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Abstract 

In the growing concerns towards global environmental qualities and sustainable feedstocks supplies, 

scientific and technological efforts were intensified to utilize alternative renewable resources. In this 

regard, biomass appeared to be one of the potential feedstocks because it is generally carbon neutral 

and essentially renewable. Furthermore, biomass is virtually found in every part of the world in 

abundance and could provide socio-economic benefits. However, if it is not managed properly, biomass 

will be less competitive due to several issues that are associated with its supply chain. Typical biomass 

supply chain has a series of activities such as growing, harvesting, transporting, aggregating, and 

conversion which systematic and efficient flows of materials from the fields to the users are highly 

important. Biomass has competing uses, different kinds and origins which are potentially exploitable, 

poor geographic distributions for retrieving and transporting, and variations in physical and chemical 

properties. It is difficult to make informed decision for any biomass utilization project without having 

an optimal supply chain.  

This research intended to solve those issues by modeling and optimizing biomass supply chains for 

manufacturing energy, chemicals, and materials based on their respective processing routes. The aim 

was not only to focus on  energy production from biomass but also to include chemicals and materials 

because of several factors such as an emerging cost competitive energy resource such as shale gas, 

highly volatile energy prices, and customer’s preparedness and acceptances. Furthermore, it also could 

leverage biomass plantations on the producers’ sides. The biomass supply chain model has considered 

annual profitability of producing products as the performance indicator. It was derived from revenues 

of selling the products subtracted all the associated costs such as biomass cost, transportation cost, 

production cost, and emission treatment costs from transportation and production activities. It summed 

up simultaneously all the profitable processing options that have existed in the superstructure to yield 

the optimal value, while a single ownership was assumed for the whole supply chain’s facilities.  

Three optimization models have been developed and implemented in GAMS (General Algebraic 

Modeling System). The first one was the supply chain’s optimization for Omtec Inc., located in 

Southwestern Ontario. It was a research collaboration between Omtec and the Department of Chemical 

Engineering, University of Waterloo, under the Natural Sciences and Engineering Research Council of 

Canada’s Engage funding. Currently, this company produces bio-filler and briquette from wheat straw. 

They were planning for business expansion and to diversify the existing products’ portfolios for future 
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investment. It involved utilizations of biomass sources other than wheat straw and productions of 

products other than bio-filler and briquette. A superstructure that has assisted in the model’s formulation 

provided alternatives in the biomass processing routes which in turn aimed for profit maximization. 

Optimal results indicated that an annual profit of $ 22,618,673 was expected to be achieved, and this 

value was contributed mainly by the sales of bio-filler, bio-ethanol and by-products from the milling 

plant. The developed model has offered flexibilities in biomass resources utilization and technological 

uses for Omtec Inc. Since the model only considered biomass cost, transportation cost and production 

cost, it did not evaluate environmental performance in the supply chain.  

The second optimization model was for the supply chain of Malaysian palm oil empty fruit bunches for 

multi-products productions. As one of the main palm oil producer in the world, Malaysia within its 

biomass initiatives and strategic plans has promoted the local biomass source utilizations for value-

added products. The developed model has considered environmental performance in the supply chain 

by introducing emissions from transportation and production activities as one of decision variables. The 

superstructure showed processing alternatives for converting the biomass source into intermediates and 

products, transportation networks between processing facilities, and options for product’s direct sale or 

for further refinements. Particularly, option for directly selling the produced product versus further 

refinement was relevant due to the economic uncertainties. With the available parameters, the optimal 

profit was found to be $ 713,642,269 per year. This economic bonanza was seemed ideal and have lack 

of optimal selections for processing routes and transportation modes.  

The third and the last model has extended the second model by incorporating integer variables for 

important decisions related to the best processing routes and transportation modes in the supply chain. 

With numerous alternatives available, selecting best processing route for producing a product was 

imperative because of several factors associated with that such as product’s competitiveness, viability 

and status of technology, environmental impacts, and so on. The optimal decisions about transportation 

amounts and modes have directly influenced the overall economic profitability as well as biomass 

accessibility and mobility. At a planning stage, questions might arise whether to use truck, train, barge 

or pipeline for transporting biomass and derived products from processing facilities to the desired 

destinations in the most economical way. With that in mind, the model has considered all of these 

dilemmas and provided useful information. The previous superstructure has been modified to include 

states of produced products whether they were solid, liquid or gases. Assignments for the transportation 
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modes were done according to this modification. With the given parameters and constraints, the optimal 

annual profit was $1,561,106,613 per year.   

Since majority of utilization projects involving biomass are still under research and development stages 

and there are difficulties to consolidate real data, approximations of models’ parameters could not be 

avoided. The obtained optimal values were subjected to the qualities and availabilities of these 

approximated parameters. However, sensitivity analysis were performed by varying selected 

parameters and the effects to the objective functions were recorded. All in all, it was a strong hope that 

this research could solve typical issues related to the biomass supply chain and would integrate well 

with the efforts to simulate the biomass utilization process individually.  



 

 vi 

Acknowledgements 

I would like to express sincere gratitude to Department of Chemical Engineering, University of 

Waterloo for letting me fulfill my dream of being a student here. My deep acknowledgments are 

certainly dedicated to my supervisors, Professor Ali Elkamel and Professor Leonardo Simon for their 

endless helps and motivations throughout this enriching journey. They have taught me lot of things 

apart from research works and typical supervisions such as determinations, dedications, and 

commitments. These acknowledgements are also for my external examiner, Professor Helen Shang of 

Laurentian University, and for my research committee members; Associate Professor Ting Tsui, 

Associate Professor Aiping Yu, and Associate Professor Fatma Gzara. 

I am also extremely grateful for the helps from my fellow researchers in the Department of Chemical 

Engineering, University of Waterloo especially the modeling and optimization group for their ideas, 

suggestions and encouragements. Definitely, this kind of research required me to work together and 

proceed with better opinion.  

Finally, I would like also to express my heartfelt gratitude to the financial sponsors, Ministry of Higher 

Education of Malaysia and Universiti Malaysia Pahang, and their staffs. Since my educational and 

living expenses here in Canada were depending to these sponsorships, it will be remained special for 

me and my family.  

 



 

 vii 

Dedications  

In the name of Allah, the Most Beneficent and the Most Merciful for blessing me with the ability to 

seek knowledge and ability to feel wisdom. This PhD journey came to the end. It was a collection of 

stories that blended joys and struggles, smiles and cries, energetic and fatigue. Alhamdulillah, thank 

you to the God. 

I dedicate this thesis to my lovely wife, Siti Noredyani Abdul Rahman for her endless supports, 

sacrifices and prayers, and to my adorable kids, Nur Iman Amani, Iman Aqeef and Nur Iman Amelia.  

This dedication also for my parents, Abdul Razik Sulaiman, Rosnah Udin, Abdul Rahman Jusoh and 

Shamsiah Mamat for their non-stop beliefs, motivations and prayers. To all my family members in 

Jerantut; Rozamzila Abdul Razik, Nor Hazana Abdul Razik, Noor Azian Abdul Razik, and Nor Nadiera 

Fazlin Abdul Razik, and in Kota Bharu; Muhammad Hafidz Abdul Rahman, Borhan Sidqy Abdul 

Rahman, Arifah Syahirah Abdul Rahman and Faris Marwan Abdul Rahman, and to all my friends in 

Canada and Malaysia, thank you very much! 



 

 viii 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... vi 

Dedications ........................................................................................................................................... vii 

Table of Contents ................................................................................................................................ viii 

List of Figures ....................................................................................................................................... xi 

List of Tables ........................................................................................................................................ xii 

Abbreviations ...................................................................................................................................... xiii 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Biomass Definition and Classification ......................................................................................... 1 

1.2 Renewable Resources for Energy, Chemicals and Materials Productions ................................... 2 

1.3 Research Objectives ..................................................................................................................... 4 

1.4 Organization of the Thesis ............................................................................................................ 5 

Chapter 2 Background and Process Description .................................................................................... 7 

2.1 Supply Chain, Supply Chain Design and Supply Chain Management ......................................... 7 

2.2 Biomass Production and Collection ............................................................................................. 8 

2.3 Biomass Transportation ................................................................................................................ 9 

2.4 Biomass Pre-processing and Storage .......................................................................................... 10 

2.4.1 Pre-treatment ....................................................................................................................... 11 

2.4.2 Mechanical Densification .................................................................................................... 11 

2.4.3 Thermal Densification ......................................................................................................... 11 

2.4.4 Biomass Storage .................................................................................................................. 12 

2.5 Biomass Main and Further Processing ....................................................................................... 13 

2.5.1 Combustion.......................................................................................................................... 14 

2.5.2 Gasification .......................................................................................................................... 15 

2.5.3 Pyrolysis .............................................................................................................................. 16 

2.5.4 Hydrolysis............................................................................................................................ 17 

2.5.5 Fermentation ........................................................................................................................ 18 

2.5.6 Alkaline Activation ............................................................................................................. 18 

2.5.7 Aerobic Digestion ................................................................................................................ 19 

2.5.8 Anaerobic Digestion ............................................................................................................ 20 



 

 ix 

2.5.9 Dried Long Fiber (DLF) Production ................................................................................... 20 

2.5.10 Bio-composite Production ................................................................................................. 21 

2.5.11 Bio-resin Production .......................................................................................................... 21 

2.5.12 Bio-ethylene Production .................................................................................................... 21 

2.6 Previous Optimization Models of Biomass Supply Chain ......................................................... 22 

Chapter 3 Modeling and Optimization of Biomass to Bio-products Supply Chain: A Research 

Collaboration with Omtec Incorporated ............................................................................................... 27 

3.1 Abstract ...................................................................................................................................... 27 

3.2 Introduction ................................................................................................................................ 27 

3.3 Methodology .............................................................................................................................. 31 

3.4 Problem Formulation and Parameter Approximation................................................................. 34 

3.5 Results and Discussions ............................................................................................................. 45 

3.6 Conclusion and Future Works .................................................................................................... 50 

Chapter 4 Multi-products Productions from Malaysian Oil Palm Empty Fruit Bunch (EFB): 

Analyzing Economic Potentials from Optimal Supply Chain .............................................................. 51 

4.1 Abstract ...................................................................................................................................... 51 

4.2 Introduction ................................................................................................................................ 51 

4.3 Model Development for Optimal EFB’s Supply Chain ............................................................. 54 

4.4 Formulation of the Optimization Model ..................................................................................... 69 

4.5 Results and Discussions ............................................................................................................. 74 

4.6 Sensitivity Analysis .................................................................................................................... 84 

4.7 Conclusion and Future Works .................................................................................................... 84 

Chapter 5 Multi-products Productions from Malaysian Oil Palm Empty Fruit Bunch (EFB): Selection 

for Optimal Process and Transportation Mode ..................................................................................... 86 

5.1 Abstract ...................................................................................................................................... 86 

5.2 Introduction ................................................................................................................................ 86 

5.3 Methodology .............................................................................................................................. 89 

5.4 Mathematical Model for Optimal Selections .............................................................................. 93 

5.5 Approximation of Parameters ................................................................................................... 104 

5.6 Results and Discussions ........................................................................................................... 112 

5.7 Sensitivity Analysis .................................................................................................................. 122 

5.8 Conclusion and Future Works .................................................................................................. 123 



 

 x 

Chapter 6 Conclusion and Recommendations for Future Work ......................................................... 124 

6.1 Conclusion ................................................................................................................................ 124 

6.2 Recommendations for Future Works ........................................................................................ 125 

APPENDIX A (GAMS LOG FILE FOR CHAPTER 3) .................................................................... 126 

APPENDIX B (GAMS LOG FILE FOR CHAPTER 4) .................................................................... 128 

APPENDIX C (GAMS LOG FILE FOR CHAPTER 5) .................................................................... 130 

REFERENCES ................................................................................................................................... 134 

 



 

 xi 

List of Figures 

Figure 1.1 World energy-related carbon dioxide emissions by fuel type in billion metric tons, 1990-

2035 

Figure 2.1 Components in biomass supply chain  

Figure 2.2 Biomass conversion technology routes 

Figure 2.3 Biomass combustion process scheme 

Figure 2.4 A Conceptual fast pyrolysis process 

Figure 2.5 Overall process scheme for ethanol production from lignocellulosic feedstocks 

Figure 3.1 Four scenarios and decision dilemma in utilizing biomass resources to produce bio-products 

Figure 3.2 Methodology for Chapter 3 

Figure 3.3 A superstructure of biomass to bio-products supply chain  

Figure 3.4 Sensitivity analysis for effect of biomass cost towards profit 

Figure 4.1 Sequential steps for optimal EFB’s supply chain 

Figure 4.2 A superstructure of supply chain for multi-products productions from EFB 

Figure 4.3 Map of Peninsula Malaysia 

Figure 5.1 Selection dilemmas in biomass supply chain 

Figure 5.2 Methodology for EFB’s supply chain with optimal processing route and transportation mode  

Figure 5.3 Superstructure of EFB’s supply chain for selecting optimal processing routes and 

transportation mode 

Figure 5.4a Optimization process for processing routes and processing units 

Figure 5.4b Final superstructure of EFB supply chain with optimal processing routes 

 

 

 

 

 

 

 

 

 

 

 



 

 xii 

List of Tables 

Table 1.1 World primary energy demands in metric tonne of oil equivalent 

Table 2.1 Biomass densities according to densification methods 

Table 2.2 Synthesis gas for fuels and chemicals 

Table 2.3 Comparison between concentrated- and dilute- acid hydrolysis 

Table 2.4 Summary of previous works related to BSC models 

Table 3.1 List of indices and descriptions in the biomass to bio-products supply chain’s superstructure 

Table 3.2 Description of mathematical formulations in Chapter 3 

Table 3.3 Descriptions of terms used in (3.1) till (3.23) 

Table 3.4 - 3.26 Lists of approximated parameters in Chapter 3 

Table 3.27 Optimal production level for bio-products and their calculated contributions to the annual 

profit 

Table 3.28 - 3.37 List of other optimal results from GAMS in Chapter 3 

Table 4.1 Applications for products from oil palm EFB 

Table 4.2 List of subscript and description in Figure 4.2 

Table 4.3 - 4.21 Lists of approximated parameters in Chapter 4 

Table 4.22 Description about model’s formulations in Chapter 4 

Table 4.23 Descriptions of terms used in (4.1) till (4.27) 

Table 4.24 - 4.39 Lists of optimal results in Chapter 4 

Table 4.40 Sensitivity analysis for the profitability of the selected bio-products with selling prices’ 

variations 

Table 5.1 List of indices and descriptions for model’s formulations 

Table 5.2 Description of formulations (5.1) till (5.58) 

Table 5.3 Descriptions of terms used in formulations (5.1) till (5.58) 

Table 5.4 - 5.24 Lists of approximated parameters in Chapter 5 

Table 5.25 Optimal production level of products 

Table 5.26 - 5.33 List of optimal results in Chapter 5 

Table 5.34 Sensitivity analysis for some of parameters related to ammonia 

 

 

 

 



 

 xiii 

Abbreviations 

ASTM  American Society for Testing and Material 

BARON Branch-And-Reduce Optimization Navigator  

BSC  Biomass Supply Chain 

CMC  Carboxymethyl Cellulose 

CO2  Carbon Dioxide 

CO2e  Carbon Dioxide Equivalent 

DLF  Dry Long Fiber 

EFB   Empty Fruit Bunch 

HEC  Hydroxyethyl Cellulose 

HP  High Pressure 

LP  Linear Programming 

LP  Low Pressure 

MF  Melamine Formaldehyde 

MIP  Mixed Integer Programming 

MOILP  Multi-Objective Integer Linear Programming 

MP  Medium Pressure 

MSW  Municipal Solid Waste 

NCC  Nanocrystalline Cellulose 

NFC  Nanofibrillated Cellulose 

NLP  Non-linear Programming 

PE  Polyethylene 

PF  Phenol Formaldehyde 

PHA  Polyhdroxyalkanoates  

PLA  Polyactide 

POM  Polyoxymethylenes  

SM  Simulation Model 

SP  Stochastic Programming 

TPS  Thermoplastic Starch 

UF  Urea Formaldehyde 

VMI  Vendor-managed Inventory  

 



 1 

Chapter 1 

Introduction 

In this chapter, overviews about biomass and the potentials and benefits of utilizing biomass for energy, 

chemicals, and materials production are explained to provide background motivations for this research. 

Positive attributes possessed by biomass resources are briefly discussed in the context of sustainability. 

1.1 Biomass Definition and Classification 

Biomass can be defined as biological or organic material that is derived from living or recently living 

organisms (www.biomassenergycentre.org.uk). These organisms relate to the five kingdoms in biology 

which are plants, animals, fungi, protists and monerans. While plants, animals and fungi are well 

known, protists are referred to any one-celled organisms including protozoans, eukaryotic algae and 

slime molds, while monerans include bacteria, blue-green algae, and various primitive pathogens. 

According to Wereko-Brobby & Hagen (1996), biomass is found in virtually every part of the world 

and it is not only forms an essential core component of the earth’s life sustaining system, but it also has 

been consumed extensively and continually for human civilization and development. In addition, 

biomass is a highly diverse and complex resource which requires study in a wholly holistic context, 

with a full recognition of the interdependencies in the overall ecological system such as people, land, 

water, nutrients and all the five kingdoms of life.  

 Even though there are different types of biomass classifications, generally it can be divided 

into four general classes according to its sources. These four classes include biomass from trees, 

dedicated crops, agricultures, and wastes or residues (Wereko-Brobby & Hagen, 1996). Biomass from 

trees, also known as woody biomass, is by far the most commonly used and can be divided into virgin 

wood and forestry residuals. Dedicated crops or purposely grown crops are planted with specific 

purposes such as miscanthus, switchgrass, forage sorghum, poplar, and hybrid willow. The most 

significant division of biomass from agricultures is between those that are predominantly dry such as 

straw, stalk, bunch, stover, and rusk, and those that are wet such as animal dung and poultry manure. 

For instance, wheat straw and palm oil empty fruit bunch (EFB) are among typical examples of dry 

agricultural biomass. Biomass from plants whether they are from trees, energy crops or agricultures are 

often referred to as ligno-cellulosic biomass. Biomass from wastes and residues meanwhile include 

municipal solid wastes (MSW), which is defined as wastes of durable goods, non-durable goods, 
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containers and packaging, food scraps, yard trimmings, and miscellaneous inorganic wastes from 

residential, commercial, and industrial sources (Demirbas, 2004). 

1.2 Renewable Resources for Energy, Chemicals and Materials Productions 

Biomass is essentially renewable which is mainly composed of carbon, hydrogen and oxygen, and 

regarded to be sustainable raw materials that compete directly with fossil fuel resources because they 

are both sharing similar conversion processes. Basically, renewable refers to the capability of a 

substance to be restored when the initial stock has been exhausted. However, there are more scientific 

ways to define renewability of a substance. For example, Wereko-Brobby and Hagen (1996) have 

introduced a renewability ratio concept as the ratio of replenishment rate to depletion rate. Even though 

both rates were unusually known, it is obvious that the renewability ratio value for renewable substance 

be always greater than one. Zhang and Long (2010) have talked about percent renewable (PR), where 

for instance, biodiesel possesses 30% of PR value while fossil fuels have 0% of PR value.  Another 

definition given by American Society for Testing and Material (ASTM) D6866, which refers to the 

content of carbon 14 or radiocarbon, a weakly radioactive isotope that naturally occurring element in 

all living things (www.astm.com). As a general comparison, contemporary biomass has 100% of 

radiocarbon while fossil fuels have 0% of radiocarbon. This renewability of biomass is significantly 

important criteria to substitute the depleted fossil resources for sustainable energy, chemicals, and 

materials productions. In addition, biomass feedstocks are geographically dispersed worldwide as to 

provide equivalence of resources sharing, to ensure a balanced socioeconomic development between 

urban and rural, and it also can sustain essentially the earth’s ecological system through a balance 

carbon cycle. 

 The potentials of biomass in substituting fossil fuels for energy production have constantly 

attracted growing interests from industries, academia and policy makers. The main reasons behind this 

condition are due to environmental effects associated with the burning of fossil fuels and global energy 

security threats. For environmental effects, one of common greenhouse gas that released from fossil 

fuel combustion is carbon dioxide. As the same effect in a greenhouse, this gas traps the heat and makes 

the world warmer. Carbon dioxide emission data from fossil fuels burning is shown in Figure 1.1.  
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Figure 1.1 World energy-related carbon dioxide emissions by fuel type in billion metric tons, 

1990-2035 (www.iea.org) 

 As the worldwide population increases and third world nations develop, energy demand 

continues to grow (Evans et al., 2010). Table 1.1 shows the world primary energy demand that is 

projected until 2035. As clearly can be seen, as the total worldwide demands for energy keep increasing 

year-by-year, biomass and other renewables are expected to gain significant contributions in meeting 

these demands. By 2050, estimation was made that biomass could provide nearly 38% of the world’s 

direct fuel use and 17% of the world’s electricity (Demirbas, 2004). 

Table 1.1 World primary energy demands in metric tonne of oil equivalent (adopted from 

www.eia.org) 

Primary energy 1980 2008 2015 2020 2030 2035 

Coal 1792 3315 3892 3966 3984 3934 

Oil 3107 4059 4252 4346 4550 4662 

Gas 1234 2596 2919 3132 3550 3748 

Nuclear 186 712 818 968 1178 1273 

Hydro 148 276 331 376 450 476 

Biomass 749 1225 1385 1501 1780 1957 
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Other renewables 12 89 178 268 521 699 

Total 7229 12271 13776 14556 16014 16748 

  

 In the case of chemicals productions from biomass, similar attribute of sustainable feedstocks 

supply associated with biomass has gained remarkable interests especially in European Countries. A 

country like The Netherlands has a specific target for substituting petrochemical-based bulk chemicals 

with bio-based bulk chemicals. In Port of Rotterdam, one of the busiest ports in the world, short-term 

(0-10 year) target has been set-up for substituting 10-15% of fossil oil-based bulk chemicals by bio-

based bulk chemicals, especially for oxygenated bulk chemicals such as ethylene glycol and propylene 

glycol, iso-propanol and acetone, butylene and methylketone, and also for the replacement of methyl 

tertiary butyl ether by ethyl tertiary butyl ether (Blaauw et al., 2008).  While for the mid-term target 

(10-20 years) there is clear potential for a bio-based production of ethylene, acrylic acid and N-

containing bulk chemicals such as acrylonitrile, and acrylamide. Bio-based building blocks, specifically 

carbohydrate-based building blocks could be used for the production of new generation bio-based bulk 

chemicals and polymers with a unique structure. However, the authors stated that a much larger impact 

might be expected for the production of bulk chemicals from bio-based resources (biomass) if the 

structures are identical to today’s bulk chemicals. 

 Materials productions from biomass can be realized either from the derivation of bio-based 

bulk chemicals or as by-products from biomass conversion processes. In the case of bio-char or 

charcoal, it is produced from thermal conversion of biomass via pyrolysis. Bio-char is used as soil 

enhancer which will increase food security and cropland diversity in areas with severely depleted soils, 

scarce organic resources, and inadequate water and chemical fertilizer supplies (Erick et al., 2001). 

1.3 Research Objectives 

Having discussed the importance and benefits of utilizing biomass as an alternative feedstock, this 

research will focus about the modeling and optimization of biomass supply chain for energy, chemicals 

and materials productions. Specifically, the research objectives are highlighted in the followings:  

• Construct superstructures that show important stages in a Biomass Supply Chain (BSC) that 

include biomass collection, pre-processing, storage and transportation, main processing and 

further processing to produce sustainable energy, chemicals and materials. 



 

 5 

• Formulate mathematical models to optimize the supply chains with annual profitability as 

the objective function. It will search for optimal results that should include yields per year, 

selection of technologies and processing routes, selection of transportation modes, 

emission levels and so on. The developed models should evolve from the basic linear 

programming (LP) to a more complex one that might include mixed integer programming 

(MIP) and non-linear programming (NLP). 

• Implement all the formulations in General Algebraic Modeling System (GAMS) and 

obtain the optimal results as well as carry out relevant analysis of the results.  

1.4 Organization of the Thesis 

The thesis is organized in six chapters as follows: 

 

Chapter 1: Introduction 

This chapter discusses the overviews of biomass and biomass utilizations as a renewable feedstock. It 

also discusses about the sustainability potentials of energy, chemicals and materials productions from 

biomass.  

 

Chapter 2: Background and Process Description 

This chapter provides background knowledge on the biomass supply chain and its components.  Brief 

descriptions about biomass processes and previous works in the biomass supply chain’s optimization 

models are summarized as to find the knowledge’s gap.  

 

Chapter 3: Modeling and Optimization of Biomass to Bio-products Supply Chain: A Research 

Collaboration with Omtec Incorporated  

This chapter presents a paper-based results about the basic LP supply chain model that has been 

proposed to Omtec Inc. for their business expansion plan. Different biomass sources, multiple 

technologies and ranges of products are incorporated in the model. 
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Chapter 4:  Multi-products Productions from Malaysian Oil Palm Empty Fruit Bunch (EFB): Analyzing 

Economic Potentials from Optimal Supply Chain  

This chapter presents paper-based results about the optimal supply chain model of multi-products 

productions from Malaysian EFB. The model is formulated using LP. It takes a case study of the three 

states in Peninsula Malaysia that provide EFB sources. The transportation networks between processing 

facilities in the superstructure and emission considerations are emphasized.  

 

Chapter 5:  Multi-products Productions from Malaysian Oil Palm Empty Fruit Bunch (EFB): Selection 

for Optimal Process and Transportation Mode  

This chapter presents paper-based results and extends the optimal supply chain model of multi-products 

productions from Malaysian EFB that is discussed in Chapter 4. The model incorporates integer 

variables as to select the best processing routes and transportation modes.  

 

Chapter 6: Conclusions and Future Work 

This chapter gives the overall concluding remarks gained from this research and suggests 

recommendations for future works. 
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Chapter 2 

Background and Process Description 

In this chapter, literatures were reviewed to provide background knowledge related to the biomass 

supply chain components and the way to optimize the inter-relating components. Brief descriptions 

about biomass processes were provided and previous works of supply chain optimization models were 

summarized. From the summary, this research has identified its novelty and expected contributions. 

2.1 Supply Chain, Supply Chain Design and Supply Chain Management 

In defining the supply chain and understanding the Supply Chain Management (SCM), La Londe and 

Masters (1994) have proposed the supply chain as set of firms that pass materials forward, which in 

practice it may involve scores or hundreds of firms for technologically complex products. The authors 

have also referred to the strategy of applying integrated logistics management to the all elements in a 

supply chain as SCM.  Lambert et al. (1998) have used different name of supply SCM as logistics 

management which involve managing of goods or materials from point of origin to point of 

consumption, and in some cases even to the point of disposal. Simchi-Levi et al. (2000) have defined 

SCM as set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and 

stores, so that merchandise is produced and distributed at the right quantities, to the right locations and 

at the right time, in order to minimize system-wide costs while satisfying service level requirements. 

Mentzer (2001) has defined a supply chain as a set of three or more companies directly linked by one 

or more of the upstream and downstream flows of products, services, finances, and information from a 

source to a customer, while SCM involves with management efforts by the organizations in the supply 

chain.  

 Manufacturing of energy, chemicals and materials from biomass are no different with other 

manufacturing industries in terms of requiring efficient SCM. As majority of the involved technologies 

are emerging and the products are relatively new to the market, productions should ensure their 

economic viabilities and carry positive reputations to the environment. This is where SCM would be 

playing significant roles especially when dealing with biomass systems. Typical issues related to the 

biomass systems are summarized in the followings; 

• Lack of experiences with time-sensitive collections, handlings, storages, transportations and 

 delivery operations to ensure year-round supplies of large of biomass feedstocks (Zhang  et 

 al., 2012). 
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• Biomass sources are known to have high physical and chemical properties variabilities (PPD 

 Inc. 2011). These facts might be due to several reasons such as biomass type, location, soil 

 condition, harvesting season, handling and pre-treatment used. 

• Poor geographic distribution of biomass sources for retrieving and transporting, as well as 

 their high content in ash and potentially corrosive components in some varieties (Perpina et 

 al., 2008). 

• Multiple uses of biomass sources such as for energy, food, feed, building and construction 

 materials, fertilizers and so on,  which will almost certainly are competing on each other 

 (Wereko-Brobby C.Y. and Hagen E.B., 1996). In addition, it is always more than one of 

 biomass sources could be used for the same utilization purpose depending to the availability, 

 price, and quality. 

 Based on the above-mentioned issues, this research has focused on the design of Biomass 

Supply Chain (BSC) for energy, chemicals and materials productions. The design of the supply chain 

is one of the important elements in SCM. The block diagrams in Figure 2.1 represent the components 

in typical BSC. In the following sub-sections, the descriptions for each supply chain component are 

provided. 

2.2  Biomass Production and Collection 

Utilizations of biomass was expected to show gradual substitutions of fossil resources in the near future. 

In order to achieve this expectation, first and foremost, biomass resources need to be produced and 

collected in a sustainable manner. Beside agricultural residues, one type of biomass feedstocks that 

offers many advantages as a third generation feedstock is dedicated or purposely-grown crops. 

Dedicated crops are ligno-cellulosic raw materials  which being cultivated that may provide sustainable 

biomass resources in the productions of bio-energy, bio-chemicals, bio-materials as well as other bio-

products.  In the view of agricultural diversification as suggested by Oo et al. (2012), dedicated crops 

offer farmers attractive option for number of important reasons such as high yield, low crop 

maintenance, growing favorable incentives and policies from decision makers, soil quality restoration 

and other environmental benefits. In general, dedicated crops can be divided into two types; i) woody, 

such as willow and poplar; ii) herbaceous, such as miscanthus, switchgrass, sorghum, Indian grass, 

native tall grasses, reed canary grass, big blue stem, etc. For farmers that have experiences dealing with 
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conventional herbaceous crops such as hay, herbaceous dedicated crops are more preferable to cultivate 

over woody dedicated crops because the farmers may use the existing agricultural equipment. 

BIOMASS 
PRODUCTION AND 

COLLECTION

TRANSPORTATION 
TO PRE-PROCESSING 

HUB

BIOMASS MAIN 
PROCESSING AND 

FURTHER 
PROCESSING

TRANSPORTATION 
TO MAIN 

PROCESSING PLANT

PRE-PROCESSING 
AND STORAGE

CHEMICALS

ENERGY

MATERIALS

Figure 2.1 Components in biomass supply chain  

2.3 Biomass Transportation 

Transportation is a major consideration for planning and operation of a biomass project. Transporting 

biomass in this regard is covered from the farm gate of the producer to the pre-processing hubs and 

from there to the main processing plants and further processing plants. Minimizing transportation costs 

are therefore required to gain economic benefits since it can be the limiting factor for financial 

feasibility. As reported by Oo et al., (2012), transportation costs for biomass is a function of distance, 

density of the biomass and mode of transportation.  

 The distances for transporting biomass are determined by the locations of pre-processing site, 

main processing plant and further processing plant. Since locating processing facilities are vital in 

reducing biomass transportation costs, several authors have published their works in this area, among 

of them are You and Wang, (2011), and Bowling et al., (2011). Strictly speaking, to have processing 

facilities nearby to the biomass resources is a must to ensure overall economic competitiveness.  

 Biomass density has an important effect in determining transportation cost estimates.  Brownell 

and Liu, (2011) described biomass density as bulk density and energy density. Bulk density is defined 
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as the weight per unit volume of a material, expressed in kilograms per cubic meter (kg/m3) or pounds 

per cubic foot (lb/ft3). Energy density is a term used to describe the amount of energy stored per unit 

volume, often expressed in MJ/m3 or BTU/ft3. A high biomass bulk density can be achieved by 

removing moisture through drying, while a high biomass energy density is a result of dried biomass 

plus additional biomass mechanical and thermal processes, called palletization and torrefaction 

respectively. A higher density of biomass will allow more mass of material to be transported per unit 

distance. For example, a standard wheat straw bale has a bulk density of about 120 kg/m3, and a truck 

with loading volume of 100 m3 can transport bales weighing approximately 12 tonnes (Oo et al., 2012). 

The same truck now can transport 580 kg/m3 of biomass pellets or 800 kg/m3 of torrefied pellets 

weighing 40 tonnes or more, subjected to the road load regulations. The cases of lower biomass density 

typically apply for raw biomass resources from farm gate to the pre-processing site, while the cases of 

higher biomass density are always possessed by the products from pre-processing facility.  

 Depending to the distance and load of biomass, typical modes of transportation which include 

truck, train and barge could be selected. All of these transportation modes need to be evaluated for a 

case-to-case basis, and have fixed cost components (e.g loading and unloading, capital cost of rail cars, 

and the marine port) and variable cost components (e.g fuel and operating costs). Truck transport is 

generally well developed and usually the cheapest mode of transportation but it becomes expensive as 

travel distance increases, plus it has lowest allowable weight of load compared to train and barge.  

2.4 Biomass Pre-processing and Storage 

Biomass resources are typically known to have variety of physical and chemical characteristics. These 

natures are unfavorable for any energy, chemical and material productions projects because they are 

difficult to transport, as well as they will create unwelcomed operational problems. These facts also 

somehow become major barriers for widespread uses of biomass as an alternative feedstock to fossil 

fuels. One of the solutions to overcome this issue is by pre-processing the raw biomass resources so 

that they are more convenient to carry and at the same time will meet technical specifications of biomass 

main processes later on. Pre-processing of biomass feedstock in this context can involve pre-treatment, 

mechanical densification and thermal densification. Depending on  the location of biomass feedstock 

usage, the pre-processing methods can be stand alone or combination of methods. 
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2.4.1 Pre-treatment 

Clarke and Preto (2011) have explained about biomass pre-treatments that include chopping and 

grinding, drying to required moisture content and applying a binding agent. Chopping and/or grinding 

are necessary because it will reduce energy use in the densification processes and decrease in breakage 

of the outcome product. Together with baling, both chopping and grinding processes are normally done 

at the production fields. Drying of biomass is done to improve its density and durability. As reported 

by Clarke and Preto (2011), most densification processes require the optimum range of moisture content 

which in between 8% to 20% on a wet basis. Applying binding agents such as vegetable oil, clay, starch, 

cooking oil or wax is needed to increase binding properties of densified biomass. Naturally, some 

biomass sources like corn stalk has high binding properties as compared to warm-season grasses. This 

difference was due to protein and starch contents.  

2.4.2 Mechanical Densification 

Basically, the purpose of mechanical densification is to produce densified biomass feedstocks in the 

form of pellets or briquettes from the loose form of original biomass sources. In this regard, pelletizing 

and briquetting are the most common processes to densify biomass feedstocks for solid fuels 

applications (Tumuluru et al., 2010). As these two densification methods involve high pressure 

compaction technologies, they are also referred as “binderless” technologies. Two common methods 

are a screw press and a piston press. In a screw press, the biomass is extruded constantly by a screw 

through a heated taper die that could reduce the friction, while in a piston press, the biomass is punched 

into a die by a reciprocating ram (Kurchania et al., 2012).  

2.4.3 Thermal Densification 

The purpose of having thermal densification is to produce torrefied biomass through a process called 

torrefaction. Torrefaction is a version of pyrolysis (slow pyrolysis) that comprises heating of biomass 

in the absence of oxygen and air. Besides having very dense biomass materials, another advantage 

possessed by torrefied biomass is that it has hydrophobic properties (water repellent), making it resistant 

to biological attack and moisture, thereby facilitating its storage (Clarke and  Preto, 2011). This is the 

superior quality of torrefied biomass as compared to untorrefied biomass pellet and briquette. Having 

said this, torrefied biomass pellet that combine the characteristics of pelletized and torrefied biomass is 

the best quality of renewable solid fuel. The density of biomass for selected densification methods is 
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shown in Table 2.1. As for reference, loose biomass has a bulk density of 60-80 kg/m3 or 3.5-5 lb/ft3 

(Clarke and Preto, 2011).  

 

Table 2.1 Biomass densities according to densification methods (adapted from Clarke and Preto, 

2011) 

Form of Biomass Shape and Size Characteristics Bulk Density 

(kg/m3) 

Energy Density 

(GJ/m3) 

Baled biomass i) Large round, soft core (1.2 x 1.2, 1.2 x 1.5, 1.5 

x 1.2, 1.8 x 1.5 m) for diameter x width. 

ii) Large round, hard core (1.2 x 1.2, 1.2 x 1.5, 

1.5 x 1.2, 1.8 x 1.5 m) for diameter x width. 

iii) Large/mid-size square (0.6 x 0.9 x 2.4 m) 

 

160-190 

 

190-240 

 

210-255 

2.8-3.4 

 

3.4-4.5 

 

3.7-4.7 

Briquettes 32 mm diameter x 25 mm thick 350 6.4 

Pellets 6.24 mm diameter 550-700 9.8-14.0 

Torrefied Pellets 6.24 mm diameter or smaller 800 15.0 

 

2.4.4 Biomass Storage 

With the densified biomass feedstocks, they are now ready to be used and can be transported again to 

main processing site or straight away to the end users. Otherwise, storages are required to temporarily 

store these densified feedstocks.  

 According to Williams et al. (2008), there are five types of storage  used for agricultural 

products including i) flat storage, ii) smooth wall steel bins and silos, iii) corrugated steel bins, iv) 

concrete bins and silos, and v) bunkers. Flat storage comprises of a pre-manufactured metal building or 

grain piles on the ground covered by a tarp. Smooth wall steel bins are usually used when the quantities 

of materials to be stored are smaller, while corrugated steel bins will be used when large storage volume 

is required. Concrete silos are used to be expensive option but recently became attractive due to its 

durability and because of higher steel price. Bunkers are constructed using timber, steel or cast in place 

concrete elements, and have disadvantages of high loading and unloading costs. They authors have also 

mentioned that the economics of biomass storages are depending to the construction costs, durability, 

throughput and operational costs. 
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2.5 Biomass Main and Further Processing 

Biomass main processing and further processing are converting the pre-processed biomass feedstocks 

into intermediates and final products. In a conversion plant or usually referred to bio-refinery, biomass 

inputs must undergo several processing steps depending on the selected conversion technology, which 

will eventually determine products that are going to be produced. The selection between conversion 

technologies available or even the consideration within a conversion technology option itself is dictated 

mainly by techno-economic viability.  

 As shown in Figure 2.2, biomass conversion technologies are generally can be divided into 

three main categories; i) thermochemical, ii) chemical, and iii) biochemical processing routes. Further 

processing is meanwhile will take place after the main processing to further making the derivative 

products.  

 

BIOMAS FEEDSTOCKS

Thermochemical Process Chemical Process Biological Process

Combustion Gasification Pyrolysis Distillation
Hydro-

gasification

Acid hydrolysis

Anaerobic 

digestion

Aerobic 

fermentation
Bio-fotolysis

Alcoholic 

fermentation

Figure 2.2 Biomass conversion technology routes (adapted from Garcia et al., 2011) 

 

Thermochemical conversion of biomass is a manufacturing platform that apply combustion 

process to convert the chemical energy stored in biomass into heat (McKendry, 2002). Heat also will 

be used to break down biomass feeds into an oil-rich vapor in pyrolysis process and synthesis gas in 

gasification process (Abraham et al., 2003). The following chemical processes (further processing 

steps) then will convert the intermediate products into an array of products, that analogous to a 

conventional refinery process. Biomass chemical conversion process path will typically use strong acid 
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to break down lignocellulosic biomass into its single morphological structure whether cellulose, 

hemicellulose and lignin. Cellulose, hemicellulose and lignin will then undergo further processes to 

produce ethanol and other liquid fuels (PPD Inc., 2011). Biochemical conversion process path 

meanwhile will use enzymes of bacteria or other microorganisms to produce energy, chemicals and 

materials from biomass sources. The biochemical production options are actually will determine the 

type of products, for instance, alcohol fermentation will produce ethanol, anaerobic digestion will 

produce biogas, and aerobic fermentation will produce compost (Garcia et al., 2011). The following 

sub-sections will explain briefly examples of biomass processing processes. 

2.5.1 Combustion 

Biomass combustion is a thermal process that converts biomass source entirely to carbon dioxide and 

water vapor, thus precluding conversions to intermediate fuels or chemicals (Abraham et al., 2003). As 

the main purpose of combustion is to convert chemical energy stored in the fuel into electrical energy, 

Vanek and Albright (2008) highlighted three key components exist in a power plant that included i) a 

mean of converting fuel to heat, ii) a mean of converting heat into mechanical energy, and iii) a mean 

to convert mechanical energy into electrical energy. Figure 2.3 depicts an example of simple biomass 

combustion process scheme. The energy content of biomass and all other fuels is measured by its 

heating value. Measurements of heating value can be divided into Gross Heating Value (GHV) and Net 

Heating Value (NHV). The difference between these two measurements is that GHV will include latent 

heat of water vapor condensation/vaporization, while NHV will not.  

McKendry (2002) has reported that net bio-energy conversion efficiencies for biomass 

combustion power plants range from 20% to 40%, while a higher efficiency is obtained with systems 

over 100 MWe or when the biomass is co-combusted in coal-fired power plants. Combined cycle also 

can improve overall thermal efficiencies as suggested by Vanek and Albright (2008). Apart from the 

plant efficiency concern, an action to mitigate greenhouse gases from combustion process in the power 

plant must be urgently done. In Ontario for example, Atikokan generating station with the capacity of 

200 MWe has replaced coal as its feedstock with biomass since 2014. This project utilizes 90,000 

tonnes of biomass fuels annually and has created 200 jobs during its construction phase 

(www.opg.com). Biomass fuel has advantages over coal such as higher fuel reactivity due to its high 

volatile content (Garcia et al., 2011), higher char reactivity, and lower Sulphur content (Demirbas, 

2004). 
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Figure 2.3 Biomass combustion process scheme (adapted from Bain, 2004) 

 

2.5.2 Gasification 

Biomass gasification is the conversion of biomass feedstocks by partial oxidation into gaseous product 

called as synthesis gas or also known as syngas, containing primarily of hydrogen and carbon 

monoxide, with lesser amounts of carbon dioxide, water, methane, higher hydrocarbons and nitrogen 

(Ciferno and Marano, 2002). Gasification is considered one of the most efficient ways of converting 

the energy embedded in biomass, and it is becoming one of the best technological alternatives for solid 

wastes reuse (Puig-Arnavat et al., 2010). Unlike combustion process, gasification will allow biomass 

sources to simultaneously become the feedstocks for energy and chemicals productions, the roles that 

are currently being played by natural gas and other fossil fuels.  

For a biomass gasification process, if the desired final products from the syngas are heat and 

power, a combined heat and power production system as a further processing will be deployed. 

Otherwise, if the desired final products from the syngas are chemicals and liquid fuels, further 

processing like methanol production system and Fischer-Tropsch system can be installed, respectively. 

Table 2.2 shows some applications of syngas in the production of liquid fuels and chemicals.  

 

Table 2.2 Synthesis gas for fuels and chemicals (adapted from Moulijn et al., 2001) 

Mixture Ratios Applications 

H2 Refinery hydro-treating, hydrocracking and emerging uses of hydrogen 
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2H2:1CO Alkenes (Fischer-Tropsch reaction) 

2H2:1CO Methanol and higher alcohols productions 

1H2:1CO Aldehydes from hydro-formylation process 

CO Acids (formic and acetic) productions 

 

2.5.3 Pyrolysis 

Pyrolysis is the conversion of biomass feedstocks to liquid (also known as bio-oil or bio-crude), solid 

(bio-char) and gaseous (bio-gas) fractions in the absence of air. This thermochemical conversion 

process can be divided into fast pyrolysis and slow pyrolysis, which the difference between two is 

depending on how fast biomass feedstocks are heated relative to the pyrolysis reaction time and the 

residence time (Basu, 2010). That means, it is considered fast pyrolysis if the time for heating biomass 

feedstocks to pyrolysis temperature is much faster than the characteristic pyrolysis reaction time, and 

vice versa. Fast pyrolysis happens at higher heating rate and rapid quenching (shorter residence time) 

of condensable products, which will predominantly produce bio-oils. Slow pyrolysis meanwhile occurs 

at lower heating rate and longer residence time that will mainly produce bio-chars. Figure 2.4 depicts a 

conceptual fast pyrolysis process.  

In the production of liquid fuels from bio-oils, selected further processing steps are required to 

upgrade the fuel properties of bio-oils. McKendry (2002) has reported one of the options for treating 

and upgrading bio-oils is by hydro-processing that comprises hydro-treating and hydro-cracking. 

Hydro-treating is used to remove undesired compounds such as oxygen in bio-oil, while hydro-cracking 

is a process that breaks down larger molecules into naphtha and diesel (You and Wang, 2011). 

One clear advantage of pyrolysis and its upgrading scheme is that it is more cost-effective when 

compared with technologies like biomass gasification with Fischer-Tropsch system (Butler et al., 

2012). Bio-char meanwhile is a solid product of biomass pyrolysis that contains unconverted organic 

solids and carbonaceous residues. Bio-char can be used as a sustainable material for soil amendment 

because it can sequester carbon in a stable form, improve retention of nutrients and water, and enhance 

crop yields (Kung et al., 2013). 
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Figure 2.4 A conceptual fast pyrolysis process (source of diagram was from www.biocharfarms.org) 

2.5.4 Hydrolysis 

According to Verardi et al. (2012), hydrolysis refers to the process of converting the biomass 

biopolymers into fermentable sugars. In the case of lignocellulosic biomass, cellulose is converted to 

glucose while hemicelluloses will be broke down into xylose. The lignin remains as by product from 

extraction. There are two major categories of hydrolysis which the first one uses acid and the second 

one uses enzyme.  

 Acid hydrolysis involves exposure of lignocellulosic materials for a period of time at a specific 

temperature and this produces monomers from cellulose and hemicellulose polymers. Taherzadeh and 

Karimi (2007) have divided acid hydrolyses into two methods; i) concentrated-acid hydrolysis, ii) 

dilute-acid hydrolysis. Table 2.3 shows advantages and disadvantages of both methods. 

Table 2.3 Comparison between concentrated- and dilute- acid hydrolysis (Taherzadeh and Karimi, 

2007) 

Hydrolysis method Advantages Disadvantages 

Concentrated acid process - Operated at low temperature 

(40oC) 

- High sugar yield (90% of 

theoretical glucose yield) 

- High acid concentration (30-70%) 

- Equipment damages due to corrosion 

- High energy consumption for acid recovery 

Dilute acid process - Low acid concentration (0.5%) - Operated at high temperature (200oc) 

http://www.biocharfarms.org/
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- Short residence time depending 

to the reactor design 

- Degradation of the sugars and formation of 

undesirable by-products such as furfural, 

phenol, etc.  

 

 As reported by Alvira et al. (2010), main factors that influence the enzymatic hydrolysis in 

lignocellulosic feedstocks include enzyme-related and substrate-related factors. The enzyme-related 

factors include lignin-enzyme interaction and the degree of synergy between various enzyme 

components in the cellulase enzyme mixture. The substrate-related factors are directly connected to the 

pretreatment that is employed to handle characteristics such as degree of polymerization, crystallinity, 

substrate’s available surface area, lignin barrier and so on. Ling et al. (2013) have added pretreatment 

processes should be conducted to convert native biomass which is recalcitrant to the enzymatic 

hydrolysis. An effective pretreatment should be low capital and operational costs as well as able to 

generate maximum recovery of structural components such as lignin and carbohydrate in a usable form.  

2.5.5 Fermentation 

Fermentation process can utilize any sugar-containing feedstock to produce ethanol. Gupta and 

Demirbas (2010) have classified the sugar-containing agricultural raw materials into three categories; 

i) sugar, ii) starch, and iii) cellulose. The sugars can be directly fermented using yeast to yield ethanol, 

while starch and cellulose are first converted to sugar by hydrolysis and then fermented. Even though 

ethanol from cellulose is difficult to obtain at this moment, important factor such as high food and feed 

prices have influenced decision to proceed with corn-based or sugar-based ethanol. Gupta and 

Demirbas (2010) have also added that the theoretical amount of ethanol produced per acre of land via 

corn kernel is much lower than that from lignocellulosic biomass. Figure 2.5 shows overall process 

scheme for ethanol production from lignocellulosic feedstocks.  

2.5.6 Alkaline Activation 

Auta et al. (2012) have reported several biomass resources that could be used as activated carbon for 

removing dyes. These biomass such as coconut husk, coconut shell, rice husk, corncobs, bamboo, saw 

dust and EFB are eco-friendly, cheaper and renewable adsorbents that potentially could replace 

expensive coal for production of qualitative and effective activated carbon.  In the alkaline activation 

for producing activated carbon, Auta et al. (2012) carried out an experiment that used potassium 

hydroxide as an activation agent because of its efficiency and effectiveness in the development of 
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different types of pores and high surface area on carbonaceous materials such as EFB. The produced 

activated carbon was characterized and tested for performance. Activated carbon that was produced 

from biomass was capable to remove harmful gas such as hydrogen sulfide with chemical 

impregnations as reported by Choo et al. (2013).  

Milling and Size 
Reduction

Chemical 
Hydrolysis

Detoxification

FermentationDistillation
Waste water 
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Dehydration
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materials
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Ferm
en

tab
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Ethanol (90-95%)

Ethanol (> 99%)

Figure 2.5 Overall process scheme for ethanol production from lignocellulosic feedstocks (adopted 

from Taherzadeh and Karimi, 2007) 

2.5.7 Aerobic Digestion 

Aerobic digestion is a biological process in which microbes degrade and stabilize the complex organic 

compounds of solid biomass to produce composts in the presence of oxygen. The produced compost 

can be used as fertilizer and soil amendment in garden, landscaping, horticulture and agriculture 

applications. The process could be done at small-scale which is normally happen at site, or at large-

scale commercialized facilities that handle high volumes of organic materials (www.calrecycle.ca.go). 

These facilities are equipped with sophisticated technologies such as aerated static piles and bio-filters 

as to meet air quality requirements.  
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 Bustamante et al. (2013) have highlighted benefits of aerobic digestion for compost production 

that include reductions of odor emissions by decreasing the concentration of volatile compounds, the 

moisture content, and the potential of photo-toxicity and also could eliminate pathogens. Amira et al. 

(2011) reported that the use of cellulolytic fungi such as Apergillus and Trichoderma have shortened 

the composting process from four months to four weeks. They mixed EFB, palm oil mill effluent 

(POME) and chicken dung as sources of minerals for the process. Schuchardt and Stichnothe (2010) 

have added that co-composting of EFB and POME could recover nutrients which decrease the mineral 

fertilizer demands on plantations.  

2.5.8 Anaerobic Digestion 

Anaerobic digestion is a biological process that uses microbes to produce biogas under oxygen-free 

conditions. According to Annamalai et al. (2013), biomass waste is decomposed by two steps, i) 

breakdown of complex organics by acid-forming bacteria into simpler compounds including volatile 

acids such as acetic acid and propionic acid, and ii) the conversion of these acids by methane-producing 

bacteria into methane, CH4 (~60%) and carbon dioxide, CO2 (~35%). Zheng et al. (2014) highlighted 

the anaerobic technology for methane production is a more efficient method for generating energy from 

biomass compared to other biological and thermos-chemical conversion processes such as cellulosic 

ethanol. The authors have also stressed that this process also could prevent methane emissions from 

self-decomposition of biomass in landfills which the methane itself is estimated to be 20 times higher 

than carbon dioxide in terms of the global warming potential.  

 There are two basic anaerobic digestion processes which both happen at different temperature 

ranges (www.biomassenergycentre.org.uk). The first one called as mesophilic digestion that takes 

places at temperature between 20 – 40oC, and can take up to two months to complete. The second one 

called as thermophilic digestion that is faster to complete at temperature 50 – 65oC, but the bacteria are 

more sensitive. In a generalized scheme for anaerobic digester, feedstock is harvested or collected, 

coarsely shredded, and placed into a reactor which has an active microbes for the methane fermentation. 

Once produced, the methane will be used as a gaseous fuel.  

2.5.9 Dried Long Fiber (DLF) Production 

EFB could be used as a renewable feedstock to produce DLF. In the DLF production, it has three steps; 

i) separation as to fiberize the bulky EFB to produce long strand fibers, ii) drying as to reduce the 

moisture content until 15% or less, and iii) baling as to compress the DLF in bales (www.ggs.my). The 

http://www.biomassenergycentre.org.uk/
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produced DLF can be further processed to produce many products such as mattress, cushion, medium 

density board, soil erosion mat, bio-composites, and so on.  

2.5.10 Bio-composite Production 

Bio-composites are composite materials that contain one or more phases derived from a biological 

origin (Fowler et al., 2006). In this regard, natural fibers such as hemp, flax, jute and kenaf offer positive 

attributes that include relatively low cost, biodegradable, have good strength and stiffness, and being 

significantly lighter than conventional reinforcements such as fiber glass (Quarshie and Carruthers, 

2014). The matrices may be ideally made from biopolymers but conventional productions are from 

synthetic polymers such as polyethylene, polypropylene, polystyrene and polyvinyl chloride. Fowler et 

al. (2006) have added the criteria for selecting suitable fibers were stiffness and tensile strength, 

elongation at failure, thermal stability, adhesion of fibers and matrices, dynamic and long-term 

behavior, price and processing cost.  

 The techniques to manufacture bio-composites are similar to the processes for producing 

plastics and composites materials such as press molding, injection molding, compounding and 

extrusion. Applications of bio-composites mainly could be found in automotive, constructions, and 

buildings.  

2.5.11 Bio-resin Production 

Bio-resin is a resin or resin formulation that is derived from biological source such as biomass. Due to 

unsustainable characteristic of phenol-formaldehyde (PF) resins, efforts are intensified to produce the 

lignin-based resin which is derived from lignocellulosic biomass. Siddiqui (2013) has reported that 

most research studies have presented successful substitution of petroleum-based phenol with lignin at 

up to 50% without compromising the resin quality. In addition, lignin also could be used to produce 

epoxy resin as reported by Sharma et al. (2011) and Ferdosian et al. (2014). The produced bio-resins 

have numerous applications in coatings, adhesions, and insulations.  

2.5.12 Bio-ethylene Production 

Ethylene is commercially produced by steam cracking of a wide range of hydrocarbon feedstocks such 

as ethane, naphtha, gasoil and condensates. As the simplest of olefins, ethylene is used as a base product 

for many syntheses in the petrochemical industry including productions of plastics, solvents, cosmetics, 

paints, and packaging (www.technip.com).  
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 For the production of bio-ethylene, it is possible via ethanol or bio-ethanol dehydration process. 

Zhang and Yu (2013) have reviewed developments in the catalytic ethanol to ethylene production 

process, catalysts, and reaction mechanisms. In the review, the authors have pointed out that the 

biomass ethanol dehydration to ethylene process has the edges over the petroleum-based ethylene 

production based on the followings; 

i) The produced bio-ethylene has high purity 

ii) The cost for separation and refining of ethylene is very low 

iii) The raw materials are easily available for bio-ethanol production 

iv) Complex technologies or equipment are not needed, and the process can be easily 

improved. 

  Furthermore in 2014, French oil and gas firm Total, IFP Energies Nouvelles and its subsidiary 

Axens have launched a new technology known as “Atol” which helps the production of bio-ethylene 

through dehydration of bio-ethanol (www.chemicals-technology.com). 

2.6 Previous Optimization Models of Biomass Supply Chain 

Edgar et al. (2001) defined optimization as the use of specific methods to determine the most cost-

effective and efficient solution to a problem or design for a process. Almost every parts of decision 

making process has uncertainties and require an assistance of quantitative tool, the area where 

optimization model plays its significant roles. They also added that motivations for the use of 

optimization techniques in the chemical industry context were due to several factors such as rise of 

energy costs, increasingly stringent environmental regulations and global competitiveness in product 

pricing and quality. 

 In the case of BSC, optimization model is paramount because of the issues and potentials of 

biomass utilization system. BSC itself comprises a multi-discipline knowledge and requires inputs from 

engineering and non-engineering experts. In addition, because of biomass sources may come from any 

organic matters that differ in term of qualities, a unique approach to manage BSC is required and it is 

typically a location-sensitive considerations. In order to identify knowledge gaps, Table 2.4 shows 

previous works on the modeling and optimization of BSC.  
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Table 2.4 Summary of previous works related to BSC models 

Biomass 

feedstock 

Processing 

technology 

Product Type of 

model* 

Comment Reference 

Switchgrass Did not 

mention 

Bioethanol LP  1) Fixed modeling framework 

and did not account for 

additional BSC components such 

as pre-treatment requirement to 

decrease transportation cost. 2) 

Did not consider flexibility in 

determining biomass 

technological options as well as 

the desired products produced. 

Cundiff et 

al. (1997) 

Wood, energy 

plants, straw, 

grass and animal 

excrements. 

Combustion Heat MILP 1) Even though the model could 

simulate inputs of economic and 

environmental concerns in the 

future, it was lack of options in 

representing the true potential of 

biomass that also can produce 

products other than heat, for 

instance, chemicals and 

materials.  

Nagel 

(2000) 

Cotton Stalk Combustion 

and CHP 

Heat and 

power 

LP 1) The model did not consider 

heterogeneity of biomass source 

as well as confined to only one 

biomass conversion technology 

Tatsiopoulu

s and Tolis 

(2002) 

Wheat straw, corn 

stover, native 

prairies, old world 

bluestem, 

bermudagrass, tall 

fescue, and 

switchgrass. 

Gasification 

and 

fermentation 

Bioethanol MILP 1) The model did not consider 

when there were changes in 

biomass yield and biomass 

production cost especially when 

assumption of land-owner 

willingness to engage in long-

term leases was violated. 2) The 

feasibility of proposed hybrid 

gasification-fermentation system 

in handling variety of biomass 

sources also was the matter of 

concern 

Gelson et al. 

(2003) 
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Switchgrass and 

corn. 

Did not 

mention 

Bioethanol LP 1) Did not consider upstream 

components of BSC such as 

biomass production variability, 

harvesting period, pre-processing 

requirements, and transportation 

and handling cost to the 

conversion plant. 

Morrow et 

al. (2006) 

Residues from 

different types of 

trees such as 

almond, cherry, 

apple, lemon, 

olive and 

mandarin. 

Did not 

mention 

Bioenergy LP  1) Did not consider other 

elements between origin and 

destination squares such as pre-

processing, handling and storage. 

2) Did not address biomass 

potential to produce chemicals or 

materials. 

Perpina et 

al. (2008) 

Corn stover, rice 

straw, wheat 

straw, forest 

straw, forest 

residue, municipal 

solid waste 

(MSW) wood, 

MSW paper, 

MSW yard and 

cotton residue. 

Did not 

mention 

Bioethanol MILP 1) Has yet to consider dynamic 

aspects of policy standards and 

conversion technologies, and 

uncertainties associated with 

supply/demand, technology, and 

unexpected disruptions caused by 

natural and man-made disasters.  

 

Huang et al. 

(2010) 

Corn grain and 

corn stover. 

Fermentation, 

gasification, 

catalytic 

conversion, 

catalytic 

dehydration, 

and cracking. 

Bio-ethylene NLP 1). Did not depict typical BSC 

system because it only 

considered investment decision 

for Biomass to Commodity 

Chemicals (BTCC) technological 

options 

Cremaschi 

(2011) 

Logging residuals, 

thinnings, 

prunings, grasses 

and 

chips/shavings. 

Fast Pyrolysis 

and Fischer 

Tropsch 

Gasoline and 

biodiesel 

SP 1). Did not consider uncertainty 

in terms of product varieties 

other than energy such as 

chemicals and materials. 2). The 

availability of 5 biomass types 

was changed simultaneously 

rather than independently in the 

model.  

Kim et al. 

(2011) 
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Residues of 

barley, corn, oats, 

spring wheat and 

winter wheat. 

Enzymatic 

hydrolysis and 

acid 

hydrolysis 

Bioethanol MILP 1). Did not consider other 

technological options such as 

thermochemical and chemical 

routes, and more homogenous 

biomass sources such as 

dedicated crops, and only 

emphasized on economic 

performance.   

Marvin et 

al. (2011) 

Corn stover, 

swicthgrass, 

miscanthus, wood 

residues (forest 

residues, primary 

mills, secondary 

mills) and urban 

wood residues 

Gasification, 

pyrolysis and 

Fischer 

Tropsch 

Gasoline and 

biodiesel 

MOILP 1) Only considered energy 

products from biomass, and has 

yet to incorporate different types 

of uncertainty such as demand 

fluctuations, biomass supply 

disruption, and changes in 

government policies and 

incentives.  

You and 

Wang 

(2011) 

Oil seed crop Did not 

mention 

Biodiesel, 

heat, power, 

vegetable oil, 

and syngas 

MILP 1) It will become better should 

the model included the scenario 

in biomass conversion 

technological options. 

Bowling et 

al. (2011) 

Wood Did not 

mention 

Bioethanol SM 1) The simulation model 

contained a series of assumptions 

which at one view for model 

simplification, but from another 

view did not capture the real 

practicality. As a result, two 

types of uncertainties existed in 

the model; i) data uncertainty and 

ii) model uncertainty. The author 

has mentioned that future work 

will focus on refining the model 

to consider the both 

uncertainties.  

Zhang et al. 

(2012) 
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Wood Torrefaction Torrefied 

wood 

Did not 

mention 

1). Beside torrefaction as a mean 

of biomass pre-processing, it did 

not consider the overall biomass 

supply chain for full evaluations 

of biomass feedstocks for energy, 

chemicals and materials 

productions. 

Svanberg et 

al. (2013) 

Miscanthus Did not 

mention 

Bio-ethanol MILP 1) The biofuel supply chain 

model that integrates strategic 

and tactical planning decisions 

was developed. The key strategic 

decisions were numbers, 

locations, capacities, and 

distribution patterns for biomass 

and ethanol, while biomass 

production and delivery were 

among the tactical decisions. 

2) No consideration for multi-

products productions from 

biomass source. 

Lin et al. 

(2014) 

Forest residues Power 

generation 

Bioelectricity MILP 1) Even though the developed 

model has yielded results that 

include optimal selection of 

biomass sources, plant capacities 

and transportation modes, it 

lacked options to produce other 

bio-products than bioelectricity. 

Paulo et al. 

(2015) 

* LP = Linear Programming 

MILP = Mixed Integer Linear Programming 

NLP = Non-linear Programming 

SP = Stochastic Programming 

MOILP = Multi-Objective Integer Linear Programming 

SM = Simulation Model 
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Chapter 3 

Modeling and Optimization of Biomass to Bio-products Supply 

Chain: A Research Collaboration with Omtec Incorporated  

3.1 Abstract 

Supply chain of biomass is one of the major areas that has direct influences towards biomass utilization 

activities and commercialization progresses. In this chapter, an optimization model of biomass to 

products supply chain was formulated by considering several cost factors such as biomass cost, 

production cost and transportation cost. A superstructure that has assisted in the model’s formulation 

provided alternatives in the biomass processing routes which in turn aiming for profit maximization. It 

has involved a biomass-based manufacturing company in southwestern Ontario which was looking for 

business expansion and product portfolios’ improvements. Optimal results indicated that an annual 

profit of $ 22,618,673 was expected to be achieved, and this value was contributed mainly by the sales 

of bio-filler, bio-ethanol and by-product from the milling plant. The developed model offers flexibilities 

in biomass resources utilization and technological uses. 

3.2 Introduction 

Biomass is a renewable feedstock for manufacturing products which could be ranged from energy, 

chemicals and materials. Currently, biomass utilizations are intensified because this bio-resources have 

abundant supplies, found almost at any places whether in terrestrial or aquatic forms, create wealth and 

new employments and also offer positive attributes to the sustainability in terms of economic, 

environmental and societal benefits. Previous works by Sikdar (2003), Clift (2003), and Mata et al. 

(2011) have reported systematic methodologies to assess those mentioned benefits. In the context of 

bio-economy meanwhile, biomass are essential processes’ feedstocks that will be utilized to produce 

products via their respective biotechnological routes. 

 Interconnections between biomass and products entail systematic and efficient flows of the 

resources to the users, which in this regard called as a supply chain. Various stages exist in the biomass 

supply chain such as growing, harvesting, transporting, aggregating, and conversion, which each stage 

require unique sets of knowledge, technology and activity (WGBN, 2015). Growing is an activity that 

provides adequate biomass resources for utilizations. These resources may origin from forestry (wood, 

sawdust, bark, and chips), agricultural residues (wheat straw, soybean stalk, oil palm empty fruit bunch, 
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rice husk, shrimp shell, and animal manure) as well as dedicated crops (switchgrass, sorghum, 

miscanthus, jatropha, algae, and fungi). All of the plant based origins that have been mentioned are 

categorized as lignocellulosic biomass. Biomass harvesting and field collection are activities to remove 

and collect the resources from the fields, which practices are subjected to type of biomass and its final 

uses (Bioenergyconsult, 2015). The harvest window for agricultural residues is the time between the 

grain harvest and the next field operation such as tilling and cover crop’s planting (Hettenhaus et al., 

2011). Biomass is then collected and baled for transportation. Transporting the biomass feedstocks 

begin from the farm gate to the aggregating and pre-processing facilities. As reported by Oo et al. 

(2012), transportation cost for biomass is a function of distance, bulk density of the biomass and mode 

of transportation.  

 At the pre-processing facilities, biomass feedstocks are first treated before sending them to the 

main processing facilities. The strategies on how to pre-process the feedstocks will have direct impacts 

the bio-product yields, as well as the capital and operating costs of the downstream processes. Saville 

et al. (2011) have reported that pre-processing can be divided into three broad categories, i) mechanical 

process that primarily reduce the size of incoming biomass feedstock, ii) chemical process that depend 

on the uses of acids, bases, solvents, or other bio-agents for extracting select components of the 

feedstock, or for structure modification, and iii) thermomechanical or thermochemical processes that 

require a combination of heat, pressure, and mechanical energy to alter the biomass feedstock. Biomass 

conversions happen at main processing facilities, always referred as bio-refineries. In these facilities, 

as an analogy to petro-refineries, pre-processed biomass feedstocks are refined to produce numerous 

value-added bio-products in fulfilling the market demands. Technological selections at this stage, 

whether thermochemical, chemical, or biochemical routes are mainly dictated by the syntheses and 

economic viabilities. For this chapter, of the whole biomass supply chain’s stages that were explained, 

the analysis will only involve pre-processing and downstream processing facilities, storages and 

transportations.  

 The biomass supply chain plays important roles in any biomass utilization project. It is because 

the supply chain is one the key considerations for determining project’s successfulness. Having said 

that, improper design of biomass supply chain will amplify intrinsic issues such as competing uses of 

biomass feedstocks, supply of biomass feedstocks with acceptable qualities, available technological 

options to convert biomass feedstocks into saleable bio-products, as well as mobilization of biomass 

from scattered locations to nearby processing hubs. When dealing with these biomass supply chain 
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issues, it is not uncommon for a biomass-based manufacturing company to face decision dilemma, as 

shown by question marks in Figure 3.1. Four scenarios are identified to exist in any biomass’s 

utilization project, and they are a) single feedstock for single bio-product, b) multiple feedstocks for 

single bio-product, c) single feedstock for multiple bio-products, and d) multiple feedstock for multiple 

bio-products. For scenario a), main decision should be made to select the best available biomass type 

to produce the desired bio-product within the correct economy of scale. For example, corn is planted, 

harvested and processed to produce bio-ethanol that has high market demands for gasoline blending. 

However, lingo-cellulosic biomass such as switchgrass is another option for feedstock to produce the 

same bio-product, i.e bio-ethanol. Here, judgements on whether to use corn or switchgrass for bio-

ethanol production must be based on detail analysis to prevent unwelcome problems such as prices rise 

because more corns are used to produce energy rather than for foods or feeds. In b), multiple biomass 

feedstocks are potentially to be utilized to produce single bio-product which is normally has high 

demands and limited supplies. For example, cellulose is produced to manufacture its derivatives such 

as carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), cellulose acetate, nitrocellulose, 

nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC), and cellulose filaments. Each 

derivative has its own residential, commercial or industrial applications. Basically, every 

lignocellulosic feedstocks could be utilized to produce cellulose. However, decision variables exist on 

how to use those feedstocks, whether they could be blended all together to achieve homogenous 

qualities or not. In addition, technological selections dilemma also exists such as mechanical vs 

chemical process, strong vs weak acidic pre-treatment, and so on.  

 Scenario c) is similar to current petro-refinery process where crude oil is refined to produce 

different kind of products such as naphtha, liquefied petroleum gas (LPG), gasoline, diesel, kerosene, 

bitumen, and etc. Here, ability to make decision in dynamic market situations of those products is 

critical. Scenario d) deals with multiple feedstocks for multiple products. In this scenario, more complex 

decisions have to be made to determine the best combinations of feedstocks, technologies and products 

out of available options. In practice, this scenario might relevant to multiple owners that own their 

separate bio-refineries in an integrated manufacturing complex or a single owner that facilitates several 

bio-refineries under its subsidiaries. 
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Biomass type 
selection?

Technology?
Desired bio-

product?

Biomass type 
selection ?

Biomass type 
selection ?

Biomass type 
selection ?

Feedstocks  
blending 

possibility?
Technology?

Desired bio-
product?

Biomass type 
selection ?

Technology?
Combination of 
technologies?

Desired bio-
product?

Desired bio-
product?

Desired bio-
product?

Biomass type 
selection ?

Feedstocks  
blending 

possibility? 
Technology?

Combination of 
technologies?

Desired bio-
product?

Desired bio-
product?

Desired bio-
product?

Biomass type 
selection ?

Biomass type 
selection ?

b) Multiple feedstocks for 
single product

c) Single feedstock for 
multiple products

d) Multiple feedstocks for 
multiple productsa) Single feedstock for 

single product

Figure 3.1 Four scenarios and decision dilemma in utilizing biomass resources to produce bio-

products 

 In solving those decision dilemmas, it is imperative at this points to have a systematic tool for 

the decision making process. Optimization technique is hence required to provide the best solution out 

of possible options available. In this chapter, the technique has involved with modeling and 

optimization of biomass supply chain to produce multiple bio-products from multiple biomass 

feedstocks. Modeling and optimization of biomass supply chain and bio-refineries planning have been 

studied by several authors. Cucek et al. (2010) have synthesized networks for the supply of energy and 

bio-products using mixed integer linear programming (MILP) model. The developed model have 

considered multiple technologies for the productions of energy and food, with the former was more 

economically favourable to produce. Gutierrez-Arriaga et al. (2012) have developed a multi-objective 

optimization model of steam power plants for sustainable electricity generation in which biomass was 

among the primary energy sources used. It has considered both economic and environmental 

performances. Multivariable economic optimization model has been developed by Sukumara et al. 

(2013) to produce biofuels from biomass. The methodology has combined models from different fields 

of knowledge to provide informed decision. Jiang et al. (2015) introduced a green vendor-managed 

inventory (VMI) that involved with carbon trading mechanism. The total cost of the supply chain 

between supplier and manufacturer could increase which was subjected to specific set of parameters. 
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 The goal in this chapter was to develop an integrated Linear Programming (LP) optimization 

model of biomass supply chain for Omtec Inc. in Ridgetown, Ontario. The company is currently 

producing bio-filler from wheat straw for automotive industry, would expect to expand its bio-product 

portfolios that range from energy, chemicals and materials. They wanted to have flexibilities in biomass 

feedstock usages and possibilities of feedstocks’ blending for sustainable supplies.  Hence, scenario d) 

in Figure 3.1 was relevant in this case. Since it was a company specific optimization model, an 

integrated layer of processing facilities and the corresponding products were predetermined, and have 

suited the company’s operating parameters and constraints. 

3.3 Methodology 

 Methodology for this chapter is shown in Figure 3.2. In formulating a model to optimize the 

supply chain, diagram that serves as a modeling guideline, here is referred as “superstructure” was first 

constructed by considering all inputs from the company. As shown in Figure 3.3, five layers of 

processing facilities and storages for the proposed products are connected in stages, which represent 

the actual supply chain. Biomass a, Biomass b, and Biomass c, were named in such way to probably 

represent three sources of wheat straws with different qualities or three type of biomass sources such 

as wheat straw, corn stover and soybean stalk. Description of indices in Figure 3.3 and the ones that 

would be used in the formulation was shown in Table 3.1. Please note that there are also options to sell 

the produced bio-products at that particular stages, instead of sending them for next processing. 

Furthermore, the route to extract nutrients from biomass feedstocks even though was shown in the 

superstructure was still under consideration. Hence, this chemical route was omitted in the analysis. 

Identify ranges of 

bio-products and 

feedstocks

Identify set of 

processing 

technologies

Mutual agreement with 

Omtec Inc.?

Construct the 

superstructure and 

formulate the 

optimization model

Approximate model s 

parameters

Execute optimization 

model in GAMS

Satisfy with the 

optimization result?

Perform sensitivity 

analysis

No

Yes Yes

No

Figure 3.2 Methodology for Chapter 3 
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Figure 3.3 A superstructure of biomass to bio-products supply chain  
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Table 3.1 List of indices and descriptions in the biomass to bio-products supply chain’s superstructure 

Indices Descriptions Contents 

g Biomass resources at delivery locations  Biomass a, biomass b, and biomass c. 

h Pre-processing facilities  Nutrient extraction, blending process, and animal bedding. 

i Pre-processed products Blended wheat straw1, blended wheat straw2, agricultural 

bed, animal bed, nitrogen, phosphate, potassium and sulphur. 

j Processing one facilities Milling & sieving and torrefied pelletization. 

k Processed one products Bio-filler, torrefied pellet, and by-product. 

l Processing two facilities  Briquetting, combustion2, and gasification 

m Processed two products Briquette, heat2, ash2, and syngas. 

n Processing three facilities  Combustion1, power generation2, and catalytic bio-ethanol 

production 

o Processed three products Ash1, heat1, electricity2, and bio-ethanol 

r Processing four facility Power generation1 

u Processed four product Electricity1 

p Summation of all products Blended wheat straw1, blended wheat straw2, agricultural 

bed, animal bed, nitrogen, phosphate, potassium, sulphur, 

bio-filler, torrefied pellet, by-product, briquette, heat2, ash2, 

syngas, Ash1, heat1, electricity2, bio-ethanol, and electricity1 

  

The developed model has aimed for annual profit maximization of overall layers of technologies and 

bio-products by considering associated costs such as biomass cost, production cost and transportation 

cost. The biomass cost was the total purchase cost of biomass feedstocks that received at aggregation 

hubs. These hubs serve as delivery points to the pre-processing facilities. The production cost was the 

cost to produce one unit capacity of product. Further explanations and accurate calculations about this 

cost can be found from Mani et al. (2006). The transportation costs have involved with every connecting 

point between processing stages as well as from product storage to the respective customer.  

 All of the costs and other model’s parameters were approximated from literatures and personal 

communications with Mr. Jim Kozlowski, the Omtec’s R&D Manager. The model has intended to 
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provide ranges of bio-products and ranked them according to their contributions to the overall annual 

profit. Optimal solution was found by using GAMS. 

3.4 Problem Formulation and Parameter Approximation 

 In the model’s formulation, economic efficiency of the biomass supply chain was the objective 

function. It was indicated by annual profitability that was optimized by considering sales of bi-products 

and the associated costs. In searching for optimal solution, the model has considered evaluations of 

different processing routes, and hence different technologies for making bio-products at the same time. 

 Mathematical model that contain the objective function’s details are shown by (3.1) till (3.5). 

Meanwhile, (3.6) till (3.23) represent the model’s mass balances and constraints. Altogether, 

explanations for each formulation were tabulated in Table 3.2. Following that table, each term in all of 

those formulations was explained in Table 3.3. 

Maximize Profit ($/year) = Max (Sales of Products - Biomass Cost - Transportation Cost - Processing 

Cost)                                     (3.1) 

Sales of Products = ∑ 𝑄𝑝
𝑃
𝑝 =1 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠′ 𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒                (3.2) 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑜𝑠𝑡 =  ∑ 𝐹𝑔 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐶𝑜𝑠𝑡𝐺
𝑔                  (3.3)   

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = (∑ ∑ 𝐹𝑇𝑅𝑃𝐹𝑔,ℎ 
𝐻
ℎ

𝐺
𝑔 ∗ 𝑇𝑅𝐶𝐺𝐻𝑔,ℎ) + (∑ ∑ 𝐹𝑇𝑅𝑆𝐻ℎ,𝑖

𝐼
𝑖

𝐻
ℎ ∗ 𝑇𝑅𝐶𝐻𝐼ℎ,𝑖) +

(∑ ∑ ∑ 𝐹𝑇𝑅𝑃𝐻ℎ,𝑖,𝑗 ∗ 𝑇𝑅𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗 ) + (∑ ∑ 𝐹𝑇𝑅𝑆𝐽𝑗,𝑘
𝐾
𝑘

𝐽
𝑗 ∗ 𝑇𝑅𝐶𝐽𝐾𝑗,𝑘 ) + ( ∑ ∑ ∑ 𝐹𝑇𝑅𝑃𝐽𝑗,𝑘,𝑙 ∗𝐿

𝑙
𝐾
𝑘

𝐽
𝑗

𝐽
𝑗

𝐼
𝑖

𝐻
ℎ

 𝑇𝑅𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙) + (∑ ∑ 𝐹𝑇𝑅𝑆𝐿𝑙,𝑚
𝑀
𝑚

𝐿
𝑙 ∗ 𝑇𝑅𝐶𝐿𝑀𝑙.𝑚 ) + (∑ ∑ ∑ 𝐹𝑇𝑅𝑃𝐿𝑙,𝑚,𝑛

𝑁
𝑛

𝑀
𝑚

𝐿
𝑙 ∗ 𝑇𝑅𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛) +

(∑ ∑ 𝐹𝑇𝑅𝑆𝑁𝑛,𝑜
𝑂
𝑜

𝑁
𝑛 ∗ 𝑇𝑅𝐶𝑁𝑂𝑛,𝑜) + (∑ ∑ ∑ 𝐹𝑇𝑅𝑃𝑁𝑛,𝑜,𝑟

𝑅
𝑟

𝑂
𝑜

𝑁
𝑛 ∗  𝑇𝑅𝐶𝑁𝑂𝑅𝑛,𝑜,𝑟) + (∑ ∑ 𝐹𝑇𝑅𝑆𝑅𝑟,𝑢

𝑈
𝑢

𝑅
𝑟 ∗

𝑇𝑅𝐶𝑅𝑈𝑟,𝑢)                         (3.4)  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = (∑ ∑ 𝐹𝑃𝑅𝐷𝐻ℎ,𝑖
𝐼
𝑖

𝐻
ℎ ∗ 𝑃𝑅𝑂𝐷𝐶𝐻ℎ,𝑖) + (∑ ∑ ∑ 𝐹𝑃𝑅𝐷𝐽𝑖,𝑗,𝑘

𝐾
𝑘

𝐽
𝑗

𝐼
𝑖 ∗ 𝑃𝑅𝑂𝐷𝐶𝐽𝑖,𝑗,𝑘  ) +

(∑ ∑ ∑ 𝐹𝑃𝑅𝐷𝐿𝑘,𝑙,𝑚
𝑀
𝑚

𝐿
𝑙

𝐾
𝑘 ∗ 𝑃𝑅𝑂𝐷𝐶𝐿𝑘,𝑙,𝑚) + (∑ ∑ ∑ 𝐹𝑃𝑅𝐷𝑁𝑚,𝑛,𝑜 ∗  𝑃𝑅𝑂𝐷𝐶𝑁𝑚,𝑛,𝑜)𝑂

𝑜
𝑁
𝑛

𝑀
𝑚 +

(∑ ∑ ∑ 𝐹𝑃𝑅𝐷𝑅𝑜,𝑟,𝑢
𝑈
𝑢

𝑅
𝑟

𝑂
𝑜 ∗ 𝑃𝑅𝑂𝐷𝐶𝑅𝑜,𝑟,𝑢)                                                (3.5) 

∑ 𝐹𝑇𝑅𝑃𝐹𝑔,ℎ
𝐻
ℎ ≤  𝐹𝑔  Ɐg                                (3.6) 

∑ 𝐹𝑇𝑅𝑃𝐹𝑔,ℎ
𝐺
𝑔 ∗ 𝐶𝑂𝑁𝑉𝐻ℎ,𝑖 =  𝐹𝑃𝑅𝐷𝐻ℎ,𝑖  Ɐh,i                             (3.7) 
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𝐹𝑃𝑅𝐷𝐻ℎ,𝑖 = ∑ 𝐹𝑇𝑅𝑃𝐻ℎ,𝑖,𝑗
𝐽
𝑗 + 𝐹𝑇𝑅𝑆𝐻ℎ,𝑖  Ɐh,i                 (3.8) 

∑ 𝐹𝑇𝑅𝑃𝐻ℎ,𝑖,𝑗 ∗  𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘
𝐻
ℎ = 𝐹𝑃𝑅𝐷𝐽𝑖,𝑗,𝑘  Ɐi,j,k                 (3.9) 

∑ 𝐹𝑃𝑅𝐷𝐽𝑖,𝑗,𝑘
𝐼
𝑖 = 𝐹𝑇𝑅𝑆𝐽𝑗,𝑘 + ∑ 𝐹𝑇𝑅𝑃𝐽𝑗,𝑘,𝑙

𝐿
𝑙  Ɐj,k               (3.10) 

∑ 𝐹𝑇𝑅𝑃𝐽𝑗,𝑘,𝑙
𝐽
𝑗 ∗  𝐶𝑂𝑁𝑉𝐿𝑘,𝑙,𝑚 = 𝐹𝑃𝑅𝐷𝐿𝑘,𝑙,𝑚   Ɐk,l,m               (3.11) 

∑ 𝐹𝑃𝑅𝐷𝐿𝑘,𝑙,𝑚
𝐾
𝑘 =  𝐹𝑇𝑅𝑆𝐿𝑙,𝑚 +  ∑ 𝐹𝑇𝑅𝑃𝐿𝑙,𝑚,𝑛

𝑁
𝑛   Ɐl,m              (3.12) 

∑ 𝐹𝑇𝑅𝑃𝐿𝑙,𝑚,𝑛
𝐿
𝑙 ∗ 𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 = 𝐹𝑃𝑅𝐷𝑁𝑚,𝑛,𝑜   Ɐm,n,o              (3.13) 

∑ 𝐹𝑃𝑅𝐷𝑁𝑚,𝑛,𝑜
𝑀
𝑚 = 𝐹𝑇𝑅𝑆𝑁𝑛,𝑜 + ∑ 𝐹𝑇𝑅𝑃𝑁𝑛,𝑜,𝑟

𝑅
𝑟   Ɐn,o              (3.14) 

∑ 𝐹𝑇𝑅𝑃𝑁𝑛,𝑜,𝑟
𝑁
𝑛 ∗ 𝐶𝑂𝑁𝑉𝑅𝑜,𝑟,𝑢 =  𝐹𝑃𝑅𝐷𝑅𝑜,𝑟,𝑢   Ɐo,r,u              (3.15) 

∑ 𝐹𝑃𝑅𝐷𝑅𝑜,𝑟,𝑢 = 𝐹𝑇𝑅𝑆𝑅𝑟,𝑢
𝑂
𝑜    Ɐr,u                (3.16) 

∑ 𝐹𝑇𝑅𝑆𝐻ℎ,𝑖
𝐻
ℎ + ∑ 𝐹𝑇𝑅𝑆𝐽𝑗,𝑘

𝐽
𝑗 +  ∑ 𝐹𝑇𝑅𝑆𝐿𝑙,𝑚

𝐿
𝑙 +  ∑ 𝐹𝑇𝑅𝑆𝑁𝑛,𝑜

𝑁
𝑛 + ∑ 𝐹𝑇𝑅𝑆𝑅𝑟,𝑢

𝑅
𝑟 = 𝑄𝑝    

     Ɐi,k,m,o,u                                                                            (3.17) 

𝐹𝑔  ≤ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑔  Ɐg                (3.18) 

𝑄𝑝 ≥ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠′𝐷𝑒𝑚𝑎𝑛𝑑𝑝   Ɐp               (3.19) 

𝐹𝑇𝑅𝑃𝐻(′𝐵𝐿𝐸𝑁𝐷𝐼𝑁𝐺 − 𝑃𝑅𝑂𝐶𝐸𝑆𝑆′,′ 𝐴𝐺𝑅𝐼𝐶𝑈𝐿𝑇𝑈𝑅𝐴𝐿 − 𝑀𝑈𝐿𝐶𝐻′, 𝑗) = 𝑒 = 0            (3.20) 

𝐹𝑇𝑅𝑃𝐻(′𝐵𝐿𝐸𝑁𝐷𝐼𝑁𝐺 − 𝑃𝑅𝑂𝐶𝐸𝑆𝑆′,′ 𝐴𝑁𝐼𝑀𝐴𝐿 − 𝐵𝐸𝐷′, 𝑗) = 𝑒 = 0              (3.21) 

𝐹𝑇𝑅𝑃𝐿(′𝐶𝑂𝑀𝐵𝑈𝑆𝑇𝐼𝑂𝑁2′, ′𝐴𝑆𝐻2′, 𝑛) = 𝑒 = 0                 (3.22) 

𝐹𝑇𝑅𝑃𝑁(′𝐶𝑂𝑀𝐵𝑈𝑆𝑇𝐼𝑂𝑁1′,′ 𝐴𝑆𝐻1′, 𝑟) = 𝑒 = 0                 (3.23) 

Table 3.2 Description of mathematical formulations in Chapter 3 

Formulation Description 

(3.1) Objective function and profit equation in $/year 
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(3.2) Sales of products (revenue) in $/year 

(3.3) Biomass resource cost in $/year 

(3.4) Costs associated in transporting biomass and produced products in $/year 

(3.5) Costs associated in processing biomass and produced products in $/year 

(3.6) Mass balance for biomass resources at delivery locations, g in tonne/year 

(3.7) Mass balance for yield of pre-processed products, i in tonne/year 

(3.8) Mass balance for pre-processing facilities outlets, h in tonne/year 

(3.9) Mass balance for yield of processed one products, k in tonne/year 

(3.10) Mass balance for processing one facilities outlets, j in tonne/year 

(3.11) Mass balance for yield of processed two products, m in tonne/year 

(3.12) Mass balance for processing two facilities outlets, l in tonne/year 

(3.13) Mass balance for yield of processed three products, o in tonne/year  or kWh/year 

(3.14) Mass balance for processing three facilities outlets, n in tonne/year  or kWh/year 

(3.15) Mass balance for yield of final product, u in kWh/year 

(3.16) Mass balance for processing four facilities outlets, r in kWh/year 

(3.17) Summation of sales for produced products in tonne/year 

(3.18) Mass balance of biomass resources at delivery locations must be less or equal than total biomass 

resources availabilities in tonne/year 

(3.19) Mass balance of produced product must be higher or equal than its demand requirement in tonne 

per year 

(3.20) Constraint to ensure agricultural mulch is entirely sold to the customer 

(3.21) Constraint to ensure animal bed is entirely sold to the customer 

(3.22) Constraint to ensure ash2 is entirely sold to the customer 

(3.23) Constraint to ensure ash1 is entirely sold to the customer 
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Table 3.3 Descriptions of terms used in (3.1) till (3.23) 

Term Category Description 

𝑇𝑅𝐶𝐺𝐻𝑔,ℎ Parameter Transportation cost factor for biomass resources from g to h 

in $ per tonne. 

𝑇𝑅𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗  Parameter Transportation cost factor for pre-processed products, i from 

h to j in $ per tonne. 

𝑇𝑅𝐶𝐻𝐼ℎ,𝑖 Parameter Transportation cost factor for pre-processed products, i that 

may be sold directly in $ per tonne. 

𝑇𝑅𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙 Parameter Transportation cost factor for processed one products, k from 

j to l in $ per tonne. 

𝑇𝑅𝐶𝐽𝐾𝑗,𝑘 Parameter Transportation cost factor for processed one products, k that 

may be sold directly in $ per tonne. 

𝑇𝑅𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛 Parameter Transportation cost factor for processed two products, m 

from l to n in $ per tonne. 

𝑇𝑅𝐶𝐿𝑀𝑙.𝑚 Parameter Transportation cost factor for processed two products, m that 

may be sold directly in $ per tonne. 

𝑇𝑅𝐶𝑁𝑂𝑅𝑛,𝑜,𝑟 Parameter Transportation cost factor for processed three products, o 

from n to r in $ per tonne. 

𝑇𝑅𝐶𝑁𝑂𝑛,𝑜 Parameter Transportation cost factor for processed three products, o that 

will be sold directly in $ per tonne/kWh 

𝑇𝑅𝐶𝑅𝑈𝑟,𝑢 Parameter Transportation cost factor for final product, u that will be 

sold in kWh per year. 

𝑃𝑅𝑂𝐷𝐶𝐻ℎ,𝑖 Parameter Production cost factor at h to produce i from g in $ per tonne. 

𝑃𝑅𝑂𝐷𝐶𝐽𝑖,𝑗,𝑘 Parameter Production cost factor at j to produce k from i in $ per tonne. 

𝑃𝑅𝑂𝐷𝐶𝐿𝑘,𝑙,𝑚 Parameter Production cost factor at l to produce m from k in $ per tonne. 

𝑃𝑅𝑂𝐷𝐶𝑁𝑚,𝑛,𝑜 Parameter Production cost factor at n to produce o from m in $ per 

tonne. 
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𝑃𝑅𝑂𝐷𝐶𝑅𝑜,𝑟,𝑢 Parameter Production cost factor at r to produce u from o in $ per tonne. 

𝐶𝑂𝑁𝑉𝐻ℎ,𝑖  Parameter Conversion factor at h to produce i. 

𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘 Parameter Conversion factor at j to produce k from i. 

𝐶𝑂𝑁𝑉𝐿𝑘,𝑙,𝑚 Parameter Conversion factor at l to produce m from k. 

𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 Parameter Conversion factor at n to produce o from m. 

𝐶𝑂𝑁𝑉𝑅𝑜,𝑟,𝑢 Parameter Conversion factor at r to produce u from o. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠′ 𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 Parameter Selling price of produced products 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝐶𝑜𝑠𝑡 Parameter Cost to purchase biomass resources 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 Parameter Total biomass resources availabilities 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡′𝑠 𝐷𝑒𝑚𝑎𝑛𝑑 Parameter The demand for produced products 

𝑄𝑝 Decision variable Amount of produced products, p in tonne or kWh per year. 

𝐹𝑔 Decision variable Amount of biomass resources ready at delivery location in 

tonne per year. 

𝐹𝑇𝑅𝑃𝐹𝑔,ℎ  Decision variable Amount of biomass transported to pre-processing facilities, h 

in tonne per year.   

𝐹𝑇𝑅𝑃𝐻ℎ,𝑖,𝑗  Decision variable Amount of pre-processed products, i transported from pre-

processing facilities, h to processing one facilities, j in tonne 

per year. 

𝐹𝑇𝑅𝑆𝐻ℎ,𝑖 Decision variable Amount of pre-processed products, i produced from pre-

processing facilities, h that may be sold directly in tonne per 

year.   

𝐹𝑇𝑅𝑃𝐽𝑗,𝑘,𝑙  Decision variable Amount of processed one products, k transported from 

processing one facilities, j to processing two facilities, l in 

tonne per year. 

𝐹𝑇𝑅𝑆𝐽𝑗,𝑘 Decision variable Amount of processed one products, k produced from 

processing one facilities, j that may be sold directly in tonne 

per year. 
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𝐹𝑇𝑅𝑃𝐿𝑙,𝑚,𝑛 Decision variable Amount of processed two products, m transported from further 

processing two facilities, l to processing three facilities, n in 

tonne per year. 

𝐹𝑇𝑅𝑆𝐿𝑙,𝑚 Decision variable Amount of processed two products, m produced from further 

processing two facilities, l that may be sold directly in tonne 

per year. 

𝐹𝑇𝑅𝑃𝑁𝑛,𝑜,𝑟 Decision variable Amount of processed three products, o transported from 

further processing three facilities, n to processing four facility, 

r in tonne per year. 

𝐹𝑇𝑅𝑆𝑁𝑛,𝑜 Decision variable Amount of processed three products, o produced from further 

processing three facilities, n that will be sold directly in 

tonne/kWh per year. 

𝐹𝑇𝑅𝑆𝑅𝑟,𝑢 Decision variable Amount of final product, u produced from processing four 

facilities, r will be sold in kWh per year. 

𝐹𝑃𝑅𝐷𝐻ℎ,𝑖 Decision variable Amount of pre-processed products, i produced from biomass 

resources, g through pre-processing facilities, h in tonne per 

year. 

𝐹𝑃𝑅𝐷𝐽𝑖,𝑗,𝑘 Decision variable Amount of processed one products, k produced from pre-

processed products, i through processing one facilities, j in 

tonne per year. 

𝐹𝑃𝑅𝐷𝐿𝑘,𝑙,𝑚 Decision variable Amount of processed two products, m produced from 

processed one products, k through processing two facilities, l 

in tonne per year.   

𝐹𝑃𝑅𝐷𝑁𝑚,𝑛,𝑜  Decision variable Amount of processed three products, o produced from 

processed two products, m through further processing three 

facilities, n in tonne per year. 

𝐹𝑃𝑅𝐷𝑅𝑜,𝑟,𝑢 Decision variable Amount of final product, u produced from processed three 

products, o through processing four facilities, r in tonne per 

year. 
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 Some of the terms in Table 3.3 were categorized as model’s parameters. These have included 

transportation cost factor, production cost factor, conversion factor, product’s selling price, biomass’s 

received cost, biomass’s availability and bio-product’s demand. All of these parameters were the 

determining factors and have influenced the optimal solution’s value and status. In order to demonstrate 

the model’s practicality, approximation of parameters were done and believed to be adequate for that 

purpose. Furthermore, it was difficult to obtain actual data for parameters due to several factors such 

as difference in operation scales, stages of commercial biomass utilizations and availabilities of 

simulation models for specific technologies. Having said that, the obtained optimal result was subjected 

to the qualities and availabilities of those approximated parameters. Table 3.4 till 3.26 tabulate all of 

the parameters that were used in the optimization model. Each of the table has reference for the 

approximations. 

Table 3.4 Approximated transportation cost factor for biomass resources from g to h,  

(𝑇𝑅𝐶𝐺𝐻𝑔,ℎ)  in $ per tonne (Oo et al.,2012) 

Origin (g) Destination (h) Distance (km) Pre-determined 

transportation 

mode 

Transportation cost 

factor ($/tonne) 

Biomass a Nutrient Extraction 50 Truck 15.05 

Biomass a Blending Process 70 Truck 18.33 

Biomass a Animal Bedding 55 Truck 15.87 

Biomass b Nutrient Extraction 60 Truck 16.69 

Biomass b Blending Process 65 Truck 17.51 

Biomass b Animal Bedding 75 Truck 19.15 

Biomass c Nutrient Extraction 80 Truck 19.97 

Biomass c Blending Process 85 Truck 20.79 

Biomass c Animal Bedding 75 Truck 19.15 

 

Table 3.5 Approximated transportation cost factor for pre-processed products, i from h to j  

(𝑇𝑅𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗 ) in $ per tonne (Oo et al., 2012) 

Origin (h) Destination (j) Distance (km) Pre-determined 

transportation mode 

Transportation cost 

factor ($/tonne) 

Blending Process Torrefied 

Pelletization 

2 Truck 7.17 

Blending Process Milling & Sieving 3 Truck 7.33 

 

Table 3.6 Approximated transportation cost factor for pre-processed products, i  
that may be sold directly (𝑇𝑅𝐶𝐻𝐼ℎ,𝑖) in $ per tonne (Oo et al., 2012) 

Origin (h) Pre-processed 

feedstock (i) 

Customer 

destination 

Distance (km) Pre-determined 

transportation 

mode 

Transportation cost 

factor ($/tonne) 

Animal Bedding Animal Bed C5 50 Truck 15.05 
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Blending 

Process 

Agricultural 

Mulch 

C6 55 Truck 15.87 

 

Table 3.7 Approximated transportation cost factor for processed one products, k from j to l  
(𝑇𝑅𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙) in $ per tonne (Oo et al., 2012) 

Origin (j) Destination (l) Distance (km) Pre-determined 

transportation mode 

Transportation cost 

factor ($/tonne) 

Milling & Sieving Briquetting 4 Truck 7.49 

Torrefied 

Pelletization 

Combustion 2 7 Truck 7.99 

Torrefied 

Pelletization 

Gasification 5 Truck 7.66 

 

Table 3.8 Approximated transportation cost factor for processed one products, k that may be sold 

directly  

(𝑇𝑅𝐶𝐽𝐾𝑗,𝑘) in $ per tonne (Oo et al., 2012) 

Origin (j) Intermediate 

product 1 (k) 

Customer 

destination 

Distance 

(km) 

Pre-determined 

transportation 

mode 

Transportation 

cost factor 

($/tonne) 

Milling & 

Sieving 

Bio-filler C7 367 Truck 67.06 

Milling & 

Sieving 

By-product C8 35 Truck 12.58 

Torrefied 

Pelletization 

Torrefied Pellet C9 53 Truck 15.54 

 

Table 3.9 Approximated transportation cost factor for processed two products, m from l to n  

(𝑇𝑅𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛) in $ per tonne (Oo et al.,2012 and Blok et al., 1995) 

Origin (l) Destination (n) Distance (km) Pre-determined 

transportation mode 

Transportation cost 

factor ($/tonne) 

Briquetting Combustion 1 4.0 Truck 7.50 

Combustion 2 Power Generation 2 0.7 Pipe 0.04 

Gasification Catalytic Bio-ethanol 

Production 

0.5 Pipe 0.03 

 

Table 3.10 Approximated transportation cost factor for processed two products, m that may be sold 

directly 

(𝑇𝑅𝐶𝐿𝑀𝑙,𝑚) in $ per tonne (Oo et al., 2012) 

Origin (l) Intermediate 

product 2 (m) 

Customer 

destination 

Distance 

(km) 

Pre-determined 

transportation 

mode 

Transportation 

cost factor 

($/tonne) 

Combustion 2 Ash 2 C10 30 Truck 11.76 

Briquetting Briquette C11 75 Truck 19.15 
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Table 3.11 Approximated transportation cost factor for processed products three, o from n to r  

(𝑇𝑅𝐶𝑁𝑂𝑅𝑛,𝑜,𝑟) in $ per tonne (Blok et al., 1995) 

Origin (n) Destination (r) Distance (km) Pre-determined 

transportation mode 

Transportation cost 

factor ($/tonne) 

Combustion 1 Power Generation 1 1 Pipe 0.05 

 

Table 3.12 Approximated transportation cost factor for processed three products, o that will be sold 

directly (𝑇𝑅𝐶𝑁𝑂𝑛,𝑜) in $ per tonne/kWh (Oo et al., 2012, Blok et al.1995 and ialtenergy, 2015) 

Origin (n) Intermediate 

product 3 (o) 

Customer 

destination 

Distance (km) Pre-determined 

transportation 

mode 

Transportation 

cost factor 

($/kWh or 

$/tonne) 

Power 

Generation 2 

Electricity 2 C12 - Transmission 

Grid 

0.02 

Combustion 1 Ash 1 C13 25 Truck 10.94 

Catalytic Bio-

ethanol 

Production 

Bio-ethanol C14 2 Pipe 0.10 

 

Table 3.13 Approximated transportation cost factor for final product, u that will be sold 
(𝑇𝑅𝐶𝑅𝑈𝑟,𝑢) in kWh per year (ialtenergy, 2015) 

Origin (r) Final product 

(u) 

Customer 

destination 

Distance (km) Pre-determined 

transportation 

mode 

Transportation 

cost factor 

($/kWh) 

Power 

Generation 1 

Electricity 1 C15 - Transmission 

Grid 

0.02 

 

Table 3.14 Approximated production cost factor at h to produce i from g (𝑃𝑅𝑂𝐷𝐶𝐻ℎ,𝑖) in $ per tonne 

(Kozlowski, 2015) 

Feedstock (g) Process (h) Product (i) Production cost factor ($ 

per tonne of product) 

Biomass (a,b, or c) Nutrient Extraction Nitrogen, Phosphate, 

Potassium, and Sulphur 

NA 

Biomass (a,b, or c) Animal Bedding Animal Bed 77.16 

Biomass (a,b, or c) Blending Process Blended Biomass 1 or 2  10.00 

Biomass (a,b, or c) Blending Process Agricultural mulch 0.00 

 

Table 3.15 Approximated production cost factor at j to produce k from i (𝑃𝑅𝑂𝐷𝐶𝐽𝑖,𝑗,𝑘) in $ per tonne 

(Kozlowski, 2015 and O’Malley, 2013) 

Feedstock (i) Process (j) Product (k) Production cost factor ($ 

per tonne of product) 

Blended Biomass a Milling & Sieving Bio-filler 330.69 

Blended Biomass b Milling & Sieving By-product 0.00 

Blended Biomass c Torrefied Pelletization Torrefied Pellet 78.00 
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Table 3.16 Approximated production cost factor at l to produce m from k (𝑃𝑅𝑂𝐷𝐶𝐿𝑘,𝑙,𝑚) in $ per 

tonne (Kozlowski, 2015)  

Feedstock (k) Process (l) Product (m) Production cost factor ($ 

per tonne of product) 

By-product Briquetting Briquette 65.00 

Torrefied Pellet Combustion 2 Steam2 20.70 

Torrefied Pellet Combustion 2 Ash2 0.00 

Torrefied Pellet Gasification Syngas 240.00 

 

Table 3.17 Approximated production cost factor at n to produce o from m (𝑃𝑅𝑂𝐷𝐶𝑁𝑚,𝑛,𝑜) in $ per 

tonne or per kWh (Kozlowski, 2015) 

Feedstock (m) Process (n) Product (o) Production cost factor ($ 

per tonne or $ per kWh of 

product) 

Briquette Combustion 1 Steam1 20.70 

Briquette Combustion 1 Ash1 0.00 

Steam2  Power Generation 2 Electricity 2 0.132 

Syngas Catalytic Bioethanol 

Production 

Bioethanol 150.00 

 

Table 3.18 Approximated production cost factor at r to produce u from o (𝑃𝑅𝑂𝐷𝐶𝑅𝑜,𝑟,𝑢) in $ per 

kWh (Kozlowski, 2015) 

Feedstock (o) Process (r) Product (u) Production cost factor ($ 

per kWh of product) 

Steam1  Power Generation 1 Electricity 1 0.132 

 

Table 3.19 Approximated conversion factor at h to produce i  
(𝐶𝑂𝑁𝑉𝐻ℎ,𝑖) (Kozlowski, 2015) 

Feedstock (g) Process (h) Product (i) Conversion factor 

Biomass (a,b, or c) Animal Bedding Animal Bed 0.80 

Biomass (a,b, or c) Blending Process Blended Biomass 1 or 2 0.90 

Biomass (a,b, or c) Blending Process Agricultural Mulch 0.10 

 

Table 3.20 Approximated conversion factor at j to produce k from i 

(𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘) (Kozlowski, 2015) 

Feedstock (i) Process (j) Product (k) Conversion factor 

Biomass 1 Milling & Sieving Bio-filler 0.20 

Biomass 1 Milling & Sieving By-product 0.80 

Biomass 2 Torrefied Pelletization Torrefied Pellet 0.38 
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Table 3.21 Approximated conversion factor at l to produce m from k  

(𝐶𝑂𝑁𝑉𝐿𝑘,𝑙,𝑚) (Kozlowski, 2015) 

Feedstock (k) Process (l) Product (m) Conversion factor 

By-product Briquetting Briquette 0.38 

Torrefied Pellet Combustion 2 Steam2 0.60 

Torrefied Pellet Combustion 2 Ash2 0.40 

Torrefied Pellet Gasification Syngas 0.70 

 

Table 3.22 Approximated conversion factor at n to produce o from m  

(𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜) (Eurochlor, 2015) 

Feedstock (m) Process (n) Product (o) Conversion factor 

Briquette Combustion 1 Steam1 0.60 

Briquette Combustion 1 Ash1 0.40 

Steam2 Power Generation 2 Electricity 2 250 kWh/tonne of steam 

Syngas Catalytic Bioethanol 

Production 

Bioethanol 0.73 

 

Table 3.23 Approximated conversion factor at r to produce u from o  

(𝐶𝑂𝑁𝑉𝑅𝑜,𝑟,𝑢) (Eurochlor, 2015) 

Feedstock (o) Process (r) Product (u) Conversion factor 

Steam1 Power Generation 1 Electricity 1 250 kWh/tonne of steam 

 

Table 3.24 Approximated biomass received cost ($/tonne) and availability (tonne/year) (Kozlowski, 

2015) 

Biomass Cost ($/tonne) Availability (tonne/year) 

Biomass a 40 30000 

Biomass b 45 50000 

Biomass c 50 100000 

 

Table 3.25 Approximated selling price of products ($/tonne or $/kWh) (Kozlowski, 2015 and 

O’Malley, 2013) 

Product Selling Price ($/tonne or $/kWh) 

Animal Bed 154.32 

Agricultural Mulch 75.00 

Bio-filler 1102.30 

By-product 65.00 

Torrefied Pellet 156.00 

Briquette 130.00 

Ash 1 0.05 

Ash 2 0.05 

Electricity 1 0.263 

Electricity 2 0.263 

Bioethanol 950.00 
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Table 3.26 Approximated demands for products in tonne or kWh per year (Kozlowski, 2015) 

Product Demand in tonne or kWh per year 

Animal Bed 70 

Agricultural Mulch 75 

Bio-filler 50 

By-product 50 

Torrefied Pellet 70 

Briquette 30 

Ash 1 40 

Ash 2 40 

Electricity 1 10000 

Electricity 2 10000 

Bioethanol 36 

 

 Conversion factors as shown by Table 3.19 till 3.23 represent efficiencies of processing units 

such as reactor or blending machine to convert inlet feeds into bio-products. At the same stage of 

processing facility, for example at the blending process, incoming biomass feedstocks were converting 

into blended biomasses and the residues i.e the agricultural mulch by 0.9 and 0.1 of conversion factors, 

respectively.  These conversion factors were considered by mass ratio of inlet to the outlet. However, 

for the cases where incoming feeds are steam (steam1 and steam2) to produce electricity (electricity 1 

and electricity 2), conversion factors have approximated the turbine’s efficiencies on how much power 

would be produced per mass of steam which depends on pressure and temperature of inlet and outlet 

steam. 

3.5 Results and Discussions 

 In searching for optimal value, optimization software i.e GAMS Rev 149 with CPLEX 11.0.0 

solver has been used. The CPLEX optimizer is designed to solve large and difficult optimization 

problems quickly and with minimal user’s intervention (GAMS, 2015). The developed CPLEX 

algorithm in GAMS could solve problems related to linear, quadratically constrained and mixed integer 

programs. The solution was performed in AMD A10-4600M APU processor, contained 27 blocks of 

equations, 22 blocks of variables, 274 single equations, 366 single variables and took 0.137 seconds to 

solve. For the given parameters, the optimal profit was found to be $ 22,618,673 per year that counted 

for all of the products. The optimized production level for each bio-product and individual contribution 

to the profit are shown in Table 3.27, and ranked according to the most profitable one. For this to 

happen, all of Biomass a, Biomass b, and Biomass c have been utilized at their maximum availabilities 

which are 30000, 50000, and 100000 tonnes per year, respectively. 
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 Beside bio-filler, it is sensible for the company at this moment to start manufacturing bio-

ethanol and agricultural mulch, as well as to look for other profitable applications for their by-product 

from milling and sieving plant. Unless market situations would have changed, it is not necessary for 

them to produce other bio-products (torrefied pellet, animal bed, briquette, electricity, and ash). They 

were also could produce nutrients from the biomass (as shown in the superstructure) if the demands are 

high enough to justify economic viability.  

 In addition, the developed model has considered Omtec Inc. as the single owner for all of the 

facilities in the supply chain. It also would be in the case of Omtec Inc. as the main consultant for this 

project that facilitates other interested companies for their investments. It is important to highlight that 

the results are based on the estimated values of all involved parameters and hence might need to be 

refined for future uses. However, the current developed model is adequate to serve as a simulation or 

what-if-scenario tool for Omtec for their benefits. Since the current model only emphasizes economic 

efficiency of the supply chain, other criteria such as environmental impacts, technological investment 

risks and health and safety issues could be added in the future. 

Table 3.27 Optimal production level for bio-products and their calculated contributions to the 

annual profit 

Produced 

Products 

Optimal Production Level 

(tonne per year or kWh per 

year) 

Profit Contribution 

($/year) 

Profit Contribution 

(%) 

Bio-filler 32384.25 10,727,735.77 47.429 

Bio-ethanol 31355.00 8,951,685.74 39.577 

By-product 129194.90 2,523,673.36 11.157 

Agricultural 

 Mulch 

17991.25 405,505.75 1.793 

Torrefied Pellet 70.00 3281.69 0.015 

Animal Bed 70.00 3246.34 0.014 

Briquette 30.00 1172.03 0.005 

Electricity 1 15000.00 1185.55 0.005 

Electricity 2 15000.00 1185.55 0.005 

Ash1 40.00 0.60 Negligible 

Ash2 40.00 0.60 Negligible 

Total  22,618,673 100.00 
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 Optimal production levels for some bio-products have exceeded the local demands as these 

might let the company to export them to the nearby regions. Table 3.28 till Table 36 show other 

optimization results from GAMS for optimal decision variables in tonnes or kWh per year. 

 

Table 3.28 Optimal amounts of biomass source, g transported to pre-processing facilities h in tonne 

per year 

(𝐹𝑇𝑅𝑃𝐹𝑔,ℎ ) 

Origin Destination Amount 

Biomass a Blending 29912.500 

Biomass a Animal bedding 87.500 

Biomass b Blending process 50000.000 

Biomass c Blending process 100000.000 

 

Table 3.29 Optimal amounts at pre-processing facilities, h in tonne per year  

Pre-processing 

facility 

Pre-processed product/by-

product 

Produced amount 

(𝑭𝑷𝑹𝑫𝑯𝒉,𝒊) 

Amount to be sold directly 

(𝑭𝑻𝑹𝑺𝑯𝒉,𝒊) 

Blending process Blended biomass 1 161921.250 - 

Blending process Blended biomass 1 161921.250 - 

Blending process Agriculture mulch 17991.250 17991.250 

Animal bedding Animal bed 70.000 70.000 

 

Table 3.30 Optimal amounts of pre-processed products i transported from pre-processing facilities h 

to processing one facilities j in tonne per year  

(𝐹𝑇𝑅𝑃𝐻ℎ,𝑖,𝑗 ) 

Origin Destination Amount 

Blended biomass 1 from blending process Milling & sieving 161921.250 

Blended biomass 2 from blending process Torrefied pelletization 161921.250 

 

Table 3.31 Optimal amounts at processing one facilities, j in tonne per year 

Processing one facility Processed one 

product 

Produced amount  

(𝑭𝑷𝑹𝑫𝑱𝒊,𝒋,𝒌) 

Amount to be sold directly  

(𝑭𝑻𝑹𝑺𝑱𝒋,𝒌) 

Milling & sieving Bio-filler 32384.250 32384.250 

Milling & sieving By-product 129537.000 129194.895 

Torrefied pelletization Torrefied pellet 61530.075 70.000 
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Table 3.32 Optimal amounts of processed one product k transported from processing one facilities j 

to processing two facilities, l in tonne per year 

(𝐹𝑇𝑅𝑃𝐽𝑗,𝑘,𝑙 ) 

Origin Destination Amount 

By product from milling & sieving Briquetting 342.105 

Torrefied pellet from torrefied pelletization Combustion2 100.000 

Torrefied pellet from torrefied pelletization Gasification 61360.075 

 

Table 3.33 Optimal amounts at processing two facilities, l in tonne per year 

Processing two facility Processed two product Produced amount  

(𝑭𝑷𝑹𝑫𝑳𝒌,𝒍,𝒎) 

Amount to be sold 

directly  

(𝑭𝑻𝑹𝑺𝑳𝒍,𝒎) 

Briquetting  Briquette 130.000 30.000 

Combustion2 Steam2 60.000 - 

Combustion2 Ash2 40.000 40.000 

Gasification Syngas 42952.052 - 

 

Table 3.34 Optimal amounts of processed two product, m transported from processing two facilities, l 

to processing three facilities, n in tonne per year  

(𝐹𝑇𝑅𝑃𝐿𝑙,𝑚,𝑛) 

Origin Destination Amount 

Briquette from briquetting Combustion1 100.000 

Steam2 from combustion2 Power generation 2 60.000 

Syngas from gasification Catalytic bioethanol production 42952.052 

 

Table 3.35 Optimal amounts at processing three facilities, n in tonne/kWh per year 

Processing three facility Processed three product Produced amount  

(𝑭𝑷𝑹𝑫𝑵𝒎,𝒏,𝒐 ) 

Amount to be sold 

directly 

(𝑭𝑻𝑹𝑺𝑵𝒏,𝒐)  

Combustion1 Steam1 60.000 - 

Combustion1 Ash1 40.000 40.000 

Power generation 2 Electricity 2 15000.000 15000.000 

Catalytic bioethanol 

production 

Bioethanol 31354.998 31354.998 
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Table 3.36 Optimal amounts of processed three products transported from processing three facilities, 

n to processing four facility, r in tonne per year  

(𝐹𝑇𝑅𝑃𝑁𝑛,𝑜,𝑟) 

Origin Destination Amount 

Steam1 from combustion1 Power generation 1 60.000 

 

Table 3.37 Optimal amounts at processing four facility, r in kWh per year 

Processing four facility Final product Produced amount  

(𝑭𝑷𝑹𝑫𝑹𝒐,𝒓,𝒖) 

Amount to be sold  

(𝑭𝑻𝑹𝑺𝑹𝒓,𝒖) 

Power generation 1 Electricity 1 15000.000 15000.000 

 

 Furthermore, in order to view direct influences of approximated parameters with the optimal 

value, sensitivity analysis was performed. Basically, this analysis would answer to the question for what 

rate does the objective function value should change with perturbations from one parameter or some of 

parameters. As for this chapter, biomass costs were varied in order to the record changes in the profit’s 

values, shown by Figure 3.4. 

 From the figure, increments in biomass resources costs have a direct impact to the profit with 

linear pattern. This is important relationship especially for Biomass c since this type of biomass has 

been utilized with the largest quantity as compared to Biomass b and Biomass a. All of the factors that 

are associated with the biomass resources cost such as seasonal, competing uses, and so on, should be 

monitored closely due to this pattern.  
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Figure 3.4 Sensitivity analysis for effect of biomass cost towards profit 

3.6 Conclusion and Future Works 

In conclusion, the developed model has provided and considered options that exist in the supply chain 

such as to produce different kind of products that are categorized as energy, chemicals or materials 

from multiple biomass resources. Furthermore, depending to the market situations, the company may 

prioritizes product lines and the necessity to further process a product once it has been produced. We 

believe these have helped the company in having greater flexibilities in their planning and operation. 

Even though it was modeled and optimized specifically for the company in Ontario, Canada, the general 

framework of the optimization model is however could be applicable and may be extended for other 

biomass utilization projects that involve supply chain.  

 Since the current model only emphasizes economic efficiency of the supply chain, other criteria 

such as environmental impacts, technological investment risks and health and safety issues could be 

added in the future works as to represent more comprehensive efforts for achieving sustainability.  For 

the pre-determined transportation mode, the current model has yet to consider optimal selection of the 

mode by including integer variables. This inclusion would provide better assignments of transportation 

modes depending to the distance, product density and other economic factors. Up to this point, the 

approximated parameters that were used in executing the model were considered adequate to 

demonstrate the model’s practicality in solving the optimization problem. However, more refinements 

of the parameters are necessary once the real operation data are available. 
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Chapter 4 

Multi-products Productions from Malaysian Oil Palm Empty Fruit 

Bunch (EFB): Analyzing Economic Potentials from Optimal Supply 

Chain  

4.1 Abstract 

The economic potentials of Malaysian oil palm EFB are realized by several motivating factors such as 

abundance, cheapness and are generally feasible to produce multi-products that range from energy, 

chemicals and materials. Amid continuing supports from the government in terms of policies, strategies 

and funding, manufacturing planning to utilize this biomass resource requires a fundamental tool for 

the decision making process. Biomass supply chain model in this context can present economic analysis 

in order to guide future investments. Sequential steps in modeling and optimization of EFB’s supply 

chain were explained. In a form of superstructure, the supply chain consisted processing stages for 

converting EFB into intermediates and products, transportation networks, and options for product’s 

direct sale or for further refinements. Economic analysis have considered biomass cost, production 

costs, transportation costs, and emission treatment costs from transportation and production in 

calculating the profit. In the case of Peninsula Malaysia, optimal value showed a profit of $ 713,642,269 

per year could be achieved by a single ownership for all of the facilities in the supply chain. The 

conclusions were drawn based on the limitation, availability and quality of parameters or data used in 

this study. 

4.2 Introduction 

Malaysia is a nation that is endowed with resources of both fossil as well as renewables. For fossil 

resources, proved reserves and the global share (%) for this country are 3.7 million barrel and 0.2% for 

oil, and 38.5 trillion cubic feet and 0.6% for natural gas (BP, 2014).  These numbers have ranked 

Malaysia as the 28th and the 15th largest reserves in the world for oil and natural gas, respectively. For 

renewables, Malaysia has 22500 MW energy potential of hydropower, 6500 MW energy potential of 

solar, and 1700 MW energy potential of biomass (Mekhilef et al., 2011). Of these renewables, only 

biomass can be used as a substituted feedstock to the fossil fuels for the manufacturing of multi-

products that ranged from energy, chemicals and materials. The substitutions to a certain extent are 

apparent due to the fact that there were declines in productions of Malaysia’s major oil fields and there 
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are abundances of biomass resources available in this country (EIA, 2015; Zafar, 2014). On the more 

general motivations, discouraged attributes of fossil resources such as environmentally harmful and are 

not renewable have even elevated the prospects of biomass to become the main renewable feedstocks 

in the near future.   

 In Malaysia, biomass resources are mainly generated by the palm oil industry. The crop’s 

planted areas have reached five million hectares in which almost 93 million tonnes of oil palm fruit was 

harvested (Ng and Ng, 2013). This harvested oil palm fruit will then produce crude palm oil and crude 

palm kernel oil, the major raw materials for the productions of various basic oleochemicals and 

biodiesel (Rupilius and Ahmad, 2007). Despite producing valuable products, the palm oil industry also 

generates agricultural wastes (biomass) such as palm oil fronds, palm oil trunks, empty fruit bunch 

(EFB), palm oil mill effluent (POME), palm mesocarp fiber (PMF), and palm kernel shell (PKS). In 

the case of EFB, for every 1 tonne of oil palm fresh fruit bunch processed, it was estimated that 230 kg 

of EFBs would be generated (Ng and Ng, 2013). As cheap biomass resource, EFB could be important 

feedstock to produce various products. This move is indeed in line with the current government 

strategies such as the Renewable Energy Policy, the National Biomass Strategy 2020 and the 1 Malaysia 

Biomass Alternative Strategy, which encourages biomass utilization for value-added product 

production and bioenergy generation (Ng and Ng, 2013). 

 Previous research and commercialization activities have indicated that EFB has been subjected 

to produce numerous products such as bio-syngas, bio-oil, bio-hydrogen, briquette and pellet fuels, bio-

ethanol, bio-composite, bio-resin, bio-gas, bio-compost, activated carbon, xylose, polyhdroxybutyrate, 

and etcetera (Lahijani and Zainal, 2010; Salema and Ani, 2012; Md. Zin et al., 2012; Chong et al., 2013; 

Tan et al., 2010; Tan et al., 2012; Tay et al., 2009; Ibrahim et al., 2011; Purwandari et al., 2012; Rosli 

et al., 2011; Foo and Hameed, 2011; Auta et al., 2012, Zhang et al., 2013, and Rahman et al., 2007). 

Some of these are intermediates that will be further refined to produce final products. Table 4.1 shows 

huge potentials of products and their applications which are feasibly derived from EFB. 

Table 4.1 Applications for products from oil palm EFB 
Bio-products Applications 

Dry Long Fiber (DLF) Mattress and cushion production, ceramic and brick production, and pulp and paper production. 

Bio-compost Organic farming, soil conditioner and fertilizer in gardens, landscaping, horticulture, agriculture 

as well as it can be used as erosion control. 

Activated carbon Adsorbent for purifications in water treatment, air pollution, gas processing, odor and color 

removals. 
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Cellulose Productions of derivatives from methyl cellulose such as carboxymethyl cellulose (CMC), 

hydroxyethyl cellulose (HEC), acetate, nitrocellulose, nanofibrillated cellulose (NFC), 

nanocrystalline cellulose (NCC), and cellulose filaments.  

Hemicellulose Productions of xylitol, ethanol and organic acids (from xylose) and lubricants, coatings, 

adhesives, resins, nylon-6, and nylon-6,6 (from furfural). 

Lignin Bio-resins (polymer substitution) in phenolic resins and polyurethane foams, carbon fiber 

composite, glue, dispersants, binder for fuel pellet, and combustion fuel.  

Briquette Thermal applications such as steam generation in boilers, power production, space heating, 

drying, and cooking. 

Pellet Thermal applications such as steam generation in boilers, power production, space heating, 

drying, and cooking. 

Torrefied Pellet Thermal applications such as steam generation in boilers, power production, space heating, 

drying, and cooking. 

Bio-composite Building products productions such as windows, doors, patio furniture, fencing, decking, 

roofing, and railing. Automotive applications such as dashboard, floor mats, seat fabric, and etc. 

Carboxymethyl 

Cellulose (CMC) 

Thickener in the ice cream, canned food, fast cooking food, jam, syrup, sherbet, dessert, drinks, 

etc. Emulsifying, suspending, fixing, smoothing, and separating agent, dirt absorbent in 

synthetic detergent, as well as used in the oil and gas drilling process. 

Glucose Simple sugar for fermentation, anaerobic digestion and isomerization. 

Xylose Simple sugar for xylitol production as well as for fermentation and anaerobic digestion 

processes. 

Bio-resin Compostable and biodegradable plastics such thermoplastic starch (TPS), 

polyhydroxyalkanoates (PHA) and polyactide (PLA). 

High Pressure Steam Mainly for power generation.  

Bio-syngas Productions of ammonia, hydrogen, methanol, electricity and range of transportation fuels 

through Fischer-Tropsch process. 

Bio-oil Productions of bio-hydrogen, bio-ethylene, bio-propylene, transportation fuels through refining 

process, glycolaldehyde, levoglucosan, and etc. 

Bio-char Soil enhancer, carbon sequester, fuels, and metal extraction where carbon is used to remove 

oxide from metal. 

Bio-hydrogen Ammonia production, refinery applications in hydrotreating and hydrocracking processes, fuel 

cells, and etc. 

Xylitol Various pharmaceutical and oral hygiene products. 

Bio-ethanol/ethanol Blending with gasoline, and uses commonly in the sectors such as beverages, cosmetics, medical 

and pharmaceuticals. 

Bio-gas Power generation, heating, combined heat and power, drying, cooling, cooking, compressed 

liquid fuel for transportation and etc. 
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Bio-methanol Formaldehyde production, wastewater denitrification, solvent for biodiesel trans-esterification, 

and other materials and chemicals productions such as paints, solvents, adhesives, refrigerants, 

synthetic fibers, and etc. 

Electricity Energy for electrical devices such as pump, compressor, fan, air-conditioner, heater, lighting 

system, computers, and many more. 

Medium Pressure 

Steam 

Power production, heating, cleaning, as reaction medium, humidification, and etc. 

Low Pressure Steam Heating, cleaning, humidification, moisturizing agent, and etc. 

Bio-ethylene Productions of polyethylene (PE), ethanol, ethylene glycol, ethylene oxide, ethylbenzene, 

ethylene dichloride, fruit ripening agent, and etc. 

Bio-diesel Transportation fuel, steam and power productions for diesel engines.   

Bio-gasoline Main transportation fuel in for road vehicles, motorboats, as well as for chainsaws,  lawn 

movers, and etc. 

Ammonia Mainly used for the productions of fertilizers, plastics such as polyurethane, refrigerant, and etc. 

Formaldehyde Productions of formaldehyde-based resins or adhesives such as urea formaldehyde (UF) resins, 

phenol formaldehyde (PF) resins, and melamine formaldehyde (MF) resins, polyoxymethylenes 

(POM), healthcare applications such as disinfectants and vaccines, and etc. 

 

 One of the main factors to realize these potentials is by having an optimal supply chain. The 

supply chain will ensure conversion routes that comprise series of pre-processing, main processing, and 

further processing steps to produce those above-mentioned products are considered simultaneously and 

comprehensively. Previous studies that focused on EFB’s supply chains including the supply chain 

analysis and life cycle assessment for the productions of green chemicals (Reeb et al., 2014) the supply 

chain of EFB for renewable fuel production (Eco-Ideal Consulting Sdn. Bhd. and Mensilin Holdings 

Sdn. Bhd., 2005), and the synthesis of energy supply chain from EFB (Lam et al., 2010). Optimal EFB’s 

supply chain for multi-products productions of energy, chemicals and materials is yet to be studied 

based on author’s knowledge. Therefore, this chapter will focus on modeling an optimization of EFB’s 

supply chain by taking Peninsular Malaysia as a case study.  

4.3 Model Development for Optimal EFB’s Supply Chain 

 An optimization model of the EFB’s supply chain has been developed according to the 

sequential steps shown in Figure 4.1. As lignocellulosic biomass sources, EFB will take different 

processing routes, each will end up to produce the pre-determined bio-products as highlighted in Table 

4.1. These processing routes comprise stages of pre-processing, main processing and further processing 
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steps. The routes can generally be divided into three main categories; thermochemical, chemical and 

biochemical processes. 

Select EFB as biomass feedstock 

Survey processing routes and 

develop superstructure of 

alternatives for multi-products 

productions

Formulate mathematical model of 

biomass supply chain by 

considering economic performance 

Approximate model s parameters

Obtain optimal biomass supply 

chain model using GAMS

 

Figure 4.1 Sequential steps for optimal EFB’s supply chain 

 

 In developing the supply chain’s superstructure, important steps and approaches, as detailed 

out by Murillo-Alvarado et al., (2013) were considered. First, suitable biomass feedstocks are 

recognized and followed by identification of desired products. In this step, several desired products can 

be generated by consuming the same feedstocks through a variety of conversion routes. Meanwhile, 

more than one reactants can be used to produce the desired product. In order to identify the 

interconnections (processing pathways) between feedstocks and products, two approaches are used 

which the forward synthesis of biomass and the backward synthesis of desired products. The next step 

is to match two intermediate compounds obtained from forward and backward syntheses. The final step 

of superstructure generation involved interception of the two intermediate compounds by identifying 

the set of processing technologies required for connecting these compounds. The developed 
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superstructure is shown in Figure 4.2. In this superstructure, square shapes represent processing 

facilities while oval shapes depict storages. Each storage was assumed to be located within its facility. 

The solid lines show processing sequences while the dash lines provide options to sell the products 

directly. Portions of the products whether to be sold directly or to be transferred to the next processing 

step would be determined from optimization results. There was assumption that the EFB feedstocks 

were blended homogenously. Furthermore, competitive utilizations could be seen for EFB, cellulose, 

hemicellulose, pellet, torrefied pellet, glucose, xylose, bio-syngas, and bio-oil. Small letters of g to o 

are subscripts and are explained in Table 4.2. The subscript p is not shown in Figure 4.2 but will be 

used in the mathematical model. This subscript p represents sum up of products. 

Table 4.2 List of subscript and description in Figure 4.2 
Set/Subscripts Descriptions Contents 

g Biomass source storage locations EFB collection 1, EFB collection 2, and EFB 

collection 3. 

h Pre-processing facilities DLF production, aerobic digestion, alkaline 

activation, extraction, briquetting, palletization, 

and torrefied palletization. 

i Pre-processed feedstocks storages PEFB DLF, bio-compost, activated carbon, 

cellulose, hemicellulose, lignin, PEFB 

briquette, PEFB pellet, and PEFB torrefied 

pellet. 

j Main processing facilities Bio-composite production, CMC production, 

acid hydrolysis, enzymatic hydrolysis, resin 

production, boiler combustion, gasification, fast 

pyrolysis, and slow pyrolysis. 

k Intermediate products 1 storages Bio-composite, CMC, glucose, xylose, bio-

resin, HP steam, bio-syngas, bio-oil, and bio-

char. 

l Further processing 1 facilities Steam reforming, separation, xylitol 

production, fermentation, anaerobic digestion, 

power production, methanol production, bio-oil 

upgrading, and FTL productions. 

m Intermediate products 2 storages Bio-hydrogen, bio-methanol, xylitol, bio-gas, 

electricity, MP steam, LP steam, bio-gasoline, 

bio-diesel, and bio-ethanol. 

n Further processing 2 facilities Ammonia production, formaldehyde 

production, bio-ethylene production. 

o Final products storages Ammonia, formaldehyde, and bio-ethylene 

p Sum of products PEFB DLF, bio-compost, activated carbon, 

cellulose, hemicellulose, lignin, PEFB 

briquette, PEFB pellet, PEFB torrefied pellet, 

Bio-composite, CMC, glucose, xylose, bio-

resin, HP steam, bio-syngas, bio-oil, bio-char, 

Bio-hydrogen, bio-methanol, xylitol, bio-gas, 

electricity, MP steam, LP steam, bio-gasoline, 

bio-diesel, bio-ethanol, ammonia, 

formaldehyde, and bio-ethylene. 
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Figure 4.2 A superstructure of supply chain for multi-products productions from EFB
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 Next, mathematical model of the optimal supply chain would be developed by considering 

economic performance. This refers to the profitability from the selling of products minus all the 

associated costs. Hence, the objective function of the optimization model is to maximize the overall 

profit, i.e, 

 Maximize Profit = Revenues – Costs, where; 

 Revenues = (Sales of products), and  

 Costs = (Biomass cost + Transportation cost + Production cost + Emission cost from 

transportation + Emission cost from production).  

Therefore, Profit = (Sales of products) - (Biomass cost) - (Transportation cost) - (Production cost) - 

(Emission cost from transportation) - (Emission cost from production). 

 Each of the term above requires data or parameters which among them are transportation cost 

factors, production cost factors, carbon dioxide (CO2) emission factors from transportation, CO2 

emission factors from production and conversion factors. The transportation cost factors were 

calculated using method from Oo et al., (2012) and Blok et al., (1995). Transportation modes such as 

truck and train have constants for variable cost and fixed cost. The variable cost include the operating 

cost, while the fixed cost include the capital cost. The transportation cost factors will be in $ per tonne 

and later will be multiplied with mass flowrate in order to determine the transportation cost. In this 

chapter, truck would be pre-selected for distances up to 100 km, while train was chosen for distances 

beyond 100 km for solid transportation. For liquid and gaseous products, pipeline transportation would 

be used. Production cost factor was the cost in $ to produce one unit capacity of product. In this regard, 

Mani et al. (2006) have reported that this cost factor comprised capital and operating costs for the 

equipment. CO2 emission cost factors from transportation were determined from the model that was 

developed by McKinnon (2008). Depending on the pre-selected mode of transportation, these emission 

factors would be then multiplied with mass flowrate in the supply chain. The CO2 emission factors from 

production meanwhile were taken from various life cycle analysis and relevant literatures. Unit for both 

emission factors was reported as CO2 equivalent as this is the standard international unit of 

measurement for expressing all greenhouse emissions in terms of the global warming potential of CO2.  

The cost for emission treatment was fixed at $40 per tonne of CO2 equivalent, but in practice the cost 

much depends on the local’s regulation. Conversion factors were defined by mass ratio of inlet to the 

outlet for each processing facility. However, for power production, conversion factors have 



 

 59 

approximated the turbine’s efficiencies on how much electricity would be produced per mass of inlet 

steam which depends on pressure and temperature of inlet and outlet steam.  

 Tables 4.3 till 4.21 tabulate all the required parameters for the mathematical model. It is worth 

to mention that, one of the efforts in this study was to collect and record all of these parameters. Since 

the majority of the biomass utilizations involving EFB are currently still in the conceptual stage, 

approximations were used. Hence, the parameters were assumed to be independent of scale, input types 

and conditions.  This assumption does not restrict the validity of the optimization model that will be 

presented in a general form. 

Table 4.3 Products’ selling prices derived from EFB 

Product Selling price 

($/tonne or $/MWh) 

Reference 

Dry Long Fiber (DLF) 210 Ng and Ng (2013) 

Bio-compost 100 Ng and Ng (2013) 

Activated carbon 1756 Shanghai Jinhu Inc. (2014) 

Cellulose 2200 Higson (2011) 

Hemicellulose 2000 Assumed value based on cellulose and 

lignin prices 

Lignin 1500 Lake (2010) 

Briquette 120 Ng and Ng (2013) 

Pellet 140 Ng and Ng (2013) 

Torrefied Pellet 160 Assumed value based on PEFB pellet 

and PEFB briquette 

Bio-composite 625 ERIA (2014) 

Carboxymethyl Cellulose (CMC) 3500 www.trade.ec.europa.eu 

Glucose 1890 www.cascadebiochem.com 

Xylose 1990 www.cascadebiochem.com 

Bio-resin 9072 www.bioresins.eu 

High Pressure Steam 26 Ng and Ng (2013) 

Bio-syngas 600 IChemE (2014) 

Bio-oil 800 Careddi Technology Ltd. (2014) 

Bio-char 380 Ng and Ng (2013) 

Bio-hydrogen 818 Murillo-Alvarado et al., (2013) 

Xylitol 4200 Shanghai Yanda Biotechnology Ltd. 

(2014) 

Bio-ethanol 523 Murillo-Alvarado et al. (2013) 

Bio-gas 398 Oo et al. (2012) 

Bio-methanol 870 Murillo-Alvarado et al. (2013) 

Electricity 140 Ng and Ng (2013) 

Medium Pressure Steam 17 Ng and Ng (2013) 

Low Pressure Steam 12 Ng and Ng (2013) 

Bio-ethylene 1544 ICIS (2014) 

Bio-diesel 790 Murillo-Alvarado et al. (2013) 

Bio-gasoline 1315 EIA (2014) 

Ammonia 745 ICIS (2014) 

Formaldehyde 463 ICIS (2014) 
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Table 4.4 Annual demands for products in tonne/year 

Product World demands 

(Tonne/year) or 

(MWh/year) 

Product demands (Tonne/year) or 

(MWh/year) 

Reference 

Dry Long Fiber 85.4 x 106 85.4 Lenzing Group AG (2014) 

Bio-compost 0.4 x 106 0.4 Biocomp Nepal (2014) 

Activated carbon 1.9 x 106 1.9 www.filtsep.com 

Cellulose 5.81 x 106 5.81 Lenzing Group AG (2014) 

Hemicellulose 15 x 106 15 Christopher (2012) 

Lignin 0.6 x 106 0.6 International Lignin Institute 

(2014) 

Briquette 30 x106 30 Assumed value based on 

pellet and torrefied pellet 

demands 

Pellet 37 x 106 37 O’Carroll (2012) 

Torrefied Pellet 70 x 106 70 www.biomassmagazine.com 

Bio-composite 0.92 x106 0.92 Carus (2012) 

Carboxymethyl 

Cellulose (CMC) 

0.4 x106 0.4 www.prweb.com 

Glucose 5.81 x 106 5.81 Assumed value based on 

cellulose demand 

Xylose 15 x 106 15 Assumed value based on 

hemicellulose demand 

Bio-resin 0.2 x 106 0.2 www.thomasnet.com 

High pressure steam 2.0 x106 2 www.enerdata.com 

Bio-syngas 462000 x 106 462000 Boerrigter and Drift (2005) 

Bio-oil 5 x 106 5 Bradley (2006) 

Bio-char 3000 x106 3000 www.nature.com 

Bio-hydrogen 375.5 x 106 375.5 Santibanez-Aquilar et al. 

(2011) 

Xylitol 0.002 x 106 0.002 www.companiesandmarket.

com 

Bio-ethanol 3.6 x 106 3.6 Santibanez-Aquilar et al. 

(2011) 

Bio-gas 9 x106  9 Svensson (2010) 

Bio-methanol 0.3 x 106 0.3 Murillo-Alvarado et al. 

(2013) 

Electricity 20 x 106 MWh  20 www.enerdata.com 

Medium pressure steam 0.9 x106 0.9 Assumed value for 50% of 

high pressure steam 

Low pressure steam 0.45 x 106 0.45 Assumed value for 50% of 

medium pressure steam 

Bio-ethylene 140 x106 140 Technip (2014) 

Bio-diesel 0.8 x106 0.8 Santibanez-Aquilar et al. 

(2011) 

Bio-gasoline 1.2 x106 1.2 EIA (2014) 

Ammonia 170.0 x 106 170 www.hazmatmag.com 

Formaldehyde 42 x 106 42 Lubon Industry Ltd. (2013) 

 

 Malaysia is geographically separated by two regions by the South China Sea. These two regions 

are called as Peninsula Malaysia and East of Malaysia. In the Peninsula as shown in Figure 4.3, the 

main areas of palm oil plantations, and hence the main areas of EFB producers are situated in states of 
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Johore, Pahang, and Perak (MPOB, 2013). Hence, in this study, only these three states were considered 

for EFB collection points as shown by Table 4.5. Locations of the processing facilities (pre-processing, 

main processing, further processing 1, and further processing 2) were considered for the Peninsula 

Malaysia. Operational status of these processing facilities are either fully operational, nearly operation 

or at a demonstration level. Distances for connecting two processing facilities were determined using 

Google Maps. In addition, biomass cost of the EFB was $6 per tonne.  

 

 

Figure 4.3 Map of Peninsula Malaysia 
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Table 4.5 Biomass feedstock availability for Johore, Pahang and Perak 

Biomass 

feedstock 

Fresh fruit bunch 

yield 

(Tonne/hectare)  

Plantation area 

(Hectare) 

Fresh fruit bunch 

production 

(Tonne) 

Palm empty fruit 

bunch productions 

(Tonne)* 

Reference 

EFB Collection 1 

(Johore) 

19.49 730694 14241226.06 3275481.99  

 

 

MPOB 

(2014) 

 

EFB Collection 2 

(Pahang) 

20.21 710195 14353040.95 3301199.42 

EFB Collection 3 

(Perak) 

20.31 384594 7811104.14 1796553.95 

Total 60.01 1825483 36405371.15 8373235.36 

* 23% of fresh fruit bunch will be assumedly to produce EFB as reported by Ng and Ng (2013) 

 

Table 4.6 Approximated transportation cost and CO2 emission factor for EFB feedstock from g to h  
EFB storage, g Pre-processing 

facility, h 

Distance (km) Transportation 

mode 

Cost 

($/tonne) 

CO2 emission factor 

(tonne CO2 equivalent 

/tonne of biomass 

transported) 

EFB Collection 

1 

Aerobic 

Digestion  

0 - 0 0 

EFB Collection 

1 

DLF Production  271 Train 29.54 0.0060 

EFB Collection 

1 

Extraction Plant  322 Train 31.24 0.0071 

EFB Collection 

1 

Briquetting 

Plant  

271 Train 29.54 0.0060 

EFB Collection 

1 

Pelletization 

Mill  

287 Train 29.98 0.0063 

EFB Collection 

1 

Torrefied 

Pelletization  

208 Train 27.45 0.0046 

EFB Collection 

1 

Alkaline 

Activation 

(Activated 

Carbon) Plant  

208 Train 27.45 0.0046 

EFB Collection 

2 

Aerobic 

Digestion  

0 - 0 0 

EFB Collection 

2 

DLF Production  165 Train 26.01 0.0036 

EFB Collection 

2 

Extraction Plant  230 Train 28.18 0.0051 

EFB Collection 

2 

Briquetting 

Plant  

165 Train 26.01 0.0036 

EFB Collection 

2 

Pelletization 

Mill  

195 Train 27.01 0.0043 

EFB Collection 

2 

Torrefied 

Pelletization 

Mill  

224 Train 27.98 0.0049 

EFB Collection 

2 

Alkaline 

Activation 

(Activated 

Carbon) Plant  

224 Train 27.98 0.0049 

EFB Collection 

3 

Aerobic 

Digestion  

0 - 0 0 

EFB Collection 

3 

DLF Production  274 Train 29.64 0.0060 
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EFB Collection 

3 

Extraction Plant  486 Train 36.70 0.0107 

EFB Collection 

3 

Briquetting 

Plant  

274 Train 29.64 0.0060 

EFB Collection 

3 

Pelletization 

Mill  

289 Train 30.14 0.0064 

EFB Collection 

3 

Torrefied 

Pelletization 

Mill  

346 Train 32.04 0.0076 

EFB Collection 

3 

Alkaline 

Activation 

(Activated 

Carbon) Plant  

346 Train 32.04 0.0076 

 

Table 4.7 Approximated transportation cost and CO2 emission factor for pre-processed feedstock 

from h to j  
Pre-processing 

facility, h 

Main processing 

facility,  j 

Distance 

(km) 

Transportation 

mode 

Cost 

($/tonne) 

CO2 emission factor 

(tonne CO2 

equivalent /tonne of 

product transported) 

Extraction Plant  CMC Production  0 - 0 0 

Extraction Plant  Acid Hydrolysis  546 Train 38.70 0.0120 

Extraction Plant  Enzymatic 

Hydrolysis  

315 Train 31.00 0.0069 

Extraction Plant  Resin Production  386 Train 33.37 0.0085 

DLF Production  Bio-composite 

Production  

33 Truck 12.26 0.0020 

Briquetting Plant  Boiler 

Combustion  

83 Truck 20.46 0.0051 

Pelletization Mill  Boiler 

Combustion  

88 Truck 21.28 0.0055 

Pelletization Mill  Gasification  17 Truck 9.63 0.0011 

Pelletization Mill  Fast Pyrolysis  0 - 0 0 

Pelletization Mill  Slow Pyrolysis  345 Train 32.01 0.0076 

Torrefied Pelletization 

Mill  

Boiler 

Combustion  

23 Truck 10.61 0.0014 

Torrefied Pelletization 

Mill  

Gasification  78 Truck 19.64 0.0048 

Torrefied Pelletization 

Mill  

Fast Pyrolysis  86 Truck 20.95 0.0053 

 
Table 4.8 Approximated transportation cost and CO2 emission factor for intermediate product 1, k 

from j to l 
Main processing 

facility,  j 

Further processing 1 

facility,  l 

Distance 

(km) 

Transportation 

mode 

Cost 

($/tonne) 

CO2 emission 

factor (tonne CO2 

equivalent /tonne 

of product 

transported) 

Acid Hydrolysis  Fermentation Plant  327 Train 31.41 0.0072 

Acid Hydrolysis  Anaerobic Digestion 

Plant  

338 Train 31.78 0.0074 

Acid Hydrolysis  Xylitol Production  0 - 0 0 

Enzymatic 

Hydrolysis  

Fermentation Plant  65 Truck 17.51 0.0040 

Enzymatic 

Hydrolysis  

Anaerobic Digestion 

Plant 

37 Truck 12.91 0.0023 
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Enzymatic 

Hydrolysis  

Xylitol Production  379 Train 33.14 0.0083 

Boiler Combustion  Power Production  0 - 0 0 

Gasification  Separation Plant  0 - 0 0 

Gasification  Methanol Production  404 Pipeline 20.20 0 

Gasification  FTL production  19 Pipeline 0.95 0 

Fast Pyrolysis  Bio-oil Upgrading  94 Pipeline 4.70 0 

Fast Pyrolysis  Steam Reforming Plant  0 - 0 0 

 

 

Table 4.9 Approximated transportation cost and CO2 emission factor for intermediate product 2, m 

from l to n  
Further 

processing 1 

facility,  l 

Further processing 2 

facility,  n 

Distance 

(km) 

Transportation 

mode 

Cost 

($/tonne) 

CO2 emission factor 

(tonne CO2 

equivalent /tonne of 

product transported) 

Steam Reforming 

Plant  

Ammonia Production  361 Pipeline 18.05 0 

Separation Plant Ammonia Production  367 Pipeline 18.35 0 

Methanol 

Production  

Formaldehyde 

Production 

686 Pipeline 34.30 0 

Fermentation Plant  Bio-ethylene  316 Pipeline 15.80 0 

 

Table 4.10 Approximated production cost factor at h in $ per tonne 

Biomass type, g Pre-processing, h Pre-processed product, i $/tonne Reference 

Blended EFBs DLF Production Dry Long Fiber 85 www.hempfarm.com 

Blended EFBs Aerobic Digestion Bio-compost 10 Fabian et al. (1993) 

Blended EFBs Alkaline Activation Activated Carbon 144 Lima et al. (2008) 

Blended EFBs Extraction Cellulose 125 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Extraction Hemicellulose 130 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Extraction Lignin 135 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Briquetting Briquette 50 Kanna (2010) 

Blended EFBs Pelletization Pellet 60 PPD Technologies 

Inc. (2011)  

Blended EFBs Torrefied Pelletization Torrefied Pellet 70 PPD Technologies 

Inc. (2011) 

 

Table 4.11 Approximated conversion factor at h  

Biomass type, g Pre-Processing, h Pre-processed 

product, i 

Conversion 

factor 

Reference 

Blended EFBs DLF Production Dry Long Fiber 0.37 Ng and Ng (2013) 

Blended EFBs Aerobic Digestion Bio-compost 0.95 Hubbe et al. (2010) 

Blended EFBs Alkaline Activation Activated Carbon 0.50 Kaghazchi et al. (2006) 

Blended EFBs Extraction Cellulose 0.63 Assumed value based on 

hemicellulose and lignin 

conversion factor 

Blended EFBs Extraction Hemicellulose 0.18 www.ipst.gatech.edu 

Blended EFBs Extraction Lignin 0.19 www.purelignin.com 

Blended EFBs Briquetting Briquette 0.38 Ng and Ng (2013) 

Blended EFBs Pelletization Pellet 0.38 Ng and Ng (2013) 
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Blended EFBs Torrefied 

Pelletization 

Torrefied Pellet 0.38 Ng and Ng (2013) 

 

Table 4.12 Approximated CO2 emission factor at h  

Biomass type, g Pre-Processing, h Pre-processed 

product, i 

CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Blended EFBs DLF Production Dry Long Fiber 0.0041 www.oecotextiles.wordpres

s.com 

Blended EFBs Aerobic Digestion Bio-compost 0.0200 www.epa.gov 

Blended EFBs Alkaline 

Activation 

Activated Carbon 0.0176 www.omnipure.com 

Blended EFBs Extraction Cellulose 0.0590 Murillo-Alvarado et al. 

(2013) 

Blended EFBs Extraction Hemicellulose 0.0650 Murillo-Alvarado et al. 

(2013) 

Blended EFBs Extraction Lignin 0.0620 Assumed value based on 

values for cellulose and 

hemicellulose 

Blended EFBs Briquetting Briquette 0.0500 Assumed value 

Blended EFBs Pelletization Pellet 0.0500 Assumed value 

Blended EFBs Torrefied 

Pelletization 

Torrefied Pellet 0.0805 Kaliyan et al. (2014) 

 

Table 4.13 Approximated production cost factor at j in $ per tonne  

Pre-processed feedstock, 

i 

Main processing, j Intermediate 

product 1, k 

$/Tonne Reference 

Dry Long Fiber Bio-composite 

Production 

Bio-composite 107.0 ERIA (2014) 

Cellulose CMC Production CMC 2500.0 www.trade.ec.europa.eu 

Cellulose Acid Hydrolysis Glucose 73.4 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic Hydrolysis Glucose 85.7 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis Xylose 168.7 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Enzymatic Hydrolysis Xylose 83.1 Murillo-Alvarado et al. 

(2013) 

Lignin Resin Production Bio-resin 1900.0 Chiarakorn et al. (2013) 

Briquette  Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Pellet Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Pellet Gasification Bio-syngas 300.0 Assumed value based 

on 50% of Bio-syngas 

price 

Pellet Fast pyrolysis Bio-oil 1003 Thorp (2010) 

Pellet Slow pyrolysis Bio-char 111.5 www.irena.org 

Torrefied Pellet Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Torrefied Pellet Gasification Bio-syngas 300.0 Assumed value based 

on 50% of Bio-syngas 

price 

Torrefied Pellet Fast pyrolysis Bio-oil 1003 Thorp (2010) 
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Table 4.14 Approximated conversion factor at j  

Pre-processed 

feedstock, i 

Main processing, j Intermediate product 

1, k 

Conversion 

factor 

Reference 

Dry Long Fiber Bio-composite 

Production 

Bio-composite 0.75 Karbstein et al. (2013) 

Cellulose CMC Production CMC 0.86 Saputra et al. (2014) 

Cellulose Acid Hydrolysis Glucose 0.37 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic 

Hydrolysis 

Glucose 0.47 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis Xylose 0.91 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Enzymatic 

Hydrolysis 

Xylose 0.88 Murillo-Alvarado et al. 

(2013) 

Lignin Resin Production Bio-resin 0.95 Yin et al. (2012) 

Briquette  Boiler Combustion HP Steam 0.20 Searcy and Flynn (2009) 

Pellet Boiler Combustion HP Steam 0.25 Searcy and Flynn (2009) 

Pellet Gasification Bio-syngas 0.70 Boerrigter and Drift (2005) 

Pellet Fast pyrolysis Bio-oil 0.60 Zhang et al. (2013) 

Pellet Slow pyrolysis Bio-char 0.50 www.biocharfarms.org 

Torrefied Pellet Boiler Combustion HP Steam 0.30 Searcy and Flynn (2009) 

Torrefied Pellet Gasification Bio-syngas 0.80 Boerrigter and Drift (2005) 

Torrefied Pellet Fast pyrolysis Bio-oil 0.60 Zhang et al. (2013) 

 

Table 4.15 Approximated CO2 emission factor at j 

Pre-processed 

feedstock, i 

Main processing, 

j 

Intermediate 

product 1, k 

CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Dry Long Fiber Bio-composite 

Production 

Bio-composite 7.481 www.winrigo.com 

Cellulose CMC Production CMC 0.097 Assumed value  

Cellulose Acid Hydrolysis Glucose 0.097 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic 

Hydrolysis 

Glucose 0.085 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis Xylose 0.075 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Enzymatic 

Hydrolysis 

Xylose 0.082 Murillo-Alvarado et al. 

(2013) 

Lignin Resin Production Bio-resin 2.500 www.netcomposites.com 

Briquette  Boiler 

Combustion 

HP Steam 0.750 www.sarawakenergy.com.

my 

Pellet Boiler 

Combustion 

HP Steam 0.750 Assumed value  

Pellet Gasification Bio-syngas 0.680 Basu (2013) 

Pellet Fast pyrolysis Bio-oil 0.580 Zhang et al. (2013) 

Pellet Slow pyrolysis Bio-char 0.580 Zhang et al. (2013) 

Torrefied Pellet Boiler 

Combustion 

HP Steam 0.750 Assumed value 

Torrefied Pellet Gasification Bio-syngas 0.680 Basu (2013) 
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Torrefied Pellet Fast pyrolysis Bio-oil 0.580 Zhang et al. (2013) 

 

Table 4.16 Approximated production cost factor at l in $ per tonne or per MWh 

Intermediate 

product 1, k 

Further 

processing 1, l 

Intermediate 

product 2, m 

$/Tonne or 

MWh 

Reference 

Bio-oil Steam Reforming Bio-hydrogen 455.0 Sarkar and Kumar et al. (2010) 

Bio-oil Bio-oil Upgrading Bio-gasoline 1089.0 Wright and Brown (2011) 

Bio-oil Bio-oil Upgrading Bio-diesel 918.0 Wright and Brown (2011) 

Glucose  Fermentation Bio-ethanol 98.2 Murillo-Alvarado et al. (2013) 

Xylose Fermentation Bio-ethanol 98.2 Murillo-Alvarado et al. (2013) 

Glucose Anaerobic 

Digestion 

Bio-gas 199.0 Assumed value for 50% less of the bio-

gas price 

Xylose Anaerobic 

Digestion 

Bio-gas 199.0 Assumed value for 50% less of the bio-

gas price 

Xylose Xylitol Production Xylitol 2100.0 Assumed value for 50% less of the 

xylitol price 

HP Steam Power Production Electricity 58.9/MWh Searcy and Flynn (2009) 

HP Steam Power Production MP Steam 12.0 Assumed valued based on the steam 

price 

HP Steam Power Production LP Steam 7.0 Assumed valued based on the steam 

price 

Bio-syngas Methanol 

Production 

Bio-methanol 83.6 Murillo-Alvarado et al. (2013) 

Bio-syngas Separation Bio-hydrogen 112 Schubert (2013) 

Bio-syngas FTL Productions Bio-diesel 167.3 Murillo-Alvarado et al. (2013) 

Bio-syngas FTL Productions Bio-gasoline 519.8 Wright and Brown (2011) 

 

Table 4.17 Approximated conversion factor at l  

Intermediate 

Product 1, k 

Further 

Processing 1, l 

Intermediate 

Product 2, m 

Conversion Factor Reference 

Bio-oil Steam Reforming Bio-hydrogen 0.84 Dillich (2013) 

Bio-oil Bio-oil 

Upgrading 

Bio-gasoline 0.40 Kim et al. (2011) 

Bio-oil Bio-oil 

Upgrading 

Bio-diesel 0.20 Kim et al. (2011) 

Glucose  Fermentation Bio-ethanol 0.33 Murillo-Alvarado et al. (2013) 

Xylose Fermentation Bio-ethanol 0.33 Murillo-Alvarado et al. (2013) 

Glucose Anaerobic 

Digestion 

Bio-gas 0.70 Hubbe et al. (2010) 

Xylose Anaerobic 

Digestion 

Bio-gas 0.70 Hubbe et al. (2010) 

Xylose Xylitol 

Production 

Xylitol 0.70 Prakasham et al. (2009) 

HP Steam Power Production Electricity 0.30 MWh/tonne of 

steam 

www.turbinesinfo.com 

HP Steam Power Production MP Steam 0.35 Ng and Ng (2013) 

HP Steam Power Production LP Steam 0.35 Ng and Ng (2013) 

Bio-syngas Methanol 

Production 

Bio-methanol 0.41 Murillo-Alvarado et al. (2013) 

Bio-syngas Separation Bio-hydrogen 0.46 Murillo-Alvarado et al. (2013) 

Bio-syngas FTL Productions Bio-diesel 0.71 Boerrigter and Drift (2005) 

Bio-syngas FTL Productions Bio-gasoline 0.29 Assumed value from bio-diesel 

conversion factor 
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Table 4.18 Approximated CO2 emission factor at l 

Intermediate 

Product 1, k 

Further 

Processing 1, l 

Intermediate 

Product 2, m 

CO2 emission factor (tonne 

CO2 equivalent/tonne of 

product produced) 

Reference 

Bio-oil Steam Reforming Bio-hydrogen 16.930 Zhang et al. (2013) 

Bio-oil Bio-oil Upgrading Bio-gasoline 13.000 Zhang et al. (2013) 

Bio-oil Bio-oil Upgrading Bio-diesel 13.000 Zhang et al. (2013) 

Glucose  Fermentation Bio-ethanol 0.098 Murillo-Alvarado et 

al. (2013) 

Xylose Fermentation Bio-ethanol 0.098 Murillo-Alvarado et 

al. (2013) 

Glucose Anaerobic 

Digestion 

Bio-gas 0.250  Whiting & Azapagic, 

(2014) 

Xylose Anaerobic 

Digestion 

Bio-gas 0.250 Whiting & Azapagic, 

(2014) 

Xylose Xylitol Production Xylitol 0.082 Assumed value based 

on value of xylose 

HP Steam Power Production Electricity 0.050 Assumed value 

HP Steam Power Production MP Steam 0.050 Assumed value 

HP Steam Power Production LP Steam 0.050 Assumed value 

Bio-syngas Methanol 

Production 

Bio-methanol 0.083 Murillo-Alvarado et 

al. (2013) 

Bio-syngas Separation Bio-hydrogen 0.090 Murillo-Alvarado et 

al. (2013) 

Bio-syngas FTL Productions Bio-diesel 0.067 Murillo-Alvarado et 

al. (2013) 

Bio-syngas FTL Productions Bio-gasoline 0.639 Murillo-Alvarado et 

al. (2013) 

 

Table 4.19 Approximated production cost factor at n in $ per tonne  

Intermediate product 2, m Further processing 2, n Final product, 

p 

$/Tonne Reference 

Bio-hydrogen Ammonia Production Ammonia 377 www.hydrogen.en

ergy.gov 

Bio-methanol Formaldehyde Production Formaldehyde 232 www.icis.com 

Bio-ethanol Bio-ethylene Production Bio-ethylene 1200 www.irena.org 

 

Table 4.20 Approximated conversion factor at n  

Intermediate product 

2, m 

Further processing 

2, n 

Final product, p Conversion 

factor 

Reference 

Bio-hydrogen Ammonia Production Ammonia 0.80 www.hydrogen.energy.gov 

Bio-methanol Formaldehyde 

Production 

Formaldehyde 0.97 Chu et al. (1997) 

Bio-ethanol Bio-ethylene 

Production 

Bio-ethylene 0.99 www.irena.org 

 

 

 

 

http://www.hydrogen.energy.gov/
http://www.hydrogen.energy.gov/
http://www.hydrogen.energy.gov/
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Table 4.21 Approximated CO2 emission factor at n 

Intermediate 

product 2, m 

Further processing 

2, n 

Final product, p CO2 emission factor (tonne 

CO2 equivalent/tonne of 

product produced) 

Reference 

Bio-hydrogen Ammonia Production Ammonia 1.694 Jubb et al. (2006) 

 Bio-methanol Formaldehyde 

Production 

Formaldehyde 0.083 Assumed value  

Bio-ethanol Bio-ethylene 

Production 

Bio-ethylene 1.400 www.irena.org 

 

4.4 Formulation of the Optimization Model 

 Since the aim of this study was to optimize the supply chain of multi-products productions from 

EFB, profitability was selected as an economic potential indicator. Therefore, mathematical model was 

written as; 

Maximize Profit =  

Max (Sales of Products - Biomass cost - Transportation cost - Production cost - Emission treatment 

cost from transportation - Emission treatment cost from production)                       (4.1) 

 

Sales of products = ∑ 𝑄𝑝
𝑃
𝑝 =1 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡′𝑠 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒                             (4.2) 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑔 ∗ 𝐸𝐹𝐵 𝐶𝑜𝑠𝑡𝐺
𝑔                    (4.3)  

 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = (∑ ∑ 𝐹𝑇𝐹𝑔,ℎ 
𝐻
ℎ

𝐺
𝑔 ∗ 𝑇𝐶𝐺𝐻𝑔,ℎ) + (∑ ∑ ∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗 ∗ 𝑇𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗 ) +𝐽

𝑗
𝐼
𝑖

𝐻
ℎ

( ∑ ∑ ∑ 𝐹𝑇𝐽𝑗,𝑘,𝑙 ∗ 𝑇𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙
𝐿
𝑙

𝐾
𝑘

𝐽
𝑗 ) + (∑ ∑ ∑ 𝐹𝑇𝐿𝑙,𝑚,𝑛

𝑁
𝑛

𝑀
𝑚

𝐿
𝑙 ∗ 𝑇𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛)              (4.4)  

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = (∑ ∑ 𝐹𝑃𝐻ℎ,𝑖
𝐼
𝑖

𝐻
ℎ ∗  𝑃𝑅𝑂𝐶𝐻ℎ,𝑖) + (∑ ∑ ∑ 𝐹𝑃𝐽𝑖,𝑗,𝑘

𝐾
𝑘

𝐽
𝑗

𝐼
𝑖 ∗ 𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘  ) +

(∑ ∑ ∑ 𝐹𝑃𝐿𝑘,𝑙,𝑚
𝑀
𝑚

𝐿
𝑙

𝐾
𝑘 ∗ 𝑃𝑅𝑂𝐶𝐿𝑘,𝑙,𝑚) + (∑ ∑ ∑ 𝐹𝑃𝑁𝑚,𝑛,𝑜 ∗  𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜)𝑂

𝑜
𝑁
𝑛

𝑀
𝑚                           (4.5)  
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𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 = [(∑ ∑ 𝐹𝑇𝐹𝐸𝑔,ℎ) + 𝐻
ℎ

𝐺
𝑔 (∑ ∑ ∑ 𝐹𝑇𝐻𝐸ℎ,𝑖,𝑗

𝐽
𝑗

𝐼
𝑖

𝐻
ℎ ) +

(∑ ∑ ∑ 𝐹𝑇𝐽𝐸𝑗,𝑘,𝑙
𝐿
𝑙

𝐾
𝑘

𝐽
𝑗 ) + (∑ ∑ ∑ 𝐹𝑇𝐿𝐸𝑙,𝑚,𝑛

𝑁
𝑛

𝑀
𝑚

𝐿
𝑙 )] ∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2𝑒  (4.6) 

 

𝐹𝑇𝐹𝐸𝑔,ℎ =  𝐹𝑇𝐹𝑔,ℎ ∗  𝐸𝑇𝐶𝐺𝐻𝑔,ℎ  Ɐg,h                 (4.7) 

 

𝐹𝑇𝐻𝐸ℎ,𝑖,𝑗 = 𝐹𝑇𝐻ℎ,𝑖,𝑗 ∗  𝐸𝑇𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗  Ɐh,i,j                 (4.8) 

 

𝐹𝑇𝐽𝐸𝑗,𝑘,𝑙 =  𝐹𝑇𝐽𝑗,𝑘,𝑙 ∗ 𝐸𝑇𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙  Ɐj,k,l                 (4.9) 

 

𝐹𝑇𝐿𝐸𝑙,𝑚,𝑛 =  𝐹𝑇𝐿𝑙,𝑚,𝑛 ∗  𝐸𝑇𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛  Ɐl,m,n               (4.10) 

 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = [(∑ ∑ 𝐹𝑃𝐻𝐸ℎ,𝑖
𝐼
𝑖

𝐻
ℎ ) + (∑ ∑ ∑ 𝐹𝑃𝐽𝐸𝑖,𝑗,𝑘

𝐾
𝑘

𝐽
𝑗

𝐼
𝑖 ) +

(∑ ∑ ∑ 𝐹𝑃𝐿𝐸𝑘,𝑙,𝑚
𝑀
𝑚

𝐿
𝑙

𝐾
𝑘 ) + (∑ ∑ ∑ 𝐹𝑃𝑁𝐸𝑚,𝑛,𝑜

𝑂
𝑜

𝑁
𝑛

𝑀
𝑚 ) ∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑡𝑜𝑛𝑛𝑒 𝐶𝑂2𝑒 

                     (4.11) 

 

𝐹𝑃𝐻𝐸ℎ,𝑖 =  𝐹𝑃𝐻ℎ,𝑖 ∗  𝐸𝑃𝑅𝑂𝐶𝐻ℎ,𝑖  Ɐh,i               (4.12) 

 

𝐹𝑃𝐽𝐸𝑖,𝑗,𝑘 =  𝐹𝑃𝐽𝑖,𝑗,𝑘 ∗ 𝐸𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘  Ɐi,j,k               (4.13) 

 

𝐹𝑃𝐿𝐸𝑘,𝑙,𝑚 =  𝐹𝑃𝐿𝑘,𝑙,𝑚 ∗  𝐸𝑃𝑅𝑂𝐶𝐿𝑘,𝑙,𝑚  Ɐk,l,m               (4.14) 

 

𝐹𝑃𝑁𝐸𝑚,𝑛.𝑜 =  𝐹𝑃𝑁𝑚,𝑛,𝑜 ∗  𝐸𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜 Ɐm,n,o               (4.15) 

 

 For the inequality constraints, the amount of EFBs at each resource location must be not 

exceeding their availability. In addition, the demands for each of the products must be met. Both 

constraints are represented by (4.16) and (4.17), respectively.  

 

∑ 𝐹𝑔
𝐺
𝑔  ≤ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦                 (4.16) 

 

𝐹𝑖𝑣𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑊𝑜𝑟𝑙𝑑 𝐷𝑒𝑚𝑎𝑛𝑑𝑠 ≥ 𝑄𝑝 ≥ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡′𝑠 𝐷𝑒𝑚𝑎𝑛𝑑   Ɐp           (4.17) 
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 Formulations for mass balances are represented by (4.18) through (4.27). Descriptions about 

each formulation in the model and terms are shown in Table 4.22 and Table 4.23, respectively. 

 

∑ 𝐹𝑇𝐹𝑔,ℎ
𝐻
ℎ ≤  𝐹𝑔     Ɐg               (4.18) 

 

∑ 𝐹𝑇𝐹𝑔,ℎ
𝐺
𝑔 ∗  𝐶𝑂𝑁𝑉𝐻ℎ,𝑖 =  𝐹𝑃𝐻ℎ,𝑖   Ɐh,i               (4.19) 

 

𝐹𝑃𝐻ℎ,𝑖 = ∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗
𝐽
𝑗 + 𝐹𝑆𝐻ℎ,𝑖    Ɐh,i               (4.20) 

 

∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗 ∗ 𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘
𝐻
ℎ = 𝐹𝑃𝐽𝑖,𝑗,𝑘   Ɐi,j,k               (4.21) 

 

∑ 𝐹𝑃𝐽𝑖,𝑗,𝑘
𝐼
𝑖 = 𝐹𝑆𝐽𝑗,𝑘 + ∑ 𝐹𝑇𝐽𝑗,𝑘,𝑙

𝐿
𝑙    Ɐj,k               (4.22) 

 

∑ 𝐹𝑇𝐽𝑗,𝑘,𝑙
𝐽
𝑗 ∗  𝐶𝑂𝑁𝑉𝐿𝑘,𝑙,𝑚 = 𝐹𝑃𝐿𝑘,𝑙,𝑚    Ɐk,l,m               (4.23) 

 

∑ 𝐹𝑃𝐿𝑘,𝑙,𝑚
𝐾
𝑘 =  𝐹𝑆𝐿𝑙,𝑚 +  ∑ 𝐹𝑇𝐿𝑙,𝑚,𝑛

𝑁
𝑛     Ɐl,m              (4.24) 

 

∑ 𝐹𝑇𝐿𝑙,𝑚,𝑛
𝐿
𝑙 ∗ 𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 = 𝐹𝑃𝑁𝑚,𝑛,𝑜   Ɐm,n,o              (4.25) 

 

∑ 𝐹𝑃𝑁𝑚,𝑛,𝑜
𝑀
𝑚 = 𝐹𝑆𝑁𝑛,𝑜     Ɐn,o              (4.26) 

 

∑ 𝐹𝑆𝐻ℎ,𝑖
𝐻
ℎ + ∑ 𝐹𝑆𝐽𝑗,𝑘

𝐽
𝑗 +  ∑ 𝐹𝑆𝐿𝑙,𝑚

𝐿
𝑙 +  ∑ 𝐹𝑆𝑁𝑛,𝑜

𝑁
𝑛 = 𝑄𝑝  Ɐi,k,m,o             (4.27) 

 

Table 4.22 Description about model’s formulations in Chapter 4 

Formulation Description 

(4.1) Objective function 

(4.2) Total sales of products in $ per year 

(4.3) Total biomass cost in $ per year 

(4.4) Total transportation cost in $ per year 

(4.5) Total production cost in $ per year 

(4.6) Total emission treatment cost from transportations in $ per year 

(4.7) Emission from transportation between g and h in tonne CO2e per year 

(4.8) Emission from transportation between h and j in tonne CO2e per year 

(4.9) Emission from transportation between j and l in tonne CO2e per year 
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(4.10) Emission from transportation between l and n in tonne CO2e per year 

(4.11) Total Emission treatment cost from productions in $ per year 

(4.12) Emission from production at h in tonne CO2e per year 

(4.13) Emission from production at j in tonne CO2e per year 

(4.14) Emission from production at l in tonne CO2e per year 

(4.15) Emission from production at n in tonne CO2e per year 

(4.16) Amount of EFB in tonne per year must not exceed availability 

(4.17) Range of amount of produced product in tonne or MWh per year  

(4.18) Mass balance for EFB storages outlet in tonne per year 

(4.19) Mass balance for yield of pre-processed feedstocks in tonne per year 

(4.20) Mass balance for pre-processing facilities outlet in tonne per year 

(4.21) Mass balance for yield of intermediate products 1 in tonne per year 

(4.22) Mass balance for main processing facilities outlet in tonne per year 

(4.23) Mass balance for yield of intermediate products 2 in tonne or MWh per year 

(4.24) Mass balance for further processing facilities 1 outlet in tonne per year 

(4.25) Mass balance for yield of final products in tonne per year 

(4.26) Mass balance for further processing facilities 2 outlet in tonne per year 

(4.27) Summation of sales for all products at h, j, l, and n 

 

Table 4.23 Descriptions of terms used in (4.1) till (4.27) 

Term Category Description 

𝑇𝐶𝐺𝐻𝑔,ℎ Parameter Transportation cost factor for biomass feedstock from g to h in $ per tonne 

𝐸𝑇𝐶𝐺𝐻𝑔,ℎ Parameter CO2 emission factor for EFB feedstock transported from g to h 

𝑇𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗  Parameter Transportation cost factor for pre-processed feedstock from h to j through i in $ 

per tonne 

𝐸𝑇𝐶𝐻𝐼𝐽ℎ,𝑖,𝑗 Parameter CO2 emission factor for pre-processed feedstock transported from h to j 

𝑇𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙 Parameter Transportation cost factor for intermediate product 1 from j to l through k in $ 

per tonne 

𝐸𝑇𝐶𝐽𝐾𝐿𝑗,𝑘,𝑙 Parameter CO2 emission factor for intermediate product 1 transported from j to l 

𝑇𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛 Parameter Transportation cost factor for intermediate product 2 from l to n through m in $ 

per tonne 

𝐸𝑇𝐶𝐿𝑀𝑁𝑙,𝑚,𝑛 Parameter CO2 emission factor for intermediate product 2 transported from l to n 

𝑃𝑅𝑂𝐶𝐻ℎ,𝑖 Parameter Production cost factor at h to produce i from g in $ per tonne 

𝐸𝑃𝑅𝑂𝐶𝐻ℎ,𝑖 Parameter CO2 emission factor at production h 

𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘 Parameter Production cost factor at j to produce k from i in $ per tonne 

𝐸𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘  Parameter CO2 emission factor at production j 

𝑃𝑅𝑂𝐶𝐿𝑘,𝑙,𝑚 Parameter Production cost factor at l to produce m from k in $ per tonne or per MWh 

𝐸𝑃𝑅𝑂𝐶𝐿𝑘,𝑙,𝑚 Parameter CO2 emission factor at production l 

𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜  Parameter Production cost factor at n to produce o from m in $ per tonne 

𝐸𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜 Parameter CO2 emission factor at production n 

𝐶𝑂𝑁𝑉𝐻ℎ,𝑖 Parameter Conversion factor at h to produce i 

𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘  Parameter Conversion factor at j to produce k from i 

𝐶𝑂𝑁𝑉𝐿𝑘,𝑙,𝑚 Parameter Conversion factor at l to produce m from k 

𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 Parameter Conversion factor at n to produce o from m 

𝑄𝑝 Decision variable Sum up of products from each of product storage in tonne or MWh per year 
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𝐹𝑔 Decision variable Amount of biomass available at resource location and stored in tonne per year 

𝐹𝑇𝐹𝑔,ℎ  Decision variable Amount of biomass transported to pre-processing facilities h in tonne per year   

𝐹𝑇𝐹𝐸𝑔,ℎ  Decision variable Amount of emission from transportation between g and h in tonne CO2 

equivalent per year 

𝐹𝑇𝐻ℎ,𝑖,𝑗  Decision variable Amount of pre-processed feedstocks i transported from pre-processing facilities 

h to main processing facilities j in tonne per year 

𝐹𝑆𝐻ℎ,𝑖 Decision variable Amount of pre-processed feedstocks i produced from pre-processing facilities h 

to be sold directly in tonne per year   

𝐹𝑇𝐻𝐸ℎ,𝑖,𝑗 Decision variable Amount of emission from transportation between h and j in tonne CO2 

equivalent per year 

𝐹𝑇𝐽𝑗,𝑘,𝑙  Decision variable Amount of intermediate products 1 k transported from main processing facilities 

j to further processing 1 facilities l in tonne per year 

𝐹𝑆𝐽𝑗,𝑘 Decision variable Amount of intermediate products 1 k produced from main processing facilities j 

to be sold directly in tonne per year 

𝐹𝑇𝐽𝐸𝑗,𝑘,𝑙 Decision variable Amount of emission from transportation between j and l in tonne CO2 

equivalent per year 

𝐹𝑇𝐿𝑙,𝑚,𝑛 Decision variable Amount of intermediate products 2 m transported from further processing 1 

facilities l to further processing 2 facilities n in tonne per year 

𝐹𝑆𝐿𝑙,𝑚 Decision variable Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities l to be sold directly in tonne per year 

𝐹𝑇𝐿𝐸𝑙,𝑚,𝑛  Decision variable Amount of emission from transportation between l and n in tonne CO2 

equivalent per year 

𝐹𝑆𝑁𝑛,𝑜 Decision variable Amount of final products o produced from intermediate products 2 m through 

further processing 2 facilities n to be sold in tonne per year 

𝐹𝑃𝐻ℎ,𝑖 Decision variable Amount of pre-processed feedstocks i produced from biomass feedstocks g 

through pre-processing facilities h in tonne per year 

𝐹𝑃𝐻𝐸ℎ,𝑖 Decision variable Amount of emission from production at h in tonne CO2 equivalent per year 

𝐹𝑃𝐽𝑖,𝑗,𝑘 Decision variable Amount of intermediate product 1 k produced from pre-processed feedstocks i 

through main processing facilities j in tonne per year 

𝐹𝑃𝐽𝐸𝑖,𝑗,𝑘 Decision variable Amount of emission from production at j in tonne CO2 equivalent per year 

𝐹𝑃𝐿𝑘,𝑙,𝑚 Decision variable Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities l in tonne or MWh per year   

𝐹𝑃𝐿𝐸𝑘,𝑙,𝑚 Decision variable Amount of emission from production at l in tonne CO2 equivalent per year   
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𝐹𝑃𝑁𝑚,𝑛,𝑜  Decision variable Amount of final products o produced from intermediate products 2 m through 

further processing 2 facilities n in tonne per year 

𝐹𝑃𝑁𝐸𝑚,𝑛.𝑜 Decision variable Amount of emission from production at n in tonne CO2 equivalent per year 

 

4.5 Results and Discussions 

 The developed optimization model for the multi-products productions from EFB was executed 

in GAMS Rev 149, using CPLEX 11.0.0 as a solver. The solution was performed in AMD A10-4600M 

APU processor and contained 42 blocks of equations, 31 blocks of variables, 5401 single equations, 

6844 single variables and took 0.079 seconds to solve. For the given parameters, the optimal profit was 

found to be $ 713,642,269 per year for a single ownership of all facilities in the EFB’s supply chain.  

Table 4.24 shows optimal level of productions for all products which utilized 1900400.458, 

6451782.271 and 21052.632 tonnes per year of EFBs from Johore, Pahang and Perak, respectively. As 

was mentioned earlier, blending of EFBs were assumed so that it could meet the supply requirements 

to the pre-processing facilities. In addition, optimization results have determined portions of the 

produced products whether to be further processed or to be sold directly depending on the economic 

profitability. Table 4.25 shows distributions of EFB sources to the respective pre-processing facilities. 

Table 4.24 Optimal production level of products 

Product Production (tonne per year or MWh per year) 

DLF 2302323.090  

Bio-compost 20000.000  

Activated carbon 95000.000 

Cellulose 134363.904  

Hemicellulose  37862.333  

Lignin 30000.000  

Briquette 30.000 

Pellet 37.000 

Torrefied pellet 70.000 

Bio-composite 0.920 

CMC 0.400  

Glucose 5.810  

Xylose 15.000  

Bio-resin 10000.000  

HP steam  2.000 

Bio-syngas 462000.000 

Bio-oil 5.000 

Bio-char 3000.000 

Bio-hydrogen  375.500 

Xylitol  0.002 
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Bio-ethanol 3.600 

Bio-gas 9.000 

Bio-methanol 0.300 

Electricity  20.000 

MP Steam  23.333 

LP Steam  23.333 

Bio-ethylene  140.000 

Bio-diesel  40000.000  

Bio-gasoline 16338.028  

Ammonia 170.000 

Formaldehyde  42.000 

 

Table 4.25 Amount of EFB biomass transported to pre-processing facilities h,   

𝐹𝑇𝐹𝑔,ℎ  (tonne per year) 

Biomass 

source 

DLF 

production 

Aerobic 

digestion 

Alkaline 

activation 

Extraction Briquetting Pelletization Torrefied 

pelletization 

EFB 

collection 

1 (Johore) 

- - 190000.000  - - - 1710400.458  

EFB 

collection 

2 

(Pahang) 

6222498.153  - - 213296.399  78.947 15908.772  - 

EFB 

collection 

3 (Perak) 

- 21052.632  - - - - - 

 

 Next, from the pre-processing facilities, the pre-processed products would have two options in 

which either to be processed in the main processing facilities or to be purchased by the users directly. 

These are shown by Table 4.26 and Table 4.27, respectively. For example, considering demand and 

EFB’s availability, it was more economical to sell dry long fiber (DLF) than to send it the next stage of 

processing. These were similar cases for cellulose, hemicellulose and lignin at the given parameters. 

Oppositely, the results indicated that it was more economical to process torrefied pellet in the main 

processing facilities (gasification and boiler combustion) than to sell it directly. Furthermore, 

summation of the portions to be sent for main processing and the portions to be sold are equal to the 

amount of pre-processed feedstocks produced by the respective pre-processing facility. 
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Table 4.26 Amount of pre-processed feedstocks i transported from pre-processing facilities h to main 

processing facilities j,  

𝐹𝑇𝐻ℎ,𝑖,𝑗   (tonne per year) 

Path Bio-

compo

site 

produc

tion 

CMC 

produc

tion 

Acidic 

hydrolys

is 

Enzymatic 

hydrolysis 

Resin 

production 

Boiler 

combustio

n 

Gasificatio

n 

Fast 

pyrolysis 

Slow 

pyrolysis 

DLF from 

DLF 

production 

1.227 - - - - - - - - 

Cellulose 

from 

extraction 

- 0.465  - 12.362  - - - - - 

Hemicellulos

e from 

extraction 

- - 0.003 531.016 - - - - - 

Lignin from 

extraction 

- - - - 10526.316  - - - - 

Torrefied 

pellet from 

torrefied 

pelletization 

- - - - - 228.889  649653.285  - - 

Pellet from 

pelletization 

- - - - - 8.333  - - 6000.00 

 

Table 4.27 Amount of pre-processed feedstocks i produced from pre-processing facilities h to be sold 

directly,   

𝐹𝑆𝐻ℎ,𝑖 (tonne per year)  

Path Amount to be sold directly (tonne/year) Sales of products ($/year) 

DLF from DLF 

production 

2302323.090  483487848.9 

Bio-compost from 

aerobic digestion 

20000.000  2000000.0 

Activated carbon from 

alkaline activation 

95000.000  166820000.0 

Cellulose from 

extraction 

134363.904  295600588.8 

Hemicellulose from 

extraction 

37862.333  75724666.0 
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Lignin from extraction 30000.000  45000000.0 

Briquette from 

briquetting  

30.00 3600 

Pellet from pelletization 37.00 5180 

Torrefied pellet from 

torrefied pelletization 

70.00 11200 

 

 After exiting the main processing facilities, the intermediate products 1 again would either be 

sending for next processing step (further processing facilities 1) or to be sold directly. Table 4.28 and 

Table 4.29 show the both options, respectively. The amounts of bio-syngas from gasification was 

shown by the model’s results to be sold directly in preference over to further refine it in methanol 

production, separation and FTL production facilities. Since there was no further processing for bio-

resin as shown in the superstructure, it would be automatically sold directly to the customer.  

Table 4.28 Amount of intermediate products 1 k transported from main processing facilities j to 

further processing 1 facilities l, 

𝐹𝑇𝐽𝑗,𝑘,𝑙  (tonne per year) 

Path Separation Xylitol 

production 

Fermentation Anaerobic 

digestion 

Power 

production 

Methanol 

production 

FTL 

production 

Xylose from 

acidic 

hydrolysis 

- 0.003 - - - - - 

Xylose from 

enzymatic 

hydrolysis 

- - 439.437 12.857 - - - 

Bio-syngas 

from 

gasification 

1278.261  - - - - 106.339 56338.028  

HP steam 

from boiler 

combustion 

- - - - 66.667 - - 
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Table 4.29 Amount of intermediate products 1 k produced from main processing facilities j to be sold 

directly,   

𝐹𝑆𝐽𝑗,𝑘 (tonne per year) 

Path Amount to be sold directly (tonne/year) Sales of products ($/year) 

Bio-composite from bio-

composite production 

0.920 575.0 

CMC from CMC production 0.400 1400.0 

Glucose from enzymatic 

hydrolysis 

5.810 10980.9 

Xylose from enzymatic 

hydrolysis 

15.000 29850.0 

Bio-resin from resin production 10000 90720000.0 

HP Steam from boiler combustion 2.00 52.0 

Bio-syngas from gasification 462000.00 277200000.0 

Bio-oil from fast pyrolysis 5.000 4000.0 

Bio-char from slow pyrolysis 3000.00 1140000 

 

  The further processing 1 facilities will produce intermediate products 2. These intermediates 

need to be further processed or the manufactures can sell them directly to fulfill the specified demands. 

Table 4.30 and Table 4.31 show these options. At this point, majority of the produced products would be 

sold directly as no further processing required except for the portions of bio-hydrogen, bio-ethanol and 

bio-methanol. Furthermore, with the given parameters, product such as xylitol could be neglected for 

production especially if the demand is too low. 

Table 4.30 Amount of intermediate products 2 m transported from further processing 1 facilities l to 

further processing 2 facilities n,     

𝐹𝑇𝐿𝑙,𝑚,𝑛  (tonne per year) 

Path Ammonia production Formaldehyde production Bio-ethylene 

production 

Bio-hydrogen from steam 

reforming  

212.500 - - 

Bio-ethanol from 

fermentation 

- - 141.414 
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Bio-methanol from 

methanol production 

- 43.229 - 

 

Table 4.31 Amount of intermediate products 2 m produced from intermediate products 1 k through 

further processing 1 facilities l to be sold directly,   

𝐹𝑆𝐿𝑙,𝑚 (tonne or MWh per year) 

Path Amount to be sold directly (tonne/year) Sales of products ($/year) 

Bio-hydrogen from steam 

reforming 

375.500 307159.0 

Xylitol from xylitol 

production 

0.002 8.4 

Bio-ethanol from 

fermentation 

3.600 1882.8 

Bio-gas from anaerobic 

digestion 

9.000 3582.0 

Bio-methanol from 

methanol production 

0.300 261.0 

Electricity from power 

production 

20.000 2800.0 

MP Steam from power 

production 

23.333 396.6 

LP Steam from power 

production 

23.333 280.0 

Bio-diesel from FTL 

production 

40000.000  31600000.0 

Bio-gasoline from FTL 

production 

16338.028  21484506.8 

 

  Finally, the further processing 2 facilities will produce the final products. These three products 

are then ready to be shipped for selling as shown by Table 4.32. 
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Table 4.32 Amount of final products o produced from intermediate products 2 m through further 

processing 2 facilities n to be sold,  

𝐹𝑆𝑁𝑛,𝑜  (tonne per year) 

Path Amount (Tonne/year) Sales of products ($/year) 

Ammonia from ammonia production 170.000 126650.0 

Formaldehyde from formaldehyde 

production 

42.000 19446.0 

Bio-ethylene from bio-ethylene 

production 

140.000 216160.0 

 

 The amount of emissions from transportation and production were the result of multiplications 

between the emission factors and the mass flowrates. Having said this, the owner of the EFB’s facilities 

would be aware of which transportation segments and production facilities have emitted large amounts 

of CO2 equivalent per year despite the optimal overall profitability has considered the emission 

treatment costs. Table 4.33 till 4.39 tabulate these emission results that originated from transportations 

and productions.  

Table 4.33 Amount of emission from transportation between g and h in tonne CO2 equivalent per 

year, 

𝐹𝑇𝐹𝐸𝑔,ℎ  

Biomass 

source 

DLF 

production 

Aerobic 

digestion 

Alkaline 

activation 

Extraction Briquetting Pelletization Torrefied 

pelletization 

EFB 

collection 

1 (Johore) 

- - 874.000  - - - 7867.842  

EFB 

collection 

2 (Pahang) 

22400.993  - - 1087.812  0.284  68.408  - 
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Table 4.34 Amount of emission from transportation between h and j in tonne CO2 equivalent 

per year,  

𝐹𝑇𝐻𝐸ℎ,𝑖,𝑗 

Path Bio-

composite 

production 

Acidic 

hydrolysis 

Enzymatic 

hydrolysis 

Resin 

production 

Boiler 

combustion 

Gasification Slow pyrolysis 

DLF from DLF 

production 

0.002 - - - - - - 

Cellulose from 

extraction 

- - 0.085 - - - - 

Hemicellulose 

from extraction 

- 3.768 x 10-5 3.664 - - - - 

Lignin from 

extraction 

- - - 89.474  - - - 

Torrefied pellet 

from torrefied 

pelletization 

- - - - 0.320 3118.336  - 

Pellet from 

pelltization 

- - - - - - 45.600 

 

 

Table 4.35 Amount of emission from transportation between j and l in tonne CO2 equivalent 

per year,  

𝐹𝑇𝐽𝐸𝑗,𝑘,𝑙 

Path Fermentation Anaerobic digestion 

Xylose from enzymatic 

hydrolysis 

1.758 0.030 

 

Table 4.36 Amount of emission from production at h in tonne CO2 equivalent per year,  

𝐹𝑃𝐻𝐸ℎ,𝑖 

Product  DLF 

production 

Aerobic 

digestion 

Alkaline 

activation 

Extraction Briquetting Pelletization Torrefied 

pelletization 

DLF from 9439.530  - - - - - - 

Bio-compost 

from 

- 400.000  - - - - - 

Activated 

carbon from 

- - 1672.000  - - - - 

Cellulose from - - - 7928.227  - - - 
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Hemicellulose 

from 

- - - 2495.568  - - - 

Lignin from - - - 2512.632  - - - 

Briquette from     1.500   

Pellet from      302.267   

Torrefied pellet 

from 

      52321.150  

 

Table 4.37 Amount of emission from production at j in tonne CO2 equivalent per year,  

𝐹𝑃𝐽𝐸𝑖,𝑗,𝑘 

Product  DLF 

in bio-

compo

site 

produc

tion 

Cellulose 

in CMC 

producti

on 

Cellulose 

in 

enzymati

c 

hydrolys

is 

Hemicellulos

e in acid 

hydrolysis 

Hemicell

ulose in 

enzymati

c 

hydrolys

is 

Lignin in 

resin 

producti

on 

Torrefie

d pellet 

in boiler 

combusti

on 

Torrefi

ed 

pellet 

in 

gasific

ation 

Pellet 

in fast 

pyroly

sis 

Pelle

t in 

slow 

pyro

lysis 

Bio-

composit

e from 

6.883 - - - - - - -  - 

CMC 

from 

- 0.039 - - - - - -  - 

Glucose 

from 

- - 0.494 - - - - -  - 

Xylose 

from 

- - - 2.143 x 10-4 38.318 - - -  - 

Bio-resin 

from 

- - - - - 25000.00

0  

- -  - 

HP steam 

from 

- - - - - - 51.500 -  - 

Bio-

syngas 

from 

- - - - - - - 353931

.110  

 - 

Bio-oil 

from 

- - - - - - - - 2.900  - 

Bio-char 

from 

- - - - - - - - - 1740

.000 
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Table 4.38 Amount of emission from production at l in tonne CO2 equivalent per year,  

𝐹𝑃𝐿𝐸𝑘,𝑙,𝑚 

Product  Bio-syngas 

in steam 

separation 

Xylose in 

xylitol 

production 

Xylose in 

fermentation 

Xylose in 

aerobic 

digestion 

Bio-syngas in 

methanol 

production 

HP steam in 

power 

production 

Bio-

syngas in 

FTL 

producti

on 

Bio-

hydrogen 

from 

52.920  - - - - - - 

Xylitol 

from 

- 1.640 x 10-4 - - - - - 

Bio-ethanol 

from 

- - 14.211 - - - - 

Bio-gas 

from 

- - - 2.250 - - - 

Bio-

methanol 

from 

- - - - 3.619 - - 

Electricity 

from 

- - - - - 1.000 - 

MP steam 

from 

- - - - - 1.167 - 

LP steam 

from 

- - - - - 1.167 - 

Bio-diesel 

from 

- - - - - - 2680.000  

Bio-

gasoline 

from 

- - - - - - 10440.00

0  

 

 

Table 4.39 Amount of emission from production at n in tonne CO2 equivalent per year,  

𝐹𝑃𝑁𝐸𝑚,𝑛.𝑜 

Product Bio-ethanol in bio-ethylene 

production 

Bio-hydrogen in ammonia 

production 

Bio-methanol in 

formaldehyde production 

Bio-ethylene 196.000 - - 

Ammonia - 287.980 - 

Formaldehyde  - - 3.486 
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 From these results, economic decision could be made in a more guided way especially in 

prioritizing investments for productions. Facility owner was also being informed with potential 

emissions from both transportation and production activities. In addition, the owner was flexible in 

making decision on whether to sell the produced product directly or to further processing it based on 

the market situations.   

4.6 Sensitivity Analysis 

 Sensitivity analysis were performed by varying the selling prices for three selected products i.e 

bio-hydrogen, ammonia and bio-ethylene. Other products could be selected as well because the purpose 

of this analysis was to observe effects on the objective function by manipulating the model’s parameter. 

Three scenarios were created to demonstrate these effects as shown in Table 4.40. It can be seen that 

the variations in selling prices, which might happen due to changes in demands have definitely affected 

the original recorded profit. 

Table 4.40 Sensitivity analysis for the profitability ($/year) of the selected bio-products with selling 

prices’ variations 

Scenario in selling price for the three products Difference in annual profit ($/year) 

Scenario 1: All bio-hydrogen, ammonia and bio-ethylene have shown 

10% increase in selling price 

+64997 

Scenario 2: Bio-hydrogen has shown 10% increase, ammonia has 

decreased 10% and bio-ethylene remain the same 

+18051 

Scenario 3: Only bio-ethylene has decreased 10% -21616 

 

4.7 Conclusion and Future Works 

 The economic potentials of exploiting palm oil EFB as renewable feedstocks for the 

productions of products that range from energy, chemicals and materials were realized by having the 

optimal supply chain. Pre-requisite steps for obtaining the optimal supply chain were presented, and 

those steps would still be applicable when dealing with different kind of biomass feedstocks and 

products. The parameters used in the model were approximated from various literature sources and 

were sufficient to illustrate the applicability of the model. By considering single ownership of all 

facilities in the EFB’s supply chain, informed decision could be made to prioritize investments for 

manufacturing profitable products.  
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 For the future works, this model will be further developed to include optimal selections of 

processing route and transportation mode. 
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Chapter 5 

Multi-products Productions from Malaysian Oil Palm Empty Fruit 

Bunch (EFB): Selection for Optimal Process and Transportation 

Mode  

5.1 Abstract 

In Malaysia, palm oil industries have played significant roles in the economic sectors and for the 

nation’s developments as a whole. One aspect of these industries that is gaining growing interests is oil 

palm residues management and bio-based products generations. EFB has been identified to be a feasible 

raw material for productions of bio-energy, bio-chemicals and bio-materials. In this chapter, previous 

deterministic model was extended to include decisions for selecting optimal transportation modes and 

processes at each level of processing stage in the supply chain. The superstructure was modified to 

show states of produced products whether solid, liquid or gaseous, in which truck, train, barge or 

pipeline would be possible optimal mode of transportations. The objective function was to maximize 

profit that has counted associated costs including the emission treatment costs from productions and 

transportations. The optimal profit was $ 1,561,106,613 per year for single ownership of all facilities 

in the supply chain. 

5.2 Introduction 

Palm oil industries have played significant roles for the socio-economic developments in Malaysia. 

Since 1960, Malaysia has been one of the major producer and exporter of palm oil (Alang Mahat, 2012). 

Statistics showed that the palm oil sector has contributed 12% of the total Malaysia’s export and this 

percentage was equivalent to RM 80.4 billion or about USD 22.08 billion (May, 2011). In terms of 

social and rural improvements, the establishment of Federal Land Development Authority (FELDA) in 

1956 has carried out landless resettlements mainly for palm oil plantations in the country that benefited 

almost 113000 low-income families (www.palmoilworld.org). This effort has not only alleviated 

poverty in the country but also reduced economic imbalances between urban and rural populations 

(Simeh and Tengku Ahmad, 2001). 

 As one of the most important sources of vegetables oils, palm oil demands are increasing with 

the proliferative growth of human populations globally. Interestingly, significant uses of palm oils for 

cooking and manufacturing oleo-chemicals have been annexed with the production of biodiesel 
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recently.  In this context, Malaysian’s Ministry of Plantation Industries and Commodities has mandated 

to blend 7% of palm-based biodiesel with petro-based diesel instead of 5% blending before November 

2014. This move has further increased economic gains of palm oil especially in the situations where 

petroleum prices are unduly high.   

 Palm oil plantations also produce agricultural biomass such as EFB. Although it has been once 

considered as a low value agricultural residue, technological advances started to convert this biomass 

into numerous types of bio-based products. The scenario has created considerable amounts of 

enterprising companies to venture into these waste-to-wealth businesses throughout the country. 

However, in order to plan and operate of any EFB’s utilization project successfully, the supply chain 

that include optimal decision for process and transportation is one of the key consideration. With 

numerous alternatives available, selecting best processing route for producing a product is an important 

decision to make because of several factors associated with that such as product’s competitiveness, 

viability and status of technology, social and environmental impacts, and so on. In this regards, Figure 

5.1 depicts technological and resource-to-product selection dilemmas that typically occur in any 

biomass supply chain. Furthermore, it also has options to sell the produced product directly or to further 

refine it as shown by the dash line in this figure. 
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Figure 5.1 Selection dilemmas in biomass supply chain 
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 The optimal decisions about transportation amounts and modes are meanwhile have directly 

influenced the overall economic profitability as well as biomass accessibility and mobility. Questions 

may arise whether to use truck, train, barge or by pipeline for transporting biomass and derived products 

from processing facility to the desired destination in the most economical way. Based on these reasons, 

the development of deterministic optimization model with integer decision is imperative and would be 

a focus for this study. The classification for this type of modeling is Mixed Integer Programming (MIP) 

which could be linear or non-linear.  

 Previous studies about MIP modeling of biomass supply chain have been published by several 

authors. These included a modelling of biomass sources for energy purposes through combustion 

(Nagel, 2000), a hybrid of gasification and fermentation processes of agricultural residues and dedicated 

crops for bio-ethanol production (Gelson et al., 2003), bio-ethanol production from agricultural residues 

and municipal solid wastes by considering policy standards and conversion technologies (Huang et al., 

2010), agricultural residues for bio-ethanol production via bio-chemical route only by considering 

enzymatic hydrolysis and acidic hydrolysis (Marvin et al., 2011), multi-objective optimization for 

gasoline and bio-diesel productions by using combinations of forestry residues, agricultural residues 

and dedicated crops (You and Wang, 2011), and oil seed crop for the productions of energy products 

such as biodiesel, heat, power and syngas (Bowling et al., 2011). For recent studies, Zhang and Hu 

(2013) have modeled biofuel supply chain from corn stover by using fast pyrolysis process. They have 

considered different biomass supplies and demands with biofuel supply shortage penalty and storage 

cost in the model. Lin et al., (2014) have optimized biofuel supply chain model that integrates strategic 

and tactical planning decisions. Key strategic decisions were numbers, locations, capacities, and 

distribution patterns for biomass and ethanol, while biomass production and delivery were among the 

tactical decisions. Paulo et al., (2015) have developed an optimization model of supply chain for 

bioelectricity production from forest residues in Portugal. The objective function has minimized the 

total supply chain cost and optimally selected biomass amounts and sources.  

 The above-mentioned studies have modeled the biomass supply chain problem as Mixed 

Integer Linear Programming (MILP), while this chapter has involved with Mixed Integer Non-linear 

Programming (MINLP). The objective was to maximize the profit of EFB’s supply chain for multi-

products productions which would provide optimal decisions regarding biomass amounts, process and 

production levels, product’s direct sales or further refinements, transportation modes at each processing 

stages, as well as environmental considerations from both productions and transportations.  The model 
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has again considered Peninsula Malaysia as a case study. Three collection sources of EFBs were taken 

from Johore, Pahang and Perak. 

5.3 Methodology 

In order to model and optimize the EFB’s supply chain, methodology that is shown in Figure 5.2 was 

followed. This study has extended the previous optimization model to include integer variables for 

important decisions related to selections of best processes and transportation modes. Each decision was 

effective for each processing stage (pre-processing, main processing, further processing 1 and further 

processing 2) in the supply chain. 

Modify previous 

superstructure to 

accommodate integer 

decisions 

Formulate MIP 

model with profit 

maximization and 

also consider 

emissions from 

transportations and 

productions

Maintain the EFBs-

to- products  

processing routes

Approximate model s 

parameters

Obtain optimal 

EFB s supply chain 

in GAMS

Figure 5.2 Methodology for EFB’s supply chain with optimal processing route and transportation 

mode 

 Figure 5.3 shows the modified superstructure of EFB’s supply chain. Each segment of 

transportation was assigned with relevant modes of transportations. Solid biomass and products 

transportations to the next processing stages would be utilize either truck, train or barge, while 

transportation of liquid or gaseous products would use pipeline automatically. Square shapes in the 

superstructure represent processing facilities while storages are represented by the oval shapes. The 

black solid arrows show processing sequences while the black dash lines give indications to sell the 

products from storage directly to the customers. Extraction process was divided into three (extraction 

1, 2, and 3), acid hydrolysis into two (acid hydrolysis 1 and 2), enzymatic process into two (enzymatic 

hydrolysis 1 and 2), bio-oil upgrading into two (bio-oil upgrading 1 and 2), and lastly FTL production 

into two (FTL production 1 and 2). These divisions have involved for a square shape with more than 

one product except for power production which the products (electricity, MP steam and LP steam) were 

produced from a single unit process. The reason behind these divisions was to ensure the model could 

decide the optimal processing routes and their transportation modes, as well as the explanations could 

be established clearly. Similar to the previous superstructure, it shows competitive utilizations and 

routes for EFB, cellulose, hemicellulose, pellet, torrefied pellet, glucose, xylose, bio-syngas, and bio-

oil. In addition, it has assumed for homogenous blending of EFBs from different collection points. 
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Overall, there were four stages of processing (h, j, l, and n) and four segments of transportations (g to 

h, h to j, j to l, and l to n). Table 5.1 lists the indices which will be used in the model’s formulations.  

 

 

 

 

 

 

 

 

 



 91 

EFB 

Collection 

1(sol)

EFB 

Collection 

2(sol)

EFB 

Collection 

3(sol)

DLF 

Production

Alkaline 

Activation
Extraction 1 Briquetting Pelletization

Torrefied 

Pelletization

PEFB 

DLF(sol)

Bio-

compost 

(sol)

Cellulose 

(sol)

Hemicellulose 

(sol)
Lignin (sol)

PEFB 

Pellet (sol)

PEFB 

Torrefied 

Pellet (sol)

Aerobic 

Digestion

Activated 

Carbon 

(sol)

PEFB 

Briquette 

(sol)

Bio-

composite 

Production

CMC 

Production

Acid 

Hydrolysis 2

Enzymatic 

Hydrolysis 2

Resin 

Production

Boiler 

Combustion 
Gasification 

Bio-

composite 

(sol)

CMC (sol)
Glucose 

(sol)
Xylose (sol)

Bio-resin 

(sol)

HP Steam 

(gas)

Bio-syngas 

(gas)
Bio-oil (liq)

Bio-char 

(sol)

Steam 

Reforming
Separation

Xylitol 

Production
Fermentation 

Power 

Production

Methanol 

Production

Bio-oil 

Upgradings 

1

FTL 

Productions 

2

Bio-

hydrogen 

(gas)

Bio-

methanol 

(liq)

Xylitol 

(sol)

Bio-gas 

(gas)
Electricity MP Steam 

(gas)
LP Steam 

(gas)

Bio-

gasoline 

(liq)

Ammonia 

Production

Formaldehyde 

Production

Bio-ethylene 

Production

Ammonia 

(gas)

Formaldehyde 

(gas)

Bio-ethylene 

(gas)

Bio-diesel 

(liq)

Bio-

ethanol 

(liq)

(m)

(n)

(o)

(l), s2(l), and lg2(l)

(k)

(j), s1(j), and lg1(j)

(i)

(h)

(g)

Extraction 2 Extraction 3

Solid transportations 

from g to h 

Solid transportations 

from h to j

Solid, liquid and gas 

transportations from j to 

l

Liquid and gas 

transportations from l to 

n

All routes use 
barge

Enzymatic 

Hydrolysis 1

Acid 

Hydrolysis 1

Fast 

Pyrolysis 

Anaerobic 

Digestion 

Slow 

Pyrolysis 

Bio-oil 

Upgradings 

2

FTL 

Productions 

1

Figure 5.3 Superstructure of EFB’s supply chain for selecting optimal processing routes and transportation mode
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Table 5.1 List of indices and descriptions for model’s formulations 
Indices Description Contents 

g Biomass source storage locations EFB1, EFB2 and EFB3 

h Pre-processing facilities DLF production, aerobic digestion, alkaline 

activation, extraction 1, extraction 2, extraction 

3, briquetting, pelletization, and torrefied 

pelletization. 

j Main processing facilities Bio-composite production, CMC production, 

acid hydrolysis 1, acid hydrolysis 2, enzymatic 

hydrolysis 1, enzymatic hydrolysis 2, resin 

production, boiler combustion, gasification, fast 

pyrolysis, and slow pyrolysis. 

s1(j) Main processing facilities for solid products to the next 

processing facilities 

Acid hydrolysis 1, acid hydrolysis 2,  enzymatic 

hydrolysis 1 and enzymatic hydrolysis 2 

lg1(j) Main processing facilities for liquid and gaseous 

products to the next processing facilities 

Boiler combustion, gasification, and fast 

pyrolysis. 

l Further processing 1 facilities Steam reforming, separation, xylitol production, 

fermentation, anaerobic digestion, power 

production, methanol production, bio-oil 

upgrading 1, bio-oil upgrading 2, FTL 

production 1 and FTL production 2.  

s2(l) Further processing 1 facilities for solid feeds. Xylitol production and anaerobic digestion. 

lg2(l) Further processing 1 facilities for solid solution, liquid 

and gaseous feeds. 

Steam reforming, separation, power production, 

MP steam production, LP steam production, 

methanol production, bio-oil upgrading 1, bio-

oil upgrading 2, FTL production 1, FTL 

production 2, and fermentation. 

n Further processing 2 facilities Ammonia production, formaldehyde 

production, and bio-ethylene production. 

t Truck, train and barge transportation Truck, train and barge. 

z Pipeline transportation Pipeline. 

p Product sum up type p storages and to the users PEFB-DLF, bio-compost, activated carbon, 

cellulose, hemicellulose, lignin, PFB briquette, 

PEFB pellet, PEFB torrefied pellet, bio-

composite, CMC, glucose, xylose, bio-resin, HP 

steam, bio-syngas, bio-oil, bio-char, bio-

hydrogen, xylitol, bio-ethanol, bio-gas, bio-

methanol, electricity, MP steam, LP steam, bio-
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ethylene, bio-diesel, bio-gasoline, ammonia, 

and formaldehyde.  

i(p) Pre-processed feedstocks storages PEFB-DLF, bio-compost, activated carbon, 

cellulose, hemicellulose, lignin, PFB briquette, 

PEFB pellet, and PEFB torrefied pellet. 

k(p) Intermediate products 1 storages Bio-composite, CMC, glucose, xylose, bio-

resin, HP steam, bio-syngas, bio-oil, and bio-

char. 

m(p) Intermediate products 2 storages Bio-hydrogen, xylitol, bio-ethanol, bio-gas, bio-

methanol, electricity, MP steam, LP steam, bio-

diesel, and bio-gasoline. 

o(p) Final products storages Ammonia, formaldehyde, and bio-ethylene. 

 

5.4 Mathematical Model for Optimal Selections 

Formulations of mathematical model to optimize the EFB’s supply chain were written by the following 

formulations, which were explained each of them in Table 5.2 and 5.3. 

Maximize Profit = Maximize (Sales of products - Biomass cost - Transportation operating cost - 

Production cost - Emission treatment cost)                                     (5.1) 

Sales of products = ∑ 𝑄𝑝
𝑃
𝑝 =1 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠′ 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒                             (5.2) 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑔 ∗ 𝐸𝐹𝐵 𝐶𝑜𝑠𝑡𝐺
𝑔                    (5.3)  

Transportation operating cost = Truck, train and barge transportation operating cost + pipeline 

transportation operating cost                       (5.4) 

𝑇𝑟𝑢𝑐𝑘, 𝑡𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝑏𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  ∑ ((𝑂𝑃𝐶𝑂𝑆𝑇𝑀𝑡
𝑇
𝑡 ∗ ∑ ∑ 𝐹𝑇𝐹𝑇𝑔,ℎ,𝑡

𝐻
ℎ

𝐺
𝑔 ∗

2 ∗ 𝐷𝐺𝐻𝑔,ℎ) + (𝑂𝑃𝐶𝑂𝑆𝑇𝑀𝑡 ∗ ∑ ∑ 𝐹𝑇𝐻𝑇ℎ,𝑗,𝑡 ∗ 2 ∗ 𝐷𝐻𝐼𝐽ℎ,𝑗)𝐽
𝑗

𝐻
ℎ + (𝑂𝑃𝐶𝑂𝑆𝑇𝑀𝑡 ∗ ∑ ∑ 𝐹𝑇𝐽𝑇_𝑆𝑗,𝑠2,𝑡 ∗𝑆2

𝑠2
𝐽
𝑗

2 ∗ 𝐷𝐽𝐾𝐿_𝑆𝑗,𝑠2))                                                                      (5.5) 

𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = ∑ ((𝑂𝑃𝐶𝑂𝑆𝑇𝑃𝑧
𝑍
𝑧 ∗ ∑ ∑ 𝐹𝑇𝐽𝑇_𝐿𝐺𝑗,𝑙𝑔2,𝑧 ∗𝐿𝐺2

𝑙𝑔2
𝐽
𝑗

𝐷𝐽𝐾𝐿_𝐿𝐺𝑗,𝑙𝑔2) + (𝑂𝑃𝐶𝑂𝑆𝑇𝑃𝑧 ∗ ∑ ∑ 𝐹𝑇𝐿𝑇𝑙𝑔2,𝑛,𝑧
𝑁
𝑛

𝐿𝐺2
𝑙𝑔2 ∗ 𝐷𝐿𝑀𝑁𝑙𝑔2,𝑛))               (5.6) 

 The values of operating costs factors for each transportation mode were obtained from studies 

by Oo et al. (2012) and Blok et al., (1995). This costs might include the salaries and wages, fuels, 
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maintenances, and etc., while the exact values in $ per tonne per km are much depending on the types 

and densities of the transported products. Operating costs for solid transportation using truck, train, and 

barge were calculating for return trips, while for liquid and gas transportation through the pipeline were 

not. Further, formulations (5.7) till (5.11) detail about the loads for transportations.  

∑ 𝐹𝑇𝐹𝑇𝑔,ℎ,𝑡𝑡  = 𝐹𝑇𝐹𝑔,ℎ   Ɐg,h                  (5.7) 

∑ 𝐹𝑇𝐻𝑇ℎ,𝑗,𝑡𝑡 =  ∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗
𝐼
𝑖    Ɐh,j                  (5.8) 

∑ 𝐹𝑇𝐽𝑇_𝑆𝑠1.𝑠2.𝑡𝑡 = ∑ 𝐹𝑇𝐽_𝑆𝑠1,𝑘,𝑠2
𝐾
𝑘   Ɐs1,s2                  (5.9) 

∑ 𝐹𝑇𝐽𝑇_𝐿𝐺𝑙𝑔1.𝑙𝑔2.𝑧𝑧 = ∑ 𝐹𝑇𝐽_𝐿𝐺𝑙𝑔1,𝑘,𝑙𝑔2
𝐾
𝑘   Ɐlg1,lg2               (5.10) 

∑ 𝐹𝑇𝐿𝑇𝑙𝑔2,𝑛,𝑧𝑧 =  ∑ 𝐹𝑇𝐿𝑙𝑔2.𝑚.𝑛
𝑀
𝑚    Ɐlg2,n               (5.11) 

 Production cost and emission treatment cost were also included in the model, described 

mathematically by (5.12) till (5.23). The production cost was the result of multiplication between 

flowrate and production cost factor. Production cost factor was the cost in $ to produce one unit capacity 

of product. Approximation of values for these factors were done in every processing unit in the 

processing facilities because they were difficult to be obtained in exact values. The costs for treating 

emissions from transportation and production activities in the supply chain have indicated that the 

environmental performances were considered simultaneously. It used $40 per tonne of CO2 equivalent 

for emission cost as per previous model. Formulations (5.16) till (5.23) represented the mass balances 

for the emissions that were written in tonne CO2 equivalent per year.  

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = (∑ ∑ 𝐹𝑃𝐻ℎ,𝑖
𝐼
𝑖

𝐻
ℎ ∗  𝑃𝑅𝑂𝐶𝐻ℎ,𝑖) + (∑ ∑ ∑ 𝐹𝑃𝐽𝑖,𝑗,𝑘

𝐾
𝑘

𝐽
𝑗

𝐼
𝑖 ∗ 𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘  ) +

(∑ ∑ ∑ 𝐹𝑃𝐿_𝑆𝑘,𝑠2,𝑚
𝑀
𝑚

𝑆2
𝑠2

𝐾
𝑘 ∗ 𝑃𝑅𝑂𝐶𝐿_𝑆𝑘,𝑠2,𝑚) + (∑ ∑ 𝐹𝑃𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚

𝑀
𝑚

𝐿𝐺2
𝑙𝑔2 ∗ 𝑃𝑅𝑂𝐶𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚) +

(∑ ∑ ∑ 𝐹𝑃𝑁𝑚,𝑛,𝑜 ∗  𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜)𝑂
𝑜

𝑁
𝑛

𝑀
𝑚                                                                  (5.12) 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 +

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛               (5.13) 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = [(∑ ∑ 𝐹𝐸𝑉𝐻ℎ,𝑖
𝐼
𝑖

𝐻
ℎ ) + (∑ ∑ ∑ 𝐹𝐸𝑉𝐽𝑖,𝑗,𝑘

𝐾
𝑘

𝐽
𝑗

𝐼
𝑖 ) +

(∑ ∑ ∑ 𝐹𝐸𝑉𝐿_𝑆𝑘,𝑠2,𝑚
𝑀
𝑚

𝑆2
𝑠2

𝐾
𝑘 ) + (∑ ∑ 𝐹𝐸𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚) + (∑ ∑ ∑ 𝐹𝐸𝑉𝑁𝑚,𝑛,𝑜)] ∗  𝐸𝑇_𝑐𝑜𝑠𝑡𝑂

𝑜
𝑁
𝑛

𝑀
𝑚

𝑀
𝑚

𝐿𝐺2
𝑙𝑔2   

                     (5.14) 
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𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 = [(∑ ∑ ∑ 𝐹𝑇𝐹𝑇𝐸𝑔,ℎ,𝑡
𝑇
𝑡

𝐻
ℎ

𝐺
𝑔 ) +

(∑ ∑ ∑ 𝐹𝑇𝐻𝑇𝐸ℎ,𝑗,𝑡
𝑇
𝑡

𝐽
𝑗

𝐻
ℎ ) + (∑ ∑ ∑ 𝐹𝑇𝐽𝑇𝐸_𝑆𝑗,𝑠2,𝑡)] ∗ 𝐸𝑇_𝑐𝑜𝑠𝑡𝑇

𝑡
𝑆2
𝑠2

𝐽
𝑗                (5.15) 

𝐹𝐸𝑉𝐻ℎ,𝑖 = 𝐹𝑃𝐻ℎ,𝑖 ∗ 𝐸𝑁𝑉𝐻ℎ,𝑖     Ɐh,i              (5.16) 

𝐹𝐸𝑉𝐽𝑖,𝑗,𝑘 = 𝐹𝑃𝐽𝑖,𝑗,𝑘 ∗ 𝐸𝑁𝑉𝐽𝑖,𝑗,𝑘     Ɐi,j,k              (5.17) 

𝐹𝐸𝑉𝐿_𝑆𝑘,𝑠2,𝑚 = 𝐹𝑃𝐿_𝑆𝑘,𝑠2,𝑚 ∗ 𝐸𝑁𝑉𝐿_𝑆𝑘,𝑠2,𝑚   Ɐk,s2,m              (5.18) 

𝐹𝐸𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 = 𝐹𝑃𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 ∗ 𝐸𝑁𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚  Ɐk,lg2,m              (5.19) 

𝐹𝐸𝑉𝑁𝑚,𝑛,𝑜 = 𝐹𝑃𝑁𝑚,𝑛,𝑜 ∗ 𝐸𝑁𝑉𝑁𝑚,𝑛,𝑜    Ɐm.n.o              (5.20) 

𝐹𝑇𝐹𝑇𝐸𝑔,ℎ,𝑡 = 𝐹𝑇𝐹𝑇𝑔,ℎ,𝑡 ∗ 𝐸𝑀𝐹𝐴𝐶𝑡 ∗ 𝐷𝐺𝐻𝑔,ℎ   Ɐg,h,t              (5.21) 

𝐹𝑇𝐻𝑇𝐸ℎ,𝑗,𝑡 = 𝐹𝑇𝐻𝑇ℎ,𝑗,𝑡 ∗ 𝐸𝑀𝐹𝐴𝐶𝑡 ∗ 𝐷𝐻𝐼𝐽ℎ,𝑗   Ɐh,j,t              (5.22) 

𝐹𝑇𝐽𝑇𝐸_𝑆𝑗,𝑠2,𝑡 = 𝐹𝑇𝐽𝑇_𝑆𝑗,𝑠2,𝑡 ∗ 𝐸𝑀𝐹𝐴𝐶𝑡 ∗ 𝐷𝐽𝐾𝐿_𝑆𝑗,𝑠2  Ɐj,s2,t              (5.23) 

 The amount of EFB feedstocks at location g must be not exceeding their total availability. This 

has considered the leftovers of EFBs in the fields. In addition, the demands for each of the products p 

that were produced must be met. These have created the following constraints;  

∑ 𝐹𝑔
𝐺
𝑔  ≤ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦                 (5.24) 

𝐹𝑖𝑣𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑊𝑜𝑟𝑙𝑑 𝐷𝑒𝑚𝑎𝑛𝑑𝑠 ≥ 𝑄𝑝 ≥ 𝐵𝑖𝑜𝑝𝑟𝑜𝑑𝑢𝑐𝑡′𝑠 𝐷𝑒𝑚𝑎𝑛𝑑   Ɐp           (5.25) 

 The other mass balances were represented by (5.26) till (5.40) which comprise an inequality 

and equalities. Multiplications of continuous and discrete (binary) variables for (5.27), (5.29), (5.31), 

(5.32), and (5.41) till (5.45) have caused the model to be MINLP, as according to the definition about 

MINLP by Grossmann and Trespalacios (2014). High computational time is the typical issue with this 

type of programming. Methods for solving MINLP model have been reported by Grossmann (1999) 

that included branch and bound method, generalized benders decomposition, outer-approximation, 

LP/NLP based branch and bound, and extended cutting plane method. For this study however, it used 

the optimization solver called as Branch-And-Reduce Optimization Navigator (BARON) that is 

available in GAMS for solving the formulations.  
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∑ 𝐹𝑇𝐹𝑔,ℎ
𝐻
ℎ ≤  𝐹𝑔      Ɐg              (5.26) 

∑ 𝐹𝑇𝐹𝑔,ℎ
𝐺
𝑔 ∗  𝐶𝑂𝑁𝑉𝐻ℎ,𝑖 ∗  𝑌1ℎ,𝑖 =  𝐹𝑃𝐻ℎ,𝑖   Ɐh,i              (5.27) 

𝐹𝑃𝐻ℎ,𝑖 = ∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗
𝐽
𝑗 + 𝐹𝑆𝐻ℎ,𝑖     Ɐh,i              (5.28) 

∑ 𝐹𝑇𝐻ℎ,𝑖,𝑗 ∗ 𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘
𝐻
ℎ ∗ 𝑌2𝑖,𝑗,𝑘 = 𝐹𝑃𝐽𝑖,𝑗,𝑘   Ɐi,j,k              (5.29) 

∑ 𝐹𝑃𝐽𝑖,𝑗,𝑘
𝐼
𝑖 = 𝐹𝑆𝐽𝑗,𝑘 + ∑ 𝐹𝑇𝐽_𝑆𝑗,𝑘,𝑠2 +𝑆2

𝑠2   ∑ 𝐹𝑇𝐽_𝐿𝐺𝑗,𝑘,𝑙𝑔2
𝐿𝐺2
𝑙𝑔2  Ɐj,k             (5.30) 

∑ 𝐹𝑇𝐽_𝑆𝑗,𝑘,𝑠2
𝐽
𝑗 ∗ 𝐶𝑂𝑁𝑉𝐿_𝑆𝑘,𝑠2,𝑚 ∗ 𝑌3𝑎𝑘,𝑠2,𝑚 = 𝐹𝑃𝐿_𝑆𝑘,𝑠2,𝑚   Ɐk,s2,m             (5.31) 

∑ 𝐹𝑇𝐽_𝐿𝐺𝑗,𝑘,𝑙𝑔2
𝐽
𝑗 ∗ 𝐶𝑂𝑁𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 ∗  𝑌3𝑏𝑘,𝑙𝑔2,𝑚 = 𝐹𝑃𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚   Ɐk,lg2,m            (5.32) 

∑ 𝐹𝑃𝐿_𝑆𝑘,𝑠2,𝑚
𝐾
𝑘 =  𝐹𝑆𝐿_𝑆𝑠2,𝑚       Ɐs2,m             (5.33) 

∑ 𝐹𝑃𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚
𝐾
𝑘 =  𝐹𝑆𝐿_𝐿𝐺𝑙𝑔2,𝑚 + ∑ 𝐹𝑇𝐿𝑙𝑔2,𝑚,𝑛

𝑁
𝑛     Ɐlg2,m             (5.34) 

∑ 𝐹𝑇𝐿𝑙𝑔2,𝑚,𝑛
𝐿𝐺2
𝑙𝑔2 ∗ 𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 = 𝐹𝑃𝑁𝑚,𝑛,𝑜    Ɐm,n,o             (5.35) 

∑ 𝐹𝑃𝑁𝑚,𝑛,𝑜
𝑀
𝑚 = 𝐹𝑆𝑁𝑛,𝑜      Ɐn,o             (5.36) 

∑ 𝐹𝑆𝐻ℎ,𝑖
𝐻
ℎ  =  𝑄𝑖                                Ɐi                                               (5.37) 

∑ 𝐹𝑆𝐽𝑗,𝑘
𝐽
𝑗  =  𝑄𝑘                                 Ɐk                                             (5.38) 

∑ 𝐹𝑆𝐿_𝑆𝑠2,𝑚
𝑆2
𝑠2  + ∑ 𝐹𝑆𝐿_𝐿𝐺𝑙𝑔2,𝑚 

𝐿𝐺2
𝑙𝑔2 =  𝑄𝑚                             Ɐm                                           (5.39) 

∑ 𝐹𝑆𝑁𝑛,𝑜
𝑁
𝑛  =  𝑄𝑜                    Ɐo                                             (5.40) 

𝐹𝑇𝐹𝑇𝑔,ℎ,𝑡 ≤ 𝑇𝑀𝐴𝑋𝐶𝑡 ∗ 𝑌𝐺𝐻𝑔,ℎ,𝑡 ∗ 𝑋1𝑡            Ɐg,h               (5.41) 

𝐹𝑇𝐻𝑇ℎ,𝑗,𝑡 ≤ 𝑇𝑀𝐴𝑋𝐶𝑡 ∗ 𝑌𝐻𝐽ℎ,𝑗,𝑡 ∗ 𝑋2𝑡            Ɐh,j               (5.42) 

𝐹𝑇𝐽𝑇_𝑆𝑠1,𝑠2,𝑡 ≤ 𝑇𝑀𝐴𝑋𝐶𝑡 ∗ 𝑌𝐽𝐿_𝑆𝑠1,𝑠2,𝑡 ∗ 𝑋3𝑡           Ɐs1,s2               (5.43) 

𝐹𝑇𝐽𝑇_𝐿𝐺𝑙𝑔1,𝑙𝑔2,𝑧 ≤ 𝑃𝑀𝐴𝑋𝐶𝑡 ∗ 𝑌𝐽𝐿_𝐿𝐺𝑙𝑔1,𝑙𝑔2,𝑧 ∗ 𝑍𝑍1𝑧          Ɐlg1,lg2               (5.44) 
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𝐹𝑇𝐿𝑇𝑙𝑔2,𝑛,𝑧 ≤ 𝑃𝑀𝐴𝑋𝐶𝑡 ∗ 𝑌𝐿𝑁𝑙𝑔2,𝑛,𝑧 ∗ 𝑍𝑍2𝑧            Ɐlg2,n               (5.45) 

 Binary variables will produce either 1 for selection or 0 for not. Formulations (5.46) till (5.50) 

would be for selecting the transportation mode, while (5.50) till (5.54) would be for processing route. 

∑ 𝑌𝐺𝐻𝑔,ℎ,𝑡𝑡 ≤ 1        Ɐg,h               (5.46) 

∑ 𝑌𝐻𝐽ℎ,𝑗,𝑡𝑡 ≤ 1         Ɐh,j               (5.47) 

∑ 𝑌𝐽𝐿_𝑆𝑠1,𝑠2,𝑡𝑡 ≤ 1        Ɐs1,s2               (5.48) 

∑ 𝑌𝐽𝐿_𝐿𝐺𝑙𝑔1,𝑙𝑔2,𝑧𝑧 ≤ 1        Ɐlg1,lg2              (5.49) 

∑ 𝑌𝐿𝑁𝑙𝑔2,𝑛,𝑧𝑧 ≤ 1        Ɐlg2,n               (5.50) 

∑ 𝑌1ℎ,𝑖
𝐼
𝑖 ≤ 1          Ɐh               (5.51) 

 

∑ 𝑌2𝑖,𝑗,𝑘
𝐾
𝑘 ≤ 1          Ɐi,j               (5.52) 

∑ 𝑌3𝑎𝑘,𝑠2,𝑚
𝑀
𝑚 ≤ 1         Ɐk,s2               (5.53) 

∑ 𝑌3𝑏𝑘,𝑙𝑔2,𝑚
𝑀
𝑚 ≤ 1         Ɐk,lg2               (5.54)  

 It was an intention in this chapter to assign the modes of transportation according to the physical 

state of the products, which in turn depending closely to the stage of processing. Stage h would only 

produce solid products, stage j and l would produce solid, liquid and gaseous products, and stage n 

would produce only gaseous products. Therefore, transportation from g to h would involve only solids, 

from h to j would again involve only solids, from j to l would involve solids, liquids, and gases, from l 

to n would involve liquids and gas, and lastly there was no transportation required after n. In addition, 

the model has not considered transportation for every direct-sales product. Formulations (5.55) till 

(5.56) have represented assignments between transportation mode and products’ states based on 

fractions. In other words, they fractionally distributed transportation capacities according to the 

products’ states. 

𝑆𝑢𝑚 𝑜𝑓 𝑋 = 𝑋1𝑡 + 𝑋2𝑡 + 𝑋3𝑡 = 1       Ɐt               (5.55) 

𝑆𝑢𝑚 𝑜𝑓 𝑍 = 𝑍𝑍1𝑧 + 𝑍𝑍2𝑧 = 1       Ɐz               (5.56) 
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 In BARON, it has required to make bound for the selected variables. The following 

formulations have set the range of capacities for transportation modes at each processing route. 

0 ≤ 𝑇𝑀𝐴𝑋𝐶𝑡 ≤ 500000         Ɐt              (5.57) 

0 ≤ 𝑃𝑀𝐴𝑋𝐶𝑧 ≤ 50000         Ɐz             (5.58) 

Table 5.2 Description of formulations (5.1) till (5.58) 

Formulation Description 

5.1 Objective function 

5.2 Equation to calculate total sales of products in $ per year 

5.2 Equation to calculate total sales of products in $ per year 

5.3 Equation to calculate total EFB’s costs in $ per year 

5.4 Components in transportation operating costs  

5.5 Equation to calculate transportation operating costs for truck, train and barge in $ per year 

5.6 Equation to calculate transportation operating costs for pipeline in $ per year 

5.7 Total amount of biomass transported from g to h using transportation t in tonne per year 

5.8 Total amount of pre-processed products transported from h to j  using transportation t in tonne 

per year 

5.9 Total amount of solid intermediate products 1 transported from s1(j) to s2(l) using transportation 

t in tonne per year 

5.10 Total amount of liquid and gaseous intermediate products 1 transported from lg1(j) to lg2(l) 

using transportation z in tonne per year 

5.11 Total amount of intermediate products 2 transported from lg2(l) to n using transportation z in 

tonne per year 

5.12 Equation to calculate production cost in $ per year 

5.13 Components in emission treatment costs 

5.14 Equation to calculate emission treatment costs from productions in $ per year 

5.15 Equation to calculate emission treatment costs from transportations in $ per year 

5.16 Equation to calculate emission at h to produce i in tonne CO2 equivalent per year 

5.17 Equation to calculate emission at j to produce k in tonne CO2 equivalent per year 
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5.18 Equation to calculate emission at s2(l) to produce m in tonne CO2 equivalent per year 

5.19 Equation to calculate emission at lg2(l) to produce m in tonne CO2 equivalent per year 

5.20 Equation to calculate emission at n to produce o in tonne CO2 equivalent per year 

5.21 Equation to calculate emission from transportation between g and h using transportation mode t 

in tonne CO2 equivalent per year 

5.22 Equation to calculate emission from transportation between h and j using transportation mode t 

in tonne CO2 equivalent per year 

5.23 Equation to calculate emission from transportation between j and s2(l) using transportation mode 

t in tonne CO2 equivalent per year 

5.24 Amount of EFB in tonne per year must not exceed the availability 

5.25 Range of amounts of produced products in tonne or MWh per year  

5.26 Mass balance for EFB sources’ storage outlets in tonne per year 

5.27 Mass balance for yield of pre-processed feedstocks in tonne per year 

5.28 Mass balance for pre-processing facilities outlets in tonne per year 

5.29 Mass balance for yield of intermediate products 1 in tonne per year 

5.30 Mass balance for main processing facilities outlets in tonne per year 

5.31 Mass balance for yield of intermediate products 2 from solid feeds in tonne per year 

5.32 Mass balance for yield of intermediate products 2 from solid solution, liquid and gaseous feeds 

in tonne per year 

5.33 Mass balance of s2(l) in tonne per year 

5.34 Mass balance of lg2(l) in tonne per year 

5.35 Mass balance for yield of final products in tonne per year 

5.36 Mass balance for further processing facilities 2 outlets in tonne per year 

5.37 Summation of products at i in tonne per year 

5.38 Summation of products at k in tonne per year 

5.39 Summation of products at m in tonne per year 

5.40 Summation of products at o in tonne per year   

5.41 Maximum capacity for transportation t from g to h in tonne per year 

5.42 Maximum capacity for transportation t from h to j in tonne per year 
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5.43 Maximum capacity for transportation t for solid from j to l in tonne per year 

5.44 Maximum capacity for transportation z for liquid and gas from j to l in tonne per year 

5.45 Maximum capacity for transportation z for liquid and gas from l to n in tonne per year 

5.46 Integer decision for mode of transportation from g to h 

5.47 Integer decision for mode of transportation from h to j 

5.48 Integer decision for mode of transportation from s1(j) to s2(l) 

5.49 Integer decision for mode of transportation from lg1(j) to lg2(l) 

5.50 Integer decision for mode of transportation from lg2(l) to n 

5.51 Integer decision for best processing route at h to produce i 

5.52 Integer decision for best processing route at j to produce k 

5.53 Integer decision for best processing route at s2(l) to produce m 

5.54 Integer decision for best processing route at lg2(l) to produce m 

5.55 Summation for transporting solid fraction X using transportation t 

5.56 Summation for transporting liquid and gas fractions ZZ using transportation z 

5.57 Upper and lower limits of capacity for transportation t at each processing route  

5.58 Upper and lower limits of capacity for transportation z at each processing route 

 
Table 5.3 Descriptions of terms used in formulations (5.1) till (5.58) 

Term Category Description 

𝑂𝑃𝐶𝑂𝑆𝑇𝑀𝑡 Parameter Operating cost factor for transportation t in $ per tonne per km 

𝐷𝐺𝐻𝑔,ℎ Parameter Distances for transporting biomass feedstock between g to h in km 

𝐷𝐻𝐼𝐽ℎ,𝑗  Parameter Distances for transporting pre-processed feedstock between h and j in km 

𝐷𝐽𝐾𝐿_𝑆𝑗,𝑠2 Parameter Distances for transporting solid intermediate product 1 k between j and S2(l) in 

km 

𝑂𝑃𝐶𝑂𝑆𝑇𝑃𝑧 Parameter Operating cost factor for pipeline transportation z in $ per tonne per km 

𝐷𝐽𝐾𝐿_𝐿𝐺𝑗,𝑙𝑔2 Parameter Distances for transporting liquid and gaseous intermediate product 1 k between j 

and lg2(l) in km 

𝐷𝐿𝑀𝑁𝑙𝑔2,𝑛 Parameter Distances for intermediate product 2 m between lg2(l) and n in km 

𝑃𝑅𝑂𝐶𝐻ℎ,𝑖 Parameter Production cost factor at h to produce i from g $ per tonne 

𝑃𝑅𝑂𝐶𝐽𝑖,𝑗,𝑘  Parameter Production cost factor at j to produce k from i $ per tonne 

𝑃𝑅𝑂𝐶𝐿_𝑆𝑘,𝑠2,𝑚 Parameter Production cost factor at s2(l) to produce m from k in $ per tonne or per MWh 

𝑃𝑅𝑂𝐶𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 Parameter Production cost factor at lg2(l) to produce m from k in $ per tonne or per MWh 

𝑃𝑅𝑂𝐶𝑁𝑚,𝑛,𝑜  Parameter Production cost factor at n to produce o from m in $ per tonne 

𝐸𝑇_𝑐𝑜𝑠𝑡 Parameter Cost of emission treatment in $ per tonne CO2 equivalent   

𝐸𝑁𝑉𝐻ℎ,𝑖 Parameter Emission factor at h in tonne CO2 equivalent per tonne of i produced 
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𝐸𝑁𝑉𝐽𝑖,𝑗,𝑘  Parameter Emission factor at j in tonne CO2 equivalent per tonne of k produced 

𝐸𝑁𝑉𝐿_𝑆𝑘,𝑠2,𝑚 Parameter Emission factor at s2(l) in tonne CO2 equivalent per tonne of m produced 

𝐸𝑁𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 Parameter Emission factor at lg2(l) in tonne CO2 equivalent per tonne of m produced 

𝐸𝑁𝑉𝑁𝑚,𝑛,𝑜 Parameter Emission factor at n in tonne CO2 equivalent per tonne of o produced 

𝐸𝑀𝐹𝐴𝐶𝑡 Parameter Emission factor of transportation t in tonne CO2 equivalent per tonne per km 

𝐶𝑂𝑁𝑉𝐻ℎ,𝑖 Parameter Conversion factor at h to produce i from g 

𝐶𝑂𝑁𝑉𝐽𝑖,𝑗,𝑘 Parameter Conversion factor at j to produce k from i 

𝐶𝑂𝑁𝑉𝐿_𝑆𝑘,𝑠2,𝑚 Parameter Conversion factor at s2(l) to produce m from k 

𝐶𝑂𝑁𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 Parameter Conversion factor at lg2(l) to produce m from k 

𝐶𝑂𝑁𝑉𝑁𝑚,𝑛,𝑜 Parameter Conversion factor at n to produce o from m 

𝑄𝑝 Decision 

variable 

Amount of all products p stored and ready for sales in tonne or MWh per year  

𝐹𝑔 Decision 

variable 

Amount of biomass at  EFB’s sources locations in tonne per year 

𝐹𝑇𝐹𝑇𝑔,ℎ,𝑡 Decision 

variable 

Amount of biomass transported to pre-processing facilities h using transportation 

t in tonne per year 

𝐹𝑇𝐻𝑇ℎ,𝑗,𝑡 Decision 

variable 

Amount of pre-processed feedstocks i transported from pre-processing facilities h 

to main processing facilities j using transportation t in tonne per year 

𝐹𝑇𝐽𝑇_𝑆𝑗,𝑠2,𝑡 Decision 

variable 

Amount of solid intermediate products 1 k transported from main processing 

facilities j to further processing 1 facilities s2(l) using transportation t in tonne per 

year 

𝐹𝑇𝐽𝑇_𝑆𝑠1,𝑠2,𝑡 Decision 

variable 

Amount of solid intermediate products 1 k transported from main processing 

facilities s1(j) to further processing 1 facilities s2(l) using transportation t in tonne 

per year 

𝐹𝑇𝐽𝑇_𝐿𝐺𝑗,𝑙𝑔2,𝑧 Variable Amount of liquid and gaseous intermediate products 1 k transported from main 

processing facilities j to further processing 1 facilities lg2(l) using pipeline 

transportation z in tonne per year 

𝐹𝑇𝐽𝑇_𝐿𝐺𝑙𝑔1,𝑙𝑔2,𝑧 Decision 

variable 

Amount of liquid and gaseous intermediate products 1 k transported from main 

processing facilities lg1(j) to further processing 1 facilities lg2(l) using pipeline 

transportation z in tonne per year 

𝐹𝑇𝐿𝑇𝑙𝑔2,𝑛,𝑧 Decision 

variable  

Amount of intermediate products 2 m transported from further processing 1 

facilities lg2(l) to further processing 2 facilities n using pipeline transportation z 

in tonne per year 

𝐹𝑇𝐹𝑔,ℎ  Decision 

variable  

Amount of biomass transported to pre-processing facilities h in tonne per year 

𝐹𝑇𝐻ℎ,𝑖,𝑗  Decision 

variable  

Amount of pre-processed feedstocks i transported from pre-processing facilities h 

to main processing facilities j in tonne per year 

𝐹𝑇𝐽_𝑆𝑠𝑖,𝑘,𝑠2 Decision 

variable  

Amount of solid intermediate products 1 k transported from main processing 

facilities s1(j) to further processing 1 facilities S2(l) in tonne per year 
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𝐹𝑇𝐽_𝑆𝑗,𝑘,𝑠2 Decision 

variable  

Amount of solid intermediate products 1 k transported from main processing 

facilities j to further processing 1 facilities S2(l) in tonne per year 

𝐹𝑇𝐽_𝐿𝐺𝑙𝑔1,𝑘,𝑙𝑔2 Decision 

variable  

Amount of liquid and gaseous intermediate products 1 k transported from main 

processing facilities lg1(j) to further processing 1 facilities lg2(l) in tonne per year 

𝐹𝑇𝐽_𝐿𝐺𝑗,𝑘,𝑙𝑔2 Decision 

variable  

Amount of liquid and gaseous intermediate products 1 k transported from main 

processing facilities j to further processing 1 facilities lg2(l) in tonne per year 

𝐹𝑇𝐿𝑙𝑔2.𝑚.𝑛 Decision 

variable  

Amount of intermediate products 2 m transported from further processing 1 

facilities lg2(l) to further processing 2 facilities n in tonne per year 

𝐹𝑃𝐻ℎ,𝑖  Decision 

variable  

Amount of pre-processed feedstocks i produced from biomass feedstocks g 

through pre-processing facilities h in tonne per year   

𝐹𝑃𝐽𝑖,𝑗,𝑘 Decision 

variable  

Amount of intermediate product 1 k produced from pre-processed feedstocks i 

through main processing facilities j in tonne per year 

𝐹𝑃𝐿_𝑆𝑘,𝑠2,𝑚 Decision 

variable  

Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities S2(l) in tonne per year 

𝐹𝑃𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 Decision 

variable  

Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities lg2(l) in tonne per year 

𝐹𝑃𝑁𝑚,𝑛,𝑜  Decision 

variable  

Amount of final products o produced from intermediate products 2 m through 

further processing 2 facilities n in tonne per year 

𝐹𝐸𝑉𝐻ℎ,𝑖 Decision 

variable  

Amount of emission at h to produce i in tonne CO2 equivalent per year 

𝐹𝐸𝑉𝐽𝑖,𝑗,𝑘 Decision 

variable  

Amount of emission at j to produce k in tonne CO2 equivalent per year 

𝐹𝐸𝑉𝐿_𝑆𝑘,𝑠2,𝑚 Decision 

variable  

Amount of emission at s2(l) to produce m in tonne CO2 equivalent per year 

𝐹𝐸𝑉𝐿_𝐿𝐺𝑘,𝑙𝑔2,𝑚 Decision 

variable  

Amount of emission at lg2(l) to produce m in tonne CO2 equivalent per year 

𝐹𝐸𝑉𝑁𝑚,𝑛,𝑜 Decision 

variable  

Amount of emission at n to produce o in tonne CO2 equivalent per year 

𝐹𝑇𝐹𝑇𝐸𝑔,ℎ,𝑡 Decision 

variable  

Amount of emission from transportation between g and h in tonne CO2 equivalent 

per year using transportation t 

𝐹𝑇𝐻𝑇𝐸ℎ,𝑗,𝑡 Decision 

variable  

Amount of emission from transportation between h and j in tonne CO2 equivalent 

per year using transportation t 

𝐹𝑇𝐽𝑇𝐸_𝑆𝑗,𝑠2,𝑡 Decision 

variable  

Amount of emission from transportation between j and s2(l) in tonne CO2 

equivalent per year  using transportation t 
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𝑌1ℎ,𝑖 Binary 

variable 

Binary variable for best production route from g to i through h 

𝐹𝑆𝐻ℎ,𝑖 Decision 

variable  

Amount of pre-processed feedstocks i produced from pre-processing facilities h 

to be sold directly in tonne per year   

𝑌2𝑖,𝑗,𝑘 Binary 

variable 

Binary variable for best production route from i to k through j 

𝐹𝑆𝐽𝑗,𝑘 Decision 

variable  

Amount of intermediate products 1 k produced from main processing facilities j 

to be sold directly in tonne per year 

𝑌3𝑎𝑘,𝑠2,𝑚 Binary 

variable 

Binary variable for best production route from k to m through s2(l) 

𝑌3𝑏𝑘,𝑙𝑔2,𝑚 Binary 

variable 

Binary variable for best production route from k to m through lg2(l) 

𝐹𝑆𝐿_𝑆𝑠2,𝑚 Decision 

variable  

Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities s2(l) to be sold directly in tonne per year 

𝐹𝑆𝐿_𝐿𝐺𝑙𝑔2,𝑚 Decision 

variable  

Amount of intermediate products 2 m produced from intermediate products 1 k 

through further processing 1 facilities lg2(l) to be sold directly in tonne per year 

𝐹𝑆𝑁𝑛,𝑜 Decision 

variable  

Amount of final products o produced from intermediate products 2 m through 

further processing 2 facilities n to be sold in tonne per year 

  𝑄𝑖 Decision 

variable  

Amount of pre-processed feedstocks stored and ready for sales in tonne per year 

  𝑄𝑘 Decision 

variable  

Amount of intermediate products 1 stored and ready for sales in tonne per year 

  𝑄𝑚 Decision 

variable  

Amount of intermediate products 2 stored and ready for sales in tonne per year 

  𝑄𝑜 Decision 

variable  

Amount of intermediate products 2 stored and ready for sales in tonne per year 

𝑇𝑀𝐴𝑋𝐶𝑡 Variable Maximum capacity in tonne per year for transportation t at each processing route  

𝑌𝐺𝐻𝑔,ℎ,𝑡 Binary 

variable 

Binary variable for best transportation t from g to h 

𝑋1𝑡 Binary 

variable 

Transportation of solid fraction from g to h   

𝑌𝐻𝐽ℎ,𝑗,𝑡 Binary 

variable 

Binary variable for best transportation t from h to j  

𝑋2𝑡 Binary 

variable 

Transportation of solid fraction from h to j 
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𝑌𝐽𝐿_𝑆𝑠1,𝑠2,𝑡 Binary 

variable 

Binary variable for best transportation t from s1(j) to s2(l) 

𝑋3𝑡 Binary 

variable 

Transportation of solid fraction from j to l 

𝑃𝑀𝐴𝑋𝐶𝑡 Variable Maximum capacity in tonne per year for transportation z at each processing route 

𝑌𝐽𝐿_𝐿𝐺𝑙𝑔1,𝑙𝑔2,𝑧 Binary 

variable 

Binary variable for best transportation z from lg1(j) to lg2(l) 

𝑍𝑍1𝑧 Variable Transportation of liquid and gaseous fractions from j to l 

𝑌𝐿𝑁𝑙𝑔2,𝑛,𝑧 Binary 

variable 

Binary variable for best transportation z from lg3(l) to n 

𝑍𝑍2𝑧 Variable Transportation of liquid and gaseous fractions from l to n 

 

5.5 Approximation of Parameters 

Parameters such as products’ selling prices (Table 4.3), demands (Table 4.4), and availability (Table 

4.5) of EFB were the same as in the previous model, while the other parameters were presented here. 

Table 5.4 till 5.8 records the distances between the four stages of processing facilities as shown in the 

superstructure so that the model could determine the transportation costs. All of these distances were 

obtained by using Google Maps. Furthermore, distances from j to l were tabulated according to the 

products’ states. Table 5.9 meanwhile shows operating cost factor and emission factor that have been 

studied by Oo et al. (2012) and Blok et al., (1995), and McKinnon (2008), respectively, for each of the 

transportation mode. It was assumed that there was no emission from pipeline transportation. 

Table 5.4 Distances for transporting EFB feedstock between g to h in km,  
(𝐷𝐺𝐻𝑔,ℎ) 

EFB sources locations, g Pre-processing facilities, h Distance (km) 

EFB Collection 1 Aerobic Digestion on site 0 

EFB Collection 1 DLF Production  271 

EFB Collection 1 Extraction Plant 1 322 

EFB Collection 1 Extraction Plant 2 322 

EFB Collection 1 Extraction Plant 3 322 

EFB Collection 1 Briquetting Plant  271 

EFB Collection 1 Pelletization Mill  287 

EFB Collection 1 Torrefied Pelletization Mill  208 

EFB Collection 1 Alkaline Activation (Activated Carbon) Plant  208 

EFB Collection 2 Aerobic Digestion on site 0 

EFB Collection 2 DLF Production  165 

EFB Collection 2 Extraction Plant 1 230 

EFB Collection 2 Extraction Plant 2 230 

EFB Collection 2 Extraction Plant 3 230 
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EFB Collection 2 Briquetting Plant  165 

EFB Collection 2 Pelletization Mill  195 

EFB Collection 2 Torrefied Pelletization Mill  224 

EFB Collection 2 Alkaline Activation (Activated Carbon) Plant  224 

EFB Collection 3 Aerobic Digestion on site 0 

EFB Collection 3 DLF Production  274 

EFB Collection 3 Extraction Plant 1 486 

EFB Collection 3 Extraction Plant 2 486 

EFB Collection 3 Extraction Plant 3 486 

EFB Collection 3 Briquetting Plant  274 

EFB Collection 3 Pelletization Mill  289 

EFB Collection 3 Torrefied Pelletization Mill  346 

EFB Collection 3 Alkaline Activation (Activated Carbon) Plant  346 

 

Table 5.5 Distances for transporting pre-processed feedstock between h and j in km,  
(𝐷𝐻𝐼𝐽ℎ,𝑗) 

Pre-processing facilities, h Main processing facilities,  j Distance 

(km) 

Extraction Plant 1 CMC Production  0 

Extraction Plant 1 Acid Hydrolysis 1 546 

Extraction Plant 1 Enzymatic Hydrolysis 1 315 

Extraction Plant 2 Acid Hydrolysis 2 546 

Extraction Plant 2 Enzymatic Hydrolysis 2 315 

Extraction Plant 3 Resin Production  386 

DLF Production  Bio-composite Production  33 

Briquetting Plant  Boiler Combustion  83 

Pelletization Mill  Boiler Combustion  88 

Pelletization Mill  Gasification  17 

Pelletization Mill  Fast Pyrolysis  0 

Pelletization Mill  Slow Pyrolysis  345 

Torrefied Pelletization Mill  Boiler Combustion  23 

Torrefied Pelletization Mill  Gasification  78 

Torrefied Pelletization Mill  Fast Pyrolysis  86 

 
Table 5.6 Distances for transporting solid intermediate products 1 between j and s2(l) in km,  

(𝐷𝐽𝐾𝐿_𝑆𝑗,𝑠2) 

Main processing facilities,  j Further processing 1 facilities, s2(l) Distance (km) 

Acid Hydrolysis 2  Xylitol Production  0 

Acid Hydrolysis 1 Anaerobic Digestion Plant  338 

Enzymatic Hydrolysis 1 Anaerobic Digestion Plant  37 

Enzymatic Hydrolysis 2 Xylitol Production  379 

 
Table 5.7 Distances for transporting liquid and gaseous intermediate products 1 between j and lg2(l) 

in km,  
(𝐷𝐽𝐾𝐿_𝐿𝐺𝑗,𝑙𝑔2)   

Main processing facilities,  j Further processing 1 facilities, lg2(l) Distance (km) 

Boiler combustion Power production 0 

Boiler combustion MP Steam production  0 

Boiler combustion LP steam production 0 

Acid hydrolysis (1 and 2) Fermentation plant (1 and 2) 327 

Enzymatic hydrolysis (1 and 2) Fermentation plant (1 and 2) 65 

Gasification  Separation plant 0 

Gasification  Methanol production 404 
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Gasification  FTL production (1 and 2) 19 

Fast pyrolysis Bio-oil upgrading (1 and 2) 94 

Fast pyrolysis Steam Reforming Plant 0 

 
Table 5.8 Distances for intermediate product 2 between lg2(l) and n in km,  

(𝐷𝐿𝑀𝑁𝑙𝑔2,𝑛)     

Further processing 1 facilities, lg2(l) Further processing 2 facilities,  n Distance (km) 

Steam Reforming Plant  Ammonia Production  361 

Separation Plant  Ammonia Production  367 

Methanol Production  Formaldehyde Production  686 

Fermentation Plant (1 and 2) Bio-ethylene  316 

 

Table 5.9 Operating cost factor and emission factor for transportation mode 

Transportation mode Operating cost factor ($ per tonne per 

km) 

Emission factor (tonne CO2 

equivalent per tonne per km) 

Truck 0.1641 0.000062 

Train 0.0333 0.000022 

Barge 0.0136 0.000015 

Pipeline 0.0500 - 

 

 The production cost factors, conversion factors and emission factors from productions were 

tabulated accordingly in Table 5.10 till 5.24. Particularly at l, depending to the states of products from 

j, separate tables have shown the related parameters clearly. Approximation of parameters were done 

due to difficulties for obtaining real data for this model. The parameters were sufficient to prove 

model’s practicality and they were independent of scales, configurations, feedstocks’ conditions, and 

etc. 

Table 5.10 Approximated production cost factor at h in $ per tonne 

Biomass type, g Pre-Processing, h Pre-processed 

product, i 

$/tonne Reference 

Blended EFBs DLF Production Dry Long Fiber 85 www.hempfarm.com 

Blended EFBs Aerobic Digestion Bio-compost 10 Fabian et al. (1993) 

Blended EFBs Alkaline Activation Activated Carbon 144 Lima et al. (2008) 

Blended EFBs Extraction 1 Cellulose 125 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Extraction 2 Hemicellulose 130 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Extraction 3 Lignin 135 Murillo-Alvarado et 

al. (2013) 

Blended EFBs Briquetting Briquette 50 Kanna (2010) 

Blended EFBs Pelletization Pellet 60 PPD Technologies 

Inc. (2011)  
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Blended EFBs Torrefied Pelletization Torrefied Pellet 70 PPD Technologies 

Inc. (2011) 

 

Table 5.11 Approximated conversion factor at h  

Biomass type, g Pre-Processing, h Pre-processed 

product, i 

Conversion 

factor 

Reference 

Blended EFBs DLF Production Dry Long Fiber 0.37 Ng and Ng (2013) 

Blended EFBs Aerobic Digestion Bio-compost 0.95 Hubbe et al. (2010) 

Blended EFBs Alkaline Activation Activated Carbon 0.50 Kaghazchi et al. (2006) 

Blended EFBs Extraction 1 Cellulose 0.70 Assumed value based on 

hemicellulose and lignin 

conversion factor 

Blended EFBs Extraction 2 Hemicellulose 0.15 www.ipst.gatech.edu 

Blended EFBs Extraction 3 Lignin 0.15 www.purelignin.com 

Blended EFBs Briquetting Briquette 0.38 Ng and Ng (2013) 

Blended EFBs Pelletization Pellet 0.38 Ng and Ng (2013) 

Blended EFBs Torrefied 

Pelletization 

Torrefied Pellet 0.38 Ng and Ng (2013) 

 

Table 5.12 Approximated CO2 emission factor at h  

Biomass type, g Pre-Processing, h Pre-processed 

Product, i 

CO2 emission factor (tonne 

CO2 equivalent/tonne of 

product produced) 

Reference 

Blended EFBs DLF Production Dry Long Fiber 0.0041 www.oecotextiles.word

press.com 

Blended EFBs Aerobic Digestion Bio-compost 0.0200 www.epa.gov 

Blended EFBs Alkaline 

Activation 

Activated Carbon 0.0176 www.omnipure.com 

Blended EFBs Extraction 1 Cellulose 0.0590 Murillo-Alvarado et al. 

(2013) 

Blended EFBs Extraction 2 Hemicellulose 0.0650 Murillo-Alvarado et al. 

(2013) 

Blended EFBs Extraction 3 Lignin 0.0620 Assumed value based 

on values for cellulose 

and hemicellulose 

Blended EFBs Briquetting Briquette 0.0500 Assumed value 

Blended EFBs Pelletization Pellet 0.0500 Assumed value 

Blended EFBs Torrefied 

Pelletization 

Torrefied Pellet 0.0805 Kaliyan et al. (2014) 

 

Table 5.13 Approximated production cost factor at j in $ per tonne  

Pre-processed 

feedstock, i 

Main processing, j Intermediate 

product 1, k 

$/tonne Reference 

Dry Long Fiber Bio-composite Production Bio-composite 107.0 www.eria.org 

Cellulose CMC Production CMC 2500.0 www.trade.ec.europa.eu 

Cellulose Acid Hydrolysis 1 Glucose 73.4 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic Hydrolysis 1 Glucose 85.7 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis 2 Xylose 168.7 Murillo-Alvarado et al. 

(2013) 
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Hemicellulose Enzymatic Hydrolysis 2 Xylose 83.1 Murillo-Alvarado et al. 

(2013) 

Lignin Resin Production Bio-resin 1900.0 Chiarakorn et al. (2013) 

Briquette  Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Pellet Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Pellet Gasification  Bio-syngas 300.0 Assumed value based on 

50% of Bio-syngas price 

Pellet Fast pyrolysis Bio-oil 1003 Thorp (2010) 

Pellet Slow pyrolysis Bio-char 111.5 www.irena.org 

Torrefied Pellet Boiler Combustion HP Steam 20.7 www1.eere.energy.gov 

Torrefied Pellet Gasification  Bio-syngas 300.0 Assumed value based on 

50% of Bio-syngas price 

Torrefied Pellet Fast pyrolysis Bio-oil 1003 Thorp (2010) 

 

Table 5.14 Approximated conversion factor at j  

Pre-processed 

feedstock, i 

Main processing, j Intermediate product 

1, k 

Conversion 

factor 

Reference 

Dry Long Fiber Bio-composite 

Production 

Bio-composite 0.75 Karbstein et al. (2013) 

Cellulose CMC Production CMC 0.86 Saputra et al. (2014) 

Cellulose Acid Hydrolysis 1 Glucose 0.37 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic 

Hydrolysis 1 

Glucose 0.47 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis 2 Xylose 0.91 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Enzymatic 

Hydrolysis 2 

Xylose 0.88 Murillo-Alvarado et al. 

(2013) 

Lignin Resin Production Bio-resin 0.95 Yin et al. (2012) 

Briquette  Boiler Combustion HP Steam 0.20 Searcy and Flynn (2009) 

Pellet Boiler Combustion HP Steam 0.25 Searcy and Flynn (2009) 

Pellet Gasification  Bio-syngas 0.70 Boerrigter and Drift (2005) 

Pellet Fast pyrolysis Bio-oil 0.60 Zhang et al. (2013) 

Pellet Slow pyrolysis Bio-char 0.50 www.biocharfarms.org 

Torrefied Pellet Boiler Combustion HP Steam 0.30 Searcy and Flynn (2009) 

Torrefied Pellet Gasification  Bio-syngas 0.80 Boerrigter and Drift (2005) 

Torrefied Pellet Fast pyrolysis Bio-oil 0.60 Zhang et al. (2013) 

 

Table 5.15 Approximated CO2 emission factor at j 

Pre-processed 

feedstock, i 

Main 

processing, j 

Intermediate 

product 1, k 

CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Dry Long Fiber Bio-composite 

Production 

Bio-composite 7.481 www.winrigo.com 

Cellulose CMC 

Production 

CMC 0.097 Assumed value  

Cellulose Acid Hydrolysis 

1 

Glucose 0.097 Murillo-Alvarado et al. 

(2013) 

Cellulose Enzymatic 

Hydrolysis 1 

Glucose 0.085 Murillo-Alvarado et al. 

(2013) 

Hemicellulose Acid Hydrolysis 

2 

Xylose 0.075 Murillo-Alvarado et al. 

(2013) 
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Hemicellulose Enzymatic 

Hydrolysis 2 

Xylose 0.082 Murillo-Alvarado et al. 

(2013) 

Lignin Resin 

Production 

Bio-resin 2.500 www.netcomposites.com 

Briquette  Boiler 

Combustion 

HP Steam 0.750 www.sarawakenergy.com.

my 

Pellet Boiler 

Combustion 

HP Steam 0.750 Assumed value  

Pellet Gasification  Bio-syngas 0.680 Basu (2013) 

Pellet Fast pyrolysis Bio-oil 0.580 Zhang et al. (2013) 

Pellet Slow pyrolysis Bio-char 0.580 Zhang et al. (2013) 

Torrefied Pellet Boiler 

Combustion 

HP Steam 0.750 Assumed value 

Torrefied Pellet Gasification  Bio-syngas 0.680 Basu (2013) 

Torrefied Pellet Fast pyrolysis Bio-oil 0.580 Zhang et al. (2013) 

 

Table 5.16 Approximated production cost factor at s2(l) in $ per tonne  

Intermediate 

product 1, k 

Further processing 

1, s2(l) 

Intermediate 

product 2, m 

$/tonne  Reference 

Glucose Anaerobic Digestion Bio-gas 199.0 Assumed value for 50% less of the 

bio-gas price 

Xylose Anaerobic Digestion Bio-gas 199.0 Assumed value for 50% less of the 

bio-gas price 

Xylose Xylitol Production Xylitol 2100.0 Assumed value for 50% less of the 

xylitol price 

 

Table 5.17 Approximated production cost factor at lg2(l) in $ per tonne or per MWh 

Intermediate 

product 1, k 

Further processing 

1, lg2(l) 

Intermediate 

product 2, m 

$/tonne or 

MWh 

Reference 

Bio-oil Steam Reforming Bio-hydrogen 455.0 Sarkar and Kumar et al. (2010) 

Bio-oil Bio-oil Upgrading 1 Bio-gasoline 1089.0 Wright and Brown (2011) 

Bio-oil Bio-oil Upgrading 2 Bio-diesel 918.0 Wright and Brown (2011) 

Glucose  Fermentation 1 Bio-ethanol 98.2 Murillo-Alvarado et al. (2013) 

Xylose Fermentation 2 Bio-ethanol 98.2 Murillo-Alvarado et al. (2013) 

HP Steam Power Production Electricity 58.9/MWh Searcy and Flynn (2009) 

HP Steam Power Production MP Steam 12.0 Assumed valued based on the 

steam price 

HP Steam Power Production LP Steam 7.0 Assumed valued based on the 

steam price 

Bio-syngas Methanol Production Bio-methanol 83.6 Murillo-Alvarado et al. (2013) 

Bio-syngas Separation Bio-hydrogen 112 Schubert (2013) 

Bio-syngas FTL Productions 2 Bio-diesel 167.3 Murillo-Alvarado et al. (2013) 

Bio-syngas FTL Productions 1 Bio-gasoline 519.8 Wright and Brown (2011) 

 

Table 5.18 Approximated conversion factor at s2(l)  

Intermediate 

product 1, k 

Further 

processing 1, 

s2(l) 

Intermediate 

product 2, m 

Conversion factor Reference 

Glucose Anaerobic 

Digestion 

Bio-gas 0.70 Hubbe et al. (2010) 

Xylose Anaerobic 

Digestion 

Bio-gas 0.70 Hubbe et al. (2010) 
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Xylose Xylitol 

Production 

Xylitol 0.70 Prakasham et al. (2009) 

 

Table 5.19 Approximated conversion factor at lg2(l)  

Intermediate 

product 1, k 

Further processing 

1, lg2(l) 

Intermediate 

product 2, m 

Conversion factor Reference 

Bio-oil Steam Reforming Bio-hydrogen 0.84 Dillich (2013) 

Bio-oil Bio-oil Upgrading 1 Bio-gasoline 0.40 Kim et al. (2011) 

Bio-oil Bio-oil Upgrading 2 Bio-diesel 0.20 Kim et al. (2011) 

Glucose  Fermentation 1 Bio-ethanol 0.33 Murillo-Alvarado et al. 

(2013) 

Xylose Fermentation 2 Bio-ethanol 0.33 Murillo-Alvarado et al. 

(2013) 

HP Steam Power Production Electricity 0.30 MWh/tonne of 

steam 

www.turbinesinfo.com 

HP Steam Power Production MP Steam 0.35 Ng and Ng (2013) 

HP Steam Power Production LP Steam 0.35 Ng and Ng (2013) 

Bio-syngas Methanol 

Production 

Bio-methanol 0.41 Murillo-Alvarado et al. 

(2013) 

Bio-syngas Separation Bio-hydrogen 0.46 Murillo-Alvarado et al. 

(2013) 

Bio-syngas FTL Productions 2 Bio-diesel 0.71 Boerrigter and Drift 

(2005) 

Bio-syngas FTL Productions 1 Bio-gasoline 0.29 Assumed value from bio-

diesel conversion factor 

 

Table 5.20 Approximated CO2 emission factor at s2(l) 

Intermediate 

product 1, k 

Further 

processing 1, s2(l) 

Intermediate 

product 2, m 

CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Glucose Anaerobic 

Digestion 

Bio-gas 0.250  Whiting & Azapagic, 

(2014) 

Xylose Anaerobic 

Digestion 

Bio-gas 0.250 Whiting & Azapagic, 

(2014) 

Xylose Xylitol Production Xylitol 0.082 Assumed value based 

on value of xylose 

 

Table 5.21 Approximated CO2 emission factor at lg2(l) 

Intermediate 

product 1, k 

Further 

processing 1, lg2(l) 

Intermediate 

product 2, m 

CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Bio-oil Steam Reforming Bio-hydrogen 16.930 Zhang et al. (2013) 

Bio-oil Bio-oil Upgrading 

1 

Bio-gasoline 13.000 Zhang et al. (2013) 

Bio-oil Bio-oil Upgrading 

2 

Bio-diesel 13.000 Zhang et al. (2013) 

Glucose  Fermentation 1 Bio-ethanol 0.098 Murillo-Alvarado et 

al. (2013) 
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Xylose Fermentation 2 Bio-ethanol 0.098 Murillo-Alvarado et 

al. (2013) 

HP Steam Power Production Electricity 0.050 Assumed value 

HP Steam Power Production MP Steam 0.050 Assumed value 

HP Steam Power Production LP Steam 0.050 Assumed value 

Bio-syngas Methanol 

Production 

Bio-methanol 0.083 Murillo-Alvarado et 

al. (2013) 

Bio-syngas Separation Bio-hydrogen 0.090 Murillo-Alvarado et 

al. (2013) 

Bio-syngas FTL Productions 2 Bio-diesel 0.067 Murillo-Alvarado et 

al. (2013) 

Bio-syngas FTL Productions 1 Bio-gasoline 0.639 Murillo-Alvarado et 

al. (2013) 

 

Table 5.22 Approximated production cost factor at n in $ per tonne  

Intermediate product 

2, m 

Further processing 2, 

n 

Final product, p $/tonne Reference 

Bio-hydrogen Ammonia Production Ammonia 377 www.hydrogen.energ

y.gov  

Bio-methanol Formaldehyde 

Production 

Formaldehyde 232 www.icis.com 

Bio-ethanol Bio-ethylene Production Bio-ethylene 1200 www.irena.org 

 

Table 5.23 Approximated conversion factor at n  

Intermediate product 

2, m 

Further processing 

2, n 

Final product, p Conversion 

factor 

Reference 

Bio-hydrogen Ammonia Production Ammonia 0.80 www.hydrogen.energy.gov 

Bio-methanol Formaldehyde 

Production 

Formaldehyde 0.97 Chu et al. (1997) 

Bio-ethanol Bio-ethylene 

Production 

Bio-ethylene 0.99 www.irena.org 

 

Table 5.24 Approximated CO2 emission factor at n 

Intermediate 

product 2, m 

Further processing 

2, n 

Final product, p CO2 emission factor 

(tonne CO2 

equivalent/tonne of 

product produced) 

Reference 

Bio-hydrogen Ammonia Production Ammonia 1.694 Jubb et al. (2006) 

 Bio-methanol Formaldehyde 

Production 

Formaldehyde 0.083 Assumed value  

Bio-ethanol Bio-ethylene 

Production 

Bio-ethylene 1.400 www.irena.org 

 

http://www.hydrogen.energy.gov/
http://www.hydrogen.energy.gov/
http://www.hydrogen.energy.gov/
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5.6 Results and Discussions 

Optimization formulations as shown above were performed in GAMS Rev. 149 by using BARON Rev 

8.1.1 as a solver in AMD A10-4600M APU processor. With the given parameters, the optimal value of 

overall net profit was obtained to be $ 1,561,106,613 per year that could be gained by single ownership 

for all facilities in the supply chain. The model’s statistics have shown that it has 66 blocks of equations, 

55 blocks of variables, 6540 single equations, 10900 single variables and took 4 minutes to solve. Figure 

5.4a shows the superstructure with processing routes (red dash arrows) and processing units (red dash 

lines) that would be eliminated prior optimization, while Figure 5.4b shows the optimal one. 

 The superstructure optimization has eliminated processing routes and units. EFBs from 

collection point 1 (Johore) would be sent for pre-processing to all facilities except extraction 3 at the 

amounts of 3147894.737 tonnes per year. EFBs from collection point 2 (Pahang) would be utilized at 

the amounts of 2717543.860 tonnes per year and been sent to DLF production, extraction 1, extraction 

2, extraction 3, pelletization and torrefied pelletization. EFBs from collection point 3 (Perak) would be 

consumed at the amounts of 2447368.421 tonnes per year in DLF production, extraction 1, extraction 

2, pelletization and torrefied pelletization. If the supplies of the EFBs at a single collection point were 

not sufficient, homogenous blending by using EFBs from other collection points would be done. To 

produce all the products, 8,373235.36 tonnes per year of EFBs would be utilized at the cost of $ 6 per 

tonne. Table 5.25 shows optimal production levels of all products after optimal selections have been 

implemented. 

Table 5.25 Optimal production level of products 

Product Production (tonne per year or MWh per year) 

DLF 543314.563 

Bio-compost 20000.000 

Activated carbon 95000.000 

Cellulose 290500.000 

Hemicellulose  186503.475 

Lignin 30000.000 

Briquette 186000.000 

Pellet 59770.263 

Torrefied pellet 129749.841 

Bio-composite 0.920 

CMC 20000.000 

Glucose 277200.544 

Xylose 29708.518 

Bio-resin 10000.000  

HP steam  62667.864 

Bio-syngas 462000.000 
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Bio-oil 41587.981 

Bio-char 3000.000 

Bio-hydrogen  3581.311 

Xylitol  0.002 

Bio-ethanol 8924.511 

Bio-gas 1295.000 

Bio-methanol 0.300 

Electricity  20.000 

MP Steam  0.900 

LP Steam  0.450 

Bio-ethylene  140.000 

Bio-diesel  348.809 

Bio-gasoline  143.327 

Ammonia 170.000 

Formaldehyde  42.000 

 

 Based on Figure 5.4a and 5.4b, from i, hemicellulose would no longer be sent to acid hydrolysis 

2 but only would be consumed at enzymatic hydrolysis 2 to produce xylose. As a result, processing 

route from hemicellulose to xylose through acid hydrolysis 2 has been eliminated in the optimal 

superstructure. Briquette and pellet were not sent to boiler combustion. Instead, the boiler combustion 

has only utilized torrefied pellet for producing HP steam. Fast pyrolysis has only one feed the came 

from pellet and no longer used torrefied pellet as a feed.  

 From k, processing route from xylose to produce bio-gas through anaerobic digestion has been 

eliminated. Instead, there was only one and optimal processing route to produce bio-gas through 

anaerobic digestion which used portions of glucose. Xylose also was no longer became an input to 

fermentation to produce bio-ethanol. In addition, since all of the produced bio-oil would be sold directly 

to the customer, related further processing routes and units that should utilize this product were 

dismissed. Specifically, steam reforming, bio-upgrading 1 and 2 at l were removed from the optimal 

superstructure. Bio-gasoline and bio-diesel were only produced from FTL production 1 and FTL 

production 2, respectively. Bio-hydrogen was meanwhile generated from bio-syngas through 

separation.  
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Figure 5.4a Optimization process for processing routes and processing unit
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Figure 5.4b Final superstructure of EFB supply chain with optimal processing routes
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 Optimal results for transportation modes at each processing route and emissions from such 

transportation activities are tabulated in Table 5.26 till 5.29. Emission values were negligible for 

transportations that used pipeline and transportations that involved very close distances between two 

processing facilities. Furthermore, the optimal results have assigned 97.9% of barges’ capacities to 

serve for solid transportations between g and h, and the remaining capacities for transportations between 

h and j. For trains, 84.6% of their capacities have been used for transportations between h and j, and 

the remaining for solids transportations between j and l.  For trucks, 86.1% of their capacities were 

utilized for solids transportations between g to h, and the remaining capacities were between h and j.   

For liquid and gaseous products, 97.2% of pipeline capacities were used for transportations from  j to 

l, and the balances were assigned from l to n.     

Table 5.26 Optimal results for transportations between EFB collection points, g and pre-processing 

facilities, h 
EFB sources Pre-processing facility Amounts to be 

transported (tonne 

per year) 

Optimal mode of 

transportation 

Emission (tonne of 

CO2 equivalent per 

year) 

EFB 

collection 1 

DLF production 489473.684 Barge 1989.711 

EFB 

collection 1 

Aerobic digestion 21052.632 Barge - 

EFB 

collection 1 

Alkaline activation 190000.000 Barge 592.800  

EFB 

collection 1 

Extraction 1 489473.684  Barge 2364.158  

EFB 

collection 1 

Extraction 2 489473.684  Barge 2364.158  

EFB 

collection 1 

Briquetting 489473.684  Barge 1989.711  

EFB 

collection 1 

Pelletization 489473.684 Barge 2107.184 

EFB 

collection 1 

Torrefied pelletization 489473.684 Barge 1527.158  

EFB 

collection 2 

DLF production 489473.684 Barge 1211.447  

EFB 

collection 2 

Extraction 1 489473.684 Barge 1688.684  
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EFB 

collection 2 

Extraction 2 489473.684 Barge 1688.684  

EFB 

collection 2 

Extraction 3 270175.439 Barge 932.105  

EFB 

collection 2 

Pelletization 489473.684 Barge 1431.711  

EFB 

collection 2 

Torrefied pelletization 489473.684 Barge 1644.632  

EFB 

collection 3 

DLF production 489473.684 Barge 2011.737 

EFB 

collection 3 

Extraction 1 489473.684  Barge 3568.263  

EFB 

collection 3 

Extraction 2 489473.684  Barge 3568.263  

EFB 

collection 3 

Pelletization  489473.684  Barge   2121.868 

EFB 

collection 3 

Torrefied pelletization 489473.684  Barge 2540.368 

 
Table 5.27 Optimal results for transportations between pre-processing facilities, h and main 

processing facilities, j 
Pre-processing 

facility and 

product 

Main processing 

facility 

Amounts to be 

transported (tonne per 

year) 

Optimal mode of 

transportation 

Emission (tonne of 

CO2 equivalent per 

year) 

DLF production 

and DLF 

Bio-composite 

production 

1.227 Train 8.905 x 10-4 

Extraction 1 and 

cellulose 

CMC production 23255.814 Truck - 

Extraction 1 and 

cellulose 

Enzymatic hydrolysis 

1 

422916.436 Train 2930.811 

Extraction 1 and 

cellulose 

Acid hydrolysis 1 291222.487 Train 3498.165 

Extraction 2 and 

hemicellulose 

Enzymatic hydrolysis 

2 

33759.683 Train 233.955 

Pelletization and 

pellet 

Gasification 422916.436 Train 158.171 
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Pelletization and 

pellet 

Fast pyrolysis 69313.301 Truck - 

Pelletization and 

pellet 

Slow pyrolysis 6000.000 Barge 31.050 

Torrefied 

pelletization and 

torrefied pellet 

Boiler combustion 209127.960 Train 105.819 

Torrefied 

pelletization and 

torrefied pellet 

Gasification 219122.199 Train 376.014 

 

Table 5.28 Optimal results for transportations between main processing facilities, j and further 

processing 1 facilities, l (s2 and l2) 
Main 

processing 

facility and 

product 

Further processing 1 

facility 

Amounts to be 

transported (tonne per 

year) 

Optimal mode of 

transportation 

Emission (tonne 

of CO2 

equivalent per 

year) 

Acid hydrolysis 

1 and glucose 

Anaerobic digestion 1850.000 Train 13.757  

Enzymatic 

hydrolysis 2 and 

xylose 

Xylitol production 0.003 Train 2.382 x 10-5 

Acid hydrolysis 

1 and glucose 

Fermentation 27472.501 Pipeline - 

Boiler 

combustion and 

HP steam 

Power production 66.667 Pipeline - 

Boiler 

combustion and 

HP steam 

Power production for 

MP steam 

2.571 Pipeline - 

Boiler 

combustion and 

HP steam 

Power production for 

LP steam 

1.286 Pipeline - 

Gasification and 

bio-syngas 

Separation 8247.415 Pipeline - 

Gasification and 

bio-syngas 

Methanol production 106.339 Pipeline - 
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Gasification and 

bio-syngas 

FTL Production 1 494.231 Pipeline - 

Gasification and 

bio-syngas 

FTL Production 2 491.280 Pipeline - 

 

Table 5.29 Optimal results for transportations between further processing 1 facilities, l and further 

processing 2 facilities, n 
Further processing 

1 facility and 

product 

Further processing 2 

facility 

Amounts to be 

transported (tonne per 

year) 

Optimal mode of 

transportation 

Emission (tonne 

of CO2 

equivalent per 

year) 

Separation and bio-

hydrogen 

Ammonia production 212.500 Pipeline - 

Fermentation and 

bio-ethanol 

Bio-ethylene production 141.414 Pipeline - 

Methanol production 

and bio-methanol 

Formaldehyde 

production 

43.299 Pipeline - 

 

 Table 5.30 till 5.33 show the optimal results for productions of every processing facilities with 

their respective emission levels. Optimal production rate in tonne per year for all products have 

considered the constraint which it must be at least met the annual demands. In order to know on how 

much portions of the products need to be sent for further processing, one could find the difference 

between production rate and amounts to be sold directly to the customers. 

 

Table 5.30 Optimal results for productions at pre-processing facilities, h 

Processing route Production rate (tonnes 

per year) 

Amounts to be sold directly 

(tonnes per year) 

Emission (tonne of CO2 

equivalent per year) 

Blended EFBs - DLF 

production - DLF 

543315.789  543314.563  2227.595  

Blended EFBs - aerobic 

digestion - bio-compost 

20000.000  20000.000  400.000  

Blended EFBs - alkaline 

activation - activated 

carbon 

95000.000  95000.000  1672.000  
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Blended EFBs - extraction 

1 -  cellulose 

1027894.737  290500.000  60645.789  

Blended EFBs - extraction 

2 -  hemicellulose 

220263.158  186503.475  14317.105  

Blended EFBs - extraction 

3 - lignin 

40526.316  30000.000  2512.632  

Blended EFBs - 

briquetting - briquette 

186000.000  186000.000  9300.000  

Blended EFBs - 

pelletization - pellet 

139108.301 59770.263  27900.000  

Blended EFBs - torrefied 

pelletization - torrefied 

pellet 

558000.000  129749.841  44919.000  

 

Table 5.31 Optimal results for productions at main processing facilities, j 

Processing route Optimal production 

rate (tonnes per year) 

Amounts to be sold directly 

(tonnes per year) 

Emission (tonne of CO2 

equivalent per year) 

DLF - bio-composite 

production - bio-composite 

0.920 0.920 6.883 

Cellulose - CMC 

production - CMC 

20000.000  20000.000  1940.000  

Cellulose - acid hydrolysis 

1 - glucose 

107752.320  78429.819  10451.975  

Cellulose - enzymatic 

hydrolysis 1 - glucose 

198770.725 198770.725 16895.512 

Hemicellulose - enzymatic 

hydrolysis 2 - xylose 

29708.521  29708.518  2436.099  

Lignin - resin production - 

bio-resin 

10000.000  10000.000  25000.000  

Torrefied pellet - boiler 

combustion - HP steam 

62738.388  62667.864  47053.791  

Pellet -gasification - bio-

syngas 

296041.505 286702.241 201308.223 

Torrefied pellet -

gasification - bio-syngas 

175297.759  175297.759  119202.476  
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Pellet - fast pyrolysis - bio-

oil 

41587.981  41587.981  49181.949 

Pellet - slow pyrolysis – 

bio-char 

3000.000 3000.000   1740.000 

 

Table 5.32 Optimal results for productions at further processing 1 facilities, l (s2 and l2) 

Processing route Optimal production 

rate (tonnes per year) 

Amounts to be sold directly 

(tonne or MWh per year) 

Emission (tonne of CO2 

equivalent per year) 

Xylose - xylitol 

production - xylitol  

0.002 0.002 1.640 x 10-4 

Xylose - anaerobic 

digestion - bio-gas 

1295.000 1295.000 323.750 

Xylose - fermentation - 

bio-ethanol 

9065.925 8924.511 888.461 

Bio-syngas - separation -

bio-hydrogen 

3793.811 3581.311 341.443 

Bio-syngas - methanol 

production - methanol  

43.599 0.300 3.619 

Bio-syngas - FTL 

production 1 - bio-

gasoline 

143.327 143.327 91.586 

Bio-syngas - FTL 

production 2 - bio-diesel 

348.809 348.809 23.370 

HP steam - power 

production - electricity 

20.000 20.000 1.000 

HP steam - power 

production - MP steam 

0.900 0.900 0.045 

HP steam - power 

production - LP steam 

0.450 0.450 0.023 

 

Table 5.33 Optimal results for productions at further processing 2 facilities, n 

Processing route Optimal production rate 

(tonnes per year) 

Amounts to be sold (tonnes 

per year) 

Emission (tonne of CO2 

equivalent per year) 

Bio-hydrogen - ammonia 

production - ammonia 

170.000 170.000 287.980 
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Bio-ethanol - bio-ethylene 

production - bio-ethylene 

140.000 140.000 196.000 

Bio-methanol - 

formaldehyde production - 

formaldehyde  

42.000 42.000 3.486 

 

5.7 Sensitivity Analysis 

The optimal results that included the selections of optimal processing routes, transportation modes and 

decision variables which have been presented are subject to have differences depending on the 

parameters that were used. Uncertainties in economic and technological factors are among the 

influential issues in a deterministic modeling. Hence, investigations need to be done to find important 

parameter that could affect large variations to the optimal results. These kind of investigations are called 

sensitivity analysis or perturbation analysis, and can be divided into local sensitivity analysis that 

consider one parameter at a time in a small range, and global sensitivity analysis which perturbs multi-

parameters simultaneously over a large range.  

 Since the developed optimization model has involved NLP, simultaneous considerations for 

multi-parameters were done to achieve global sensitivity analysis. Even though a myriad of 

simultaneous perturbations are possible, the sensitivity analysis here have only considered ammonia’s 

selling price, conversion factor and production cost factor for demonstration purposes. The changes in 

these parameters were carried out by classifying them into three scenarios as shown by Table 5.34. 

Both original selling price and production cost factor were increased until 50% and the conversion 

factor was set until 0.95. The overall profits have shown non-linear patterns with the increased values 

of the three parameters. In pursuit to find the most important parameter for the developed model, more 

thorough sensitivity analysis might be required. 

Table 5.34 Sensitivity analysis for some of parameters related to ammonia 

Scenario Overall profit  

Original case 

i) Selling price: $ 745/tonne 

ii) Production cost factor: $ 377/tonne 

iii) Conversion factor: 0.8 

1,561,106,613  

Scenario 1  

i) Selling price: $ 819.5/tonne (+10%) 

ii) Production cost factor: $ 414.7/tonne (+10%) 

1,591,266,115  
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iii) Conversion factor: 0.85 

Scenario 2  

iv) Selling price: $ 968.5/tonne (+30%) 

v) Production cost factor: $ 490.1/tonne (+30%) 

vi) Conversion factor: 0.90 

1,582,494,479 

Scenario 3  

i) Selling price: $ 1117.5/tonne (+50%) 

ii) Production cost factor: $ 564.5/tonne (+50%) 

iii) Conversion factor: 0.95 

1,615,100,296 

 

5.8 Conclusion and Future Works 

The developed optimization model has extended the previous one by adding integer decision for best 

processing routes and transportation modes for the multi-products productions from Malaysian’s EFBs 

in the context of supply chain. The previous superstructure was modified to divide several processing 

units so that the model could select the optimal ones. It also added the classifications of processing 

routes and products according to their states whether solid, liquid and gas which would help to 

determine the best assignments for transportation modes. In addition, environmental considerations 

have been included in the model in the form of emission treatment costs from both production and 

transportation activities. Since the model contains approximated parameters due to the issues of 

availabilities and uncertainties, sensitivity analysis have been done to demonstrate those changes in the 

objective function. Such parameter approximations were however still sufficient to show the model’s 

practicality to solve large and complex biomass supply chain like in this one. The single owner of the 

EFB supply chain could now has a better judgement in prioritizing the prospective manufacturing 

investments.  

 For the future works, the model could be further developed by considering stochastic behaviors 

of the economics and financial planning that are related to the biomass supply chain 
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Chapter 6 

Conclusion and Recommendations for Future Work 

In this chapter, overall conclusion is provided as to link conclusions that were made in Chapter 3 till 

Chapter 5. In addition, recommendations are also presented that could be used for future works. 

6.1 Conclusion  

Scientific and technological advances have shown intensified outcomes amid the growing concerns 

towards global environmental qualities and sustainable feedstocks supplies. In this regard, biomass 

appeared to be one of the potential feedstocks because it is generally carbon neutral and essentially 

renewable. Utilizations of biomass and its substitutions to the non-renewable feedstocks have been 

subject of interests in recent years. Looking to these prospects, biomass could be used to produce 

numerous products that ranged from energy, chemicals and materials. However, competing uses of 

biomass and the possibilities to consume more than one biomass sources have created decision 

dilemmas with economic uncertainties. Therefore, this thesis has presented the developments and 

executions of optimization models of biomass supply chain that are considered very important in every 

screening and planning stages.  

 Optimization model of biomass supply chain from Chapter 3 has provided industrial solution 

to Omtec Inc. for their business planning and expansion. With the obtained optimal results, the company 

could prioritize its future products lines. They are now have informed decision to be more flexible in 

terms of resources utilizations and products generations. As for this thesis, the developed model in 

Chapter 3 served a basis for constructing and extending the optimization model to different case studies. 

The general modelling framework is applicable with minor modifications. 

 In Chapter 4, the model has considered different case study with the addition of environmental 

performance from transportation and production activities. Each processing route in the supply chain’s 

superstructure and every transportation network between processing facility has been evaluated in terms 

of carbon dioxide equivalent emission. This addition has certainly represented two pillars of 

sustainability which are the economic and the environmental emphases.  Furthermore, the developed 

model is relevant to the country like Malaysia where the studied biomass source is abundant and cheap, 

and the related policies and incentives are already in place. With the model, the single owner of the 
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supply chain might facilitate other enterprises for future strategic investments related to EFB 

utilizations.  

 The results in Chapter 5 has extended the supply chain model with optimal selections of 

processing routes and transportation modes. In order to achieve this purpose, the previous 

superstructure was modified to incorporate the products’ states so that the transportation modes whether 

truck, train, barge and pipeline could be assigned. Simultaneously, the selections have also provided 

both economic and emission values so the supply chain’s owner could re-evaluate his initial judgements 

based on the model that was developed in Chapter 4. This extended model has also eliminated 

uneconomic processing routes and processing technologies. This will ensure further refinements about 

the model’s parameters could be done in a more strategic way.  

6.2 Recommendations for Future Works 

Although this research has addressed the modeling and optimization of biomass supply chain for 

energy, chemicals and materials productions in a comprehensive manner, still some related work 

requires further investigations, and these include: 

 Refine the obtainment of models’ parameters with industrial and demonstration data, if this is 

possible. Otherwise, the parameters could be obtained from individual process simulation 

results which certainly require lot of efforts. 

 Incorporate consideration about technological risk for each of the processing route in the 

supply chain model. This has been suggested by Omtec Inc. in the final meeting.  

 Include a case where the facilities in the supply chain are owned by multiple owners. Each of 

the owner has different priorities and interests in designing and operating all the facilities.  

 Extend the developed model by also considering stochastic behaviors of the economics and 

financial planning that are related to the biomass supply chain 
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APPENDIX A (GAMS LOG FILE FOR CHAPTER 3) 

--- Starting compilation 

--- Model 1.gms(303) 3 Mb 

--- Starting execution: elapsed 0:00:00.000 

--- Generating LP model omtec 

--- Model 1.gms(283) 4 Mb 

---   274 rows  366 columns  712 non-zeroes 

--- Model 1.gms(283) 4 Mb 

--- Executing CPLEX: elapsed 0:00:00.047 

ILOG CPLEX    Dec 24, 2007 WEX.CP.CP 22.6 035.037.041.wei For Cplex 11.0 

Cplex 11.0.0, GAMS Link 34  

Cplex licensed for 10 uses of lp, qp, mip and barrier, with 4 parallel threads. 

Reading data... 

Starting Cplex... 

Tried aggregator 1 time. 

LP Presolve eliminated 229 rows and 312 columns. 

Aggregator did 30 substitutions. 

Reduced LP has 15 rows, 24 columns, and 44 nonzeros. 

Presolve time =    0.00 sec. 

Iteration log . . . 

Iteration:     1   Scaled dual infeas =          2325.509998 

Iteration:    21   Dual objective     =      22618673.062777 

Optimal solution found. 

Objective:    22618673.062777 
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--- Restarting execution 

--- Model 1.gms(283) 2 Mb 

--- Reading solution for model omtec 

--- Model 1.gms(283) 2 Mb 

--- Executing after solve: elapsed 0:00:00.154 

--- Model 1.gms(286) 3 Mb 

*** Status: Normal completion 

--- Job Model 1.gms Stop 05/11/16 23:11:50 elapsed 0:00:00.154 
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APPENDIX B (GAMS LOG FILE FOR CHAPTER 4) 

--- Starting compilation 

--- Model 2e.gms(566) 3 Mb 

--- Starting execution: elapsed 0:00:00.015 

--- Generating LP model palmoilefb1 

--- Model 2e.gms(542) 5 Mb 

---   5,401 rows  6,844 columns  12,711 non-zeroes 

--- Model 2e.gms(542) 5 Mb 

--- Executing CPLEX: elapsed 0:00:00.087 

ILOG CPLEX    Dec 24, 2007 WEX.CP.CP 22.6 035.037.041.wei For Cplex 11.0 

Cplex 11.0.0, GAMS Link 34  

Cplex licensed for 10 uses of lp, qp, mip and barrier, with 4 parallel threads. 

Reading data... 

Starting Cplex... 

Tried aggregator 1 time. 

LP Presolve eliminated 5288 rows and 6690 columns. 

Aggregator did 74 substitutions. 

Reduced LP has 39 rows, 80 columns, and 135 nonzeros. 

Presolve time =    0.00 sec. 

Initializing dual steep norms . . . 

Iteration log . . . 

Iteration:     1   Dual infeasibility =          4088.320150 

Iteration:    17   Dual objective     = 6035567885334.971700 
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Optimal solution found. 

Objective:   713642268.623451 

--- Restarting execution 

--- Model 2e.gms(542) 2 Mb 

--- Reading solution for model palmoilefb1 

--- Model 2e.gms(542) 3 Mb 

--- Executing after solve: elapsed 0:00:00.286 

--- Model 2e.gms(544) 3 Mb 

*** Status: Normal completion 

--- Job Model 2e.gms Stop 05/11/16 23:14:03 elapsed 0:00:00.288 
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APPENDIX C (GAMS LOG FILE FOR CHAPTER 5) 

--- Starting compilation 

--- Model 3e.gms(654) 3 Mb 

--- Starting execution: elapsed 0:00:00.009 

--- Model 3e.gms(602) 4 Mb 

--- Generating MINLP model palmoilefb2 

--- Model 3e.gms(605) 8 Mb 

---   6,540 rows  10,900 columns  20,561 non-zeroes 

---   10,153 nl-code  1,770 nl-non-zeroes 

---   2,610 discrete-columns 

--- Model 3e.gms(605) 6 Mb 

--- Executing BARON: elapsed 0:00:00.132 

GAMS/BARON    Dec 24, 2007 WIN.BA.NA 22.6 011.000.000.vis P3PC              

XPRESS-MP license initialization failed 

======================================================================== 

                         Welcome to BARON v. 8.1.1 

                 Global Optimization by BRANCH-AND-REDUCE      

             BARON is a product of The Optimization Firm, LLC. 

              Parts of the BARON software were created at the  

                University of Illinois at Urbana-Champaign.    

              Version Built: WIN Sat Oct 13 20:46:07 EDT 2007 

======================================================================== 

                     Factorable Non-Linear Programming         

======================================================================== 
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 LP Solver:  ILOG CPLEX 

 NLP Solver: MINOS      

 Doing local search 

 Solving bounding LP 

 Starting preprocessing LPs 

 6673 preprocessing LPs remain with estimated completion time 11 secs 

 Done with preprocessing LPs 

 Starting multi-start local search 

 Done with local search 

======================================================================== 

 We have space for 95 nodes in the tree (in 32 MB memory) 

======================================================================== 

  Iteration    Open Nodes        Total Time      Lower Bound       Upper Bound 

          1             1          000:00:57     0.000000D+00      0.483681D+10 

          1             1          000:00:57     0.000000D+00      0.483681D+10 

          1             1          000:01:17     0.000000D+00      0.170403D+10 

         13+          7          000:01:47     0.000000D+00      0.170403D+10 

         31+         16          000:02:17     0.000000D+00      0.170403D+10 

         78+         40          000:02:48     0.000000D+00      0.170403D+10 

*        90            0          000:02:56     0.156111D+10      0.170403D+10 

         90             0          000:02:56     0.156111D+10      0.170403D+10 

 Cleaning up solution and calculating dual 

 Found feasible solution with value 0.156110661282D+10 
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*** Normal Completion *** 

  LP subsolver time    :      000:02:05,    in seconds:        124.55 

  NLP subsolver time   :      000:00:29,    in seconds:         28.97 

  All other time       :       000:00:24,    in seconds:         23.80 

  Total time elapsed   :      000:02:57,    in seconds:        177.31 

       on parsing      :       000:00:04,    in seconds:          4.42 

       on preprocessing:      000:00:52,    in seconds:         52.23 

       on navigating   :       000:00:01,    in seconds:          1.30 

       on relaxed      :       000:00:03,    in seconds:          3.38 

       on local        :       000:00:10,    in seconds:          9.92 

       on tightening   :       000:00:03,    in seconds:          2.86 

       on marginals    :       000:00:00,    in seconds:          0.03 

       on probing      :       000:01:43,    in seconds:        103.17 

   Total no. of BaR iterations:      90 

   Best solution found at node:      90 

   Max. no. of nodes in memory:      46 

  

 All done with problem 

======================================================================== 

Solution      = 1561106612.82 found at node 90 

Best possible = 1704028484.94 

Absolute gap = 142921872.12 optca = 1E-9 

Relative gap = 0.08387 optcr = 0.1 
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--- Restarting execution 

--- Model 3e.gms(605) 3 Mb 

--- Reading solution for model palmoilefb2 

--- Model 3e.gms(605) 3 Mb 

--- Executing after solve: elapsed 0:02:58.694 

--- Model 3e.gms(608) 4 Mb 

*** Status: Normal completion 

--- Job Model 3e.gms Stop 05/11/16 23:58:46 elapsed 0:02:58.698 
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