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Abstract 

Accurate crop type maps are critical for yield estimation and agricultural practices in modern 

agriculture. A new approach is proposed in this thesis to improve the crop type classification 

accuracy, by creating a new feature set containing new spectral indices in addition to basic 

bands. Two types of penalized linear discriminant analysis classifiers are adopted to do the 

classification, and the cross-validated classification accuracies on the two different feature sets 

are compared to see whether the new feature set can improve the crop identification. The 

result shows with new indices in the feature set the classification mean error rates were 

decreased substantially for both classifiers (21.6% and 25.2%). Through analyzing the 

coefficients retrieved from the best model, the variable importance was assessed. The 

coefficients are summarized by different bands and images, and the result suggest that red and 

shortwave infrared are the two bands highly related to the fruit-trees type identification in the 

study area in Aconcagua valley, Chile. Also late winter to early spring may be the best time to 

do crop type mapping for these crop types.  

 

 

 

 

 

 



iv 
 

Acknowledgement 

I would like to thank my thesis advisor Prof. Alexander Brenning for his valuable academic 

guidance and support. Thank you for inspiring me and giving me directions when I got lost. This 

thesis would not have been possible without your help.  

I would like to thank Marco Peña who was the first to bring up the idea and was involved in the 

data collection work for this research. Thank you for your great collaboration in this project. 

I would like to thank Kralisch Sven in University of Jena who provided technical support in the 

computationally intensive tasks. Thank you for being supportive and patient when helping me 

to solve the technical problems. 

Also, I thank the readers of my thesis, Prof. Jonathan Li, Prof. Richard Kelly, and Prof. Ellswoth 

LeDrew for positively contributing to an excellent learning environment in the Department of 

Geography and Environment Management, University of Waterloo, where I have been spending 

a wonderful time in the past two years.  



v 
 

TABLE OF CONTENTS 
List of Figures ................................................................................................................................ viii 

List of Tables ................................................................................................................................... ix 

CHAPTER 1 Introduction ................................................................................................................. 1 

1.1 Motivation of the research ................................................................................................... 1 

1.2 Overview ............................................................................................................................... 2 

1.3 Goal and objectives ............................................................................................................... 4 

1.4 Structure of thesis ................................................................................................................. 5 

CHAPTER 2 Research context .......................................................................................................... 6 

2.1 Role of remote sensing in modern agriculture ..................................................................... 6 

2.2 Crop type classification ......................................................................................................... 7 

2.2.1 Data for crop classification ............................................................................................ 9 

2.2.2 Classifiers for crop classification .................................................................................. 13 

2.3 Feature selection methods ................................................................................................. 16 

2.3.1 Subset ........................................................................................................................... 17 

2.3.2 Shrinkage ...................................................................................................................... 19 

2.3.3 Dimension reduction ................................................................................................... 19 

2.4 Chapter Summary ............................................................................................................... 21 

CHAPTER 3 Study Area and Data .................................................................................................. 22 



vi 
 

3.1 Introduction of the study area ............................................................................................ 22 

3.2 Remote sensing data ........................................................................................................... 24 

3.2.1 Landsat-8 images ......................................................................................................... 24 

3.2.2 Data preprocessing ...................................................................................................... 25 

3.3 Ground information ............................................................................................................ 27 

CHAPTER 4 Methods ..................................................................................................................... 28 

4.1 Normalized difference index ............................................................................................... 30 

4.2 Cross-validation and spatial aggregation ............................................................................ 32 

4.3 Classifier .............................................................................................................................. 36 

4.3.1 Introduction to Linear Discriminant Analysis............................................................... 37 

4.3.2 Shrinkage Methods ...................................................................................................... 43 

4.4 Investigation of model selection process and coefficients ................................................. 45 

4.5 Chapter Summary ............................................................................................................... 46 

CHAPTER 5 Result.......................................................................................................................... 47 

5.1 Comparison of different classifiers and different feature sets ........................................... 47 

5.2 Model selection process of ridge PLDA and lasso PLDA ..................................................... 49 

5.2.1 Ridge penalized LDA ..................................................................................................... 49 

5.2.2 Lasso penalized LDA process ....................................................................................... 52 

5.3 Interpretation of the canonical coefficients ....................................................................... 55 



vii 
 

5.3.1 Statistical summary ...................................................................................................... 57 

CHAPTER 6 Discussion ................................................................................................................... 60 

6.1 Discussion of the results ..................................................................................................... 60 

6.2 Sources of uncertainty ........................................................................................................ 62 

6.3 Limitations and implications ............................................................................................... 64 

6.3.1 Limitations.................................................................................................................... 64 

6.3.2 Possible implications .................................................................................................... 65 

6.4 Future directions ................................................................................................................. 67 

CHAPTER 7 Summary and Conclusions ......................................................................................... 68 

Appendix A .................................................................................................................................... 70 

Appendix B .................................................................................................................................... 71 

References .................................................................................................................................... 72 

 

  



viii 
 

LIST OF FIGURES 

Figure 3-1: Distribution of the tree-fruit crops within the study area ......................................... 23 

Figure 4-1: Work-flow.. ................................................................................................................. 29 

Figure 4-2: Description of the cross-validation and resampling process ..................................... 35 

Figure 5-1: Five variables’ canonical coefficients change over 𝜆 in ridge penalized LDA.. .......... 50 

Figure 5-2: The relationship of MER and penalty parameter 𝜆 with lasso and ridge classifiers. . 53 

Figure 5-3: Canonical coefficients of 1485 predictors from the ridge PLDA model with lowest 

cvMER. .......................................................................................................................................... 56 

Figure 5-4: The mean of canonical coefficients of each bands by different images. ................... 58 

Figure 5-5: The mean of canonical coefficients of each bands by different wavelength. ............ 59 

 

  

file:///C:/Users/RenfangLiao/Dropbox/Thesis%20draft/Thesis%20of%20Renfang%20Liao.docx%23_Toc451122543
file:///C:/Users/RenfangLiao/Dropbox/Thesis%20draft/Thesis%20of%20Renfang%20Liao.docx%23_Toc451122543


ix 
 

LIST OF TABLES 

Table 3-1: Areas of crop types involved in classification .............................................................. 24 

Table 3-2: Acquisition dates of the Landsat-8 images comprising the time series. ..................... 25 

Table 3-3: Main technical characteristics of the Landsat-8 OLI . .................................................. 25 

Table 3-4: Fields comprising each of the target crops. ................................................................. 27 

Table 5-1: Cross-validated results ................................................................................................. 47 

Table 5-2: Confusion matrix of the optimal Ridge PLDA where λ = 10^ (-0.5). ............................ 50 

Table 5-3: Confusion matrix of the lasso PLDA model where λ =10^(-3.5) or 10^(-4.25). ........... 54 

Table 5-4: Confusion matrix of the lasso PLDA model where λ =10^(-1.25). ............................... 54 

Table 5-5: Confusion matrix of the lasso PLDA model where λ >=10^(-1.25). ............................. 54 

Table 5-6: The mean value of the adjusted coefficients for each band and image ..................... 57 

 



1 
 

CHAPTER 1 INTRODUCTION 

1.1 Motivation of the research 

This study is expected to find a better way to classify different fruit trees to increase the 

classification accuracy. The idea is to explore the possibility of improving the accuracy by 

creating new spectral indices. These indices are generated from various bands not limited to 

vegetation related bands; thus, new indices may be identified in this process. Consequently, the 

research findings will contribute to general crop type classification and the comparison on 

these classifiers will provide a reference for future studies. 
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1.2 Overview 

Information of regional-scale crop type distribution is critical for agriculture management, crop 

inventory and crop monitoring. Satellite remote sensing data have therefore been widely 

applied for the crop classification or crop type mapping (Mkhabela, Bullock, Raj, Wang, & Yang, 

2011; Tatsumi, Yamashiki, Canales Torres, & Taipe, 2015). Crop-type classifications from 

satellite imagery are mostly based on the analysis of the distinguishing spectral signatures. 

However, different crop types may have very similar spectral responses during some stages in 

their growing season, especially when the spectral resolution is coarse (Esch, Metz, Marconcini, 

& Keil, 2014; Peña & Brenning, 2015). Due to different timing of crop growth stages, satellite 

images from multiple acquisition dates can be used to detect phenological behavior of different 

crops, thus these satellite images time series (SITS) can facilitate crop-type discrimination 

(Odenweller & Johnson, 1982; Schuster, Schmidt, Conrad, Kleinschmit, & Förster, 2015; Zhong, 

Hawkins, Biging, & Gong, 2011). In this research, a temporal sequence of Landsat 8 images 

acquired across the entire growing season of the crops of interest is therefore used in order to 

achieve improved classification accuracies. 

 Based on previous research, full-band satellite images times series (SITS) temporal 

profiles have more accurate output compared to NDVI temporal profiles (Peña & Brenning, 

2015). In this study, an enhanced feature set including the full-band SITS and all possible 

normalized difference indices derived from any two different bands in the image stack is 

considered. It is hypothesized that the classification accuracy can be further improved with 

these new indices, which are not only from the typical vegetation related bands, i.e. green band 

and near infrared band, but also from all the available bands that could contribute to crop type 
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discrimination. For one thing, the bands related to the most widely used vegetation index NDVI 

seem not to be the most important bands in the previous crop classification project (Peña & 

Brenning, 2015). For another, the potential of indices derived from other bands and from 

different dates can be explored. In order to show the contribution of the new indices in crop 

classification, a feature set consisting full-bands SITS only (six bands per image with nine 

images) is considered as the baseline method to make sure feature set is the only difference.   

 As for the available classifiers, linear discriminant analysis (LDA) was found to be the 

best-performing classifier in previous research in a similar setting compared to Random Forest 

(RF), Support Vector Machine (SVM) and Artificial Neural Network (ANN), which are novel 

machine learning algorithms (Peña & Brenning, 2015). Besides, LDA is less time consuming than 

these computationally more complex classifiers. In this study, LDA is therefore chosen as the 

first classifier to be applied on both feature sets. However, LDA may not be able to deal with 

collinear high-dimensional data, therefore the new and enhanced feature set cannot be 

classified by ordinary LDA. LDA based classifiers such as penalized LDA, sparse LDA, regularized 

LDA are gaining increasing attention (Bandos, Bruzzone, & Camps-Valls, 2009a; Clemmensen, 

Hastie, Witten, & Ersbøll, 2011; Li, Zhu, & Ogihara, 2006; Merchante, Grandvalet, & Govaert, 

2012; Z. Zhang, Dai, Xu, & Jordan, 2010). Hence, two types of penalized LDA are tested to solve 

the problem. The performance of these two modified versions of LDA are also compared by 

applying on same feature set. In addition, in order to reduce the uncertainty in result 

assessment brought by training set sampling, a spatial cross validation process is adopted in this 

research for classifier validation. Different from non-spatial cross validation, the spatial one 
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tries to account for the impact of the spatial autocorrelation in the spatial dataset (Brenning, 

2012).  

1.3 Goal and objectives 

The purpose of this study is to investigate the potential of indices in improving the crop type 

classification accuracy of linear discriminant analysis. These indices are created, as normalized 

differences of every two different band-variables in the feature set, including both within-image 

and between-image (or within-date and between-date) normalized band-ratios. These new 

features may detect the change of bands ratios in different crop phenology states and 

contribute to the discrimination of different crops. As a use case for the proposed 

methodology, fruit-tree crop classification in the Aconcagua valley of central Chile is 

investigated in this study. 

 The goal of this research is to use LDA based classifiers to find out whether the new 

index features can improve the classification result or not. The steps to achieve the objective of 

this study are 

• to create new indices from the preprocessed spectral bands 

• to apply statistical classifiers to discriminate six crop types 

• to compare the cross-validation based model estimation results 
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1.4 Structure of thesis 

This study introduces a new method that aims at improving crop type classification accuracy by 

creating various spectral band-based indices, and it therefore focuses on the performance 

comparison with feature sets previously used in crop classification from time series of optimal 

satellite imagery. This thesis first presents a brief introduction to remote sensing applications in 

agriculture and a context for this study including important remote sensing based crop 

classification methods and main feature selection methods to address the research gaps 

(Chapter 2); then it gives a description of data and study area (Chapter 3); provides an 

explanation of the classifiers chosen in this study, and the spatial cross-validation method 

applied to assess the results for later comparison (Chapter 4); an illustration of the results of 

different feature sets and classifiers, and the interpretation of the results (Chapter 5); a 

discussion of the results, sources of uncertainty, implication and future directions of this study 

(Chapter 6); and the main conclusions (Chapter 7). 
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CHAPTER 2 RESEARCH CONTEXT 

2.1 Role of remote sensing in modern agriculture 

Remote sensing technology was first applied for agricultural purpose in the 1970s, and since 

then the technique has been advancing with the changing needs of modern society (Atzberger, 

2013). The worldwide growing population and increasing consumption of protein require more 

agriculture products than ever before, and this trend is expected to last for the next three to 

four decades (Foley et al., 2011). Meanwhile, environmental issues have drawn more attention 

than before (Foley et al., 2011). Farming is therefore also required to increase the production 

while minimizing the pressure on environment. Thus, timely and accurate monitor on crops on 

a large space and temporal scale is preferred (Craig & Atkinson, 2013; FAO, 2011).  

Characterized as being able to rapidly acquire information over large areas with high 

revisit frequency compared to traditional field survey, remote sensing is very suitable to 

improve agriculture practices (Atzberger, 2013; Foley et al., 2011). Remote sensing, GIS and GPS 

are tools that can help farmers to understand the health condition and the phenological stages 

of their crops, leading to efficiency gains in fertilizer application and irrigation. In the 

comprehensive review about remote sensing of agriculture by Atzberger (2013), five major 

applications of remote sensing techniques are chosen to show the importance of using the 

derived information for decision making: (1) biomass and yield estimation, (2) vegetation vigor 

and drought stress monitoring, (3) assessment of crop phenological development, (4) crop 

acreage estimation and cropland mapping, and (5) mapping of disturbances and land use/land 
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cover (LULC) changes. It is noteworthy that these applications need crop type classification or 

crop species mapping. 

2.2 Crop type classification 

Production prediction or yield estimation is of great interest for not only farmers but 

commodity brokers and public agriculture sectors, for it is highly related to price control and 

worldwide trading (Goswami, Aruna, & Bairagi, 2012). General production estimation 

approaches can be summarized as the product of two components: the harvested areas of a 

given crop and the yield per unit area. Thus, accurate crop-type maps are among the most 

important datasets, for they are used to calculate the cropping areas (Craig & Astkinson, 2013). 

The “propagation of error” theory agrees that the minor errors or uncertainties in the 

processing of raw data, will be amplified in the final extracted information (Heuvelink, 

Burrough, & Stein, 1989). In order to avoid misguided decisions or biased policies, which may 

cause loss in trade and serious food security issues, having accurate production prediction is 

necessary, which itself requires accurate crop type maps.  

The spectral classification or identification of crops can be more difficult than mapping land 

use/land cover, for the status of crops are affected by many factors and showing strong 

seasonal patterns. In some stages in the life circle of vegetation in one area, their spectral 

signatures can be very similar and hard to identify, and this can be solved by acquiring the 

spectral-temporal profile through the crop life circle (Esch et al., 2014; Odenweller & Johnson, 

1982; Ozdogan, 2010; Zheng, Myint, Thenkabail, & Aggarwal, 2015). However, it is mostly 

graminaceous crops that are investigated in these studies, and the graminaceous plants, 
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cosmopolitan herbaceous or woody plants with hollow jointed stems and long narrow leaves, 

usually have annual growth cycles. In addition, these crops may not be planted at the same 

time and have characteristic phenology stages, such as green-up, maturity and senescence 

which drives the bulk spectral behavior of a crop (Peña & Brenning, 2015; Zhang et al., 2003). 

The green-up, maturity and senescence stages are referred to the onset of photosynthetic 

activity, the peak of green leaf area, and the fast decreasing of photosynthetic activity, and the 

distinctive bulk spectral signatures can facilitate the identification of the crop. In addition, 

rotations or multiple cropping activities are common for graminaceous plants, and harvesting 

and regrowth will exhibit in the spectral behavior clearly which also help crop classification.  

Compared to the graminaceous plants, the classification problem for fruit-tree crop types 

are less addressed (Simonneaux et al., 2008; Zhong et al., 2011). The fruit-trees are generally 

perennial summer crops, which means they can live for more than one year and relatively 

similar phenology timing, for example growing and blooming in spring and summer; thus, the 

discrimination between different crop types is not easy as graminaceous plants, especially 

when it is based simply on several NDVI images (Zhong et al., 2011). The data type for crop 

classification will be further discussed in the next section. This study is focused on classification 

problem of perennial crops, in particular fruit trees, and is expected to provide a different 

solution to fill the research gap. 
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2.2.1 Data for crop classification 

Remote sensing data can be categorized in many different ways, such as by platform type 

(airborne vs satellite-based images), by sensor type (i.e. RADAR, LiDAR, imagery sensor), by 

dimensionality (hyperspectral vs multispectral images). Satellite multispectral images are the 

most widely used data type for crop classification or identification (Araya, Ostendorf, Lyle, & 

Lewis, 2013; Brenning, Kaden, & Itzerott, 2006; Chen, Son, Chang, & Chen, 2011; Dhumal, Kale, 

& Mehrotra, 2013; Odenweller & Johnson, 1982; Ozdogan, 2010; Peña & Brenning, 2015; 

Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012; Tatsumi et al., 2015; 

Zheng et al., 2015; Zhong et al., 2011), and they are the focus of this research.  

There are also studies using high resolution optical satellite data such as SPOT, and 

hyperspectral remote sensed data such as AVIRIS for vegetation or crop classification. The high 

spatial resolution images have advantage in crop field segmentation or retrieving land parcels 

without using ancillary data, thus they can facilitate the crop mapping of small fields (Conrad, 

Fritsch, Zeidler, Rücker, & Dech, 2010; Zhong et al., 2011). Hyperspectral data have many 

narrow contiguous spectral bands, and it is usually used for classification purpose after useful 

bands being extracted with sophisticated feature selection methods (Archibald & Fann, 2007). 

However, hyperspectral data contain fine details about crops, which is of great help when 

discriminating crops with very similar spectral signatures (Dhumal et al., 2013).  

The most widely used multispectral satellite data products for crop classification can be 

further grouped into two classes: full-band images and vegetation indices. Full bands satellite 

images can be used to retrieved vegetation indices like normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI), and a subset of the bands can be used for 
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multiple-crop type classification as well. They each have advantages and disadvantages in data 

acquisition and processing stages.  

Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series satellite 

sensors are the two most common data source for vegetation monitoring purpose, and their 

features in revisit frequency, spatial resolution and free availability have impacts on the choice 

of researchers. Retrieved from coarse spatial resolution satellite images, vegetation indices as 

phenological indicators have been used in many studies to get distinctive features from 

different crops. For one reason, this type of coarse resolution data can cover a large area, so 

the research may be done on states or even continental level. For another, research about crop 

classifications or crop phenology monitoring based on NDVI temporal profiles has been greatly 

encouraged by the free availability of MODIS 16- and 32-day NDVI image composites, as well as 

8-day surface reflectance products, which can be used to make 8-day NDVI composites (Araya 

et al., 2013; Chen et al., 2011; Zhong et al., 2011).  

These freely available MODIS NDVI products reduce the preprocessing work such as 

geometric and radiometric correction for users (Peña & Brenning, 2015). The platforms with 

shorter revisiting frequency are likely to produce more cloud-free images, which is very 

important for satellite image analysis for vegetation, especially in short growing seasons (Chen 

et al., 2011; Fritz, Massart, Savin, & Leo, 2006; Mkhabela et al., 2011). This is a strong point of 

using MODIS data for crop classification or monitor; however, the high temporal resolution is 

traded for a poorer spatial resolution. The spatial resolution of MODIS is from 250m to 1000m, 

which may be too big to study and monitor on small fields level, but it is very useful for 
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continental or regional scale crop monitoring which requires shorter revisiting time (Conrad et 

al., 2010; Fritz et al., 2006).  

The Landsat program is the longest running satellite imagery system for the earth 

observation ever since 1972, and the archived full bands stack images, including newest 

Landsat-8 series, are free to download from USGS website. Compared to MODIS images, 

Landsat series have a lower revisit frequency at about every two weeks, so there probably are 

fewer cloud-free images available. Nevertheless, Landsat’s spatial resolution is 30 m × 30 m, 

much higher than that of MODIS. This spatial resolution is fine enough for field level crop 

monitoring and reduces the classification error caused by mixed pixels. NDVI and other 

vegetation indices can be generated from the full-band images too, but advanced geo- and 

radiometric correction and index calculation all need to be done by users.  

The NDVI can represent the physiological and structural condition of vegetation, for it is 

constructed from a red band (R) and a near infrared band (NIR) as (NIR − R) / (NIR + R). 

Generally, healthy vegetation will absorb most of the visible light that falls on it, and reflects a 

large portion of the near-infrared light. The pigment in plant leaves, chlorophyll, strongly 

absorbs visible light (from 0.4 to 0.7 µm) for use in photosynthesis. The cell structure of the 

leaves, on the other hand, strongly reflects near-infrared light (from 0.7 to 1.1 µm). However, 

according to Tatsumi et al. (2015), single or very limited spectral signatures are not as good as 

multi-date, high-resolution and multi-spectral bands at spectral discrimination for crop types. It 

is found that NDVI temporal profile and the related red and NIR bands are not the most 

significant to classify fruit trees, and full-band SITS is another choice for crop classification and 

spectral bands exploration (Peña & Brenning, 2015; Tatsumi et al., 2015). The NDVI can reflect 
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the phenological change of vegetation to a certain extent, but it only contains relationship of 

the red and near infrared band without any information from other spectral range. The full-

band image series have more abundant spectral bands than NDVI temporal profile. Also, the 

implication of the work by Peña & Brenning (2015) suggested that other spectral bands deserve 

further attention, for the classification accuracy of full-band feature set was significant higher 

than that of the NDVI. 

 Hence, for the crop-type mapping on field level, the high spatial resolution Landsat full-

band SITS is more suitable than the MODIS NDVI temporal profiles. In this study, all the spectral 

bands are treated equally and normalized difference indices are derived from every two bands, 

thus by assessing the importance of variables the other bands’ potential can be explored.   
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2.2.2 Classifiers for crop classification 

There are multiple ways to categorize classifiers, for example by classification logic: parametric 

or nonparametric; by partition logic: hard or fuzzy; by classification algorithm: supervised or 

unsupervised versus hybrid involving artificial intelligence, and by image segmentation: pixel-

based or object-oriented (Jensen, 2005). The important difference between supervised and 

unsupervised classification is that in an unsupervised classification, the classes are not 

predefined, while in supervised classification, classifiers learn from training data with 

predefined classes and are then applied to test data (Fielding, 2007b).  

Unsupervised classification also called clustering, such as K-means and ISODATA, is an 

effective way to partition feature space into sub-space, and does not require as much 

knowledge about the data as supervised classification (Jensen, 2005). Clustering is more often 

used for data exploration and sub-structure finding in knowledge-poor environments. However, 

natural grouping may not solve classification problem with high spectral complexity, for the 

spectral clusters are likely to represent mixed surface types (Jensen, 2005).  

Supervised classification or pattern recognition is the main type of classifiers in LULC 

and crop classification, for it is generally more accurate than unsupervised classification 

(Rozenstein & Karnieli, 2011). The supervised classification process contains training and testing 

steps. In short, from provided training data, which contains predictors and corresponding class 

labels, classifiers seek patterns and fit models, then they make predictions based on the fitted 

models on test datasets for an independent assessment. The class labels are usually obtained 

from field surveys or the interpretation of higher-resolution images. After prediction result 
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being assessed, if the accuracy is acceptable, the model can be used for the rest of the 

remotely-sensed data (Jensen, 2005).  

Supervised machine learning is a form of artificial intelligence (AI) using many statistical 

models and algorithms to find the relationship between predictors and class labels from 

training data. The word “learning” in this context refers to the process that the classification 

error is gradually reduced through each iteration that the classifier is “learning” from each 

observation case (Fielding, 2007b). In the well-known text book Jensen’s “Introductory Digital 

Image Processing: A remote Sensing Perspective” (2005), various classification methods are 

introduced systematically; however, the book is ten years from now and it does not cover state-

of-art machine learning classifiers. For example, Random Forest (RF) and Support Vector 

Machine (SVM) are widely investigated in LULC classification including crop type classification in 

recent research (Archibald & Fann, 2007; Brenning et al., 2006; Mathur & Foody, 2008; Peña & 

Brenning, 2015; Rodriguez-Galiano, Ghimire, et al., 2012; Tatsumi et al., 2015; Wieland & 

Pittore, 2014; Zheng et al., 2015).  

The basic idea of SVM is to maximize the margin between the two classes in the training 

data through determining the separating hyperplane, or decision surface as cited in (Archibald 

& Fann, 2007). According to Mathur and Foody (2008), SVM can derive very accurate 

classification with accuracy higher than 90% on different sizes of training sets. Brenning et al. 

(2006) compared SVM with five statistical classifiers including stabilized linear discriminant 

analysis (SLDA), classification trees (bagging and double-bagging), k-Nearest Neighbours (1-NN) 

and Logistic regression, and SVM produced overall better results than the other classifiers, 
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while SLDA was the best on field level classification. However, the training process of SVM is 

very slow.  

Random forest (RF), a machine learning algorithm, is a combination of decision tree 

predictors providing another option for land cover / land use classification, and it is known for 

high efficiency and considerable accuracy; furthermore, it can estimate variable importance and 

is insensitive to outliers (Breiman, 2001; Gislason, Benediktsson, & Sveinsson, 2006; Rodriguez-

Galiano, Chica-Olmo, Abarca-Hernandez, Atkinson, & Jeganathan, 2012; Tatsumi et al., 2015). 

Compared to SVM, RF is much faster in training, but may not have result as accurate as SVM 

does. In the study by Gislason et al., (2006), RF had the second best result compared to other 

tree based classifiers such as CART bagging and boosting. According to Rodriguez-Galiano, 

Chica-Olmo, et al., (2012), the RF had various results with different texture-variable window 

sizes.  

Peña & Brenning (2015) compared three classifiers SVM, RF and linear discriminant 

analysis (LDA) on different size of training sets and different feature sets in a study area 

adjacent to the present one. LDA, a conventional statistical classifier, produced the best 

classification result followed by SVM, while RF was relatively less accurate. The study area and 

crop types in this study are similar to those of the study done by Peña & Brenning (2015), in 

which LDA performed the best. Therefore, LDA as a simple but powerful classifier, is 

investigated in detail to futher explore its potential in crop type classificatioin in this study.  
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2.3 Feature selection methods  

According to the definition given by Guyon & Elisseeff (2003), feature selection or variable 

selection is a data mining process which minimizes the data dimensionality while achieving very 

good classification performance for a given set of classifiers by using part of the original 

variables. However, feature selection, in a broader context, can be seen as a type of method 

which can modify the feature space, trading off between the classification accuracy and 

problems cause by the high dimensionality. High dimensional data may contain more useful 

information, but it also brings trouble for data analysis. First, more features do not guarantee 

better classification result, while instead they may sometimes contain much noise and lead to 

randomness in discrimination (Fan & Lv, 2010; Guyon & Elisseeff, 2003; James, Witten, Hastie, 

& Tibshirani, 2013). Second, over-fitting, model misidentification and difficulties in variable 

assessment are possible problems brought by collinearity as a result of high dimensionality (Fan 

& Lv, 2010). Third, reducing the data dimensionality can decrease the complexity of computing 

to save time and computing power.    

Subset selection, shrinkage and dimension reduction are the three important classes of 

methods that are widely chosen to exclude irrelevant variables from models (Fan & Lv, 2010).  

The word “selection” may be a bit ambiguous here because feature selection does not 

necessarily mean the number of features is reduced. For example, depending on the type of 

performed shrinkage, some of the coefficients may be shrunk to exactly zero, so shrinkage 

methods can, in some instances, also select out variables based on coefficients. Hence, 

shrinkage can be seen as a feature selection method in a general way. Besides, feature 

selection also includes projections of the variables and creating new variables based on the 
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combination of old variables e.g. PCA though in some context it is not viewed as a feature 

selection method.  In this study penalized linear discriminant analysis, a combination of 

dimension reduction and shrinkage method, is examined, so these two feature selection 

methods are explained in more detail in Chapter 4.  

2.3.1 Subset 

In a previous project, whose study area and data are similar with this one, a stepwise selection 

approach of eight Landsat images was implemented to find the optimal balance between 

accuracy and dimensionality. The result shows that with only a few images involved in 

classification, the result may be as good as involving the full set of images (Peña & Brenning, 

2015). In that project, feature selection was done on temporal domain manually through a 

wrapper approach (introduced latter in this Chapter), and then the classification result of the 

feature subset was evaluated. In this study, Penalized LDA can simultaneously select predictors 

and estimate the change of mean classification error rate, which is more efficient than doing 

wrapper based subset feature selection. Though it is not applied in this study, subset selection 

is an important method in the feature selection family.  

By objective functions and by subsets search strategies are the two major ways to 

categorize the “subset” feature selection methods (Guyon & Elisseeff, 2003). Objective 

functions are the performance evaluation criteria for different subsets of variables, by which 

the subsets selection methods can be classified as filters and wrappers. The only difference 

between filters and wrapper is the way they evaluate the feature subsets. The wrapper 

approach uses the classification algorithm itself to assess the usefulness of a feature subset, so 

the selected features is dependent on the classification algorithm (Guyon & Elisseeff, 2003). 
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Subset search strategies include exhaustive search, sequential forward selection, sequential 

backward selection, bidirectional search and floating search, and for different data the best 

strategy may not be the same. The exhaustive search can provide the global optimal subset, but 

in many situations the dimensionality is too high to do exhaustive search, which tests every 

combination of the features. 

The difference between filters and wrappers is the objective to select features. The filter 

approach based feature selections evaluate the variables based on some scoring function, such 

as Fisher criterion expressed as the ratio of inter-class variance to inner-class variance, thus a 

filter is independent of the classification algorithm (Karegowda, Manjunath, & Jayaram, 2010). 

Conversely, the wrapper approach uses the classification algorithm itself to assess the 

usefulness of a feature subset, so the selected features is dependent on the classification 

algorithm (Guyon & Elisseeff, 2003; Kohavi & Kohavi, 1997). With the wrapper approach, the 

machine learning algorithm can be viewed as a black box since the feature selection is only 

based on the results from classification. Generally, the filter approach is faster than the 

wrapper approach, while the latter usually produces better results (Guyon & Elisseeff, 2003; 

Karegowda et al., 2010). Though wrapper approach is time consuming when the dimensionality 

of data is high, it would still be a good choice if the computing complexity and time is 

affordable. Furthermore, with efficient search strategies wrappers can also be less time-

consuming. 
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2.3.2 Shrinkage 

By adding a regularization term to the loss function of linear models, the prediction accuracy 

and model interpretability may be improved. Different from the feature subset method, 

regularization or shrinkage retains all the predictors or features. This method constrains or 

regularizes the coefficients or weights of the features, reducing them towards zero. The reason 

for the improvement brought by the constraint on coefficients may not be immediately 

obvious, but it is proven that the shrinkage can significantly reduce the variance (Fan & Lv, 

2010; Guyon & Elisseeff, 2003; James et al., 2013). According to James et al. (2013) ridge and 

the lasso are two most popular techniques to shrink the coefficients in regression, and they are 

chosen as the two feature selection methods in this study. These two feature selection 

methods are introduced in Section 4.3.2 in detail.  

2.3.3 Dimension reduction 

The dimension reduction is a family of approaches that includes projecting the original high 

dimensional data into a lower dimensional feature space (James et al., 2013). In this process, a 

small number of different linear combinations of the variables are chosen as new predictors for 

further analysis like regression or classification. The well-known Principal Component Analysis 

(PCA) is a representative of dimension reduction. Usually the new variables are required to be 

linearly uncorrelated with each other. In PCA, the new combinations of variables are calculated 

through orthogonal transformation on the covariance matrix. Instead of keeping all the 

projections of variables, it is more common to select a few combinations that can explain most 

of the variance in the old data (James et al., 2013). In Chapter 4.3.1 the introduction to Linear 

Discriminant Analysis (LDA), it is easy to get the conclusion that LDA its self is a dimension 
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reduction method. Whereas the orthogonal transformation is done on the between-classes 

scatter matrix instead of the overall variance, so that the combinations that best distinguish 

different classes can be selected out.  
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2.4 Chapter Summary 

This chapter presents a literature review about the crop classification topic, and from three 

perspectives, data types, classifiers and feature selection methods. NDVI temporal profiles and 

full-band images are compared in a crop classification context. The three major feature 

selection methods subset, shrinkage and dimension reduction are generally introduced, for 

there are more than a thousand of features in the dataset.  

The research gaps are identified including the fruit-tree classification compared to 

common graminaceous plants, and the potential of LDA in crop-type classification. The fruit-

tree classification problem is less studies than staple food crops like wheat and rice, but it is 

also important for fruit industry which can contribute to local economy in some areas. The fruit-

trees are also supposed to be more difficult to identify than graminaceous plants.  
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CHAPTER 3 STUDY AREA AND DATA 

The data acquisition and preprocessing work, for both remote sensed and ground surveyed 

data, were performed by Peña in 2015. The research of the study area is also credited to him.  

3.1 Introduction of the study area 

The study area of this project is located in the Andean foothills of Aconcagua River basin, Fifth 

Region of Valparaiso, Chile. Aconcagua valley (7,340 km2) has a large agricultural land and it is 

one of the biggest valleys in the country. In that area, Mediterranean climate, featured as hot 

dry summer and cool wet winter is the major climate type in the study area. In spring, large 

amount of snowmelt from the mountains flows into the Andean headwaters, while in winter it 

is precipitation that control the local hydrological regime. Agricultural land use takes the most 

area in the gentle terrains of this valley (862.37 km2), with fruit-tree as the main crop and table 

grape, avocado, peach and walnut as the main cultivated species (INE, Instituto Nacional de 

Estadísticas, 2008).  

The study area is not equal to the whole agriculture land use area in the Aconcagua 

valley. It is distributed in four counties: Petorca, Calle Larga, Los Andes and Zapallar, which 

together cover an area of 576 km2, mostly cultivated with six tree-fruit species: table grape 

(Vitis vinifera L.), walnut (Juglans regia L.), peach (Prunus persica L.), avocado (Persea 

americana Mill.), nectarine (Prunus persica var. nectarine), mandarine (Citrus reticulata Blanco) 

(Figure 3-1 and Table 3-1). These crops are conformed by relatively small fields (N = 5,233; 

mean size 38,390m2), which are heterogeneously arranged between the cities of Los Andes and 

San Felipe and around the Aconcagua River (Figure 3-1). The growing season of these species 
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generally starts from late September (green-up stage at southern spring) to early April 

(senescence stage at southern autumn), showing some variations in their inter- and intra-

specific onset and offset dates according to the species variety or the specific management 

practices applied on the crop (Peña, written communication, January 28, 2016). 

 

Figure 3-1: Distribution of the tree-fruit crops within the study area, located in the Aconcagua Valley, 
central Chile. White lines denote county boundaries. Map courtesy of Peña 
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Table 3-1: Areas of crop types involved in classification (Peña, written communication, January 28, 2016). 

Tree-fruit crop 
Area 

km2 % 
Table grape 96.39 53.61 
Walnut 42.21 23.48 
Peach 25.93 14.42 
Avocado 7.22 4.02 
Nectarine 2.86 1.59 
Mandarin 2.05 1.14 
Others 3.12 1.74 
Total 179.79 100 

3.2 Remote sensing data 

3.2.1 Landsat-8 images 

A SITS was constructed with all the cloud-free Landsat-8 images collected during the 2014-15 

growing season of the study area (Table 3-2). The images were provided by the USGS (United 

States Geological Survey), and were searched and downloaded from the Global Visualization 

Viewer (http://glovis.usgs.gov/). 

Landsat-8 was launched on February 11th, 2013, as the eighth satellite in the United 

States’ Landsat program since 1972 (USGS, 2015). The temporal frequency or revisit period of 

the Landsat-8 satellite is 16 days. The pushbroom sensor OLI (Operational Land Imager) is 

carried on the Landsat-8, which samples nine bands in the optical spectrum. In this study six out 

of the nine bands are used, except for the Bands 1 (0.43–0.45 μm), Bands 8 (0.5-0.68 μm) and 9 

(1.36–1.39 μm). The panchromatic band 8 was not used because of its broad spectral width, 

while Bands 1 and 9 neither were used because they were designed for coastal water and 

atmospheric aerosol applications (Roy et al., 2014). Besides, thermal Bands 10 (10.60-11.19 μm) 

and 11 (11.50-12.51 μm) acquired by the TIRS (Thermal Infrared Sensor) instrument on board 

this satellite were not included in the SITS, mainly because their relatively coarse spatial 

http://glovis.usgs.gov/
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resolution of 100 m compared to the 30 m in band 2-7. Table 3-3 lists the main technical 

characteristics of the Landsat-8 OLI bands used in this study. 

Table 3-2: Acquisition dates of the Landsat-8 images comprising the time series used in this study (Peña, 
written communication, January 28, 2016). 

# Acquisition date  

1 August 6, 2014 Winter 

2 September 6, 2014 Spring 

3 October 24, 2014 Spring 

4 January 12, 2015 Summer 

5 January 28, 2015 Summer 

6 February 13, 2015 Summer 

7 March 1, 2015 Summer 

8 March 17, 2015 Summer 

9 April 2, 2015 Autumn 

 

Table 3-3: Main technical characteristics of the Landsat-8 OLI (Operational Land Imager) image bands 
used in this study (USGS, 2015). 

BAND 

# Spectral region Spectral width (µm) 
Spatial 

resolution (m) 

Radiometric 

resolution (bits) 

2 blue 0.45-0.51 

30 m 12 

3 green 0.53-0.59 

4 red 0.64-0.67 

5 near Infrared 0.85-0.88 

6 shortwave infrared 1.57-1.65 

7 shortwave infrared 2.11-2.19 

 

3.2.2 Data preprocessing 

The downloaded Landsat-8 images are the Level 1 terrain corrected (L1T) products, and a 

geometric correction had already applied on them. The procedures include a systematic 
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geometric correction as well as the use of ground control chips and a digital elevation model 

(DEM) to further improve the image geometry, resulting in a circular geolocation error below 

12 m at the 90% confidence level (Roy et al., 2014). The default image output coordinate 

system is Universal Transverse Mercator (UTM) with World Geodetic System 1984 (WGS84) 

datum. In addition to the consistent geometric correction procedures in L1T, spatial 

coregistration across the time series were also be verified by checking the spatial match 

between some randomly selected crop fields across different images. Only some negligible 

spatial shifts on the boundaries of the fields were detected which is less than the length of half 

pixel (Peña, written communication, January 28, 2016). 

The radiometrical correction was done in two steps: first converted digital numbers to 

top-of-atmospheric (ToA) radiance; then converted into surface apparent reflectance. The 

radiometric calibration parameters for the first conversion and the FLAASH (Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes) module for the second conversion are available 

in ENVI©  (Environment for Visualizing Images) 5.0.3 software (Exelis Visual Information 

Solutions, Inc., Boulder, USA). This procedure is a MODTRAN (Moderate Resolution 

Atmospheric Transmission) based algorithm that allows modeling the at-surface irradiance and 

at-surface radiance of the image’s pixels by taking into account a set of user-defined scene- and 

atmosphere- parameters (Peña, written communication, January 28, 2016). 
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3.3 Ground information 

The Fruit Cadastre of the study area, carried out by the Chile’s Agrarian Policies and Studies 

Bureau (Oficina de Estudios y Políticas Agrarias, ODEPA), was used to construct the field sample 

database to train the classifiers and to validate their results. This is an online database 

(http://odepa.cl) that shows the fruit-tree crop field boundaries of the Region of Valparaíso 

updated by field campaigns to the 2013-2014 growing season. The training/validation pixels 

were manually selected from full vegetation covered areas observed within the field 

boundaries, which were superimposed to one of the summer images of the time series. To 

avoid the inclusion of mixed edge pixels, fields below 22,500 m2 (equivalent to a spatial window 

size of 5 × 5 pixels) or with a too narrow shape were discarded (Table 3-4) (Peña, written 

communication, January 28, 2016). 

 

Table 3-4: Fields comprising each of the target crops. The original number of fields (second column) was 
somewhat reduced after a size-filtering procedure (third column) (Peña, written communication, January 
28, 2016). 

Crop type 

Original 
number of 

fields 
(polygons) 

Fields used as samples 

# Area (m2) 

Polygons Pixels Mean 
Standard 
deviation 

Total 

Table grape 3,361 1,962 9,486 39557 15181 77,611,529 

Walnut 613 359 2,846 64,694 65,850 23,225,170 

Peach 925 348 2,408 45,489 30,241 15,830,244 
Avocado 93 52 1,496 13,1146 155,495 6,819,633 
Nectarine 193 50 544 34,450 14,241 1,722,521 
Mandarin 48 37 464 51,335 35,571 1,899,402 
Total 5,233 2,808 17,244 45,267 38,820 127,108,500 

 

 

http://odepa.cl/
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CHAPTER 4 METHODS 

In this chapter, the methods applied to solve the research questions are introduced in detail. 

The first research question is whether and how much the indices, generated based on bands, 

are improving the classification result of the crop types of interest in the study area. To answer 

this question, two datasets should be prepared: one contains spectral bands only, the other has 

both bands and created indices. The form of indices needs to be decided first, then the indices 

can be calculated from the bands. Next, the classifier to conduct the classification should be 

implemented, which will be applied on both datasets so that the result can be compared. In this 

project, Linear Discriminant Analysis (LDA) and two types of penalized LDA, the ridge and the 

lasso, are chosen as classifiers, for LDA has been proven to have the best performance in a 

previous project with similar study area and crop types (Peña & Brenning, 2015). Spatial cross-

validation resampling strategies are recommended for accuracy assessment in order to take the 

spatial autocorrelation into account (Brenning, 2012). With these methods and strategies, the 

classification result of the two dataset can be compared to estimate the effect of the indices 

and with cross-validation the randomness in sampling can be mostly compensated. In short, 

crop type classification was carried out for two feature sets, with and without normalized 

difference ratios, using three different classifiers LDA, ridge- and lasso-based penalized LDA, in 

order to identify the effect of the created indices on crop type classification and assess the 

performance of different classifiers, using a methodology similar to Peña & Brenning (2015). 

The work flow of the project is shown in Figure 4-1. 
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Figure 4-1: Work-flow. “LDA ratios” is red because it did not work on the enhanced feature set. In the 
output, XXX_ratio stands for the results on the enhanced feature set, while the XXX_band stands for the 
result derived from the old feature set.  
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4.1 Normalized difference index 

Relying on the univariate characteristics of a predictor may cause the missing critical 

information about data, for the relationship between one predictor and another may be even 

more important than their seperate effect (Fielding, 2007a). Thus, index contains more than 

one predictors can provide extra information for data analysis. Normalized difference 

vegetation index (NDVI) is one of the most popular vegetation greeness indicators in the 

remote sensing context due to its simplicity and robutness, and NDVI timeseries have been 

widely used for crop-type classification, biomass estimation and crop pheonogy monotoring et 

al. (Araya et al., 2013; Chen et al., 2011; Ozdogan, 2010; Peña & Brenning, 2015; Zheng et al., 

2015; Zhong et al., 2011).  However, according to Peña (2015), NDVI timeseries based crop type 

classfication produced much less accurate results compared to full-band Landsat image 

timeseries; furthermore, based on variable importance assessment the two bands involved in 

NDVI (red and NIR) are not the most significant spectral bands for the discrimination between 

the crop types in that project. 

In order to explore the potential of other indices, whose composing bands are not 

limited to red and NIR, ratios of every two bands in the satellite image stack are added into the 

full-bands time series dataset. In addition, ratios of the bands from different images may be 

able to detect “jumps” or “deltas” in the phenological curve of the crops of interests.  

The final form of new features is the normalized difference of two different bands. 

Simple ratios of two bands would have large range of values including ∞ because there is a 

considerable number of zeros in the dataset after preprocessing. The simple ratios’ value may 
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change dramatically with small disturbance in one of the spectral bands, so they are replaced 

by normalized difference ratios, which have the form: 
𝑏1−𝑏2

𝑏1+𝑏2
. The “b1” and “b2” are two 

different bands, which can from either the same or different images. In addition, this 

normalized form can compensate illumination differences within one scene as well as the 

illumination difference between images (Peña, Brenning, & Sagredo, 2012). After normalized 

formulation, most of the values of the new indices are within the range from minus one to one. 

In case both b1 and b2 are zero, zeros in the dataset were set to ten power minus seven. For n 

bands, every two bands in the dataset can generate one new index, but only n(n-1)/2 number 

of indices are necessary instead of n(n-1), because the two indices using the same two bands b1 

and b2 but in reverse order are additive inverses of each other. By keeping one of every two 

ratio indices that only differ in their signs, 54*53/2 = 1431 new features are added into the 54-

band stack creating a high dimensional dataset. 
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4.2 Cross-validation and spatial aggregation 

Theoretically at least one training set and one test set are required to build a supervised 

classification model, but in practice resampling methods are essential for model selection and 

evaluation, which involves repeatedly drawing training set and re-training the model (James et 

al., 2013). In the train/test approach the data is partially used either as training set or as test 

set. The resampling approach can help to gain more information about the model by fully use 

all the data instead of sampling fit and test the model once (James et al., 2013). Cross-validation 

is one of the resampling-based estimation procedures with different flavors such as leave-one-

out cross-validation (LOOCV) and k-fold cross-validation. In LOOCV, a dataset is split into two 

parts as training set and test set with only one observation in the test set; in other words, in 

each iteration the model is fitted on the training set and tested on the left-out observation. 

LOOCV has advantages including little bias and zero randomness in dataset division; however, it 

is obviously very time consuming (James et al., 2013). The k-fold is much more efficient, for it 

has the dataset divided into k parts of equal size, and in each iteration leaves one of the k parts 

for validation and the rest for training.  

The k-fold approach is more widely used and has been applied in crop type classification 

studies in order to produce unbiased error estimates (Brenning, Kaden, & Itzerott, 2006; 

Mathur & Foody, 2008; Peña & Brenning, 2015; Tatsumi, Yamashiki, Canales Torres, & Taipe, 

2015; Zheng et al., 2015). In Mathur & Foody (2008), a 5-fold cross-validation was used for 

model selection, and Zheng et al. (2015) used a 10-fold cross validation instead; however, 

selection while the models are evaluated on fixed validation datasets in these two study. in 

Tatsumi et al. (2015) a 4-fold cross-validation was chosen for model selection, and a 10-
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repeated 10-fold cross-validation for model robustness assessment; and similarly, Peña & 

Brenning (2015) applied a 100-repeated 10-fold cross validation for performance estimation (r-

repeated means the k-fold cross validation process will repeat for r times with different data 

partitioning). 

A 5-fold cross-validation is in the inner loop for selecting the penalty coefficient 𝜆 of the 

penalized LDA classifiers that produce the minimum mean classification error rates in the 

predefined range. A 100-repeated 10-fold cross-validation is applied in outer CV loop: at the 

beginning of every repetition, the data is equally divided into 10 parts. Only one of ten part is 

used as test data, while the remaining nine are parts used as training data. This procedure will 

repeat 100 times to calculate a mean error rate (cvMER) and a standard deviation (SD) for each 

classifier. This process makes sure the model is tested on data independent from training set in 

every model fitting iteration, also the average performance and the robustness of the classifiers 

can be estimated from the 100-repeated 10-fold cross validation.   

Using cross-validation, the training and test sets are expected to be independent; 

however in a classification project on pixel based remote sensed data, the spatial 

autocorrelation related problem cannot be ignored in statistical analysis (Brenning et al., 2006; 

Brenning, 2012; Ruß & Brenning, 2010). In the original dataset after preprocessing, each row or 

records represents one pixel’s spectral profile in the image stack, but the pixels within one field 

are very similar in spectral signature regarded as strong dependent observations. If the nearly 

identical observations from one field can enter into both training and test sets, the test set will 

not be independent from the training set; as a consequence, the possible overfitting of 

classifiers to the training set cannot be detected on the training set and the prediction accuracy 
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will probably be overestimated (Brenning, 2012; Peña & Brenning, 2015; Ruß & Brenning, 

2010). On the other hand, data from different fields can be seen as independent observations, 

for the crop variety and cultivation patterns, which are generally managed on field levels, are 

the main drives for the spectral behaviors (Brenning et al., 2006). Thus, pixels in the same field 

should be assigned to the same fold and be selected in to the training set as a pack to reduce 

the impact of spatial autocorrelation on the model. This process is also called spatial clustering 

or spatial aggregation for data sampling.  

Figure 4-2 shows the nested process of the cross-validated model estimation and model 

selection with spatial aggregation. First, when the dataset is divided into 10 folds at the 

beginning of the outer loop iteration the division is done on field level, and so is the following 

resampling process. Second, after predictions on test set are made according to the fitted 

model, the predicted results are aggregated to the field level by assigning the type of the 

majority records of that field to the rest of the records of the same field.  
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Figure 4-2: Description of the cross-validation and resampling process 
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deviations are calculated from all the 100 repetitions for the lasso and the ridge 
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based on number of fields with one fold left out as test set while the rest for model 
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4.3 Classifier 

In this project, Fisher’s linear discriminant analysis (LDA) method was chosen to classify the six 

crops in the study area, the Andean foothills of the Aconcagua River basin in Chile. In spite of 

the trend of new advancing machine learning algorithms applied in remote sensed data 

analysis, linear model has distinct advantages over them in respect to inference on real-world 

problem and often surprisingly outperforms the new methods (James et al., 2013). According to 

Fielding (2007), despite its simple model and relatively strong assumptions on the data 

distribution, LDA’s performance is among the best in some empirical tests. The performance of 

LDA is evaluated in the study by Li, Zhu, & Ogihara (2006), their conclusion is that LDA has 

accurate output especially on high dimensional data, and the mean error rate is comparable to 

SVM in that study. This is also proved by the previous project in the adjacent Maipo basin, 

Chile, in which LDA outperformed Support Vector Machine (SVM) and Random Forest in 

addition to being much faster (Peña & Brenning, 2015). The classical LDA has been used for 

conifer species and rainforest tree species mapping, and canonical LDA has been applied for 

LULC classification (Clark, Roberts, & Clark, 2005; Guo, Pu, & Bin, 1997; Lobo, 1997). 

However, LDA is not suitable for ill-posed problems, i.e. more features than training 

samples, and penalized LDA is not as stable as SVM (Bandos, Bruzzone, & Camps-Valls, 2009). 

The high accuracy and fast speed are the two main reasons for LDA being chosen as the 

classifier in this project, while the possible collinearity in high dimensional data may cause 

singularity problem for LDA. In this situation, PLDA can be applied to solve the ill-posed 

problem. 
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4.3.1 Introduction to Linear Discriminant Analysis  

The LDA classifier is not a simple concept, for it is derived through multiple ways such as the 

normal model, the optimal scoring problem and Fisher’s discriminant problem (Witten & 

Tibshirani, 2011). Fisher’s linear discriminant analysis was first introduced in 1936 aiming to find 

a set of uncorrelated linear combinations of the variables which can maximize the ratio of the 

between-class variance and within-class variance (Venables & Ripley, 2002). LDA solves an 

optimization problem and has been a simple but popular method widely used for various 

multiple-class classification problems (Fielding, 2007a; James et al., 2013; Li et al., 2006). As 

introduced in Chapter 2, LDA can be seen as a dimension reduction method, for the original 

feature space is projected on to a new lower-rank feature space by choosing a few linear 

combinations of the variables as coordinates. For instance, with two of the linear combinations, 

the original high dimensional feature space can be projected to a two dimensional feature 

space, then one can use linear boundaries to partition the lowered feature space into regions 

labeled with classes (Hastie, Tibshirani, & Buja, 1994).  

Multiple versions of the mathematical derivation of LDA can be found in many text 

books and introduction papers (Duda, Hart, & Stork, 2001; Fielding, 2007a; Fukunaga, 1990; 

James et al., 2013; Venables & Ripley, 2002). However, there are several closely related 

concepts and techniques including discriminant function analysis (DFA), discriminant analysis 

(DA) and Fisher’s discriminant analysis. In this section, multiple sources of mathematical 

derivation of LDA are reviewed and combined in order to provide a general overview. 
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 Defining the optimization problem  

Fisher’s LDA seeks a set of project directions which can maximize the ratio of the separation of 

the class means, calculated as the between-class scatter matrix denoted by B, and sum of 

within-class covariance, denoted by W (James et al., 2013; Welling, 2005). Assume there are n 

total training observations x of p variables grouped into K predefined classes, and there are 𝑛𝑘 

observations belonging to the kth class. In other words, if vector 𝑎 can maximize the objective 

function 

 𝐽(𝑎) =
𝑎𝑇𝐵𝑎

𝑎𝑇𝑊𝑎
(1) 

 then 𝑎𝑇𝑥 is the linear combination of the variables, which can explain most of between-class 

variance. To estimate the real covariance matrix, scatter matrices 𝐵 and 𝑊 are calculated from 

training dataset as: 

𝑊 =  ∑ ∑(𝑥𝑖 −

𝑖∈𝑘

𝐾

𝑘=1
𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇 (2) 

𝐵 = ∑ (𝜇𝑘 − �̅�)(𝜇𝑘 − �̅�)𝑇
𝐾

𝑘=1
(3) 

�̅� is the overall mean of the training dataset, and 𝜇𝑘 is the expected value of the kth class, 

estimated by the mean of each class in the training dataset (Welling, 2005).  

 Solving the constrained optimization problem 

To simplify the computation of maximizing the objective function (1), we can choose 𝑎 to make 

𝑎𝑇𝑊𝑎 = 1 since it is a scalar itself (Welling, 2005). Then the problem of maximizing 𝐽(𝑎) can be 

transformed to following constrained optimization problem: 
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𝑚𝑖𝑛𝑎         −
1

2
𝑎𝑇𝐵𝑎 (4) 

𝑠. 𝑡.           𝑎𝑇𝑊𝑎 = 1 (5) 

(The coefficient −
1

2
 in (4) is added for convenience) 

 Then we can use the method of Lagrange multipliers to solve the optimal 𝑎. According to the 

Lagrangian: 

 𝐿𝑝 = −
1

2
𝑎𝑇𝐵𝑎 +

1

2
𝜆(𝑎𝑇𝑊𝑎 − 1) (6) 

  

a stationary point is 

𝐵𝑎 = 𝜆𝑊𝑎   =>    𝑊−1𝐵𝑎 = 𝜆𝑎 (7)  

Then, it is becoming a generalized eigen-problem. It is ease to prove that the eigenvector 

corresponding to the maximum Eigen value is the one wanted (Welling, 2005). In addition, the 

eigenvalues are the proportions of the between classes variance explained by the linear 

combinations. To classify k groups, at most k-1 canonical coordinates (eigenvectors) can be 

found to project the original feature space. The percent between-group variance explained by 

each dimension can reveal their importance in LDA. With the optimal set of discriminant 

functions, for each new observation a discriminant score will be calculated and class 

membership will be assigned following the application of some threshold to the discriminant 

score (Fielding, 2007a; Hastie et al., 1994). 

 From a probability classifier perspective 

The maximum likelihood algorithm with Bayes’ decision rules is the most widely used 

parametric classifier (Jensen, 2005). Another way to understand LDA is through probability 
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models based on Bayes’ Theorem (James et al., 2013; Venables & Ripley, 2002). In the Chapter 

4 of the book “An introduction of statistical learning: with Application in R”, James et al. provide 

a step by step explanation of how to use Bayes’ Theorem for classification, as well as LDA’s 

relationship with logistic regression and Quadratic Discriminant Analysis (QDA). Here is a brief 

review of related contents of the chapter, with some important point of view to understand 

LDA from Vernables and Ripley (2002). Continue with the p variables n observation case 

mentioned before, it is natural to assign an observation x to the class having the maximum 

probability among the K classes, and according to Bayes’ Theorem: 

𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) =
𝑃𝑟(𝑌 = 𝑦) ∗ 𝑃 𝑟(𝑋 = 𝑥|𝑌 = 𝑘)

𝑃 𝑟(𝑋 = 𝑥)
(8) 

𝑃𝑘(𝑥) =
𝜋𝑘 ∗ 𝑓𝑘(𝑥)

∑ 𝜋𝑖 ∗ 𝑓𝑖(𝑥)𝐾
𝑖=1

(9) 

 Pr(Y = y) is called prior probability of the kth class, denoted by 𝜋𝑘. Pr(Y = k|X = x)can also 

be rewritten as density function of X for an observation that comes from the kth class, denoted 

by 𝑓𝑘(𝑥). 𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) , abbreviated as 𝑃𝑘(𝑥), is the posterior probability of one given 

observation x belongs to the kth class. For one observation, 𝑃𝑟 (𝑋 = 𝑥) is the same when 𝑃𝑘(𝑥) 

is calculated for different k (James et al., 2013). Then  𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) or 𝑃𝑘(𝑥)  is 

proportional to the product of 𝑃𝑟(𝑌 = 𝑦) and 𝑃𝑟 (𝑋 = 𝑥|𝑌 = 𝑘) as expressed in the (9). If 𝜋𝑘 

and 𝑓𝑘(𝑥) are estimated, a classifier can be developed to approximate the Bayes classifier.  

Bayes classifier is a family of simple probabilistic classifier based on Bayes’ theorem. 𝜋𝑘  

are estimated by 
𝑛𝑘

𝑛
, but 𝑓𝑘(𝑥) is more difficult to estimate. Thus, a few assumptions need to be 

introduced into the model. First, assume the observation X has a p-dimensional Gaussian or 

Normal distribution with 𝜇 being the mean of the whole dataset and Σ being the covariance 
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matrix written as 𝑋~𝑁(𝜇, Σ) (James et al., 2013; Venables & Ripley, 2002).  The second 

assumption is that the observations in the kth class are drawn from a multivariate Gaussian 

distribution: 𝑋𝑘~𝑁(𝜇𝑘, Σ𝑘) where 𝜇𝑘 and Σ𝑘 the class specific mean vector and covariance 

matrix. A third assumption is only made by LDA that all the K classes share the same covariance 

matrix, written in mathematical expression: Σ1 = Σ2 = ⋯ = Σ𝑘 = Σ . Without this assumption, 

the decision boundary is not linear and LDA becomes Quadratic Discriminant Analysis (James et 

al., 2013; Venables & Ripley, 2002). Then, the density function of the kth class is: 

𝑓𝑘(𝑥) =
1

(2𝜋)
𝑝
2|𝛴|

1
2

𝑒𝑥𝑝 (−
1

2
(𝑥 − 𝜇𝑘)𝑇𝛴(𝑥 − 𝜇𝑘)) (10) 

With 𝑓𝑘(𝑥) plugged into (9) and some algebra, including transforming to the logarithm 

of 𝑃𝑘(𝑥) , the kth class which can maximize 𝐿𝑘is the one to assign to the observation x. In 

reality, these assumptions may not be satisfied, but LDA has reasonable robustness to non-

normal distribution and even to lightly different class covariance (Hastie, Buja, & Tibshirani, 

1995).  

𝐿𝑘 = 𝑥𝑇𝛴−1𝜇𝑘 −
1

2
𝜇𝑘

𝑇𝛴−1𝜇𝑘 + 𝑙𝑜𝑔 𝝅𝒌 (11) 

To calculate 𝐿𝑘, 𝜇𝑘 and Σ need be estimated from sample mean and scatter matrix within each 

class. 𝜇𝑘
𝑇Σ−1𝜇𝑘 is called Mahalanobis distance, on which the discriminant is operated 

(Venables & Ripley, 2002; Welling, 2005). The relationship between this maximum probability 

classification method and the optimization problem is that by solving the latter new predictors 

are created, those linear discriminants or coordinate functions, with unit within-class variance. 

Thus, ||Σ|| = 1, and 𝐿𝑘(𝑥) can be simplified as: 
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𝐿𝑘 = 𝑥𝑇𝜇𝑘 −
1

2
‖𝜇𝑘‖2 + 𝑙𝑜𝑔 𝜋𝑘 (12) 

Besides, Fisher’s LDA also reduces the dimension to 𝑟 = 𝑚𝑖𝑛(𝑝, 𝐾 − 1). For example,  

𝐿2 − 𝐿1 = 𝑥𝑇(𝜇2 − 𝜇1) + 𝑐𝑜𝑛𝑠𝑡  

By calculating the differences r times for one observation, the maximum 𝐿𝑘 can be found and 

the observation x will be assign to the corresponding class (Venables & Ripley, 2002).  
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4.3.2  Shrinkage Methods 

With 1431 newly created normalized differences ratios added, the enhanced feature set has 

1485 variables. The new dataset may contain redundant or highly correlated variables, and LDA 

becomes unstable suffering from high variance (James et al., 2013). Then penalized versions of 

LDA are proposed to solve the high dimensional discriminant problem, since it maintains the 

advantages of LDA while adding shrinkage to the discriminant vectors (Witten & Tibshirani, 

2011). One reason for the failure of LDA in classifying high-dimensional dataset is the singularity 

problem of the within-class covariance matrix, caused by multicollinearity of variables, or 

caused by too more variables or features than observations (Fielding, 2007a; Witten & 

Tibshirani, 2011). In the context of multiple linear regression, the two best-known techniques 

for shrinking the regression coefficients towards zero to reduce the model variance are ridge 

regression and the lasso (James et al., 2013). In this research, lasso and ridge based LDA are 

utilized to solve the singularity problem that LDA faced when new normalized band ratios 

adding to the feature set, and their performances are evaluated based on mean error from 

cross-validation.  

It would be easier to introduce the ridge and the lasso in a linear regression context to 

see how the penalization or regularization works. In a p-variable multivariable regression the 

response, assume that response variable Y can be predicted by the p different predictors (𝑋𝑗) 

as: 

�̂� = 𝛽0 + 𝛽1𝑋1+ ⋯ + 𝛽𝑝𝑋𝑝 (13) 

The ordinary fitting process is the procedure to find the set of 𝛽𝑖 that can minimize the residual 

sum of squares (RSS), which is the most common approach called the least squares fit.  
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𝑅𝑆𝑆 = ∑ (𝑦𝑖 − �̂�𝑖)2
𝑛

𝑖=1
= ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1
)

2𝑛

𝑖=1
(14) 

�̂�𝑖 is a prediction of Y when 𝑋 equals to 𝑥𝑖, and (𝑥𝑖, 𝑦𝑖) is the observed pair. Ridge regression 

and the lasso are very similar to least squares fit except that the loss functions are different: 

𝐹𝑅 = 𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1
 (15) 

𝐹𝐿 = 𝑅𝑆𝑆 + 𝜆 ∑ |𝛽𝑗|
𝑝

𝑗=1
(16) 

(15) is for the ridge regression and (16) is for the lasso. These two loss functions indicate that 

small values of coefficients are preferred in ridge regression and the lasso. They both have 

shrinking effects on the coefficients’ absolute values, and the tuning parameter 𝜆 should be 

greater than zero; however, the Lasso tends to penalize some of the coefficients to exactly zero 

faster than the ridge regression when 𝜆 is large enough (James et al., 2013). Due to the choice 

of norm distance, the ridge regression has bigger regularization effects on the large coefficients 

while for the lasso the effects are the same for large and small coefficients. Thus, for the lasso 

penalization, small coefficients can be tuned to exactly zero while the large ones remain 

positive. Nevertheless, when the tuning parameter 𝜆 is too big, all of the coefficients can be 

turned to zero making a null regression. It is obvious that a too large 𝜆 or too harsh penalty can 

result in an under-fit model, while a really small 𝜆 may cause a high variance over-fit model. 

Hence, adjusting the 𝜆 is to balance between model variance and bias.  
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4.4 Investigation of model selection process and coefficients 

In order to have insight of the ridge and penalization processes, the relationship between the 

MER and shrinkage penalty coefficient 𝜆 is investigated. The dataset is divided into two parts as 

training and test set, and each contains the same number of fields. A series of ridge and lasso 

based penalized LDA models are fitted and tested on these two sets with a sequence of 𝜆  

whose range was predefined as 10−5 to 10−25.  

After the optimal 𝜆 being located, the canonical coefficients are retrieved from the 

fitted model, and five variables corresponding to the five quantiles of the coefficients: the 

maximum, the third quantile, the median, the first quantile and the minimum are investigated. 

The coefficients of these five variables are selected out as examples to show their changes over 

𝜆. 

In order to assess the importance of different variables, the canonical coefficients in the 

first discriminant vector of the optimal model is retrieved and analyzed.  The first discriminant 

vector covers almost 50% of the between-group variance, and the combination of the second 

and the first discriminant vector is almost 78% percent of the total between-group variance. 

The remaining three discriminant vectors also contribute a small portion, but without doubt the 

first discriminant vector plays the most critical role in the classification of six types of crop 

plants. Thus, the coefficients in the first discriminant vector are analyzed in particular in this 

chapter. In addition, to standardize the coefficients for different variables, they are multiplied 

to the corresponding standard deviation. If not otherwise specified, the word “coefficients” in 

the following context means the adjusted canonical coefficients in the first discriminant vector.  
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4.5 Chapter Summary 

In this chapter, the creation of the new feature set is introduced, followed by the mathematical 

formulation of LDA and penalized LDA models are introduced in detail. Then it presents as well 

as the methods to interpret the results.  

The high-performance computing facility of the Chair of Geographic Information Science 

at the University of Jena, Germany was used for computationally intensive tasks. In Witten and 

Tibshirani’s work (2011), they proposed a penalized version of LDA with lasso through Fisher’s 

discriminant framework. Daniela Witten implemented the method in the R package 

“penalizedLDA”, and it is the function with the same name used in this project to realize the 

lasso PLDA (2015). The function “fda” in the R package “mda” (Hasty, 2015) is applied for the 

ridge based penalized LDA. The package adopted for spatial aggregation and spatial cross 

validation framework is “sperroreset”, which created and maintained by Dr. Alexander 

Brenning since 2012.   
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CHAPTER 5 RESULT  

5.1 Comparison of different classifiers and different feature sets 

Table 5-1: Cross-validated results 

 cvMER train SD train cvMER test SD test 

lasso PLDA on 
basic feature set 

0.269 0.009 0.304 0.028 

lasso PLDA on 
Enhanced feature set 

0.210 0.007 0.238 0.022 

ridge PLDA on 
basic feature set 

0.044 0.003 0.137 0.018 

ridge PLDA on 
Enhanced feature set 

0.005 0.002 0.103 0.020 

classic LDA on 
basic feature set 

0.044 0.003 0.132 0.019 

Except for lasso-based classifiers, all the other classifiers’ cross-validated mean error rates 

(cvMER test) are below 0.15 (Table 5-1). With the enhanced feature set, the classification 

results of both lasso and ridge are improved notably. There are around 6.6 percentage points 

(p.p.). increase in accuracy using lasso penalized LDA on the enhanced feature set compared to 

the basic feature set, while for LDA with ridge penalty the increase is less but still as high as 3.5 

p.p. In other words, the new feature set reduce the cvMER by 21.6% (lasso) and 25.2% (ridge). 

The lowest test cvMER is from ridge-based penalized LDA with indices, and the highest is from 

the lasso on feature set without indices. Lasso penalty is not suitable in classifying these trees 

with Landsat images, for it increases the cvMER in classification compared to LDA. Ridge works 

much better than lasso in this case.  

The cross-validated results of the five combinations of classifiers and features, including the cross-
validated mean error rates (cvMER) on training and test sets, as well as standard deviation (SD) of the 
cvMERs. The basic feature set, or baseline feature set contains bands only, while the enhanced feature 
set has indices in addition to the spectral bands. If not otherwise specified, the cvMER means cvMER test. 
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 On the same feature set without indices, Lasso penalized LDA produces substantially 

inferior classification results. The cvMER of LDA_bands is 17.2 p.p. lower than Lasso_bands and 

around 0.5 p.p lower than ridge_bands. The ridge penalty does not affect LDA’s result 

considerably, for a 0.5 p.p. difference in cvMER is negligible.  

Training errors of all the combinations are lower than the corresponding test errors as 

expected, and standard deviations of the cvMERs are also lower on training data. Ridge 

penalized LDA clearly overfits the training data resulting in an extraordinarily low mean error 

rate compared to the cross-validated test error on the feature set with new indices (cvMER 

train= 0.005, cvMER test= 0.103). Whereas, the cvMER of ridge_bands (0.137) is not so different 

from its mean training error (0.044). In spite of the fact of overfitting the training sets, the 

ridge penalized LDA is also generalizable for the enhanced feature set and produces more 

accurate result.   
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5.2 Model selection process of ridge PLDA and lasso PLDA 

5.2.1 Ridge penalized LDA 

In order to have insight of the ridge penalization processes, the relationship between the 

coefficients of discriminant vectors and shrinkage penalty coefficient 𝜆 is investigated with the 

change of classification error rate. The method is introduced in Section 4.4. Probably because of 

the large size of training set including 817 fields of data, the error rate is notably lower than the 

cross validated results whose training sets are smaller than 200 fields.  

 As shown in the Figure 5-1 below, these coefficients change their signs twice before 

gradually getting closer to zero, but their absolute values shrink all the way towards zero when 

𝜆 gets bigger. First, these coefficients dramatically shrink towards zero and this trend prolongs a 

little longer after crossing zero, then they keep approaching to zero smoothly. However, when 

𝜆 at some point between  10−1.75and 10−1.5, these coefficients suddenly flip their signs.  

 In the Figure 5-1, the dotted line shows the lowest classification error rate: it reaches its 

minimum at 0.032 when 𝜆 equals  10−0.5(≈0.316). Seen from the plot in Figure 5-2 for ridge 

MER: it has more than one local minimum, and the second lowest error rate appears at 10−4. 

This is a very small penalty on the discriminant vectors, for which the penalized LDA is almost 

identical to an LDA. The error rate also fluctuates, inferring that the penalization algorithm is 

not stable (Bandos, Bruzzone, & Camps-Valls, 2009b). 
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Figure 5-1: Five variables’ canonical coefficients change over 𝜆 in ridge penalized LDA. The five variables 
are corresponding to the five quantiles of the coefficients: the maximum, the third quantile, the median, 
the first quantile and the minimum, in the model with the lowest MER.  

Table 5-2: Confusion matrix of the optimal Ridge PLDA where λ = 10−0.5). 

Predicted Reference  

class Table Grape Walnut Peach Avocado Nectarine Mandarin PPV 

Table Grape 249 6 0 0 15 0 0.922 

Walnut 7 244 0 0 0 0 0.972 

Peach 20 0 972 0 0 0 0.980 

Avocado 0 0 0 46 0 0 1.000 

Nectarine 0 0 0 6 23 0 0.793 

Mandarin 0 0 0 0 0 110 1.000 

TPR 0.902 0.976 1.000 0.885 0.605 1.000 0.968 

The TPR (true positive rate), or the producer’s accuracy of a class is defined as the ratio of true positive to 
the true number of the observations belonged to the class. The positive predictive value (PPV), or the 
user’s accuracy of a class is defined as the ratio of true positive to the number of observations labeled as 
this class. The result refers to a fixed test set without cross-validation as introduced in Section 4.4.   



51 
 

Peach and mandarin have the highest true positive rate, which means all the fields of 

these two crop types are correctly labeled. Walnut, table grape and avocado also have decent 

TPRs above 0.85; whereas only around 60% nectarine are classified correctly. Two out of five 

fields cultivating nectarine are misclassified as table grape, which is a serious confusion 

between these two crops. Seen from the user’s accuracy or PPV, all the classes except for 

nectarine have very high precision, which means only 79.3% of all the fields of fruit-trees 

predicted to be Nectarine trees are truly Nectarine. This result suggests that even when the 

overall accuracy is high even close to one, the unbalanced sizes of classes may cover serious 

misclassification on small classes.  
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5.2.2 Lasso penalized LDA process 

Lasso and Ridge penalized LDA show completely different patterns in the change of accuracy 

and coefficients shrinkage strength, while Lasso is even more unpredictable in classification 

accuracy (Figure 5-2).  Lasso has significant higher error rates compared to the ridge at all 𝜆 

levels. Seen from the grey plot representing the lasso, the lowest error rate is 0.164 occurred at 

10−4.25and 10−3.5 . However, the confusion matrix of the optimal 𝜆 (Table 5-2) shows that only 

12% of the predicted nectarine trees are true and 52.6% nectarine trees are classified correctly. 

Mandarin trees are easily classified as avocado, while all the avocado trees are labeled 

correctly.  

Actually, the plot of the lasso PLDA does not show any obvious global minimum error 

rate, for it fluctuates lightly when 𝜆 is smaller than 10−1.5, then dramatically goes up at 10−1.25. 

When 𝜆 equals to 10−1.25 the overall accuracy is as low as 0.6. Seen from the producer’s 

accuracy or TPR in the confusion matrix (Table 5-3), only avocado is perfectly labeled but the 

TPRs of all the other fruit-trees are low. When 𝜆 is larger than 10−1, error rate is stable around 

0.4. It can be inferred that the discrimination is almost random when 𝜆 is too large, which is 

also proved in the corresponding confusion matrix (Table5-5). All the fields in the test set are 

predicted as peach, indicating the model is underfitting as a result of over-penalization of the 

model with large 𝜆.  
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Figure 5-2: The relationship of classification error rates and penalty parameter 𝜆 with lasso and ridge 
classifiers. 
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Table 5-3: Confusion matrix of the lasso PLDA model where 𝜆 = 10−3.5 or 10−4.25. The meanings of PPV 
and TPR are the same with Table 5-2. The result refers to a fixed test set without cross-validation as 
introduced in Section 4.4.   

Predicted Reference  

class Table Grape Walnut Peach Avocado Nectarine Mandarin PPV 

Table Grape 184 0 11 0 18 0 0.864 

Walnut 0 208 46 0 0 0 0.819 

Peach 17 0 886 0 0 0 0.981 

Avocado 0 0 0 52 0 41 0.559 

Nectarine 75 42 29 0 20 0 0.120 

Mandarin 0 0 0 0 0 69 1.000 

TPR 0.667 0.832 0.912 1.000 0.526 0.627 0.836 

 

Table 5-4: Confusion matrix of the lasso PLDA model where λ =10−1.25.  

Predicted Reference  

class Table Grape Walnut Peach Avocado Nectarine Mandarin PPV 

Table Grape 80 19 91 0 0 0 0.421 

Walnut 47 170 412 0 0 0 0.270 

Peach 54 61 328 0 18 0 0.711 

Avocado 0 0 0 52 0 66 0.441 

Nectarine 95 0 141 0 20 0 0.078 

Mandarin 0 0 0 0 0 44 1.000 

TPR 0.290 0.680 0.337 1.000 0.526 0.400 0.409 

 

Table 5-5: Confusion matrix of the lasso PLDA model where λ >=10−1.25.  

Predicted Reference  

class Table Grape Walnut Peach Avocado Nectarine Mandarin PPV 

Table Grape 0 0 0 0 0 0 0 

Walnut 0 0 0 0 0 0 0 

Peach 276 250 972 52 38 110 0 

Avocado 0 0 0 0 0 0 0 

Nectarine 0 0 0 0 0 0 0 

Mandarin 0 0 0 0 0 0 0 

TPR 0.000 0.000 1.000 0.000 0.000 0.000 0.572 
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5.3 Interpretation of the canonical coefficients  

The canonical coefficients of the variables in the model with least mean error rate are retrieved 

as introduced in Chapter 4.4. To show the importance of the variables in the classification, the 

absolute values of their canonical coefficients are graphed in Figure 5-3.  Generally speaking, 

the lower left part shows brighter colors than the rest parts (Figure 5-3), which may indicate 

that the first four Landsat images play an important role in classification than the rest five. The 

band features from first two images seem to be dominant predictors with very large canonical 

coefficient values as very bright pixels on the diagonal elements. Seen from the band level, the 

third band, which is the band 4 (red) in Landsat 8 image, seem to have larger values, and many 

outstanding predictors are related to the third bands of each image. Actually, the top ten 

predictors that carry the most weights are all band variables, they are the band 4, 5, 6 and 7 in 

image 1, the band 3, 4, 5 and 7 in image 2, and the band 7 in image 8.  
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Figure 5-3 is a 2D graph designed to show the importance of variables and its link with bands and dates 
in a comprehensive way. The absolute value of a coefficient multiplied by the standard deviation of that 
variable is used as a measure of importance of it (abbreviated as new coefficients). The 2D graph is made 
of 1485 small blocks representing the new coefficients in the first discriminant vector. There are nine 
Landsat images, and only the bands from band 2 to band 7 for each image are included in this study. For 
example, the new coefficient of the created variable ind_b23_b16 is located at the cross of eighth 
column from left and fifth row from bottom. In addition, the diagonal elements are representing the 
bands themselves.  

 

Figure 5-3: Canonical coefficients of 1485 predictors derived from the ridge PLDA model with 
lowest cvMER. 
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5.3.1 Statistical summary 

Table 5-6: The mean values of the canonical coefficients by band and image 

Image 
Band 2 
(blue) 

Band 3 
(green) 

Band 4 
(red) 

Band 5 
(nir) 

Band 6 
(shortwave) 

Band 7 
(shortwave) 

Avg_by_image 
 

1 2.474 1.557 9.299 3.634 3.298 5.787 4.342 

2 1.254 2.538 10.185 4.245 1.604 6.054 4.313 

3 0.751 0.944 1.048 0.768 0.243 0.541 0.716 

4 0.491 0.335 0.163 0.231 0.129 0.621 0.328 

5 0.500 0.369 0.319 0.107 1.211 1.687 0.699 

6 0.287 0.328 0.165 0.078 0.268 0.377 0.251 

7 0.125 0.182 0.253 0.308 0.223 1.083 0.362 

8 0.380 0.464 1.445 0.178 0.190 1.782 0.740 

9 0.521 1.428 1.122 0.369 0.941 0.079 0.743 

AVG_BY_BAND 0.754 0.905 2.667 1.102 0.901 2.001 1.388 

The mean value of the adjusted coefficients for each band is calculated from all the indices related to 
that band as well as the band itself. The average canonical coefficients of the 54 bands are listed in the 
table above. Avg_by_img is the average canonical coefficient of a Landsat image, while the 
Avg_by_Band is the mean value of the canonical coefficients of the bands with same wavelength in all 
the nine images.   

The information contributed to correct classification is strongly related a few bands or images 

(Figure 5-4 and Figure 5-5). The first and second images play dominant roles in the crop 

classification, for they have much higher average coefficients than the other images (Table 5-6, 

Figure 5-4). According to the Table 3-2 in Section 3.2.2 about the seasons and acquired dates of 

every images, it can be inferred that the early spring and early summer may be more suitable 

for the classification among the six tree-fruit crops in the study area. From the bar chart in 

Figure 5-4, the highest two bars represent the third bands in their images (red), and the 

shortwave infrared bands of the first two images have the third and the fourth highest average 

canonical coefficients. After calculating the mean canonical coefficients of the variables related 

to spectra, from the highest to the lowest the order is red (0.64 µm -0.67 µm), shortwave 
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infrared (1.57 µm - 1.65 µm), near infrared (0.85 µm -0.88 µm), green (0.53 µm -0.59 µm), blue 

(0.45 µm - 0.51 µm) (Figure 5-5).  

 

Figure 5-4: The mean of canonical coefficients of each bands grouped by different images.  
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Figure 5-5: The mean of canonical coefficients of each bands grouped by different wavelength. 
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CHAPTER 6 DISCUSSION  

6.1 Discussion of the results 

Classification accuracy has been improved on the enhanced feature set with thousands of 

indices created from existing bands, and the overall accuracy of ridge PLDA is good (around 

90%). With same size of training set (200 fields) best results from the previous project is around 

94% using LDA as classifier on full-band SITS or full feature set (Peña & Brenning, 2015). 

However, there were only four crop types involved in that research, the increase of spectral 

complexity may decrease the correctness of crop identification. In an older research done by 

Brenning (2006), six classifiers are compared for crop identification also based on Landsat 

multispectral images; it was found that stabilized linear discriminant analysis (SLDA) and SVM 

outperformed the other four classifiers, including classification trees (bagging and double-

bagging), k-Nearest Neighbours (1-NN) and Logistic regression, with mean error rate at 0.201 

and 0.2. This may seem not very impressive; however, there were 9 crop types used in the 

study and the classifiers were trained on fewer fields, which may increase the difficulty of the 

training of classifiers and the mean error rate. When SVM and RF are applied for LULC 

classification or crop type mapping, SVM has an overall accuracy from 80% to 90% (more or 

less) while RF around 80% (Brenning et al., 2006; Gislason et al., 2006; Peña & Brenning, 2015; 

Rodriguez-Galiano, Chica-Olmo, et al., 2012; Tatsumi et al., 2015). Thus, the 90% accuracy of 

ridge penalized LDA produced in this project is a good result.  

  



61 
 

The outcome that the lasso-based penalized LDA being the least accurate clssifier for 

this dataset may suggest that each feature contains a small portion of useful information in 

distinguish different types of trees. Meanwhile, many variables’ coefficients are penalized to 

zero in the lasso penalization process, while the ridge tends to only reduce the coefficients 

gradually but will not turn the coefficients to exactly to zero (James et al., 2013). This feature 

does not affect the accuracy but the model may not be easy for interpretation with too many 

variables left. However, in this case, preserving more features may be the critical reason for the 

ridge to produce the better results than the lasso, for in a situation where all the predictors are 

related to the response non of the coefficients should equal to zero (James et al., 2013). 

According to James et al. (2013) ridge regression can balance bias and variance and 

performs best in situations where the least squares estimates have high variance. Ridge 

regression with LDA is also regarded as efficient and effective by Zhang, Dai, Xu, & Jordan 

(2010). In a study by Bandos et al., (2009) penalized LDA is compared to a proposed regularized 

LDA on clssification with hyperspectral data; PLDA is considered as unstable and less accurate 

than RLDA though on some dataset it outperformed the rest types of LDA solving ill-posed 

probelem. Neverthless, the authors also admitted that the unstable was probably due to the 

choice of regularizer, which is not the ridge regression nor the lasso.  
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6.2 Sources of uncertainty 

Field survey data about fruit types was conducted by the Chile’s Agrarian Policies and Studies 

Bureau (Oficina de Estudios y Políticas Agrarias, ODEPA), they are viewed as ground truth data. 

The uncertainty of the ground data is not the focal point in this study. Instead, the uncertainty 

from remote sensing data should be focused on, for errors and bias can be introduced in to the 

system through several preprocessing steps.  First, the Landsat-8 images are Level 1 terrain 

corrected (LIT) product downloaded from USGS website has geometric correction done 

previously, including systematic correction and geometric correction with DEM and ground 

control chips. According to Roy et.al (2014) after this geometric correction the product has a 

circular geolocation error below 12m at the 90% confidence level. Second, the spatial 

coregistration has verified by Marco Pena, a collaborative researcher from Chile, for every 

Landsat-8 images by checking the spatial match between some randomly selected crops fields 

across different images. Only a few slight spatial shifts, below half the size of a pixel (<15m) on 

the boundaries, have been found. Considering the size of the fields, it is safe to say that these 

shifts do not affect the classification result significantly. 

 The radiometric correction process has been explained in detail in Section 3.3 in detail. 

First, raw digital numbers in the geometrically corrected products are converted into radiance 

images. This process is standard and implemented by ENVI 5.0.3; furthermore, the coefficients 

used are from the metadata provided by USGS. If systematic errors exist in this process, the 

uncertainties should still be acceptable.  
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Next, the output radiance is experienced atmospheric adjustment trying to counteract the 

effect of atmosphere. There is undeniable uncertainties and possible errors in atmospheric 

correction. In this step, extra uncertainties can only enter the system from a set of user-defined 

scene- and atmosphere- parameters, which are relatively more subjective. If the operator 

wrongly set the parameters, the atmospheric influence cannot be estimated accurately and 

neither can be the offsetting work. Besides, this atmospheric process may overcorrect some 

pixels causing negative values in the output whether the user-defined parameters are correct 

or not, for these parameters can only roughly describe a large area. The negative values of 

radiance obviously do not have any physical meaning. This may affect the classification result, 

for those negative values are all turned to zero and the formal variance in these negative values 

are gone.  

However, this study is mainly focused on the question “whether the adding of 

normalized difference index can improve the classification result”. This change may increase 

the difficult of classification, but the influence on difference between two kinds of data or the 

difference between two penalized LDA can hardly be measured. I would argue that even though 

the surface apparent reflectance may not be accurate due to subjective coefficients and over 

correction, the differences between the five combination combinations are not notably 

affected. 
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6.3 Limitations and implications 

6.3.1 Limitations 

One limitation in this study is that the training sets, as well as test sets, contain six types of 

crops of equal number of fields in both the model selection and model estimation steps in the 

cross-validation section. The reason is that the six crops in the dataset are unequally distributed 

as introduced in Section 3.1. The numbers of fields and pixels of each crop type after necessary 

data preparation are presented in Table 3-4, from which we can see how serious the unbalance 

is, especially between the first three crop types and the last three. The difference is even larger 

after sampling objects are aggregated from pixels to fields. For example, the ratio of the 

number of pixels between table grape and Avocado is around five, but that of the fields is 

around eight.  

200 fields were used to be selected into training set randomly, but the result is that it is 

highly possible that one or more crop types are missing from the sample. Then the absence of a 

few crop types leads to critical malfunction in classification. A stratified sampling strategy was 

tried after random sampling failed, but stratified sampling also faced the same problem of 

missing some crop types. Finally, equal number of fields are randomly selected by crop types 

into training and test sets. The plan that at most 200 fields are used to train the classifiers does 

not change, for the final training set can have at most 186 fields. Because the model is trained 

and selected on data with classes of the same size, a new test set is created by retrieving an 

equal number of fields of each crop type from the left-out fold in cross-validation estimation. 

How robust an algorithm is towards different distribution of data and number of classes is also 

noteworthy, which is not addressed in this study.  
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In the coefficients investigation section, the whole dataset is equally divided into two 

parts as training set and test set, which means within training set and test set the sizes of the 

six classes are different. The purpose of this section is not comparing different classifiers but to 

analyze the change of coefficients and error rate along the change of 𝜆. Then the training set 

and test set should be kept the same. By using half of the dataset, there is no need to concern 

the absent of crop types. However, the effect of difference in balanced or unbalanced dataset 

on ridge and lasso PLDA is not considered. Whether the inconsistence of training/test set 

design in these two sections will affect the conclusions is a question to answer.  

 

 

6.3.2 Possible implications 

One of the main findings of this research is that stable and obvious enhancement on 

classification accuracy can be made by adding normalized difference indices derived from all 

two-band indices calculated across the 9 images. This new approach to reduce mean error rate 

does not require any new images or ancillary data. For future researchers interested in land 

cover classification, this method can be helpful to improve the accuracy with barely additional 

computer work. Second, three flavors of LDA have been tested and compared in a crop 

classification context and ridge penalized LDA produced the overall best results. LDA as a simple 

but powerful classifier has not been paid much attention in this field, and result of this study 

addresses its ability in distinguishing different fruit trees. LDA series classifiers are very fast 

considering their high accuracy in crop type identification, which is comparable to or even 
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better than some the state of art algorithms. For future projects and work about crop type 

classification, ridge penalized LDA can be a good choice. Also, the application of the ridge and 

the lasso PLDA may encourage studies in other fields, such as bioinformatics which also 

encounter with high dimensional data, to pay attention to these two PLDA methods.  

In addition, through the analysis on canonical coefficients in the optimal model, the 

most important spectral bands and images are found out. Red and shortwave infrared (1.57 µm 

- 1.65 µm) carry dominant higher weights than other spectral bands. These two bands deserve 

further attention in vegetation indices related researches. 

There are not found studies using ridge and lasso PLDA for LULC. The canonical 

coefficients are not investigated to explore the variables importance in many studies related to 

LDA based classifiers. In Bandos et al (2009), the research was focused on the comparison of 

performance of LDA based classifiers. Several different flavors of lasso PLDA are compared on 

simulated data in (Merchante et al., 2012) and on bioinformatics data (Ma & Huang, 2008), 

while canonical coefficients were not interested either. In the studies by Brenning (2006) and 

by Peña & Brenning (2015) LDA is treated as a black box. This study provides a new approach to 

analysis the variable importance with LDA based classifiers in a LULC context.   
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6.4 Future directions 

One of the future research directions can be the generalization of the conclusions, “adding new 

indices features can decrease the classification mean error rate, on other classifiers. LDA series 

classifiers may perform very well in this case, but for other crop types or land covers types, 

whether the created normalized difference index can decrease the error rate is needed for 

exploration. The classifiers to be tested next should also be able to deal with large amount of 

features, such as SVM which is the second best classifier in the previous project (Peña & 

Brenning, 2015). However, SVM was extremely time consuming even without adding new 

indices into the feature set. Another option may be other flavours of LDA, which should be 

much faster than complicated machine learning algorithms.  

The result of variable importance assessment shows that red and shortwave infrared 

(band 4 and 7) are the most important spectral bands in Landsat-8 images in the crop 

classification, and these two bands are not the traditional vegetation related spectral bands 

green and near infrared. More research is needed to have insight into the biophysical 

structures and phenomena of the interaction between fruit-trees and solar radiation. Also, the 

normalized difference indices based on these two bands would better be paid more attention 

or compared to NDVI specifically in future studies.  
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

The purpose of this study is to seek a new approach to reduce the crop type misclassification 

rate by creating new spectral indices based on available bands. The study area is located in a 

valley in Chile, with six main fruit tree crop types interested in this research. After collecting and 

preprocessing all the available cloud-free Landsat-8 images, the ground truth data are 

combined with remote sensed data in a table format for batch processing purpose. The indices 

are generated through calculating the normalized difference ratios of every two bands (in a 

form like NDVI) in the old dataset which only contains band variables from the satellite images. 

This approach is tested on two types of penalized LDA classifiers and the results are assessed by 

spatial aggregated cross-validation. The LDA series of classifiers has been recognized as efficient 

and accurate models in crop type classification problems, and in this study the ridge penalized 

LDA and the lasso penalized LDA are chosen to solve the ill-posed problem which Fisher’s LDA 

cannot solve. The results clearly show that, either on the ridge or the lasso based LDA, the 

mean classification error rates are decreased by adding new indices into the old feature set, 

which means the spectral indices can provide additional valuable information in crop type 

identification.  

 However, the ridge LDA significantly outperformed the lasso on both feature sets, which 

probably is caused by the different ways of penalization in the classifiers. The lasso tends to 

shrink the coefficients of small variables to exactly zero, while the ridge tends to keep all the 

variables in the feature set in the shrinking process. Thus, in a dataset which all the variables 

are related to the response, the ridge would have advantages over the lasso in accuracy. To 

assess the importance of the variables, the canonical coefficients are analyzed by different 
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bands. The first two images, acquired in late winter and early spring, have dominant higher 

average coefficients over the rest images mainly because of the Bands 4 and 7 in the two 

images carry the most weights. This is another interesting finding, for red and shortwave 

infrared are not the traditional vegetation related bands.  

 In conclusion, additional spectral indices like NDVI but generated from other spectral 

bands can also contribute to the crop classification. Second, the ridge based LDA is more 

suitable to classifying the fruit-tree crops in this study than the lasso. Third, the period from late 

winter and early spring may be the best period to recognize the crop types in this study. The 

last, the red and the second shortwave infrared bands contribute more to correct classification 

than the other spectral bands in this study.  
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APPENDIX A 

List of Acronyms 

LDA- Linear discriminant analysis 

LULC- Landuse/landcover 

NDVI- Normalized difference vegetation index 

NIR- Near infrared 

PLDA- Penalized linear discriminant analysis 

RF- Random Forest 

SD- Standard deviation 

SITS- Satellite images times series 

SVM- Support vector machine 
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APPENDIX B 

Map of best classification result 
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