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Abstract

Brain image analysis is playing a fundamental role in clinical and population-based epi-

demiological studies. Several brain disorder studies involve quantitative interpretation

of brain scans and particularly require accurate measurement and delineation of tissue

volumes in the scans. Automatic segmentation methods have been proposed to provide

reliability and accuracy of the labelling as well as performing an automated procedure.

Taking advantage of prior information about the brain’s anatomy provided by an atlas

as a reference model can help simplify the labelling process. The segmentation in the atlas-

based approach will be problematic if the atlas and the target image are not accurately

aligned, or if the atlas does not appropriately represent the anatomical structure/region.

The accuracy of the segmentation can be improved by utilising a group of atlases. Em-

ploying multiple atlases brings about considerable issues in segmenting a new subject’s

brain image. Registering multiple atlases to the target scan and fusing labels from reg-

istered atlases, for a population obtained from different modalities, are challenging tasks:

image-intensity comparisons may no longer be valid, since image brightness can have highly

differing meanings in different modalities.

The focus is on the problem of multi-modality and methods are designed and devel-

oped to deal with this issue specifically in image registration and label fusion. To deal

with multi-modal image registration, two independent approaches are followed. First, a

similarity measure is proposed based upon comparing the self-similarity of each of the im-

ages to be aligned. Second, two methods are proposed to reduce the multi-modal problem

to a mono-modal one by constructing representations not relying on the image intensi-

ties. Structural representations work on the basis of using un-decimated complex wavelet

representation in one method, and modified approach using entropy in the other one. To

handle the cross-modality label fusion, a method is proposed to weight atlases based on

atlas-target similarity. The atlas-target similarity is measured by scale-based comparison

taking advantage of structural features captured from un-decimated complex wavelet co-

efficients. The proposed methods are assessed using the simulated and real brain data

from computed tomography images and different modes of magnetic resonance images.

Experimental results reflect the superiority of the proposed methods over the classical and

state-of-the art methods.
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Chapter 1

Introduction

Brain image analysis is playing a fundamental role in clinical and population-based epi-

demiological studies. Several brain disorder studies involve quantitative interpretation of

brain scans and particularly require accurate measurement and delineation of tissue vol-

umes in the scans [1, 2, 3, 4, 5]. Manual labelling of brain images by human experts is

inconsistent and time-consuming, specifically for large datasets [6]. Automatic segmenta-

tion methods have been proposed to provide reliability and accuracy of the labelling as

well as performing an automated procedure.

Automatic segmentation of brain images is a challenging task due to undesirable arte-

facts such as noise, partial volume effect or non-uniformity in the intensity of the image.

Therefore, using a priori information about the anatomy of the brain, which is provided

by a reference image/volume, called an atlas, can help simplify this procedure [7]. In the

literature, the term ’atlas’ is referred to both an intensity image, which is a brain template,

or the segmented image, which is the labelled one [7, 8].

In traditional atlas-based segmentation, a target scan is labelled by referring to an atlas

where the target is aligned to the atlas using deformable registration and atlas labels are

then propagated to the target image space [9]. However, if either the mapping between

images is not accurate or the atlas is not anatomically an appropriate representative for

a specific structure/region, the segmentation will be problematic. Fig. 1.1 illustrates the

process of atlas-based segmentation used for delineation of brain tissues. The atlas-based
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Figure 1.1: Block diagram illustrating the atlas-based segmentation procedure used for

brain tissue segmentation. Segmentation is based on registering the atlas to the target

patient image and using the resulting spatial transformation F to propagate atlas labels

to target space to attain a segmentation.

segmentation is shown as a registration-based segmentation approach where F stands for

the spatial transformation between the atlas and the target scan.

The error caused by any single atlas registration will be effectively reduced by using

a group of segmented images. There are two different categories of approaches in using

multiple atlases for segmentation. In the first class of methods, information from several

atlases are combined to create an average or a probabilistic atlas [8, 10, 11]. Then, the

constructed atlas is warped to the target image to provide prior information. The second

category of methods tries to combine labels from some number of registered atlases [11,

12, 13]; this work has led to an active literature on multi-atlas approaches [13, 14].
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Figure 1.2: Multi-atlas segmentation approach: The overall block-diagram of multi-atlas

segmentation procedure and its major components. Atlas selection is shown in a dashed

box as an optional step in the multi-atlas segmentation framework.

1.1 Multi-modal Multi-Atlas Segmentation Problem

The multi-atlas approach takes advantage of more information from multiple atlases and

is more robust to anatomical variations than single atlas-based approach [12, 15]. The

multi-atlas segmentation approach can be subdivided into several steps. In general, key

steps of any multi-atlas segmentation framework are atlas generation, registration, atlas

selection, label propagation, and label fusion. These components are generally implemented

sequentially in independent steps, however, there are many exceptions to this sequential

organization. The overall block-diagram of multi-atlas segmentation procedure and its

major components are presented in Fig. 1.2. Here, several already segmented images from

different subjects, i.e., atlases, are registered to the patient input image resulting in a set

of transformations. A subset of registered atlases may be selected to either reduce the

complexity or exclude irrelevant atlases. Atlas labels are required to be propagated to the

target space using the obtained transformation. Then, propagated labels are fused for each

pixel to form a final segmentation result. Atlas selection is not a necessary step in every

multi-atlas segmentation framework, and therefore it is shown in dashed line in this figure.

The multi-atlas approaches are promising, however, these methods remain problematic

in those cases where the atlases and the target scan are obtained from different sensors or

from different acquisition modalities: image-intensity comparisons may no longer be valid,

since image brightness can have highly differing meanings and circumstances in different

modes [16, 17]. The goal of this thesis is to focus on the multi-modality issue and design

and develop methods to deal with this issue specifically in major steps of the multi-atlas

segmentation framework: image registration and label fusion.
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1.2 Challenges

As described in Section 1.1, the general form of multi-atlas segmentation framework consists

of major steps of atlas generation, registration, label propagation, and label fusion. Since

in most cases atlases, i.e., segmented scans, are already available, we skip atlas generation

for the rest of thesis. To deal with cross-modality in the multi-atlas segmentation problem,

the major components to cope with the issue of intensity variation are registration and

label fusion. Thus, the major challenges to address in this problem are

• Multi-modal registration: To segment the target image, the atlases, which might

exploit multiple imaging modalities, are required to be registered to the target space.

The intensity variations across modalities has been an issue in the multi-modal reg-

istration. Statistical metrics, such as those based on mutual information (MI), have

been proposed in the literature as the solution to address this issue [18, 19, 20].

However, MI-based measures are intrinsically global and therefore may suffer from

many false local optima. Moreover, the optimisation of these statistical measures

for registration is computationally more complex compared to simple intensity dif-

ference metrics [20]. This can be more of a concern when the number of atlases to

be registered are increasing in the database [14].

• Cross-modality label fusion: A key challenge associated with the multi-atlas

approach is label fusion. Most label fusion approaches are limited by the assumption

that they depend on the consistency of voxel intensities across different scans. Many

label fusion methods, such as majority voting (MV) [13] and weighted voting [21, 22,

23] do not consider image intensities after being warped to the target image. The

multi-atlas approaches are promising, however, these methods remain problematic

in those cases where the atlases and the target scan are obtained from different

acquisition modalities: image-intensity comparisons may no longer be valid, since

image brightness can have highly differing meanings and circumstances in different

modes [16].
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1.3 Objectives and Contribution

The objectives of this thesis target the multi-modal registration and cross-modality label

fusion in a multi-atlas segmentation framework. The thesis makes the following contribu-

tions:

• Defining a novel similarity measure based on measuring the image self-similarity for

registration of multi-modal images, which is described in Chapter 4 and evaluated in

Chapter 6,

• Reducing the multi-modal registration problem to a mono-modal one and hence,

lowering the complexity of the registration problem by proposing structural repre-

sentations not relying on the intensity mapping, which is described in Chapter 5 and

evaluated in Chapter 6,

• Extending the existing label fusion approach to cross modality multi-atlas segmen-

tation by making cross-modality image comparison based on extracted structural

features, which is described and assessed in Chapter 7.

1.4 Thesis Outline

The structure of this thesis closely follows the sequence of mentioned contributions.

In Chapter 2, we present an overview of the atlas-based segmentation and multi-atlas-

based approach. A review of methods in image registration and label fusion as two major

components of multi-atlas framework is also presented in this chapter.

Chapter 3 states and formulates the problem we are targeting in multi-atlas-based

segmentation. Challenges and limitations related to the existing approaches followed by

the objectives and contributions in this problem are presented.

Chapter 4 presents a new similarity measure for registering multi-modal images. The

concept of self-similarity and measures for multi-modal image registration is presented.

Following that, we present the proposed self-similarity measure based on taking the most

significant image self-similarities into account.
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In Chapter 5, two independent image representations are presented to map multi-

modal images into common intensity space. First, complex wavelets is used to present

the proposed image representation. Second, independent of the first representation, a

modification to the formulation of entropy is applied to build an alternative structural

representation.

Experiments to measure the accuracy of multi-modal image registration based on struc-

tural representations are presented in Chapter 6. Structural representations in Chapter 5

based on complex wavelets and modified entropy are assessed in the same framework but

independent of each other. In the following, employing the self-similarity presented in

Chapter 4 is evaluated in the multi-modal image registration framework.

In Chapter 7, the problem of cross-modality label fusion is of focus. The weighted

voting label fusion followed by the proposed method for combining labels from multi-

modal images are presented. Experiments to evaluate the proposed method comparing

with the conventional approach are given later in this chapter.
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Chapter 2

Background

This chapter is devoted to reviewing the materials and methods required for the purpose of

segmentation of MR images based on using multiple atlases. First, in Section 2.1, a general

overview of brain tissue segmentation and different approaches are explained. Second, in

Section 2.2, a generic form of atlas-based approach and its components are presented.

Third, the multi-atlas-based approach, as a specific case of atlas-based segmentation, its

components, and related challenges are presented in Section 2.3. Lastly, the problem of

dealing with multiple modalities in this approach is given in Section 2.4.

2.1 Brain Tissue Segmentation

Segmentation is the process of partitioning an image into constituent regions whose el-

ements (pixels in each region) have the same characteristics, such as color, intensity, or

texture [6, 7, 24]. Since most studies on medical data highly rely on large datasets, a

manual image segmentation approach by a human expert is a time-consuming procedure.

Moreover, a manual approach highly depends on intra- and inter-observer variability which

results in the degradation of credibility in the segmentation analysis. Therefore, attempts

have been made towards an automatic segmentation of medical images to provide a repro-

ducible, accurate, and robust segmentation framework.

Image segmentation, from methods to applications, has been addressed in the liter-
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ature [6, 7, 24, 25, 26]. Pham et al. categorised segmentation methods into eight main

categories of thresholding, region growing, pattern recognition methods, clustering, Markov

random field (MRF) model, artificial neural network (ANN) methods, deformable models,

atlas-based and other methods [6].

Among them, atlas-guided approaches aim to reduce human interaction and have a

fully automatic and accurate segmentation approach. This category of methods, which

is described in more detail in Section 2.2, incorporates additional higher level knowledge

that can be prior information about the image under consideration or any predefined

model [15, 25]. The atlas, which is generally a segmented image, is used as a reference

model for the image to be segmented. The simplest atlas-based paradigm finds a one-

to-one mapping between the atlas and the image to be segmented. Using the one-to-one

mapping, all information available in the atlas is transferred to the target image to help

label the image [8]. The typical atlas-based method along with different types of atlases

and segmentation strategies are explained in the following.

2.2 Atlas-Based Segmentation

The automatic segmentation of brain images has been always a challenging problem [8, 27,

28, 29, 30]. Therefore, using a priori information about the anatomy of the brain can help

simplify this procedure. Prior information can be provided by a reference model, called

an atlas, which either is a manually segmented version of brain scans where contains label

information at specific locations.

In atlas-based segmentation, the segmentation problem turns into a registration one.

The atlas, A, is registered to the target patient image, IT , resulting in a transformation

F . Using the transformation F , labels of the atlas, denoted as L, are then propagated to

the target image space. However, if either the atlas is not anatomically an appropriate

representative for a specific structure/region or there exist labelling errors in the atlas seg-

mentation, the error will be propagated during the registration procedure. In the following,

two types of atlases as well as approaches under the atlas-based category are explained in

more detail.
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2.2.1 Types of Atlases

The construction and application of brain atlases are of great importance in neuroimaging

and human brain research [8, 29, 31, 32]. This is due to the need for a standardized

template which is the key concept in the field of human brain mapping. Creation of a

realistic brain atlas, considering anatomical details and variability, is a time-consuming

step. Therefore, many efforts have been recently made to provide this field of research

with manually segmented data.

Topological Atlases: The first version of the atlas constructed for human brain research

is the topological atlas which, in the literature, is also called the brain template, single-

subject, or deterministic atlas. The topological atlas is referred to a volume image chosen

from a population of brain scans to represent the whole population in terms of size, shape

or intensity. The construction of a template to describe how different parts and structures

are organized in the brain is the first step in creation of any probabilistic, region or disease-

specific atlases.

The first attempt in creating atlas of the human brain led to the Talairach atlas [31]

by which deep brain structures were identified in a space independent from individual dif-

ferences in the size and overall shape of the brain. Fig. 2.1 shows an example of the deter-

ministic atlas which is a brain template from the BrainWeb simulated brain database [33].

This image indicates the 143th axial slice of one of the twenty anatomical models of 20

normal brains. In each model, a set of “fuzzy” tissue membership volumes is presented.

This set consists of different classes of background, cerebrospinal fluid (CSF), gray mat-

ter (GM), white matter (WM), fat, muscle, muscle/skin, skull, blood vessels, connective

(region around fat), dura matter and bone marrow.

Probabilistic Atlas: The major factor which is not considered in deterministic atlases

is the diversity of human brain anatomy. In order to address the anatomical variability in

the human brain, a population of brain scans is used to form the brain atlas. This type of

atlas is often referred to as population-based, probabilistic, or statistical atlas [8]. In the

construction of probabilistic atlases, the population can be subdivided into different groups

based on different factors such as age, sex, or handedness. Such a population-based atlas is
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Figure 2.1: An example of deterministic atlas: a slice of a 3D anatomical model of a normal

brain from the BrainWeb [33] database. A set of different tissue classes are distinguishable

by using different gray-scale values. The gray scale values from dark to bright indicate

twelve classes of background, CSF, GM, WM, fat, muscle, muscle/skin, skull, vessels,

around fat, dura matter, and bone marrow.

constructed using a set of segmented MRI data sets. For this purpose, all segmented images

in the database are registered into a standard space and then the tissue probability of each

voxel for a specific structure or region is computed. In Fig. 2.2, a sample probabilistic

atlas for brain tissues is shown. This figure shows the 74th axial slice of the ICBM452 [34]

atlas from the LONI database [35] which includes T1 mean, WM, GM and CSF probability

maps.

2.2.2 Segmentation Strategies

The atlas-based segmentation approach tries to deform a brain atlas into a patient’s brain

scan to create a labelled version of patient’s scan. The so-called atlas is a labelled scan

which is previously segmented.

To use a priori information available in the atlas A, a transformation is required to

map the atlas space into target image IT space which forms a registration problem. Having

found the transformation F from atlas space into target space, it is possible to map the

reference (atlas) labelled image L to the patient’s image (target) space and obtain the

labelled version of patient’s scan LT . The labelled volume is defined by L unique segments:

LT (x) ∈ {1, . . . ,L}, (2.1)
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T1 average CSF GM WM

Figure 2.2: An example of probabilistic atlas: ICBM452 [34] probabilistic atlas showing

the average topology of the brain and probabilistic map of CSF, GM, and WM.

where x is the location in the label map L corresponding to the same location in atlas A.

Label Propagation

Having done the registration step, the easiest and fastest way to do the final labelling

process is to propagate atlas labels to the input image space. In typical label propagation,

the estimated transformation F̂ resulting from the registration step is used to deform the

atlas labels, then the labels mapped to the coordinate system of the input image are simply

assigned to input image voxels:

LT (x) = L
(
F̂ (x)

)
. (2.2)

In this way, the labelling error relies on the error that happened at the registration step

and the whole segmentation procedure will basically be transformed into a registration

problem. Since large anatomical differences will lead to a large registration error, this

method is feasible for the cases in which the atlas is sufficiently similar to the input image.

When dealing with intra-subject registration in medical applications, such as registra-

tion of multi-modal images for radiotherapy or progression in a specific disease, global

rigid registration and affine transformation will perform sufficiently well. Inter-subject

registration which highly involves anatomical variations requires high degree of freedom
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and therefore more complicated methods, non-rigid registration techniques, are employed.

However, the risk of getting stuck in local extrema during the optimization procedure will

be increased [8].

Probabilistic Atlas-based Segmentation

Typically, probabilistic atlases are used in a Bayesian framework to maximise the condi-

tional probability of intensities in each class. The classical Bayesian approach for classifi-

cation is defined by

L̂(x) = argmax
l∈{1,··· ,L}

p
(
L(x) = l|A(x)

)
= argmax

l∈{1,··· ,L}
p
(
I(x)|L(x) = l

)
· p(L(x) = l), (2.3)

where p
(
I(x)|L(x) = l

)
stands for conditional probability of the voxel intensities given the

class label and p(L(x) = l) represents the label prior. In this approach, class priors are

provided by the probabilistic atlas and either parametric or non-parametric methods can

be used to estimate the conditional probability.

Multi-Atlas Label Propagation

In a typical label propagation, when the atlas anatomy is far different from the input

patient image, the accuracy of the segmentation will decrease. To overcome the registration

error and therefore improve the segmentation accuracy, one possible solution is to employ

multiple atlases. As was first shown by Heckemann et al. [13], as new atlases are taken

into consideration, the accuracy of segmentation procedure will increase. Not only is the

number of atlases used in the segmentation important to have an acceptable segmentation

accuracy, but also the quality of atlases.

The first important issue associated with multi-atlas-based segmentation is the number

of atlases and also how to choose them. Atlases should be selected in such a way that

maximum anatomical variety in a population of atlases can be achieved. If a large database

of atlases is available, the more efficient way will be selecting a subset of atlases which are

very close to the input image to be segmented in terms of similarity. Further improvements

are achieved by clustering atlases into different classes based on different structures and

organs. Atlas ranking is another possibility to deal with using multiple atlases.
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Another important issue in multi-atlas-based segmentation is the number of registra-

tions required for segmentation. Typically, all atlases are warped into a common space

to reduce the number of registrations and hence reduce the computations. However, the

result will always be biased towards the initial selected space. For this reason, groupwise

registration techniques are employed to suggest a better way for this problem. These meth-

ods try to build an average reference template and register all of available atlases into this

common space.

Having aligned all atlases, all deformed labels should be combined in some way. This

step can be considered as a specific case of classifier fusion. Weighted voting is the typical

way to apply on warped labels which are used both globally and locally.

2.3 Multi-Atlas-Based Segmentation

As described in Section 2.2.2, in multi-atlas-based segmentation approach, each atlas is

available and potentially utilised for segmenting the target image. The overall framework of

the approach for segmentation of medical images is illustrated in Fig. 2.3. The conventional

approach involves registering each atlas Ai, i = 1, · · · , NA, from a database of NA atlases,

to the target (patient’s) image IT , propagating the atlas labels Li, i = 1, · · · , NA, to the

target image coordinates, resulting in atlases and labels in the target image coordinates,

A′i and L′i, and then fusing the propagated labels. This section focuses on registration and

label fusion as the main components of multi-atlas-based segmentation procedure.

2.3.1 Image Registration

Image registration, which is also named image matching or alignment, is the process of

aligning two or more different images by finding one-to-one spatial correspondence between

images [36]. Image alignment, as an image processing step, plays an important role in

processing 2D/3D data in a variety of applications including robot vision, remote sensing,

and medical imaging [37, 38, 39]. In particular, image registration is considered one of

the fundamental problems in processing of medical images. Tracking temporal evolution

and change detection, fusing image data, and 3D image construction are some examples

medical applications [37, 39].
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Figure 2.3: Multi-atlas-based segmentation procedure.

The process of registering images in the particular case of medical applications be-

comes more challenging due to the variety of the imaging modalities and the fact that

each modality can deliver the particular type of information [40]. For example, in medi-

cal imaging, some modalities provide anatomical information (i.e., computed tomography

(CT) and MRI) and some other provide functional information (i.e., positron emission to-

mography (PET), single photon emission computed tomography (SPECT), and functional

MRI (fMRI)) about a specific tissue, structure or organ [41]. The anatomical informa-

tion provides clinicians with spatial information such as shape, size and spatial relation-

ship between structures and pathology, while the functional information leads clinicians
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to studying the relationship between the underlying structure and physiology. Moreover,

establishing a model for the relationship between images of human organs or structures is

quite difficult, due to the highly complex transformations required.

To overcome the problems and challenges related to registering medical images, different

approaches have been proposed in the literature [20, 36, 37, 40, 42]. In this subsection, an

overview of the framework for medical image registration and its fundamental components

are introduced.

In general, a registration framework involves finding a deformation transform F from

a moving image Im to a fixed image If in order to maximise (minimise) an objective

(cost) function ρ. The cost function combines a measurement of spatial alignment with a

regulariser that quantifies the plausibility of the deformation:

F̂ = argmax
F

ρ
(
If , F (Im)

)
(2.4)

Thus, the three main component of registration framework are the deformation model, the

objective function, and the optimizer.

Transformation Model

Transformation models are geometric models that establish a one-to-one mapping between

the moving Im and fixed If domains. The transformation model used during the registra-

tion process relies on the accuracy to be satisfied, the deformation and the images to be

registered. These models can be classified into three fundamental categories; rigid, affine,

and non-rigid transformations.

Rigid transformation in three dimensions involves three degrees of freedom (DoFs) for

rotation and three for translation. Transformation function can be expressed in matrix

form as

Frigid(x, y, z) =


x′

y′

z′

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



x

y

z

1

 , (2.5)

where rij determine rotations about each coordinate axis and tx, ty, and tz stand for the

translation along x, y, and z axes, respectively.
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In addition to translation and rotation expressed in rigid transformation, scaling and

shearing may be also necessary for aligning images. The matrix form of scaling transfor-

mation in a 3D space and a shearing matrix in the (x, y) plane can be expressed in the

following way:

Fscale =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 (2.6)

F xy
shear =


1 0 hx 0

0 1 hy 0

0 0 1 0

0 0 0 1

 , (2.7)

where sx, sy and sz stand for the scaling in each of the coordinate axes, and hx, hy represent

the shearing in each of those axes. The overall linear mapping to cover the rigid, shearing,

and scaling transformations is affine transformation that can be obtained by multiplying

the rigid transformation, scaling and shearing matrices:

Faffine(x, y, z) = Fshear · Fscale · Frigid ·
[
x y z 1

]T
. (2.8)

The resulting transformation provides twelve DoFs specifying translation, rotation, scaling

and shearing.

In medical image registration, it is common to use rigid transformations to relate images

when registering images of rigid parts of the body such as bones. Rigid models are global in

nature and are not able to model local differences between images. Since rigid and affine

models are of low complexity, they are often limited to registration of rigid structures

and organs or only used as a pre-registration process prior to more complex registration

procedures [36]. Since human body organs and structures are mostly deformable structures,

non-rigid registration approaches are used in medical applications to build flexible elastic

models [36, 40].

Basically, two types of deformations are considered in medical image registration: free-

form and guided deformations. In free-form deformation models, any kind of deformation

is allowed, whereas guided deformations are controlled by a physical model caused by the

material properties of the organ or structure [43, 44, 45].

16



In free-from deformation (FFD) approaches, the registration is mainly performed by

defining a grid of control points to determine the deformation between images. For the

point located between the grid points, the deformation vector is obtained using any of

interpolation methods. The use of B-spline tensor products as the deformation function

was first proposed by Rueckert et al [45]. If the domain of the image volume is defined as

Ω = {x = (x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}, (2.9)

the transformation field by FFD with mesh of control points di,j,k with uniform control

point spacing δ can be expressed as the 3D tensor product of the 1D cubic B-splines:

F (x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n (2.10)

where Bl represents the l-th basis function of the B-spline, i = bx
δ
c − 1, j = by

δ
c − 1,

k = b z
δ
c− 1, u = x

δ
−bx

δ
c, v = y

δ
−by

δ
c, and w = z

δ
−b z

δ
c. This deformation model requires

a few degrees of freedom to describe local deformations and can efficiently provide smooth

deformations.

Guided deformation models such as elastic models consider objects in the image as

elastic solids [46, 47]. Therefore, the model is defined based on internal and external forces

applied to the deformation fields. The internal static forces are applied to oppose the

deformation, while the external forces caused by similarity metric helps the deformation

to fit the configuration. Both forces are applied to deform the image until they reach

an equilibrium. Guided deformations are non-parametric models that characterise the

deformation at every voxel of the image volume.

Objective Function

The objective function is typically based on either metrics that measure the degree of

similarity or the spatial distance between corresponding landmarks to quantify the accuracy

of alignment in image registration. In the latter case, the landmarks are manually placed

or detected automatically before performing the alignment. Similarity measures can be

classified into intensity- and feature-based categories.
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Measures based on image intensity in image registration [48] are usually based on

intensity differences, intensity cross correlation, and information theory [48, 49]. The

simplest intensity-based measure is based on sum-of-squared-differences (SSD) between

the intensities in I1 and I2:

ρSSD =
∑

(I1 − I2)2. (2.11)

Metrics based on intensity difference are basically assuming the same characteristics for

the images to be aligned and restricted to uni-modal image registration. A more general

assumption than of having identical modalities is to have a linear relationship between im-

age intensities. In this case, similarity can be measured using normalised cross correlation

(NCC) as

ρNCC =

∑
(I1 − µ1)(I2 − µ2)√∑

(I1 − µ1)2
∑

(I2 − µ2)2
(2.12)

where µ1 and µ2 are the average pixel intensities in the images I1 and I2, respectively. Nev-

ertheless, the NCC is largely restricted to applications in registering mono-modal images.

Information theoretical metrics such as mutual information [20], which are based on

Shannon’s entropy [50], can be applied to both uni- and multi-modal registration frame-

works and measure how well one image is able to explain the other image. Mutual infor-

mation for two images I1 and I2 is defined based on the Shannon entropy as

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2) (2.13)

where H(I1) and H(I2) represent the entropy of random variables I1 and I2, and H(I1, I2)

stands for the joint entropy of these two random variables. MI can be equivalently expressed

as

MI(I1, I2) =
∑
i

∑
j

p(i, j) log
p(i, j)

p(i)p(j)
, (2.14)

where p(i, j) is the joint probability distribution function of I1 and I2, and p(i) and p(j)

are the marginal probability distribution functions of I1 and I2 respectively.

Feature-based metrics are usually based on landmarks, salient points, edges, contours,

corners and/or surfaces [48, 49]. Distances between the corresponding features are con-

sidered as a criterion to measure the alignment. It is required to extract features and

estimation of correspondences prior to computing the distance. As an advantage of using

feature-based registration is that it can be also used for multi-modal registration. However,
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feature-based registration may need a prior segmentation to extract landmarks or features

in the images. Furthermore, errors produced during the feature extraction procedure will

be propagated into the registration and affect the accuracy of the procedure [36, 40, 42].

Numerical Optimization

The problem of image registration can be expressed as an optimization problem in which

the goal is to minimise the cost or maximise the similarity between two images. The

method tries to search for the optimum of an objective/cost function in the mapping model.

Choosing a global or local optimization technique depends on the form of the objective/cost

function, computational complexity, robustness, speed of the algorithm, and the accuracy

required for the underlying application [36, 40, 49].

In the case of rigid and affine transformations, there is no constraint as the cost function

and the optimisation problem aims to maximise the similarity between images. In non-rigid

transformations, the role of the cost function plays the role of regularization or penalty

term to constrain the transformation relating both images [36].

A common family of optimisation approaches is based on gradient descent that opti-

mise the objective function by following the negative energy gradient, the direction that

decreases the energy. Gradient descent has been utilised to solve various registration

problems including the FFD registration algorithm. Conjugate gradient, Gauss-Newton

method, stochastic gradient descent, and graph-based methods are the examples of ap-

proaches that have been used widely in the application of image processing.

2.3.2 Label Fusion

As described in Section 2.2.2, the key challenge associated with the multi-atlas approach

is “label fusion” — the strategy by which atlas labels are combined into a single segmen-

tation [12]. To formulate the problem of label fusion, we consider a set of NA atlases {An}
with labels {Ln}, where n = 1, · · · , NA, and IT as the target image to be segmented. The

label alphabet contains L unique segments:

Ln(x) ∈ {1, . . . ,L}, (2.15)
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where x denotes the location in the label map Li corresponding to the i-th atlas. The

atlases and the target image are assumed to be aligned using the transformations {Fn}
corresponding to the {An} atlases. Given these transformations, each input, whether

image or label field, can be transformed to the common space that is the target image

space. Thus, {A′n} and {L′n} are the atlases and labels in the target image frame such that

A′n(x) = An
(
Fn(x)

)
, (2.16)

L′n(x) = Ln
(
Fn(x)

)
. (2.17)

A final segmentation result LT associated with IT is generated by combining all propagated

labels {L′n} using a label fusion method.

Majority Voting

The simplest and most widely used label fusion method is majority voting (MV) [13], which

asserts an equal contribution for each atlas. Considering each atlas as a classifier providing

class labels, no prior information about each classifier’s accuracy is taken into account. In

this approach, each voxel is assigned with the label that most classifiers select. Thus, the

combination result can be expressed as

L̂T (x) = argmax
l∈{1,··· ,L}

NA∑
i=1

Lli(x), (2.18)

where Lli(x) represents the vote for label l produced by the ith atlas as

Lli(x) =

1 if Li(x) = l,

0 otherwise.
(2.19)

Weighted Voting

As the image intensity is not taken into account during label fusion, a higher accuracy can

be achieved by some form of weighting, based on the similarities between the atlases and

the target image.This optimization problem can be solved by simply comparing numbers at

each voxel: the fused label of each voxel is computed via a local weighted voting strategy.
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The local image likelihood terms serve as weights and the label prior values serve as votes.

Therefore, at each voxel, training images that are more similar to the test image at the

voxel after registration are weighted more:

L̂T (x) = argmax
l∈{1,··· ,L}

NA∑
i=1

wi(x)Lli(x), (2.20)

where wi(x) is a local weight assigned to the ith atlas and

NA∑
i=1

wi(x) = 1. (2.21)

Fixing the weights across all atlases to a constant, wi(x) = C ignores the atlas similar-

ities and leads to majority voting. Fixing the weights within a single atlas to a constant,

wi(x) = Ci globally expresses the similarity between the target and atlas, which models

the atlas selection strategy [51, 52].

Global label fusion approaches perform generally better than single atlas-based seg-

mentation. However, as weights are assigned globally, it is impossible for the atlases to

have higher contribution in the areas where the registration performs successfully, even if

the registration was inaccurate in the rest of the image.

2.4 Problem of Multi-Modality

In medical image analysis, multiple modalities of the same subject or organ provide com-

plementary information that is very important for medical diagnosis and computer-aided

surgery [53]. In a multi-atlas-based segmentation problem, of particular interest is dealing

with atlases acquired from different sensors, imaging protocols, or modalities [17]. An-

other scenario could be the cross-modality segmentation of a patient’s image with the

single-mode atlas database. In either cases, both the registration and label fusion steps

would be challenging since image-intensity comparisons may no longer be valid across dif-

ferent modalities [16]. This section reviews the multi-modality challenge and approaches

dealing with cases in multi-modal image registration and label fusion.
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(a) T1 mode (b) T2 mode (c) labelled anatomy (d) joint histogram

Figure 2.4: Different parts of the images can have different intensity relations in multi-

modal images. Perfectly aligned slices in T1 (a) and T2 (b) from simulated BrainWeb [33]

database are shown. The brain anatomy in different colors is described in (c). Image (d) is

the joint histogram of (a) and (b). Images (c) and (d) show how the brain anatomy relates

to the joint histogram by mapping pixel intensities from T1 to T2.

2.4.1 Multi-Modal Image Registration

A key component in every image registration tool is defining a way of measuring the

similarity of images to be aligned. As described in Section 2.3.1, for images captured

from the same modality, classical similarity measures, such as SSD and cross-correlation

coefficient (CC), assume a linear relationship between intensities of the corresponding pixels

across the whole image domain. This assumption will not be valid for images obtained from

different modalities or imaging sensor types [53]. Since different physical phenomena are

measured in different imaging systems, no functional relation between the image intensities

can be defined to map the corresponding elements from one image to another. As shown

in Fig. 2.4 illustrates how the intensities in two modes of MR brain images are related.

Perfectly aligned slices of T1 and T2 modes are shown along with the segmented anatomical

parts corresponding to the joint histogram of those images. The joint histogram shows the

simultaneous occurrences of intensities between the two images. In Fig. 2.4(c) and (d), the

intensity of different tissues are related differently in the two modes.

Traditionally, multi-modal image registration employs mutual information, which uses

the statistical dependency of the intensity values between images for evaluating the reg-

istration results [20]. Mutual information has been first introduced for rigid alignment of
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multi-modal images [18] and later used for deformable registration [45].

In calculating MI, in Eq. 2.13, for measuring image similarity, changing the overlap

between two images during the registration process affects the MI value, therefore, nor-

malised mutual information (NMI) has been introduced to cope with this issue [54]. A di-

rect approach to normalisation is presented to evaluate the ratio of the joint and marginal

entropies

NMI(I1, I2) =
H(I1) +H(I2)

H(I1, I2)
. (2.22)

A major drawback of mutual information and its variants for image registration is that

they do not take spatial information into account. For those cases in which the intensity

relations are not spatially invariant or there is a complex intensity relationship, MI-based

approaches may suffer from local maxima and an incorrect global maximum problem [55].

Further works have been proposed to overcome this problem by integrating spatial and

contextual information in the MI formulation in expense of higher computational time and

complexity [56, 57, 58, 59].

Structural information has been also used in the literature of multi-modality problem

for improving the robustness of similarity measures to image intensity variations [60, 61,

62, 63, 64]. Thus, the multi-modal registration problem will be transformed to registering

two image representations using a simple intensity-based similarity/dissimilarity measure.

The registration problem formulated in Eq. 4.1 will be changed into

F̂ = argmax
F

ρ
(
Rf , F (Rm)

)
, (2.23)

where Rf and Rm are the image representation of the fixed image If and moving Im,

respectively. The challenge is still how to find a mapping function that transforms image

intensities from different modalities into a new intensity space, so that all images can share

similar features in the new space.

2.4.2 Multi-Modal Label Fusion

The multi-atlas approaches are promising compared to single atlas-based segmentation [14];

however, these methods remain problematic in those cases where the atlases and the target
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scan are obtained from different sensors or from different acquisition modalities: measuring

intensity-based proximity may no longer be valid, since image brightness can have highly

differing meanings and circumstances in different modes [16].

Many label fusion methods have been introduced in the medical atlas literature [22]. As

described in Section 2.3.2, the simplest and most widely used one is MV [13], which asserts

an equal contribution for each atlas. As the image intensity is not taken into account during

label fusion, a higher accuracy can be achieved by some form of weighting, based on the

similarities between the atlases and the target image. Weighting strategies can be applied

in both global and local forms [65, 66], where local weighted voting (LWV) outperforms

global strategies when dealing with high contrast anatomical structures [21, 22, 23].

Most label fusion approaches are limited by the assumption that they depend on the

consistency of voxel intensities across different scans. In these cases, approaches based on

MI do help [67] by assigning weights to atlas labels based on the similarity between the

target and the atlases. Thus, the weights in Eq. 7.3 will be defined by

wi(x) = MI(A′i, IT ). (2.24)

However the inherent non-locality in MI make it problematic for local weighted label fusion.

This issue will be highlighted when atlases and target image are acquired with different

modalities [16, 21].

2.5 Summary

This chapter provided a review of the background required for brain image segmentation

in a multi-atlas-based framework. The brain image segmentation in the context of atlas-

based segmentation as a registration-based method, the advantage of using prior knowledge

available in atlases, and the issue regarding the atlas-target registration were discussed.

The multi-atlas-based segmentation framework, which aims to cope with the basic atlas-

target registration problem, was reviewed. As described in this chapter, the key steps

in performing the multi-atlas segmentation are the image registration and label fusion.

Due to the growth of atlas databases and availability of scans from different modalities,

multi-atlas approaches are required to deal deal with multi-modality issue. Multi-modal
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registration of brain scans and cross-modal combination of labels from registered atlases

are the remaining challenges in multi-atlas problem.
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Chapter 3

Problem Formulation

This chapter formulates the problem of multi-atlas-based segmentation and states the

motivation, limitations, and the objectives to contribute to the conventional framework.

An overview of the problem, the general framework, and its components are given in

Section 3.1. Section 3.2 overviews the existing limitations and challenges of the multi-atlas

segmentation framework. To address these limitations, the objectives, which are pursued

in the following chapters, are introduced in Section 3.3.

3.1 Overview of the Problem

As described in Section 2.3, a general multi-atlas segmentation framework consists of two

major components, image registration and label fusion. Fig. 3.1 shows the block diagram

of the general multi-atlas-based segmentation framework, in which {An}, {Ln}, and IT
respectively represent the set of NA atlases, the labels corresponding to these atlases, and

the target image. In the first stage, the atlases are all warped to the target image resulting

in the inferred transformations {Fn}. Given these transformations, each input, whether

image or label field, can be transformed to the common reference of the target space. Thus

{A′n} and {L′n} are the atlases and labels in the common reference frame. All warped

labels are then combined together to form the final segmentation LT based on information

obtained from warped atlases and the target image.
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Multi-Modal Registration

Label Fusion

Atlas Images Target ImageAtlas Labels

Target Label

Figure 3.1: Block-diagram of the multi-atlas-based segmentation framework.

In this general framework, the problem is how to perform each of the blocks ‘Multi-

Modal Registration’ and ‘Label Fusion’ to attain accurate segmentation of the target image.

Performing an accurate registration of atlases to the target image and propagating the atlas

labels to the target space is crucial for the next step which is the label fusion. The regis-

tration is generally defined as an optimisation problem to find the optimal transformation

F which maximises the similarity ρ between the moving image Im and a fixed image If :

F̂ = argmax
F

ρ
(
If , F (Im)

)
. (3.1)

In the context of multi-atlas segmentation problem, Im and If are An and IT . Given the

atlases aligned with the target image, accurate segmentation of the target image requires
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a method of combining labels from multiple atlases in the database:

LT = F(L′n, A
′
n), (3.2)

where n is the atlas index, F represents the fusion method, and

A′n = An
(
Fn(x)

)
, L′n = Ln

(
Fn(x)

)
. (3.3)

In the following, the limitations related to the problem of multi-atlas segmentation are

reviewed.

3.2 Existing Limitations

As described in Section 2.4, the general multi-atlas segmentation approach is limited to

mono-modal cases. From the discussion in Chapter 1, Section 2.3, and Section 2.4, the

cross-modality multi-atlas segmentation has brought major challenges regarding the multi-

modality problem that can be summarised in the multi-modal image registration and cross-

modality label fusion.

The first major challenge in cross-modality multi-atlas segmentation is to register mul-

tiple atlases from different modalities. Conventional multi-modal registration methods use

the statistical dependency of the intensity values between images for evaluating the align-

ment accuracy. When the image intensity relations are not spatially invariant or there is a

complex intensity relationship, these measures may suffer from local maxima and an incor-

rect global maximum problem. Performing the registration framework based on employing

similarity measures robust to complex intensity relationships requires more complicated

procedures, specifically in the optimization step. The amount of computation will increase

at least linearly with the number of atlases in the database [11].

Cross-modality label fusion is the second major challenge in the multi-atlas segmenta-

tion problem. Existing label combination strategies either use only atlas labels independent

of image intensities or rely on the intensity similarity of each atlas to the target volume.

While existing label fusion methods can achieve very good segmentation accuracy for im-

ages captured from the same modality, extending them for those cases in which the atlases

and the target image are in different intensity mappings is challenging: image brightness

can have highly differing meanings and circumstances in different modes.
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3.3 Objectives

The objectives introduced in Section 1.3 are listed below for reference and the details are

presented in Sections 3.3.1, 3.3.2, and 3.3.3.

• Defining a new similarity measure ρ for multi-modal image registration in Eq. 3.1

• Reducing the multi-modal registration problem in Eq. 3.1 to a mono-modal problem

– Create a structural representation R not relying on the intensity of the images

to be aligned (Im and If )

– Reduce the complexity of the registration problem

• Extending the label fusion problem in Eq. 3.2 to cross modality multi-atlas segmen-

tation

– Extract structural features not depending on the intensity of atlases {An}
– Define a measure ρF to make a cross-modality comparison

3.3.1 Defining a Similarity Measure for Multi-Modal Image Reg-

istration

Section 2.3.1 presents a general framework and components for registering two images,

in either the same or different intensity mappings. To deal with complex intensity rela-

tionship in multi-modal images, one should define an appropriate similarity measure in

3.1 which is robust to those intensity variations. The objective is to define a similarity

measure independent of image intensity based on assessing the image self-similarity S —

the similarity of a pixel to other pixels in an image:

S(I,x) = f
(
I(x), I(x + ∆x)

)
, x + ∆x ∈ N (x), (3.4)

where f reflects the pairwise similarity between the pixels x and x + ∆x in an image I,

while N (x) specifies a neighbourhood around x. The similarity measure in Eq. 3.4 can be

calculated by comparing the self-similarities in each of the images to be aligned:

ρ(I1, I2) = Ψ
(
S(I1,x),S(I2,x)

)
,∀x, (3.5)
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where ρ(I1, I2) measures the proximity between two images I1 and I2 and Ψ denotes a

function to compare two self-similarities. Chapter 4 provides the proposed approach for

measuring the similarity based on image self-similarity. The proposed approach will be

evaluated in a registration framework in Chapter 6.

3.3.2 Reducing the Multi-Modal Image Registration

For the cases where images are from different modalities, defining the objective function in

Eq. 3.1 to measure the image similarity is a challenging part of the problem. Here, the goal

is to count on structural features, which are invariant to image intensity in different modal-

ities, instead of intensity relationship. We aim to find a new structural representation, R,

of different modalities, which will be a common intensity space for images of different

modalities and can reduce the problem of multi-modal registration to a mono-modal one,

so that a simple measure can effectively be employed to assess the degree of alignment.

Reducing the multi-modal problem will result in using simple L1 or L2 distance metrics

that are computationally less expensive than statistical or structural similarity measures.

For the representation R, the registration problem stated in Eq. 3.1 will be reformulated

as

F̂ = argmax
F

ρ
(
Rf , F (Rm)

)
, (3.6)

where Rf and Rm stand for the representation of images If and Im, respectively. This

objective and details about presenting two structural representations are pursued in Chap-

ter 5, Sections 5.2 and 5.3. Structural representation will be employed in a registration

framework and the accuracy of alignment is assessed in Chapter 6. The structural repre-

sentations proposed in Sections 5.2 and 5.3 are presented respectively by Kasiri et al. [68]

and Kasiri et al. [69].

3.3.3 Extending the Problem to Cross Modality Multi-Atlas Seg-

mentation

The problem of label fusion and its conventional solutions are discussed in Section 2.3.2

and is formulated in Eq. 3.2. The goal is to design a label combination method F to form
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a final segmentation result LT , with the assigned labels on the basis of the similarity of

the transformed atlases {A′n} and the target IT . In the weighted voting equation

L̂T (x) = argmax
l∈{1,··· ,L}

∑
i

wi(x)Lli(x), (3.7)

the labels from each atlas are weighted relying on how the similarity of each atlas’ structures

to the ones from the target image. The weighting approach can be either global, which

makes it an atlas ranking approach, or local. The set of weights W (x) = {wi(x)}i=NA
i=1 for

a location x in the target image can locally be assigned as

W (x) =
{
wi(x);wi(x) = ρF

(
A′i(x), IT (x)

)}
, (3.8)

where ρF(I1, I2) measures the similarity of two images I1 and I2 in the label fusion frame-

work. Details about the label fusion paradigm, how to extract structural features, and

measuring the similarity of structures in images are given in Chapter 7 and has been also

presented by Kasiri et al. [70].
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Chapter 4

Similarity Measure

This chapter describes the overall design of the proposed similarity measure for multi-modal

image registration. An introduction to the problem of assessing cross-modal similarity in

medical images is presented. An overview of the multi-modal similarity measures, specif-

ically related works based on mutual information, is presented to illustrate the challenges

and issues that need to be addressed in designing a similarity measure. Following the

described methods and issues, a new similarity measure is proposed based on the concept

of self-similarity, the proximity of patches within an image, motivated by the assumption

that similar structures are more probable to undergo similar intensity transformations1.

4.1 Introduction

In multi-modal image registration, a challenge is to deal with the large spectrum of inten-

sity variations originating from illumination changes, inhomogeneities, or simply imaging

modalities. Since different physical phenomena are measured in different imaging systems,

no functional relation between the image intensities can be defined to map the correspond-

ing elements from one image to another. To deal with this issue, one should define an

appropriate similarity/dissimilarity measure which is robust to those intensity variations.

Conventional multi-modal approaches tend to assess the accuracy of the alignment by

measuring a similarity based on statistical dependency of the intensity values between

1Some text and materials in this chapter have been accepted for publication [71, 72].
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images. Traditionally, mutual information and its variants such as normalized mutual

information (NMI) [18, 19, 20] are used to measure the statistical dependency by assum-

ing a functional or statistical relationship between image intensities [53]. However, these

measures do not consider local structures and would be problematic in those cases with

complex and spatially dependent intensity relations [55, 73]. Conditioning MI calculation

on the spatial information [57, 56, 74], measuring patch similarities [58, 59], estimating

local entropies and aligning the structural representations [75] are some examples of taking

local contextual information into account for registering multi-modal images.

In this chapter, we propose a self-similarity measure based on estimating the similarity

of a point in an image to other points in the same image. A similarity map for the image is

made from the pixel similarities measured based on the patch-based estimation of mutual

information. The similarities corresponding to each pixel are ranked and the higher ones

are considered to describe the pixel of interest. Having a pixel descriptor, independent of

pixel values, will allow us to measure the similarity of two images with different intensity

mappings.

4.2 Related Research

As described in Chapter 2, the registration of a moving image Im to a fixed image If is

formulated as

F̂ = argmax
F

ρ
(
If , F (Im)

)
, (4.1)

where Im, If : Ω −→ I, ρ stands for the similarity measure to assess the degree of alignment,

and F represents the spatial transformation. Dissimilarity measures such as sum of squared

differences (SSD) take their minimum when the images are aligned, therefore, the negative

of dissimilarity measure is used as the similarity in the Eq. 4.1. In the following, an

overview of measuring cross-modal similarity is described.

4.2.1 Mutual Information

As described in Section 2.4.1, mutual information is the traditional measure to evaluate the

similarity of images obtained from different imaging sensors by measuring the statistical
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dependency of images to be aligned. Mutual information for two images I1 and I2 is defined

based on the Shannon entropy as

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2) (4.2)

where H(I1) and H(I2) represent the entropy of random variables I1 and I2, and H(I1, I2)

stands for the joint entropy of these two random variables.

A major drawback of mutual information and its variants for image registration is that

they do not take spatial information into account. This drawback can degrade the quality

of registration when there is an intensity distortion such as a non-stationary bias field in

an MR image [76].

4.2.2 Local Mutual Information

To overcome the problem related to non-locality of MI, one approach is to take spatial

information into account and integrate it in the joint and marginal histogram compu-

tation. One approach is to use spatial kernels as box filters to implement the localised

mutual information (LMI) [56]. In LMI, the average of MI computed over multiple local

neighbourhoods is returned as the similarity measure:

LMI(Im, If ; Ω) =
1

Nb

Nb∑
i=1

MI(Im, If ;N (xi)). (4.3)

where N (xi) ⊂ Ω is the spatial neighbourhood for pixel i and Nb stands for the number of

neighbourhoods.

4.2.3 Conditioned Mutual Information

To deal with the sensitivity of MI to intensity non-uniformities, Studholme et al. [73] intro-

duced a third channel to the joint histogram containing the regional label. Conditioning

MI upon pixel locations was integrated into the MI formulation known as conditional mu-

tual information (cMI) [57]. In this method, one dimension is added to both marginal and

joint histograms representing the location of intensity pairs:

cMI(Im, If |x) = H(Im|x) +H(If |x)−H(Im, If |x) (4.4)
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cMI was shown to be effective in lowering the negative effect of bias fields and yields

a higher registration accuracy. The drawbacks of this approach is still the difficulty of

populating the 3D histogram to compute the similarity measure.

4.2.4 Self-Similarity Measures

The principle of self-similarity, which has first been proposed as non-local means for image

denoising [77], is based on looking at similar image patches across an image. To obtain

a denoised pixel, a weighted average of intensities from all other pixels in the image is

computed. The distance between the patch surrounding the pixel of interest and all other

patches are used as the weight in averaging. In medical image registration, self-similarity

is used to measure the similarity of multi-modal images based on the assumption that

internal pixel-to-pixel relationships are similar in different modalities.

Modality Independent Neighbourhood Descriptor

Self-similarity for the purpose of registration has been first used in the non-local shape

descriptor [78]. Later, Heinrich et al. [79] proposed the modality independent neighbour-

hood descriptor (MIND) based on the idea of non-local means filtering. In this method,

the similarity of every image patch to its neighbours is measured by taking a sum of

squared distances (SSD) followed by an exponential function to transform SSD distances

to a set of multi-dimensional normalised weights that are the descriptor elements. MIND

is robust to the non-functional intensity relations, noise, and bias fields. Mathematically,

MIND is defined by measuring the Euclidean patch distance Dp between the locations x

and x + ∆x and a variance estimate V which is the mean of the patch distances within a

neighbourhood:

MIND(I,x,∆x) =
1

Zn
exp

(
−Dp(I,x,x + ∆x)

V (I,x)

)
, (4.5)

where ∆x is restricted to a spatial search region and Zn is a normalisation constant.

The resulting descriptor has the dimension of the patch size. The similarity measure

is then defined by averaging the SSD of MIND descriptors over different ∆x. So large

neighbourhoods as the spatial search region will lead to further computational burden in

performing the registration.
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Contextual Conditioned Mutual Information

The self-similarity α-MI (SeSaMI) proposed by Rivaz et al. [59] uses local structural in-

formation in a graph-based implementation of mutual information for non-rigid image

registration. Using the α-entropy, a generalization of Shannon entropy, α-MI is calculated

on multiple features of intensities and their gradients. The SeSaMI is a rotation invariant

measure which is also robust to bias fields.

In another work proposed by Rivaz et al. [58], the contextual conditioned mutual in-

formation (CoCoMI) is proposed based on conditioning the estimation of MI on similar

structures. The idea behind this method is based on the limitation in calculating MI, which

is considering only the intensity values of corresponding pixels and not of neighbourhoods

and therefore, losing contextual information. CoCoMI is formulated as

CoCoMI(Im, If ; Ω) =
1

N

N∑
j=1

MI(Im, If ;Mj) (4.6)

where Mj is the similarity map corresponding to pixel j. The similarity map of a pixel

is defined as the set of pixels whose small neighbouring patches are similar to the one

surrounding the pixel of interest. So for every pixel j, the similarity map Mj is obtained

containing the pixels with the smallest dissimilarity to the pixel j. The MI-based similarity

is computed based upon the pixels in the similarity map for each of the N pixels and the

average result is returned as the similarity measure.

4.3 Sorted Self-Similarity

In this section, a self-similarity measure for multi-modal registration is proposed based on

creating a descriptor independent of intensity mapping. A self-similarity map is constructed

for each pixel of an image and unlike the similarity measure based on MIND descriptor,

the patch relationship is defined based on sorted intensity values in the patch. The pixels

with higher similarities with the pixel of interest are marked to transmit the significant

information about that pixel. Therefore, all the pixel relationships will no longer be taken

into account and, as a result, the amount of computation will be significantly reduced.
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4.3.1 Motivation

As mentioned in Section 4.2.4, the motivation behind the self-similarity comes from the

non-local means (NLM) method for image denoising. The NLM approach seeks similar

patches across a noisy image to reduce the pixel noise in the image. The noise-free pixel

is estimated as a weighted average of all other pixels in the image where the weights are

based on calculating the Euclidean distance between the patch surrounding the pixel of

interest, and all other patches in the image. As the distance between patches increases, the

weight decreases. In general form, the denoised pixel NL(i, I) in an image I is calculated

as

NL(i, I) =
∑
j∈Ω

w(i, j)I(j), (4.7)

where w(i, j) is based on the normalised Euclidean distance between the patches surround-

ing pixels i and j. To simplify this approach, similar patches within a smaller non-local

region are only considered, therefore in Eq. 4.7, j ∈ Ω will change to j ∈ N (i), where N (i)

is neighbourhood of i [80].

4.3.2 Patch Similarity

Similar to the non-local means in Eq. 4.7, the self-similarity of an image is calculated

by measuring the pairwise similarity/dissimilarity between patches surrounding the pixels

of interest, where the pairwise similarity/dissimilarity can be interpreted as the weights

w(i, j) between pixels i and j. The straightforward choice of a distance measure Dp(x1,x2)

between two pixels x1 and x2 is the SSD of all pixels between the two patches Px1 and Px2

centred at pixels x1 and x2,

Dp(I,x1,x2) =
∑

∆x∈Np

(
I(x1 + ∆x)− I(x2 + ∆x)

)2
, (4.8)

where Np ⊂ Ω is the neighbourhood of central pixels in the patches Px1 and Px2 .

The issue with using the simple SSD for measuring the patch dissimilarity is that it is

not rotation-invariant, which might be a restriction for those cases where strong rotations

exist. To cope with the rotational deformations, one can use measures that are invariant

to rotation. One approach is to calculate the statistical dependency between patches as a
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measure of patch proximity. Mutual information can be employed to measure the similarity

between patches Px1 and Px2 as

MI(Px1 , Px2) = H(Px1) + H(Px2)−H(Px1 , Px2), (4.9)

where H(Px1) and H(Px2) denote the entropy of intensities in Px1 and Px2 , and H(Px1 , Px2)

is the joint entropy of these two patches. Although MI provides a good measure of sim-

ilarity of signals, it forced further loads to computations of the procedure compared to

calculating distance-based dissimilarities. The marginal and joint histogram of patches

have to be estimated for a large number of pixel comparisons. To reduce the computations

of the MI calculation, we propose to use an intensity based patch-comparison which is

computationally efficient and yields a rotation invariant measure. The patch comparison is

based on the idea of sorted random projection designed for texture classification [81]. Sort-

ing ignores the ordering of elements in the patch Px and clearly yields a rotation invariant

output P̃x:

P̃x = sort(Px). (4.10)

The dissimilarity between two patches Px1 and Px2 can be obtained by measuring the

Euclidean distance between P̃x1 and P̃x2 according to Eq. 4.8:

D̃p(I,x1,x2) =
∑
∆x

(
P̃x1(∆x)− P̃x2(∆x)

)2
. (4.11)

Given the patch dissimilarity measurement, we are able to form a descriptor for each

pixel x defined based on the pixel dissimilarity to all other pixels xi in the r-distance

neighbourhood of x in the image. Therefore, the descriptor D at pixel x is constructed

based on the patch distance measured in Eq. 4.11 such that

D(x, i) = D̃p(I,x,xi), xi ∈ Nr(x), (4.12)

where Nr(x) represents the r-distance neighbourhood of pixel x. Fig. 4.1 shows the self-

similarity measurement for a pixel in the three MR modes: T1, T2, and PD. The neigh-

bourhood is shown by a red box which specifies the spatial search region of the central

pixel. Patches with size 11×11 are used to compute the patch dissimilarities. This figure

illustrates three different intensity mappings in which a pixel will have similar intensity-

relationship with its surrounding pixels using the proposed self-similarity measure.
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4.3.3 Patch Selection

At this step, the objective is to find similar structures in the image by choosing the most

similar pixels to the pixel of interest. Therefore, the M pixels in the neighbourhood Nr(x)

with the lowest dissimilarity to the pixel of interest x are identified and selected to carry

the most significant information about self-similarity:

Dsort(x) = sort
i

(
D(x, i)

)
, (4.13)

S(I,x) = χ
(
Dsort(x),M

)
, (4.14)

where χ picks the first M elements in Dsort(x) and returns the indices of those pixels in the

self-similarity map S(I,x). By applying an ascending sort operation to the representation

D at pixel x and picking the first M elements, we try to only consider the M most similar

patches to Px and reduce the number of pixels required to describe the pixel x and carry

self-similarity information.

To determine M corresponding to the pixel x, we look at the average dissimilarity of

that pixel to all other pixels in the spatial search region Nr(x). The dissimilarity values

less than this average value are considered to represent the most significant ones. For pixel

of interest xi, the number of most significant dissimilarities M(xi) are obtained as

M(xi) =
∣∣{Dsort(xi, k);Dsort(xi, k) < D̄sort(xi)}k=N

k=1

∣∣, (4.15)

where D̄sort(xi) is the average of the elements in Dsort(xi), | · | reflects the cardinality of a

set, and N denotes the number of pixels contributing to the similarity measure. To have

a unified M for all of the N pixels, the average of M(xi) over i is used to set the number

of most significant patches:

M̄ =
1

N

N∑
i=1

M(xi). (4.16)

By choosing the M most significant elements of R, we will be able to extend the search

region as far as the registration performance allows.
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Algorithm 1 Outline of the proposed self-similarity approach.

(1) Select N random samples over the image to calculate the overall similarity measure.
(2) Obtain patch similarity D̃p in a neighbourhood Nr (Eq. 4.11).
(3) Construct a representation S for each of the N pixels by choosing the most significant
patch similarities (Eq. 4.12–Eq. 4.14).
(4) Compare pixel self-similarities in Im and If to form a similarity matrix SM (Eq. 4.18).
(5) Average the similarity matrix SM to form the scalar similarity measure (Eq. 4.19).

4.3.4 Multi-Modal Similarity Measure

At this stage, it is required to compare the self-similarity maps obtained from the moving

image Im and the fixed image If using a function Ψ and find the similarity measure ρ:

ρ(Im, If ) = Ψ
(
S(Im,x),S(If ,x)

)
,∀x. (4.17)

As described in Section 4.3.3, the self-similarity of each pixel can be obtained using the

set of equations from 4.10 to 4.14. The self-similarity, which can be considered as a pixel

descriptor, is obtained for pixel x in each of the moving and fixed images and the result is

compared by employing mutual information:

SM(Im, If ; x) = MI
(
S(Im,x),S(If ,x)

)
. (4.18)

The self-similarity is measured for N randomly selected pixels in each of the moving and

fixed images. As the number of pixels increases, a better estimation of image similarities

will be attained. To attain a scalar as the similarity measure required for the optimisation

in Eq. 4.1, SM is averaged over all N pixels as

ρ(Im, If ; Ω) =
1

N

N∑
i=1

SM(Im, If ; xi). (4.19)

The overall step-by-step algorithm for obtaining the similarity measure is summarised

in Algorithm 1.

4.4 Summary

In this chapter, we have focused on the similarity measure for multi-modal image registra-

tion. A review of the classical multi-modal similarity measures along with the challenges
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regarding the non-locality was presented. An overview of using the self-similarity in recent

literature was presented to address the issues related the classical approaches. In this line

of research, we have presented a similarity measure based on assessing the self-similarity of

images to be aligned. The self-similarity is measured in a patch-based paradigm where each

pixel in the image was described by the pixel similarity to the most similar pixels in a neigh-

bourhood. By employing the sorting operation the ordering of patch pixels were ignored

and thus the a rotation invariant descriptor was obtained. Unlike the common multi-modal

registration techniques, such as mutual-information, that utilise statistical dependency, the

new measure is able to take the internal structural relationship into account.

41



T1-MRI

T2-MRI

PD-MRI

X

X

X

X

X
X

Original Image Nr(x) D(x, i)

Figure 4.1: Self-similarity in different modes of MR images: The dissimilarity of a pixel x
and its neighbouring pixels xi ∈ Nr(x) is measured to provide the pixel descriptor D(x, i).
The pixel x and its neighbourhood Nr(x) are specified by a red X in a red box. In the
resulting pixel descriptor, darker areas show more similar pixels to the pixel of interest.
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Chapter 5

Structural Representation

This chapter describes in detail the overall design of structural image representation to

evaluate the similarity of multi-modal images. The concept of modality independent rep-

resentation based on structural information is explained in Section 5.1. In Section 5.2, an

overview of the image representation based on complex phase and amplitude using com-

plex wavelet transform is presented. An image representation based on a combination of

complex wavelet representation and gradient information is proposed for the application

of multi-modal image registration. Independent of the complex wavelet representation,

Section 5.3 presents the entropy-based structural representation, and the issues regarding

the image entropy. A new approach is proposed based on a modification of entropy image

representation to better represent the structures in the image. The main contributions

in this chapter are: 1) the introduction of a new structural representation based on a

combination of complex wavelet and gradient information to improve the representation

of structural characteristics as described in Section 5.2.3, and 2) the modification of struc-

tural representation based on image entropy to improve the response sensitivity to local

structures, as described in Section 5.3.31.

1Some text and materials in this chapter have been previously published [68, 69].
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5.1 Modality Independent Image Representation

Structural information has been used in the literature of multi-modal registration problem

for improving the robustness of similarity measures to image intensity variations [60, 61,

62, 82, 83]. The structural information are the image characteristics, such as edges and

corners, that are intensity-independent and similar at different modalities of the same

scene.

The combination of edge orientation information and intensity information in an entropy-

based objective function was utilised for registering images captured from different sensors,

such as visible and infra-red (IR) images [61]. De Nigris et al. [82] proposed a registration

method based on the alignment of gradient orientations with minimal uncertainty. Later, a

multi-resolution approach was proposed based on employing the dual-tree complex wavelet

transform (DT-CWT) to align IR and visible images [60]. In this approach, accurate es-

timation of registration in finer levels is obtained using edge information in coarser levels.

Cross-correlation and mutual information are used to measure the similarity in the coarser

and finer levels, respectively. Complex phase order has been used as a similarity measure in

registering MR with CT images in [62]. Feature-level information fusion method based on

Gabor wavelets transformation and independent component analysis (ICA) has been used

in inter-subject multi-channel registration by Li, et al. [83] to combine the complementary

information that characterize tissue types in different modalities.

Registration methods based on the scale-space representations try to analyse an image

at various resolutions [84, 85, 86]. Texture features obtained from different scales of resolu-

tion can reveal similar structural attributes between the images to be aligned. Scale-based

registration for studying multiple sclerosis in MR images was presented based on the local

scale value assigned to each voxel [84]. This scale value for a voxel of interest was defined

locally as the radius of the largest ball centred at that voxel with homogeneous intensities.

In another work by Saha [85], a local morphometric parameter called tensor scale was pre-

sented to attain a unified representation of size, orientation, and anisotropy. A multi-scale

representation for multi-modal registration has been proposed by Li, et al. [86] that works

on the basis of applying the ICA at textures extracted from each length scale, spectrally

embedding the ICA components, and identifying and combining the optimal length scales

using MI to perform the registration.
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Structural information is utilized to transform images from different modalities to a

common mode and therefore transform the multi-modal problem to a mono-modal regis-

tration. Therefore, the multi-modal registration problem will be

F̂ = argmax
F

ρ
(
Rf , F (Rm)

)
, (5.1)

where Rf and Rm are respectively the image representation for If and Im. Reducing the

multi-modal problem to a mono-modal one results in using simple L1 or L2 distance metrics

that are computationally less expensive than statistical or structural similarity measures.

Usage of gradient intensity, ridge, and estimation of cross correlating gradient directions

are examples of creating a structural representation of input images for registration [64].

Structural representation based on entropy images followed by measuring SSD has been

proposed [63].

For images being represented with the same intensity values, sum of absolute differences

(SAD) or SSD can be good choices for the distance measure. Registration of images with

complex intensity relationships requires more complicated similarity/dissimilarity mea-

sures. Correlation coefficient, correlation ratio (CR), and mutual information are widely

used in this case [53]. The objective is to find structural representations of multi-modal

images, R, that are invariant to the image intensity. Therefore, simple measures based on

intensity difference can be used to assess the image similarity.

5.2 Complex Wavelet Representation

Traditional wavelets became very conventional tools in image processing, however, they are

shift variant transforms and suffer from a poor resolution in orientation [87]. Alternative

multi-resolution transforms with better orientation representations have been proposed

that fix the shift invariance problem by being over-complete [87, 88, 89]. Among them,

Gabor transform as a band-pass multi-resolution transform provides localised frequency

and orientation representation and is widely used for image feature extraction and texture

analysis. Complex-valued Gabor filters have gained considerable attention in texture rep-

resentation and discrimination since they can well approximate characteristics of receptive

fields in human visual system [90, 91].
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Gabor texture features have been used successfully for registering both mono-modal and

multi-modal images as they are capable of extracting information across different scales

and orientations. Gabor filters are capable of capturing local edge and texture information

and create local frequency representations from images [92]. Ou et al. employed Gabor

filters in deformable image registration, in which the filter responses were used to build

the pixel descriptor [93]. Gabor filter responses have been also used to transform images of

different modalities to a common space [92, 94]. These image representations in a common

space are robust to contrast variations and edge magnitude.

In the following, details about the complex wavelet representation, its characteristics

and limitations, along with the proposed image representation are introduced.

5.2.1 Complex Amplitude and Phase

The general complex representation of an image I based on an over-complete wavelet at

scale s and orientation θ can be formulated as

Υs,θ(x) = αs,θ(x) exp
(
jφs,θ(x)

)
, (5.2)

where αs,θ(x) and φs,θ(x) are the amplitude and phase of the complex wavelet coefficients

at location x.

One of the most popular complex wavelet transforms is the Gabor complex wavelet

which has been used widely for extracting features from images [87, 90, 95]. The impulse

response of a Gabor filter can be viewed as a sinusoidal wave plane modulated by a Gaussian

envelope. For a pixel coordinate x = [x y]T and particular frequency ω0 = [ωx0 ωy0 ], the

impulse response of a Gabor filter γ(x, y) is given by

γ(x, y) = fs(x, y)fg(x, y), (5.3)

where fs(x, y) is a complex sinusoid known as a carrier and fg(x, y) is a 2D Gaussian

function as

fs(x, y) = exp
(
−2πj(ωx0x+ ωy0y)

)
, (5.4)

fg(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
, (5.5)
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Figure 5.1: 2D Gabor complex wavelets in spatial domain with different orientations: the
even symmetric component of the Gabor filters are shown when θ ∈ [0, π].

where (σx, σy) specifies the spread of the Gaussian envelope.

The orientation of complex Gabor filter is determined by the center frequencies ωx0
and ωy0 . Fig. 5.1 illustrates eight different orientations of a Gabor filter in spatial domain.

In this figure, the even symmetric component of the Gabor filters are shown when the

orientation θ varies in the range [0, π].

One of the benefits of the complex Gabor filter is that it can reach the optimal com-

promise between the localisation in the spatial and frequency domains, meaning that any

arbitrary bandwidth used to construct the filter can be optimised with minimal spatial

extent. However, Gabor filters are restricted to a non-zero mean for bandwidths over one

octave and the response of the filter will depend upon the mean value of the signal [90]. For

this reason, Gabor complex wavelets are limited to bandwidths below one octave and as a

consequence lead to an inefficient representation of a signal with broad spectral informa-

tion. To address this problem while maintaining the optimal spatial-frequency resolution,

one effecting approach is to use Log-Gabor complex wavelet transform [90]. The Log-Gabor
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transform in the frequency domain under the polar coordinate can be expressed as

Γ(ω, θ) = exp

[
−
(

log(ω/ω0)
)2

2
(

log(σω/ω0)
)2

]
exp

[
− (θ − θ0)2

2σ2
θ

]
, (5.6)

where (ω, θ) show the polar coordinates, the (ω0, θ0) are the coordinates of the center of

the filter, and (σω, σθ) determine the bandwidths in f and θ. It can be seen that the DC

component of the Log-Gabor filter approaches zero value.

The amplitude αs,θ(x) and phase φs,θ(x) in Eq. 5.2 for the Log-Gabor complex wavelet

γs,θ(x) are specified using the odd-symmetric γos,θ(x) and even-symmetric γes,θ(x) pairs at

scale s and orientation θ:

αs,θ(x) =

√(
I(x) ∗ γes,θ(x)

)2
+
(
I(x) ∗ γos,θ(x)

)2
, (5.7)

φs,θ(x) = tan−1
(I(x) ∗ γes,θ(x)

I(x) ∗ γos,θ(x)

)
, (5.8)

where ∗ denotes the convolution operator.

5.2.2 Phase Congruency

One of the first complex wavelet representations of images was designed by Kovesi based on

the congruency of Fourier components rather than the intensity gradient in edges [96, 97].

Based on this phase congruency (PC), the feature is perceived at any angle where the

Fourier components are maximally in phase. Fig. 5.2 presents a clear edge in a square

wave and its Fourier components which are all in phase. Physiological and psychological

evidences also confirm that the phase congruency is able to provide a simple model to

imitate the human visual system for detecting and identifying edge and corner features in

an image [98].

Based on the definition by Kovesi [96], the phase congruency of an image is computed

using an over-complete Log-Gabor complex wavelet transform as

PC1(x) = max
θ∈[0,2π]

∑
s αs cos(φs(x)− θ)∑

s αs + ε
, (5.9)
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Figure 5.2: Fourier components of a step in a square wave: Fourier components and
the approximated signal based on the first five terms of the Fourier series are presented
respectively by the dashed color lines and a solid black line. The phase congruency of all
components can be seen at the edge specified by the vertical red dashed line.

where s is the wavelet scale and ε is a small constant used to avoid division by zero. The

value θ that maximises Eq. 5.9 is the amplitude weighted mean phase across all scales

(θ = φ̄(x)). As an alternative to this formulation, maximum phase congruency can be

found by looking at the peaks in the local energy function [99]. The local energy function

E(x) at location x is defined as

E(x) =
√
M2

o (x) +M2
e (x), (5.10)

where

Me(x) =
∑
s

I(x) ∗ γes(x), (5.11)

and Mo(x) is computed as

Mo(x) =
∑
s

I(x) ∗ γos(x). (5.12)

Therefore, the phase congruency will be

PC2(x) =
E(x)

ε+
∑

s αs(x)
· (5.13)
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The ratio in Eq. 5.13 equals one if all the Fourier components are in phase and takes its

minimum of zero when there is no phase coherence.

To increase the robustness of the representation to the low level image noise and improve

the localisation of structural information, a modified formulation for phase congruency was

proposed by Kovesi [97]:

PC3(x) =

∑
sW

PC(x)bαs(x) cos
(
∆φs(x)

)
− | sin

(
∆φs(x)

)
| − Tr)c∑

s αs(x) + ε
(5.14)

∆φs(x) = φs(x)− φ̄(x). (5.15)

In Eq. 5.14, ∆φs(x) is the phase deviations from the mean at scale s, the threshold Tr is

to eliminate the energy values that are estimated as the noise influence, and b·c denotes

a truncation operator that sets all the enclosed negative quantities to zero. W PC(x) is

a weighting function that is constructed to decay the filter response where its spread is

narrow.

To combine data from several orientations, one should note that each orientation should

contribute to the final representation in proportion to the energy of that orientation and

the normalization will be based on the total energy over all orientations and scales. This

produces the following equation for the phase congruency based on a filter applied on scales

s and orientation θ:

PC3(x) =

∑
θ

∑
sW

PC
θ (x)bαs,θ(x) cos

(
∆φs,θ(x)

)
− | sin

(
∆φs,θ(x)

)
| − Tr)c∑

θ

∑
s αs,θ(x) + ε

· (5.16)

5.2.3 Representation Based on Complex Wavelets

An important issue in the design of the complex phase representation is related to dealing

with images with poor structural contrast. Images captured from some certain imaging

modalities, such as PD mode in MR imaging, do not provide enough sharpness where the

structures exist. The poor contrast may cause difficulties in extracting and distinguishing

fine structural details that can be an important issue in measuring the detailed structural

dissimilarity between two images in an alignment procedure. Fig. 5.3 illustrates how the

complex wavelet representation Eq. 5.16 behave in different conditions of imaging modali-

ties. Three modes of MR imaging, T1, T2, and PD modes from the RIRE database [100]
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T1 T2 PD

Figure 5.3: Complex wavelet representation for images with different structural con-
trast: The top row shows the original MR images in T1, T2, and PD modes from RIRE
database [100] and the second row shows the PC computed for the three modes. The com-
plex wavelet representation by phase congruency in Eq. 5.16 yields a poor representation
of details with images having low structural contrast, which is particularly the issue in the
PD mode compared to other two modes.

are shown along with the corresponding structural representation. As can be seen, the fine

details in structures are poorly represented when different structures in the original image

are presented in a low contrast. As the structural contrast is decreasing in a mode, the

representation will not be able to distinguish the edges between tissues and regions. This

issue is more clear in the PD mode of MRI particularly in the regions distinguishing the

gray and white matter.

One approach to address the issues associated with the poor structural contrast is to
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increase the response sensitivity of the representation to structural characteristics. The

approach is to force more emphasis on the finer level of details in the image and integrate

the results with the features captured by complex wavelet transform. Aside from phase

congruency, which is used to extract highly informative features from the image, the gra-

dient of the image is utilised as the secondary feature to encode contrast information. The

traditional method to extract edge information from an image is to compute the image

gradient [24], which can be expressed in the form of convolution masks. Here, the common

Sobel operator [24] is used to extract the gradient

Gx(x) = 1
4

1 0 −1

2 0 −2

1 0 −1

 ∗ I(x)

Gy(x) = 1
4

 1 2 1

0 0 0

−1 −2 −1

 ∗ I(x),

(5.17)

where Gx and Gy are the partial derivatives along the x and y directions. Then, the

gradient magnitude is defined as

Gm(x) =
√
G2
x(x) +G2

y(x). (5.18)

The final stage of extracting structural features is to combine features captured by

complex wavelet representation with gradient-based information. After applying intensity

normalisation on PC and gradient magnitude, a combination strategy in the following

generic form can be used

Rc(x) = ϕ
(
ϕ1

(
PC(x)

)
, ϕ2

(
Gm(x)

))
, (5.19)

where ϕ1, ϕ2, ϕ, and Rc are respectively the function applied on the phase congruency,

gradient magnitude of the image, fusion function, and the resulting image representation.

Since images have different intensity mappings, the edge information obtained by gra-

dient magnitude may be different in terms of contrast and brightness. Therefore, after

having edges extracted, a step of intensity normalization followed by histogram equaliza-

tion can help to equalise the edge representation [24]. The result of histogram equalization

will be an image, named G̃m, which can be calculated for each intensity value Gm(x).
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The goal is to fuse structures extracted by PC and edge information in gradient image

in such a way that pixel locations with high edge information will be strengthened in the

PC image. Therefore, the combination strategy is proposed to be in the following format:

Rc(x) = G̃m

a
(x) · PCb(x), (5.20)

where 0 ≤ G̃m(x) ≤ 1, 0 ≤ PC(x) ≤ 1, and (a,b) are constant parameters that are used

to adjust the importance of phase congruency and edge information. One can control the

contribution of PC and gradient magnitude in the resulting structural representation by

adjusting factors a and b. Fig. 5.4 shows the result of applying gradient magnitude on the

PC result for a T1 brain slice from BrainWeb in two different cases with (a = 0.5, b = 1)

and (a = 1, b = 1). As can be seen in this figure, with a < 1, more edge information as

well as more blurry and noisy effects will be preserved.

Fig. 5.5 shows the resulting structural representation for a slice of BrainWeb MR data

in three modes of T1, T2, and PD using the proposed representation. The parameters

in this test are set to a = 0.5 and b = 1. As is shown in this figure, significant edge

information which is common in all modalities is preserved and the intensity information

which is not consistence across modalities is ignored.

5.3 Entropy-based Representation

As discussed in Section 5.1, to reduce the multi-modal image registration problem to a

mono-modal one, an image representation is required to be independent of intensities for

encoding the image. Section 5.2 discussed about using complex wavelets to construct a

form of image representation. As mentioned in Section 5, various methods have been pro-

posed in the recent literature to transform the problem of multi-modality into mono-modal

registration. Employing image entropy is one of the recent methods that work successfully

in structural representation for multi-modal image registration [63]. In this section, an-

other image representation, independent of the method in Section 5.2, is proposed based

on measuring the local entropy to measure the local information content that is invariant

to intensity. Entropy-based representation is constructed by utilizing a modified version

of entropy images in a patch-based manner. Fig. 5.6 illustrates the overall procedure of

constructing the structural representation using the entropy images.
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T1 Image Phase Congruency

Fused Image (a = 0.5, b = 1) Fused Image (a = 1, b = 1)

Figure 5.4: Effect of applying gradient magnitude on PC for a slice of T1 brain MR image.
The combination is performed using Eq. 5.20 and the results for two different a values
(a = 0.5 and a = 1) are compared. For lower a value (a = 0.5), more edge information as
well as more blurry and noisy effects will be preserved.

The information required for constructing the representation are captured from patches.

Consider patches Px defined on the local neighbourhood N (x) centred at x. The objective

is to find a mapping fR : Px −→ R(x) such that R(x) represents the pixel x based on

the information in the surrounding neighbourhood N (x). The function f is desired to be
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T1 T2 PD

Figure 5.5: Structural representation for different MR modes based on a combination of
phase congruency and gradient information. A slice of brain scans in T1, T2, and PD modes
and the corresponding structural representations are shown in the first and second rows
respectively. Significant edge information which is common in all modalities is preserved
and the intensity information which is not consistent across modalities is ignored.

defined in a way that it could meet the following requirements:

- Similar patches should lead to similar representations

‖P1 − P2‖I < ε⇒ ‖fR(P1)− fR(P2)‖I < ε′. (5.21)

The criteria to choose ε and ε′ rely on the definition of the distance norm ‖ · ‖I
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Figure 5.6: Overview of the modified entropy approach for constructing the structural
representation: Patch-based calculation image histogram followed by a modified version of
entropy results in the structural representation.

to determine the patch dissimilarity. Here, the patch dissimilarity is based on the

intensity-based comparison between patches.

- Patches with the same structures should lead to similar representations

‖P1 − P2‖S < ε⇒ ‖fR(P1)− fR(P2)‖I < ε′. (5.22)

The norm ‖ · ‖S here represents the dissimilarity based on structural comparison.

- Different patches should lead to different representations

‖P1 − P2‖S > τ ⇒ ‖fR(P1)− fR(P2)‖I > τ ′. (5.23)

In other words, when the patch dissimilarity exceeds a specified threshold τ , the

dissimilarity between the representations is expected to be greater than a certain

level τ ′.

5.3.1 Entropy Image

Wachinger et al. in [63] presented to use image entropy as the structural representation

for registration of multi-modal images. To form the image representations, the idea is to
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extract structural information of each patch based on the amount of information content

in the patch. The bound for the amount of information in the patch Px can be represented

by Shannon’s entropy which is defined as

H(Px) = −
∑

x∈N (x)

p(I = I(x)) log
(
p(I = I(x))

)
, (5.24)

where the random variable I takes the pixel intensity values in N (x) with possible values

in I characterized by the patch histogram p. Calculating the entropy on the image grid Ω

results in an image representation Re

Re(x) = H(Px). (5.25)

To obtain the patch histogram p, Parzen windowing method for the non-parametric PDF

estimation is used that yields a better estimation for small number of samples in the smaller

patch sizes. Based on the entropy representation, as the variation in the patch intensity

increases, the representation reflects higher entropy and a higher value will be assigned to

the centre of the patch. Fig. 5.7 presents an example of patch-based entropy representation

for a brain scan obtained from the BrainWeb database [33] while the patch size is chosen

to be 11× 11. Patches with different structures are shown to illustrate that patches with

higher intensity variation will take higher entropy value to represent the patch structures.

5.3.2 Problem of Distinctiveness

The entropy is able to reflect the information about the patch as a representation for the

pixel centring the patch. According to criteria explained for having the representation, we

can see that the first requirement is fulfilled, since small changes in the patches lead to small

changes in the entropy as well. The second requirement guarantees the same structures to

have the same representations. This requirement is also satisfied since the difference in the

intensity mapping of the images will result in a permutation in the histogram bins which

does not affect the entropy value. However, the third requirement is not fulfilled since

it is possible that patches with different structures can end up with the same histogram

and therefore the same entropy value. This concept is shown in Fig. 5.8, in which patches

encoded in the same intensity mappings but with different structure take the same value

as entropy.
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Original image Entropy image

H(Px1) = 5.72 H(Px2) = 5.21 H(Px3) = 3.84

Figure 5.7: Entropy as a representation for image structures: The first row shows the result-
ing entropy representation of a T1 weighted MR image from the BrainWeb database [33].
The second row illustrates that higher variations in the patch intensity results in higher
entropy values.

Weighting patch histogram based on spatial information forces a constraint in the

calculation of patch entropy resulting in differentiating different patches with the same

information content. A Gaussian weighting kernel defined as follows is employed for this

purpose

G(x) = Gσ(‖x− x0‖), (5.26)

where G(x) is centred at x0 with variance σ. Therefore, the entropy for the patch Px will

be modified to

H̃
(
I(Px)

)
= −

∑
x∈Px

G(x)p
(
I = I(x)

)
log
(
p
(
I = I(x)

))
. (5.27)

The discrimination between patches is not optimal since we are not assigning a unique
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A C

Figure 5.8: Problem of distinctiveness for entropy-based image representation: two sample
patches with different structures have the same entropy (H = 2.24) and are represented
with the same value.

P1 P2 Mask WP1 WP2
B A Am Cm

HP1 = 2.24 HP2 = 2.24 HWP1 = 4.05 HWP2 = 3.73

Figure 5.9: Applying a location dependent weighting to differentiate patches with different
structures and the same entropy: P1 and P2, with the same structure and entropy, are
encoded in two different intensity mappings. Applying a Gaussian kernel (Mask) to the
patches results in WP 1 and WP 2 with different entropy values.

weight at each patch location. However, conditioning the histogram on the spatial infor-

mation helps to reduce the number of different structures with the same entropy. Fig. 5.9

shows how weighting the patch histogram by using a Gaussian mask helps to differentiate

patches with different structures and the same entropy. In this figure, patches P1 and P2,

which have the same structure but are encoded in two different intensity mappings, take

the same value as entropy value of H = 2.24. Patches WP1 and WP2 are the weighted

patches corresponding to P1 and P2 that can be differentiated by two different entropy

values of HWP 1 = 4.05 and HWP 2 = 3.73.
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5.3.3 Modified Entropy Representation

Patch information is mainly concentrated on structures and edges, whereas smooth areas

contain less information in the patch. Edges, corners, and generally important structures

are mostly pixels with lower probability and smooth areas are represented with the higher

probability values in the patch histogram. We propose to focus on structures and highlight

the pixels with higher uncertainty while decreasing the contribution of those pixels in the

patch that are located in the smooth areas.

For calculating the patch entropy in Eq. 5.27, the weighted pixel information is defined

as

h(y) = −y log(y), (5.28)

where y = p
(
I = I(x)

)
. In Fig. 5.10(a), h(y) is shown by the blue curve. When y

represents the histogram for the patch intensity values, smoother areas will take larger

values of y, and edges and structures will take smaller ones. To lessen the contribution of

smoother areas and highlight edges and structures, one way is to use a function ψ to map

the probability values of the patch histogram such that ψ(y) > y for larger ys, and ψ(y) < y

for small ys. Therefore, the weighted pixel information in Eq. 5.28 will be modified to

h(y) = −y log(ψ(y)). (5.29)

An example of function f is shown in Fig. 5.10(b). The green curve in Fig. 5.10(a)

is the result of applying such function on the patch histogram. As is illustrated in this

figure, applying ψ increases the contribution of pixels with lower probability and highly

weakens the pixel contribution in the smooth areas compared to calculating the conven-

tional entropy. Having these characteristics for the function ψ(.), it should be an ascending

function defined in the range of [0, 1] with lower derivatives on the two endpoints of the

range [−1, 1] and a linear behaviour in the middle of the range. The function ψ, which

is able to satisfy those characteristics, can simply be chosen as an m–th order polynomial

function with symmetry property:

ψ(y) =
m∑
i=0

aiy
i. (5.30)
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Figure 5.10: Applying function f on the patch histogram. (a) Weighted pixel-information
before and after applying the function ψ on the patch histogram. Applying f makes the
curve tilt towards the vertical axis and highly attenuates its value around y = 1, where we
have higher intensity probabilities. (b) Function ψ to apply on the patch histogram, which
has almost linear behaviour around center and a smooth slope around boundaries.

.

As an example of such function, we chose a polynomial function with order m = 5. The

resulting polynomial function, which is shown in Fig. 5.10(b), will be:

ψ(y) = 6y5 − 15y4 + 10y3. (5.31)

Finally, the modified entropy with respect to Px will be calculated by applying the proposed

function ψ and weighting kernel G as

H̃
(
I(Px)

)
= −

∑
x∈Px

G(x)p
(
I = I(x)

)
log

(
ψ
(
p
(
I = I(x)

)))
, (5.32)

which is proposed as the new representation, RMe(x), for the pixel located at x

RMe(x) = H̃
(
I(Px)

)
. (5.33)

Fig. 5.11 shows the resulting structural representation of different MR modes for a

slice of a brain scan from simulated BrainWeb MR data [33]. As indicated in this figure,
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T1 T2 PD

Figure 5.11: Structural representation for different MR modes. The first row shows a slice
of brain scans in T1, T2, and PD modes from BrainWeb database. Second row shows the
structural representations RMe associated with the first row images.

structural representation is capable of changing the problem of multi-modal registration

to a mono-modal one by applying the mono-modal distance metrics on the representation

of images.

5.4 Summary

In this chapter, two structural representations for registering multi-modal images were

proposed. The proposed methods were designed to reduce the multi-modal problem to a

mono-modal one and by representing images from multiple modalities in a new intensity

mapping, so that a mono-modal registration framework can be employed for the alignment.
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The first proposed approach extracts structural features based on information from over-

complete complex wavelet transform along with gradient magnitude of images. Gradient

information was integrated with the complex wavelet response to make an emphasis on

the finer level of details. A combination strategy was designed to fuse the information

captured by the phase congruency and the gradient magnitude.

The second proposed approach introduced a structural representation which was gen-

erated in a patch-based framework by measuring the information content in the patches.

The conventional entropy representation was modified to increase the sensitivity of the

representation to important structures in the image. Since entropy cannot provide a dis-

tinct representation for each structure, a weighting mask was used to condition the mea-

surement on the spatial information. The modification in measuring the patch entropy

was designed to decrease the contribution of smooth areas and highlight the edges in the

entropy measurement. The proposed approaches, which are aimed to transform the multi-

modal registration problem to a mono-modal problem, will be assessed in Chapter 6 in a

framework for registering images from different modalities.
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Chapter 6

Multi-Modal Image Registration

This chapter presents the results of performance evaluation for the similarity measure

proposed in Chapter 4 and structural representations proposed in Chapter 5. Proposed

methods are employed in separate frameworks of registering multi-modal images. Brain

scans from CT and MR images are used for the assessment. Rigid and non-rigid defor-

mations on both simulated and real brain scans are considered to assess the proposed

methods1.

6.1 Introduction

As discussed in Section 4.1, the registration problem is formulated as

F̂ = argmax
F

ρ
(
If , F (Im)

)
, (6.1)

where Im and If are the moving and fixed images. The objective is to find a transformation

F that maximises the similarity ρ between If and transformed Im. Based upon the problem

description in Chapter 3, the focus is on registering images from multiple modalities. This

problem was tackled from two different points of view.

First, in Chapter 4, a similarity measure was proposed to assess the degree of alignment

for multi-modal image registration. The proposed similarity measure works based on the

1Some text and materials in this chapter have been previously published [68, 69] or accepted for pub-
lication [71, 72].
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assumption that internal pixel-to-pixel relationships are similar in different modalities. The

internal similarity, known as image self-similarity, is measured for each of the images to be

aligned and compared to form the similarity measure in Eq. 6.1. The self-similarity of an

image is estimated by assessing the proximity of image pixels in a patch-based paradigm.

In the second way of tackling the registration problem, two approaches of structural

representation were proposed in Chapter 5 to reduce the multi-modal problem to a mono-

modal one. The first approach, in Section 5.2, makes use of a combination of gradient

information and undecimated wavelet complex representation to extract structural features

of images and represents an intensity-independent representation. As an alternative way of

constructing structural representation, the second approach was presented in Section 5.3

based on using localised entropy in images. A modified entropy formulation was proposed

to extract structural information from images of multiple modalities.

Experiments have been designed to assess the accuracy of multi-modal registration

for the proposed methods. In the experiments, the registration accuracy is quantitatively

assessed by the average pixel displacement, which measures the Euclidean distance between

the pixel positions in the transformed image and their corresponding positions in the ground

truth [101]:

τ =
1

|Ω|

|Ω|∑
i=1

(xi − x′i)
2, (6.2)

where xi and x′i are respectively the position of the i-th pixel defined on the image grid Ω

in the ground truth and aligned images.

In this chapter, the methods proposed in the previous chapters are used in a frame-

work of multi-modal registration and experiments in both rigid and non-rigid registrations

are preformed to evaluate the performance of the methods. Registering multi-modal im-

ages from CT and different MR modes are employed and the registration accuracy are

quantitatively evaluated using the measure τ in Eq. 6.2.

6.2 Experimental Data

In order to evaluate the performance of the proposed similarity measure in Chapter 4

and the structural representations presented in Chapter 5, the registration procedure is
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performed in independent experiments conducted on simulated and real brain scans. The

performance of each registration method is evaluated by comparing the estimated trans-

formations to the gold standard transformations. The gold standard transformation is

obtained by artificially deforming the image. This difference of deformations by the arti-

ficial deformation and the estimated deformation by the registration method is quantified

using the average pixel displacement, which is defined as the distance of each pixel position

from its true position in the gold standard and averaged over all pixels employed in the

registration.

Simulated Data: Simulated scans are obtained from the BrainWeb simulated brain

database [33] containing a set of realistic MR brain volumes produced by an MRI simulator.

3D MR scans are provided in T1, T2, and PD modes at a resolution of 1mm3 with different

levels of noise and intensity non-uniformity.

Real Data: Real data are from the Retrospective Image Registration Evaluation (RIRE) [100]

real database. The RIRE database provides real brain scans in different modalities of

T1/T2/PD-weighted MR, PET, and CT scans. The ground truth alignment is also pro-

vided in this database.

6.3 Self-similarity measure

The self-similarity measure proposed in Chapter 4 is used in a registration framework to

assess the multi-modal registration accuracy. According to Section 4.3.4, the similarity

SM corresponding to every pixel x in the transformed moving image FIm and the fixed

image If is measured given the self-similarities S(Im,x) and S(If ,x) as

SM(Im, If ; x) = MI
(
S(Im,x),S(If ,x)

)
, (6.3)

where MI is used to compare the self-similarity of the two images. Parzen windowing [102]

is used to estimate the intensity histogram in the MI calculation. The self-similarity S
of an image at pixel x is obtained based on patch-based comparing of pixel x and other

pixels in neighbourhood Nr(x). The patch-based comparison was suggested to be either
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Figure 6.1: Comparing the usage of MI and sorted patch intensity comparison in measuring
self-similarity: similarity is measured for a pair of T1-T2 MR images from BrainWeb
database when one image rotated by θ.

based on measuring MI of patches or the SSD of sorted patches P̃ as described in Eq. 4.9

to Eq. 4.11. Fig. 6.1 describes a simple test to show how the two approach of patch-

comparison can detect rotational deformations. The similarity for a 2D T1-T2 comparison

is measured when one image is taking rotations in the range [-20◦, 20◦]. As can be seen,

both approaches lead to correct detection of rotations and both take their maximum at

θ = 0. The difference is that using sorted patches results in a slightly more sensitivity

to rotational deformations, while the usage of MI brings about capturing a slightly wider

range of deformations. For the sake of simplicity of sorting operation and its sensitivity to

rotation, the sorted patch intensity comparison is considered for the rest of simulations.

The similarity in Eq. 6.3 is measured for N randomly selected pixels and averaged to

yield the scalar similarity measure:

ρ(Im, If ; Ω) =
1

N

N∑
i=1

SM(Im, If ; xi). (6.4)

In the experiments, N = 104 voxels are used to estimate the similarity between the fixed

image and the transformed image. The similarity measure in Eq. 6.4 is used for both rigid

and non-rigid registration of brain scans.
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To evaluate the performance of the proposed similarity measure, it is compared with

the multi-modal registration based on MI as the similarity measure [19] and registration

based on MIND descriptor [79]. Both rigid and deformable registration scenarios are

considered for the evaluation procedure. For the MIND method, the parameters are set

to the defaults as suggested in [79]: a Gaussian weighting σ = 0.5 with a corresponding

patch size 3× 3× 3, the and search region within six pixel neighbourhood for the pixel of

interest. In the proposed method, the patch size and number of bins in the histogram are

empirically chosen to be 7× 7× 7 voxels and 64 bins. We also limit the self-similarity to

the neighbourhood with radius of 25 pixels.

Experiments are conducted on the BrainWeb simulated database and RIRE real database.

In the following experiments, scans with 3% noise and 20% intensity non-uniformity are

chosen to include the effect of noise and bias field in the experiments. Brain scans that

are used from the BrainWeb and RIRE datasets are in different MR modes of T1, T2, and

PD.

6.3.1 Rigid Registration

For rigid registration, the configuration is 11×11×11 for 3D patches, 64 bins and Parzen-

window estimation [102] for MI calculation in Eq. 6.3.

Translation and rotation are examined on 3D data in two separate experiments by

generating 50 random transformations for each case. First, translation is chosen in the

range of [−20, 20] mm with no rotation. In the second experiment, we have maximum

rotation of ±20◦ with zero translation. The average results of rigid registration for random

transformations in terms of average displacement τ in mm are illustrated in Table 6.1 for

BrainWeb and in Table 6.2 for RIRE data.

Table 6.1 reports the accuracy for registration of BrainWeb data with rigid deformations

(rotation and translation). Different configurations with MR modalities are examined.

As is shown in Table 6.1, the proposed method shows a substantial improvement over

the conventional MI-based registration for all rotational and translational deformations.

Comparing to MIND, in both translations and rotations, promising improvements have

been achieved, specifically for rotational deformations improvements were considerable.
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Table 6.1: Multi-modal rigid registration (translation and rotation) using the self-similarity
measure for BrainWeb dataset. Registration errors are represented in average pixel dis-
placement τ .

Similarity T1-T2 T1-PD T2-PD

MI 1.87 1.54 1.12
Rotation MIND 1.15 1.32 1.03

Proposed 0.61 0.82 0.69

MI 1.87 1.32 1.11
Translation MIND 1.43 0.87 0.77

Proposed 1.33 0.78 0.56

Table 6.2: Multi-modal rigid registration (translation and rotation) using the self-similarity
measure for RIRE dataset. Registration errors are represented in average pixel displace-
ment τ .

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 3.82 2.34 2.73 4.61
Rotation MIND 2.87 2.13 2.85 3.92

Proposed 2.08 1.74 2.21 3.86

MI 2.94 2.12 2.04 3.86
Translation MIND 2.29 1.67 1.71 2.88

Proposed 2.17 1.54 1.56 2.97

The same experiment has been performed for the real RIRE dataset. Results are

shown in Table 6.2 with different configurations with MR modalities and CT scans. As

is shown, the proposed method outperforms the conventional MI-based registration for all

cases of this experiment. Comparing to MIND, the proposed method shows a significant

improvement, especially for the rotational transformation. The results for the translational

transformation are still promising and only in two cases of T1-PD and T1-CT the MIND

can achieve a better accuracy.

Overall, it can be deduced from the results from both simulated and real data that
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Table 6.3: Multi-modal deformable registration using the self-similarity measure for RIRE
dataset. Registration errors are represented in average pixel displacement τ .

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 2.87 3.12 3.54 5.93
MIND 2.04 2.41 2.73 6.72

Proposed 1.91 2.24 2.61 7.85

the proposed self-similarity measure is more robust in rigid transformations especially in

rotation, since the self-similarity is independent of pixel ordering in patch-based comparison

and does not rely on the arrangement of the pixels in the patch.

6.3.2 Non-Rigid Registration

For deformable registration, we used artificial deformations by the thin-plate spline (TPS) [103]

to generate a set of randomly deformed training data. The deformation field is normalised

to limit the maximum displacement to 20mm. The registration is modelled by the FFD

with three hierarchical levels of B-spline control points [45]. The optimisation is performed

by the gradient descent optimization method to iteratively update the transformation pa-

rameters. The results of deformable registration in multi-modal cases are shown in Table

6.3. Similar to experiments in Section 6.3.1, the performance of the proposed method is

compared with the MIND and MI-based registration. The results in this table are obtained

by averaging the alignment error for 20 random deformations.

As is shown in Table 6.3, the proposed similarity measure achieves a better performance

in T1-PD and T2-PD registration compared to both MIND and MI-based registration. The

registration with CT is more challenging due to the significant differences between MR and

CT images.

6.4 Structural Representation for Image Registration

This section presents the results of registering multi-modal images using the structural

representations proposed in Chapter 5. The structural representation have been proposed

70



to reduce the multi-modal registration problem to a mono-modal one, so that a simple

SSD measure can be used in the optimisation framework. Thus, given the representations

Rf and Rm for If and Im respectively, the registration problem turns into

F̂ = argmax
F

ρ
(
Rf , F (Rm)

)
. (6.5)

Two approaches were proposed to transform the images into representatives indepen-

dent of image intensities. The first proposed approach in Section 5.2 works based on a

combination of gradient information and complex wavelet transform and the second one

presents a new representation by applying a modified entropy on the images. In the fol-

lowing, experimental results regarding each of the two methods are presented.

6.4.1 Complex Phase and Gradient Information

The method presented in Section 5.2 is assessed based on the multi-modal brain scans.

The proposed method, which is the result of complex-wavelet representation and gradient

information, is evaluated using brain scans from T1, T2, and PD modes generated using

the BrainWeb simulator. To assess the method, we used MR scans with noise level of

3%, 5%, and 7%, and intensity non-uniformity (INU) of 20% and 40%. The noise level

is specified by a number representing the percent ratio of the standard deviation of the

white Gaussian noise versus the signal. The intensity inhomogeneity level is presented by

the scaled range of field values over the brain area. The structural features are extracted

using log-Gabor transform in 4 scales and 6 orientations, with wavelengths of 3, 9, 27, and

81 pixels to keep bandwidths of two octaves.

To investigate the performance of the proposed complex wavelet representation, the

similarity measures based on phase congruency (PC), gradient magnitude (GM), and the

proposed method (PC-GM) are shown in Fig. 6.2. The image dissimilarity is measured by

measuring the SSD of structural representation in each case over rotations in the range

[−40◦, 40◦]. As is shown, the dissimilarity measure using the proposed representation

performs correctly and takes its minimum at θ = 0. The behaviour over the changes in θ

is smooth and not far from the response from gradient magnitude or PC. Depending the

parameters α and β, the response of the proposed method may change.
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Figure 6.2: Similarity plots for BrainWeb dataset when one image is deformed by rotation
in the range [−40◦, 40◦]

To assess the performance of the method over random non-rigid deformations, a set of

training data was generated using artificial deformations generated by TPS. We compared

our approach with the conventional multi-modal registration method based on using mutual

information as the similarity measure.

In order to qualitatively assess the performance of the proposed method, the result of

multi-modal registration for two different modalities is shown in Fig. 6.3. For this figure, we

have selected the 75th slice of brain scan in PD and T1 modes of MR imaging generated by

BrainWeb simulator with 3% noise and 20% intensity non-uniformity level. The T1 image

is considered as the fixed image and the slice in PD mode is deformed using the TPS to

generate the test moving image. Features extracted from both moving and fixed images,

before and after being aligned, are shown in this figure. Features are shown in different

colors, so that the alignment can be compared before and after applying the registration.

Quantitative results for registering multi-modal images with different levels of noise

and intensity non-uniformities are shown in Table 6.4 for T1-T2, T1-PD, and T2-PD

registration. Quantities in this table are obtained by averaging the results of registering 20

72



Before Registration After Registration

Figure 6.3: Cross-modal registration using the proposed method based on complex wavelet
representation: A PD slice (red) is registered to a T1 slice (green) for a sample slice from
BrainWeb database with 3% noise and 20% INU. Features of the two images are shown
before and after registration to illustrate the degree of alignment.

randomly deformed images to a fixed image. The performance of the registration by the

proposed method is compared to the conventional MI-based multi-modal registration. As

can be seen, as the noise and intensity non-uniformity level increase, the performance of

the registration method is degraded in all three cases. In case of T1-T2 registration, for 7%

noise and 20% intensity non-uniformity, the proposed method and MI-based registration

method perform almost the same. For T1-PD and T2-PD cases, because of poor contrast

representation of PD mode compared to other modes, the registration accuracy is seen to

be lowered. Specifically, at 7% noise and 20% INU, MI-based registration performs better

than the proposed method. As the non-uniformity increases, the proposed method is shown

to be more accurate than the MI-based method. This is due to the fact that MI is highly

sensitive to non-uniformity in image intensity. However, the overall performance of the

proposed registration method, which is illustrated as the average over all noise and INU

levels, demonstrates higher accuracy compared to the conventional MI-based registration

method.
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Table 6.4: Quantitative comparison of registration errors (in mm) obtained by MI and the
proposed complex wavelet representation method (Proposed) from BrainWeb with different
levels of noise and INU.

Method Noise and INU level (in percent) Average

3,20 5,20 7,20 3,20 5,20 7,20

T1-T2
MI 1.74 2.13 3.07 2.34 3.81 5.11 3.03

Proposed 1.11 1.89 3.05 1.27 2.32 3.46 2.18

T1-PD
MI 1.97 2.85 4.21 3.63 5.64 7.21 3.19

Proposed 1.59 2.13 4.28 1.93 3.14 5.03 3.02

T2-PD
MI 2.14 3.48 5.63 4.83 6.94 8.12 4.97

Proposed 1.23 2.74 5.94 2.39 4.03 5.84 3.69

6.4.2 Modified Entropy Image

This section focuses on the structural representation, proposed in Section 5.3, based on

applying a modification in entropy formulation to increase the sensitivity of dissimilarity

measure to finer structures. In order to evaluate the performance of the proposed method,

experiments are again conducted on the BrainWeb and RIRE data that are provided by

ground truth alignment. In the following experiments, T1, T2, and PD modes of MR scans

from BrainWeb dataset and real brain scans T1, T2, PD, and CT from the RIRE dataset

are used.

The proposed method, which is represented as ‘Proposed’ in the following tables, is

compared with the MI-based registration [19] and SSD on entropy images (eSSD) [63]. The

optimization for the rigid registration is carried out by MATLAB tools based on gradient

descent optimizer for the SSD based mono-modal, and one-plus-one evolutionary optimizer

for the MI-based multi-modal registration. Both rigid and deformable registration scenarios

are considered for the evaluation procedure. The deformable registration is performed by

FFD. In our simulations, the patch size and number of bins in the histogram are empirically

chosen to be 7× 7 pixels and 64 bins.

74



Table 6.5: Multi-modal rigid registration (translation and rotation) using modified entropy
for BrainWeb dataset: Registration errors are represented in average pixel displacement τ .

Similarity T1-T2 T1-PD T2-PD

MI 0.63 0.76 0.35
Rotation eSSD 0.85 0.54 0.14

Proposed 0.54 0.38 0.08

MI 0.41 0.52 0.32
Translation eSSD 0.72 0.64 0.18

Proposed 0.37 0.48 0.14

Rigid Registration

For rigid registration, the proposed method is evaluated by comparing the alignment re-

sult with the ones using MI and eSSD. Fig. 6.4, shows the behaviour of the multi-modal

similarity/dissimilarity measures when one image is rotated by θ ∈ [−40◦, 40◦]. The plots

are obtained from different combination of MR modes from BrainWeb scans. In general,

the proposed method and eSSD have the same behaviour when θ changes and in terms of

smoothness, the proposed method does not force more cost compared to the eSSD.

Quantitative assessment is performed by measuring the displacement error in both cases

of having rotation and translation in separate experiments. Experiments are conducted

when translation is in the range of [−20, 20] mm with 0◦ rotation, and in maximum rotation

of ±20◦ with zero translation. Table 6.5 and Table 6.6 report the average results for

BrainWeb and RIRE datasets, respectively. The experiments have been carried out for

50 times over different rotations and translations and the results are reported in terms of

average displacement τ in mm.

Quantitative results on the BrainWeb dataset show that all three methods result in

comparable alignment accuracy, however the proposed method shows its superiority over

the other two methods. On the real RIRE dataset, the proposed method performs signif-

icantly better than MI-based registration and could improve the results of eSSD as well.

Despite the increase in the registration error for CT-T1 alignment, the improvement for
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Figure 6.4: Similarity plots for BrainWeb dataset when one image is deformed by rotation
in the range [−40◦, 40◦] (black: modified entropy, red: eSSD, blue:MI)
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Table 6.6: Multi-modal rigid registration (translation and rotation) using modified entropy
for RIRE dataset: Registration errors are represented in average pixel displacement τ .

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 3.02 1.14 2.74 3.62
Rotation eSSD 2.03 0.83 2.34 2.87

Proposed 1.74 0.61 2.13 2.64

MI 1.58 0.87 1.93 2.53
Translation eSSD 0.35 0.44 0.98 1.73

Proposed 0.28 0.33 0.71 1.69

Table 6.7: Multi-modal deformable registration using modified entropy for RIRE dataset.
Registration errors are represented in average pixel displacement.

Similarity T1-T2 T1-PD T2-PD T1-CT

MI 1.23 1.47 1.87 2.15
eSSD 0.67 0.61 0.55 7.32

Proposed 0.61 0.58 0.41 5.43

the both MR and CT data is still considerable.

Non-rigid Registration

For deformable registration, a set of training data was generated from the dataset using

artificial deformations by the thin-plate spline. The deformation field is normalized such

that the maximum displacement is limited to 20 mm. The results of deformable registration

is given in Table 6.7 for different combinations of image modalities. Similar to Table 6.1 and

Table 6.2, the proposed method is compared with eSSD and MI-based registration results.

Quantities in this table are obtained by averaging the results of aligning 20 randomly

deformed images to a fixed image.

As can be seen, the proposed method in most cases outperforms the eSSD and MI-

based registration. Since the proposed method tends to extract structural features and

77



structural features are mainly located in the rigid body of the image, the improvement in

the alignment accuracy for the rigid registration is more significant. It can be seen that for

non-rigid registration, the proposed method leads to considerable improvement over the

MI. The results show a slight improvement over eSSD, however, the method is not able to

outperform the MI method in the T1-CT registration.

6.5 Discussion

Three different registration approaches, two based on structural representation and the

other one based on self-similarity measurement, have been evaluated in this chapter. The

average displacement error is measured to assess the accuracy of each method on real and

simulated data. An average pixel displacement of zero represents perfect registration, and

a large average pixel displacement indicates poor registration performance. If the average

pixel displacement obtained from each of the methods in registering real data is greater

than 3 pixels, then the performance of the registration method is considered to be failed

[104].

Looking at the results from registering simulated and real brain images, we can deduce

the following points. First, in all experiments, registering different modes of MR images

is performed successfully, when comparing to the traditional registration method based on

mutual information. Wavelet-based registration performs promising in registering T1 to

T2 modes of MRI, comparing to other combinations, which means that low contrast PD

mode with the poor edge representation cannot yield good accuracy compared to T1-T2

registration. Among all three methods, registration based on modified entropy seems to

perform more robust on registering images from different combination of MR modes.

Second, in all experiments, registering MRI T1 scan to CT scans are problematic and

the proposed methods fail to attain acceptable alignment accuracy. Comparing the pro-

posed methods based on self-similarity measure and modified entropy to registering based

on MI as the similarity measure, MI can overcome the proposed methods specifically in

non-rigid registration real brain images. The key issue in this case is that the MI-based

registration performs globally on the image and the proposed methods are local. Since,

for the CT scan that mainly contains rigid structures and not much of fine details of other

tissues, global measurement can perform better. Performing a hierarchical framework to
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Table 6.8: Comparison of computation time in seconds for different registration approaches
in non-rigid registration of T1-T2 3D MR brain images.

Method Time (sec)

MI 287

MIND 524
Proposed self-similarity 407

eSSD 83
Proposed modified entropy 112
Proposed wavelet-based 168

start with global alignment and leading to local warping could offer more in case of MR-CT

registration.

To evaluate the three proposed registration methods in terms of computation time, an

experiment has been performed to register a set of 3D MR scans from T1 to T2 mode

from the RIRE dataset in a non-rigid framework. The running time for the methods

that have been used as in the previous comparison has been recorded. Table 6.8 illus-

trates the running time for the non-rigid registration based on mutual information (MI),

MIND self-similarity method (MIND), proposed self-similarity, structural representation

based on entropy and SSD comparison (eSSD), proposed modified entropy, and proposed

wavelet-based registration. As can be seen, eSSD, proposed modified entropy, and proposed

wavelet-based method, which are all based structural representation, have the lowest com-

putation time and the MIND method has the highest one. This table demonstrates that

registration based on structural representation and using a simple intensity-based dissimi-

larity measure increases the speed of the registration procedure significantly. The proposed

self-similarity measure is also compared to the MIND self-similarity approach and shows

faster performance due to using lower number of pixel-similarities in the descriptor.
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6.6 Summary

We presented the results of registration assessment for the methods presented in Chapter 4

and Chapter 5. Evaluations are performed on simulated and real brain data from CT scans

and T1,T2, and PD modes of MR images. The registration is performed in both rigid and

non-rigid frameworks and the results are shown in terms of average pixel displacement from

the true pixel position. The methods are compared to the registration methods from the

literature. Mutual information is used as the classical method of registering multi-modal

images and MIND as the state-of-the-art method for self-similarity measurement. Results

are obtained from independent experiments for each of the proposed methods. Overall,

based on the results presented in this chapter, the proposed methods can outperform the

conventional mutual information-based and the state of the art in terms of overall accuracy.

In terms of computation time, the methods based on structural representation performs

highly faster that the ones based on self-similarity. The running time for the proposed

self-similarity approach is less than the state-of-the-art MIND method, due to employing

smaller sets of pixels in the self-similarity map.
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Chapter 7

Label Fusion

This chapter describes in detail the overall problem of cross modality label combination

in multi-atlas segmentation problems. The problem of label fusion in multi-atlas-based

segmentation framework, related issues, and challenges are explained in Section 7.1. Sec-

tion 7.2 presents the weighted voting strategy which is the conventional fusion approach.

However, weighted label fusion performed either globally or locally relies on the intensity

consistency across images. To address this issue, the problem of multi-modality in fusing

atlas labels and the proposed method for cross modality label fusion are presented in Sec-

tion 7.3. The proposed method is presented based on assessing the structural similarity

across different modalities instead of intensity based comparison. The performance of the

method is evaluated in Section 7.4 in a procedure of segmenting brain tissues in MR images

given a multi-modal brain atlas database1.

7.1 Introduction

As described in Section 2.3 a major component in the multi-atlas framework is “label

fusion” by which atlas labels are combined to form a single segmentation for a target im-

age [12, 13]. According to description of overall multi-atlas-based segmentation framework

which is presented in Chapter 3 and Fig. 3.1, a final segmentation result LT is generated

1Some text and materials in this chapter have been previously published [70].
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by combining all propagated labels, {L′n} using a label fusion method. Fig. 7.1 reviews the

multi-atlas segmentation framework with the focus on label fusion.

Many label fusion methods have been introduced in the medical atlas literature [22].

Majority voting (MV) as the simplest and most widely used fusion method assumes each

atlas contributes to the target labels equally [13]. As the image intensity is not taken into

account during label fusion, a higher accuracy can be achieved by some form of weighting,

based on the similarities between the atlases and the target image. Weighting strategies

including both global and local forms [65, 66], where local weighted voting (LWV) outper-

forms global strategies when dealing with high contrast anatomical structures [21, 22, 23].

Many label fusion methods, such as MV, do not consider image intensities after being

warped to the target image. If we do consider the image intensities and give higher weights

to those more similar atlases, whether globally or locally, we obtain improvements in seg-

mentation accuracy [21, 65, 105].

The multi-atlas approaches are promising, however these methods remain problematic

in those cases where the atlases and the target scan are obtained from different sensors or

from different acquisition modalities: image-intensity comparisons may no longer be valid,

since image brightness can have highly differing meanings and circumstances in different

modes [16]. Most label fusion approaches are limited by the assumption that they depend

on the consistency of voxel intensities across different MRI scans. In these cases, approaches

based on mutual information do help [56, 67, 106], however its inherent non-locality make

it problematic for local weighted label fusion. This issue will be highlighted when atlases

and target image are acquired with different modalities [16, 21].

Relying on the similarity between intensity values of the atlases and target scan is of-

ten problematic in medical imaging — in particular when the atlases and target image are

obtained via different sensor types or imaging protocols. In [17], a generative probabilistic

model is proposed that yields an algorithm for solving the atlas-to-target registrations and

label fusion steps simultaneously. This model exploits the consistency of voxel intensities

within the target scan to drive the registration and label fusion instead of intensity sim-

ilarity, hence the atlases and target image can be of different modalities. The method is

based on exploiting the consistency of voxel intensities within the segmentation regions, as

well as their relation with the propagated labels.

To focus on the process of label fusion in this chapter, the multi-atlas segmentation
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framework is presented in Fig. 7.1. We seek to develop a cross-modality label fusion

weighted on the basis of the similarity of the transformed atlases {A′n} and the target image

IT . The goal is to measure the atlas-target similarities SMF and weight the contribution

of atlases’ label map {L′n} to construct the final target segmentation LT . The design

of similarity measure relies on the structural relationships of the atlases and the target

and based on the scale-based features extracted from an undecimated wavelet transform

(UDWT).

7.2 Weighted Label Voting

The label fusion problem in a multi-atlas segmentation can be inferred from a maximum-

a-posteriori (MAP) estimation framework [21]:

L̂T (x) = argmax
l∈{1,··· ,L}

NA∑
n=1

p
(
L′T (x) = l|Ln

)
p
(
IT (x)|A′n

)
, (7.1)

where p
(
L′T (x) = l|Ln

)
is the label prior value and p

(
IT (x)|A′n

)
is the probability that

relates the n-th atlas to the target image which can be interpreted an assigned weight to

the n-th vote [107].

Traditional majority voting produces the final segmentation, LT , by assuming that dif-

ferent atlases provide equal registration quality and no prior knowledge about the accuracy

of the labels of each atlas as a classifier labels is used. It is assumed that p(IT (x)|A′n) = C,

where C is a constant and reduces the Eq. 7.1 to

L̂T (x) = argmax
l∈{1,··· ,L}

NA∑
n=1

p
(
LT (x) = l|L′n

)
. (7.2)

Typically, for deterministic atlases, discrete values of 0 and 1 are used instead of p
(
LT (x) =

l|L′n
)
. As mentioned above, p

(
IT (x)|A′n

)
gives a hint of the relation between two images

which has been interpreted in the literature as the image likelihood and is quantified by

measuring the image similarity [21, 107, 108]. Thus, the target label map in Eq. 7.1 is

estimated by weighting the label prior and assigning greater weights to warped atlases
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Multi-Modal Registration

Weighted 

Label Fusion

Label Maps Atlas Images Target Image

Target 

Label Map

Label Fusion

Similarity 

Measurement

Figure 7.1: Block-diagram of the multi-atlas-based segmentation for multi-modal atlas
database, which is shown in Fig. 3.1, with the focus on label fusion. The atlas-target
similarity (SMF) is used to weight the atlas contributions to form the final segmentation
result.
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that are more similar to the target image:

L̂T (x) = argmax
l∈{1,··· ,L}

NA∑
n=1

wn(x)L′n(x), (7.3)

where wn is the weight assigned to the nth atlas with

NA∑
n=1

wn(x) = 1. (7.4)

If wn(x) = wn,∀x, then the atlases would be ranked globally according to the atlas-

target similarity. One way to estimate the set of weights {wn} is to locally measure the

similarity of the target image and atlases after being registered, based on the assumption

that similar regions are more likely to have the similar label maps. The local weighted

voting is performed in a patch-based paradigm, in which the image likelihood p
(
IT (x)|A′n

)
is defined on a neighbourhood N (x) centring at pixel x with patch size (2r + 1)d for d

dimensional images. To model the image likelihood, a Gaussian distribution is generally

used as

p(IT (x)|A′n) =
1√

2πσ2
exp

(
− 1

2σ2

(
IT (x)− A′n(x)

)2
)
, (7.5)

with σ as the variance of the distribution [21, 107, 109]. However, this model relies on the

intensity comparison of images and cannot model the intensity relationship in multi-modal

cases.

7.3 Cross-Modality Label Fusion

Since images are obtained from different sensors, the intensity relationship between the im-

ages is complex and therefore the intensity-based image likelihood in Eq. 7.5 is not able to

model atlas-target similarity. A label fusion method is proposed based on defining a struc-

tural similarity measure to approximate the similarity of the atlas and the target image, for

which the block diagram is depicted in Fig. 7.2. As shown in the figure, multi-scale complex

wavelet representation of the input images are constructed using an undecimated complex

wavelet transform such as log-Gabor complex wavelet transform [110]. The multi-modal

image representation based on complex wavelet coefficients is presented in Section 5.2. As

85



I1

I2

UDWT

UDWT

MI

Figure 7.2: Similarity measure for multi-modal images based on structural features. Sim-
ilarity measure is obtained by computing the mutual information of structural features
captured by the UDWT.

in Eq. 5.2, the resulting wavelet coefficients for the scale s and orientation θ are noted as

Υs,θ(x) at location x,

Υs,θ(x) = αs,θ(x) exp[jφs,θ(x)], (7.6)

where αs,θ(x) and φs,θ(x) are the amplitude and phase of the complex wavelet coefficients,

respectively. The phase order, ζ(s, I(x)
)

at each scale can be defined as the normalised

weighted summation of phase deviations from its mean value across all scales:

ζ
(
s, I(x)

)
=

∑
θ αs,θ(x)Λ(x)∑
θ,s αs,θ(x)

, (7.7)

where

Λ(x) = cos(φs,θ(x)− φ̄θ(x)). (7.8)

Here, Λ(x) is the phase deviation from the mean value of the complex phase φθ(x). Fig. 7.3

shows the structural features of different modes of a brain MR slice from the BrainWeb

simulated database [33]. As can be seen, the intensity information, which is the problematic

part of the label fusion, is no longer present and instead the aspects which remain are the

structural features that are almost the same in all modalities.

In order to measure the similarity between each atlas and the target image, the sim-

ilarity is calculated across all scales based on the structural features represented by ρs.
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T1 T2 PD

Figure 7.3: Structural features from different MR modes. The first row shows a slice of
brain scans in T1, T2, and PD modes. Second row shows the structural features associated
with the first row images extracted from the second scale of log-Gabor complex wavelet
transform implemented in 4 scales and 6 orientations with wavelengths of 3, 9, 27, and 81
pixels.

In this way, features from fine and coarse scales of one mode are compared correspond-

ingly to those extracted from the other mode and the results of scale-based comparison are

combined to form a measure of similarity. Mutual information based on image intensity

entropy is utilised to measure the similarity of structural features at each scale. MI for two

images I1 and I2 is defined as

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2) (7.9)

In this equation, H(I1) and H(I2) represent the entropy of the intensity in images I1 and I2

and H(I1, I2) stands for the joint entropy of these two images. If the MI-based comparison
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is performed over the whole image, the label fusion method would be a global weighting

that ranks the contribution of warped atlases according to their global similarity to the

target image. The MI-based comparison can be carried out in a patch-based paradigm to

achieve higher segmentation accuracy by performing a local similarity measurement.

The proposed similarity measure is a function over all scales: the structural features

at some scale from the two images are compared using mutual information applied to the

phase order from (7.7):

SMF(I1, I2) = Ξ
(
MI
(
ζ(s, I1), ζ(s, I2)

)
, s
)
, (7.10)

where Ξ denotes the fusion function that combines the MI-based comparison over the scale

s. The function Ξ should return a high value when both fine and coarse scales have high

similarities and low value when fine and coarse values have small mutual information. A

simple example function could be a product of MI obtained from all scales:

SMF(I1, I2) =
∏
s

MI
(
ζ(s, I1), ζ(s, I2)

)
. (7.11)

Finally, the resulting similarity measure is normalised and applied to Eq. 7.1, contribut-

ing to the label fusion paradigm by weighting labels from each atlas based on how similar

each atlas image is to the target image:

L̂T (x) = argmax
LT

∑
n

p(LT (x)|L′n)SMF(IT , A
′
n). (7.12)

7.4 Results and Discussion

7.4.1 Data

We have tested our method on the 3D brain MR scans from the BrainWeb simulated

database [33], as described in Section 6.2, based on the T1, T2, and PD modalities

with 3% noise and 20% intensity non-uniformity, and on the T1 images in the LONI

real database [35]. The databases provide ground truth of tissue labels for white matter

(WM), grey matter (GM), and cerebrospinal fluid (CSF).
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7.4.2 Experimental setup

To assess the proposed method, we compared our approach with conventional majority

voting and mutual information [108] for segmenting real and simulated MR scans into

WM, GM, and CSF tissues. The structural features are extracted using log-Gabor complex

wavelet transform in 4 scales and 6 orientations, with wavelengths of 3, 9, 27, and 81 pixels

to maintain bandwidths of two octaves. Mutual information is computed using Parzen

windowing [102] in estimating the intensity histogram. 32 bits are used to quantise the

intensity histogram. The experiments are performed on both simulated and real data.

Simulated Data: In the first test on simulated data, a set of training data was gen-

erated by an artificial deformation using thin-plate spline (TPS). Two different cases are

examined: a single mode atlas database and a multi-modal atlas database with a target in

a different mode from the atlas set. The registration utilised in this framework is under-

taken using a non-rigid multi-modal image registration. The free-form deformation model

with mutual information as the similarity measure implemented in the ITK, Segmentation

& Registration Toolkit, is used. For these experiments, 25 different random deformation

fields are generated and the whole process of segmentation is run ten times for each random

deformation.

Real Data: To validate the method on real data, the second test was performed by using

40 real T1 atlases and a PD target image. A set of ten training scans out of 40 subjects is

randomly selected to form the atlas database and this procedure is run ten times to obtain

the segmentation results.

To quantitatively assess the accuracy of segmentation, the Dice similarity coefficient [111]

is used, defined as

D(A,B) =
2|A ∩B|
|A|+ |B|

, (7.13)

where A and B are the set of pixels in a segment in ground truth and the segmented image,

respectively.
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7.4.3 Results

Fig. 7.4 illustrates the advantage of using multi-modal atlases instead of single-mode ones.

The effect of adding an atlas in a mode other than the target’s mode on the segmentation

accuracy is examined using simulated brain data. In this experiment, all atlases are in

the same mode as the target image, and a slice of a T1 image is segmented using MV.

The experiment is then repeated for the case that additional T2 training data is added.

As is shown in this figure, the average Dice coefficient by MV method for the WM, GM,

and CSF tissues is increase when using multi-modal training images. Comparatively, the

proposed method shows an improvement over the MV method for the multi-modal case.

The misclassification error in each of the segmentation results is shown in red color. One

should note that, in the MV method, only label maps are used. However, the proposed

method takes advantage of the structural features in the new mode as well as the label

map to segment the target image.

The first experiment on simulated data, which is illustrated in Fig. 7.5, considers the

cross-modality segmentation with the single-mode atlas database. For this experiment,

first, the target image is assumed to be in T2 mode while the atlas database is in T1. For

the second case, the target is changed to PD mode. The atlas database is generated using

artificial deformations applied on the simulated images from the BrainWeb database [33].

The segmentation results demonstrate improved performance of the proposed label fusion

compared to the traditional MV and MI-based method.

A second experiment is performed to show how the method works for the complex cases

with multi-modal atlases and the target image in a mode which does not have any repre-

sentative in the atlas set. Table 7.1 reports the segmentation results when the database

contains atlases of T1 and T2 mode scans and the target image is in PD mode. Results

obtained from the proposed method significantly outperforms MV and shows consider-

able improvement over MI-based method. Also lower standard deviation for the accuracy

measurement is achieved.

To evaluate on real data, the method is applied to segment a T2 target image given a

set of T1 real normal images randomly selected from LONI database [35]. Table 7.2 shows

the results for this experiment. Although the results of the proposed method does not

show any improvement for segmenting the GM, it still does a promising job for delineation
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T1 target image T2 training image Ground truth

MV-single mode MV-multi-mode Seg-multi-mode

75.2% 77.2% 80.1%

Figure 7.4: Multi-modal versus single-mode segmentation: the bottom row shows the
results of MV and the proposed method, with the Dice coefficient D (7.13) given. The
misclassification error of each case is shown in red color. The highest Dice performance is
offered by the proposed approach.

Table 7.1: Segmentation results in terms of average Dice coefficient D and its standard
deviation when the atlas database consists of T1 and T2 scans and the target scan is in PD
mode: the performance of the proposed method (Proposed) is compared to the majority
voting (MV) and MI-based weighting (MI).

Tissue WM GM CSF

Proposed 88.6±0.2 88.2±0.2 80.7±0.8

MI 86.9±0.3 86.1±0.4 78.2±1.2

MV 85.6±0.4 85.4±0.5 77.6±1.3
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Figure 7.5: Single-mode multi-atlas segmentation results in terms of average Dice coefficient
D for the proposed (Seg), majority voting (MV), and MI-based method (MI). The atlas
set is in T1 while the target is in T2 and PD.

of the two other tissues. Furthermore, the method is shown to be robust over different

atlas selections compared to other reported methods.

7.4.4 Discussion

Overall, the segmentation results demonstrate that the proposed weighted label fusion out-

performs the classical MI-based weighted voting for cross-modality label fusion, specifically

when the atlas database consists of atlases from different modes of MR images.

Table 7.2: Segmentation results in terms of average Dice coefficient D and its standard
deviation when the atlas database consists of T1 scans and the target scan is in T2 mode:
the performance of the proposed method (Proposed) is compared to the majority voting
(MV) and MI-based weighting (MI).

Tissue WM GM CSF

Proposed 80.6±0.4 75.0±0.2 61.2±0.8

MI 78.9±0.7 75.2±0.4 58.3±1.3

MV 77.6±0.8 72.4±0.4 55.1±1.7
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In terms of computational complexity, the proposed method forces further loads of com-

putations due to extracting structural features by complex wavelet transforms. However,

if the whole label fusion procedure is designed in such a way that all the input atlases and

target image are registered to a common space, then there will be no need to perform the

whole procedure for every new target image. As a result, registration to the common space

and also extracting structural features can be done offline. Estimating the similarity to

the target’s structural features over all scales and combining them to form the similarity

measure in Eq. 7.10 are the steps that affect the computational time and complexity. For

measuring the global similarity between each atlas and the target image after being aligned,

it is required to compute the mutual information at each scale of structural representation.

Since the structural representations are constructed by the over-complete wavelets, the size

of the output at each scale will not vary from the input. Therefore, with s representing

the number of scales, s MI-based similarity measurements are performed for each atlas.

Comparing the proposed method to the classical MI-based weighted voting, we can deduce

that the proposed method increases the amount of computations by a factor of s and the

order of computations will remain the same.

7.5 Summary

This chapter presented a label fusion method for multi-modal images based on a struc-

tural similarity measure. Unlike most of previous label fusion methods that are working

on single-mode multi-atlas segmentation, the proposed method is designed to deal with

fusing labels across modalities or utilising single-mode atlas set to segment a target in

different mode. For this purpose, a similarity measure is proposed based on structural

features which can be extracted from undecimated wavelet coefficients. To validate our

method, experiments for segmenting tissues in the simulated and real MR brain images

were conducted.
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Chapter 8

Conclusions

In this thesis research, the cross-modal multi-atlas segmentation framework is considered

to segment brain images. In this framework, two major components, which are image

registration and label fusion, are the focus of this research and undertaken independently.

After highlighting the limitations of multi-atlas segmentation, specifically in multi-modal

cases, in Chapter 3, methods have been proposed to deal with the multi-modal registration

and cross-modality label fusion. A summary of the thesis contributions is given in the

following section.

8.1 Thesis Contributions

The multi-modal image registration has been traditionally carried out using statistical

similarity measures. To address the problem regarding the complex intensity relations in

multi-modal images and also non-locality of the conventional similarity measures, the first

approach is proposed based on comparing the self-similarity of images to be aligned. The

relation of each pixel to other pixels in the image is considered and the most significant

pixel-to-pixel relations are selected to transmit the required information for the comparison.

The motivation and theory of this method is presented in detail in Chapter 4.

In an independent way of tackling the multi-modal registration problem, we focus on

reducing the multi-modal problem to a mono-modal one by representing images in a new

intensity mapping. Two separate representations are proposed in Chapter 5 to reduce
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the registration problem, thus any intensity-based comparison can be utilised to measure

the alignment accuracy. The use of undecimated complex wavelet transform along with

gradient information is shown to be capable of extracting structural features from images

in different MR modes. The alternative representation is take advantage of local entropy

in a modified formulation to characterise the structural information in the image.

The similarity measure presented in Chapter 4 and structural representations in Chap-

ter 5 are examined in registration frameworks separately in Chapter 6. The real and

simulated brain scans in T1/T2/PD-weighted MRI and CT are utilised to evaluate the

methods in both rigid and non-rigid registration paradigms. Experimental results show

the superiority of the proposed approaches for multi-modal registration over classical and

state-of-the-art methods.

The cross-modality label fusion proposed in Chapter 7 is an extension of the current

weighted voting approaches in mono-modal label combination. The label combination

method is proposed based on transforming the multi-modal images into a new space and

comparing images in this new space. The space transformation is performed using an

undecimated complex wavelet transform and the result is presented in different scales of

resolution. The scale-based comparison between representations provides the atlas weights

in a weighted voting paradigm. The experimental results using real and simulated brain

MR images demonstrate the better performance of the proposed label fusion compared to

the conventional method for the cross-modal label fusion.

As a summary, the contributions of the dissertation can be listed as:

• Introducing a similarity measure for multi-modal image registration based on com-

paring the self-similarity of images to be aligned,

• Reducing the multi-modal registration problem to a mono-modal and thus using a

simple intensity-based similarity measure by

– creating a structural representation not relying on the intensity mapping based

on combining information extracted using undecimated complex wavelet trans-

form and gradient magnitude of the image,

– creating a structural representation based on measuring local image entropy in

a modified formulation,
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• Extending the label fusion to cross-modality label fusion by

– extracting scale-based structural features using undecimated complex wavelet

transform to represent images in a new representation,

– defining a measure to make a cross-modality comparison between scale-based

image representations that are not depending on the intensity of the original

images.

8.2 Future Research

The work in this thesis results a number of general outcomes and directions of significance.

The research presented in this dissertation provides a foundation for future research in

cross-modal multi-atlas segmentation. Three potential research lines that can be pursued

based on the research in this dissertation are presented in the following.

8.2.1 Performance Investigation Under Different Circumstances

This dissertation has resulted the methods in registration and segmentation of brain MR

images in a multi-atlas segmentation framework. As the first line of research to pursue, we

aim to investigate different conditions and circumstances in which the proposed approaches

might behave in different way. There are a number of factors that matter when dealing

with multi-modal medical images. As the first goal, we would like to investigate the effect

of noise variations and changes in the bias field of the MR machine in the performance of

the methods. Secondly, we are aiming to expand the application of this work to modalities

other than MRI. As the third point, the segmentation in this research is evaluated by

classifying three major tissues in the brain, however, in many cases correct labelling of the

structures are highly of interest. We aim to expand the brain segmentation and evaluate

the label fusion method to classification of different structures in the brain as well as tissues.

8.2.2 Unified Framework for Multi-Atlas-Based Segmentation

One major outcome of this dissertation is taking advantage of structural representations

based on scale-based over-complete complex wavelet transform for multi-modal problems.
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The label fusion approach and one of the methods proposed to present structural rep-

resentation work based on the undecimated complex wavelet transform. The complex

wavelet representation is shown promising in extracting the structural features in different

modalities. Once the representation is made for the images, it is possible to use them for

either registration step or label fusion. In a multi-atlas segmentation framework, we aim

to yield a unified framework for solving the atlas-to-target registrations and label fusion

steps simultaneously.

8.2.3 Joint Multi-modal Registration

With the availability of large databases, multi-atlas segmentation will becoming a more

complex problem due to the increase in the number of atlases and anatomical variations in

the database. Either of the proposed approaches in image registration, the proposed sim-

ilarity measure and the structural representations, are designed for pair-wise registration

of multi-modal images. A problem with doing pair-wise registrations is that the resulting

alignment depends on which image is chosen as the template. The problem of template

bias in pair-wise registration has been addressed by proposing groupwise registration in the

literature. Congealing framework [112], which evaluates the entropy of a pixel stack, and

ensemble registration, based on a maximum-likelihood clustering [104], are two examples.

Since the structural representation aims to reduce the complexity of the multi-modal prob-

lem, it is possible to speed-up the matching procedure by employing an efficient optimiser

based on using such representations. In this line of research, we aim to investigate an

efficient objective function based on structural representations such that all images can be

aligned in a simultaneous manner.
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