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Statement of Contributions

This dissertation is split into six chapters. In Chapter 2, we provide background material
and discuss the related work. In particular, we first discuss the memory subsystem and fo-
cus on the relevant issues that may influence the predictability of timing behavior. Second,
a survey of related work is provided for the problem of memory bus contention including
the co-scheduling approach. For the latter, we discuss the limitations that may arise in
some practical settings. We conclude Chapter 2 by providing an overview of multiprocessor
real-time scheduling theory for both sequential and parallel tasks. Some of the discussion
about cache management in Section 2.1.1 is reprinted, with permission, from [62] in which
I am a co-author.

We recall that the main contribution of this dissertation is integrating memory time into
multiprocessor real-time scheduling for both sequential and parallel tasks. In Chapter 3
and 4, we focus on sequential tasks while in Chapter 5 we focus on parallel tasks. The
main findings of these three chapters have been disseminated in four published papers
in which I am the main author [4, 7, 6, 5]. In particular, Chapter 3 extends the co-
scheduling approach [108], originally with two phases of load and computation, by adding
an extra phase to unload modified data back to main memory. As well, we show how to
dynamically schedule the new 3-phase execution model in a multitasking environment. We
further propose an algorithm to globally schedule 3-phase sequential tasks on a multicore
processor. Since the schedulability test is as important as the scheduling algorithm, we
also provide a schedulability analysis for this algorithm. In particular, a new concept of
schedule hole is introduced to account for memory time. Furthermore, an analysis method
is proposed for the same algorithm where each task is split into multiple segments. This
scheme is necessary for some large tasks that cannot fit inside the local memory of one core
at one time. We note that sections 3.4 and 3.6 are reprinted, with permission, from [4]. The
notations and the figures have been modified to harmonize with the rest of the dissertation.

While the previous chapter assumes that processor cores are stalled while loading from
main memory, Chapter 4 proposes a new memory efficient algorithm to globally schedule
3-phase sequential tasks on a multicore processor equipped with a DMA component to
further enhance the memory utilization. In this chapter, the DMA is used to load one
task while the core is busy executing another task. Since the system comprises two types
of active components (processor cores and DMA), a new concept of scheduling interval is
introduced to account for the workload of 3-phase tasks on processor cores and the DMA.
Sections 4.1 to 4.3 of this chapter are reprinted, with permission, from [7]. Again, the
notations and the figures have been modified.
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In Chapter 5, a novel method is proposed to trade in processor cores for memory
bandwidth. This method works for parallel tasks that need more than one core to execute.
In particular, a federated scheduling scheme is adopted in which each parallel task is
assigned a dedicated number of cores and memory bandwidth. Unlike the co-scheduling
approach, we assume no arrival pattern of memory requests (no load and unload phases)
and the scheduling algorithm of each parallel task on its cluster of cores can be any dynamic
work-conserving algorithm. To further enhance the execution performance, we propose a
static algorithm to schedule parallel tasks on their dedicated cluster of cores. The objective
of this algorithm is to minimize the makespan of real-time parallel tasks. In addition,
the co-scheduling approach is used to enhance the memory time. Sections 5.8 and 5.9
are reprinted, with permission, from [5], and the rest of the sections are reprinted, with
permission, from [6].

We conclude this dissertation in Chapter 6 and provide directions to carry out relevant
research in the future.
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Abstract

Modern real-time systems are becoming increasingly complex and requiring significant
computational power to meet their demands. Since the increase in uniprocessor speed has
slowed down in the last decade, multicore processors are now the preferred way to supply
the increased performance demand of real-time systems.

A significant amount of work in the real-time community has focused on scheduling
solutions for multicore processors for both sequential and parallel real-time tasks. Even
though such solutions are able to provide strict timing guarantees on the overall response
time of real-time tasks, they rely on the assumption that the worst-case execution time
(WCET) of each individual task is known. However, physical shared resources such as main
memory and I/O are heavily employed in multicore processors. These resources are limited
and therefore subject to contention. In fact, the execution time of one task when run in
parallel with other tasks is significantly larger than the execution time of the same task
when run in isolation. In addition, the presence of shared resources increases the timing
unpredictability due to the conflicts generated by multiple cores. As a result, the adoption
of multicore processors for real-time systems is dependent upon solving such sources of
unpredictability.

In this dissertation, we investigate memory bus contention. In particular, two main
problems are associated with memory contention: (1) unpredictable behavior and (2) hin-
drance of performance. We show how to mitigate these two problems through scheduling.
Scheduling is an attractive tool that can be easily integrated into the system without the
need for hardware modifications. We adopt an execution model that exposes memory
as a resource to the scheduling algorithm. Thus, the theory of real-time multiprocessor
scheduling, that has seen significant advances in recent years, can be utilized to schedule
both processor cores and memory. Since the real-time workload on multicore processors
can be modeled as sequential or parallel tasks, we also study parallel task scheduling by
taking memory time into account.
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Chapter 1

Introduction

Modern real-time applications are becoming increasingly complex and asking for more
computational power. They expand beyond simple control loops to include image and video
processing, advanced I/O and distributed coordination. In order to meet the increasing
demands of real-time applications, a higher performance computing platform is needed.
Unfortunately, uniprocessor design hits a fundamental problem: heat dissipation. The
faster the processor runs; the more heat it generates. In fact, the development of a new
uniprocessor design from Intel, the world’s largest chip maker, has been canceled in 2004
due to heat dissipation and extreme power consumption. Two years later, Intel released the
first dual-core processor which marked a trend in current technology to replicate multiple
processors in order to increase the processing power. Thus, real-time applications are
inevitably forced to use multicore processors to supply their increasing processing demand.
Moreover, the speed of memory subsystem is equally important for the overall execution
performance. As a result, multicore processors need to use architectural features such as
caches or scratchpads to bridge the gap between the processing power and memory speed.

Most hard real-time systems are safety critical in which system failure leads to severe
damage or loss of life. These systems are required to respond to events within a limited
time-span referred to as a deadline. Thus, hard real-time systems require a timing val-
idation known as schedulability analysis to guarantee, before executing the system, that
system’s tasks will complete by their deadlines. However, the schedulability analysis needs
as input the worst-case execution time (WCET) of each task. The estimation of
WCET has to be safe, i.e., above or equal any possible execution time, and should be
tight, i.e., close to the actual execution time. It is worthwhile to note that in real-time
systems there is no advantage in completing the task before its deadline; instead, the
matter is how to precisely estimate its WCET. Often, overestimates can cause a task to
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be unschedulable even though the existing system has the capacity to accommodate its
demands. A related property is predictability of temporal behavior. Instead of having
Boolean (black and white) definition, [10] defines predictability as the ratio between the
best-case and the worst-case behavior. That is, a component with constant-time behavior
is 100% predictable, and this percentage decreases as the difference between the best-case
and the worst-case behavior increases.

Still, estimating the WCET of any task is difficult because it may vary from execution
to execution for several reasons. First, the control flow of the application may contain
different conditional branches in which their flow depends on the input and these branches
have different execution times. Second, the hardware platform usually has stateful com-
ponents such as caches or pipelines. The state of these components affects the application
execution time as the component state depends on the execution history. Third, a core
inside multicore processor is not an independent entity but rather shares physical resources
with other cores such as last-level cache and main memory. In single core processor, con-
current tasks are executed sequentially, even though virtual parallelism is permitted. The
sequential execution implies that two tasks can never access two shared resources simul-
taneously. However, the situation is different in multicore processor. Two tasks can run
simultaneously on different cores and access shared resources at the same time. It has
been shown in [148] that the execution time of one application can vary significantly due
to shared resource contention. In particular, an experiment is conducted on Intel 4-core
processor with SPEC CPU2006 applications. The results show that the execution time of
one application can increase by 56% compared to the execution time of the same applica-
tion when run in isolation. Resource contention has also been acknowledged by certification
authorities [55], and it represents a source of concern for the use of multicore processors in
avionics systems.

Previous research has mainly focused on cache-space contention [62]; however, the
results in [148] indicate, through extensive experimentation on real systems, that memory
bus contention is also significant in influencing the execution time of applications. Memory
requests of processor cores are mediated by an arbiter. Once one core gains access to main
memory, all other cores are blocked, and hence experience delays. Thus, memory contention
introduces additional blocking times during execution. These additional delays must be
accounted for in the response time of real-time tasks. In this dissertation, we will focus on
this problem that affects the predictability of WCET of real-time tasks.

2



memory computation

(a) (b)

Figure 1.1: In (a), memory accesses are concentrated at the beginning while in (b) they
are spread across task’s execution.

1.1 Memory Bus Contention

The classical multiprocessor real-time scheduling theory focuses on processor cores in which
the scheduling algorithm knows nothing about the resulting memory latency of its schedule.
It either assumes an idealized multicore processor where tasks access memory without
contention or the contention delay is integrated into the WCET of tasks. Prior work has
proposed analysis-based methods to account for these memory delayes [120, 36, 127, 109,
125, 43]. These methods rely on these two pieces of information to derive the memory delay:
the arbitration policy of the hardware and the memory access pattern of real-time tasks.
However, these approaches have some drawbacks. First, it is very hard to capture the
task’s memory access pattern. In a cache-based system, for instance, memory accesses are
results of cache misses, and these misses depend on the program execution path as well as
the replacement policy and the current state of the cache. Second, some platforms employ
unfair arbitration policies in which some requests are favored against others to utilize the
memory bandwidth or, in some cases, the arbitration policy is not documented. Third,
the notion of task priority is not reflected in hardware arbiters. Thus, the analysis often
assumes that tasks on other cores have higher priority memory requests. Finally, most
of these works analyze individual tasks or assume tasks repeat a simple offline schedule.
To avoid these drawbacks, we adopt in this dissertation the co-scheduling approach [108]
which can provide a tighter upper-bound on memory time while using the existing solutions
for multiprocessor real-time scheduling.

1.2 The Co-Scheduling Approach

In this approach, each task is split into two phases: memory and computation as shown
in Figure 1.1(a). During a memory phase, the code and data of each real-time task is

3



loaded from main memory to local memory of processor core before execution. Then, the
core, during the computation phase, executes the task out of its local memory without
accessing main memory. This ensures that the memory accesses are concentrated at the
beginning of the task, i.e., simple and clear access pattern. In contrast, memory accesses,
if not controlled, are very hard to predict as in Figure 1.1(b). As mentioned early, memory
requests are results of cache misses, and these requests depend on the execution path of
the program and the state of the cache. In addition, by explicitly exposing the memory
demand of each task to the scheduling algorithm, the toolbox of multiprocessor real-time
scheduling can be leveraged to schedule both memory and processor cores, hence the name
co-scheduling. This approach has been demonstrated on real hardware platforms in [119,
53, 30]. A detailed discussion about the implementation part of this approach is presented
in Section 2.2.2.

Prior work has looked into the co-scheduling approach for different reasons. First, it
is used in [108] to de-conflict the traffic to main memory between tasks running on single
core and I/O devices. Second, the work in [15] uses time division multiple access
(TDMA) to partition the memory bandwidth between cores. To utilize the slots of a
memory schedule, the priority of memory phases is increased over computation phases
during the allotted slots. Thus, a memory slot is never wasted while there is a ready
memory phase. Third, it is used in [99] to speedup the transfer time of memory. The
rationale behind this work is that it is generally easier to improve memory bandwidth than
it is to reduce memory latency. In fact, cache designers tend to increase block size to take
advantage of high memory bandwidth [70]. This advantage is clear with memory phases
that span multiple cache lines. Moreover, direct memory access (DMA) engines are
engineered to perform efficient back-to-back transfers.

In this dissertation, however, we adopt the co-scheduling approach as a way to (1) avoid
memory contention in a multicore processor and (2) enhance memory utilization. First,
memory contention is avoided by allowing only one memory phase to be active in the system
at any time. In other words, the scheduler from software level ensures in proactive manner
that tasks do not interfere for access to main memory. Second, the memory utilization
is improved when the execution of one memory phase is overlapped with computation
phases of other tasks. In general purpose computing, a large number of techniques, such
as out-of-order execution and prefetching, are employed to harness such overlap at the
level of one task or between different tasks (hardware multi-threading). That is, while
waiting for main memory to return the requested data, the processor is busy executing
other instructions. Although these techniques improve the average case performance, it
is difficult to extract worst-case guarantees. In contrast, we focus this dissertation on
techniques that are suitable for hard real-time systems with guaranteed bounds. Three
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Figure 1.2: Dissertation theme and scope.

levels to overlap the memory phases can be distinguished: (1) between tasks on different
cores, (2) between tasks on the same core and (3) within one task. We will focus in this
dissertation on the first two and ignore the last one. The reason is that in order to exploit
the overlap within one task, a compiler analysis is needed to insert prefetch commands
in the code at the right places. In contrast, we capture the overlap between tasks from a
higher level: the scheduler, without relying on compiler-level techniques.

As we mentioned earlier, the co-scheduling approach has the advantage to speedup the
memory transfer time. Another advantage is that since one core is given the whole access
to main memory during memory phase, this avoids the interleaving effect of other requests
coming from other cores. This can benefit platforms with hardware arbitration policy
that is unfair. For example, with a fair arbiter such as round-robin (RR), the inflated
memory time (due to contention) for one memory request can be bounded by multiplying
the memory latency with m, the number of cores in the system, assuming each memory
request is preceded by m − 1 other requests in the worst case. However, with an unfair
arbiter, the inflated memory time can exceed m. For example, dynamic random access
memory (DRAM) controllers are designed to utilize the memory bandwidth; thus, they
may favor some requests that are ready to be served over others using polices such as
first-ready first-come first-serve (FR-FCFS).
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1.3 Dissertation Theme and Problem Statement

The main focus of this dissertation is scheduling real-time applications on multicore proces-
sors by taking memory time into account. These three aspects are depicted in Figure 1.2.
In particular, multiprocessor scheduling means spatial and temporal assignment of tasks
on multiprocessor, real-time introduces the notion of time and predictable execution, and
memory considers the memory time.

The problem of this dissertation can be stated as follows. The classical multiprocessor
real-time scheduling theory focuses on processor cores and ignores memory. However, the
contention for access to main memory can significantly change the execution time of real-
time tasks on multicore processors. A real-time task, like any other computer program, can
be abstracted as a stream of memory and CPU instructions. Similar to CPU instructions,
we argue that these memory instructions (memory requests) have to be scheduled to avoid
the contention conflicts and enhance their execution by hiding their latency. To achieve
these goals, the real-time tasks have to be split into two phases: memory and computation.
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Chapter 2

Background and Related Work

This chapter provides the essential background material and reviews the related work.
The multiprocessor system we consider in this dissertation is the symmetric shared-
memory multiprocessor (SMP). Here, all processors have equal access to one shared
main memory and can exchange data through this shared memory. Shared memory design
has gained wide acceptance due to its simplified programming and natural transition from
uniprocessors. Furthermore, as Moore’s prediction is expected to continue in the next few
years, the trend in current technology is to put more processors on the same chip. These
processors inside the same chip are called cores. Therefore, the term multiprocessor also
includes multicore or chip multiprocessor (CMP).

There are two topics that are directly related to the subject of this dissertation: memory
contention and real-time scheduling. We recall that the goal of this dissertation is to solve
memory contention problem through scheduling. Thus, we first overview the memory
subsystem of SMP architectures. Then, we discuss the memory contention problem. Lastly,
we overview the theory of multiprocessor real-time scheduling.

2.1 Memory Subsystem

A single high-performance processor can generate two data memory requests and fetch four
instructions per clock cycle [70]. For example, Intel Core i7 with 3 GHz clock rate can
generate 6 billion 64-bit data requests per second, in addition to fetching 12 billion 32-bit
instructions per second; this is a total peak bandwidth of 96 GB/s. In contrast, the peak
bandwidth of DDR3 memory is 17 GB/s (only 18 %). The situation in multiprocessor
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systems is even worse. In fact, the number of memory requests per second grows as
the number of processors increases. Theoretically, four Intel Core i7 can generate a peak
bandwidth of 384 GB/s which is far more than what current DRAM technology can supply.

In order to mitigate the huge performance gap between multiprocessor and main mem-
ory, different techniques are often used such as multilevel caches. While these techniques
enhance the average-case performance, they introduce unpredictable behavior. It is more
challenging to support real-time applications on systems with the presence of caches. In
what follows, we discuss the hierarchy levels in a typical memory subsystem as shown in
Figure 2.1. In particular, we will focus on the relevant issues that may influence the pre-
dictability of timing behavior. We note that the cache levels can be larger than two in
some platforms but we restrict our discussion in this section to two levels: one private and
one shared.

2.1.1 Cache Memory

Predicating cache-related delays is a typical component of WCET analysis [138]. Several
well-developed cache analysis techniques have been proposed for single-core processors.
These techniques analyze the interference due to intra-task and intra-core cache conflicts.
The latter is known as cache related preemption delay (CRPD). The CRPD focuses
on cache reload overhead due to preemption while the intra-task analysis focuses on the
cache conflicts within the same task assuming non-preemptive execution.

In existing multicore processors [73], the last-level cache is typically shared by multiple
cores. This design has several merits such as increasing the cache utilization, reducing
the complexity of cache coherency and facilitating a fast communication medium between
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cores. However, it is extremely difficult to accurately determine the cache miss rate because
the cache content depends on the size, organization and replacement strategy of the cache
in addition to the order of accesses. Shared caches in multicore processors are similar
to caches in single core processors in that they all have inter/intra-task interference. In
addition, when multiple cores share a cache, they can evict each other cache lines, resulting
in a problem known as inter-core interference.

Unfortunately, single-core cache timing analysis techniques are not applicable for mul-
ticore with shared caches. Inter-core interference is caused by tasks that can run in parallel
and this requires analyzing all system’s tasks. The analysis of non-shared caches has been
already considered as a complex process and extending it to shared caches is even harder.
In fact, the researchers in the community of WCET analysis [131] seem to agree that “it
will be extremely difficult, if not impossible, to develop analysis methods that can accurately
capture the contention between multiple cores in a shared cache”.

Despite this challenge, few works have been proposed to address the problem of shared
caches. These techniques are applicable for simple architectures and statically scheduled
tasks. The first work that studies the analysis of shared caches in multicore processors
is proposed in [141]. This work assumes a system with two tasks simultaneously running
on two cores with direct-mapped shared instruction cache. Later, cache conflict graphs
were used to capture the potential inter-core conflicts [147]. The work in [85] improves
upon [141] by exploiting the lifetime information of tasks and bypassing the disjoint tasks
(tasks that cannot overlap at run-time) from the analysis. This work assumes a task model
where all tasks are synchronized. Clearly, for systems with dynamic scheduling, it will be
extremely difficult to identify the disjoint tasks. Other research [66] proposes to bypass the
shared cache for single-usage cache lines to avoid inter-core conflicts and therefore improve
the timing analysis. For systems where tasks are allowed to migrate between cores, cache
related migration delay (CRMD) has been studied in [67]. This work estimates the
number of cache lines that can be reused from the L2 shared cache when a task migrates
from one core to another. Due to the lack of analysis techniques for multicore platforms
with multiple tasks scheduled dynamically, an empirical study has been proposed in [23] to
evaluate the impact of cache-related preemption and migration delays (CPMD).
An interesting result is that delays related to preemption and migration do not differ
significantly on a heavily loaded system.

Furthermore, cache memories in single core processors have three types of misses: com-
pulsory, conflict and capacity. Beside these three types of misses, private caches in multicore
processors introduce another type: coherency misses. They pose another challenge because
shared variables, that may simultaneously exist in several caches, are automatically up-
dated by the cache coherency hardware in a hidden way (without explicit instructions). If
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frequent shared memory accesses occur, the WCET can be largely affected [63]. In general,
private caches introduce two problems in multicore processors [29] that could affect the
execution of real-time tasks: (1) access serialization (atomic) to shared cache lines. When
a core writes to a shared cache line, the write is not considered complete until all shared
cache lines are invalidated. Similarly, before a core reads a dirty cache line written by an-
other core, the cache line has to be written back to main memory and the source core has to
change the cache line state into shared. (2) A large number of coherency messages are sent
across the interconnection network to keep the shared data between multiple processors
coherent. This could saturate the interconnection network and cause further delays that
could reduce the parallel processing gain and more importantly the time predictability for
real-time systems. Depending on the application, shared data is intrinsic and cannot be
avoided. To the best of our knowledge, no existing static WCET analysis technique is able
to account for the effects of coherency misses.

Another line of research has suggested to randomize the cache and employ a stochastic
analysis to determine the cache miss rate [115]. In particular, probabilistic timing
analysis (PTA) has been proposed as an alternative to conventional timing analysis that
can be highly pessimistic for the worst-case [34]. PTA provides probabilistic WCET
(pWCET) estimates that can be exceeded with a given probability. That is, a pWCET
with an associated low probability, say 10−15, means that the probability for the execution
time to exceed this pWCET is 10−15. However, PTA techniques require the execution times
to have a probability of occurrence that is independent and identically distributed. These
two features are essential to allow using random variables and apply statistical methods
for analyzing the system. At the cache level, caches with LRU replacement policy cannot
be used because the result of each memory access is dependent on the previous accesses. A
fully-associative cache with random replacement is one example that can be used for PTA.
Along this line of research, PTA has been applied to a single level cache [77], multilevel
caches [78] and for CRPD [48]. Recently, PTA was used for shared caches to estimate the
inter-core cache conflicts [130].

In contrast to timing analysis techniques where caches are used without restrictions,
the approach of managed caches has the advantage to avoid complex analysis methods for
estimating the cache behavior [62]. Indeed, the time predictable architecture in [106] pro-
poses a statically-partitioned L2 cache to avoid the inter-core cache conflicts. In addition,
managed caches can be used in situations where the static analysis cannot be used, for
example, the case where the cache replacement policy is not documented. On the other
hand, while managing the cache space provides a timing isolation between tasks, the re-
duced cache space may impact the task execution time [8]. The basic idea of managed
caches is to give each task a portion of cache space so that no other task is allowed to have
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access. The cache memory can be seen as a two dimensional array in which the columns
are the cache ways, and the rows are the cache sets. The shared cache can be partitioned
in sets (rows), ways (columns) or individual cache lines.

Page coloring is a technique used to map virtual pages to physical pages (frames) by
taking into account the cache structure. It can be employed to implement cache partition-
ing in software by re-arranging the physical addresses [135]. Cache locking is a mechanism
that hooks some cache lines from being evicted until explicitly unlocked [94]. It has the
advantage of controlling the partition at cache line granularity. Cache locking has two dif-
ferent schemes: either static or dynamic. With a static scheme, locked cache lines remain
unchanged throughout execution, i.e., locked once. On the other hand, dynamic locking
allows cache lines to be reloaded on the fly. The limitations of static locking manifest when
an application has multiple hot regions and limited cache space. With dynamic locking,
this limited cache space can be utilized multiple times.

These cache portions can be assigned to individual tasks or processors. Processor-based
partitioning allows tasks to enjoy more cache space; in contrast, task-based partitioning
avoids cache reloading at preemption. When combined with cache locking, many different
schemes can be obtained. Suhendra and Mitra [131] explore these different schemes and
evaluate their effects on the worst-case performance. They conclude that processor-based
partitioning is better than task-based partitioning independent of the locking scheme.

As we stated above, there is no analysis method available to account for cache coherency
delays. Thus, caches are not used for shared data in hard real-time systems [114]. Recently,
the work in [113] proposes on-demand cache coherent (ODC2), a hardware approach
that relies on software support to guarantee coherent accesses to data inside critical regions.
Thus, ODC2 allows applications to use caches for shared data.

2.1.2 Scratchpad memory

An alternative to cache memory is scratchpad memory (SPM). The advantages include
reduced power consumption and predictable behavior [137]. The SPM is a special static
RAM placed close to the processor (on-chip, similar to L1 cache). The address space of the
SPM is mapped into a predefined memory address of the processor. Unlike cache memory,
the SPM has to be explicitly managed. In other words, the memory blocks have to be
moved in software from main memory and copied into the SPM before being used. Thus,
SPM is highly predictable in the sense that it has one access latency compared to caches
with two different latencies for cache hit and miss.
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There has been a significant amount of work in literature that proposes solutions to
dynamically manage the SPM for one task [50, 90, 13, 52, 134] by reusing the available space
over task’s execution. These works propose solutions for managing task’s code and data
including stack and heap. Since SPM is not transparent with respect to address translation,
management schemes have to impose constraints on analyzable code; in particular, memory
aliases must be statically resolved, since otherwise the management scheme risks loading
the same data into two different positions in the SPM.

In this dissertation, the focus is co-scheduling memory and computation phases in which
the memory phase is the time to load a task from main memory to local memory. We use
the term local memory to include either cache memory or SPM. As we discuss above, the
literature is rich of software and hardware techniques that can be employed to let cache
memory behave like SPM without conflict misses.

2.1.3 Off-chip Memory

The off-chip memory is often made of cost-effective technology such as DRAM. It is a 3-
dimensional array of memory cells organized as banks, rows and columns as in Figure 2.2.
DRAM accesses are controlled by a memory controller which can be seen as a mediator
between processor cores or last-level cache on one side and the DRAM chip on the other
side. It translates read/write memory requests into corresponding commands and schedules
them while satisfying the timing constraints of a DRAM chip. Each memory bank has its
own row buffer which acts as a cache for the DRAM. Before data can be transferred, the
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target row has to be opened (moved to the row buffer). A memory request that hits the
row buffer is faster than a memory request that needs to close the current row buffer and
open a new one. Thus, DRAM access latency is variable and depends on the previous
accesses. It is a hardware component that holds a state information (like cache memory)
which may affect the application timing behavior. In addition, an arbitration policy like
FR-FCFS is often used to utilize DRAM bandwidth by favoring requests that are ready
to be served over other requests. Furthermore, DRAM is divided into banks to increase
efficiency by interleaving memory requests. In other words, while data is transferred for a
bank, the other bank can be activated. In fact, this parallelism can be exploited to enhance
the application execution performance. However, one has to trade-off between performance
and predictability. If memory pages of one core are mapped into the same bank, an isolation
between different cores can be achieved. On the other hand, an application can gain higher
memory bandwidth when memory pages are interleaved between different banks.

Due to the dynamic nature of DRAM controllers, they are ill-suited for hard real-time
systems. Thus, several designs of predictable memory controllers have been proposed as
in [2, 61, 68]. These designs change the internals of memory controller such as the page
policy and the command scheduler to produce tighter bounds. In this dissertation, we
look at off-chip memory as a black-box with constant access latency similar to most of the
related work we discuss in the next section. However, as we mention in Section 1.2, the
memory phase of co-scheduling approach has the advantage to exploit the DRAM structure
to greatly reduce the access latency without the involved complexity of other work to derive
bounds on memory latency.

2.2 Memory Bus Contention

The memory bandwidth in multicore processors is shared and therefore subject to con-
tention. At the hardware level, the memory requests are mediated by an arbiter. Based on
the arbitration policy, the access latency of one request can be delayed by other requests.
The research community has recognized memory contention as a significant challenge that
may affect both performance and predictability. An experimental evaluation on the ac-
curacy of some task scheduling algorithms is done in [128]. The results show that these
scheduling algorithms show a very poor accuracy where the real execution time is most
often multiple of the estimated one. The problem stems from the assumption that all
processors are fully connected in a way that communications can proceed concurrently
without contention and without the processor involvement in the communication. The
same authors as in [128] suggest that the task model should be modified to include the
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Figure 2.3: An arrival curve specifies the maximum number of memory requests that can
be generated within a window of time ∆t.

processor involvement in the communication and reflect the fact that the communication
subsystem is not contention-free [129]. Furthermore, the work in [109] shows that the task
execution time due to memory contention can increase linearly with number of processors.

The topic of memory bus contention has received a significant attention in recent years.
[106] proposes RR arbitration for memory bus. In this case, the memory request of one
task can be delayed by at most m − 1 other requests of other cores. Thus, the inflated
memory time of one request can be bounded as m × σ where σ is the memory latency of
single request without interference. In [86], the authors propose a memory wheel where
each task is given a window of time to access memory. We note that RR, unlike memory
wheel, is work-conserving and there is no wasted time. Consider a memory with access
latency of σ = 20 cycles and a system with m = 4 cores. With memory wheel, a memory
request can take 19 + 4 × 20 = 99 cycles if this request arrives one clock cycle after the
beginning of its wheel window. In contrast, with RR arbitration, the memory time of a
request, regardless of its arrival time, is always bounded by 4× 20 = 80 cycles.

The work in [109] models each task as a set of super-blocks and derives an arrival
curve for these super-blocks. Then, it introduces an analysis method to compute an upper
bound on memory contention delay by assuming RR and first-come first-serve (FCFS)
arbitration at the hardware level. The concept of arrival curves is also used in [125] to
model the memory load of each processor. As shown in Figure 2.3, the arrival curve A(∆t)
is a cumulative function that specifies the maximum number of memory requests that can
arrive within a window of time. Thus, many conflicts are guaranteed to be eliminated
with large request distances (time windows). A measurement-based method is proposed
in [43] to capture the arrival pattern of memory requests. This work assumes a partitioned
non-preemptive scheduling at the task-level and unspecified work-conserving arbitration
at the hardware level.

14



Recently, a framework to analyze memory bus contention is proposed in [44]. The
problem is split into two steps: hardware arbitration dependent and independent. In the
first step, a bus availability model is derived using worst-case and best-case start times.
In the second step, task request-profile is used to model the traffic generated by tasks.
To tighten the traffic distribution, the task request-profile is split into equal-size temporal
regions where each region is characterized by the maximum number of memory requests.
Using task request-profile and bus availability model, an algorithm is proposed to compute
the maximum memory bus contention. [44] idles processors if tasks execute for less than
their WCET to ensure that the number of memory requests within a time window is not
higher at run-time than the computed one at design time. In contrast, we allow tasks in
our design to execute for less than their WCET; thus, the system can accommodate soft
real-time tasks to utilize the over-provisioning of hard real-time tasks.

Another line of research uses TDMA arbitration [120, 126, 36]. In this case, the bus is
divided into time slots and these slots are assigned to cores. Thus, each core is associated
with slots with known start and finish times. This distribution of time slots to cores is
called, bus schedule. Access to main memory is allowed for one core in its assigned slot. The
memory or bus arbiter stores the bus schedule in a lookup table and grants access to cores
accordingly. If a core requests memory at a time slot that belongs to another core, it will
be delayed until its next slot. Clearly, this scheme determines exactly when a core will be
granted the bus, thus, it allows analyzing the memory time for each core separately without
the interference effect of other cores. Given a bus schedule, the WCET of one task can be
determined using static WCET analysis. This requires the locations of memory requests
in time to be known. In other words, there should be a guaranteed alignment between
memory requests and bus schedule. A drawback of this approach is that the memory
locations of a task can only be specified for a particular hardware architecture by using its
micro-architectural model to account for the timing effects of underlying components such
as the pipeline. A thorough discussion of this topic can be found in [37].

The work in [127] also uses TDMA to arbitrate for main memory. However, instead
of knowing the exact locations of memory requests, the task is modeled as a sequence of
super-blocks and each super-block is divided into three phases: acquisition phase, execution
phase and replication phase. Access to main memory is limited to an acquisition phase
at the beginning and a replication phase at the end. This work then proposes an analysis
framework to compute the worst case response time (WCRT) of each task for a given
TDMA schedule.

Other research considers priority based arbitration. The work in [3] proposes credit-
based arbitration scheme. Similarly, the work in [103] proposes an arbitration scheme
based on weighted fair queuing theory at the granularity of memory requests. However,

15



these two schemes involve large overhead when implemented in hardware.

Yun et al. [146] propose a memory bandwidth reservation system called Memguard that
works at the operating system level and can reserve memory bandwidth for a specific core.
Furthermore, a hardware performance counter (HPC) is used to measure the resource
usage and enforce it using a run-time monitor. The authors also use a resource reclaiming
approach to dynamically adjust the bandwidth upon request to maximize memory band-
width utilization. Memguard [146] is a software technique proposed to provide bandwidth
partitioning without changing the bus arbiter at the hardware level. However, it relies
on hardware arbiters to provide the fine-grained arbitration. Therefore, it can be seen as
a coarse-grained bandwidth partitioning for a group of memory requests originated from
one core. A similar hardware-implemented approach is proposed in [54]. Memguard for
partitioned multicore processor has been analyzed in [142]. This work considers sequential
tasks and assumes the resource budget for each core is given. The main focus is to compute
the response time of real-time tasks on regulated cores.

The work in [104] proposes an analysis method to compute an inflated WCET due to the
contention for access to main memory. This approach requires the knowledge of memory
demand for each task in a quantified value such as the total number of accesses. However,
this analysis is only applicable for time-triggered execution in which cores are synchronized
and tasks periodically repeat an off-line schedule. Most of previous discussed works have
a similar assumption about the execution pattern of tasks. It is not clear, however, how
these approaches can leverage the massive progress in multiprocessor scheduling theory. In
what follows, we discuss an emerging technique that explicitly treats memory as a resource
similar to processor cores. Thus, memory can be scheduled using the same algorithms
proposed for processor cores.

2.2.1 The Co-Scheduling Approach

The work in [108] proposes a co-scheduling approach that can avoid memory contention
from a software level. In this approach, each task is split into two phases called memory and
computation. During the memory phase, the task’s code and data is loaded from main
memory to the local memory of processor core, and during the computation phase, the
task executes out of the local memory without access to main memory. The co-scheduling
approach exactly aligns with the software managed multicore (SMM) architectures.
SMMs are promising alternatives for real-time systems due to their scalability, power ef-
ficiency and predictability [76]. In SMM, each core can only access an SPM while main
memory accesses are explicitly done through the use of DMA. Good examples for SMM
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architecture are Cell processor [92] and FlexPRET [149]. In contrast, traditional multicore
platforms with coherent caches are very hard to adopt for real-time systems because they
make the analysis very difficult and often result in pessimistic bounds.

While [108] is introduced to avoid contention between single core and I/O devices, the
work in [143] uses this model for multicore with partitioned scheduling. A TDMA arbi-
tration is applied to avoid the contention between cores for access to main memory. To
utilize memory slots, the priority levels of memory phases are increased over computation
phases during the allotted time. In this case, the separation of memory and computation
phases has the advantage to control memory phases and allow them to preempt computa-
tion phases. A simulation-based evaluation for partitioned scheduling is conducted in [15]
using different scheduling policies.

In [99], the authors focus on the theoretical aspect of this model and identify the critical
instant (the worst-case activation pattern that leads to WCRT of task under analysis)
assuming fully preemptive scheduling of both memory and computation phases on single
core. By knowing the critical instant, an exact response time analysis is derived. While we
adopt this deterministic model to avoid memory contention, the main motivation in [99] is
to exploit the burst-feature of some DMA engines to speedup the memory transfer time.
Recently, [144] applies the co-scheduling approach to avoid memory contention in multicore
processor. In this work, a global preemptive scheduling is considered in which each task is
assumed to have a dedicated partition in each local memory to avoid re-loading the task
content after each preemption point. In addition, the memory phases are designed to have
priorities higher than the computation phases. This latter point is designed to ensure that
memory phases are not interfered from computation phases.

The explicit nature of the co-scheduling approach has been utilized indirectly by other
work. For example, tasks migrate between cores in global scheduling and this causes
CRMD. A technique has been proposed to warm up the cache before the task execute on
the new processor [124]. The transfer of cache lines is initiated explicitly by the scheduler
from the source core to the target core. It is contrasted with the traditional pull mechanism
where the target cache has to implicitly pull the data from the source cache or the shared
cache. Another example is the work in [94] which proposes a framework to manage the
cache using cache locking, a technique used to make caches behave like scratchpads [112].
An important step in this framework requires knowing the memory footprint of the task
to do prefetching and then locking.
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2.2.2 Limitations Imposed by the Co-Scheduling Approach

A real implementation of the co-scheduling approach has been demonstrated on many avail-
able commercial off-the-shelf (COTS) platforms. In particular, our recent work [119]
ports the full automotive suite of EEMBC benchmarks 1 to execute according to the co-
scheduling approach on MPC5777M, a quad-core micro-controller unit (MCU) from
Freescale 2. This MCU includes four cores: two E200Z710 application cores operating at
300 MHz, one E200Z425 I/O core and one additional core for delayed lockstep operation.
Each core features private SPM for instruction and data of sizes 16 KB and 64 KB, respec-
tively, and all cores share a single SRAM of size 404 KB. Since tasks have to be loaded
into the local memory before execution, Erika OS 3 has been modified to load the task’s
code and data sections from SRAM into SPM. Similarly, the work in [53] ports a simplified
version of a flight management system to execute on TMS320C6678, a COTS architecture
from Texas Instruments 4. In addition, the work in [30] explores the applicability of the
co-scheduling approach on an embedded multicore heterogeneous platform 5. This plat-
form has a 4-core host processor and a cluster of eight digital signal processing (DSP)
cores serving as an accelerator.

Even though the co-scheduling approach has been implemented on several fully COTS
platforms, we discuss in this section some limitations that may arise in different settings.
In particular, the discussion is split into four limitations, and we discuss how each one can
be addressed.

(1) Local memory size: since code and data of each task must be explicitly loaded
into a local memory before being executed, tasks must fit inside the local memory of one
core. We note that there are existing COTS platforms with relatively large local memories
that can fit many existing real-time applications. For example, Cell Processor has 256KB
SPM for each core. To put things into prospective, FreeRTOS which is a popular OS
in the real-time systems domain, has around 8-10KB memory footprint (based on the
underlying hardware and the compiler used). Also, the work in [136] has transformed many
applications from EEMBC benchmarks to execute according to the co-scheduling approach
with a relatively small size of SPM (16KB). In fact, a large number of real-life embedded
applications including those for control have a small memory requirement [56, 132]. If,
however, the code and data of one task cannot fit in the available local memory space, we

1http://www.eembc.org/
2Acquired by NXP Semiconductors in December 2015
3http://erika.tuxfamily.org/drupal/
4http://www.ti.com/product/TMS320C6678
5http://www.ti.com/product/66AK2H12
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can split the task into multiple segments such that each segment can fit inside the available
local memory as discussed in Section 3.7.

(2) Determining the working set: the co-scheduling approach relies on obtaining
the set of memory blocks that is needed by each task for load and unload phases. The
task memory footprint can be represented as a set of memory blocks, including both code
and data, where each block could be a cache line or memory page. In general, the memory
blocks can be determined by means of either compiler-driven approaches [134, 98], using
program annotations [108] or using measurement-based methods [94]. In particular, the
authors in [94] propose a measurement-based method that can be used to determine the
memory blocks of load and unload phases at the level of virtual memory pages. They
basically profile the task and convert the absolute addresses of memory accesses to relative
values with respect to the execution-independent memory regions. Hence, load and unload
code can be written based on these relative addresses.

We acknowledge that the working set for some tasks can be very hard to perfectly de-
termine before run-time. In this case, the co-scheduling approach can be partially applied,
say for 80-90% of memory accesses and the remaining 10-20% can be analyzed assuming
contention for access to main memory. In particular, the recent work in [95] introduces
an automated profiling tool that can modify arbitrarily C programs to behave according
to the co-scheduling approach by inserting prefetch statements before the function under
analysis. The results show that both overhead and missed accesses are small for a number
of non-trivial real-time benchmarks. For example, 95% of cache misses are reduced for a
JPEG image encoding benchmark. In addition, the work in [35] proposes MadT, a tool
that detects data memory accesses of general purpose applications. It translates the virtual
addresses to their symbolic variable names, a relevant feature that can be used to imple-
ment load and unload phases. In addition, the results in [108] based on the automotive
program group of MiBench and DES benchmarks indicate that the amount of loaded data
is only slightly higher than the amount actually used.

(3) Handling I/O data: since tasks can load data from main memory before they
execute, this data can also be memory mapped I/O. However, I/O that reads or writes
to main memory directly using DMA has to be controlled to avoid the interference with
application cores. The work in [14] shows how this can be done through hardware modi-
fications. Alternatively, some COTS platforms, like MPC5777M, have a dedicated bus to
handle I/O transactions. In this case, traffic traversing the dedicated I/O bus has to be
processed by an I/O core and buffered before reaching the application cores, similar to our
implementation in [119].

(4) Cache related issues: local memory can be either cache or SPM. For caches, it
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is particularly important to facilitate load and unload phases. In particular, the platform
API should provide cache prefetching primitives, e.g., P4080 platform [58] has a stashing
mechanism that allows a DMA component to put data directly into the cache; otherwise,
LOAD instructions can be used to move data from main memory. In addition, the cache
should employ a write-back policy and have primitives to invalidate some cache lines and
write them back to main memory. For example, Intel platforms provide CLFLUSH instruc-
tion [71].

Furthermore, during load phase, self-eviction should be avoided, in the sense that load-
ing a cache line should not evict another cache line loaded within the same phase. To
illustrate how memory blocks can be allocated without conflicts, we can think of cache
memory as a two dimensional array in which the columns are the cache ways and the rows
are the cache sets. In systems with virtual memory, the memory blocks can be allocated
without conflict along cache ways by re-arranging the physical addresses (page coloring).
However, in caches with non-deterministic replacement policy, only one cache way can be
utilized. Fortunately, some cache controllers have a lockdown feature that can be imple-
mented at the granularity of either a single line or way. This feature allows memory blocks
to be hooked on a particular cache way without being overwritten until they are explicitly
unlocked. In fact, the Colored Lockdown technique proposed in [94] can be used to avoid
conflicts in loading task’s code or data. The key idea of this technology is to combine
coloring and cache locking to deterministically control cache allocation of memory blocks.
With this combined method, the whole cache can be utilized to allocate memory blocks
without conflicts. Similarly, the work in [38] proposes column caching, a hardware modi-
fication to the replacement unit of the cache in order to limit replacement to the column
(way) specified by a bit-vector stored in page table entries.

The multicore processor can also have a last-level cache (LLC) that is shared between
cores as common in today’s architectures [73]. Spatial isolation techniques as discussed in
Chapter 2 can be used to partition the shared cache among different cores. Here, we
assume there is no timing interference between cores for access to shared cache. This can
be achieved using bankization [106], a technique to partition the cache into banks and each
core is assigned a private set of banks.

2.2.3 Memory Space Allocation

The memory used by real-time applications is usually statically allocated to avoid non-
deterministic memory management systems. This used to be a sufficient solution for
some real-time applications; however, modern real-time systems are increasingly becoming
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complex and demanding for more flexible memory allocation. In fact, building a time-
predictable memory manager is a challenging task. The problem is that the memory state
changes as data come and leave. Thus, memory allocation time is not always fixed. Half-
fit [105] was the first dynamic memory manager that allocates memory space in a constant
time, but the cost can be wasting half of the memory space. Another work [41] proposes
a scheme called compact-fit (CF). It provides a bounded response time (either constant
or linear to the size of allocated data) for allocating data regardless of the current state of
the memory. Since our main focus is the arbitration time for access to main memory (the
temporal aspect), the timing interference due to memory space management is out of this
dissertation’s scope.

2.3 Multiprocessor Real-time Scheduling

Uniprocessor real-time scheduling has received a significant amount of consideration in the
past [31]. The computational model has been extended from a simple theoretical model to
include more realistic models found in today’s systems. On the other hand, multiprocessor
real-time scheduling has not received the same amount of consideration as in uniproces-
sor. The theory of multiprocessor real-time scheduling studies the scheduling of real-time
workloads on multiprocessor systems. This topic has seen big advances over the past years
and is still growing in a fast pace. We will discuss in this section the most closely related
aspects, and refer the reader to a recent book on this topic by Baruah et al. [20]. In
multiprocessor real-time scheduling, one has to distinguish two scheduling paradigms: (1)
sequential tasks and (2) parallel tasks. The real-time research community until recently has
focused on the first paradigm in which the real-time system is modeled as being composed
of a finite number of sequential tasks. The work in [46] surveyed the literature of different
techniques for scheduling sequential tasks on multiprocessor systems. Although scheduling
parallel tasks without deadlines has been addressed by parallel-computing researchers for
a long time [1], there has been a recent attention to schedule parallel tasks in real-time
systems. This has been observed in [122],“the growing importance of parallel task mod-
els for real-time applications poses new challenges to real-time scheduling theory that has
mostly focused on sequential task models.” Modeling modern real-time systems as being
composed of parallel applications is crucial because the timing constraints of computation-
heavy real-time applications such as synthetic vision and object tracking [79] cannot be
feasibly executed on single core processor. We will provide a brief survey of these works in
Section 2.3.5.
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Figure 2.4: A job needs to execute for amount of time equal to its WCET between its
release time and deadline.

2.3.1 Task Model

The real-time workload comprises units of work known as jobs. These jobs are generated
by a finite collection of independent recurrent tasks Γ = {T1, · · · , Tn}. Each job is char-
acterized by three values: release time ri, absolute deadline di and WCET as depicted in
Figure 2.4. Over the years, different models have been proposed for hard real-time tasks.
One widely-used model is the 3-parameter model. As the name indicates, each task is
characterized by WCET ei, period pi and relative deadline Di. This model extends the
classical Liu and Layland (LL) model [87] which has only two parameters: WCET and
period. Adding relative deadline as a third parameter allows to model tasks that occur
infrequently (large period) but with urgent deadline (small deadline). Based on the rela-
tionship between the relative deadline and the period, a 3-parameter task system may be
classified as follows.

• An implicit-deadline where the relative deadline is equal to the period. This is exactly
the same as LL model.

• A constrained-deadline where the relative deadline is no larger than the period.

• An arbitrary-deadline where there is no restriction on the values of the relative dead-
line and the period.

In addition, a sporadic task model specifies a lower bound on the arrival of successive jobs
of one task. In contrast, a periodic task model specifies an exact separation of successive
jobs.
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Figure 2.5: DAG task.

Generally, the 3-parameter task model does not allow parallelism within one task.
However, the trend in current technology demands models that are capable of exposing
intra-task parallelism. The directed acyclic graph (DAG) task model [21] has been
proposed to capture such parallelism where each task is characterized by a DAG Gi =
(Vi, Ei) as shown in Figure 2.5. Each node v ∈ Vi of the DAG represents a sequential
subtask characterized by WCET. In addition, each directed edge (v, w) ∈ Ei of the DAG
represents a precedence constraint. That is, subtask v must finish before w can start.
Therefore, the sporadic DAG task model can be characterized by a DAG Gi, a relative
deadline Di and a period pi. Unlike the sequential task model where each task is described
by a single WCET ei, the DAG task model describes a task as a collection of subtasks
with order relation in their execution. Similar to sequential tasks, DAG tasks generate
a sequence (possibly infinite) of jobs. Upon job release, all sub-jobs (dag nodes) become
available for execution subject to the precedence constraints.

2.3.2 Hard Real-time

Hard real-time systems do not tolerate any deadline misses. In contrast, soft real-time
systems allow for some deadline misses to occur or deadlines can be missed by no more
than a certain amount of time (bounded tardiness). We will focus on hard real-time
scheduling; thus, the large body of research on soft real-time scheduling falls outside the
scope of this dissertation.

23



2.3.3 Preemption and Migration

Scheduling can be classified based on preemption. In preemptive scheduling, the scheduler
is allowed to stop one job (perhaps to execute another job) and resume its execution
at later time. In contrast, after a job starts its execution, non-preemptive scheduling
never stops this job until completion. Limited-preemptive scheduling is proposed as a
hybrid approach between preemptive and non-preemptive. A recent survey [32] discusses
different approaches for limited-preemptive scheduling. An approach directly related to
this dissertation is called fixed preemption points. That is, a job is divided into non-
preemtive segments and preemption can only occur at the boundaries of these segments.
There are two models of preemption in this approach: lazy and eager [97, 133]. In the lazy
model, a job is preempted if it is the lowest priority job running in the system. The eager
model, on the other hand, preempts the first lower-priority task to reach a preemption
point. For the reason we mention at the beginning of Chapter 3, we will primarily focus
on non-preemptive scheduling and adopt fixed preemption points approach in Section 3.7.

Scheduling can be further classified based on migration. In global scheduling, there is no
restriction on which processor a job can use to execute. In contrast, partitioned scheduling
restricts each task to execute on one particular processor. Again, clustered scheduling
is proposed as a hybrid approach between global and partitioned. In this approach, the
processors are partitioned into clusters, and task migration is only allowed within one
cluster, i.e., global within one cluster. We will primarily focus on global scheduling for
sequential tasks in Chapters 3 and 4.

2.3.4 Static and Dynamic

The simplest scheduling scheme is called cyclic-executive [33]. A real-time clock is used
to activate tasks at the right time. The advantage of this static approach is that the
run-time overheads such as context-switching can be determined at compile time. Other
approaches are dynamic and based on priority. At run-time, the scheduling algorithm
allocates the available processors to the highest priority jobs. Based on how priority is
assigned, scheduling can be classified into three types:

• Fixed task priority (FTP), each task is assigned a unique priority and its jobs
inherit this priority. The most popular algorithm of this type is rate monotonic
(RM) in which priority is assigned based on period, tasks with smaller periods are
given higher priority. Our focus will be on this type.
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• Fixed job priority (FJP), jobs of the same task may have different priorities.
However, the priority will never change once assigned. The earliest deadline first
(EDF) is an example of this type in which priority is assigned based on deadlines,
jobs with earlier deadline are given higher priority.

• Dynamic priority (DP), there is no restriction on priority assignment which can
change at task or job level. The proportional fair (pfair) is an example of this
type.

2.3.5 Schedulability Test

In building hard real-time systems, it must be guaranteed before run-time that all deadlines
will be met by the scheduling algorithm. This guarantee is made by a schedulability test.
The output of this test determines whether the task set is schedulable or not. Real-time
tasks are often characterized by worst-case values rather than exact; thus, it is expected (at
run-time) that tasks behave better than the worst-case bounds. The notion of sustainability
is a desirable property (fundamental from an engineering point of view) of the schedulability
test to ensure that the task set is still schedulable when tasks execute for less than their
WCET.

The utilization bound, defined below, can be used as a schedulability test. The task
utilization is denoted as ui = ei/pi and Ut =

∑
∀Ti ui.

Definition 1. The utilization bound for a given scheduling algorithm A is the largest
utilization value UA such that all task sets with total utilization Ut ≤ UA are always
schedulable by A.

The utilization bound can also be used as a metric to compare different scheduling
algorithms. That is, if UA > UB, then algorithm A is better than algorithm B. However,
the utilization bound of FTP global scheduling is very poor. It can reach 1 + ε, where ε is
an arbitrarily small number, regardless of the number of processors due to a phenomenon
commonly called Dhall effect [51]. Thus, another metric called speedup factor is often used.

Definition 2. If an optimal scheduler can schedule a task set on m unit-speed processors,
then algorithm A with speedup factor b can schedule this task set on m b-speed processors.

Since the optimal scheduler for FTP global scheduling is not known [57], the speedup
factor can be used as a metric to compare algorithms rather than a schedulability test.
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Figure 2.6: 5000 task sets of UUnifast(3,1).

The per-task schedulability test, on the other hand, can be used to test whether or not
a task set is schedulable. Two types of tests are available [45]: deadline analysis (DA)
and response-time analysis (RTA). With DA, the latest time a task can execute is
when it completes within its deadline while the latest time a task can execute with RTA is
when it completes within its WCRT. As noted in [45], RTA dominates DA and the latter
can be easily extended to RTA using an iterative method. In this dissertation, we use DA
to compare our proposed algorithms against others rather than using speedup factors or
utilization bounds.

To compare between different algorithms with DA test, the acceptance ratio metric
is often used. It is the ratio between the number of schedulable task sets over the total
number of task sets. An algorithm such as UUnifast(n,Ut) [28] can be used to randomly
generate task sets such that each task set contains n tasks and total utilization Ut. In
Figure 2.6, we plot the results of 5000 task sets for n = 3 and Ut = 1. As we can see,
utilization values (triplets) are uniformly distributed.

Sequential Tasks

Since we consider in this dissertation global non-preemptive scheduling for sequential tasks,
we will restrict our discussion to this type. We refer the reader to [46] for a survey of
preemptive multiprocessor scheduling including both partitioned and global approaches.
Non-preemptive global scheduling was first addressed in 2006 by Baruah [22]. He proposed
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a sufficient schedulability test for global non-preemptive scheduling of periodic tasks which
can be easily extended to include sporadic tasks. However, this test may reject a task set
with low utilization if it contains a task whose execution time is longer than the relative
deadline of any other task because of non-preemptive execution. Even though this is true
for uniprocessor scheduling, the case in multiprocessor is different because a high-priority
task can run on different processor if other processors are blocked by low-priority tasks with
large execution times. Guan et al. [65] provided a schedulability analysis for global non-
preemptive scheduling under earliest deadline first (EDF). Their analysis is based on a novel
approach by Baker [16] and techniques introduced in [26]. They also used ideas from [17]
to limit the amount of carry-in workload. The work in [64] improved upon the previous
work [65] by providing an analysis which is of polynomial computational complexity instead
of pseudo-polynomial. They also focused on FTP scheduling as opposed to EDF.

A schedulability test for EDF under non-preemptive global scheduling is also proposed
in [82]. In this work, the task model is generalized to include both hard and soft real-time
tasks with pre-defined tardiness bounds and arbitrary relative deadlines. Moreover, the
work in [47] introduced a global fixed priority scheduling with deferred preemption. It is
again a more general model that includes both preemptive and non-preemptive scheduling.
In this model, each task is characterized by a parameter called final non-preemptive
region (FNR). By increasing the FNR length to include all of the task’s execution time,
we can have a non-preemptive scheduling.

The state-of-the-art schedulability analysis of FTP non-preemptive global scheduling
is found in [64]. This work combines several techniques developed over the years to derive
an efficient analysis. A summary of this analysis is provided in Section 3.3 to serve as a
foundation to understand Chapters 3 and 4.

Parallel Tasks

With respect to parallel tasks, Goossens and Berten [59] discuss an interesting classification
of parallel tasks: rigid, moldable and malleable. A rigid task can only execute when a fixed
number of processors are available; otherwise, the task will not execute. A moldable task
is similar to rigid task, but the number of processors is specified at job level, i.e., different
jobs of the same task can be assigned different number of processors. In contrast, the
malleable task has no restriction and can execute on any number of cores. The traditional
Gang scheduling aligns with the definition of rigid tasks. In [74], EDF is applied for
gang scheduling and [59] applies FTP scheduling. Most of the work in parallel scheduling
assumes malleable tasks.
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Lakshmanan et al. [80] introduce fork-join model for parallel tasks in which the task
alternates between sequential and parallel segments. The authors propose a transformation
method that impose an artificial deadline for each subtask. Once these deadlines are deter-
mined, the schedulability analysis becomes equivalent to scheduling independent sequential
tasks. [80] has been generalized in [121, 102] to lift some restrictions on the task model such
as the number of subtasks within parallel segments. Instead of transformation method, the
work in [39] proposes global EDF scheduling and uses the DA test. The concept of critical
interference is introduced to capture the interference of parallel subtasks. This concept is
adopted in [93] for FTP global scheduling, and RTA is used to tighten the schedulability
conditions. Similarly, RTA is used in [11] but for FTP partitioned scheduling.

The work in [21] proposes DAG task model and provides a schedulability analysis for
single parallel task. Later, the works in [83, 24] consider the same model but for multiple
parallel tasks. A response-time analysis for DAG tasks is proposed in [100]. This work
follows similar techniques as in [25] for sequential tasks. However, a novel idea is proposed
to capture the workload of parallel tasks. We recall that parallel tasks can have different
degree of parallelism and can utilize more than one core at a given time. Thus, this imposes
a challenge to bound their workload compared to sequential tasks.

In [83], the authors propose federated scheduling to schedule parallel tasks. Unlike
global scheduling where tasks (including their subtasks) share one global queue, tasks in
federated scheduling are assigned dedicated cores. Since we use this approach in Chapter 5,
a detailed discussion of federated scheduling is provided in Section 5.2.
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Chapter 3

Global Scheduling of 3-phase
Sequential Tasks

The co-scheduling approach [108] was initially proposed with two phases, load and compu-
tation. In this chapter, we propose to extend this approach with a third phase to unload
modified data back to main memory. We then discuss how to schedule 3-phase tasks on
a multicore processor. We focus on non-preemptive FTP global scheduling in which the
ready tasks are inserted in one global queue and each task is assigned a unique priority.
We refer to this global scheduler as global predictable execution model (gPREM).

As depicted in Figure 3.1, tasks are divided into three phases: (1) load phase, (2)
computation phase and (3) unload phase. During the load phase, task’s code and data
are loaded from main memory to the local memory of the assigned core. During the
computation phase, the task executes out of the core’s local memory without main memory
stalls. The modified data is then written back to main memory during the unload phase.
Based on this 3-phase execution model, the scheduler can enforce a contention-less memory
access by scheduling only one memory phase (load or unload) at any time. Other tasks are
allowed to execute but they must be in their computation phases. This execution model

computationload unload

Figure 3.1: 3-phase execution model.
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(a) Combined unload and load phases.

computationmemory

(b) Two phases.

Figure 3.2: Simplified 3-phase task.

provides a highly predictable execution time for both memory and computation phases.
Specifically, the memory phases suffer no delay from other tasks and computation phases
execute without memory stalls.

We described the 3-phase model for a single task. However, real-time systems are
often multitasking in which more than one task execute concurrently. Since 3-phase tasks
have two memory phases (load and unload), having to dynamically schedule both of them
complicates the schedulability analysis. Instead, we propose to combine the unload phase of
one job with the load phase of next job executed on the same core as shown in Figure 3.2(a).
We refer to these combined phases as the memory phase. Suppose Jb is the next job
to execute after Ja on the same core. Then, the unload phase of Ja is executed non-
preemptively with load and computation phases of Jb. In other words, 3-phase tasks now
have two phases: memory and computation as shown in Figure 3.2(b). We will be using
the diamond pattern to represent memory phases from now on.

To schedule 3-phase tasks efficiently, we propose to execute them non-preemptively.
Intuitively, if we allow preemption, we need to reload the code and data at each preemption
point. Otherwise, we need to assign each task a private partition in each local memory to
avoid conflicts between tasks; however, this choice may not be practical for systems with
large number of tasks. In industry practice, non-preemptive scheduling is often preferable
due to its lower run time overhead. In addition, the non-preemptive blocking time due to
low-priority tasks is less severe in multicore than single core because high-priority tasks can
still execute in parallel on other cores [64]. In fact, neither preemptive nor non-preemptive
global fixed-priority scheduling dominates the other, i.e., there are some task sets that are
schedulable under preemptive that are not schedulable under non-preemptive and vice-
versa.
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3.1 Contention-based Execution

The co-scheduling approach inherently uses local memory to execute tasks. In other sys-
tems, local memories are used to reduce the number of requests to main memory by ex-
ploiting the locality of reference. However, estimating the WCET of real-time tasks in such
platforms is challenging. With local memories, memory requests have two different laten-
cies for hit and miss; hence, the execution time of one task will depend on the distribution
of these memory requests. In addition, preemptive scheduling can increase task’s execution
time by 33% due to CRPD [49]. To solely focus on memory contention problem, we will
use the contention-based non-preemptive global scheduling (gCONT) as our base system
for comparison purposes. With respect to main memory, each task is characterized by a
total number of memory requests. In gPREM, memory requests occur in one phase while
memory requests in gCONT are spread across the execution of the task and can occur
at any time. That is, the total number of memory requests of one task under gCONT
and gPREM are the same, assuming the local memory is managed under gCONT to avoid
conflict misses.

A bound on memory latency for gCONT can be easily obtained for a fair hardware
arbiter such RR. In this case, the memory portion of each task is inflated by m, the number
of cores in the system, by assuming each memory request is preceded in the worst-case by
m − 1 requests from other cores. In other words, each task can utilize 1/m of memory
bandwidth. We note that memory requests in current architectures are not serviced in RR
nor they have the same access latency. Instead, current memory controllers are designed
for average-case performance where utilizing the memory bandwidth is the main objective.
To achieve such goal, current memory controllers exhibit a dynamic behavior where the
latency of single memory request varies based on the history of previous requests. As a
result, a complicated analysis for each memory controller is needed to derive an upper
bound on memory access latency [75, 140]. In this case, the memory inflation can exceed
m; however, we favor gCONT by assuming RR (a fair arbiter) and main memory is treated
as a black box with constant access latency. As we mentioned earlier, these complexities
are avoided in gPREM because it does not rely on hardware arbiters and tasks during
memory phases access memory without interleaving effect of other tasks.

3.2 System Model

We consider a set of n sporadic 3-phase tasks, Γ = {T1, . . . , Tn}, to be globally scheduled
on a processor of m homogeneous cores {core1, . . . , corem}. Each core has a private local
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Figure 3.3: Abstracted hardware architecture.

memory, and all cores share a single off-chip main memory as shown in Figure 3.3. We use
Ji to denote any job of Ti with ri as its release time and di as its absolute deadline. The
sporadic task model has three parameters for each task Ti. That is, a relative deadline Di,
worst-case execution time ei and period or inter-arrival time pi. We consider a constrained
deadline model in which Di ≤ pi. The release times of jobs are assumed to be unknown
at compile time and their actual execution time can be less than the worst-case value.
Since we explicitly consider memory as a system resource, each task is characterized by
three WCET values corresponding to each phase of 3-phase model: (1) exi , computation
time, (2) evi , memory load time and (3) ewi , memory unload time. We use emi to denote the
memory time including both load and unload phases. We note that emi = evj + ewi since the
memory phase of Ji includes the unload phase of previous job Jj and the load phase of Ji.
Since the previous job in dynamic scheduling is generally unknown as core allocation and
execution ordering are determined at run time, emi cannot be determined at compile-time.
We will address how to build a safe bound on emi in Section 3.6.3. We let ei = emi + exi
as an upper bound on the total execution time including both memory and computation
phases. This assumption holds for timing compositional architectures or systems where
the memory time is additive to computation time, i.e., there is no anomalies assuming
ei ≤ emi + exi .

Each task has a unique priority indicated by its index such that Ta has higher priority
than Tb if a < b. We use hp(k) to denote the set of tasks with priorities higher than Tk,
lp(k) to denote the set of tasks with priorities lower than Tk, and lep(k) = {Tk∪lp(k)}. The
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Table 3.1: Summary of notations.

Ti one task

Γ task system

m number of system’s cores

n number of system’s tasks

ei execution time of Ti including memory and computation

evi load time

ewi unload time

emi memory time including load and unload

exi computation time

Di task’s deadline

pi task’s period

umi memory utilization of Ti

uxi computation utilization of Ti

Um total memory utilization of Γ

Ux total computation utilization of Γ

Ut total utilization of Γ including memory and computation

memory and computation utilization of each task is denoted as umi = (evi +ewi )/pi and uxi =
exi /pi, respectively. Similarly, the total memory utilization of all tasks is denoted by Um,
the total computation utilization is denoted by Ux and the total utilization (including both
memory and computation phases) is denoted by Ut. All these notations are summarized
in Table 3.1 and will be used in subsequent chapters.

In addition, all time values are assumed to be non-negative integers and expressed as
cycles of the most precise clock in the system. The length of an interval [a, b] is b− a+ 1.
Lastly, we use the notation (x)0 meaning max(0, x) to simplify expressions.
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Figure 3.4: The necessary condition for Jk to miss its deadline.

3.3 Deadline Analysis

The schedulability analysis in this chapter is based on deadline analysis. Hence, we dedicate
this section to go through this analysis in detail. To simplify the discussion, we consider
traditional tasks with computation phases only. The analysis in Section 3.6 will consider
3-phase tasks. The deadline analysis is based on a basic argument that for any work-
conserving scheduler, a job Jk will meet its deadline unless it is pushed by the interference
of other tasks.

Definition 3. The interference refers to a time interval in which Jk is not able to execute
because all processor cores are busy executing other tasks.

The job Jk is called a problem job, and the time interval [rk, tl] is called a problem
window, where tl is the latest time for Jk to execute and finish by its deadline, i.e., tl =
dk − ek. We use Lk to denote the problem window length, i.e., Lk = tl − rk + 1. Since we
consider a non-preemptive execution, a job will meet its deadline if it acquires a processor
core at or before tl. Based on this argument, a sufficient schedulability condition can be
easily established. That is, if the interference of other tasks is less than the problem window
length, the problem job is guaranteed to meet its deadline. In Figure 3.4, we show a task
system generating an interference that prevent Jk from running at or before tl. We then
have to verify that the same condition holds for each task.

In multiprocessor scheduling, the maximum interference of a task system over an in-
terval of time is not always obtained when all tasks are released simultaneously, i.e., the
critical instant of uniprocessor. Moreover, finding the release times which result in the
maximum interference is an NP-hard problem [91, 22]. However, due to the NP-hardness
nature of the problem, we note that the contribution of any task in any interval of time is
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Figure 3.5: The workload of a task inside a window of time [a, b].

never greater than the worst-case workload of the task in the same interval [26]. Thus, we
can use the worst-case workload of all tasks Ti in the problem window of task Tk to derive
an upper-bound on the interference.

The workload of Ti in a window of time [a, b] is composed of three parts as shown in
Figure 3.5.

1. Carry-in: the contribution of at most one job with release time before a and deadline
after a.

2. Body : the contribution of jobs with both release time and deadline inside the window.

3. Carry-out : the contribution of at most one job with release time inside the window
and deadline after b.

According to these definitions, a job with release time before a and deadline after b is
considered as a carry-in job. We also assume the worst-case activation such that carry-in
jobs start as late as possible and carry-out jobs start as early as possible.

In addition, assuming all tasks can have carry-in jobs has a large impact on the amount
of workload and consequently, the interference. Thus, we consider a busy downward ex-
tension of the problem window in which there are at most m tasks that can have carry-in
jobs. The extended problem window has an earlier starting point to and shares the same
endpoint tl as shown in Figure 3.4. We now define to as follows.

Definition 4. We let to to denote the earliest time instant before rk such that from to to
rk either all cores are busy with tasks from hp(k) or there is at least one pending task from
hp(k). If such time does not exist, then we let to = rk.

Based on this definition, we have the following lemma.

Lemma 1. The time interval [to, rk) is busy.
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Proof. Assume a time interval inside [to, rk) which is not busy, i.e, there is at least one
core idle. Definition 4 states that inside [to, rk) either all cores are busy with tasks from
hp(k) or there is at least one pending task from hp(k). Since FTP global scheduling is
work-conserving, both cases contradict the above assumption.

The following lemma bounds the number of tasks that can have carry-in jobs inside the
problem window that starts at to.

Lemma 2. There are at most m tasks that can have carry-in jobs of which at most m− 1
tasks from hp(k).

Proof. We use to− 1 to denote the time instant before to. The complement of Definition 4
states that at to − 1, not all cores are busy with tasks from hp(k) and there is no task
pending from hp(k). This limit the number of tasks in hp(k) executing at to− 1 to m− 1.
Furthermore, since there is no hp(k) task pending at to − 1, it follows that only tasks in
hp(k) that are executing at to − 1 can have carry-in jobs. Similarly, no task in lep(k) can
start executing at or after to as per Definition 4. Since it is not possible to execute more
than m tasks at the same time, the lemma follows.

We note that even though the extended problem window that starts at to has the
advantage of limiting the amount of carry-in jobs, finding the start point to is of pseudo-
polynomial time complexity [17], given that the total utilization (Ut) is strictly less than
m. The authors of [64] observed that choosing a window of length Lk and starting at to
is sufficient for the schedulability test. Intuitively, computing bounds on the amount of
work inside a small time interval (Lk) is tighter than a large time interval (Sk +Lk) as the
amount of workload gets amortized over larger intervals [17].

We use WCI
k (Ti) and WNC

k (Ti) to denote the workload of Ti in the problem window of
Tk with and without carry-in, respectively. Obviously, lep(k) tasks can only have one job
as carry-in workload; thus, WCI

k (Ti) = min(ei, Lk) and WNC
k (Ti) = 0. In contrast, hp(k)

tasks can be activated and executed inside the problem window. Thus, their workload can
be computed from Figure 3.6 as follows.

WNC
k (Ti) =

⌊
Lk
pi

⌋
ei + min(ei, Lk mod pi) (3.1)

WCI
k (Ti) = min

(⌊
(Lk − ei)0

pi

⌋
ei + ei + β, Lk

)
(3.2)
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Figure 3.6: The workload without and with carry-in.

where
β = min(ei, (Lk − ei)0 mod pi − (pi −Di)). (3.3)

We note that WCI
k (Ti) ≥ WNC

k (Ti) by at most one complete job. Thus, we denote their
difference by

W diff
k (Ti) = WCI

k (Ti)−WNC
k (Ti). (3.4)

Since m tasks can have carry-in jobs as in Lemma 2, we take the largest m among all tasks.

W diff
k (Γ) =

∑
largest(m)

W diff
k (Ti) (3.5)

The total workload of all tasks in the problem window of Tk can be bounded as follows.

Wk(Γ) = W diff
k (Γ) +

∑
Ti∈Γ

WNC
k (Ti) (3.6)

While Wk(Γ) bounds the volume over two dimensions, the horizontal length (interference)
can be trivially bounded as:

Ik(Γ) =
Wk(Γ)

m
. (3.7)

Finally, the schedulability test for each task can be established by checking Ik(Γ) < Lk.
This condition has to be checked for each task to declare whether the task set is schedulable
or not.
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Figure 3.7: An example of gPREM schedule for six jobs on three cores.

3.4 Scheduling Example of gPREM

In this section, we use an example to illustrate gPREM scheduling. Figure 3.7 shows a
schedule example of six jobs scheduled on three cores. The up arrows indicate the release
time of jobs and the deadlines are omitted for simplicity. These six jobs are from different
tasks and the job priority is indicated by its index such that Ja has higher priority than Jb
if a < b. We use the following notation for task’s three phases: Vi for load phase, Xi for
computation phase and Wi for unload phase.

J1 is released at time 0. V1 is scheduled until time 4. X1 is immediately executed after
its memory phase as we assume a non-preemptive execution. While V1 is executing, both
J3 and J5 have been released at time 1 and 2, respectively. Since our scheduler allows only
one job to be in memory phase, J3 and J5 have to wait until time 4, the end time of V1. J3

is chosen to execute before J5 because it has higher priority. J2 is released at time 11 but
is blocked by V5 for one time unit. W1 is merged with V2 and executed non-preemptively
with X2. From time 0 to time 20, the memory is fully utilized with no idle time. From
time 20 to time 21, the memory is idle because there is no pending task inside the ready
queue. At time 21, J4 is released and immediately scheduled to execute its memory phase
on core2. Again, V4 is merged with W3, the unload phase of the previous scheduled job on
the same core. J6 is released at time 23, but is blocked by J4 until time 29.

We now highlight two important points from previous example. First, J5 was pending
after its release at time 1 and did not acquire a processor core. Thus, J5 did not block
J3 as in traditional non-preemptive scheduling. The scheduler is invoked at time 4, the
end of J1 memory phase. At this time, both J5 and J3 were pending inside the ready
queue. Thus, J3 was chosen to execute before J5. This point will help us in Section 3.6 to
provide a tighter interference bound. Second, assume J3 and J4 are from the same task,
i.e., they share the same data. At time 21, the release time of J4, both core2 and core3 are
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Figure 3.8: Scheduling decisions and context switches.

available to execute J4. If we choose core3 instead of core2 to execute J4, there will be data
inconsistency for J4 because the modified data of J3 is still in the local memory of core2

where J3 is executed, and cannot be seen by J4. Since we combine the unload phases with
load phases, another job should be scheduled on the same core to carry out the unload
phase. To mitigate such problem, we propose to design the scheduler such that if there are
more than one core available to execute a job, the scheduler should choose the recent used
core by the previous job of the same task. Hence, we guarantee that the modified data is
seen by the next job of the same task.

3.5 Scheduler Design of gPREM

In this section, we show how to design gPREM scheduler to be compatible with the data
structures of FreeRTOS 1. The scheduler maintains a global queue in which ready tasks
are ordered according to fixed priorities. A task is inserted into the ready queue after its
release. The scheduler is implemented as an interrupt service routine (ISR) triggered
by three events 1, 2 and 3 as shown in Figure 3.8. Upon activation, the scheduler checks
two conditions: (1) at least one core is idle and (2) the memory is idle because each task
starts with a memory phase and only one memory phase is allowed to execute at any time.
If these two conditions are not satisfied, the scheduler exists and will be triggered again
by a later event. If, however, both conditions hold, the scheduler extracts from the top
of the ready queue the highest priority task, then invokes the dispatcher (by sending an
inter-core interrupt) to do a context switch on the selected core.

FreeRTOS uses task control block (TCB) data structure to represent each task.

1http://www.freertos.org/

39



load@ cmp@ unload@
PreviousTCB

CurrentTCB

TCBa

corek

TCBb load@ cmp@ unload@

Figure 3.9: Task’s TCB and core’s pointers.

The TCB contains, among other things, the memory address corresponding to the first
instruction of each task. Since each task in our system is composed of three phases, the
TCB has to contain three addresses corresponding to each phase as shown in Figure 3.9.
These different addresses are used by the dispatcher to properly context switch tasks.
Moreover, since we combine the unload phase of previous job to the unload phase of next
job to be executed on the same core, each core has to maintain two pointers as shown in
Figure 3.9. These two changes are minimal to FreeRTOS data structures. In what follows,
we explain how these pointers and data structures are manipulated by the dispatcher.

We show in Figure 3.8 three points a, b and c at which the dispatcher is invoked to do a
context switch. At point a, the dispatcher is invoked by the scheduler as explained above to
context switch a new job. The dispatcher at this point will first adjust the core’s pointers
PreviousTCB to point to the TCB of previous job and CurrentTCB to the TCB of current
job (the highest priority). After the unload phase of previous job (point b), the dispatcher
will be invoked again to do another context switch, Context-Switch(CurrentTCB .load).
At point c, the dispatcher will do a context switch for the computation phase of current job,
Context-Switch(CurrentTCB .cmp). This cycle continues as long as there are pending
tasks.

3.6 Schedulability Analysis

In traditional scheduling, a task becomes pending after its release if all cores are busy
executing other tasks. Thus, a time window is defined busy if all processor cores are busy.
In gPREM, however, a task can be pending even though there is an idle core because tasks
start with memory phase, and no more than one memory phase can be active at any time.
Thus, we propose to redefine the term busy for a window of time as follows.

Definition 5 (PREM-busy). A time window [a, b] is PREM-busy if ∀t ∈ [a, b] either the
memory is busy or all cores are busy.
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Figure 3.10: A necessary condition for a problem job Jk to miss its deadline.

Based on this definition, a necessary condition for Jk to miss its deadline is that the
problem window [rk, tl] has to be PREM-busy so that a 3-phase job is not able to execute.
In Figure 3.10, we show a task system generating an interference that prevents Jk from
running at or before tl. We note that tl = dk − ek and ek = ewi + evk + exk. As we mentioned
earlier, ewi cannot be determined at compile time; thus, we assume ewi to be the largest
unload phase. This is only for the problem job to determine the problem window length,
we derive a better bound for the interfering tasks in Section 3.6.3.

Unlike traditional scheduling, the workload of each 3-phase task is not simply the sum
of the execution time of its individual jobs because jobs have two phases, and memory
phases must run exclusively. The idea behind our analysis is to collect all interfering jobs
inside the problem window. Then, we derive from this collection of jobs a global bound on
the total workload.

Giving an upper bound on the total workload is the subject of the following three
sections. First, we show how to limit the amount of carry-in workload in Section 3.6.1.
Second, we discuss in Section 3.6.2 how to compute WCI

k (Γ), the carry-in workload. Third,
we show in Section 3.6.3 how to bound WNC

k (Γ), the workload without carry-in. We finally
present the schedulability condition for gPREM in Section 3.6.4.

3.6.1 Carry-in Workload Limit

In order to limit the amount of work carried into the problem window, we consider a
PREM-busy downward extension of the problem window in which there are at most m
tasks that can have a carry-in jobs. The extended problem window has an earlier starting
point to and shares the same endpoint tl. The definition of to is the same as Definition 4.
Based on this extension, we have the following lemma.
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Lemma 3. The time interval [to, rk) is PREM-busy.

Proof. Assume a time interval inside [to, rk) which is not PREM-busy, i.e., both memory
and at least one core are idle. Definition 4 states that inside [to, rk) either all cores are
busy with tasks from hp(k) or there is at least one pending task from hp(k). Since gPREM
is work-conserving, both cases contradict the above assumption.

Since 3-phase tasks have memory and computation phases, we distinguish two types of
carry-in. (1) Memory carry-in is a job with both memory and computation phases while
(2) computation carry-in is a job with just a computation phase. With this definition, an
important result is stated in the following lemma.

Lemma 4. Only one task from Γ can have memory carry-in.

Proof. As in proof of Lemma 2, we note that at to − 1 not all cores are busy with tasks
from hp(k) and there is no pending task from hp(k). Therefore, it follows from Definition 4
that at to either all cores become busy with jobs from hp(k) or one job from hp(k) becomes
pending. In either case, a new task from hp(k) must be released exactly at to for either
condition to become true. We now consider each case separately. (1) The release of a job
from hp(k) satisfies the first condition, i.e., it becomes the mth task that make all cores
busy. Since each task starts with a memory phase and only one memory phase can be
active on the system at any time, it follows that all tasks that are executing at to− 1 must
have completed their memory phases by to. Hence, there is no memory phase carry-in in
this case. (2) A job from hp(k) becomes pending after its release. We note that a job can
be pending due to either all cores are busy with computation phases or one core is busy
with memory phase. Since only one memory phase can be active at any time, as tasks are
dispatched to their cores one after another, only one memory phase from hp(k) ∪ lep(k)
can block this job. Similarly to the previous case, all other tasks that are executing at
to − 1 must have completed their memory phases before to. Hence, at most one job can
have memory carry-in, concluding the proof.

Based on Lemma 4, we can have at most one memory carry-in from either hp(k) or
lep(k). In the case where we do have a memory carry-in, we propose to extend to further
downward such that it always start at the beginning of a memory phase te as in Figure 3.11.
In this way, tasks can only have computation carry-in. However, if a task in lep(k) was
executing its memory phase at to, then te will correspond to the beginning of its execution;
hence, in the worst case a single task in lep(k) can have a body job within the problem
window. The following lemma states that this extension of to does not change the property
of the time interval [te, rk).
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Figure 3.11: Only one task can have memory carry-in at to.

Lemma 5. Extending to to start at the beginning of a memory phase te keeps the time
interval [te, rk) PREM-busy.

Proof. We recall from Definition 5 that an interval is PREM-busy if either one core is busy
with a memory phase or all cores are busy with computation phases. Thus, extending to
with memory phase keeps the time interval [te, to) PREM-busy.

Finally, the following theorem summarizes the worst-case carry-in situation for the exten-
sion to te.

Theorem 1. In the worst-case for gPREM, the carry-in workload at time te is limited by
m− 1 computation phases from hp(k) ∪ lep(k) tasks and one body job from lep(k) tasks.

Proof. Since tasks from hp(k) can only have at most m−1 carry-in jobs at time to according
to Lemma 2, the mth task is always from lep(k). It is easy to see that Lemma 2 also applies
to time te, since no job (outside of the one that possibly starts a memory phase at te) can
start executing in [te, to). Furthermore, no task can have memory carry-in, however, a
single body job of a task in lep(k) can now execute inside the window [te, rk), in which case
the total number of carry-in jobs must be limited to m− 1. Thus, the worst-case situation
is to have m− 1 computation carry-in jobs from tasks in either hp(k) or lep(k), plus either
a computation carry-in from lep(k) or a body job of a task in lep(k). Since a body job
includes both memory and computation, the latter case is the worst one, concluding the
proof.
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Figure 3.12: The workload in a window of interest.

3.6.2 Bounding WCI
k (Γ)

Due to the non-preemptive execution, m−1 tasks of lep(k) can have computation carry-in
as in Theorem 1. The computation carry-in of Ti ∈ lep(k) is computed as follows.

WCI
k (Ti) = min(exi , Lk). (3.8)

We limit the task’s workload by Lk because tasks are sequential, and they cannot contribute
for more than the problem window size.

In contrast, hp(k) tasks can be activated and executed inside the problem window. To
safely account for the workload of hp(k) tasks, we always assume the worst-case activation
such that carry-in jobs start as late as possible and carry-out jobs start as early as possible.
As in Theorem 1, m − 1 tasks of hp(k) can have carry-in workload and all other hp(k)
tasks can have workload without carry-in.

We show the two types of workload in Figure 3.12. For no carry-in workload, the
worst-case is to start the memory phase at te as in Figure 3.12(a). On the other hand,
the worst-case is to start the computation phase at te for the workload with carry-in as
in Figure 3.12(b). We recall that no task can have memory carry-in as in Theorem 1. In
traditional scheduling, the carry-in workload is always larger than the workload without
carry-in. Therefore, the carry-in workload can be computed as the difference between
them [17]. In contrast, gPREM has the following two properties:

Property 1. The total amount of memory phases included in the problem window for the
no carry-in case is no smaller than the carry-in case.
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Property 2. The total amount of computation phases included in the problem window
for the carry-in case is at most exi larger than the no carry-in case.

The Property 1 immediately holds since in the no carry-in case a memory phase is started
right at the beginning of the problem window, and the carry-in case can only introduce
computation phase. Similarly, for Property 2, the computation phase starts immediately
at the beginning of the window in the carry-in case, and this introduced computation phase
pushes out memory and computation phases from the other end in the no carry-in case as
marked by the horizontal left-right arrows in Figure 3.12.

Unfortunately, this observation complicates the analysis because the workload of mem-
ory and computation phases are non-comparable. As a result, we propose to consider
one additional computation phase as the carry-in workload and computed as in (3.8).
As in Theorem 1, the carry-in workload is limited by m − 1 computation phases from
hp(k) ∪ lep(k). Thus, the total carry-in workload is computed as follows.

WCI
k (Γ) =

∑
largest(m−1)

WCI
k (Ti). (3.9)

3.6.3 Bounding WNC
k (Γ)

Unlike the carry-in workload with only computation phases, the workload without carry-in
can have both memory and computation phases. Thus, their workload is not simply their
sum due to the restriction that no two memory phases can be active at the same time.
Instead, we represent the workload of individual tasks WNC

k (Ti) as a set of jobs and each
job is split into load, computation and unload phases. We populate WNC

k (Ti) for hp(k)
tasks by bounding the number of jobs inside the problem window as:

• bLk

pi
c body jobs.

• One carry-out job of size min(evi + exi , Lk mod pi).

Even though Figure 3.12(a) shows load and computation phases only, the unload phases
are implicitly induced by computation phases, i.e., we add an unload phase for each compu-
tation phase. Since the first m unload phases are carried in from jobs outside the problem
window, we should consider the largest m unload phases to be combined with the first m
load phases.
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Figure 3.13: gPREM schedule with schedule holes.

We recall that one body job from lep(k) tasks can execute inside the problem window
as in Theorem 1. Since we need to consider only one job from lep(k) tasks, and jobs
have different lengths of load and computation phases, we cannot simply compare jobs and
choose the maximum because the workload of memory and computation phases are not
comparable. Instead, we propose to try all lep(k) tasks one by one and take the one that
leads to maximum workload. Alternatively, we can construct one representative job with
largest load phase and largest computation phase to account for the worst-case.

We propose to construct from collected jobs a sequence of load phases (πi), a sequence
of computation phases (λi) and a sequence of unload phases (δi). We use the sequence
(µi) to represent combined load and unload phases. We will explain how to construct
these memory phases out of load and unload phases later in this section. Now, we let α to
denote the length of both (µi) and (λi). It is clear that body jobs have equal number of
memory and computation phases. However, for carry-out jobs, we might have a memory
phase without computation. To guarantee α is equal for both (µi) and (λi), we set the
corresponding computation phase to zero.

Definition 6. A schedule hole is a period of time whereby a core is idle because the
memory is occupied by another core.

As we can see from Figure 3.13, gPREM schedule contains holes beside memory and
computation phases. Schedule holes only exist when there is a memory phase. With this
observation, we now define WNC

k (Γ) as in traditional scheduling, i.e., the total sum.

WNC
k (Γ) =

α∑
i=1

µi +
α∑
i=1

λi + holes. (3.10)

Observe that
∑α

i=1 µi and
∑α

i=1 λi above are completely defined for a given task set. How-
ever, holes is variable and dependent on jobs execution ordering.
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Figure 3.14: Based on the order of execution, the size of schedule hole changes (h1 < h2).

Definition 7. A schedule overlap is the amount of time by which computation phases run
simultaneously with memory phases.

The overlap time in gPREM schedule is an important measure as we will see shortly.
Note that schedule overlap is a dual definition of schedule hole in the sense that increasing
one by a given amount will decrease the other by the same amount. We use both of them
to simplify our arguments because in some cases it is more intuitive to use one than the
other. Holes are related to overlap as follows.

holes = (m− 1) ·
α∑
i=1

µi − overlap. (3.11)

By substituting (3.11) in (3.10), we obtain:

WNC
k (Γ) = m ·

α∑
i=1

µi +
α∑
i=1

λi − overlap. (3.12)

With gCONT, the contention global scheduler, the memory portion of the execution time
is inflated by m. Thus, the total workload of gCONT is:

W cont
k (Γ) = m ·

α∑
i=1

µi +
α∑
i=1

λi. (3.13)

From (3.12) and (3.13), we have:

WNC
k (Γ) = W cont

k (Γ)− overlap (3.14)

Equation 3.14 shows an important result for gPREM when compared to gCONT. That is,
as the amount of overlap increases, the advantage of gPREM accordingly increases.

Hence, our goal is to determine the amount of overlap, or alternatively the amount of
holes as in Equation 3.10. However, with a set of α jobs, there are α! possible orderings of
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Figure 3.15: An example for computing a lower bound on overlap.

jobs. It is easy to see that each ordering leads to different workload because the amount
of schedule holes changes, see Figure 3.14 for an example of two jobs released at the same
time but executed in different order. In order to avoid such combinatorial complexity,
we split memory phases from their computation phases. To obtain a lower-bound on the
amount of overlap, we propose to order such computation and memory phases as follows.

We first sort load phases (πi) such that πi ≥ πi+1, and we sort (λi) such that λi ≤ λi+1.
We also sort unload phases (δi) such that δi ≥ δi+1. We then let µi = πi + δi, i.e., we
combine largest unload phases with largest load phases to maximize the amount of holes,
and we let ρ = α/m. We assume for simplicity ρ is integer. However, this procedure can
be easily extended for cases where α is not exact multiple of m by adding zeros to the tail
of sorted (µi) and (λi) as this will not change the amount of holes or overlap.

Since the maximum amount of holes a memory phase µi can create is (m − 1) × µi,
we order the first ρ longest memory phases such that they have the maximum amount of
holes. We then let the second ρ longest memory phases to overlap with the first ρ shortest
computation phases and so on. This procedure divides the schedule horizontally into ρ
partitions and m levels as in Figure 3.15. Before we show how to compute the amount of
overlap for this schedule, we first consider a simple example.

Example 1. Figure 3.15 shows an example of 6 jobs and 3 cores. In this example, we have
two levels to consider as memory phases of first level have no overlap. First, we consider
the overlap of level 1 computation with level 2 memory, and level 2 computation with level
3 memory. This amount of overlap can be computed as: min(λ1, µ3) + min(λ3, µ5) for the
first partition and min(λ2, µ4) + min(λ4, µ6) for the second partition. Second, we consider
the overlap of level 1 computation with level 3 memory. This amount of overlap can be
computed as: min((λ1 − µ3)0, µ5) for the first partition and min((λ2 − µ4)0, µ6) for the
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Figure 3.16: The way overlap′ is computed.

second partition. We need to subtract the memory phase portion µ3 and µ4 because we
accounted for them before.

The following equation generalizes the above example to compute a lower-bound on the
amount of overlap for n jobs and m cores.

overlap′ =

(m−1)ρ∑
j=1

min(λj, µρ+j) +

(m−2)ρ∑
j=1

min((λj − µρ+j)0, µ2ρ+j) + (3.15)

...
ρ∑
j=1

min((λj − (· · ·+ µ(m−2)ρ+j))0, µ(m−1)ρ+j).

The first term in (3.15) computes the overlap between one memory level and the im-
mediate computation level above. The second term computes the overlap between one
memory level and the computation of two levels above, and so on. See Figure 3.16 for
an illustrative diagram where each level of diagonal arrows represents one term in above
equation. For instance, the bold-line arrows represent the first term in (3.15). We note
that in the first term, we take the minimum between the computation and the memory
phase min(λj, µρ+j). For the second term, we need to subtract the memory phase portion
µρ+j because it is already been accounted for in the first term. We continue this process
by subtracting the overlap computed from previous terms. The following Lemma states
that the above procedure indeed computes a lower-bound on the amount of overlap.
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Figure 3.17: The gaps between memory phases increase the amount of overlap.
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Figure 3.18: An illustrative diagrams to help proving lemma 6.

Lemma 6. The order of memory and computation phases as in Figure 3.15 is the worst-
case that leads to a minimum amount of overlap or alternatively, a maximum amount of
holes.

Proof. We will prove this lemma in three steps.

(1) The situation presented in Figure 3.15, where each partition comprises a continuous
chain of memory phases, leads to a minimum amount of overlap. We argue that introducing
gaps between memory phases increases the amount of overlap. We recall that the problem
window has to be PREM-busy in order for the problem job to miss its deadline. Therefore,
all processor cores must be busy in computation phases within the introduced gap to hold
the condition. Figure 3.17 shows that the gap g leads to an increased amount of overlap
compared to the case where there is no gap between memory phases of the same partition
as in Figure 3.15.

(2) Letting shortest computation phases to overlap with longest memory phases leads
to a minimum amount of overlap. We use Figure 3.18(a) to guide our proof. We have
two memory phases µl > µs, and two computation phases λl < λs. By contradiction, we
assume if we exchange λs with λl, the amount of overlap is reduced. We let a = min(λs, µl)
and b = min(λl, µs) before the exchange. Hence, the amount of overlap is a+ b.
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There are four cases after the exchange based on the two terms a and b: (1) both remain
the same. (2) a increases and b remains the same (3) a remains the same and b decreases.
(4) a increases and b decreases. Note that b can not increase and a can not decrease after
the exchange because λs < λl. Obviously, the first two cases will not reduce the amount
of overlap. Thus, we only need to consider the last two cases.

Case(3): To satisfy this case, we should have λs > µl and λs < µs, but we obtain
µs > µl which is a contradiction.

Case(4): This case is more elaborate than the previous one. In order to satisfy this
case, we should have λs < µl and λs < µs. Now, we consider two sub-cases. (i) µs < λl:
based on these assumptions, the overlap before the exchange is λs + µs and after the
exchange is µl+λs. Clearly, this sub-case increases the overlap. (ii) λl < µs: as in previous
sub-case, the overlap before the exchange is λs + λl and after the exchange is λl + λs
which keeps the amount of overlap unchanged. After we examine all possible cases, we can
conclude that our initial argument is true. That is, when we overlap shortest computation
phases with longest memory phases, we obtain a lower bound on the amount of overlap.

(3) The order of memory phases within each partition leads to a minimum amount of
overlap. As a proof sketch, we consider the case as in Figure 3.18(b) in which λh spans
over both memory phases. In this case, the overlap is µl + 2µs. If we change the order
by starting with shortest memory, the overlap becomes µs + 2µl which clearly leads to an
increased amount of overlap.

Finally, the following theorem summarizes the results for total workload.

Theorem 2. Wk(Γ) = WNC
k (Γ) +WCI

k (Γ) is an upper-bound on the workload of all tasks
in Γ within Tk problem window including memory, computation and holes.

Proof. Equation 3.12 is an upper-bound on WNC
k (Γ) if overlap is substituted by overlap′

which is a lower-bound on overlap as in Lemma 6. In addition, an upper-bound on WCI
k (Γ)

is computed as in Equation 3.9. Since the carry-in workload has no memory phases and
therefore no schedule holes, their sum is an upper bound on the total workload Wk(Γ).

3.6.4 Schedulability Condition

So far, we specified the necessary condition for a 3-phase job to miss its deadline. That is,
the problem window has to be continuously PREM-busy to prevent the problem job from
running. As we defined early, an interval of time is PREM-busy if one core is busy with
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a memory phase or all cores are busy with computation phases. The complement of this
definition states that during a non PREM-busy time interval, at least one core is idle and
all other cores execute computation phases. In this case, the problem job can acquire this
idle core and meet its deadline.

In what follows, we give the schedulability condition for gPREM by starting with the
following lemma.

Lemma 7. If Jk misses its deadline and the start of the problem window is te as defined
in Section 3.6.1, then Wk(Γ) ≥ m× Lk.

Proof. Assume by contradiction that Jk misses its deadline and Wk(Γ) < m × Lk. The
time interval [rk, tl] has to be PREM-busy in order for Jk to miss its deadline; otherwise,
Jk could have executed and finished before its deadline as gPREM is work-conserving. In
addition, we proved in Lemma 3 and Lemma 5 that the time interval [te, rk) is PREM-
busy. As a result, the time interval [te, tl] has to be PREM-busy for Jk to miss its deadline.
Theorem 2 states that Wk(Γ) is an upper bound on the workload of all tasks including
computation, memory and holes. Since Wk(Γ) < m× Lk, then there must exist a time in
the window of length Lk starting at te that is not PREM-busy. Furthermore, since the size
of [te, tl] is at least Lk (given that te ≤ rk), it follows that there must exist a time in [te, tl]
which is not PREM-busy. This creates a contradiction, hence the lemma follows.

Theorem 3. If Wk(Γ) < m× Lk for all Tk ∈ Γ then the system is schedulable.

Proof. It follows from the contrapositive of Lemma 7 that is if Wk(Γ) < m × Lk for any
task, then this task must meet its deadline. Thus, if this condition holds for all tasks in Γ,
the system is schedulable.

The computational complexity of our analysis can be derived as follows. We recall
that the first step in our analysis is to sort memory and computation phases in opposite
directions. Since each task has three types of jobs: carry-in, body and carry-out, sorting
these phases can be done in O

(
n · log(n)

)
. Furthermore, computing the overlap in (3.15)

involves mα of additions and min /max operations. We note that the number of phases
α depends on the number of jobs rather than the number of tasks n. That is, for a given
window of time, the number of jobs is dependent on the number of tasks as well as their
period relations. Since these operations and sorting are done in two steps, their complexity
can be combined as O

(
n · log(n)

)
+ O(mα). In general, our analysis is designed to run

off-line; hence, we deem such complexity acceptable.
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Our analysis is also sustainable in the sense that if tasks execute for less than their
WCET, the computed workload is still an upper bound. This can be easily proven by
observing that the amount of overlap either remains constant or reduces if the actual
computation or memory phases are executed for less than their worst-case values.

3.7 Task Splitting

We assumed so far that the code and data of each task can fit inside the local memory of
any core. However, this assumption can be restrictive for large real-time applications. In
this section, we turn our discussion to the case in which the task size is larger than the local
memory. To mitigate such limitation, we propose to split each task into multiple segments
such that each segment can fit inside the local memory. With task splitting approach,
each segment has three phases as in single segment case, and each segment is executed
non-preemptively. Unlike single segment task, the multi-segment task can be preempted
between its segments in places we refer to as preemption points. Furthermore, the first
segment is released like a normal task and the subsequent segment is released after the
finish time of previous segment. Jobs of the same task are assumed to produce the same
number of segments and each segment inherits the priority of the producing task.

Task-splitting is quite popular in practice and supported by several commercial tools.
For instance, it is adopted in time-triggered architectures to mitigate the allocation problem
of tasks to cycles [33]. The recent work in [110] shows how to break a program into non-
preemptive segments through compiler analysis. Moreover, there has been a significant
amount of work in literature that proposes techniques to manage the local memory of one
task [50, 90, 13] for code and data, including stack and heap. Our focus in this section,
however, is how to provide a timing guarantee for these globally scheduled jobs rather than
showing how to divide a task into multiple segments.

The task model is similar to before but now each job Ji is split into si non-preemptive
segments. We use Ji,j to denote the jth segment of Ji. The total execution time for each
segment, including both memory and computation phases, is denoted by ei,j. Similar to
single segment case, we let tl refers to the latest time for Jk,sk to execute and finish before
the deadline, i.e., tl = dk−ek,sk . We use Lk to denote the length of [rk, tl] window. We now
seek the necessary condition for Jk,sk to miss the deadline. With task splitting, segments
are released one after another, i.e., no two segments can be released at the same time. This
is important to avoid intra-task interference. Thus, the interference on Jk can be defined
as the cumulative length of all intervals in which the cores are PREM-busy executing
segments other than the segments of Jk.
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Figure 3.19: A necessary condition for Jk to miss its deadline.

The analysis of multi-segment case is different than single segment case in many aspects.
We split our discussion into four sub-sections to address each aspect.

3.7.1 The Problem Window of Multi-segment Job

We demonstrate in Figure 3.19 the problem window for a job with multiple segments,
{Jk,1, . . . , Jk,sk}. Here, the PREM-busy intervals are not necessarily contiguous as in single
segment case. The necessary condition for Jk to miss the deadline can be stated as follows.

Wk(Γ) ≥ m× Zk, (3.16)

where Zk = Lk −
∑sk−1

j=1 ek,j. For single segment case, sk = 1 and Lk = Zk. In contrast,
Lk > Zk for multi-segment case. We note that Lk is the problem window length to collect
interfering jobs and Zk is used in the schedulability test as in (3.16).

3.7.2 The Workload of Multi-segment Carry-out Job

A sustainable analysis requires that if tasks run for less than their WCET, the computed
upper bound should still be valid. In our case, however, the workload of multi-segment 3-
phase tasks can be larger if the computation phases are run for less than their WCET. For
example, consider the carry-out job in Figure 3.20(a), and assume the computation phase
of the first segment is executed for zero time. This effectively allows the memory phase of
the second segment to execute inside the problem window. Thus, the amount of workload
can increase because the workload of memory phases are larger than the computation
phases as per the following lemma.
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Figure 3.20: The workload of multi-segment carry-out job.

Lemma 8. The workload of Ja with (µ+ ∆) memory and (λ−∆) computation is greater
than or equal the workload of Jb with µ memory and λ computation.

Proof. Assume the system workload is Σ before we consider Ja or Jb. The workload of Ja
is (µ+ ∆)×m+ (λ−∆)−a where a is the amount of overlap that Ja introduces to system
workload. Similarly, the workload of Jb is µ×m+ λ− b where b is the overlap introduced
by Jb. The lemma claims the following:

Σ + (µ+ ∆)×m+ (λ−∆)− a ≥ Σ + µ×m+ λ− b.

After simplifying the terms, we have:

a ≤ b+ ∆× (m− 1) ≤ b.

It remains to prove that a ≤ b is true. We recall that the procedure for extracting a lower
bound on the amount of overlap sorts computation phases from short to long, and the ρ
longest computation phases are discarded from consideration, i.e., they do not contribute
to the overlap. Since λ ≥ (λ − ∆), λ may be discarded and λ − ∆ may be completely
overlapped in the worst case. Now, we consider the case in which we add Ja to the
workload. Since λ − ∆ is overlapped, this causes another computation phase λ∗ with
length of λ−∆ or larger to be discarded. On the other hand, for the case in which we add
Jb, this computation phase λ∗ would replace λ which we assume to be discarded. Thus, a
will never exceed b.

To avoid this problem of carry-out job, we propose to compact the memory phases
of all segments at the beginning, then we compact the computation phases afterwards as
shown in Figure 3.20(b). It is easy to see that, for a given window of time, the amount of
memory in Figure 3.20(b) is always larger than or equal the one in Figure 3.20(a). Hence,
this bound on the workload of carry-out jobs is safe as per Lemma 8.
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In what follows, we discuss the amount of workload that can execute in the problem
window of Jk. Since with task splitting lp(k) tasks can interfere between the segments
of Jk, we distinguish two types of intervals: the beginning of the window and between
segments (the middle intervals).

3.7.3 The Workload at the Beginning Interval

In this section, we show how to compute WCI
k (Ti) for hp(k) and lep(k) tasks. We observe

that the extended problem window that starts at te has the advantage to limit the number
of carry-in workload to m − 1 computation phases from lep(k) ∪ hp(k). However, with
multi-segment tasks, this only limits the first segment of hp(k) tasks, and the subsequent
si−1 segments including both memory and computation phases can still execute inside the
problem window. In single segment case, the carry-in workload is made of computation
phases and was easily computed as in (3.9). In contrast, the carry-in workload of hp(k)
tasks in multi-segment case is made of memory and computation phases. Since tasks have
different lengths of memory and computation phases, the maximum workload of m−1 jobs
can be determined by trying

(
n

m−1

)
possible combinations. We recall that the amount of

overlap, which determines the amount of workload, is variable and its value is dependent
on the relative lengths of memory and computation phases of all jobs.

Alternatively, we propose the following approach to mitigate the above combinatorial
complexity. We recall that the procedure described in Section 3.6 tries to extract the
amount of overlap to reduce the total workload. Here, instead, we propose to assume
each memory phase of carry-in jobs does not overlap with computation phases which is
clearly an upper bound on its maximum workload. In other words, each memory phase µi
is assumed to have m × µi amount of workload. Since the segments of carry-in jobs will
execute with the segments of no-carry-in jobs, the amount of overlap may decrease. To
ensure a safe lower bound on the amount of overlap as in (3.15), we add to the sequence of
computation phases (λi) another list of computation phases constructed as follows. From
hp(k) tasks, we collect the smallest S of exi,j, where S =

∑
largest(m−1) si, an upper bound

on the number of computation phases that can execute inside the problem window.

Similar to single segment case, we first determine the interval of time in which a carry-in
job can execute. However, the difference here is that we need to account for both memory
and computation workload. In addition, similar to carry-out jobs, we need to account for
memory workload first to ensure sustainability. Let aCIk (Ti) and aNCk (Ti) denote the amount
of workload with and without carry-in, respectively, in which each job is combined into
one phase by adding the length of computation and memory phases. Similarly, let bCIk (Ti)
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and bNCk (Ti) denote the amount of workload with and without carry-in, respectively, in
which each job has memory phases only. In addition, let cCIk (Ti) = aCIk (Ti) − bCIk (Ti) and
cNCk (Ti) = aNCk (Ti)− bNCk (Ti). We use ∆b

k(Ti) and ∆c
k(Ti) to denote the difference between

the workload with carry-in and without carry-in for each case, respectively. Now, we have
for each Ti ∈ hp(k)

WCI
k (Ti) = m×∆b

k(Ti) + ∆c
k(Ti). (3.17)

For lep(k) tasks, we let Qi = max(exi,j) be the maximum computation phase among the
segments of Ti. Thus, we have WCI

k (Ti) = min(Lk, Qi). Finally, the total carry-in workload
is computed as in (3.9). In summary, the workload at the beginning interval is (1) one
segment from lep(k) including both memory and computation and (2) the maximum m−1
of either computation phases from lep(k) or si computation phases and si − 1 memory
phases from hp(k). We note that this amount of workload reduces to single segment case
if we let si = 1.

3.7.4 The Workload at the Middle Intervals

Our analysis assumes that when Jk executes, the remaining m − 1 cores are idle as per
Definition 3. Thus, m− 1 tasks of lp(k) can acquire the other cores during the execution
of Jk and push some workload into the problem window of Jk due to the non-preemptive
execution. The following Lemma summarizes the workload of lp(k) tasks between each
two segments.

Lemma 9. Between each two segments of Jk, lp(k) tasks can interfere with one segment
including both memory and computation phases and m−2 segments with only computation
phases.

Proof. We show in Figure 3.21 an example of two consecutive segments: Jk,x and Jk,x+1.
The lp(k) tasks can interfere with at most one segment with memory and computation
phases. This can result from a task released just one time unit before the end of Jk,x
computation phase. Since Jk,x+1 is released immediately after Jk,x, no lp(k) task can start
its memory after Jk,x. In addition, other lp(k) jobs can acquire the m− 2 cores during the
execution of Jk,x and push their computation phases as in Figure 3.21. Although corem is
idle immediately after Jk,x, hp(k) jobs can execute and delay the next segment, Jk,x+1.

We observe that the memory phase of one lp(k) segment is guaranteed to overlap with
m − 2 computation phases of lp(k) as in Figure 3.21. Thus, the total workload for one
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Figure 3.21: The workload of lp(k) tasks in a middle interval.

middle interval can be computed as follows:

Ak = m× µmaxk + max(Qk)

+ (
m−1∑
j=2

max
j

(Qk)− (m− 2)× µmaxk )0,

where µmaxk is the maximum memory phase in lp(k) segments, Qk = {Qk+1, · · · , Qn} is the
set of largest computation phases of lp(k) segments and maxj is the jth largest value. For
a job with sk segments, there are sk−1 middle intervals. Thus, the total workload of lp(k)
tasks is (sk − 1)× Ak.

Based on above discussion, we observe the following differences for multi-segment case
over single segment.

• Since we split tasks based on the size of local memory, the task’s phases are now
shorter and close in length.

• Tasks can have memory carry-in.

• The size of problem window is larger.

Clearly, the first point favors the multi-segment case while the last two points favor the
single segment case. The reason for the first point is that our analysis combines the largest
memory phases with shortest computation phases. With these phases being close in length,
the pessimism in the analysis decreases. In addition, our analysis takes the maximum carry-
in workload. With large tasks being split into smaller segments, this reduces the amount of
carry-in workload. For example, consider two tasks Ta and Tb, and for simplicity, assume
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Figure 3.22: The workload of gCONT and gPREM.

they have only computation phases of length 90 and 30 time units, respectively. Now,
assume that Ta is split into 3 segments of length 30 each and Tb is not split. The amount
of carry-in workload of Ta in the problem window of Tb is 90 without split and 30 after
split.

3.8 Evaluation

In this section, we evaluate gPREM against gCONT. We use the most recent schedulability
test [64] for gCONT. Before we show the evaluation results, we intuitively discuss the
difference between gPREM and gCONT.

3.8.1 An Intuitive View

In this section, we show an example of the workload under gPREM and gCONT. Assume
a given m jobs with equal memory phases of one time unit and equal computation phases
of x = m − 1 time units. We seek to compute the total workload of these m jobs under
each scheduling scheme. In Figure 3.22(a), we show gCONT schedule in which memory
requests are assumed to occur simultaneously across all cores. Therefore, the total workload
is computed as:

W cont = m2 +m× x.

In contrast, Figure 3.22(b) shows gPREM schedule. In this case, the upper half of memory
phases is overlapped with computation phases. Hence, the total workload for gPREM is
computed as:

W prem = m2 +
x× (x+ 1)

2
.

59



Table 3.2: Benchmarks
benchmark code (byte) data (byte) CPU (cycle)

a2time 3108 5420 100497

rspeed 1956 6864 55688

canrdr 2724 8030 47280

corner-turn 2032 8192 16726

transitive 2080 3024 102898

The second term represents the series x+(x−1)+(x−2)+ . . .+1 which corresponds to the
staircase of computation phases that do not overlap with memory phases. The speedup
factor is the following ratio:

S =
W cont

W prem
=

m2 +m× x
m2 + x×(x+1)

2

.

If we substitute x by m− 1, we obtain

S =
4m2 − 2m

3m2 −m
.

Thus, the maximum speedup with large number of cores can reach up to limm→∞ S = 4/3.
This is a speedup limit for this particular example in which the memory phases are equal
and the computation phases are large enough to overlap with memory phases.

3.8.2 Results

The evaluation is based on real data taken from the automotive suite of EEMBC [111] and
DIS benchmark suite [101]. The set of benchmarks are listed in Table 3.2. The selection is
aimed to represent several applications used in embedded real-time domain and memory
intensive applications are chosen to better stress the memory. The size in bytes of code and
data for each benchmark is reported in the first two columns. In addition, each benchmark
is executed on a NIOS-II processor after loading its code and data into the local memory
of the processor, i.e., without main memory stalls. This computation time is reported in
clock cycles in the third column.

In our experiments, the rate monotonic policy is used to assign priorities to tasks. We
construct task sets from the tasks in Table 3.2 as follows. For a given value of Ut, we
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randomly choose a task, then we keep adding tasks until either the value of Ut is reached
or Um = 1. In addition, we generate 1000 task sets and report the average value for each
utilization point. The experiments are repeated 100 times and the error bars represent
the first decile and the ninth decile. We use the following parameters to characterize the
generated task sets.

1. The total utilization Ut is varied from 0.025m to 0.975m in steps of size 0.025m.

2. The task periods pi are chosen from uniformly distributed values within [200, 1000]×
1000 clock cycles.

3. Since we report the memory demand of each task in bytes, we use memory latency
as a parameter to control the length of memory phases. We set the default value of
memory latency as 1 cycle per byte.

4. The local memory size is used as a parameter to control the number of segments
for each task. We note that the tasks of automotive suite of EEMBC benchmarks
process streams of data; thus, their computation times increase with the size of
input data. Such property allows us to re-size tasks (their memory and computation
phases) based on the size of local memory. We let σi to be the ratio between memory
to computation phase for each benchmark. For a given local memory size, we split
each benchmark into segments of same size that fit into this local memory. Then, we
let the ratio between memory to computation of these segments equals to σi.

5. The number of cores m is set to 8 as a default value.

In the first set of experiments, we use the acceptance ratio metric to evaluate the
schedulability of gPREM against gCONT. We also include in this experiment gNOCT, a
non-preemptive global scheduler in which there is no contention for access to main memory,
i.e., the memory portion is not inflated as in gCONT. We note that this scheduler is not
realistic but we include it to show the importance of considering memory contention.
The results show that gPREM has higher schedulability than gCONT. In addition, the
schedulability difference between gCONT and gNOCT is high, indicating that memory
contention indeed has a large impact. Even though gPREM shows better schedulability
than gCONT, we cannot claim that gPREM always dominates gCONT. We recall that the
unload phase of problem job is assumed to be the largest in the system since it cannot be
determined at compile-time. Thus, this unload phase can cause the memory phase of one
job to be larger than the inflated memory under gCONT.
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Figure 3.23: The schedulability of gPREM against gCONT and gNOCT.
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Figure 3.24: The speedup factor by varying m and memory latency.
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Figure 3.25: Weighted schedulability as a function of local memory size.

In the second set of experiments, we choose a task with middle priority and compute its
response time under gPREM and gCONT. A middle priority task is chosen to account for
both types of workloads: hp(k) and lep(k). Unlike the previous experiment, we quantify
the performance gain using the speedup factor. It is the ratio between the response times
of this middle priority task under gCONT and gPREM. Figure 3.24 shows the results
by varying m and memory latency. For each m value, we set Ut = m. We note that
increasing Ut or memory latency has the same effect, increasing Um until reaching the
maximum value of 1. The maximum speedup factor of 1.25 is achieved when both Um and
Ut is high, i.e., when there is a balanced load of memory and computation.

In the third set of experiments, we evaluate the multi-segment case (gPREM-split).
We use weighted schedulability [23] as the evaluation metric. We can think of weighted
schedulability as the area under the schedulability curve, i.e., each point in Figure 3.25
represents the area under the curve in Figure 3.23. We vary the local memory size in the x-
axis. The results in Figure 3.25 show that the schedulability of muti-segment case is lower
than single segment case but still higher than gCONT. In previous section, we hypothesized
three points of differences between single and multi-segment tasks. These points explain
the curve of multi-segment case. The general trend is that the schedulability difference
between single and multi-segment tasks decreases as we increase the local memory size or,
alternatively, decrease the number of segments. However, we notice at the beginning with
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small local memory sizes, the multi-segment case has an advantage (the first point of the
differences). As we increase the local memory size, this advantage diminishes.

3.9 Summary

We propose gPREM, a new approach to globally schedule 3-phase tasks on multicore
processor. A new concept of schedule hole is introduced to account for the workload
generated by memory phases. We showed that by overlapping computation phases with
memory phases, we can hide some of memory latency and therefore enhance the system
performance.
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Chapter 4

DMA Global Scheduling of 3-phase
Sequential Tasks

With gPREM, the processor cores are stalled while loading from or unloading to main
memory. To mitigate such limitation and increase the system performance, we propose
to use a DMA component to execute the memory phases. In addition, the local memory
of each core is divided into two partitions so that while the DMA is loading one task
into one partition of local memory, another task can be concurrently executed out of the
second partition without memory stalls. In this way, the system performance is increased
by overlapping memory transfers with processor execution for tasks within the same core.

We refer to this memory efficient global scheduler as gDMA. With m cores, there
are 2 × m identical local memory partitions. We refer to the first partition in the local
memory of corex as $1,x and the second partition as $2,x. We further assume that each local
memory is double-ported so that the processor core and the DMA can simultaneously access
different partitions of the local memory without causing timing interference (contention).
In fact, MPC5777M platform supports stall-free operations between core and DMA. We
have verified this by experimentation [119] and found that both the core and the DMA do
not suffer any delay when they access the SPM simultaneously.

In Figure 4.1, we show an example schedule of four jobs and two cores for gPREM
and gDMA. In Figure 4.1(a), core1 is stalled while executing the memory phase of J3.
Similarly, core2 is stalled while executing the memory phase of J4. In contrast, there is no
stalling in Figure 4.1(b) for gDMA where the computation phases are executed immediately
after each other. In this case, the memory phases of J3 and J4 are completely hidden by
overlapping them with computation phases of both cores. We note that gPREM can only
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Figure 4.1: The memory phases of J3 and J4 are completely hidden.

overlap memory phases with computation phases of other cores. In contrast, gDMA can
overlap memory phases with computation phases of the same core as well as other cores.

In this chapter, we derive a novel schedulability analysis for gDMA. We note that the
system has two types of active components: processor cores and DMA in which cores exe-
cute computation phases and DMA executes memory phases. The nature of co-scheduling
DMA and processor cores requires us to largely re-define the existing concepts of workload
and interference in global real-time scheduling. In particular, we introduce a new concept
of scheduling interval to account for the workload generated by both memory phases and
computation phases.

We use Ja → Jb to denote that Jb is the next job to run immediately after Ja on the
same core. We use ts(Ja) to denote the start time of the computation phase of Ja, and
proc(Ja) to denote the core where Ja is executed. Beside the notations we introduce in
this chapter, we will use the same notations as in Table 3.1 of Chapter 3.

4.1 Scheduling Algorithm

Similar to gPREM, we propose to combine the unload phase of one job to the load phase
of the next job to be executed out of the same partition. Suppose that Ja → Jb → Jc. We
note that the consecutive execution of jobs on the same core alternate between its local
memory partitions. Hence, Jc is the next job to execute after Ja out of the same partition.
Then, when Jc is scheduled to be executed on the DMA, the DMA executes the unload
phase of Ja non-preemptively with the load phase of Jc. For simplicity, we refer to the
combined unload and load phases as the memory phase for Jc. In addition, both memory
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Figure 4.2: An example of gDMA schedule of 6 jobs on 2 cores.

phases and computation phases are executed non-preemptively. We note that the memory
phase and the computation phase of one task are not necessarily executed continuously as
in gPREM because after loading a task, the core might be busy executing non-preemptively
another task out of the other partition. However, after loading a job into a local memory
partition, its content is locked until the finish time of its computation phase.

Example 2. Figure 4.2 shows an example for scheduling 6 jobs on 2 cores. These six
jobs are from different tasks and the job priority is indicated by its index such that Ja has
higher priority than Jb if a < b. In addition, these jobs are assumed to be released at the
same time, at time 0. Since gDMA is a fixed-priority scheduler, the highest priority job
J1 is chosen first. The scheduler chooses core1 to execute J1. The DMA is instructed to
unload the previous job Jx from $1,1 back to main memory. Then, the DMA is instructed
to load J1 into $1,1. After that, J1 is able to run on core1 with no memory stalls. While
core1 is executing J1 out of $1,1, the scheduler at time 3 chooses J2 to be executed on core2.
Here, the DMA is running in parallel with J1 by unloading $1,2 and loading it with J2.
At time 6, the scheduler chooses the free partition of core1 to execute J3. Similarly, J4 is
chosen at time 10 to execute on the free partition of core2.

At time 13, all four partitions are loaded. Hence, the memory phase of J5 has to wait
until time 15, the finish time of the computation phase of J1 which indicates that core1 has
again a free partition. Thus, the scheduler at time 15 chooses J5 to be executed on core1.
Finally, J6 is scheduled at time 18 to execute on core2. We note that even though core2

has finished execution at time 20, J6 has to wait until time 22 because its memory phase
is delayed. This delay induced a schedule hole between J4 and J6. We define a schedule
hole as the time at which the core is idle waiting for a task to be loaded.

As shown in Figure 4.2, the memory phases are largely overlapped with computation
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phases with a few induced schedule holes. This hiding of memory phases gives gDMA a
better schedulability over gPREM and gCONT.

In what follows, we discuss how gDMA chooses cores to schedule tasks. In Figure 4.3,
we show a schedule of 4 jobs and 2 cores. The time pointers s1 and s2 indicate the start
time of last scheduled jobs on core1 and core2, respectively. Similarly, the time pointers f1

and f2 indicate the finish time of last scheduled job on each core. Now, consider the time
t at which each core has a free partition. gDMA chooses core1 to schedule J3 rather than
core2 because core1 has earlier start time of last scheduled job i.e., s1 < s2. We design
gDMA to choose cores based on start time of their last scheduled jobs rather than the
finish time to bound the amount of holes between computation phases as we will discuss
in Section 4.3.2.

4.2 Scheduler Design of gDMA

gDMA maintains a global queue Qr in which ready tasks are ordered according to fixed
priorities. Whenever a task is released, it is inserted in this global queue. The dispatcher
extracts from the top of the queue the highest priority task and executes it on the DMA,
given that the DMA is idle and there is at least one available partition; otherwise, the
job remains inside the global queue. Furthermore, the scheduler is implemented as an
ISR triggered by certain events. In gDMA, we have the following three events: (1) task
release, (2) memory phase completion and (3) computation phase completion. DMA-
Dispatcher procedure below is triggered at time t, corresponding to one of these three
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events, to schedule a new task on the DMA. In addition, after events (2) and (3), if a new
task has already been loaded, the core will update sj to the current time, do a context
switch and then execute this task.

For example, consider Figure 4.2 again. At time 3, the completion time of the memory
phase of J1, core1 will update s1 = 3 then do a context switch to execute J1 and at the
same time J2 will be scheduled to execute on the DMA. At time 15, the completion time of
the computation phase of J1, core1 will update s1 = 15 then do a context switch to execute
J3 since it has already been loaded in $2,1 and at the same time J5 will be scheduled to
execute on the DMA because the completion of J1 computation phase indicates a free
partition.

DMA-Dispatcher

1 i = Select-Task(Qr)
2 (l, j) = Select-Core({sk})

For simplicity, we assume at time t when DMA-Dispatcher procedure is invoked that
(1) the DMA is idle, (2) at least one partition is available and (3) there is at least one
ready task. Otherwise, the procedure will exit, as we assume a non-preemptive execution,
and will be triggered again by a later event. Basically, we have: {sk}, a set of m time
pointers to indicate the start time of the last scheduled job on each core. Select-Task
procedure in Line 1 returns the index (i) of the highest priority task out of Qr. Similarly,
Select-Core procedure in Line 2 returns the index (l) of the core that has the minimum
sj, with ties broken arbitrarily, among all cores with free partition, and the index (j) of the
last scheduled job on the selected partition. We need this j to schedule the unload phase of
previous job with the load phase of current job. For scheduling the first job in the system,
we propose to initialize the previous job pointer on each core to a dummy task that simply
invokes the dispatcher again. This is more efficient than checking for the special case each
time the dispatcher is invoked. Since ties are broken arbitrarily by Select-Core, this
procedure works for scheduling the first job if we set sj = 0 for all cores.

4.3 Schedulability Analysis

Since each job in gDMA executes on both the DMA and a processor core, one has to
consider both in computing the interference for a given job. However, our analysis works
constructively by considering only the computation phases on processor cores. We use
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Wk(Ji) to denote the workload of individual job Ji in the problem window of Jk including
both the computation time and the induced schedule hole as shown in Figure 4.2. We use
Wk(Γ) to denote the workload of all tasks inside the problem window of Jk. Furthermore,
the interference is denoted by Ik(Γ) and is computed based on Wk(Γ). Since we only
consider the computation phases, we define the time window [rk, tl] where tl = dk − exk as
the new problem window, and we use Lk = tl − rk + 1 to denote its length. If the problem
job starts its computation phase by time tl, then it completes before its deadline as we
assume non-preemptive computation phases.

In bounding the interference, there are two main differences between gDMA and tra-
ditional global scheduling theory: (1) long memory phases can induce a “ schedule hole”
between successive computation phases on the same core. Hence, the interference must
include such schedule holes. (2) In traditional global scheduling system, a problem job Jk
would start on the earliest processor that becomes idle. Hence, the worst case interference
for Jk can be bounded by Wk(Γ)/m. Since in gDMA we have to bind a job to a core
partition once we start its memory phase, such bound does not hold anymore.

The rest of this section proceeds as follows. In Section 4.3.1, we show how to bound
the interfering jobs inside the problem window of Jk, for a given task system Γ. The
bound on the workload of individual jobs Wk(Ji) is discussed in Section 4.3.2. We then
show in Section 4.3.3 how to derive a global bound on Wk(Γ), the workload of all tasks.
In Section 4.3.4, we compute the bound on the interference based on Wk(Γ). Finally, we
present the schedulability condition for gDMA in Section 4.3.5.

4.3.1 Bounding the Interfering Jobs

In this section, we first bound the interfering jobs inside the problem window including
carry-in, body and carry-out jobs. Then, we populate out of these jobs three sets: X, LD
and UD, the set of computation, load and unload phases, respectively. We will use these
sets in Section 4.3.3 to derive a global bound on Wk(Γ).

A job Ji can interfere inside the problem window of Jk in two different ways: (1) inter-
ference caused by non-preemptive scheduling, and (2) interference caused by priority order.
Tasks in lep(k) can only have carry-in interference because they cannot start executing af-
ter the beginning of the problem window. In contrast, tasks in hp(k) can be activated inside
the problem window. Thus, they can have carry-in, body and carry-out jobs. However,
assuming all tasks in hp(k) can have carry-in jobs is quite pessimistic. Hence, we start this
section by redefining the problem window in order to bound the number of carry-in jobs

70



from hp(k). Then, we show how to bound the interfering jobs that can execute inside the
problem window.

Carry-in Limit

As in Chapter 3, we propose to extend the problem window such that it has an earlier
starting point to and has the same end point tl. The definition of to is the same as
Definition 4. In addition, we have the following definition of pending job.

Definition 8. We say that a job is pending if it has been released but it has not started
its DMA yet.

The following lemma bounds the number of tasks that can have carry-in inside the
problem window that starts at to.

Lemma 10. There are at most 2m tasks from hp(k) ∪ lep(k) that can have carry-in jobs.

Proof. We use to− 1 to denote the time instant before to. The complement of Definition 4
states that at to−1 there is no pending task from hp(k); otherwise, we could have extended
the window. Based on this and the fact that Jk is released at rk, to always corresponds
to a release of a task in hp(k). Since we have 2m partitions, two for each core, only 2m
tasks from hp(k) could have been released at or before to without being pending or having
completed. It follows that only these tasks can have carry-in jobs. Similarly, no task in
lep(k) can start on the DMA at or after to because there is always a pending job from
hp(k) in [to, tl]. Thus, only 2m tasks executing at least one time unit before to can have
carry-in jobs. Since it is not possible to load more than 2m partitions at one time, the
lemma follows.

Since we assume tasks have constrained deadlines, i.e., no two releases of one task can
be active at the same time, these 2m jobs must be from different tasks. In what follows we
distinguish two types of carry-in: memory and computation in which computation carry-in
means a job that has only computation phase, and memory carry-in means a job that has
both memory and computation phases.

Lemma 11. Only one task from hp(k) ∪ lep(k) can have memory carry-in.

Proof. Tasks in lep(k) cannot start on the DMA at or after to; hence, they can only have
one memory carry-in. On the other hand, tasks in hp(k) that have not started its DMA at
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Figure 4.4: Carry-in limit.

or before to cannot have memory carry-in because they would be pending and the window
would be extended. Since we have a single DMA, only one memory phase can be active at
any time either from hp(k) or lep(k).

We illustrate in Figure 4.4 the worst case carry-in situation for gDMA in which to aligns
with a beginning of a memory phase and 2m−1 partitions have been loaded beforehand. We
note that a memory phase of a task in lep(k) has to start one time unit before to in order
to have a memory carry-in. Since memory carry-in is always greater than computation
carry-in, we know based on Lemma 10 and Lemma 11 that the worst case situation is to
have 2m− 1 tasks with computation carry-in and one task with memory carry-in.

Bounding Jobs for hp(k)

In Figure 4.5, we show the worst case activation for a task in hp(k) with three different
scenarios. We note that since unload phases are determined at run-time by the scheduler,
we only show load and computation phases when bounding the interfering jobs of each
task. After each computation phase, the modified data has to be written-back to main
memory. Thus, each computation phase introduces an unload phase to the workload of
the problem window. We construct memory phases out of these load and unload phases
in Section 4.3.3. In addition, the unload phases of the first 2m jobs to be executed inside
the problem window are carried-in from outside the window. Thus, we need to include the
largest 2m unload phases of tasks in hp(k) ∪ lep(k) to account for these unload phases.

For the case where there is no carry-in, the worst activation is to release the task at
to. On the other hand, for the case where there is a carry-in job, the worst activation is to
execute the carry-in job as late as possible such that its computation phase aligns with to
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Figure 4.5: The interfering jobs of tasks ∈ hp(k) with no carry-in, computation carry-in
and memory carry-in.

for tasks with computation carry-in, and the memory phase aligns with to for tasks with
memory carry-in. We observe that the amount of memory and computation are always
greater for a task with memory carry-in than the same task with no carry-in. However, the
amount of memory and computation can be less for a task with computation carry-in than
the same task with no carry-in. To understand how this could happen, see Figure 4.5. The
computation carry-in (the middle one) is obtained by introducing a computation phase
of a job executed just before the deadline. This introduced computation pushed out a
memory phase from the other end. Even though the computation phase has increased,
the memory phase has decreased. Unfortunately, this observation complicates the analysis
because it is very hard to determine which case will lead to the worst interference because
tasks interact differently as we show in Section 4.3.3. As a result, we will consider the task
with no carry-in plus an extra computation phase to account for tasks with computation
carry-in since a task with carry-in can have at most one extra job compared to no carry-in
case.

We note that the execution of jobs after the end of the problem window has no effect to
the analysis; hence, we use min function below to only account for jobs within the window.
Now, we bound the interfering jobs for a task with no carry-in inside a problem window of
Jk as:

• bLk

pi
c body jobs.
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• One carry-out job of size min(evi + exi , Lk mod pi).

Similarly, we compute the interfering jobs for a task with memory carry-in as:

• bLk+(Di−(evi +exi ))

pi
c body jobs.

• One carry-out job of size min(evi + exi , Lk + (Di − (evi + exi )) mod pi).

Even though Figure 4.5 shows load and computation phases only, the unload phases
are implicitly induced by computation phases, i.e., we add an unload phase for each com-
putation phase. In summary, we populate X, LD and UD to include computation, load
and unloaded phases, respectively, from:

• One task in hp(k) ∪ lep(k) with memory carry-in.

• All hp(k) tasks with no carry-in.

• An extra 2m−1 largest computation phases computed as min(Lk, e
x
i ) for Ti ∈ hp(k)∪

lep(k).

Since it is difficult to choose which task with memory carry-in will lead to the worst case as
tasks have different ratios of computation and memory phases, we propose to re-calculate
the total interference n times (for each task with memory carry-in) and then take the
maximum interference. Finally, we need to include the load phase of the problem job as
we only consider the computation phase to define the problem window size.

4.3.2 Bounding the Individual Workload Wk(Ji)

We capture the workload of a job on any core, including both computation and holes, by
introducing the concept of a scheduling interval.

Definition 9 (Scheduling Interval). Assume Ja is running inside the problem window of
Jk and Ja → Jb. We call [ts(Ja), ts(Jb)) the scheduling interval for Ja, and we let Wk(Ja)
to denote its length.

Figure 4.6 shows two examples of scheduling intervals. In Figure 4.6(a), the scheduling
interval of Ja contains a schedule hole because the memory phase of Jb is delayed by memory
phases from other tasks and therefore ts(Jb) is also delayed. In contrast, the scheduling
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Figure 4.6: Scheduling interval examples.

interval of Ja in Figure 4.6(b) is followed immediately by the scheduling interval of Jb with
no schedule holes because the memory phase of Jb has finished (completely overlapped)
within the scheduling interval of Ja. As we can see, the hole size for each scheduling interval
is variable and is dependent on the execution ordering of other tasks. A key idea behind
our analysis is that we ignore the relative ordering of memory and computation phases
within the problem window. Instead, we create a bound on the length of each scheduling
interval by determining the maximum number of memory phases that can execute within
a scheduling interval, a concept we call a memory sequence. We will show how to create an
ordering of memory and computation phases that maximizes the total length of scheduling
intervals in Section 4.3.3.

Definition 10 (Memory Sequence). A memory sequence is the consecutive execution of
any m memory phases on the DMA. The length ρ of the memory sequence is the sum of
the length of the m memory phases.

The following two lemmas will help us in proving Lemma 14 and Theorem 4.

Lemma 12. At ts(Ja), there is always a free partition in proc(Ja).

Proof. Let tf be the finish time of the memory phase of Ja, and assume Ja is loaded into
$1,k where k = proc(Ja). Since we assume non-preemptive memory phases, we have the
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following two cases at time tf . (1) The partition $2,k is free. In this case, ts(Ja) = tf
because there is no job executing out of $2,k. (2) $2,k is already loaded before the memory
phase of Ja, i.e., both partitions are full at tf . As we assume a non-preemptive computation
phases, the computation phase of $2,k should end at ts(Ja). The end of a computation phase
indicates a free partition which concludes the proof.

Lemma 13. Assume Ja → Jb → Jc. Let tf be the end time of the memory phase of Jb and
ts be the start time of the memory phase of Jc. Then, the computation phase of Jb must
start in the interval [tf , ts].

Proof. We consider two cases. (1) If the computation phase of Ja finishes by tf , then Jb
starts immediately at tf because its memory phase is already loaded. (2) If Ja is still
running at tf , it follows that both partitions must be full at tf as Jb is also loaded. Since
the memory phase of Jc starts at ts, at least one partition must be freed by ts. Hence, the
computation phase of Ja must finish by ts and Jb immediately starts because its memory
phase is already loaded at tf . In either case, Jb starts computing in [tf , ts], proving the
lemma.

The following Lemma explains why gDMA is designed to select a core with earlier start
time rather than finish time as shown in Figure 4.3. It basically gives the guarantee in
which our analysis relies on.

Lemma 14. gDMA will never schedule more than m memory phases inside any scheduling
interval with schedule holes.

Proof. It suffices to prove that no two memory phases targeting a same core can execute
inside any scheduling interval with schedule holes. This implies that the maximum number
of memory phases inside any scheduling interval with schedule holes is m.

Let Ja → Jb and assume they run on corel. Consider another core corep and assume by
contradiction that two memory phases targeting corep are executed inside the scheduling
interval [ts(Ja), ts(Jb)) in which the memory phase of Jb executed last as we assume a
scheduling interval with schedule hole. Let tf and ts be the finish and the start time of
these two memory phases, respectively. By Lemma 13, a computation phase must have
started on corep in the interval [tf , ts]. The core corel has a free partition at ts(Ja) as per
Lemma 12, and this partition remains free at ts because the memory phase of next job Jb
is executed last. Since ts(Ja) < tf ≤ ts < ts(Jb), our scheduler at time ts would target
corel rather than corep. This creates a contradiction, hence the lemma holds.
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The following theorem states the bound of each scheduling interval.

Theorem 4. The length of Wk(Ja), the scheduling interval of Ja in the problem window of
Jk, is upper bounded by the maximum between exa and the length of any memory sequence.

Proof. Before we start the proof, we note that within the problem window of Jk, there is
always at least one pending task. This is by the definition of to in the interval [to, rk) and
the fact that Jk is pending after rk. Now, consider two jobs such that Ja → Jb and both
run on corel. Since computation phases are run non-preemptively, the next computation
job Jb on the same core cannot start before ts(Ja) + exa. Hence, exa is a bound to the length
of the scheduling interval of Ja. Now, let us assume that ts(Jb) is strictly greater than the
finishing time of Ja, i.e., there is a schedule hole between Ja and Jb. Since ts(Jb) is by
definition the earliest time that the next job on corel can start computing, and corel is
idle immediately before ts(Jb), it holds that the memory phase of Jb must finish exactly at
ts(Jb). From Lemma 12, we know that corel must have a free partition starting at ts(Ja).
Hence, it follows that the memory phase of Jb would be started at time ts(Ja), unless the
DMA is continuously busy executing other memory phases. In this case, there must be a
continuous memory phases executing on the DMA in the interval [ts(Ja), ts(Jb)) and we
know from Lemma 14 that at most m memory phases, a memory sequence, can execute
inside any scheduling interval with holes which conclude the proof.

As an example, consider again Figure 4.6. It is easy to see that Wk(Ja) in Figure 4.6(b)
is equal to the computation phase exa while Wk(Ja) in Figure 4.6(a) is equal to the memory
sequence.

4.3.3 Bounding the Total Workload Wk(Γ)

In the previous section, we showed how to bound Wk(Ji), the workload of an individual
job. However, we only characterized the workload as the maximum between a computation
phase and a memory sequence as in Theorem 4. It is clear that Wk(Ji) depends on the
computation phase of Ji and a possible hole induced by a memory sequence from other
jobs. Therefore, Wk(Ji) should be considered globally to determine a safe bound on Wk(Γ).

In Section 4.3.1, we populate three sets LD, X and UD from the interfering jobs.
However, we assume for now a given set of computation phases and memory sequences.
We will show later how to construct from LD and UD a set of memory sequences. We can
derive a bound on Wk(Γ) as in the following lemma.

77



Lemma 15. After sorting computation phases X = {λ1, . . . , λα}, where α is the cardinality
of X, such that λi ≤ λi+1, and sorting memory sequences such that ρi ≥ ρi+1, the following
is a valid bound on Wk(Γ):

α∑
i=1

max(λi, ρi).

Proof. Based on Theorem 4, the length of each scheduling interval is upper bounded by
the length of the corresponding computation phase or a memory sequence; hence, we take
max(λi, ρi).

By contradiction, assume that there exists a hypothetical configuration of pairs different
than the one in the hypothesis that leads to a strictly higher bound. Since computation and
memory sequence lengths are ordered in opposite directions in the hypothesis, it follows
that in the hypothetical configuration there must instead exist two pairs (λs, ρs) and (λl, ρl),
such that λs < λl and ρs < ρl (i.e., ordered in the same direction). We now show that
“swapping” λs with λl leads to a new configuration with a Wk(Γ) bound no less than the
previous one. Since we can always obtain the configuration in the hypothesis with a finite
number of such “swaps” (for example, using bubble sort), this creates a contradiction.

We let a = max(λs, ρs) and b = max(λl, ρl), and the bound is a+ b. We have four cases
after swapping λs with λl based on the two terms a and b and given that λs < λl: (1)
both remain the same. (2) a increases and b remains the same. (3) a remains the same
and b decreases. (4) a increases and b decreases. Clearly, (1) and (2) will not decrease the
bound. Thus, we only need to consider (3) and (4).

Case(3): To satisfy this case, we should have ρs > λl (a remains the same) and ρl < λl
(b decreases), but we obtain ρs > ρl which is a contradiction.

Case(4): This case is more elaborate than the previous one. In order to satisfy this
case, we should have λl > ρs (a increases) and λl > ρl (b decreases). Now, we consider two
sub-cases. (i) λs ≥ ρs: based on these assumptions, the bound before the exchange is λs+λl
and after the exchange is λl + max(λs, ρl) which is larger or equal. (ii) λs < ρs: the bound
before the exchange is ρs + λl and after the exchange is λl + max(λs, ρl) = λl + ρl, which
is larger. After we examine all possible cases, we can conclude that our initial argument is
true.

Lemma 15 assumes a given set of memory sequences. However, we only have from
interfering jobs a set of load LD and unload UD phases. As per Definition 10, a memory
sequence contains m memory phases. Thus, we first discuss how to construct memory
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phases out of LD and UD. Then, we show how to construct memory sequences out of
these memory phases.

Since the scheduler dynamically combines unload and load phases into one memory
phase, the merged unload phase is generally unknown. We could safely assume for each
job that its load phase is merged with the longest unload phase in the system, but this is
highly pessimistic. Therefore, we instead propose to construct memory phases as in the
following lemma.

Lemma 16. The set of memory phases {µ1, µ2, . . .} can be constructed by combining the
longest load phases from LD with longest unload phases from UD to increase schedule holes
as much as possible.

Proof. Based on the ordering used in Lemma 15, there must exist a worst case configuration
for some value 1 ≤ j ≤ α, where in the first j pairs the length of memory sequences is larger
or equal, and in the remaining α − j pairs the length of the computation phases is larger
or equal. Hence, the bound on Wk(Γ) can be obtained by summing the largest j memory
sequences and the largest α − j computation phases. By adding largest unload phases to
largest load phases, we maximize the first j memory sequences. As a consequence, Wk(Γ)
is also maximized.

The longest memory sequence is clearly ρmax =
∑m

i=1 µi as each memory sequence
contains m memory phases. We could safely assume that all computation phases are
overlapped with the longest memory sequence. However, the following lemma adds a
constraint that improves the bound on Wk(Γ).

Lemma 17. Let Ja → Jb and they both run on corel. In addition, assume Wk(Ja) and
Wk(Jb) are two scheduling intervals with holes. Then, any memory phase executing in the
problem window can contribute to either Wk(Ja) or Wk(Jb).

Proof. Since the scheduling interval [ts(Ja), ts(Jb)) of Ja contains holes, i.e., it is bounded
by a memory sequence, a memory phase targeting core corel must finish exactly at ts(Jb).
Hence, such memory phase and all previous memory phases can contribute only to Wk(Ja).
On the other hand, all following memory phases can contribute only to Wk(Jb).

Based on Lemma 17, each memory phase can contribute to at most one memory se-
quence on each core, i.e., m memory sequences in total. Therefore, we propose to construct
memory sequences ρi out of memory phases µi as follows: ρi = m × µi. This guarantees
that each memory phase appears at most m times in Wk(Γ). Furthermore, following the
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Figure 4.7: The computation phase of the problem job executes after Wmax
k .

proof of Lemma 16, by combining the largest memory sequences together, we maximize
the sum of the first j memory sequences as computed in Lemma 15; hence, the bound on
Wk(Γ) is also maximized.

4.3.4 Bounding the Interference on a Problem Job

In traditional global scheduling, the interference on the problem job Jk can be bounded
by Wk(Γ)/m assuming the scheduler is work-conserving. In gDMA, however, Jk can be
scheduled on a core with later time even though there is an earlier time available on another
core, see how J3 is scheduled in Figure 4.3. The following lemma further characterize the
interference on Jk.

Lemma 18. Let Ja → Jk where Jk is the problem job. In addition, let Jb be the last
scheduled job on any core such that proc(Jb) 6= proc(Jk). Then, it must hold that ts(Ja) ≤
ts(Jb).

Proof. Let t be the time at which DMA-Dispatcher is invoked to schedule Jk. In order
for Jk to be scheduled on proc(Ja), sproc(Ja) has to be at time t the minimum (or at
least equal since we assume that ties are broken arbitrarily) among all cores that have a
free partition according to our scheduler rules. In other words, all other cores should have
scheduled jobs with start times greater than or equal to sproc(Ja) before Jk can be scheduled
on proc(Ja).

We let Wmax
k (Wmin

k ) be an upper bound on the maximum (respectively, lower bound
on the minimum) length of any scheduling intervals in the problem window of Jk, and
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W diff
k = Wmax

k −Wmin
k . In Figure 4.7, we show the worst case pattern in which each core

runs a sequence of scheduling intervals, and Jk is scheduled after the maximum scheduling
interval. Based on Lemma 18, the maximum scheduling interval can finish at most W diff

k

time units after the earliest finishing time of last scheduling interval on any other core.
The sum of all scheduling intervals on all cores is upper bounded by Wk(Γ), and a bound
on the earliest finishing time of other cores can be derived as:

Wk(Γ)−W diff
k

m
. (4.1)

By adding W diff
k as in Figure 4.7 and rephrasing the terms, we obtain the upper bound

on Ik(Γ), the interference on Jk, as:

Wk(Γ)

m
+ (

m− 1

m
)W diff

k . (4.2)

We computeWmax
k as max(ρmax, λα) andWmin

k as λ1. Since tasks execute non-preemptively
on each core, the length of each scheduling interval must be at least equal to the length
of a computation phase, and taking the shortest computation phase within the problem
window constitutes a safe lower bound on Wmin

k . However, decreasing Wmin
k could render a

task unschedulable. Hence, we can assume either tasks idle until their worst-case execution
time or we consider a lower bound of 0 on Wmin

k . In the evaluation, we assumed the latter
case. In addition, by assuming the latter case, our schedulability analysis is sustainable
in the sense that if tasks execute for less than their WCET our bound is still safe. To
explain this, since we take the maximum between DMA phases and computation phases
when computing the bound, if tasks execute for less, this bound of interference is still an
upper bound.

4.3.5 Schedulability Condition

Since the bound on Wk(Γ) requires the knowledge of all interfering jobs, it follows that the
bound on interference of the problem job derived in Equation 4.2 depends on the size of the
problem window. We note that even though the extended problem window that starts at
to has the advantage of limiting the amount of carry-in, finding to is of pseudo-polynomial
time complexity, given that the total utilization is strictly less than m [17]. However, the
authors of [64] observed that choosing a window of length Lk and starting at to is sufficient
for the schedulability analysis. Since to ≤ rk, the length of [to, tl] ≥ [rk, tl]. Intuitively,
computing bounds on the amount of work inside a small time interval is tighter than a
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large interval as the amount of work gets amortized over larger intervals [17]. Based on
such intuition, we prove our schedulability condition as follows.

Lemma 19. If Jk misses its deadline, then Ik(Γ) ≥ Lk.

Proof. Assume Jk misses its deadline and Ik(Γ) < Lk. Since we assume a work-conserving
scheduler, the time interval [rk, tl] has to be busy in order for Jk to miss its deadline.
Otherwise, Jk could have executed and finished before the deadline. In addition, [to, rk)
has to be busy as per Definition 4. As a result, the time interval [to, tl] has to be busy for
Jk to miss its deadline. Equation 4.2 gives a bound on Ik(Γ), the interval of time where
all cores are busy including both computation and holes. Since Ik(Γ) < Lk, there must
exist a time in [to, tl] which is not busy. This creates a contradiction; hence, the lemma
follows.

Theorem 5. If ∀Tk ∈ Γ : Ik(Γ) < Lk then the system is schedulable.

Proof. It follows from the contrapositive of Lemma 19 that Jk will meet its deadline if
Ik(Γ) < Lk. If this hold for all tasks in Γ, the system is schedulable.

Furthermore, the computational complexity of our analysis is mainly dominated by
computing α max operations as in Lemma 15. Since the number α depends on the num-
ber of tasks Ti ∈ hp(k) as well as the period ratios pi/pk, the computational complexity
is dependent on the number of jobs in a window of size Lk rather than the number of
tasks. The analysis in general is meant to be run off-line; hence, we deem such complexity
acceptable.

4.4 Evaluation

Before we show the results, we intuitively discuss how gDMA is able to utilize processor
cores better than gCONT. Assume a system loaded with 12 tasks. Each task takes 4
time units to compute on a processor core and one time unit for DMA to unload/load
into a local partition. gDMA is able to utilize the processor cores 100% by overlapping
tasks’ execution over the cores as long as the DMA operations are small compared to cores
execution as shown in Figure 4.8(a). On the other hand, processor utilization in gCONT is
affected by memory stall times. In the worst case, all cores can access main memory at the
same time. In this case, each core takes 1×m time units to access main memory instead
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Figure 4.8: A comparison between gDMA and gCONT.
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Figure 4.9: The schedulability of gDMA, gCONT and gCONT+.

of one time unit. In particular, with m = 4, each task takes 4 time units for memory and
4 time units for computation. As shown in Figure 4.8(b), the processor utilization is

12× 4

(12× 4) + (12× 4)
= 50%

Based on this intuition, gDMA should perform significantly better than gCONT. How-
ever, gDMA schedule exhibits more priority inversion than gCONT, which can worsen the
WCRT of high priority tasks. In addition, the computation times of real tasks are not
always large enough to completely hide the memory time of DMA operations.

4.4.1 Results

We use the same experimental setup as in Chapter 3. Since gDMA utilizes a DMA compo-
nent which is an extra hardware component, we compare against gCONT and gCONT with
one extra core denoted as gCONT+. In this case, we favor gCONT+ because a processor
core is more complex than a DMA component.

Figure 4.9 shows the results in terms of the percentage of schedulable task sets (accep-
tance ratio). We set the periods to be within [1000, 5000]×1000 clock cycles. Figure 4.9(a)
shows that gDMA has schedulability that is better than gCONT and worse than gCONT+.
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Figure 4.10: The schedulability of gDMA, gPREM, gCONT.

The reason gCONT+ outperforms gDMA is that the utilization of the generated task sets
is based on m-core processor and then scheduled on m + 1 cores. That is, 4/5 = 80%
for m = 4. As a result, the extra core is used to execute more tasks. An important
point to note is that by increasing Ut, the number of tasks increases and consequently
memory utilization. Thus, gDMA outperforms gCONT+ in Figure 4.9(b) with m = 8.
The overlapping mechanism hides the memory time and achieves better schedulability. In
Figure 4.9(a), the memory utilization is low compared to computation. Thus, the extra
processor core is used to execute computation phases. In contrast, the DMA of gDMA can
only execute memory phases.

In Figure 4.10, we include gPREM in the comparison. Since gDMA handles mem-
ory more efficiently than gPREM, gDMA withholds schedulability longer before drops at
around 6 in Figure 4.10(a). However, we recall that gDMA has larger carry-in workload
than gPREM and gCONT. That is, 2m jobs can be loaded before the task under analysis
can execute. To evaluate this case, we decrease the task periods to be within the range
[200, 1000] × 1000 clock cycles, i.e., the slack time is reduced or alternatively, the utiliza-
tion is increased. As shown in Figure 4.10(b), the large amount of carry-in workload that
can execute within the problem window of high priority tasks affects the schedulability of
gDMA. We note that high priority tasks tend to have small problem window since we as-
sign priorities based on rate monotonic. Based on this result, we cannot claim that gDMA
dominates gCONT or gPREM. However, gDMA can benefit systems with high memory
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utilization and high priority tasks that can tolerate the blocking time of low priority tasks
as in Figure 4.10(a).

4.5 Summary

gDMA is a new approach to globally schedule 3-phase tasks on a system with multicore
processor and one DMA component. In this approach, the local memory of each core is
divided into two equally sized partitions to ensure that while the core is busy executing one
task out of one partition, the DMA component can load another task in the other partition.
As a result, the latency for loading and unloading tasks from main memory can be fully
or partially hidden within the computation time of other tasks. Hence, this approach
provides two advantages for real-time systems. First, a predictable execution time because
tasks execute out of local memories without memory stalls, and the contention for access
to main memory is eliminated by scheduling the DMA operations. Second, an increased
system performance by hiding the main memory latency. In addition, we introduced in
this chapter a novel schedulability analysis to globally co-schedule processor cores as well
as the DMA. In particular, we abstract the execution times of tasks on both cores and the
DMA as scheduling intervals.
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Chapter 5

Trading Cores for Memory
Bandwidth

So far, we discussed multiprocessor scheduling in which each real-time application is mod-
eled as sequential periodic or sporadic task and increasing the number of cores allows the
system to execute larger number of tasks while each task cannot run at any speed faster
than the speed of single-core processor. However, as technology evolves, there are always
applications that demand more processing power than a single processor can provide.

In this chapter, we consider the scheduling of parallel real-time tasks. The goal is to
meet the timing constraints of computation-heavy real-time applications with utilization
greater than one such as synthetic vision and object tracking [79] which cannot be feasibly
executed on single core. At the same time, many of such applications are easily paralleliz-
able. In this case, the application has to be divided into parts to allow for the distribution
of its load on multiple cores. In general, these parts depend on each other and this imposes
a partial order in their execution. DAG and fork-join task models have been proposed to
capture such parallelism for real-time tasks [20, 21, 80]. We can think of a parallel task as
a collection of sequential subtasks with order relation in their execution.

Similar to sequential tasks, two notable scheduling schemes have been proposed for
parallel tasks: global and federated. In global scheduling, all parallel tasks share one global
queue in which the ready subtasks are inserted. The scheduler chooses the highest priority
subtasks and schedules them on the available cores. In contrast, federated scheduling
assigns a dedicated number of cores for each parallel task with utilization greater than or
equal one. In this case, each parallel task has its own ready queue, and any greedy work-
conserving scheduler can be used to schedule the parallel task on the assigned cores. In
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general, global scheduling incurs more run-time overhead than federated scheduling. This
extra overhead comes from the preemption and migration of subtasks due to their priority.
The preemption and migration are expected to increase with global scheduling of parallel
tasks because they execute on more than one core. On the other hand, parallel tasks
can be executed without preemption and migration with federated scheduling. Even with
ignoring the run-time overhead, the capacity augmentation bound for federated scheduling
has been shown to dominate that in global scheduling with EDF and RM [84].

Since parallel tasks are assigned dedicated cores in federated scheduling, they receive no
interference from other tasks at processor cores level. However, parallel tasks can interfere
with each other through the shared main memory. The previous research on parallel task
model has not factored in the memory demand of real-time tasks. We argue that the
bandwidth of main memory should be considered when scheduling real-time parallel tasks.
A modern uniprocessor can easily saturate the bandwidth of a state-of-the-art memory.
With chip multiprocessor (CMP) where main memory is shared between multiple cores, the
situation is even worse. An important observation is that the number of cores in one chip is
expected to continue increasing based on Moore’s law (number of transistors doubles every
18-24 months). In contrast, the memory bandwidth is expected to increase but in a slower
rate (10-15% per 12 months) [88]. As a result, the memory bandwidth will increasingly
become scarcer. This important fact motivates the development of a new method to trade
in system’s cores for memory bandwidth.

To mediate memory access contention, bandwidth partitioning has been proposed to
achieve fairness for real-time systems. An arbiter like RR, for instance, is fair because it
automatically divides the bandwidth into equal-sized partitions. For a system withm active
cores, the latency of each memory request can be delayed, at the worst-case, by m−1 other
requests. This effectively means that each core receives 1/m of the bandwidth. Obviously,
uniform distribution of bandwidth is not always the best solution because different tasks
have different demands with respect to computation and memory. Different methods have
been proposed to partition the memory bandwidth into unequal partitions. However, none
of them (as far as we know) have been applied on federated scheduling of parallel tasks.

In this chapter, we propose a novel method to assign cores to tasks by taking into
account the memory demand of each parallel task. We start by a naive approach to account
for memory demand with RR arbiter. Then, we apply our method on two arbitration
schemes: one is software-based and the other one is hardware-based. The results show
that our method significantly improves the schedulability of real-time parallel tasks when
compared to memory oblivious methods. To further enhance the execution time of parallel
tasks, we propose in Section 5.8 static scheduling algorithm and employ the co-scheduling
approach on each parallel task.
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5.1 System Model

We consider a set of n parallel tasks Γ = {T1, . . . , Tn}. These tasks are assumed to be high
utilization, i.e., they need at least one core to execute. We assume that low utilization tasks
are separately scheduled on a set of cores in away similar to multiprocessor scheduling of
sequential tasks. We focus on high utilization tasks as they can be utilized to trade in
cores for memory bandwidth. Thus, we use mi to denote the number of cores (cluster
size) assigned to Ti. Similarly, we use 1/qi to denote the bandwidth fraction assigned to
Ti. We let mused =

∑n
i=1 mi and BU =

∑n
i=1 1/qi. We consider a system that contains m

cores and one shared memory. The total bandwidth utilization can be at most one and
therefore BU ≤ 1. Obviously, the shared memory in some systems can have multiple ports
and connected via complex interconnects such as crossbars. However, we focus on single
arbiter that partition the memory bandwidth between cores.

The bound on the makespan of Ti is denoted as ei for a given mi and qi, i.e., ei is a
function of these two parameters. Each parallel task Ti is characterized by a 4-tuple of
parameters (emi , e

x
i , Li, Di) detailed as follows. emi is the total time to access main memory

by all subtasks of Ti assuming full memory bandwidth. We assume that emi is constant and
upper bounds the memory time on a given range of number of cores. This assumption works
when the added data/code due to sharing between cores does not significantly increase the
number of memory requests. In fact, a characterization of PARSEC benchmark suite [27]
has shown that the number of memory requests for PARSEC workloads remains almost
the same with increasing number of cores.

In addition, emi represents the time to serve last-level cache misses of Ti in cache-enabled
systems. We note that federated scheduling allows us to apply optimizations to minimize
the makespan bound since each task is assigned a dedicated cluster of cores, i.e., it has
no interference from other tasks at the core level. For example, a static algorithm such as
list-scheduling [19] can be used. With static scheduling algorithm, the order of execution
and the mapping of subtasks to cores are known and can be controlled at compile time. In
addition, the execution of subtasks can be non-preemptive, i.e., there is no cache related
preemption delays (CRPD). These two points have the advantage to greatly simplify the
cache analysis. In particular, the problem reduces to single-core non-preemptive cache
analysis methods for private caches, and for shared caches, there are generally two ways
to bound inter-core interference: spatial isolation and joint analysis. We show in our
recent survey paper [62] a large number of cache management techniques to provide spatial
isolation for shared caches. These techniques can be used to assign each task a private
partition in shared cache to avoid the interference effect of other tasks. Within the cache
partition of one task, joint analysis methods can be used [147] to estimate the number of
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cache misses. Similar to systems without caches, emi can be bounded by the maximum
number of last-level cache misses that the cache analysis provides on a given range of
number of cores.

exi is the total computation time of all subtasks on one core, i.e., the sequential com-
putation time. Li is the execution time of the task assuming an infinite number of cores,
i.e., the computation time of the critical path. We emphasize that both exi and Li are
pure computation with zero memory time. That is, we assume that exi = ei − emi where
ei represents the worst-case makespan on one core and with full memory bandwidth. This
model can be applied on any platform in which memory delay is additive to task’s exe-
cution time [69] or a fully timing-compositional core [139] in which the task’s execution
time is the sum of computation time and memory access time. We consider a sporadic
task model where the period represents the minimum inter-arrival time between any two
instances and a constrained-deadline Di which can be less than or equal to the period.

Our analysis only uses these values (emi , e
x
i , Li, Di) without relying on any dependency

structure. That is, the parallel task can unfold in any shape at run-time as long as these
upper-bound values are not violated. Similarly, the order and the position of memory
requests are unknown in advance. Instead, we assume any arrival pattern as long as
their total access time is bounded by emi . That is, these memory requests can be evenly
distributed over the execution time of the task or clustred in a short amount of time. This
is a big advantage for our method to be applied in practical settings. Moreover, given a
DAG structure, emi , exi and Li can be obtained in polynomial time [40].

The problem we want to address in this chapter can be stated as follows. Given a
number of cores m, a shared memory bandwidth and n high utilization parallel tasks, we
seek to assign the m cores and the memory bandwidth to these n parallel tasks such that
all of them meet their deadlines. In other words, we need to output for each parallel task
the following.

1. The number of cores mi.

2. The bandwidth fraction 1/qi.

5.2 Federated Scheduling

In this section, we review federated scheduling as found in literature [84, 19, 20]. Since
previous work does not consider memory time, we will assume tasks are made of compu-
tation exi . We will show how to integrate memory time later in this chapter. Federated
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scheduling is a generalization of partitioned scheduling to parallel tasks. In this scheduling
scheme, tasks in Γ are divided into two sets:

1. high utilization tasks Γhigh with exi ≥ Di and

2. low utilization tasks Γlow with exi < Di.

Each task Ti ∈ Γhigh is assigned mi dedicated cores and scheduled using any greedy work-
conserving scheduler. On the other hand, Γlow tasks are scheduled on the remaining cores in
a way similar to multiprocessor scheduling of sequential tasks. Here, Γlow tasks are treated
as sequential tasks even though they have internal parallelism. For DAG task model,
an execution ordering following the topological order of dag nodes is a valid sequential
execution.

In [83], the authors propose capacity augmentation bound, defined below, which extends
the notion of utilization bound to parallel tasks.

Definition 11. A scheduling algorithm A provides a capacity augmentation bound of b if
algorithm A schedules any task set with the following conditions:

1. Ux ≤ m/b and

2. Li ≤ Di/b for all tasks.

It is shown in [84] that the capacity augmentation bound of federated scheduling is 2,
meaning that federated scheduling can accept any task set with total utilization Ux ≤ m/2
and each Li ≤ Di/2. This bound dominates that for global schemes such as global EDF or
global RM. In addition, the computed bound of 2 is proven in [84] to be tight with large
value of m by showing that no scheduler can provide a better bound than 2− 1/m.

A bound on the makespan of Ti ∈ Γhigh, when scheduled by any greedy work-conserving
scheduler on mi dedicated cores, can be obtained as follows:

ei =
exi − Li
mi

+ Li. (5.1)

The intuition behind this formula is that in the worst-case mi − 1 cores are idle while the
critical-path is executed. This leads to the worst possible waste of processor time.

A sufficient schedulability test for each Ti ∈ Γhigh can be easily established as ei ≤ Di.
Therefore, Ti is guaranteed to meet its deadline if it is assigned mi cores derived from (5.1)
as follows:

mi =

⌈
ei − Li
Di − Li

⌉
. (5.2)
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The remaining cores m −
∑

Ti∈Γhigh mi are assigned to schedule Γlow tasks by any multi-
processor scheduling strategy with utilization bound ≥ 1/2 such as partitioned EDF or
partitioned RM [89, 9].

In contrast to capacity augmentation bound, our objective in this chapter is to provide
an assignment algorithm for cores and memory bandwidth. We observe that this assign-
ment algorithm can be used as a schedulability test by checking that the total number of
used cores, mused ≤ m and bandwidth utilization, BU ≤ 1.

5.3 Bus Arbiter

In Figure 5.1, we show a diagram of bus arbiter in CMP architecture. The memory
requests of different cores are inserted into request buffers. These buffers can be part
of system’s cores such as load/store queues [73] or part of the network-on-chip interface
known as transaction queues [117]. In this latter case, the mapping between cores and
request buffers can be changed by using reconfiguration abilities [60]. This allows a cluster
of cores to share one request buffer. In addition, existing memory controllers have different
buffers for each memory bank [118]. Thus, the requests originated from the same cluster
can be inserted into one buffer if we assign each cluster a private bank. As we will see
in Section 5.4, the configuration of request buffers whether per core or per cluster makes
a significant difference in bounding the memory access time. Memory requests are then
issued to main memory following a specific arbitration policy.

RR arbitration policy [107] has been proposed to arbitrate shared resources in real-time
systems because it is fair and the access latency can be easily bounded. For instance, each
core will receive 1/m of total bandwidth assuming each request is preceded by m− 1 other
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requests. With such isolation, the memory access latency of a task can be obtained without
the knowledge of other tasks [106]. While RR policy automatically divides the memory
bandwidth into even partitions, the objective of an ideal resource arbiter is to provide a
fraction (not necessarily equal) of the bandwidth for each core based on its demand.

Harmonic RR [145] has been proposed to partition the memory bandwidth into unequal
sizes. The essential part with this arbitration scheme is to divide the time into slots of size
σ, the access time of one memory request. Then, each core is assigned a number of slots
based on its demand. Figure 5.2 shows a schedule example of 4 cores with unequal share
of bandwidth. Here, each bandwidth requirement can be seen as an integer multiple of σ.
For instance, a value of 1/2 means that the core needs one slot in every 2 slots.

5.4 Integrating Memory Demand

In this section, we show how to integrate the memory demand emi into federated scheduling.
Since emi is the memory time for qi = 1 (full memory bandwidth), the memory time with
qi = 1/2 (half memory bandwidth) is emi × 2. Thus, an upper bound on the makespan of
Ti, when scheduled by any greedy work-conserving scheduler on mi dedicated cores and qi
fraction of memory bandwidth, can be obtained as follows.

ei =
emi
qi

+
exi − Li
mi

+ Li (5.3)

In this bound, the memory time (emi /qi) is safely assumed to be serialized without overlap-
ping with computation. It is equivalent to say that the critical path Li is executed on one
core without overlapping with computation on other cores. This bound is valid because
the parallel task is assumed to unfold at run-time without knowing the order or even the
mapping of tasks to cores and the order or the position of memory requests.
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In (5.3), we use (exi − Li)/mi + Li as a coarse-grained bound on the computation
makespan of Ti since we assume a greedy work-conserving scheduler similar to (5.1). As
mentioned before, a static scheduling algorithm can be used instead. In this case, the bound
on the computation makespan can be replaced by fi(mi). In Section 5.8, we propose a static
scheduling algorithm to execute a parallel task on its own cluster of cores.

Similar to before, a sufficient schedulability test for each Ti ∈ Γ can be established as
ei ≤ Di. Thus, the bandwidth fraction qi can be derived from (5.3) as a function of mi as
follows.

qi(mi) =
emi ×mi

(Di − Li)×mi − (exi − Li)
(5.4)

For ease of reference, we use the following notation.

∆i(mi) = qi(mi)− qi(mi + 1). (5.5)

Lemma 20. The function qi(mi) has the following two properties: ∆i(mi) > 0 and
∆i(mi) > ∆i(mi + 1).

Proof. This can be proven by direct substitution of (5.4) in (5.5) and applying some alge-
braic manipulation. Alternatively, we note that the first derivative of qi is negative and the
second derivative is positive, meaning that the function is strictly decreasing and convex
(decreasing slope). Since ∆i = −dqi/dmi, the lemma follows.

The proof is shown for the computation makespan bound we consider in (5.3). As we
stated early, this bound can be replaced by fi(mi). For this case, the work in [123] has
shown that these two properties can be fulfilled in many common cases of parallelization
functions.

As per Lemma 20, qi(mi) is a decreasing function since ∆i(mi) > 0. In other words,
giving Ti ∈ Γ more cores reduces its memory bandwidth demand. We can think of ∆i(mi)
as the amount of reduction in bandwidth fraction when Ti ∈ Γ is given one more core. We
illustrate the concept of trading cores for memory bandwidth by the following example.

Example 3. Consider a task T1 with the following parameters: em1 = 50, ex1 = 100,
D1 = 150 and for simplicity assume L1 = 0. If we assign T1 one core and full memory
bandwidth, the makespan bound is e1 = 50× 1 + 100/1 = 150 with zero slack time. Now,
if we give T1 one extra core, the makespan bound becomes e1 = 50× 1 + 100/2 = 100 with
50 slack time. This slack time can be used to relax the memory demand with half memory
bandwidth, i.e., e1 = 50× 2 + 100/2 = 150.
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In this example, we give T1 one more core and gain half memory bandwidth which can
be used by another task to meet its deadline. Our method presented in Section 5.5 finds
the optimal choice to which tasks are taking the extra cores and which tasks are receiving
the gained bandwidth.

Furthermore, the minimum number of cores to execute Ti ∈ Γ while assuming full
memory bandwidth (qi = 1) can be derived from (5.3) as follows.

m∗i =

⌈
exi − Li

Di − Li − emi

⌉
(5.6)

5.4.1 RR with (m) Request Buffers

In this section, we discuss how to bound the memory time on a system with per core
request buffer and RR arbitration policy (mRR). In this configuration and m processor
cores, each memory request can be delayed by m − 1 requests of other cores. In other
words, the memory time can be bounded as emi ×m. However, since we assume in (5.3)
that all memory requests within each cluster are serialized and served from one buffer, we
observe the following better bound on the makespan.

ei = emi × (1 +
∑

j 6=i
mj) +

exi − Li
mi

+ Li (5.7)

In this bound, we only account for
∑

j 6=imj, the delay from buffers outside the cluster
of Ti, and 1 for cluster under analysis Ti. That is, there is no interference from buffers
within the same cluster as we assume in (5.3) that memory requests are served from one
buffer. In mRR-Assign algorithm, we show how to assign cores to tasks. The algorithm
starts by giving each task the minimum number of cores to execute assuming full memory
bandwidth. Then, the algorithm computes the makespan for each task. Intuitively, if
ei > Di for any task, the only flexible parameter with mRR is to give more cores. We note
that find-one in Line 5 returns the index of any task with ei > Di. Since ei depends on mi

of other tasks as in (5.7), we need to update ei of all tasks after each increment of mi.

mRR-Assign is an efficient algorithm with computational complexity of O(mn). The
while loop iterates at most m times as we give one more core in each iteration as in Line
6. In each iteration, we update n tasks as in Line 7.

5.4.2 RR with (n) Request Buffers

We observe that the bound in (5.7) assumes all memory requests are served from one buffer
for the cluster under analysis. On the other hand, the bound assumes the interference from
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mRR-Assign

1 for each task Ti
2 mi = m∗i
3 compute ei as in (5.7)
4 while (mused ≤ m) ∧ (∃Ti : ei > Di)
5 j = find-one(Ti ∈ Γ : ei > Di)
6 mj = mj + 1
7 update ei for all tasks
8 return (mused ≤ m)

Table 5.1: Task set example.

em ex L D

T1 3552 14412 65 9254

T2 629 12505 478 4830

all buffers of other clusters. Thus, we propose to assign one buffer for each cluster of cores
to improve the upper-bound on memory access time. In this case, each cluster introduces
a delay of one regardless of its size. Since the number of clusters n ≤ mused, the per cluster
bound is always better than the per core bound. We refer to RR with per cluster buffers
as nRR, and we use it as a baseline to compare with other methods.

Unlike mRR, the bandwidth fraction in nRR is constant, qi = 1/n, and therefore mi

can be computed using the following closed form formula.

mn
i =

⌈
exi − Li

Di − Li − n× emi

⌉
(5.8)

5.5 Trading Cores for Memory Bandwidth

The problem with nRR is that it assigns equal fractions of bandwidth to all tasks. However,
different tasks have different demands for memory and computation. We illustrate this with
the following example.

Example 4. Assume a system with two high utilization tasks n = 2, eight cores m = 8 and
task parameters as in Table 5.1. This task set is not schedulable by nRR in which each task
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Optimal-Assign

1 for each task Ti
2 mi = m∗i
3 compute qi(mi) as in (5.4)
4 while (mused ≤ m) ∧ (BU > 1)
5 compute ∆i(mi) as in (5.5)
6 j = find-one(Ti ∈ Γ : ∆i(mi) is maximum)
7 mj = mj + 1
8 update qj(mj)
9 return (mused ≤ m)

takes qi = 1/2 even with m = ∞. This can be verified using Equation 5.3. However, the
task set is schedulable if we assign q1 = 0.625, q2 = 0.375, and m1 = m2 = 4. We note that
the same task set is not schedulable on a system with m = 7 by any bandwidth assignment.
This can be proven by running this task set on our optimal algorithm described next.

The example shows that each task has a particular demand for memory and computa-
tion. In order to make the task schedulable, both resources (processor and memory) have
to be adjusted to meet its demand. Thus, we propose Optimal-Assign algorithm to
assign cores (mi) and bandwidth fraction (qi) for each Ti ∈ Γ. First, the algorithm assigns
the minimum number of cores that guarantees that the computation demand will meet the
deadline. Then, it computes the required bandwidth fraction qi ∈ R as a function of mi as
in (5.4).

The objective of Optimal-Assign algorithm is to reduce the total bandwidth utiliza-
tion BU to a value equal or below one. The intuition behind this algorithm is to give more
cores to tasks that give the maximum bandwidth reduction. This metric is captured by
finding the maximum ∆i(mi) as in Line 6. We note that find-one returns the index of task
with largest value of ∆i(mi).

Optimal-Assign is efficient with computational complexity of O(nm). The while
loop iterates m times as we give one core in every iteration as in Line 7. In each iteration,
we find the maximum value in a list of n tasks as in Line 5. Furthermore, we argue that
Optimal-Assign algorithm is optimal in the following sense.

Lemma 21. For a given number of cores, Optimal-Assign gives the smallest value of
BU or, alternatively, largest amount of bandwidth reduction.

97



Proof. This claim can be proven by induction. We use P (x) to express the claim as a
function of the number of cores. The base case P (1) is easy to prove because Optimal-
Assign chooses the maximum reduction in each step. Assume P (x) is true in which∑n

i=1mi = x. The total bandwidth reduction after the assignment of x cores is

n∑
i=1

mi−1∑
y=m∗

i

∆i(y).

Since Optimal-Assign chooses the maximum ∆i(y) in each step, and for any task ∆i(y) >
∆i(y + 1) as per Lemma 20, there is no ∆i(y) for y > mi − 1 that can replace ∆i(y) in
above formula and leads to a larger bandwidth reduction. Now, assume that ∆i(mi) ≥
∆j(mj)∀j 6= i. Optimal-Assign will choose ∆i(mi) and this ensure that P (x + 1) is
true.

5.6 Optimal-Assign Implementation

Optimal-Assign algorithm was proposed to mitigate the rigidity of nRR. However, qi ∈ R
was assumed in this algorithm, i.e., the memory bandwidth can be partitioned into any
real number which is not always practical. In this section, we apply Optimal-Assign on
two practical arbitration schemes, and show how to bound the memory time of each task.

5.6.1 Software Regulated Memory

In this section, we describe a software based arbitration called Memguard [146]. We then
propose an analysis to bound the memory time of each task. The analysis works by
converting the problem into two modes of operation, and then applying Optimal-Assign
algorithm on each mode.

Memguard is a technique designed to partition the memory bandwidth from software
level. It uses per-core regulators to monitor and enforce the memory bandwidth allocation.
In particular, each regulator monitors the number of memory requests performed by each
core in a given period P . This can be achieved through HPC. These counters are configured
to trigger an event when any core exceeds its allocated bandwidth (budget). Upon receiving
such event, the corresponding core is suspended. The core recharges its budget and resumes
its activity at the next period. The main idea is that within a period of time P , each core
can issue a number of memory requests equivalent to the assigned bandwidth Qi. P is a
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system parameter decided at design time and its value is set based on the overhead imposed
to synchronize all cores.

Memguard was proposed to regulate the memory of individual cores. In this section, we
extend the idea of Memguard to federated scheduling with cluster of cores. In a platform
such as P4080 [58], a complex chain of conditions can be established to trigger one event.
In our case with a cluster of cores executing one parallel task, we can configure the HPC to
trigger an event when the aggregated number of memory requests from a cluster of cores
exceeds the assigned bandwidth. Memguard leaves the fine grained arbitration at the level
of one memory request to the hardware. We consider RR as the arbitration policy between
clusters and each cluster uses one request buffer similar to nRR (Section 5.4.2).

Like Memguard with individual cores, we assume that the clusters are synchronized
with one period P and

∑n
i=1Qi ≤ P . In addition, both P and Qi represent time and their

ratio Qi/P is unit-less. We can think of Qi/P as the fraction of time that a task is allowed
to access memory. To ensure full memory budget at each task release, we assume the task’s
period to be integer multiple of P .

Memguard for partitioned multicore processor has been analyzed in [142]. This work
considers sequential tasks and assumes the budget for each core is given. The main focus
was to compute the response time of real-time tasks on regulated cores. In contrast,
our analysis considers parallel tasks with federated scheduling. In particular, we seek
to determine Qi and compute the memory access time for each task under Memguard
regulation.

We recall that the memory part of each task can be bounded as emi × n when we rely
on nRR hardware arbiter only. However, the memory time can be modified due to the
effects of Memguard regulation. Since

∑n
i=1Qi ≤ P , other clusters can consume at most

P −Qi memory time within each regulation period. Thus, a task Ti can be delayed for at
most P − Qi time in each regulation period. We distinguish two modes to compute the
memory delay of any task. Unlike the analysis in [142] which computes a delay term and
adding it to the memory time of the task without interference, our analysis proceeds by
computing an inflation factor for memory. This is done for simplicity, but the two concepts
are effectively equivalent: given a memory time emi and a delay ∆, the inflated memory
time is simply emi + ∆. As an example, in the case of pure RR contention delay, [142]
would compute a delay term ∆ = emi × (n − 1), while in our case we consider an inflated
memory time emi × n.
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Regulation mode

The task in this mode consumes its budget Qi and waits until the next period, i.e., it
suffers a delay of P −Qi in each period. For this mode, the inflated memory time can be
computed as follows. ⌊

emi
Qi

⌋
× P + P (5.9)

The formula states that the number of regulation periods is bemi /Qic. For each regulation
period, the inflated memory time is P (Qi memory time plus P−Qi delay). Any remaining
(emi mod Qi) memory must complete within one last period; hence, its inflated time can
be bounded by P . Since we assume any arrival pattern of memory requests, we consider
the worst-case pattern that leads to maximum delay. That is, all memory requests are
clustered at the beginning of regulation periods without computation between them. If,
however, there is computation between them, say for x time, the task will be stalled for
P −Qi − x in each regulation period.

Contention mode

Unlike the previous mode, the task in this mode consumes less than its budget, and the
contention of its memory causes the maximum delay of P − Qi. Due to RR arbitration,
every memory access can be delayed by (n− 1) requests of other clusters. Hence, the task
must access memory for Ωi time to suffer the maximum delay of P −Qi within each period.
This can be stated as follows.

Ωi × (n− 1) = P −Qi

Ωi =
P −Qi

n− 1

We observe two possible cases under contention mode as illustrated in Figure 5.3 for
three regulation periods. The intuition behind the following analysis is to think that each
task has memory and computation, and within each regulation period, the task can spend
Qi time by either computation or memory. In addition, the task can be delayed by P −Qi

when it generates Ωi amount of memory within each regulation period as stated above.
Since, as per our task model, the positions or even the order of computation and memory
are unknown at compile time, we try to bound the memory time by constructing the worst
case pattern between memory and computation that leads to maximum memory delay.
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Figure 5.3: Two sub-cases for contention mode.

In case (a), there is enough computation to fill Q−Ω gap in every regulation period as
shown in Figure 5.3(a). This causes all memory to suffer contention. Hence, the inflated
memory time is simply emi × n. However, in case (b), there is no enough computation to
fill Q−Ω gap in each regulation period, for example, period 3 in Figure 5.3(b). Thus, the
task has to execute memory because the task budget is not consumed yet. In this case,
the inflated memory time can be upper bounded by⌊

e∗i
Qi

⌋
× P + P, (5.10)

where e∗i = emi +(exi −Li)/mi+Li. We consider e∗i , the combined memory and computation
time, since either of them can execute within Qi time. Similar to before, be∗i /Qic represents
the number of regulation periods. For each period, the task executes for Qi (memory and
computation) and waits for P −Qi. The remaining execution time is again upper bounded
by P .

We note that the memory time under contention mode cannot exceed Cm
i × n because

we assume per cluster buffer and RR arbitration policy at the hardware level. Thus, the
memory time will be the minimum between case (a) and case (b). In contrast, the memory
time under regulation mode may exceed Cm

i × n due to the regulation effect.
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We just described how to compute the memory time under each mode. We now specify
a condition upon which we determine the mode that should be used to bound the memory
time.

Lemma 22. When Qi < Ωi, the memory time under regulation mode is longer than the
memory time under contention mode. On the other hand, when Qi ≥ Ωi, the memory time
under case (a) or case (b) of contention mode is longer than or equal the memory time
under regulation mode.

Proof. Clearly, when Qi < Ωi, the task cannot cause the maximum delay of P − Qi by
contention. Since the task is delayed by P−Qi (the maximum possible delay) in each period
under regulation mode, the memory time under this mode is longer than the memory time
under contention mode. On the other hand, when Qi ≥ Ωi, the contention mode leads
to longer or equal memory time even though, under both modes, the task is assumed to
receive P − Qi delay in each period. We recall that under regulation mode, the task is
assumed to consume its budget Qi in each period. In contrast, case (a) of contention mode
assumes that the task consumes Ωi ≤ Qi budget in each period while case (b) assumes
the task consumes Ωi in some periods and Qi in some other periods. In both cases, the
number of regulation periods cannot be less than the number of periods under regulation
mode in which the task is assumed to consume Qi memory in each period.

We can safely remove the floor function from (5.9) and (5.10), and the formulas still
serve as an upper bound to memory time. In addition, we propose to let Qi/P = qi. Thus,
(5.9) can be re-written as follows.

emi
qi

+ P (5.11)

Similarly, the memory time in contention mode is bounded by (5.10) and cannot exceed
emi × n. Thus, the memory time can be re-written as

min(emi × n,
e∗i
qi

+ P ). (5.12)

Since the formulas are approximated and Qi is replaced by P × qi, the conditions in
Lemma 22, which is based on Qi, can be re-stated in terms of qi as follows.

Lemma 23.

memory time =

{
(5.11) if qi < (n− P/emi )−1,

(5.12) otherwise.
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Proof. We prove this lemma by showing that the memory time under each mode is no
less than the memory time under the other mode for the corresponding value of qi. For
regulation mode, qi < (n− P/emi )−1. Thus,

emi
qi

+ P > emi × (n− P/emi ) + P

> emi × n− P + P

> emi × n.

It is enough to only check with emi ×n because the memory time in contention mode cannot
exceed emi × n. Similarly, the memory time under contention mode can be either

e∗i
qi

+ P ≥ emi
qi

+ P,

since e∗i ≥ emi , or emi × n in which

emi
qi

+ P ≤ emi × (n− P/emi ) ≤ emi × n.

By adding the computation time to the inflated memory time, we obtain the following
makespan bounds under each mode. For regulation mode, we have:

eregi =
emi
qi

+ P +
exi − Li
mi

+ Li, (5.13)

and for contention mode, we have:

ecnti = min(emi × n,
e∗i
qi

+ P ) +
exi − Li
mi

+ Li. (5.14)

Similar to (5.4), we can derive qregi (mi) from (5.13) and qcnti (mi) from (5.14) by enforcing
the schedulability test eregi ≤ Di and ecnti ≤ Di, respectively.

In Figure 5.4, we show a graphical representation of these two functions for a given
task Ti. The bandwidth fraction qi ranges from 0 to 1 and the middle bold dotted line
represents the condition as in Lemma 23 in which the lower area is for regulation mode and
the upper area is for contention mode. Each point in these two curves represents a pair
of values (qi,mi) in which the task is schedulable. The mn

i vertical line represents emi × n
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Figure 5.4: Two modes of operation for Memguard.

and computed as in (5.8). In contention mode, the memory time cannot exceed this line
as indicated by min function in (5.14).

We propose to apply Optimal-Assign to obtain qi bandwidth fractions by assuming
each task operates in one particular mode. This approach results in 2n possible combina-
tions as each task can be in two different modes. As a final step, we let Qi = P × qi, and
then program Memguard’s regulators to enforce the bandwidth assignment.

An important point to note is that by having tasks operating in different modes, Mem-
guard is able to assign unequal fractions of memory bandwidth in which some tasks have
qi > (n − P/emi )−1 and some others have qi < (n − P/emi )−1. In contrast, nRR always
assigns qi = 1/n for all tasks.

5.6.2 Harmonic RR

Harmonic RR is known to achieve 100% bandwidth utilization. Therefore, our goal in this
section is to find a set of harmonic fractions by trading a minimum number of cores. With
harmonics of base 2, each qi = 1/2j and j is an integer positive number.

A naive approach is to search the whole space of all possible harmonics and take the
set of harmonics that gives the minimum number of cores. However, this may take (n−1)n

number of iterations. It is because the range of possible harmonics for each task is 1/21

to 1/2n−1. We elaborate on this as follows. The goal of harmonics assignment is to
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Harmonic-Assign

1 qi = 1,∀Ti ∈ Γ
2 compute Θi(qi) as in (5.15)
3 target = 1
4 repeat
5 while BU > target
6 j = find-one(Ti ∈ Γ : Θi(qi) is maximum)
7 qj = qj/2
8 if BU < target
9 rem = target −BU

10 indx = find-all(Ti ∈ Γ : qi > rem)
11 target = target −

∑
i∈indx qi

12 remove Ti : i ∈ indx from Γ
13 qi = 1,∀Ti ∈ Γ
14 until BU = target
15 mi = dmi(qi)e ,∀Ti
16 test = (mused ≤ m)

achieve 100% utilization. With n − 1 tasks, the largest sum of harmonics less than 1 is
1/2 + 1/4 + · · ·+ 1/2n−1. It is easy to see that increasing any of them gets the sum greater
than or equal to 1. Now, the nth task can be assigned a value of 1/2n−1 and the total
utilization sums up to 1. We observe that any smaller harmonics will never sum up to 1.

Instead, we propose an efficient algorithm with polynomial-time complexity. Although
it is not optimal, it achieves very close to optimal results as shown in Section 5.7.

The basic intuition to Harmonic-Assign algorithm is to find the task that gives the
maximum decrease of memory utilization with minimum increase in mi. This metric is
captured by finding the maximum Θi(qi) as in Line 6, where

Θi(qi) =
qi − qi/2

mi(qi/2)−mi(qi)
. (5.15)

The algorithm then increases qi in harmonic steps, i.e., qi = qi/2 as in Line 7. Here, mi is
initially assumed to be real number and derived from (5.3) for a given qi as follows.

mi(qi) =
(exi − Li)× qi

(Di − Li)× qi − emi
(5.16)
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The algorithm at the final step (Line 15), rounds each mi to the closest integer value.

The algorithm initially set target = 1 and set all bandwidth fractions to 1. Then, the
while loop decreases the fractions until BU ≤ target. If the total bandwidth utilization
is equal to target , the algorithm stops: we achieved 100% memory bandwidth utilization.
If, however, the total bandwidth utilization is less than the target, we can stop, but the
remaining bandwidth will be unused. We recall that the bandwidth utilization is a de-
creasing function of the number of cores, i.e., in this case we may waste some cores for
unused bandwidth.

Therefore, we design the algorithm to continue until we reach 100% bandwidth utiliza-
tion. We set the remaining fraction to rem. We then remove all Ti such that qi > rem from
Γ. The intuition is that we need at least a similar fraction to increase any fraction to the
next harmonic, for example, we need at least 1/4 to increase 1/4 to 1/2. The algorithm
then repeats until there is no remaining bandwidth. We note that find-all returns the
indices of all tasks that satisfy the condition.

Lemma 24. Harmonic-Assign is guaranteed to terminate.

Proof. It is guaranteed because the algorithm will remove at least one task in Line 12.
Assume that BU =

∑
i 6=j qi + qj > target, and the fraction of Tj is reduced to the next

harmonic such that
∑

i 6=j qi + qj/2 ≤ target. We observe that∑
i 6=j

qi + qj/2 + qj/2 > target,

as per our assumption. By rephrasing the terms, we have

qj/2 > target− (
∑
i 6=j

qi + qj/2) = rem.

In other words, the algorithm is guaranteed to remove Tj.

The complexity of Harmonic-Assign algorithm is O(n4). We note that the while
loop iterates n2 times in case we increase the harmonics of all tasks from 21 to 2n−1. In
each iteration, we update Θi(qi) for n tasks. In addition, the repeat loop can repeat n
times as in the worst case, we remove just one task in Line 12.
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Figure 5.5: The schedulability for all arbitration policies with acceptance ratio metric and
varying Um.

5.7 Evaluation

In this section, we evaluate the performance of our proposed method. The task sets are
randomly generated in our experiments and their parameters are set as follows. Since
we consider two different resources (memory and processor), the task sets have to be
characterized by two values, namely, Um and Ux. We use UUnifast [28] algorithm to
generate task sets with uniform distribution in the space of utilization values. For memory
utilization, we set UUnifast(n, Um) to generate n memory utilization values umi such that
their summation equals to Um and each value falls within [0, Um] range. Similarly, we
generate uxi values as 1+UUnifast(n, Ux−n) to ensure that each task is high utilization.
The deadline values are randomly generated within the range [10, 100] ms. Then, the
memory time emi and computation time exi are set accordingly as umi × Di and uxi × Di,
respectively. The critical paths Li are set to be 0.2× (Di − emi ). We vary such percentage
within a range of [0, 1] in one of our experiments. For each point in the experiments, we
take the average value over 1000 task sets. The experiments are repeated 100 times and
the error bars represent the first decile and the ninth decile.We use default values of n = 5,
Ux = 10, m = 32 in our experiments unless otherwise specified.
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In the first set of experiments, we use the acceptance ratio metric to evaluate schedu-
lability. It is the number of accepted task sets over the total number of generated ones.
We compare all arbitration policies discussed above. The Um values are varied from
0.025 to 0.975 with 0.025 step size. As shown in Figure 5.5, the Optimal-Assign algo-
rithm dominates all methods. In addition, nRR significantly outperforms mRR. Between
Optimal-Assign and nRR, both Memguard and harmonic RR show good improvement.
The graph indicates that both methods are lower bounded by nRR and upper bounded by
Optimal-Assign. An important point to note is that nRR assigns equal bandwidth frac-
tions for all tasks. For task sets with different memory requirements this equal assignment
is not optimal. Both harmonic RR and Memguard are good to balance the assignment but
harmonic RR is more flexible. We note that there is only a marginal difference between
our proposed heuristic in Harmonic-Assign algorithm and the exhaustive search of all
harmonics.

We also test against global EDF using the response time analysis (RTA) as in [100]
which has been shown to have better results than the test in [18] and the capacity aug-
mentation bound of 2.618 as in [84]. In this test, we inflate the memory portion of each
task by m, the number of cores. Since there is dependence on the number of cores and the
inflation factor, we start by one core, we then iteratively increase the number of cores until
we reach convergence or the task set is declared unschedulable. The schedulability result
of global EDF is poor compared to nRR, our base line method. The reason is that global
EDF does not improve the memory portion upon nRR since it uses RR and one request
buffer for each core.

In the second set of experiments, we vary both Um and m. We plot in Figure 5.6 the
acceptance ratio as a third dimension to see the effect of both parameters. The area under
the curve (the schedulability) is clearly larger for Optimal-Assign. The extra cores are
utilized to balance the memory part. On the other hand, the extra cores cannot be utilized
with rigid nRR in which each task is assigned 1/n bandwidth fraction.

In the third set of experiments, the number of cores used, mused, to reduce the band-
width utilization below or equal one is used as a metric to see how each algorithm can utilize
system’s cores. Unlike previous experiments where m is imposed, here we set m =∞ and
plot the number of cores used by each algorithm. Again, we vary the total memory uti-
lization values from 0.1 to 0.8. For the sake of fair comparison, we generate task sets
that are feasible with respect to nRR, i.e., umi < 1/n, otherwise, the task set will not be
schedulable because the memory time will be inflated by n. The algorithm UUnifast
is modified to discard all umi ≥ 1/n. We note that the maximum value of Um is set to
0.8 because it is impossible to achieve a utilization of 1 with n tasks and each umi < 1/n.
The results in Figure 5.7 clearly show a great advantage of Optimal-Assign against
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Figure 5.6: The acceptance ratio by changing m and Um.
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Figure 5.7: The number of cores used, mused.

nRR with respect to reducing the number of cores. An interesting point to note is that
Memguard is achieving better results than harmonic RR when memory utilization is high.
It is because harmonic RR assigns fractions with harmonic granularity 1

2
, 1

4
, 1

8
, . . . , while

Memguard assigns fractions in a finer granularity.

In the last set of experiments, we vary Li of each task to be within a given percentage of
(Di − emi ). We use UUnifast(n, L) to generate n percentages such that their summation
is equal to L and each percentage falls within [0, L] range. We use weighted schedulabil-
ity [23] to understand the sensitivity of each algorithm to Li. We can think of weighted
schedulability metric as the area under the schedulability curve, i.e., each point in Fig-
ure 5.8 corresponds to the area under the curve in Figure 5.5 for each L value. We recall
that Memguard is able to partition the bandwidth unequally as long as there are some
tasks operating in different modes. The results indicate that increasing Li affects Mem-
guard non-linearly while affects others linearly. It is because the advantage of Memguard
relies on the amount of computation time (exi −Li)/mi +Li of parallel tasks as detailed in
Section 5.6.1. In contrast, Li affects other methods by reducing the slack time (Di − Li)
only. We also note that all methods converge to one point when L = 1. In other words,
tasks are mostly sequential and there is no advantage in trading more cores.
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Figure 5.8: The effect of changing Li.

5.8 Static Scheduling of 3-phase Parallel Task

In previous discussion, we abstract the parallel task using three parameters (emi , e
x
i , Li) and

use a coarse grained bound on the makespan as in (5.1), and we assume that the memory
time is additive to the makespan as in (5.3) since we cannot provide a guarantee on the
amount of overlap.

In this section, instead, we assume that the parallel task is modeled as a DAG, Gi =
(Vi, Ei). Here, Vi = {τi,1, τi,2, . . . , τi,ni

} is a set of ni subtasks and Ei is a set of edges.
If (τi,a, τi,b) ∈ Ei is a directed edge, then τi,a has to execute before τi,b, i.e., there is a
precedence constraint in their execution. Each subtask τi,j is divided into three phases:
load, computation and unload with the following notation for their lengths: evi,j, e

x
i,j and

ewi,j, respectively. Similar to before, each dag task is recurrent with period pi and deadline
Di. In addition, each dag task is given a dedicated cluster with mi cores and qi bandwidth
fraction.

In this section, we describe mthPREM, a static co-scheduler of application 3-phase
subtasks. The objective of this scheduler is to minimize the application’s makespan, i.e.,
the finish time of last subtask. In general, scheduling involves two steps: (1) allocation
of cores to subtasks and (2) execution ordering of subtasks. The latter step matters even
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Figure 5.9: The order of execution decides the makespan length.

though there is no precedence constraints between two subtasks. It is easy to see that
different execution ordering leads to different lengths of makespan. For instance, assume
a parallel task with two subtasks τ1 and τ2. The task index is omitted for simplicity. We
show in Figure 5.9 two schedules with two different execution ordering. The execution
order (τ1, τ2) has longer makespan than (τ2, τ1).

The computed schedule determines on which core each subtask should execute and the
start time of its memory phase. There is no need to maintain the start time of computation
phase because it starts immediately after the memory phase. There are two possible ways
to implement the schedule of memory phase of each subtask. First, the order of these phases
can be activated on-line using a timer. In this case, the multicore processor should have
a common clock to synchronize the activation of memory phases across all cores. Another
way of activating these phases, according to the schedule order, is by using semaphores.
In this implementation, each two consecutive memory phases share a common semaphore
where one waits and the other signals. This semaphore mechanism propagates through the
memory phase of each subtask to enforce the execution order for a given schedule.

When the number of subtasks does not exceed the number of cores and there are
no precedence constraints between them, scheduling involves only execution ordering. A
polynomial-time algorithm that schedules these subtasks can be easily constructed. The
intuition behind this algorithm is that subtasks with large computation phases should start
first so that their contribution to the makespan is reduced. Another observation is that
the contribution of memory phases to makespan is the same regardless of the execution
ordering because they are serialized.

On the other hand, when the number of subtasks exceeds the number of cores, i.e.,
ni > mi, scheduling involves both core allocation and execution ordering as explained
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mthPREM-static

1 tmem = 0
2 for each corej
3 wb(corej) = 0
4 tf (corej) = 0
5 Insert subtasks τi,j ∈ Ti into list L, according to the schedule order
6 for each τi,j ∈ L
7 tm(τi,j) = max(tmem, tf (proc(τi,j)))
8 tmem = tm(τi,j) + wb(proc(τi,j)) + evi,j
9 tf (proc(τi,j)) = tmem + exi,j

10 wb(proc(τi,j)) = ewi,j
11 Sort cores corej into list L, in ascending order according to their finish time
12 for each corej ∈ L
13 tw(corej) = max(tmem, tf (corej))
14 tmem = tw(corej) + wb(corej)
15 tf (corej) = tmem
16 return max

j∈{1,...,mi}
tf (corej)

above. In order to measure the quality of the schedule, we define the application makespan
as the schedule cost function. Thus, the cost of schedule S is

cost(S) = max
j∈{1,...,mi}

tf (corej), (5.17)

where tf (corej) is the core finish time, which is equal to the finish time of last subtask
scheduled on that core.

mthPREM-static algorithm shows how the schedule is constructed for each parallel
task Ti given the core allocation, proc(τi,j) and the execution ordering. The output of
mthPREM-static algorithm is: (1) tm(τi,j), the start time of each subtask memory
phase and (2) tw(corej), the start time of unload phases for last scheduled subtasks on
each core.

The for loop in Line 6 schedules the load and unload phases of all subtasks except
the unload phases of last scheduled subtasks on each core. The max in Line 7 is used to
schedule memory phase after computation phase. The wb() in Line 8 holds the unload
phase of the previous subtask, scheduled on the same core, to be merged with the load
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(a) Core allocation (3 cores). (b) Execution ordering.

Figure 5.10: GA chromosomes.

phase of the current subtask. The for loop in Line 12 schedules the unload phases of last
scheduled subtasks on each core. The cores are first sorted in ascending order according
to their finish time to reduce the contribution of unload phases to the makespan.

So far, we computed the schedule in mthPREM-static assuming that core allocation
(the spatial assignment) and execution ordering (the temporal assignment) are given. Now,
we discuss the problem of optimizing such decisions. In fact, finding a schedule of minimum
cost is NP-hard [42], because as number of subtasks and cores increase, the total number
of possible schedules becomes vast. Consequently, it is impractical to do an exhaustive
search to find the optimal solution. Stochastic search algorithms are good candidates for
tackling such problems. Random search is one possible technique. In [116], the authors
show that evaluating several hundreds or several thousands random schedules is enough
to get, with high confidence, close to optimal solution, given that the random samples are
independent and identically distributed.

Moreover, meta-heuristic search algorithms, such as genetic algorithm (GA), is another
technique often used to speed up the search process. Therefore, we develop a genetic
algorithm to search for a good solution to mthPREM. For core allocation, we use the value
encoding scheme to represent the solution as shown in Figure 5.10(a). In this solution
encoding (the chromosome), each subtask is assigned an integer number from 1 to mi,
the number of cores, corresponding to its core allocation. For execution ordering, we use
the permutation encoding to represent the solution as shown in Figure 5.10(b). In this
solution encoding, each subtask is assigned an integer number from 1 to ni, the number of
subtasks, corresponding to its execution order. GA procedure outlines the major steps of
the genetic algorithm where G is the number of generations.
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GA

1 Create initial population of random 100 schedules
2 Evaluate the schedules as in mthPREM-static
3 for i = 1→ G
4 Move the best 50 schedules to next generation
5 Crossover the best 50 allocation/ordering chromosomes
6 Mutate the best 50 ordering chromosomes
7 Evaluate the new 50 schedules
8 return the best schedule

We employ a single point crossover between two chromosomes for both core allocation
and execution ordering. For mutation operator, we randomly pick two subtasks, then swap
their order. However, execution ordering has to be corrected to make sure that no two
subtasks have the same order and the precedence constraint between any two subtasks is
not violated. Figure 5.11 shows a comparison between GA, random and exhaustive search
for an application with 6 subtasks and 2 cores processor. Both GA and random search
run for 5000 iterations, and the exhaustive runs for the whole search space which is 46080
iterations. Note that we set G = 98 for GA to get 5000 iterations. The GA algorithm
reaches close to 5% of the optimal solution in less than 3000 iterations whereas random
search reaches the same value at close to 5000 iterations.
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Table 5.2: NPB characteristics
benchmark parallel barrier

is 16 22
ep 4 0
cg 51 2057
ft 42 0
bt 312 255
sp 916 415
lu 118 269

Fo
rk

Jo
in

Fo
rk

Jo
in

S1 P2 S4 P5 S6

B
ar
ri
e
r

P3

Figure 5.12: Fork-join parallel model.

5.9 mthPREM Evaluation

We evalaute mthPREM on OpenMP NAS Parallel Benchmarks (NPB) [72]. These bench-
marks employ the fork-join parallel model in which the application alternates between
sequential and parallel segments as depicted in Figure 5.12. The application starts as a
single sequential subtask until a parallel construct is encountered such as parallel start

and parallel end pair in which the application splits into multiple concurrent subtasks.
In addition, the parallel segment may be followed by multiple other parallel segments that
are separated by barrier synchronization. After the parallel segment, all subtasks synchro-
nize again into one sequential subtask. This fork-join structure can be repeated multiple
times. Fork-join is a popular programming model employed in systems such as OpenMP
and Java [81]. The benchmarks consist of five parallel kernels and three simulated applica-
tions. Table 5.2 shows the number of OpenMP parallel constructs for these benchmarks.

We evaluate the performance of mthPREM using the framework shown in Figure 5.13.
We develop a dynamic instrumentation tool based on Pin [12] to analyze the NPB bench-
marks. A central element of the tool is a pervasive memory profiler to capture the memory
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Figure 5.13: Evaluation framework.

traces for each subtask. In real applications, the memory profiler is expected to capture
hundreds of millions of events [96]. Thus, we add some strategies to reduce the number of
captured events that are enough to evaluate mthPREM. First, we trace memory accesses
at the granularity of cache lines which cut the size of the generated trace by 16 in the case
of 64 bytes cache lines. Second, the load and unload phases are mainly determined by
the number of unique memory blocks accessed during the computation phase. In partic-
ular, both unique read and write cache lines (URW ) are captured for load phase of each
subtask, and the unique write cache lines (UW ) are captured for unload phase of each
subtask. Each subtask has to load write-data to prevent write misses during the computa-
tion phase. To capture only the unique addresses, we use a bloom filter for each subtask.
Furthermore, the tool captures the synchronization information of the application for each
subtask (e.g., parallel and barrier). This synchronization points are used to reset the
counters for URW and UW , and record the trace information for each subtask during a
parallel segment.

As system parameters, we model a simple 4-core processor. Each application is compiled
and the instruction count is used to determine the computation phase for each subtask. We
assume that non-memory instructions and memory instructions that hit in local memory
take one clock cycle. The memory access time for one cache line of size 64 bytes is assumed
to be 150 clock cycles. We apply mthPREM-static algorithm for each application based
on the generated trace and system parameters.
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Figure 5.14: Maximum memory footprint.

Since we assume that the memory footprint of maximum subtask fits inside the local
memory of one core, i.e., there is no capacity misses, we show in Figure 5.14 the maximum
memory footprint for all benchmarks. It is clear that the memory footprint of one applica-
tion decreases as the number of subtasks increases. In other words, with a fixed size of local
memory, changing the number of subtasks allows some applications to execute according to
mthPREM. We note that for some benchmarks like EP, the maximum memory footprint
remains constant. It is due to the type of parallelism within the parallel segment. For
work sharing constructs such as parallel for, the data is distributed and processed col-
laboratively by all subtasks. Therefore, the amount of data each subtask needs to process
reduces as number of subtasks increases. In contrast, constructs like sections, implement
different type of parallelism known as task parallelism in which subtasks concurrently ex-
ecute independent codes. Hence, the amount of data processed remains constant, but the
code size for each subtask changes.

Figure 5.15 shows the simulation results for NAS Parallel Benchmarks, all with class S
data set, 8 subtasks and 4 cores. These results are obtained by running the GA procedure
for 5000 iterations. The no contention bar is the best case execution where the memory
time is not inflated as in contention execution. The no contention execution is really
optimistic, and it is reported to see the lower bound of mthPREM. The results show that
mthPREM achieves a good improvement over contention execution with overall speedup
of 1.21%. The weighted arithmetic mean (WAM) is used to compute the overall
speedup of the benchmark suite. The weights are computed as wi = ei/

∑
∀Ti ei where ei is

the makespan under mthPREM. An important point to note is that the benchmarks show
different improvements because they have different ratios of memory to computation. As
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Figure 5.15: Simulation results for 8 subtasks and 4 cores processor.

this ratio increases, the improvement of mthPREM also increases.

In 3-phase execution model, we need to load each subtask into the local memory before
execution. With unit-stride memory blocks, only one address pointer is sufficient to load
all required data. In contrast, non-stride memory blocks need a data structure to keep
track of all memory blocks. This clearly adds an overhead to load phase. We note that
the same applies for unload phase. Indeed, the overhead depends on how the layout of
memory blocks is scattered in main memory. We divide the footprint of each subtask into
chunks of contiguous memory blocks, and we define the scatter ratio as the ratio between
the number of chunks and the total number of memory blocks. In other words, 0% scatter
ratio means continuous layout of all memory blocks. Figure 5.16 shows the load overhead
for all benchmarks. In some benchmarks, almost all memory blocks are consecutive, and
for others, there is some scattering but the ratio is limited by less than 10%.

5.10 Summary

Federated scheduling is an elegant approach to schedule parallel tasks on dedicated cores.
Even though tasks do not share cores between each other, they can interfere through
shared resources such as main memory. We propose a novel method to consider memory
bandwidth when assigning cores to parallel tasks. We first integrate the memory demand
of each task in the task model. Then, we formulate the execution time of parallel tasks as
a function of (1) the number of assigned cores and (2) the amount of assigned bandwidth.
The proposed method tunes system’s resources (processor and memory) to fit the need of
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Figure 5.16: Memory scatter ratio.

system’s tasks. We demonstrate the proposed strategy on two arbitration policies, one is
software based and the other is hardware based. The results show a big advantage of our
method compared to memory oblivious approaches.

In this chapter too, we describe an algorithm to schedule 3-phase parallel tasks in
which each parallel task is assigned a dedicated number of cores and memory bandwidth.
The scheduler objective is to minimize the application’s makespan by finding the best
execution ordering that hides the memory latency. This algorithm is evaluated on a set
of NAS parallel benchmarks, and showed good improvement over contention execution in
which subtasks access main memory without control.
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Chapter 6

Conclusion

Even though multicore processors offer increased performance over single-core, their adop-
tion to execute hard real-time applications is challenging. The use of physical shared
resources in these platforms, such as memory bus and I/O, introduces variability in the
execution time of applications. In this dissertation, we consider memory contention due to
sharing the memory bus between multiple cores. Our solution is based on a co-scheduling
approach in which each real-time task is decoupled into two phases: memory and compu-
tation. Thus, the system scheduler can mediate, from a software level, the use of processor
cores as well as the main memory. Memory contention is avoided by allowing only one
memory phase to be active at any given time. Furthermore, the execution of real-time
tasks is improved by overlapping computation phases with memory phases.

We show how to harness this overlap between tasks on different cores using gPREM,
a global scheduler of memory and computation phases. We propose for this scheduler
a schedulability analysis to determine whether a given task, expressed as two phases,
can be completed by its deadline. We propose another scheduler called gDMA to further
increase the amount of overlap. Unlike gPREM where the processor is stalled while loading
from main memory, gDMA utilize a DMA component to load from main memory while
the processor is busy executing another task. Hence, the memory phases can be further
overlapped with computation phases of tasks on the same core as well as tasks on other
cores. We compare both gPREM and gDMA against contention-based execution where
tasks access memory without control. The results indicate a good improvement in terms of
schedulability, the number of schedulable task sets. Both gPREM and gDMA are proposed
for sequential tasks in which parallel execution for one task is not permitted. However,
there are real-time applications that need more than one core to execute. These are parallel
tasks that can be seen as a collection of sequential subtasks.
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Federated scheduling has been proposed to execute such parallel tasks for real-time
systems. In this scheduling scheme, parallel tasks with processor utilization exceeding
one are assigned a dedicated number of cores. Even though they do not interfere at
the core level, they interfere at the memory level. We propose a method to assign each
parallel task a number of cores and memory bandwidth in order to meet its demand. We
initially assume each parallel task is executed on its private cores using a greedy work-
conserving scheduler. Then, we propose mthPREM, a static scheduler that aims to reduce
the application’s makespan, and enhance the memory time by employing the co-scheduling
approach at subtask level.

Our research can be extended in many directions. We envision the following relevant
research to be carried out in the future.

• Instead of one resource and one memory phase, the real-time task can have multiple
phases and more than one resource, e.g., multiple I/O devices.

• The overlap is an important measure to enhance the execution performance. Thus,
a new scheduling algorithm can be designed to harness a larger amount of overlap
and avoid some of the pessimism in the current analysis.

• The memory time of parallel tasks can be enhanced by allowing shared data to be
serviced from a neighbor core instead of main memory. In addition, when sub-tasks
that share large data are assigned to the same core, a large content of local memory
can be re-used.
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[34] Francisco J Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit Tri-
quet, Guillem Bernat, Emery Berger, Jaume Abella, Franck Wartel, Michael Hous-
ton, et al. Proartis: Probabilistically analyzable real-time systems. ACM Transac-
tions on Embedded Computing Systems (TECS), 12(2s):94, 2013.

[35] Marco Cesati, Renato Mancuso, Emiliano Betti, and Marco Caccamo. A memory
access detection methodology for accurate workload characterization. In Proc. of
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 141–148. IEEE, 2015.

[36] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling shared
cache and bus in multi-cores for timing analysis. In Proc. of International Workshop
on Software & Compilers for Embedded Systems, page 6. ACM, 2010.

126



[37] Sudipta Chattopadhyay, Abhik Roychoudhury, Jakob Rosén, Petru Eles, and Zebo
Peng. Time-predictable embedded software on multi-core platforms: Analysis and
optimization. Foundations and Trends in Electronic Design Automation, 8(3-4):199–
356, 2014.

[38] Derek Chiou, Prabhat Jain, Srinivas Devadas, and Larry Rudolph. Dynamic cache
partitioning via columnization. In Proc. of Design Automation Conference (DAC).
Citeseer, 2000.

[39] Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, Arvind Easwaran, and Insik Shin.
Global EDF schedulability analysis for synchronous parallel tasks on multicore plat-
forms. In Proc. of Euromicro Conference on Real-Time Systems (ECRTS), pages
25–34. IEEE, 2013.

[40] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.
Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[41] Silviu S Craciunas, Christoph M Kirsch, Hannes Payer, Ana Sokolova, Horst Stadler,
and Robert Staudinger. A compacting real-time memory management system. In
Proc. of USENIX Annual Technical Conference, pages 349–362. USENIX Associa-
tion, 2008.

[42] Alain Darte, Yves Robert, and Frédéric Vivien. Scheduling and automatic paral-
lelization. Springer Science & Business Media, 2012.

[43] Dakshina Dasari, Björn Andersson, Vincent Nelis, Stefan M Petters, Arvind
Easwaran, and Jinkyu Lee. Response time analysis of COTS-based multicores con-
sidering the contention on the shared memory bus. In Proc. of International Confer-
ence on Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 1068–1075. IEEE, 2011.

[44] Dakshina Dasari, Vincent Nelis, and Benny Akesson. A framework for memory
contention analysis in multi-core platforms. Real-Time Systems, pages 1–51, 2015.

[45] Robert I Davis and Alan Burns. Improved priority assignment for global fixed prior-
ity pre-emptive scheduling in multiprocessor real-time systems. Real-Time Systems,
47(1):1–40, 2011.

[46] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Computing Surveys (CSUR), 43(4):35, 2011.

127
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[107] Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, and Mateo Valero. An
analyzable memory controller for hard real-time CMPs. Embedded Systems Letters,
1(4):86–90, 2009.

133



[108] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. A predictable execution model for COTS-based em-
bedded systems. In Proc. of Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 269–279. IEEE, 2011.

[109] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and
Lothar Thiele. Worst case delay analysis for memory interference in multicore sys-
tems. In Proc. of Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 741–746. IEEE, 2010.

[110] Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit preemption placement for
real-time conditional code. In Proc. of Euromicro Conference on Real-Time Systems
(ECRTS), pages 177–188. IEEE, 2014.

[111] Jason Poovey, Markus Levy, Shay Gal-On, Thomas M Conte, et al. A benchmark
characterization of the EEMBC benchmark suite. IEEE Micro, 29(5):18–29, 2009.

[112] Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. In Proc. of Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2007.

[113] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. A real-time capable coherent
data cache for multicores. Concurrency and Computation: Practice and Experience,
26(6):1342–1354, 2014.

[114] Arthur Pyka, Mathias Rohde, Pavel G Zaykov, and Sascha Uhrig. Case study:
On-demand coherent cache for avionic applications. In Proc. of Workshop on High-
performance and Real-time Embedded Systems, 2014.

[115] Eduardo Quinones, Emery D Berger, Guillem Bernat, and Francisco J Cazorla. Us-
ing randomized caches in probabilistic real-time systems. In Proc. of Euromicro
Conference on Real-Time Systems (ECRTS), pages 129–138. IEEE, 2009.
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