
Online Bayesian Learning in
Probabilistic Graphical Models using
Moment Matching with Applications

by

Farheen Omar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Farheen Omar 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Probabilistic Graphical Models are often used to efficiently encode uncertainty in real world
problems as probability distributions. Bayesian learning allows us to compute a posterior
distribution over the parameters of these distributions based on observed data. One of
the main challenges in Bayesian learning is that the posterior distribution can become
exponentially complex as new data becomes available. Secondly, many algorithms require
all the data to be present in memory before the parameters can be learned and may require
retraining when new data becomes available. This is problematic for big data and expensive
for streaming applications where new data arrives constantly.

In this work I have proposed an online moment matching algorithm for Bayesian learn-
ing called Bayesian Moment Matching (BMM). This algorithm is based on Assumed Den-
sity Filtering (ADF) and allows us to update the posterior in a constant amount of time as
new data arrives. In BMM, after new data is received, the exact posterior is projected onto
a family of distributions indexed by a set of parameters. This projection is accomplished
by matching the moments of this approximate posterior with those of the exact one. This
allows us to update the posterior at each step in constant time. The effectiveness of this
technique has been demonstrated on two real world problems.

Topic Modelling: Latent Dirichlet Allocation (LDA) is a statistical topic model that
examines a set of documents and based on the statistics of the words in each document,
discovers what is the distribution over topics for each document.

Activity Recognition: Tung et al [29] have developed an instrumented rolling walker
with sensors and cameras to autonomously monitor the user outside the laboratory setting.
I have developed automated techniques to identify the activities performed by users with
respect to the walker (e.g.,walking, standing, turning) using a Bayesian network called
Hidden Markov Model. This problem is significant for applied health scientists who are
studying the effectiveness of walkers to prevent falls.

My main contributions in this work are:

• In this work, I have given a novel interpretation of moment matching by showing
that there exists a set of initial distributions (different from the prior) for which exact
Bayesian learning yields the same first and second order moments in the posterior as
moment matching. Hence the Bayesian Moment matching algorithm is exact with
respect to an implicit posterior.

iii

• Label switching is a problem which arises in unsupervised learning because labels can
be assigned to hidden variables in a Hidden Markov Model in all possible permuta-
tions without changing the model. I also show that even though the exact posterior
has n! components each corresponding to a permutation of the hidden states, moment
matching for a slightly different distribution can allow us to compute the moments
without enumerating all the permutations.

• In traditional ADF, the approximate posterior at every time step is constructed by
minimizing KL divergence between the approximate and exact posterior. In case
the prior is from the exponential family, this boils down to matching the ”natural”
moments. This can lead to a time complexity which is the order of the number of
variables in the problem at every time step. This can become problematic particularly
in LDA, where the number of variables is of the order of the dictionary size which
can be very large. I have derived an algorithm for moment matching called Linear
Moment Matching which updates all the moments in O(n) where n is the number of
hidden states.

• I have derived a Bayesian Moment Matching algorithm (BMM) for LDA and com-
pared the performance of BMM against existing techniques for topic modelling using
multiple real world data sets.

• I have developed a model for activity recognition using Hidden Markov Models
(HMMs). I also analyse existing parameter learning techniques for HMMs in terms
of accuracy. The accuracy of the generative HMM model is also compared to that of
a discriminative CRF model.

• I have also derived a Bayesian Moment Matching algorithm for Activity Recognition.
The effectiveness of this algorithm on learning model parameters is analysed using
two experiments conducted with real patients and a control group of walker users.

iv

Acknowledgements

Pascal Poupart was my supervisor during my research on this thesis. He guided and
challenged me throughout my research by forcing me to approach my research with crystal
clarity and focus. He was thoroughly engaged with my work and was always available
whenever I needed assistance and feedback. He always worked with me to untangle each
roadblock that I encountered. Even after I had a baby and was working remotely to-
wards the end, his support never flagged. I am truly indebted to him for his mentoring,
supervision and kind understanding and patience.

I am also grateful to my thesis committee: Dan Lizzotte and Jesse Hoey for their critical
analysis of my work, John Zelek who gave me an engineering perspective on how this work
can be utilized and Richard Zemel my external examiner who gave me wonderful insights
on how to polish this research further and suggesting future directions. I would also like to
thank Han Zhao, Mathieu Sinn and Jakub Truszkowski for contributing to this research.

Margaret Towell in the Computer Science Grad office has always been an invaluable
resource who was untiring in her readiness to assist students whenever any help was needed
in the catacombs of paperwork.

My husband Omar has been instrumental in helping me become who I am today. He
has given me courage and support and also served as a good sounding board for my ideas.
He also gave me great critical insights on my work. Above all he convinced me that I could
accomplish all I dream of even when I had grown up with a mindset that discouraged
achievement for women.

I would also like to give a shout out to my mother-in-law Mrs Ghazala Yawar who
provided me with a support system without which I would not have been able to do justice
to my young child and my research. I want to thank my mother Neelofur Shahid who is
the kindest being that I know. Her support throughout my early education and university
and her kindness as a parent is the reason why I am here today. I want to thank my
father who despite being the biggest source of challenges in my life, inculcated a thirst
of knowledge, reading and planted the seeds of inquisitiveness in me that have led me to
pursue research professionally. I would also like to thank my brother Salman Shahid for
being a partner in crime when I was younger and a source of support even now. A special
thanks to my brother-in-law Awais Zia Khan who was always ready to babysit and offer
other help when needed. And lastly a big thanks to my little boy Rohail who is the most
wonderful of children. If he were not the sweet person that he is I would not have been
able to complete what I had started.

v

Dedication

To my rock and love Omar and to the source of light in my life Rohail

vi

Table of Contents

List of Tables xi

List of Figures xiv

1 Introduction 1

1.1 Moment Matching . 2

1.2 Topic Modeling . 3

1.2.1 Contributions . 4

1.3 Activity Recognition with an Instrumented Walker 5

1.3.1 Contributions . 6

1.4 Organization . 8

2 Background 10

2.1 Probability Theory and Bayes Rule . 10

2.1.1 Bayes Theorem . 11

2.2 Probabilistic Graphical Models . 11

2.2.1 Bayesian Networks . 12

2.2.2 Inference in Bayesian Networks . 12

2.2.3 Parameter Learning in Bayesian Networks 12

2.3 Bayesian Learning . 14

2.3.1 Mean-Field Variational Inference (Variational Bayes) 14

vii

2.3.2 Gibbs Sampling . 15

2.4 Latent Dirichlet Allocation . 16

2.4.1 Learning and Inference . 17

2.5 Dynamic Bayesian Networks . 18

2.5.1 Hidden Markov Models . 18

2.5.2 Inference . 20

2.5.3 Bayesian Filtering . 21

2.5.4 Parameter Learning . 21

2.6 Conditional Random Fields . 23

2.6.1 Linear Chain CRF . 24

3 Related Work 26

3.1 Parameter Learning for Latent Dirichlet Allocation 26

3.1.1 Online Parameter Learning for LDA 27

3.2 Activity Recognition for Instrumented Walker 28

3.2.1 Parameter Learning in HMM . 28

3.3 Assumed Density Filtering . 30

4 Online Bayesian Learning Using Moment Matching 31

4.1 Moments . 31

4.1.1 Sufficient Set of Moments . 32

4.2 Moment Matching . 32

4.2.1 Moment Matching for the Dirichlet Distribution 34

4.3 LDA with known Observation Distribution 36

5 Topic Modeling 39

5.1 Latent Dirichlet Allocation . 39

5.2 Known Topic-Word Distribution Case . 41

viii

5.2.1 Analysis . 42

5.3 Learning the Word-Topic Distribution . 46

5.3.1 Label Switching and Unidentifiability 46

5.3.2 Sufficient Moments . 47

5.3.3 Moment Matching . 49

5.3.4 Linear Moment Matching . 52

5.3.5 Discussion . 54

5.4 Results . 55

5.4.1 UCI Bag of Words Document Corpus 55

5.4.2 Wikipedia Corpus . 55

5.4.3 Twitter Data . 56

5.4.4 Synthetic Data . 56

5.4.5 Experiments . 57

6 Activity Recognition with Instrumented Walker 65

6.1 The Walker and Experimental Setup . 65

6.1.1 Experiment 1 . 66

6.1.2 Experiment 2 . 67

6.1.3 Sensor Data . 68

6.2 Activity Recognition Model . 69

6.2.1 Hidden Markov Model . 71

6.3 Prediction . 72

6.4 Maximum Likelihood Parameter Learning 74

6.4.1 Supervised Learning . 74

6.4.2 Unsupervised Maximum Likelihood Learning 75

6.4.3 Bayesian Learning for HMMs . 76

6.4.4 Gibbs Sampling . 76

6.5 Conditional Random Field . 78

ix

6.6 Results and Discussion . 80

6.6.1 Discussion . 82

6.6.2 Experiment 1 vs. Experiment 2 . 88

6.6.3 CRF vs. HMM . 88

6.6.4 Maximum Likelihood vs. Bayesian Learning 88

7 Moment Matching For Activity Recognition 90

7.1 Bayesian Learning for HMMs . 90

7.2 Moment Matching for Hidden Markov Models 92

7.2.1 The Known Observation Model . 93

7.2.2 Learning the Observation Model . 94

7.2.3 Efficient Moment Matching . 98

7.2.4 Multiple Sensors . 102

7.3 Discussion . 103

7.4 Experiments and Results . 104

7.4.1 Comparison with Online EM . 106

8 Conclusions 108

A Derivation of Expectation Maximization for Activity Recognition 112

APPENDICES 112

A.1 Maximum Likelihood Supervised Learning 112

A.2 Maximum Likelihood Unsupervised Learning 114

A.2.1 Avoiding Underflows . 116

References 118

x

List of Tables

5.1 Summary Statistics of the data sets . 57

5.2 Time taken in seconds by each algorithm to go over complete data. 63

6.1 Activities performed in Experiment 1 . 67

6.2 Additional activities performed during Experiment 2 68

6.3 Highest value for each sensor s with respect to activity y, arg maxe Pr (es|y).
The second row for each activity is the probability of this highest value
maxe Pr (es|y). This table is based on the data from the second experiment 70

6.4 Empirical Transition Distribution for Experiment 2 71

6.5 Confusion matrix for HMM model Experiment 1 activities using load sensor
values. Observation model learned from data. Activity persistence probabil-
ity τ = 4000. Prediction using Filtering. Window size is 25. Features used
are Accelerometer Measurements, Speed, Load cell values. Overall accuracy
is 91.1%. 82

6.6 Confusion matrix for HMM model for Experiment 1 using center of pres-
sure. Observation model learned from data. Activity persistence parameter:
τ = 4000. Prediction using Filtering. Window size is 25. Features used
are Accelerometer Measurements, Speed, Frontal plane COP, Saggital plane
COP and total weight. Overall accuracy is 88%. 83

6.7 Confusion matrix for CRF model for Experiment 1 data using center of pres-
sure. Window size is 25. Features used are Accelerometer Measurements,
Speed, Frontal plane COP, Saggital plane COP and Total Weight. Overall
accuracy is 93.8%. 83

xi

6.8 Confusion matrix for HMM model for Experiment 2 data using load sensor
values. Observation model learned from data. activity persistence probabil-
ity τ = 4000. Prediction using Filtering. Window size is 25. Features used
are Accelerometer Measurements, Speed, load cell values. Overall accuracy
is 79.1%. 84

6.9 Confusion matrix for HMM model for for Experiment 2 data using center of
pressure. Observation model learned from data. activity persistence prob-
ability τ = 4000. Prediction using Filtering. Window size is 25. Features
used are Frontal plane COP, Saggital plane COP and total weight. Overall
accuracy is 77.2%. 84

6.10 Confusion matrix for CRF model for Experiment 2 data using center of pres-
sure. Window size is 25. Features used are Accelerometer Measurements,
Speed, Frontal plane COP, Saggital plane COP and total weight. Overall
accuracy is 80.8%. 85

6.11 Confusion matrix for HMM model results for Experiment 2 data using nor-
malized load sensor values. Observation model and transition model learned
from data. Prediction using Filtering. Window size is 25. Features used are
Accelerometer Measuremens, Speed, Normalized load cell values. Overall
accuracy is 80.8%. 85

6.12 Experiment 1 percentage accuracy for each activity. COP implies that center
of pressure feature is used instead of load cell values. Prediction is done using
the Forward-Backward Algorithm . 86

6.13 Experiment 2 percentage accuracy for each activity. NL means the normal-
ized load values are used. COP implies that center of pessure feature is used
instead of normalized load values. 87

7.1 Moment Matching results for Experiment 1 data using center of pressure.
Window size is 25. Features used are Accelerometer Measurements, Speed,
Frontal plane COP, Saggital plane COP and Total Weight. Overall accuracy
is 76.2%. 104

7.2 Experiment 1 percentage accuracy for each activity for unsupervised learning
techniques. Prediction is done using the Forward-Backward Algorithm . . 105

7.3 Experiment 2 percentage accuracy for each activity. NL means the normal-
ized load values are used. COP implies that center of pessure feature is used
instead of normalized load values. 105

xii

7.4 Average training time for unsupervised algorithms 106

xiii

List of Figures

1.1 The instrumented walker developed by [73] et. al. The walker has a 3-D
accelerometer, 4 load cells, 1 wheel encoder and 2 cameras 7

2.1 Latent Dirichlet Allocation Topic Model 16

2.2 A Bayesian Hidden Markov Model . 20

4.1 Expectation of θ with respect to the approximate posterior vs. the number of
observations. Q (θ) is the approximate posterior learnt by matching Mlog(θ)

where as Q′ (θ) is the approximate posterior learnt by matching M(θ). The
true value of θ used to generate the observations is 0.7. 38

5.1 Latent Dirichlet Allocation Topic Model 40

5.2 Comparison of different learning algorithms for topic modeling for the NIPS
dataset. The number of topics T = 25. The second figure is the perplexity
for vblp, gs and bplp zoomed . 58

5.3 Comparison of different learning algorithms for topic modeling for the En-
ron dataset. The number of topics T = 100. The top right figure is the
perplexity of vblp, gs and bplp and the bottom right is the preplexity of
AWR-KL, AWR-L2 and Spectral LDA . 59

5.4 Comparison of different learning algorithms for topic modeling for the Twit-
ter dataset. The number of topics T = 9. The top right figure is the perplex-
ity of vblp, gs and bplp and the bottom right is the preplexity of AWR-KL,
AWR-L2 and Spectral LDA . 60

5.5 Comparison of different learning algorithms for topic modeling for the NY-
Times dataset. The number of topics T = 100. 61

xiv

5.6 Comparison of different learning algorithms for topic modeling for the Wikipedia
dataset. The number of topics T = 100. 62

5.7 Comparison of different learning algorithms for topic modeling for the PubMed
dataset. The number of topics T = 100. 63

5.8 EP vs MM on synthetic data. T = 5 . 64

6.1 Course for data collection experiment done with the walker. Healthy young
subjects were asked to follow this course 66

6.2 Course used in data collection experiment for older subjects who are walker
users . 67

6.3 A Hidden Markov Model For Activity Recognition 72

6.4 A Hidden Markov Model For Activity Recognition with Bayesian Priors . . 73

6.5 Accuracy, Precision and Recall for various algorithms in each experiment. . 86

7.1 A Hidden Markov Model For Activity Recognition with Bayesian Priors . . 91

7.2 Accuracy, Precision and Recall for various algorithms in each experiment. . 106

7.3 Accuracy, Precision and Recall for Online EM and Moment Matching on
synthetic data. 107

xv

Chapter 1

Introduction

Probability theory allows us to capture inherent uncertainty that arises in real world pro-
cesses. This uncertainty may stem from the fact that some parts of the process are not
observable directly or because we are trying to predict the values of future events based on
observations in the past. The probability of an event can be informally defined as the degree
of belief that this event will happen. A probability distribution is a function that assigns a
real number Pr (X = x) to a random variable X which represents the degree of belief that
X will take value x. In some cases, the distribution has the form Pr (X = x|θ) = f (x, θ).
θ is called the parameter of the distribution. Probabilistic Graphical Models allow us to
encode probability distributions over high dimensional event spaces efficiently. One of the
key tasks in constructing these models is to learn the value of parameters of each distribu-
tion that best describe the observed data. Bayesian learning provides a paradigm which
allows us to compute a posterior belief about model parameters, based on a prior belief
about their values and observed data. This posterior belief is usually encoded in the form
of a posterior distribution over the model parameters.

One of the main challenges in Bayesian learning is that the posterior distribution can
become very complex as new information becomes available. In some cases, the posterior
can be an exponentially large mixture of distributions. Hence representing the posterior
and calculating its statistics can be computationally expensive. Typically algorithms aim
to construct an approximate posterior either by minimizing some distance metric between
the exact and approximate posterior, or by drawing samples from the exact posterior. Most
of these algorithms require the complete data to be present in the memory at the time of
learning and usually require the model to be retrained if new data arrives. More recently,
online versions of some of these algorithms have been developed that are able to incorporate
new information without retraining the complete model. These online techniques use a

1

sample set of the data known as a mini-batch to update the parameters such that some
distance metric is minimized.

Maximum Likelihood Learning is an alternative to Bayesian Learning where instead of
computing a posterior distribution over the parameters, we compute point estimates for
the values of parameters that maximize the likelihood of the observed data. This often
involves solving a non convex optimization problem and the algorithms are prone to get
stuck in local optima.

Another class of algorithms including Assumed Density Filtering, Expectation Propa-
gation [56] and the online algorithm described in [5] project the complex exact posterior
onto a simpler family of distributions indexed by a set of parameters. This projection is
done by minimizing the a distance measure between the exact posterior and a member of
this family of distributions.

In this work I have explored and extended the concepts central to assumed density
filtering by concentrating on the moment matching framework of the algorithm and propose
efficient extensions to it. I also give a novel interpretation of this procedure that allows it
to be viewed as an exact inference technique instead of an approximate one.

1.1 Moment Matching

In many applications, Bayesian learning can be intractable since the posterior becomes an
exponentially large mixture of products of Dirichlets. However, the full posterior is rarely
used in practice. A few moments (i.e, mean and variance) are often sufficient to estimate
the parameters with some form of confidence.

I have proposed a moment matching technique called Bayesian Moment Matching
(BMM) which is based on Assumed Density Filtering. In Bayesian Moment Matching,
at every time step, the exact posterior is projected onto a family of distributions indexed
by a set of parameters. Given a prior that belongs to this family of distributions; after
every observation is received, the exact posterior is computed through a Bayesian update.
Then this exact posterior is again projected onto the same family as the initial prior dis-
tribution such that some of the moments of the exact posterior are equal to those of the
approximate posterior. This allows us to compute all the parameters required to specify
the posterior. The moment matching can be done by solving a linear system of equations
which can be solved analytically.

2

Exact Learning w.r.t. an Implied Prior

In Assumed Density Filtering, the primary objective is to find a target distribution in
a family of distributions such that the distance between this target distribution and the
exact posterior is minimized. This minimization leads to matching of some moments of the
exact and approximate posteriors. Given that the observations are informative (i.e. help
us distinguish between hidden states), after seeing a very large number of observations,
most of the weight of the posterior will be concentrated at one point which will correspond
to the first order moment of the posterior (or mean) at that time step. Therefore, in
the Bayesian moment matching algorithm proposed in this thesis, we match the first and
second order raw moments of the posterior. I have also presented a novel motivation for
this moment matching procedure by showing that there exists a set of initial distributions
(different from the prior) for which exact Bayesian learning yields the same first and second
order moments in the posterior as moment matching. My approach exploits the fact that
a small set of moments of the prior need to be specified before any data is observed. After
receiving each observation, moment matching allows us to set moments of the posterior.
We can solve multiple systems of equations that use the posterior moments to implicitly
specify higher order moments in the prior. Hence, the algorithm incrementally specifies
the moments of the prior as they become needed in the computation. If we start with
this implied prior and perform exact moment matching, then the first order moments of
the posterior will be the same as those of the posterior acquired by moment matching.
Therefore the overall computation is exact with respect to this prior. To our knowledge,
this algorithm is the first Bayesian learning technique that can process each additional
word in a constant amount of time and is exact with respect to an implied prior.

I have demonstrated the effectiveness of this technique on two real world problems.

1.2 Topic Modeling

In natural language processing statistical topic models are constructed to discover the
abstract topics that occur in a collection of documents. A document typically concerns
multiple topics in different proportions. A topic model captures this intuition as a statis-
tical model that examines a set of documents and based on the statistics of the words in
each document, discovers what the topics might be and what is the balance of topics for
each document. These topics can be used to cluster and organize the corpus. The main
computational problem is to infer the conditional distribution of these variables given an
observed set of documents [54]. The exact posterior in LDA is an exponentially large

3

mixture of products of Dirichlets. Hence exact inference and parameter learning can be
challenging.

Algorithms for topic modeling attempt to construct approximations to the exact pos-
terior either by minimizing some distance metric or by sampling from the exact posterior.
Most of these algorithms require the complete learning data to be present in the memory
at the time of learning and usually require the model to be retrained if new data arrives.
This can be problematic for large streaming corpora. Online versions of some of these algo-
rithms exist that are able to incorporate new information without retraining the complete
model. These online algorithms compute the parameters of the approximate posterior by
sampling a small set of documents called a mini-batch and then updating the parameters
based on this mini-batch such that the overall distance between the exact and approximate
posterior is minimized.

1.2.1 Contributions

• Bayesian Moment Matching for Latent Dirichlet Allocation Model: In this
work, I have proposed a novel algorithm for Bayesian learning of topic models using
moment matching called Bayesian Moment Matching (BMM) which processes each
new word in a constant amount of time. I derive a method for constructing an initial
distribution (different from the prior) for which exact Bayesian Learning yields the
same first order moment in the posterior as BMM.

• State Switching: State switching occurs because the labels of the hidden states
can be permuted n! times. Under each permutation of the model, the probability of
generating the observation sequence remains the same rendering all these n! models
identical. In this work, I show that even though the exact posterior has n! compo-
nents, each corresponding to a permutation of the hidden states, moment matching
for a slightly different distribution can allow us to compute the moments without
enumerating all the permutations.

• Linear Moment Matching: I also propose an improvement to the moment match-
ing algorithm called Linear Moment Matching which computes all the necessary mo-
ments required to specify the posterior (which is a mixture of product of Dirichlets)
in O(n) time where n is the number of topics. In contrast to this, if we use Assumed
Density Filtering for a mixture of Dirichlets, we need to solve a system of n2 + nm
non linear equations where m is the total number of observations.

4

• Evaluation Against the State of the Art: We also compare the performance of
BMM with other state of the art algorithms for online and offline parameter learning.
We demonstrate the effectiveness of each algorithm in terms of perplexity of the test
set. We measure the perplexity over various real world document corpora including
the UCI bag of words corpora [51] and corpus created from the English version of
Wikipedia [40].

• Topic Modeling in Social Media: People are increasingly using online social me-
dia forums such as twitter, facebook etc. to express their opinions and concerns.
With the advent of analytical techniques for natural language processing, many com-
panies are interested in knowing about chatter in the cyber space related to their
brand. One way of solving this problem is to tag each tweet or post related to that
company with a topic and analyze this data over different time frames. However
manual tagging of posts is an expensive process and therefore automated solutions
are desirable.

I have collaborated with an industry partner that does social media mining on behalf
of other companies. The data set is comprised of tweets related to a cell phone
provider. I have used Bayesian Moment Matching for learning the topics in this data
and present a comparison with other methods for topic modeling.

1.3 Activity Recognition with an Instrumented Walker

Mobility aids such as walkers improve the mobility of individuals by helping with balance
control and compensating for some mobility restrictions. However, we believe that aug-
menting these devices with various sensors can create an intelligent assistive technology
platform which may allow us to

• Improve the mobility of the user by providing feedback about correct usage.

• Allow care-givers to monitor individuals from afar and react to emergency situations
in a timely fashion.

• Provide experts with quantitative measurements to better understand mobility issues
and improve care-giving practices.

To better understand the mobility in everyday contexts, Tung et al. [29] developed an
instrumented rolling walker shown in Figure 1.1. The walker has a 3-D accelerometer that

5

measures acceleration across x, y and z axis. It also has four load cells mounted just above
the wheels that measure the weight distribution on each leg of the walker. There is also
a wheel encoder that measures the distance covered by the walker wheels. It also has two
cameras mounted on it: one looking forward while the other one looks back at the user’s
legs. The walker was designed with the aim of autonomously monitoring users outside the
laboratory setting. My aim was to develop automated techniques to identify the activities
performed by users with respect to their walker (e.g.,walking, standing, turning). This
problem is significant for applied health scientists who are studying the effectiveness of
walkers to prevent falls. Currently they have to hand label the data by looking at a video
feed of the user, which is a time consuming process. An automated activity recognition
system would enable clinicians to gather statistics about the activity patterns of users,
their level of mobility and the context in which falls are more likely to occur.

Two sets of experiments were conducted to collect data for this analysis. One set of
experiments was done with healthy subjects and the other one was done with older adults
some of whom were regular walker users. In each experiment users were asked to use the
walker to navigate a course and the sensor data was recorded along-with the video. The
video is then synced with the sensor data and then we manually label the sensor data with
the activities seen in the video to establish ground truth.

1.3.1 Contributions

• HMM based Model for Activity Recognition using Walker: In this work I
present a probabilistic model for activity recognition of walker users based on Hidden
Markov Models (HMMs).

• Discriminative Model for Activity Recognition using Conditional Random
Field I also derive a discriminative model based on Linear Chain Conditional Ran-
dom Fields [46] to illustrate the advantages of discriminative models over generative
models for this problem.

• Analysis of Supervised Parameter Learning Techniques: I evaluate these
techniques and models in terms of how well they can predict the actual activity
given a sequence of sensor readings. I use labeled data to compute the prediction
accuracy for the HMM model and then compare it against the CRF Model.

• Online Moment Matching Algorithm for Activity Recognition I also derive
an Online Moment Matching algorithm for learning the parameters of the activity
recognition HMM. In this approach, I model the posterior as a mixture of Dirichlet

6

Figure 1.1: The instrumented walker developed by [73] et. al. The walker has a 3-D
accelerometer, 4 load cells, 1 wheel encoder and 2 cameras

7

distributions to optimize the first and second order moments which gives us a linear
system of equations which has a closed form solution. This model is distinct from
LDA because in LDA model, the order of words in the documents is not impor-
tant, whereas in time-series models such as HMM, the current activity of the user is
dependent on the previous activity of the user.

• Linear Moment Matching for HMM In addition to that, I have optimized the
moment matching algorithm so that it allows us to specify all the moments with only
O(n) computations at every time step where n is the number of activities.

• Evaluation Against Other Unsupervised Learning Techniques for HMM I
also compare the prediction accuracy of moment matching with the other unsuper-
vised learning algorithms for parameter learning.

1.4 Organization

The rest of this thesis is organized as follows:

In Chapter 2 we introduce some basic concepts about probability and Bayesian learning.
We briefly discuss some of the parameter learning techniques for these models. We also
introduce Probabilistic Graphical Models (PGMs) and describe one model for topic mod-
eling called Latent Dirichlet Allocation (LDA) and another model for Activity Recognition
called Hidden Markov Models.

In Chapter 3 we review some of the previous techniques used for Bayesian learning and
discuss how they are different from the work presented in this thesis.

In Chapter 4 we describe an abstract moment matching algorithm for learning a pos-
terior distribution over the parameters of interest given the current data. We also discuss
a choice of family of distributions from which we choose our prior. We also describe a
method to project other distributions onto this family by moment matching.

In Chapter 5 we derive a moment matching algorithm for the topic modeling problem.
We compare our algorithm to other state of the art parameter learning algorithms for
topic modeling on some synthetic and some real world data. We also describe a method
to construct an implied prior such that if we do exact Bayesian learning by starting off
with this prior, the the first moment of the posterior after seeing n words will be the the
same as the first moment of the posterior computed using moment matching after seeing
the same n words.

8

In Chapter 6 we present a graphical model for the activity recognition problem based
on HMMs. We also describe the set of experiments used for data collection using the
instrumented walker. We compare various parameter learning techniques based on their
ability to predict the activity correctly given the sensor readings at time t.

In Chapter 7 we give a moment matching algorithm for learning the parameters of an
HMM and use it to learn the parameters of the activity recognition HMM described in the
previous section.

In Chapter 8 we present conclusions and discuss future work.

9

Chapter 2

Background

Probability theory has been used for a long time to quantify uncertainty in the real world
in the form of probability distributions. Probabilistic Graphical Models allow us to encode
and manipulate distributions in high dimensional spaces efficiently. In this chapter we will
discuss how real life processes can be modeled as Probabilistic Graphical Models and how
they can be used to draw conclusions about events that can not be directly measured.

2.1 Probability Theory and Bayes Rule

The probability of an event can be informally defined as the degree of belief that this
event will happen. A random variable is a variable whose possible values are outcomes of
a random experiment.

Definition 2.1.1. A probability distribution is a function that assigns a real number
Pr (X = x) to a random variable X which represents the degree of belief that X will take
value x. This function must satisfy the following axioms

- Pr (X = x) ≥ 0

-
∑

x Pr (X = x) = 1, where the summation is over all possible random events

- Pr (X ∪ Y) = Pr (X) + Pr (Y)− Pr (X ∩ Y)

In some cases, the distribution has the form Pr (X = x|θ) = f (x, θ). θ is called the
parameter of the distribution. In many cases, the parameter represents some statistical
characteristic of the model.

10

Definition 2.1.2. If g (X) is a function of x, then the expectation of g with respect to
the distribution P (x) is defined as

E (g (X)) =

∫
x

g (x)P (x) dx

The ”conditional probability” of a random variable Pr (X = x|Y = y) is the probability
that the random variable X = x given Y = y. The ”joint probability” of two random
variables Pr(X = x, Y = y) is the probability that X takes the value x and Y takes the
value y. X and Y are ”independent” if Pr ((X|Y) = Pr (X) and Pr (Y |X) = Pr (Y).

2.1.1 Bayes Theorem

Bayes theorem allows us to update our prior belief about the value of a random variable
given some evidence.

Pr (Y |X) =
Pr (X|Y) Pr (Y)

Pr (X)
(2.1)

Pr (X|Y) is called the ”likelihood”, Pr (Y) is called the ”prior distribution”, and Pr (Y |X)
is called the ”posterior”. Pr (X) is the normalization constant and can be calculated as∫
y

Pr (X|y) Pr (y) dy.

Definition 2.1.3. If the posterior Pr (Y |X) and the prior Pr (Y) are in the same family
of distributions, then the prior Pr (Y) is called the conjugate prior for the likelihood
Pr (X|Y).

2.2 Probabilistic Graphical Models

Probabilistic Graphical Models are used to encode uncertainty in real world processes as
probability distributions over high dimensional spaces. Below we will describe a type of
probabilistic graphical model called Bayesian Networks. Bayesian Networks are generative
models which means that they can be used to generate (i.e. sample) data from the joint
distribution over the variables. Later we will also describe Conditional Random Fields
(CRF) which are discriminative Graphical Models. In CRFs we model the conditional
probability of the hidden variables given the observed variables.

11

2.2.1 Bayesian Networks

A Bayesian Network or Bayes Net is a directed acyclic graph [63] in which each node
represents a random variable and each arc represents a conditional dependence. The node
from which the arc originates is called the parent of the node on which the arc terminates.
The arc captures the effect of the value of the parent node on the probability that the child
will take a certain value. For a random variable Xi, Parents(Xi) is the set of random
variables that are its parents. A conditional probability distribution is associated with
each node which quantifies the effect of all its parents. Bayesian Networks can be used to
calculate the full joint distribution using the following equation

Pr (X1 = x1, . . . , Xn = xn) =
n∏
i=1

Pr (xi|Parents (xi)) (2.2)

Here Parents (xi) refers to a possible assignment of specific values to each random variable
in the set Parents(Xi). Each conditional distribution can be of the form Pr (xi|Parents(xi)) =
f
(
xi|θParents(xi)

)
where θParents(xi) is the value of θ corresponding to an assignment of values

to members of Parents(Xi).

2.2.2 Inference in Bayesian Networks

Inference or prediction involves computing the posterior probability distributions of some
query variables Y given some observed random variables or evidence using

Pr (Y |e) =
Pr (Y, e)

Pr (e)
=

∑
x Pr (Y, e, x)

Pr (e)
(2.3)

Here X are non-query and non-observable variables called ”hidden variables” which may
be some quantity of interest for example an activity that is not directly observable. ”Vari-
able Elimination” is an efficient algorithm which can solve the inference problem exactly.
However, Variable elimination can have exponential space and time complexity (in the
number of variables) in the worst case [67].

2.2.3 Parameter Learning in Bayesian Networks

Learning the parameters of a Bayesian network from observable data is an important
and challenging problem. Each conditional distribution in Eq. 2.2 can have a particular

12

parametric form. A possible assignment of values to these parameters can be treated as
a hypothesis. Parameter learning involves choosing the hypothesis that best describes the
observed data. We now describe some of the learning techniques for Bayesian Networks.

Bayesian Learning

In Bayesian Learning, we compute a distribution over the hypothesis space for the param-
eters given the observed data using Bayes Rule. Let the observations be represented by e,
then the probability of the parameters Θ is given by

Pr (Θ|e) =
1

Pr (e)
Pr (e|Θ)︸ ︷︷ ︸
likelihood

Pr (Θ)︸ ︷︷ ︸
prior

(2.4)

Predictions are made by using all hypotheses weighed by their probabilities [67]. In order
to make a prediction about an unknown quantity Y , we use

Pr (Y |e) =

∫
Pr (Y |e,Θ) Pr (Θ|e) dΘ (2.5)

Bayesian predictions are optimal even when the data set is small. Given the prior, any other
prediction will be correct less often on average[67]. However, for real learning problems,
the parameter space may be very large or infinite and the evaluation of the integral in
Equation 2.5 becomes intractable. In the next section we will discuss some of the techniques
commonly used for Bayesian learning.

Maximum A Posteriori Hypothesis (MAP)

MAP is a common approximation to Bayesian learning. We make predictions based on
the most probable set of parameters called the ”maximum a posteriori” hypothesis [67].
Equation 2.4 is approximated to

θMAP = max
θ

Pr (e|θ) Pr (θ) (2.6)

Pr (Y |e) ≈ Pr (Y |e, θMAP) (2.7)

Maximum Likelihood Learning (ML)

A further simplification is to choose a uniform prior over the hypothesis space[67], then
MAP learning reduces to

13

θML = max
θ

Pr (e|θ) (2.8)

Pr (Y |e) ≈ Pr (Y |e, θML) (2.9)

Even in cases where the integral has a closed form solution, the presence of hidden
variables may make the posterior over the variables complex

Pr (Θ|e) =
∑
y

Pr (Θ, Y = y|e) (2.10)

For high dimensional hidden variable Y , this sum could be an infinitely large mixture.
Therefore, we have to resort to approximate methods.

2.3 Bayesian Learning

As mentioned before, Bayesian predictions are optimal even when the data set is small.
However, for real learning problems, the parameter space may be very large or infinite and
the evaluation of the integral in Equation 2.5 becomes intractable. In the next section we
will discuss some of the techniques commonly used for Bayesian learning. In addition to
that, hidden variables introduce an extra level of complexity. According to Equation 2.3
the full posterior is constructed by summing out all possible values of the hidden variables.
If we have t hidden variables, each of which can take d different values, this expression will
grow in the order of dt. Therefore, we have to resort to techniques that try to approximate
the posterior. Below we will discuss a few of them.

2.3.1 Mean-Field Variational Inference (Variational Bayes)

In Mean-field variational inference, a family of distributions over the hidden variables is
chosen that is indexed by a set of free parameters. The parameters are optimized to find
the member of the family that is closest to the posterior of interest. This closeness is
measured with Kullback-Leibler divergence. [41]. The resulting distribution, called the
variational distribution, is then used to approximate the posterior. Variational inference
minimizes the Kullback-Leibler (KL) divergence from the variational distribution to the
posterior distribution. It maximizes the evidence lower bound (ELBO), a lower bound
on the logarithm of the marginal probability of the observations. The ELBO is equal to

14

the negative KL divergence up to an additive constant. We want to project the complex
posterior Pr (Θ|e) = P (Θ) into a space of simpler factored distributions Q (Θ) such that
the KL divergence between the P and Q is minimized. [15] [11].

DKL{Q||P} =

∫
Θ

Q (Θ) log
Q (Θ)

P (Θ)
=

∫
Θ

Q (Θ) log
Q (Θ)

Pr (Θ|e)
(2.11)

=

∫
Θ

Q (Θ) log
Q (Θ)

Pr (Θ, e)
+ log Pr (e)

log Pr (e) = DKL{Q||P} −
∫

Θ

Q (Θ) log
Q (Θ)

Pr (Θ, e)

= DKL{Q||P}+ L (Θ) (2.12)

L (Θ) is called evidence lower bound (ELBO). It is a lower bound on the logarithm of
the marginal probability of the observations. Since log Pr (e) is constant, maximizing
L (Θ) minimizes the KL divergence. In traditional mean-field variational inference, this
optimization is done using coordinate ascent. Each variational parameter is iteratively
optimized while holding the other parameters fixed.

Online Variational Bayes

The coordinate ascent algorithm becomes inefficient for large data sets because the local
variational parameters must be optimized for each data point. Stochastic variational in-
ference uses stochastic optimization to fit the global variational parameters. The data is
repeatedly subsampled to form noisy estimates of the natural gradient of the ELBO, and
these estimates are followd with a decreasing step-size [41].

2.3.2 Gibbs Sampling

Monte Carlo Markov Chain (MCMC) methods are a popular class of methods that allow
us to construct approximations of integrals that are difficult to compute analytically. The
idea behind MCMC is to construct a Markov chain whose stationary distribution is the
posterior distribution of interest. The algorithm simulates the chain until it gets close to
stationarity. After this “burn-in” period, samples from the chain serve as an approximation
to the true posterior distribution P (Θ|e). The most common variations of this approach
are the Metropolis-Hastings algorithm and Gibbs sampling. For a more extensive overview
of MCMC techniques, see [30, 66].

15

α��
��
?

θ��
��
���������)

�
��	

@
@@R

XXXXXXXXXXXz

Pr (Y0)

?

β��
��

- φ��
��@
@@I

�
���

���
���

���
�:

��
��

��
��

��
��

T0 T1 T2 ��
��
Tn

��
��

��
��

W1 W2 ��
��
Wn

? ? ?

Figure 2.1: Latent Dirichlet Allocation Topic Model

Gibbs sampling is a class of MCMC algorithms which consists of repeatedly sampling
each variable in our model from the conditional distribution given all the other variables.
For example, if θ is a vector of parameters θ = θ1, θ2, ..., θk and e is the observation,
the Gibbs sampling algorithm samples θ1 from Pr(θ1|θ2:k, e) followed by sampling θ2 from
Pr(θ2|θ1, θ3:k, e) all the way to θk, after which we start again from sampling θ1. It can be
shown that the resulting Markov chain has stationary distribution P (θ1, ..., θk|e).

Gibbs Sampling is very popular owing to its simplicity. However, one of the major
obstacles with Gibbs Sampling is to decide on a stopping criterion.

2.4 Latent Dirichlet Allocation

Latent Dirichlet Allocation is a generative Bayesian model that describes a joint distribu-
tion over the topics and words in a document corpus. It was introduced by Blei et. al. in
[15]. Each word in each document is associated with a hidden topic. Let the total number
of topics be T , the total number of documents be D and the total words in the vocabulary
be W . The number of words in document d is Nd. We denote the hidden topic of the nth

word by tn. Then the model is is parametrized by the following distributions

• Word-Topic Distribution Each document d is represented by a multinomial topic
distribution θd = {θd,1, . . . , θd,T} where θd,t is the probability of topic t in document
d.

16

• Document-Topic Distribution The distribution over words given a particular
topic t is called the Topic-Word distribution and is denoted by φt = {φt,1, . . . , φt,W},
where W is the total number of words in the dictionary.

Each θd is usually modeled as a multinomial distribution and is sampled from a prior
f(θd;α). For LDA the prior is a Dirichlet distribution of the form

Dir (θd, αd) =
Γ(
∑T

i=1 αd,i)∏T
i=1 Γ(αd,i)

n∏
i=1

θ
αd,i−1

d,i 0 ≤ θd,i ≤ 1
∑
i

θd,i = 1 (2.13)

For a corpus, each φt is sampled from another prior g(φt; β) which is a dirichlet parmater-
ized by β. The nth word in document d can be generated by first sampling a topic t from
θd and then sampling a word wn from φt. We will use the following terminology frequently
for notational convenience

Θ = {θ1, . . . , θD}

Φ = {φ1, . . . , φT}.

wa:b = wa, wa+1 . . . wb a sequence of words from time a to b

ta:b = ta, ta+1 . . . tb a sequence of hidden states from time a to b

Pn (Θ,Φ) = Pr (Θ,Φ|w1:n)

kn = Pr (wn|w1:n−1)

cn = Pr (w1:t)

2.4.1 Learning and Inference

In LDA, given a corpus, we are interested in identifying the mixture of topics pertaining
to a particular document and estimating Θ and Φ. We can use Bayes rule to estimate Θ
and Φ for a corpus by computing the posterior Pn(Θ,Φ) = Pr(Θ,Φ|w1:n) using Bayesian

17

Learning. If the nth word wn lies in document d, the posterior can be calculated by

Pn(Θ,Φ) = Pr(Θ,Φ|w1:n) (2.14)

=
∑
t

Pr(Θ,Φ, tn = t|w1:n)

=

∑
t Pr(tn=t|θd) Pr(wn|tn=t, φt) Pr(Θ,Φ|w1:n−1)

Pr(wn|wn−1)

=
1

kn

∑
t

θd,tφt,wnPn−1(Θ,Φ)

kn =
∑
t

∫
Θ

∫
Φ

θd,tφt,wnPn−1(Θ,Φ)dΘdΦ (2.15)

Let the prior P0(Θ,Φ) = f(Θ,Φ|α, β) be a distribution in θs and φs where α and β are
sets of parameters of the distribution f . Then according to Eq. 2.14 the number of terms
in the posterior grows by a factor of T after each word due to the summation over t. After
n words, the posterior will consist of a mixture of T n terms, which is intractable.

2.5 Dynamic Bayesian Networks

Dynamic Bayesian Networks are generative Bayesian models that describes a joint distri-
bution over sequential data. Evidence is acquired at every time step and based on this
evidence the values of the hidden variables are updated.

2.5.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a DBN in which each observation et is associated with
a hidden state yt that depicts some quantity of interest that is not observable directly. An
HMM is shown in Figure 2.2. In HMMs, the Markov assumption states that the current
state is only dependent on the state at the previous time step. The Stationary process
assumption states that the model parameters do not change over time. This setting is use-
ful in many domains, including activity recognition, speech recognition, natural language
processing. In activity recognition, activities are the hidden states and sensor measure-
ments are the observations. The user performs a sequence of activities that are not directly
observable but can be measured through sensors. Since the activities are not scripted nor
directly observable, then we are faced with an unsupervised learning problem. It may also

18

be desirable to learn the model parameters as the activities are performed, meaning that
learning should be done in an online fashion. We denote the number of states by N and
the number of observations by M . There are two distributions that represent this model

• Transition Model: The transition distribution models the change in the value of
the hidden state over time. The distribution over the current state Yt given that the
previous state is y is denoted by θy = Pr (Yt|Yt−1 = y) where θy = {θy,1, . . . , θy,N}
and θy,i = Pr (Yt = i|Yt−1 = y) is the probability that the current state is i given that
the previous state was y.

• Observation Model: The observation function models the effect of the hidden state
on the observation at any given time t. The distribution over observations given a
particular state is denoted by φy = Pr (Et|Yt = y) where φy = {φy,1, . . . , φy,M} and
φy,e = Pr (Et = e|Yt = y) is the probability that observation e is seen if the current
state is y.

To generate the observation sequence, for each y ∈ {1, . . . , N} we first sample θy from
a prior f (θy;αy) and φy from another prior f (φy; βy). Then we generate each observation
by first sampling the current state y′ from θy where y is the state sampled at the previous
time step and then sample an observation e from φy′ .

We will use the following terminology frequently for notational convenience

Θ = {θ1, . . . , θN}
Φ = {φ1, . . . , φN}.
α set of hyperparameters for the transition distribution

β set of hyperparameters for the observation distribution

ea:b = ea, ea+1 . . . eb a sequence of evidence from time a to b

ya:b = ya, ya+1 . . . yb a sequence of hidden states from time a to b

Pt (Θ,Φ) = Pr (Θ,Φ|e1:t)

P y
t (Θ,Φ) = Pr (Θ,Φ|Yt = y, e1:t)

kyt = Pr (Yt = y, et|e1:t−1)

kt = Pr (et|e1:t−1)

cyt = Pr (Yt = y|e1:t)

ct = Pr (e1:t)

19

α��
��
?

θ��
��
���������)

�
��	

@
@@R

XXXXXXXXXXXz

Pr (Y0)

?

β��
��

- φ��
��@
@@I

�
���

���
���

���
�:

��
��

��
��

��
��

Y0 Y1 Y2 ��
��
Yn

��
��

��
��

E1 E2 ��
��
En

- - - -

? ? ?

Figure 2.2: A Bayesian Hidden Markov Model

2.5.2 Inference

There are 3 inference tasks that are typically performed with an HMM:

• Filtering : This is the task of computing the posterior over the hidden variables given
all previous evidence by integrating out the parameters Θ and Φ. Pr(Yt = y|e1:t,Θ,Φ)
can be computed using

Pr (Yt = y|e1:t,Θ,Φ) =
1

Pr (e1:t|Θ,Φ)
Pr (et|Yt = y,Φ)

N∑
i=1

Pr (Yt = y|Yt−1 = i,Θ)

(2.16)

Pr (Yt−1 = i|e1:t−1,Θ,Φ)

• Smoothing: This is the task of computing the posterior distribution over a past state
0 < k < t given all evidence up to time t: Pr (Yk = y|e1:t)

Pr (Yk = y|e1:t,Θ,Φ) =
1

Pr (e1:t|Θ,Φ)
Pr (Yk = y|e1:k,Θ,Φ) Pr (ek+1:t|Yk = y,Θ,Φ)

(2.17)

This is also called the Baum Welch algorithm. It is important to note this posterior
can not be computed online as it requires future observations. Pr (ek+1:t|Yk) can be

20

recursively calculated using

Pr (ek+1:t|Yk = y,Θ,Φ) =
N∑

Yk+1=1

Pr (ek+1|yk+1,Φ) Pr (ek+2:t|yk+1,Θ,Φ) (2.18)

Pr (yk+1|Yk = y,Θ)

• Most likely explanation: This is the task of computing the most likely sequence of
states that generated a particular sequence of observations argmaxy1:t Pr (y1:t|e1:t).
This is also called the ”Viterbi Algorithm”. It can be calculated using the following
recursive equation,

max
y1:t

(Pr (y1:t, Yt+1 = y|e1:t+1,Θ,Φ)) (2.19)

∝Pr (et+1|Yt+1 = y,Φ) max
yt

(
Pr (Yt+1 = y|yt,Θ) max

y1:t−1

(Pr (y1:t−1, yt|e1:t,Θ,Φ))

)

2.5.3 Bayesian Filtering

Filtering : In Bayesian Filtering, we compute the posterior over the hidden variables given
all previous evidence Pr(Yt = y|e1:t) by integrating Θ and Φ. We use the symbol cyt to
denote this posterior as defined in section 2.5.1. We will see later that in Bayesian Learning
for HMMs, this posterior will be used as a normalization constant.

cyt = Pr (Yt = y|e1:t) (2.20)

=
1

Pr (et|e1:t−1)

∫
Θ,Φ

Pr (et|Yt = y,Φ)
N∑
i=1

Pr (Yt = y|Yt−1 = i,Θ)

Pr (Θ,Φ|Yt−1 = i, e1:t−1) Pr (Yt−1 = i|e1:t−1) dΘdΦ

=
1

kt

∫
Θ,Φ

φy,et

N∑
i=1

θi,yP
i
t−1 (Θ,Φ) cit−1dΘdΦ

2.5.4 Parameter Learning

We will now discuss how to learn the parameters of an HMM.

21

• Supervised Maximum Likelihood Parameter Learning : If the values of both the hid-
den variables y1:T and the evidence e1:t are known, then learning from both sequences
is called ”supervised learning”. The optimal parameters Θ∗ and Φ∗ can be learned
from data by maximizing the log likelihood of the data.

Θ∗,Φ∗ = argmaxΘ,Φ log (Pr (y1:T , e1:T |π, θ, ψ)) (2.21)

subject to

N∑
y′=1

θy′,y = 1∀y ∈ {1, . . . , N}
M∑
e=1

φy,e = 1∀y ∈ {1, . . . , N}

This optimization problem has an analytical solution which we will discuss in subse-
quent chapters.

• Unsupervised Maximum Likelihood Parameter Learning : If the values of the hidden
variables are not available, then this is called unsupervised learning. Ideally we should
maximize

∑
y1:t

Pr (y1:T , e1:T |Θ,Φ) over Θ and Φ. However this results in a non convex
optimization problem. Instead, we use the ”Expectation Maximization Algorithm”
[13] which optimizes a convex approximation of this function by maximizing the
expected value of the log likelihood

Θi+1,Φi+1 = argmaxΘ,Φ

∑
y1:t

(
Pr
(
y1:T , e1:T |Θi,Φi

))
log (Pr (y1:T , e1:T |Θ,Φ)) (2.22)

subject to

N∑
y′=1

θy′,y = 1∀y ∈ {1, . . . , N}
M∑
e=1

φy,e = 1∀y ∈ {1, . . . , N}

Here we sum over all possible sequences y1:T where each yi = 1, . . . , N .

• Bayesian Learning in an HMM : In Bayesian Learning we calculate a posterior dis-
tribution over the parameters given a prior distribution and the data using

Pr (Θ,Φ|e1:t) =
∑
y

Pr (Θ,Φ|Yt = y, e1:t) Pr (Yt = y|e1:t) =
∑
y

P y
t (Θ,Φ) cyt (2.23)

22

Using Bayes Rule,

P y
t (Θ,Φ) (2.24)

= Pr (Θ,Φ|Yt = y, e1:t) =
Pr (Θ,Φ, Yt = y, e1:t)

Pr (Yt = y, e1:t)

=
Pr (et|Yt = y,Φ)

Pr (Yt = y, et|e1:t−1)

N∑
i=1

[
Pr (Yt = y|Yt−1 = i,Θ) Pr (Θ,Φ, Yt−1 = i|e1:t−1)

Pr (Yt−1 = i|e1:t−1)

]
= (1/kyt)φy,et

N∑
i=1

θi,yc
i
t−1P

i
t−1 (Θ,Φ)

where

kyt =

∫
Φ,Θ

φy,et
∑
i

θi,yc
i
t−1P

i
t−1 (Θ,Φ) dΦdΘ (2.25)

We can also calculate the posterior Pr (Yt = y|e1:t) = cyt = kyt /
∑

i k
i
t.

Let the prior P0 (Θ,Φ) = f (Θ,Φ|α, β) be some distribution in θs and φs where α and
β are the parameters of the distribution f . Then according to Eq. 2.24 the number
of terms in the posterior grows by a factor of N after each observation due to the
summation over i. After t observations, the posterior will consist of a mixture of N t

terms, which is intractable. In the next Chapters we will discuss how to approximate
this posterior in an online fashion.

2.6 Conditional Random Fields

Conditional Random Fields (CRFs) are an alternative to HMMs [46]. Unlike HMMs,
CRFs are discriminative, i.e., they model only the conditional distribution of the hidden
variables given the evidence. An important advantage of this approach is that there are
no assumptions on the distribution of the evidence.

Definition 2.6.1. A clique in an undirected graph is a subset of its vertices such that
every two vertices in the subset are connected by an edge.

23

Given a set of observable random variables E1:t and hidden variables Y1:t, a CRF can
be defined by a tuple (E, Y,G,F , λ). Here G is an undirected graph with vertices V
corresponding to the random variables and a set of cliques C that model the interactions
between them. F = (fC)C∈C is a family of real valued functions. For every clique C ∈ C
that has vertices EC and YC ,

fC : EC × YC → Rn(C) (2.26)

where n (C) ∈ {1, 2, . . .} is the dimension of the feature vector, EC is the set of all possible
assignments to nodes in EC and YC is the set of all possible assignments to nodes in YC .
For all C ∈ C, λC ∈ Rn(C) is a family of weights. Usually the feature functions of a CRF are
fixed while the weights are learned from data. The probability of Y1:T = y1:T conditioned
on e1:T is given by

Pr λ (y1:t|e1:t) =
1

Zλ (e1:t)
exp

{∑
C∈C

λCfC (eC , yC)

}
(2.27)

The normalization constant can be evaluated as

Zλ (e1:t) =
∑

y1:t∈Y1:t

exp

{∑
C∈C

λCfC (eC , yC)

}
(2.28)

2.6.1 Linear Chain CRF

In a linear chain CRF with observations e1:T and labels y1:T , the set of cliques C is given
by C = {{et, yt}∀t ∈ {1, . . . , T}} ∪ {{yt, yt−1},∀t ∈ {2, . . . , T}}. The CRF includes two
kinds of feature functions ft (et, yt) = f (et, yt) with weight λt = µ and ft−1,t(e1:t, yt−1, yt) =
g (yt−1, yt) with weight λt−1,t = ν.

Pr (y1:t|e1:t) =
1

Zλ (e1:t)
exp

{∑
C∈C

λCfC (eC , yC)

}
(2.29)

=
1

Zλ (e1:t)
exp

{
T∑
t=1

µf (et, yt) +
T∑
t=2

νg (yt−1, yt)

}

24

Inference

For inference in a CRF, let M be a |Y| × |Y| matrix, such that

Mt (i, j) = exp {µ f (et, j) + ν g (i, j)} (2.30)

We can use a Baum-Welch type procedure similar to the HMM and use the following
recursions to generate the forward and backward messages

αy (1) =µ f (e1, y) αy (t) =αt−1Mt t = 2, . . . , T (2.31)

βy (N) =1 βy (t) =αt−1Mt+1β
T
t+1 t = T − 1, . . . , 1 (2.32)

It can be shown that Zλ =
∑

y∈Y αy (T).

Parameter Learning

Learning the parameters of the CRF corresponds to learning the weights µ and ν of each
feature function. We setup the following optimization problem to maximize the conditional
log likelihood of the data

arg maxµ,ν

(
− log (Zλ (e1:T)) +

T∑
t=1

µ f (et, yt) +
T∑
t=2

ν g (yt−1, yt)−
λTλ

2σ2

)
(2.33)

The last term on the right hand side is a regularizer which penalizes large weights. In a
Bayesian framework, it can be regarded as a Gaussian prior with mean 0, variance σ2 and
all weights are uncorrelated. This is a convex optimization problem and can be solved
using gradient based search.

25

Chapter 3

Related Work

In this chapter, we review some of the techniques that have been previously used for
Bayesian learning. We also review the literature in the context of Latent Dirichlet Alloca-
tion Models as well as models for activity recognition with instrumented devices.

3.1 Parameter Learning for Latent Dirichlet Alloca-

tion

One of the main challenges in Bayesian learning is that the posterior distribution can
become very complex as new information becomes available. In some cases, the posterior
can be an exponentially large mixture of distributions. Hence representing the posterior
and calculating its statistics can be computationally expensive. Typically algorithms aim
to construct an approximate posterior.

We have described Gibbs Sampling [52] briefly in the previous section. Griffiths et. al.
[34] use Gibbs Sampling to estimate the parameters of the LDA model. Gibbs Sampling
is popular for its simplicity and its ability to produce good estimates. The algorithms
passes over the data multiple times, however to process each observation, it only requires
O(n) time where n is the number of hidden states. One of the major weaknesses of Gibbs
Sampling is that convergence of the Markov chain is difficult to detect reliably. In addition
to that, the stochastic nature of the algorithm leads to estimates that vary with each run.

Another popular class of techniques called Variational Bayesian techniques construct
an approximation to the posterior by minimizing the KL divergence between the exact

26

posterior and a simpler distribution. The latent nature of the hidden variables leads to
a non-convex optimization problem, therefore, instead of minimizing the KL divergence,
an upper bound of the KL divergence is optimized. For LDA Variational Bayes exploits
the exchangeability assumption and is able to process multiple occurrences of the same
word in a document at the same time. Variational Bayes methods can be much faster than
sampling based approaches but tend to underestimate the posterior variance[14]. Blei et.
al. [15] have utilized Variational Bayesian techniques to learn the parameters of the LDA
Model.

Spectral learning algorithms([8],[7],[16],[42]) are based on spectral decomposition of mo-
ment matrices or other algebraic structures of the model. In Excess Correlation Analysis
[7] the parameters are estimated by matching the moments of the model with the empirical
moments. The technique is computationally simple (e.g., matrix operations and singular
value decomposition) and it ensures consistency. Despite its theoretical guarantees, ECA
often generates negative probabilities. This arises from the fact that ECA does not en-
force non-negative solutions (which would be NP-hard) and the empirical moments are
necessarily approximations of the true underlying moments.

Most of the above mentioned algorithms require the complete data to be present in
the memory at the time of learning and usually require the model to be retrained if new
data arrives. This can be problematic for large data sets and applications where new
data becomes available frequently. The Moment Matching algorithm that is proposed in
this thesis is an online technique which means that updating the model parameters after
receiving each new observation requires a constant amount of time.

3.1.1 Online Parameter Learning for LDA

More recently, online versions of some of the algorithms mentioned above have been devel-
oped that are able to incorporate new information without retraining the complete model.
The Online Variational Bayes algorithm [40] and the sparse stochastic online inference algo-
rithm [54], both utilize online stochastic optimization to compute an approximate posterior
distribution for LDA. At each iteration, these methods sample some documents from the
corpus and then update the parameters by taking a step in the direction of the gradient
that minimizes KL divergence between the approximate posterior and the exact poste-
rior. The authors show that the algorithm converges to a local optimum of the variational
bound. However, these algorithms suffer from the same limitation as offline Variational
Bayes. In addition to that, the approximation produced by these algorithms is only as
good as a single pass of the Variational Bayes algorithm and therefore they require a lot
of data to produce reasonable estimates.

27

3.2 Activity Recognition for Instrumented Walker

There has been some previous work for activity recognition with instrumented walkers. In
[6] the authors describe a method that assesses basic walker assisted gait characteristics.
Their model is based on the measurement of weight transfer between the user and the
walker by two load cells in the handles of the walker. They use a total of 8 participants
for their experiments with each users performing a total of 50 experiments emulating 16
navigational scenarios including walking, turns and docking to a chair. A simple thresh-
olding approach is used to detect peaks and valleys in the load measurements, which are
assumed to be indicative of certain events in the gait cycle. This work focuses on low level
gait statistics where as we are interested to recognize complex high level activities. Hirata
et. al. [39] instrumented a walker with sensors and actuators. They recognize three user
states: walking, stopped and emergency (including falling). These states are inferred based
on the distance between the user and the walker (measured by a laser range finder) and
the velocity of the walker. This work is limited to the three states mentioned above and
would not be able to differentiate between activities that exhibit roughly the same velocity
and distance measurements (e.g., walking, turning, going up a ramp).

A significant amount of work has been done on activity recognition in other contexts.
In particular, Liao et. al. [49] use a Hierarchical Markov Model to learn and infer a
user’s daily movements through an urban community. The model uses multiple levels of
abstraction in order to bridge the gap between raw GPS sensor measurements and high
level information such as a user’s destination and mode of transportation. They use Rao-
Blackwellized particle filters for state estimation.

Patel et. al. [62] have designed a walker equipped with the following sensors namely,
IRt (Infra-red Torso), IRw (Infra-red Waist), LSG (Left Strain Gauge), RSG (Right Strain
Gauge), RF (wireless Radio Frequency switch), LOC (Localisation) and TOD (Time-of-
Day). They generate artificial data for a users navigating through a home. They use a
Dynamic Bayesian Network and an SVM to do activity recognition. Their work is inspired
by the work presented in Chapter 6 and in [61].

3.2.1 Parameter Learning in HMM

Parameter Learning in time series data is a challenging problem. Many of the methods
described in the previous section have also been used for parameter learning in HMMs.
Beal [11] has used Variational Bayes to learn the parameters of an HMM with discrete
hidden states and observations in an offline fashion.

28

A popular class of methods for learning the parameters of an HMM is a technique
called Expectation Maximization which finds point estimates of the parameter values such
that the expected likelihood of the observed data is maximized [13]. We have introduced
this algorithm in the previous section. In expectation maximization, a concave under-
estimator of the log likelihood is maximized. Expectation Maximization is also an offline
technique which means that the full data is required to be in the memory for learning
and multiple passes are required for the algorithm to converge. EM is useful for several
reasons: conceptual simplicity, ease of implementation, and the fact that each iteration
improves the value of the parameters. The rate of convergence on the first few steps is
typically quite good, but can become slow as you approach a local optimum. Generally,
EM works best when the fraction of missing information is small and the dimensionality
of the data is not too large. EM can require many iterations, and higher dimensionality
can dramatically slow down the E-step [69].

An online version of the Expectation Maximization algorithm for discrete Hidden
Markov Models has been developed by Mongillo et. al. [57]. Cappe et. al. have also
derived an online EM algorithm for HMMs with Gaussian observation distribution. Both
of these require O(n4 + n3 ×m) operations at every time step where n is the number of
hidden states and m is the number of observations. In comparison to this, I have pro-
posed a version of the Moment Matching algorithm that only requires O(n) operations at
every time step. Both Mongillo and Cappe provide a limited analysis of their work using
synthetic data with n = 2.

Foti et. al [28] have also derived an Online Variational Bayes algorithm for learning
the parameters of an HMM with discrete states and Gaussian observation distribution. In
order to break the dependencies in the chain, they consider mini-batches of observations
which seems natural in Bayes nets where the exchangeability assumption holds, however for
HMMs it creates edge cases and breaks dependencies between consecutive hidden states
at the start and end of a mini-batch. In order to tackle this, Foti, et. al. buffer some
observations before and after the mini-batch and make the assumption that the sub-chain
is representative of the full time series chain. Their algorithm harnesses the memory decay
of the chain to adaptively bound errors arising from edge effects. They have demonstrate
the effectiveness of their algorithm on synthetic experiments and a large genomics dataset.
In their implementation, they assume a Gaussian observation distribution which allows
them to make efficient updates at every time step.

29

3.3 Assumed Density Filtering

The moment matching algorithm described in this thesis is very close to Assumed Density
Filtering. In Assumed Density Filtering, KL divergence between an approximate posterior
and the exact one is minimized [55]. This leads to matching the natural moments of the
distribution. Alamino et. al [5] have explored this approach to learn the parameters of a
discrete HMM with Dirichlet priors. For Dirichlet priors, matching the natural moments
involves solving multiple systems of non linear equations which is a computationally in-
tensive process. The authors have suggested matching the first and second order moments
which can be done by solving a linear system of equations that have an analytical solution.
However, they do not provide any explanation for why this is a good idea and how this will
affect the convergence properties of the algorithm. In addition to that, they do not handle
the state switching problem that we have described previously. In this thesis, I provide an
alternative argument for matching the first and second order moments. Matching the first
and second order moments allows us to define higher order moments in terms of an implicit
prior such that if we did exact inference with respect to the implicit prior, then the value
first order moment of the posterior will be the same as the one acquired by starting with a
different prior and doing moment matching to compute the posterior. In addition to that,
each new observation can be incorporated in time linear in the number of hidden states
which has not been discussed before in terms of ADF. I also provide an explicit treatment
for state switching that is ignored in ADF.

Minka et. al.[55],[56] have proposed an algorithm called Expectation Propagation where
they use an iterative technique that repeatedly approximates the posterior over all hidden
variables with a simple distribution by matching a few moments of the posterior for in-
ference. This step is then embedded in an EM algorithm for learning. The convergence
properties of this approach are not well understood and when convergence arises it is very
slow. In practice the algorithm is very slow and does not scale well to large data sets for
the case of LDA.

All of the above techniques have been used with success in practice, however they are
each approximate and further approximations must be done to obtain online algorithms
that perform a single scan of the data. In this thesis, I present an online Bayesian moment
matching (BMM) technique which is simple to implement and it outperforms existing
techniques both in terms of accuracy and time and is exact with respect to an implicit
prior. In the next chapter I will describe the motivation and framework for Bayesian
Moment Matching.

30

Chapter 4

Online Bayesian Learning Using
Moment Matching

In this chapter I describe a technique for Bayesian learning called Bayesian Moment Match-
ing (BMM) which is based on Assumed Density Filtering (ADF). The main idea is to update
the posterior exactly after each observation and then approximate this exact posterior with
fewer terms in order to prevent the number of terms from growing exponentially. As we
will see in later chapters this is a reasonable approximation since there exists a set of initial
distributions (different from the prior) for which exact inference yields the same moments
as Bayesian Moment Matching.

4.1 Moments

In Mathematics, a moment is, loosely speaking, a quantitative measure of the shape of
a distribution. The first raw moment, or simply the first moment, is referred to as the
distribution’s mean. For this work, we use an extended definition of moments. Let f(x;α)
be a distribution over an N-dimensional random variable x = {x1, . . . , xN} and µ(x) be a
function of x Then the moment Mµ(f) is the expectation of µj(x) with respect to f :

Mµj(f) =

∫
x

µj(x)f(x)dx (4.1)

In the rest of the thesis, we shall use µj instead of µj(x) as a short hand. If µ is a
monomial of degree j of the form µj(x) =

∏
i x

ni
i such that

∑
i ni = j, then we call

31

it a jth order moment of the distribution. For example if f is the Beta distribution,
f(x) = Beta(x;α1, α2) = kθα1 (1− θ)α2 , its order 1 moment (also called the mean) and its
order 2 moment can be calculated using

Mx (Beta) =
α1

α1 + α2

(4.2)

Mx2 (Beta) =
α1

α1 + α2

α1 + 1

α1 + α2 + 1
(4.3)

Another interesting moment Mlog(x) can be calculated as

Mlog(x) (Beta) = ψ (α1)− ψ (α1 + α2) (4.4)

Where ψ is called the digamma function.

4.1.1 Sufficient Set of Moments

For some distributions f , there exists an alternative parametrization of the distribution
based on a set of sufficient moments. For example for the Beta distribution, it is easy to
set up a linear system of equations using Mx and Mx2 to calculate α1 and α2. Making this
definition more concrete

Definition 4.1.1. For some distributions f there exists a set of monomials S(f) such that
for ∀µ ∈ S(f), knowing Mµ(f) allows us to calculate the parameters of f .

For example for the Beta distribution S(f) = {x, x2}. Note that S (f) is not unique.
There may exist multiple sufficient sets for a particular distribution. For example, in
case of the Beta distribution, S(f) = {log(x), log(1− x)} is also sufficient to calculate its
parameters.

4.2 Moment Matching

In this section, we describe a moment matching technique for Bayesian learning. The
algorithm approximates the posterior after each observation with fewer terms in order to
prevent the number of terms to grow exponentially. Let the prior P0 (Θ) = f (Θ|α) be such
that the sufficient set of moments of f exists and is denoted by S (f). Then the posterior
over the parameters of interest Θ after seeing t observations is denoted by Pt (Θ).

32

Alg. 1 describes a generic procedure to approximate the posterior Pt after each observa-
tion with a simpler distribution Qt by moment matching. More precisely, a set of moments
sufficient to define Qt are matched to the moments of the exact posterior Pt. In Line 4, we
calculate the exact posterior Pt(Θ) based on the tth observed data point. Then, we compute
some moments of Pt in Line 5. Specifically, for each µ ∈ S(f), we calculate the moments
Mµ(Pt) of the posterior exactly. In line 6 we compute the parameters α of a distribution
Q that belongs to the same family as f (Θ|α) based on the set of sufficient moments. This
determines a specific distribution Qt in the family f that we use to approximate Pt in line
7. Note that the moments in the sufficient set S(f) of the approximate posterior are the
same as those of the exact posterior. However, the moments outside of the sufficient set
are not necessarily the same. Although the presence of moments that differ suggests an
approximation, we will show in the next chapter that in the case of LDA and HMMs, there
exists a set of priors for which exact inference would arrive at the same moments at every
step.

Algorithm 1 genericMomentMatching

1: Let f(Θ|α) be a family of distributions with parameters α
2: Initialize the prior P0(Θ)
3: for t = 1 to T do
4: Compute Pt(Θ) from Pt−1(Θ) exactly
5: For ∀µ ∈ S(f), compute Mµ(Pt)
6: Compute αt from the Mµ(Pt)’s
7: Approximate Pt with Qt(Θ) = f(Θ|αt)
8: end for

Family of Approximating Distributions

In theory f could belong to any family of distributions for which we can calculate a sufficient
set of moments. A convenient choice of prior is usually the conjugate prior for the likelihood
function. If the likelihood is an n-dimensional multinomial distribution of the form

Mult (x1, . . . , xn; θ1, . . . , θn) = k
∏
i

θxii (4.5)

then a convenient choice for the conjugate prior is the family of Dirichlet distributions

Dir(θ1, . . . , θn;α1, . . . , αn) = k
∏
i

θαii , k =
Γ(
∑

t αt)∏
i Γ(αi)

(4.6)

33

Elements of the family of Dirichlet distribution can be parametrized by the hypercounts α.
Given the values of αi’s, we can calculate some important moments of the Dirichlet using
the following equations

M∏
i θ
ni
i

(f) =

∫
θ

∏
i

θnii f(θ)dθ =
Γ(
∑

i αi)

Γ(
∑

i αi + ni)

∏
i

Γ(αi + ni − 1)

Γ(αi)
(4.7)

Mlog(θi)(f) =

∫
θ

log(θi)f(θ)dθ = ψ (αi)− ψ

(∑
i

αi

)
(4.8)

4.2.1 Moment Matching for the Dirichlet Distribution

In our moment matching algorithm, the prior lies in the family of Dirichlet distributions.
After seeing the first observation, Algorithm 1 will update the exact posterior. Depending
on the form of the likelihood function, the posterior may not lie in the family of Dirichlet
distributions. We then project the posterior back into the family of Dirichlet distributions
to keep the computation bounded. Approximating a mixture of Dirichlets with a single
Dirichlet at each step is a reasonable thing to do for two reasons. First, since exact Bayesian
learning is consistent in this setting, it will converge in the limit (i.e., infinite amount of
data) to a Dirac distribution at the true underlying parameters. Hence, it is reasonable
to approximate a multimodal mixture of Dirichlets with a single unimodal Dirichlet since
the exact posterior becomes unimodal in the limit. Second, we will later show that for a
certain sufficient set of moments, the moments calculated by BMM at each step are exact
with respect to a set of initial distributions. We are deliberately using the expression initial
distributions instead of priors since this set of initial distributions can only be determined
after seeing some of the data and therefore the initial distributions are not priors in the
Bayesian sense. We will now describe some sufficient sets of moments for the family of
Dirichlet distributions and discuss the pros and cons of using them for moment matching.

Moment Matching by Minimizing KL Divergence

When we project the posterior to the family of Dirichlet distributions, we want to make
sure that the projection is as close to the true posterior as possible. Here we describe a
sufficient set of moments for the Dirichlets such that if we match those moments, the KL
divergence between the Dirichlet and the distribution to be approximated is minimized.

Definition 4.2.1. The exponential family of distributions is a class of distributions sharing
a certain form given by f (θ1, .., θn|α1, .., αn) = h (θ) exp {

∑
i ηi (α) .Ti (θ)− A (α)}. T (θ)

is also called the sufficient statistic.

34

We can represent the Dirichlet distribution as a member of the exponential family by
setting ηi (α) = αi, h (θ) = 1, Ti (θ) = log (θi)

Dir(θ1, . . . , θn;α1, . . . , αn) = exp

{∑
i

αi log (θi) + log (k)

}
(4.9)

In [38], Herbrich shows that for any distribution Q that is a member of the exponential
family of distributions, the distribution P which minimises the Kullback-Leibler divergence,
KL (Q||P) is implicitly given by∫

Ti (θ)Q (θ|α) dθ =

∫
Ti (θ)P (θ) dθ (4.10)

For the Dirichlet distribution, this expression becomes

Mlog(θi) (Dir) = Mlog(θi) (P) (4.11)

This implicitly gives us a set of moments S (f) {log(θi); 1 ≤ i ≤ n} such that if we project
a distribution P onto the family of Dirichlet distributions by calculating the moments in
S (f) with respect to P and then set them equal to those of Q which is a Dirichlet, then
the KL divergence between the Q and P will be minimized. However it still remains to be
shown that this set is sufficient to calculate the parameters αis of the Dirichlet distribution.
To this end, Alamino et. al. [5] use equations 4.8 and 4.11

αi = ψ−1

(
Mlog(θi) (P) + ψ

(∑
i

αi

))
(4.12)

Summing this equation for all i, we get

∑
i

αi =
∑
i

ψ−1

(
Mlog(θi) (P) + ψ

(∑
i

αi

))
(4.13)

This gives us an iterative procedure to compute α0 =
∑

i αi

αt+1
0 =

∑
i

ψ−1
(
Mlog(θi) (P) + ψ

(
αt0
))

(4.14)

This value can be substituted back in equation 4.12 to compute each αi.

35

Matching First and Second Order Moments

Given that the observation distribution is informative, after seeing a very large number of
observations, most of the weight of the posterior will be concentrated at one point which
will correspond to the mean of the posterior at that time step. Therefore, another way
of projecting this posterior to the manifold of Dirichlets is that instead of minimizing KL
divergence, we want a projection such that the mean of the approximate posterior is as close
as possible to the mean of the exact posterior. In order to do this we use a different set of
sufficient moments namely S (f) = {θi; 1 ≤ i ≤ n, θ2

1} 1. We can use Eq. 4.7 to set up the
following system of equations and solve it analytically to calculate the hyperparameters of
the approximate Dirichlet distribution. We can determine the parameters αt of a Dirichlet
based on those moments by setting up a system of equations.

Mθi(f) =
αi∑
t αt

∀i ∈ {1, . . . , n− 1}

Mθ21
(f) =

α1(α1 + 1)

(
∑

t αt)(
∑

t αt + 1)

This gives us n equations in n variables that can be solved analytically as follows

αi = Mθi(f)
Mθ1(f)−Mθ21

(f)

Mθ21
(f)− (Mθ1(f))2

∀t (4.15)

Note that we can use any second order moment instead of θ2
1 in order to solve this system

of equations analytically.

4.3 LDA with known Observation Distribution

To illustrate our idea further, let’s consider a special case of the LDA model described in
2.4. There are 2 topics and the number of words in the vocabulary is 2. We assume that
the observation model parameters φ are known and there is a single document for which
we are estimating the probability of topic 1 which is equal to θ. We use the family of
Dirichlets to approximate the posterior after each observed word. The exact posterior Pn
after observing wn is

Pn(θ) = (1/kn) (θφ1,wn + (1− θ)φ2,wn)Pn−1(θ) (4.16)

1We can’t use all T first-order moments since the last moment is one minus the sum of the other
moments, which will lead to a redundant linearly dependent equation.

36

At every time step we can approximate this posterior by a Dirichlets either by matching
the Mlog(θ) or by matching Mθ. Let the approximation constructed with respect to Mlog(θ)

be denoted by Q (θ) and the approximation with respect to Mθ be denoted by Q′ (θ). In
Figure 4.1, we plot the expected value of θ for Q and Q′ vs. the number of observations
used for learning with a randomly generated sequence. The graph shows that Q (θ) is very
close to Q′ (θ) in terms of its mean.

In case of computing the new hypercounts by matchingMθ andMθ2 , we have to compute
2 moments at every time step. Each of these moments can be computed by summing up
2 terms. Therefore the complexity of computing the posterior after every observation is
constant and is O(4). If the total length of the sequence is T , then the total complexity
becomes O(4T). In contrast if we do moment matching by matching Mlog(θ), we have to
solve the iterative equation 4.14. We are not aware of any convergence results for solving
this iterative equation. In practise it tends to converge slowly. Also at each iteration, we
have to compute ψ−1 and ψ which is time consuming. Let the process of solving equation
4.14 be O(Li) for time step i. Then the total computation becomes O(

∑T
i=1 Li). In our

simple example, it takes 56 seconds to process all observations if we match Mθ whereas it
takes about 30 minutes if we match Mlog(θ).

In light of the previous discussion, we can see that even though we have guarantees of
minimizing KL divergence if we do moment matching by matching Mlog(θ), in practise, it
tends to be slow and the computation at every time step is not constant. Also in practise,
the resulting posterior obtained by matching Mlog(θ) is very close in expectation to the
posterior obtained if we do moment matching using Mθ. In this simplified version of the
LDA model, we only learn the document-topic distribution. Later when we will learn the
word-topic distribution as well, we encounter the label switching problem. In the next
chapter we will discuss this problem in detail and show that if we do moment matching
with respect to Mlog(θ), is that we are unable to deal with the label switching.

In this chapter I have described a moment matching algorithm BMM for online Bayesian
Learning such that the computation at each step is computationally bounded. I have
provided the motivation for why the Dirichlet prior is suitable for this algorithm and how
we can compute the projections of distributions onto a family of Dirichlet distributions. In
later chapters, this technique will be applied on two real world problems i.e. topic modeling
and activity recognition.

37

Figure 4.1: Expectation of θ with respect to the approximate posterior vs. the number of
observations. Q (θ) is the approximate posterior learnt by matching Mlog(θ) where as Q′ (θ)
is the approximate posterior learnt by matching M(θ). The true value of θ used to generate
the observations is 0.7.

38

Chapter 5

Topic Modeling

In this chapter, I have described an algorithm for topic modeling based on the Bayesian Mo-
ment Matching algorithm discussed in Chapter 4. The main contributions in this chapter
are

• Derive an algorithm for Bayesian learning of topic models using moment matching
called Bayesian Moment Matching (BMM)

• Show that there exists an initial distribution (different from the prior) for which exact
Bayesian Learning yields the same first order moment in the posterior as BMM

• Show how to handle state switching in BMM

• Derive an efficient version of the BMM where the posterior is computed in time linear
in the number of topics at each time step

• Compare the performance of BMM with other state of the art algorithms used for
topic modeling on synthetic and real data from twitter feeds

5.1 Latent Dirichlet Allocation

Recall the LDA model described in Section 2.4. In LDA, each word in each document is
associated with a hidden topic. Let the total number of topics be T , the total number of
documents be D and the total words in the vocabulary be W . The number of words in
document d is Nd. The hidden topic of the nth word is denoted by tn. Then the model is
is parametrized by the following distributions

39

α��
��
?

θ��
��
���������)

�
��	

@
@@R

XXXXXXXXXXXz

Pr (Y0)

?

β��
��

- φ��
��@
@@I

�
���

���
���

���
�:

��
��

��
��

��
��

T0 T1 T2 ��
��
Tn

��
��

��
��

W1 W2 ��
��
Wn

? ? ?

Figure 5.1: Latent Dirichlet Allocation Topic Model

• Word-Topic Distribution Each document d is represented by a multinomial topic
distribution θd = {θd,1, ..., θd,T} where θd,t is the probability of topic t in document d.

• Topic-Topic Distribution The distribution over words given a particular topic t
is called the Topic-Word distribution and is denoted by φt = {φt,1, . . . , φt,W}, where
W is the total number of words in the dictionary.

Each θd is sampled from a prior f(θd;α). For a corpus, each φt is sampled from another
prior g(φt; β). The nth word in document d can be generated by first sampling a topic t
from θd and then sampling a word wn from φt. The following terminology is reintroduced

Θ = {θ1, . . . , θD}
Φ = {φ1, . . . , φT}.
wa:b = wa, wa+1 . . . wb a sequence of words from time a to b

ta:b = ta, ta+1 . . . tb a sequence of hidden states from time a to b

Pn (Θ,Φ) = Pr (Θ,Φ|w1:n)

kn = Pr (wn|w1:n−1)

Recall that the exact posterior for LDA after seeing n words can be calculated using
the following equation

Pn(Θ,Φ) = Pr(Θ,Φ|w1:n) =
1

kn

∑
t

θd,tφt,wnPn−1(Θ,Φ) (5.1)

kn =
∑
t

∫
Θ

∫
Φ

θd,tφt,wnPn−1(Θ,Φ)dΘdΦ (5.2)

40

Here θd,t is the probability that the document d is about topic t and φt,w is the probability
that word w is related to topic t. Any moment Mµ (Pn) can be calculated using

Mµ(Pn) =

∑
tMµ θd,tφt,wn (Pn−1)∑
tMθd,tφt,wn (Pn−1)

(5.3)

Here Mµ θd,tφt,wn (Pn−1) denotes the moment associated with the monomial µ θd,tφt,wn ob-
tained by multiplying µ(Θ,Φ) by θd,t and φt,wn .

Algorithm. 2 is the adaptation of Algorithm. 1 to the LDA model by specifying a
set of equations to compute the exact posterior at each time step in line 4. It describes
a generic procedure to approximate the posterior Pn after seeing each new word with a
simpler distribution Qn by moment matching. A set of moments sufficient to define Qn

are matched to the moments of the exact posterior Pn. Next, we compute the parameters
α and β based on the set of sufficient moments. This determines a specific distribution Qn

in the family f that was used to approximate Pn.

Algorithm 2 genericMomentMatching

1: Let f(Θ,Φ|α, β) be a family of distributions with parameters α and β
2: Initialize the prior P0(Θ,Φ)
3: for n = 1 to N do
4: Compute Pn(Θ,Φ) from Pn−1(Θ,Φ) (Eq. 5.1)
5: For ∀µ ∈ S(f), compute Mµ(Pn)
6: Compute α and β from the Mµ(Pn)’s
7: Approximate Pn with Qn(Θ,Φ) = f(Θ,Φ|α, β)
8: end for

5.2 Known Topic-Word Distribution Case

Let’s illustrate Alg. 2 with a simplified version of the problem in which the topic-word
distributions Φ are known. In this case, the topic distribution θd of each document can
be estimated separately. So I focus on the estimation of the topic distribution for a single
document. To simplify the notation, the index d is dropped and this topic distribution is
generically denoted by θ. f can be chosen to be any distribution in the family of Dirichlets
f(θ) = Dir(θ;α). Any moment of the posterior can be calculated using

Mµ(Pn) = (1/kn)
∑
t

φt,wnMµ θt(Pn−1) (5.4)

41

Note that this equation is different from Eq. 5.3 because Φ is known. We calculate the
sufficient set of moments of the posterior S (f) {log(θi); 1 ≤ i ≤ n}. For j = {1, . . . , T − 1}

Mlog(θi)(Pn) = (1/kn)
∑
t

φt,wn
αt∑
t′ αt′

(
ψ (αt + δ(t, i))− ψ

(∑
t′

αt′ + 1

))
(5.5)

Eq. 4.14 can then be used to determine the αt’s of the approximating distribution
Qn(θ) = f(θ;α). Let the computation complexity of solving equation Eq. 4.14 iteratively
be O(L), then the computational complexity of the moment matching process is O(NLT 2)
as there are N iterations in which each word is processed by updating the hyper-parameters
of the approximating Dirichlets in O(LT 2) time. In practice, however, L tends to be large
and the convergence of the iterative process is very slow.

An alternate S (f) can also be used as described in the previous section where S (f) =
{θi; 1 ≤ i ≤ n, θ2

1} . For each i

Mθi(Pn) = (1/kn)
∑
t

φt,wnMθiθt(Pn−1) (5.6)

= (1/kn)
∑
t

φt,wn
αt∑
t′ αt′

αt + δ(t, i)∑
t′ αt′ + 1

Mθ21
(Pn) = (1/kn)

∑
t

φt,wnMθ21θt
(Pn−1) (5.7)

= (1/kn)
∑
t

φt,wn
αt∑
t′ αt′

αt + δ(t, 1)∑
t′ αt′ + 1

αt + δ(t, 1) + 1∑
t′ αt′ + 2

We can then use Eq. 4.15 to determine the αt’s of our approximating distribution
Qn(θ) = f(θ;α). This process is summarized in Alg. 3. The computational complexity of
Alg. 3 is O(NT 2). This is an online algorithm since the data is processed in a single sweep,
the amount of computation to process each word is independent of the amount of data,
and we obtain an estimate of the parameters (in the form of an approximate posterior)
after processing each word.

5.2.1 Analysis

In this section, I will show that the moments calculated by BMM using S (f) = {θi; 1 ≤
i ≤ n, θ2

1} are exact with respect to a set of initial distributions. I am deliberately using

42

Algorithm 3 momentMatching (known Φ)

1: Let f(θ|α) be the family of Dirichlets
2: Initialize P0(θ) = Dir(θ;α)
3: for n = 1 to N do
4: Compute Pn(θ) from Pn−1(θ)
5: ∀t ∈ {1, . . . , T − 1}, compute Mθt(Pn) (Eq. ??)
6: Compute Mθ21

(Pn) using Eq. ??
7: ∀t ∈ {1, . . . , T} compute ᾱt using Eq. 4.15
8: Approximate Pn with Qn(θ) = Dir(θ; ᾱ)
9: end for

the expression initial distributions instead of priors since this set of initial distributions can
only be determined after seeing some of the data and therefore the initial distributions are
not priors in the Bayesian sense. Nevertheless, this analysis is helpful to understand the
nature of the approximation performed by BMM.

Let’s rewrite Alg. 3 purely in terms of moment computation as done in Alg. 4. This will
be useful to show that there exists a set of initial distributions for which exact inference
yields the same moments. In order to compute the sufficient moments, Eq. 5.4 tells us that
we need only the following moments of Pn−1:

Mθt(Pn−1); 1 ≤ t ≤ T

Mθtθj (Pn−1); 1 ≤ t ≤ T t ≤ j ≤ T

Mθtθ21
(Pn−1); 1 ≤ t ≤ T

Let us denote this set of moments by Prev(f). At every iteration of Alg. 4, we first
compute the moments of Pn in S(f) based on the moments of Pn−1 in Prev(f) (Line 4).
Then we compute the moments of Pn in Prev(f) − S(f) based on the moments of Pn
in Prev(f) (Line 5). Hence, at every iteration we compute exactly the moments of the
posterior that are in S(f) and set additional moments (those that are in Prev(f)−S(f)),
which allows the process to keep on going.

Let’s now show that Alg. 4 (and Alg. 3) performs exact inference with respect to an
implicit set of initial distributions. The key is to realize that we start with a partially
defined P0. In Alg. 4, we initialize only the moments of P0 that are in Prev(f). The
other moments are undefined and therefore we really have a set of initial distributions
corresponding to all distributions that share the same moments in Prev(f). Then, at each
iteration, we compute the moments of Pn in S(f) exactly. When we set the moments of Pn
in Prev(f)− S(f), we are implicitly constraining the set of initial distributions by setting

43

Algorithm 4 momentMatching equivalent to Alg. 3

1: Let f(θ|α) be the family of Dirichlets
2: Set M(P0),Mθt(P0),Mθtθj(P0),Mθtθ21

(P0) ∀tj≤T
3: for n = 1 to N do
4: ∀µ ∈ S(f) compute Mµ(Pn) based on all Mµ′(Pn−1) s.t. µ′ ∈ Prev(f) (Eq. 5.4)
5: ∀µ ∈ Prev(f) − S(f) compute Mµ(Pn) based on all Mµ′(Pn) s.t. µ′ ∈ S(f)

(Eq. 4.7, 4.15)
6: end for

additional moments of P0.

Consider the case where T = 2 (i.e., there is only two topics). In this case, the family
f of distributions corresponds to the family of Beta distributions, S(f) = {θ1, θ

2
1} and

Prev(f) = {θ1, θ
2
1, θ

3
1}. In the start, we initialize Mθ1(P0), Mθ21

(P0) and Mθ31
(P0). The

other moments of P0 are undefined. Hence, there is a set of distributions that are consistent
with those moments and any of them could be the initial distribution. At the first iteration
Mθ1(P1) and Mθ21

(P1) are computed exactly according to Eq. 5.4. This gives us a set of
posteriors that share the same first and second order moments and are consistent with the
set of initial distributions. Next, Mθ31

(P1) is computed according to Eqs 4.7 and 4.15. One
view is that this is an approximation. However, we can also ask whether we could have
obtained the same moment by exact inference from some of the initial distributions in our
set. If we do exact inference, then Mθ31

(P1) must be computed according to Eq. 5.3, which
gives:

Mθ31
(P1) =

φ1,wnMθ41
(P0) + φ2,wn(Mθ31

(P0)−Mθ41
(P0))

k1

This equation shows that Mθ31
(P1) is really a function of Mθ31

(P0) and Mθ41
(P0). Since

Mθ41
(P0) is unspecified, it could be set to ensure that exact inference yields the same

Mθ31
(P1). In other words, setting Mθ31

(P1) according to Eqs 4.7 and 4.15 is equivalent to
setting Mθ41

(P0) and then arriving at the same Mθ31
(P1) by exact inference according to

Eq. 5.4. Similarly, at the second iteration, when Mθ31
(P2) is set, there exists a value for

Mθ51
(P0) that ensures that exact inference yields precisely Mθ31

(P2). This follows from the
fact that Mθ31

(P2) depends on Mθ41
(P1), which in turn depends on Mθ51

(P0) according to
Eq. 5.4. Hence, at every iteration, when the third order moment of the posterior is set,
we are really setting one more moment of P0. Since we do one iteration per word in the
dataset and there is a finite amount of data, this process will specify a finite number of
moments for P0, which means that the computation is exact with respect to an implicit
set of initial distributions that share those moments.

44

We can extend this analysis to the case where T > 2 and f is the family of Dirichlets. At
each iteration, we calculate moments in S(f) exactly and we set the moments in Prev(f)−
S(f). Let’s have a closer look at the relationship between the third order moments Mµ3(P0)
and the second order moments Mµ2(P1). According to Eq. 5.4, any second order moment
Mµ2(P1) is a sum of T third order moments of P0. Therefore, whenever a second order
moment is set at iteration n, we can set up a system of equations to compute the moments
at iteration n − 1. For example, we can compute Mθ1θ2(P1) using the parameters we
calculated exactly for P1 by moment matching. Then using Eq. 5.4, we can setup a system
of equations as follows:

Mθ1θ2(Pn) = (1/kn)
∑
t

φt,wnMθtθ1θ2(Pn−1)

For a given iteration n and moment order j, this system of equations is underdetermined
because the number of moments of order j is larger than the number of moments of order
j − 1. This underdetermined system has more than one solution that can be used to set
higher order moments of Pn−1. In general, we can setup a system of equations based on
Eq. 5.3 that relates the moments of Pn we set in Prev(f)−S(f) to higher order moments
of P0 that are still undefined. Hence, the process of setting moments in Prev(f)−S(f) at
each iteration is equivalent to setting some higher order moments of P0 such that inference
is exact with respect to the initial distributions that satisfy those moments. We formalize
this in a Theorem.

Theorem 5.2.1. Under the assumption that the likelihood of each word Pr(w|θ) is non-
zero, the moment matching procedure described in Alg. 4 (and Alg. 3) performs exact
inference with respect to at least one initial distribution.

Proof. First I will prove that there exists a function P0 such that exact inference from this
function yields the same moments as those computed by BMM at each step. Then I will
prove that P0 is a valid distribution.

In the case of a T -dimensional Dirichlet, S(f) contains T moments, Prev(f) contains
(T − 1)(T/2 + 2) and therefore Prev(f) − S(f) contains (k − 1)(T/2 + 2) − T moments.
Since at each iteration, BMM sets the moments in Prev(f) − S(f), it will set a total of
N [(T − 1)(T/2 + 2) − T] moments after N iterations. These moments are related to the
moments of order 1 to N+3 in P0 via a system of equations obtained by composing Eq. 4.7
with itself N times. This system has N [(T − 1)(T/2 + 2)− T] equations corresponding to
the moments that are set. The system also has a number of variables corresponding to the
moments of order 1 to N + 3 that were not initially set. Since the number of variables is
at least N [(T − 1)(T/2 + 2)−T], the system of equations has a solution and there exists a
function P0 that has moments consistent with the moments set by BMM at each iteration.

45

We show that P0 is a valid distribution by showing that P0 is non-negative in its domain
and it integrates to 1. P0 necessarily integrates to 1 since we select M0(P0) to be 1 when
we select the first few moments of P0 at the beginning of Alg. 4. Since Pn is obtained from
P0 by exact inference then P0 satisfies Bayes’ theorem.

Pn(θ) ∝ P0(θ) Pr(w1:n|θ)

Pn(θ) =
P0(θ) Pr(w1:n|θ)∫

θ
P0(θ) Pr(w1:n|θ)dθ

Since Pn(θ) is non-negative and Pr(w1:n|θ) is strictly greater than 0 (by assumption),
then there exists a non-negative P0 that satisfies Bayes’ theorem.

5.3 Learning the Word-Topic Distribution

In this section, I will consider the general case where the document-topic and topic-word
distributions are all unknown. A natural choice for the family of approximating distribu-
tions is a product of Dirichlets of the form f(Θ,Φ) =

∏
dDir(θd;αd)

∏
tDir(φt; βt). The

first problem that we encounter is label switching and unidentifiability.

5.3.1 Label Switching and Unidentifiability

Since the topic assigned to each word is abstract and hidden, we can permute the labels
assigned to each topic and get a new set of parameters Θ and Φ. The model corresponding
to this new set of parameters, can generate the document corpus w1:n with the same
probability as the first permutation. Therefore, there will be T ! components in the posterior
Pn, each corresponding to a permutation of the hidden topics. In the limit (i.e., infinite
amount of data), the posterior will have T ! modes and therefore a unimodal approximation
with a product of Dirichlets will not work well. In order to cater for each mode that is
expected to arise from each permutation, a mixture of products of Dirichlets is considered.
The parameters of each product of Dirichlets are permuted according to the topic labels
assigned to that permutation. Let ΣT be all permutations of the vector 1, . . . , T . Then f
becomes

f (Θ,Φ) =
1

T !

∑
σ∈ΣT

fσ (Θ,Φ) (5.8)

46

Here σ is a permutation of the vector 1, . . . , T and σ(t) is the label of the topic t in
that permutation. fσ is a product of Dirichlets corresponding to the permutation σ. For
example, for T = 2, W = 3 and D = 1 there are two possible permutations of topics.

f (Θ,Φ) = 1/2Dir (θ1,1, θ1,2;α1,1, α1,2)Dir (φ1,1, φ1,2, φ1,3; β1,1, β1,2, β1,3)

Dir (φ2,1, φ2,2, φ2,3; β2,1, β2,2, β2,3)

+ 1/2Dir (θ1,1, θ1,2;α1,2, α1,1)Dir (φ1,1, φ1,2, φ1,3; β2,1, β2,2, β2,3)

Dir (φ2,1, φ2,2, φ2,3; β1,1, β1,2, β1,3)

Each permutation is assigned the weight 1/T ! so that the mixture sums up to 1. Unfortu-
nately, the symmetric nature of the distribution is problematic. The odd central moments
of symmetric distributions are always zero. Because of this, matching all the first or-
der moments leads to the same linear equation which is problematic as we need at least
n − 1 equations corresponding to the first order moments. Instead, we consider a family
of slightly asymmetric mixtures

f (Θ,Φ) =
∑
σi∈ST

wσif
σi (Θ,Φ) (5.9)

Let’s assign a weight wσ1 = ((T − 1)! + 1)/(T ! + (T − 1)!) to the first component that is
(T−1)! higher than the weight wσj = 1/(T !+(T−1)!) ∀j 6= 1 for the remaining components.
This slight asymmetry ensures that all moments vary and therefore can be used in moment
matching. It also preserves most of the symmetry, which will allow us to simplify moment
calculations later. Furthermore, the hyperparameters of only one product of Dirichlets
needs to be stored since all T ! components share the same (permuted) hyperparameters.
The moments Mθkd,tφ

l
t,w

(fσi) can be calculated using

Mθkd,tφ
l
t,w

(fσi) =
Γ(αd,σi(t) + k − 1)

Γ(αd,σi(t))

Γ(αd,.)

Γ(αd,. + k − 1)

Γ(βσi(t),w) + l − 1

Γ(βσi(t),w)

Γ(βσi(t),.)

Γ(βσi(t),. + l − 1)

(5.10)

where αd,. =
∑

t αd,t and βi,. =
∑

w βi,w.

5.3.2 Sufficient Moments

Since all mixture components fσi share the same (permuted) hyperparameters, f has a total
of DT topic distribution hyperparameters and TW word distribution hyperparameters.

47

As mentioned before, the following sufficient set of moments can be used to compute the
hyperparameters

S(f) = {log (θd,t) |1 ≤ d = D, 1 ≤ t ≤ T} ∪ {log (φt,w) , 1 ≤ t ≤ T, 1 ≤ w ≤ W}

To simplify the computation of the sufficient moments, I exploit the fact that Mlog(θd,t)

(fσ) = Mlog(θd,t)(f
σ′) for all permutations σ and σ′ such that σ(t) = σ′(t). There are

(T − 1)! such permutations. The sufficient moments in θ are computed as follows:

Mlog(θd,t)(f) =
T∑
i=1

1 + δ(i, t)

T + 1
Mlog(θd,i) (fσ1) =

T∑
i=1

1 + δ(i, t)

T + 1
(ψ (αd,i)− ψ (αd,.)) (5.11)

This will give us a set of non linear equations in ψ (αi)s which has no closed form solution.
On the other hand, we can also calculate the hyperparameters using the sufficient set of
moments given by

S(f) = {θd,t, θ2
d,1|1 ≤ d = D, 1 ≤ t ≤ T − 1} ∪ {φt,w, φ2

t,1|1 ≤ t ≤ T, 1 ≤ w ≤ W − 1}

To simplify the computation of the sufficient moments, we exploit the fact thatM(θkd,tφ
l
t,w)

(fσ) = M(θkd,tφ
l
t,w)(f

σ′) for all permutations σ and σ′ such that σ(t) = σ′(t). There

are (T − 1)! such permutations. In addition, M(θkd,tφ
l
t,w)(f

σ) = M(θk
d,t′φ

l
t′,w)(f

σ′) whenever

σ(t) = σ′(t′). Using these two facts, the sufficient moments in θ are computed as follows:

M(θkd,t)
(f) =

T∑
i=1

1 + δ(i, t)

T + 1
M(θkd,i)

(fσ1) =

T∑
i=1

1 + δ(i, t)

T + 1

Γ (αd,i + k − 1)

Γ (αd,i)

Γ (αd,.)

Γ (αd,. + k − 1)
(5.12)

Specifically for k = 1 and k = 2 we have the following equations,

M(θd,t)(f) =
T∑
i=1

1 + δ(i, t)

T + 1

αd,i
αd,.

=
1

T + 1

(
αd,t
αd,.

+ 1

)
(5.13)

M(θ2d,1)(f) =
T∑
i=1

1 + δ(i, t)

T + 1

αd,1
αd,.

αd,1 + 1

αd,. + 1
(5.14)

Similarly, the sufficient moments in φ are computed as follows:

M(φlt,w)(f) =

T∑
i=1

1 + δ(i, t)

T + 1
M(φli,w) (fσ1) =

T∑
i=1

1 + δ(i, t)

T + 1

Γ (βi,w + k − 1)

Γ (βi,w)

Γ (βi,.)

Γ (βi,. + k − 1)
(5.15)

48

For l = 1 and l = 2 we have the following equations

M(φt,w)(f) =
T∑
i=1

1 + δ(i, t)

T + 1

βi,w
βi,.

(5.16)

M(φ2t,1)(f) =
T∑
i=1

1 + δ(i, t)

T + 1

βi,1
βi,.

βi,1 + 1

βi,. + 1
(5.17)

5.3.3 Moment Matching

For this choice of family of distributions f the posterior Pn is obtained from Pn−1 according
to

Pn (Θ,Φ) =
1

kn

∑
σ∈ΣT

wσ
∑
t

θd,tφt,wnP
σ
n−1 (Θ,Φ) (5.18)

kn =
∑
σ∈ΣT

wσ
∑
t

∫
Θ

∫
Φ

θd,tφt,wnP
σ
n−1 (Θ,Φ) dΘdΦ (5.19)

=
∑
i

αi∑
j αj

βi,wn∑
j βi,j

The moment update equation is

Mµ (Pn) =
1

kn

∑
σ∈ΣT

wσ
∑
t

Mµθd,tφt,wn

(
P σ
n−1

)
(5.20)

The following equations allow us to compute the sufficient set of moments of the pos-

49

terior Pn

M(θad,t)
(Pn) =

∫
Θ

∫
Φ

θad,tPn(Θ,Φ)dΘdΦ (5.21)

=
∑
σ∈ST

wσ
∫

Θ

∫
Φ

θad,tP
σ
n (Θ,Φ)dΘdΦ

=
∑
σ∈ST

wσ
∫

Θ

∫
Φ

θad,t
∑
i

θd,iφi,wnP
σ
n−1(Θ,Φ)dΘdΦ

=
T∑
i=1

T∑
j=1

1 + δ(i, t)

T + 1
Mθad,tθd,jφj,wn

(
P σ1
t−1

)
=

T∑
i=1

αd,iβi,wn
αd,.βi,.

T∑
j=1

1 + δ(i, t)

T + 1

Γ (αd,.)

Γ (αd,. + a+ 1)

Γ (αd,j + δ(i, j) + a)

Γ (αd,j + δ(i, j))

M(φbt,l)
(Pn) =

∫
Θ

∫
Φ

φbt,lPn(Θ,Φ)dΘdΦ (5.22)

=
∑
σ∈ST

wσ
∫

Θ

∫
Φ

φbt,lP
σ
t (Θ,Φ)dΘdΦ

=
∑
σ∈ST

wσ
∫

Θ

∫
Φ

φbt,l
∑
i

θd,iφi,wnP
σ
t−1(Θ,Φ)dΘdΦ

=
T∑
i=1

T∑
j=1

1 + δ(i, t)

T + 1
Mφbj,lθd,jφj,wn

(
P σ1
t−1

)
=

T∑
i=1

αd,iβi,wn
αd,.βi,.

T∑
j=1

1 + δ(i, t)

T + 1

Γ(βj,. + δ(i, j))

Γ(βj,. + δ(i, j) + b)

Γ (βj,l + δ(i, j)δ(l, wn) + b)

Γ ((βj,l + δ(i, j)δ(l, wn))

Now systems of equations can be set up to match these moments and compute αs and
βs at the next time step. We have T variables of the form Mθt (Pn). We can set up a
system of T equations by equating 5.13 and 5.21. However since

∑
tMθt (Pn) = 1, the last

equation becomes redundant. To resolve this, we use one second order moment to get a
system of T × T equations. Due to the special structure of the problem, we can use the

50

following system of equations to compute α and β at the next time step

Mθd,t (Pn) =
∑
i

αd,i∑
j αd,j

βi,w∑
j βi,j

αd,i + δ (i, t)∑
j αd,j + 1

1 ≤ t ≤ T − 1 (5.23)

Mθ2d,1
(Pn) +

∑
k

Mθ2d,k
(Pn) =

∑
k

∑
i

αd,i∑
j αd,j

βi,w∑
j βi,j

αd,i + δ (i, k)∑
j αd,j + 1

αd,i + δ (i, k) + 1∑
j αd,j + 2

(5.24)

+
αd,i∑
j αd,j

βi,w∑
j βi,j

αd,i + δ (i, 1)∑
j αd,j + 1

αd,i + δ (i, 1) + 1∑
j αd,j + 2

(5.25)

These equations can be solved to compute the new αs at step n using∑
αd(n) =

Mθd,1 (Pn−1) +
∑

iMθd,i (Pn−1)−Mθ2d,1
(Pn−1)−

∑
iMθ2d,i

(Pn−1)

Mθ2d,1
(Pn−1) +

∑
iMθ2d,i

(Pn−1)−
(
Mθd,1 (Pn−1)

)2
+
∑T

i

(
Mθd,i (Pn−1)

)2

(5.26)

αd,i(n) = Mθd,i (Pn)
∑

αd(n) (5.27)

Where α(n) is the value of α after seeing the nth word. A similar treatment of the moments
with respect to φ gives us the following equations

Mφt,w (Pn) =
∑
i

αd,i∑
j αd,j

βi,w∑
j βi,j

βd,i + δ (i, t) δ(w,wn)∑
j βd,j + δ(i, t)

1 ≤ t ≤ T − 1

(5.28)

Mθd,1 (Pn) +
∑
k

Mθd,k (Pn) =
∑
k

∑
i

αd,i∑
j αd,j

βi,w∑
j βi,j

αd,i + δ (i, 1)∑
j αd,j + 1

αd,i + δ (i, 1) + 1∑
j αd,j + 2

(5.29)

These equations can be solved to compute the new αs at step n using∑
αd(n) =

Mθd,1 (Pn−1) +
∑

iMθd,i (Pn−1)−Mθ2d,1
(Pn−1)−

∑
iMθ2d,i

(Pn−1)

Mθ2d,1
(Pn−1) +

∑
iMθ2d,i

(Pn−1)−
(
Mθd,1 (Pn−1)

)2
+
∑T

i

(
Mθd,i (Pn−1)

)2

(5.30)

αd,i(n) = Mθd,i (Pn)
∑

αd(n) (5.31)

Alg. 5 summarizes Bayesian moment matching for the general case where both Θ and
Φ are estimated.

51

Algorithm 5 momentMatching (Θ and Φ unknown)

1: Let f(Θ,Φ|α, β) be a family of dist. as in Eq. 5.9
2: P0(Θ,Φ)←

∑
σi∈ST wσif

σi(Θ,Φ|α, β)
3: for n = 1 to N do
4: Compute Pn(Θ,Φ) from Pn−1(Θ,Φ) (Eq. 5.18)
5: Compute S(f) for Pn (Eq. 5.21, 5.22)
6: Compute ᾱ, β̄ (Eq. 5.13, 5.14, 5.16, 5.17)
7: Pn(Θ,Φ)←

∑
σi∈ST wσif

σi(Θ,Φ|ᾱ, β̄)
8: end for

The computational complexity of Alg. 5 is O(NWT 2). There are N words and each
word is processed by updating the hyperparameters of the approximating mixtures in
O(WT 2) time. The main bottleneck is the computation ᾱ and β̄ on Line 6 which requires
the solution of O(W) systems of T linear constraints in T variables. These linear systems
possess structure that allow us to solve them in O(T 2) (instead of O(T 3)). Alg. 5 is an
online algorithm since the data is processed in a single sweep, the amount of computation
to process each word is independent of the amount of data, and we obtain an estimate of
the parameters (in the form of an approximate posterior) after processing each word.

5.3.4 Linear Moment Matching

In the previous section, I showed that the computational complexity of Alg. 5 is O(NWT 2).
This is problematic especially for corpora with large dictionary sizes. In this section, I shall
discuss an alternative representation of the moment update equations. Let

ct =
1

k

αt∑
i αi

βt,w∑
i βt,i

(5.32)

Where k is as defined in Equation 5.19. Then the moment update equations can be
rewritten as

Mθt (Pn) = ct
αt + 1∑
i αi + 1

+ (1− ct)
αt∑

i αi + 1
(5.33)

Mθ2t
(Pn) = ct

αt + 1∑
i αi + 1

αt + 2∑
i αi + 2

+ (1− ct)
αt∑

i αi + 1

αt + 1∑
i αi + 2

(5.34)

52

Similarly the moment updates for φ become

Mφt,e (Pn) = ct
βt,e + δ (e, w)∑

i βt,i + 1
+ (1− ct)

βt,e∑
i βt,i

(5.35)

Mφ2t,e
(Pn) = ct

βt,e + δ(e, w)∑
i βt,i + 1

βt,e + δ(e, w) + 1∑
i βt,i + 2

+ (1− ct)
βt,e∑
i βt,i

βt,e + 1∑
i βt,i + 1

(5.36)

Where e represents all words other than the current observed word and w represents
the current observed word. This reduces the complexity to the algorithm but it is still
dependent on the size of the vocabulary W . In order to resolve that the following identities
can be used:

αt = Mθt

∑
i

αi βt,w = Mφt,w

∑
i

βt,i (5.37)

The moment update equations can now be rewritten as

Mθt (Pn) = Mθt (Pn−1)

[∑
α + ct/Mθt (Pn−1)∑

α + 1

]
(5.38)

Mθ2t
(Pn) = Mθ2t

(Pn−1)

[∑
α + 2ct/Mθt (Pn−1)∑

α + 2

]
(5.39)

Using a similar treatment for φ, for all words e which are not equal to the current observed
word

Mφt,e (Pn) = Mφt,e (Pn−1)

[
1− ct∑

βt + 1

]
(5.40)

Define

x =

[
1− ct∑

βt + 1

]
y =

ct∑
βt + 1

1

xMφt,w (Pn−1)
(5.41)

The update equations now become

Mφt,e (Pn) =
[
Mφt,e (Pn−1)

]
x e 6= w (5.42)

Mφt,w (Pn) =
[
Mφt,w (Pn−1) + y

]
x (5.43)

Similar equations can be derived for the second order moments. Equations 5.42 and 5.43
show that the full topic-word matrix does not need to be updated at every step. In fact,
if we update the column corresponding to the observed word w by adding y to it, then it

53

is sufficient to store x in order to recover the full topic-word matrix at the next time step.
This is significant as this removes the dependency of moment update on the size of the
vocabulary.

We can now choose a pivot 1 ≤ piv ≤ T and derive the equations for computing the
sum of counts for both α and β. For readability I use piv = 1 while deriving the equations,
however it is not required.∑

α(n+ 1) =
Mθ1 (Pn−1)−Mθ21

(Pn−1)

Mθ21
(Pn−1)− (Mθ1 (Pn−1))2 (5.44)

∑
βj(n+ 1) =

Mφj,1 (Pn−1) +−Mφ2j,1
(Pn−1)

Mφ2j,1
(Pn−1)−

(
Mφj,1 (Pn−1)

)2 (5.45)

These equations give us a moment matching algorithm for LDA that has O(NT) complex-
ity. Alg. 6 summarizes this approach.

Algorithm 6 momentMatching (Θ and Φ unknown)

1: Initialize Mθt (P0), Mθ2t
(P0), Mφt,w (P0), Mφ2t,1

(P0) and xt = 1 ∀1 ≤ t ≤ T, 1 ≤ w ≤ W

2: for n = 1 to N do
3: Let wn be the current word at time step n
4: Set k =

∑
tMθt (Pn−1)xtMφt,wn (Pn−1)

5: Compute ct = (1/k)Mθt (Pn−1)xtMφt,wn (Pn−1) for each 1 ≤ t ≤ T

6: Update the moments with respect to θ as Mθt (Pn) = Mθt (Pn−1)
[∑

α+ct/Mθt
(Pn−1)∑

α+1

]
and Mθ2t

(Pn) = Mθ2t
(Pn−1)

[∑
α+2ct/Mθt

(Pn−1)∑
α+2

]
7: Update xt = 1− ct∑

βt+1
yt = ct∑

βt+1
1

xMφt,w
(Pn−1)

for all 1 ≤ t ≤ T

8: Update Mφt,wn (Pn) = Mφt,wn (Pn−1) + yt for all 1 ≤ t ≤ T
9: Compute the new sum of counts using Equations 5.44 and 5.45.

10: end for

5.3.5 Discussion

An important issue in Bayesian learning is unidentifiablity, which arises when several so-
lutions can explain the data equally well. These equivalent solutions are usually due to
symmetries in the problem. By approximating the posterior with a mixture of products

54

of Dirichlets with permuted hyperparameters, BMM properly handles symmetries arising
from permutations of the topic labels. If there are fewer than K topics, BMM will not
be affected since this simply means that fewer mixture components could have been used
since some of them will become identical. It is possible that other types of symmetries may
arise, although the authors are not aware of any. If they lead to equivalent solutions that
are not captured by the current mixture of products of Dirichlets, BMM could be modified
to work with a family of distributions f that takes into account those symmetries.

Theorem 5.3.1. Under the assumption that the likelihood of each word Pr(w|θ) is non-
zero, the moment matching procedure described in Alg. 5 and 6 performs exact inference
with respect to at least one initial distribution.

The above theorem is a generalization of Theorem 5.2.1 and its proof follows the same
steps. Again, BMM can be viewed as lazily waiting till a moment of the initial distribution
is needed in the computation to set that moment, which ensures that inference can proceed
tractably.

5.4 Results

In this section, I will present results of a comparison between BMM and existing parameter
learning techniques for LDA. The performance of these algorithms is demonstrated with
synthetic and real corpora.

5.4.1 UCI Bag of Words Document Corpus

The UCI bag of words data sets are a publicly available bag of words corpora which
contains 4 data sets [51]. Each document is represented as a term frequency vector. The
NIPS data set consists of complete NIPS papers. Then Enron data set contains emails of
Enron employees. The NYTimes dataset contains New York Times articles. The PubMed
database is a set of abstracts from PubMed.

5.4.2 Wikipedia Corpus

I have also trained these algorithms on 100,000 documents from the english version of
Wikipedia. This corpus was shared with us by Hoffman et.al. [40]. They removed all words

55

not from a fixed vocabulary of 7,995 common words. This vocabulary was obtained by
removing words less than 3 characters long from a list of the 10,000 most common words in
Project Gutenberg texts obtained from http://en.wiktionary.org/wiki/Wiktionary:Frequency
lists.

5.4.3 Twitter Data

I collaborated with an industry partner ”In the Chat” that does social media mining on
behalf of other companies. The data set is comprised of tweets related to a cell phone
provider. There is about 850 days of Twitter data. The tweets are manually labeled as
Customer Service, Pricing Promo, Sales, Hardware, Billing Payments, Technical, Cancel,
Rant and Other. The company is interested in the topic distribution during a given period
of time in order to identify trending topics. They are also interested in tweets about their
competitors to pro-actively engage customers that are thinking of leaving a competitor.
The data was divided into documents where each document contains 10 days of tweets.
Very common and extremely rare words were removed.

Note that the topics discovered by any unsupervised algorithm may or may not cor-
respond to the topics identified by human judges. In addition, some pairs of topics (e.g.
Customer Service vs Rant, Hardware vs Technical, Sales vs Pricing Promo) are difficult
to distinguish even for humans. Tweets are different from other corpora such as scientific
papers or wikipedia because the vocabulary used in tweets includes a lot of slang and ab-
breviations that cannot be disregarded since they may have strong correlations with some
topics.

5.4.4 Synthetic Data

The algorithms were also also tested on synthetic data generated from an LDA model. We
generate 20 observation sequences by choosing α and β, setting T = 5, W = 1000. The
length of each document varies between 2000 and 5000. We choose these numbers to mimic
Twitter data.

The datasets are summarized in Table 5.1. The number of tokens refers to unique words
in the document.

56

Data Set NIPS Enron NYTimes PubMed Wikipedia Twitter

Vocabulary Size 10433 26186 299751 128972 7702 4632

Total Documents 1736 39733 99064 8200000 3764100 832

Total Words 2122250 5991406 95073360 691810664 3764100 527128

Av. Words/Document 1222.5 150.8 317.2 84.4 126.7 633.6

Av. Tokens/Document 470 87.7 222.8 56.1 65.1 269.7

Total Chunks 30 50 101 100 100 25

Av. Tokens/Chunk 27241 69708 661360 4619900 2451600 8976

Av. Words/Chunk 70742 119830 941320 6918100 4771900 21085

Table 5.1: Summary Statistics of the data sets

5.4.5 Experiments

I have compared the Bayesian Moment Matching (BMM) algorithm to various state of the
art algorithms for topic modeling. The algorithms I compare against include Variational
Bayes (VBLP) [15], Belief Propagation (BPLP) [76], Gibbs Sampling (GS)[70], Expec-
tation Propagation (EP) [56], Spectral LDA (spectralLDA)[7], Online Variational Bayes
(OVB)[40] and Sparse Online Variational Bayes (SOI)[54]. I have used the Matlab toolbox
by [76] for BP, GS and VB. We implemented Spectral LDA based on [7] since there is
no publicly available implementation. For OVB Hoffman et al.’s [40] toolbox has been
used. For Sparse Online Inference (SOI), the Mallet toolbox [53] was used. For the offline
algorithms (Gibbs Sampling, Varitional Bayes, Belief Propagation and Spectral LDA), the
algorithm is run on the entire training set and the perplexity is computed on the test set.
Since the larger datasets including NYTimes, Pubmed and Wikipedia were unable to fit
in the memory in memory, the comparison with offline algorithms for these datasets is not
shown. In the case of the online algorithms such as MM, OVB and SOI, they can incor-
porate new observations with a constant amount of computation. For online experiments,
the data is given to the algorithm in the form of batches. The perplexity is measured
after learning the parameters by incorporating each new batch. In MM, if the first few
observations belong to the same document, then the parameters of the other documents
are momentarily unidentifiable, which may cause some problems. To avoid this, the first
few documents are permuted randomly.

Each data set is divided into small batches to measure perplexity after each batch is
trained. I have used 10 fold cross validation such that for each fold 10% of the documents
are in the test set while 90% are in the training set.

I have compared the parameters computed by each algorithm by measuring the likeli-

57

hood of held out test data. To quantify this measure we compute the perplexity:

perplexity = exp

{
−
∑D

d=1 log(Pr(wd,1:Nd))∑D
d=1 Nd

}
(5.46)

where D is the total number of documents in the test set and wd,1:Nd is the sequence
of words of the dth document in the test set. The perplexity is computed using Gibbs
Sampling for inference. I use 10-fold cross validation and report the mean and standard
deviation of the 10 runs.

Figure 5.2: Comparison of different learning algorithms for topic modeling for the NIPS
dataset. The number of topics T = 25. The second figure is the perplexity for vblp, gs
and bplp zoomed

Most of these algorithms require a parameter β that defines the prior for the topic-word
distribution is a uniform Dirichlet. This value is set to 1 (this corresponds to a uniform

58

Figure 5.3: Comparison of different learning algorithms for topic modeling for the Enron
dataset. The number of topics T = 100. The top right figure is the perplexity of vblp, gs
and bplp and the bottom right is the preplexity of AWR-KL, AWR-L2 and Spectral LDA

distribution) for all our experiments. I have used 500 iterations for Gibbs Sampling. For
Variational Bayes I use 8 inner iterations and 500 outer iterations. For Online Varia-
tional Bayes and Sparse Online Inference, the total number of documents changes as more
observations become available.

Figures 5.2, 5.3, 5.4 show the how the perplexity changes with increasing number of ob-
servations at every time step. The graphs show that moment matching competes favorably
with other algorithms in terms of perplexity of test data. Displaying the perplexity of some
of the algorithms on the same graph makes it difficult to visualize the difference between
various online techniques. Therefore, I have provided side panels in various figures that
show the perplexity for some of the off line algorithms. We find that moment matching
is actually comparable with offline techniques such as Variational Bayes, Gibbs Sampling
and Belief Propagation. Both Online Variational Bayes and the Sparse Online Inference
algorithm by Mimno. et. al. [54] are stochastic gradient descent algorithms. In the SOI
code, the authors discard samples with low weight. Therefore, most of the topic-word
matrix learned by that algorithm is actually equal to the zero. Then β is added to the
whole matrix for smoothing. Therefore, most of the matrix entries consist of initial value

59

Figure 5.4: Comparison of different learning algorithms for topic modeling for the Twitter
dataset. The number of topics T = 9. The top right figure is the perplexity of vblp, gs
and bplp and the bottom right is the preplexity of AWR-KL, AWR-L2 and Spectral LDA

of the parameter β. This may distorts the perplexity as it smooths over some noise in the
data. For the larger datasets including NYTimes, PubMed and Wikipedia, we only show
the results for the online algorithms as the data can not be fully loaded into the memory.
The results are shown in Figs. 5.5, 5.6 and 5.7. Moment matching shows clear gains
in all data sets with significant gains in the Wikipedia data set. This may be due to the
fact that in the wikipedia dataset, the vocabulary has only about 7000 words as opposed
to pubmed and nytimes where the vocabulary has around 100,000 words. Therefore, the
data set is less noisy and the words are more informative. Another reason why we see
gains for moment matching is because both OVB and SOI are stochastic gradient descent
methods that aim to construct noisy estimates of the gradient by sub-sampling a block of
data. This estimate improves over time but can be noisy in the start.

I also compared the amount of time taken by each algorithm, although it is important
to note that the programming language and the degree of code optimization can affect the
running times. The results are summarized in 5.2. In terms of time, OVB and SOI have
an advantage over MM in some cases. This is due to the fact that the SOI, OVB, GS, VB,

60

Figure 5.5: Comparison of different learning algorithms for topic modeling for the NYTimes
dataset. The number of topics T = 100.

BP all depend on processing each token at one time step where each token represents a
unique word in the document. If the word is repeated multiple times in the document, it
is still processed once. On the other hand Moment Matching currently relies on processing
each word to compute the exact posterior. SOI also has a slight advantage in terms of time
as it is implemented in java whereas the other algorithms are implemented using Matlab
and Python. Despite this, BMM is the second best algorithm in terms of training time.

I also tried to compare Bayesian Moment Matching to Expectation Propagation (EP)
on Twitter data. It took about 10 days for EP to go over the sequence once (it still needed
to do many more iterations before convergence) and the perplexity remained high. We
present a comparison of both algorithms on a smaller synthetic data set in Fig. 5.8. MM
outperforms EP.

In this chapter, we have described an online Bayesian moment matching technique that
incrementally estimates the parameters of LDA by performing a single sweep of the data.
The approach is simple and it compares favorably to existing approaches in terms of time
and perplexity. This can be explained by the fact that the approach is performing exact
inference with respect to an implicit set of initial distributions. In subsequent chapters,
we will apply this technique to other models such as HMMs for activity recognition.

61

Figure 5.6: Comparison of different learning algorithms for topic modeling for the
Wikipedia dataset. The number of topics T = 100.

62

Figure 5.7: Comparison of different learning algorithms for topic modeling for the PubMed
dataset. The number of topics T = 100.

Data Set enron NIPS Twitter NYTimes PubMed Wikipedia Code Language

of Topics 100 25 9 100 100 100

GS 1904.2 591.4 60.1 c++,Matlab

VBLP 212053 12969.1 1684.2 c++,Matlab

BPLP 6334.1 172.35 20.3 c++,Matlab

AWR-KL 3105.1 661.2 58.2 Matlab

AWR-L2 2535.2 740.5 106.6 Matlab

Spectral 4332.1 1261.9 107 Matlab

OVB 504.12 78.2 15.1 7221.6 58438.8 126.7 Python

SOI 183.25 0.51 1.26 2041.2 13680 65.1 Java

MM 327.1 123.6 9.43 2475.9 43164.2 100 Matlab

Table 5.2: Time taken in seconds by each algorithm to go over complete data.

63

Figure 5.8: EP vs MM on synthetic data. T = 5

64

Chapter 6

Activity Recognition with
Instrumented Walker

In Chapter 1, I introduced the activity recognition problem for instrumented walkers.
Previous approaches for activity recognition such as [39] and [6] have tried to solve this
problem by constructing complex physical models of the walker. These approaches have
limited applicability since they predict a primitive set of activities and are not easily
adaptable to changes in the physical configurations of the walker. In this chapter I describe
how to construct a probabilistic graphical model for activity recognition. I will also describe
the setup for some data collection experiments. The main contributions in this chapter are

• Design and training (supervised and unsupervised) of probabilistic graphical models
(HMMs and CRFs) tailored to activity recognition with instrumented walkers

• Comprehensive analysis of these techniques with real data collected with control
subjects and regular walker users living in a long term care facility

• Comprehensive analysis of the ease/difficulty of recognizing common walker user
activities with existing algorithms

6.1 The Walker and Experimental Setup

As mentioned in Chapter 1, I had access to a walker developed by [73]. The walker is
equipped with various sensors including a 3-D accelerometer in the seat of the walker that

65

records the acceleration across the x-axis, y-axis and z-axis. In addition to these sensors,
there is a load-cell in each leg of the walker. The walker is also equipped with a wheel
encoder, which measures the distance traveled by the wheel. The sensor readings vary
between 0 and 216 − 1 and the data is channeled via bluetooth to a PDA for acquisition.
The data rate is 50 readings/second. In addition to these sensors, there are two cameras
on the walker. One of them is facing backwards and provides the video feed of the user’s
legs. The other one is looking forwards and provides the video feed of the environment.
The video frame rate is approximately 30 frames/second.

In order to collect data for our models, two different sets of experiments were conducted
that are described below.

Figure 6.1: Course for data collection experiment done with the walker. Healthy young
subjects were asked to follow this course

6.1.1 Experiment 1

17 healthy young subjects (age between 19 and 53) were asked to use the walker and go
twice through the course shown in Figure 6.1. The activities performed by the participants
are shown in Table 6.1.

66

Not Touching the Walker (NTW)
Stop/Standing (ST)
Walking Forward (WF)
Turn Left (TL)
Turn Right (TR)
Walking Backwards (WB)
Transfers (Sit to Stand/Stand to Sit) (TRS)

Table 6.1: Activities performed in Experiment 1

6.1.2 Experiment 2

In a second experiment, 8 older adults (age 84 to 97) who are regular walker users, were
asked to follow the course shown in Figure 6.2. These experiments were conducted at a
retirement home and the participants were residents of that facility. 12 older adults (age
80 to 89) who do not live in a retirement home and are not regular walker users were also
asked to follow the same course. The activities performed during this experiment include
those of Table 6.1 and some additional activities listed in Table 6.2.

Figure 6.2: Course used in data collection experiment for older subjects who are walker
users

67

Going up Ramp (GUR)
Going down Ramp (GDR)
Sitting on Walker (SW)
Reaching Task (RT)
Going up Curb (GUC)
Going down Curb (GDC)

Table 6.2: Additional activities performed during Experiment 2

6.1.3 Sensor Data

My goal was to perform activity recognition based on accelerometers, load cells and wheel
encoder. These sensors only measure the activities of the person indirectly, therefore, it is
not obvious a priori which activities can be easily recognized. To establish ground truth,
I synchronized the video feed from the rear facing camera with the data feed from all
sensors. I developed a tool that allowed me to annotate the data based on the video feed.
The tool also helped in visualizing the data synchronized with the video. Since the video
camera only looks at the legs and feet of the person for privacy reasons, we are unable
to know for sure when a person is exactly touching the walker apart from looking at the
load cell readings. In addition to that this process is prone to human error on the part of
the labeler. For example, the time that marks the start of a right turn may be different
depending on the person labeling the data.

We define the reading on the load sensor mounted on the front right leg of the walker
as LFR, reading on the load sensor mounted on the front left leg as LFL, reading on the
load sensor mounted on the rear left leg as LRL and reading on the load sensor mounted
on the rear right leg as LRR. Instead of using the raw data of the load sensors, we consider
total load on the walker, the sagittal plane center of pressure (COPSP) and the frontal
plane center of pressure (COPFP). Formally, these quantities are given by

TotalLoad = LRR + LRL + LFR + LFL (6.1)

COPSP =
LFL + LFR − LRL − LRR

TotalLoad
(6.2)

COPFP =
21.25(LFL − LFR) + 26.6(LRL − LRR)

TotalLoad
(6.3)

where the constants 21.25 and 26.6 correspond to the distances of the front/rear load cells
to the midline of the walker (in centimeters).

68

In general, activities that involve moving forward including turns and vertical tran-
sitions (ramp and curb negotiation tasks) are difficult to differentiate from each other.
Since the load sensors are mounted on the legs instead of being close to the hands, we
only get indirect information about how users vary their weight between both hands to
keep themselves balanced while negotiating a turn or a vertical transition. Also, vertical
transitions may be particularly difficult to recognize due to the wide range of strategies
used by people to lift or lower the walker. Similarly, transfers (sit to stand or stand to
sit) and reaching tasks (such as opening doors and picking objects) are also expected to
be difficult to recognize due to a wide range of strategies.

In Table 6.3 the most frequent value of the sensor for each activity is shown. The second
row for each activity gives the probability of seeing that particular value on the sensor for
the activity. The higher the probability, the easier it would be for an automated algorithm
to recognize this activity when it sees this reading on the sensor. We can see that different
sensors help in identifying different activities. When the person is Not touching the walker
(NTW) the center of pressure provides a strong signal as there is no load on the walker.
For Walking forward (WF), the wheel encoder provides the requisite information. For left
turns the x and y axis accelerometers along with COPFP provide a strong signal. The
same sensors help us with right turns (TR). For walking backwards (WB) the strongest
signal comes from total load indicating that there is very little load on the walker when the
person is walking backwards. This is logical as when people walk backwards, they tend to
lean back thus removing the weight from the walker. For sitting on walker (SW), the total
load alongwith the center of pressure features give an adequate signal. It is interesting to
note that for vertical transitions i.e. (going up/down curbs and ramps) the signal from the
accelerometers is very strong suggesting that a vertical transition has happened.

In Table 6.4, each element at row i and column j indicates the probability that the
current state is j given the previous state was i. This matrix is diagonal heavy owing to
the fact that people tend to keep doing the current activity most of the time.

6.2 Activity Recognition Model

I assume that the total number of activities is N and the total number of sensors is S. The
sensor readings were discretized by dividing the range of the sensor data into M discrete
intervals. The activity at time t is represented by the random variable Yt. The reading on
sensor s at time t is given by the random variable est where s ∈ {1, . . . , S}.

69

Activity Accelerometer Total Load COPSP COPFP Wheel Encoder Frequency

x-axis y-axis z-axis

NTW 10 9 13 6 7 9 16 8554

.13 .145 .118 .316 .387 .31 .11

ST 14 8 13 3 8 10 17 51638

.07 .09 .07 .1 .10 .09 .08

WF 20 3 21 11 8 11 13 71417

.08 .1 .09 .09 .07 .07 .13

TL 2 20 20 15 2 2 8 16867

.21 .13 .1 .17 .19 .33 .13

TR 21 20 3 10 21 12 2 15832

.22 .11 .09 .08 .13 .10 .14

WB 3 2 4 2 2 2 7 1045

.09 .09 .08 .37 .27 .24 .18

RT 19 5 13 3 4 8 8 12287

.08 .07 .06 .14 .08 .08 .07

SW 7 14 6 18 20 21 17 71334

.08 .11 .08 .18 .11 .17 .09

GUR 2 2 2 15 2 3 4 2998

.31 .67 .22 .21 .20 .10 .11

GDR 21 21 2 3 21 11 2 3194

.14 .64 .24 .11 .11 .08 .15

GUC 21 2 2 2 2 5 8 3087

.14 .45 .27 .64 .4 .12 .1

GDC 21 21 2 2 21 21 7 1700

.11 .61 .26 .13 .13 .13 .12

Table 6.3: Highest value for each sensor s with respect to activity y, arg maxe Pr (es|y).
The second row for each activity is the probability of this highest value maxe Pr (es|y).
This table is based on the data from the second experiment

70

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC

NTW .998 .001 .0001 .0002 .0001 0 0 0 0 0 0 0

ST .0002 .9969 .0012 .0005 .0004 0 .0001 .0007 0 0 0 0

WF 0 .0009 .9959 .0012 .0009 0 .0004 0 .0001 .0002 .0001 .0002

TL 0 .0017 .0044 .9930 .0001 0 .0007 0 .0002 0 0 0

TR 0 .0011 .0048 .0001 .9934 0 .0002 0 0 0 .0003 0

WB 0 .0019 .0038 0 0 .9923 .0019 0 0 0 0 0

RT .0002 0 .0028 .0002 .0004 .0006 .9958 0 0 0 0 0

SW .0001 .0004 0 0 0 0 0 .9995 0 0 0 0

GUR 0 0 .005 0 0 0 0 0 .9950 0 0 0

GDR 0 0 .0009 0 0 0 0 0 0 .9953 0 0

GUC 0 .0006 .005 0 0 0 0 0 0 0 .9945 0

GDC .0006 .0006 .0071 0 .0006 0 0 0 0 0 0 .9912

Table 6.4: Empirical Transition Distribution for Experiment 2

6.2.1 Hidden Markov Model

I have used a Hidden Markov Model (HMM) for this problem where the activities are the
hidden variables and the sensor readings are observations. The hidden Markov model is
given in Figure 6.3. The parameters that I model are as follows:

• Transition Model: The transition distribution models the change in activity being
performed over time. The distribution over the current activity Yt given that the
previous activity is y is denoted by θy = Pr (Yt|Yt−1 = y) where θy = {θy,1, . . . , θy,N}
and θy,i = Pr (Yt = i|Yt−1 = y) is the probability that the current activity is i given
the previous activity was y. Note that in the activity recognition problem, activities
tend to have a high persistence probability, i.e. user is very likely to keep performing
the same activity for long intervals of time.

• Observation Model: The observation function models the effect of the current
activity on sensor readings at time t. The distribution over sensor reading given
that the user is performing activity y is denoted by φy,s = Pr (Es

t |Yt = y) where
φy,s = {φy,1,s, . . . , φy,M,s} and φy,e,s = Pr (Es

t = e|Yt = y) is the probability that we
observe reading e on sensor s if the current state is y.

In Figure 6.4 the model is given a full Bayesian treatment by allowing the parameters to
be sampled from priors. To generate the observation sequence, for each y ∈ {1, . . . , N} we

71

Pr (Y0)

?

��
��
Y0 ��

��
��
��
Y1 ��

��
Y2 ��

��
Yt

��
��

��
��

E1
1 ES1

�
�	
@
@R

��
��

��
��

E1
2 ES2

�
�	
@
@R

��
��

��
��

E1
t ESt

�
�	
@
@R

- - - -

Figure 6.3: A Hidden Markov Model For Activity Recognition

first sample θy,y′ from a prior f (θy;αy) where y′ is the previous state. Then for each sensor
s, we sample φy,s from another prior f (φy,s; βy,s). Then we generate each observation by
first sampling the current state y′ from θy where y is the state sampled at the previous
time step and then for each sensor s, we sample an observation e from φy′,s.

The following terminology will be used frequently for notational convenience

Θ = {θi,j : 1 ≤ i ≤ N, 1 ≤ j ≤ N}
Φ = {φy,e,s : 1 ≤ y ≤ N, 1 ≤ e ≤M, 1 ≤ s ≤ S}.
esa:b = esa, e

s
a+1 . . . e

s
b a sequence of readings on sensor s from time a to b

e1:S
a:b = e1:S

a , e1:S
a+1 . . . e

1:S
b a sequence of readings from all sensors from time a to b

ya:b = ya, ya+1 . . . yb a sequence of activities from time a to b

ỹt predicted activity at time t

F y
t = Pr

(
Yt = y, e1:S

1:t |Θ,Φ
)

By
t = Pr

(
e1:S
t+1:T |Yt = y,Θ,Φ

)
γyt = Pr

(
Yt = y|e1:S

1:T ,Θ,Φ
)

ξy,jt = Pr
(
Yt = y, Yt+1 = j|e1:S

1:T ,Θ,Φ
)

6.3 Prediction

I have used three techniques to do prediction with the HMM. Following is a brief description
of the prediction algorithms used. For detailed derivations, please refer to [67] and [13].

72

α��
��
?

θ��
��
�����������9

�
���

���

@
@
@@R

XXXXXXXXXXXz

β��
��

- φ��
��XXX

XXX
XXXy

PP
PP

PPi 6
��

�
��*

��
��

��
�1

���
���

���
��:

��
��
Y0 ��

��
��
��
Y1 ��

��
Y2 ��

��
Yt

��
��

��
��

E1
1 ES1

�
�	
@
@R

��
��

��
��

E1
2 ES2

�
�	
@
@R

��
��

��
��

E1
t ESt

�
�	
@
@R

- - - -

Figure 6.4: A Hidden Markov Model For Activity Recognition with Bayesian Priors

Viterbi Algorithm: Given a sequence of observations, the Viterbi algorithm finds the
sequence of states most likely to generate those observations. These probabilities can be
calculated online as only past observations are used. However, to retrieve the most likely
sequence, we have to do a backtracking step that is explained in [67] and it can not be
performed online.

ỹt+1 = arg maxy
(
arg maxy1:t

(
Pr
(
y1:t, Yt+1 = y|e1:S

1:t+1,Θ,Φ
)))

= arg maxy
∏
i

φy,et,iarg maxy′
(
θy,y′

(
arg maxy1:t−1

(
Pr
(
y1:t−1, y

′|e1:S
1:t ,Θ,Φ

))))
(6.4)

Filtering: This is the task of estimating a distribution over the current activity at time
t given all the observations before it (e1:S

1:t). Since, this process returns a distribution over
the current activity, the final prediction is chosen by picking the activity with the highest
probability. This process can be performed online as only past observations are used.

ỹt =arg maxy Pr
(
Yt = y|e1:S

1:t ,Θ,Φ
)

(6.5)

=arg maxy
Pr
(
Yt = y, e1:S

1:t |Θ,Φ
)

Pr (e1:S
1:t |Θ,Φ)

= arg maxy
F y
t∑

t′ F
y′

t

F y
t ∝

∏
s

φy,est

∑
i

θi,yF
i
t (6.6)

Forward Backward (Baum-Welch Algorithm): This is the task of estimating a dis-
tribution over the activity at time t given all the observations e1:S

1:T . As future observations
are used, this process can not be performed online. Similar to filtering, the final prediction

73

is chosen by picking the activity with the highest probability.

ỹt = arg max
y

Pr
(
Yt = y|e1:S

1:T ,Θ,Φ
)

(6.7)

= arg max
y

Pr
(
Yt = y|e1:S

1:T ,Θ,Φ
)

Pr
(
e1:S

1:T |Yt = y,ΘΦ
)∑

y′ Pr (Yt = y′|e1:S
1:T ,ΘΦ) Pr (e1:S

1:T |Yt = y′,ΘΦ)

= arg max
y

F y
t B

y
t∑

y′ F
y′

t B
y′

t

By
t =

∑
i

θy,i
∏
s

φi,et+1,sB
i
t+1 (6.8)

γyt =
F y
t B

y
t∑

y′ F
y′

t B
y′

t

(6.9)

6.4 Maximum Likelihood Parameter Learning

Maximum likelihood parameter learning was introduced in section 2.2.3. As mentioned
before, we find the values of the parameters that maximize the log likelihood of data

θML = max
θ

log (Pr (e|θ)) (6.10)

In this section, I will derive equations for maximum likelihood parameter learning in the
context of activity recognition.

6.4.1 Supervised Learning

For supervised learning, I labeled the data by hand by synchronizing the data feed with
the video feed. Therefore, the optimal parameters Θ∗ and Φ∗ can be learned from a single
labeled sequence of length T using the following equation

(Θ∗,Φ∗) = argmaxΘ,Φ log
(
Pr
(
y1:T , e

1:S
1:T |Θ,Φ

))
subject to (6.11)∑
i

θy,i = 1∀y ∈ {1, . . . , N}

M∑
e=1

φy,e,s = 1∀y ∈ {1, . . . , N}∀k ∈ {1, . . . , S}

74

Solving this optimization problem gives us the following values for the transition pa-
rameters

θy,y′ =

∑T
t=1 δ (yt = y′&yt−1 = y)∑T

t=1 δ (yt−1 = y)
=
ny,y′

ny
, ∀y′, y ∈ {1, . . . , N} (6.12)

Where ny,y′ is the number of times y is followed by y′ in labeled activity sequence and ny
is the number of times we observe y in the labeled activity sequence. Note that during the
experiment, the participants are following a fixed course and thus the activity transitions
are biased and do not reflect real life situations. To avoid this pitfall I use the fact that
activities tend to persist. Therefore, we can learn the parameters of the transition model
using the following distribution:

θy,y′ =

{
τ

N+τ−1
if y = y′

1
N+τ−1

otherwise
(6.13)

The observation parameters can be calculated using

φy,e,s =

∑T
t=1 δ (yt = y&est = e)∑T

t=1 δ (yt = y)
=
ny,e,s
ny

(6.14)

6.4.2 Unsupervised Maximum Likelihood Learning

For unsupervised Learning, I have used the EM algorithm for learning transition probabil-
ities and maximize the expected value of the log likelihood. New values of the parameters
are iteratively estimated by solving the following optimization problem

Θi+1,Φi+1 = argmaxπ,θ,φ

Expectation︷ ︸︸ ︷(∑
y1:T∈Y1:T

Pr
(
y1:T , e

1:S
1:T |Θi,Φi

)
log
(
Pr
(
y1:T , e

1:S
1:T |Θ,Φ

)))
︸ ︷︷ ︸

Maximization

(6.15)

subject to

N∑
y′=1

θy,y′ = 1∀y ∈ {1, . . . , N}

M∑
e=1

φy,e,s = 1∀y ∈ {1, . . . , N} ∀s ∈ {1, . . . , S}

75

Where Y1:T represents all possible activity sequences of length T . The solution for this
optimization problem gives us the following equations for estimating parameters.

θy,y′ =

∑T
t=1 Pr

(
Yt = y′, Yt−1 = y, e1:S

1:T |Θi,Φi
)∑T

t=1 Pr (Yt−1 = y, e1:S
1:T |Θi,Φi)

(6.16)

φy,e,s =

∑T
t=1 Pr

(
Yt = y, e1:S

1:T |Θi,Φi
)
δ (est = e)∑T

t=1 Pr (Yt = y, e1:S
1:T |Θi,Φi)

(6.17)

The detailed derivation of these equations is given in Appendix A.2. For efficient calculation
of these values, we use the terminology defined in section 6.2. Recall that

γyt = Pr
(
Yt = y|e1:S

1:T ,Θ,Φ
)

=
F y
t B

y
t∑

y′ F
y′

t B
y′

t

ξy,jt = Pr
(
Yt = y, Yt+1 = j|e1:S

1:T ,Θ,Φ
)

=
F y
t θy,j

∏
s φj,et+1,sB

j
t+1

Bi
t

Then we can estimate the parameters using the following equations

θi,j =

∑T
t=1 ξ

i,j
t∑T

t=1 γ
i
t

, φi,j,s =

∑t
t=1 δ(e

s
t = j)γit∑T

t=1 γ
i
t

(6.18)

In Appendix A.2.1 we describe how to avoid underflow issues in this computation.

6.4.3 Bayesian Learning for HMMs

As discussed before, we can use Bayesian priors for the observation and transition distri-
butions for a full Bayesian treatment of this problem. In this section I will describe how
we can use Gibbs Sampling to learn the parameters of the HMM.

6.4.4 Gibbs Sampling

As discussed previously, Monte Carlo Markov Chain (MCMC) methods are a popular
class of methods that allow us to construct approximations of integrals that are difficult
to compute analytically. The idea behind MCMC is to construct a Markov chain whose
stationary distribution is the posterior distribution of interest. The algorithm simulates

76

the chain until it gets close to stationarity. After this “burn-in” period, samples from the
chain serve as an approximation to the true posterior distribution P (Θ|e). The most
common variations of this approach are the Metropolis-Hastings algorithm and Gibbs
sampling. Here, we use Gibbs sampling to approximate the posterior distribution. For
a more extensive overview of MCMC techniques, see [30, 66].

Algorithm 7 Gibbs Sampling

1: Let Start with an arbitrary state path y1:T which has non zero probability
2: for t = 1 to T do
3: while Pr (Y1:T |e1:T) has not converged do
4: Sample yt from P (Yt = y|y1:t−1, yt+1:T , e1:T) according to Equation 6.20
5: end while
6: Generate n samples from Pr (Y1:T |e1:T)
7: For each sampled state path y1:t sample from Pr (Θ,Φ|Y1:T , e1:T)
8: end for

Gibbs sampling consists of repeatedly sampling each variable in the model from the
conditional distribution given all the other variables. For example, if θ is a vector of
parameters θ = θ1, θ2, ..., θk, the Gibbs sampling algorithm samples θ1 from Pr(θ1|θ2:k, e)
followed by sampling θ2 from Pr(θ2|θ1, θ3:k, e) all the way to θk, after which we start again
from sampling θ1. It can be shown that the resulting Markov chain has stationary dis-
tribution P (θ1, ..., θk|e). In the case of HMMs, a straightforward Gibbs sampler would
involve sampling all hidden states Yi followed by sampling the parameters. Here, we use
what is known as the collapsed Gibbs sampler [52] which integrates out the parameters and
samples from Pr(Y1:T |e1:T) to speed up the convergence. Once we have sampled the state
paths, sampling the parameters can be done directly given the state paths.

As described in Chapter 4 we choose the prior distribution over the parameters to be a
product of Dirichlets. The posterior becomes a mixture of exponentially many products of
Dirichlets, each product corresponding to one possible state path. The joint distribution
Pr(Y1:T , e1:T) can be computed analytically using:

Pr(y1:T , e1:T) =

∫
ΘΦ

Pr(y1:T , e1:T |Θ,Φ) Pr(Θ,Φ)dΘdΦ (6.19)

∝
∏
y

∏
y′ Γ(ny,y′)

Γ(
∑

y′ ny,y′)

∏
y

∏
e Γ(ny,e)

Γ(
∑

e ny,e)

where ny,y′ is the number of transitions observed from state y to y′, ny,e is the number of
times e was observed given the state is y. Using Pr(Yt = y|y1:t−1, yt+1:T , e1:T) = Pr(Yt =

77

y, y1:t−1, yt+1:T , e1:T)/
∑

y′ P (Yt = y′, y1:t−1, yt+1:T , e1:T) and simplifying the terms above, we
get:

P (Yt = y|y1:t−1, yt+1:T , e1:T) ∝
nyt−1,y∑
y′ nyt−1,y′

·
ny,yt+1∑
y′ ny,y′

ny,et∑
e′ ny,e′

(6.20)

The algorithm is described in Algm 7. The Gibbs sampling procedure can be used both
for learning the parameters and for inference about activities, since it produces samples of
both state paths and parameter sets. Gibbs Sampling is a popular algorithm owing to its
simplicity and ease of implementation. However one of the key issues with Gibbs Sampling
is deciding on the convergence criteria i.e. when to stop sampling. Stopping at the wrong
time may give us sub optimal estimates of the parameters. In the next Chapter I will
describe an alternative technique of estimating the posterior based on moment matching.

6.5 Conditional Random Field

Conditional random fields are another class of probabilistic graphical models used for
creating models of real world processes (CRFs, see [46]). In contrast to Hidden Markov
Models, CRFs are discriminative, i.e., they model only the conditional distribution of the
activities given the the sensor measurements. An important advantage of this approach
is that no assumptions on the distribution of the sensor measurements need to be made.
In these experiments, we have restricted ourselves to linear-chain CRFs. This subclass of
CRF models is well suited for segmenting and labeling sequential data (such as the time-
ordered sensor measurements in our experiments), and efficient algorithms for training and
inference based on dynamic programming are available. Using the framework of linear-
chain CRFs, the conditional probability of the sequence of user activities y1:T , given the
sequence of sensor measurements e1:S

1:T , is given by

Pλ(y1:T |e1:S
1:T) =

1

Zλ (e1:S
1:T)

exp
(
λ · f

(
e1:S

1:T , y1:T

))
(6.21)

Zλ(e1:S
1:T) =

∑
ỹ1:T

exp
(
λ · f(e1:S

1:t , ỹ1:t)
)

(6.22)

The key ingredient to Equation 6.22 is the inner product of model weights λ and feature
functions f(e1:S

1:t , y1:t) (· represents the inner product). Since the CRF has a linear-chain
structure, there are two types of feature functions, namely, state and transition feature

78

functions. The inner product of model weights and feature functions can be written as

λ · f(e1:S
1:T , y1:T) =

T∑
t=1

λstate · f state(e1:S
t , yt) +

T∑
t=2

λtrans · f trans(yt−1, yt) (6.23)

Intuitively, the weighted state feature function λstate · f state(e1:S
t , yt) relates the user

activity at time t to the corresponding sensor measurements; the higher the particular
value for λstate · f state(e1:S

t , yt), the more likely it is that the user is performing activity yt
at time t. Similarly, the weighted transition feature function λtrans · f trans(yt−1, yt) relates
the user’s activities at subsequent time points.

The state feature functions in this model are based on thresholding: for each pair of
activities i, j and each sensor s, the actual observation est is compared to a fixed threshold

value τ sij. If the value is exceeded, i.e., if est ≥ τ sij, then some model weight λ
(e)
ijs is added,

otherwise a different model weight λ
(n)
ijs is added. The threshold values are chosen manually

by a visual inspection of the data. If the labels i, j cannot be well discriminated by looking
at the data from sensor s, then the threshold is chosen as the average value from sensor s;
later on, such “non-informative” thresholds will be given very low weights in the training
of the model.

A very simple transition model is used for the same reason as for HMMs (namely, we
want to avoid a bias towards certain transitions due to the design of the walker course). In
particular, the transition feature function is given by f trans(yt−1, yt) = δ(yt−1 = yt), hence
the corresponding model weight λtrans is a scalar.

Training and Inference

Given a sequence of labeled training data, the most common approach to learn the weights
of the CRF is maximizing the log-likelihood. The objective function is given by

L (λ) = λ · f
(
e1:S

1:T , y1:T

)
− logZλ

(
e1:S

1:T

)
− λ · λ

2σ2
(6.24)

The last term on the right hand side is a regularizer which penalizes large weights. Since
the objective function L (λ) is concave, hence its unique maximum can be found using
gradient-based search. The gradient of L in λ is given by

∇L(λ) = f
(
e1:S

1:T , y1:T

)
− Eλ

(
f
(
e1:S

1:T , Y1:T

))
− λ

σ2
(6.25)

79

where Eλ

(
f
(
e1:S

1:T , Y1:T

))
is the expectation of f

(
e1:S

1:T , Y1:T

)
under Pλ, that is,

Eλ

(
f
(
e1:S

1:T , Y1:T

))
=
∑
ỹ1:T

Pλ(Y1:T = ỹ1:T | e1:S
1:T)f

(
e1:S

1:T , ỹ1:T

)
(6.26)

We used the conjugate gradient method to find the maximum of L(λ), where we stopped
the search after 100 Newton iterations.

The main challenge in evaluating L(λ) is the computation of the partition function
Zλ

(
e1:S

1:T

)
. Also for the evaluation of the gradient ∇L(λ) the marginal distributions of Y1:T

under Pλ need to be computed in order to determine Eλ

(
f
(
e1:S

1:T , Y1:T

))
. Both problems can

be efficiently solved using dynamic programming: Let M 1, . . . ,MT be (N + 1)× (N + 1)-
matrices with the non-zero entries M 1(i, j) = exp

(
λstate · f state(e1:S

1 , j)
)

then

M t(i, j) = exp
(
λstate · f state(e1:S

t , j) + λtrans · f trans(i, j)
)

Furthermore, let F 0 = (0, . . . , 0, 1) and BT = (1, . . . , 1, 0) be (N + 1)-dimensional row-
vectors, and set F t = F t−1M t and B′t = M t+1B

′
t+1 (where B′t is the transpose of the

vectors Bt). Then the partition function can be written as

Zλ(e1:S
1:T) = F T ·BT

and the marginals of Y1:T can be obtained by

Pλ(Yt = yt, . . . , Yt+k = yt+k|e1:S
1:T) =

F t(yt) ·Bt+k(yt+k)

Zλ(e1:S
1:T)

k∏
i=1

M t+i(yt+i−1, yt+i)

where as usual the product over an empty index set is equal to 1 (see [46]).

Given the trained model and a sequence of observations, the labels can be predicted by
the sequence ỹ1:T which maximizes the a-posteriori probability of Y1:T , that is, we compute

ỹ1:T = arg max
y1:T

P (Y1:T = y1:T | e1:S
1:T)

where the maximization is over all label sequences of length T . Note that b̃1:T can be
computed efficiently similar to the Viterbi algorithm for HMMs (see [46]).

6.6 Results and Discussion

In this section, I present the analysis of the performance of the different algorithms dis-
cussed in this section on the activity recognition problem. I use leave one out cross val-
idation for each round of training and prediction. Specifically, if we want to predict the

80

activity sequence for a certain participant in Experiment 2, we learn the parameters from
all other participants in Experiment 2. For Experiment 1, each person goes through the
course twice. I have included one instance of the course in the training data along with
data from other participants while testing for the same person. The range of sensor read-
ings is divided into 20 intervals and their length is set in such a way that the same number
of readings fall into each interval. Therefore M = 20.

Ground truth is established by hand labeling the data based on the video. This process
is not perfect since the labeler can make mistakes while identifying activity transitions.
For example, the labeler may interpret that a left turn started at time t, while the turn
may actually start some time before t, but it only becomes evident in the video at time
t. Therefore, in order to calculate error, I introduce the concept of window size. If the
window size is x, then for the activity at time t, if we find the same activity in the window
between time t − x and time t + x in the predicted sequence, we count it as a correct
prediction. I vary our window size from 0 to 50 in intervals of 5. If we make a correct
prediction within a window width of 25, then we are only off by half a second. Since older
people perform activities at a rate that is much slower than half a second, this may still
be considered accurate. Let the predicted value of the activity be ỹ and the actual value
of the activity identified by a human be ŷ. Then, the accuracy can be defined as

Accuracy =

∑T
t=1 δ (ŷt = ỹt)

T
(6.27)

Note that random predictions would yield accuracy of 1/7 = 14% in Experiment 1 and
1/13 = 7% in Experiment 2.

We calculate the number of actual transitions as

AT =
∑T

t=1 δ (ŷt 6= ŷt−1)

The number of predicted transitions can be calculated using

PT =
∑T

t=1 δ (ỹt 6= ỹt−1)

Then, the number of correctly predicted transitions are calculated as

CPT =
∑T

t=1 δ (ỹt 6= ỹt−1 & ŷt = ỹt & ŷt−1 = ỹt−1)

Then

precision = CPT/PT

and

recall = CPT/AT

81

Table 6.5: Confusion matrix for HMM model Experiment 1 activities using load sensor
values. Observation model learned from data. Activity persistence probability τ = 4000.
Prediction using Filtering. Window size is 25. Features used are Accelerometer Measure-
ments, Speed, Load cell values. Overall accuracy is 91.1%.

NTW ST WF TL TR WB TRS Accuracy %

NTW 8161 915 0 2 8 0 3409 65.3

ST 101 4488 2 6 1 33 448 88.4

WF 3 404 63455 885 1403 14 578 95.1

TL 6 10 223 12834 109 30 202 95.7

TR 0 52 164 107 6515 0 283 91.5

WB 0 54 0 106 23 8314 244 95.1

TRS 260 312 0 59 20 0 3661 84.9

The results are expressed in the form of a confusion matrix where each matrix entry at
row i and column j indicates how many times activity i was predicted as activity j. I have
reported results obtained by using two different sets of features for the HMM. The first
set includes accelerometer measurements, speed and load sensor values while the second
set includes accelerometer measurements, speed, frontal center of pressure, saggital center
of pressure and total weight. The results obtained by doing supervised learning for the
HMM with the first set of features are shown in Table 6.5 for Experiment 1 and Table
6.8 for Experiment 2. The results obtained by doing supervised learning for the HMM
with the second set of features are shown in Table 6.6 for Experiment 1 and Table 6.9 for
Experiment 2. The results obtained obtained by using the CRF with the center of pressure
features are shown in Table 6.7 for Experiment 1 and Table 6.10 for Experiment 2. Table
6.11 shows the results obtained by doing supervised learning when the transition model is
also learned form data for Experiment 2.

Tables 6.12 and 6.13 summarize the accuracy of all the algorithms for each activity.

In some situations, we are interested in identifying transitions from some activity to
another. Figure 6.5 shows the precision and recall of activity transitions (in addition to
recognition accuracy) as a function of the window size.

6.6.1 Discussion

In this section, we will analyze the results obtained from our experiments.

82

Table 6.6: Confusion matrix for HMM model for Experiment 1 using center of pressure.
Observation model learned from data. Activity persistence parameter: τ = 4000. Predic-
tion using Filtering. Window size is 25. Features used are Accelerometer Measurements,
Speed, Frontal plane COP, Saggital plane COP and total weight. Overall accuracy is 88%.

NTW ST WF TL TR WB TRS Accuracy %

NTW 9343 1055 0 15 35 0 2047 74.8

ST 159 4308 2 75 34 53 448 84.8

WF 10 342 59379 5361 1545 7 98 89.0

TL 0 58 322 12528 99 170 237 93.4

TR 0 15 185 425 6367 3 126 89.4

WB 30 8 0 76 0 8520 107 97.5

TRS 273 344 0 208 22 106 3359 77.9

Table 6.7: Confusion matrix for CRF model for Experiment 1 data using center of pressure.
Window size is 25. Features used are Accelerometer Measurements, Speed, Frontal plane
COP, Saggital plane COP and Total Weight. Overall accuracy is 93.8%.

NTW ST WF TL TR WB TRS Accuracy %

NTW 10722 102 0 0 9 26 335 74.8

ST 102 4193 140 147 4 153 399 84.8

WF 0 48 67599 864 317 1 20 89.0

TL 0 31 1172 12316 19 180 57 93.4

TR 0 54 805 381 5855 0 200 89.4

WB 0 248 6 111 29 8578 117 97.5

TRS 386 507 33 250 15 148 3105 77.9

83

Table 6.8: Confusion matrix for HMM model for Experiment 2 data using load sensor
values. Observation model learned from data. activity persistence probability τ = 4000.
Prediction using Filtering. Window size is 25. Features used are Accelerometer Measure-
ments, Speed, load cell values. Overall accuracy is 79.1%.

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC Accuracy %

NTW 4301 3270 0 38 0 740 102 40 17 0 33 3 50.3

ST 2175 36432 252 2786 451 846 7030 333 466 76 724 67 70.6

WF 52 2327 52256 3986 7347 618 2272 0 1010 576 585 388 73.2

TL 11 436 702 13647 505 309 573 29 264 243 110 38 80.9

TR 16 518 1426 691 11563 245 819 0 185 222 64 83 73.0

WB 0 77 11 209 70 221 335 0 77 3 42 0 21.1

RT 209 2879 420 954 623 318 6400 0 277 65 126 16 52.1

SW 38 108 60 120 55 16 56 70812 37 14 18 0 99.3

GUR 0 0 8 4 25 7 11 0 2580 116 247 0 86.1

GDR 0 32 41 40 123 2 23 0 2 2748 69 114 86.0

GUC 0 24 17 60 11 41 27 0 2 0 2888 17 93.6

GDC 0 5 54 14 102 30 1 0 16 8 31 1439 84.6

Table 6.9: Confusion matrix for HMM model for for Experiment 2 data using center of
pressure. Observation model learned from data. activity persistence probability τ = 4000.
Prediction using Filtering. Window size is 25. Features used are Frontal plane COP,
Saggital plane COP and total weight. Overall accuracy is 77.2%.

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC Accuracy %

NTW 3962 3887 0 50 0 126 2 68 13 7 0 0 46.3

ST 3604 35073 1457 1815 788 1048 3893 509 807 166 646 146 67.9

WF 798 2146 50259 3040 7674 1251 2003 0 1271 420 477 238 70.4

TL 529 525 1892 11372 392 714 624 42 299 116 175 30 67.4

TR 50 330 1137 734 11748 695 578 0 140.0 197 133 90 74.2

WB 0 5 30 160 21 588 141 0 41.0 0 46 13 56.3

RT 502 3290 553 1077 494 495 5199 18 211.0 74 219 155 42.3

SW 26 129 16 177 49 0 94 70784 39.0 0 13 7 99.2

GUR 0 0 57 24 20 0 9 0 2528.0 113 132 115 84.3

GDR 0 17 32 142 98 22 40 0 8.0 2595 72 168 81.2

GUC 0 18 15 45 18 2 45 0 0.0 0 2937 7 95.1

GDC 0 18 59 12 127 6 54 0 0.0 9 19 1396 77.2

84

Table 6.10: Confusion matrix for CRF model for Experiment 2 data using center of pres-
sure. Window size is 25. Features used are Accelerometer Measurements, Speed, Frontal
plane COP, Saggital plane COP and total weight. Overall accuracy is 80.8%.

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC Accuracy %

NTW 6674 1834 0 0 0 0 0 36 0.0 0 0 0 78.1

ST 1017 48677 1100 296 0 0 129 374 0.0 0 45 0 94.3

WF 0 2490 67738 744 270 0 25 112 0.0 0 38 0 94.8

TL 0 2081 5958 8528 97 0 72 117 0.0 12 2 0 50.6

TR 0 1517 10632 350 3129 0 62 34 0.0 69 39 0 19.8

WB 0 383 501 55 29 0 59 0 18.0 0 0 0 0.0

RT 387 7787 3071 327 24 0 634 46 11.0 0 0 0 5.2

SW 0 271 147 77 0 0 0 70839 0.0 0 0 0 99.3

GUR 0 173 1647 28 0 0 0 32 938.0 0 180 0 31.3

GDR 0 95 1753 0 575 0 0 0 0.0 720 41 10 22.5

GUC 0 436 375 0 89 0 122 0 0.0 0 2065 0 66.9

GDC 0 156 982 0 1 0 0 0 0.0 339 9 213 12.5

Table 6.11: Confusion matrix for HMM model results for Experiment 2 data using nor-
malized load sensor values. Observation model and transition model learned from data.
Prediction using Filtering. Window size is 25. Features used are Accelerometer Measure-
mens, Speed, Normalized load cell values. Overall accuracy is 80.8%.

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC Accuracy %

NTW 4227 3356 1 38 0 709 117 40 24 0 32 0 49.5

ST 1777 37952 281 2485 458 649 6531 337 408 49 649 62 73.5

WF 36 2155 55910 3499 5814 468 1827 0 599 343 508 258 78.3

TL 8 473 769 13614 536 200 560 58 254 223 138 34 80.7

TR 20 562 1552 694 11515 190 806 0 146 198 70 79 72.7

WB 0 90 15 210 70 218 326 0 77 2 37 0 20.9

RT 207 3201 524 936 586 252 6116 0 249 61 140 15 49.8

SW 40 116 63 117 56 12 51 70812 38 13 16 0 99.3

GUR 0 0 36 4 26 8 11 0 2551 113 249 0 85.1

GDR 0 33 50 62 128 2 20 0 2 2723 70 104 85.3

GUC 0 25 22 59 11 34 30 0 1 0 2888 17 93.6

GDC 0 6 67 14 96 33 1 0 15 7 30 1431 84.2

85

Table 6.12: Experiment 1 percentage accuracy for each activity. COP implies that center
of pressure feature is used instead of load cell values. Prediction is done using the Forward-
Backward Algorithm

Window Learning Algorithm Percentage Accuracy

Size NTW ST WF TL TR WB TRS Total

0 Supervised HMM NL 62.0 74.6 81.2 79.5 76.3 85.9 67.6 78.2

Supervised HMM COP 69.6 59.9 78.2 71.5 72.6 89.2 42.6 74.9

Supervised CRF 90.9 67.4 95.0 75.3 63.6 89.5 49.6 87.1

Unsupervised HMM EM 85.3 6.1 57.3 48.1 56.5 59.1 19.0 55.9

Unsupervised HMM Gibbs 98.1 6.8 92.5 58.2 57.3 41.1 12.2 75.2

25 Supervised HMM NL 65.1 87.0 95.1 94.4 90.3 94.4 84.1 90.7

Supervised HMM COP 73.3 79.0 86.7 88.3 86.9 97.0 62.6 85.0

Supervised CRF 95.8 81.6 98.2 89.4 80.3 94.4 69.9 93.8

Unsupervised HMM EM 90.1 16.1 88.6 71.5 75.4 73.7 31.3 79.3

Unsupervised HMM Gibbs 99.9 17.5 95.5 65.2 71.3 43.1 17.2 79.9

Figure 6.5: Accuracy, Precision and Recall for various algorithms in each experiment.

86

T
ab

le
6.

13
:

E
x
p

er
im

en
t

2
p

er
ce

n
ta

ge
ac

cu
ra

cy
fo

r
ea

ch
ac

ti
v
it

y.
N

L
m

ea
n
s

th
e

n
or

m
al

iz
ed

lo
ad

va
lu

es
ar

e
u
se

d
.

C
O

P
im

p
li
es

th
at

ce
n
te

r
of

p
es

su
re

fe
at

u
re

is
u
se

d
in

st
ea

d
of

n
or

m
al

iz
ed

lo
ad

va
lu

es
.

W
in

d
o
w

L
ea

rn
in

g
A

cc
u

ra
cy

S
iz

e
N

T
W

S
T

W
F

T
L

T
R

W
B

R
T

S
W

G
U

R
G

D
R

G
U

C
G

D
C

T
o
ta

l

0
S

u
p

er
v
is

ed
H

M
M

N
L

4
5
.0

5
0
.6

4
3
.2

6
0
.8

5
0
.6

8
.0

2
7
.5

9
8
.6

7
1
.7

5
7
.9

7
5
.2

6
2
.8

6
1
.7

S
u

p
er

v
is

ed
H

M
M

C
O

P
4
5
.6

5
0
.0

4
3
.5

5
0
.4

4
8
.6

2
5
.6

2
1
.3

9
8
.3

7
5
.5

5
6
.5

7
0
.3

5
3
.6

5
9
.2

S
u

p
er

v
is

ed
C

R
F

7
4
.9

8
8
.6

8
9
.4

3
7
.3

1
4
.7

0
.0

2
.9

9
8
.8

1
9
.1

1
9
.4

4
1
.2

8
.6

7
6
.2

U
n

su
p

er
v
is

ed
H

M
M

E
M

7
5
.6

3
0
.0

3
1
.2

4
6
.9

2
1
.2

3
8
.0

2
8
.5

6
8
.7

8
.3

4
.6

4
.8

2
2
.6

4
2
.8

U
n

su
p

er
v
is

ed
H

M
M

G
ib

b
s

9
0
.0

3
5
.1

3
5
.0

4
5
.6

6
2
.3

0
5
0
.2

8
7
.5

3
9
.6

2
5
.6

3
7
.9

0
.1

5
1
.0

2
5

S
u

p
er

v
is

ed
H

M
M

N
L

4
9
.1

6
6
.1

7
0
.8

7
8
.7

6
9
.6

1
1
.0

4
2
.8

9
9
.3

8
2
.8

8
1
.4

9
3
.0

8
2
.9

7
6
.4

S
u

p
er

v
is

ed
H

M
M

C
O

P
4
8
.1

7
4
.0

8
1
.6

7
1
.7

7
4
.5

5
3
.6

4
1
.1

9
9
.2

9
4
.0

8
4
.7

9
0
.1

8
1
.6

8
1
.5

S
u

p
er

v
is

ed
C

R
F

7
8
.1

9
4
.3

9
4
.8

5
0
.6

1
9
.8

0
.0

5
.2

9
9
.3

3
1
.3

2
2
.5

6
6
.9

1
2
.5

8
0
.8

U
n

su
p

er
v
is

ed
H

M
M

E
M

7
8
.0

4
8
.0

6
9
.6

7
4
.3

5
0
.9

6
3
.3

5
3
.5

7
0
.3

2
3
.2

1
7
.6

5
7
.0

4
9
.4

6
1
.8

U
n

su
p

er
v
is

ed
H

M
M

G
ib

b
s

9
5
.0

4
2
.2

7
6
.9

6
8
.8

8
0
.8

0
6
2
.3

9
0
.9

5
7
.4

5
2
.1

4
6
.2

1
.9

6
9
.3

87

6.6.2 Experiment 1 vs. Experiment 2

It is obvious from Tables 6.12 and 6.13 and Figure 6.5 that the overall accuracy is
much higher for Experiment 1. Difficult activities such as TR, TL and TRS are also
predicted accurately. One reason for the high accuracy may be that in Experiment 1, each
person executes the course twice and one instance of the course execution is included in the
training data while testing for the same person. Therefore, the training data may include
information that is more specific to the particular person e.g., how people put load on the
walker for different activities. Secondly, for Experiment 1, activities such as NTW, ST, WF
and WB are easily distinguishable from each other. Confusion is only likely between WF,
TL and TR and between ST and TRS. There is a larger number of activities in Experiment
2 that are difficult to distinguish from each other based on sensor information e.g. WF,
TL, TR, GUR, GDR, GUC and GDC. Similarly it is difficult to distinguish between RT
and ST.

6.6.3 CRF vs. HMM

Tables 6.12 and 6.13 show that the total accuracy of the CRF is much higher than that of
the HMM. This result is further validated by comparing Tables 6.6 and 6.7 and Tables 6.9
and 6.10. From Figure 6.5 it is obvious that the precision is higher and recall is lower for
the CRF than for any other algorithm. This is largely due to the fact that the CRF models
Pr(Activity|Observations) directly and optimizes the parameters of this distribution. On
the other hand, the HMM models Pr(Observations|Activity) as well as Pr(Activitys, and
then uses Bayes rule to calculate Pr(Activity|Observations). Therefore, the HMM model
is more complex and the number of parameters that we have to learn is larger. Also, the
HMM makes an explicit assumption about the conditional independence of sensor measure-
ments over time. The CRF avoids this (problematic) assumption since it does not model
any distribution over the observations. However, techniques for unsupervised learning are
better established for HMMs than CRFs. This becomes an important advantage since the
data does not need to be labeled in unsupervised learning.

6.6.4 Maximum Likelihood vs. Bayesian Learning

As explained previously, manually labeling the data is time consuming and error-prone.
Unsupervised learning algorithms avoid this problem. However, they take longer to con-
verge and the solutions are usually approximations to the optimal parameters. One impor-
tant difficulty with unsupervised learning is state matching. On one hand, unsupervised

88

learning algorithms may pick sub-activities of composite activities as a state. For example,
the ramp transition can be broken up into getting on the ramp (corresponding to a blip in
the vertical acceleration), and walking on the ramp. The algorithm may find a state that
matches either one or both instead of the going up/down ramp. On the other hand, if two
activities are similar, the algorithm might treat them as the same state. I observed that
in Table 6.12, TRS is almost never predicted correctly. This may be due to the fact that
TRS is very similar to ST and hence they are merged into one state.

For EM and Gibbs sampling, once a model is learned, each latent state is associated
with the activity that it is matched with most frequently. In general we used a number of
latent states equal to the number of activities, except for Gibbs sampling in Experiment
1 (Table 6.12) where latent states (11) states were used than activities (7), the accuracy
improved.

Since EM often gets stuck in local optima, I did 20 random restarts and showed the
results of the model with the highest likelihood. In contrast, Gibbs sampling does not
suffer from this problem. It is evident from Tables 6.12 and 6.13 as well as Figure 6.5
that Gibbs sampling performs better than EM.

In this chapter I have presented a novel and significant application of activity recogni-
tion in the context of instrumented walkers. I designed several algorithms based on HMMs
and CRFs, and tested them with real users at the Village of Winston Park (retirement
community in Kitchener, Ontario). A comprehensive analysis of the results showed that
activities associated with walker usage tend to induce load, speed and acceleration patterns
that are sufficient to distinguish them with reasonable accuracy. We have used a Hidden
Markov Model for activity recognition. In future variants of HMMs such as semi-Markov
HMMs can be used to model this problem as well. In semi-Markov HMMs, the persistence
probability of an activity along-with the duration for which the activity persists are explic-
itly modeled. However this is beyond the scope of this thesis and is left as future work. In
the next chapter we will describe an algorithm for activity recognition based on moment
matching.

89

Chapter 7

Moment Matching For Activity
Recognition

In the previous chapter I described how we can use probabilistic graphical models to do
activity recognition using an HMM. Most of the algorithms discussed previously either
require manual labeling of the data or else require the full data to be present in the
memory. In this chapter I will describe a moment matching algorithm for learning the
parameters of the HMM arising in the activity recognition domain in an online fashion.
Each new observation is incorporated in a constant amount of time without needing to
retrain the model.

7.1 Bayesian Learning for HMMs

In Figure 7.1 a Bayesian model for activity recognition is shown where the transition and
observation parameters are sampled from Bayesian priors. The following generative process
allows us to sample an observation sequence given a set of hyper-parameters for the priors.
For each y ∈ {1, . . . , T} we first sample θy from a prior f (θy;αy). Then for each sensor
s, we sample φy,s from another prior f (φy,s; βy,s). Then, each observation is generated by
first sampling the current state y′ from θy where y is the state sampled at the previous
time step. Then for each sensor s, we sample an observation e from φy′,s. We will use the
following additional terminology frequently for notational convenience

α set of hyper-parameters for the transition distribution

β set of hyperparameters for the observation distribution

90

α��
��
?

θ��
��
�����������9

�
���

���

@
@
@@R

XXXXXXXXXXXz

β��
��

- φ��
��XXX

XXX
XXXy

PP
PP

PPi 6
��

�
��*

��
��

��
�1

���
���

���
��:

��
��
Y0 ��

��
��
��
Y1 ��

��
Y2 ��

��
Yt

��
��

��
��

E1
1 ES1

�
�	
@
@R

��
��

��
��

E1
2 ES2

�
�	
@
@R

��
��

��
��

E1
t ESt

�
�	
@
@R

- - - -

Figure 7.1: A Hidden Markov Model For Activity Recognition with Bayesian Priors

Pt (Θ,Φ) = Pr
(
Θ,Φ|e1:S

1:t

)
P y
t (Θ,Φ) = Pr

(
Θ,Φ|Yt = y, e1:S

1:t

)
kyt = Pr

(
Yt = y, e1:S

t |e1:S
1:t−1

)
kt = Pr

(
e1:S
t |e1:S

1:t−1

)
cyt = Pr

(
Yt = y|e1:S

1:t

)
ct = Pr

(
e1:S

1:t

)
For now we will assume that there is only 1 sensor. Later on I will extend the discussion

to include more sensors. Given an observation sequence, we want to estimate Θ and Φ.
Recall that the posterior Pt (Θ,Φ) can be computed using

Pr (Θ,Φ|e1:t) =
∑
y

P y
t (Θ,Φ) cyt (7.1)

where

kyt = Pr (Yt = y, et|e1:t−1) =

∫
Φ,Θ

φy,et
∑
i

θi,yc
i
t−1P

i
t−1 (Θ,Φ) dΦdΘ (7.2)

kt = Pr (et|e1:t−1) =
∑
a

kat (7.3)

cyt = Pr (Yt = y|e1:t) = kyt /kt (7.4)

cytP
y
t (Θ,Φ) = Pr (Θ,Φ, Yt = y|e1:t) = (1/kt)φy,et

∑
i

θi,yc
i
t−1P

i
t−1 (Θ,Φ) (7.5)

91

Let the prior P0 (Θ,Φ) = f (Θ,Φ|α, β) be some distribution in θs and φs where α and
β are the parameters of the distribution f . Then according to Eq. 7.1 the number of terms
in the posterior grows by a factor of O(N2). After t observations, the posterior will consist
of a mixture of O(N2t) terms, which is intractable to express.

7.2 Moment Matching for Hidden Markov Models

In Algm.8, I describe a moment matching technique for Bayesian learning of HMM pa-
rameters. This algorithm is based on Algm. 1 from Chapter 4. For each y the algorithm
approximates the posterior P y

t after seeing an observation with fewer terms in order to pre-
vent the number of terms from growing exponentially. The posterior P y

t is approximated
with a simpler distribution Qy

t by moment matching. More precisely, a set of moments
sufficient to define Qy

t are matched to the moments of the exact posterior P y
t . Then, the

exact posterior P y
t (Θ,Φ) is computed according to 7.5 based on the tth observation. Then,

for each P y
t , compute the moments S(f) are computed that are sufficient to define a dis-

tribution in the family f . For each µ ∈ S(f), the moments Mµ(P y
t) of the posterior are

computed exactly using

Mµ(P y
t) =

∑
i c
i
t−1Mµ θi,yφy,et

(
P i
t−1

)∑
i c
i
t−1Mθi,yφy,et

(
P i
t−1

) (7.6)

Algorithm 8 genericMomentMatching

1: Let f(Θ,Φ|α, β) be a family of distributions with parameters α and β
2: Initialize the prior P0(Θ,Φ)
3: for t = 1 to T do
4: for y = 1 to N do
5: Compute cytP

y
t (Θ,Φ) from cat−1P

a
t−1(Θ,Φ) according to (Eq. 7.5)

6: For ∀µ ∈ S(f), compute Mµ(P y
t)

7: Compute αy and βy from the Mµ(P y
t)’s

8: Approximate P y
t with Qy

t (Θ,Φ) = f(Θ,Φ|αy, βy)
9: Compute Pt (Θ,Φ) using Equation 7.1

10: end for
11: end for

Mµ θi,yφy,et

(
P y
t−1

)
denotes the moment associated with the monomial µ θi,yφy,et obtained

by multiplying µ(Θ,Φ) by θi,y and φy,et . Next, we compute the parameters αy and βy based

92

on the set of sufficient moments (line 6)1. This determines a specific distribution Qy
t in the

family f that we use to approximate P y
t . The key difference between this algorithm and

the one described in Algm. 2 is that the moment matching is done for each posterior P y
t

separately and then we use 7.1 to compute the posterior Pt (line 9).

7.2.1 The Known Observation Model

We will first illustrate Algm. 8 with a simplified version of the problem in which the
observation distribution Φ is known. This setting is useful in many domains, including
activity recognition. The observation distribution can be estimated in isolation by asking
participants to perform specific activities while recording the sensor measurements. In
contrast, the transition distribution cannot be easily estimated in controlled experiments
since sequences of activities must be unscripted and performed over a period of time that
may range from hours to weeks. This yields an unsupervised learning problem.

Again we let f (Θ) be a product of Dirichlets such that f (Θ) =
∏

aDir(θa;αa). Recall
that any moment Mµ where µ(Θ) =

∏
i

∏
j θ

ni,j
i,j can be calculated using

Mµ(fy) =

∫
Θ

∏
i

∏
j

θ
ni,j
i,j f(θ)dθ =

∏
i

Γ(αi,.)

Γ(αi,. +
∑

b ni,b)

∏
j

Γ(αi,j + ni,j − 1)

Γ(αi,j)
(7.7)

Where αi,. =
∑

j αi,j. Similar to the procedure described in Chapter 4 the following
sufficient set can be used to compute the parameters of the distribution

S(f) = {θi,j, θ2
i,1|1 ≤ i ≤ N, 1 ≤ j ≤ N − 1} (7.8)

We can determine the parameters αi,j of a Dirichlet based on those moments by setting
up a system of N equations in N variables

Mθi,j(f) =
αi,j
αi,.

1 ≤ j ≤ N − 1 Mθ2i,1
(f) =

αi,1(αi,1 + 1)

(αi,.)(αi,. + 1)

This system of equations can be solved analytically as follows

αi,j = Mθi,j (f)
Mθi,j (f)−Mθ2i,1

(f)

Mθ2i,1
(f)− (Mθi,j (f))2

(7.9)

1Since the parameters of P y
t are different for different values of y, the superscript y on the αs and βs

allows us the differentiate between these values.

93

Once we have the parameters αi,j, we can use Eq. 7.7 to calculate all other moments of
this distribution. The sufficient set of moments of the exact posterior can be computed
using the following equations

cytMµ(P y
t) = (1/kt)

∑
i

φy,etc
i
t−1Mµ θi,y(P

a
t−1) (7.10)

The key difference between this algorithm and the algorithm described in Chapter 5 lies in
the fact that at every time step, we have y different posteriors P y

t that are approximated
by a product of Dirichlets of the form fy (θy). Whereas in the case of LDA, there is only
one posterior that is approximated. We will use αya,b to denote the parameters for the yth

posterior P y
t . For j = {1, . . . , N − 1}

cytMθi,j(P
y
t) = (1/kt)

∑
a

φy,etc
a
t−1Mθi,jθa,y(P

a
t−1) (7.11)

= (1/kt)
∑
a

φy,etc
a
t−1

αaa,y
αaa,.

αai,j + δ(a, i)δ(y, j)

αai,. + δ(a, i)

cytMθ2i,1
(P y

t) = (1/kt)
∑
a

cat−1φy,etMθ2i,1θa,y
(Pn−1) (7.12)

= (1/kt)
∑
a

cat−1φy,et
αaa,y
αaa,.

αai,1 + δ(a, i)δ(y, 1)

αai,. + δ(a, i)

αi,1 + δ(a, i)δ(y, 1) + 1

αai,. + δ(a, i) + 1

We can then use Eq. 7.9 to determine the αa,b’s of the approximating distribution
Qy
t (Θ) = f(Θ;α). This process is summarized in Alg. 9.

The computational complexity of Alg. 9 is O(TN3). There are T iterations in which
an observation is processed by updating the hyper-parameters in O(N3). This is an online
algorithm since the data is processed in one sweep, the amount of computation to process
each observation is independent of the amount of data. We obtain an estimate of the
parameters (as an approximate posterior) after processing each observation.

7.2.2 Learning the Observation Model

Now lets consider the general case where the transition and observation distributions are
all unknown. A natural choice for the family of approximating distributions is a product of
Dirichlets of the form f(Θ,Φ) =

∏
yDir(θy;αy)

∏
yDir(φy; βy). Similar to LDA we have

to deal with the label switching problem.

94

Algorithm 9 momentMatching (known Φ)

1: Let f(θ|α) be the family of Dirichlets
2: Initialize P0(θ) =

∏
yDir(θy;αy)

3: for t = 1 to T do
4: for y = 1 to N do
5: Compute P y

t (θ) from P a
t−1(θ) (Eq. 7.5)

6: Compute Mθi,j(P
y
t) for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 (Eq. 7.11)

7: Compute Mθ2i,1
(P y

t) for 1 ≤ i ≤ N using Eq. 7.12

8: Compute ᾱi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 using Eq. 7.9
9: Approximate P y

t with Qy
t (θ) =

∏
aDir(θa; ᾱ

y
a)

10: Compute Pt (Θ,Φ) using Equation 7.1
11: end for
12: end for

Label Switching and Unidentifiability

I discussed label switching in details in 5 for LDA. HMMs also suffer from the same issue
where the labels assigned to each hidden state can be permuted and we get a new set
of parameters Θ and Φ. The model corresponding to this new set of parameters, can
generate the observations e1:t with the same probability as the first model. The treatment
of unidentifiability is slightly different from LDA since in LDA the moment update equation
is defined in terms of the full posterior while in HMMs, the moment update is defined in
terms of the joint distribution distribution P (Θ,Φ, Yt = y|e1:t). Each P (Θ,Φ, Yt = y|e1:t)
has there are N ! components, each corresponding to a permutation of the hidden states.
In the limit (i.e., infinite amount of data), the full posterior Pr (Θ,Φ|e1:t) will have N !
modes and therefore a unimodal approximation with a product of Dirichlets will not work
well. In order to cater for each mode that is expected to arise from each permutation, we
consider a mixture of products of Dirichlets. The parameters of each product of Dirichlets
are permuted according to the hidden state labels assigned to that permutation. Let ΣN

be all permutations of the vector 1, . . . , N , then we can write

Pr (Θ,Φ, Yt = y|e1:t) =
1

N !

∑
σi∈SN

Pr (Θ,Φ, Yt = σi(y)|e1:t) =
1

N !

∑
σi

c
σi(y)
t P

σi(y)
t (Θ,Φ)

(7.13)

Here σ is a permutation of the vector 1, . . . , N and σ(y) is the label of the hidden state
y in that permutation. fσ is a product of Dirichlets corresponding to the permutation

95

σ.Each permutation is assigned the weight 1/N ! so that the mixture sums up to 1. We
approximate P (Θ,Φ, Yt = y|e1:t) with an f such that

P (Θ,Φ, Yt = y|e1:t) ≈ f y (Θ,Φ) =
1

N !

∑
σi∈SN

c
σi(y)
t fσi(y) (Θ,Φ) (7.14)

This can be illustrated by the following example where N = 2 and M = 3. The conditional
P (Θ,Φ, Yt = 1|e1:t) can be approximated by

f 1 (Θ,Φ) = 1/2 c1
tDir

(
θ1,1, θ1,2;α1

1,1, α
1
1,2

)
Dir

(
θ2,1, θ2,2;α1

2,1, α
1
2,2

)
Dir

(
φ1,1, φ1,2, φ1,3; β1

1,1, β
1
1,2, β

1
1,3

)
Dir

(
φ2,1, φ2,2, φ2,3; β1

2,1, β
1
2,2, β

1
2,3

)
+ 1/2 c2

tDir
(
θ1,1, θ1,2;α2

2,2, α
2
2,1

)
Dir

(
θ2,1, θ2,2;α2

1,2, α
2
1,1

)
Dir

(
φ1,1, φ1,2, φ1,3; β2

2,1, β
2
2,2, β

2
2,3

)
Dir

(
φ2,1, φ2,2, φ2,3; β2

1,1, β
2
1,2, β

2
1,3

)
Similarly P (Θ,Φ, Yt = 2|e1:t) can be approximated by

f 2 (Θ,Φ) = 1/2 c2
tDir

(
θ1,1, θ1,2;α2

1,1, α
2
1,2

)
Dir

(
θ2,1, θ2,2;α2

2,1, α
2
2,2

)
Dir

(
φ1,1, φ1,2, φ1,3; β2

1,1, β
2
1,2, β

2
1,3

)
Dir

(
φ2,1, φ2,2, φ2,3; β2

2,1, β
2
2,2, β

2
2,3

)
+ 1/2 c2

tDir
(
θ1,1, θ1,2;α1

2,2, α
1
2,1

)
Dir

(
θ2,1, θ2,2;α1

1,2, α
1
1,1

)
Dir

(
φ1,1, φ1,2, φ1,3; β1

2,1, β
1
2,2, β

1
2,3

)
Dir

(
φ2,1, φ2,2, φ2,3; β1

1,1, β
1
1,2, β

1
1,3

)
(7.15)

The full posterior Pr (Θ,Φ) = f 1 (Θ,Φ) + f 2 (Θ,Φ) then becomes symmetric and its
odd central moments of symmetric distributions are zero and therefore cannot be used in
moment matching. Similar to LDA, I consider a family of slightly asymmetric mixtures

f (Θ,Φ) =
∑
σi∈SN

wσif
σi (Θ,Φ) (7.16)

I assign a weight wσ1 = ((N −1)! + 1)/(N ! + (N −1)!) to the first component that is (N −1)!

higher than the weight wσj = 1/(N ! + (N − 1)!) ∀j 6= 1 for the remaining components. In
the next section I will show how this slight asymmetry ensures that all moments vary and
therefore can be used in moment matching. Furthermore, we only need to store the hyper-
parameters of one product of Dirichlets since all N ! components share the same (permuted)
hyper-parameters.

96

Sufficient Moments

Since all mixture components fσi share the same (permuted) hyper-parameters, f has a
total of N2 transition hyper-parameters and NMS observation hyperparameters. Thus we
include N2 +NMS moments in the set of sufficient moments

S(f) = {θa,y, θ2
a,1|1 ≤ a ≤ N, 1 ≤ y ≤ N − 1} ∪ {φy,e, φ2

y,1|1 ≤ y ≤ N, 1 ≤ e ≤M − 1}

Using equations 7.13 and 7.14, we can set up a system of equations such that allow us to
match the moments of each Pr (Θ,Φ, Yt = σi(y)|e1:t) and f y (Θ,Φ), we get∑

σi

wσic
σi(y)
t Mθa,b

(
P
σi(y)
t

)
=
∑
σi∈SN

wσic
σi(y)
t Mθa,b

(
fσi(y)

)
(7.17)

where σ(y) is the index of y under the permutation σ. If we use symmetric weighing
scheme, this system of equations will give us N ! equations for each moment that are all the
same. However, if we use the assymetric weighing scheme, the moment matching equations
become,

(N − 1)! + 1

N ! + (N − 1)!
Mθa,b

(
P
σ1(y)
t

)
+

1

N ! +N − 1!

∑
σi,i 6=1

c
σi(y)
t Mθa,b

(
P
σi(y)
t

)
=

(N − 1)! + 1

N ! + (N − 1)!
Mθa,b

(
P
σ1(y)
t

)
+

1

N ! +N − 1!

∑
σi,i 6=1

c
σi(y)
t Mθa,b

(
fσi(y)

)
This will give us N ! equations that can be analytically solved to get

Mθa,b

(
P
σ1(y)
t

)
= Mθa,b

(
fσ1(y)

)
(7.18)

This is an important result as it shows that doing moment matching using even one per-
mutation actually allows us to cater for all permutations.

The sufficient moments in θ are computed as follows:

M(θi,j)(f
y) =

αyi,j
αyi,.

(7.19)

M(θ2i,1)(f
y) =

αyi,j
αyi,.

αyi,j + 1

αyi,. + 1
(7.20)

97

Similarly, using βt,. =
∑

w βt,w the sufficient moments can be computed as:

M(φi,j)(f
y) =

βyi,j
βyi,.

(7.21)

M(φ2i,1)(f
y) =

βyi,j
βyi,.

βyi,j + 1

βyi,. + 1
(7.22)

For matching the moments with respect to θ, we can use Equations 7.11 and 7.12. For
φ, we can use the following set of equations

cytMφi,j(P
y
t) = (1/kt)

∑
a

cat−1Mφi,jθa,yφy,et
(P a

t−1) (7.23)

= (1/kt)
∑
a

cat−1

αaa,y
αaa,.

βay,e
βay,.

βai,j + δ(y, i)δ(i, e)

βai,. + δ(y, i)

cytMφi,j(P
y
t) = (1/kt)

∑
a

cat−1Mφ2i,1θa,yφy,et
(P a

t−1) (7.24)

= (1/kt)
∑
a

cat−1

αaa,y
αaa,.

βay,e
βay,.

βai,j + δ(y, i)δ(i, e)

βai,. + δ(y, i)

βai,j + δ(y, i)δ(i, e) + 1

βai,. + δ(y, i) + 1

Then the new counts can be computed using

βi,j = Mφi,j (f)
Mφi,j (f)−Mφ2i,1

(f)

Mφ2i,1
(f)− (Mφi,j (f))2

(7.25)

Alg. 10 summarizes Bayesian moment matching for the case where both Θ and Φ are
estimated. The computational complexity of Alg. 10 is O(T × (N4 + N3M)). There are
T iterations in which an observation is processed by updating the hyper-parameters of the
approximating mixtures in O(N4 +N3M) time. The main bottleneck is the computation of
all moments, each of which takes O(N) time. In the next section I will describe a method
for doing this computation efficiently.

7.2.3 Efficient Moment Matching

As we get more observations, Pr (Θ,Φ|Yt = y, e1:t) becomes the same for all values of y.
Therefore, we can make an approximation such that Pr (Θ,Φ|Yt = y, e1:t) ≈ Pr (Θ,Φ|e1:t).

98

Algorithm 10 momentMatching (Θ and Φ unknown)

1: Let f(θ|α) be the family of Dirichlets
2: for t = 1 to T do
3: for y = 1 to N do
4: Compute Mθi,j(P

y
t) for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 (Eq. 7.11)

5: Compute Mθ2i,1
(P y

t) for 1 ≤ i ≤ N using Eq. 7.12

6: Compute Mφi,j(P
y
t) for 1 ≤ i ≤ N and 1 ≤ j ≤M (Eq. 7.23)

7: Compute Mφ2i,1
(P y

t) for 1 ≤ i ≤ N using Eq. 7.12

8: Compute ᾱi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 using Eq. 7.9
9: Compute β̄i,j for 1 ≤ i ≤ N and 1 ≤ j ≤M using Eq. 7.25

10: Approximate P y
t with Qy

t (Θ,Φ) =
∏

aDir(θa; ᾱ
y
a)
∏

bDir(φb; β̄
y
b)

11: Compute Pt (Θ,Φ) using Equation 7.1
12: end for
13: end for

This gives us a simplified set of equations for the moment update.

Pr (Θ,Φ|e1:t) = (1/kt)
∑
y

∑
i

θi,yφy,etc
i
t−1 Pr (Θ,Φ|e1:t−1) (7.26)

kyt = Pr (Yt = y, et|e1:t−1) =

∫
Φ,Θ

φy,et
∑
i

θi,yc
i
t−1P

i
t−1 (Θ,Φ) dΦdΘ (7.27)

kt = Pr (et|e1:t−1) =
∑
a

kat (7.28)

cyt = Pr (Yt = y|e1:t) = kyt /kt (7.29)

99

The moment update equation for θ can be written as

Mθa,b (Pt) =
1

kt

∑
y

∑
i

cit−1Mθa,bθi,yφy,et
(Pt−1) (7.30)

=
1

kt

∑
y

∑
i

cit−1

βy,et
βy,.

αi,y
αi,.

αa,b + δ(a, i)δ(b, y)

αa,. + +δ(a, i)

=
1

kt

∑
y

∑
i

cit−1

βy,et
βy,.

αi,y
αi,.

[
αa,b + δ(a, i)δ(b, y)

αi,. + δ(a, i)
+ δ(a, i)

αa,b
αa,.
− δ(a, i)αa,b

αa,.

]

=
αa,b
αa,.

{
1 +

∑
y

βy,et
βy,.

[
αa,b + δ(b, y)

αa,. + 1
− αa,b
αa,.

]
cat−1

kt

}

= Mθa,b (Pt−1)

{
1 +

∑
y

Mφy,et
(Pt−1)

[
αa,b + δ(b, y)

αa,. + 1
− αa,b
αa,.

]
cat−1

kt

}

= Mθa,b (Pt−1)

{
1 +

1

αa,. + 1

[
Mφb,et

(Pt−1)−Mθa,b (Pt−1)
∑
y

Mφy,et
(Pt−1)

]
cat−1

kt

}

Since we can compute
∑

yMφy,et
(Pt−1) once for each observation, each moment can

now be updated in O(1) time.

For the observation distribution,

Mφa,b (Pt) =
1

kt

∑
y

∑
i

cit−1Mφa,bθi,yφy,et
(Pt−1) (7.31)

=
1

kt

∑
y

∑
i

cit−1

βy,et
βy,.

αi,y
αi,.

βa,b + δ(a, y)δ(b, et)

βa,. + +δ(a, y)

=
1

kt

∑
y

∑
i

cit−1

βy,et
βy,.

αi,y
αi,.

βa,b + δ(a, y)δ(b, et)

βa,. + +δ(a, y)
− δ(a, y)

∑
i

cit−1

βy,et
βy,.

αi,y
αi,.

βa,b
βa,.

= Mφa,b (Pt−1)−Mφa,b (Pt−1)
cat

βa,. + 1
+ δ(b, et)

cat
βa,. + 1

Let

Xa
t =

[
1− cat

βa,. + 1

]
(7.32)

Y a
t =

cat
βa,. + 1

(7.33)

100

Then

Mφa,b (Pt) =

[
Mφa,b (Pt−1) + δ(b, et)

Y a
t

Xa
t

]
Xa
t (7.34){

=
[
Mφa,b (Pt−1)

]
Xa
t if b = et

=
[
Mφa,b (Pt−1) + δ(b, et)

Y at
Xa
t

]
Xa
t otherwise

(7.35)

Note that in this equation, the only term dependent on b is δ(b, et)
Y at
Xa
t
. Therefore, we

do not have to update the whole observation matrix at every time step. In fact, at every
time step, we can do the following upate

Xa
t =

[
1− cat

βa,. + 1

]
Xa
t−1 (7.36)

Mφa,b (Pt) =

[
Mφa,b (Pt−1) + δ(b, et)

Y a
t

Xa
t

]
(7.37)

Mφa,b (Pt−1) = Mφa,b (Pt−1)×Xa
t (7.38)

βa,b = Mφa,b (Pt−1)×Xa
t × ba,. (7.39)

The second order moments can be computed using βa,b and βa,. and Eq. 7.24. This
algorithm is summarized in Algm. 11. The complexity of this algorithm is O(TN2). For
each observation, we compute O(N2) θ moments each of which is computed in O(1) time.
The observation distribution can be updated in O(N) time by updating only N Xas and
Mφy,et

(Pt).

101

Algorithm 11 momentMatching (Θ and Φ unknown)

1: Let f(θ|α) be the family of Dirichlets
2: Initialize X i

0 = 1 ∀1 ≤ i ≤ N
3: for t = 1 to T do
4: Compute Mθi,j(Pt) for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 (Eq. 7.30)
5: Compute Mθ2i,1

(Pt) for 1 ≤ i ≤ N using Eq. 7.12

6: Compute X i
t using Eq. 7.37 for all 1 ≤ i ≤ N

7: Compute Mφi,et
(Pt) for 1 ≤ i ≤ N (Eq. 7.37)

8: Compute Mφ2i,1
(Pt) for 1 ≤ i ≤ N using Eq. 7.24

9: Compute αi,. for 1 ≤ i ≤ N using Eq. 7.9
10: Compute βi,. for 1 ≤ i ≤ N using Eq. 7.25
11: end for

7.2.4 Multiple Sensors

In the Activity Recognition HMM described in Fig. 7.1 there are multiple observations at
each time step coming from multiple sensors. The full posterior then becomes

Pr (Θ,Φ|e1:t) = (1/kt)
∑
y

∑
i

θi,y
∏
s

φy,etc
i
t−1 Pr (Θ,Φ|e1:t−1) (7.40)

kyt = Pr (Yt = y, et|e1:t−1) =

∫
Φ,Θ

∏
s

φy,et,s
∑
i

θi,yc
i
t−1P

i
t−1 (Θ,Φ) dΦdΘ (7.41)

=
∏
s

βy,et,s
βy,.,s

∑
i

αi,y
αi,.

kt =
∑
y

kyt

cyt =
kyt
kt

Where βi, ., s =
∑

e βi, e, s. The equations for the moments with respect ot θ remain
the same. For the observation distribution, we can extend the equations derived before to
handle multiple sensors

102

Xa
t (s) =

[
1− cat

βa,.,s + 1

]
Xa
t−1(s) (7.42)

Mφa,b,s (Pt) =

[
Mφa,b,s (Pt−1) + δ(b, et)

Y a
t (s)

Xa
t (s)

]
(7.43)

Mφa,b (Pt−1) = Mφa,b,s (Pt−1)×Xa
t (s) (7.44)

βa,b,s = Mφa,b,s (Pt−1)×Xa
t (s)× ba,.,s (7.45)

Algorithm 12 momentMatching (multiple sensors)

1: Let f(θ|α) be the family of Dirichlets
2: Initialize X i

0(s) = 1 ∀1 ≤ i ≤ N 1 ≤ s ≤ S
3: for t = 1 to T do
4: Compute Mθi,j(Pt) for 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1 (Eq. 7.30)
5: Compute Mθ2i,1

(Pt) for 1 ≤ i ≤ N using Eq. 7.12

6: Compute X i
t(s) using Eq. 7.37 for all 1 ≤ i ≤ N 1 ≤ s ≤ S

7: Compute Mφi,et,s
(Pt) for 1 ≤ i ≤ N 1 ≤ s ≤ S (Eq. 7.37)

8: Compute Mφ2i,1,s
(Pt) for 1 ≤ i ≤ N 1 ≤ s ≤ S using Eq. 7.24

9: Compute αi,. for 1 ≤ i ≤ N using Eq. 7.9
10: Compute βi,.,s for 1 ≤ i ≤ N 1 ≤ s ≤ S using Eq. 7.25
11: end for

7.3 Discussion

Moment matching allows us to compute the counts of approximate posterior distribution
in a constant amount of time. The time complexity of Algm. 12 is O(N2 +NS). It is also
easy to extend the discussion from LDA to the HMM and make a case that there exists
an implicit prior for which exact Bayesian updates will yield a posterior that has the same
first and second order moments as the posterior retrieved by Bayesian Moment Matching.
Initially, we specify some moments of the prior. After receiving an observation, we do an
exact Bayesian update and then do moment matching. The process of moment matching
allows us to set higher order moments in the posterior. We can easily set up a system of
equations such that the moments of the posterior can be used to compute higher order
moments in the previous time step. As new observations come, we use Bayesian Moment
matching to set higher order moments in the prior.

103

Table 7.1: Moment Matching results for Experiment 1 data using center of pressure. Win-
dow size is 25. Features used are Accelerometer Measurements, Speed, Frontal plane COP,
Saggital plane COP and Total Weight. Overall accuracy is 76.2%.

NTW ST WF TL TR WB TRS Accuracy %

NTW 11409 68 0 1 0 545 247 92.9

ST 2070 681 67 326 60 1543 191 13.8

WF 1187 1090 52325 1222 4080 3685 549 81.5

TL 566 326 547 9213 469 1691 123 71.4

TR 25 2 778 262 5305 465 98 71.4

WB 1366 100 0 604 243 6025 148 71.0

TRS 1634 265 77 431 222 790 694 16.9

7.4 Experiments and Results

I have used Bayesian Moment Matching to compute the parameters of the activity recog-
nition HMM. The same experimental setup is used as described in Section 6.6. I use leave
one out cross validation where for each sequence i in our data set, the parameters are
learned from all sequences other than i and then use these parameters to do inference. The
definitions of prediction accuracy, precision and recall are the same as the ones used in the
previous chapter.

First I show how well the algorithm performs on synthetic data. For synthetic data, I set
the number of states to be 8, the number of sensors to be 6 and the total readings on each
sensor to be 15. I generated 20 sequences, each of length 20,000. The experiments was set
up such that there is at least one sensor for which the observation matrix is full-rank. i.e. for
each state, there exists an observation e such that Pr (e|Yt = y) > Pr left(e|Yt = y′) ∀y′ 6=
y. In terms of prediction accuracy, moment matching performs almost as well as if we
do inference using the actual parameters that generated the data. The overall accuracy if
using the actual parameters is 95.5% whereas the for moment matching it is 94.7%. The
prediction accuracy for the EM algorithm is 94.9%. The average training time for the EM
algorithm was 2301.5 seconds while the average training time for moment matching was
302.4 seconds.

I also use the moment matching algorithm to do prediction accuracy, precision and
recall analysis on the Walker data. Table 7.1 shows a confusion matrix for Experiment 1
data where the parameters are learnt using moment matching. It is easy to see that the
prediction accuracy is comparable with that of EM and Gibbs Sampling.

104

Table 7.2: Experiment 1 percentage accuracy for each activity for unsupervised learning
techniques. Prediction is done using the Forward-Backward Algorithm

Window Learning Algorithm Percentage Accuracy

Size NTW ST WF TL TR WB TRS Total

0 Expectation Maximization 85.3 6.1 57.3 48.1 56.5 59.1 19.0 55.9

Gibbs Sampling 98.1 6.8 92.5 58.2 57.3 41.1 12.2 75.2

Moment Matching 91.6 8.2 66.5 50.2 63.3 53.7 12.9 73.1

25 Expectation Maximization 90.1 16.1 88.6 71.5 75.4 73.7 31.3 79.3

Gibbs Sampling 99.9 17.5 95.5 65.2 71.3 43.1 17.2 79.9

Moment Matching 93.1 13.7 81.5 71.2 76.3 71.1 16.8 82.0

Table 7.3: Experiment 2 percentage accuracy for each activity. NL means the normal-
ized load values are used. COP implies that center of pessure feature is used instead of
normalized load values.

Learning Accuracy

NTW ST WF TL TR WB RT SW GUR GDR GUC GDC Total

0 EM 75.6 30.0 31.2 46.9 21.2 38.0 28.5 68.7 8.3 4.6 4.8 22.6 42.8

Gibbs 90.0 35.1 35.0 45.6 62.3 0 50.2 87.5 39.6 25.6 37.9 0.1 51.0

MM 86.7 31.5 41.9 49.1 23.5 9.7 26.9 76.4 18.9 13.5 36.9 51.1 49.1

25 EM 78.0 48.0 69.6 74.3 50.9 63.3 53.5 70.3 23.2 17.6 57.0 49.4 61.8

Gibbs 95.0 42.2 76.9 68.8 80.8 0 62.3 90.9 57.4 52.1 46.2 1.9 69.3

MM 89.3 43.8 67.2.9 68.2 38.8 26 38.3 81.9 41.1 30.1 58.9 82.4 63.3

Table 7.2 shows the prediction accuracy for each activity on the experiment 1 data
for unsupervised algorithms. We see that the prediction accuracy of Moment matching is
comparable to that of the offline algorithms and actually surpasses the offline algorithms
for certain activities. Table 7.3 shows the prediction accuracy for each activity on the
experiment 2 data for unsupervised algorithms. I also plot the accuracy, precision and recall
for the unsupervised algorithms in Fig. 7.2. Moment matching performs well compared
to offline techniques while giving us the advantage of adding new data as it arrives with
constant amount of work.

The average training time over all folds for each algorithm is summarized in Table 7.4.
For EM if the change in likelihood is below a certain tolerance, the algorithm declares
convergence. Therefore the training time between folds varies greatly. In our implementa-
tion of Gibbs Sampling, we do 500 iterations for every fold. It is easy to see that moment

105

Table 7.4: Average training time for unsupervised algorithms
DataSet/Algorithm Moment Matching Gibbs Sampling Expectation Maximization

Synthetic 333.5 3460.1 2310.5

Experiment 1 91.5 7205.1 2564.3

Experiment 2 423.5 54302 28524

Figure 7.2: Accuracy, Precision and Recall for various algorithms in each experiment.

matching has an advantage in terms of time.

7.4.1 Comparison with Online EM

An online version of the Expectation Maximization algorithm for Hidden Markov Models
has been proposed by Cappe et. al [21]. The HMM they consider has discrete states and
continuous observations with a Gaussian observation distribution and a single sensor. In
their work, Cappe et. al. provide a limited analysis of their algorithm using synthetic data
with two hidden states. I derived an Online EM algorithm based on their approach that
works for discrete observations for a single sensor. I compared their algorithm with Moment
Matching on a synthetic dataset which consists of 10 sequences each of length 10,000

106

Figure 7.3: Accuracy, Precision and Recall for Online EM and Moment Matching on
synthetic data.

each. We use leave one out cross validation for evaluation. The average likelihood of each
sequence for Online EM is -27033.86053 while that of moment matching is -26457.78912.
The precision, recall and accuracy analysis is shown in Figure 7.3. It is easy to see that
moment matching surpasses online EM in terms of prediction accuracy. The likelihood of
data is also higher in the case of moment matching. This shows that moment matching has
considerable advantage over this approach. This maybe due to the fact that in online EM,
a lower bound of the negative log likelihood is minimized by using stochastic optimization.
In some sense this is itself an approximation of an approximation which explains why
moment matching outperforms online EM.

In this chapter I have described an unsupervised online technique for learning the pa-
rameters of the activity recognition HMM described in the previous section. I derive an
efficient O(N2) algorithm for parameter learning. I have also shown how the algorithm is
able to deal with label switching. The algorithm is compared with established offline tech-
niques for parameter learning. Moment matching holds its own against these algorithms
in terms of accuracy and performs better than EM in some scenarios.

107

Chapter 8

Conclusions

This thesis presents an online Bayesian moment matching technique that incrementally
estimates the parameters of a Probabilistic Graphical Model by performing a single sweep
of the data. The approach is simple to implement and understand. the approach is tested
on two real world applications i.e. Topic Modeling and Activity Recognition and compares
favorably to existing approaches in terms of time, perplexity and prediction accuracy.

The Bayesian Moment Matching for LDA is able to estimate the parameters of the
model in an online fashion. The algorithm is able to incorporate each new observation
in time that is linear in the number of topics which is a significant improvement over the
current Assumed Density Filtering algorithm. The algorithm compares favourably with
other offline and online state of the art techniques both in terms of time and perplexity
and shows significant gains for some data sets.

This thesis also presents a novel and significant application of activity recognition in
the context of instrumented walkers. We designed several algorithms based on HMMs
and CRFs, and tested them with real users at the Village of Winston Park (retirement
community in Kitchener, Ontario). A comprehensive analysis of the results showed that
activities associated with walker usage tend to induce load, speed and acceleration patterns
that are sufficient to distinguish them with reasonable accuracy. This work can be turned
into a clinical tool that can be used to assess the mobility patterns of walker users and the
contexts in which they are more likely to fall.

In addition to this analysis, an algorithm for parameter learning in HMMs using
Bayesian Moment Matching techniques is derived. The experiments against state of the
art offline and online techniques show very promising results both in terms of prediction
accuracy and time. In fact Moment Matching adapts itself beautifully to the time-series

108

scenario and the implicit prior interpretation can be adapted easily to this scenario. In
addition to that, the efficient O(n) algorithm for moment updates is much more efficient
than the online update for Online EM. In addition to that, it does not suffer from issues
encountered by Online Variational Bayes where it breaks the time series into mini-batches.

The gain in perplexity for Moment matching can be explained by the fact that that the
approach is performing exact inference with respect to an implicit set of initial distributions.
Since this set is determined after seeing the data, the initial distributions are not priors
in the Bayesian sense. Hence there is an important open question: is Bayesian moment
matching consistent? The empirical results suggest that it may be, so it will be interesting
to see if consistency can be proved.

In addition to that, moment matching and ADF are sensitive to ordering of data. This
is less of a problem in the case of HMMs since the ordering of the data has a significance,
however in models where the observations are exchangeable such as LDA, this may cause
problems. As the number of observations grows,

∑
βi

also grows which reduces the variance
of the posterior. As described previously, the moment update equation for φ is

Mφt,e (Pn) =
[
Mφt,e (Pn−1)

]
x e 6= w (8.1)

Mφt,w (Pn) =
[
Mφt,w (Pn−1) + y

]
x (8.2)

where

x =

[
1− ct∑

βt + 1

]
y =

ct∑
βt + 1

1

xMφt,w (Pn−1)
(8.3)

Since
∑

βt
is in the denominator, as this value grows large, the change in the moments be-

comes very small. Therefore, we need to come up with techniques which allow a smoothing
of the variance so that it does not grow too small too fast.

As data sets are becoming larger, algorithms that process these data sets need to be
parallelized. With this fact in mind, a very neat extension for the Bayesian Moment Match-
ing algorithm would be to derive a parallel version of the algorithm where the computation
can be distributed to various nodes. The main challenge is to combine the estimate of
the posterior from different nodes in a way that assures that the approximate posterior
moments do not diverge from the true posterior moments.

This thesis has mainly explored the application of moment matching to some directed
probabilistic graphical models. However, moment matching can be potentially used to
learn posterior distributions in other types of probabilistic and undirected graphical models
such as Conditional Random Fields (CRFs). Recently Rashwan et. al [3] have proposed an

109

online an distributed moment matching algorithm for parameter learning in Sum Product
networks. This can potentially open many research directions in terms of models where
moment matching can be successfully applied.

110

APPENDICES

111

Appendix A

Derivation of Expectation
Maximization for Activity
Recognition

A.1 Maximum Likelihood Supervised Learning

For supervised learning, we label the data by hand by synchronizing the data feed with
the video feed. Therefore, the optimal parameters Θ∗ and Φ∗ can be learned from a single
labeled sequence of length T using the following equation

(Θ∗,Φ∗) = argmaxΘ,Φ log
(
Pr
(
y1:T , e

1:S
1:T |Θ,Φ

))
subject to (A.1)∑
i

θy,i = 1∀y ∈ {1, . . . , N}

M∑
e=1

φy,e,s = 1∀y ∈ {1, . . . , N}∀k ∈ {1, . . . , S}

Expanding the log likelihood function and folding the constraints into the objective
function using Lagrange multipliers, we get

112

L (Θ,Φ, λ) =
T∑
t=1

∑
y

∑
y′

δ (Yt = y′, yt−1 = y) log (θy′,y) (A.2)

+
T∑
t=1

∑
s

∑
y

δ (est = e, yt = y) log (φy,e,s)−
∑
y

λ1y

(∑
i

θy,i − 1

)

−
∑
s

(∑
y

λ2ys

(
M∑
e=1

φy,e,s − 1

))

Here, δ(.) = 1 if the condition in the parenthesis is true. Since this function is convex,
we can differentiate Equation A.2 with respect to each variable and set the value of the
derivative to 0 to obtain the optimal values of the parameters.

• Transition Model: Differentiating the Lagrangian with respect to θy,y′ and λ1b we
get

∂L (Θ,Φ, λ)

∂θy,y′
=
δ (yt = y′, yt−1 = y)

θy,y′
− λ1b = 0

∂L (Θ,Φ, λ)

∂λ1b

=
∑
y′

θy,y′ − 1 = 0

These are m× (m+ 1) equations in m× (m+ 1) variables. Solving for θy,y′ , we get

θy,y′ =

∑T
t=1 δ (yt = y′&yt−1 = y)∑T

t=1 δ (yt−1 = y)
=
ny,y′

ny
, ∀y′, y ∈ {1, . . . , N} (A.3)

Where ny,y′ is the number of times y is followed by y′ in labeled activity sequence
and ny is the number of times we observe y in the labeled activity sequence. Note
that during the experiment, the participants are following a fixed course and thus
the activity transitions are biased and do not reflect real life situations. To avoid
this pitfall we provide experimental results for another technique for estimating the
transition parameters. We use the fact that activities tend to persist. We can learn
the parameters of the transition model using the following distribution:

θy,y′ =

{
τ

N+τ−1
if y = y′

1
N+τ−1

otherwise
(A.4)

113

Therefore, the user is τ times more likely to maintain his behaviour than to change
it.

• Observation Model: We learn φy,e,s by differentiating the Lagrangian by φy,e,s and
λ2ys

∂L (Θ,Φ, λ)

∂φy,e,s
=
δ (est = e, yt = y)

φy,e,s
− λ2ys = 0

∂L (Θ,Φ, λ)

∂λ2kb

=
M∑
e=1

φy,e,s − 1 = 0

Solving for φy,e,s, we get

φy,e,s =

∑T
t=1 δ (yt = y&est = e)∑T

t=1 δ (yt = y)
=
ny,e,s
ny

(A.5)

A.2 Maximum Likelihood Unsupervised Learning

For unsupervised Learning, we have used the EM algorithm for learning transition proba-
bilities and maximize the expected value of the log likelihood. We iteratively estimate the
new values of the parameters by solving the following optimization problem

Θi+1,Φi+1 = argmaxπ,θ,φ

Expectation︷ ︸︸ ︷(∑
y1:T∈Y1:T

Pr
(
y1:T , e

1:S
1:T |Θi,Φi

)
log
(
Pr
(
y1:T , e

1:S
1:T |Θ,Φ

)))
︸ ︷︷ ︸

Maximization

(A.6)

subject to

N∑
y′=1

θy,y′ = 1∀y ∈ {1, . . . , N}

M∑
e=1

φy,e,s = 1∀y ∈ {1, . . . , N} ∀s ∈ {1, . . . , S}

114

Where Y1:T represents all possible behaviour sequences of length T . The Lagrangian
can be written as

L
(
Θi+1,Φi+1, λ

)
=

T∑
t=1

∑
y

∑
y′

Pr
(
Yt = y′, Yt−1 = y, e1:S

1:T |Θi,Φi
)

log (θy,y′) (A.7)

+
T∑
t=1

∑
s

∑
y

Pr
(
Yt = y, e1:S

1:T |Θi,Φi
)

log (φy,e,s)

−
∑
y

λ1y

(∑
y′

θy,y′ − 1

)
−
∑
s

(∑
y

λ2ys

(∑
e

φy,e,s − 1

))

The Lagrangian is a convex function and we can differentiate it and set the derivative
to 0 to recover the parameters.

• Transition model: Differentiating the Lagrangian with respect to θy,y′ and λ1y and
setting it to zero, we get

∂L (Θi+1,Φi+1, λ)

∂θy,y′
=

Pr
(
Yt = y′, Yt−1 = y, e1:S

1:T |Θi,Φi
)

θy,y′
− λ1y = 0 (A.8)

∂L (Θi+1,Φi+1, λ)

∂λ1y

=
∑
y′

θy,y′ − 1 = 0 (A.9)

Solving for θy,y′ we get

θy,y′ =

∑T
t=1 Pr

(
Yt = y′, Yt−1 = y, e1:S

1:T |Θi,Φi
)∑T

t=1 Pr (Yt−1 = y, e1:S
1:T |Θi,Φi)

(A.10)

• Sensor model: Differentiating the Lagrangian with respect to φy,e,s and λ2ys and
setting it to zero, we get

∂L (Θi+1,Φi+1, λ)

∂φy,e,s
=

∑T
t=1 Pr

(
Yt = y, e1:S

1:T |Θi,Φi
)
δ (est = e)

φy,e,s
− λ2kb = 0 (A.11)

∂L (Θi+1,Φi+1, λ)

∂λ2ys

=
∑
e

φy,e,s − 1 = 0 (A.12)

115

Solving for φy,e,s, we get

φy,e,s =

∑T
t=1 Pr

(
Yt = y, e1:S

1:T |Θi,Φi
)
δ (est = e)∑T

t=1 Pr (Yt = y, e1:S
1:T |Θi,Φi)

(A.13)

For efficient calculation of these values, we use the terminology defined in section 6.2.
Recall that

γyt = Pr
(
Yt = y|e1:S

1:T ,Θ,Φ
)

=
F y
t B

y
t∑

y′ F
y′

t B
y′

t

ξy,jt = Pr
(
Yt = y, Yt+1 = j|e1:S

1:T ,Θ,Φ
)

=
F y
t θy,j

∏
s φj,et+1,sB

j
t+1

Bi
t

Then we can estimate the parameters using the following equations

θi,j =

∑T
t=1 ξ

i,j
t∑T

t=1 γ
i
t

, φi,j,s =

∑t
t=1 δ(e

s
t = j)γit∑T

t=1 γ
i
t

(A.14)

A.2.1 Avoiding Underflows

To avoid underflow errors, we use the technique explained in [14]. From the definition
of F y

t and By
t in section 6.2.1 we can see that at each step we obtain F y

t from F i
t−1 by

multiplying it with two probabilities. Since probabilities are less than one, therefore for
long enough chains, the probability of F y

t drops to zero. To avoid this, we define

F̂ y
t = Pr

(
Yt = y|e1:S

1:T ,Θ,Φ
)

=
F y
t

Pr (e1:S
1:t)

(A.15)

We expect this distribution to behave better numerically since its a conditional distri-
bution instead of a joint. We also define

kt = Pr
(
e

1:|S
t |e1:S

1:t−1

)
(A.16)

Therefore, Pr
(
e

1:|S
1:t

)
=
∏t

m=1 km.

F y
t =

(
t∏

m=1

km

)
F̂ y
t

116

Now
ktF̂

y
t = k φy,et,s

∑
y′

θy′,yF̂
y′

t−1 (A.17)

We can similarly rescale B to obtain

By
t =

(
T∏

m=t+1

km

)
B̂y
t

Then
kt+1B̂

y
t = k

∑
y′

(
θy,y′φy′,et+1,sB̂

y′

t+1

)
(A.18)

Also

F̂ y
t B̂

y
t =

F y
t∏t

m=1 km

By
t∏T

m=t+1 km

= γb (t)

Using this rescaling, we can avoid underflow errors for long chains.

117

References

[1] COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada,
June 18-21, 2009, 2009.

[2] Statistics Canada. Estimates of population, by age group and sex for july 1, Canada,
provinces and territories, annual (CANSIM Table 051-0001). Ottawa:. Statistics
Canada, 2010.

[3] H. Zhao A. Rashwan and P. Poupart. Online and distributed bayesian moment match-
ing for spns. In 19th International Conference on Artificial Intelligence and Statistics
(AISTATS 2016), 2016.

[4] H. Abelson, G. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Massachusetts, 1985.

[5] Roberto C Alamino and Nestor Caticha. Bayesian online algorithms for learning in
discrete hidden markov models. Discrete and continuous dynamical systems: series
B, 9(1):1–10, 2008.

[6] M. Alwan, G. Wasson, P. Sheth, A. Ledoux, and C. Huang. Passive derivation of basic
walker-assisted gait characteristics from measured forces and moments. In Proceedings
of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA,
USA, September 2004.

[7] Anima Anandkumar, Dean P Foster, Daniel Hsu, Sham Kakade, and Yi-Kai Liu. A
spectral algorithm for latent dirichlet allocation. In NIPS, pages 926–934, 2012.

[8] Animashree Anandkumar, Daniel Hsu, and Sham M. Kakade. A method of moments
for mixture models and hidden markov models. Journal of Machine Learning Research
- Proceedings Track, 23:33.1–33.34, 2012.

118

[9] T. S. Barger, D. E. Brown, and M. Alwan. Health-status monitoring through analysis
of behavioral patterns. Systems, Man and Cybernetics, Part A, IEEE Transactions
on, 35(1):22–27, 2005.

[10] R. Baumgartner, G. Gottlob, and S. Flesca. Visual information extraction with Lixto.
In Proceedings of the 27th International Conference on Very Large Databases, pages
119–128, Rome, Italy, September 2001. Morgan Kaufmann.

[11] Matthew James Beal. Variational algorithms for approximate Bayesian inference.
PhD thesis, University of London, 2003.

[12] M.J. Beal, Z. Ghahramani, and C.E. Rasmussen. The infinite hidden markov model.
In Z. Ghahramani T. Dietterich, S. Becker, editor, Advances in Neural Information
Processing Systems 14, pages 577–584. MIT Press, 2002.

[13] J. Bilmes. A gentle tutorial of the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models. Technical Report TR-
97-021, International Computer Science Institute Berkeley CA and Computer Science
Division Department of Electrical Engineering and Computer Science U.C. Berkeley,
1998.

[14] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition, October 2007.

[15] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of Machine Learning, 3:993–1022, 2003.

[16] Byron Boots and Geoffrey J. Gordon. An online spectral learning algorithm for par-
tially observable nonlinear dynamical systems. In Burgard and Roth [20].

[17] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, April–June 1985.

[18] Jack S. Breese and Daphne Koller, editors. UAI ’01: Proceedings of the 17th Con-
ference in Uncertainty in Artificial Intelligence, University of Washington, Seattle,
Washington, USA, August 2-5, 2001. Morgan Kaufmann, 2001.

[19] H. H. Bui, D. Q. Phung, and S. Venkatesh. Hierarchical hidden markov models with
general state hierarchy. In Proceedings of AAAI, 2004.

119

[20] Wolfram Burgard and Dan Roth, editors. Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA,
August 7-11, 2011w. AAAI Press, 2011.

[21] Olivier Cappé. Online em algorithm for hidden markov models. Journal of Computa-
tional and Graphical Statistics, 20(3), 2011.

[22] Olivier Cappé. Online em algorithm for hidden markov models. Journal of Computa-
tional and Graphical Statistics, 20(3), 2011.

[23] C. Carvalho, M. Johannes, H. F. Lopes, and N. Polson. Particle learning and smooth-
ing. Statistical Science, 25(1):88–106, 2011.

[24] O. Chuy, Y. Hirata, Z. D. Wang, and K. Kosuge. A control approach based on passive
behavior to enhance user interaction. IEEE Transactions on Robotics, 23(5):899–908,
2007.

[25] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. Handbook of Nonlinear Filtering, 12:656–704, 2009.

[26] Bui H Venkatesh S. Duong T, Phung D. Efficient duration and hierarchical modeling
for human activity recognition. Artificial Intelligence, 2009.

[27] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model: analysis
and applications. Machine Learning, 32(1):41–62, 1998.

[28] Nicholas Foti, Jason Xu, Dillon Laird, and Emily Fox. Stochastic variational inference
for hidden markov models. In Advances in Neural Information Processing Systems,
pages 3599–3607, 2014.

[29] Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. An hdp-hmm
for systems with state persistence. In Proceedings of the 25th international conference
on Machine learning, pages 312–319. ACM, 2008.

[30] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman and Hall, 2 edition, 2004.

[31] Zoubin Ghahramani. An introduction to hidden markov models and bayesian net-
works.

[32] Georg Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):397–425, June 1992.

120

[33] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sciences, 64(3):579–627, May
2002.

[34] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences of the United States of America, 101(Suppl 1):5228–
5235, 2004.

[35] J.M. Hammersley and D.C. Handscomb. Monte Carlo methods. Methuen’s mono-
graphs on applied probability and statistics. Methuen, 1975.

[36] Waddell D. Oliver A. Smith D. Fleming R. Wolf S. Hass C., Gregor R. The influence
of tai chi training on the center of pressure trajectory during gait initiation in older
adults. Archives of Physical Medicine and Rehabilitation, 85(10):1593–1598, 2004.

[37] K. A. Heller, Y. W. Teh, and D. Görür. Infinite hierarchical hidden Markov models.
In Proceedings of the International Conference on Artificial Intelligence and Statistics,
volume 12, 2009.

[38] Ralf Herbrich. Minimising the kullbackleibler divergence. Technical report, Microsoft
Research, 2005.

[39] Y. Hirata, A. Muraki, and K. Kasuge. Motion control of intelligent passive-type walker
for fall prevention function based on estimation of user state. In Proceedings of the
2006 IEEE International Conference on Robotics and Automation, May 2006.

[40] M. Hoffman, D. Blei, , and F. Bach. Online learning for latent dirichlet allocation. In
Neural Information Processing Systems, 2010.

[41] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. The Journal of Machine Learning Research, 14(1):1303–1347,
2013.

[42] Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hid-
den markov models. In COLT - The 22nd Conference on Learning Theory, Montreal,
Quebec, Canada, June 18-21, 2009 [1].

[43] Richard Zhi-Ling Hu, Adam Hartfiel, James Tung, Adel Fakih, Jesse Hoey, and Pascal
Poupart. 3d pose tracking of walker users’ lower limb with a structured-light cam-
era on a moving platform. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, pages 29–36. IEEE, 2011.

121

[44] Stam H.J. Janssen W.G., Bussmann H.B. Determinants of the sit-to-stand movement:
a review. Physical Therapy, 82:866–879, 2002.

[45] N. Kantas, A. Doucet, S.S. Singh, and J. M. Maciejowski. Overview of sequential
monte carlo methods for parameter estimation on general state space models. In In
Proc. 15th IFAC Symposium on System Identification (SYSID), 2009.

[46] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. ICML01, 2001.

[47] H. J. Levesque. A logic of implicit and explicit belief. In Proceedings of the Fourth
National Conference on Artificial Intelligence, pages 198–202, Austin, Texas, August
1984. American Association for Artificial Intelligence.

[48] Hector J. Levesque. Foundations of a functional approach to knowledge representation.
Artificial Intelligence, 23(2):155–212, July 1984.

[49] L. Liao, D. Fox, and H. Kautz. Extracting places and activities from gps traces using
hierarchical conditional random fields. International Journal of Robotics Research,
26(1):119–134, 2007.

[50] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring transportation
routines. Artificial Intelligence, 171:311–331, April 2007.

[51] M. Lichman. UCI machine learning repository, 2013.

[52] J.S. Liu. The collapsed Gibbs sampler in Bayesian computations with applications to
a gene regulation problem. J. of the Am. Statistical Association, 89(427):958 – 966,
1994.

[53] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[54] David Mimno, Matt Hoffman, and David Blei. Sparse stochastic inference for latent
dirichlet allocation. ICML, 2012.

[55] Thomas Minka and John Lafferty. Expectation-propagation for the generative as-
pect model. In Proceedings of the Eighteenth conference on Uncertainty in artificial
intelligence, pages 352–359. Morgan Kaufmann Publishers Inc., 2002.

[56] Thomas P. Minka. Expectation propagation for approximate bayesian inference. In
Breese and Koller [18], pages 362–369.

122

[57] Deneve S. Mongillo G. Online learning with hidden markov models. Neural Com,
20(7):1706–1716, July 2008.

[58] K. Murphy and M. Paskin. Linear time inference in hierarchical hmms. 2001.

[59] B. Nebel. On the compilability and expressive power of propositional planning for-
malisms. Journal of Artificial Intelligence Research, 12:271–315, 2000.

[60] S. Ng, A. Fakih, A. Fourney, P. Poupart, and J. Zelek. Towards a Mobility Diagnostic
Tool: Tracking Rollator Users Leg Pose With a Monocular Vision System. In Inter-
national Conference of IEEE Engineering in Medicine and Biology Society (EMBC),
2009.

[61] F. Omar, M. Sinn, J. Truszkowski, P. Poupart, J. Tung, and A. Caine. Comparative
analysis of probabilistic models for activity recognition with an instrumented walker.
In Proceedings of the Proceedings of the Twenty-Sixth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-10), pages 392–400, Corvallis, Oregon,
2010. AUAI Press.

[62] M. Patel, R. Khushaba, J. Miro, and G. Dissanayak. Probabilistic models versus
discriminate classiers for human activity recognition with an instrumented mobility-
assistance aid. In Australasian Conference on Robotics and Automation, 2010.

[63] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
The Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann
Publishers, 1988.

[64] MS Press. PrimeSense supplies 3-D-Sensing technology to Project Natal for Xbox
360. Press Release, March 2010.

[65] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, volume 77 of 257-268, Feb 1989.

[66] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer-
Verlag, 1 edition, August 1999.

[67] S. J. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice Hall,
2003.

[68] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
and A. Blake. Real-Time human pose recognition in parts from single depth images.
In Computer Vision and Pattern Recognition, June 2011.

123

[69] Ajit Singh. Em algorithm.

[70] Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent
semantic analysis, 427(7):424–440, 2007.

[71] Geir Storvik. Particle filters for state-space models with the presence of unknown
static parameters. IEEE Transactions on Signal Processing, 50(2):281–289, 2002.

[72] Charles Sutton and Andrew McCallum. Introduction to Statistical Relational Learning,
chapter An Introduction to Conditional Random Fields for Relational Learning. MIT
Press, 2006.

[73] J. Tung, K. Zabjek, W. Gage, B. Maki, and W. McIlroy. Frontal plane balance
control with rollators: Perturbed stance and walking. Archives of Physical Medicine
and Rehabilitation, Volume 89, Issue 10, Pages e50-e50, 89:e50, 2008.

[74] Md. Zia Uddin and Tae-Seong Kim. Human activity recognition based on independent
depth silhouette components and optical flow features. The Imaging Science Journal,
59(5), 2011.

[75] L. Wesserman. All of statistics : a concise course in statistical inference. Springer,
2004.

[76] Jia Zeng, William K Cheung, and Jiming Liu. Learning topic models by belief propaga-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(5):1121–
1134, 2013.

124

	List of Tables
	List of Figures
	Introduction
	Moment Matching
	Topic Modeling
	Contributions

	Activity Recognition with an Instrumented Walker
	Contributions

	Organization

	Background
	Probability Theory and Bayes Rule
	Bayes Theorem

	Probabilistic Graphical Models
	Bayesian Networks
	Inference in Bayesian Networks
	Parameter Learning in Bayesian Networks

	Bayesian Learning
	Mean-Field Variational Inference (Variational Bayes)
	Gibbs Sampling

	Latent Dirichlet Allocation
	Learning and Inference

	Dynamic Bayesian Networks
	Hidden Markov Models
	Inference
	Bayesian Filtering
	Parameter Learning

	Conditional Random Fields
	Linear Chain CRF

	Related Work
	Parameter Learning for Latent Dirichlet Allocation
	Online Parameter Learning for LDA

	Activity Recognition for Instrumented Walker
	Parameter Learning in HMM

	Assumed Density Filtering

	Online Bayesian Learning Using Moment Matching
	Moments
	Sufficient Set of Moments

	Moment Matching
	Moment Matching for the Dirichlet Distribution

	LDA with known Observation Distribution

	Topic Modeling
	Latent Dirichlet Allocation
	Known Topic-Word Distribution Case
	Analysis

	Learning the Word-Topic Distribution
	Label Switching and Unidentifiability
	Sufficient Moments
	Moment Matching
	Linear Moment Matching
	Discussion

	Results
	UCI Bag of Words Document Corpus
	Wikipedia Corpus
	Twitter Data
	Synthetic Data
	Experiments

	Activity Recognition with Instrumented Walker
	The Walker and Experimental Setup
	Experiment 1
	Experiment 2
	Sensor Data

	Activity Recognition Model
	Hidden Markov Model

	Prediction
	Maximum Likelihood Parameter Learning
	Supervised Learning
	Unsupervised Maximum Likelihood Learning
	Bayesian Learning for HMMs
	Gibbs Sampling

	Conditional Random Field
	Results and Discussion
	Discussion
	Experiment 1 vs. Experiment 2
	CRF vs. HMM
	Maximum Likelihood vs. Bayesian Learning

	Moment Matching For Activity Recognition
	Bayesian Learning for HMMs
	Moment Matching for Hidden Markov Models
	The Known Observation Model
	Learning the Observation Model
	Efficient Moment Matching
	Multiple Sensors

	Discussion
	Experiments and Results
	Comparison with Online EM

	Conclusions
	Derivation of Expectation Maximization for Activity Recognition
	APPENDICES
	Maximum Likelihood Supervised Learning
	Maximum Likelihood Unsupervised Learning
	Avoiding Underflows

	References

