP (d, d− 1, d− p− q + 1)| =
(

d

d− p− q + 1

)(
d− 1

d− p− q + 1

)
(d− p− q + 1)!

If we can show that there exists a bijection

ζ : Cp,q,d → BT (p, q)× PP (d, d− 1, d− p− q + 1)

between the set of partitioned unicellular bicoloured maps and the product of ordered
rooted bicoloured trees and partial permutations, then

C (p, q, d) =
p+ q − 1

pq

(
p+ q − 2

p− 1

)2(
d

d− p− q + 1

)(
d− 1

d− p− q + 1

)
(d− p− q + 1)!

=
d! (d− 1)!

p!q! (p− 1)! (q − 1)! (d− p− q + 1)!
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Figure 2.2: Ordered rooted bicolour tree t from decomposing Figure 2.1

Substituting this into (2.8) yields the generating series in Theorem 2.13, as desired.

With the necessary objects defined, we can finally provide the decomposition. As this
is meant to be a brief survey, we will only provide the decomposition, without proving that
the resulting objects are well defined, or that the decomposition is a bijection.

Let π1
1, . . . , π

p

1 be the white blocks of π1 and π1
2, . . . , π

q

2 be the black blocks of π2, such
that 1 ∈ πp1, and the other blocks are arbitrarily labelled. Then, let the maximum elements

of πi1 be mi
1 for 1 ≤ i ≤ p, and the maximum elements of π

j

2 be m
j

2 for 1 ≤ j ≤ q. We
can then construct a labelled bicoloured tree T with p white vertices and q black vertices,
where each block is represented by a vertex of the same colour.

First, the white block π
p

1 is taken to be the root of the tree. Then, for each block π
j

2,

the corresponding black vertex j is a child of the white vertex i if β
(
m
j

2

)
belongs to white

block πi1. If two black vertices j and k are both children of the white vertex i, then j is

left of k if β
(
m
j

2

)
< β

(
mk

2

)
. Similarly, for each block πi1 except π

p

1, the white vertex i is

a child of the black vertex j if mi
1, or equivalently β−1

(
mi

1

)
, belongs to black block πj2.

If two white vertices i and ` are both children of the black vertex j, then i is left of ` if

β−1
(
mi

1

)
< β−1

(
m`

1

)
. By removing the labels, we can obtain the tree t ∈ BT (p, q).

Continuing the above example, we let
(
π1

1, π
2
1, π

3
1

)
= (34, 2, 156) and

(
π1

2, π
2
2

)
=

(356, 124). By computing β−1
(
mi

1

)
, we see that

(
β−1

(
m1

1

)
, β−1

(
m2

1

))
= (2, 1), so

π1
1 and π2

1 are both children of π1
2, with π2

1 to the left of π1
1. Similarly, by computing

β
(
m
j

2

)
, we see that

(
β
(
m1

2

)
, β
(
m2

2

))
= (6, 1), so π1

2 and π2
2 are both children of π3

1,

with π1
2 to the left of π3

2. Putting these together gives us the tree in the left diagram of
Figure 2.2. Removing the labels from this tree gives us the ordered rooted bicolour tree t
for our decomposition.
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The construction of the partial permutation σ is significantly more involved. First, we
relabel the tree T from bottom to top, right to left, with p, p− 1, . . . , 1 on white vertices,
and q, q − 1, . . . , 1 on black vertices. Then, we let πi1 be the white block labelled i for
1 ≤ i ≤ p, and πj2 be the black block labelled j for 1 ≤ j ≤ q, with mi

1 and mj
2 being the

maximum elements of their respective blocks. Note that the root vertex retains the label
p, so 1 ∈ πp1. By writing out the blocks π1

1, . . . , π
p
1 and π1

2, . . . , π
q
2 in order, we can create

the two row permutations

λ =

(
π1

1

1, 2,

∣∣∣ · · ·· · · ∣∣∣ πp1
d− 1, d

)
ν =

(
π1

2

1, 2,

∣∣∣ · · ·· · · ∣∣∣ πq2
d− 1, d

)
where the elements of each block are written in increasing order. Finally, let S =
[d] \

{
m1

1, . . . ,m
p−1
1 , β (m1

2) , . . . , β (mq
2)
}

, and create the partial permutation

σ = νβ−1λ−1 |λ(S)

where the domain is restricted to λ (S). Together (t, σ) is a decomposition of the partitioned
unicellular bicoloured map into the product of an ordered rooted bicoloured tree and a
partial permutation, as desired.

Continuing the example above, we relabel the tree in the left diagram of Figure 2.2,
which gives us the tree on the right. We can then write the blocks down in order to obtain
the permutations λ and ν, given by

λ =

(
2
1

∣∣∣∣ 3 4
2 3

∣∣∣∣ 1 5 6
4 5 6

)
ν =

(
1 2 4
1 2 3

∣∣∣∣ 3 5 6
4 5 6

)
With this, we can compute νβ−1λ−1, which is

νβ−1λ−1 =

(
1 2 3 4 5 6
1 4 2 3 5 6

)

As S = [6] \ {2, 4, β (4) , β (6)} = {3, 5}, we have λ (S) = {2, 5} and σ =

(
2 5
4 5

)
, which

is a partial permutation PP (6, 5, 2), as desired.

Conversely, given an ordered rooted bicoloured tree t and a partial permutation σ, we
will sketch how to reconstruct (π1, π2, α). If we write σ in the two row notation, then the
first row of σ is missing the elements λ (mi

1) and λ
(
β
(
mj

2

))
. By construction, we have

λ (m1
1) < · · · < λ

(
mp−1

1

)
, and for any child vertex j of πi1, we have λ

(
mi−1

1

)
< λ

(
β
(
mj

2

))
<
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λ (mi
1). Similarly, the second row of σ is missing the elements ν

(
mj

2

)
and ν (β−1 (mi

1)).

Again, by construction, we have ν (m1
2) < · · · < ν (mq

2), and for any child vertex i of πj2, we
have ν

(
mj−1

2

)
< ν (β−1 (mi

1)) < ν
(
mj

2

)
. Together with the fact that β−1 (mi

1) < β−1
(
m`

1

)
if vertex i is to the left of vertex `, and β

(
mj

2

)
< β

(
mk

2

)
if vertex j is to the left of vertex

k, we can determine λ and ν on the elements of [d] \S. We can use this information to
extend σ to σ̄ = νβ−1λ−1, which is a permutation on the whole set [d].

By construction, the blocks λ (πi1) and ν
(
πj2
)

contain consecutive elements, so our

knowledge of the elements λ (mi
1) and ν

(
mj

2

)
allows us to recover the size of the blocks.

Furthermore, we can use σ̄ to deduce ν (πi1) and λ
(
πj2
)
. This allows us to fully recover λ

and ν by using a variant of the label recovery procedure for paired functions, which we
will not cover here, as a similar procedure is covered in Theorem 3.7. In summary, if we
know what is λ (k), and which block of π1 contains it, we can use σ̄ to determine ν (k),
and which block of π2 contains it. In turn, this allows us to determine λ (k + 1), and the
block of π1 that contains it. Combined with the fact that λ (1) is the smallest element of
πp1, we can inductively recover λ and ν. This also allows us to recover π1 and π2. Finally,
we have α = γdβ

−1 = γdν
−1σ̄λ. Since the permutations on the right hand side are now

known, we have successfully recovered α as well.

As the authors have noted in their paper, this decomposition is similar to Goulden and
Nica. Furthermore, it is related to the first step of our decomposition of paired functions,
in the form of paired arrays, which we will give in Section 3.1. Like the forest condition
function ψ for paired arrays, the tree t involves the largest elements of each block, while
σ determines the relationship of the rest of the elements. Further parallels can be seen
between this construction and that of Theorem 3.13. Finally, one minor difference between
the construction here and the one for paired functions is that π is a function, so we have
no need to relabel the partitions during the decomposition step.
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Chapter 3

Paired Arrays

In this chapter, we will give a graphical representation of the paired functions introduced in
Chapter 2, then show that we can remove the labels from this representation without losing
any information. This allows us to define a stand-alone combinatorial object that does not
refer to permutations. We will then introduce a number of notations, conventions, and
lemmas for this combinatorial object, and show that it is in bijection with paired functions.
Finally, we will start the first stage of the decomposition, where we remove vertex pairs
that are non-critical to the combinatorial object. The approach and techniques used in
this chapter was first given in Goulden and Nica [17], and further extended in Goulden
and Slofstra [18]. However, we will introduce certain changes that allow the results to
be generalized. Critically, we remove one of the conditions for the combinatorial object
used in their paper, as the use of paired functions instead of paired surjections made that
condition unnecessary.

3.1 Definitions and Terminology of Paired Arrays

To represent the paired functions in the set F (q;s)
n,K introduced in Chapter 2, we use a

graphical representation introduced in Goulden and Slofstra, called the labelled array .
This is an n×K array of cells arranged in a grid. Each element xi of µ is represented as
a vertex, where the vertex labelled xi is placed into cell (i, j) if π (xi) = j. The vertices
are arranged horizontally within a cell, in increasing order of the labels. Furthermore, for
each pair

{
xi, yk

}
in µ, an edge is drawn between their corresponding vertices.

For example, let (µ, π) ∈ F (q;s)
3,4 , where q = (2, 2, 3), and s = (1, 3, 1). Suppose µ and π
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Figure 3.1: A labelled array with 3 rows and 4 columns

are given by

µ =
{{

1
1

, 2
1
}
,
{

3
1

, 10
3
}
,
{

4
1

, 9
3
}
,
{

5
1

, 4
2
}
,
{

6
1

, 7
1
}
,
{

8
1

, 1
3
}

{
1
2

, 6
2
}
,
{

2
2

, 5
2
}
,
{

3
2

, 8
3
}
,
{

2
3

, 3
3
}
,
{

4
3

, 7
3
}
,
{

5
3

, 6
3
}}

π−1 (1) =
{

5
1

, 7
1

, 3
2

, 5
2

, 3
3

, 9
3
}

π−1 (2) =
{

6
1

, 8
1

, 4
2

, 2
3

, 4
3

, 8
3
}

π−1 (3) =
{

1
1

, 2
1

, 3
1

, 2
2

, 6
2

, 1
3

, 6
3
}

π−1 (4) =
{

4
1

, 1
2

, 5
3

, 7
3

, 10
3
}

Then, the labelled array representing (µ, π) is given by Figure 3.1.

Note that an n×K array with paired and labelled vertices as described above uniquely
represents a pairing µ ∈ P(q;s)

n and a function π : [p1, . . . , pn] → [K]. The condition
π (µ (v)) = π (γp1,p2,...,pn (v)) is fulfilled if and only if for every pair

{
xi, yk

}
in the array,

the vertex (x+ 1)i is in the same column as the vertex of yk, where the addition x + 1 is
taken modulo pi.

Next, we will show that this condition is sufficient to reconstruct the array if the
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labels are removed and replaced by marked cells. We do this by defining paired arrays as
abstract combinatorial objects, then creating a bijection between paired arrays and labelled
arrays. Furthermore, we will extend the definition of paired arrays to cover a larger class
of objects, so that we can decompose and enumerate them easily. One major difference in
our definition compared to the one in Goulden and Slofstra is that we will decouple the
conditions that allow paired arrays to be in bijection with labelled arrays. This allows for
greater flexibility in the chapters to come, as we will be violating these conditions when
we further generalize paired arrays.

Definition 3.1. Let n,K ≥ 1, q = (q1, . . . , qn) ≥ 0, s = (s1,2, s1,3, . . . , sn−1,n) ≥ 0, and

R = (R1, . . . , Rn) ∈ [K]n. We define PA(q;s)
n,K;R to be the set of paired arrays, which are

arrays of cells and vertices subjected to the following conditions.

• A paired array is an array of cells, arranged in n rows and K columns.

• Each cell (i, j) contains an ordered list of vertices, arranged left to right, so that row
i contains pi := 2qi +

∑
k<i sk,i +

∑
k>i si,k vertices in total.

• Each vertex u is paired with exactly one other vertex v, which is called the partner
of u. Exactly 2qi vertices of row i are paired with other vertices of row i, and for
i < k, exactly si,k vertices of row i are paired with vertices of row k. Graphically,
the pairings are denoted as edges between vertices.

• Each row i has exactly Ri marked cells, which are denoted by marking the cell with
a box in its upper right corner.

• A vertex v is critical if it is the rightmost vertex of a cell, and the cell it belongs to
is not marked. A pair {u, v} that contains a critical vertex is a critical pair.

• A pair of vertices {u, v} is redundant if both u and v belong to the same row, and
neither u nor v is critical. The vertices u and v are called redundant vertices.

• A pair of vertices {u, v} is a mixed pair if u and v belong to different rows. The
vertices u and v are called mixed vertices.

• An object of a paired array refers to either a vertex, or the box used to indicate that
a cell is marked. If a cell both contains vertices and a box, the box is to be taken as
the rightmost object of the cell.
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Generally, we use α ∈ PA(q;s)
n,K;R to denote a paired array. Before introducing the

conditions used in Goulden and Slofstra, we will first introduce a number of useful notations
and conventions.

Convention 3.2. For notational convenience, we introduce the following:

• We use calligraphic letters to denote columns or sets of columns. For generic columns
or sets of columns, we use the letters X , Y, and Z.

• For each calligraphic letter, we use the corresponding upper case letter to denote the
number of columns in the set. For example, X = |X |.

• For each calligraphic letter, we use the corresponding lower case letter, subscripted by
the row number, to denote the total number of vertices in those columns for a given
row. For example, xi is the total number of vertices in row i of the columns of X .

• We generally use i, j, k, ` as index variables, with i and k for rows, and j and ` for
columns. Furthermore, we use cell (i, j) to denote the cell in row i, column j of the
array.

• We use K to denote the set of all columns, and K to denote the number of columns.

• We use Ri to denote the set of columns that are marked in row i, and Ri to denote
the number of columns that are marked in row i.

• We use Fi to denote the set of columns that have at least one vertex in row i, and Fi
to denote the number of columns that are marked in row i.

• We use wi,j to denote the number of vertices in cell (i, j), and w to denote a matrix
of wi,j describing the number of vertices in each cell of row i.

• We let si,k = sk,i for i > k, and si =
∑

k 6=i si,k be the total number of mixed vertices
of row i. This means that row i contains pi = 2qi + si vertices.

With these conventions, we are ready to define the two conditions that allow us to
create a bijection between labelled arrays and paired arrays.

Definition 3.3. Let α ∈ PA(q;s)
n,K;R be a paired array.

• α is said to satisfy the balance condition if for each cell (i, j), the number of mixed
vertices in cell (i, j) is equal to the number of mixed pairs {u, v} such that u is in
row i and v is in column j (but not row i).
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• For each row i, the forest condition function ψi : Fi\Ri 7→ K is defined as follows:
For each column j ∈ Fi\Ri, if the rightmost vertex v is paired with a vertex u in
column `, then ψi (j) = `. α is said to satisfy the forest condition if for each row i,
the functional digraph of ψi on the vertex set Fi ∪ ψi (Fi) ∪ Ri is a forest with root
vertices Ri. That is, for each column j ∈ Fi\Ri, there exists some positive integer
t such that ψti (j) ∈ Ri. Note that we always include Ri in the vertex set of the
functional digraph of ψi, regardless of whether they are in the domain or range of ψi.

Note that permuting the columns of a paired array does not change whether the array
satisfies the balance or forest conditions, as all this action does is to relabel the vertices of
the functional digraph. By convention, given paired arrays α and α′, we use ψi and ψ′i to
denote the forest condition functions for row i of α and α′, respectively. A paired array is
proper if it satisfies the balance and forest conditions. A paired array is called a canonical
array if it is proper and R = 1. We denote the set of canonical arrays as CA(q;s)

n,K , and we

let c
(q;s)
n,K =

∣∣∣CA(q;s)
n,K

∣∣∣.
In Definition 3.3, the balance condition is expressed in terms of the numbers of mixed

vertices and mixed pairs. Equivalently, the balance condition can also be expressed with
respect to the total number of vertices in cell (i, j), as shown in the following proposition.

Proposition 3.4. Let α ∈ PA(q;s)
n,K;R be a paired array. Then, α satisfies the balance

condition if and only if for each cell (i, j), the number of vertices in cell (i, j) is equal to
the number of vertices u in row i such that its partner v is in column j (and possibly in
row i).

Proof. Let pi,j be the number of vertices in cell (i, j), and qi,j be the number of non-mixed
vertices in cell (i, j). Let p′i,j be the number of vertices u in row i such that its partner v
is in column j, and q′i,j be the number of vertices u in row i such that its partner v is in
cell (i, j). Note that if both vertices of a pair are in cell (i, j), they are counted twice in
both p′i,j and q′i,j. Now, the number of mixed vertices in cell (i, j) is given by pi,j− qi,j, and
the number of mixed pairs {u, v} such that u is in row i and v is in column j is given by
p′i,j − q′i,j. Therefore, it suffices to show that qi,j = q′i,j.

Let u be a vertex in row i. Then, its partner v is counted in qi,j if and only if it is
in cell (i, j). Likewise, u is counted in q′i,j if and only if v is in cell (i, j). As both qi,j
and q′i,j require {u, v} to be a non-mixed pair, it is sufficient to only consider vertices
u in row i. This shows that qi,j = q′i,j. Therefore, α satisfies the balance condition as
described in Definition 3.3 if and only if it satisfies the balance condition as described in
Proposition 3.4.
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Of the two conditions in Definition 3.3, the forest condition is the more fundamental
one, and all the arrays we define in this thesis will satisfy some form of this condition.
However, it is relatively row independent, as we shall see in later chapters. The balance
condition is in general difficult to handle, but can be radically simplified if the support of
s forms a tree. This gives rise to the following definition.

Definition 3.5. A paired array α ∈ PA(q;s)
n,K;R is called tree-shaped if the support graph of

s forms a tree.

With tree-shaped arrays, we can reduce the balance condition to a condition that only
depends on the number of mixed vertices in a cell, essentially allowing us to ignore it. This
is the main reason why we focus on counting maps where the support graph of s forms a
tree.

Lemma 3.6. Let α ∈ PA(q;s)
n,K;R be a tree-shaped paired array, and suppose that si,k,j is the

number of vertices in cell (i, j) that are paired with a vertex in row k for all 1 ≤ i, k ≤ n
and 1 ≤ j ≤ K. Then, α satisfies the balance condition if and only if si,k,j = sk,i,j for all
i 6= k.

Proof. We will first present some preliminary facts about the si,k,j’s. Let G be the support
graph of s. By Definition 3.5, G is a tree. Furthermore, si,k is the number of mixed pairs
{u, v} with u in row i and v in row k, so si,k =

∑
j si,k,j. Also, let xi,j be the number of

mixed vertices in cell (i, j). As each mixed vertex in cell (i, j) must be joined to a vertex
in some other row k, we have xi,j =

∑
k 6=i si,k,j.

Now, suppose si,k,j = sk,i,j for all 1 ≤ i, k ≤ n and 1 ≤ j ≤ K. Then, by summing over
all k 6= i, we have xi,j =

∑
k 6=i si,k,j =

∑
k 6=i sk,i,j. As sk,i,j is the number of mixed vertices

in cell (k, j) that are paired with a vertex in row i, the latter sum counts the number of
mixed pairs {u, v} such that u is in row i and v is in row k. Therefore, α satisfies the
balance condition.

Conversely, suppose α satisfies the balance condition. By the same reasoning, we have
xi,j =

∑
k 6=i si,k,j =

∑
k 6=i sk,i,j. We will show by induction that if the support of si,k =∑

j si,k,j forms a tree and xi,j =
∑

k 6=i si,k,j =
∑

k 6=i sk,i,j, then si,k,,j = sk,i,j for all i 6= k.

Let G be the support graph of s and suppose G is a tree. Without loss of generality,
let the vertex n be a leaf of G, and assume that it is adjacent to the vertex n− 1. As n is
not joined to other vertices in G, we have sn,k = sk,n = 0 for 1 ≤ k ≤ n− 2. This implies
that

∑
j sn,k,j =

∑
j sk,n,j = 0, so sn,k,j = sk,n,j = 0 for all 1 ≤ k ≤ n − 2 and 1 ≤ j ≤ K.

Substituting this into
∑

k 6=n sn,k,j =
∑

k 6=i sk,n,j, we obtain sn,n−1,j = sn−1,n,j. Together
with sn,k,j = sk,n,j = 0, we have that sn,k,j = sk,n,j for 1 ≤ k ≤ n− 1 and 1 ≤ j ≤ K.
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Now, let s′i,k =
∑

j si,k,j and x′i,j =
∑

k 6=i,n si,k,j for 1 ≤ i, k ≤ n − 1, i 6= k, and
1 ≤ j ≤ K. That is, we have effectively removed the last row of α. Then,∑

k 6=i,n

si,k,j =
∑
k 6=i

si,k,j − si,n,j

=
∑
k 6=i

sk,i,j − sn,i,j

=
∑
k 6=i,n

sk,i,j

by using the fact that si,n,j = sn,i,j, and substituting in the identity for xi,j. Furthermore,
as s′i,k = si,k for 1 ≤ i, k ≤ n − 1, the support graph given by the s′i,k’s is G\ {n}. As
n is a leaf of G, G\ {n} is also a tree. By the inductive hypothesis, si,k,j = sk,i,j for all
1 ≤ i, k ≤ n− 1 and 1 ≤ j ≤ K, where i 6= k.

Therefore, α satisfies the balance condition if and only if si,k,j = sk,i,j for all i 6= k, as
desired.

Now that we have defined the necessary framework for paired arrays, we will prove that
canonical arrays are in bijection with labelled arrays.

Theorem 3.7. For n,K ≥ 1, q ≥ 0, and s ≥ 0, f
(q;s)
n,K = c

(q;s)
n,K .

Proof. We will prove the theorem using a modified version of the label recovery procedure
introduced in Goulden and Solfstra. This provides a bijection between paired functions
and canonical arrays. Recall our assumption that the support graph of s is connected, so
each row of the paired array contains at least one vertex. This is required for the bijection
to work.

Let (µ, π) ∈ F (q;s)
n,K be a paired function. We can obtain the paired array α from (µ, π)

by first representing (µ, π) as a labelled array, denoted β. For each row i, we mark the
cell of β containing the label 1

i
with a box. Then, we remove all labels from β. This gives

us the desired paired array, which we denote as α. Note that exactly 1 cell in each row is
marked, which gives R = 1.

Now, each pair
{
xi, yk

}
of µ is represented as a pair of vertices in rows i and k, and

contributes to the same parameter in both α and µ. Hence, α satisfies the parameters
q and s. Also, recall that if

{
xi, yk

}
is a pair such that yk is in some column j, then

(x+ 1)i must be in cell (i, j). Therefore, the number of vertices xi in row i such that its
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partner yk is in column j is equal to the number of vertices (x+ 1)i in cell (i, j). By using
Proposition 3.4, we see that α satisfies the balance condition.

To show that α satisfies the forest condition, we need to show that the functional
digraph of ψi, denoted as Gi, is acyclic, and has root vertex in the marked cell. Let j
be a column such that ψi (j) is defined and suppose ψi (j) = `. Then, cell (i, j) must be
non-empty and unmarked. Let the rightmost vertex of cell (i, j) be xi. By the definition
of ψi, x

i must have its partner yk in column `. Therefore, (x+ 1)i must be in cell (i, `). If
(x+ 1)i = 1

i
, then cell (i, `) is marked and is in Ri. Otherwise, it is unmarked and ψi (`)

must be defined. Therefore, the only possible root vertex of Gi is 1
i
, which is marked.

Furthermore, note that if (x+ 1)i 6= 1
i
, then the rightmost vertex of cell (i, `) must have

a larger label than that of cell (i, j). Therefore, if Gi contains a directed cycle (j1, j2, . . . , jt)
of length t, then the rightmost label of cell (i, jr+1) must be larger than the rightmost label
of cell (i, jr) for 1 ≤ r ≤ t, with addition taken modulo t. However, this gives a cycle of
strictly increasing labels, which is a contradiction. Therefore, ψi is acyclic. Together, this
shows that α is a canonical array in CA(q;s)

n,K .

To describe the inverse, if α ∈ CA(q;s)
n,K is a canonical array, then we can recover the

labels of α as follows. We label the vertices in each row i in increasing order, from 1
i

to
p
i

i. As the labels within a cell are arranged in ascending order, we will always put the
label on the leftmost unlabelled vertex. First, suppose cell (i, j) is the marked cell in row
i. We label the leftmost vertex of cell (i, j) with 1

i
. Then, for 1 ≤ x ≤ pi− 1, we place the

label (x+ 1)i by looking at the partner v of the vertex labelled xi. Suppose v is in some
column `, then (x+ 1)i must be in cell (i, `) for π (µ (v)) = π (γp1,p2,...,pn (v)) to be satisfied.
Therefore, we label the leftmost remaining vertex of cell (i, `) with (x+ 1)i. We now need
to prove that this procedure can only terminate after all the labels have been placed.

First, note that with the exception of 1
i
, for every label xi placed in cell (i, j), we must

have already labelled some vertex u in row i with (x− 1)i, whose partner v is in column j.
By Proposition 3.4, the number of such vertices is equal to the number of vertices in cell
(i, j). Hence, with the possible exception of the cell containing 1

i
, our procedure cannot

place more labels in a cell than the number of vertices in it. Therefore, it suffices to show
that the procedure cannot terminate early on the column containing 1

i
.

Suppose for contradiction that this is not the case. Note that at termination, if all
vertices of cell (i, j) are labelled, then all vertices u whose partner v is in column j must
also be labelled. This includes the cell containing 1

i
, as the last step of the procedure must

label a vertex u whose partner v is in the same column as 1
i
. Therefore, if the rightmost

vertex u of cell (i, j) is not labelled, and it is paired with a vertex v in column `, then
ψi (j) = `. Furthermore, the rightmost vertex of column ` is also not labelled. Hence, if
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Figure 3.2: A canonical paired array with 3 rows and 4 columns

X is the set of all columns such that for j ∈ X , the rightmost vertex of cell (i, j) is not
labelled, then ψi (j) is defined, and ψi (j) ∈ X . However, this means that the functional
digraph of ψi with the vertex set restricted to X is a directed graph with |X | vertices and
|X | edges, so it must contain a directed cycle. Therefore, this violates the forest condition,
which is a contradiction.

Finally, to show that this is a bijection, we only need to start with a canonical array
α ∈ CA(q;s)

n,K , apply the label recovery procedure, then strip off the labels via the inverse
described above. As the marked cell in each row is the same as the cell containing the vertex
1
i

in both procedures, the positions of the marked cells of α are preserved. Furthermore,
the positions of the vertices and edges do not change during either procedures. Therefore,
these procedures are inverses of each other. This shows that F (q;s)

n,K is in bijection with

CA(q;s)
n,K , as desired.

As an example of the label recovery procedure and its inverse, we have transformed the
labelled array depicted in Figure 3.1 into the canonical array depicted in Figure 3.2.

3.2 Decomposition of Canonical Arrays

Now that we have shown that canonical arrays are in bijection with labelled arrays with
the same parameters, the problem of enumerating maps on surfaces reduces to that of
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enumerating canonical arrays. To solve the latter problem, we will first decompose canon-
ical arrays by removing redundant pairs. Then, we will remove vertex pairs where both
vertices are in the same row. Finally, we will decompose the resulting paired arrays via
induction, removing one row at a time. This motivates us to define subsets of paired arrays
describing each stage of the procedure. At the same time, we will also define notations for
these subsets and their cardinalities.

Definition 3.8. A paired array is called a minimal array if it is proper and does not
contain redundant pairs. We denote the set of minimal arrays as MA(q;s)

n,K;R, and we let

m
(q;s)
n,K;R =

∣∣∣MA(q;s)
n,K;R

∣∣∣. Similarly, a paired array is called a vertical array if for every pair

{u, v}, u and v are in different rows. As with paired arrays, a vertical array is proper
if it satisfies the balance and forest conditions. We denote the set of vertical arrays as
VA(s)

n,K;R = PA(0;s)
n,K;R and the set of proper vertical arrays as PVA(s)

n,K;R. Finally, we let

v
(s)
n,K;R =

∣∣∣PVA(s)
n,K;R

∣∣∣. For notational convenience, we extend our definition of m
(q;s)
n,K;R and

v
(s)
n,K;R to all R ≥ 1 by letting m

(q;s)
n,K;R = v

(s)
n,K;R = 0 if Ri > K for some 1 ≤ i ≤ n.

Note that we will generally not work directly with paired arrays that do not satisfy the
forest condition. However, as vertical arrays not satisfying the forest condition are vital
for extending paired arrays, we have separated the forest condition from the definition of
vertical arrays itself. Next, we will introduce our first extension of paired arrays, where
instead of requiring every vertex to be paired with another vertex, we only require critical
vertices to be paired.

Definition 3.9. If n,K ≥ 1, then a partially-paired array α is an n×K array of cells, where
each cell contains zero or more vertices, and is either marked or unmarked. Furthermore,
each vertex of the array may be paired with another vertex. However, only the rightmost
vertices of unmarked cells are required to be paired with another vertex, and we call the
vertices not paired with any other vertices unpaired vertices . As with paired arrays, we
can define the terms critical vertices , redundant pairs , mixed pairs , and objects in the
same manner as in Definition 3.1. Likewise, a partially-paired array is proper if it satisfies
the balance and forest conditions. Additionally, we use pi to denote the total number of
vertices in row i, qi to denote the number of non-mixed pairs in row i, Ri to denote the
number of marked cells in row i, and si,k to denote the number of mixed pairs with one
vertex in row i and one vertex in row k.

By definition, all paired arrays are partially-paired arrays. Also, as the unpaired vertices
are not critical vertices, they do not affect the forest condition. Furthermore, as they are
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not mixed pairs, they do not affect the balance condition. Hence, we can essentially ignore
these vertices when discussing the two conditions. However, note that we do consider
unpaired vertices to be objects of a partially-paired array.

Now, our main reason for using partially-paired arrays is so that we can unpair vertices
of a paired array. That is, if u and v are non-critical vertices that are paired together in
a partially-paired array α, we can unpair them to create a new partially-paired array α′

that is otherwise identical to α, but with u and v unpaired. Then, we can remove u and
v separately, perhaps using different procedures, without impacting the balance and forest
conditions. First, however, we need to show that we can unpair vertices without violating
these conditions. In the case where {u, v} forms a redundant pair, we have the following
proposition.

Proposition 3.10. Let {u, v} be a redundant pair in a partially-paired array α, then
the partially-paired array β formed by unpairing u and v satisfies the balance and forest
conditions if and only if α satisfies them, respectively.

Proof. As redundant pairs consist of vertices in the same row, unpairing them does not
change the number of mixed pairs. Also, as redundant vertices are not the rightmost
objects of their cells, they are not used in the forest condition function. Hence, α satisfies
the balance and forest conditions if and only if β satisfies them, respectively.

In particular, given partially-paired array α and a redundant pair {u, v}, the partially-
paired array β formed unpairing u and v is proper if and only if α is proper. Now, one
recurrent theme in the proofs of the theorems that follow is the labelling of objects in a
row of a partially-paired array with a set of positive integers. This allows us to remove
a subset of the unpaired vertices while keeping track of their positions. Conversely, we
can insert unpaired vertices into a row of a partially-paired array, again using a subset of
positive integers to denote the positions of insertion.

Procedure 3.11. Let α be a partially-paired array with pi vertices and Ri marked cells in
row i, where 1 ≤ i ≤ n. We describe the following three procedures:

1. Let S be a set of positive integers of size pi + Ri. To label row i of α with S is to
assign from left to right elements of S to the objects of row i, from smallest to largest.
As described in Definition 3.1, in a cell that contains both vertices and a box, the box
is to be taken as the rightmost object of the cell.

2. Let V be a subset of the unpaired vertices in row i. To extract V from α is to create
a partially-paired array α′ and a set of positive integers W, where α′ is α with V

80



deleted, and W is a |V|-subset of [pi +Ri − 1]. This is done by labelling row i of α
with [pi +Ri], then deleting V from α. We let W be the labels of the vertices deleted.
As the deleted vertices are non-critical, none of them can be the rightmost object of
a cell. Therefore, they cannot acquire the label pi + Ri. Hence, W is a |V|-subset of
[pi +Ri − 1], as desired.

3. Let W be a y-subset of [pi +Ri + y − 1], where y ≥ 0. To insert W into row i of α
is to add y unpaired vertices to row i of α to create a partially-paired array α′. This
is done by labelling row i of α with [pi +Ri + y] \W. Then, for each w ∈ W, we find
the smallest w′ /∈ W such that w′ > w, and place a vertex to the left of and in the
same cell as the object labelled w′. As the new vertex is not the rightmost object of
a cell, it is non-critical. Furthermore, if there is more than one vertex to be inserted
to the left of an object, they should be inserted in increasing order from left to right.
In the end, row i of α′ contains pi +Ri + y objects, labelled from left to right by 1 to
pi +Ri + y in increasing order. Finally, we let V denote the set of vertices inserted,
to mirror the extraction procedure.

Notice that in both the extraction and insertion procedures, the vertices involved are
unpaired. The reason for this is that the processes using these procedures require different
ways of pairing the vertices. Furthermore, the use of the same variables V andW between
procedure 2 and 3 is deliberate, as we shall now show that the extraction and insertion
procedures are inverses of each other.

Proposition 3.12. Let α be a partially-paired array with pi vertices and Ri marked cells
in row i, and V be a subset of the unpaired vertices in row i, where 1 ≤ i ≤ n. Let β
be the partially-paired array and W be the subset of [pi +Ri − 1] created from extracting
V from α. Suppose α′ is the partially-paired array formed by reinserting W into row i of
β, and V ′ is the set of vertices inserted, then α = α′ and V = V ′. Conversely, let β be a
partially-paired array with pi vertices and Ri marked cells in row i, where 1 ≤ i ≤ n, and
supposeW is a y-subset of [pi +Ri + y − 1], with y ≥ 0. Let α be the partially-paired array
formed by inserting W into row i of β, and V be the set of inserted vertices. Suppose β′

and W ′ is the pair of objects created from extracting V from α, then β = β′ and W =W ′.
In both cases, α satisfies the balance and forest conditions if and only if β satisfies them,
respectively.

Proof. Note that when we extract V from α, we obtain the partially-paired array β and
the set W that is a |V|-subset of [pi +Ri − 1]. Furthermore, β is a partially-paired array
with pi+Ri−|V| objects in row i, soW is a subset of [pi +Ri − |V|+ |W| − 1]. Therefore,
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we can insert W into β to obtain the partially-paired array α′ and the set V ′ of inserted
vertices. Notice that the objects remaining in β are labelled with [pi +Ri − 1] \W during
the extraction, and that they acquire the same labels when we insert W into row i of β.
Consequently, the relative positions of V ′ compared to the objects remaining in β are the
same as that of V . All that is left to check is that the vertices of V ′ are in the same cells as
the ones they are extracted from. Consider a vertex v ∈ V . As v is a non-critical vertex,
there must be another object in the same cell and to the right of v. Let u be the leftmost of
such an object, and suppose v is labelled wv and u is labelled wu by the extraction process.
When inserting W into row i of β, a vertex with the label wv will be inserted to the left of
and in the same cell as the object labelled wu. This means that a vertex is inserted into
the same cell as u. As this holds for every vertex of V , the vertices of V ′ are in the same
cells as the vertices of V . Therefore, α = α′ and V = V ′.

Conversely, when we insert W into row i of β, each vertex being inserted is to the
left of and in the same cell as another object. Therefore, the vertices inserted by W are
non-critical vertices. After the insertion, the objects in row i of α are labelled from left
to right with [pi +Ri + |W|], where by construction the set of inserted vertices is labelled
withW . Therefore, when we extract V from α, we label these same vertices withW before
removing them from the array. This implies that β = β′ and W =W ′.

Now, let α be a partially-paired array, V be a subset of the unpaired vertices in row i,
and β be the resulting partially-paired array when we extract V from α. As the vertices
of V are unpaired, the extraction does not impact the balance condition. Similarly, as the
vertices of V are non-critical, they are not used in the forest condition function ψi, so ψi
remains unchanged between α and β. Finally, as the extraction procedure and insertion
procedure are inverses of each other, the converse statements also hold. Hence, α satisfies
the balance and forest conditions if and only if β satisfies them, respectively.

One immediate corollary is that given a partially-paired array α, and a partially-paired
array β formed by extracting some vertex set V from row i of α, α is proper if and only if
β is proper. Furthermore, the result holds when we simply remove V instead of extracting
it, as we do not have to keep track of W . Conversely, the result also holds when we insert
a set of unpaired vertices V into row i of α, regardless of the means of insertion. Now
that we have the extraction and insertion procedures, we will provide the first stage of our
decomposition. This composition takes a canonical array, and removes all its redundant
pairs. In its place, we are left with a minimal array, and a set of partial pairings describing
the positions and pairings of the vertices removed.
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Theorem 3.13. Let n,K ≥ 1, q ≥ 0, and s ≥ 0. We have

c
(q;s)
n,K =

q∑
t=0

(
2q1 + s1

2t1

)
· · ·
(

2qn + sn
2tn

)
(2t1 − 1)!! · · · (2tn − 1)!!m

(q−t;s)
n,K;1

where si =
∑

j 6=i si,j and t = (t1, . . . , tn).

Proof. For each row i, let pi = 2qi + si, and recall that Tpi,ti is the set of ti-partial pairings
on [pi]. We will provide a mapping

ζ : CA(q;s)
n,K →

q⋃
t=0

Tp1,t1 × · · · × Tpn,tn ×MA
(q−t;s)
n,K;1

and show that this mapping is a bijection.

Let α ∈ CA(q;s)
n,K , and suppose that α has ti redundant pairs in row i. Now, for each

row i, let Vi be the set of redundant vertices. By unpairing and extracting each of the Vi’s
from α as described in Procedure 3.11, we can obtain sets W1, . . . ,Wn, and a paired array
β that contains no redundant vertices. Furthermore, we can keep track of the pairing of
redundant vertices by creating a pairing Ti on Wi. That is, for each redundant pair {u, v}
in row i of α, we let {wu, wv} be a pair of Ti, where wu and wv are the labels corresponding
to u and v in Wi. As Ri = 1, Wi is a 2ti subset of [pi]. Therefore, Ti is a ti-partial pairing
on [pi], so Ti ∈ Tpi,ti . Now, as the pairs of Vi are non-mixed pairs, β contains qi − ti
non-mixed pairs in row i. In addition, the number of mixed vertices and the number of
marked cells remains unchanged between α and β. Since β contains no redundant vertices,
and is proper by Proposition 3.10 and Proposition 3.12, it is a minimal array. Hence,
β ∈MA(q−t;s)

n,K;1 as desired.

Conversely, let β ∈ MA(q−t;s)
n,K;1 and Ti ∈ Tpi,ti for 1 ≤ i ≤ n. We can recover α by

doing the following. For each i, let Wi be the support of Ti. By inserting each of the Wi’s
into β as described in Procedure 3.11, we can obtain a partially-paired array α′ and sets
V1, . . . ,Vn of unpaired vertices in α′. Now, note that each Ti records a pairing of vertices
of the corresponding Vi, which we can use to reconstruct α. For each pair {wu, wv} in
Ti, we let {u, v} be a pair of α, where u and v are the vertices labelled wu and wv in the
insertion procedure. As these vertices are non-critical, the inserted pairs are redundant
pairs. Therefore, α contains qi non-mixed pairs in row i. In addition, the number of mixed
vertices and the number of marked cells remain unchanged between α and β. Again, by
Proposition 3.10 and Proposition 3.12, both α′ and α are proper paired arrays. Therefore,
α is a canonical array. Hence, α ∈ CA(q;s)

n,K as desired.
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By Proposition 3.12, the extraction procedure and insertion procedure are inverses of
each other. Furthermore, if we extract the Vi’s and reinsert them, they acquire the same
labels as before the extraction. Hence, the redundant pairs of α can be recovered from the
Ti’s. Therefore, ζ as described, is a bijection. By taking the cardinality of both sides, we
obtain our result as desired.

For example, if for each row i we label the rows of the canonical array in Figure 3.2
with [pi +Ri], we obtain the diagram in Figure 3.3. Then, by decomposing the paired
array using the bijection described in Theorem 3.13, we obtain the tuple (T1, T2, T3, α

′),
where T1 = {{5, 6}} ∈ T8,1, T2 = ∅ ∈ T6,0, T3 ∈ {{1, 3} , {4, 10} , {7, 9}} ∈ T10,3, and β is
the minimal array in Figure 3.4.

Note that this decomposition works regardless of whether the support of s forms a
tree. Furthermore, as s does not change, the paired arrays in CA(q;s)

n,K are tree-shaped if

and only if the paired arrays inMA(q−t;s)
n,K;1 are tree-shaped. Now that we have decomposed

canonical arrays into minimal arrays, it suffices to decompose minimal arrays and find a
formula for the number of them. However, our present tools are inadequate for the task.
In Goulden and Slofstra’s paper, they introduced the forest completion algorithm, which
is a method for constructing rooted forests that contain a given subforest. Here, we will
use an alternative method that generalizes two-row paired arrays by the introduction of
arrows. This new method allows us to not only decompose minimal arrays into vertical
arrays, but also to recursively decompose vertical arrays into smaller vertical arrays.
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Figure 3.3: Figure 3.2 with objects labelled with [pi +Ri]
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Figure 3.4: Minimal array corresponding to Figure 3.2
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Chapter 4

Arrowed Arrays

In this chapter, we will extend two-row paired arrays by the addition of arrows, which
represent hypothetical critical vertices. This will allow us to decouple the forest condition
with the vertex pairings, which allows for the deletion of vertices and pairings from paired
arrays. Next, we will discuss the use of substructures to further partition the set of paired
arrays with arrows into subsets that can be enumerated separately. These substructures
will fix the positions of the marked cells, arrows, and vertices. We will then derive several
reduction lemmas to limit the possible forms of these arrowed arrays, and introduce pa-
rameters to describe substructures. Finally, we will give an inductive proof on the number
of arrowed arrays based on these parameters, by deleting edges one at a time.

4.1 Definitions and Terminology of Arrowed Arrays

We start off by defining the following extension of paired arrays.

Definition 4.1. Let K ≥ 1, s ≥ 0, and 1 ≤ R1, R2 ≤ K. An arrowed array is a pair
(α, φ), where α ∈ VA(s)

2,K;R1,R2
is a two-row vertical array, and φ : K\R1 → K is a partial

function from H ⊆ K\R1 to K, with R1 being the set of marked columns in row 1 of α.
Graphically, φ is denoted by arrows drawn above row 1, where an arrow from j to j′ is
drawn if j ∈ H and φ (j) = j′. For convenience, the two ends of the arrow belonging to
columns j and j′ are called the arrow-tail and arrow-head respectively, and column j is
said to point to column j′. Furthermore, both the arrow-tail and arrow-head belong to row
1 of their respective columns.
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With the generalization of paired arrays to arrowed arrays, there are corresponding
generalizations of the terms and conventions used to describe paired arrays. These gener-
alizations will be compatible with the conventions for paired arrays if the partial function
φ is empty.

• An object of (α, φ) refers to either a vertex, a box, or an arrow-tail. If a cell both
contains vertices and a box, or vertices and an arrow-tail, either the box or the
arrow-tail is to be taken as the rightmost object of the cell.

• A vertex v of an arrowed array is critical if it is the rightmost vertex of a cell, and
the cell it belongs to is neither marked nor contains an arrow-tail.

• (α, φ) is said to satisfy the non-empty condition if for each column j, there exists at
least one cell that contains an object.

• (α, φ) is said to satisfy the balance condition if for each column j, the number of
vertices in cell (1, j) is equal to the number of vertices in cell (2, j).

• Let Fi be the set of columns in row i that contain at least one vertex. The forest
condition function ψ1 : (H ∪ F1) \R1 7→ K for row 1 is defined as follows: For each
column j ∈ H, let ψ1 (j) = φ (j); for j ∈ F1\ (H ∪R1), if the rightmost vertex v is
paired with a vertex u in column j′, let ψ1 (j) = j′. The forest condition function ψ2

for row 2 is defined to be the same as the one for paired arrays in Definition 3.3. (α, φ)
is said to satisfy the forest condition if the functional digraph of ψ1 on the vertex
set H ∪ F1 ∪ ψ1 (H ∪ F1) ∪ R1 is a forest with root vertices R1, and the functional
digraph of ψ2 on the vertex set F2 ∪ ψ2 (F2) ∪ R2 is a forest with root vertices R2.
That is, for each column j ∈ (H ∪ F1) \R1, there exists some positive integer t such
that ψt1 (j) ∈ R1, and for each column j ∈ F2\R2, there exists some positive integer
t such that ψt2 (j) ∈ R2.

• Additionally, (α, φ) is said to satisfy the full condition if every cell contains at least
one object.

The set of arrowed arrays that satisfies the forest condition is denoted AR(s)
K;R1,R2

.

Notice in particular that a cell cannot contain both an arrow-tail and be marked at
the same time. Unless otherwise stated, we will continue to use the conventions for paired
arrays defined in Convention 3.2 for arrowed arrays. However, we will be using the defi-
nition of critical vertex defined here instead of the one in Definition 3.1. As with paired
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Figure 4.1: A arrowed array in AR(7)
6;1,3

arrays, we will always include the columns Ri in the vertex set for the functional digraph
of ψi, regardless of whether they are in the range of ψi. Similarly, given arrowed arrays
(α, φ) and (α′, φ′), we will use ψi to denote the forest condition function for row i of (α, φ),
and ψ′i to denote the forest condition function for row i of (α′, φ′). Another parallel is that
permuting the columns of an arrowed array does not change whether the array satisfies
the balance or forest conditions, as all this action does is to relabel the vertices of the
functional digraph. Furthermore, to reduce cluttering, we will draw the boxes for row 2
at the lower right corner instead of the upper right. An example of an arrowed array that
satisfies the forest condition can be found in Figure 4.1.

Remark 4.2. Notice that the definition of critical vertices for both paired arrays and arrowed
arrays refers to vertices that contribute the forest condition. Also, the balance condition
for arrowed arrays is the result of restricting the balance condition of paired arrays to two
rows. As arrowed arrays are generalized vertical arrays, there are no redundant pairs, and
all pairs are mixed pairs. One thing that differs is the notation used to describe the set of
paired arrays compared with the set of arrowed arrays. With paired arrays, PA(q;s)

n,K;R does

not require the forest condition to be satisfied, while AR(s)
K;R1,R2

assumes that it is so. The
reason for this difference is so that we can use paired arrays to define arrowed arrays.

While the parameters used for defining the set of arrowed arrays is natural with respect
to paired arrays, it does not easily lend itself to a formula. To make it manageable for
summation, we need to partition the set of arrowed arrays by adding further constraints.

Definition 4.3. Let K ≥ 1, s ≥ 0, and 1 ≤ R1, R2 ≤ K. A substructure Γ of AR(s)
K;R1,R2

is

a set of constraints that defines a subset of AR(s)
K;R1,R2

. For convenience, an arrowed array
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(α, φ) is said to satisfy Γ if (α, φ) satisfies the constraints given by Γ. In particular, let w
be a non-negative matrix of size 2 × K, R1,R2 be R1 and R2 subsets of K, and φ be a
partial function from H ⊆ K\R1 to K. The substructure Γ = (w,R1,R2, φ) is defined to

be the subset of AR(s)
K;R1,R2

, such that for each pair (α′, φ′) ∈ AR(s)
K;R1,R2

, the marked cells
in row 1 and 2 of α′ are R1 and R2 respectively, α′ contains wi,j vertices in cell (i, j), and
φ′ = φ.

Note that knowing w, R1, R2 and φ is enough to determine whether an arrowed array
satisfies the balance, non-empty, or full conditions. It is also sufficient to determine whether
a vertex is critical, regardless of the actual pairing of the vertices. Therefore, we can use
these terms, and terms such as arrow-head, arrow-tail, and points to with respect to Γ.

4.2 Arrowed Array Simplification Lemmas

Next, we will lay the ground work for the enumeration of arrowed arrays satisfying a
given substructure Γ. This involves introducing several lemmas that limit the number of
possibilities we have to consider, as well as lemmas that allow us to remove pairings from
arrowed arrays. This allows us to categorize Γ based on a number of parameters that serve
as invariants for the number of arrowed arrays that satisfy Γ.

Lemma 4.4. Let G and R be disjoint subsets of K. Let ψ : G → K and G = (V,E) be the
functional digraph of ψ on the vertex set G ∪ ψ (G) ∪R.

1. If (u, v) is an edge of G and v ∈ R, then G is a forest with root vertices R if and
only if G′ = (V,E\ (u, v)) is a forest with root vertices R∪ {u}.

2. If (u, v) and (v, w) are edges of G, then G is a forest with root vertices R if and only
if G′ = (V,E ∪ (u,w) \ (u, v)) is a forest with root vertices R.

3. If (u, v) is an edge G and u is a leaf vertex, then G is a forest with root vertices R
if and only if G′ = (V \ {u} , E\ (u, v)) is a forest with root vertices R.

Proof. Note that in all three cases, aside from the component(s) containing u and v, G is
a forest with root vertices in R if and only if G′ is a forest with root vertices in R. Let C
be the component of G that contains u, and T be the subgraph of C that has a directed
path to u. If C is a tree, then T is a tree with root u.
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Now, let (u, v) be an edge of G and v ∈ R. Suppose G is a rooted forest, and C is
the component containing u. Then, both T and C\T are rooted trees with roots u and v
respectively, so G′ is a rooted forest with root vertices R ∪ {u}. Conversely, suppose T is
a tree rooted at u and C is a tree rooted at v ∈ R. Then, adding the edge (u, v) joins T
to C, forming a tree with root v. Therefore, G is a rooted forest with root vertices R.

Similarly, let (u, v) and (v, w) be edges of G. Suppose G is a rooted forest, and C is
the component containing u. Deleting (u, v) gives us the trees T and C\T , with w in C\T .
Hence, adding the edge (u,w) gives us a new tree C ′, with the same root as C. Conversely,
suppose G′ is a rooted forest, and C ′ is the component containing u. Deleting (u,w) gives
us the trees T and C ′\T , with v in C\T . Hence, adding the edge (u, v) gives us back the
tree C. In either case, the root vertices remain unchanged, hence G is a rooted forest with
root vertices R if and only if G′ is a rooted forest with root vertices R.

Finally, let (u, v) be an edge of G and u be a leaf vertex. Suppose G is a rooted forest,
and C is the component containing u. As u is a leaf, C is a tree if and only if C\ {u} is a
tree. As the root vertices remain unchanged, G is a rooted forest with root vertices R if
and only if G′ is a rooted forest with root vertices R.

Note that in Item 2, the distance between u and its root vertex in R is closer in G′ than
it is in G. This means that if G is a forest with root vertices R, by repeatively applying
Item 2, we can reduce G to a graph where all edges are from G to R. This lemma allows
us to modify the forest condition functions ψi of an arrowed array in certain ways that
preserve the forest condition. In particular, by applying the first two points, we obtain the
following lemmas.

Lemma 4.5. Let (α, φ) be an arrowed array, and suppose that φ contains a column X that
points to a column Y, where cell (1,Y) of α is marked. Let (α′, φ′) be an arrowed array,
such that α′ is a vertical array otherwise identical to α, but with cell (1,X ) marked, and
φ′ is such that

φ′ (j) =

{
undefined j = X
φ (j) j ∈ H\X ,

that is, instead of having an arrow pointing from X to Y, we mark (1,X ) of (α′, φ′).

Then, (α, φ) is in AR(s)
K;R1,R2

if and only if (α′, φ′) is in AR(s)
K;R1+1,R2

. Furthermore, (α, φ)
satisfies the balance, non-empty, and full conditions if and only if (α′, φ′) satisfies them,
respectively.
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p1,1 p1,x1 q1,1 q1,y1

· · · · · ·

p2,1 p2,x2 q2,1 q2,y2

· · · · · ·

R1 R2

�

X Y

p1,1 p1,x1 q1,1 q1,y1

· · · · · ·

p2,1 p2,x2 q2,1 q2,y2

· · · · · ·

R1 R2

��

X Y
By applying the arrow simplification procedure to the left figure, we arrive at the right
figure. R1 and R2 can be arbitrary in whether they are marked, but they must be the
same between the two figures.

Figure 4.2: Arrow Simplification 1

Proof. As we have not changed the vertex pairings, ψ2 remains unchanged between (α, φ)
and (α′, φ′). On the other hand, ψ′1 (X ) is now undefined and X ∈ R′1. By taking the
functional digraph and applying Item 1 of Lemma 4.4, ψ1 satisfies the forest condition if
and only if ψ′1 satisfies it. Furthermore, K, R2, and s remain the same between the two

arrowed arrays, and |R′1| = |R1|+1. Therefore, (α, φ) is in AR(s)
K;R1,R2

if and only if (α′, φ′)

is in AR(s)
K;R1+1,R2

.

Note that the only change between (α, φ) and (α′, φ′) is the replacement of an arrow-tail
by a box in cell (1,X ), so cell (1,X ) contains at least one object in both (α, φ) and (α′, φ′).
As all other objects of (α′, φ′) remain unchanged, including the positions of the vertices,
(α, φ) satisfies the balance, non-empty, and full conditions if and only if (α′, φ′) satisfies
them, respectively.

Lemma 4.6. Let (α, φ) be an arrowed array, and suppose that φ contains a column X that
points to a column Y, and the column Y points to another column Z. Let (α, φ′) be an
arrowed array, where φ′ is such that

φ′ (j) =

{
Z j = X
φ (j) j ∈ H\X ,
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that is, instead of pointing to Y, X now points to Z in φ′. Then, (α, φ) is in AR(s)
K;R1,R2

if

and only if (α′, φ′) is in AR(s)
K;R1,R2

. Furthermore, (α, φ) satisfies the balance, non-empty,
and full conditions if and only if (α′, φ′) satisfies them, respectively.

Proof. Again, as we have not changed the vertex pairings, ψ2 remains unchanged between
(α, φ) and (α′, φ′). On the other hand, ψ′1 (X ) = Z is the only change in row 1 between ψ1

and ψ′1. By taking the functional digraph and applying Item 2 of Lemma 4.4, ψ1 satisfies
the forest condition if and only ψ′1 satisfies it. Furthermore, K, R1, R2, and s remain

the same between the two arrowed arrays. Therefore, (α, φ) is in AR(s)
K;R1,R2

if and only if

(α, φ′) is in AR(s)
K;R1,R2

.

Note that the only change between (α, φ) and (α, φ′) is the position of an arrow-head,
so all objects of (α′, φ′) remain unchanged, as an arrow-head is not an object of an arrowed
array. Since this includes the positions of all vertices, (α, φ) satisfies the balance, non-
empty, and full conditions if and only if (α′, φ′) satisfies them, respectively.

Collectively, Lemma 4.5 and Lemma 4.6 are the arrow simplification lemmas for arrowed
arrays, and pictures describing the applications of these lemmas can be found in Figure 4.2
and Figure 4.3. Note that these lemmas can be applied repeatedly to simplify an arrowed
array, until either all arrow-heads are in cells that are unmarked and have no arrow-tails,
or an arrow-head is in the same cell as its own arrow-tail. Furthermore, we can extend
these lemmas to substructures of the form Γ = (w,R1,R2, φ). This gives us the following
lemmas.

Lemma 4.7. Let Γ = (w,R1,R2, φ) be a substructure of AR(s)
K;R1,R2

, and suppose that
φ contains a column X that points to a column Y, with cell (1,Y) marked. Let Γ′ =

(w,R1 ∪ {X} ,R2, φ
′) be a substructure of AR(s)

K;R1+1,R2
, such that

φ′ (j) =

{
undefined j = X
φ (j) j ∈ H\X ,

that is, instead of pointing to Y, we mark cell (1,X ) of Γ′. Then, the number of arrowed
arrays satisfying Γ and the number of arrowed arrays satisfying Γ′ are equal. Furthermore,
Γ satisfies the balance, non-empty, and full conditions if and only if Γ′ satisfies them,
respectively.

Proof. Let α ∈ VA(s)
2,K;R1,R2

be a two-row vertical array, and α′ be a vertical array otherwise

identical to α, but with cell (1,X ) marked. By Lemma 4.5, (α, φ) is in AR(s)
K;R1,R2

if and
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p1,1 p1,x1 q1,1 q1,y1 r1,1 r1,z1

· · · · · · · · ·

p2,1 p2,x2 q2,1 q2,y2 r2,1 r2,z2

· · · · · · · · ·

R1 R2 R3

R4

X Y Z

p1,1 p1,x1 q1,1 q1,y1 r1,1 r1,z1

· · · · · · · · ·

p2,1 p2,x2 q2,1 q2,y2 r2,1 r2,z2

· · · · · · · · ·

R1 R2 R3

R4

X Y Z
By applying the arrow simplification procedure to the top figure, we arrive at the bottom
figure. R1, R2, R3, and R4 can be arbitrary in whether they are marked, but they must
be the same between the two figures. The same holds for the optional arrow with Z as its
tail.

Figure 4.3: Arrow Simplification 2
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only if (α′, φ′) is in AR(s)
K;R1,R2

. Furthermore, (α, φ) satisfies the remaining constraints of
Γ if and only if (α′, φ′) satisfies them for Γ′ by construction. Therefore, the number of
arrowed arrays satisfying Γ and Γ′ are equal.

As with Lemma 4.5, the only change between Γ and Γ′ is the replacement of an arrow-
tail by a box in cell (1,X ), so cell (1,X ) contains at least one object in both Γ and Γ′. As
all other objects of Γ′ remain unchanged, including the positions of the vertices, Γ satisfies
the balance, non-empty, and full conditions if and only if Γ′ satisfies them, respectively.

Lemma 4.8. Let Γ = (w,R1,R2, φ) be a substructure of AR(s)
K;R1,R2

, and suppose that
φ contains a column X that points to a column Y, and the column Y points to another
column Z. Let Γ′ = (w,R1,R2, φ

′) be a substructure of AR(s)
K;R1,R2

such that

φ′ (j) =

{
Z j = X
φ (j) j ∈ H\X ,

that is, instead of pointing to Y, X now points to Z in φ′. Then, the number of arrowed
arrays satisfying Γ and the number of arrowed arrays satisfying Γ′ are equal. Furthermore,
Γ satisfies the balance, non-empty, and full conditions if and only if Γ′ satisfies them,
respectively.

Proof. Let α ∈ VA(s)
2,K;R1,R2

be a two-row vertical array. By Lemma 4.6, (α, φ) is in

AR(s)
K;R1,R2

if and only if (α, φ′) is in AR(s)
K;R1,R2

. Furthermore, (α, φ) satisfies the remaining
constraints of Γ if and only if (α, φ′) satisfies them for Γ′ by construction. Therefore, the
number of arrowed arrays satisfying Γ and Γ′ are equal.

As with Lemma 4.6, the only change between Γ and Γ′ is the position of an arrow-head,
so all objects of Γ′ remain unchanged, as an arrow-head is not an object of an arrowed
array. Since this includes the positions of all vertices, Γ satisfies the balance, non-empty,
and full conditions if and only if Γ′ satisfies them, respectively.

Correspondingly, Lemma 4.7 and Lemma 4.8 are the arrow simplification lemmas for
substructures Γ = (w,R1,R2, φ). As with individual arrowed arrays, these lemmas can
be applied repeatedly to simplify a substructure, until either all arrow-heads are in cells
that are unmarked and have no arrow-tails, or an arrow-head is in the same cell as its own
arrow-tail. We are only interested in the former, as the latter implies that there is a cycle
in the functional digraph of φ, which violates the forest condition. This gives rise to the
following definition.
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Figure 4.4: Simplification of the arrowed array in Figure 4.1 into an irreducible array

Definition 4.9. A substructure Γ = (w,R1,R2, φ) is irreducible if the functional digraph
of φ is acyclic, and Γ cannot be further simplified with the application of the arrow simpli-
fication lemmas. Any cell of an irreducible substructure containing an arrow-head must be
unmarked in row 1, and cannot contain an arrow-tail. Furthermore, it follows from defini-
tion that if an irreducible substructure satisfies the full condition, then any cell containing
an arrow-head must also contain a critical vertex in row 1.

As we can use the arrow simplification lemmas to simplify arrowed arrays, and we can
call an arrowed array irreducible if cannot be further simplified. In particular, an example
of an irreducible arrowed array can be found in Figure 4.4. This corresponds to the arrowed
array in Figure 4.1.

Definition 4.10. If Γ = (w,R1,R2, φ) is an irreducible substructure, then we can cate-
gorize the columns of Γ as follows: Let A,B, C,D be a partition of the columns of K\H,
where

• Columns in A have both row 1 and row 2 unmarked

• Columns in B have row 1 marked and row 2 unmarked

• Columns in C have row 1 unmarked and row 2 marked

• Columns in D have both row 1 and row 2 marked

Furthermore, if X is a column or a set of columns, let X and X̃ be the sets of columns that
have arrows pointing to X , and that have row 2 unmarked and marked, respectively. In
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a1 ã1 a1 b1 c1 c̃1 c1 d1

a2 ã2 a2 b2 c2 c̃2 c2 d2

A Ã A B C C̃ C D

� � � �

� �

Figure 4.5: Column types and variables for the number of vertices

particular, A and Ã denotes the sets of columns pointing to A, and C and C̃ denotes the
sets of columns pointing to C, with row 2 unmarked and marked, respectively. These sets
of columns implicitly defined by Γ are referred to as column types , and a diagram with all
the column types can be found in Figure 4.5.

As with irreducibility, we can also apply these column types to individual arrowed
arrays, as long as they are irreducible. Now, these eight column types form a partition
of K on irreducible substructures. Furthermore, we shall see that knowing the number of
columns and the number of vertices for each column type of Γ is sufficient to count the
number of arrowed arrays satisfying it. However, before proving the main theorem of this
chapter, we will need another two lemmas for simplifying arrowed arrays that contain a
fixed pair of vertices.

Lemma 4.11. (column pointing) Let Γ = (w,R1,R2, φ) be a substructure of AR(s)
K;R1,R2

,
v be a critical vertex in cell (1,X ), u be a non-critical vertex in cell (2,Y), and X 6= Y.
Let the substructure Γvu be the set of arrowed arrays that satisfies Γ and contains the pair
{v, u}, and Γ′ = (w′,R1,R2, φ

′) be a substructure of AR(s−1)
K;R1,R2

such that

w′i,j =

{
wi,j − 1 cell (i, j)contains u or v

wi,j otherwise

φ′ (j) =

{
φ (j) j ∈ H
Y j = X
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Note that φ′ contains one more element in its domain than φ. Then, the number of arrowed
arrays satisfying Γvu and the number of arrowed arrays satisfying Γ′ are equal. Further-
more, Γvu satisfies the non-empty and full conditions if and only if Γ′ satisfies them.

Proof. To prove that the number of arrowed arrays are equal, we provide a bijection be-
tween arrowed arrays satisfying Γvu and arrowed arrays satisfying Γ′. Let (α, φ) be an
arrowed array that satisfies Γ and contains the pair {v, u}. As u is not critical, removing
the pair {v, u} does not affect ψ2. Therefore, we can obtain an arrowed array (α′, φ′) by
removing {v, u} and replacing it by an arrow pointing from X to Y , while keeping all the
other pairs intact. This reduces the number of vertices in (1,X ) and (2,Y) by 1, and leaves
ψ1 unchanged. Hence, the forest condition is preserved, and (α′, φ′) satisfies Γ′.

Conversely, given an arrowed array (α′, φ′) that satisfies Γ′, we can remove the arrow
pointing from X to Y and replace it by the pair {v, u} given by Γvu. Since the positions of
v and u are fixed in Γvu, there is no ambiguity as to where to add them. Again, the forest
condition is preserved as ψ1 and ψ2 are unchanged by this substitution. Finally, both cells
(1,X ) and (2,Y) contain at least one object in both Γvu and Γ′. Cell (1,X ) contains either
a critical vertex or an arrow-tail, and cell (2,Y) contains at least one other object as u is
not critical. Since all other cells remain unchanged, Γvu satisfies the non-empty and full
conditions if and only if Γ′ satisfies them.

Lemma 4.12. (column merging) Let Γ = (w,R1,R2, φ) be a substructure of AR(s)
K;R1,R2

, v
be a critical vertex in cell (1,X ), u be a critical vertex in cell (2,Y), and X 6= Y. Suppose
that Γ satisfies the full condition, and without loss of generality, assume that Y is the
last column of Γ for purposes of column indexing. Let the substructure Γvu be the set of
arrowed arrays that satisfies Γ and contains the pair {v, u}, and Γ′ = (w′,R′1,R′2, φ′) be a

substructure of AR(s−1)
K−1;R1,R2

such that

R′i =

{
Ri ∪ X\Y Y ∈ Ri

Ri otherwise

w′i,j =

{
wi,j + wi,Y − 1 j = X
wi,j otherwise

φ′ (j) =


φ (Y) j = X , φ (Y) is defined

X j ∈ H, φ (j) = Y
φ (j) j ∈ H, φ (j) 6= Y

Then, the number of arrowed arrays satisfying Γvu and the number of arrowed arrays
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satisfying Γ′ are equal. Furthermore, Γ′ also satisfies the full condition.

Proof. To prove that the number of arrowed arrays are equal, we provide a bijection be-
tween arrowed arrays satisfying Γvu and arrowed arrays satisfying Γ′. The idea behind this
bijection is to merge the columns X and Y in such a way that keeps the rightmost objects
of cell (2,X ) and (1,Y) intact. By construction, the rightmost objects of cells (1,Y) and
(2,X ) in α are the same as the rightmost object of cells (1,X ) and (2,X ) in α′. As all
other cells remain unchanged, Γ′ satisfies the full condition.

Let (α, φ) be an arrowed array that satisfies Γ and contains the pair {v, u}. To obtain
α′, we take the vertices of cell (2,Y) except u and place them in cell (2,X ) in order, before
the vertices originally in (2,X ). Then, for any column j that points to Y , we change them
to point to X instead. For convenience, let the forest condition function for row 1 at this
stage be ψ′′1 . Next, we take the vertices of cell (1,Y) and place them in cell (1,X ) before
v. Here, we let the forest condition function for row 2 be ψ′′2 . Furthermore, if cell (1,Y) is
marked, we mark cell (1,X ), and if column Y points to some column Z, we make X point
to Z. Finally, we remove the pair {v, u} and the column Y .

Conversely, given an arrowed array (α′, φ′) that satisfies Γ′, we can recover (α, φ) by
splitting the column X . Since we only use the forward direction to show that the forest
condition is preserved, we will describe the recovery in a more convenient order. We first
add the column Y to (α′, φ′). Then, if cell (1,X ) is marked, we mark cell (1,Y) and
unmarked cell (1,X ). Furthermore, if column X points to some column Z, we make
column Y point to Z and remove the arrow from X . Afterwards, we move the last w1,Y
vertices of cell (1,X ) of α′ to cell (1,Y), and move the first w2,Y − 1 vertices of cell (2,X )
of α′ to cell (2,Y), keeping all pairings intact. Finally, we add the vertices u and v to cells
(1,X ) and (2,Y) respectively, and pair them to obtain (α, φ). This is unambiguous, as the
column Y and the quantities wi,Y are given by Γ, which is fixed.

By construction, (α, φ) satisfies Γvu if and only if (α′, φ′) satisfies Γ′, with the possible
exception of the forest condition. Now, consider ψ2 during the transformation from (α, φ)
to (α′, φ′). Note that moving the vertices of cell (2,Y) and moving the arrow-heads has
no impact on ψ2. Then, when a vertex of (1,Y) is moved, there is either no impact, or
the vertex is paired with some critical vertex in cell (2, j). In the latter case, we have
ψ′′2 (j) = X . As ψ2 (Y) = X , by the repeated application of Item 2 of Lemma 4.4, we have
that ψ2 satisfies the forest condition if and only if ψ′′2 satisfies it. Finally, from ψ′′2 to ψ′2,
we deleted the pair {v, u} and the column Y . As X contains at least 1 object, it remains
in the forest condition function ψ2. Therefore, we can apply Item 3 of Lemma 4.4 to show
that ψ2 satisfies the forest condition if and only if ψ′2 satisfies it.
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The proof for row 1 is similar, though slightly more complicated. By moving the vertices
of cell (2,Y) and moving the arrow-heads, we are changing ψ1, so that if j is a column
where ψ1 (j) = Y , then ψ′′1 (j) = X . As in the row 2 case, we can repeatedly apply Item 2
of Lemma 4.4, but with the roles of G and G′ reversed. Then, the movement of the non-
critical vertices in cell (1,Y) does not change ψ′′1 . If cell (1,Y) contains a critical vertex or
an arrow-tail, we obtain that ψ1 (Y) = Z for some column Z. This implies ψ′1 (X ) = Z, due
to either moving the arrow-tail or the critical vertex. By Item 2 and 3 of Lemma 4.4, we
can remove the column Y , and ψ′′1 satisfies the forest condition if and only if ψ′1 satisfies it.
Otherwise, cell (1,Y) is marked in α as (α, φ) satisfies the full condition, which translates
to cell (1,X ) being marked in α′. Therefore, we can use Item 1 of Lemma 4.4 to show that
ψ′′1 satisfies the forest condition if and only if ψ′1 satisfies it. This allows us to safely delete
Y , as it is now an isolated root vertex in R1. Consequently, ψ1 satisfies the forest condition
if and only if ψ′1 satisfies it. This shows that the numbers of arrowed arrays satisfying Γvu
and Γ′ are equal.

The application of Lemma 4.11 to replace Γvu with Γ′ is called the column pointing
procedure, and a diagram of this procedure can be found in Figure 4.6. Similarly, the ap-
plication of Lemma 4.12 to replace Γvu with Γ′ is called the column merging procedure, and
a diagram of this procedure can be found in Figure 4.7. After applying either procedure,
we can apply the arrow simplification lemmas to Γ′ to further simplify the substructure.

Note that unlike the other simplification lemmas, column merging requires the sub-
structure to satisfy the full condition. In particular, it requires each cell of the columns
being merged to be non-empty. Otherwise, the resulting column will completely drop out
of the forest condition, which can break the the bijection. Namely, it is possible to have
a substructure Γ such that the substructure Γvu cannot be satisfied by any arrowed array,
while the substructure Γ′ is satisfied by some arrowed arrays. An example of this can be
found in Figure 4.8.

4.3 Enumeration of Substructure Γ = (w,R1,R2, φ)

Now, we have everything we need to provide a formula for the number of arrowed arrays
satisfying the substructure Γ = (w,R1,R2, φ), where Γ is an irreducible substructure
satisfying the full condition. The formula will be given by the number of vertices in each
column type, as well as the number of columns of type A. Let T (Γ) be the number of
arrowed arrays that satisfy the substructure Γ, then the following are two theorems for the
formulas of T (Γ), one for the case s ≥ A+ 2, and one for the case s = A+ 1.
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p1,1 p1,x1 p̃1,1 p̃1,x̃1
p1,1 p1,x1 q1,1 q1,y1

· · · · · · · · · · · ·

p2,1 p2,x2 p̃2,1 p̃2,x̃2
p2,1 p2,x2 q2,1 q2,y2

· · · · · · · · · · · ·

� R1 R2

R3

X X̃ X Y

p1,1 p1,x1 p̃1,1 p̃1,x̃1
p1,1 p1,x1−1 q1,1 q1,y1

· · · · · · · · · · · ·

p2,1 p2,x2 p̃2,1 p̃2,x̃2
p2,1 p2,x2 q2,2 q2,y2

· · · · · · · · · · · ·

� R1 R2

R3

X X̃ X Y
By applying the column pointing procedure to the top figure, we arrive at the bottom
figure. Here, u = p1,x1 and v = q2,1. R1, R2, and R3 can be arbitrary in whether they
are marked, but they must be the same between the two figures. The same holds for the
optional arrow with Y as its tail.

Figure 4.6: Column pointing
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p1,1 p1,x1 p̃1,1 p̃1,x̃1
p1,1 p1,x1 q1,1 q1,y1 q̃1,1 q̃1,ỹ1

q1,1 q1,y1

· · · · · · · · · · · · · · · · · ·

p2,1 p2,x2 p̃2,1 p̃2,x̃2
p2,1 p2,x2 q2,1 q2,y2 q̃2,1 q̃2,ỹ2

q2,1 q2,y2

· · · · · · · · · · · · · · · · · ·

� �R1

R2

X X̃ X Y Ỹ Y

p1,1 p1,x1 p̃1,1 p̃1,x̃1 q1,1 q1,y1 q̃1,1 q̃1,ỹ1
p1,1 p1,x1−1q1,1 q1,y1

· · · · · · · · · · · ·· · · · · ·

p2,1 p2,x2 p̃2,1 p̃2,x̃2 q2,1 q2,y2 q̃2,1 q̃2,ỹ2
q2,1 q2,y2−1p2,1 p2,x2

· · · · · · · · · · · ·· · · · · ·

� �R1

R2

X X̃ Y ỸX
By applying the column merging procedure to the top figure, we arrive at the bottom
figure. Here, u = p1,x1 and v = q2,y2 . R1 and R2 can be arbitrary in whether they are
marked, but they must be the same between the two figures. The same holds for the
optional arrow with Y as its tail.

Figure 4.7: Column merging
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A failed attempt to merge columns 1 and 2 when the full condition is not satisfied. Note
that the first arrowed array fails the forest condition for row 2, while the second arrowed
array satisfies it.

Figure 4.8: Column merging without full condition

Theorem 4.13. Given an irreducible substructure Γ = (w,R1,R2, φ) that satisfies the full

condition with s ≥ A+ 2, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

that satisfy Γ
is given by the formula

T (Γ) = (s− 1)!

[
(b2 + d2) (ã1 + c1 + c̃1 + d1)

s− A
+
b1 (c2 + c2 + c̃2)− c1 (b2 + d2)

(s− A) (s− A− 1)

]
By the convention set out in Convention 3.2, we let a lower case variable xi represent

the total number of points in row i of the columns of type X , and A represent the number
of columns of type A.

Proof. We prove this via induction on the total number of vertices, and tiebreak by the
number of critical vertices in the row 2. There are two base cases and three inductive cases
to consider, depending on whether Γ contains a column of type A, a column of type C and
no columns of type A, or no columns of type A or C.

Base case 1:

Suppose Γ has no critical vertex. As Γ is irreducible, each cell must either be marked or
have an arrow-tail. However, the latter cannot happen as an arrow-head of an irreducible
substructure must be in an unmarked cell. Hence, every cell of Γ must be marked, so the
forest condition is trivially satisfied. Therefore, there are s! ways to pair the vertices of the
array. By substituting d1 = d2 = s into T (Γ), and setting all other variables to 0, we see
that T (Γ) = s! as desired.
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Base case 2:

If s = 2, A = ∅, and C 6= ∅, then

T (Γ) =

[
(b2 + d2) (c1 + c̃1 + d1)

2
+
b1 (c2 + c2 + c̃2)− c1 (b2 + d2)

2

]
= b1 + (1− b1 − c1) (b2 + d2)

by substituting in 2 = bi + ci + c̃i + ci + di. This case is needed as the inductive step for Γ
containing no columns of type A but at least one column of type C requires that T (Γ) be
true for s−1. However, if s = 1, then s < A+2, and this creates a zero in the denominator
of our formula.

Suppose c1 6= 0, then c1 = 1 and b1 = 0, as a column of type C contains a critical vertex
in row 1, and C is non-empty. Furthermore, this implies that there is only one column of
type C. In this case, our formula gives T (Γ) = 0. Combinatorially, if there is a column
of type C, then it has a critical vertex in row 2, as the array is full. Now, if this vertex
is matched with the vertex in row 1 of C, then the forest condition for row 1 is violated.
Otherwise, it is matched with the vertex in row 1 of C, and the forest condition in row 2
is violated. Therefore, no such arrowed array exists, and so T (Γ) = 0 as desired.

Suppose c1 = 0 and b1 6= 0, then b1 = 1, as again there is exactly one column of type
C. In this case, our formula gives T (Γ) = 1. Let the column contributing to b1 be X , and
note X is a column of type B, which is unmarked in row 2. Therefore, X must contain
a critical vertex in row 2, and this vertex must be joined with the critical vertex in C to
not violate the forest condition for row 2. Doing so satisfies the forest condition in row
1, as ψ1 (C) = X , which is in R1. Now, The other vertex in row 2 is either a non-critical
vertex, or a critical vertex that is paired with the vertex of X in row 1. In either case, the
forest condition for row 2 is satisfied as ψ2 (X ) = C, which is in R2. This gives T (Γ) = 1
as desired.

For the last case, suppose c1 = 0 and b1 = 0. In this case, our formula gives T (Γ) =

b2 + d2. Note that all vertices of row 1 are in C̃ ∪ C ∪ D, which are all marked in row
2. Therefore, no matter where the vertices in row 2 are positioned, they are paired with
vertices in row 1 whose columns are marked in row 2. This means that the forest condition
for row 2 is automatically satisfied.

Now, there are 2 subcases for row 1. If there is only one column of type C, then the
other vertex in row 1 is in either C̃ or D. In the former case, that column points to C, and
in the latter case, row 1 of that column is marked. In both cases, the array satisfies the
forest condition if and only if the column that the vertex in C pairs to is marked in row 1.
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As the columns marked in row 1 are B and D, we have T (Γ) = b2 + d2 as desired.

Otherwise, there are 2 columns of type C, each containing 1 critical vertex. We denote
the two columns as C1 and C2. If both vertices in row 2 are in B ∪ D, then we can pair
them with the vertices of C arbitrary, so T (Γ) = 2. Suppose one vertex in row 2 is in some

column X in C ∪ C̃ ∪C, and the other vertex is in some column Y in B∪D. Without loss of
generality, let X be C1, or a column that points to C1. In this case, the vertex in row 1 of
C1 must be paired with the vertex of B ∪D to not violate the forest condition. The vertex
in row 1 of C2 is consequently paired with the vertex in X . As X is either C1 itself, or
points to C1, the entire component of the functional digraph has Y as its root, which is in
R1. This gives T (Γ) = 1. Finally, if both vertices of row 2 are in C ∪ C̃ ∪C, then no matter
how they are paired, the component(s) of the functional digraph containing C is entirely

in C ∪ C̃ ∪ C. Therefore, it cannot have roots in B ∪ D, so the forest condition for row 1
can never be satisfied. This gives T (Γ) = 0. In all three cases, we have T (Γ) = b2 + d2 as
desired.

Case 1:

Suppose Γ contains at least one column of type A, and X is one such column. Let
X and X̃ be columns pointing to X as defined in Definition 4.10, and note that they are
columns of type A and Ã, respectively. Then, the critical vertex v of cell (1,X ) must be
paired with some vertex u in a cell (2,Y). To satisfy the forest condition for row 1, Y
cannot be a column of X , X , or X̃ . By fixing u, we can pair vertices u and v to obtain the
substructure Γuv. Then, we simplify Γuv using the column pointing and column merging
procedures described in Lemma 4.11 and Lemma 4.12, which makes the columns of X , X ,
and X̃ point to Y . Now, Y cannot point to X , X , or X̃ , as that would either imply that
Y ∈ X ∪ X̃ , or that Γ is not irreducible. Therefore, Y must either not contain an arrow-
tail, or be pointing to some other column Z that has a critical vertex in row 1. Therefore,
the functional digraph of φ is acyclic, and by using the arrow simplification procedures
described in Lemma 4.5 and Lemma 4.6, we obtain an irreducible substructure Γ′ that has
one less vertex per row than Γ. Furthermore, both s and A decrease by 1, so the inequality
s ≥ A+ 2 holds. Depending on the column type of Y and whether u is critical, we can use
the inductive hypothesis to determine T (Γ′) in terms of existing parameters given by the
column types of Γ. The full list of substitutions can be found in Table 4.1, where an entry
Z in the table means that Y is a column of type Z and u is a non-critical, while an entry
Zc means that Y is a column of type Z, and u is critical.

For example, let Y be a column of type D. Then, after applying the column pointing
procedure, X becomes a column of type B, the columns of X become columns of type B,
and the columns of type X̃ become columns of type D. Hence, in the resulting substructure
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Column type of Y a′i a′i ã′i b′i

A a1 − x1 a1 + x1 − 1
a2 − x2 a2 + x2 − 1

Ac a1 − 1
a2 − 1

A or Ac a1 − x1 a1 + x1 − 1
a2 − x2 a2 + x2 − 1

Ã a1 − x1 a1 + x1 − 1
a2 − x2 a2 + x2 ã2 − 1

B or Bc a1 − x1 a1 − x1 ã1 − x̃1 b1 + x1 + x1 − 1
a2 − x2 a2 − x2 ã2 − x̃2 b2 + x2 + x2 − 1

C a1 − x1 a1 − x1 ã1 − x̃1

a2 − x2 a2 − x2 ã2 − x̃2

C or Cc a1 − x1 a1 − x1 ã1 − x̃1

a2 − x2 a2 − x2 ã2 − x̃2

C̃ a1 − x1 a1 − x1 ã1 − x̃1

a2 − x2 a2 − x2 ã2 − x̃2

D a1 − x1 a1 − x1 ã1 − x̃1 b1 + x1 + x1 − 1
a2 − x2 a2 − x2 ã2 − x̃2 b2 + x2 + x2

Table 4.1: Table of substitution when Γ contains a column of type A. In all cases, s′ = s−1
and A′ = A− 1. Table continues at Table 4.2
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Column type of Y c′i ci c̃i di

A

Ac

A or Ac

Ã

B or Bc d1 + x̃1

d2 + x̃2

C c1 + x1 + x1 − 1 c̃1 + x̃1

c2 − 1 c2 + x2 + x2 c̃2 + x̃2

C or Cc c1 + x1 + x1 − 1 c̃1 + x̃1

c2 + x2 + x2 − 1 c̃2 + x̃2

C̃ c1 + x1 + x1 − 1 c̃1 + x̃1

c1 + x1 + x1 c̃2 + x̃2 − 1

D d1 + x̃1

d2 + x̃2 − 1

Table 4.2: Continuation of Table 4.1
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Γ′ = ΓAD after simplification, we have

• a′i = ai − xi

• a′i = ai − xi

• ã′i = ãi − x̃i

• b′i = bi + xi + xi − δ1,i

• d′i = di + x̃i − δ2,i

where δi,j = 1 if i = j, and 0 otherwise. Substituting this into the inductive hypothesis,
we have

T (ΓAD) = (s− 2)!

[
(b2 + x2 + x2 + d2 + x̃2 − 1) (ã1 + c1 + c̃1 + d1)

s− A
+

(b1 + x1 + x1 − 1) (c2 + c2 + c̃2)− c1 (b2 + x2 + x2 + d2 + x̃2 − 1)

(s− A) (s− A− 1)

]
We repeat this computation for all possible column types of Y , and whether u is critical.

The results of this are listed in Table 4.3, where T (ΓAZ) is the number of arrowed arrays
with substructure Γ, and the vertex v is joined to a non-critical vertex u in a column of
type Z; T (ΓAZc) is the number of arrowed arrays with substructure Γ, and the vertex v is
joined to a critical vertex u in a column of type Z. The A here denotes that v is a column
of type A, to separate it from a similar table in Case 2.

By letting u range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X . Therefore, by counting the number of vertices of each column
type, we obtain the number of occurrences of each Γ′. Adding everything together, we have

T (Γ) = (a2 − x2 + a2 − x2 + ã2 − x̃2)T (ΓAA) +

(c2 + c2 + c̃2)T (ΓAC) + (b2 + d2)T (ΓAB)

By substituting in s = ai + ai + ãi + ci + ci + c̃i + bi + di and simplifying, we can show that
T (Γ) satisfies the inductive hypothesis. This proves the case where Γ contains a column
of type A.

Case 2:
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T (ΓAA) = (s− 2)!

[
(b2 + d2) (ã1 + c1 + c̃1 + d1)

s− A
+

b1 (c2 + c2 + c̃2)− c1 (b2 + d2)

(s− A) (s− A− 1)

]
T (ΓAAc) = T (ΓAA)

T (ΓAA) = T (ΓAA)

T (ΓAAc) = T (ΓAA)

T
(
ΓAÃ

)
= T (ΓAA)

T (ΓAB) = (s− 2)!

[
(b2 + x2 + x2 + d2 + x̃2 − 1) (ã1 + c1 + c̃1 + d1)

s− A
+

(b1 + x1 + x1 − 1) (c2 + c2 + c̃2)− c1 (b2 + x2 + x2 + d2 + x̃2 − 1)

(s− A) (s− A− 1)

]
T (ΓABc) = T (ΓAB)

T (ΓAC) = (s− 2)!

[
(b2 + d2) (ã1 + c1 + c̃1 + d1)

s− A
+

b1 (c2 + c2 + x2 + x2 + c̃2 + x̃2 − 1)− (c1 + x1 + x1 − 1) (b2 + d2)

(s− A) (s− A− 1)

]
T (ΓAC) = T (ΓAC)

T (ΓACc) = T (ΓAC)

T
(
ΓAC̃

)
= T (ΓAC)

T (ΓAD) = T (ΓAB)

Table 4.3: Case 1: Formula for T (Γ′) after simplification
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Suppose that Γ does not contain columns of type A, but contains at least one column
of type C. The formula simplifies to

T (Γ) = (s− 1)!

[
(b2 + d2) (c1 + c̃1 + d1)

s
+
b1 (c2 + c2 + c̃2)− c1 (b2 + d2)

s (s− 1)

]
While the formula is simpler in this case, the proof is slightly more involved. Let X

be a fixed column of type C, and let X and X̃ be columns pointing to X as defined in
Definition 4.10. Note that they are columns of type C and C̃, respectively. As in Case 1,
the critical vertex v of cell (1,X ) must be paired with some vertex u in a cell. Again, to

satisfy the forest condition for row 1, Y cannot be a column of X , X or, X̃ . Therefore, we
pair u and v to obtain the substructure Γuv, which we simplify using the same lemmas used
in Case 1 to obtain an irreducible substructure Γ′. As the case s = 2 is already handled,
we can assume s ≥ 3, so s ≥ A + 2 still holds. Depending on the column type of Y and
whether u is critical, we can use the inductive hypothesis to determine T (Γ′) in terms of
existing parameters given by column types of Γ. The full list of substitutions can be found
in Table 4.4, where an entry Z in the table means that Y is a column of type Z and u is a
non-critical, while an entry Zc means that Y is a column of type Z, and u is critical. The
major difference in this case is that if u is a critical vertex, then both X and Y become
columns of a different type, so we must introduce the parameters yi for the number of
vertices in column i of Y .

As in Case 1, we can compute T (Γ′) for all possible column types of Y , and whether u
is critical. Doing this gives us the formulas listed in Table 4.5. Again note that y1 depends
on the column Y , so some of the formulas are dependent on which particular column u is
in.

By letting u range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X . Notice that as we pair v each vertex of B, we add y1TCBc
if and only if u is the rightmost vertex of Y . Since each column of B has exactly one
rightmost vertex,

∑
Y∈B y1 = b1. Similarly,

∑
Y∈C y1 = c1 − x1. Therefore, by counting the

number of vertices of each column type, we obtain the number of occurrences of each Γ′.
Adding everything together, we have

T (Γ) = (c2 − x2 + c2 − x2 + c̃2 − x̃2)T (ΓCC) +

TCCc (c1 − x1) + (b2 + d2)T (ΓCB) + b1TCBc

By substituting in s = c2 +c2 + c̃2 +b2 +d2 and simplifying, we can show that T (Γ) satisfies
the inductive hypothesis. This proves the case where Γ contains a column of type C, but
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Column type of Y bi ci ci

B b1 + x1 c1 − x1 c1 − x1

b2 + x2 − 1 c2 − x2 c2 − x2

Bc b1 + x1 − y1 c1 − x1 c1 − x1

b2 + x2 − y2 c2 − x2 c2 − x2

C c1 − x1

c2 − x2 − 1

C c1 − x1

c2 − x2 c2 − 1

Cc c1 − x1 c1 − y1

c2 − x2 c2 − y2

C̃ c1 − x1

c2 − x2

D b1 + x1 c1 − x1 c1 − x1

b2 + x2 c2 − x2 c2 − x2

Column type of Y c̃i di

B c̃1 − x̃1 d1 + x1 + x̃1 − 1
c̃2 − x̃2 d2 + x2 + x̃2

Bc c̃1 − x̃1 d1 + x1 + x̃1 + y1 − 1
c̃2 − x̃2 d2 + x2 + x̃2 + y2 − 1

C c̃1 + x1 − 1
c̃2 + x2

C c̃1 + x1 − 1
c̃2 + x2

Cc c̃1 + x1 + y1 − 1
c̃2 + x2 + y2 − 1

C̃ c̃1 + x1 − 1
c̃2 + x2 − 1

D c̃1 − x̃1 d1 + x1 + x̃1 − 1
c̃2 − x̃2 d2 + x2 + x̃2 − 1

Table 4.4: Table of substitution when Γ contains no columns of type A, but a column of
type C. In all cases, s′ = s− 1
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T (ΓCB) = (s− 2)!

[
(b2 + x2 + d2 + x2 + x̃2 − 1) (c1 + c̃1 + d1 − 1)

s− 1
+

(b1 + x1) (c2 − x2 + c2 − x2 + c̃2 − x̃2)

(s− 1) (s− 2)
−

(c1 − x1) (b2 + x2 + d2 + x2 + x̃2 − 1)

(s− 1) (s− 2)

]
T (ΓCBc) = (s− 2)!

[
(b2 + x2 + d2 + x2 + x̃2 − 1) (c1 + c̃1 + d1 + y1 − 1)

s− 1
+

(b1 + x1 − y1) (c2 − x2 + c2 − x2 + c̃2 − x̃2)

(s− 1) (s− 2)
−

(c1 − x1) (b2 + x2 + d2 + x2 + x̃2 − 1)

(s− 1) (s− 2)

]
= T (ΓCB) +

y1 (s− 2)!

[
(b2 + x2 + d2 + x2 + x̃2 − 1)

s− 1
− (c2 − x2 + c2 − x2 + c̃2 − x̃2)

(s− 1) (s− 2)

]
= T (ΓCB) + y1TCBc

T (ΓCC) = (s− 2)!

[
(b2 + d2) (c1 + c̃1 + d1 − 1)

s− 1
+

b1 (c2 + c2 + c̃2 − 1)− c1 (b2 + d2)

(s− 1) (s− 2)

]
T (ΓCC) = T (ΓCC)

T (ΓCCc) = (s− 2)!

[
(b2 + d2) (c1 + c̃1 + d1 + y1 − 1)

s− 1
+

b1 (c2 + c2 + c̃2 − 1)− (c1 − y1) (b2 + d2)

(s− 1) (s− 2)

]
= T (ΓCC) + y1 (s− 3)! (b2 + d2)

= T (ΓCC) + y1TCCc
T
(
ΓCC̃
)

= T (ΓCC)

T (ΓCD) = T (ΓCB)

Table 4.5: Case 2: Formula for T (Γ′) after simplification
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no columns of type A.

Case 3:

If Γ does not contain any column of type A or C, then every cell in row 1 is marked,
leaving us only with columns of type B and D. In this case, the formula simplifies to

T (Γ) = d1 (s− 1)!

as s = b2 +d2. Since Γ does not contain any arrows, we can switch the two rows and invert
the roles of B and C to obtain Γ′. Furthermore, at least one cell in row 2 is unmarked, as
otherwise we would have the base case. Therefore, the number of critical vertices in row 2
decreases in Γ′, and we can continue the induction using Case 2. Furthermore, neither s
nor A changed, so s ≥ A + 2 still holds. Now, Γ′ only have columns of type C and D, so
by the inductive hypothesis,

T (Γ′) = d2 (s− 1)!

as s = c1 + d1 in Γ′. This completes the induction and proves our formula for T (Γ).

In the case where s = A+1, the second term of the aforementioned formula is undefined.
Fortunately, we can simply set it to zero and pretend it does not exist.

Theorem 4.14. Given an irreducible substructure Γ = (w,R1,R2, φ) that satisfies the

full condition with s = A + 1, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

with
substructure Γ is given by the formula

T (Γ) = (s− 1)! (b2 + d2) (ã1 + c1 + c̃1 + d1)

Proof. We prove this via induction on the number of columns of type A.

Base case:

Suppose Γ has no columns of type A. Since s = A + 1, we have A = 0, ã1 = 0, and
s = 1. Furthermore, c̃1 = 0 as a column of type C requires a critical vertex in row 1.
Therefore,

T (Γ) = (b2 + d2) (c1 + d1)

Now, if the vertex in row 1 is in C ∪D, and the vertex in row 2 is in B∪D, then pairing
them satisfies the forest condition for those two cells. All other cells are either marked or
have an arrow on them. If they are marked, they satisfy the forest condition for the row
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T (ΓAA) = (s− 2)! (b2 + d2) (ã1 + c1 + c̃1 + d1)

T (ΓAAc) = T (ΓAA)

T (ΓAA) = T (ΓAA)

T (ΓAAc) = T (ΓAA)

T
(
ΓAÃ

)
= T (ΓAA)

T (ΓAB) = (s− 2)! (b2 + x2 + x2 + d2 + x̃2 − 1) (ã1 + c1 + c̃1 + d1)

T (ΓABc) = T (ΓAB)

T (ΓAC) = T (ΓAA)

T (ΓAC) = T (ΓAA)

T (ΓACc) = T (ΓAA)

T
(
ΓAC̃

)
= T (ΓAA)

T (ΓAD) = T (ΓAB)

Table 4.6: Case s = A+ 1: Formula for T (Γ′) after simplification

they belong in. Otherwise, the cells must be in row 1, and must be pointing at a column
of type C. As the vertex in C is matched with a vertex in B ∪ D, row 1 satisfies the forest
condition.

Suppose that the vertex in row 1 is not in C ∪ D. It cannot be in C or C̃, as those
require a column of type C. Therefore, it must be in a column of type B. This column
has a critical vertex in row 2, which if paired will violate the forest condition in row 2.
Similarly, if the vertex in row 2 is not in B ∪ D, it must be in a column of type C, C, or
C̃. In all such cases, a column of type C exists, and contains a critical vertex in row 1. If
these vertices are paired together, the forest condition in row 1 is again violated. In both
cases we have T (Γ) = 0 as desired.

Inductive step:

Suppose Γ contains at least one column of type A. The proof here is exactly the same
as in Case 1 of the proof for Theorem 4.13. We also end with the same substitutions as
the ones in Table 4.1 and Table 4.2. By substituting this into the inductive hypothesis, we
obtain the results for T (Γ′) as listed in Table 4.6.

By letting u range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X . Therefore, by counting the number of vertices of each column
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type, we obtain the number of occurrences of each Γ′. Adding everything together, we have

T (Γ) = (a2 − x2 + a2 − x2 + ã2 − x̃2 + c2 + c2 + c̃2)T (ΓAA) +

(b2 + d2)T (ΓAB)

By substituting in s = ai + ai + ãi + ci + ci + c̃i + bi + di and simplifying, we can show
that T (Γ) satisfies the inductive hypothesis. This completes the induction and proves our
formula for T (Γ).

Note that if Γ satisfies the full condition and s ≤ A, then T (Γ) = 0, as each column of
type A requires one critical vertex for each row. Furthermore, as those vertices can only
be paired with each other, ψi (X ) ∈ A for all X ∈ A. This violates the forest condition
for row i. Together, Theorem 4.13 and Theorem 4.14 give the number of arrowed arrays
satisfying a substructure Γ, where Γ satisfies the full condition. In the next chapter, we
will sum over T (Γ) to obtain formulas for more general substructures, where the positions
of the marked cells are no longer fixed.
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Chapter 5

Enumeration of Arrowed Arrays

In this chapter, we will define increasingly coarse substructures that capture larger sub-
sets of arrowed arrays, where the positions of the marked cells are not fixed. Then, by
summing over the formulas on the number of arrowed arrays satisfying the refined substruc-
tures, we can provide formulas for the number of arrowed arrays satisfying these coarser
substructures. Furthermore, we will use hypergeometric identities to simplify the resulting
formulas, and transform the formulas so that they can be readily used in the next chapter.
By the end of the chapter, we will obtain two formulas, corresponding to the two different
ways we can use arrowed arrays to extend vertical arrays.

5.1 Substructure ∆ = (w,R1, φ)

Our first substructure allows us to mark the cells of row 2 arbitrarily, while keeping the
positions of the marked cells in row 1 and the vertices fixed. Additionally, we also define
a substructure that fixes the number of columns of type A, as T (Γ) is dependent on A.

Definition 5.1. Let w be a non-negative matrix of size 2 × K, R1 be an R1-subset of
K, and φ : K\R1 → K be a partial function from H ⊆ K\R1 to K. The substructure

∆ = (w,R1, φ) is defined to be the subset of AR(s)
K;R1,R2

, such that for each pair (α′, φ′) ∈
AR(s)

K;R1,R2
, the marked cells in row 1 of α′ is R1. Furthermore, α′ contains wi,j vertices in

cell (i, j), and φ′ = φ. For a given substructure ∆ = (w,R1, φ) and A ≥ 0, we define ∆A

to be the substructure that describes the set of arrowed arrays that satisfies ∆, and have
exactly A columns of type A. For convenience, we say a substructure Γ is a refinement
of another substructure ∆ if the set of arrowed arrays satisfying Γ is a subset of the
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arrowed arrays satisfying ∆. We denote it as Γ ↪→ ∆. Furthermore, if Γ1, . . . ,Γt is a set of
substructures that are refinements of a substructure ∆, we say that Γ1, . . . ,Γt partitions
∆ if the sets of arrowed arrays satisfying the Γi’s are mutually disjoint, and their union
is the set of arrowed arrays that satisfy ∆. Finally, we say ∆ = (w,R1, φ) satisfies the
non-empty condition if each cell in row 1 has at least one object in it.

Note that the non-empty condition for substructure ∆ = (w,R1, φ) is more stringent
than it is for arrowed arrays. This is to account for the fact that we do not have control of
the positions of the marked cells in row 2. By considering all possible R2-subsets R2, we
see that the set of substructures of the form Γ = (w,R1,R2, φ) partitions the substructure
∆ = (w,R1, φ). Furthermore, the subset of substructures with exactly A columns of type
A partitions ∆A, which in turn partitions ∆ by taking A from 0 to s − 1. Now, as the
arrow simplification lemmas only act on row 1, we can obtain arrow simplification lemmas
for substructures ∆ = (w,R1, φ) similar to those of Lemma 4.7 and Lemma 4.8.

Lemma 5.2. Let ∆ = (w,R1, φ) be a substructure of AR(s)
K;R1,R2

, and suppose that φ
contains a column X that points to a column Y, with cell (1,Y) marked. Let ∆′ =

(w,R1 ∪ {X} , φ) be a substructure of AR(s)
K;R1+1,R2

, such that

φ′ (j) =

{
undefined j = X
φ (j) j ∈ H\X ,

that is, instead of pointing to Y, we mark cell (1,X ) of ∆′. Then, the number of arrowed
arrays satisfying ∆ and the number of arrowed arrays satisfying ∆′ are equal. Furthermore,
∆ satisfies the balance and non-empty condition if and only if ∆′ satisfies them, respectively.

Proof. Let α ∈ VA(s)
2,K;R1,R2

be a two-row vertical array, and α′ be a vertical array otherwise

identical to α, but with cell (1,X ) marked. By Lemma 4.5, (α, φ) is in AR(s)
K;R1,R2

if and

only if (α′, φ′) is in AR(s)
K;R1,R2

. Furthermore, (α, φ) satisfies the remaining constraints of
∆ if and only if (α′, φ′) satisfies them for ∆′ by construction. Therefore, the number of
arrowed arrays satisfying ∆ and ∆′ are equal.

As with Lemma 4.5, the only change between ∆ and ∆′ is the replacement of an arrow-
tail by a box in cell (1,X ), so cell (1,X ) contains at least one object in both ∆ and ∆′. As
all other objects of ∆′ remain unchanged, including the positions of the vertices, ∆ satisfies
the balance and non-empty conditions if and only if ∆′ satisfies them, respectively.
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Lemma 5.3. Let ∆ = (w,R1, φ) be a substructure of AR(s)
K;R1,R2

, and suppose that φ
contains a column X that points to a column Y, and the column Y points to another
column Z. Let ∆′ = (w,R1, φ

′) be a substructure of AR(s)
K;R1,R2

such that

φ′ (j) =

{
Z j = X
φ (j) j ∈ H\X

That is, instead of pointing to Y, X now points to Z in φ′. Then, the number of arrowed
arrays satisfying ∆ and the number of arrowed arrays satisfying ∆′ are equal. Furthermore,
∆ satisfies the balance and non-empty condition if and only if ∆′ satisfies them, respectively.

Proof. Let α ∈ VA(s)
2,K;R1,R2

be a two-row vertical array. By Lemma 4.6, (α, φ) is in

AR(s)
K;R1,R2

if and only if (α, φ′) is in AR(s)
K;R1,R2

. Furthermore, (α, φ) satisfies the remaining
constraints of ∆ if and only if (α, φ′) satisfies them for ∆′ by construction. Therefore, the
number of arrowed arrays satisfying ∆ and ∆′ are equal.

As with Lemma 4.6, the only change between ∆ and ∆′ is the position of an arrow-
head, so all objects of ∆′ remain unchanged, as an arrow-head is not an object of an
arrowed array. Since this includes the positions of all vertices, ∆ satisfies the balance and
non-empty conditions if and only if ∆′ satisfies them, respectively.

Correspondingly, Lemma 5.2 and Lemma 5.3 are the arrow simplification lemmas for
substructures ∆ = (w,R1, φ). While we will not be using these directly until Section 5.3,
they will serve as the motivation for the following definition.

Definition 5.4. A substructure ∆ = (w,R1, φ) is irreducible if the functional digraph
of φ is acyclic, and ∆ cannot be further simplified with the application of the arrow
simplification lemmas. As with Definition 4.9, any cell of an irreducible substructure
containing an arrow-head must be unmarked in row 1, and cannot contain an arrow-tail.
Furthermore, if the substructure satisfies the non-empty condition, then any cell containing
an arrow-head must also contain a critical vertex in row 1.

With the substructure ∆ = (w,R1, φ) defined, we will now provide two formulas for it,
corresponding to the two ways we can use it to extend vertical arrays.

Lemma 5.5. Given an irreducible substructure ∆ = (w,R1, φ) that satisfies the non-empty

condition and with R2 = K, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

satisfying
substructure ∆ is given by

T (∆) = r2 (s− 1)!
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where r2 is the total number of vertices in row 2 that are in the columns of R1.

Proof. As R2 = K, there is only one substructure Γ = (w,R1,R2, φ) that is a refinement
of ∆. Namely, we have R2 = K, so each cell of row 2 also contains at least one object.
Therefore, Γ satisfies the full condition, and we can use the formula of T (Γ) given by
Theorem 4.13. As all cells of the row 2 are marked, there are no columns of type A, B, A,
or C. This also implies that there are no columns of type Ã. Hence,

T (∆) = (s− 1)!

[
d2 (c1 + c̃1 + d1)

s

]
= d2 (s− 1)!

as s = c1 + c̃1 + d1. Since all cells in row 2 are marked, a vertex is in a column of type
D if and only if its column is marked in row 1. This gives d2 = r2, and our formula, as
desired.

This formula will be useful for decomposing minimal arrays into vertical arrays. How-
ever, to decompose vertical arrays into arrowed arrays, we need a much more substantial
theorem.

Theorem 5.6. Let R1, R2 ≥ 1, and let ∆ = (w,R1, φ) be an irreducible substructure that
satisfies the balance and non-empty conditions. Furthermore, suppose w2,j > 0 for all cells

(2, j). Then, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

with substructure ∆ is
given by the formula

T (∆) = s!
s−1∑
A=0

r

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
where r is the total number of vertices in row 1 of the columns of R1, and M is the number
of columns that contain a critical vertex in row 1.

Proof. To prove this theorem, we sum T (Γ) over all substructures Γ = (w,R1,R2, φ) that
are refinements of ∆. Since w2,j > 0 for all cells (2, j), all substructures Γ satisfy the full
condition, so we can use the formulas of T (Γ) given by Theorem 4.13 and Theorem 4.14.
Note that T (Γ) only depends on the number of columns of type A, even though it depends
on the number of vertices of other column types. Therefore, we first sum over all Γ with
A columns of type A to obtain T (∆A), then we sum A from 0 to s − 1 to obtain T (∆).
As ∆ satisfies the balance condition, so must all Γ that are refinements of ∆. This implies
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that we can drop the subscripts from T (Γ). For convenience, we will refer to the number
of vertices of row 1 in a set of column X simply as the number of vertices in X , as that
number is the same between row 1 or row 2.

LetM be the set of columns that contains a critical vertex in row 1, and H be the set
of columns that contains an arrow-tail. Then, R1,M, and H partitions K. As R1 ≥ 1, we
have M < K. In the case where M = 0, we have M = H = ∅ and R1 = K. By inverting
the two rows and applying Lemma 5.5, we have

T (∆) =
∑
Γ↪→∆

r (s− 1)!

where r is the number of vertices in R2. Note that a vertex v in row 1 of a column X
contributes to r if X is marked in row 2. As there are

(
K−1
R2−1

)
ways to mark the columns of

K in row 2 with X marked, and s vertices in row 1, we have

T (∆) = r (s− 1)! · s
r

(
K − 1

R2 − 1

)
= s!

(
K − 1

R2 − 1

)
This result agrees with substituting M = A = 0 into the formula of T (∆).

In the case where 1 ≤ M ≤ K − 1, we have R1 = B ∪ D. This gives us r = b+ d, and
allows us to rewrite T (Γ) as

T (Γ) =

[
(b+ d) (ã+ c+ c̃+ d)

s− A
+
b (c+ c+ c̃)− c (b+ d)

(s− A) (s− A− 1)

]
= (s− 1)! (T1 (Γ) + T2 (Γ) + T3 (Γ) + T4 (Γ))

where

T1 (Γ) =
rc

s− A

T2 (Γ) =
r (ã+ c̃+ d)

s− A

T3 (Γ) =
b (c+ c+ c̃)

(s− A) (s− A− 1)

T4 (Γ) = − rc

(s− A) (s− A− 1)

119



for 0 ≤ A ≤ s − 2. For A = s − 1, we let T1 (Γ) and T2 (Γ) be defined as above, and let
T3 (Γ) = T4 (Γ) = 0. As the substructures Γ = (w,R1,R2, φ) with A columns of type A
partitions ∆A, we can let Ti (∆A) =

∑
Γ↪→∆A

Ti (Γ) for i = 1, 2, 3, 4, which gives us

T (∆A) = (s− 1)! (T1 (∆A) + T2 (∆A) + T3 (∆A) + T4 (∆A))

and

T (∆) = (s− 1)!

(
s−1∑
A=0

(T1 (∆A) + T2 (∆A)) +
s−2∑
A=0

(T3 (∆A) + T4 (∆A))

)
Note that the second summation for A goes from 0 to s− 2 as T3 (∆s−1) = T4 (∆s−1) = 0.

To evaluate each of the Ti (∆A), we look at the number of substructures Γ such that
a vertex or a pair of vertices contributes to the numerator of Ti (∆A). Note that we can
ignore r since it is the number of vertices in R1, which is a constant with respect to ∆.
Of the three sets of columns, only the columns of M can become columns of type A, as
the columns of type A require both the top and bottom cells to be unmarked. Therefore,
if a substructure Γ is a refinement of ∆A, it must have exactly M −A marked cells in row
2 of M, where M = |M|. It must also have exactly R2 −M + A marked cells in row
2 of R1 ∪ H. This means in total, there are

(
M

M−A

)(
K−M

R2−M+A

)
substructures of the form

Γ = (w,R1,R2, φ) that are refinements of ∆A. Observe that by letting 1 ≤ M ≤ K − 1,
we ensure that the top terms of the binomial coefficients are never negative, and that we
do not divide by zero later on.

Now, a vertex v in row 1 of a column X contributes to c if X ∈ M and X is marked
in row 2. As there are

(
M−1

M−A−1

)
ways to mark the columns ofM in row 2 with X marked,

and
(

K−M
R2−M+A

)
ways to mark the columns of K\M, v contributes

(
M−1

M−A−1

)(
K−M

R2−M+A

)
times

to c. Let m be the total number of vertices in M, we have

T1 (∆A) = T1 (Γ) · m
c

(
M − 1

M − A− 1

)(
K −M

R2 −M + A

)
=

rm

s− A

(
M − 1

M − A− 1

)(
K −M

R2 −M + A

)

Next, a vertex v in row 1 of a column X contributes to ã+ c̃+ d if X ∈ K\M and X is
marked in row 2. As there are

(
K−M−1

R2−M+A−1

)
ways to mark the columns of K\M in row 2 with

X marked, and
(

M
M−A

)
ways to mark the columns of M, v contributes

(
M

M−A

)(
K−M−1

R2−M+A−1

)
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times to ã+ c̃+ d. Given that there are s−m vertices in K\M, we have

T2 (∆A) = T2 (Γ) · s−m
ã+ c̃+ d

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
=

r (s−m)

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)

Similarly, let {v, u} be a pair of vertices with v in row 1 of a column X and u in row
2 of a column Y . Then, {v, u} contributes to b (c+ c+ c̃) if the following conditions hold.
First, we have X ∈ R1, Y ∈ K\R1, and X unmarked in row 2. Furthermore, let Z be the
column Y if Y ∈ M, and Z be the column that Y points to if Y ∈ H. Then, Z must be
a column of M and must also be marked. Now, as there are

(
M−1

M−A−1

)
ways to mark the

columns ofM with Z marked, and
(
K−M−1
R2−M+A

)
ways to mark the columns of K\M in row 2

with X unmarked, {v, u} contributes
(

M−1
M−A−1

)(
K−M−1
R2−M+A

)
times to b (c+ c+ c̃). Given that

there are r (s− r) such pairs of {v, u}, we have

T3 (∆A) = T3 (Γ) · r
b
· s− r
c+ c+ c̃

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
=

r (s− r)
(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
Finally, a vertex v in row 1 of a column X contributes to c if X ∈ H, X is unmarked

in row 2, and the column Z that X points to is marked in row 2. As there are
(
K−M−1
R2−M+A

)
ways to mark the columns of K\M in row 2 with X unmarked, and

(
M−1

M−A−1

)
ways to mark

the columns of M with Z marked, v contributes
(

M−1
M−A−1

)(
K−M−1

R2−M+A−1

)
times to c. Given

that there are s−m− r vertices in H, we have

T4 (∆A) = T4 (Γ) · s−m− r
c

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
= − r (s−m− r)

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)

Now, let T3+4 (∆A) = T3 (∆A) + T4 (∆A), and observe that

T3+4 (∆A) =
rm

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
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and

T1 (∆A) + T2 (∆A) =
r (sMR2 − sM2 + sMA−mMR2 +mMK −mAK)

M (s− A) (K −M)
×(

M

M − A

)(
K −M

R2 −M + A

)
= Tr (∆A) + Tm1 (∆A) + Tm2 (∆A)

where

Tr (∆A) =
rs

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
Tm1 (∆A) =

rm

s− A

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
Tm2 (∆A) = − rm

s− A

(
M − 1

M − A

)(
K −M − 1

R2 −M + A− 1

)
By substituting these formulas into T (∆), we have

T (∆) = (s− 1)!

(
s−1∑
A=0

(Tr (∆A) + Tm1 (∆A) + Tm2 (∆A)) +
s−2∑
A=0

T3+4 (∆A)

)

Next, we will show that
∑s−1

A=0 (Tm1 (∆A) + Tm2 (∆A)) +
∑s−2

A=0 T3+4 (∆A) = 0. By combin-
ing Tm1 (∆A) with T3+4 (∆A), we have

Tm1 (∆A) + T3+4 (∆A) =
rm

s− A

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
+

rm

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
=

rm

s− A− 1

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
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for 0 ≤ A ≤ s− 2. Therefore,

s−1∑
A=0

(Tm1 (∆A) + Tm2 (∆A)) +
s−2∑
A=0

T3+4 (∆A)

=
s−2∑
A=0

rm

s− A− 1

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
+

rm

(
M − 1

M − s

)(
K −M − 1

R2 −M + s− 1

)
−

s−1∑
A=0

rm

s− A

(
M − 1

M − A

)(
K −M − 1

R2 −M + A− 1

)
= rm

(
M − 1

M − s

)(
K −M − 1

R2 −M + s− 1

)
by shifting the index of the second sum and noting that

(
M−1
M

)
= 0. Now, for

(
M−1
M−s

)
to be

non-zero, we require M ≥ s. However, this implies that there are at least s columns ofM,
each requiring a critical vertex. As there are only s vertices in row 1, r is forced to be 0.
Therefore, the entire sum is equal to zero regardless of the value of M . Substituting this
result back into T (∆), we obtain

T (∆) = (s− 1)!

(
s−1∑
A=0

(T1 (∆A) + T2 (∆A)) +
s−2∑
A=0

(T3 (∆A) + T4 (∆A))

)

= (s− 1)!
s−1∑
A=0

Tr (∆A)

= s!
s−1∑
A=0

r

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
This proves our formula for T (∆).

Remark 5.7. The proof for Theorem 5.6 works even if ∆ does not satisfy the balance
condition, as long as w2,j > 0 remain satisfied for all j. However, we will have to retain
the row subscripts from both the formula and the proof of T (∆). By following the same
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proof, we obtain that

T (∆) = s!
s−1∑
A=0

r2

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
+

s!
s−2∑
A=0

r1 − r2

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
when ∆ satisfies the non-empty condition, but does not necessary satisfy the balance
condition. The second term of this expression is given by the simplification of T3+4 (∆A),
where ri is the number of vertices in row i of the columns of R1. Note that both ri’s refer
to the columns with marked cells in row 1, as the marked cells in row 2 are not fixed.

5.2 Admissible Substructures

Recall that our overall strategy in proving a formula for the number of tree-shaped n-row
vertical arrays is to decompose each n-row vertical array into an (n− 1)-row vertical array
and an arrowed array, then provide the inverse to establish a bijection. Then, for each
(n− 1)-row vertical array we count the number of arrowed arrays that are compatible
with it, and sum this over all (n− 1)-row vertical arrays. However, the resulting vertical
array and arrowed array from the decomposition may not necessarily satisfy the non-
empty condition, even if the original vertical array satisfies it. Furthermore, there is also
no guarantee that there will be a vertex in each cell of row 2 of the resulting arrowed
array, which is a crucial condition for Theorem 5.6. With the vertical array, we can bypass
this issue either by temporarily removing columns with no vertices, or by allowing vertical
arrays to have empty columns and using inclusion-exclusion to remove them. However,
these approaches do not work on arrowed arrays as arrowed arrays may have arrows in
columns that are otherwise empty, and may not have at least one vertex per cell. Therefore,
we need to extend Theorem 5.6 to cover a wider range of arrowed arrays.

Definition 5.8. An irreducible substructure ∆ = (w,R1, φ) is admissible if it satisfies the
following conditions

1. For each cell in row 1 containing an arrow-head, it contains at least one vertex.

2. For each cell in row 1 containing a vertex, the corresponding cell in row 2 contains
at least one vertex.
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3. For each cell in row 2 containing a vertex, the corresponding cell in row 1 contains
at least one object.

Let ∆ be an admissible substructure, and (α, φ) be an arrowed array that satisfies
∆. Suppose cell (i, j) contains a critical vertex or an arrow-tail, then ψi (j) is either in
Ri, or ψi (ψi (j)) is defined. In other words, there does not exist a column j such that
cell (i, ψi (j)) contains no object. This means that the only way for (α, φ) to violate the
forest condition of row i is for there to be a cycle in the functional digraph of ψi. Note
that conditions 2 and 3 are not symmetric, and this discrepancy stems from the fact that
we are permuting the marked cells in row 2, which means we cannot guarantee that an
empty cell is marked for the forest condition function ψ2. Now, if ∆ satisfies the balance
condition, then the second and third point of the definition are automatically satisfied.

Theorem 5.9. Let R1, R2 ≥ 1, and let ∆ = (w,R1, φ) be an admissible substructure.

Then, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

with substructure ∆ is given by
the same formula as in Theorem 5.6 and Remark 5.7. That is,

T (∆) = s!
s−1∑
A=0

r2

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
+

s!
s−2∑
A=0

r1 − r2

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
with the latter term naturally being zero if ∆ satisfies the balance condition.

Proof. As permuting the columns of an arrowed array does not change whether it satisfies
the forest condition, we can without loss of generality assume that the first k of the K
columns of ∆ are the ones that contain at least one vertex in row 2. By condition 2 of
Definition 5.8, all vertices in row 1 are in these k columns. In particular, it means that
φi (j) ∈ [k] as each cell containing an arrow-head must contain at least one vertex. Now,
let ∆R be the subset of arrowed arrays that satisfies ∆, and have exactly R marked cells in
the first k columns of row 2. Furthermore, let ∆R;k = (w′,R1 ∩ [k] , φ′) be the restriction
of ∆R to the first k columns. In other words, ∆R;k = (w′,R1 ∩ [k] , φ′) is a substructure

of AR(s)
k;|R1∩[k]|,R, where w′i,j = wi,j and φ′i (j) = φi (j) for 1 ≤ j ≤ k. Note that φi (j) ∈ [k]

implies that φ′i (j) ∈ [k], so this is well defined. We will show that there is a
(
K−k
R2−R

)
to 1

correspondence between arrowed arrays satisfying ∆R and arrowed arrays satisfying ∆R;k.

Let (α, φ) be an arrowed array satisfying ∆R and consider the cell (i, j), where k+ 1 ≤
j ≤ K. By condition 1, it cannot contain an arrow-head. Furthermore, as the column
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contains no vertices, there cannot be another column j′ such that ψi (j
′) = j. Now, this

cell can either be unmarked, marked, or contain an arrow-tail. If the cell is unmarked,
then it does not factor into the forest condition of row i, as it is in neither the domain
nor range of ψi. If the cell is marked, then it is in Ri, so it is an isolated root in the
functional digraph of ψi. Finally, if it contains an arrow-tail, then the column it points
to must contain at least one vertex, and must be unmarked. Therefore, cell (i, j) is a leaf
in the functional digraph of ψi. In all three cases, we can remove the column j from the
array without violating the forest condition, using Lemma 4.4 for the third case. As this
holds for all j > k, we can simply cut off the rightmost K − k columns of (α, φ) to obtain
an arrowed array (α′, φ′) that satisfies ∆R;k.

Conversely, given an arrowed array (α′, φ′) satisfying ∆R;k, we can add K − k columns
with no vertices to obtain an arrowed array (α, φ) satisfying ∆R. Note that the positions
of arrows and marked cells in row 1 is completely fixed by ∆R. However, only the first k
columns of (α, φ) are predetermined in row 2, as given by (α′, φ′). For the remaining K−k
columns, we can mark R2 − R cells arbitrarily and satisfy the forest condition, as adding
columns with no vertices does not change ψ2. Therefore, for each arrowed array (α′, φ′)
satisfying ∆R;k, there are exactly

(
K−k
R2−R

)
arrowed arrays satisfying ∆R.

By construction, each of the ∆R;k satisfies the non-empty condition, and has w2,j ≥ 1
for 1 ≤ j ≤ k. Therefore, we can use Theorem 5.6 and Remark 5.7 to obtain T

(
∆R;k

)
,

with K and R2 being substituted by k and R respectively. Furthermore, ∆1, . . . ,∆min(k,R2)

partitions ∆, and for R = 0 or R > k, we have T
(
∆R;k

)
= 0. This is given by the factors

r1 and r2 in the former case, and the binomial term in
(

k−M−1
R−M+A−1

)
the latter. Therefore,

we can change the bounds of k to 0 ≤ k ≤ R2, and use the Chu-Vandermonde identity
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introduced in Proposition 1.3 to obtain

T (∆) =

min(k,R2)∑
R=0

T
(
∆R;k

)(K − k
R2 −R

)

= s!
s−1∑
A=0

R2∑
R=0

r2

s− A

(
M

M − A

)(
k −M − 1

R−M + A− 1

)(
K − k
R2 −R

)
+

s!
s−2∑
A=0

R2∑
R=0

r1 − r2

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
k −M − 1

R−M + A

)(
K − k
R2 −R

)

= s!
s−1∑
A=0

r2

s− A

(
M

M − A

)(
K −M − 1

R2 −M + A− 1

)
+

s!
s−2∑
A=0

r1 − r2

(s− A) (s− A− 1)

(
M − 1

M − A− 1

)(
K −M − 1

R2 −M + A

)
which is the formula for T (∆) as given by Theorem 5.6 and Remark 5.7.

Before defining another substructure and further generalizing this formula, we will first
rewrite it using hypergeometric transformations, as that will simplify our work later. From
here on, we will only consider the case when ∆ satisfies the balance condition. One reason
for this assumption is that the balance condition holds for tree-shaped arrays. Another
reason is that we will permute the marked cells in row 1, which allows us to cancel out r1

and r2.

Theorem 5.10. Let R1, R2 ≥ 1, and let ∆ = (w,R1, φ) be an admissible substructure that

satisfies the balance condition. Then, the number of arrowed arrays (α, φ) ∈ AR(s)
K;R1,R2

with substructure ∆ is given by the formula

T (∆) = r

min(s,K)−1∑
A=0

M ! (K − A− 1)! (s− A− 1)!

(M − A)! (K −R2 − A)! (R2 − 1)!

where r is the total number of vertices in row 1 of the columns of R1, and M is the number
of columns that contain a critical vertex in row 1.
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Proof. First, we rewrite T (∆) using factorials to obtain

T (∆) = r

s−1∑
A=0

s!M ! (s− A− 1)! (K −M − 1)!

(s− A)! (M − A)!A! (R2 −M + A− 1)! (K −R2 − A)!

Since R2 ≥ 1, we have M < K, so the numerator is always defined. Furthermore, as
discussed in Section 1.3, we can take 1/x! to be zero if x is a negative integer. Note that
M ≥ s implies r = 0, as each column of M requires a critical vertex, and there are only
s vertices in row 1. In this case, the theorem is true as both the original formula and the
new formula imply that T (∆) = 0. Otherwise, we have M ≤ s− 1. Since 1/ (M − A)! is
zero for A > M , we can lower the upper bound of the summation to M . We can then write
it as a generalized hypergeometric function with −M as one of the parameters, matching
the upper bound of the sum. This gives us

T (∆) = r
M∑
A=0

s!M ! (s− A− 1)! (K −M − 1)!

(s− A)! (M − A)!A! (R2 −M + A− 1)! (K −R2 − A)!

= r · 3F2

(
−M,−s,−K +R2

R2 −M,−s+ 1
; 1

)
(s− 1)! (K −M − 1)!

(R2 −M − 1)! (K −R2)!

= r · 3F2

(
−M, 1,−K +R2

1−K,−s+ 1
; 1

)
(K −M)(M) (s− 1)! (K −M − 1)!

(R2 −M)(M) (R2 −M − 1)! (K −R2)!

= r
M∑
A=0

M ! (K − A− 1)! (s− A− 1)!

(M − A)! (K −R2 − A)! (R2 − 1)!

= r

min(s,K)−1∑
A=0

M ! (K − A− 1)! (s− A− 1)!

(M − A)! (K −R2 − A)! (R2 − 1)!

where we use the 3F2 identity described in Theorem 1.5. As 1/ (M − A)! is again part of
the new summation, we can raise the summation index without changing the value of the
sum. Note that we know M ≤ s− 1, and we can deduce that M ≤ K − 1 as R1 ≥ 1. This
allows us to raise the upper bound to min (s,K) − 1, while keeping the numerator well
defined.

The benefit of this new formula is that we are no longer required to keep M ≤
min (s,K) − 1. While taking M ≥ min (s,K) for ∆ makes no sense combinatorially, the
value for T (∆) is well defined and finite. This frees up M for manipulation and summation
if we can multiply T (∆) with an expression that is zero if M ≥ s or M ≥ K. When we
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do the induction on the number of vertical arrays, this fact will become extremely useful.

5.3 Substructures Θ = (y,P , φ) and Λ = (x,P , φ)

In this final section, we will turn our focus to specific substructures that can be directly used
to extend vertical arrays, instead of generic substructures with generalized parameters. To
this end, we want to define a pair of substructures Θ and Λ such that ∆ is a partition
to both of them. These two substructures will correspond to the two ways we will use
arrowed arrays to extend vertical arrays. For both substructures, instead of taking the set
of marked cells in row 1 as being fixed, we take the set of marked cells as a R1-subset of a
set P ⊆ K. Furthermore, instead of fixing the number of vertices in each cell, we fix the
number of non-critical vertices in each cell of a given row. Finally, we will provide formulas
for both substructures, using the two formulas for T (∆).

Definition 5.11. Let P be a subset of K with |P| ≥ R1 ≥ 1, y be non-negative vectors
of size K, and φ : K\P → K be a partial function from H ⊆ K\P to H∪P . Suppose that
yj = 0 for all j /∈ H ∪ P and

∑
j yj = |P| −R1. The substructure Θ = (y,P , φ) is defined

to be the subset of AR(|P|−R1)
K;R1,K

, such that for each pair (α′, φ′) ∈ AR(|P|−R1)
K;R1,K

, the set of
marked cells in row 1 of α′ is a subset of P and φ′ = φ. Furthermore, for each j ∈ P such
that cell (1, j) is unmarked, α′ contains a vertex in that cell. Finally, for each 1 ≤ j ≤ K,
α′ contains yj vertices in cell (2, j).

Note that all cells in row 2 are marked in this substructure, corresponding to Lemma 5.5.
Furthermore, all the vertices are in the columns of H ∪ P . This allows us to later remove
the columns not in H ∪ P , as they contain no vertices, arrow-heads, or arrow-tails. The
motivation behind this definition is to convert marked cells into critical vertices, so that
the number of marked cells and non-critical vertices remain constant. As y represents the
number of vertices in row 2, we have s = |P| −R1.

Lemma 5.12. Let Θ = (y,P , φ) be a substructure of AR(|P|−R1)
K;R1,K

, and suppose that φ
contains a column X that points to a column Y, and the column Y points to another
column Z. Let Θ′ = (y,P , φ′) be a substructure of AR(|P|−R1)

K;R1,K
such that

φ′ (j) =

{
Z j = X
φ (j) j ∈ H\X ,

that is, instead of pointing to Y, X now points to Z in φ′. Then, the number of arrowed
arrays satisfying Θ and the number of arrowed arrays satisfying Θ′ are equal.
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Proof. First, we need to check that Θ′ is a proper substructure of form Θ′ = (y,P , φ′).
Note that none of y, P , or R1 have changed, so we have

∑
j yj = |P|−R1. Then, note that

H remains the same as the domain of φ′, so we have yj = 0 for all j /∈ H∪P in Θ′. Finally,
we have that φ′ (j) = φ (j) ∈ H ∪ P for all j 6= X , and φ′ (X ) = Z = φ (Y) ∈ H ∪ P .
Therefore, Θ′ satisfies the conditions for a substructure of type Θ′ = (y,P , φ′).

Let α ∈ VA(|P|−R1)
2,K;R1,K

be a two-row vertical array. By Lemma 4.6, (α, φ) is in AR(|P|−R1)
K;R1,K

if and only if (α, φ′) is in AR(|P|−R1)
K;R1,K

. Furthermore, as the sets of marked cells and vertices
are unchanged, (α, φ) satisfies the remaining constraints of Θ if and only if (α, φ′) satisfies
them for Θ′ by construction. Therefore, the number of arrowed arrays satisfying Θ and Θ′

are equal.

As the marked cells in row 1 are not fixed, there is only one arrow simplification
lemma for substructures Θ = (y,P , φ), corresponding to Lemma 4.6. However, we can still
repeatedly use this lemma to simplify substructures of the form Θ = (y,P , φ), which gives
rise to the following definition.

Definition 5.13. A substructure Θ = (y,P , φ) is irreducible if the functional digraph of
φ is acyclic, and Θ cannot be further simplified with the application of Lemma 5.12. As
the arrow-heads of an irreducible substructure must be in cells of H∪P , and cannot be in
H, a substructure Θ = (y,P , φ) is irreducible if and only if φ is a function from H to P .

Note that the definition of irreducible is compatible with Definition 5.4. That is, if
Θ = (y,P , φ) is an irreducible substructure and ∆ = (w,R1, φ) is a refinement of Θ, then
∆ can be reduced to an irreducible substructure ∆′ by the application of Lemma 5.2. With
the substructure Θ = (y,P , φ) defined, we will now provide a formula for it, corresponding
to the subset of substructures ∆ such that all cells in row 2 are marked.

Theorem 5.14. Given an irreducible substructure Θ = (y,P , φ), the number of arrowed

arrays (α, φ) ∈ AR(|P|−R1)
K;R1,K

satisfying substructure Θ is given by the formula

T (Θ) =
(P − 1)!

(R1 − 1)!

where P is the number of columns of P.

Proof. We prove this by substituting into the formula for T (∆) given by Lemma 5.5.
Without loss of generality, assume that H ∪ P are the first k of the K columns of Θ. Let
R1 be an R1-subset of P , and consider the substructure ∆ = ([x′,y] ,R1, φ), where x′j = 1
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if x ∈ P\R1, and x′j = 0 otherwise. That is, w := [x′,y] is a 2 × K matrix containing
the number of vertices in each cell. By construction, the number of vertices in cell (i, j)
is 0 if j /∈ H ∪ P . As all arrow-tails of φ are contained in H, and all arrow-heads of φ
are contained in P , the columns of K\ (H ∪ P) contain only a marked cell in row 2, and
no other objects. Now, let ∆′ be the substructure ∆ restricted to the columns of H ∪ P .
Notice that the set of arrowed arrays satisfying ∆′ is in bijection with the set of arrowed
arrays satisfying ∆, as we can add or remove the columns of K\ (H ∪ P) without violating
the forest condition. The forest condition of row 2 is always satisfied, as all cells in row 2
are marked. Furthermore, for any arrowed array satisfying ∆, both the domain and range
of the forest condition function ψ1 for row 1 are in H∪P . Therefore, ψ1 remains the same
when we transform an arrowed array satisfying ∆ to an arrowed array satisfying ∆′ by
restricting the set of columns to H ∪ P , and vice-versa.

Now, ∆′ may not be irreducible, as there can be arrows pointing to the columns of R1.
Therefore, we have to reduce ∆′ using the arrow simplification lemma defined in Lemma 5.2.
This gives us an irreducible substructure ∆′′ = ([x′,y] ,R1 ∪H1, φ

′), where H1 ⊆ H is the
set of columns that points to R1, and φ′ is φ restricted to the columns of H\H1. That is,
we have changed all the cells that point to R1 in ∆′ into marked cells. Observe that in ∆′′,
the columns of R1 ∪ H1 are marked in row 1, the columns of H\H1 contain arrow-tails,
and the columns of P\R1 contain critical vertices in row 1. Therefore, ∆′′ satisfies the
non-empty condition, so we can use the formula for T (∆) given by Lemma 5.5. Now, a
vertex u in row 2 of a column X contributes to r2 of the formula for T (∆) if X ∈ R1, or
X ∈ H and X points to a column in R1. In either case, there are

(
P−1
R1−1

)
different subsets

R1 such that X is marked in ∆′′, out of the
(
P
R1

)
possible R1-subsets of P . Given that all

vertices of row 2 are in P ∪H, we have

T (Θ) = T (∆′′) · s
r2

(
P − 1

R1 − 1

)
= s!

(
P − 1

R1 − 1

)
=

(P − 1)!

(R1 − 1)!

as desired.

As a final step, we want to remove the restriction that Θ is irreducible. This can be
done by repeatedly applying Lemma 5.12, which gives us the following corollary.
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Corollary 5.15. Given a substructure Θ = (y,P , φ) such that the functional digraph of
φ on H ∪ P is a rooted forest with root vertices P, the number of arrowed arrays (α, φ) ∈
AR(|P|−R1)

K;R1,K
satisfying substructure Θ is given by the formula

T (Θ) =
(P − 1)!

(R1 − 1)!

where P is the number of columns of P.

Proof. We use Lemma 5.12 to reduce Θ to an irreducible substructure Θ′ = (y,P , φ′).
As R1 and P remain the same, we have T (Θ) = T (Θ′). The result then follows from
Theorem 5.14.

As we will see in the next chapter, this theorem is useful for decomposing minimal
arrays into vertical arrays. To decompose vertical arrays, we will need to introduce another
substructure and a corresponding theorem to go with it.

Definition 5.16. Let P be a subset of K with |P| ≥ R1 ≥ 1, x be a non-negative
vector of size K, and φ : K\P → K be a partial function from H ⊆ K\P to H ∪ P .
Suppose that xj = 0 for all j /∈ H ∪ P and s be such that

∑
j xj = s − |P| + R1. The

substructure Λ = (x,P , φ) is defined to be the subset of AR(s)
K;R1,R2

, such that for each pair

(α′, φ′) ∈ AR(s)
K;R1,R2

, (α′, φ′) satisfies the balance condition, the set of marked cells in row
1 of α′ is a subset of P , and φ′ = φ. Furthermore, for each column j ∈ H ∪ P , cell (1, j)
contains xj + 1 vertices if j ∈ P and is unmarked, and xj vertices otherwise.

By the balance condition, cell (2, j) also contains either xj or xj +1 vertices, depending
on whether cell (1, j) is marked. As with the previous definition, the motivation behind
this definition is to convert marked cells into critical vertices. However, we want to do it
in such a way that the balance condition is preserved. This corresponds to Theorem 5.6
and Theorem 5.10, where the balance condition is also satisfied. Note that x represents
the number of non-critical vertices in row 1, as the columns of H contain an arrow-tail,
and columns of P are either marked or contain one extra vertex. Therefore, we have∑

j xj = s − |P| + R1. Note that this also implies P ≤ s + R1. As with the definition of
Θ, this definition also restricts all vertices to be in the columns of H ∪ P . This will allow
us to use admissible substructures when providing a formula for substructures of type Λ.

Lemma 5.17. Let Λ = (x,P , φ) be a substructure of AR(s)
K;R1,R2

, and suppose that φ
contains a column X that points to a column Y, and the column Y points to another
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column Z. Let Λ′ = (y,P , φ′) be a substructure of AR(s)
K;R1,R2

such that

φ′ (j) =

{
Z j = X
φ (j) j ∈ H\X ,

that is, instead of pointing to Y, X now points to Z in φ′. Then, the number of arrowed
arrays satisfying Λ and the number of arrowed arrays satisfying Λ′ are equal.

Proof. First, we need to check that Λ′ is a proper substructure of form Λ′ = (x,P , φ′).
Note that none of x, P , R1, or s have changed, so we have

∑
j xj = s − |P| + R1. Then,

note that H remains the same as the domain of φ′, so we have xj = 0 for all j /∈ H∪P in Λ′.
Finally, we have that φ′ (j) = φ (j) ∈ H∪P for all j 6= X , and φ′ (X ) = Z = φ (Y) ∈ H∪P .
Therefore, Λ′ satisfies the conditions for a substructure of type Λ′ = (y,P , φ′).

Let α ∈ VA(s)
2,K;R1,R2

be a two-row vertical array. By Lemma 4.6, (α, φ) is in AR(s)
K;R1,R2

if and only if (α, φ′) is in AR(s)
K;R1,R2

. Furthermore, as the sets of marked cells and vertices
are unchanged, (α, φ) satisfies the remaining constraints of Λ if and only if (α, φ′) satisfies
them for Λ′ by construction. Therefore, the number of arrowed arrays satisfying Λ and Λ′

are equal.

As with substructure Θ, there is only one arrow simplification lemma for substructures
Λ = (x,P , φ), corresponding to Lemma 4.6. However, we can still repeatedly use this
lemma to simplify substructures of the form Λ = (x,P , φ), which gives rise to the following
definition.

Definition 5.18. A substructure Λ = (x,P , φ) is irreducible if the functional digraph of
φ is acyclic, and Λ cannot be further simplified with the application of Lemma 5.17. As
the arrow-heads of an irreducible substructure must be in cells of H∪P , and cannot be in
H, a substructure Λ = (x,P , φ) is irreducible if and only if φ is a function from H to P .

Note that the definition of irreducible is compatible with the definition of admissible in
Definition 5.8. That is, if Λ = (x,P , φ) is an irreducible substructure and ∆ = (w,R1, φ)
is a refinement of Λ, then ∆ can be reduced to an admissible substructure ∆′ by the
application of Lemma 5.2. With the substructure Λ = (x,P , φ) defined, we will now
provide a formula for it, corresponding to the subset of substructures ∆ such that the
balance condition is satisfied.
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Theorem 5.19. Given an irreducible substructure Λ = (x,P , φ), the number of arrowed

arrays (α, φ) ∈ AR(s)
K;R1,R2

satisfying substructure Λ is given by the formula

T (Λ) =

min(s,K)−1∑
A=0

(s− P +R1) (K − A− 1)! (s− A− 1)! (P − 1)!

(P −R1 − A)! (K −R2 − A)! (R1 − 1)! (R2 − 1)!

where P is the number of columns of P.

Proof. The proof of this theorem is similar to that of Theorem 5.14. However, we will
be substituting into the formula for T (∆) given by Theorem 5.10 instead. Let R1 be an
R1-subset of P , and consider the substructure ∆ = ([x′,x′] ,R1, φ), where x′i = xi + 1 if
x ∈ P\R1, and x′i = xi, otherwise. That is, w := [x′,x′] is a 2 × K matrix containing
the number of vertices in each cell. Now, note that ∆ may not be irreducible, as there
can be arrows pointing to the columns of R1. Therefore, we have to reduce ∆ using the
arrow simplification lemma defined in Lemma 5.2. This gives us an irreducible substructure
∆′ = ([x′,x′] ,R1 ∪H1, φ

′), where H1 ⊆ H is the set of columns that points to R1, and φ′

is φ restricted to the columns of H\H1.

Now, ∆′ satisfies the balance condition by construction. Furthermore, any cell of ∆′

that contains an arrow-head must be in P\R1, as otherwise ∆′ will not be irreducible.
Since the columns of P\R1 must each contain at least one vertex, ∆′ is an admissible
substructure, so we can use the formula for T (∆) given by Theorem 5.10. As ∆′ satisfies
the balance condition, we can take r to be the number of vertices in row 1 of R1. Observe
that the P − R1 vertices added to row 1 of P\R1 are all critical vertices, regardless of
the choice of R1. Hence, they never contribute to T (∆). This means that we only need
to consider the non-critical vertices of row 1, which are given by x. Now, a non-critical
vertex u in row 1 of a column X contributes to r of the formula for T (∆) if X ∈ R1, or
X ∈ H and X points to a column in R1. In either case, there are

(
P−1
R1−1

)
different subsets

R1 such that X is marked in ∆′, out of the
(
P
R1

)
possible R1-subsets of P . Given that

all non-critical vertices of row 1 are in P ∪ H, and that there are s− P + R1 non-critical
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vertices in row 1, we have

T (Λ) = T (∆′) · s− P +R1

r

(
P − 1

R1 − 1

)
=

min(s,K)−1∑
A=0

(s− P +R1)M ! (K − A− 1)! (s− A− 1)!

(M − A)! (K −R2 − A)! (R2 − 1)!

(
P − 1

R1 − 1

)

=

min(s,K)−1∑
A=0

(s− P +R1) (K − A− 1)! (s− A− 1)! (P − 1)!

(P −R1 − A)! (K −R2 − A)! (R1 − 1)! (R2 − 1)!

where we substitute in M = P − R1 as the number of critical vertices in row 1. Finally,
we simplify the expression using factorials, so that we can apply hypergeometric transfor-
mations in the next chapter.

As with substructure Θ, we want to remove the restriction that Λ is irreducible. This
can be done by repeatedly applying Lemma 5.17, which gives us the following corollary.

Corollary 5.20. Given a substructure Λ = (x,P , φ) such that the functional digraph of φ
on H ∪ P is a rooted forest with root vertices P, the number of arrowed arrays (α, φ) ∈
AR(s)

K;R1,R2
satisfying substructure Λ is given by the formula

T (Λ) =

min(s,K)−1∑
A=0

(s− P +R1) (K − A− 1)! (s− A− 1)! (P − 1)!

(P −R1 − A)! (K −R2 − A)! (R1 − 1)! (R2 − 1)!

where P is the number of columns of P.

Proof. We use Lemma 5.17 to reduce Λ to an irreducible substructure Λ′ = (y,P , φ′). As
s, K, R1, R2, and P all remain the same, we have T (Λ) = T (Λ′). The result then follows
from Theorem 5.19.

It is possible to generalize these two theorems so that the set of vertices does not lie
strictly inside H ∪ P . It is also possible to remove the balance condition from the second
theorem. The same proofs can be applied to obtain two similar, but more complicated
formulas. However, the benefits of doing so is limited, so we shall not pursue it here. With
these two substructures and theorems ready, we can proceed to decompose minimal and
vertical arrays, which we will do in the next chapter.
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Chapter 6

Enumeration of Paired Arrays

In this chapter, we will continue with the decomposition of paired arrays started in Chap-
ter 3. Recall that we have decomposed canonical arrays by removing redundant pairs,
which gave us minimal arrays and sets of partial pairings Ti on [pi] for each row i. Then, in
the previous two chapters, we took a detour to define arrowed arrays and substructures for
sets of arrowed arrays. Furthermore, we have developed formulas that count the number
of arrowed arrays satisfying these substructures. With these new tools, we can decompose
minimal arrays into proper vertical arrays by removing non-mixed pairs, using a qi-subset
of [si + qi], a minimal array, and an arrowed array to record the removed pairs. By doing

so, we can give a formula for m
(q;s)
n,K;R in terms of v

(s)
n,K;R, where m

(q;s)
n,K;R =

∣∣∣MA(q;s)
n,K;R

∣∣∣ and

v
(s)
n,K;R =

∣∣∣PVA(s)
n,K;R

∣∣∣ are as defined in Definition 3.8.

6.1 Decomposition of Minimal Arrays

We start with defining a compatibility condition between arrowed array substructures and
minimal arrays.

Definition 6.1. Let α ∈ MA(q;s)
n,K;R be an n-row minimal array with qi = 0, Ri as its set

of marked cells in row i, and ψi as its forest condition function for row i. A substructure
Θ = (y,P , φ) as defined in Definition 5.11 is Θ-compatible with row i of α if P = Ri and
φ = ψi. Furthermore, suppose W is a y-subset of [si +Ri + y − 1] for some y ≥ 0. We

define Θα,i,W to be the substructure of AR(y)
K;Ri−y,K with parameters Θα,i,W = (y,Ri, ψi),

where y = (y1, . . . , yK) and yj is the number of vertices inserted into cell (i, j) of α if W is
inserted into row i of α by the insertion procedure defined in Procedure 3.11.
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By definition, Θα,i,W is Θ-compatible with row i of α. Also, by summing over the
number of vertices inserted into cell (i, j), we have |W| =

∑
j yj. Now, before we go into

the actual decomposition, we will first present the following proposition.

Proposition 6.2. Let α ∈ PA(q;s)
n,K;R be a proper paired array. Suppose cell (i, j) of α is an

unmarked cell containing at least one vertex, then α′ that is formed by marking cell (i, j)
of α is also a proper paired array.

Proof. As s remains the same between α and α′, α′ satisfies the balanced condition. Sim-
ilarly, as α satisfies the forest condition, the functional digraph G of the forest condition
function ψi is a forest with root vertices Ri. As cell (i, j) is unmarked and non-empty,
its rightmost vertex must be paired with some vertex in column ψi (j), so (j, ψi (j)) is an
edge of G. By marking cell (i, j), we have removed this edge from G, which splits the
component containing j into two components. One component retains its original root
vertex, which is in Ri, while the other component has j as its root vertex. Therefore, the
functional digraph of the forest condition function ψ′i is a forest with root vertices Ri∪{j}.
Therefore, α′ satisfies the forest condition. Together, this implies that α′ is a proper paired
array.

Note that the converse of the Proposition 6.2 is not true. For example, if α′ has only
one marked cell in row i, then unmarking that cell violates the forest condition for that
row. This proposition allows us to mark cells containing critical vertices, making those
vertices non-critical and removing them from the forest condition. Afterwards, we can
unpair and extract those vertices while keeping the resulting paired array proper.

With the preliminaries defined, we will now provide a decomposition of minimal arrays
into proper vertical arrays and arrowed arrays. This is done iteratively, by removing the
non-mixed vertices one row at a time. For a given row i, we mark the cells containing
the critical vertices of non-mixed pairs, then remove these pairs to form a minimal array
with only mixed pairs in row i. To keep track of the removed pairs, we use a qi-subset to
represent the non-critical vertices, and an arrowed array to represent the critical vertices
and their pairings with the non-critical vertices.

Theorem 6.3. Let n,K ≥ 1, q ≥ 0, s ≥ 0, R ∈ [K]n, and 1 ≤ i ≤ n. Then, there exists
a decomposition

ηi : MA(q;s)
n,K;R →

⋃
β∈MA(q′;s)

n,K;R′
W∈[si+Ri+2qi−1;qi]

(β,W ,Θβ,i,W)
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of minimal arrays into triples of smaller arrays, qi-subsets, and arrowed arrays, where
si =

∑
k 6=i si,k and

R′k =

{
Ri + qi k = i

Rk otherwise

q′k =

{
0 k = i

qk otherwise

Furthermore, this decomposition is a bijection.

As a side note, the fact that each non-mixed, non-redundant pair in row i contains a
critical vertex in row i means that Ri + qi ≤ K, so R′ ∈ [K]n.

Proof. We will provide the decomposition and its inverse, and prove that it is a bijection.
Conceptually, we take the non-mixed pairs of a minimal array α, and split them into critical
and non-critical vertices. We put the critical vertices into row 1 of an arrowed array (σ, φ),
and put the non-critical vertices into row 2. Then, we add marked cells and arrows to (σ, φ)
in such a way that row i of α has the same forest condition function as row 1 of (σ, φ).
To record the position of the non-critical vertices, we extract and record these vertices as
a qi-subset of [si +Ri + 2qi − 1]. Finally, we mark the cells of α containing the removed
critical vertices, so as to preserve the forest condition for row i.

Let α ∈ MA(q;s)
n,K;R be a minimal array, and suppose {u, v} is a non-mixed pair in row

i of α. If neither u nor v is critical, then {u, v} is a redundant pair. If both u and v are
critical, then the functional digraph of ψi contains a cycle between the columns containing
u and v. As both of these are contradictions, exactly one of the two vertices is critical.
Therefore, there are qi non-critical vertices in row i of α, the set of which we denote as V ,
and there are qi critical vertices in row i of α, the set of which we denote as U . Note that
the vertices of U must be in distinct columns, and each vertex of U must be paired with a
vertex of V .

To construct the paired array β ∈MA(q′;s)
n,K;R′ and the subsetW ∈ [si +Ri + 2qi − 1; qi],

we first mark the columns containing the vertices of U . This causes the pairs of U ∪ V
to be redundant, so we can unpair them to obtain the partially-paired array α′. By
Proposition 6.2 and Proposition 3.10, α′ is a proper partially-paired array. Next, we
remove the vertices of U from α′ to obtain partially-paired array α′′, and extract V from
α′′ as described in Procedure 3.11 to obtain the subset W and the paired array β. As
α has si + 2qi vertices and Ri marked cells in row i, α′′ has si + qi vertices and Ri + qi
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marked cells in row i. Therefore, W is a qi-subset of [si +Ri + 2qi − 1]. Furthermore, by
Proposition 3.12, β is also a proper paired array. Notice that we have not changed any
row other than row i, so q′k = qk and R′k = Rk for k 6= i. Also, as we have not changed any
mixed pairs, s remains the same between α and β. Now, we have removed qi non-mixed
pairs and marked qi cells in row i, so q′i = 0 and R′i = Ri + qi. Finally, as there are no
non-mixed pairs in row i of β, and the non-mixed pairs in the other rows are not redundant,

β is a minimal array. Together, we have β ∈MA(q′;s)
n,K;R′ as desired.

To preserve information on the pairs we removed, we construct an arrowed array (σ, φ) ∈
Θβ,i,W such that ψi = ψ′1, where ψi and ψ′1 are the forest condition functions for row i of
α and row 1 of (σ, φ), respectively. For each cell (i, j) of α, we do the following

• If cell (i, j) of α is empty, we leave cell (1, j) of σ empty.

• If cell (i, j) of α is a marked cell, we mark cell (1, j) of σ.

• If the rightmost object of cell (i, j) of α is a vertex u ∈ U , we place a vertex xu in
cell (1, j) of σ.

• If the rightmost object of cell (i, j) of α is a vertex u /∈ U , we leave cell (1, j) of σ
empty. However, suppose v is the vertex paired with u, and v is in the column j′, we
let φ (j) = j′.

Next, we mark all cells in row 2 of σ. Then, for each vertex v ∈ V that is in cell (i, j) of
α, we place a corresponding vertex xv in cell (2, j) of σ. If we need to place more than one
vertex into the same cell, we place them in the same order in σ as they are in α. Finally,
for each non-mixed pair {u, v} ∈ U ∪ V in row i of α, we pair their corresponding vertices
xu and xv in σ. This completes the construction of (σ, φ).

Now, to show that (σ, φ) ∈ Θβ,i,W = (y,R′i, θi), we need to show that (σ, φ) satisfies
the forest condition, as well as the conditions defined by y, R′i, and θi, where R′i is the
set of marked cells in row i of β, and θi is the forest condition function for row i of β.
Suppose cell (i, j) of α is empty, then by construction both cell (i, j) of β and cell (1, j)
of σ are empty. Therefore, neither θi (j) nor φ (j) are defined. Alternatively, suppose that
the rightmost object of cell (i, j) of α is a mixed vertex u /∈ U and it is paired with some
vertex v. Then, cell (i, j) of β remains unmarked, and u remains the rightmost vertex
of β. Furthermore, as u is still paired with the same vertex v, we have θi (j) = ψi (j).
Correspondingly, by construction of (σ, φ), we let φ (j) be the column that v resides in, so
φ (j) = ψi (j) = θi (j). Finally, suppose that the rightmost object of cell (i, j) of α is not a
mixed vertex. Then, it is either a box or a non-mixed vertex. In either case, the cell would
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be marked in β, so θi (j) is not defined. Similarly, in our construction of σ, we either mark
cell (1, j) of σ or place a vertex in that cell, which leaves φ (j) undefined. Combining these
three cases, we have shown that φ = θi as desired.

Next, we will show that (σ, φ) satisfies the forest condition. As all cells in row 2 are
marked, the forest condition of row 2 is trivially satisfied. To show that row 1 also satisfies
the forest condition, it suffices to show that ψi = ψ′1 andRi = R′1, whereRi andR′1 are the
marked cells of row i of α and row 1 of σ, respectively. This is because α is a minimal array,
so ψi must satisfy the forest condition. By construction, we have Ri = R′1. Furthermore,
cell (i, j) of α is empty if and only if cell (1, j) of σ is empty, and cell (i, j) of α is marked
if and only if cell (1, j) of σ is marked. Now, suppose cell (i, j) of α is unmarked, and
the rightmost object is a vertex u /∈ U . As explained in the previous paragraph, we have
ψ′1 (j) = φ (j) = ψi (j). Finally, suppose cell (i, j) of α is unmarked, and the rightmost
object is a vertex u ∈ U . Let v ∈ V be the vertex that u is paired to, and suppose v
is in column j′. Then, the vertices xu and xv corresponding to u and v are paired with
each other in σ. Furthermore, xu and xv are in the same columns as u and v are in α,
respectively. As xu is the rightmost object of cell (1, j) of σ, we have ψ′1 (j) = j′ = ψi (j).
Combining these results, we have ψi = ψ′1 as desired.

Then, if we reinsertW into row i of β, we recover α′′ and the set V of extracted vertices
by Proposition 3.12. Recall that by construction, for each vertex v ∈ V in cell (i, j) of α,
we have placed a vertex xv in cell (2, j) of σ. Therefore, the number of vertices inserted
into cell (i, j) of β is the same as the number of vertices in cell (2, j) of (σ, φ). This proves
that (σ, φ) satisfies y. Finally, note that the set of marked cells in row 1 of σ is equal to
the set of marked cells in row i of α, so it is a subset of the set of marked cells in row i of
β. Furthermore, if cell (i, j) is marked in β, then it must either be marked in α, or contain
a vertex u ∈ U . In the former case, cell (1, j) is marked in σ, and in the latter case, it
is unmarked and contains the vertex xu. Therefore, (σ, φ) satisfies R′i. Together, we have
(σ, φ) ∈ Θβ,i,W as desired.

Conversely, let β ∈ MA(q′;s)
n,K;R′ , W ∈ [si +Ri + qi − 1; qi], and (σ, φ) ∈ Θβ,i,W . We

first construct partially-paired array β′ by inserting W into row i of β as described in
Procedure 3.11. This gives us a set V of unpaired vertices in β′, which are labelled with
the elements ofW by the insertion procedure. By Proposition 3.12, β′ is a proper partially-
paired array. Furthermore, by the definition of Θα,i,W , the vertices of V are in the same
columns as the vertices in row 2 of σ. Therefore, we can create a correspondence between
the vertices of V and the vertices in row 2 of σ. We do this by labelling the vertices in
row 2 of σ with W from left to right, ignoring the boxes used for marking cells. Then, for
each vertex v ∈ V , we let xv be the vertex in row 2 of σ that acquired the same label as
v. Next, consider each cell (1, j) of σ that contains a vertex. Since Θβ,i,W is Θ-compatible
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with β, cell (i, j) of β must be marked. Furthermore, as the set of marked cells is the same
between β and β′, cell (i, j) of β′ is also marked. This means that we can add an unpaired
vertex u to cell (i, j), which we place to the right of all other vertices in that cell. Similar
to the vertices of V , we let the corresponding vertex in cell (1, j) of σ be xu. After adding
these vertices, we let the resulting partially-paired array be β′′, and let the set of vertices
added to obtain β′′ be U . By Proposition 3.12, β′′ is a proper partially-paired array. Also,
since W is a qi-subset, (σ, φ) has qi vertex pairs, so |U| = |V| = qi. Finally, to recover α,
we unmarked the cells containing the vertices of U , and for each pair {xu, xv} in σ, we pair
their corresponding vertices u ∈ U and v ∈ V in row i of β′′. Note that these pairs are
non-redundant, as the vertices of U are now the rightmost objects of their respective cells,
which means that they are critical.

To show that α ∈MA(q;s)
n,K;R, we need to show that α satisfies the parameters R, q, and

s, and that it satisfies the balance and forest condition. As the vertices of U and V are in
the same row, they become non-mixed pairs in α. Hence, they do not affect the balance
condition. By the same reasoning, the parameter s remains unchanged between β, β′′, and
α. Now, as |U| = qi, α has qi non-mixed pairs in row i. Furthermore, this means we have
unmarked qi cells from row i of α, so α has R′i − qi = Ri marked cells in row i. As the
number of non-mixed pairs and marked cells in the other rows remain unchanged, we have
q′k = qk and R′k = Rk for k 6= i. Therefore, α satisfies the parameters R and q as desired.

What remains to be shown is that α satisfies the forest condition. As the other rows
are unchanged, we only have to show that the forest condition holds for row i. To this end,
we will show that ψi = ψ′1 and Ri = R′1, where ψi and ψ′1 are the forest condition functions
for row i of α and row 1 of (σ, φ), respectively. Similarly, Ri and R′1 are the marked
cells of row i of α and row 1 of σ, respectively. This is sufficient, as (σ, φ) is an arrowed
array, which satisfies the forest condition. Note that (σ, φ) ∈ Θβ,i,W implies that (σ, φ) is
Θ-compatible with row i of β, so φ is the forest condition for row i of β. Furthermore, if
R′i is the set of marked cells in row i of β, then by Definition 5.11, R′i is also the set of
columns that contains the marked cells and vertices in row 1 of σ.

Now, consider cell (i, j) of β. Suppose that the cell is empty, then φ (j) is undefined.
As j is not in R′i, cell (1, j) of σ is also empty, so ψ′1 (j) is undefined. Then, since the
vertices of U and V are unpaired in β′′, they are added only to non-empty cells of β.
Therefore, both cell (i, j) of β′′ and cell (i, j) of α remain empty, so ψi (j) is also undefined.
Next, suppose cell (i, j) of β contains a critical vertex u, paired with some other vertex
v. In this case, φ (j) is defined, and ψ′1 (j) = φ (j). Again, since the vertices of U and V
are unpaired in β′′, they are not the rightmost objects of their cells, so the set of critical
vertices of β and β′′ are the same. Furthermore, since cell (i, j) of β′′ is already unmarked,
unmarking marked cells has no effect on u. In particular, u remains a critical vertex in
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α, and is paired with the same vertex v. Therefore, ψ′1 (j) = φ (j) = ψi (j). On the other
hand, if cell (i, j) of β and cell (1, j) of σ are both marked, then cell (1, j) of σ does not
contain a vertex, so no vertices of U are added to cell (i, j) of β′′. Hence, cell (i, j) of
α remains marked when we unmark the columns containing vertices of U . In this case,
neither ψ′1 (j) nor ψi (j) are defined. Finally, if cell (i, j) of β is marked, but cell (1, j) of σ
is not, then cell (1, j) must contain a vertex xu paired with some vertex xv in a column j′.
In our construction of β′′, we have added vertices u ∈ U and v ∈ V to cell (i, j) and cell
(i, j′) corresponding to xu and xv, respectively. When cells containing the vertices of U are
unmarked, u becomes a critical vertex. Since u is paired with v and xu is paired with xv,
we have that ψ′1 (j) = j′ = ψi (j). Combining these results, we have ψi = ψ′1 as desired.
Furthermore, cell (i, j) of α is marked if and only if cell (1, j) of σ is marked, so we have

Ri = R′1 as well. This shows that α ∈MA(q;s)
n,K;R.

Finally, we have to show that the two operations presented are inverses of each other.
By Proposition 3.12, the extraction and insertion procedures are inverses. Furthermore,
if we extract V and reinsert it, the vertices inserted acquire the same labels as before the
extraction. Therefore, we can identify the vertices in row 2 of (σ, φ) with the vertices of V .
Then, the columns which contain the critical vertices U are exactly the columns of (σ, φ)
that contain vertices in row 1. This allows us to recover the columns of U , so that we can
add critical vertices and unmark cells. Finally, as we have a correspondence between the
vertices of U and V with the vertices of (σ, φ), the pairing of vertices in (σ, φ) allows us to
recover the pairing of the removed vertices. Therefore, ηi as described, is a bijection.

Note that in the proof of Theorem 6.3, α′ and β′′ corresponds to each other, so does
α′′ and β′. Now, observe that if we iteratively decompose each of the n rows of a minimal
array, the resulting minimal array will have no non-mixed vertices, and hence will be a
vertical array. Since minimal arrays are by definition proper, the resulting vertical array is
proper. Also note that the decomposition of row i of a minimal array does not change the
vertices, boxes, and pairings of the other rows. Therefore, the ordering of the rows in which
we decompose the minimal array can be arbitrary. Furthermore, the proper vertical array,
the arrowed arrays, and the qi-subsets resulting from the decomposition remain the same
regardless of the order in which we decompose the minimal array. In particular, as the
definition of Θβ,i,W depends only on row i of β, we can replace β with the proper vertical
array resulting from the iterated decomposition without changing the set of arrowed arrays
satisfing this substructure. In fact, we can simultanenously decompose all n rows at once
and obtain the same result. The reason why we have not taken that approach is to keep
the proof simple, and also to keep in parallel to the decomposition of proper vertical arrays
in the next section.
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Figure 6.1: Partially-paired array α′ and α′′ corresponding to the decomposition of row 1
of Figure 3.4

As an example, we will decompose the minimal array in Figure 3.4. By following
the decomposition described in Theorem 6.3, we arrive at the partially-paired array α′

and α′′, as depicted in Figure 6.1. For clarity, we have marked the vertices of U and V
in α′, and labelled the objects in row 1 of α′′. After the decomposition, we obtain the
minimal array β and the arrowed array (σ, φ), depicted in Figure 6.2. We also obtain the
subset W1 = {3} ∈ [6; 1]. We can then continue the decomposition with rows 2 and 3.
This gives us the subsets W2 = {4, 6} ∈ [6; 2], and W3 = ∅ ∈ [4; 0], the proper vertical
array in Figure 6.3, and the arrowed arrays in Figure 6.4, corresponding to rows 2 and 3,
respectively.

Now that we have a decomposition of minimal arrays, we can use it to give an expression
for m

(q;s)
n,K;R with respect to v

(s)
n,K;R. In particular, we are interested in the case R = 1, as

that corresponds to the decomposition of canonical arrays. By iterating the decomposition
in Theorem 6.3 and taking the cardinality of both sides, we obtain the following corollary.

Corollary 6.4. Let n,K ≥ 1, q ≥ 0, and s ≥ 0. Then,

m
(q;s)
n,K;1 =

n∏
i=1

(si + 2qi)!

(si + qi)!
· v(s)

n,K;q+1

where si =
∑

j 6=i si,j.
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Figure 6.2: Minimal array β and arrowed array (σ, φ) corresponding to the decomposition
of row 1 of Figure 3.4
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Figure 6.3: Proper vertical array from the iterated decomposition of Figure 3.4
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Figure 6.4: Arrowed arrays from the decomposition of rows 2 and 3 of Figure 6.2

Proof. If qi ≥ K for some i such that 1 ≤ i ≤ n, then m
(q;s)
n,K;1 = 0, as any minimal array

in MA(q;s)
n,K;1 must have at least K critical vertices and 1 marked cell in row i, which is

a contradiction. On the right hand side, we have that qi + 1 > K, so v
(s)
n,K;q+1 = 0 by

convention. Therefore, the identity holds trivially.

Let β be a minimal array with R′i = Ri+ qi marked cells in row i, andW be a qi-subset
of [si +Ri + 2qi − 1]. As β is a proper minimal array, the forest condition function θi for
row i satisfies the forest condition, so it is a forest with root vertices P = R′i. Therefore,
by applying Corollary 5.15, we have

T (Θβ,i,W) =
(Ri + qi − 1)!

(Ri − 1)!

as arrowed arrays satisfying Θβ,i,W have Ri marked cells in row 1. Note that this is constant

for all minimal arrays β ∈MA(q′;s)
n,K;R′ and all subsetsW ∈ [si +Ri + 2qi − 1; qi]. Therefore,

by taking the cardinality of Theorem 6.3 and substituting in the above formula, we obtain

m
(q;s)
n,K;R =

∑
β∈MA(q′;s)

n,K;R′
W∈[si+Ri+2qi−1;qi]

T (Θβ,i,W)

=
(si +Ri + 2qi − 1)!

qi! (si +Ri + qi − 1)!
· (Ri + qi − 1)!

(Ri − 1)!
·m(q′;s)

n,K;R′

where R′ and q′ are as defined in the theorem. By iterating this equation over 1 ≤ i ≤ n,
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we have

m
(q;s)
n,K;R =

n∏
i=1

(
(si +Ri + 2qi − 1)!

qi! (si +Ri + qi − 1)!
· (Ri + qi − 1)!

(Ri − 1)!

)
·m(0;s)

n,K;R+q

m
(q;s)
n,K;1 =

n∏
i=1

(si + 2qi)!

(si + qi)!
·m(0;s)

n,K;q+1

where in the second row we substitute Ri = 1 to simplify the expression. The result of
the corollary then follows from noting that m

(0;s)
n,K;q+1 = v

(s)
n,K;q+1, as the set of minimal

arrays with no non-mixed pairs is precisely the set of proper vertical arrays of the same
parameter. That is, MA(0;s)

n,K;q+1 = VA(s)
n,K;q+1.

Note that this formula is consistent with and is a direct generalization of Theorem 4.2
of Goulden and Solfstra. Furthermore, we can now express the number of paired functions
in terms of the number of proper vertical arrays using this formula.

Corollary 6.5. Let n,K ≥ 1, q ≥ 0, and s ≥ 0. We have

f
(q;s)
n,K =

q∑
t=0

n∏
i=1

(2qi + si)!

2titi! (si + qi − ti)!
· v(s)

n,K;q−t+1

Furthermore, if v
(s)
n,K;R can be written as a polynomial expression in K for all Ri, where

1 ≤ Ri ≤ qi + 1, then f
(q;s)
n,K can be written as a polynomial expression in K.

Proof. By combining Theorem 3.7, Theorem 3.13, and Corollary 6.4, we have

f
(q;s)
n,K =

q∑
t=0

n∏
i=1

(
2qi + si

2ti

)
(2ti − 1)!! · (si + 2qi − 2ti)!

(si + qi − ti)!
· v(s)

n,K;q−t+1

=

q∑
t=0

n∏
i=1

(2qi + si)!

2titi! (si + qi − ti)!
· v(s)

n,K;q−t+1

where we used the fact that (2ti − 1)!! = (2ti)!
2ti ti!

to simplify the above expression. Polynomi-

ality of f
(q;s)
n,K follows from the fact that the summation bounds are independent of K, so

f
(q;s)
n,K as expressed above is a polynomial combination of v

(s)
n,K;q−t+1, with coefficients that

are also independent of K.
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6.2 Enumeration of Vertical Arrays

At this point, we are ready to decompose proper vertical arrays. In this section, we
will focus on tree-shaped vertical arrays. Recall from Definition 3.5 that a paired array
α ∈ PA(q;s)

n,K;R is tree-shaped if the support graph of s is a tree. With tree-shaped vertical
arrays, we can delete a row that is a leaf in the support graph while keeping the support
graph a tree. This allows us to recursively decompose tree-shaped vertical arrays into
smaller tree-shaped vertical arrays and arrowed arrays. Then, by using the substructures
defined in the previous chapter, we can provide a formula for v

(s)
n,K;R when the support

graph of s is a tree.

Definition 6.6. Let α ∈ PVA(s)
n,K;R be an n-row proper vertical array with Ri as its set

of marked cells in row i, and ψi as its forest condition function for row i. A substructure
Λ = (x,P , φ) as defined in Definition 5.16 is Λ-compatible with row i of α if P = Ri and
φ = ψi. Furthermore, let R′1 and R′2 be such that 1 ≤ R′1 ≤ Ri and 1 ≤ R′2 ≤ K, and
suppose thatW is a x-subset of [si +Ri + x− 1] for some x ≥ 0. We define Λα,i,W to be the

substructure of AR(x+Ri−R′1)
K;R′1,R

′
2

with parameters Λα,i,W = (x,Ri, ψi), where x = (x1, . . . , xK)

and xj is the number of vertices inserted into cell (i, j) of α if W is inserted into row i of
α by the insertion procedure defined in Procedure 3.11.

By definition, Λα,i,W is Λ-compatible with row i of α. Note that unlike Θα,i,W , defined
in Definition 6.1, the parameters of the arrowed array is not predetermined by x. Also, by
summing over the number of vertices inserted into cell (i, j), we have |W| =

∑
j xj.

With this substructure defined, we can now decompose tree-shaped vertical arrays. Let
α ∈ PVA(s)

n+1,K;R be an (n+ 1)-row proper vertical array, and without loss of generality
assume that row n + 1 is a leaf vertex adjacent to row n in the support graph of s. To
extract row n+1 from α, we mark the cells in row n containing the critical vertices matched
with vertices in row n+ 1. Then, we remove all pairs between rows n and n+ 1, and delete
row n+1. To keep track of the removed vertices in row n, we use a (sn+1 − P +Rn)-subset
to represent the positions of the non-critical vertices, and an arrowed array to represent
the critical vertices and pairings of the vertices removed.

Theorem 6.7. Let n,K ≥ 1, s = (s1,2, s1,3, . . . , sn,n+1) ≥ 0, and R = (R1, . . . , Rn+1) ∈
[K]n+1. Suppose the support graph of s is a tree with the vertex n+ 1 as a leaf adjacent to
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the vertex n. Then, there exists a decomposition

ζ : PVA(s)
n+1,K;R →

min(sn+1+Rn,K)⋃
P=Rn

⋃
β∈PVA(s′)

n,K;R′
W∈[sn+Rn−1;sn+1−P+Rn]

(β,W ,Λβ,n,W)

of proper vertical arrays into a triple of smaller vertical arrays, (sn+1 − P +Rn)-subsets,

and arrowed arrays. Here, Λβ,n,W are substructures of AR(sn+1)
K;Rn,Rn+1

, s′ is s restricted to an
n × n matrix by removing the last row and column, si =

∑
k 6=i si,k for 1 ≤ i ≤ n + 1, and

R′ is a vector of length n given by

R′k =

{
Rk k < n

P k = n

Furthermore, this decomposition is a bijection.

Note that sn includes the vertex pairs between rows n and n+ 1, and the marked cells
in row n of β are given by R′n, which is a set of size P that contains Rn as a subset.

Proof. The proof of this theorem uses techniques similar to those in the proof of Theo-
rem 6.3. That is, we will provide the decomposition and its inverse, and prove that it is a
bijection. We take the mixed pairs between row n and row n+ 1 of α, and put them into
an arrowed array (σ, φ). Then, we add marked cells and arrows to (σ, φ) in such a way that
rows n and n + 1 of α have the same forest condition functions as rows 1 and 2 of (σ, φ),
respectively. To record the position of the non-critical vertices in row n, we extract and
record these vertices as a sn+1−P +Rn-subset of [sn +Rn − 1]. Finally, we mark the cells
of α containing the critical vertices of row n that are paired with vertices of row n+ 1, so
as to preserve the forest condition for row n.

Let V be the set of non-critical vertices that are paired with vertices of row n+1, and U
be the set of critical vertices that are paired with vertices of row n+1. Note that the vertices
of U and V must be in row n by our assumption, and that |U ∪ V| = sn+1. Furthermore,
the vertices of U must be in distinct columns, and these columns must be unmarked in row
n. Therefore, if we let P = Rn+ |U|, we have Rn ≤ P ≤ K. Furthermore, since |U| ≤ sn+1,
we have P ≤ sn+1 + Rn, which combines to give Rn ≤ P ≤ min (sn+1 +Rn, K). Then,
suppose that si,k,j is the number of vertices in cell (i, j) that are paired with vertices of
row k, where i 6= k. By Lemma 3.6, si,k,j = sk,i,j for all 1 ≤ i < k ≤ n+ 1 and 1 ≤ j ≤ K.
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Now, to construct the proper vertical array β ∈ PVA(s′)
n,K;R′ and the subset W ∈

[sn +Rn − 1; sn+1 − P +Rn], we first mark the cells containing the vertices of U , and
call this vertical array α′. By Proposition 6.2, α′ is also proper. Next, we unpair all vertex
pairs with one vertex in row n + 1, delete row n + 1, and call the resulting array α′′. As
this leaves all other mixed pairs unchanged, s′ describes the number of mixed pairs of α′′,
as it is the restriction of s to the first n rows and columns. Then, as the support graph of
s′ is the support graph of s with the vertex n+ 1 removed, the support graph of s′ is also
a tree. Also, note that deleting row n + 1 removes the variables sn+1,k,j and sk,n+1,j from
α′, but leaves the remaining si,k,j the same for all 1 ≤ i, k ≤ n, i 6= k. Therefore, we have
s′i,k,j = si,k,j for all 1 ≤ i, k ≤ n, so the conditions of Lemma 3.6 remain satisfied in α′′, so
α′′ satisfies the balance condition. In addition, since the vertices of U ∪ V are non-critical
in α′, they do not affect the forest condition. Therefore, the forest condition remains sat-
isfied when we unpair the vertices of U ∪ V and delete row n + 1. This means that α′′ is
a proper partially-paired array. Next, we remove the vertices of U from α′′ to obtain the
partially-paired array α′′′, and we extract V from α′′′ as described in Procedure 3.11 to
obtain the subset W and the vertical array β. Note that α′′′ has Rn + |U| marked cells,
sn− |U| total vertices, and |V| = sn− P +Rn unpaired vertices in row n. Therefore, W is
a sn − P +Rn-subset of sn +Rn − 1. Furthermore, by Proposition 3.12, β is also a proper
paired array. Notice that we have not changed any row other than row n and n + 1, so
R′k = Rk for k < n. Then, as row n of β has Rn + |U| marked cells, we have R′n = P . Also,
as with α′′, the set of mixed pairs in β is described by s′. Finally, as α has no non-mixed

pairs, neither does β, so β is a vertical array. Together, we have β ∈ PVA(s′)
n,K;R′ as desired.

To preserve information on the pairs we removed, we construct an arrowed array (σ, φ) ∈
Λβ,n,W such that ψn = ψ′1 and ψn+1 = ψ′2, where ψn and ψn+1 are the forest condition
functions for rows n and n+ 1 of α, while ψ′1 and ψ′2 are the forest condition functions for
rows 1 and 2 of (σ, φ), respectively. For each vertex v ∈ U ∪ V that is in cell (n, j), we
place a corresponding xv into cell (1, j) of σ. Similarly, for each vertex u in cell (n+ 1, j),
we place a corresponding vertex xu in cell (2, j) of σ. If we need to place more than one
vertex into the same cell, we place them in the same order in σ as they are in α. Then, for
each pair {v, u} between row n and n+1, we pair their corresponding vertices xu and xv in
σ. Next, we mark cell (1, j) of σ if cell (n, j) of α is marked, and we mark cell (2, j) of σ if
cell (n+ 1, j) of α is marked. Finally, suppose (n, j) of α contains a critical vertex u /∈ U .
Then, it must be paired with some vertex v in some cell (k, j′), where 1 ≤ k ≤ n − 1. In
this case, we let φ (j) = j′. This completes the construction of (σ, φ).

Now, to show that (σ, φ) ∈ Λβ,n,W = (x,R′n, θn), we need to first show that (σ, φ) is

in AR(sn+1)
K;Rn,Rn+1

. Then, we need to show (σ, φ) satisfies the balance and forest conditions,
as well the conditions defined by x, R′n, and θn, where R′n is the set of marked cells in

149



row n of β, and θn is the forest condition function for row n of β. By construction, the
set of marked cells in rows 1 and 2 of σ are the same as the set of marked cells in rows
n and n + 1 of α. Furthermore, there are |U| + |V| = sn+1 vertices in each row of σ, so

(σ, φ) ∈ AR(sn+1)
K;Rn,Rn+1

. Next, note that φ (j) is defined if and only if cell (n, j) of α contains
a critical vertex u /∈ U . Suppose u is paired with some vertex v, then cell (n, j) of β
remains unmarked, and u remains the rightmost vertex of β. Furthermore, as u is still
paired with the same vertex v, we have θn (j) = ψn (j). Correspondingly, we have defined
φ (j) to be the column that u resides in by construction of (σ, φ), so φ (j) = ψn (j) = θn (j).
Therefore, we have that φ = θn as desired.

Next, we will show that (σ, φ) satisfies the balance and forest conditions. Recall that
in our construction of σ, we placed a vertex in cell (1, j) of σ for every vertex in cell (n, j)
of U ∪V . Similarly, we placed a vertex into cell (2, j) of σ for every vertex in cell (n+ 1, j)
of α. Therefore, cell (1, j) of σ has sn,n+1,j vertices, and cell (2, j) of σ has sn+1,n,j vertices.
By Lemma 3.6, we have sn,n+1,j = sn+1,n,j for all j, so (σ, φ) satisfies the balance condition.

To show that (σ, φ) satisfies the forest condition, it suffices to show that ψn = ψ′1,
ψn+1 = ψ′2, Rn = R′1, and Rn+1 = R′2, where Rn and Rn+1 are the set of marked cells
for rows n and n + 1 of α, while R′1 and R′2 are the marked cells of rows 1 and 2 of
σ, respectively. Similarly, ψn and ψn+1 are the forest condition functions for rows n and
n + 1 of α, while ψ′1 and ψ′2 are the forest condition functions for rows 1 and 2 of (σ, φ),
respectively. This is because α is a proper vertical array, so ψn and ψn+1 must both satisfy
the forest condition. By construction, we have Rn = R′1. Furthermore, cell (n, j) of α is
empty if and only if cell (1, j) of σ is empty, and cell (n, j) of α is marked if and only if cell
(1, j) of σ is marked. Now, suppose cell (n, j) of α is unmarked, and the rightmost object
is a vertex u /∈ U . As explained in the previous paragraph, we have ψ′1 (j) = φ (j) = ψn (j).
Finally, suppose cell (n, j) of α is unmarked, and the rightmost object is a vertex u ∈ U .
Let v be the vertex in row n+1 that u is paired to, and suppose v is in column j′. Then, the
vertices xu and xv corresponding to u and v are paired with each other in σ. Furthermore,
xu and xv are in the same columns as u and v are in α, respectively. Since the vertices in
row 1 of σ are in the same relative order as the vertices of U ∪V , xu is the rightmost object
of cell (1, j) of σ. This gives us ψ′1 (j) = j′ = ψn (j). Combining these results, we have
ψn = ψ′1 as desired. The proof for row 2 is identical, except that since all critical vertices
of row n+ 1 are paired with vertices of row n, we can omit the case that requires φ (j).

Note that the set of marked cells in row 1 of σ is equal to the set of marked cells in
row n of α, so it is a subset of the set of marked cells in row n of β. Then, if we reinsert
W into row n of β, we recover α′′′ and the set V of extracted vertices by Proposition 3.12.
Recall that by construction, for each vertex v ∈ V in cell (n, j) of α, we have placed a
vertex xv cell (1, j) of σ. Furthermore, if cell (n, j) is marked in β, then it must either
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be marked in α, or contain a vertex u ∈ U . In the former case, cell (1, j) is marked in
σ, and in the latter case, it is unmarked and contains the vertex xu. Therefore, cell (1, j)
of σ contains xj + 1 vertices if cell (n, j) is marked in β and contains a critical vertex
in σ, and xj vertices, otherwise. Therefore, (σ, φ) satisfies x and R′n. Together, we have
(σ, φ) ∈ Θβ,i,W as desired.

Conversely, let β ∈ PVA(s′)
n,K;R′ , W ∈ [sn +Rn − 1; sn+1 − P +Rn], and (σ, φ) ∈

AR(sn+1)
K;Rn,Rn+1

that satisfies Λβ,n,W . We first construct partially-paired array β′ by inserting
W into row n of β as described in Procedure 3.11. This gives us a set V of unpaired
vertices in β′, which are labelled with the elements of W by the insertion procedure. By
Proposition 3.12, β′ is a proper partially-paired array. Furthermore, by the definition of
Λβ,n,W , the vertices of V are in the same columns as the non-critical vertices in row 1 of σ.
Therefore, we can create a correspondence between the vertices of V and the non-critical
vertices in row 1 of σ. We do this by labelling the non-critical vertices in row 1 of σ with
W from left to right, ignoring the critical vertices and boxes used for marking cells. Then,
for each vertex v ∈ V , we let xv be the non-critical vertex in row 1 of σ that acquired the
same label as v. Next, consider each cell (1, j) of σ that contains a critical vertex. Since
Λβ,n,W is Λ-compatible with β, cell (n, j) of β must be marked. Furthermore, as the set
of marked cells is the same between β and β′, cell (n, j) of β′is also marked. This means
that we can add an unpaired vertex u to cell (n, j), which we place to the right of all other
vertices in that cell. Similarly to the vertices of V , we let the corresponding vertex in cell
(1, j) of σ be xu. After adding these vertices, we let the resulting partially-paired array
be β′′, and let the set of vertices added to obtain β′′ be U . By Proposition 3.12, β′′ is a
proper partially-paired array. Since row n of β′′ has P marked cells, while row 1 of σ has
Rn marked cells, we have |U| = P − Rn. Also, since W is a (sn+1 − P +Rn)-subset, we
have |U| + |V| = sn+1 as desired. Next, we extend β′′ by adding row n + 1, and for each
cell (2, j) of σ that is marked, we mark cell (n+ 1, j) of β′′. Similarly, for each vertex xv in
cell (2, j) of σ, we add a corresponding vertex v in row (n+ 1, j) of β′′. Then, for each pair
{xu, xv} in σ, we pair their corresponding vertices u ∈ U ∪ V and v in row n+ 1. We call
the resulting array β′′′. Finally, to recover α, we unmark the cells containing the vertices
of U .

To show that α ∈ PVA(s)
n+1,K;R, we need to show that α satisfies the parameters R

and s, and that it satisfies the balance and forest condition. Since β satisfies the balance
condition, by Lemma 3.6, s′i,k,j = s′k,i,j for all 1 ≤ i < k ≤ n and 1 ≤ j ≤ K. Note
that for each vertex in cell (1, j) of σ, we have added a vertex in cell (n, j) of β′′′ and
have paired it with a vertex in row n + 1. Similarly, for each vertex in cell (2, j) of σ, we
have added a vertex to cell (n+ 1, j) of σ. As σ satisfies the balance condition, we obtain
sn,n+1,j = sn+1,n,j. Next, note that si,k,j = s′i,k,j for 1 ≤ i, k ≤ n, as the only pairs we have
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added are between rows n and n+ 1. Furthermore, sn+1,k,j = sk,n+1,j = 0 for k < n, as all
vertices in row n + 1 are paired with vertices of row n by construction. This means that
the si,k,j satisfies Lemma 3.6, so β′′′ and α satisfies the balance condition. Now, as the
vertices of U ∪ V are in row n and |U ∪ V| = sn+1, α has sn+1 mixed pairs between rows n
and n + 1. Then, as the vertices of row n + 1 are only paired with vertices of row n, we
have sn,n+1 = sn+1 and sn+1,k = 0 for k < n. Furthermore, the set of marked cells is the
same between α and β for the first n − 1 rows, so R′k = Rk for 1 ≤ k ≤ n − 1. Also note
that row n of α has R′n − |U| = Rn marked cells in row n, as R′n = P and |U| = P − Rn.
Finally, row n + 1 of α has Rn+1 marked cells in row n + 1, as the set of marked cells in
row n + 1 of α is the same as the set of marked cells in row 2 of σ. Therefore, α satisfies
R and s as desired.

What remains to be shown is that α satisfies the forest condition. As the other rows are
unchanged, we only have to show that the forest condition holds for rows n and n+ 1. To
this end, we will show that ψn = ψ′1, ψn+1 = ψ′2, Rn = R′1, and Rn+1 = R′2, where Rn and
Rn+1 are the set of marked cells for rows n and n+1 of α, while R′1 and R′2 are the marked
cells of rows 1 and 2 of σ, respectively. Similarly, ψn and ψn+1 are the forest condition
functions for rows n and n + 1 of α, while ψ′1 and ψ′2 are the forest condition functions
for rows 1 and 2 of (σ, φ), respectively. Note that (σ, φ) ∈ Λβ,n,W implies that (σ, φ) is
Λ-compatible with row n of β, so φ is the forest condition for row n of β. Furthermore, if
R′n is the set of marked cells in row n of β, then by Definition 5.11, R′n is also the set of
columns that contains the marked cells and critical vertices in row 1 of σ.

Now, consider cell (n, j) of β. Suppose that the cell is empty, then φ (j) is undefined. As
j is not in R′n, cell (1, j) of σ is also empty, so ψ′1 (j) is undefined. Then, since the vertices
of U and V are unpaired in β′′, they are added only to non-empty cells of β. Therefore,
both cell (n, j) of β′′ and cell (n, j) of α remains empty, so ψn (j) is also undefined. Next,
suppose cell (n, j) of β contains a critical vertex u, paired with some other vertex v. In this
case, φ (j) is defined, and ψ′1 (j) = φ (j). Again, since the vertices of U and V are unpaired
in β′′, they are not the rightmost objects of their cells, so the set of critical vertices of β
and β′′ are the same. Furthermore, since cell (n, j) of β′′ is already unmarked, unmarking
marked cells has no effect on u. In particular, u remains a critical vertex in α, and is paired
with the same vertex v. Therefore, ψ′1 (j) = φ (j) = ψn (j). On the other hand, if cell (n, j)
of β and cell (1, j) of σ are both marked, then cell (1, j) of σ only contain the vertices of
V , as we only add vertices of U to a cell (n, j) of β′′ if cell (1, j) of σ contains a critical
vertex. Hence, cell (n, j) of α remains marked when we unmark the columns containing
vertices of U . In this case, neither ψ′1 (j) nor ψn (j) are defined. Finally, if cell (n, j) of β is
marked, but cell (1, j) of σ is not, then cell (1, j) must contain a critical vertex xu paired
with some vertex xv in a column j′. In our construction of β′′, we have added vertices
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u ∈ U to cell (n, j) corresponding to xu. Furthermore, we have added a vertex v to cell
(n+ 1, j) in β′′′ corresponding to xv. When cells containing the vertices of U are unmarked,
u becomes a critical vertex. Since u is paired with v and xu is paired with xv, we have
ψ′1 (j) = j′ = ψn (j). Combining these results, we have ψn = ψ′1 as desired. Finally, as cell
(n, j) of α is marked if and only if cell (1, j) of σ is marked, we have Rn = R′1 as well.

The proof that ψn+1 = ψ′2 is similar. Note that cell (n+ 1, j) is marked in α if and only
if cell (2, j) is marked in σ by construction. Therefore, we have Rn+1 = R′2. Next, suppose
that cell (n+ 1, j) of α contains a critical vertex v, paired with some vertex u in cell (n, j′)
for some j′. Then, their corresponding vertices xu and xv must be in cell (2, j) and cell
(1, j′) of σ respectively. Furthermore, cell (2, j) of σ must be unmarked by construction,
so we have ψn+1 (j) = ψ′2 (j). Together, we have ψn+1 = ψ′2, as desired. This shows that α

satisfies the forest condition, so α ∈ PVA(s)
n+1,K;R.

Finally, we have to show that the two operations presented are inverses of each other.
By Proposition 3.12, the extraction and insertion procedures are inverses. Furthermore,
if we extract V and reinsert it, the vertices inserted acquire the same labels as before the
extraction. Therefore, we can correspond the non-critical vertices in row 1 of (σ, φ) with
the vertices of V . Then, the columns which contain the critical vertices U are exactly the
columns of (σ, φ) that contain critical vertices in row 1. This allows us to recover the
columns of U , so that we can add critical vertices and unmark cells. Similarly, the vertices
in row 2 of (σ, φ) correspond to the vertices of row n+1 of α. As we have a correspondence
between the vertices of U ∪ V and vertices of row n + 1 with the vertices in row 1 and 2
of (σ, φ), respectively, we can recover the pairing of the removed vertices via the pairing of
vertices in (σ, φ). Therefore, ζ as described, is a bijection.

Note that in the proof of Theorem 6.7, α′ and β′′′ corresponds to each other, so does
α′′ and β′′, as well as α′′′ and β′. Also, note that the decomposition works with any row
that is a leaf vertex of the support graph. The assumption that the leaf vertex is n + 1
and is adjacent to vertex n is only for the convenience of proving the theorem. With this
decomposition, we can iteratively pick a row where the support graph of s is a leaf, and
remove that row. This leaves arrowed arrays with support graph s′, which is a tree with
n rows, so we can repeat the induction. Therefore, we can reduce the problem to 1 row
vertical arrays, for which the answer is simply

(
K
R1

)
.

As an example, we will decompose the tree-shaped vertical array in Figure 6.5. As the
edges are between rows 1 and 2, rows 2 and 3, and rows 2 and 4, the support graph of s is
a tree. By following the decomposition described in Theorem 6.7, we can decompose row 4
and arrive at the partially-paired array α′′ and α′′′, as depicted in Figure 6.6. For clarity, we
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Figure 6.5: A tree-shaped, 4-row vertical array

have marked the vertices of U and V in α′′, and labelled the objects in row 2 of α′′′. After
the decomposition, we obtain the minimal array β and the arrowed array (σ, φ), depicted
in Figure 6.7. We also obtain the subset W4 = {1, 2, 6} ∈ [12; 3] and P4 = 3. We can
then continue the decomposition with row 3. This gives us the subsetW3 = {2, 4} ∈ [9; 2],
P3 = 4, and the arrowed array in the left figure of Figure 6.8. Subsequently decomposing
row 2 gives us the subsetW2 = {3, 4, 6} ∈ [6; 3], P2 = 4, and the arrowed arrays in the right
figure of Figure 6.8. The final resulting vertical array is a 1-row array with no vertices,
and cells 1, 2, 4, and 5 marked, as depicted in Figure 6.9.

Now that we have a decomposition of tree-shaped vertical arrays, we can provide an
explicit formula for v

(s)
n,K;R via induction. We start with the following corollary.

Corollary 6.8. Let n,K ≥ 1, s = (s1,2, s1,3, . . . , sn,n+1) ≥ 0, and R = (R1, . . . , Rn+1) ∈
[K]n+1. Suppose the support graph of s is a tree with the vertex n+ 1 as a leaf adjacent to

154



VV V U U

� � �

� � �

� � � �

5 8 11

1 2 3 4 6 7 9 10 12 13

� � �

� � �

� � � �

Figure 6.6: Partially-paired array α′′ and α′′′ corresponding to the decomposition of row 4
of Figure 6.5

� � �

� � �

� � � �

�

� �

Figure 6.7: Minimal array β and arrowed array (σ, φ) corresponding to the decomposition
of row 4 of Figure 6.5
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Figure 6.8: Arrowed arrays from the decomposition of row 3, then row 2, of Figure 6.7

� � � �

Figure 6.9: 1-row vertical array from the complete decomposition the vertical array in
Figure 6.5

the vertex n. Then,

v
(s)
n+1,K;R =

min(sn+1+Rn,K)∑
P=Rn

min(sn+1,K)−1∑
An+1=0

(
sn +Rn − 1

sn+1 − P +Rn

)
v

(s′)
n,K;R′ ×

(sn+1 − P +Rn) (K − An+1 − 1)! (sn+1 − An+1 − 1)! (P − 1)!

(P −Rn − An+1)! (K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

where s′ is s restricted to an n × n matrix by removing the last row and column, si =∑
k 6=i si,k for 1 ≤ i ≤ n+ 1, and R′ is a vector of length n given by

R′k =

{
Rk k < n

P k = n

Proof. Let P be such that Rn ≤ P ≤ min (sn+1 +Rn, K), β ∈ PVA(s′)
n,K;R′ be an n-row

vertical array with parameters as defined in Theorem 6.7, W be a (sn+1 − P +Rn)-subset

of [sn +Rn − 1], and Λβ,n,W be a substructure of AR(sn+1)
K;Rn,Rn+1

. As β is a proper vertical
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array, the forest condition function θn for row n satisfies the forest condition, so it is a
forest with root vertices P = R′n. Therefore, by applying Corollary 5.20, we have

T (Λβ,n,W) =

min(sn+1,K)−1∑
An+1=0

(sn+1 − P +Rn) (K − An+1 − 1)! (sn+1 − An+1 − 1)! (P − 1)!

(P −Rn − An+1)! (K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

Note that this formula is independent on β and W , and only depends on P . Furthermore,
the constraint Rn ≤ P ≤ min (sn+1 +Rn, K) matches with the definition of substructure Λ.
Then, for a given P , there are

(
sn+Rn−1

sn+1−P+Rn

)
distinct (sn+1 − P +Rn)-subset of [sn +Rn − 1].

Finally, for a given R′n = P , there are v
(s′)
n,K;R′ proper vertical arrays. Combining these gives

the formula of our corollary as desired.

As we have assumed that the support graph G of s is a tree, we can repeatedly select a
row that corresponds to a leaf vertex in G, and iterate the decomposition in Theorem 6.7.
Then, by taking the cardinality of both sides, we obtain the following theorem.

Theorem 6.9. Let n,K ≥ 1, s ≥ 0, and R ≥ 1. Suppose the support graph G of s is a
tree. Then,

v
(s)
n,K;R =

min(se1 ,K)−1∑
Ae1=0

· · ·
min(sen−1 ,K)−1∑

Aen−1=0

[
n−1∏
j=1

(
K − Aej − 1

)
!(

K + sej − Aej − 1
)
!
×

n∏
i=1

(K +
∑

k∼i (si,k − Ai,k − 1))! (Ri − 1 +
∑

k∼i si,k)!

(Ri − 1)! (K −Ri −
∑

k∼iAi,k)! (Ri +
∑

k∼i (si,k − 1))!

]

where e1, . . . , en−1 are the edges of G. Furthermore, for each edge ej = {i, k} in G, the
summation variable Aej can be equivalently written as Ai,k and Ak,i. Finally, the sum

∑
k∼i

is over all indices k that are adjacent to i in the support graph of s.

For example, if n = 3 and s2,3 = 0, the formula reduces to

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s1,3,K)−1∑
A1,3=0

[
(K − A1,2 − 1)! (K − A1,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)! (K −R2 − A1,2)!
×

(K + s1,2 + s1,3 − A1,2 − A1,3 − 2)! (R1 + s1,2 + s1,3 − 1)!

(K −R3 − A1,3)! (K −R1 − A1,2 − A1,3)! (R1 + s1,2 + s1,3 − 2)!

]
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Notice that the bounds on Aej ensure that the factorials in the numerators are non-negative.
As we shall later see, we can remove the upper bounds of K−1, but upper bounds of sej−1

are necessary and cannot be removed. For a list of expressions of v
(s)
n,K;R for small values

of n, see A.

Proof. Note that if Ri > K for some i, we have 1

(K−Ri−
∑

k∼i Ai,k)!
in the denominator of our

summation term. This causes the entire sum to be zero, consistent with our convention
that requires v

(s)
n,K;R = 0 in such cases. Otherwise, we prove this theorem via induction on

the number of rows.

Base case:

Suppose n = 1, then there are exactly
(
K
R1

)
vertical arrays in PVA(s)

1,K;R1
, as 1-row

vertical arrays cannot contain mixed pairs. Hence, arrays in PVA(s)
1,K;R1

have K columns,
R1 marked cells, and no vertices. On the other hand, this also means that the variables
sej and summations Aej do not appear in v

(s)
1,K;R1

, so our inductive formula reduces to

v
(s)
1,K;R1

=
K! (R1 − 1)!

(R1 − 1)! (K −R1)!R1!

=

(
K

R1

)
which agrees with our base case as desired.

Inductive step:

We want to prove that v
(s)
n+1,K;R gives the number of vertical arrays in PVA(s)

n+1,K;R,
assuming that the formula is true for n-row vertical arrays. Let s = (s1,2, s1,3, . . . , sn,n+1) ≥
0 and R = (R1, . . . , Rn+1) ≥ 1. Without loss of generality, assume that the functional
digraph of s has vertex n+1 as a leaf, and is adjacent to vertex n. Then, for convenience of
notation, let si =

∑
k∼i si,k, Ai =

∑
k∼iAi,k, and δi =

∑
k∼i 1 for 1 ≤ i ≤ n+ 1. Note that

since n+ 1 is a leaf adjacent to n, we have sn+1 = sn,n+1 and An+1 = An,n+1. Furthermore,
let the e1, . . . , en be the edges of the support graph of s, with en being the edge between
vertex n and n + 1. This means that for 1 ≤ i ≤ n − 1, Ai does not contain the variable
An,n+1.

Now, by applying s′n = sn − sn+1 to our inductive hypothesis, we have
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v
(s′)
n,K;R′ =

min(se1 ,K)−1∑
Ae1=0

· · ·
min(sen−1 ,K)−1∑

Aen−1=0

[
n−1∏
j=1

(
K − Aej − 1

)
!(

K + sej − Aej − 1
)
!
×

n−1∏
i=1

(K + si − Ai − δi)! (Ri + si − 1)!

(Ri − 1)! (K −Ri − Ai)! (Ri + si − δi)!
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (P + sn − sn+1 − 1)!

(P − 1)! (K − P − An + An+1)! (P + sn − sn+1 − δn + 1)!

]
Note that An and δn are substituted with An−An+1 and δn−1, respectively, as the support
graph of s′ does not contain the edge en = {n, n+ 1}. To simplify the expression for further
manipulation, we let C

(
Ae1 , . . . , Aen−1

)
to be the first two products inside the sum. That

is, we rewrite the above expression as

v
(s′)
n,K;R′ =

∑
Ae1 ,...,Aen−1

C
(
Ae1 , . . . , Aen−1

)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (P + sn − sn+1 − 1)!

(P − 1)! (K − P − An + An+1)! (P + sn − sn+1 − δn + 1)!
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Then, we can substitute this expression into Corollary 6.8, which gives

v
(s)
n+1,K;R =

min(sn+1+Rn,K)∑
P=Rn

∑
Ae1 ,...,Aen−1

C
(
Ae1 , . . . , Aen−1

)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (P + sn − sn+1 − 1)!

(P − 1)! (K − P − An + An+1)! (P + sn − sn+1 − δn + 1)!
×

(sn +Rn − 1)!

(sn+1 − P +Rn)! (sn − sn+1 − 1 + P )!
×

min(sn+1,K)−1∑
An+1=0

(sn+1 − P +Rn) (K − An+1 − 1)! (sn+1 − An+1 − 1)! (P − 1)!

(P −Rn − An+1)! (K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

=
∑

Ae1 ,...,Aen−1

min(sn+1,K)−1∑
An+1=0

min(sn+1,K−Rn)∑
P=0

C
(
Ae1 , . . . , Aen−1

)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (sn +Rn − 1)!

(K − P −Rn − An + An+1)! (P +Rn + sn − sn+1 − δn + 1)!
×

(K − An+1 − 1)! (sn+1 − An+1 − 1)!

(sn+1 − P − 1)! (P − An+1)! (K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

In the second equation, we have shifted the summation index P down by Rn, and have
also rearrange the order of summation. This can be done as the summation bounds are
independent of other summation variables. Now, recall that as discussed in Section 1.3,
we can take 1

x!
to be zero if x is a negative integer. This means that for P ≥ sn+1 − 1

and P ≥ K − Rn − An + An+1 ≥ K − Rn, the entire summation term is zero, as we have
(sn+1 − P − 1)! and (K − P −Rn − An + An+1)! in the denominator. Note that An ≥
An+1 comes from the vertex n being the only vertex adjacent to the vertex n + 1 in the
support graph. Also note that P is not part of the numerator, so we can safely increase
the upper bound of the P summation to infinity, without creating a negative factorial in
the numerator. Furthermore, if P < An+1, then the summation term is also zero, as we
have (P − An+1)! in the denominator. This allows us to substitute P = Q + An+1, and
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sum over Q ≥ 0 instead. By doing these substitutions, we obtain

v
(s)
n+1,K;R =

∑
Ae1 ,...,Aen−1

min(sn+1,K)−1∑
An+1=0

∑
Q≥0

C
(
Ae1 , . . . , Aen−1

)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (sn +Rn − 1)!

(K −Q−Rn − An)! (Q+Rn + An+1 + sn − sn+1 − δn + 1)!
×

(K − An+1 − 1)! (sn+1 − An+1 − 1)!

(sn+1 − An+1 −Q− 1)!Q! (K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

=
∑

Ae1 ,...,Aen−1

min(sn+1,K)−1∑
An+1=0

C
(
Ae1 , . . . , Aen−1

)
×

2F1

(
−sn+1 + An+1 + 1,−K +Rn + An
Rn + An+1 + sn − sn+1 − δn + 2

; 1

)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (sn +Rn − 1)!

(K −Rn − An)! (Rn + An+1 + sn − sn+1 − δn + 1)!
×

(K − An+1 − 1)!

(K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

=
∑

Ae1 ,...,Aen−1

min(sn+1,K)−1∑
An+1=0

C
(
Ae1 , . . . , Aen−1

)
×

(An+1 + sn − sn+1 − δn +K − An + 2)(sn+1−An+1−1)

(Rn + An+1 + sn − sn+1 − δn + 2)(sn+1−An+1−1)
×

(K + sn − sn+1 − An + An+1 − δn + 1)! (sn +Rn − 1)!

(K −Rn − An)! (Rn + An+1 + sn − sn+1 − δn + 1)!
×

(K − An+1 − 1)!

(K −Rn+1 − An+1)! (Rn − 1)! (Rn+1 − 1)!

=
∑

Ae1 ,...,Aen−1

min(sn+1,K)−1∑
An+1=0

C
(
Ae1 , . . . , Aen−1

)
×

(K + sn − An − δn)! (Rn + sn − 1)! (K − An+1 − 1)!

(Rn − 1)! (K −Rn − An)! (Rn + sn − δn)! (K −Rn+1 − An+1)! (Rn+1 − 1)!

where we have used the Chu-Vandermonde identity introduced in Proposition 1.3. Finally,
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note that since δn+1 = 1, we have

(K + sn+1 − An+1 − δn+1)! (Rn+1 + sn+1 − 1)!

(K + sn+1 − An+1 − 1)! (Rn+1 + sn+1 − δn+1)!
= 1

Multiplying this by the formula we obtained for v
(s)
n+1,K;R and expanding C

(
Ae1 , . . . , Aen−1

)
,

we obtain

v
(s)
n+1,K;R =

min(se1 ,K)−1∑
Ae1=0

· · ·
min(sen ,K)−1∑

Aen=0

[
n∏
j=1

(
K − Aej − 1

)
!(

K + sej − Aej − 1
)
!
×

n+1∏
i=1

(K + si − Ai − δi)! (Ri + si − 1)!

(Ri − 1)! (K −Ri − Ai)! (Ri + si − δi)!

]

which proves our induction as desired.

To remove the upper bounds of K − 1 in Theorem 6.9, we will for each edge e of the
support graph of s, assign a vertex v that is incident to e. This will allow us to regroup the
factorial terms in v

(s)
n,K;R, which will allow us to rewrite the expression with rising factorials.

Proposition 6.10. Let T = (V,E) be a tree on n vertices, and x be a fixed vertex in V .
Then, there exists a bijection ρ : E → V \ {x} such that for e ∈ E, ρ (e) is a vertex incident
to e.

Proof. We prove this by induction. The proposition trivially holds for n = 1. Suppose
that for some n > 1, the result holds for trees with n − 1 vertices. Since trees with more
than one vertex have at least 2 leaves, let v0 be a leaf of T distinct from x, and e0 be
the edge incident to v0. Then, by deleting v0 and e0, we obtain a tree T ′ = (V ′, E ′) with
n − 1 vertices, one of which is x. Hence, our inductive hypothesis gives us a bijection
ρ′ : E ′ → V ′\ {x} such that for e ∈ E ′, ρ′ (e) is a vertex incident to e in T ′. From this, we
can define ρ : E → V \ {x} such that

ρ (e) =

{
v0 if e = e0

ρ′ (e) otherwise

For each e ∈ E, ρ (e) is a vertex incident to e. This is because either e = e0, which is
incident to v0 by construction, or e ∈ E ′, in which case the result follows from T ′ being
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a subtree of T . Furthermore, as the vertices of V ′ are distinct from v0, ρ is an injective
function. The fact that |E| = |V \ {x}| shows that ρ is bijective, as desired.

Note that in Proposition 6.10, we can let V = [n], E = {e1, . . . , en−1}, and x = n.
Furthermore, we can label the edges in E such that for 1 ≤ j ≤ n − 1, ρ (ej) = j. By

pairing off the factorial terms in v
(s)
n,K;R involving the edge ej and terms involving its incident

vertex j, we have the following corollary.

Corollary 6.11. Let n,K ≥ 1, s ≥ 0, and R ≥ 1. Suppose that the support graph G of s is
a tree with edges e1, . . . , en−1, such that ej is incident with vertex j in G for 1 ≤ j ≤ n− 1.
Then,

v
(s)
n,K;R =

n∏
i=1

(Ri − 1 +
∑

k∼i si,k)!

(Ri − 1)! (Ri +
∑

k∼i (si,k − 1))!
×

se1−1∑
Ae1=0

· · ·
sen−1−1∑
Aen−1=0

(
K −Rn −

∑
k∼n

An,k + 1

)(
∑

k∼n(sn,k−1)+Rn)

×

n−1∏
j=1

(K −Rj −
∑
k∼j

Aj,k + 1

)(Rj+
∑

k∼j Aj,k−Aej−1)

×

(
K + sej − Aej

)(∑k∼j(sj,k−Aj,k−1)−sej +Aej +1)
]

(6.1)

where for each edge ej = {j, `} in G, the summation variable Aej can be equivalently written
as Aj,` and A`,j. As in Theorem 6.9, the sum

∑
k∼j is over all indices k that are adjacent

to j in the support graph of s. Furthermore, v
(s)
n,K;R as expressed in this corollary is a

polynomial in K.

Note that we have dropped the upper bounds of K − 1 from each of the sums in the
corollary. However, the bounds of sej − 1 are vital, and cannot be removed.

For example, suppose n = 3 and s1,2 = 0. Then, we can let e1 = {1, 3} and e2 = {2, 3},
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so the formula for v
(s)
n,K;R can be written as

v
(s)
n,K;R =

(R1 + s1,2 + s1,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)! (R1 + s1,2 + s1,3 − 2)!
×

s1,3−1∑
A1,3=0

s2,3−1∑
A2,3=0

(K −R3 − A1,3 − A2,3 + 1)(R3+s1,3+s2,3−2) ×[
(K −R1 − A1,3 + 1)(R1−1) (K −R2 − A2,3 + 1)(R2−1)

]
Alternatively, suppose n = 3 and s1,3 = 0. Then, we can let e1 = {1, 2} and e2 = {2, 3},
so the formula for v

(s)
n,K;R can be written as

v
(s)
n,K;R =

n∏
i=1

(R1 + s1,2 + s1,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)! (R1 + s1,2 + s1,3 − 2)!
×

s1,2−1∑
A1,2=0

s2,3−1∑
A2,3=0

(K −R3 − A2,3 + 1)(R3+s2,3−1) ×[
(K −R1 − A1,2 + 1)(R1−1) (K −R2 − A1,2 − A2,3 + 1)(R2+A1,2−1)×

(K + s2,3 − A2,3)(s1,2−A1,2−1)
]

In both instances, rising factorials of the form x(0) are omitted for clarity. Furthermore,
these are effectively equivalent expressions, the only difference being the labelling of the
vertices in the support graph of s.

Proof. First, we need to show that the expression in Corollary 6.11 is well defined. For
that, we need to show that the factorial terms in the numerator are non-negative, and
that the rising factorials each have a non-negative number of terms. That is, for each
rising factorial x(y), we need to show that y ≥ 0. Observe that for 1 ≤ i, k ≤ n, we have
Ri ≥ 1 and si,k ≥ 0. Together, this gives Ri − 1 +

∑
k∼i si,k ≥ 0, so the factorials in

the numerator are well defined. Then, for each si,k that appears in the sum
∑

k∼n sn,k,
we have si,k ≥ 1, as we are only summing over terms si,k where {i, k} is an edge of
the support graph of s. This gives

∑
k∼n (sn,k − 1) + Rn ≥ 0. By our convention in

labelling the edges, each edge ej is incident to the vertex j, so can we let ej = {j, `}.
This means that Aj,` appears in the sum

∑
k∼j Aj,k, so

∑
k∼j Aj,k − Aej =

∑
k∼j
k 6=`

Aj,k ≥ 0,

which gives Rj +
∑

k∼j Aj,k − Aej − 1 ≥ 0. Similarly, sj,` appears in the sum
∑

k∼j sj,k,
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so
∑

k∼j (sj,k − Aj,k − 1) − sej + Aej + 1 =
∑

k∼j
k 6=`

(sj,k − Aj,k − 1) ≥ 0, as the summation

bounds of the expression gives Aej ≤ sej − 1 for all edges ej in the support graph. This
shows that the rising factorials all have a non-negative number of terms in them, so the
entire expression is well defined.

Next, we need to show that the expression in Corollary 6.11 gives the same values as
the expression in Theorem 6.9. Recall that we have assumed that each edge ej is incident
to vertex j in the support graph of s. Therefore, we can rearrange the expression in
Theorem 6.9 to

v
(s)
n,K;R =

n∏
i=1

(Ri − 1 +
∑

k∼i si,k)!

(Ri − 1)! (Ri +
∑

k∼i (si,k − 1))!
×

min(se1 ,K)−1∑
Ae1=0

· · ·
min(sen−1 ,K)−1∑

Aen−1=0

(K +
∑

k∼n (sn,k − An,k − 1))!

(K −Rn −
∑

k∼nAn,k)!
×

n−1∏
j=1

 (
K − Aej − 1

)
!(

K −Rj −
∑

k∼j Aj,k

)
!
·

(
K +

∑
k∼j (sj,k − Aj,k − 1)

)
!(

K + sej − Aej − 1
)
!

 (6.2)

Furthermore, recall from Chapter 3 that for integers x and y such that x ≥ 0, we have
x!

(x−y)!
= (x− y + 1)(y). Then, observe that the summation bounds implies that 0 ≤ Aej ≤

K − 1 and 0 ≤ Aej ≤ sej − 1, so in rows 2 and 3 of (6.2), the factorials in the numerator
are non-negative. Therefore, we can use this fact to convert the ratios of factorials into
rising factorials. Doing so shows that the summation terms in (6.1) and (6.2) are equal if
0 ≤ Aej ≤ min (se1 , K)− 1 holds for all edges ej. As both expressions contain the bounds
0 ≤ Aej ≤ sej − 1, it remains to show that the summation term in (6.1) is equal to zero if
Aej ≥ K for some edge ej.

Suppose 0 ≤ Ae` ≤ se` − 1 holds for all edges e`, but there exists some edge ej such
that Aej ≥ K. Let G′ = (V ′, E ′) be the graph on n vertices, such that {i, k} ∈ E ′ if Ai,k is
defined and Ai,k ≥ K. As Ai,k is defined if and only if si,k > 0, G′ is a subgraph of G, so G′

is a forest. Therefore, each component of G′ must have one more vertex than the number
of edges in the component. Let V be the set of vertices in G′ with degree at least one, and
V̂ be the set of vertices such that for v ∈ V̂ , we have ev ∈ E ′. As we have assumed that

Aej ≥ K, V̂ is non-empty, so
∣∣V ∣∣ > ∣∣∣V̂ ∣∣∣. Let ` ∈ V \V̂ . Then, ` is incident to some edge
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{j, `} ∈ G′, but e` /∈ G′. If ` = n, then(
K −Rn −

∑
k∼n

An,k + 1

)(
∑

k∼n(sn,k−1)+Rn)

=
(K +

∑
k∼n (sn,k − An,k − 1))!

(K −Rn −
∑

k∼nAn,k)!

= 0

as K +
∑

k∼n (sn,k − An,k − 1) ≥ K > 0 implies that the factorial in the numerator is non-
negative, while K −

∑
k∼nAn,k ≤ K − An,` ≤ 0 and Rn ≥ 1 implies that the denominator

is the factorial of a negative integer. Otherwise, we have ` 6= n, which yields(
K −R` −

∑
k∼`

A`,k + 1

)(R`+
∑

k∼` A`,k−Ae`
−1)

=
(K − Ae` − 1)!

(K −R` −
∑

k∼`A`,k)!

= 0

as e` /∈ G′ implies that 0 ≤ e` ≤ K − 1, which means that the factorial in the numerator
is non-negative. Since {j, `} ∈ G′, we have K −

∑
k∼`A`,k ≤ K − A`,j ≤ 0 and R` ≥ 1,

so the denominator is the factorial of a negative integer. In both cases, at least one of the
rising factorial is zero within the summation term, so the entire term is zero if Aej ≥ K,
as desired.

Note that the numbers of terms in the rising factorials are independent of K, so each
summation term in (6.1) can be written as a polynomial of K. Furthermore, as the number
of summation terms is bounded by the sej ’s, the number of terms is finite and independent
of K. Therefore, the entire sum is a polynomial in K. Finally, the factorials outside the
sum are independent of K, so the entire expression for v

(s)
n,K;R as written in this corollary

is a polynomial in K, as desired.

With this, we have obtained an expression for v
(s)
n,K;R that is a polynomial in K for all

R ≥ 1, if the support graph of s is a tree. We can then substitute this into Corollary 6.5
to obtain a polynomial expression for f

(q;s)
n,K by Theorem 3.7. Then, using Fact 2.4, we can

substitute K = x into the expression for f
(q;s)
n,K to obtain A

(q;s)
n (x). This solves the problem

we have laid out in Section 2.1, for the cases when the support graph of s is a tree. Explicit
computations of A

(q;s)
n (x) for small values of n, q, and s can be found in B.
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Chapter 7

Applications and Conclusion

7.1 Reduction of Main Result to n = 1, 2

In this section, we will show how our results generalize the formulas of Harer and Zagier [19]
for n = 1, and Goulden and Slofstra [18] for n = 2, introduced in Section 2.3 and Section 2.4
respectively. To achieve this, we combine the results of Corollary 6.5 and Theorem 6.9 to
obtain an expression for f

(q;s)
n,K , and do the necessary algebraic manipulations to transform

the expression into a form we desire. By Fact 2.4, we can substitute K = x into the
expression for f

(q;s)
n,K to obtain A

(q;s)
n (x), and compare it with the formulas presented in

those two papers to see that they are equal.

In the case n = 1 of our main problem, there are no mixed pairs. Thus, vertical arrays
in VA(s)

1,K;R1
contain K columns, zero vertices, and R1 marked cells, arbitrary placed. By

direct computation, we see that v
(s)
1,K;R1

=
(
K
R1

)
. For simplicity, we let q = q1 and t = t1.

Substituting this into Corollary 6.5, and using the fact that (2q − 1)!! = (2q)!
2qq!

, we have
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f
(q;s)
n,K =

q∑
t=0

(2q)!

2tt! (q − t)!
·
(

K

q − t+ 1

)

= (2q − 1)!!

q∑
t=0

q!

2t−qt! (q − t)!
·
(

K

q − t+ 1

)

= (2q − 1)!!

q∑
k=0

2k
q!

k! (q − k)!
·
(

K

k + 1

)
= (2q − 1)!!

∑
k≥1

2k−1

(
q

k − 1

)(
K

k

)
where we substitute t = q − k to reverse the sum in line 3. To obtain the final result, we
shift the summation index by 1, and note that for k ≥ q + 1, the summand is zero. This
allows us to remove the upper bound on the sum. By substituting in K = x, we see that
A

(q;s)
n (x) is the same as the Harer-Zagier formula given in Theorem 2.10, as desired.

In the case n = 2, we show that the generating series A
(q;s)
n (x) we have computed is

equivalent to that of Goulden and Slofstra by using the 3F2 identity described in Theo-
rem 1.5. The technique for proving this is motivated by comparing the definitions of paired
arrays between the two papers. In particular, they have included in their paired arrays a
non-empty condition. As the matrix s contains only one entry, we will simply denote it as
s for convenience.

Definition 7.1. A paired array α satisfies the non-empty condition if each column of α
contains at least 1 object. We denote the set of proper vertical arrays that satisfy the non-

empty condition as NVA(s)
n,K;R, and we let h

(s)
n,K;R =

∣∣∣NVA(s)
n,K;R

∣∣∣. To mirror our definitions

for m
(q;s)
n,K;R and v

(s)
n,K;R, we extend our definition of h

(s)
n,K;R to all R ≥ 1 by letting h

(s)
n,K;R = 0

if Ri > K for some 1 ≤ i ≤ n.

Note that vertical arrays are paired arrays with q = 0, so the definition of NVA(s)
n,K;R

is consistent with the non-empty condition. Now, there is a simple relation between the
number of proper vertical arrays satisfying the non-empty condition, and the number of
proper vertical arrays in general, given by the following lemma.
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Lemma 7.2. Let n,K ≥ 1, s ≥ 0, and R ∈ [K]n. We have

v
(s)
n,K;R =

K∑
F=1

(
K

F

)
h

(s)
n,F ;R

Proof. To prove this result, we will provide a mapping

ζ : PVA(s)
n,K;R →

K⋃
F=max(R1,...,Rn)

[K;F ]×NVA(s)
n,F ;R

and show that this mapping is a bijection. The idea behind this proof is to remove all
columns without vertices, while keeping track of the position of those columns.

Let α ∈ PVA(s)
n,K;R be a proper vertical array, F be the set of columns of α that contain

at least one object, and |F| = F . As the boxes used to mark cells are considered objects,
we see that F ⊆ [K;F ], where Ri ≤ F ≤ K holds for 1 ≤ i ≤ n. We can permute the
columns of F so that they are the first F columns of the array, while keeping their relative
order with each other. This gives us a vertical array, which we denote α′. As discussed
back in Section 3.1, permuting the columns preserves the balance and forest conditions,
so α′ is a proper vertical array. Then, we can simply delete the empty columns. As these
columns do not contain vertices or marked cells, they do not affect the balance or the forest
conditions. This results in a vertical array β with F columns and Ri marked cells in row
i, so β ∈ NVA(s)

n,F ;R, as desired.

Conversely, given max (R1, . . . , Rn) ≤ F ≤ K, F ⊆ [K;F ], and β ∈ NVA(s)
n,F ;R, we

can reconstruct α ∈ PVA(s)
n,K;R by reversing the decomposition. First, we add K − F

empty columns to the right of the existing columns, giving us a vertical array α′ with K
columns and Ri marked cells in row i. As the added columns do not contain any vertices
or marked cells, both the forest and balance conditions are preserved. Therefore α′ is a
proper vertical array. To recover α, we permute the columns of α′ so that the F non-empty
columns of α′ are placed in the columns F , doing it in a way that preserves their relative
order. The remaining K−F columns, occupying the columns K\F , are completely empty,
so this procedure is unambiguous. As permuting the columns of a paired array preserves
the forest and balance conditions, this gives us a proper vertical array, which we denote α.
As α has K columns and Ri marked cells in row i, we have α ∈ PVA(s)

n,K;R, as desired.

Note that each step of the converse simply reverses the step done in the forward direc-
tion. Therefore, the function ζ as described is a bijection. To obtain the formula in the
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lemma, we take the cardinality of both sides of ζ. We can then change the lower bound
of the summation to F = 1, as h

(s)
n,F ;R = 0 if Ri > F by convention. Doing so gives us the

formula we desire.

Using this lemma, we can derive the values of v
(s)
2,K;R given the values of h

(s)
2,F ;R. In

Theorem 5.2 of Goulden and Slofstra, they have computed a formula for h
(s)
2,F ;R. Using our

notation, their formula can be stated as

h
(s)
2,F ;R =

(s+R1 − 1)! (s+R2 − 1)!

(s+R1 +R2 − 2)!

(
s+R1 +R2 − 2

F − 1

)
×[(

F − 1

R1 − 1

)(
F − 1

R2 − 1

)
−
(

F − 1

s+R1 − 1

)(
F − 1

s+R2 − 1

)]
=

(s+R1 − 1)! (s+R2 − 1)! (F − 1)!

(s+R1 +R2 − F − 1)! (R1 − 1)! (R2 − 1)! (F −R1)! (F −R2)!
−

(F − 1)!

(s+R1 +R2 − F − 1)! (F − s−R1)! (F − s−R2)!

= h1 − h2 (7.1)

where the variables i and j in their paper are given by R1 − 1 and R2 − 1, respectively.
Note that this formula holds for all positive integers s, F , R1, and R2, since the binomial
coefficients inside the brackets are zero if R1 > F or R2 > F . Equivalently, this follows
from having (F −Ri)! and (F − s−Ri)! in the denominator of the two terms, for i = 1, 2.
For convenience, we let the two terms of the formula be called h1 and h2. Combining this
formula with Lemma 7.2, we obtain

v
(s)
2,K;R =

K∑
F=1

(
K

F

)
h1 −

K∑
F=1

(
K

F

)
h2

Now, if Ri > K for some i = 1, 2, then Ri > F for 1 ≤ F ≤ K. Hence, we have v
(s)
2,K;R = 0,

which matches our formula for v
(s)
2,K;R in Theorem 6.9. Otherwise, we have 1 ≤ Ri ≤ K, so

we can use the 3F2 identity in Theorem 1.5 on both sums separately. By substituting in
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A = K − F to reverse the first sum, we have

K∑
F=1

(
K

F

)
h1 =

K−R1∑
A=0

(s+R1 − 1)! (s+R2 − 1)!

(R1 − 1)! (R2 − 1)! (s+R1 +R2 −K + A− 1)!
×

(K − A− 1)!K!

(K −R1 − A)! (K −R2 − A)! (K − A)!A!

=
1

(R1 − 1)! (R2 − 1)!
· 3F2

(
−K +R1,−K,−K +R2

s+R1 +R2 −K,−K + 1
; 1

)
×

(s+R1 − 1)! (s+R2 − 1)! (K − 1)!

(s+R1 +R2 −K − 1)! (K −R1)! (K −R2)!

Note that for A > K − R1, the summand is zero because of the term (K −R1 − A)! in
the denominator. This allows us to lower the upper bound of the sum to K − R1, which
we can write as a terminating 3F2, with one of the parameters matching the upper bound.
Using the 3F2 identity in Theorem 1.5, we have

K∑
F=1

(
K

F

)
h1 =

(s+R1)(K−R1)

(s+R1 +R2 −K)(K−R1)
· 3F2

(
−K +R1, 1,−K +R2

1−K − s,−K + 1
; 1

)
×

(s+R1 − 1)! (s+R2 − 1)! (K − 1)!

(s+R1 +R2 −K − 1)! (K −R1)! (K −R2)! (R1 − 1)! (R2 − 1)!

=

K−R1∑
A=0

(s+K − A− 1)! (K − A− 1)!

(K −R1 − A)! (K −R2 − A)! (R1 − 1)! (R2 − 1)!
(7.2)

By applying the substitution A = K − F to the second sum, we have

K∑
F=1

(
K

F

)
h2 =

K−1∑
A=0

(K − A− 1)!K!

(s+R1 +R2 −K + A− 1)! (K − A)!A!
×

1

(K − s−R1 − A)! (K − s−R2 − A)!

To evaluate this sum, we separate it into two cases. If s > K−R1, then (K − s−R1 − A)!
in the denominator forces each summation term to be zero. Hence, the entire sum is zero.
Otherwise, (K − s−R1 − A)! allows us to lower the upper bound of the sum to K−s−R1.
This means that we can write the sum as a terminating 3F2, with one of the parameters
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matching the upper bound. Using the same 3F2 identity on the sum, we obtain

K∑
F=1

(
K

F

)
h2 = 3F2

(
−K + s+R1,−K,−K + s+R2

s+R1 +R2 −K,−K + 1
; 1

)
×

(K − 1)!

(s+R1 +R2 −K − 1)! (K − s−R1)! (K − s−R2)!

=
R

(K−R1−s)
1

(s+R1 +R2 −K)(K−R1−s)
· 3F2

(
−K + s+R1, 1,−K + s+R2

1−K + s,−K + 1
; 1

)
×

(K − 1)!

(s+R1 +R2 −K − 1)! (K − s−R1)! (K − s−R2)!

=

K−R1−s∑
B=0

(K − s−B − 1)! (K −B − 1)!

(R1 − 1)! (R2 − 1)! (K − s−R1 −B)! (K − s−R2 −B)!

=

K−R1∑
A=s

(K − A− 1)! (K + s− A− 1)!

(R1 − 1)! (R2 − 1)! (K −R1 − A)! (K −R2 − A)!
(7.3)

where in the last line we shift the summation index up by letting A = B+s. Note that the
summands in (7.2) and (7.3) are identical. Furthermore, the summation range of (7.3) is a
subset of that of (7.2). In particular, we are summing over 0 ≤ A ≤ s− 1 for s ≤ K −R1,
and summing over 0 ≤ A ≤ K − R1 otherwise. Therefore, we can combine the two sums
to obtain

v
(s)
2,K;R =

K∑
F=1

(
K

F

)
h1 −

K∑
F=1

(
K

F

)
h2

=

min(s−1,K−R1)∑
A=0

(K − A− 1)! (K + s− A− 1)!

(R1 − 1)! (R2 − 1)! (K −R1 − A)! (K −R2 − A)!

=

min(s,K)−1∑
A=0

(K − A− 1)! (K + s− A− 1)!

(R1 − 1)! (R2 − 1)! (K −R1 − A)! (K −R2 − A)!

where we have raised the upper bound from K −R1 to K − 1, as the term (K −R1 − A)!
in the denominator would make the summand zero for A > K − R1. This matches with
our formula for v

(s)
2,K;R given in Theorem 6.9, as desired.

This shows how to derive the formula for v
(s)
2,K;R given the formula of h

(s)
2,F ;R. To derive
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the formula for h
(s)
2,F ;R from that of v

(s)
2,K;R, we reverse the sequence of computations above

to show that v
(s)
2,K;R can be written as

∑K
F=1

(
K
F

)
(h1 − h2), then use induction on F with

Lemma 7.2 to show that h
(s)
2,F ;R = h1 − h2 for all F ≥ 1. Furthermore, this derivation can

be seen as an algebraic proof that shows v
(s)
2,K;R =

∑K
F=1

(
K
F

)
h

(s)
2,K;R, given the formulas of

v
(s)
2,K;R and h

(s)
2,K;R as defined in Theorem 6.9 of this thesis and Theorem 5.2 of Goulden and

Slofstra, respectively. With this proof, we can algebraically show that the generating series
for the number of pairings in A(q;s)

n,L in the paper of Goulden and Slofstra is equivalent to
the generating series computed in this thesis. For clarity, we let the series in Goulden and
Slofstra be denoted B

(q;s)
2 (x). By combining Proposition 3.2, Theorem 4.1, and Theorem

4.2 of their paper, we have

B
(q;s)
2 (x) =

∑
k≥1

∑
i≥0

∑
j≥0

(
x

k

)(
2q1 + s

2i

)
(2i− 1)!!

(
2q2 + s

2j

)
(2j − 1)!!×

(2q1 + s− 2i)!

(q1 + s− i)!
· (2q2 + s− 2j)!

(q2 + s− j)!
· h(s)

2,k;q1−i+1,q2−j+1

=
∑
k≥1

q1∑
t1=0

q2∑
t2=0

(
x

k

)
(2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (q1 + s− t1)! (q2 + s− t2)!
· h(s)

2,k;q1−t1+1,q2−t2+1

Again, we have written the generating series using the notation we have developed, where
p and q in their paper are given by 2q1 + s and 2q2 + s, respectively. Furthermore, we have
lowered the summation bounds to q1 and q2, as their convention implies that h

(s)
2,k;R1,R2

= 0
if R1 ≤ 0 or R2 ≤ 0. Substituting in x = K, we have

B
(q;s)
2 (K) =

q1∑
t1=0

q2∑
t2=0

(2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (q1 + s− t1)! (q2 + s− t2)!

K∑
k=1

(
K

k

)
h

(s)
2,k;q1−t1+1,q2−t2+1

=

q1∑
t1=0

q2∑
t2=0

(2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (q1 + s− t1)! (q2 + s− t2)!
· v(s)

2,K;q1−t1+1,q2−t2+1

= f
(q1,q2;s)
2,K

by Corollary 6.5. Note that the conversion from
∑K

F=1

(
K
F

)
h

(s)
2,K;R to v

(s)
2,K;R is done without

using Lemma 7.2, and only using the 3F2 identity in Theorem 1.5. By (2.2), we know

that A
(q;s)
2 (K) = f

(q1,q2;s)
2,K for all K ≥ 1 as well. Therefore, by Fact 2.4, we have that

A
(q;s)
2 (x) = B

(q;s)
2 (x) for all q1 ≥ 0, q2 ≥ 0, and s ≥ 1, as desired.

Remark 7.3. This technique of transforming the sum with a 3F2 identity does not appear to
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be generalizable when applied to Theorem 6.9. It can only be used on summation variables
Aej such that ej is an edge incident to a leaf vertex in the support graph of s. If ej is
not incident to a leaf vertex in the support graph, then the hypergeometric series with
respect to Aej is a p+1Fp, where p ≥ 3. In those cases, there are no known hypergeometric
transformations that can be applied.

7.2 Further Reduction to the Goulden-Slofstra For-

mula

In this section, we will show a method of reducing the number of sums in the formula of
Goulden and Slofstra using Pfaff’s identity. We start by rewriting Theorem 2.12 using our
notation, which gives the formula for A

(q;s)
2 (x) as

A
(q;s)
2 (x) =

d+1∑
k=1

∑
t1≥0

∑
t2≥0

(2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (d− t1 − t2)!
·
(
x

k

)(
d− t1 − t2
k − 1

)
×[(

k − 1

q1 − t1

)(
k − 1

q2 − t2

)
−
(

k − 1

s+ q1 − t1

)(
k − 1

s+ q2 − t2

)]
=

d+1∑
k=1

∑
t1≥0

∑
t2≥0

(2q1 + s)! (2q2 + s)! (k − 1)!

2t1+t2t1!t2! (d− t1 − t2 − k + 1)!
·
(
x

k

)
×

1

(q1 − t1)! (k − q1 + t1 − 1)! (q2 − t2)! (k − q2 + t2 − 1)!
−

d+1∑
k=1

∑
t1≥0

∑
t2≥0

(2q1 + s)! (2q2 + s)! (k − 1)!

2t1+t2t1!t2! (d− t1 − t2 − k + 1)!
·
(
x

k

)
×

1

(s+ q1 − t1)! (k − s− q1 + t1 − 1)! (s+ q2 − t2)! (k − s− q2 + t2 − 1)!
= g1 − g2

where we have d = q1 + q2 + s as in the original theorem. Similar to (7.1), we denote the
two terms of the formula by g1 and g2 for convenience. Note that we have removed the
upper bounds for t1 and t2. We can justify this by showing that the summation terms
can only be non-zero if both t1 ≤ q1 and t2 ≤ q2 hold. For g1, the term (q1 − t1)! in
the denominator means that for the summation term to be non-zero, we have t1 ≤ q1.
Similarly, the terms in the denominator of g2 imply that for the summation term to be
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non-zero, we have d− t1 − t2 − k + 1 ≥ 0 and k − s− q2 + t2 − 1 ≥ 0. Together, this also
yields the bound t1 ≤ q1. By changing the indices, the same arguments show that t2 ≤ q2

as well. As q1 and q2 are both smaller than the bounds in the original paper, we can safely
remove the upper bounds without changing the sum.

To reduce the number of sums in g1 and g2, we manipulate them separately with the
same transforms. We first use Pfaff’s identity to transform the sum involving t1, then
use the Chu-Vandermonde identity to eliminate t2. Afterwards, we make the summation
variables symmetric by making a substitution for k, before combining the results together.
For reference, the identities used for this procedure can be found in Proposition 1.3 and
Theorem 1.6.

By rewriting the t1 sum of g1 as a hypergeometric series and using Pfaff’s identity, we
have

g1 =
d+1∑
k=1

∑
t2≥0

1

2t2t2!
·
(
x

k

)
2F1

(
−d+ t2 + k − 1,−q1

k − q1

;
1

2

)
×

(2q1 + s)! (2q2 + s)! (k − 1)!

(d− t2 − k + 1)!q1! (k − q1 − 1)! (q2 − t2)! (k − q2 + t2 − 1)!

=
d+1∑
k=1

∑
t2≥0

1

2t2t2!
·
(
x

k

)(
1− 1

2

)d−t2−k+1

2F1

(
−d+ t2 + k − 1, k

k − q1

;−1

)
×

(2q1 + s)! (2q2 + s)! (k − 1)!

(d− t2 − k + 1)!q1! (k − q1 − 1)! (q2 − t2)! (k − q2 + t2 − 1)!

=
d+1∑
k=1

∑
t2≥0

∑
t1≥0

1

2d−k+1t1!t2! (d− t1 − t2 − k + 1)!
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

q1! (k − q1 + t1 − 1)! (q2 − t2)! (k − q2 + t2 − 1)!

While there is no upper bound for t1, the term (d− t1 − t2 − k + 1)! in the denominator
causes the sum to terminate. Furthermore, for the summation term to be non-zero, we
must have d − t1 − t2 − k + 1 ≥ 0 and k − q2 + t2 − 1 ≥ 0 at the same time. Combining
these inequalities together gives us t1 ≤ q1 + s, which can be used as an upper bound for
t1. Next, we rewrite the t2 sum as a hypergeometric series, and note that it satisfies the
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Chu-Vandermonde identity. This yields,

g1 =
d+1∑
k=1

q1+s∑
t1=0

1

2d−k+1t1!
·
(
x

k

)
2F1

(
−q2,−d+ t1 + k − 1

k − q2

; 1

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(d− t1 − k + 1)!q1! (k − q1 + t1 − 1)!q2! (k − q2 − 1)!

=
d+1∑
k=1

q1+s∑
t1=0

(s+ q1 − t1 + 1)(q2)

2d−k+1t1! (k − q2)(q2)
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(d− t1 − k + 1)!q1! (k − q1 + t1 − 1)!q2! (k − q2 − 1)!

=
d+1∑
k=1

q1+s∑
t1=0

(d− t1)!

2d−k+1t1! (d− t1 − k + 1)!
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

q1! (s+ q1 − t1)! (k − q1 + t1 − 1)!q2! (k − 1)!

Note that the term (d− t1 − k + 1)! in the denominator means that for k > d − t1 + 1,
the summation term is zero. Therefore, we can switch the two sums and lower the upper
bound of k to d− t1 +1. Next, the terms (k − q1 + t1 − 1)! and (k − 1)! in the denominator
means that for the summand to be non-zero, we have k ≥ max {q1 − t1 + 1, 1}. Hence, we
can change the lower bound of k to q1 − t1 + 1. As k + t1 − 1 ≥ q1 ≥ 0 with this new
lower bound, the factorial term in the numerator remains non-negative. After changing
the bounds, we can reverse the sum with the substitution k = d − t1 − t2 + 1. This gives
us the formula

g1 =

q1+s∑
t1=0

q2+s∑
t2=0

(d− t1)! (d− t2)! (2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (d− t1 − t2)!
·
(

x

d− t1 − t2 + 1

)
×

1

q1!q2! (s+ q1 − t1)! (s+ q2 − t2)!
(7.4)

which is symmetric between t1 and t2.

We now apply the same transformations to g2. By rewriting the t1 sum of g2 as a
hypergeometric series and using Pfaff’s identity, we have
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g2 =
d+1∑
k=1

∑
t2≥0

1

2t2t2!
·
(
x

k

)
2F1

(
−d+ t2 + k − 1,−q1 − s

k − q1 − s
;
1

2

)
×

(2q1 + s)! (2q2 + s)! (k − 1)!

(d− t2 − k + 1)! (q1 + s)! (k − q1 − s− 1)! (q2 + s− t2)! (k − q2 − s+ t2 − 1)!

=
d+1∑
k=1

∑
t2≥0

1

2t2t2!
·
(
x

k

)(
1− 1

2

)d−t2−k+1

2F1

(
−d+ t2 + k − 1, k

k − q1 − s
;−1

)
×

(2q1 + s)! (2q2 + s)! (k − 1)!

(d− t2 − k + 1)! (q1 + s)! (k − q1 − s− 1)! (q2 + s− t2)! (k − q2 − s+ t2 − 1)!

=
d+1∑
k=1

∑
t2≥0

∑
t1≥0

1

2d−k+1t1!t2! (d− t1 − t2 − k + 1)!
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(q1 + s)! (k − q1 − s+ t1 − 1)! (q2 + s− t2)! (k − q2 − s+ t2 − 1)!

As with the case for g1, the sum of t1 terminates because of the term (d− t1 − t2 − k + 1)!
in the denominator. Also, for the summation term to be non-zero, we must have d− t1 −
t2 − k + 1 ≥ 0 and k − q2 − s+ t2 − 1 ≥ 0 at the same time. Combining these inequalities
together gives us t1 ≤ q1, which can be used as an upper bound for t1. Next, we rewrite
the t2 sum as a hypergeometric series, and note that it satisfies the Chu-Vandermonde
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identity. This yields,

g2 =
d+1∑
k=1

q1∑
t1=0

1

2d−k+1t1!
·
(
x

k

)
2F1

(
−q2 − s,−d+ t1 + k − 1

k − q2 − s
; 1

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(d− t1 − k + 1)! (q1 + s)! (k − q1 − s+ t1 − 1)! (q2 + s)! (k − q2 − s− 1)!

=
d+1∑
k=1

q1∑
t1=0

(q1 − t1 + 1)(q2+s)

2d−k+1t1! (k − q2 − s)(q2+s)
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(d− t1 − k + 1)! (q1 + s)! (k − q1 − s+ t1 − 1)! (q2 + s)! (k − q2 − s− 1)!

=
d+1∑
k=1

q1∑
t1=0

(d− t1)!

2d−k+1t1! (d− t1 − k + 1)!
·
(
x

k

)
×

(2q1 + s)! (2q2 + s)! (k + t1 − 1)!

(q1 + s)! (q1 − t1)! (k − q1 − s+ t1 − 1)! (q2 + s)! (k − 1)!

Note that the term (d− t1 − k + 1)! in the denominator means that for k > d − t1 + 1,
the summation term is zero. Similarly, the term (k − q1 − s+ t1 − 1)! in the denominator
means for k < q1 + s− t1 + 1, the summation term is also zero. Therefore, we can tighten
the bounds of k to q1 +s−t1 +1 ≤ k ≤ d−t1 +1, as d−t1 +1 ≤ d+1 and q1 +s−t1 +1 ≥ 1.
After doing so, we can reverse the sum with the substitution k = d− t1− t2 + 1. This gives
us the formula

g2 =

q1∑
t1=0

q2∑
t2=0

(d− t1)! (d− t2)! (2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (d− t1 − t2)!
·
(

x

d− t1 − t2 + 1

)
×

1

(q1 + s)! (q2 + s)! (q1 − t1)! (q2 − t2)!
(7.5)

which is again symmetric in t1 and t2.

As we have (q1 − t1)! and (q2 − t2)! in the denominator of g2, we can actually increase
the bounds of t1 and t2 to q1 +s and q2 +s without changing the sum, matching the bounds
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of g1. Finally, we can put (7.4) and (7.5) together and obtain

A
(q;s)
2 (x) = g1 − g2

=

q1+s∑
t1=0

q2+s∑
t2=0

(d− t1)! (d− t2)! (2q1 + s)! (2q2 + s)!

2t1+t2t1!t2! (d− t1 − t2)!
·
(

x

d− t1 − t2 + 1

)
×[

1

q1!q2! (s+ q1 − t1)! (s+ q2 − t2)!
− 1

(q1 + s)! (q2 + s)! (q1 − t1)! (q2 − t2)!

]
where d = q1 + q2 + s.

Remark 7.4. Note that the transformations used in this section cannot be directly ap-
plied to the formula of A

(q;s)
n (x) derived from Theorem 6.9, as the variables Ri do not

appear together in the same factorial terms. This means that applying a 2F1 transform
on a summation variable ti will not have any effect on the type or the parameters of the
hypergeometric series of another summation variable tk. One potential method to remedy
this is to use the techniques in Section 7.1. This involves picking an edge ej = {i, k} in
the support graph of s, such that i is a leaf vertex. This allows us to break up the sum
of Aej into two parts by raising the upper bound of Aej from min

(
sej , K

)
− 1 to K − 1.

Then, we can use one of the eighteen 3F2 transforms on the summation variable Aej , in
hopes of creating an expression that has the variables ti and tk in a common factorial term.
However, for n ≥ 3, the results of these transformations either fail to create a factorial term
with both ti and tk, or change the type of the hypergeometric series of ti or tk into a 3F2,
with x = ±1

2
as a parameter. This prevents us from using one of Kummer’s 24 solutions.

Other variations of this technique, such as applying hypergeometric transformations to ti,
tk, and Aej in various orders, have also failed to create an expression that can be further
simplified.

7.3 Enumeration of Vertical Arrays with s Non-Tree

In this section, we will describe a method of computing v
(s)
n,K;R for small values of n, K, R,

and s, when the support graph of s is not a tree. This will allow for the computation of
A

(q;s)
n (x) for small values of n, q, and s. In general, this method of computation is more

efficient than doing an exhaustive search over all potential vertical arrays, then counting
the ones that satisfy the balance and forest conditions. Furthermore, for very small values
of n and s, we can derive a formula for v

(s)
n,K;R that holds for all R ≥ 1, and is a polynomial

in K.
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Definition 7.5. A paired array α satisfies the full condition if each column of α contains
at least 1 vertex. We denote the set of proper vertical arrays that satisfy the full condition

as FVA(s)
n,K;R, and we let g

(s)
n,K;R =

∣∣∣FVA(s)
n,K;R

∣∣∣. Again, to mirror our definitions for m
(q;s)
n,K;R

and v
(s)
n,K;R, we extend our definition of g

(s)
n,K;R to all R ≥ 1 by letting g

(s)
n,K;R = 0 if Ri > K

for some 1 ≤ i ≤ n.

In contrast to the full condition for arrowed arrays in Definition 4.1, each cell must
contain a vertex instead of an object. Consider a column j of α for 1 ≤ j ≤ K. It must
contain a mixed vertex in some cell (i, j) of that column, as α is a vertical array that
satisfies the full condition. Since α also satisfies the balance condition, by Definition 3.3, α
must contain a vertex pair {u, v} such that u is in row i and v is in column j, but not row
i. This means that every column of α must contain at least 2 vertices, which also implies
that g

(s)
n,K;R can only be non-zero if K ≤ s, where s =

∑
i<k

si,k is the total number of pairs
in the array. Combining this with the fact that 1 ≤ Ri ≤ K, we have that for fixed values
of n and s, there is a finite number of values for K and R such that g

(s)
n,K;R is non-zero.

Theorem 7.6. Let n,K ≥ 1, s ≥ 0, and R ∈ [K]n. We have

v
(s)
n,K;R =

s∑
F=1

R1∑
r1=1

· · ·
Rn∑
rn=1

(
K

F

)(
K − F
R1 − r1

)
· · ·
(
K − F
Rn − rn

)
g

(s)
n,F ;r

where r = (r1, . . . , rn). Furthermore, for fixed values of s and R, v
(s)
n,K;R is a polynomial in

K.

Remark 7.7. Notice that for fixed values of s and R, g
(s)
n,K;R is non-zero only for a finite

number of values of K. Therefore, g
(s)
n,K;R cannot be a polynomial in K without being

identically zero, which is not true in general.

Proof. The proof of this theorem is similar to that of Lemma 7.2. We will provide a
mapping

ζ : PVA(s)
n,K;R →

K⋃
F=1

min(R1,F )⋃
r1=1

· · ·
min(Rn,F )⋃
rn=1

[K;F ]× [K − F ;R1 − r1]× · · · × [K − F ;Rn − rn]×FVA(s)
n,F ;r
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and show that this mapping is a bijection. Again, we remove all columns without vertices,
while keeping track of the position of those columns. In addition, we need to keep track of
the number and positions of the marked cells within the columns without vertices.

Let α ∈ PVA(s)
n,K;R be a proper vertical array, F be the set of columns of α that contain

at least one vertex, and |F| = F . We see that 1 ≤ F ≤ K, and F ⊆ [K;F ]. Then, we
label the columns of F from left to right with [F ] = 1, . . . , F , and label the columns of
K\F with [K − F ]′ = 1′, . . . , (K − F )′. We can permute the columns of α so that they are
in the order 1, . . . , F, 1′, . . . , (K − F )′, and call the resulting vertical array α′. As discussed
back in Section 3.1, permuting the columns preserves the balance and forest conditions, so
α′ is a proper vertical array.

Now, let ψ′i be the forest condition function for row i of α′. As all vertices of α′ are
in the first F columns, both the domain and range of ψ′i are in [F ], so the functional
digraph of ψ′i has all its edges in [F ]. This means that a column j′ ∈ [K − F ]′ is either an
isolated root vertex in the functional digraph if cell (i, j′) is marked, or does not appear
at all if that cell is unmarked. In either case, the columns of [K − F ]′ can be removed
without violating the forest condition of row i. Furthermore, as these columns do not
contain any vertices, removing them preserves the balance condition as well. Then, recall
our overarching assumption that the support graph of s is connected. This means that row
i must contain at least one vertex, in some column j ∈ [F ]. Again using the fact that the
edges of the functional digraph are in [F ] , we have that the root vertex of the component
containing j in the functional digraph of ψ′i must also be in [F ]. Consequently, there
must be some ri marked cells in the columns of [F ] in row i, with 1 ≤ ri ≤ min (Ri, F ).
Therefore, we can remove the columns [K − F ]′ and be left with a proper vertical array β,
where each column of β has at least one vertex. By letting r = (r1, . . . , rn), we see that

∈ FVA(s)
n,F ;r. Finally, note that for 1 ≤ i ≤ n, there are Ri− ri marked cells in the columns

of [K − F ]′, with no restrictions on how they are placed. Hence, we can represent them
with a set Si ⊆ [K − F ;Ri − ri], where j ∈ Si if and only if cell (i, j′) is marked in α′.
This shows that given a vertical array α, we can determine the values of F and r, then
decompose α into the objects F , β, and Si’s, as desired.

Conversely, given 1 ≤ F ≤ K, 1 ≤ ri ≤ min (Ri, F ), F ⊆ [K;F ], Si ⊆ [K − F ;Ri − ri],
and β ∈ FVA(s)

n,F ;r, with 1 ≤ i ≤ n and r = (r1, . . . , rn), we can reconstruct α ∈ PVA(s)
n,K;R

by reversing the decomposition. First, we label the columns of β with [F ] = 1, . . . , F ,
then add K − F columns labelled [K − F ]′ = 1′, . . . , (K − F )′ to the right of the existing
columns. Next, we mark the cells in the columns of [K − F ]′ with the sets Si. For each
i, we mark cell (i, j′) if and only if j ∈ Si, marking Ri − ri cells in total. This gives us a
vertical array α′ with K columns and Ri marked cells in row i. As adding empty columns
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does not add any vertices, the balance condition is preserved. Similarly, the only change to
the functional digraph ψ′i of row i is adding isolated vertices, corresponding to the marked
cells in [K − F ]′. Therefore, the forest condition is also preserved, so α′ is proper vertical
array. To recover α, we let the set of all columns, denoted K, be labelled with 1, . . . , K
from left to right, and note that F represents a subset of the columns of size F . This
means that we can permute the columns of α′ so that the columns of [F ] are in F , and
that the columns of [K − F ]′ are in K\F , preserving the relative order of both sets. As
permuting the columns of a paired array preserves the forest and balance conditions, this
gives us a proper vertical array α. So, we have α ∈ PVA(s)

n,K;R, as desired.

As with the proof of Lemma 7.2, each step of the converse simply reverses the step
done in the forward direction. Therefore, the function ζ as described is a bijection. To
obtain the formula in the theorem, we take the cardinality of both sides of ζ, then adjust
the summation bounds. As

(
F
K

)
= 0 for K > F , we can raise the upper bound of F from K

to s if K < s. Alternatively, we can also decrease the upper bound of F to s if K > s, as
g

(s)
n,K;R = 0 for K > s. Finally, we can remove the upper bounds of K from the summations

of the ri’s, since we take g
(s)
n,F ;r = 0 if ri > F for some 1 ≤ i ≤ n.

To show that v
(s)
n,K;R is a polynomial in K, recall from Section 1.2 that for integer k ≥ 0,

we have
(
n
k

)
= (n−k+1)(k)

k!
. As K only appears in the numerator of the binomial coefficients,

they are each a polynomial in K. Therefore, each summation term is a polynomial in K,
as the g

(s)
n,F ;r are constants. As the number of summation terms is independent of K, the

entire sum is also a polynomial in K, as desired.

Next, we will manipulate the expression in Theorem 7.6, so that we can remove the
upper bounds for ri. This will allow us to expand the sum and write an expression for
v

(s)
n,K;R that does not require special cases for small values of R. Recall from Section 1.2

that for integer k ≥ 0, we have
(
n
k

)
= (n−k+1)(k)

k!
. By viewing the binomial coefficient as a

function of n and manipulating this expression, we obtain the following identities(
n

k

)
=

k + 1

n− k

(
n

k + 1

)
=

n− k + 1

n+ 1

(
n+ 1

k

)
Effectively, these identities multiply both the numerator and the denominator of the ex-
pression by the same term, so they introduce removable singularities for n. Therefore, for
certain integer values of n, these expressions are undefined. However, we will generally
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simplify our expressions before evaluating them in our application, so these singularities
are removed, and the expression remains valid. By using these identities to expand

(
K−F
Ri−ri

)
,

we have for ri ≤ Ri(
K − F
Ri − ri

)
=

(Ri − ri + 1)(ri−1)

(K − F −Ri + 2)(ri−1)
·
(
K − F
Ri − 1

)
(7.6)

=
(Ri − ri + 1)(ri−1) (K − F −Ri + 2)(F−1)

(K − F −Ri + 2)(ri−1) (K − F + 1)(F−1)
·
(
K − 1

Ri − 1

)
If we are to treat K as a variable, then these identities hold for all integers Ri ≥ ri > 0,
as we can write everything as rising factorials and simplify the expressions as necessary.
Furthermore, by writing the binomial coefficients as rising factorials, we see that the second
expression simplifies to the first, regardless of whether Ri ≥ ri. Now, for fixed integers
Ri and ri such that ri > Ri > 0, the rising factorial (Ri − rr + 1)(ri−1) evaluates to zero.
This agrees with the upper bound of ri in the expression of Theorem 7.6, which allows us
to remove that upper bound. Then, to make the sums finite, we can decrease the upper
bound for each ri to F , as g

(s)
n,F ;r = 0 if ri > F . Doing so yields

v
(s)
n,K;R =

s∑
F=1

F∑
r1=1

· · ·
F∑

rn=1

g
(s)
n,F ;r ·

(
K

F

)
×

n∏
i=1

(Ri − rr + 1)(ri−1) (K − F −Ri + 2)(F−1)

(K − F −Ri + 2)(ri−1) (K − F + 1)(F−1)
·
(
K − 1

Ri − 1

)
(7.7)

Note that when evaluating this expression, we should first substitute in the values for
R, simplify, then substitute in the value of K. Alternatively, we can leave the simplified
expression as a function in K, which by Theorem 7.6 is a polynomial. From there, we can
substitute these expressions for v

(s)
n,K;R into Corollary 6.5 to obtain a generating series for

A
(q;s)
n (x), via the use of Fact 2.4.

Remark 7.8. Depending on the method of evaluation, the expression for
(
K−F
Ri−ri

)
in (7.6)

can be non-zero for ri > Ri. In particular, if we are to substitute in K before Ri, then
we can have (K − F −Ri + 2)(ri−1) = 0, which causes the expression to be undefined.

However, for fixed values of ri, K, and F , (Ri−ri+1)(ri−1)

(K−F−Ri+2)(ri−1) is a rational function in Ri that

contains the factor Ri in both the numerator and denominator. As at most one term in
each rising factorial can be zero, we can cancel out this factor, which causes the expression
to evaluate to a finite number. Furthermore, we can also deduce that K −F −Ri + 2 ≤ 0,
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or K−F < Ri−1. However, for
(
K−F
Ri−1

)
to be non-zero, we must have either K−F ≥ Ri−1

or K − F < 0, the former of which we have already ruled out. In the latter case, the term(
K
F

)
in our expression for v

(s)
n,K;R makes the summation term zero regardless. Therefore, our

expression for v
(s)
n,K;R remains valid for computing the number of vertical arrays, no matter

how we choose to evaluate this expression.

As an example, we will compute the formula for v
(s)
n,K;R in the simplest case where the

support graph of s is not a tree. This computation can be repeated for larger values of s,
as long as it remains feasible to compute all non-zero values of g

(s)
n,F ;r.

Example 7.9. Let n = 3 and s = (1, 1, 1). As g
(s)
n,F ;r can only be non-zero for F ≤ s,

we only need to compute the values of g
(s)
n,F ;r for 1 ≤ F ≤ 3 and 1 ≤ r1, r2, r3 ≤ F . This

gives us the table of values in Table 7.1. Then, by substituting these values into (7.7) and
simplifying the result, we can obtain the following formula

v
(s)
n,K;R =

(
K − 1

R1 − 1

)(
K − 1

R2 − 1

)(
K − 1

R3 − 1

)
× [(R1 + 1) (R2 + 1) (R3 + 1) +

(K + 1) (2K −R1 − 1) (2K −R2 − 1) (2K −R3 − 1)

(K − 1)2

]
Note that

(
K−1
R1−1

)(
K−1
R2−1

)(
K−1
R3−1

)
(R1 + 1) (R2 + 1) (R3 + 1) matches the summation term of

v
(s)
n,K;R in Theorem 6.9, if we are to extend the term in a straightforward manner. However,

in cases where the support graph is not a tree, this expression comes with a correction
term like the one in the second row. Furthermore, the size of the correction term increases
dramatically as the values in s grows large, even in the case n = 3, which makes producing
a compact formula for v

(s)
n,K;R difficult. This prohibits the creation of a compact formula

for A
(q;s)
n (x).

Now, for fixed values of R, v
(s)
n,K;R can be simplified to polynomials in K. In particular,

we have (2K −Ri − 1) = 2 (K − 1) if Ri = 1. Otherwise, (K−1)!
(K−Ri)!

is a polynomial in K

that contains the factor K − 1. In both cases, this cancels out the term (K − 1)2 in the
denominator, leaving us with a polynomial in K. Doing so for small values of R gives
us Table 7.2. By substituting these values into Corollary 6.5 and using Fact 2.4, we can
obtain the generating series for A

(q;s)
n (x) for 0 ≤ q ≤ 3, where s = (1, 1, 1). The values

of these series can be found in Table B.10 of B, where we have also computed the series
A

(q;s)
n (x) for other small values of n, q, and s.
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F (r1, r2, r3) g
(s)
n,F ;r

1 (1, 1, 1) 8

2

(1, 1, 1) 16
(1, 1, 2) 8
(1, 2, 2) 8
(2, 2, 2) 14

3

(1, 1, 1) 0
(1, 1, 2) 0
(1, 1, 3) 0
(1, 2, 2) 0
(1, 2, 3) 0
(1, 3, 3) 0
(2, 2, 2) 6
(2, 2, 3) 6
(2, 3, 3) 6
(3, 3, 3) 6

Table 7.1: Table of values for g
(s)
n,F ;r with s = (1, 1, 1) and 1 ≤ F ≤ 3

7.4 Future Work

In this thesis, we have devised methods for finding the generating series A
(q;s)
n (x), which

effectively counts the number of rooted embeddings of a given graph G by genus. In the case
where the support graph of s is a tree, this problem is completely solved by the combined
application of Fact 2.4, Corollary 6.5, and Theorem 6.9. Topologically, this corresponds to
G being a tree that contains loops and multiple edges. However, the question remains open
to find the generating series A

(q;s)
n (x) for an arbitrary connected graph G. As Fact 2.4 and

Corollary 6.5 remain valid regardless of whether the support graph of s is a tree, it suffices
to find a polynomial expression in K for v

(s)
n,K;R, which is the number of proper vertical

arrays. To find such an expression, there are two main obstacles that need to be overcome,
one for each of the two conditions that make a paired array proper.

The first obstacle that needs to be overcome is the forest condition. In the case where
the support graph of s is a tree, we have shown in Section 6.2 that we can decompose
vertical arrays row by row. Let row i be a leaf vertex in the support graph of s, and row
k be its neighbour. Then, deleting row i is the same as deleting all mixed pairs with one
vertex in row i and one vertex in row k. Therefore, one way of decomposing vertical arrays
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(R1, R2, R3) v
(s)
n,K;R

(1, 1, 1) 8K2

(1, 1, 2) 4K (K − 1) (2K − 1)

(1, 1, 3) 4K (K − 1)2 (K − 2)
(1, 1, 4) 2

3
K (K − 1) (K − 2) (K − 3) (2K − 3)

(1, 2, 2) 4K (K − 1) (2K2 − 4K + 3))
(1, 2, 3) 2K (K − 1) (K − 2) (2K2 − 5K + 5))
(1, 2, 4) 2

3
K (K − 1) (K − 2) (K − 3) (2K2 − 6K + 7)

(1, 3, 3) 2K (K − 1) (K − 2)2 (K2 − 3K + 4)

(1, 3, 4) 1
3
K (K − 1) (K − 2)2 (K − 3) (2K2 − 7K + 11)

(1, 4, 4) 1
9
K (K − 1) (K − 2)2 (K − 3)2 (2K2 − 8K + 15)

(2, 2, 2) K (K − 1) (8K3 − 28K2 + 45K − 27)
(2, 2, 3) K (K − 1) (K − 2) (4K3 − 16K2 + 31K − 21)
(2, 2, 4) 1

6
K (K − 1) (K − 2) (K − 3) (8K3 − 36K2 + 79K − 57)

(2, 3, 3) K (K − 1) (K − 2)2 (2K3 − 9K2 + 21K − 16)

(2, 3, 4) 1
6
K (K − 1) (K − 2)2 (K − 3) (4K3 − 20K2 + 53K − 43)

(2, 4, 4) 1
36
K (K − 1) (K − 2)2 (K − 3)2 (8K3 − 44K2 + 133K − 115)

(3, 3, 3) K (K − 1) (K − 2)3 (K3 − 5K2 + 14K − 12)

(3, 3, 4) 1
6
K (K − 1) (K − 2)3 (K − 3) (2K3 − 11K2 + 35K − 32)

(3, 4, 4) 1
36
K (K − 1) (K − 2)3 (K − 3)2 (4K3 − 24K2 + 87K − 85)

(4, 4, 4) 1
216
K (K − 1) (K − 2)3 (K − 3)3 (8K3 − 52K2 + 215K − 225)

Table 7.2: Table of values for v
(s)
n,K;R with s = (1, 1, 1) and 1 ≤ Ri ≤ 4
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when the support graph of s is not a tree is to remove all vertex pairs between a given
pair of rows. By doing this, we only have to concern ourselves with the forest condition
functions of those two rows, instead of the forest condition functions of multiple rows if we
are to entirely remove a row from the vertical array.

To facilitate this, we can extend arrowed arrays to allow for arrows in both rows, which
we call double arrowed arrays . Note that the arrow simplification lemmas and irreducible
substructures introduced in Section 4.2 generalize to double arrowed arrays. However, the
irreducible structures for double arrowed arrays can be significantly more complex than
the ones when we have arrows only on row 1. For example, an arrow in row 1 can point to
a column that has an arrow-tail in row 2, but is unmarked in row 1. This arrow in row 2
can then point to another column that has an arrow-tail in row 1, and is unmarked in row
2. This means that we can have chains, trees, or even cycles of arrows alternating between
row 1 and row 2, and some examples of that can see be in Figure 7.1. These can then be
combined in various ways, and while we have conjectures in limited cases, we have yet to
find a formula or a proof in the general case.

For example, if we are to take the top diagram of Figure 7.1 and leave the cell R
unmarked, then it is a column of type A, as described in Definition 4.10. The number of
double arrowed arrays satisfying this substructure is given by

T (Γ) = d1,1d2,1 (s− 2)!

However, if the cell R is marked, then it becomes a column of type C, and the number of
double arrowed arrays satisfying this substructure is the sum

T (Γ) = d2,1

(s− 1)! +

bK−1
2 c∑
i=1

(−1)i (i− 1)! (a1,2i+1 + a1,2i+2 + · · ·+ a1,K) (s− i− 1)!


Notice that whether the term a1,j appears in a given sum depends on the distance of
column j to the column of type C in the chain of arrows. This fact appears to hold true
even if multiple arrows are pointing to the same cell, so that the chain of arrows forms a
tree instead.

Another way we can chain the arrows together is to make them form a cycle, like in
the bottom diagram of Figure 7.1. The number of double arrowed arrays satisfying this
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substructure gives another sum

T (Γ) = d1,1d2,1

bK−1
2 c∑
i=1

(−1)i−1 (i− 1)! (s− i− 1)!

In all cases, we have included a column of type D to ensure that there are root vertices
for the functional digraphs. Now, the way we have created these conjectures is to fix the
number of columns, as well as the positions of the marked cells and arrows, but without
fixing the number of vertices in each cell. This way, we can simply enumerate all possible
ways of pairing the critical vertices in both rows so that they satisfy the forest condition,
and pair all other vertices arbitrarily.

The second obstacle that needs to be overcome is the balance condition. In the case
where the support graph of s is a tree, the balance condition is radically simplified by
Lemma 3.6. If row i is a leaf vertex in the support graph of s, and row k is its neighbour,
then the number of vertices in cell (i, j) is equal to the number of vertices in cell (k, j) that is
paired with a vertex in row i. This means that if we delete row i, the remaining rows satisfy
the balance condition, so we can recursively decompose vertical arrays. Furthermore, this
gave us a clean method of determining the number of ways to place the vertices into row
k during the decomposition. None of these hold true when the support graph of s is not a
tree. As an example, the vertical array in Figure 7.2 satisfies both the balance and forest
conditions. However, deleting any of the three rows will leave a vertical array that violates
the balance condition, as will deleting all vertex pairs between any two rows. Despite that,
by using Proposition 3.4, we can determine whether a given paired array α ∈ PA(q;s)

n,K;R

satisfies the balance condition by only knowing the rows of the partners of each vertex, as
this gives the number of vertices in row i such that its partner is in column j. Therefore,
this allows us to separate the balance and the forest condition, even though we currently
do not have a formula for the number of ways to place the vertices.

In cases where the support graph of s contains a bridge, it may be possible to separate
the balance and forest conditions in another manner. If e = {i, k} is a bridge in the support
graph, then by modifying the proof of Lemma 3.6, we see that the balance condition implies
that si,k,j = sk,i,j holds for 1 ≤ j ≤ K. Note that this condition only holds between rows
i and k, with si,k,j being the number of vertices in cell (i, j) that are paired with a vertex
in row k, and vice-versa.

Aside from directly generalizing our work for arbitrary graphs, here are some other
observations and directions that may be pursued. In Section 2.1, we noted that the gen-
erating series A

(q;s)
n (x) is either an odd or a even polynomial, depending on the parity of
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d1,1 a1,2 a1,3 a1,4 a1,5 · · · a1,K a1,K

d2,1 a2,2 a2,3 a2,4 a2,5 · · · a2,K a2,K

OR

R�

�

d1,1 a1,2 a1,3 a1,4 a1,5 · · · a1,K−1 a1,K

d2,1 a2,2 a2,3 a2,4 a2,5 · · · a2,K−1 a2,K

�

�

Figure 7.1: Examples of double arrowed arrays
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�

�

�

�

Figure 7.2: Non-tree vertical array that satisfies the forest and balance conditions

n + d. However, the formula we have computed by combining Corollary 6.5 and Theo-
rem 6.9 gives no indication on why this should be the case. It would be useful to find a
direct proof of this, as it may allow us to determine the properties and relationships of the
numbers v

(s)
n,K;R. On a more practical note, this fact can be used to help compute specific

values of A
(q;s)
n (x) when direct computation is infeasible. By combining Corollary 6.5 and

Theorem 7.6, we know that we can write f
(q;s)
n,K as an expression that is polynomial in K,

and has coefficients that are linear combinations of g
(s)
n,F ;r, the number of full vertical arrays.

For a fixed s, the number of g
(s)
n,F ;r that are non-zero is known and finite. Combining this

with Fact 2.4, we can equate the coefficients of f
(q;s)
n,K that are zero, and set up a system of

linear equations to solve for g
(s)
n,F ;r.

Next, recall that in Section 2.3 and Section 2.4, we have used the matrix integral
method to find the generating series A

(q;s)
n (x) for n = 1, 2. As far as we are aware, the are

no generalizations of this method that can be used to derive the results in this thesis. The
only generalizations that we have are similar to the ones covered in Section 2.5. Therefore,
it may be useful to derive the results of this thesis with algebraic methods, and see whether
those methods can be extended to arbitrary graphs.

Finally, in bijective proofs used in Goulden, Nica, and Slofstra [17, 18], they have
used partitions to label the cycles of µγ−1, which is effectively a surjective colouring of
the cycles. This translates to the non-empty condition that exists in their version of the
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paired array, as described in Section 7.1. As we saw in Section 2.5, the same technique
was used in Schaeffer and Vassilieva [31], and in the follow up paper of Vassilieva [39]. In
contrast, in both the algebraic technique for map enumeration, as well as our extension of
the combinatorial technique in this thesis, we do not require the colouring function to be
a surjection. This eliminates the need of a non-empty condition. Consequently, our proofs
have become simpler in many aspects. It may be useful to see whether this approach can
be used to simplify other combinatorial proofs in map enumeration.
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Appendix A

Table of Formulas for v
(s)
n,K;R

The following expressions give the number of vertical arrays for 1 ≤ n ≤ 5 where the
support graph of s is a tree. This comes from specializing the formula in Theorem 6.9.

• n = 1, support graph of s is empty

v
(s)
n,K;R =

K!

R1! (K −R1)!

• n = 2, support graph of s contains the edge 1− 2

min(s1,2,K)−1∑
A1,2=0

(K − A1,2 − 1)! (K + s1,2 − A1,2 − 1)!

(R1 − 1)! (R2 − 1)! (K −R1 − A1,2)! (K −R2 − A1,2)!

• n = 3, support graph of s contains the edges 1− 2 and 1− 3

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s1,3,K)−1∑
A1,3=0

[
(K − A1,2 − 1)! (K − A1,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)! (K −R2 − A1,2)!
×

(K + s1,2 + s1,3 − A1,2 − A1,3 − 2)! (R1 + s1,2 + s1,3 − 1)!

(K −R3 − A1,3)! (K −R1 − A1,2 − A1,3)! (R1 + s1,2 + s1,3 − 2)!

]
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• n = 4, support graph of s contains the edges 1− 2, 1− 3, and 1− 4

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s1,3,K)−1∑
A1,3=0

min(s1,4,K)−1∑
A1,4=0

[
(K − A1,2 − 1)! (K − A1,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)!
×

(K − A1,4 − 1)! (K + s1,2 + s1,3 + s1,4 − A1,2 − A1,3 − A1,4 − 3)!

(R4 − 1)! (K −R2 − A1,2)! (K −R3 − A1,3)! (K −R4 − A1,4)!
×

(R1 + s1,2 + s1,3 + s1,4 − 1)!

(K −R1 − A1,2 − A1,3 − A1,4)! (R1 + s1,2 + s1,3 + s1,4 − 3)!

]
• n = 4, support graph of s contains the edges 1− 2, 2− 3, and 3− 4

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s2,3,K)−1∑
A2,3=0

min(s3,4,K)−1∑
A3,4=0

[
(K − A1,2 − 1)! (K − A2,3 − 1)!

(R1 − 1)! (R2 − 1)! (R3 − 1)!
×

(K − A3,4 − 1)! (R2 + s1,2 + s2,3 − 1)! (R3 + s2,3 + s3,4 − 1)!

(R4 − 1)! (K −R1 − A1,2)! (K −R2 − A1,2 − A2,3)!
×

(K + s1,2 + s2,3 − A1,2 − A2,3 − 2)!

(K −R3 − A2,3 − A3,4)! (K −R4 − A3,4)! (K + s2,3 − A2,3 − 1)!
×

(K + s2,3 + s3,4 − A2,3 − A3,4 − 2)!

(R2 + s1,2 + s2,3 − 2)! (R3 + s2,3 + s3,4 − 2)!

]
• n = 5, support graph of s contains the edges 1− 2, 1− 3, 1− 4, and 1− 5

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s1,3,K)−1∑
A1,3=0

min(s1,4,K)−1∑
A1,4=0

min(s1,5,K)−1∑
A1,5=0

[
(K − A1,2 − 1)!

(R1 − 1)! (R2 − 1)!
×

(K − A1,3 − 1)! (K − A1,4 − 1)! (K − A1,5 − 1)!

(R3 − 1)! (R4 − 1)! (R5 − 1)! (K −R1 − A1,2 − A1,3 − A1,4 − A1,5)!
×

(K + s1,2 + s1,3 + s1,4 + s1,5 − A1,2 − A1,3 − A1,4 − A1,5 − 4)!

(R1 + s1,2 + s1,3 + s1,4 + s1,5 − 4)!
×

(R1 + s1,2 + s1,3 + s1,4 + s1,5 − 1)!

(K −R2 − A1,2)! (K −R3 − A1,3)! (K −R4 − A1,4)! (K −R5 − A1,5)!

]
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• n = 5, support graph of s contains the edges 1− 2, 2− 3, 3− 4, and 4− 5

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s2,3,K)−1∑
A2,3=0

min(s3,4,K)−1∑
A3,4=0

min(s4,5,K)−1∑
A4,5=0

[
(K − A1,2 − 1)!

(R1 − 1)! (R2 − 1)!
×

(K − A2,3 − 1)! (K − A3,4 − 1)! (K − A4,5 − 1)!

(R3 − 1)! (R4 − 1)! (R5 − 1)! (K −R2 − A1,2 − A2,3)!
×

(R2 + s1,2 + s2,3 − 1)! (R3 + s2,3 + s3,4 − 1)!

(K −R3 − A2,3 − A3,4)! (K −R4 − A3,4 − A4,5)! (K −R1 − A1,2)!
×

(R4 + s3,4 + s4,5 − 1)! (K + s1,2 + s2,3 − A1,2 − A2,3 − 2)!

(K −R5 − A4,5)! (R2 + s1,2 + s2,3 − 2)! (R3 + s2,3 + s3,4 − 2)!
×

(K + s2,3 + s3,4 − A2,3 − A3,4 − 2)! (K + s3,4 + s4,5 − A3,4 − A4,5 − 2)!

(R4 + s3,4 + s4,5 − 2)! (K + s2,3 − A2,3 − 1)! (K + s3,4 − A3,4 − 1)!

]
• n = 5, support graph of s contains the edges 1− 2, 2− 3, 3− 4, and 3− 5

v
(s)
n,K;R =

min(s1,2,K)−1∑
A1,2=0

min(s2,3,K)−1∑
A2,3=0

min(s3,4,K)−1∑
A3,4=0

min(s3,5,K)−1∑
A3,5=0

[
(K − A1,2 − 1)!

(R1 − 1)! (R2 − 1)!
×

(K − A2,3 − 1)! (K − A3,4 − 1)! (K − A3,5 − 1)!

(R3 − 1)! (R4 − 1)! (R5 − 1)! (K −R1 − A1,2)!
×

(R2 + s1,2 + s2,3 − 1)! (K + s1,2 + s2,3 − A1,2 − A2,3 − 2)!

(K −R2 − A1,2 − A2,3)! (K −R3 − A2,3 − A3,4 − A3,5)!
×

(R3 + s2,3 + s3,4 + s3,5 − 1)!

(K −R4 − A3,4)! (K −R5 − A3,5)! (K + s2,3 − A2,3 − 1)!
×

(K + s2,3 + s3,4 + s3,5 − A2,3 − A3,4 − A3,5 − 3)!

(R2 + s1,2 + s2,3 − 2)! (R3 + s2,3 + s3,4 + s3,5 − 3)!

]

194



Appendix B

Table of Formulas for A
(q;s)
n (x)

The following is a selection of the values for A
(q;s)
n (x), where 1 ≤ n ≤ 4. They are computed

by the combined use of Corollary 6.5, Theorem 6.9, and Fact 2.4. When the support graph
of s is a tree, the values of v

(s)
n,K;R are computed using Theorem 6.9. Otherwise, the

technique described in Section 7.3 is used instead.
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B.1 Formulas for n = 1

q1 A (x)

0 x
1 x2

2 2x3 + x
3 5x4 + 10x2

4 14x5 + 70x3 + 21x
5 42x6 + 420x4 + 483x2

6 132x7 + 2310x5 + 6468x3 + 1485x
7 429x8 + 12012x6 + 66066x4 + 56628x2

8 1430x9 + 60060x7 + 570570x5 + 1169740x3 + 225225x
9 4862x10 + 291720x8 + 4390386x6 + 17454580x4 + 12317877x2

10 16796x11 + 1385670x9 + 31039008x7 + 211083730x5 + 351683046x3 + 59520825x

11
58786x12 + 6466460x10 + 205633428x8

+2198596400x6 + 7034538511x4 + 4304016990x2

12
208012x13 + 29745716x11 + 1293938646x9

+20465052608x7 + 111159740692x5 + 158959754226x3 + 24325703325x

13
742900x14 + 135207800x12 + 7808250450x10

+174437377400x8 + 1480593013900x6 + 4034735959800x4 + 2208143028375x2

14
2674440x15 + 608435100x13

+45510945480x11 + 1384928666550x9 + 17302190625720x7

+79553497760100x5 + 100940771124360x3 + 14230536445125x

15
9694845x16 + 2714556600x14

+257611421340x12 + 10369994005800x10 + 182231849209410x8

+1302772718028600x6 + 3130208769783780x4 + 1564439686929000x2

Table B.1: Values of A
(q;s)
n for n = 1
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B.2 Formulas for n = 2

(s1,2, q1, q2) A (x)

(1, 0, 0) x
(1, 0, 1) 3x2

(1, 0, 2) 10x3 + 5x
(1, 0, 3) 35x4 + 70x2

(1, 0, 4) 126x5 + 630x3 + 189x
(1, 1, 1) 9x3

(1, 1, 2) 30x4 + 15x2

(1, 1, 3) 105x5 + 210x3

(1, 1, 4) 378x6 + 1890x4 + 567x2

(1, 2, 2) 100x5 + 100x3 + 25x
(1, 2, 3) 350x6 + 875x4 + 350x2

(1, 2, 4) 1260x7 + 6930x5 + 5040x3 + 945x
(1, 3, 3) 1225x7 + 4900x5 + 4900x3

(1, 3, 4) 4410x8 + 30870x6 + 50715x4 + 13230x2

(1, 4, 4) 15876x9 + 158760x7 + 444528x5 + 238140x3 + 35721x
(2, 0, 0) 2x2

(2, 0, 1) 8x3 + 4x
(2, 0, 2) 30x4 + 60x2

(2, 0, 3) 112x5 + 560x3 + 168x
(2, 0, 4) 420x6 + 4200x4 + 4830x2

(2, 1, 1) 32x4 + 40x2

(2, 1, 2) 120x5 + 360x3 + 60x
(2, 1, 3) 448x6 + 2800x4 + 1792x2

(2, 1, 4) 1680x7 + 19320x5 + 31920x3 + 3780x
(2, 2, 2) 450x6 + 2250x4 + 1350x2

(2, 2, 3) 1680x7 + 14280x5 + 19320x3 + 2520x
(2, 2, 4) 6300x8 + 88200x6 + 229950x4 + 100800x2

(2, 3, 3) 6272x8 + 76832x6 + 189728x4 + 79968x2

(2, 3, 4) 23520x9 + 423360x7 + 1728720x5 + 1634640x3 + 158760x
(2, 4, 4) 88200x10 + 2116800x8 + 12965400x6 + 22138200x4 + 7342650x2

Table B.2: Values of A
(q;s)
n for n = 2, Part 1
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(s1,2, q1, q2) A (x)

(3, 0, 0) 3x3 + 3x
(3, 0, 1) 15x4 + 45x2

(3, 0, 2) 63x5 + 420x3 + 147x
(3, 0, 3) 252x6 + 3150x4 + 4158x2

(3, 0, 4) 990x7 + 20790x5 + 65835x3 + 16335x
(3, 1, 1) 75x5 + 425x3 + 100x
(3, 1, 2) 315x6 + 3150x4 + 2835x2

(3, 1, 3) 1260x7 + 20790x5 + 45990x3 + 7560x
(3, 1, 4) 4950x8 + 127050x6 + 560175x4 + 347325x2

(3, 2, 2) 1323x7 + 19845x5 + 38367x3 + 6615x
(3, 2, 3) 5292x8 + 117306x6 + 426888x4 + 244314x2

(3, 2, 4) 20790x9 + 665280x7 + 4147605x5 + 5363820x3 + 717255x
(3, 3, 3) 21168x9 + 635040x7 + 3667356x5 + 4630500x3 + 571536x
(3, 3, 4) 83160x10 + 3367980x8 + 29688120x6 + 68461470x4 + 29376270x2

(3, 4, 4)
326700x11 + 16879500x9 + 208107900x7

+772645500x5 + 725791275x3 + 77182875x
(4, 0, 0) 4x4 + 20x2

(4, 0, 1) 24x5 + 240x3 + 96x
(4, 0, 2) 112x6 + 1960x4 + 2968x2

(4, 0, 3) 480x7 + 13440x5 + 48720x3 + 12960x
(4, 0, 4) 1980x8 + 83160x6 + 582120x4 + 580140x2

(4, 1, 1) 144x6 + 2340x4 + 2916x2

(4, 1, 2) 672x7 + 16800x5 + 48048x3 + 10080x
(4, 1, 3) 2880x8 + 105840x6 + 582120x4 + 443160x2

(4, 1, 4) 11880x9 + 617760x7 + 5821200x5 + 10549440x3 + 1710720x
(4, 2, 2) 3136x8 + 109760x6 + 549584x4 + 395920x2

(4, 2, 3) 13440x9 + 645120x7 + 5292000x5 + 8594880x3 + 1330560x
(4, 2, 4) 55440x10 + 3575880x8 + 45405360x6 + 138489120x4 + 74428200x2

(4, 3, 3) 57600x10 + 3585600x8 + 42940800x6 + 125816400x4 + 65739600x2

(4, 3, 4)
237600x11 + 19008000x9 + 324324000x7

+1551528000x5 + 1809680400x3 + 224532000x

(4, 4, 4)
980100x12 + 97029900x10 + 2208165300x8

+15682580100x6 + 33040151100x4 + 13804708500x2

Table B.3: Values of A
(q;s)
n for n = 2, Part 2
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B.3 Formulas for n = 3, Tree Support Graph

(q1, q2, q3) A (x)

(0, 0, 0) 2x
(0, 0, 1) 6x2

(0, 0, 2) 20x3 + 10x
(0, 1, 1) 18x3

(0, 1, 2) 60x4 + 30x2

(0, 2, 2) 200x5 + 200x3 + 50x
(1, 0, 0) 12x2

(1, 0, 1) 36x3

(1, 0, 2) 120x4 + 60x2

(1, 1, 1) 108x4

(1, 1, 2) 360x5 + 180x3

(1, 2, 2) 1200x6 + 1200x4 + 300x2

(2, 0, 0) 60x3 + 30x
(2, 0, 1) 180x4 + 90x2

(2, 0, 2) 600x5 + 600x3 + 150x
(2, 1, 1) 540x5 + 270x3

(2, 1, 2) 1800x6 + 1800x4 + 450x2

(2, 2, 2) 6000x7 + 9000x5 + 4500x3 + 750x

Table B.4: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 1, 0)
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(q1, q2, q3) A (x)

(0, 0, 0) 6x2

(0, 0, 1) 24x3 + 12x
(0, 0, 2) 90x4 + 180x2

(0, 1, 0) 18x3

(0, 1, 1) 72x4 + 36x2

(0, 1, 2) 270x5 + 540x3

(0, 2, 0) 60x4 + 30x2

(0, 2, 1) 240x5 + 240x3 + 60x
(0, 2, 2) 900x6 + 2250x4 + 900x2

(1, 0, 0) 40x3 + 20x
(1, 0, 1) 160x4 + 200x2

(1, 0, 2) 600x5 + 1800x3 + 300x
(1, 1, 0) 120x4 + 60x2

(1, 1, 1) 480x5 + 600x3

(1, 1, 2) 1800x6 + 5400x4 + 900x2

(1, 2, 0) 400x5 + 400x3 + 100x
(1, 2, 1) 1600x6 + 2800x4 + 1000x2

(1, 2, 2) 6000x7 + 21000x5 + 12000x3 + 1500x
(2, 0, 0) 210x4 + 420x2

(2, 0, 1) 840x5 + 2520x3 + 420x
(2, 0, 2) 3150x6 + 15750x4 + 9450x2

(2, 1, 0) 630x5 + 1260x3

(2, 1, 1) 2520x6 + 7560x4 + 1260x2

(2, 1, 2) 9450x7 + 47250x5 + 28350x3

(2, 2, 0) 2100x6 + 5250x4 + 2100x2

(2, 2, 1) 8400x7 + 29400x5 + 16800x3 + 2100x
(2, 2, 2) 31500x8 + 173250x6 + 173250x4 + 47250x2

Table B.5: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 0)
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(q1, q2, q3) A (x)

(0, 0, 0) 12x3 + 12x
(0, 0, 1) 60x4 + 180x2

(0, 0, 2) 252x5 + 1680x3 + 588x
(0, 1, 0) 36x4 + 36x2

(0, 1, 1) 180x5 + 540x3

(0, 1, 2) 756x6 + 5040x4 + 1764x2

(0, 2, 0) 120x5 + 180x3 + 60x
(0, 2, 1) 600x6 + 2100x4 + 900x2

(0, 2, 2) 2520x7 + 18060x5 + 14280x3 + 2940x
(1, 0, 0) 90x4 + 270x2

(1, 0, 1) 450x5 + 2550x3 + 600x
(1, 0, 2) 1890x6 + 18900x4 + 17010x2

(1, 1, 0) 270x5 + 810x3

(1, 1, 1) 1350x6 + 7650x4 + 1800x2

(1, 1, 2) 5670x7 + 56700x5 + 51030x3

(1, 2, 0) 900x6 + 3150x4 + 1350x2

(1, 2, 1) 4500x7 + 27750x5 + 18750x3 + 3000x
(1, 2, 2) 18900x8 + 198450x6 + 264600x4 + 85050x2

(2, 0, 0) 504x5 + 3360x3 + 1176x
(2, 0, 1) 2520x6 + 25200x4 + 22680x2

(2, 0, 2) 10584x7 + 158760x5 + 306936x3 + 52920x
(2, 1, 0) 1512x6 + 10080x4 + 3528x2

(2, 1, 1) 7560x7 + 75600x5 + 68040x3

(2, 1, 2) 31752x8 + 476280x6 + 920808x4 + 158760x2

(2, 2, 0) 5040x7 + 36120x5 + 28560x3 + 5880x
(2, 2, 1) 25200x8 + 264600x6 + 352800x4 + 113400x2

(2, 2, 2) 105840x9 + 1640520x7 + 3863160x5 + 2063880x3 + 264600x

Table B.6: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 3, 0)
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(q1, q2, q3) A (x)

(0, 0, 0) 16x3 + 8x
(0, 0, 1) 64x4 + 80x2

(0, 0, 2) 240x5 + 720x3 + 120x
(0, 1, 1) 256x5 + 512x3 + 96x
(0, 1, 2) 960x6 + 3600x4 + 1920x2

(0, 2, 2) 3600x7 + 19800x5 + 23400x3 + 1800x
(1, 0, 0) 120x4 + 240x2

(1, 0, 1) 480x5 + 1440x3 + 240x
(1, 0, 2) 1800x6 + 9000x4 + 5400x2

(1, 1, 1) 1920x6 + 7680x4 + 3360x2

(1, 1, 2) 7200x7 + 43200x5 + 43200x3 + 3600x
(1, 2, 2) 27000x8 + 216000x6 + 378000x4 + 108000x2

(2, 0, 0) 672x5 + 3360x3 + 1008x
(2, 0, 1) 2688x6 + 16800x4 + 10752x2

(2, 0, 2) 10080x7 + 85680x5 + 115920x3 + 15120x
(2, 1, 1) 10752x7 + 80640x5 + 83328x3 + 6720x
(2, 1, 2) 40320x8 + 393120x6 + 715680x4 + 211680x2

(2, 2, 2) 151200x9 + 1814400x7 + 4914000x5 + 3099600x3 + 226800x

Table B.7: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (2, 2, 0)
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(q1, q2, q3) A (x)

(0, 0, 0) 30x4 + 90x2

(0, 0, 1) 150x5 + 850x3 + 200x
(0, 0, 2) 630x6 + 6300x4 + 5670x2

(0, 1, 0) 120x5 + 480x3 + 120x
(0, 1, 1) 600x6 + 4000x4 + 2600x2

(0, 1, 2) 2520x7 + 27720x5 + 39480x3 + 5880x
(0, 2, 0) 450x6 + 2700x4 + 2250x2

(0, 2, 1) 2250x7 + 19500x5 + 29250x3 + 3000x
(0, 2, 2) 9450x8 + 122850x6 + 305550x4 + 129150x2

(1, 0, 0) 252x5 + 1680x3 + 588x
(1, 0, 1) 1260x6 + 12600x4 + 11340x2

(1, 0, 2) 5292x7 + 79380x5 + 153468x3 + 26460x
(1, 1, 0) 1008x6 + 7980x4 + 6132x2

(1, 1, 1) 5040x7 + 56700x5 + 81060x3 + 8400x
(1, 1, 2) 21168x8 + 343980x6 + 878472x4 + 343980x2

(1, 2, 0) 3780x7 + 38430x5 + 62370x3 + 8820x
(1, 2, 1) 18900x8 + 255150x6 + 626850x4 + 233100x2

(1, 2, 2) 79380x9 + 1468530x7 + 5477220x5 + 4484970x3 + 396900x
(2, 0, 0) 1512x6 + 18900x4 + 24948x2

(2, 0, 1) 7560x7 + 124740x5 + 275940x3 + 45360x
(2, 0, 2) 31752x8 + 703836x6 + 2561328x4 + 1465884x2

(2, 1, 0) 6048x7 + 84672x5 + 160272x3 + 21168x
(2, 1, 1) 30240x8 + 544320x6 + 1557360x4 + 589680x2

(2, 1, 2) 127008x9 + 3005856x7 + 13102992x5 + 11388384x3 + 952560x
(2, 2, 0) 22680x8 + 374220x6 + 1111320x4 + 532980x2

(2, 2, 1) 113400x9 + 2324700x7 + 9412200x5 + 7881300x3 + 680400x
(2, 2, 2) 476280x10 + 12462660x8 + 70410060x6 + 101844540x4 + 29132460x2

Table B.8: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (2, 3, 0)
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(q1, q2, q3) A (x)

(0, 0, 0) 54x5 + 450x3 + 216x
(0, 0, 1) 270x6 + 3150x4 + 3780x2

(0, 0, 2) 1134x7 + 18900x5 + 45486x3 + 10080x
(0, 1, 1) 1350x7 + 20250x5 + 44400x3 + 6000x
(0, 1, 2) 5670x8 + 113400x6 + 416430x4 + 220500x2

(0, 2, 2) 23814x9 + 595350x7 + 3257226x5 + 3585330x3 + 476280x
(1, 0, 0) 504x6 + 7560x4 + 12096x2

(1, 0, 1) 2520x7 + 47880x5 + 127680x3 + 23520x
(1, 0, 2) 10584x8 + 261072x6 + 1118376x4 + 726768x2

(1, 1, 1) 12600x8 + 289800x6 + 1142400x4 + 571200x2

(1, 1, 2) 52920x9 + 1517040x7 + 8767080x5 + 9772560x3 + 1058400x
(1, 2, 2) 222264x10 + 7631064x8 + 60035976x6 + 113379336x4 + 40995360x2

(2, 0, 0) 3240x7 + 79380x5 + 291060x3 + 79920x
(2, 0, 1) 16200x8 + 472500x6 + 2400300x4 + 1647000x2

(2, 0, 2) 68040x9 + 2415420x7 + 17146080x5 + 24460380x3 + 3538080x
(2, 1, 1) 81000x9 + 2740500x7 + 18238500x5 + 22032000x3 + 2268000x
(2, 1, 2) 340200x10 + 13664700x8 + 120922200x6 + 250368300x4 + 90984600x2

(2, 2, 2)
1428840x11 + 66441060x9 + 746886420x7

+2289557340x5 + 1739453940x3 + 157172400x

Table B.9: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (3, 3, 0)
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B.4 Formulas for n = 3, Non-Tree Support Graph

(q1, q2, q3) A (x)

(0, 0, 0) 8x2

(0, 0, 1) 32x3 + 16x
(0, 0, 2) 120x4 + 240x2

(0, 0, 3) 448x5 + 2240x3 + 672x
(0, 1, 1) 128x4 + 160x2

(0, 1, 2) 480x5 + 1440x3 + 240x
(0, 1, 3) 1792x6 + 11200x4 + 7168x2

(0, 2, 2) 1800x6 + 9000x4 + 5400x2

(0, 2, 3) 6720x7 + 57120x5 + 77280x3 + 10080x
(0, 3, 3) 25088x8 + 307328x6 + 758912x4 + 319872x2

(1, 1, 1) 512x5 + 1216x3

(1, 1, 2) 1920x6 + 8640x4 + 2400x2

(1, 1, 3) 7168x7 + 58240x5 + 55552x3

(1, 2, 2) 7200x7 + 50400x5 + 36000x3 + 3600x
(1, 2, 3) 26880x8 + 295680x6 + 477120x4 + 107520x2

(1, 3, 3) 100352x9 + 1542912x7 + 4290048x5 + 2533888x3

(2, 2, 2) 27000x8 + 270000x6 + 324000x4 + 108000x2

(2, 2, 3) 100800x9 + 1461600x7 + 3276000x5 + 1814400x3 + 151200x
(2, 3, 3) 376320x10 + 7338240x8 + 25401600x6 + 25589760x4 + 4798080x2

(3, 3, 3) 1404928x11 + 35298816x9 + 168591360x7 + 272029184x5 + 115379712x3

Table B.10: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 1, 1)
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(q1, q2, q3) A (x)

(0, 0, 0) 18x3 + 18x
(0, 0, 1) 90x4 + 270x2

(0, 0, 2) 378x5 + 2520x3 + 882x
(0, 0, 3) 1512x6 + 18900x4 + 24948x2

(0, 1, 1) 450x5 + 2550x3 + 600x
(0, 1, 2) 1890x6 + 18900x4 + 17010x2

(0, 1, 3) 7560x7 + 124740x5 + 275940x3 + 45360x
(0, 2, 2) 7938x7 + 119070x5 + 230202x3 + 39690x
(0, 2, 3) 31752x8 + 703836x6 + 2561328x4 + 1465884x2

(0, 3, 3) 127008x9 + 3810240x7 + 22004136x5 + 27783000x3 + 3429216x
(1, 0, 0) 72x4 + 144x2

(1, 0, 1) 360x5 + 1560x3 + 240x
(1, 0, 2) 1512x6 + 12600x4 + 8568x2

(1, 0, 3) 6048x7 + 87696x5 + 160272x3 + 18144x
(1, 1, 1) 1800x6 + 13400x4 + 6400x2

(1, 1, 2) 7560x7 + 92400x5 + 118440x3 + 8400x
(1, 1, 3) 30240x8 + 579600x6 + 1607760x4 + 504000x2

(1, 2, 2) 31752x8 + 564480x6 + 1361808x4 + 423360x2

(1, 2, 3) 127008x9 + 3238704x7 + 13843872x5 + 10732176x3 + 635040x
(1, 3, 3) 508032x10 + 17273088x8 + 112910112x6 + 172603872x4 + 39626496x2

(2, 0, 0) 270x5 + 1080x3 + 270x
(2, 0, 1) 1350x6 + 9000x4 + 5850x2

(2, 0, 2) 5670x7 + 62370x5 + 88830x3 + 13230x
(2, 0, 3) 22680x8 + 396900x6 + 1111320x4 + 510300x2

(2, 1, 1) 6750x7 + 69000x5 + 77250x3 + 9000x
(2, 1, 2) 28350x8 + 437850x6 + 916650x4 + 318150x2

(2, 1, 3) 113400x9 + 2589300x7 + 9790200x5 + 7238700x3 + 680400x
(2, 2, 2) 119070x9 + 2566620x7 + 8546580x5 + 6032880x3 + 595350x
(2, 2, 3) 476280x10 + 14209020x8 + 75966660x6 + 96922980x4 + 26751060x2

(2, 3, 3)
1905120x11 + 74299680x9 + 573917400x7

+1207846080x5 + 662505480x3 + 51438240x

Table B.11: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 1, 2), Part 1
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(q1, q2, q3) A (x)

(3, 0, 0) 1008x6 + 7560x4 + 6552x2

(3, 0, 1) 5040x7 + 52920x5 + 83160x3 + 10080x
(3, 0, 2) 21168x8 + 321048x6 + 860832x4 + 384552x2

(3, 0, 3) 84672x9 + 1862784x7 + 8149680x5 + 8192016x3 + 762048x
(3, 1, 1) 25200x8 + 365400x6 + 835800x4 + 285600x2

(3, 1, 2) 105840x9 + 2134440x7 + 7479360x5 + 5803560x3 + 352800x
(3, 1, 3) 423360x10 + 11854080x8 + 64456560x6 + 91339920x4 + 22438080x2

(3, 2, 2) 444528x10 + 11928168x8 + 58455432x6 + 76977432x4 + 18892440x2

(3, 2, 3)
1778112x11 + 63419328x9 + 450306864x7

+939732192x5 + 518467824x3 + 26671680x

(3, 3, 3)
7112448x12 + 323616384x10 + 3109917888x8

+9496007136x6 + 9307527264x4 + 1760330880x2

Table B.12: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 1, 2), Part 2

(q1, q2, q3) A (x)

(0, 0, 0) 36x4 + 180x2

(0, 0, 1) 216x5 + 2160x3 + 864x
(0, 0, 2) 1008x6 + 17640x4 + 26712x2

(0, 0, 3) 4320x7 + 120960x5 + 438480x3 + 116640x
(0, 1, 0) 180x5 + 1500x3 + 480x
(0, 1, 1) 1080x6 + 15300x4 + 16020x2

(0, 1, 2) 5040x7 + 113400x5 + 284760x3 + 50400x
(0, 1, 3) 21600x8 + 730800x6 + 3641400x4 + 2410200x2

(0, 2, 0) 756x6 + 10080x4 + 11844x2

(0, 2, 1) 4536x7 + 90720x5 + 207144x3 + 37800x
(0, 2, 2) 21168x8 + 617400x6 + 2554272x4 + 1569960x2

(0, 2, 3) 90720x9 + 3749760x7 + 26248320x5 + 36318240x3 + 5034960x
(0, 3, 0) 3024x7 + 61992x5 + 170856x3 + 36288x
(0, 3, 1) 18144x8 + 508032x6 + 2181816x4 + 1374408x2

(0, 3, 2) 84672x9 + 3217536x7 + 21189168x5 + 28851984x3 + 3810240x
(0, 3, 3) 362880x10 + 18506880x8 + 182891520x6 + 452103120x4 + 203439600x2

Table B.13: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 2), Part 1
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(q1, q2, q3) A (x)

(1, 1, 0) 900x6 + 10900x4 + 9800x2

(1, 1, 1) 5400x7 + 102000x5 + 192600x3 + 24000x
(1, 1, 2) 25200x8 + 709800x6 + 2599800x4 + 1201200x2

(1, 1, 3) 108000x9 + 4368000x7 + 28308000x5 + 32232000x3 + 3024000x
(1, 2, 0) 3780x7 + 66360x5 + 134820x3 + 21840x
(1, 2, 1) 22680x8 + 573300x6 + 1917720x4 + 888300x2

(1, 2, 2) 105840x9 + 3757320x7 + 20532960x5 + 21115080x3 + 2116800x
(1, 2, 3) 453600x10 + 22100400x8 + 191129400x6 + 374043600x4 + 126693000x2

(1, 3, 0) 15120x8 + 380520x6 + 1484280x4 + 841680x2

(1, 3, 1) 90720x9 + 3069360x7 + 17221680x5 + 18627840x3 + 1814400x
(1, 3, 2) 423360x10 + 19051200x8 + 154843920x6 + 297939600x4 + 99277920x2

(1, 3, 3)
1814400x11 + 107352000x9 + 1257379200x7

+3983061600x5 + 2994818400x3 + 228614400x
(2, 2, 0) 15876x8 + 372204x6 + 1289484x4 + 703836x2

(2, 2, 1) 95256x9 + 3069360x7 + 15463224x5 + 15505560x3 + 1587600x
(2, 2, 2) 444528x10 + 19336968x8 + 144150552x6 + 252319032x4 + 83842920x2

(2, 2, 3)
1905120x11 + 110073600x9 + 1207740240x7

+3486898800x5 + 2485229040x3 + 209563200x
(2, 3, 0) 63504x9 + 2000376x7 + 11303712x5 + 13558104x3 + 1651104x
(2, 3, 1) 381024x10 + 15748992x8 + 119165256x6 + 219850848x4 + 73505880x2

(2, 3, 2)
1778112x11 + 95425344x9 + 986111280x7

+2789561376x5 + 1968221808x3 + 160030080x

(2, 3, 3)
7620480x12 + 525813120x10 + 7475690880x8

+31671667440x6 + 39935125440x4 + 10401002640x2

(3, 3, 0) 254016x10 + 10160640x8 + 83126736x6 + 178128720x4 + 71251488x2

(3, 3, 1)
1524096x11 + 77728896x9 + 806627808x7

+2383686144x5 + 1737088416x3 + 137168640x

(3, 3, 2)
7112448x12 + 458752896x10 + 6168270528x8

+25468787232x6 + 31765081824x4 + 8145531072x2

(3, 3, 3)
30481920x13 + 2469035520x11 + 43596766080x9

+250896683520x7 + 494584392960x5 + 271342431360x3 + 17283248640x

Table B.14: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 2), Part 2
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(q1, q2, q3) A (x)

(0, 0, 0) 64x5 + 1088x3 + 576x
(0, 0, 1) 384x6 + 9600x4 + 15936x2

(0, 0, 2) 1792x7 + 63616x5 + 235648x3 + 61824x
(0, 0, 3) 7680x8 + 376320x6 + 2593920x4 + 2465280x2

(0, 1, 1) 2304x7 + 78480x5 + 253296x3 + 54720x
(0, 1, 2) 10752x8 + 490560x6 + 2804928x4 + 2136960x2

(0, 1, 3) 46080x9 + 2773440x7 + 25976160x5 + 45646560x3 + 7205760x
(0, 2, 2) 50176x9 + 2922752x7 + 25313792x5 + 41483008x3 + 6435072x
(0, 2, 3) 215040x10 + 15886080x8 + 202930560x6 + 606318720x4 + 317721600x2

(0, 3, 3)
921600x11 + 83462400x9 + 1449100800x7

+6845716800x5 + 7819761600x3 + 947116800x
(1, 1, 1) 13824x8 + 612576x6 + 3174336x4 + 2031264x2

(1, 1, 2) 64512x9 + 3681216x7 + 29742048x5 + 42717024x3 + 5443200x
(1, 1, 3) 276480x10 + 20131200x8 + 244823040x6 + 663854400x4 + 295634880x2

(1, 2, 2) 301056x10 + 21374976x8 + 243554304x6 + 614229504x4 + 263612160x2

(1, 2, 3)
1290240x11 + 113460480x9 + 1805448960x7

+7429101120x5 + 7089163200x3 + 707616000x

(1, 3, 3)
5529600x12 + 586483200x10 + 12244608000x8

+74183472000x6 + 127789574400x4 + 42381532800x2

(2, 2, 2)
1404928x11 + 121175040x9 + 1829040640x7

+7038689280x5 + 6372577792x3 + 640120320x

(2, 2, 3)
6021120x12 + 629207040x10 + 12596935680x8

+71987758080x6 + 116939558400x4 + 37885639680x2

(2, 3, 3)
25804800x13 + 3201408000x11 + 81210124800x9

+640543276800x7 + 1645874697600x5 + 1137918499200x3 + 91902988800x

(3, 3, 3)
110592000x14 + 16042752000x12

+499074048000x10 + 5150333376000x8

+19147577472000x6 + 23193996192000x4 + 6003017568000x2

Table B.15: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (2, 2, 2)
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(q1, q2, q3) A (x)

(0, 0, 0) 60x5 + 900x3 + 480x
(0, 0, 1) 420x6 + 10500x4 + 19320x2

(0, 0, 2) 2160x7 + 83160x5 + 355320x3 + 103680x
(0, 0, 3) 9900x8 + 554400x6 + 4504500x4 + 4910400x2

(0, 1, 0) 360x6 + 8100x4 + 13140x2

(0, 1, 1) 2520x7 + 85680x5 + 297360x3 + 68040x
(0, 1, 2) 12960x8 + 635040x6 + 4105080x4 + 3411720x2

(0, 1, 3) 59400x9 + 4039200x7 + 43991640x5 + 86842800x3 + 14754960x
(0, 2, 0) 1680x7 + 54600x5 + 195720x3 + 50400x
(0, 2, 1) 11760x8 + 535080x6 + 3216360x4 + 2587200x2

(0, 2, 2) 60480x9 + 3749760x7 + 35964432x5 + 63972720x3 + 10559808x
(0, 2, 3) 277200x10 + 22869000x8 + 334136880x6 + 1108661400x4 + 629687520x2

(0, 3, 0) 7200x8 + 327600x6 + 2179800x4 + 2021400x2

(0, 3, 1) 50400x9 + 3024000x7 + 29317680x5 + 53928000x3 + 8935920x
(0, 3, 2) 259200x10 + 20217600x8 + 280869120x6 + 906714000x4 + 506548080x2

(0, 3, 3)
1188000x11 + 118800000x9 + 2320164000x7

+12088612800x5 + 14974740000x3 + 1930975200x
(1, 0, 0) 300x6 + 5900x4 + 8200x2

(1, 0, 1) 2100x7 + 64260x5 + 197400x3 + 38640x
(1, 0, 2) 10800x8 + 486360x6 + 2860200x4 + 2085840x2

(1, 0, 3) 49500x9 + 3141600x7 + 31762500x5 + 56522400x3 + 8316000x
(1, 1, 0) 1800x7 + 49800x5 + 139200x3 + 25200x
(1, 1, 1) 12600x8 + 506520x6 + 2520000x4 + 1496880x2

(1, 1, 2) 64800x9 + 3643920x7 + 30315600x5 + 42634080x3 + 4989600x
(1, 1, 3) 297000x10 + 22651200x8 + 297019800x6 + 824788800x4 + 352123200x2

Table B.16: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 3), Part 1
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(q1, q2, q3) A (x)

(1, 2, 0) 8400x8 + 320600x6 + 1622600x4 + 1072400x2

(1, 2, 1) 58800x9 + 3075240x7 + 23961000x5 + 32528160x3 + 3880800x
(1, 2, 2) 302400x10 + 21147840x8 + 247489200x6 + 620166960x4 + 253965600x2

(1, 2, 3)
1386000x11 + 126911400x9 + 2167426800x7

+9199020600x5 + 8646607200x3 + 814968000x
(1, 3, 0) 36000x9 + 1860000x7 + 15666000x5 + 24450000x3 + 3348000x
(1, 3, 1) 252000x10 + 16984800x8 + 199684800x6 + 518011200x4 + 217627200x2

(1, 3, 2)
1296000x11 + 112276800x9 + 1827100800x7

+7538896800x5 + 7016047200x3 + 650462400x

(1, 3, 3)
5940000x12 + 652608000x10 + 14525676000x8

+91212264000x6 + 157617504000x4 + 50330808000x2

(2, 0, 0) 1260x7 + 32760x5 + 95340x3 + 21840x
(2, 0, 1) 8820x8 + 333984x6 + 1672860x4 + 1159536x2

(2, 0, 2) 45360x9 + 2414664x7 + 19855584x5 + 30320136x3 + 4517856x
(2, 0, 3) 207900x10 + 15093540x8 + 193942980x6 + 558433260x4 + 280138320x2

(2, 1, 0) 7560x8 + 260820x6 + 1214640x4 + 784980x2

(2, 1, 1) 52920x9 + 2543688x7 + 18319140x5 + 23801652x3 + 2910600x
(2, 1, 2) 272160x10 + 17726688x8 + 193528440x6 + 458734752x4 + 187041960x2

(2, 1, 3)
1247400x11 + 107525880x9 + 1729977480x7

+6932383920x5 + 6324900120x3 + 621205200x
(2, 2, 0) 35280x9 + 1605240x7 + 11642400x5 + 16211160x3 + 2257920x
(2, 2, 1) 246960x10 + 15006936x8 + 154679280x6 + 353704344x4 + 143154480x2

(2, 2, 2)
1270080x11 + 101013696x9 + 1470900816x7

+5364775584x5 + 4614687504x3 + 449608320x

(2, 2, 3)
5821200x12 + 595508760x10 + 12087721800x8

+67852489320x6 + 106100101800x4 + 33399717120x2

(2, 3, 0) 151200x10 + 8996400x8 + 98343000x6 + 252453600x4 + 116335800x2

(2, 3, 1)
1058400x11 + 80932320x9 + 1178634240x7

+4428292680x5 + 3933525960x3 + 379436400x

(2, 3, 2)
5443200x12 + 527627520x10 + 10237026240x8

+55889825040x6 + 86486823360x4 + 26887094640x2

(2, 3, 3)
24948000x13 + 3028687200x11 + 77939215200x9

+608197312800x7 + 1517334865200x5 + 1013308758000x3 + 80786613600x

Table B.17: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 3), Part 2
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(q1, q2, q3) A (x)

(3, 0, 0) 5040x8 + 173880x6 + 914760x4 + 720720x2

(3, 0, 1) 35280x9 + 1668744x7 + 13078296x5 + 20398896x3 + 2921184x
(3, 0, 2) 181440x10 + 11539584x8 + 132786864x6 + 364268016x4 + 177067296x2

(3, 0, 3)
831600x11 + 69771240x9 + 1156090320x7

+5152676760x5 + 5565732480x3 + 628689600x
(3, 1, 0) 30240x9 + 1315440x7 + 9707040x5 + 14258160x3 + 1905120x
(3, 1, 1) 211680x10 + 12298608x8 + 127304352x6 + 306491472x4 + 125229888x2

(3, 1, 2)
1088640x11 + 82954368x9 + 1201368672x7

+4555196352x5 + 4069826208x3 + 377213760x

(3, 1, 3)
4989600x12 + 490477680x10 + 9840489120x8

+56587552560x6 + 92566061280x4 + 29117309760x2

(3, 2, 0) 141120x10 + 7761600x8 + 80262000x6 + 201625200x4 + 91234080x2

(3, 2, 1)
987840x11 + 70531776x9 + 971392464x7

+3553112304x5 + 3112091136x3 + 293388480x

(3, 2, 2)
5080320x12 + 463833216x10 + 8537223744x8

+45120735072x6 + 68853195936x4 + 21047003712x2

(3, 2, 3)
23284800x13 + 2682408960x11 + 65792366640x9

+495314265600x7 + 1213241697360x5 + 801830715840x3 + 61611580800x

(3, 3, 0)
604800x11 + 42033600x9 + 604195200x7

+2418897600x5 + 2396520000x3 + 253108800x

(3, 3, 1)
4233600x12 + 371286720x10 + 6810168960x8

+36807130080x6 + 58026356640x4 + 18003384000x2

(3, 3, 2)
21772800x13 + 2381944320x11 + 56046453120x9

+410638273920x7 + 992067834240x5 + 650074844160x3 + 49174957440x

(3, 3, 3)
99792000x14 + 13481899200x12

+407490652800x10 + 4035279124800x8

+14355847598400x6 + 16669604952000x4 + 4125640780800x2

Table B.18: Values of A
(q;s)
n for n = 3, (s1,2, s1,3, s2,3) = (1, 2, 3), Part 3
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B.5 Formulas for n = 4, Tree Support Graph

(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 6x
(0, 0, 0, 1) 18x2

(0, 0, 0, 2) 60x3 + 30x
(0, 0, 1, 1) 54x3

(0, 0, 1, 2) 180x4 + 90x2

(0, 0, 2, 2) 600x5 + 600x3 + 150x
(0, 1, 1, 1) 162x4

(0, 1, 1, 2) 540x5 + 270x3

(0, 1, 2, 2) 1800x6 + 1800x4 + 450x2

(0, 2, 2, 2) 6000x7 + 9000x5 + 4500x3 + 750x
(1, 0, 0, 0) 60x2

(1, 0, 0, 1) 180x3

(1, 0, 0, 2) 600x4 + 300x2

(1, 0, 1, 1) 540x4

(1, 0, 1, 2) 1800x5 + 900x3

(1, 0, 2, 2) 6000x6 + 6000x4 + 1500x2

(1, 1, 1, 1) 1620x5

(1, 1, 1, 2) 5400x6 + 2700x4

(1, 1, 2, 2) 18000x7 + 18000x5 + 4500x3

(1, 2, 2, 2) 60000x8 + 90000x6 + 45000x4 + 7500x2

(2, 0, 0, 0) 420x3 + 210x
(2, 0, 0, 1) 1260x4 + 630x2

(2, 0, 0, 2) 4200x5 + 4200x3 + 1050x
(2, 0, 1, 1) 3780x5 + 1890x3

(2, 0, 1, 2) 12600x6 + 12600x4 + 3150x2

(2, 0, 2, 2) 42000x7 + 63000x5 + 31500x3 + 5250x
(2, 1, 1, 1) 11340x6 + 5670x4

(2, 1, 1, 2) 37800x7 + 37800x5 + 9450x3

(2, 1, 2, 2) 126000x8 + 189000x6 + 94500x4 + 15750x2

(2, 2, 2, 2) 420000x9 + 840000x7 + 630000x5 + 210000x3 + 26250x

Table B.19: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 0, 0, 0)
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(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 24x2

(0, 0, 0, 1) 96x3 + 48x
(0, 0, 0, 2) 360x4 + 720x2

(0, 0, 1, 0) 72x3

(0, 0, 1, 1) 288x4 + 144x2

(0, 0, 1, 2) 1080x5 + 2160x3

(0, 0, 2, 0) 240x4 + 120x2

(0, 0, 2, 1) 960x5 + 960x3 + 240x
(0, 0, 2, 2) 3600x6 + 9000x4 + 3600x2

(0, 1, 1, 0) 216x4

(0, 1, 1, 1) 864x5 + 432x3

(0, 1, 1, 2) 3240x6 + 6480x4

(0, 1, 2, 0) 720x5 + 360x3

(0, 1, 2, 1) 2880x6 + 2880x4 + 720x2

(0, 1, 2, 2) 10800x7 + 27000x5 + 10800x3

(0, 2, 2, 0) 2400x6 + 2400x4 + 600x2

(0, 2, 2, 1) 9600x7 + 14400x5 + 7200x3 + 1200x
(0, 2, 2, 2) 36000x8 + 108000x6 + 81000x4 + 18000x2

(1, 0, 0, 0) 240x3 + 120x
(1, 0, 0, 1) 960x4 + 1200x2

(1, 0, 0, 2) 3600x5 + 10800x3 + 1800x
(1, 0, 1, 0) 720x4 + 360x2

(1, 0, 1, 1) 2880x5 + 3600x3

(1, 0, 1, 2) 10800x6 + 32400x4 + 5400x2

(1, 0, 2, 0) 2400x5 + 2400x3 + 600x
(1, 0, 2, 1) 9600x6 + 16800x4 + 6000x2

(1, 0, 2, 2) 36000x7 + 126000x5 + 72000x3 + 9000x

Table B.20: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 2, 0, 0, 0), Part 1
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(q1, q2, q3, q4) A (x)

(1, 1, 1, 0) 2160x5 + 1080x3

(1, 1, 1, 1) 8640x6 + 10800x4

(1, 1, 1, 2) 32400x7 + 97200x5 + 16200x3

(1, 1, 2, 0) 7200x6 + 7200x4 + 1800x2

(1, 1, 2, 1) 28800x7 + 50400x5 + 18000x3

(1, 1, 2, 2) 108000x8 + 378000x6 + 216000x4 + 27000x2

(1, 2, 2, 0) 24000x7 + 36000x5 + 18000x3 + 3000x
(1, 2, 2, 1) 96000x8 + 216000x6 + 144000x4 + 30000x2

(1, 2, 2, 2) 360000x9 + 1440000x7 + 1350000x5 + 450000x3 + 45000x
(2, 0, 0, 0) 1680x4 + 3360x2

(2, 0, 0, 1) 6720x5 + 20160x3 + 3360x
(2, 0, 0, 2) 25200x6 + 126000x4 + 75600x2

(2, 0, 1, 0) 5040x5 + 10080x3

(2, 0, 1, 1) 20160x6 + 60480x4 + 10080x2

(2, 0, 1, 2) 75600x7 + 378000x5 + 226800x3

(2, 0, 2, 0) 16800x6 + 42000x4 + 16800x2

(2, 0, 2, 1) 67200x7 + 235200x5 + 134400x3 + 16800x
(2, 0, 2, 2) 252000x8 + 1386000x6 + 1386000x4 + 378000x2

(2, 1, 1, 0) 15120x6 + 30240x4

(2, 1, 1, 1) 60480x7 + 181440x5 + 30240x3

(2, 1, 1, 2) 226800x8 + 1134000x6 + 680400x4

(2, 1, 2, 0) 50400x7 + 126000x5 + 50400x3

(2, 1, 2, 1) 201600x8 + 705600x6 + 403200x4 + 50400x2

(2, 1, 2, 2) 756000x9 + 4158000x7 + 4158000x5 + 1134000x3

(2, 2, 2, 0) 168000x8 + 504000x6 + 378000x4 + 84000x2

(2, 2, 2, 1) 672000x9 + 2688000x7 + 2520000x5 + 840000x3 + 84000x
(2, 2, 2, 2) 2520000x10 + 15120000x8 + 20790000x6 + 10710000x4 + 1890000x2

Table B.21: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 2, 0, 0, 0), Part 2
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(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 4x
(0, 0, 0, 1) 12x2

(0, 0, 0, 2) 40x3 + 20x
(0, 0, 1, 0) 24x2

(0, 0, 1, 1) 72x3

(0, 0, 1, 2) 240x4 + 120x2

(0, 0, 2, 0) 120x3 + 60x
(0, 0, 2, 1) 360x4 + 180x2

(0, 0, 2, 2) 1200x5 + 1200x3 + 300x
(0, 1, 0, 1) 72x3

(0, 1, 0, 2) 240x4 + 120x2

(0, 1, 1, 0) 144x3

(0, 1, 1, 1) 432x4

(0, 1, 1, 2) 1440x5 + 720x3

(0, 1, 2, 0) 720x4 + 360x2

(0, 1, 2, 1) 2160x5 + 1080x3

(0, 1, 2, 2) 7200x6 + 7200x4 + 1800x2

(0, 2, 0, 1) 360x4 + 180x2

(0, 2, 0, 2) 1200x5 + 1200x3 + 300x
(0, 2, 1, 1) 2160x5 + 1080x3

(0, 2, 1, 2) 7200x6 + 7200x4 + 1800x2

(0, 2, 2, 0) 3600x5 + 3600x3 + 900x
(0, 2, 2, 1) 10800x6 + 10800x4 + 2700x2

(0, 2, 2, 2) 36000x7 + 54000x5 + 27000x3 + 4500x
(1, 0, 0, 1) 36x3

(1, 0, 0, 2) 120x4 + 60x2

(1, 0, 1, 1) 216x4

(1, 0, 1, 2) 720x5 + 360x3

(1, 0, 2, 1) 1080x5 + 540x3

(1, 0, 2, 2) 3600x6 + 3600x4 + 900x2

Table B.22: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 1, 0, 1), Part 1
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(q1, q2, q3, q4) A (x)

(1, 1, 0, 2) 720x5 + 360x3

(1, 1, 1, 1) 1296x5

(1, 1, 1, 2) 4320x6 + 2160x4

(1, 1, 2, 1) 6480x6 + 3240x4

(1, 1, 2, 2) 21600x7 + 21600x5 + 5400x3

(1, 2, 0, 2) 3600x6 + 3600x4 + 900x2

(1, 2, 1, 2) 21600x7 + 21600x5 + 5400x3

(1, 2, 2, 1) 32400x7 + 32400x5 + 8100x3

(1, 2, 2, 2) 108000x8 + 162000x6 + 81000x4 + 13500x2

(2, 0, 0, 2) 400x5 + 400x3 + 100x
(2, 0, 1, 2) 2400x6 + 2400x4 + 600x2

(2, 0, 2, 2) 12000x7 + 18000x5 + 9000x3 + 1500x
(2, 1, 1, 2) 14400x7 + 14400x5 + 3600x3

(2, 1, 2, 2) 72000x8 + 108000x6 + 54000x4 + 9000x2

(2, 2, 2, 2) 360000x9 + 720000x7 + 540000x5 + 180000x3 + 22500x

Table B.23: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 1, 0, 1), Part 2

(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 18x2

(0, 0, 0, 1) 54x3

(0, 0, 0, 2) 180x4 + 90x2

(0, 0, 1, 0) 120x3 + 60x
(0, 0, 1, 1) 360x4 + 180x2

(0, 0, 1, 2) 1200x5 + 1200x3 + 300x
(0, 0, 2, 0) 630x4 + 1260x2

(0, 0, 2, 1) 1890x5 + 3780x3

(0, 0, 2, 2) 6300x6 + 15750x4 + 6300x2

(0, 1, 0, 1) 360x4 + 180x2

(0, 1, 0, 2) 1200x5 + 1200x3 + 300x
(0, 1, 1, 0) 800x4 + 1000x2

(0, 1, 1, 1) 2400x5 + 3000x3

(0, 1, 1, 2) 8000x6 + 14000x4 + 5000x2

Table B.24: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 2, 0, 1), Part 1
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(q1, q2, q3, q4) A (x)

(0, 1, 2, 0) 4200x5 + 12600x3 + 2100x
(0, 1, 2, 1) 12600x6 + 37800x4 + 6300x2

(0, 1, 2, 2) 42000x7 + 147000x5 + 84000x3 + 10500x
(0, 2, 0, 1) 1890x5 + 3780x3

(0, 2, 0, 2) 6300x6 + 15750x4 + 6300x2

(0, 2, 1, 1) 12600x6 + 37800x4 + 6300x2

(0, 2, 1, 2) 42000x7 + 147000x5 + 84000x3 + 10500x
(0, 2, 2, 0) 22050x6 + 110250x4 + 66150x2

(0, 2, 2, 1) 66150x7 + 330750x5 + 198450x3

(0, 2, 2, 2) 220500x8 + 1212750x6 + 1212750x4 + 330750x2

(1, 0, 0, 1) 162x4

(1, 0, 0, 2) 540x5 + 270x3

(1, 0, 1, 1) 1080x5 + 540x3

(1, 0, 1, 2) 3600x6 + 3600x4 + 900x2

(1, 0, 2, 1) 5670x6 + 11340x4

(1, 0, 2, 2) 18900x7 + 47250x5 + 18900x3

(1, 1, 0, 2) 3600x6 + 3600x4 + 900x2

(1, 1, 1, 1) 7200x6 + 9000x4

(1, 1, 1, 2) 24000x7 + 42000x5 + 15000x3

(1, 1, 2, 1) 37800x7 + 113400x5 + 18900x3

(1, 1, 2, 2) 126000x8 + 441000x6 + 252000x4 + 31500x2

(1, 2, 0, 2) 18900x7 + 47250x5 + 18900x3

(1, 2, 1, 2) 126000x8 + 441000x6 + 252000x4 + 31500x2

(1, 2, 2, 1) 198450x8 + 992250x6 + 595350x4

(1, 2, 2, 2) 661500x9 + 3638250x7 + 3638250x5 + 992250x3

(2, 0, 0, 2) 1800x6 + 1800x4 + 450x2

(2, 0, 1, 2) 12000x7 + 18000x5 + 9000x3 + 1500x
(2, 0, 2, 2) 63000x8 + 189000x6 + 141750x4 + 31500x2

(2, 1, 1, 2) 80000x8 + 180000x6 + 120000x4 + 25000x2

(2, 1, 2, 2) 420000x9 + 1680000x7 + 1575000x5 + 525000x3 + 52500x
(2, 2, 2, 2) 2205000x10 + 13230000x8 + 18191250x6 + 9371250x4 + 1653750x2

Table B.25: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 2, 0, 1), Part 2
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(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 12x2

(0, 0, 0, 1) 48x3 + 24x
(0, 0, 0, 2) 180x4 + 360x2

(0, 0, 1, 0) 80x3 + 40x
(0, 0, 1, 1) 320x4 + 400x2

(0, 0, 1, 2) 1200x5 + 3600x3 + 600x
(0, 0, 2, 0) 420x4 + 840x2

(0, 0, 2, 1) 1680x5 + 5040x3 + 840x
(0, 0, 2, 2) 6300x6 + 31500x4 + 18900x2

(0, 1, 0, 0) 72x3

(0, 1, 0, 1) 288x4 + 144x2

(0, 1, 0, 2) 1080x5 + 2160x3

(0, 1, 1, 0) 480x4 + 240x2

(0, 1, 1, 1) 1920x5 + 2400x3

(0, 1, 1, 2) 7200x6 + 21600x4 + 3600x2

(0, 1, 2, 0) 2520x5 + 5040x3

(0, 1, 2, 1) 10080x6 + 30240x4 + 5040x2

(0, 1, 2, 2) 37800x7 + 189000x5 + 113400x3

(0, 2, 0, 0) 360x4 + 180x2

(0, 2, 0, 1) 1440x5 + 1440x3 + 360x
(0, 2, 0, 2) 5400x6 + 13500x4 + 5400x2

(0, 2, 1, 0) 2400x5 + 2400x3 + 600x
(0, 2, 1, 1) 9600x6 + 16800x4 + 6000x2

(0, 2, 1, 2) 36000x7 + 126000x5 + 72000x3 + 9000x
(0, 2, 2, 0) 12600x6 + 31500x4 + 12600x2

(0, 2, 2, 1) 50400x7 + 176400x5 + 100800x3 + 12600x
(0, 2, 2, 2) 189000x8 + 1039500x6 + 1039500x4 + 283500x2

Table B.26: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 1, 0, 2), Part 1
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(q1, q2, q3, q4) A (x)

(1, 0, 0, 0) 36x3

(1, 0, 0, 1) 144x4 + 72x2

(1, 0, 0, 2) 540x5 + 1080x3

(1, 0, 1, 0) 240x4 + 120x2

(1, 0, 1, 1) 960x5 + 1200x3

(1, 0, 1, 2) 3600x6 + 10800x4 + 1800x2

(1, 0, 2, 0) 1260x5 + 2520x3

(1, 0, 2, 1) 5040x6 + 15120x4 + 2520x2

(1, 0, 2, 2) 18900x7 + 94500x5 + 56700x3

(1, 1, 0, 0) 216x4

(1, 1, 0, 1) 864x5 + 432x3

(1, 1, 0, 2) 3240x6 + 6480x4

(1, 1, 1, 0) 1440x5 + 720x3

(1, 1, 1, 1) 5760x6 + 7200x4

(1, 1, 1, 2) 21600x7 + 64800x5 + 10800x3

(1, 1, 2, 0) 7560x6 + 15120x4

(1, 1, 2, 1) 30240x7 + 90720x5 + 15120x3

(1, 1, 2, 2) 113400x8 + 567000x6 + 340200x4

(1, 2, 0, 0) 1080x5 + 540x3

(1, 2, 0, 1) 4320x6 + 4320x4 + 1080x2

(1, 2, 0, 2) 16200x7 + 40500x5 + 16200x3

(1, 2, 1, 0) 7200x6 + 7200x4 + 1800x2

(1, 2, 1, 1) 28800x7 + 50400x5 + 18000x3

(1, 2, 1, 2) 108000x8 + 378000x6 + 216000x4 + 27000x2

(1, 2, 2, 0) 37800x7 + 94500x5 + 37800x3

(1, 2, 2, 1) 151200x8 + 529200x6 + 302400x4 + 37800x2

(1, 2, 2, 2) 567000x9 + 3118500x7 + 3118500x5 + 850500x3

Table B.27: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 1, 0, 2), Part 2
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(q1, q2, q3, q4) A (x)

(2, 0, 0, 0) 120x4 + 60x2

(2, 0, 0, 1) 480x5 + 480x3 + 120x
(2, 0, 0, 2) 1800x6 + 4500x4 + 1800x2

(2, 0, 1, 0) 800x5 + 800x3 + 200x
(2, 0, 1, 1) 3200x6 + 5600x4 + 2000x2

(2, 0, 1, 2) 12000x7 + 42000x5 + 24000x3 + 3000x
(2, 0, 2, 0) 4200x6 + 10500x4 + 4200x2

(2, 0, 2, 1) 16800x7 + 58800x5 + 33600x3 + 4200x
(2, 0, 2, 2) 63000x8 + 346500x6 + 346500x4 + 94500x2

(2, 1, 0, 0) 720x5 + 360x3

(2, 1, 0, 1) 2880x6 + 2880x4 + 720x2

(2, 1, 0, 2) 10800x7 + 27000x5 + 10800x3

(2, 1, 1, 0) 4800x6 + 4800x4 + 1200x2

(2, 1, 1, 1) 19200x7 + 33600x5 + 12000x3

(2, 1, 1, 2) 72000x8 + 252000x6 + 144000x4 + 18000x2

(2, 1, 2, 0) 25200x7 + 63000x5 + 25200x3

(2, 1, 2, 1) 100800x8 + 352800x6 + 201600x4 + 25200x2

(2, 1, 2, 2) 378000x9 + 2079000x7 + 2079000x5 + 567000x3

(2, 2, 0, 0) 3600x6 + 3600x4 + 900x2

(2, 2, 0, 1) 14400x7 + 21600x5 + 10800x3 + 1800x
(2, 2, 0, 2) 54000x8 + 162000x6 + 121500x4 + 27000x2

(2, 2, 1, 0) 24000x7 + 36000x5 + 18000x3 + 3000x
(2, 2, 1, 1) 96000x8 + 216000x6 + 144000x4 + 30000x2

(2, 2, 1, 2) 360000x9 + 1440000x7 + 1350000x5 + 450000x3 + 45000x
(2, 2, 2, 0) 126000x8 + 378000x6 + 283500x4 + 63000x2

(2, 2, 2, 1) 504000x9 + 2016000x7 + 1890000x5 + 630000x3 + 63000x
(2, 2, 2, 2) 1890000x10 + 11340000x8 + 15592500x6 + 8032500x4 + 1417500x2

Table B.28: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 0, 1, 0, 2), Part 3
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B.6 Formulas for n = 4, Non-Tree Support Graph

(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 24x2

(0, 0, 0, 1) 72x3

(0, 0, 0, 2) 240x4 + 120x2

(0, 0, 1, 0) 96x3 + 48x
(0, 0, 1, 1) 288x4 + 144x2

(0, 0, 1, 2) 960x5 + 960x3 + 240x
(0, 0, 2, 0) 360x4 + 720x2

(0, 0, 2, 1) 1080x5 + 2160x3

(0, 0, 2, 2) 3600x6 + 9000x4 + 3600x2

(0, 1, 1, 0) 384x4 + 480x2

(0, 1, 1, 1) 1152x5 + 1440x3

(0, 1, 1, 2) 3840x6 + 6720x4 + 2400x2

(0, 1, 2, 0) 1440x5 + 4320x3 + 720x
(0, 1, 2, 1) 4320x6 + 12960x4 + 2160x2

(0, 1, 2, 2) 14400x7 + 50400x5 + 28800x3 + 3600x
(0, 2, 2, 0) 5400x6 + 27000x4 + 16200x2

(0, 2, 2, 1) 16200x7 + 81000x5 + 48600x3

(0, 2, 2, 2) 54000x8 + 297000x6 + 297000x4 + 81000x2

(1, 0, 0, 0) 160x3 + 80x
(1, 0, 0, 1) 480x4 + 240x2

(1, 0, 0, 2) 1600x5 + 1600x3 + 400x
(1, 0, 1, 0) 640x4 + 800x2

(1, 0, 1, 1) 1920x5 + 2400x3

(1, 0, 1, 2) 6400x6 + 11200x4 + 4000x2

(1, 0, 2, 0) 2400x5 + 7200x3 + 1200x
(1, 0, 2, 1) 7200x6 + 21600x4 + 3600x2

(1, 0, 2, 2) 24000x7 + 84000x5 + 48000x3 + 6000x

Table B.29: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 1, 0, 0), Part 1
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(q1, q2, q3, q4) A (x)

(1, 1, 1, 0) 2560x5 + 6080x3

(1, 1, 1, 1) 7680x6 + 18240x4

(1, 1, 1, 2) 25600x7 + 73600x5 + 30400x3

(1, 1, 2, 0) 9600x6 + 43200x4 + 12000x2

(1, 1, 2, 1) 28800x7 + 129600x5 + 36000x3

(1, 1, 2, 2) 96000x8 + 480000x6 + 336000x4 + 60000x2

(1, 2, 2, 0) 36000x7 + 252000x5 + 180000x3 + 18000x
(1, 2, 2, 1) 108000x8 + 756000x6 + 540000x4 + 54000x2

(1, 2, 2, 2) 360000x9 + 2700000x7 + 3060000x5 + 1080000x3 + 90000x
(2, 0, 0, 0) 840x4 + 1680x2

(2, 0, 0, 1) 2520x5 + 5040x3

(2, 0, 0, 2) 8400x6 + 21000x4 + 8400x2

(2, 0, 1, 0) 3360x5 + 10080x3 + 1680x
(2, 0, 1, 1) 10080x6 + 30240x4 + 5040x2

(2, 0, 1, 2) 33600x7 + 117600x5 + 67200x3 + 8400x
(2, 0, 2, 0) 12600x6 + 63000x4 + 37800x2

(2, 0, 2, 1) 37800x7 + 189000x5 + 113400x3

(2, 0, 2, 2) 126000x8 + 693000x6 + 693000x4 + 189000x2

(2, 1, 1, 0) 13440x6 + 60480x4 + 16800x2

(2, 1, 1, 1) 40320x7 + 181440x5 + 50400x3

(2, 1, 1, 2) 134400x8 + 672000x6 + 470400x4 + 84000x2

(2, 1, 2, 0) 50400x7 + 352800x5 + 252000x3 + 25200x
(2, 1, 2, 1) 151200x8 + 1058400x6 + 756000x4 + 75600x2

(2, 1, 2, 2) 504000x9 + 3780000x7 + 4284000x5 + 1512000x3 + 126000x
(2, 2, 2, 0) 189000x8 + 1890000x6 + 2268000x4 + 756000x2

(2, 2, 2, 1) 567000x9 + 5670000x7 + 6804000x5 + 2268000x3

(2, 2, 2, 2) 1890000x10 + 19845000x8 + 32130000x6 + 18900000x4 + 3780000x2

Table B.30: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 1, 0, 0), Part 2
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(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 16x2

(0, 0, 0, 1) 64x3 + 32x
(0, 0, 0, 2) 240x4 + 480x2

(0, 0, 1, 1) 256x4 + 320x2

(0, 0, 1, 2) 960x5 + 2880x3 + 480x
(0, 0, 2, 2) 3600x6 + 18000x4 + 10800x2

(0, 1, 0, 1) 256x4 + 320x2

(0, 1, 0, 2) 960x5 + 2880x3 + 480x
(0, 1, 1, 1) 1024x5 + 2432x3

(0, 1, 1, 2) 3840x6 + 17280x4 + 4800x2

(0, 1, 2, 1) 3840x6 + 17280x4 + 4800x2

(0, 1, 2, 2) 14400x7 + 100800x5 + 72000x3 + 7200x
(0, 2, 0, 2) 3600x6 + 18000x4 + 10800x2

(0, 2, 1, 2) 14400x7 + 100800x5 + 72000x3 + 7200x
(0, 2, 2, 2) 54000x8 + 540000x6 + 648000x4 + 216000x2

(1, 1, 1, 1) 4096x6 + 16640x4

(1, 1, 1, 2) 15360x7 + 103680x5 + 36480x3

(1, 1, 2, 2) 57600x8 + 576000x6 + 460800x4 + 72000x2

(1, 2, 1, 2) 57600x8 + 576000x6 + 460800x4 + 72000x2

(1, 2, 2, 2) 216000x9 + 3024000x7 + 3888000x5 + 1512000x3 + 108000x
(2, 2, 2, 2) 810000x10 + 15390000x8 + 27540000x6 + 17820000x4 + 4050000x2

Table B.31: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 0, 1, 1, 0, 1)
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(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 72x3 + 72x
(0, 0, 0, 1) 288x4 + 576x2

(0, 0, 0, 2) 1080x5 + 4320x3 + 1080x
(0, 0, 1, 1) 1152x5 + 3456x3 + 576x
(0, 0, 1, 2) 4320x6 + 21600x4 + 12960x2

(0, 0, 2, 2) 16200x7 + 113400x5 + 145800x3 + 16200x
(0, 1, 0, 0) 360x4 + 1080x2

(0, 1, 0, 1) 1440x5 + 6240x3 + 960x
(0, 1, 0, 2) 5400x6 + 36000x4 + 23400x2

(0, 1, 1, 1) 5760x6 + 32640x4 + 13440x2

(0, 1, 1, 2) 21600x7 + 172800x5 + 180000x3 + 14400x
(0, 1, 2, 2) 81000x8 + 837000x6 + 1539000x4 + 459000x2

(0, 2, 0, 0) 1512x5 + 10080x3 + 3528x
(0, 2, 0, 1) 6048x6 + 50400x4 + 34272x2

(0, 2, 0, 2) 22680x7 + 249480x5 + 355320x3 + 52920x
(0, 2, 1, 1) 24192x7 + 241920x5 + 258048x3 + 20160x
(0, 2, 1, 2) 90720x8 + 1149120x6 + 2177280x4 + 665280x2

(0, 2, 2, 2) 340200x9 + 5216400x7 + 14742000x5 + 9525600x3 + 793800x
(1, 1, 0, 0) 1800x5 + 10200x3 + 2400x
(1, 1, 0, 1) 7200x6 + 53600x4 + 25600x2

(1, 1, 0, 2) 27000x7 + 276000x5 + 309000x3 + 36000x
(1, 1, 1, 1) 28800x7 + 265600x5 + 224000x3

(1, 1, 1, 2) 108000x8 + 1296000x6 + 2100000x4 + 384000x2

(1, 1, 2, 2) 405000x9 + 5985000x7 + 15255000x5 + 6975000x3 + 540000x
(1, 2, 0, 0) 7560x6 + 75600x4 + 68040x2

(1, 2, 0, 1) 30240x7 + 369600x5 + 473760x3 + 33600x
(1, 2, 0, 2) 113400x8 + 1751400x6 + 3666600x4 + 1272600x2

(1, 2, 1, 1) 120960x8 + 1747200x6 + 3104640x4 + 470400x2

(1, 2, 1, 2) 453600x9 + 8013600x7 + 21722400x5 + 10130400x3 + 504000x
(1, 2, 2, 2) 1701000x10 + 35532000x8 + 134190000x6 + 111888000x4 + 22869000x2

Table B.32: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 1, 1, 0), Part 1
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(q1, q2, q3, q4) A (x)

(2, 2, 0, 0) 31752x7 + 476280x5 + 920808x3 + 158760x
(2, 2, 0, 1) 127008x8 + 2257920x6 + 5447232x4 + 1693440x2

(2, 2, 0, 2) 476280x9 + 10266480x7 + 34186320x5 + 24131520x3 + 2381400x
(2, 2, 1, 1) 508032x9 + 10442880x7 + 31667328x5 + 13829760x3 + 705600x
(2, 2, 1, 2) 1905120x10 + 46357920x8 + 189665280x6 + 160030080x4 + 30693600x2

(2, 2, 2, 2)
7144200x11 + 200831400x9 + 1063692000x7

+1351047600x5 + 556453800x3 + 35721000x

Table B.33: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 1, 1, 0), Part 2

(q1, q2, q3, q4) A (x)

(0, 0, 0, 0) 162x4 + 1134x2

(0, 0, 0, 1) 810x5 + 8910x3 + 3240x
(0, 0, 0, 2) 3402x6 + 56700x4 + 75978x2

(0, 0, 1, 1) 4050x6 + 62550x4 + 63000x2

(0, 0, 1, 2) 17010x7 + 366660x5 + 833490x3 + 143640x
(0, 0, 2, 2) 71442x8 + 2008314x6 + 7707798x4 + 4500846x2

(0, 1, 1, 1) 20250x7 + 411750x5 + 780000x3 + 84000x
(0, 1, 1, 2) 85050x8 + 2286900x6 + 7821450x4 + 3414600x2

(0, 1, 2, 2) 357210x9 + 12105450x7 + 63146790x5 + 61188750x3 + 6085800x
(0, 2, 2, 2) 1500282x10 + 62011656x8 + 449973468x6 + 744806664x4 + 241989930x2

(1, 1, 1, 1) 101250x8 + 2598750x6 + 7920000x4 + 2340000x2

(1, 1, 1, 2) 425250x9 + 13891500x7 + 67247250x5 + 51576000x3 + 2940000x
(1, 1, 2, 2) 1786050x10 + 71640450x8 + 494779950x6 + 698786550x4 + 161847000x2

(1, 2, 2, 2)
7501410x11 + 360067680x9 + 3327847740x7

+7313596920x5 + 3743759250x3 + 250047000x

(2, 2, 2, 2)
31505922x12 + 1774833606x10 + 21063848148x8

+65431965564x6 + 57101566410x4 + 12125890350x2

Table B.34: Values of A
(q;s)
n for n = 4, (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 1, 1, 1, 1)
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arrow simplification lemma, 92
substructure ∆, 117, 131, 134
substructure Γ, 94
substructure Λ, 133
substructure Θ, 130

arrowed array, 86
arrowed head, 86
arrowed tail, 86
balance condition, 87
critical vertex, 87
forest condition, 87
full condition, 87
irreducible, 95
non-empty condition, 87
object, 87
point to, 86

binomial theorem, 10

canonical array, 74, 76, 82
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176
column merging, 97
column pointing, 96
combinatorial map, 24

canonical, 26
disconnected, 24, 57

generating series of, 32

double arrowed array, 187
double factorial, 4

Euler characteristic, 19
exponential generating series, 42, 59
extraction procedure, 80

Feymann diagram, 26, 61
forest completion algorithm, 84
forest condition function, 74, 87
functional digraph, 7, 15, 74, 87, 89, 132,

135

gamma function, 8
Gaussian measure, 37

mean, 37
on Hermitian matrices, 40
on vector spaces, 38

generalized hypergeometric series, 10
identities, 11, 12, 14

Goulden-Slofstra formula, 48, 168
graph, 7, 18

planar, 19
root vertices, 7
rooted forest, 7, 89

Harer-Zagier formula, 44, 168
Hermite polynomial, 41, 46
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Hermitian matrix, 40
hypergeometric term, 10

inclusion-exclusion, 43, 124
insertion procedure, 81

label recovery procedure, 76
labelled array, 70, 76
labelling procedure, 80
locally orientable surface, 61

map, 19
degree, 19
genus, 19
half-edge, 21
isomorphism, 20
labelled, 21
rooted, 20
star, 21

minimal array, 79, 82, 137

N -coloured map, 36, 61

one matrix model, 40
one vertex map, 44, 167
orientable surface, 19

paired array, 72
balance condition, 73
critical vertex, 72
forest condition, 74
full condition, 180
mixed pair, 72
non-empty condition, 168
object, 72
partner, 72
proper, 74
redundant pair, 72
tree-shaped, 75

paired function, 35, 57, 62, 70, 76, 146

pairing, 4
mixed pair, 6
non-mixed pair, 6
partial, 4, 83
support, 4

partial function, 7
partially-paired array, 79

critical vertex, 79
mixed pair, 79
object, 79
proper, 79
redundant pair, 79
unpaired vertex, 79

permutation, 15
canonical long cycle, 18
canonical permutation, 18
conjugacy class, 16
cycle notation, 15
cycle type, 16
fixed-point free involution, 17
transposition, 17
two-line notation, 15, 68

Pfaff’s identity, 14, 175
probability measure, 37

quadratic form, 40, 49

rising factorial, 5, 9, 163, 182

substructure, 88
admissible, 124
column types, 96
∆-non-empty, 116
irreducible, 95, 117, 130, 133
Λ-compatible, 147
partition, 116
refinement, 115
Θ-compatible, 136

substructure formula
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substructure ∆, 117, 118, 125, 127
substructure Γ, 102, 112
substructure Λ, 134
substructure Θ, 130

support graph, 6
symmetric group, 15

two matrix model, 52
two vertex map, 48, 168

unicellular bicoloured map, 63
partitioned, 65
rooted, 64

unicellular map, 63

Vandermonde determinant, 46
vertical array, 79, 137, 146, 147

proper, 79

Wick’s formula, 40, 45, 51, 58, 63
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