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Abstract

Software systems are impacting every aspect of our daily lives, making software failures
expensive, even life endangering. Despite rigorous testing, software bugs inevitably exist,
especially in complex systems. Existing tools to aid debugging, such as tracing, profiling,
and logging facilities, reveal the behavior of a program’s execution; however, they require
the developers to manually correlate the data to diagnose faults.

This work is the first to introduce the Runtime State Model, a summarization of a
program’s behavior, for software anomaly detection and fault localization. A Runtime
State Model is constructed from variables’ value change events of an execution. It consists
of a set of states, and state transitions, where a state is a set of variables with their
current values, and a state transition is induced by a variable’s value change. Comparisons
between states from difference executions can be conducted to detect software anomalies.
Deviations from the healthy states also help explain and locate faults in the source code.
To automate this process, we implement Xtract, a facility that automatically extracts
runtime traces from the Java Virtual Machines and constructs Runtime State Models for
multiple simultaneous Java applications. Our evaluation provides evidence that Runtime
State Models might be effective in detecting and locating injected faults to a RUBiS server
with Xtract.
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Chapter 1

Introduction and Motivations

With the popularity of computers, mobile devices and easier access to the Internet, software
systems are impacting every aspect of our daily lives, making software failures expensive,
even life endangering. Despite rigorous testing in almost all production software, software
bugs still inevitably exist, especially in the complex systems. Take Boeing’s newest 787
Dreamliner as an example: it was discovered, after nearly 4 years in service, that an integer
overflow bug in its generator control unit would cause a complete electric shutdown and
potentially loss of control of the aircraft [29].

For enterprise entities, software failures result in capital losses. In August 2012, Knight
Capital Group lost $440 million in 45 minutes due to a software failure, causing its stock
price to drop by nearly 60% in one day [54].

A survey conducted from October to November 2014 reveals that [22],

• the average cost of unplanned application downtime per year is $1.25 billion to $2.5
billion for Fortune 1000 companies.

• the average hourly cost of an infrastructure failure is $100,000.

• the average cost of critical application failures per hour is $500,000 to $1 million.

Unfortunately, implementing reliable software has never been easy, even for the giants.
On September 20, 2015, Amazon’s web services (AWS) experienced a 5-hour long outage,
causing service interruptions for many of its big customers, including Netflix, Airbnb,
IMDb, and Amazon’s own online markets [17], despite of its commitment to provide a
minimum of 99.95% monthly uptime in the Service Level Agreement [32].
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Approaches to improve software dependability has been extensively explored, by both
Systems and Software Engineering communities. As a couple of representatives, replica-
tion techniques create and coordinate replicas to increase system availability [1, 12, 37],
rollback recoveries restore the failing processes to a state before the presence of failures
[13, 34, 35], crash only software is designed that its components could be restarted without
prior synchronizations [8, 9, 45], software rejuvenation prevents the occurrence of failures
by proactively cleaning up the system’s internal states [26, 31]. These approaches are step-
ping stones towards today’s dependable services. They reduce the end-to-end visibility of
failures, improving the MTTF (Mean Time To Failure) by orders of magnitude, however,
will not help in fault diagnosis, i.e., debugging.

Runtime tracing is the most intuitive approach when it comes to debugging. The basic
form of runtime tracing that most are familiar with is to use a debugger, e.g., gdb, to
step over each line of the source code while inspecting variable values to find the bug. In
this case, debugging is a process of inspecting a program’s execution paths and variable
changes, i.e., states, that deviate from a developer’s expectations.

Efforts to ease this process focus on providing mechanisms to reveal the inner workings
of a program through static instrumentations [30], dynamic instrumentations [11], or OS
events tracking [2, 7]. In the context of a networked system, approaches also consider
request flows between components [24, 51]. Runtime tracing is often perceived as a mature
technique extensively used even in production systems [11, 51], however, these approaches
merely provide means to retrieve runtime data and expect the developers to manually
correlate the data to diagnose faults.

The automation of diagnosing program faults and anomalies is usually achieved through
behavior matching, where the behavior of a program is defined as observable effects in
its execution [5]. Early work towards automated fault detection takes descriptions of
programs’ expected behaviors as input [5, 47, 49], and therefore requires great efforts from
the developers to manually define their expectations.

This limitation is addressed by the automated construction of program behavioral mod-
els. It is observed that program behavioral models presented in existing work fall generally
into two categories,

• In the context of performance diagnosis, models are constructed from performance
costs, including, system resource consumptions [4], the running time of system calls
[3], time spent on network requests [50] or information recorded in the log messages
[44, 60], e.g., timing, number of records. However, these models can not be applied
to the diagnosis of non-performance related issues.
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• To detect more generic types of faults, flows and paths are usually used to model a
system’s behavior. For the case of diagnosing componentized systems, request flows
and status are adopted in anomaly detection [10, 14], but they are implementation-
agnostic, and can only be used to determine the failing components. Attempts to
model execution paths suffer from high false positives [27].

To address these limitations and achieve the automated detection of generic faults, at a
source code granularity, we propose the use of Runtime State Models in anomaly detection
and fault localization. To define a Runtime State Model, we first refer to Lamport’s defini-
tion of a computation, that a computation is a sequence of steps that result in transitions
of states [36].

In the context of software, the following observations are made,

• a state is represented by a set of (variable, value) pairs,

• a step, i.e., a transition of states, is induced by the change of a variable’s value,

• and therefore, a sequence of variable’s value changes defines a program’s behavior.

This leads to one of the fundamental arguments of the work, that

Argument: Given that a runtime trace, i.e., sequence of variable’s value changes,
defines the program’s behavior, a model constructed from a runtime trace to include
a set of its states, and a set of state transitions, summarizes the behavior of an
execution. We define the model as a Runtime State Model.

Note that a runtime trace captures the temporal order between the changes; however, the
set of transitions in a Runtime State Model ignores their temporal property. It is also
worth noting that to preserve the compactness of a Runtime State Model, each state in
the model could be a subset of the program’s corresponding states to exclude outliers. To
summarize the common behavior of a program, a model can be constructed from multiple
runtime traces of the same program to include the shared states and transitions.

Intuitively, a Runtime State Model gradually constructed from a healthy execution, or
a collection of healthy executions (of the same program), consists of healthy states that
summarize the program’s healthy behavior. By comparing the states of a failing execution
to the healthy states, we could derive a set of anomalous states, i.e., states that deviate
from the healthy states, and a set of transitions that eventually lead to the anomalous
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states. Since each state transition is a variable’s value change, it helps us locate the fault
back to the source code.

The advantages of using Runtime State Models in anomaly detection and fault local-
ization include,

• Anomalies detected with a Runtime State Model could be mapped back to the source
code, achieving fault localization at a source code granularity.

• As opposed to models constructed from particular metrics, a Runtime State Model is
constructed directly from runtime traces, which makes it capable of detecting generic
faults.

• Constructing a Runtime State Model is an application-agnostic process and does not
require knowledge of the system structure or source code beforehand, which also
makes this technique applicable to all types of applications.

To the best of our knowledge, we are the first to formulate the notion of Runtime State
Models in the context of anomaly detection and fault localization. This work focuses on
the automated construction of Runtime State Models, and showing evidence that Runtime
State Models might be effective in detecting runtime anomalies.

We recognize the following novel and significant contributions,

1.1 Contributions

• This work is the first to formulate the notion of using Runtime State Models in the
context of software anomaly detection and fault localization.

• We present Xtract, a facility that automatically extracts runtime traces from the Java
Virtual Machines and constructs Runtime State Models for multiple simultaneous
Java applications. The facility includes,

– A Runtime Data Extraction Infrastructure that retrieves runtime traces directly
from the Java Virtual Machines through a set of JVMTI constructs. As an effort
to extract local variable change events from the JVMs, we implement the local
variable watchpoint functionality through runtime breakpoints.
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– A scalable and massively parallel Runtime State Analytics Engine on Apache
Spark that achieves the construction and validation of Runtime State Models
from multiple simultaneous input sources, through efficient graph analytics. The
engine supports the online construction of Runtime State Models on streams of
runtime events captured throughout the course of programs’ executions.

• First to evaluate the effectiveness of using Runtime State Models in the context of
software anomaly detection. We introduce three types of injected faults to the RUBiS
server, and show evidence that the Runtime State Models could help detect runtime
anomalies and provide useful information in fault localization.

1.2 Thesis Outline

This thesis is consisted of 7 chapters.

• In Chapter 2, we provide background knowledge that are relevent to the understand-
ing of this thesis, including the formal definitions of Runtime States and Runtime
State Transitions and Runtime State Models, along with brief introductions to the
technologies used in the implementation of Xtract.

• In Chapter 3, we discuss related work that approached the problem of software
fault and anomaly detection, with runtime traces, log messages, and system metrics.

• In Chapter 4, we present the design and implementation of our Runtime Data Ex-
traction Infrastructure that works to extract the runtime information of applications
directly from the Java Virtual Machines.

• In Chapter 5, we present the design and implementation of our scalable and massive
parallel Runtime State Analytics Engine. We also describe a set of graph algorithms
used by the engine to construct, validate and compare the Runtime State Models.

• In Chapter 6, we talk about our experiment setup and environment; discuss ex-
periments conducted to evaluate the performance overhead of Xtract, and show how
Runtime State Models help us in detecting and locating faults injected to a RUBiS
server.

• We conclude in Chapter 7, identify, and list issues in current state of the work as
future work.
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Chapter 2

Background

In this chapter, we formalize the definitions of Runtime States, Runtime State Transi-
tions, and Runtime State Models used throughout this thesis. We also provide necessary
background information that are relevant to the understanding of our approaches, and
technologies used extensively in our implementations.

2.1 Terminologies and Definitions

To formalize the definition of a Runtime State Model, we first refer to Lamport’s formal
definition of a computation [36, 38],

Lamport’s Definition of a Computation: A computation is a sequence of steps,
< s, α, t >, where s and t are states and α is an action. A behavior is a sequence
s1

α1−→ s2
α2−→ s3

α3−→ . . . . The step < si, αi, si+1 > represents a transition from state si
to state si+1 that is performed by action αi.

In the context of this thesis, we define a state as a set of (variable, value) pairs, a step
as a transition of states induced by the change of a variable’s value, and use a sequence of
variable’s value changes to define a behavior.

2.1.1 Runtime Trace

We define the sequence of variable’s value changes as a Runtime Trace.

6



Definition: A Runtime Trace RT is a sequence e1, e2, . . . from contiguous observa-
tions o1, o2, . . . , where each ei ∈ RT indicates a variable’s value change event. Each
change event e = (v → valv) represents the value of variable v has been changed to
valv.

2.1.2 Runtime States and Transitions

Runtime States and Runtime State Transitions are derived from a Runtime Trace. We
derive our own formal definitions of Runtime States, and State Transitions, based on
Lamport’s definition of a computation, as follows,

Definition: A Runtime State si is a set of variables with values, derived from a
Runtime Trace RT = e1, . . . , ei, in their temporal order. Each variable (v = valv)
represents the variable v has a most recent value of valv. A Runtime State without
any variables is defined as the initial state s0.

One state is transitioned to another state through a state transition, where

Definition: A Runtime State Transition tsrc→dst = (ssrc, sdst, e) represents a tran-
sition from state ssrc to state sdst, given a variable value change event e.

2.1.3 Runtime State Models

A Runtime State Model is a set of Runtime States and a set of Runtime State Transitions.
We give the formalized definition of a Runtime State Model as follows,

Definition: Given a set of Runtime States S = s0, s1, . . . sn, and a set of Runtime
State Transitions T = {ti→j|si, sj ∈ S, i 6= j}. A Runtime State Model, G =
(S ′, T ′), is a set of Runtime States S ′ = s′0, s

′
1, . . . s

′
n, where s′i ⊆ si, and a set of

Runtime State Transitions T ′ = {t′i→j|s′i, s′j ∈ S ′, i 6= j}.

Each Runtime State in the model is reachable from each other, if there exists a Runtime
State Transition between the states. A Runtime State Model is represented with a state
machine, a directed graph with each vertex being a Runtime State, and each edge being a
Runtime State Transition.

7



1 int s i m p l e f u n c t i o n ( ) {
2 int a = 1 ;
3 int b = 2 ;
4 a = 3 ;
5 }

Figure 2.1: A Simple Function Generating 3 Change Events

2.1.4 Runtime State Pruning

Runtime State Pruning is the process of computing a set of Runtime States S ′, where each
state s′ ∈ S ′ is a subset of the original states s ∈ S derived from a Runtime Trace. We
define the process of Runtime State Pruning as follows,

Definition: Given a set of variables V =
⋃
v,∀v ∈ s,∀s ∈ S, where S = s0, s1, . . . , sn

is the original set of Runtime States. Derive a set of states S ′, where S ′ = s′0, s
′
1, . . . , s

′
n,

s′i ⊆ si,∀i ∈ [0, n], such that v′ ∈ V ′, ∀v′ ∈ s′,∀s′ ∈ S ′, where V ′ ⊆ V . We define the
process of deriving S ′ as Runtime State Pruning.

2.1.5 Universal Runtime State Models

We define the common subgraph shared by multiple Runtime State Models as a Universal
Runtime State Model. We formalize the definition of a Universal Runtime State Model as
follows,

Definition: Given a set of Runtime State Models, G1 = (S1, T1), G2 = (S2, T2), . . . , Gn =
(Sn, Tn). A Universal Runtime State Model Gu = (Su, Tu) is such that s ∈ Su,
iff, s ∈ S1 ∩ · · · ∩ Sn, ∀s ∈ S1 ∪ · · · ∪ Sn, and Tu = {ti→j|si, sj ∈ Su, i 6= j}

Given that a Runtime State Model summarizes the behavior of a program, a Universal
Runtime State Model summarizes the common behavior of a set of executions.

2.1.6 Case Study

Take the example in Figure 2.1, at the time of observation, if the control is at source code
line 3, we say the runtime state at observation oi is si = {(a = 1)} with a transition
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ti−1→i = (si−1, si, (a → 1)). When the control reaches line 4, we say the runtime state at
observation oi+1 is si+1 = {(a = 1), (b = 2)} with a transition ti→i+1 = (si, si+1, (b → 2)).
When the control reaches line 5, and updates the value of a, we say the runtime state at
observation oi+2 is si+2 = {(a = 3), (b = 2)} with a transition ti+1→i+2 = (si+1, si+2, (a →
3)).

2.2 Java Virtual Machine Internals

This thesis focuses on the extraction and analysis of runtime information of Java applica-
tions, and therefore, requires the knowledge of basic internals of the Java Virtual Machine.
In this section, we discuss and explain some of the mechanisms essential to the understand-
ing of the rest of the thesis, in a nutshell.

2.2.1 Java Methods, JIT, and Debugging Support

Before executing a Java application, one needs to first compile Java source files using javac,
which compiles Java code into JVM bytecodes, stored in class files. When starting a Java
application, JVM will first load all classes into the VM, this process parses the class files,
and stores methods in a special space in the heap, containing information of method types,
method bytecodes, local variable tables, etc. Each method is identified by a unique ID
associated with its enclosing class.

One interesting question that many may have is how is JIT, Java’s Just in Time com-
pilation going to impact the management of, and the subsequent interactions with Java
methods. Java’s JIT compiler aims at improving the performance of Java applications
by optimizing, and eventually replacing Java’s platform independent bytecodes to native
machine instructions. Despite different JVM implementations, most adopt the hot code
replacement strategy that only optimizes heavily used function through careful calculations
due to the fact that the overhead of code compilation and replacement could be substantial
[6].

Take Hotspot VM as an example, it offers both bytecode optimization and JIT compi-
lation mechanisms that would progressively apply optimizations until eventually swapping
bytecode to machine code [21]. While the replacement and compilation strategies are be-
yond the scope of this thesis, we will discuss how this affects the debugging of a Java
application as follows.
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A JVM is capable of providing full debug support while maintaining as many enabled
optimizations as possible. Setting breakpoints as an example, the JVM will insert a break-
point opcode at the corresponding instruction locations of the original bytecodes, and each
version of the optimized bytecodes if any. Given that a bytecode may be optimized dur-
ing execution, whenever a breakpoint is reached, the virtual machine would preserve all
Java states, and temporarily fall back to use the original bytecode for debugging purposes.
Since it is impossible to debug native machine code through the JVM interpreter, setting a
breakpoint would disable further JIT compilations on the method until all breakpoints on
the method are cleared. If a method is already JIT compiled at the point a breakpoint is
being set, the method will be deoptimized [20], i.e., the JVM will fall back to use bytecode
interpretation for that method without compromising program states with OSR (On Stack
Replacement).

2.2.2 Java Local Variables and Bytecodes

Each Java method has a list of local variables, the number and length of which are deter-
mined and stored in the class files during compile time. A Java local variable typically has
the following metadata, the notions of which will be used throughout the thesis,

• slot, the logical position of the variable in the list, used and identified by the virtual
machine.

• start location, the index of bytecode instructions where the local variable is first
available.

• length, the length of the valid section for the local variable, i.e., the last bytecode
instruction that this local variable is valid is start location+ length.

Java local variables could be either a Java primitive, or a reference to an object that is
stored in the Java heap. Accesses and Modifications to a Java local variable are translated
to bytecode instructions to load or store values to a specific local variable slot. An example
showing the mapping between the Java bytecodes and Java code is depicted in Figure 2.2,
in which the upper left listing shows the original Java code that a method takes one
argument, initializes and modifies two local variables. The Java code is compiled into a
series of bytecodes as in the upper right listing that will be discussed later, and a list of
local variables as shown in the table. Both bytecode instructions and the local variable
table are extracted from the compiled class file using javap.
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Although we will not go deep into Java bytecode instructions, we briefly discuss the
instructions used here to explain how local variables are accessed by a Java program. There
are three categories of instructions in the upper right list, where <t>const <i> pushes a
constant i of type t into the operand stack, <t>store <i> stores a value of type t on the
top of the operand stack back to the local variable at slot i, and <t>load <i> load the
value of type t at slot i to the operand stack. Note that if the slot number i too large
to be represented by a single instruction, two instructions will be used with the second
instruction being the slot number, as in lines 4-5 and lines 9-10. That said, we can now
walk through the bytecodes as follows,

The interpreter first pushes integer 0 into the stack, and stores it to local variable at
slot 3, i.e., intVariable, this corresponds to the Java code line 3. The same logic is followed
by instructions 3-5 corresponding to Java code line 4, and instructions 6-7 corresponding to
Java code line 6. For Java code line 7, one needs to first load the value of doubleArgument
and store its value into variable doubleVariable, this corresponds to instructions 8-10.

The local variable table has the information of each local variable per method, including
their slot number, start location, length, variable name and signature. In our example,
4 local variables exist in someMethod. Note that, for a member method, slot 0 is always
reserved for this object. Since all of the local variables in this case are reachable until
the end of the method, the last instruction that the variables are valid is start location+
length = 12, though their start locations vary. Since both this and doubleArgument are
reachable since the entry of the method, their start location are 0, while the start location
of intVariable and doubleVariable are 2 and 5 respectively.

2.3 JVM Tooling Interface

The JVM Tooling Interface (JVMTI) is a set of APIs provided by Java Virtual Machines
to inspect the states and control the execution of Java applications [16].

To use the JVMTI interfaces, one needs to implement a client, namely agent. An agent
is essentially a shared library written in C/C++, loaded by the JVM at startup time, and
piggybacks on the JVM process. One could ask the JVM to load an agent by specifying
the agent path and options in JAVA OPTS 1.

The JVMTI provides control mechanisms that fall into various categories, however, we
discuss only two of those that are used extensively in our implementation.

1The command-line option to load an agent is -agentpath:<path-to-agent>=<agent-options>

11



1 class LocalVariableExample {
2 public int someMethod (double doubleArgument ) {
3 int i n t V a r i a b l e = 0 ;
4 double doubleVar iab le = 0 . 0 ;
5
6 i n t V a r i a b l e = 1 ;
7 doubleVar iab le = doubleArgument ;
8
9 return 0 ;

10 }
11 }

1i c o n s t 0
2i s t o r e 3
3dconst 0
4ds to r e
54
6i c o n s t 1
7i s t o r e 3
8dload 1
9dconst
104
11i c o n s t 0
12i r e t u r n

start location length slot name signature
0 12 0 this LLocalVariableExample;
0 12 1 doubleArgument D
2 10 3 intVariable I
5 7 4 doubleVariable D

Figure 2.2: An example of the Mapping between Java Bytecodes and Local Variables
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2.3.1 Classes and Fields

A JVMTI agent has the capability to extract class information from the JVM. The Get-
LoadedClasses function returns all class objects from the JVM that have already been
loaded. The GetClassSignature function gives the Java class signature of each class object.
Together, one could easily implement logic to get a subset of useful classes according to
the class signatures. A Java class usually defines fields and methods.

One could get a list of fields given a class object with GetClassFields. Java fields are
uniquely identified as jfieldIDs in JVMTI, and are valid until their enclosing classes are
garbaged collected or modified. The names and signatures of Java class fields could be
extracted with GetFieldName.

2.3.2 Methods, Bytecodes, Breakpoints and Local Variables

Similar to Java class fields, one could extract a list of methods given a class object with
GetClassMethods. Java methods are identified with a unique ID of type jmethodID in
JVMTI, with which one could get various information of the method, including the name,
the signature, the modifier, etc. Among the miscellaneous stuff one could extract from the
JVM, we discuss two important pieces to our implementation: the method bytecodes and
local variables.

As mentioned in Section 2.2.1, the bytecodes and local variables of Java methods are
generated and stored in the class files during compile time, and despite JVM’s optimizations
to the bytecodes, it will always fall back to use the original bytecodes if in debug mode.
That said, GetBytecodes function returns an array of original bytecodes as compiled by
javac given a jmethodID, with each element being a single bytecode instruction.

One could set breakpoints at various bytecode locations using SetBreakpoint that takes
two parameters, the method id, and the index of the instruction in the array, at which to set
the breakpoint. Setting breakpoints on a method immediately deoptimizes the method,
and invalidates its capability to be JIT compiled until all breakpoints on the method
are cleared. Events could be enabled on the breakpoints. If a breakpoint is reached, a
breakpoint event will be triggered invoking a user-defined callback function. We discuss
JVMTI events in Section 2.3.3

A mapping from bytecode locations back to the Java code locations could be obtained
through GetLineNumberTable. One could also extract a list of local variables given a Java
method. The GetLocalVariableTable function takes a method id, and returns a list of Java
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local variables including the slot, start location, length, along with the name and signature
of each variable defined in the method.

2.3.3 Event Management

JVMTI provides mechanisms to manage various JVM events, e.g., FieldModifications,
FieldAccesses, Exceptions, Breakpoints, etc.

Event notifications are triggered by invoking corresponding event callback functions. A
global struct containing callback function pointers of all event types are set at the agent
loading phase through SetEventCallbacks. This also indicates that only one callback logic
per event is permitted. Notifications could be enabled or disabled for each event with the
function SetEventNotificationMode, globally or with a per thread granularity.

In the scope of this thesis, two events are of interests. The field modification event
that is triggered whenever a field is modified, and the breakpoint event that is triggered
whenever a breakpoint is reached.

To set a modification watchpoint on a Java class field, one needs to call SetFieldMod-
ificationWatch providing the class object and the jfieldID of the field. If the watchpoint
is no longer needed, ClearFieldModificationWatch could be called with the same set of
arguments. A callback of the field modification event gives the following information,

• the thread that is modifying the field

• the method and instruction location that is modifying the field

• the class, signature, object of the field being modified

• the new value of the field

Similarly, to set a breakpoint, one need to call SetBreakpoint with the jmethodID and
the location of instruction at which to set the breakpoint. Breakpoints could be cleared
with ClearBreakpoints with the same set of arguments. The breakpoint event will be
triggered before the execution of the instruction at which a breakpoint is set, and the
callback of the breakpoint event gives information of the current thread, the method id
and instruction location. The JVMTI and JNI environment pointers are provided in the
breakpoint callback that could be used to access runtime information from the JVM. The
thread will be temporarily suspended until the callback returns.
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2.4 Apache Spark

Apache Spark is a batch processing system that claims to be up to 100x faster than Hadoop
MapReduce in memory [53]. We use Spark extensively in our runtime data analysis and
modelling process. In this section we briefly discuss various components of Spark that we
adopt in our implementation.

2.4.1 Resilient Distributed Dataset (RDD)

Spark uses Resilient Distributed Dataset (RDD) to achieve fault-tolerant distributed in-
memory batch processing [58].

An RDD is a read-only, partitioned collection of records. Unlike in Distributed Shared
Memory (DSM) where processes are allowed to read and write to a particular address,
RDDs only provide coarse grained transformations, i.e., map, filter, reduce, etc, that enable
the tracking of how an RDD is derived from other RDDs, or from the file system by
logging those transformations (lineage), which could be later used in system recoveries in
the presence of failures. Other benefits of RDDs over DSM include the ease of migrating
jobs from slow nodes, the capability of fine-grained scheduling based on data locality, etc.,
according to the original paper [58].

Operations on an RDD are divided into two categories, transformations and actions.
A transformation is a lazy operation that define a new RDD, while an action launches
a computation to calculate a value or write data to external storage. One RDD may be
transformed multiple times before an action is applied. A summary of common RDD
operations is shown in Table 2.1.

2.4.2 Spark Streaming and D-Streams

As an effort to support real-time streaming processing with Spark, discretized streams (D-
Streams) is proposed to simulate real-time streaming with a batch processing framework
[59].

A D-Stream groups input streams into a series of RDDs on small time intervals, and
computes over the RDDs through batch processing. That said, one needs to first spec-
ify a window size. Input data received in each window is stored across the cluster to
form an input dataset, which is manipulated by users through RDD operations that act
independently on each window.
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Category Operation Description

Transformations

map transform an RDD from type A to B, one to one
flatMap transform an RDD from type A to B, one to many

reduceByKey reduce multiple elements with the same key
groupByKey group multiple elements with the same key

filter filter out elements that does not satisfy a predicate
join join two RDDs

leftOuterJoin perform leftOuterJoin with the other RDD
rightOuterJoin perform rightOuterJoin with the other RDD

Actions

collect return an array containing all elements of the RDD
count return the number of elements in the RDD
reduce reduce all elements to one variable
save write RDD to an external storage system

Table 2.1: A Summary of Common RDD Operations

1 val streamingContext = new StreamingContext ( . . . , Seconds ( 1 0 ) )
2 val l i n e s = streamingContext . socketTextStream ( ” l o c a l h o s t ” , 7000)
3 val words = l i n e s . f latMap ( . s p l i t ( ” ” ) )
4 val wordCounts = word .map( x => (x , 1 ) ) . reduceByKey ( + )
5 wordCounts . p r i n t ( )

Figure 2.3: An Example of Network Word Counting with Spark Streaming

An example of counting the number of words in a network stream is shown in Figure
2.32. In the example, a window size of 10 seconds is specified on line 1. By creating
a network text streaming from the localhost, Spark Streaming would create RDDs with
records received in 10-second windows, and apply 2 map and 1 reduce operations on those
RDDs, giving the count of words received in each window.

A D-Stream inherits all benefits of an RDD, including fault tolerance through RDD
lineage. To achieve efficient recovery, an approach called parallel recovery is introduced by
periodically checkpointing some of the state RDDs, and asynchronously replicating them
to other nodes. In the presence of a failure, multiple parallel tasks are launched to compute
and recover different RDD partitions from the latest checkpoint.

2You can find the full code here: https://github.com/apache/spark/blob/master/examples/src/

main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala
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2.4.3 Spark GraphX

Spark GraphX brings low-cost, fault-tolerant graph processing on a general-purpose data
processing system, i.e., Apache Spark, that matches the performance of specialized graph
processing systems [28]. Despite the great efforts made by Spark GraphX to optimize
the representation, computation and partition of graph data, here we only discuss Spark
GraphX from a user’s perspective, i.e., the operators Spark GraphX provides to facilitate
graph computations.

Spark GraphX provides a graph abstraction, namely Graph[VD, ED], that has a
vertex type of VD and an edge type of ED. It takes two RDDs representing the vertices
and edges of a graph respectively. Each vertex of a GraphX graph is a key-value pair of
(VertexId, VD), while the VD could be any objects including user-defined structures.
Each edge of a GraphX graph is in the form of a triple, (src VertexId, dst VertexId,
ED), in which the first two elements indicate the src and dst vertex ids, and the ED is an
object describing the edge.

Spark GraphX supports both transformations on graph components, i.e., vertices and
edges, as well as Pregel like operators. We provide a summary of GraphX operators in
Table 2.2.

A Pregel-like operator implements a GAS message passing system with each vertex in
the graph being an individual program [40]. In Spark GraphX, the Pregel implementation is
implemented with batch processing operators that the user needs to provide four mandatory
functions.

• vprog is used to simulate the vertex program that updates the state of each vertex
according to incoming messages

• send message is used to generate messages to send to each of the neighboring vertices.
If no messages are to be sent to a vertex, an empty message set could be generated.
The entire process terminates when the number of active messages becomes 0.

• merge message is used to merge multiple messages into a single one before sending
them out to a vertex. This is for performance considerations to reduce shuffling
overhead.

• initial message is the initial message to be sent to all vertices before the first super
step. An initial message could be empty.
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Operator Description
mapTriplets transform the graph type from [VD, ED] to [VD, ED’] given each triplet
mapVertices transform the graph type from [VD, ED] to [VD’, ED] given each vertex
mapEdges transform the graph type from [VD, ED] to [VD, ED’] given each edge
subgraph filter out vertices and edges that does not satisfy predicates

pregel run pregel like impl with user-defined vertex programs and messages

Table 2.2: A Summary of GraphX Operators

A triplet in the mapTriplets function is a notion provided by GraphX that describes
a triple of (src vertex object, dst vertex object, edge). Different from an edge that
only gives the ids of its src and dst vertices as provided, a triplet gives the actual objects
of the three components.

We use Spark GraphX extensively in the building and analysis of software state ma-
chines as part of our software state modeling process.
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Chapter 3

Related Work

In the context of runtime anomaly detection, existing research generally falls into three
categories:

1. approaches to detect runtime anomalies and locate faults through the analysis of
runtime traces, where a runtime trace could be an execution path, or a request flow
between networked components. These approaches normally require instrumenting
the programs for data extraction,

2. anomaly detection through log mining makes use of the pervasive log messages most
software systems produce to determine whether, how, and when a failure happens
inside of the system,

3. and approaches to detect runtime anomalies through system metrics, i.e., CPU uti-
lization, memory consumption, etc.

3.1 Runtime Tracing and Models

Runtime tracing is the most intuitive approach when it comes to debugging. Existing
research is observed to focus on two different aspects of this problem. Research that focuses
on runtime tracing techniques proposes tools and implementations to extract runtime data
to reveal a program’s behavior. Efforts that focus on the automation of fault diagnosis
using runtime traces usually construct models to look for behavior deviations. We discuss
them separately
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3.1.1 Runtime Tracing Techniques

Purify [30] uses static instrumentation to detect memory errors. It instruments C/C++
object files to add tracking code at each memory allocation and deallocation site. A
memory error is reported if an address is accessed before allocation, or if an address is not
properly deallocated.

As opposed to Purify, DTrace [11] uses dynamic instrumentations where each instru-
mentation probe could be enabled or disabled. It is built in the system kernel to track
function invocations, syscalls, locks, etc.

Anderson et al. propose continuous sampling on the OS level with performance coun-
ters, and use an analysis tool to calculate time spent on each instruction, source code line,
and procedure calls [2].

Bhatia et al. use fined-grained OS events, e.g., page allocations, process scheduling,
block-level I/O, etc to detect system performance problems [7].

For the case of a networked system, approaches are proposed to track the request flows
between distributed components.

X-Trace is a request tracing system for networked systems [24]. The idea is that each
component of a networked system includes a metadata header in their message packets
before sending them to the next hop, describing the identity of and operations conducted
on the component. The system then analyzes the message flow and operation status of
each component from a client on the receiving end to determine the failures of system
components.

Dapper [51] is a production framework used inside of Google to trace RPC calls of a
distributed system. It is a built into Google’s RPC framework that keeps track of the
source, destination, operation and timing information of each RPC call, and presents them
in a tree structure. The traces are stored in an external log file to be analyzed by other
entities.

These approaches provide means to extract runtime data, but they expect the devel-
opers to manually correlate the data to diagnose faults.

3.1.2 Expectations as a Model

Early efforts towards software fault diagnosis require manual input of expected program
behaviors. These approaches usually employ special-purpose domain languages to describe
an expectation.
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Bates proposes the use of Event-Based Behavioral Abstraction, a model that uses events
and attributes, e.g., for an open file event, the name and id of the file, to describe the
behavior of a networked system.

Perl et al. use performance assertions to detect runtime performance anomalies. A
developer needs to describe the expected performance metrics of various operations, e.g.,
I/O timing, lock wait time, cache hit rate, etc. Anomalies are reported if an operation fails
the provided performance assertion [47].

Pip [49] is an infrastructure that detects unexpected behaviors in distributed systems.
It requires programs to be linked against a library to generate events and resource mea-
surements. It takes descriptions of the expected execution paths and performance metrics
for each operation, and reports anomalies when mismatches are found.

3.1.3 Models from Performance Costs

Existing approaches that are designed to diagnose system performance issues usually con-
struct cost models. Magpie [4] uses OS resource consumption events, e.g., bytes read, cache
miss, etc., to establish a clustering model for each request.

Sambasivan et al. use request flows and the response time of each request captured by
Dapper [51] to model the system performance in a directed weighted graph [50]. They use
Kolmogorov-Smirnov test on response time and request counts to determine deviations in
the request flows. The graph is used to identify anomalous flow ranked by the number of
appearances.

X-ray [3] uses the execution paths and timing of each system call and synchronization
operations to construct weighted directed graphs. The graph is then used to diagnose
performance issues by looking at the edges with large weights.

These approaches focus on diagnosing system performance issues, and can not be ap-
plied the diagnosis of non-performance related issues.

3.1.4 Models from Paths and Flows

Chen et al. designed Pinpoint, an instrumented J2EE middleware that tracks the client
requests, internal and external failures [14]. This results in a matrix with each rowing
being a single request, and each feature being the number of failures happened for each of
the software components. A clustering algorithm is later applied on the generated matrix
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to determine the failing component. However, it is implementation-agnostic, and can only
be used to determine the failing components.

For efforts to detect more generic types of faults, Ghanbari et al. came up with a low-
overhead real-time solution to detect runtime anomalies, namely, Stage-aware Anomaly
Detection (SAAD) [27]. SAAD looks for software logging points, i.e., code statements that
print out log messages, through source code analysis. They instrument the source code to,
instead of printing out a message to a log file, send an event message to a remote analyzer.
Further analysis are carried out through statistical testing, i.e., t-test on the execution
flows and time spent in between consecutive logging points for the detection of flow and
performance anomalies. This approach, however, suffers from high false positives.

We recognize ClearView [46] as the most related work to ours. ClearView is an au-
tomatic error patching facility that corrects failing executions online by enforcing the ex-
ecution paths. It constructs invariants, a model that captures the common control flows
(a sequence of instructions and variable values) across multiple executions. Failures, for
example, illegal control flow transfers and memory accesses, are detected by instrumented
monitors. Whenever a failure is detected, ClearView repairs the actual execution by en-
forcing the flow recorded in the invariant. This is in contrast to our goal of using invariant
runtime states to detect anomalies and locate faults.

3.2 Log Mining

Log messages are pervasive, and are intended to be used to detect problems in any large-
scale software. Analyzing runtime logs is usually an offline process, and therefore does not
exert extra overhead on existing systems. Existing log analysis techniques usually take the
following three approaches,

• Using natural language processing techniques that treat log messages as unstructured
data.

• Inferring the structures of log messages through code analysis and annotations.

• Combining the efforts of machine learning techniques with manual data labeling.

In this section, we discuss approaches that use software logs to determine runtime
anomalies.

22



Xu et al. use the console logs of a software system to detect anomalies [55]. Their
approach requires the use of source code to recover the underlying structures of the log
messages, and apply machine learning and information retrieval techniques to detect un-
usual patterns in the logs.

SherLog [56] is a tool that infers information to help programmers understand what
have happened during the failed execution. It uses both the software source code and the
log messages to infer the execution path and variable values during the failed execution.
They conclude that SherLog is useful in diagnosing 8 real world software failures.

Nagaraj et al. present DISTALYZER, an automated tool to support developer investi-
gation of performance issues in distributed system, by comparing the system logs to infer
the variable values and event occurrences that exhibit the largest divergence across the
log sets [44]. It compares the runtime logs by looking at both events, i.e., operations, and
states, i.e., value of some system variables, and reports those information where perfor-
mance variations are observed.

lprof [60], is a profiling tool that automatically reconstructs the execution flow of each
request in a distributed application. It analyzes the application’s binary code and runtime
logs to associate log messages with individual requests, i.e., identifying log messages on
distributed nodes that belong to the same request, and shows diverging message patterns
per request, thus helping developers to find bugs.

Despite the requirements of access to the source code of the above approaches, Reide-
meister proposes treating log messages as unstructured text [48]. It clusters log message
by tokenizing the log messages, and applying clustering based on the edit-distance between
message tokens.

The effectiveness of log analysis approaches depends greatly on the quality of log mes-
sages, i.e., counting on the developers to provide useful logging statements in the source
code. Work that automatically inserts or enhances existing logging statements [57], requires
instrumenting the source code.

3.3 System Metrics Models

Another relevant category of work uses system metrics data, i.e., CPU utilizations, mem-
ory consumption, etc., to detect software anomalies. The use of system metrics achieves
anomaly detection with complete ignorance of the implementations and structures of the
software system under observation.
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Jiang proposes the modeling of system metrics data with linear and information the-
oretic models [33]. An unhealthy system state is determined through the fitness of the
trained model given a data point representing the system state. System metrics can also
be used to determine faulty components through the analysis of per-component metrics
data.

Munawar et al. present approaches to discover system faults with linear correlations
between system metrics data [41, 42, 43]. A correlation model relates multiple system
metrics, and is sensitive to the fluctuations. Anormaly detection is achieved through
the identification of mismatches between metric observations and predictions with the
correlation models built with metrics of a health system.

These approaches can only be used to determine the failing components, but will not
provide information to aid debugging.
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Chapter 4

Runtime Data Extraction
Infrastructure

To construct runtime state models, and apply them in the context of software anomaly
detection, we propose Xtract, a general-purpose facility that automatically retrieves run-
time data from the Java Virtual Machines, and automates the process of constructing and
analyzing runtime state models. We divide the facility into two components,

• A Runtime Data Extraction Infrastructure that retrieves runtime data directly from
Java Virtual Machines, and exposes a set of APIs to the monitoring entity to control
the types and granularities of data retrieved.

• A Runtime State Analytics Engine that constructs, validates and analyzes the run-
time state models from simultaneous input sources.

We present the Runtime Data Extraction Infrastructure in this chapter.

The infrastructure, is designed to extract runtime information from the Java Virtual
Machine. In addition to data extraction using JVMTI and JNI interfaces as described in
Section 2.3, it also implements logic to organize, serialize, and transport those data out of
the Java Virtual Machine, and exposes a set of APIs to allow the external entity to control
its behaviors.

We recognize two major component in the Xtract infrastructure.

• The Xtract RPC Service is a foundational service that provides efficient inter and
intra components data serialization and transport support.
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Figure 4.1: Xtract RPC Service Structure

• The Xtract JVMTI agent is a shared library that piggybacks on the Java Virtual
Machine process. It exposes a set of higher level runtime inspection APIs to external
entities through the RPC Service and makes use of the JVMTI and JNI interfaces
to extract information from the JVM.

Our Runtime Data Extraction Infrastructure is implemented with 3,000 lines of C++
code for the JVMTI agent, 250 lines of Protocol Buffer definitions for the RPC service,
and 300 lines of Go code. We describe each of the components separately as follows,

4.1 Xtract RPC Service

To accommodate communications between external entities and the infrastructure, a gRPC
server is implemented in the shared library loaded by the JVM, and is initialized during
the agent’s OnLoad phase, as depicted in Figure 4.1. The goals of the RPC service are
three folds:

1. External entities are able to get data out of the Java Virtual Machine on demand by
calling corresponding interfaces.

2. The external entity could configure Xtract on the fly through a set of control APIs,
e.g., to enable or disable an event or toggle the watchpoints or breakpoints during
runtime.

3. The RPC service decouples the JVMTI agent implementations and data analytics
logics in the external entities, adding to the flexibility and extensibility of Xtract.

The Xtract RPC Service implements two helpful mechanisms to reduce the overhead
that may arise from a regular RPC implementation, namely, the asynchronous and stream-
ing RPC.
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4.1.1 Asynchronous and Streaming RPC

Consider the case of the GetHeapObjects function, which is supposed to send multiple
objects back to the caller. Given the complexity of the application, there could be millions
of objects to be sent back per request. A regular RPC implementation either sends back
a single object, as in the get a heap object function, or a list of all objects, as in the
get heap objects function in Figure 4.2a, per call. Unfortunately, both work terribly for
our case, due to non-trivial overhead of millions of remote function calls per request or the
massive memory consumption to cache all objects in memory before sending them back to
the caller in batch.

Our solution to this is to implement the streaming RPC that allows the callee to
send responses back to the caller in a fashion similar to writing byte streams to a TCP
connection, in this case however, writing objects one by one within a single RPC call.
To terminate a streaming RPC call, the callee needs to write a terminator to the caller
indicating the end of the response stream, and the caller needs to end the processing logics
when a terminator is received. We show an example of Streaming RPC in Figure 4.2b.

Another case where regular RPC implementation does not play well is when a break-
point callback needs to send an event notification to the callee, but has to be blocked until
the return of the call, which also blocks the underlying Java application, slowing down its
execution substantially. To solve this issue, we combine asynchronous RPC with stream-
ing RPC that all events are first cached in a circular queue, which are later sent out using
streaming RPCs with separate threads.

We use asynchronous and streaming RPC extensively in our RPC service to reduce
memory footprint and runtime overhead.

4.1.2 Interface Designs

We notice that information retrieved from JVMTI could be abstract and fragmented. For
example, three functions need to called separately to get all information we need for a
method, including the method id, name, and bytecodes. To simplify our RPC interface
design, we organize those JVMTI functions into higher level RPC calls according to their
logical functionalities, and group each fragmented information into structured messages as
the parameters and return values of our interfaces. For clarity, we take the GetClassMethods
interface as an example.

As mentioned earlier, getting all information of a method required three separate
JVMTI function calls as shown in Figure 4.3a, however, for the simplicity of our RPC
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class RPCServer {
Object g e t a h e a p o b j e c t ( . . . ) {

// pro ces s an o b j e c t
return /∗ processed o b j e c t ∗/ ;

}

Object∗ g e t h e a p o b j e c t s ( . . . ) {
Object∗ ob j s = new Object [VERY LARGE NUMBER] ;
for ( int i = 0 ; i < VERY LARGE NUMBER; ++i ) {

// pro ces s an o b j e c t
ob j s [ i ] = /∗ processed o b j e c t ∗/ ;

}
return ob j s ;

}
} ;

void g e t a h e a p o b j e c t c l i e n t ( . . . ) {
Object∗ ob j s = new Object [VERY LARGE NUMBER] ;
for ( int i = 0 ; i < VERY LARGE NUMBER; ++i ) {

ob j s [ i ] = g e t a h e a p o b j e c t ( . . . ) ;
}

}

void g e t h e a p o b j e c t s c l i e n t ( . . . ) {
Object∗ ob j s = g e t h e a p o b j e c t s ( . . . ) ;

}

(a) Regular RPCs

Figure 4.2: A Comparison of Regular to Asynchronous and Streaming RPCs
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class RPCClient {
void push an event async ( const Event& e ) {

c i r c u l a r q u e u e . push back ( e ) ;
}

void e v e n t c a l l b a c k ( const Event& e ) {
push an event async ( e ) ;

}

void push events s t r eaming ( . . . , Writer<Event> w r i t e r ) {
while ( ! c i r c u l a r q u e u e . empty ( ) ) {

w r i t e r . wr i t e ( c i r c u l a r q u e u e . f r o n t ( ) ) ;
c i r c u l a r q u e u e . pop f ront ( ) ;

}
}

} ;

class RPCServer {
void push events s t r eaming ( . . . , Reader<Event> reader ) {

while ( ! r eader . terminated ( ) ) {
Event e = reader . read ( ) ;

}
}

} ;

(b) Asynchronous Streaming RPC

Figure 4.2: A Comparison of Regular to Asynchronous and Streaming RPCs (cont.)
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interfaces, we provide one GetClassMethods function that extracts all the information
from the JVM and group them into a single structured message that contains the ids,
names and bytecodes of a method. That said, our GetClassMethods interface takes a re-
quest from the caller indicating the classes, of which, the methods are to be extracted.
It then iterates through and calls GetClassMethods on each of the classes to get a list of
method ids, and subsequently calls GetMethodName and GetBytecodes on each method of
each class. Before sending those information back to the caller, it wraps them into a list of
JavaMethod structs, each containing the method id, name, and bytecodes of each method
of each class. We show an abstract implementation of this process in Figure 4.3b. Note
that besides omitting trivial syntaxes, the abstract implementation also shades the use of
Protocol Buffer and gRPC for clarity.

The Xtract RPC service is implemented with the gRPC and Protocol Buffer framework.
To define a gRPC function stub, one needs to provide a function signature, including the
function return type, function name, as well as RPC request and response message types,
among which, those types must be defined as Protocol Buffer messages. A Protocol Buffer
message, referred to as a proto in later sections, is a language-independent structured
message defined in .proto files. One can specify fields in a proto message, each of which
could be a primitive, another proto message, or a repetition of primitives or proto messages.
The gRPC function stubs and proto messages could be later compiled into the source files
of various languages, including C/C++, Java, and Golang, that are used throughout our
system. We describe our core interfaces and protos in Appendix A.

It is worth noting that most Xtract RPC interfaces produce XtractStatus as the re-
sponse. XtractStatus is a proto message that describes whether a request is successful, and
the error code and error message in the presence of request failures, however, it is to be
distinguished from the Status object returned by the gRPC framework. We briefly discuss
this by first showing a compiled C++ function signature of SetBreakpoints as follows,

Status SetBreakpoints ( ServerContext ∗ context , const
MultipleSetBreakpointParams ∗ request , XtractStatus ∗ re sponse ) ;

In the C++ function, the XtractStatus defined as the return type in Figure A.2a has
been made one of the function parameters named response, while the return type of the
function is Status. The XtractStatus is a custom proto message sent by Xtract to show any
internal errors that may occur during invocations of the JVM APIs, while the Status object
generated and returned by the gRPC framework indicates whether or not the request failed
due to a network or gRPC framework failure. As a client of the Xtract RPC service, both
of these objects need to be inspected in the presence of failures to reason the cause.
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// 1 . Get a l i s t o f methods g iven a c l a s s o b j e c t
jvmt iError GetClassMethods ( jvmtiEnv∗ env , j c l a s s k la s s , j i n t ∗

method count ptr , jmethodID∗∗ methods ptr ) ;

// 2 . Get the name o f a method g iven the method id acqu i red in s t e p 1
jvmt iError GetMethodName( jvmtiEnv∗ env , jmethodID method , char∗∗ name ptr ,

char∗∗ s i g n a t u r e p t r , char∗∗ g e n e r i c p t r ) ;

// 3 . Get the b y t e c o d e s o f a method g iven the method id acqu i red in s t e p 1
jvmt iError GetBytecodes ( jvmtiEnv∗ env , jmethodID method , j i n t ∗

bytecode count ptr , unsigned char∗∗ bytecode s pt r ) ;

(a) Three Steps towards the Details of a Java Method with JVMTI

struct JavaMethod {
jmethodID method id ;
std : : s t r i n g method name ;
unsigned byte∗ bytecodes ;

JavaMethod ( . . . ) { /∗ parameter i zed c o n s t r u c t o r ∗/ }
} ; // s t r u c t u r e d message c o n t a i n i n g r e q u i r e d in format ion o f a Java Method

int GetClassMethods ( const std : : vector<j c l a s s >& k l a s s e s , s td : : vector<
JavaMethod>∗ methods in fo ) {

// l o c a l v a r i a b l e s d e c l a r e d here
for (auto& k l a s s : k l a s s e s ) {

env−>GetClassMethods ( k la s s , . . . , &method ids ) ;
for (auto& method id : method ids ) {

env−>GetMethodName( method id , &name , . . . )
env−>GetBytecodes ( method id , . . . , &bytecodes )
methods info−>emplace back ( method id , name , bytecodes )

}
}
// c l ean up here

}

(b) Xtract Abstraction of GetClassMethods

Figure 4.3: An Example of GetClassMethods
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4.1.3 Case Study

Figure 4.4: Sequence Diagram of the Xtract RPC Service, an Example

As a wrap up of this section, we present a sequence diagram of the Xtract RPC Service
showing an example of asynchronous event pushing, object streaming, with an simultaneous
invocation of GetClassMethods as in Figure 4.4.

Supposing the event management mechanism of this JVM is properly setup with the
breakpoint event enabled. The external entity first sends a SetBreakpoints request through
the RPC service, Xtract invokes corresponding SetBreakpoint function provided by JVMTI
for each of the breakpoints specified in the RPC request. Upon return of the function, an
XtractStatus indicating whether the function call is successful is return to the caller. Note
that, with breakpoints set, JVMTI would now invoke breakpoint event callback before the
execution of the instruction at which a breakpoint is set, which would send a event push
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request to the RPC service, which would then send the breakpoint event to an external
entity. After setting the breakpoints, the external entity now calls the GetClassMethods
function.

Upon reception of the request, Xtract first gets a list of method ids for each class
contained in the request. It will then get the name and bytecodes for each of those methods.
After getting the bytecodes for the first method, JVMTI invokes the breakpoint callback
which sends a breakpoint event to the RPC service. Note that the push operation is
asynchronous that the callback function returns immediately without having to wait for
the actual RPC call, which happens after the second GetBytecodes function in this case.

An event notification may also happen between consecutive JVMTI calls, as for the
case of the second breakpoint event, however, these operations should never block each
other with the exception that if the event happens to stop the world or the thread one may
be trying to access. The RPC service organizes those information into a list of JavaMethod
messages and send it back to the caller. Lastly we show the sequence of streaming RPC
with the example of GetHeapObject. The caller sends a request to get heap objects from
the JVM, for which the RPC service initializes a heap walk, and writes objects back to the
stream one by one, whenever they are processed. Note that this is a simplified depiction of
the process showing the work flow of a streaming RPC, while the implementation details
are discussed in Section 4.2.

4.2 Xtract JVMTI agent

The Xtract JVMTI agent implements the JVMTI APIs and is compiled as a shared library
that could be loaded by a Java Virtual Machine. Backgrounds in terms of what is, and
how to use JVMTI is discussed in Section 2.3, however, in this section, we discuss how
Xtract retrieves runtime data from the JVM with JVMTI and JNI, including, breakpoints
resolution and stack local variables inspection.

We discuss each of these implementations in the following sections.

4.2.1 Breakpoints Resolution

A breakpoint is set on a method instruction. The thread will be paused before the execution
of the instruction at which a breakpoint is set, and an event notification will be sent
through an event callback function that reports the id of the thread, and the location of
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the instruction that the thread is about to execute. To set a breakpoint, a call to the
SetBreakpoint function needs to be made with the id of the method and the location of
the instruction to set the breakpoint.

Setting a breakpoint with Xtract involves the invocation of two interfaces, GetClass-
Methods and SetBreakpoint. The first interface gets back a list of class methods, including
their bytecodes, while the second interface sets a JVMTI breakpoint on a method bytecode
instruction location. This way, we separate the determination of where to set a breakpoint
entirely from the Xtract agent, and make it a decision of the external entity.

One breakpoint event notification sends one corresponding JvmEventNotification mes-
sage to the external entity. The message contains the timestamp when the breakpoint
callback is invoked, thread id, the name and id of the method, the name of the class that
defines the method, and the location of the instruction at which the breakpoint event is
triggered.

The message also includes a list of local variables available at the point of execution,
used to derive local variable changes, which we now describe in the next section.

4.2.2 Stack Local Variables Inspection

Although desirable, the current latest version of JVMTI (JVMTI 1.2) does not provide
approaches to set watchpoints on local variables [16, 25].

As a workaround, we implement Java local variable watchpoints with breakpoints, on
instructions that change the values of local variables that we refer to as key instructions.
For our case, we focus on the use of istore, lstore, fstore, dstore, and astore, that change
the values of integer, long, float, double primitives, and object references respectively.

Note that, each of the instructions is presented in two possible forms.

• The short form uses a single instruction to access a value to a local variable slot,
however, it only supports accessing values to local variable slot 0-3.

• Any operations that accesses the value of a local variable in slot greater than 3 adopts
the long form that is expressed using two instructions with the first instruction being
the op code, and the second being the slot number.

Breakpoints events are notified before the execution of an instruction, therefore, to
get an event notification after a variable has been changed, a breakpoint should be set at
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location i + 1 if it is a short form instruction, or at i + 2 if it is a long form instruction,
where i is the location of the aforementioned instructions.

Recall that local variables are represented in the JVM in the form of tables, in which,
each local variable is associated with slot, start location and length. We determine whether
a local variable is available at the point of execution by comparing the current instruction
location as reported by the breakpoint callback, with its start location and start location +
length, i.e., a local variable is determined as valid at instruction location i, iff, start location ≤
i ≤ start location + length.

As an effort to reduce the runtime complexity of breakpoint callbacks, and potentially
optimize the perceived performace, we return all currently available local variables, at the
point of the event callback, back to the caller, instead of locating the one that was changed
by the execution of the instruction. The caller can then figure out the variables being
changed through a series of ordered breakpoint events without having to interfere with the
execution of the Java application.

A breakpoint callback returns a JvmEventNotification message to the external entity.
Apart from contextual information as described in the previous section, a breakpoint event
message also contains a repetition of JavaLocalVariable messages, where a JavaLocalVari-
able message describes the name, signature and value of a Java local variable.

We now describe the process of retrieving stack local Java primitives and objects from
the JVM as follows,

Retrieving Java Primitives

The retrieval of stack local Java primitives is achieved by first identifying the the types of
the local variables. It is recognized that all primitive types in the Java Virtual Machines
are associated with one-character signatures. i.e.,

• Z identifies a Boolean type,

• B identifies a Byte type,

• S identifies a Short type,

• I identifies an Integer type,

• C identifies a Char type,
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• J identifies a Long Type,

• D identifies a Double type,

• F identifies a Float type

Four interfaces are provided to retrieve the values of Java primitives by JVMTI, namely,
GetLocalLong, GetLocalDouble, GetLocalFloat, GetLocalInt. Note that the values of Boolean,
Byte, Short, Integer, and Char typed variables should all be retrieved with the GetLocalInt
interface.

In our implementation, we traverse the local variable table, and look at the types of
variables. If a variable has a primitive type, we retrieve its value with these four interfaces.

Retrieving Java Objects

In addition to primitives, we observe that strings and objects are also important in the
derivation of runtime states.

We use the signatures of the variables to determine their types. Variables that are not
primitives, are recognized as Java objects. We distinguish Java strings from generic Java
objects according to their signatures, that Java strings possess a signature of Ljava/lang/string;.

Stack local objects could be extracted with the GetLocalObject interface, which returns
a reference of Java objects in the JVM heap in the type of jobject. If the Java object has
a value of null, the returned jobject will be a nullptr in the C++ code.

If a Java object is a Java string, we use the JNI function, GetStringUTFChars, to
retrieve the content of the Java string. We identify that the identifications of Java objects,
i.e., their hash codes, are not a useful type of information in the construction of runtime
states, however, we are interested in knowing whether the Java objects hold a null value.
For Java objects, therefore, we only indicate if they are null. For null Java strings, we treat
them as null objects.

4.3 Performance Implications

To conclude this chapter, we briefly discuss the performance implications of Xtract on the
underlying Java application.
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It is not difficult to see that JVMTI APIs are expensive, and may stall the execution of
the underlying application substantially. Examples are, as discussed in this chapter, heap
walks require the JVM to stop the world until all objects are visited, breakpoint events
pauses the execution of the thread until the event callback is returned, and setting break-
points on methods forces JVM to deoptimize the method, not to mention the additional
overhead caused by event callbacks.

Many optimizations have been built into our implementations, including using asyn-
chronous streaming RPC to handle event notifications, and implementing mechanisms to
toggle watchpoints, breakpoints and control the granularity of event notifications on the
fly, etc. However, this thesis focuses on approaches to extract and use runtime data to find
program anomalies, where efficiency is not a major concern in our case.

Despite the fact, we believe further optimizations are feasible and are a matter of
engineering efforts. We provide some insights here as follows,

• One could easily implement adaptive monitoring mechanisms that automatically re-
fine the granularity of event notifications and disable unnecessary watchpoints and
breakpoints through the Control APIs of the Xtract RPC Service on the fly.

• To avoid excessive breakpoints and watchpoints, it is possible to use code analysis
techniques to annotate insignificant fields and variables to reduce the overhead.

• Further, performance impact could be avoided using the Record and Replay tech-
niques, i.e., recording requests to the system and replaying them offline for anomaly
detection.

We evaluate the performance impact of Xtract in Section 6.3.
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Chapter 5

Runtime State Analytics Engine

We present our Runtime State Analytics Engine in this chapter. A runtime state, as
described in Section 2.1, is a collection of key variables and their values representing the
program’s behaviors. A transition between two states is defined by the change of value of
a variable.

Over the course of monitoring, the engine constructs a Runtime State Model for each
individual program under observation, given the runtime data retrieved from our Runtime
Data Extraction Infrastructure. The summarization of runtime states is conducted through
a validation process that generates a Universal Runtime State Model across different exe-
cutions of the same application. A runtime state comparison is then carried out to analyze
anomalies through state deviations.

The engine is capable of computing and analyzing the runtime states from multiple
incoming sources in massive parallel with distributed nodes, and is therefore both efficient
and scalable. However, we assume that all incoming change events belong to the same
application.

Our Runtime State Analytics Engine is implemented with Apache Spark, HDFS and
ZooKeeper in 2,000 lines of Scala code, 300 lines of Java code and 200 lines of Go code.

We describe the system and the algorithms separately.

5.1 System Overview

We show the structure of our modeling engine in Figure 5.1. It consists of four components
Runtime Data Preprocessor, Runtime State Generator, Validator, and Comparator, working
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Figure 5.1: System Structure of the Runtime State Analytics Engine

in a pipeline fashion.

The engine takes input data directly from our runtime data extraction infrastructure,
in real time. Data taken from the infrastructure is in the form of a stream, which is
first segmented into multiple windows given a pre-defined window size. Each window is
preprocessed through our Data Preprocessor, which produces intermediate representations
of those input windows.

The intermediate representations of the input are consumed by the Runtime State
Generator that generates a runtime state model, per input window, per source. A runtime
state model is essentially a state machine, in the form of a directed graph with each vertex
being a runtime state, and each edge being a transition between two states. The Generator
is stateful, and implements online algorithms to gradually construct and refine the runtime
state models according to the windowed runtime data input retrieved throughout the course
of the programs’ executions.

The Runtime State Validator summarizes the universal behavior of an application, i.e.,
common runtime states and transitions among multiple state models, while the Comparator
analyzes two given state machines for behavior deviations.

We build the engine entirely on top of Apache Spark, making it both efficient and scal-
able. Communications between the components are fulfilled through HDFS and ZooKeeper,
where the HDFS is used to buffer and store both temporary and output data, and ZooKeeper
is used to implement a distributed producer consumer queue.

To connect the two entities, we implement a bridging facility, named as Data Bridge
in the diagram, which implements a Google RPC server that receives event data from
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the infrastructure, and streams the events through a network socket directly to the Data
Preprocessor. We argue that decoupling the Modeling engine from Xtract infrastructure
contributes to the flexibility and maintainability of the two separate entities. Note that,
the engine supports simultaneous input from multiple sources that are processed in batch.

We describe each of the components as follows.

5.1.1 Streaming Data Preprocessor

Our streaming data preprocessor implements the Spark Streaming interface. It takes a
stream of input data, which in our case, a stream of JvmEventNotification protos from
the Xtract infrastructure, and apply batch processing on the input stream divided by
a user-defined window, that is, using data received during the window as the input for
subsequent batch processing logics.

To write a Spark Streaming application, one first needs to implement a receiver to
receive input data as a discretized stream (DStream). A Spark Streaming receiver is essen-
tially a network client that connects to a specified server, receives data and stores the data
in the form of RDDs. Various general-purpose receivers are shipped with Spark Stream-
ing, including the naive socketTextStream that receives a stream of text strings through
network sockets, however, we implement our custom receiver that receives serialized proto
messages from Data Bridge, and deserializes the messages before storing it to the underly-
ing RDD. This enables the direct reusing of JvmEventNotification proto messages from
the Xtract infrastructure without data translations between the two entities.

During the data preprocessing phase, we apply basic data transformations, e.g., sorting
and filtering, that are supposed to be very fast with the Spark batch processing. Since
Spark Streaming is essentially batch processing on windowed streams, doing so ensures
that the processing of each windowed input could be finished during that window slice
without having to stall the processing of subsequent windows. We describe our logic to
preprocess those events in Section 5.2.

After the processing of each windowed input, we store the output RDDs to the HDFS
as object files. These files are essentially a serialized representation of the RDDs, and
are consumed by the Runtime State Generator. All files are named as DataSigna-
ture timestamp for future indexing. We store the intermediate output to an external
storage system for two considerations,

1. The construction of Runtime State Models could be time consuming, using an exter-
nal storage system as buffer reduces the amount of data that would otherwise build
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up in the main memory.

2. Storing intermediate representations to an external storage system makes it possible
to revisit historic data.

The Runtime State Generator runs asynchronously with the Data Preprocessor, there-
fore, to notify that an input has been processed, and is ready for further analysis, we
also implement a distributed Producer-Consumer queue with ZooKeeper. The distributed
queue records the paths of the object files stored by the Data Preprocessor, that are used
by the Runtime State Generator to locate the object files. Whenever a new output is
ready, the producer, i.e., the Data Preprocessor pushes the file paths to the queue, while
the consumer, i.e., the Runtime State Generator receives a notification and reads the files.
Records in the queue are persistent that they will persist in the ZooKeeper queue until
consumed even in the presence of producer and consumer failures.

Input from multiple sources are processed simultaneously in batch, using the same set
of algorithms. They are distinguished through an id to uniquely identify the source.

5.1.2 Runtime State Generator

The Runtime State Generator consumes the intermediate output from the Data Prepro-
cessor, and produces a state machine representing the cumulative runtime states, for each
of the input sources.

The generator starts by retrieving the file paths of intermediate output generated by
the Data Preprocessor and loading those object files from HDFS as a set of RDDs. If the
ZooKeeper queue is empty, it will block until an item is pushed into the queue by the
preprocessor.

The generator will then build a state machine, i.e., a directed graph with each vertex
showing a state of the program at an observation, and each edge showing a change of value
of a variable. In our case, each change of value of the variables are captured by the Xtract
agent through event notifications, therefore, we build the state machine according to the
sorted change events by their timestamps.

It is non-trivial to build and access the state machines efficiently, especially when their
sizes become large. Therefore, we compute, store and transform the state machines with
Spark GraphX using distributed nodes, in parallel. We describe the process to build a
state machine in Section 5.3.1.
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One potential side effect of our approach is the state explosion, i.e., too many states
and transitions due to excessive value changes of the variables. To address this issue, we
select a portion of key variables from the variable collection to build the state machine, and
implement mechanisms to transform the state machines to exclude selected variables, so
that we ensure the compactness of the state machines to include only useful information.
We describe our variable selection scheme and the state machine transformation mechanism
in Section 5.3.3 and Section 5.3.4 respectively.

Note that, we build one state machine per window produced by the Data Preprocessor,
however, the Data Preprocessor is a stream processor that produces output per pre-defined
window. To keep track of the cumulative view of the program state, each state machine
constructed from on a windowed input are merged into one global state machine. We
describe the merging logics in Section 5.3.2.

If the input contains multiple sources, we keep track of intermediate states of each
individual source separately. One state machine is generated per windowed input per
source.

5.1.3 Runtime State Validator

Graph computations are expensive and time consuming. To speed up this process, we
implement the runtime state validation process as a separate component that runs in
parallel to the state generator, in a pipeline fashion.

The Validator takes the generated state machines, typically those generated from the
same input window, and summarizes a common state to reveal the universal behavior of
the application under observation. We describe the validation process in Section 5.3.5.

5.1.4 Runtime State Comparator

The Runtime State Comparator reads the state machines from HDFS and calculates the
differences between two given state machines. It is used to derive the anomalous program
states in our evaluations, where an anomalous state is defined as a deviation of runtime
states and transitions in an execution with failure, from a healthy one.

We use Spark GraphX’s batch processing operators to compare the state machines in
parallel.
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5.2 Runtime Events Preprocessing

Incoming runtime events are first preprocessed through a series of statistical computations
and transformations.

A runtime event is defined as a pen-tuple of e = (src, ts, t, v, valv), where src indicates
the source of the runtime event, e.g., the id of a process or the host name of a machine,
ts indicates the timestamp when the change happens, t shows the thread where the event
happens, v is the name that uniquely identifies a variable, and valv is the value of the
variable. Note that, as mentioned in Section 4.2.2, these incoming events from the Xtract
infrastructure are not necessarily actual representations of variable changes, but rather,
an indication of the value of each variable at the time of observation, for performance
considerations.

During the preprocessing phase, we derive the following information according to the
runtime events,

• A set of variables per thread per source, i.e., Vsrc,t = v0, v1, . . . .

• The domain of each variable per thread per source, i.e., the variable’s value set,
V ALsrc,t,v = val1, val2, . . . .

• A collection of ordered changes of each variable per thread per source, i.e., V Csrc,t,v =
(v → valts0), (v → valts1), . . . , where vali 6= vali+1,∃v ∈ Vsrc,t, and tsj < tsj+1.

• A sequence of variable changes per thread per source, i.e., CSsrc,t = (v0 → valv0), (v1 →
valv1), . . . , where ∃vi ∈ Vsrc,t, and vi = vi+1, iff valvi 6= valvi+1

.

These information are derived from incoming events segmented by a pre-defined win-
dow. The processing of events of each window is stateless, and therefore does not require
the knowledge of data in previous windows.

5.3 Runtime State Modeling

Constructing Runtime State Models is essentially the process of building state machines
indicating the state of program executions at each observation, and the transitions between
states. Since the values changes of each variable is derived during the data preprocessing
phase, we treat each variable value change as a state transition, denoted as a quadruple of
c = (ts, tid, v, valv), where,
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1 int s i m p l e f u n c t i o n ( ) {
2 int a = 1 ;
3 int b = 2 ;
4 a = 3 ;
5 }

(a) Simple Function Generating 3 Change
Events

(b) Building State Machines Sequentially

Figure 5.2: An Example of State Machine Construction

• ts is the timestamp when the change happens,

• tid is the id of the thread that changes the variable,

• v is the name of the variable, distinguished by the name of the variable, the name
of the method where the variable is declared, and the name of the class that defines
the method,

• and valv is the new value of the variable in a string.

We now present our process to build a state machine according to variable change
events.

5.3.1 State Machine Construction

Building a state machine really is a sequential procedure by gradually building a transition
graph from a collection of change events in their temporal order. We start by walking
through a simple example in Figure 5.2.

A simple code snippet shown in Figure 5.2a generates the following three variable
change events, in order,

C = {(0, 0, a, 1), (1, 0, b, 2), (2, 0, a, 3)}
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// 1 . genera te edges from change
e v e n t s

val edges = E. map( e => Edge ( src , dst ,
t )

// 2 . genera te graph from edges
val graph = Graph ({} , edges , S0 )

// 3 . p o p u l a t e graph
val graph populated = graph . p r e g e l (

i n i t i a l m e s s a g e = {} ,
send message = e . s r c . t + e . t ,
vertex merge = v . s −> v . s + msg . s )

(a) Pseudo-code of Building State Machines with
GraphX

(b) Steps of Building State Machines
with GraphX

Figure 5.3: Building State Machines with GraphX

To build a state machine sequentially, we process the change events one by one while
keeping track of the cumulative runtime state. As shown in Figure 5.2b,

1. the first event gives a transition from an initial empty state s0 = {} to s1 = {(a = 1)}.

2. It is later changed by the second event to another state s2 = {(a = 1), (b = 2)},
through a transition of t1→2 = (b→ 2).

3. Eventually, we get to the final state s3 = {(a = 3), (b = 2)} through t2→3 = (a→ 3).

We say variable changes C gives a state machine of

G = {{s0, s1, s2, s3}, {t0→1, t1→2, t2→3}}

It is trivial to build a state machine sequentially, however, we use Spark GraphX to
efficiently compute, store and transform runtime state machines with distributed nodes.
This is extremely helpful when the number of states becomes too large for a sequential
implementation to manage. As a prerequisite of building a state machine with Spark
GraphX, identical states need to be identified as the same vertex in a graph. We use the
hash code of the variable map to uniquely identify the states.

To build a state machine with Spark GraphX,
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1. we first generate a set of edges that uniquely represent a state transition from src to
dst state. During this phase, we only need to uniquely specify the states with ids
without having to create the actual state structures.

2. initialize a graph structure with empty vertex set, the edges we generated in step 1,
and default state S0 that is essentially an empty map. During this phase, GraphX
would create a vertex structure for each vertex referenced by the edges. If a vertex
does not exist in the provided vertex set, e.g., an empty vertex set as in our case, it
creates a vertex with the provided default vertex, e.g., S0 in our case.

3. populate the graph in parallel with GraphX pregel implementation,

(a) for each transition edge e, send a message from src to dst, if the state of dst is
not equivalent to the state of src merged with the transition of e. The message
contains a delta state ∆s = e.src.s + e.t, that is the previous state, i.e., the
state of the src vertex of each transition edge e, merged with the transition t,
i.e., a variable’s value change.

(b) upon receiving a message from neighboring vertices, each vertex updates their
own states with the delta state in the message, i.e., update their own states
v.s = v.s+ ∆s, by merging them with the delta state.

(c) keep looping from (3.a) until equilibrium is reached, i.e., no messages are sent
from any vertex.

We show an example of building the same state machine with GraphX in Figure 5.3.
Note that, the vertices in dashed lines indicate that they are not materialized until GraphX
initializes the vertex structures with the default state S0. Equilibrium is reached after two
iterations of message passing.

We argue that it is important to compute the state transitions on a per thread basis,
given that the change events are essentially interleaved given the multi-threaded property
of most applications, and that despite each thread may have their own state transitions, it
is safe to later merge the per-thread state transitions into a single state machine.

The computation of state transitions per thread is sequential similar to the sequential
state machine building process, with the exception that we only generate the edges, and
compute the hash code of the previous and next states per change event. However, multiple
computations are carried out in parallel with Spark. We merge the edges per thread into
a single set before subsequent state machine building processes.
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5.3.2 Temporal Join and Multi-thread Correlation

Merging multiple state machines is non-trivial.

Recall that we represent the state machines with GraphX as a directed graph G = (S, T )
with each vertex s identified by a unique id, and each edge t containing the id of its
source and destination vertices. Therefore, merging multiple state machines G1 = (S1, T1),
G2 = (S2, T2), . . . , Gn = (Sn, Tn) is essentially creating a directed graph with vertices and
edge being the super set of each respective machine, i.e., constructing Gs = (Ss, Ts), where,
Ss =

⋃n
i=1 Si, and Ts =

⋃n
i=1 Ti.

However, it is incorrect to simply merge the state machines constructed on each input
window, due to the fact that a trace of a thread could be broken into multiple windows, and
that the state machine constructed on a broken window is not a complete representation
of the actual state transitions.

Consider the following example that separates the change events into three windows,

C1 = {(0, 0, a, 1), (1, 1, a, 1), (2, 1, b, 2), (3, 1, a, 3)}
C2 = {(4, 0, b, 2), (5, 2, a, 1), (6, 2, b, 2)}
C3 = {(7, 0, a, 3), (8, 2, a, 3)}

We have three threads with tids of 1, 2 and 3, executing the function in Figure 5.2a.
Thread 1 finishes executing within the first window, thread 2 starts within the second
window, and finishes within the third window, while the execution of thread 3 spans all
three windows.

Without a proper merging process, our Runtime State Generator would generate three
independent state machines labeled as E1, E2, and E3, and eventually merge them into
a state machine labeled as Merged in Figure 5.4. It, however, does not reflect the actual
state transitions of the program’s execution, e.g., an execution of the program in Figure
5.2a will never change from an initial state directly to s = {(b = 2)}, or s = {(a = 3)}.

To merge windowed runtime events for a multi-threaded application, we recognize that
two techniques could be applied in this case,

• Temporal Join that combines runtime events in two separated windows according to
their temporal order.

• Multi-thread Correlation that groups runtime events according to their thread id.
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Figure 5.4: An Example of Incorrect Merging of State Machines

To employ the two techniques in the construction of Runtime State Models, we present
the Cumulative Sliding Window approach that keeps track of incomplete change events
given consecutive change event windows.

We show a case of using the Cumulative Sliding Window approach to properly merge
the state machines using the previous example. There are three windowed change events
consisting of the executions of a simple program listed in Figure 5.2a, with 3 threads,
identified as tid 1, 2, and 3. We depict the change events in three windows in Figure
5.5a, in which, C1, C2, and C3 are the three windows corresponding to the three variable
change sequences C1, C2, and C3 above. Each line in the windows represents a sequence of
change events in their temporal order per thread as recorded in a change event window.

With a Cumulative Sliding Window (CSW) of twice the size of a change event window,
we keep track of incomplete change events as follows,

1. starting from the second incoming change event window, we compute a CSW to
include events whose tid either presents in both windows, or presents in the second
but first window, such that,
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• if a tid is found in both windows, we include change events in both windows of
that thread in the CSW

• otherwise, we include change events in the second window in the CSW

In our case, it is implemented with a single rightOuterJoin operation on the two
window RDDs.

2. use the computed CSW, instead of the second window, for subsequent computations.

3. for a third incoming change event window, use the CSW as the previous window,
and repeat from step 1.

We show merging the state machines with Cumulative Sliding Windows gives the correct
results in Figure 5.5b. Note that merging two graphs uses only one of the duplicated
vertices. We ensure that at most one edge exists between any two vertices, i.e., there exists
at most one transition between any two states.

To correctly construct a Runtime State Machine with our Cumulative Sliding Window
approach, three assumptions need to be made, which we describe as follows,

1. A thread could be uniquely identified with tid.

2. The same tid is not reused in two consecutive windows.

3. Events belonging to the same thread need to appear in any two consecutive windows.

We argue that these three assumptions could be fulfilled, where a tid is usually a mono-
tonically increasing integer, while the second and third assumption could be fulfilled by
adjusting the size of the windows.

5.3.3 Variable Selection

It is observed that a Runtime State Model constructed from a runtime trace may contain
too many states due to excessive value changes of some variables, e.g., timestamps, unique
identifiers, etc. A Runtime State Machine containing too many states is noisy, and inef-
fective in the detection of anomalous states. We argue that variables with excessive value
changes are not strongly relevant to a program’s behavior, therefore, when constructing a
Runtime State Model, we only consider a set of key variables.

We select a set of key variables according to two properties,
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(a) An Illustration of the Cumulative Sliding Window Approach

(b) Properly Merging State Machines with Cumulative Sliding Windows

Figure 5.5: An Example of Merging State Machines with the Cumulative Sliding Window
Approach
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Figure 5.6: An Example of State Machine Pruning

1. The number of changes of a variable v per incoming source src, i.e.,
∑n

i=0 size(V Csrc,ti,v)

2. Domain size of a variable v per incoming source, i.e., size(V ALsrc,v), where V ALsrc,v =⋃n
i=0 V ALsrc,ti,v

Given that our engine works on a stream of data from multiple sources, i.e., it is not
possible to access a whole set of data at any given time, therefore, to enforce the above
variable selection scheme, we introduce the Universal Variable Blacklist.

The Universal Variable Blacklist is essentially a global RDD that contains variables that
fail to satisfy our selection predicates. We keep track of the growing variable domains and
update the blacklist per windowed input. The Universal Variable Blacklist is a superset
of failing variables of each incoming source, and is applied to the constructions of state
machines for all input.

We incorporate the Universal Variable Blacklist in our Runtime State Generator, and
implement logics to modify state machines in flight without recomputations, which we
describe in the next section.

5.3.4 State Machine Pruning

We recognize the necessity to prune a state machine. However, pruning a state machine is
not a simple as deriving its subgraph. Consider the example shown in Figure 5.5b, if we
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need to leave out variable a, in addition to leaving out the second vertex, and its referencing
edges, we also need to change the states described in the third and forth vertex.

We implement logics to leave out a set of variables V in parallel with batch processing
constructs provided by Spark GraphX, described as follows,

1. G.mapTriplet((ssrc, sdst, (ssrc → sdst))⇒ (ssrc, sdst, (ssrc \ V → sdst \ V ))
We change all edges of the state machine, such that they originate from, and point
to new vertices s′ = s \ V , even if the new vertices do not currently exist. This
procedure is carried out in parallel with the mapTriplet construct of Spark GraphX.

2. G.mapV ertices(s⇒ s \ V )
We change all vertices of the state machine, such that they represent new states
s′ = s \ V . This is also computed in parallel with the mapVertices construct.

3. G′ = Graph(G.vertices,G.edges.filter(t⇒ t.ssrc 6= t.sdst))
We create a new graph G′ as the new state machine that takes the transformed
vertices and edges in step 2. Note that we process the state edges before constructing
G′ to discard transitions that point back to the same state, and that creating a new
graph automatically removes duplicated vertices.

We depict this aforementioned process in Figure 5.6, in which row 0 shows the original state
machines, while rows 1 - 3 present the state machines generated by the corresponding steps
above. Note that the vertex in dashed line on row 1 indicates that the vertex being pointed
to is merely are reference and that the vertex does not currently present in the graph. The
vertex is later created in the next step when the vertices are filtered.

5.3.5 Runtime State Validation

The validation of runtime states is the process of generating a Universal Runtime State
Model given a set of Runtime State Models. Runtime state validation gives a validated
state machine Gv = (Sv, Tv) that captures the invariant portion across multiple runtime
state machines G1 = (S1, T1), G2 = (S2, T2), . . . , Gn = (Sn, Tn). A formal definition of
constructing a Universal Runtime State Machine is described in Section 2.1.5.

Consider the case of input variables changing per execution, e.g., a timestamp, or
request id, these variables does not represent the universal state of the program. We argue
that the universal states across multiple executions captures a finite set of program states,
and thus a more representative summarization of the application’s behaviors.

We describe our runtime state validation procedure as follows,
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1. Generate a set of state machines G′1 = (S ′1, T
′
1), G

′
2 = (S ′2, T

′
2), . . . G

′
n = (S ′n, T

′
n), by

pruning each of the input state machines G1 = (S1, T1), G2 = (S2, T2), . . . , Gn =
(Sn, Tn) to contain only a set of common variables V , such that ∃v ∈ s, ∀v ∈ V, ∀s ∈
Si,∀i ∈ [1, n]

2. Derive a set of common states S ′ shared across all ofG′1 = (S ′1, T
′
1), G

′
2 = (S ′2, T

′
2), . . . , G

′
n =

(S ′n, T
′
n), that ∃s ∈ S ′i, ∀s ∈ S ′,∀i ∈ [1, n].

3. Derive a set of common transitions T ′, that t.src ∈ S ′ and t.dst ∈ S ′,∀t ∈ T ′.

4. Generate a validated graph Gv = (Sv, Tv) that excludes all empty states from G′ =
(S ′, V ′) that Sv = S ′ \ {s|size(s) = 0, ∀s ∈ S ′}.

The validated runtime state is used in state comparisons, instead of the state machines
of each individual input source.

5.3.6 Runtime State Comparison

We analyze the deviation of runtime states by comparing the validated state machines
of respective healthy and faulty executions. The comparison of state machines follows
the same procedures of the runtime state validation process, except that runtime state
comparisons are carried out between two state machines, instead of many. A deviation of
state machine G1 = (S1, T1) from state machine G2 = (S2, T2) is defined as state machine
Gd = (Sd, Td), such that Sd = {s|s 6∈ S2, ∀s ∈ S1}, and that Td = {t|t.src ∈ Sd, t.dst ∈
Sd,∀t ∈ Td}.

For some scenarios, simply calculating the differences between two given state machines
would give larger than expected search space in finding runtime anomalies. To make this
process more effective, we use the χ2 test to limit our search space of variables that show
significant deviations the other state.

To apply the χ2 significance test, we first calculate the number of appearances of (vari-
able, value) pairs (v, val), across all vertices in the given state machine G = (S, T ). The
Frequency of Appearance (FoA), i.e., f = (v, val) → freq(v=val), is then computed for
each of the (variable, value) pairs, where freq(v=val) = appearance(v, val)/appearance(v),
∀(v, val) ∈ S. We define the appearance of a variable, appearance(v), as the number of its
appearances observed across a state machine.

Assuming that incoming state machines are labeled as Expected and Observed, where
an Expected machines is the ground truth states that the Observed machine is compared
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to. For the case of a χ2 test, we take the FoA of each variable, FEv = fe0 , fe1 , . . . , fen , from
the Expected machine, and calculate the FoA of that variable for the Observed machine as
FOv = fo0 , fo1 , . . . , f0n , where, ∀i ∈ [0, n],

foi =

{
((v, vali)→ freq(v=vali)) , if(v, vali) ∈ FOv

((v, vali)→ 0) , if(v, vali) 6∈ FOv

, ∀(v, vali)→ freq(v=vali) ∈ FEv

The χ2 test is conducted on two vectors FEv and FOv , for each variable v.

We use the p-value of the χ2 fitness test as the condition to restrict our search space,
where, the p-value indicates the level of significance whether a hypothesis should be re-
jected, which we define as, are the Observed variable values relevant to the Expected variable
values in terms of statistical distribution of their frequency of appearances. A low p-value
implies weak relevance.

We refer to the list of variables that failed the hypothesis test as Anomaly Inducing
Variables, in later section.
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Chapter 6

Evaluations

6.1 Experiment Setup

6.1.1 Infrastructure Environment

We conduct our experiments on Shoshin Lab’s Styx cluster. The Styx cluster is consisted
of 6 high-performance machines. Each styx machine is equipped with dual 2.40GHz Intel
Xeon E5-2620 CPUs, supporting a total of 24 hyperthreads per server, as well as 64 GB
of main memory and a 1Gbps NIC. All servers run Ubuntu Server 14.04.3 LTS 64-bit with
kernel version 3.13.0-65-generic.

For performance isolations, we set up virtual machines across the 6 styx machines, with
VirtualBox 4.3.36. Each of the virtual machines is configured to use 8 virtual cores, 8 GB
of memory, a 1Gbps NIC, and runs Ubuntu 14.04.3 LTS 64-bit with kernel version 3.19.0-
25-generic. These virtual machines are connected through a software bridging interface on
each host machine, to the physical switch, and are reachable from each other.

6.1.2 Software & Configurations

We setup RUBiS and Apache Spark on the aforementioned Virtual Machines as follows,

We setup RUBiS instances with a shared database instance, using MySQL (Distribution
5.5.46, Version 14.14). Each RUBiS web service is setup on a separate Virtual Machines
with tomcat7 as the web container. Each tomcat7 instance is pre-loaded with our Xtract
JVMTI agent specified by the JAVA OPTS environment variable.
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Figure 6.1: Experiment Setup

The Runtime State Modeling Engine runs on a standalone Spark Cluster. The Spark
cluster uses 9 virtual machines, one for the dedicated Spark master, and one Spark worker
on each of the rest. Note that, we increase the amount of memory to 16 GB for each of
the Spark worker machines. We run ZooKeeper 3.4.8 in single node mode, on the same
machine where the Spark master runs.

The Spark that we use is a customized version based on Spark 1.6, where two modifi-
cations are made,

• To provide better support of Protocol Buffer 3.0 that are used extensively in our
implementations, we update the dependency of Spark 1.6 to include the Protocol
Buffer 3.0 library. To accommodate the serializations of Protocol Buffer message, we
implement a customized Kryo serializer for serializations between Spark nodes, and
to the external storage system. We describe our modifications in Appendix B.

• To fix the bugs that prevent us from properly checkpointing a graph and running
Pregel on GraphX, we applied two proposed patches that are still under review
[18, 19].

Given the sub par performance of virtualized I/O, we set up HDFS 2.6 across the 6
physical machines, with one of them as the HDFS master node, and 5 HDFS slaves on
each of the rest. HDFS storage is set up on a dedicated spinning hard drive of each node.

6.2 RUBiS

We use RUBiS [15] to evaluate our systems and approaches.
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RUBiS is a benchmarking tool for relational databases. It emulates an online bidding
system that supports the browsing, searching, selling, bidding, and purchasing of items.
There are multiple implementations of RUBiS, however, we use the servlet implementation
for simplicity.

RUBiS servlets are basic Java Servlets that are invoked when a corresponding HTTP
request is received by the web server. Inside of each RUBiS servlet are logics to parse the
request and issue transactions to the underlying database system. If the transaction fails,
it will rollback the operation before returning an error back to the caller. Concurrency
control of multiple incoming requests is achieved through transactions of the underlying
database systems, therefore, no synchronizations are implemented in the RUBiS code.

The RUBiS package includes a client emulator that emulates a client’s behavior to
browse, search, sell, bid, and purchase an item, based on a probabilistic transition model.
The user is able to specify the workload by providing a transition table consisting of the
probability of transitions between each pair of operations. The user is also able to specify
the number of users, items, and the running time of an emulation. The emulator can
generate a list of performance metrics indicating the throughput and latency of each type
of requests being served during the emulation. We use the emulator to drive the RUBiS
services and for performance evaluations.

In our experiment, we use MySQL as the backend database, and Tomcat7 as the web
server container.

6.2.1 Workload

The client emulator of RUBiS emulates the clients’ behaviors through its load generator.
The load generator takes a state transition table T as input, where each cell of the table
T (s, s′) is the probability of transition from s to s′. Each state s of T is a simulated user
action, i.e., a “click” to execute a particular RUBiS operation. We provide a list of RUBiS
operations in Table 6.1. RUBiS operations fall roughly into three categories,

• operations that request Static Contents directly served from the web server without
interactions with the database. For example, the Home operation simply retrieves
the index.html page from the web server.

• operations that are DB Read-only are implemented with one or multiple SQL
SELECT statements. For example, the View Item operation accesses the database to
get the details of an item, and is implemented with two separate SELECT statements
to retrieve information from the items and users tables.
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Category Operation Description
Static Content Home Go back to the home page

DB Read-only

Browse Categories Browse the list of categories
Browse Regions Browse the list of regions
Search Items by Categories Search an item in a provided category
Search Items by Region Search an item in a provided region
View Bid History View the bidding history of an item
View Item View the details of an item
View User Info View the details of a user
About Me View the details of a logged in user
Auth User login authentication

DB Transactions

Register Item Register a new item
Register User Register a new user
Buy Now Buy an item with the posted price
Bid Bid an item with a user-defined price

Table 6.1: A Summary of RUBiS Operations

• DB Transactions are used in operations with output. For example, The Bid opera-
tions uses database transactions to post the user-defined biding price to the database,
and for concurrency control in the case of multiple users bidding the same item. A
rollback is applied in the presence of failures to avoid inconsistencies.

The RUBiS client emulator uses one thread per user session simulation. Each session
simulates user actions starting from an initial action, and calculates the next action ac-
cording to the state transition table. In between user actions, a think time is applied using
the TPC-W approach [52], i.e., a random distribution with an average of 7 seconds and
a maximum of 70 seconds. A session is terminated whenever arriving at the SessionEnd
state, or when the number of transitions has reached the maximum, whichever comes first,
and a new session will be started.

Two types of workloads are used in our evaluations.

• The Browse-only workload involves 5% of Static Content serving, 75% of DB Read-
only operations with a SessionEnd probability of 20%.

• The Mixed workload simulates a more realistic case for Internet bidding services, con-
sisted of 6% of operations involving DB Transactions, 1% of Static Content serving,
and 73% of DB Read-only operations with a SessionEnd probability of 20%.
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Each RUBiS client emulation is consisted of three phases, the up-ramp phase, the
evaluation phase, and the down-ramp phase, each associated with different slow down fac-
tors. A slow down factor is used in the computation of think time, where thinkT ime =
TPCThinkT ime() ∗ slowDownFactor. Performance metrics of the three phases are cal-
culated separately.

6.3 Performance Impact

We use the RUBiS client emulator to evaluate the performance impact of Xtract. Exper-
iments are conducted on two individual setups of the RUBiS service on separate virtual
machines, one with the Xtract agent loaded and events enabled, the other without. Both
instances share the same dedicated database instance, and run in tomcat7.

We configure the RUBiS client emulator to have a up-ramp phase of 5 minutes, a eval-
uation phase of 20 minutes, and a down-ramp phase of 1 minute, each associated with a
respective slow down factor of 2, 1, and 3. The client emulator runs 100 simulated clients
in parallel, which produces a workload far from saturating the systems. However, for
evaluating the performance overhead of the Xtract agent, we argue that more parallel con-
nections will not necessarily reduce the latency for either servers, or make the performance
difference more significant.

We run two sets of experiments, one for each of the two workloads, and 5 times for each
set. The average throughput and latency during the evaluation phase, as indicated by the
RUBiS client emulator is used as the performance metrics.

According to the comparisons in Table 6.2, we see a maximum of 1228x increase in
terms of per-request latency and 9x less throughput on RUBiS, when the Xtract agent is
loaded and enabled.

6.3.1 Discussions

It is not surprising that performance evaluations on the Xtract agent show a maximum
of 1228x slow down in terms of latency, given that Xtract agent does not, at this point,
employ any performance optimizing mechanisms, while the focus of this work is to establish
a solution framework, and show the effectiveness of using runtime state models in the
context of software runtime anomaly detection.

For discussion, we compare and constrast the performance overhead of related ap-
proaches to Xtract.
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avg. throughput (req / s) avg. latency (ms)
RUBiS without Xtract 15.6 25.8
RUBiS with Xtract 2.4 27411
Slow down factor 6.5 1062.4

(a) With the Mixed Workload

avg. throughput (req / s) avg. latency (ms)
RUBiS without Xtract 18 29
RUBiS with Xtract 2 35639
Slow down factor 9 1228.9

(b) With the Browse-only Workload

Table 6.2: An Evaluation of the Performance Overhead of Xtract

For the case of diagnosing performance issues, X-ray [3] achieves an average runtime
overhead of only 2.3% by recording the timestamps at the entry and exit of system calls
through binary instrumentation. Magpie [4] has a performance overhead of approximately
4% by logging OS kernel events. However, they are in contrast to our approach to capture
variables’ value changes that are essential to the construction of Runtime State Models.

ClearView [46] uses Daikon, an x86 binary instrumentation infrastructure, to extract
runtime traces. It slows down the execution of the underlying application by a factor of
300, with two major optimizations,

1. It distributes the monitoring of procedures among multiple executions on different
machines, where each machine only traces the execution of some selected procedures.

2. It selects a set of variables to monitor according to its control flow graph.

We argue that the performance overhead of the Xtract agent is correlated with the
number of breakpoints and watchpoints set on various bytecode instructions and class
fields. For example, in our experiment, a total of 984 breakpoints are set on 475 respective
local variables to extract variable change events, however, only 57 variables are selected
with our variable selection scheme. A simple optimization to disable breakpoints set on
bytecode instructions that store values to variables excluded by our selection scheme is
estimated to reduce the overhead of our approach by a factor of 8.3 (by removing the 418
excessive variables from a total of 475 variables, assuming each variable corresponds to the
same number of breakpoints).
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We discuss the options to reduce the performance overhead of Xtract agent in Section
4.3.

6.4 Anomaly Detection with Runtime State Models

In this section, we evaluate the effectiveness of using the runtime state models in detecting
runtime anomalies.

Anomaly detection with runtime models is achieved through the comparison of state
machines generated with healthyloads and faultloads, where a healthyload is an execution
of a healthy RUBiS service, while a faultload is induced with manually injected faults. We
refer to runtime state machines generated from healthyloads as healthy states, and those
from faultloads, anomalous states.

6.4.1 Healthy States Generation

We generate healthy runtime states from two simultaneous RUBiS services, without in-
jected faults. They are set up on two separate virtual machines, both using tomcat7 as the
web container, and share the same database instance that is deployed on a third virtual
machine. Two RUBiS emulators are used to drive the RUBiS instances separately with
the Mixed workload as described in Section 6.2.1.

We run the emulator for 30 minutes without the up ramp and down ramp phase with
Xtract configured on each of the servers to stream events to our runtime analytics engine
simultaneously. The engine constructs Runtime State Models separately and eventually
derives a single validated Universal Runtime State Model, summarizing the universal be-
haviors of the healthyload.

6.4.2 Anomalous States Generation

We use fault injection to induce software failures. Despite being used extensively as the
target application in relevant research in fault detection, we were unable to find tools or
frameworks that automate the injection of faults to an existing J2EE application, which
in our case, RUBiS. Instead, we surveyed faults injected by other researchers in their
experiments [10, 33, 42, 48], and arrived at the following 4 categories.
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• Faults that are external to the application, including, the failures of communications,
authentications, etc.

• Accidental references of null pointers, causing NullPointerExceptions

• Unhandled exceptions causing the ungraceful terminations of function calls.

• Concurrency bugs, e.g., deadlocks, starvations, etc.

It is recognized that many of those injections are not applicable to our case, e.g., we
used the simplified RUBiS Servlets implementation, and therefore injecting faults to the
EJB components is not an option; RUBiS is a multi threaded web applications in that each
user session is handled by a separate thread, managed by the underlying tomcat container;
The concurrency control of RUBiS Servlets is achieved through database transactions, and
therefore, injecting concurrency bugs is also out of the question.

Our runtime state models is a summarization of the program’s execution states, there-
fore, we focus on the faults that could be correlated back to the source code for the sake
of the evaluation. That said, we injected a total of 3 types of faults to RUBiS in our
experiment, that we describe as follows,

1. Database failures
We introduce intermittent database failures by periodically taking down the MySQL
daemon. We refer to this fault as dbdown

2. NullPointerExceptions
We introduce a null pointer references in the RUBiS code by modifying the init
method in RubisHttpServlet class that initializes the database manager. We set the
database manager as null. The RubisHttpServer class is the base class of all servlet
implementations. The code change is shown in Figure 6.3. We refer to the faults as
nulldb in later sections.

3. Configuration errors
We introduce a configuration error in the RUBiS server by changing the value of
J2eeContainerPath variable in Config.java. The code change is shown in Figure
6.2b. We refer to this fault as conf in later sections.

We run the RUBiS client emulator on each of these fault injected servers, collect the
runtime data and build one runtime state model per case. These models are compared to
the healthy state models to detect software anomalies, which we now describe.
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// R u b i s H t t p S e r v l e t . java
public abstract class RubisHttpServ let extends BaseRubisHttpServlet {

private DatabaseConnectionManager dbMgr = null ;

@Override
public void i n i t ( ) {

. . .
this . dbMgr = new DatabaseManager ( ) ;
this . dbMgr . i n i t ( ) ;

// Faul t i n j e c t e d here vvvv
this . dbMgr = null ;

}

protected Connection getConnect ion ( ) {
return this . dbMgr . getConnect ion ( ) ;

}
}

(a) The Injection of nulldb Fault

// Config . java
public class Config {

. . .
// vvvv remove t h i s
// p r i v a t e s t a t i c f i n a l S t r i n g J2eeContainerPath = ”/ var / l i b / tomcat7 ” ;

// vvvv change to t h i s
private stat ic f ina l St r ing J2eeContainerPath = ”/ var / l i b / tomcat6 ’ ’ ;
. . .

}

(b) The Injection of conf Fault

Figure 6.2: Faults Injected to the RUBiS Server
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Class Name method Name variable name variable values pvalue

BrowseRegions

closeConnection
conn null (100%) 0.32
stmt null (100%) 0.32

regionList
conn null (100%) 0.02

rs null (100%) 0.03
stmt null (100%) 0.05

RegisterUser doGet
conn null (100%) 0.09
stmt null (100%) 0.12

Table 6.3: Anomaly Inducing Variables of the nulldb Case

6.4.3 Anomaly Detection with Runtime State Models

In this section, we discuss each case of the aforementioned injected faults, anomalies pre-
sented in the runtime state models, and analysis through comparisons to the healthy state
to help locate the fault in the source code.

The Case of nulldb

The nulldb fault, as shown in Figure 6.3, induces a null dbMgr used by all RUBiS oper-
ations to communicate with the database. Through comparisons of its fault state, to the
healthy state, we arrived at the following Anomaly Inducing Variables that deviate from
the regular state in Table 6.3. It shows that the variables conn, stmt are 100% null in
BrowseRegions and RegisterUser, indicating strong deviations from what are obverved in
the healthy states.

Take the BrowseRegion operation as an example. From the RUBiS server’s BrowseRe-
gion implementation (summarized in Figure 6.3a), it is not hard to determine that conn
and stmt passed to the closedConnection method should not be null under regular circum-
stances.

To further diagnose the actual fault in the system, we inspect the faulty state transi-
tions, given in Figure 6.3b. A state with conn and stmt being null could be at the beginning
of the method regionList, however, a direct transition from this state that closeConnec-
tion::conn → null and closeConnection::stmt → null indicates that those variables are
never properly initialized, and that an exception is probably thrown that calls the closeC-
onnection method with null parameters.

Intuitively, one would then inspect the getConnection() function that eventually leads
to the fault that we injected.
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1 // BrowseRegions . java
2 class BrowseRegions extends

RubisHttpServ let {
3 . . .
4 // conn , stmt = n u l l ;
5 private void r e g i o n L i s t ( . . . ) {
6 try {
7 conn = this . getConnect ion ( ) ;
8 stmt = conn . prepareStatement

( . . . ) ;
9 . . .

10 c lo seConnect ion ( conn , stmt ) ;
11 } catch ( . . . ) {
12 c lo seConnect ion ( conn , stmt ) ;
13 }
14 }
15
16 private c lo seConnect ion ( . . . ) {
17 . . .
18 conn . c l o s e ( )
19 }
20 }

(a) Code Snippet of BrowseRegion to Execute
Queries

(b) Anomalous State Transitions of the
nulldb Case

Figure 6.3: Anomaly Detection of the nulldb Case
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Class Name method Name variable name variable values pvalue
ViewBidHistory doPost connAlive false (29%) 0.30

StoreCommit doPost
conn null (24%) 0.22
stmt null (49%) 0.41

Table 6.4: Anomaly Inducing Variables of the dbdown Case

Class Name method Name variable name variable values pvalue
ServletPrinter printFile fis null (100%) 0.019

Table 6.5: Anomaly Inducing Variables of the conf Case

The Case of dbdown

Unlike the case of nulldb, dbdown suffers from intermittent database failures induced by
our injected fault that periodically takes down the database service, i.e., only a portion of
requests to the RUBiS server would fail due to the database failure.

It is observed that the conn and stmt variables take a null value for 30% of the time in-
stead of 100 as in the nulldb case, however, are significant enough deviations as determined
by the χ2 test. It is also observed that the possibility of the connAlive variable taking a
false value is also higher, with a probability of 29% compared to 7% in healthy states. We
summarize these Anomaly Inducing Variables of this case in Table 6.4.

Given that this is an external failure that is irrelevant to the RUBiS implementation,
our runtime states comparison didn’t show anomalous state transitions as in the other
cases.

The Case of conf

We introduce a configuration error to the RUBiS server, by modifying the path where
RUBiS uses to locate its HTML files. The file path is defined in the Config.java file,
using a variable named J2eeContainerPath. The value of J2eeContainerPath is supposed
to be pointing to the location where the tomcat container is install, which in our case,
/var/lib/tomcat7.

We inject a fault by changing this value to /var/lib/tomcat6 so that RUBiS would fail
to access its HTML files. We observe that this configuration is only used by the printFile
function of the ServletPrinter class. We summarize this code change in Figure 6.2b.
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1 public class S e r v l e t P r i n t e r {
2 void p r i n t F i l e ( S t r ing f i l ename ) {
3 Fi leReader f i s = null ;
4 try
5 {
6 f i s = new Fi leReader ( f i l ename ) ;
7 . . .
8 } catch ( . . . ) { . . . }
9 }

10 }

(a) Logics of filename Being Used in printFile

(b) Anomalous State Transitions of fis and file-
name

Figure 6.4: Anomaly Detection of the conf Case

Comparing the fault states and the healthy states gives two Anomaly Inducing Vari-
ables, ServletPrinter::printFile::fis and ServletPrinter::printFile::filename. We observe a
χ2 p-value of 0.02 for fis being null 100% of the time in the fault states, while this number
is only 16% in the healthy states. For filename, since none of its values match the ones in
the healthy state, NaN is given.

Looking at the runtime states involving both variables, a state transition depicted in
Figure 6.4b is obvserved. According to the logic of printFile, as shown in Figure 6.4a, fis is
first assigned as null before being initialized to a new FileReader object. The FileReader
object takes filename as the path to file to be read. However, as revealed in our state
model, fis is never initialized, therefore, one would conclude that line 3 is never successfully
executed with a high possibility of throwing an exception and jumping to the catch block.

By comparing the values of filename in both states, it is observed that the value has
been changed to /var/lib/tomcat6 from /var/lib/tomcat7, and the fault is therefore located.
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Chapter 7

Conclusions and Future Work

In this work, we introduce the Runtime State Model in the context of software anomaly
detection and fault localization to achieve the automated detection of generic faults, at a
source code granularity.

To automate the extraction of runtime traces and the construction of Runtime State
Models, we designed and implemented Xtract, a facility that automatically extracts runtime
traces from the Java Virtual Machines and constructs Runtime State Models for multiple
simultaneous Java applications. This facility consists of two separate entities,

• the Runtime Data Extraction Infrastructure retrieves runtime traces of the appli-
cations, without prior knowledge of the target applications. It makes use of the
JVMTI interfaces to extract variables’ value change events directly from the Java
Virtual Machine, using Breakpoints and Event Notification constructs.

• the Runtime State Analytics Engine is a scalable and massively parallel Runtime
State Model construction and analytics engine that works on multiple simultaneous
runtime event streams. It is implemented entirely on top of Apache Spark to achieve
efficient batch and graph processing.

To construct Runtime State Models from real-time runtime event streams, we adopt
temporal joins, multi-thread correlation and variable selection schemes to tackle the chal-
lenges of broken windows and state explosion. To compare and analyze the runtime states,
we introduce the notion of Anomaly Inducing Variables with χ2 significance test on vari-
ables’ frequency of appearance to limit our search space.
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We evaluate the effectiveness of applying Runtime State Models in the detection of
software anomalies by injecting three types of faults to the RUBiS service, including null
pointer referencing, external database failures, and a configuration error. Our evaluation
shows evidence that the facility and approaches might be effective in detecting runtime
anomalies and providing useful information to help locate the faults, for all three cases.

Although Xtract works on Java applications, through extracting runtime traces directly
from the Java Virtual Machines, we argue that it is purely a decision to simplify our
implementations, since Java provides mature tool sets to access runtime information. The
Runtime State Models do not make any assumptions of the target applications, and could
also be applied to the diagnosis of applications in compiled native binaries with proper
binary instrumentation techniques.

7.1 Discussions and Future Work

Despite the fact that we have achieved our initial goal by providing a working solution
framework that automates the process of constructing and analyzing Runtime State Models,
and showed evidence that it could be effective to use Runtime State Models in the detection
of anomalies and providing useful information to help locate the faults. We discover the
following in need of further efforts that we list as future work.

Xtract ’s most significant limitation is performance. Our current implementation does
not employ any optimizations, making it 1000x slower when it is enabled. We discover
that the overhead is vastly introduced by the breakpoints set to extract runtime traces
which pause the execution of threads and disable code optimizations. We argue that this
could be optimized through the use of a feedback loop that propagates a list of insignificant
variables, e.g., those not captured in the validated models, back to Xtract, so that those
breakpoints could be disabled to reduce the runtime overhead. For our evaluation on
RUBiS, it is estimated that disabling excessive breakpoints could reduce the overhead by
a factor of 8.3. It is also observed that code analysis techniques could be helpful in this
case to determine insignificant variables.

Reducing the performance overhead of Xtract also makes it possible to be used on large-
scale and performance critical systems. This work uses RUBiS as the target application,
which is a relatively small-scale web application from research communities; however, the
lack of its source code commit history forces us to use fault injection for our evaluation.
By employing more optimizations to Xtract, we can conduct evaluations on larger-scale
production ready systems with bug tracking histories, enabling the possibility to evaluate
our approach on real software bugs.

69



We observe that state noise in the constructed state models, i.e., variables that are
included in the state model, but not significant, reduces the effectiveness of anomalous
state identifications. We attribute the state noise to our coarse-grained variable selection
scheme that only considers the velocity and domain size of the variables. It is recognized
that finer-grained variable selection schemes could be plugged in to our engine, including,
the use of pattern mining to select variables that are more likely to appear together, and
through code analysis to determine the significance of each variable.
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Appendix A

Core Interfaces and Proto Definitions
of Xtract

APIs provided by Xtract are implemented with an RPC service. To help better understand
what and how information is retrieved from the JVM, we now describe core interfaces and
proto message definitions of Xtract.

A.1 Core Proto Message Definitions

9 proto messages are used extensively throughout our system, and are important to the
understanding of the infrastructure, as shown in Figure A.1. We discuss each of those as
follows.

• A JavaObject is a proto message that describes a Java heap object. A JavaObject is
either a typical class instance or one of the following three special cases, a JavaString
that describes a string type in the Java heap defining the length and content of the
string, a JavaArray that describes a primitive array defining the length and content
of the array, or a JavaClass that describes a class object defining the name, methods
info and static fields of the class.

• Each JavaObject has reference information defined as JavaObjectReferences, un-
less they belong to one of those special cases. A JavaObjectReferences proto contains
reference info of a heap object that includes its fields, static fields, referrers, its class
object, etc.
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message JavaObject {
message JavaStr ing {

optional int64 l ength = 1 ;
optional bytes s t r i n g c o n t e n t = 2 ;

}

message JavaArray {
optional int64 l ength = 1 ;
repeated JavaPr imit ive a r ray content = 2 ;

}

message JavaClass {
optional string c lass name = 1 ;
repeated JavaMethodInfo java methods = 2 ;
repeated JavaObjectFie ld j a v a o b j e c t f i e l d s = 3 ;

}

// next tag : 6
oneof o b j e c t v a l u e {

JavaClass j a v a c l a s s = 1 ;
JavaStr ing j a v a s t r i n g = 2 ;
JavaArray j ava a r ray = 3 ;

}

optional JavaObjectMetadata metadata = 4 ;
optional JavaObjectReferences r e f e r e n c e s = 5 ;

}

(a) Proto Definitions of JavaObject

message JavaObjectReferences {
// next tag : 11
repeated JavaObjectFie ld f i e l d s = 2 ;
repeated JavaObjectFie ld s t a t i c f i e l d s = 3 ;
repeated JavaObjectFie ld o b j e c t a r r a y = 6 ;
repeated JavaObjectMetadata r e f e r r e r s = 7 ;
optional JavaObjectMetadata c l a s s o b j e c t = 10 ;

}

(b) Proto Definitions of JavaObjectReferences

Figure A.1: A List of Core Proto Message Definitions of Xtract
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message JavaObjectFie ld {
// next tag : 10
optional int32 p a r e n t o b j e c t = 1 ;
optional int64 f i e l d i d = 2 ;
oneof f i e l d n a m e o r i n d e x {

string f i e l d name = 3 ;
int32 f i e l d i n d e x = 4 ;

}

optional string f i e l d c l a s s n a m e = 5 ;

oneof f i e l d v a l u e {
JavaObjectMetadata o b j e c t f i e l d = 6 ;
JavaPr imit ive p r i m i t i v e f i e l d = 7 ;

}

optional string p a r e n t o b j e c t c l a s s n a m e = 9 ;
}

(c) Proto Definitions of JavaObjectField

message JavaObjectMetadata {
// o b j e c t c a t e g o r y
// next tag : 2
enum ObjectType {

HEAP OBJECT = 0 ;
CLASS OBJECT = 1 ;
PRIMITIVE ARRAY = 2 ;
STRING = 3 ;

}

required ObjectType o b j e c t t y p e = 1 ;

// o b j e c t p r o p e r t i e s
// next tag : 14
optional int64 s i z e = 10 ;
optional string c lass name = 11 ;
optional int32 id = 12 ;

}

(d) Proto Definitions of JavaObjectMetadata

Figure A.1: A List of Core Proto Message Definitions of Xtract (cont.)
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message JavaPr imit ive {
oneof p r i m i t i v e v a l u e {

bool boo l va lu e = 2 ;
double doub le va lue = 3 ;
f loat f l o a t v a l u e = 4 ;
int32 i n t v a l u e = 5 ;
int64 l ong va lue = 6 ;
int32 s h o r t v a l u e = 7 ;
int32 char va lue = 8 ;
int32 byte va lue = 9 ;

}
}

(e) Proto Definition of JavaPrimitive

message JavaMethodInfo {
optional int64 method id = 1 ;
optional string method name = 2 ;
optional bytes bytecodes = 3 ;
optional int32 p a r e n t c l a s s i d = 4 ;
optional string parent c la s s name = 5 ;
optional int32 max slot = 6 ;

}

(f) Proto Definition of JavaMethodInfo

message SetBreakpointParam {
optional int64 method id = 1 ;
optional int64 l o c a t i o n = 2 ;

}

(g) Proto Definition of SetBreakpointParam

message JavaLoca lVar iab le {
optional string name = 1 ;
optional string s i g n a t u r e = 2 ;
oneof value {

JavaPr imit ive p r i m i t i v e v a l u e = 3 ;
string s t r i n g v a l u e = 4 ;
bool n u l l o b j e c t = 5 ;

}
}

(h) Proto Definition of JavaLocalVariable

Figure A.1: A List of Core Proto Message Definitions of Xtract (cont.)
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message JvmEventNot i f icat ion {
enum EventType {

FIELD MOD EVENT = 0 ;
BREAKPOINT EVENT = 1 ;

}

message JavaFie ldModi f i cat ionEvent {
optional JavaExecContext context = 1 ;
optional JavaObjectFie ld f i e l d = 2 ;
oneof j a v a o b j e c t o r p r i m i t i v e {

JavaObject new object = 3 ;
JavaPr imit ive new value = 4 ;

}
}

message JavaBreakpointEvent {
optional int64 timestamp = 1 ;
optional int64 th r ead id = 2 ;
optional int64 method id = 3 ;
optional int64 l o c a t i o n = 4 ;
optional string method name = 5 ;
optional string c lass name = 6 ;
repeated JavaLoca lVar iab le l o c a l v a r i a b l e s = 7 ;

}

required EventType event type = 1 ;
oneof event {

JavaFie ldModi f i cat ionEvent f i e l d mod event = 2 ;
JavaBreakpointEvent breakpo int event = 3 ;

}

optional string from hostname = 4 ;
}

(i) Proto Definition of JvmEventNotification

Figure A.1: A List of Core Proto Message Definitions of Xtract (cont.)
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• Each object field is represented by the type JavaObjectField . A JavaObjectField
proto describes the parent object id, parent object class name, field id, field name or
array index, field class name, and field value, i.e., the object’s metadata if the field
points to an object instance, or a primitive if it is a primitive field.

• To make our Java heap representations simple and compact, we divide a Java heap
object into a JavaObject type that stores the actual values and references, and a
JavaObjectMetadata type that stores the type, the size, the id and the class
name of the object. JavaObjectMetadata is used instead of JavaObject when the
identification but the actual value of an object is needed.

• A JavaPrimitive is a proto message to describe a primitive value in Java. It is
defined as one of the values of a primitive type in the Java language, being boolean,
char, short, int, long, float, double or byte.

• A JavaMethodInfo proto message describes a Java method in the JVM. It records
the id, name, the declaring class, bytecodes and max slot number of the method.

• The SetBreakpointParam proto identifies a unique breakpoint in the JVM, con-
taining information of the method id and instruction location at which a breakpoint
needs to be set. It is used as the parameter of the SetBreakpoint and ClearBreakpoint
function.

• A JavaLocalVariable message describes a Java local variable in the JVM. It con-
tains information of the name, signature, and values of a Java local variable.

• JvmEventNotification is a universal proto message used to describe a JVMTI
event sent from a JVMTI agent. In our current implementation, it supports two types
of events, the FieldModification event and the Breakpoint event, as indicated by the
EventType enum. It contains one of the two event proto messages, JavaFieldMod-
ificationEvent and JavaBreakPointEvent, each describing the details of a respective
event.

These proto messages are foundational to the RPC service, and are used as parameters
and return types of our RPC interfaces, which we now describe.

A.2 Core Interfaces

Our RPC interfaces fall into three major categories,
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1. The Control Interfaces that configure Xtract on the fly.

2. The Output Interfaces that external entities invoke to extract information from the
JVM.

3. The Push Interfaces that send event notifications to the external entity.

An interface is an RPC stub definition that specifies the name, and request / response
types of an RPC request. In our case, the RPC interfaces are defined in the .proto files in a
language-independent syntax (referred to as gRPC syntax), and are later compiled into the
server and client code of languages of our choices. For clarity and readability, we present 9
of our core interfaces in gRPC syntax in Figure A.2. Note that each interface takes exactly
one proto message as the request, and exactly one proto message as the response.

We discuss each of the interfaces as follows.

• The SetGlobalPolicy interface configures various behaviors of Xtract, e.g., whether
to use delta snapshotting, whether to enable event notifications from a global per-
spective. It takes a request of type XtractGlobalPolicy.

• The ToggleEventNotifications interface enables or disables a JVMTI event. It
takes a request of type JavaEventManagement that defines whether to enable or
disable a particular JVMTI event.

• The SetBreakpoints interface sets a breakpoint at a bytecode location specified
in the RPC request. It takes a request of type MultipleSetBreakpointParams, a
repetition of SetBreakpointParams messages defined in Figure A.1g.

• The ClearBreakpoints interface clears the breakpoints set at various bytecode
locations. It takes a request of type MultipleBreakpointParams.

• The ClearWatchpoints interface clears the watchpoints set on various class fields.
The request of type MultipleClassFields contains class and field id pairs on which the
watchpoints need to be cleared.

• The GetLoadedClasses interface gets a list of classes currently loaded in the JVM.
It takes an empty request, and produces a response of type MultipleClassNames that
contains a list of class name strings identifying those classes.
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• The GetHeapObjects interface gets a stream of JavaObject messages each describ-
ing a Java heap object, as defined in Figure A.1a, from the JVM. Those objects either
are or are reachable from the objects of given classes as indicated in the request. The
request MultipleClassNames contains a list of class name strings identifying those
classes. Note that this interface implements the streaming interface of gRPC, for
which, the server and client sends and receives objects in a similar fashion to writing
byte streams to a TCP connection as discussed in Section 4.1.1.

• The GetClassMethods interface gets a list of method information for each class
given as the request. It takes MultipleClassNames as request containing a list of
class name strings identifying loaded classes in the JVM, and produces a response of
type MultipleJavaMethodInfo, a repetition of JavaMethodInfo messages as defined in
Figure A.1f.

• The PushJvmEvent interface sends a stream of JVMTI events from Xtract to
external entities. It takes one request of type JvmEventNotification as defined in
Figure A.1i. It is a universal interface used for all event notifications that are later
distinguished by the EventType field of the JvmEventNotification message. Note that
this interface implements the gRPC streaming interface.
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rpc SetGloba lPo l i cy ( XtractGloba lPo l i cy )
returns ( XtractStatus ) {}

rpc Togg l eEventNot i f i c a t i ons ( JavaEventManagement )
returns ( XtractStatus ) {}

rpc SetBreakpoints ( Mult ipleSetBreakpointParams )
returns ( XtractStatus ) {}

rpc ClearBreakpo ints ( Mult ipleSetBreakpointParams )
returns ( XtractStatus ) {}

rpc ClearBreakpo ints ( M u l t i p l e C l a s s F i e l d s )
returns ( XtractStatus ) {}

(a) Definitions of Control Interfaces

rpc GetLoadedClasses ( XtractEmpty )
returns ( MultipleClassNames ) {}

rpc GetHeapObjects ( MultipleClassNames )
returns (stream JavaObjects ) {}

rpc GetClassMethods ( MultipleClassNames )
returns ( MultipleJavaMethodInfo ) {}

(b) Definitions of Output Interfaces

rpc PushJvmEvent (stream JvmEventNot i f icat ion )
returns ( XtractStatus ) {}

(c) Definitions of Push Interfaces

Figure A.2: A List of Core Interfaces of Xtract
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Appendix B

Issues of Protocol Buffer Integration
with Spark 1.6

Protocol Buffer is used extensively in this Thesis, in both of the Runtime Data Extraction
Infrastructure and the Runtime State Modelling Engine as descibed in Chapter 4 and
Chapter 5 respectively. However, Protocol Buffer is not natively supported in Spark 1.6
used as a fundamental infrastructure in our Runtime State Modelling Engine.

In this chapter, we describe the approaches taken the work around this problem.

B.1 Enabling Protocol Buffer 3.0 in Spark 1.6

The latest version of Spark, Spark 1.6, uses Protocol Buffer 2.5 as one of its dependencies,
however, Protocol Buffer 2.5 lacks fundamental support for modern features that are used
extensively in our message definitions, including the support of oneof construct, etc. This
causes MethodNotFound runtime exceptions when the underlying JVM is trying to serialize
our proto messages with newer Protocol Buffer implementations.

To solve this problem, we compiled a customized version of Spark 1.6 from the source
code, modifying its Protocol Buffer dependency from version 2.5 to the latest version 3.0
beta 2. This is easily achieved by changing the value of protobuf version from 2.5.0 to
3.0.0-beta-2 in the pom.xml file.

<protobuf version>3.0.0− beta−2</ protobuf version>
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B.2 Serializing Protocol Buffer Messages in Spark 1.6

Enabling Protocol Buffer 3.0 Support in Spark 1.6 solves the MethodNotFound runtime
exceptions, however, the current Spark version failed to serialize RDDs containing proto
messages during shuffles, giving ClassNotFound exceptions for not being able to find the
classes where we define our proto messages, when using Java Serializers, and Unsupporte-
dOperation exceptions, when using the Kryo Serializers.

We work around this problem by defining a custom kryo serializer for proto messages.
The custom Kryo Serializer for Protocol Buffer messages uses the toByteArray() and parse-
From() methods provided by Protocol Buffer to serialize and materialize a proto message.
To tell Spark which Kryo serializers to use when serializing an object, it is also necessary
to provide a user-defined Spark Kryo Registrator to specify or override the Kryo serializers
to use for various object types. We list our implementations of the custom Protocol Buffer
Kryo Serializer and class registering logics in Figure B.1

B.3 Saving Protocol Buffer RDDs to Object Files

In our Runtime State Modelling Engine, the communications between different Spark ap-
plications are achieved by saving and reading object files from the HDFS. These object files
are essentially serialized Spark RDDs that could be materialized back into RDD objects
in Spark. Saving and reading an RDD to / from an object file could be achieved with
the saveAsObjectFile / objectFile methods defined as members of RDD and SparkContext
respectively.

// c l a s s RDD[T]
def saveAsObjectFi l e ( path : S t r ing ) : Unit

// c l a s s SparkContext
def o b j e c t F i l e [T] ( path : Str ing , minPart i t i ons : Int =

de f au l tMinPar t i t i on s ) : RDD[T]

However, both of these two methods serializes RDDs using the Java Serializer that does
not work well with Protocol Buffer, and therefore, with RDDs containing Protocol Buffer
messages. As a workaround, we implement helpers to save and read RDDs to / from object
files using the Kryo serializers as specified by the Spark Kryo Registrator, which in our
case, the one defined in Figure B.1b.
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public class Protobu fKryoSe r i a l i z e r <M extends GeneratedMessage> extends
S e r i a l i z e r <M> {

@Override
public M read ( Kryo arg0 , Input arg1 , Class<M> arg2 ) {

int s e r i a l i z e d m e s s a g e l e n g t h = arg1 . readInt ( ) ;
i f ( s e r i a l i z e d m e s s a g e l e n g t h == 0) {

return null ;
}

byte [ ] s e r i a l i z e d m e s s a g e = arg1 . readBytes ( s e r i a l i z e d m e s s a g e l e n g t h ) ;
Method parseFromMethod = getParseFromMethod ( arg2 ) ;

try {
return (M) parseFromMethod . invoke ( arg2 , s e r i a l i z e d m e s s a g e ) ;

} catch ( I l l e g a l A c c e s s E x c e p t i o n | I l l ega lArgumentExcept ion |
Invocat ionTargetExcept ion e ) {

e . pr intStackTrace ( ) ;
return null ;

}
}

@Override
public void wr i t e ( Kryo arg0 , Output arg1 , M arg2 ) {

byte [ ] s e r i a l i z e d m e s s a g e = arg2 . toByteArray ( ) ;

arg1 . w r i t e I n t ( s e r i a l i z e d m e s s a g e . l ength ) ;
arg1 . wr i teBytes ( s e r i a l i z e d m e s s a g e ) ;

}

public Method getParseFromMethod ( Class<M> c ) {
try {

return c . getMethod ( ”parseFrom” , byte [ ] . class ) ;
} catch ( NoSuchMethodException | Secur i tyExcept ion e ) {

e . pr intStackTrace ( ) ;
return null ;

}
}

}

(a) Definitions of the Custom Kryo Serializer for Protocol Buffer Messages

Figure B.1: Custom Kryo Serializer for Protocol Buffer Messages in Spark 1.6
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class XtractKryoRegi s t rator extends KryoRegis t rator {
override def r e g i s t e r C l a s s e s ( kryo : Kryo ) {

kryo . r e g i s t e r ( c l a s s O f [ JavaLoca lVar iab le ] , new Protobu fKryoSe r i a l i z e r [
JavaLoca lVar iab le ] ( ) )

kryo . r e g i s t e r ( c l a s s O f [ JavaPr imit ive ] , new Protobu fKryoSe r i a l i z e r [
JavaPr imit ive ] ( ) )

kryo . r e g i s t e r ( c l a s s O f [ JavaBreakpointEvent ] , new Protobu fKryoSe r i a l i z e r [
JavaBreakpointEvent ] ( ) )

}
}

conf . s e t ( ” spark . kryo . r e g i s t r a t o r ” , c l a s sO f [ XtractKryoRegi s t rator ] . getName )

(b) Registering Protocol Buffer Message Classes

Figure B.1: Custom Kryo Serializer for Protocol Buffer Messages in Spark 1.6 (cont.)

When serializing an RDD, the helper first serializes the RDD object to a byte stream
that is later written to an external file system as a sequence file using the saveAsSequence-
File API of Spark that takes care of communications with various file systems, including
HDFS. Reading an RDD object from an external file system reverses the aforementioned
procedure. We list the implementations of the helper in Figure B.2.
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object XtractKryoFi leSupport {
def saveAsKryoObjectFi le [T: ClassTag ] ( k r y o S e r i a l i z e r : KryoSe r i a l i z e r , rdd :

RDD[T] , path : S t r ing ) {
rdd . mapPart it ions ( i t e r => i t e r . grouped (10) .map( . toArray ) )

. map( x => ( Nul lWritable . get ( ) , new BytesWritable ( k r y o S e r i a l i z e (
k r y o S e r i a l i z e r , x ) ) ) )

. saveAsSequenceFi le ( path )
}

def f romKryoObjectFi le [T: ClassTag ] ( sc : SparkContext , minPart i t i ons : Int ,
path : S t r ing ) : RDD[T] = {

val k r y o S e r i a l i z e r = new K r y o S e r i a l i z e r ( sc . getConf )
sc . s equenceF i l e ( path , c l a s sO f [ Nul lWritable ] , c l a s sO f [ BytesWritable ] ,

minPart i t i ons )
. f latMap ( x => k r y o D e s e r i a l i z e [ Array [T ] ] ( k r y o S e r i a l i z e r , x . 2 . getBytes )

)
}

def k r y o S e r i a l i z e [T: ClassTag ] ( k r y o S e r i a l i z e r : KryoSe r i a l i z e r , o : T) :
Array [ Byte ] = {

val kryo = k r y o S e r i a l i z e r . newKryo ( )
val bos = new ByteArrayOutputStream ( )
val out = new Output ( bos )
kryo . writeClassAndObject ( out , o )
out . c l o s e ( )

bos . toByteArray
}

def k r y o D e s e r i a l i z e [T: ClassTag ] ( k r y o S e r i a l i z e r : KryoSe r i a l i z e r , bytes :
Array [ Byte ] ) : T = {

val kryo = k r y o S e r i a l i z e r . newKryo ( )
val b i s = new ByteArrayInputStream ( bytes )
val in = new Input ( b i s )
val obj = kryo . readClassAndObject ( in )

obj . as InstanceOf [T]
}

}

Figure B.2: The Implementation of to Save and Load RDD Objects from Object Files
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