
Approximately Optimum Search
Trees in External Memory Models

by

Oliver Grant

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Oliver Grant 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144149259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We examine optimal and near optimal solutions to the classic binary search tree problem
of Knuth. We are given a set of n keys (originally known as words), B1, B2, ..., Bn and
2n+ 1 frequencies. p1, p2, ..., pn represent the probabilities of searching for each given key,
and q0, q1, ..., qn represent the probabilities of searching in the gaps between and outside of

these keys. We have that
n∑
i=0

qi +
n∑
i=1

pi = 1. We also assume without loss of generality that

qi−1 + pi + qi 6= 0 for any i ∈ {1, ..., n}. The keys must make up the internal nodes of the
tree while the gaps make up the leaves. Our goal is to construct a binary search tree such
that expected cost of search is minimized. First, we re-examine an approximate solution of
Güttler, Mehlhorn and Schneider which was shown to have a worst case bound of c ·H + 2
where c ≥ 1

H(1
3
, 2
3

)
≈ 1.08, and H =

∑n
i=1 pi · lg(1

pi
) +

∑n
j=0 qi · lg(1

qj
) is the entropy of the

distribution. We give an improved worst case bound on the heuristic of H + 4. Next,
we examine the optimum binary search tree problem under a model of external memory.
We use the Hierarchical Memory Model of Aggarwal et al. The model has an unlimited
number of registers, R1, R2, ... each with its own location in memory (a positive integer).
We have a set of memory sizes m1,m2, ...,ml which are monotonically increasing. Each
memory level has a finite size except ml which we assume has infinite size. Each memory
level has an associated cost of access c1, c2, ..., cl. We assume that c1 < c2 < ... < cl. We
propose two approximate solutions which run in O(n) time where n is the number of words
in our data set. Using these methods, we improve upon a bound given in Thite’s 2001
thesis under the related HMM2 model in the approximate setting. We also examine the
related problem of binary trees on multisets of probabilities where keys are unordered and
we do not differentiate between which probabilities must be leaves, and which must be
internal nodes. We provide a simple O(n lg(n)) algorithm that is within an additive n+1

2n

of optimal on a multiset of n keys.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Ian Munro for guiding me
during my graduate studies here at the University of Waterloo. Learning from him was a
great privilege. I will fondly remember our talks about data structures, algorithms, and
life in general.

I would also like to thank Mordecai Golin. Conversations with Mordecai significantly
helped in the simplification of the proof in 5.2.1 and helped shape Chapter 3.

I would also like to thank my lab mate Alexandre Daigle for thoroughly proof reading
my first thesis draft, and spending countless hours working on whiteboard proofs with
me. Also thanks to colleagues Hisham El-Zein, Dimitrios Skrepetos and Simon Pratt for
working on problems with me at various times throughout my studies.

Finally, thanks to my committee members Anna Lubiw and Eric Blais for their con-
structive criticism of my work.

iv

Dedication

This is dedicated to my partner Melissa.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Binary Search Trees . 1

1.2 The Optimum Binary Search Tree Problem 2

1.3 Three-Way Branching . 2

1.4 Why Study Binary Search Trees . 3

1.5 Overview . 4

2 Background and Related Work 6

2.1 Binary Search Trees . 6

2.2 Alphabetic Codes . 7

2.3 Multiway Trees . 9

2.4 Memory Models . 10

3 An Improved Bound for the Modified Minimum Entropy Heuristic 12

3.1 Preliminaries . 12

3.2 The Modified Entropy Rule . 13

3.3 Modified Entropy is Within 4 of Entropy 14

vi

4 Approximate Binary Search in the Hierarchical Memory Model 20

4.1 The Hierarchical Memory Model . 20

4.2 Thite’s Optimum Binary Search Trees on the HMM Model 21

4.3 Efficient Near-Optimal Multiway Trees of Bose and Doüıeb 23

4.4 Algorithm ApproxMWPaging . 24

4.5 Expected Cost of ApproxMWPaging . 27

4.6 Approximate Binary Search Trees of De Prisco and De Santis with Exten-
sions by Bose and Doüıeb . 37

4.7 Algorithm ApproxBSTPaging . 39

4.8 Expected Cost of ApproxBSTPaging . 40

4.9 Improvements over Thite in the HMM2 Model 46

5 Binary Trees On Unordered Sequences of Probabilities 48

5.1 The Binary Tree On Unordered Sequences of Probabilities Problem 48

5.2 The GREEDY-MS Algorithm is Within n+1
2n

of Optimal 49

6 Conclusion and Open Problems 53

6.1 Conclusion . 53

References 56

vii

List of Tables

6.1 Models, running rimes, and worst case expected costs for algorithms dis-
cussed in this thesis. 54

viii

List of Figures

1.1 A 3 node binary tree. 3

3.1 Comparison of entropy and modified entropy rule heuristics 13

4.1 An example of the ApproxMWPaging algorithm. 27

ix

Chapter 1

Introduction

In this chapter we provide an introduction to binary search trees and the optimum binary
search tree problem. We also give motivation for studying binary search trees and give an
overview of the work presented in this thesis. We note that for the entirety of this work,
we will use lg to represent log2.

1.1 Binary Search Trees

A binary search tree is a simple structure used to store key-value pairs. It was invented
in the late 1950s and early 1960s and is generally attributed to the combined efforts of
Windley [58], Booth and Colin [14] and Hibbard [34]. In general, a binary search tree
(BST) allows for quick binary searches through data for a specific key. There is a total
ordering over the keys of the tree which are typically numbers or words. The value of a
node in the BST usually represents some piece of important information, and is often a
pointer to a large structure somewhere else in memory. Each BST node has at most two
children which are generally labelled as the left and right children. All nodes in the subtree
of the left child of a specific node p have a key strictly less than the key of p. Similarly,
nodes in the subtree of the right child of p have a key strictly greater than the key of p.
A pointer is typically stored to the root node. Search begins from this root node and is
done by recursively searching in either the left or right child of a node; stopping if the
node being searched has the correct key, or if the node reached has no children. When
searching, we typically make a single comparison at each node visited.

1

1.2 The Optimum Binary Search Tree Problem

Knuth first proposed the optimum binary search tree problem in 1971 [43]. We are given a
set of n keys (originally known as words), B1, B2, ..., Bn and 2n+1 frequencies. p1, p2, ..., pn
represent the probabilities of searching for each given key, and q0, q1, ..., qn represent the
probabilities of searching in the gaps between and outside of these keys. We have that

n∑
i=0

qi +
n∑
i=1

pi = 1

We also assume without loss of generality that qi−1 + pi + qi 6= 0 for any i ∈ {1, ..., n}.
Otherwise, we could simply solve the problem with key pi removed. The keys must make
up the internal nodes of the tree while the gaps make up the leaves. Our goal is to construct
a binary search tree such that expected cost of search is minimized. This expected cost of
search is also sometimes referred to as the expected path length. It is formally defined as:

P =
n∑
i=1

pi · (dT (Bi) + 1) +
n∑
j=0

qj · (dT (Bj, Bj+1)) (1.1)

where pi and qj are the probabilities of searching for key Bi or gap (Bi−1, Bi) respectively
and dT (Bi) and dT (Bj, Bj+1) are the depths of the internal node for Bi and the leaf for
(Bj, Bj−1) respectively in the tree T . Note that we assume that B0 represents −∞ and
Bn+1 represents ∞. Note that we charge 1 extra to search for a key at depth l than a leaf
at depth l because it requires an extra operation to confirm an internal node, whereas we
do not need this confirmation if the node is a leaf. The optimal solution of Knuth uses
dynamic programming and requires Θ(n2) time, and Θ(n2) space [43]. This solution is both
time and space intensive. We will later examine an approximate solution to this problem
of Güttler, Mehlhorn and Schneider (the Modified Entropy Rule) which uses O(n2) time
but O(n) space [32]. We will improve its worst-case expected search cost bound. While
all of the aforementioned algorithms examine the problem in the RAM model, we will also
examine the problem in more realistic models of memory and look at approximate solutions
under these settings.

1.3 Three-Way Branching

While modern computers typically only support two-way branching, the optimum binary
search tree (BST) problem proposed by Knuth uses the three-way branch model. This

2

model allows a single comparison operation to transfer control to three different locations.

Examples of this can be seen in FORTRAN IV which describes the arithmetic IF [20]:

IF (EXPR) LABEL1, LABEL2, LABEL3

Control is transferred to LABEL1, LABEL2 or LABEL3 if expr < 0, expr = 0, or expr > 0
respectively using a single comparison command. While modern programming languages
scarcely use this arithmetic IF, and compilers may simply encode such expressions using
multiple logical if statements, many machines in in the FORTRAN IV era did. For example,
the ARM instruction set would utilize condition codes based on comparison operations
which could express negative, zero, or positive values. The condition codes would then be
examined to determine control flow [6]. The difference between a two-way branch model
is significant and can be seen through a simple example of searching among 3 keys.

a

b c

Figure 1.1: A 3 node binary tree.

Assume the probability of search for any of a, b, or c is 1
3
. Under the three-way branch

model, this can be done using exactly one comparison by asking if the key we are searching
for is strictly less than b, equal to b, or strictly greater than b and returning the correct
key appropriately. Under a standard two-way branch model, this would require an extra
comparison operation 2

3
of the time as we can only distinguish one of the the three cases

from the other two using a single two-way <,>, or = comparison operation. We get an
expected cost of 1 comparison in the three-way branch model and 5

3
comparisons in the

two-way model. In general, each comparison can reveal up to lg(3) bits of information
in the three-way model, while only 1 bit per comparison can be revealed in the two-way
model.

1.4 Why Study Binary Search Trees

Traditional binary search trees (without probabilities of searching for different keys) are
ubiquitous in computer science with numerous applications. The basic binary search tree

3

has extended in a number of ways. AVL trees (named after creators AdelsonVelskii and
Landis) were the first form of self-balancing binary search trees introduced [1]. This type
of tree was invented by the pair in 1963 and maintains a height of O(lg(n)) (where n is the
number of nodes in the tree) during insertions and deletions (both of which take O(lg(n))
time). Improved self-balancing binary search trees followed in the form of Symmetric bi-
nary B-trees by R. Bayer in 1972 [8]. These are commonly referred to as red-black trees, a
term coined by Guibas, Sedgewick and Robert in 1978 [31]. Allen and Munro followed with
self-organizing binary search trees and examined a move-to-root heuristic, demonstrating
that its expected search time was within a constant of the optimal static binary tree [4].
The famous splay trees of Sleator and Tarjan followed in 1985 [50]. Tango trees were in-
vented in 2007 by Demaine et al. and provided the first O(lg lg n)-competitive binary tree
[19]. Here, O(lg lg n)-competitive means that the tango tree does at most O(lg lg n) times
more work (pointer movements and rotations) than an optimal offline tree. B trees are
among the most commonly used binary tree variant and were invented in 1970 by R. Bayer
and McCreight [9].

BST’s and their extensions are integral to a large number of applications. For example,
a BST variant known as the binary space partition is a method for recursively subdividing
space in order to store information in an easily accessible way. It is used extensively
in 3D graphics [49, 48]. Binary tries are similar to binary trees, but only store values
for leaf nodes. Binary tries are routinely used in routers and IP lookup data structures
[51]. Another example can be seen in the C++ std::map data structure, which is usually
implemented using a red-black tree (another extension of binary search trees) in order to
store its key-value pairs [17]. Finally, syntax trees (trees used in the parsing of various
programming languages) are created using binary (and more complicated) tree structures.
These trees are used in the parsing of written code during compilation [46]. Optimum
binary search trees themselves were used in a variety of text indexing applications (like the
KWIC index of the late 1960s [33]), especially around the time when they first appeared
in the literature.

1.5 Overview

In Chapter 2, we review previous work done in the areas of binary search trees, multiway
trees, alphabetic codes and various models of external memory. In Chapter 3, we re-
examine the modified entropy rule of Güttler, Mehlhorn and Schneider [32]. This is an
Θ(n2) time, Θ(n) space, algorithm for approximating the optimum binary search tree

4

problem in the RAM model. The method works very well in practice, and the group
had great experimental results, but unfortunately they could not bound the worst case
expected cost as well as they would have hoped. While simpler solutions like the Min-
max of P. Bayer [7] and Weight Balanced technique of Knuth [43] have worst case costs
of at most H + 2, the trio’s modified entropy technique was only shown to have a worst
case expected search cost of at most c · H + 2 where c ≈ 1.08 [7, 32]. We provide a new
argument of the modified entropy rule’s worst case expected search cost and show that it is
within an additive factor of entropy: at worst H+4. In Chapter 4, we move on to external
memory models, examining the optimum binary search tree problem under the Hierarchical
Memory Model of Aggarwal et al. [2]. We provide two algorithms which run in O(n) time
and bound their worst case expected costs. We show that the solutions provided both give
a direct improvement over a solution of Thite provided under the related HMM2 model
[52]. In Chapter 5, we consider a variant of the optimum binary search tree problem (in
the RAM model) where the set of probabilities given are from an unordered multiset. We
show that for a multiset with n probabilities, a simple greedy algorithm is within n+1

2n
of

optimal. Finally, in Chapter 6, we summarize our findings and discuss several problems
which remain open.

5

Chapter 2

Background and Related Work

In this chapter we provide an overview of relevant work on binary search trees, alphabetic
codes, multiway search trees and models of external memory.

2.1 Binary Search Trees

In 1971, C. Gotlieb and Walker gave an approximate solution to the optimum binary search
tree problem [57]. Knuth shortly thereafter gave the first optimal solution [43]. Knuth’s
optimal solution requires O(n2) time and space which is too costly in many situations.
Several others have since examined the approximate version of the problem. While unable
to bound an approximate algorithm within a constant of the optimal solution, many authors
have been able to bound the cost based on the entropy of the distribution of probabilities,
H. Specifically,

H =
n∑
i=1

pi · lg(
1

pi
) +

n∑
j=0

qi · lg(
1

qj
).

In 1975, P. Bayer showed that

H − lgH − (lg e− 1) ≤ COpt ≤ CWB, CMM ≤ H + 2

where COpt, CWB, and CMM are costs for the optimal solution, as well as weight-balanced
method of Knuth [43] and min-max heuristic of P. Bayer [7]. Weight-balanced and min-
max cost heuristics are greedy and require both O(n) time and O(n) space to run with

6

the O(n) implementations due to Fredman [22]. These greedy heuristics use a top-down
approach where the tree root is selected from among the n keys, and we recurse in both
the left and right subtrees. Let PL(Bi) and PR(Bi) represent the probabilities of searching
for a key before or after key Bi respectively. The Weight-balanced approach, makes this
greedy root selection by picking the root Bi such that |PL(Bi)−PR(Bi)| is minimized. The
min-max heuristic selects the root Bi such with minimum max(PL(Bi), PR(Bi)). In 1980,
Güttler, Mehlhorn and Schneider presented a new heuristic, the modified entropy rule [32]
which built upon the ideas of Horibe [35]. The Entropy Rule greedily selects Bi as the root
such that

H(PL(Bi), pi, PR(Bi)) = PL(Bi) · lg(
1

PL(Bi)
) + pi · lg(

1

pi
) + PR(Bi) · lg(

1

PR(Bi)
)

is maximized. As discussed in Chapter 3, this was modified to improve its performance.
Güttler, Mehlhorn and Schneider gave empirical evidence that the modified heuristic out-
performed others [32]. While the heuristic took O(n2) time, it only required O(n) space, a
huge savings over the optimal solution. However, they were unable to prove that the cost
of the modified entropy rule CME ≤ H + 2 (unlike previous weight-balanced and min-max
heuristics) and settled with CME ≤ c1 · H + 2 where c1 = 1

H(1
3
, 2
3

)
≈ 1.08. We re-examine

this method and provide a new bound of H + 4 in Chapter 3. In 1993, De Prisco and De
Santis presented a new heuristic for constructing a near-optimum binary search tree [18].
The method is discussed in more detail in section 4.6 and has an upper bounded cost of at
most H+1−q0−qn+qmax where qmax is the maximum weight leaf node. This method was
later updated by Bose and Doüıeb (and is also discussed in section 4.6) to have a worst
case cost of [15]

H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i].

Here, m′ = max(2n− 3P, P)−1 ≥ n
2
−1 where P is the number of increasing or decreasing

sequences in a left-to-right read of the access probabilities of the leaves (gaps) and, pqrank[i]

is the ith smallest access probability among all keys and gaps except q0 and qn.

2.2 Alphabetic Codes

Determining the optimum alphabetic coding is an important related problem relevant later
in this thesis. Given a set of n keys (keys B1, ..., Bn) with various probabilities, we wish

7

to build a binary search tree where every internal node has two children, and the n keys
described are the leaves. We wish to build the tree with the minimum expected search
cost. The expected search cost is

i=n∑
i=1

pi · dT (Bi)

where pi is the probability of searching for key Bi and dT (Bi) is the depth of the leaf
representing the key Bi in the tree T . The alphabetic ordering of the leaves must be
maintained. This is the same as the binary search tree problem with all internal node
weights zero.

In 1952, Huffman developed the well known Huffman tree, which solved the same
problem without a lexicographic ordering constraint on leaves [40]. Gilbert and Moore
were the first to examine the problem with the added alphabetic constraint (alphabetical
codes) and developed a O(n3) algorithm which solved the problem optimally [26]. Hu and
Tucker gave a O(n2) time and O(n) space algorithm in 1971 [39] which was improved by
Knuth to take only O(n lg n) time and O(n) space in 1973 [42]. The original proof of Hu
and Tucker was extremely complicated, but was later simplified by Hu [36] and Hu et al.
[38]. Garsia and Wachs gave an independent O(n lg n) time, O(n) space algorithm in 1977
[25]. This new algorithm by Garsia and Wachs was shown to be equivalent to the Hu and
Tucker algorithm in 1982 by Hu [37] and also went through a proof simplification [41] by
Kingston in 1988.

In 1991, Yeung proposed an approximate solution which solved the problem in O(n)
time and space [59]. The algorithm produced a tree with worst case cost H + 2− p1 − pn.
This algorithm was later improved by De Prisco and De Santis who created an O(n)
time algorithm which has a worst case cost of H + 1 − p1 − pn + pmax [18]. The method
was improved one more time by Bose and Doüıeb who improved upon Yeung’s method
by decreasing the bound by

∑m
i=0 prank[i] where m = max(n− 3P, P) − 1 ≥ n

4
− 1, P

is the number of increasing or decreasing sequences in a left-to-right read of the access
probabilities of the leaves and prank[i] is the ith smallest access probability among all leaves
except p1 and pn [15]. Replacing Yeung’s method with the improved algorithm of Bose and
Doüıeb in the De Prisco and De Santis algorithm gave the tightest bound seen so far of

H + 2− p1 − pn −
m∑
i=0

prank[i].

8

2.3 Multiway Trees

Another related problem is the static k-ary or multiway search tree problem. It is similar to
the optimum binary search tree problem with the added option that up to k−1 keys can be
placed into a single node, and the cost of search within a node is constant. Multiway search
trees maintain an ordering property similar to that of traditional binary search trees. Each
key in every page g that isn’t the root page must have its keys lie between some keys l and
l′, two keys located in g′s parent. Each internal node of the k-ary tree contains at least one
and at most k − 1 keys while a leaf node contains no keys and represents searching for an
item in a gap between keys. Successful searches end in an internal node while unsuccessful
searches end in one of the n + 1 leaves of the tree. The cost of search is the average path
depth which is defined as:

n∑
i=1

pi(dT (Bi) + 1) +
n∑
j=0

qj(dT ((Bi−1, Bi)))

where Bi’s represent successful search keys with probabilities pi, pairs (Bi−1, Bi) (with
probabilities qi−1) represent gaps and dT (Bi) or dT ((Bi−1, Bi)) represent the depth of keys
or gaps respectively in the tree T .

Vishnavi et al. [53], and Gotlieb [29] in 1980 and 1981, respectively, independently
solved the problem optimally in O(k · n3) time. In a slightly modified B-tree model (every
leaf has the same depth, every internal node is at least half full), Becker’s 1994 work gave a
O(knα) time algorithm where α = 2+ log2/log(k+1) [10]. Later, in 1997, Becker proposed
an O(Dkn) time algorithm where D is the height of the resulting tree [11]. The algorithm
did not produce an optimal tree but was thought to be empirically close despite having no
strong upper bound. In 2009, Bose and Doüıeb gave both an upper and lower bound on
the optimal search tree in terms of the entropy of the probability distribution as well as
an O(n) time algorithm to build a near-optimal tree [15]. Their bounds of

H

lg(2k − 1)
≤ POPT ≤ PT ≤

H

lg k
+ 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

are discussed in more detail in section 4.3 of this paper. Here, m = max(n− 3P, P)− 1 ≥
n
4
− 1. P is the number of increasing or decreasing sequences in a left-to-right read of

the access probabilities of the gaps. Moreover, qrank[i] is the ith smallest access probability
among all leaves (gaps) except q0 and qn.

9

2.4 Memory Models

In the typical RAM model, we assume that all reads and writes from memory take a
constant amount of time. While this is a valid assumption in many situations (both in the
context of theory and programming) when dealing with very large data sets, this is simply
not the case. A typical computer has a memory hierarchy with CPU registers, various
levels of cache, RAM, SSD and/or hard drives. Each of these memory levels has increasing
size but decreasing I/O speed. Typically, the difference between the levels is dramatic
(reading from disk takes roughly a million times longer than accessing a CPU register)
[54]. Moreover, many memory hierarchies allow blocks of memory to be moved quickly
after a single key or cache line has been accessed. It is thus possible to take advantage of
the locality of data during computations. Moreover, it is imperative to consider memory
I/O speeds, especially when the dataset being worked on does not fit on internal memory.
External memory algorithms and data structures refer to those methods and structures
which explicitly manage data placement and movement [54]. Various authors have created
models to properly reflect the performance of such algorithms and data structures, and we
consider the optimum binary search tree problem under such a model.

In Chapter 4, we discuss the optimum binary search tree problem under the 1987
Hierarchical Memory Model of Aggarwal et al. [2]. The model is described thoroughly in
section 4.1, but essentially provides an alternative to the classic RAM model. It simulates
a memory hierarchy with various memory sizes and different access times for each type of
memory. The model does have its shortcomings though as it does not provide us with the
ability to move blocks of memory between these different memory types (as in a typical
computer). The HMM model was later extended to the Hierarchical Memory with Block
Transfer Model of Aggarwal, Chandra, and Snir [3]. This model provides a less artificial
setting by allowing for contiguous blocks of memory to be copied from one location to
another for a cheaper price. The cost of this copy equal to the cost to access the most
expensive location being copied (to or from), plus the size of the block.

As explained in the survey of Vitter [54], several other models of external memory have
followed. Work has been done to consider models with parallelism. Vitter and Shriver
[56] built upon the HMM and HMBTM models of Aggarwal et al. [2, 3] in order to allow
parallelism. This updated model connects P parallel memory hierarchies at their base
memory levels. In 1994, Alpern et al. introduced the Uniform Memory Hierarchy (UMH)
[5]. The UMH considers block sizes and bandwidths between memory levels, and allows
for simultaneous transfer between pairs of memory levels. The UMH was considered with
additional parallelization by Vitter and Nodine [55].

Cache-oblivious algorithms were introduced by Frigo, Leiserson, Prokop and Ramachan-

10

dran in 1999 [23]. The model used is the ideal-cache model which has a two-level memory
hierarchy. The internal memory (named cache) has Z words and the main memory is
arbitrarily large. The cache is divided into cache lines of size L and it is assumed that
Z = Ω(L2) (the tall cache assumption). Frigo et al. examined the fast fourier transform
and matrix multiplication under this model. Many others have since used this model and
examined problems in a cache-oblivious setting such as the cache-oblivious b-trees of Ben-
der et al. [12], the funnel heap of Brodal et al. [16], or the locality preserving cache-oblivious
dynamic dictionary of Bender et al. [13].

A complete and thorough explanation of memory hierarchies (especially those consid-
ered before cache-oblivious settings) can be found in the survey of Vitter [54].

11

Chapter 3

An Improved Bound for the Modified
Minimum Entropy Heuristic

In this chapter we show that the Modified Minimum Entropy Heuristic of Güttler, Mehlhorn
and Schneider [32] is within an additive factor of entropy: at worst H + 4. The previous
bound was best upper bound was c1 ·H + 2 where c1 = 1

H(1
3
, 2
3

)
≈ 1.08.

3.1 Preliminaries

Recall equation 1.1, H =
∑n

i=1 pi · lg(1
pi

) +
∑n

j=0 qi · lg(1
qj

). We also use

H(x1, x2, ..., xn) =
n∑
i=1

xi · lg(
1

xi
)

to describe the entropy of any probability distribution (x1, x2,, xn). For subtree t, we
let

pt =
∑
i:Bi∈t

pi +
∑

i:(Bi,Bi+1)∈t

qi

be its total probability (the sum of the probability of all nodes within the subtree). PL(Bi)
and PR(Bi) are probabilities of searching lexicographically before or after (respectively) key
Bi. PL(Bi, Bi+1) and PR(Bi, Bi+1) are probabilities of searching lexicographically before
(or equal to) Bi and after (or equal to) Bi+1 respectively. For a subtree t, P t

L(Bi) and

12

P t
R(Bi) describe the normalized probabilities of searching for a key to the left or right of
Bi within t, and P t

L(Bi, Bi+1) and P t
R(Bi, Bi+1) have analogous definitions. We let

Et = H(P t
L(Bi),

pi
pt
, P t

R(Bi)) (3.1)

be the local entropy of a subtree t rooted at key Bi.

3.2 The Modified Entropy Rule

We first describe the entropy rule originally by Horibe [35] for greedy root selection then
explain how it was modified in [32]. For a subtree t with probability pt, the entropy rule
greedily chooses the keyBi as the root such thatH(P t

L(Bi),
pi
pt
, P t

R(Bi)) is maximized. While
this rule behaves quite well in practice, certain cases cause it to have poor performance
(refer to Figure 3.1).

1
5

1
5 0

0 3
5

(a) Entropy rule tree: C = 8
5

0

1
5

1
5 0

3
5

(b) Modified entropy rule tree: C = 7
5

Figure 3.1: Comparison of entropy and modified entropy rule heuristics

Figure 3.1 demonstrates the shortcomings of the entropy rule heuristic. Given the
probability set {q0 = 1

5
, p1 = 1

5
, q1 = 0, p2 = 0, q3 = 3

5
} the entropy rule will mistakenly

choose key B1 as the root while selecting B2 as the root produces a better tree. This
mistake is remedied in the modified entropy rule of Güttler, Mehlhorn and Schneider [32].
The modified entropy heuristic chooses the root in one of the following three ways:

a) If there exists key Bi such that pi
pt
> max(P t

L(Bi), P
t
R(Bi)) we always select Bi as the

root.

13

b) If there exists a gap (Bi, Bi+1) such that qi
pt

> max(P t
L(Bi, Bi+1), P t

R(Bi, Bi+1))

then we select the root from among Bi and Bi+1. Bi is chosen if P t
L(Bi, Bi+1) >

P t
R(Bi, Bi+1) and Bi+1 is chosen otherwise.

c) Otherwise, Bi is selected such that H(P t
L(Bi),

pi
pt
, P t

R(Bi)) is maximized (as in the

original entropy rule).

The approach proposed by Güttler, Mehlhorn and Schneider takes O(n2) time in the
worst case and O(n) space.

3.3 Modified Entropy is Within 4 of Entropy

First, we review a quick Lemma about entropy (nearly identical to Lemma 2.3 in [7]).

Lemma 3.3.1. If x ≤ 1
2

then H(x, 1− x) ≥ 2x.

Proof. We refer the reader to Gallager’s 1968 work [24].

Next, we describe a Lemma which breaks our choice of root in the greedy modified
entropy heuristic into one of three cases (not to be confused with the three rules used in
section 3.2).

Lemma 3.3.2. When using the modified entropy rule chooses the root Br of a subtree t
with total probability pt, one of the following three cases must occur:

Case 1) Et ≥ 1− 2
pr
pt

Case 2) There exists gap(Bi, Bi+1) such that
qi
pt
> max(P t

L(Bi, Bi+1), P t
R(Bi, Bi+1))

Case 3) max(P t
L(Br), P

t
R(Br)) <

4

5

Proof. At a high level, we first show that Rule a) from section 3.2 implies Case 1. We also
show that if there exists Bi such that P t

L(Bi) ≤ 1
2

and P t
R(Bi) ≤ 1

2
, but cannot apply Rule

a), then we still have Case 1. Assuming that neither of the two aforementioned conditions
occur, we must have that there exists some gap (Bi, Bi+1) spanning the middle of the data
set. Given this condition, we show that if Case 2 does not occur (i.e. we cannot use Rule
b) of section 3.2) then Case 3 must occur, completing the proof.

14

Rule a) =⇒ Case 1
First, suppose there exists some pi such that pi

pt
> max(P t

L(Bi), P
t
R(Bi)). By the Rule a)

of section 3.2, it must be selected as the root and thus r = i. Moreover, both P t
L(Bi) and

P t
R(Bi)) must be less than one half. Thus, using Lemma 3.3.1 we have:

Et ≥ H(max(P t
L(pi), P

t
R(pi)), 1−max(P t

L(pi), P
t
R(pi))

≥ 2 ·max(P t
L(pi), P

t
R(pi))

≥ 1− pi
pt

≥ 1− 2
pi
pt

= 1− 2
pr
pt

as required.

Bi spans middle =⇒ Case 1
If we do not have some pi such that pi

pt
> max(P t

L(Bi), P
t
R(Bi)) but do have some Bi such

that P t
L(Bi) ≤ 1

2
and P t

R(Bi) ≤ 1
2

then we must use Rule c) of section 3.2. We then must
have that:

Et ≥ H(P t
L(Bi),

Bi

pt
, P t

R(Bi)) and

0 ≤ P t
L(Bi) ≤ 0.5 and

0 ≤ pi
pt
≤ 0.5 and

0 ≤ P t
R(Bi) ≤ 0.5

then we know that

H(P t
L(pi),

pi
pt
, P t

R(pi)) ≥ H(1/2, 1/2) = 1

in this case. Thus, combining the above two cases, if have some Bi such that P t
L(Bi) ≤ 1

2

and P t
R(Bi) ≤ 1

2
then Et ≥ 1− 2pr as required.

(
NOT(Bi spans mid) AND NOT(Case 1) AND NOT(Case 2)

)
=⇒ Case 3

Otherwise, we must have some gap (Bi, Bi+1) spanning the middle of the data set (i.e.
P t
L(Bi, Bi+1) < 1

2
and P t

R(Bi, Bi+1) < 1
2
). Suppose that Case 2 does not occur (i.e. we can-

not use Rule b): there does not exist a (Bi, Bi+1) such that qi
pt
> max(P t

L(Bi, Bi+1), P t
R(Bi, Bi+1)).

15

Then, for any root r of t we have that

max(P t
L(Br), P

t
R(Br)) ≥ min(P t

L(Br), P
t
R(Br))

max(P t
L(Br), P

t
R(Br)) ≥ qi

Thus, for any root r:

max(P t
L(pr), P

t
R(pr)) ≥ 1/3

and by our assumption

max(P t
L(pr), P

t
R(pr)) <

1

2
.

So, as in the proof of table 3 (5.3) in [32]

Et ≥ H(1/3, 2/3) ≈ 0.92.

Either Case 1 occurs, or we have that:

Et < 1− 2
pr
pt

=⇒ pr
pt
<

1−H(1
3
, 2

3
)

2
≈ 0.04.

Suppose for contradiction that max(P t
L(pr), P

t
R(pr)) ≥ 4

5
pt then we have:

Et ≤ H(
4

5
,
1−H(1

3
, 2

3
)

2
,
1

5
−

1−H(1
3
, 2

3
)

2
) ≈ 0.87 < 0.92 ≈ H(

1

3
,
2

3
) ≤ Et

which is a contradiction. Thus, if we do not have Case 1 or Case 2 we must have Case 3
which completes the proof.

Before we examine the main theorem we show a small claim.

Claim 1. H(1
2
− 1

2
x, 1

2
+ 1

2
x) ≥ 1− 4

5
x2 when 0 < x < 1

2

16

Proof. In order to prove the claim, we find the minimum of

H(
1

2
− 1

2
x,

1

2
+

1

2
x)− (1− 4

5
x2)

when 0 < x < 1
2
. To do this, we define F (x) and take the derivative with respect to x.

F (x) = H(
1

2
− 1

2
x,

1

2
+

1

2
x)− (1− 4

5
(x)2)

F (x) = −(
1

2
− 1

2
x) · lg(

1

2
− 1

2
x)− (

1

2
+

1

2
x) · lg(

1

2
+

1

2
x)− (1− 4

5
x2)

=⇒ F ′(x) = lg(
1

2
− 1

2
x)− lg(

1

2
+

1

2
x) +

8

5
x (with some careful manipulation)

The only root occurs when x = 0. Thus, we check when x → 0 and x → 1
2
. We note

that:

F ′(x)
x→0−−→ 0+ and

F ′(x)
x→ 1

2−−−→ 0.0112781 > 0

Thus, H(1
2
− 1

2
x, 1

2
+ 1

2
x)− (1− 4

5
(x)2) > 0 for 0 < x < 1

2
which proves the claim.

Theorem 3.3.3. Let CME be the expected cost of search for a tree made by the modified
entropy rule. Then

CME ≤ H + 4

Proof. This uses a similar style to the proof of Theorem 4.4 in [7]. We bind each Et for
each subtree of our BST on a case by case basis using the cases of Lemma 3.3.2.
If Case 1 occurs, we obviously have that

Et ≥ 1− 2
pr
pt
. (3.2)

Note that this can only happen once for each key (a key can only be root once).

As mentioned in Lemma 3.3.2 if some Bi spans in the middle of the data set, P t
L(Bi) ≤ 1

2

and P t
R(Bi) ≤ 1

2
, we can still show that Case 1 occurs. Suppose for the remainder of the

proof that there is no such middle-spanning Bi.

17

Let (Bm, Bm+1) be the unique middle gap (i.e. P t
L(Bm, Bm+1) < 1

2
and P t

R(Bm, Bm+1) <
1
2
) when Case 2 or Case 3 occurs. When Case 2 occurs, we know that we could select

a root from among the two keys outside of our middle spanning gap, and choose the one
which is closer to the middle. Thus, we have that (using Lemma 3.3.1):

Et ≥ H(
1

2
− 1

2

qm
pt
,
1

2
+

1

2

qm
pt

) ≥ 2(
1

2
− 1

2

qm
pt

) = 1− qm
pt
. (3.3)

Note that by the definition of the Rule c) of section 3.2, when this occurs, (Bm, Bm+1)
must be a leaf of depth at most 2. Thus, this condition can only happen twice for each
(Bm, Bm+1) gap.

When neither Case 1 nor Case 2 occur (and we have a (Bm, Bm+1) spanning the middle)
we must have Case 3. This gives us

Et ≥ H(
1

2
− 1

2

qm
pt
,
1

2
+

1

2

qm
pt

).

We again apply Claim 1 and get

Et ≥ 1− 4

5
(
qm
pt

)2. (3.4)

As in [7] we define a bt for each subtree t as follows. We want to have a value for bt such
that Et ≥ 1− bt

pt
in all cases. Using Cases 1,2, and 3 are their respective equations 3.2, 3.3,

and 3.4 we do just that:
Let bt = 2 · pr when Case 1 occurs. Br is the root of bt.
Let bt = 2 · qm when Case 2 occurs. (Bm, Bm+1) is middle gap of bt.

Let bt = q2m
pt

when Case 3 occurs. (Bm, Bm+1) is middle gap of bt.

Note that, in 1975 P. Bayer [7] showed that the cost C of our tree could be defined as
(Lemma 2.3)

C =
∑
t∈ST

pt

and the entropy could be calculated by

H =
∑
t∈ST

pt · Et

18

where ST is the set of all subtrees of our tree T .

Thus, by subbing in Et ≥ 1− bt
pt

and rearranging we get:

H =
∑
t∈ST

pt · Et ≥
∑
t∈ST

pt −
∑
t∈ST

bt = C −
∑
t∈ST

bt

=⇒ C ≤ H +
∑
t∈ST

bt

As mentioned above, Case 1 and Case 2 can only occur once and twice respectively for
any potential root Br or gap (Bm, Bm+1). Case 3 however, can occur many times for a
gap (Bm, Bm+1). Each time it occurs though, qm

pt
must increase by a factor of at least 5

4

since max(P t
L(Br), P

t
R(pr)) <

4
5

for the root Br of the subtree by Case 3) of Lemma 3.3.2.
Moreover, if qm

pt
> 1

2
then we will have Case 2. Let Sm be the set of all subtrees t for which

(Bm, Bm+1) is the middle gap and Case 3 only applies. We have that

C ≤ H +
∑
t∈ST

bt = H + 2
n∑
r=1

pr + 2
n∑

m=0

qm +
n∑

m=0

∑
t∈Sm

4

5

q2
m

pt

By factoring out qm and examining only cases up to qm
pt

= 1
2

(since otherwise Case 2 will

occur) we get:

C ≤ H + 2 +
n∑

m=0

(
4

5
· qm)

∞∑
x=0

1

2
· (4

5
)x

= H + 2 +
n∑

m=0

4

5
· qm ·

1

2
· (1

1− 4
5

) (geometric series)

= H + 2 + 2 ·
n∑

m=0

qm

≤ H + 4.

It remains open as to whether or not this bound is tight. We conjecture that it is likely
the case that the worst case bound is in fact H + 2 as no cases with worse behaviour are
known.

19

Chapter 4

Approximate Binary Search in the
Hierarchical Memory Model

In this chapter we examine the optimum BST problem under the Hierarchical Memory
Model (HMM). We provide two approximate solutions, bound their worst case expected
costs via entropy, and show improvement over a previous solution in the related HMM2

model.

4.1 The Hierarchical Memory Model

The HMM was proposed in 1987 by Aggarwal et al. as an alternative to the classic RAM
model [2]. It was intended to better model the multiple levels of the memory hierarchy. The
model has an unlimited number of registers, R1, R2, ... each with its own location in memory
(a positive integer). In the first version of the model, accessing a register at memory loca-
tion xi takes dlg(xi)e time. Thus, computing f(a1, a2, ..., an) takes

∑n
i=1dlg(location(ai))e

time. The original paper also considered arbitrary cost functions f(x). We will use the
cost function as was explained in Thite’s thesis [52]. Here, µ(a) is the cost of accessing
memory location a. We have a set of memory sizes m1,m2, ...,ml which are monotonically
increasing. Each memory level has a finite size except ml which we assume has infinite
size. Each memory level has an associated cost of access c1, c2, ..., cl. We assume that
c1 < c2 < ... < cl. The cost of accessing a memory location a is given by

µ(a) = ci if
i−1∑
j=1

mj < a ≤
i∑

j=1

mj. (4.1)

20

More specifically, we can think of ci as the entire cost of moving a element in mi recursively
up the memory hierarchy and finally accessing it. While there are interesting problems
in more sophisticated models, it is beyond the scope of this work to examine locality
optimizations under a more complex model in this recursive movement of items up the
hierarchy.

Thite notes that typical memory hierarchies have decreasing sizes for faster memory
levels (moving up the memory hierarchy). We make the same assumption:

m1 < m2 < ... < ml.

Unlike Thite, we also explicitly assume that successive memory level sizes divide one an-
other evenly:

∀i ∈ {1, 2, ..., l − 1}mi | mi+1.

4.2 Thite’s Optimum Binary Search Trees on the HMM

Model

Thite’s thesis provides solutions to several problems in the HMM and the related HMM2

models [52]. He first provides an optimal solution to the following problem (known as
Problem 5 in the work). Note that we have made slight modifications in order to maintain
correct notation throughout this work:

Problem 1 [Optimum BST Under HMM]. Suppose we are given a set of
n ordered keys B1, B2, ..., Bn with associated probabilities of search p1, p2, ..., pn,
as well as n + 1 ranges or gaps (B0, B1), (B1, B2), ..., (Bn−1, Bn), (Bn, Bn+1)
with associated probabilities of search q0, q1, ..., qn. The problem is to construct
a binary search tree T over the set of keys and gaps (keys must be internal
nodes, and gaps must be leaves) and compute a memory assignment function
φ : V (T) → 1, 2, ..., n that assigns nodes of T to memory locations such that
the expected cost of a search is minimized under the HMM model [52].

Note that we assume that B0 represents −∞ and Bn+1 represents ∞.

Thite provided three separate optimum solutions to the problem described; Parts,
Trunks, and Split. Here, h is the minimum memory level such that all n keys can fit on

21

memories of height at most h. More specifically h is defined as

min(h ∈ {1, .., l}) : n ≤
h∑
i=1

mi

We now give a high-level overview the the three solutions of Thite. For a more detailed
explanation, please refer to his thesis [52].

Parts is a bottom up dynamic programming algorithm which constructs optimum
subtrees T ∗i,j for each i, j, 1 ≤ i ≤ j ≤ n using only the first j− i+1 memory locations. For
each choice of root B(k) where k ∈ {i, ..., j} all possible memory assignments are examined.

Thite claims a running time of O(2h−1

(h−1)!
· n2h+1) for the algorithm.

Trunks is an algorithm that, like Parts, uses dynamic programming to build optimal
subtrees over larger and larger sets of keys. For each range i, j, 1 ≤ i ≤ j ≤ n, and for each
possible root B(k), they examine all s such that s ≤ j− i+ 1 and consider placing s nodes
in the first h− 1 levels of memory, and the remaining j − i− 1− s nodes in memory level

h. Thite claims that the algorithm takes O(2n−mh ·(n−mh+h)n−mh ·n3

(h−2)!
) time. Moreover, the

algorithm should work well in practice when n−mh and h are small (i.e. a short memory
hierarchy with a very large biggest memory size, typical in a modern computer).

Split is a top-down algorithm for solving the problem when there are n levels in the
memory hierarchy. Thite claims a running time of O(2n). We note that this running time
result is dubious as Thite’s explanation simply states that a root is chosen by examining
each of the 2n−1 ways of partitioning memory locations between the left and right subtrees
and recursing on each side. It is unclear how the potential roots are compared, and we
cannot think of a way to select the correct root in this fashion without an exponential
running time. A proof of correctness of algorithm was unfortunately omitted from Thite’s
work.

In the following sections, we provide two approximate solutions to this problem that
run in time O(n) and provide an upper bound on their expected search costs.

Thite also considered the same problem under the related HMM2 model. This model
assumes there are simply two levels of memory of size m1 and m2 with costs of access
c1 and c2 where c1 < c2. Thite provides an optimal solution to this problem (named
TwoLevel) he claims runs in time O(n5). TwoLevel has two phases and in the first phase,
it uses an algorithm similar to that of Knuth, solving for all subtrees that will fit on a
single memory level (i.e. solves for all ranges [i, j] such that j − i + 1 ≤ max(m1,m2)).

22

Specifically, it creates arrays C[i, j] and R[i, j] where C and R are the optimal tree cost
(using a uniform cost model), and root selection of optimal tree over [i, j]. TwoLevel phase
two utilizes algorithm Parts and uses dynamic programming to compute c(i, j, n1, n2) and
r(i, j, n1, n2) which are the optimal tree and optimal tree root choices using the HMM2

cost model using keys [i, j] with n1 keys in memory M1 and n2 in memory M2. c and
r are computed using dynamic programming. Thite claims the algorithm runs in o(n5),
if m1 ∈ o(n), and in O(n4) if m1 ∈ O(1). He also gives an O(n lg n) time approximate
solution with an upper bounded expected search cost of c2(H + 1). This algorithm utilizes
a O(n) BST approximation algorithm of Mehlhorn [47] and an O(n lg n) greedy scheme
for placing the BST tree into memory. The solution we provide under the HMM model
also gives an improvement over Thite’s approximate algorithm in both running time and
expected cost under the HMM2 model.

4.3 Efficient Near-Optimal Multiway Trees of Bose

and Doüıeb

In order to obtain a good approximate solution to the optimum BST problem under the
HMM model, we use the multiway search tree construction algorithm of Bose and Doüıeb
[15]. In 2009, they devised a new method with linear running time (independent of the
size of a node in tree) and with the best expected cost to date. They were able to prove
that:

H

lg(2k − 1)
≤ POPT ≤ PT ≤

H

lg k
+ 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i].

Here, H is the entropy of the probability distribution, POPT is the average path-length
(expected cost of search) in the optimal tree, PT is the average path length of the tree
built using their algorithm and m = max(n− 3P, P) − 1 ≥ n

4
− 1. P is the number of

increasing or decreasing sequences in a left-to-right read of the access probabilities of the
gaps. Moreover, qrank[i] is the ith smallest access probability among all leaves (gaps) except
q0 and qn. Finally, k is the size of a node in the tree (the number of keys that fit inside an
internal node). Each node will have at most k + 1 children.

As described in the section 2.3, in the multiway search tree problem we are given n or-
dered keys with weights p0, ..., pn as well as n+ 1 weights of unsuccessful searches q0, ..., qn.
The goal is to build a minimum cost tree where k keys fit inside a single internal node. A

23

single gap will fit in each leaf node.

We refer readers to the paper [15] for a more detailed explanation, but we give an
overview here. The algorithm proceeds in three steps:

1. An examination of the peaks and valleys of the probability distribution of the leaf
weights is used to redistribute weights from leaves to internal nodes.

2. This new probability distribution is made into a k-ary tree using a greedy recursive
algorithm. The algorithm recursively chooses the l ≤ k−1 elements to go in the root
node such that each child’s subtree will have probability of access of at most 1

k−1
.

This completed k-ary tree is called the internal key tree.

3. Leaf nodes are reattached to the internal key tree.

Their algorithm’s design allows the authors to bound the depth of keys and gaps by their
associated probabilities. This ultimately allows them to achieve the bounds on expected
cost of search that they have described.

4.4 Algorithm ApproxMWPaging

In this section we provide an algorithm for creating a BST and subsequently packing it
into memory. The algorithm first uses the multiway search tree construction algorithm of
Bose and Doüıeb as a subroutine. This multiway search tree is converted into a BST, then
packed into the memory hierarchy. Note that we make the explicit assumption that we are
given the keys in sorted order as input.

First, we describe how we convert a multiway search tree to a binary search tree. For
the sake of clarity, we will call what are typically known as nodes of the multiway tree
pages. This represents how various items of our search tree will fit onto pages of our
memory hierarchy. We maintain the notion of calling individual items keys.

Lemma 4.4.1. Given a multiway tree T ′ with page size k (a k+1-ary tree) and n keys,
and n + 1 gaps and an associated probability distribution as in Knuth’s original optimum
binary search tree problem, we can create a BST T where each key in a given page g ∈ T ′
forms a connected component in T in O(n) time.

24

Proof. For each page g, we create a complete BST B over its keys (using the sorted order of
all 2n+1 keys and gaps). We create an ordering over all potential locations where additional
keys could be added to this small BST from left to right. All keys in all descendant pages
of a page g in a specific subtree rooted at a child of g will lie in a specific range. There are
at most k + 1 of these ranges (since our page has at most k keys). These ranges precisely
correspond to the at most k+ 1 locations where a new child key could be added. We order
these locations from left to right and attach root keys from the newly created BST’s of
each of the ordered (left to right) child of g. Leaf pages with a single gap are attached in
a similar fashion. These are all valid connections since each child of g has keys in these
correct ranges, and combining BST’s in this fashion produces a valid BST. We create a
complete BST in each page in O(k) time (of which there are at most O(n

k
) such pages),

and make O(n) new parent child connections, giving us total time O(n).

In order to obtain a good approximate solution to the optimum BST problem under
the HMM model, we do the following:

1. First, we create a multiway tree T ′ using the algorithm of Bose and Doüıeb. This
takes O(n) time with our page size equal to m1 (the smallest level of our memory
hierarchy) [15].

2. Inside each page (node of the multiway tree T ′), we create a balanced binary search
tree (ignoring weights). We use a simple greedy approach where we sort the keys,
then recursively select the middle key as the root. We call each of these T ′k for
k ∈ 1, ..., dn/m1e. This takes O(n) by Lemma 4.4.1.

3. In order to make this into a proper binary search tree, we must connect the O(n/m1)
BST’s we have made as described in Lemma 4.4.1. From T ′, we create a BST T .
This takes O(n) time.

4. We pack keys into memory in a breadth first search order of T starting from the root.
This takes O(n) time.

We are left with a binary search tree which has been properly packed into our memory in
total time O(n).

25

4 8 14

1 2 3 5 6 7 9 10 11

12 13

15 16 17

(a) Part 1. of ApproxMWPaging

8

4 14

2

1 3

6

5 7

10

9 11

12

13

16

15 17

(b) Part 2. of ApproxMWPaging

26

8

4

2

1 3

6

5 7

14

10

9 11

12

13

16

15 17

(c) Part 3. of ApproxMWPaging

Memory Location Node Left Child Location Right Child Location
1 8 2 3
2 4 4 5
3 14 6 7
4 2 8 9
5 6 10 11
6 10 12 13
7 16 14 15
8 1 — —
9 3 — —
10 5 — —
11 7 — —
12 9 — —
13 11 — 16
14 15 — —
15 17 — —
16 12 — 17
17 13 — —

(d) Part 4. of ApproxMWPaging

Figure 4.1: An example of the ApproxMWPaging algorithm.

4.5 Expected Cost of ApproxMWPaging

First, we bound the depth of nodes in our BST T . The depth of a key Bi (or (Bi−1, Bi)
for gaps) is defined as dT (Bi) (resp. dT ((Bi−1, Bi))). Note that depth is the number of
edges between a node and the root (i.e. the depth of the root is 0). As in the work of Bose

27

and Doüıeb, let m = max(n− 3P, P)− 1 ≥ n
4
− 1 where P is the number of increasing or

decreasing sequences in a left-to-right read of the access probabilities of the leaves (gaps)
[15].

Lemma 4.5.1. For a key Bi,

dT (Bi) ≤ lg(
1

pi
).

For a key (Bi−1, Bi),

dT ((Bi−1, Bi)) ≤ lg(
1

qi
) + 2

for all gaps, and

dT ((Bi−1, Bi)) ≤ lg(
1

qi
) + 1

for at least m of them (and the two extremal gaps, (B0, B1) and (Bn, Bn+1)).

Proof. First we note that in the tree T ′ we build using Bose and Doüıeb’s multiway tree
algorithm, the maximum depth of keys (call this dT ′(Bi), dT ′(Bi−1, Bi)) for a page size m1

is [15]:

dT ′(Bi) ≤ blogm1(
1

pi
)c

dT ′(Bi−1, Bi) ≤ blogm1(
2

qi
)c+ 1 for all gaps, and

dT ′(Bi−1, Bi) ≤ blogm1(
1

qi
)c+ 1 for at least m of them (and the two extremal gaps)

As explained in the paper, these follow from Lemmas 1 and 2 of Bose and Doüıeb [15].

Inside a page, we make a balanced (ignoring weight) BST, so each key has a depth
within a page of at most blg(m1)c. Since our algorithm always connects the root of the
BST made for a page to a key in the BST made for the page’s parent, a key Bi has a
page depth (the number of unique pages accessed in order to access the key) of at most the
bounds on dT ′(Bi) and dT ′(Bi−1, Bi) described. Since we examine at most dlg(m1)e keys

28

within any one page, (and only 1 gap in a leaf page) a key’s depth is at most

dT (Bi) ≤ blg(m1)cblogm1(
1

pi
)c

=⇒ dT (Bi) ≤ lg(m1) · logm1(
1

pi
)

=⇒ dT (Bi) ≤ lg(
1

pi
).

For an unsuccessful search

dT ((Bi−1, Bi)) ≤ blg(m1)cblogm1(
2

qi
)c+ 1

=⇒ dT ((Bi−1, Bi)) ≤ lg(m1) · logm1(
2

qi
) + 1

=⇒ dT ((Bi−1, Bi)) ≤ lg(
1

qi
) + 2 for all gaps, and

=⇒ dT ((Bi−1, Bi)) ≤ lg(
1

qi
) + 1 for at least m of them (and the two extremal gaps).

Next, we bound the cost of search for each key and each gap. Let m′j =
∑

k≤jmj. We
define m′0 = 0.

Lemma 4.5.2. For any key Bi, if

k =minj∈{1,...,h} | m′j ≥ location(Bi) then

k = minj∈{1,...,h} | m′j ≥
2

pi
− 1.

Let par(Bi−1, Bi) represent the parent of the node for gap (Bi−1, Bi) in T . If n ≥ 1, then
for any gap (Bi−1, Bi), if

k =minj∈{1,...,h} | m′j ≥ location(par(Bi−1, Bi)) then

k = minj∈{1,...,h} | m′j ≥ b
4

qi
− 1

2
c and

k = minj∈{1,...,h} | m′j ≥ b
2

qi
− 1

2
c for at least m of them (and the two extremal gaps).

29

Proof. Knowing a key’s depth, its location in T (since we use a BFS to place nodes into
memory) can be bounded as follows:

location(Bi) ≤ 2dT (Bi)+1 − 1.

From Lemma 4.5.1 we know that dT (Bi) ≤ lg(1
pi

). Thus,

location(Bi) ≤ 2
lg(1

pi
)+1 − 1

location(Bi) ≤ 2
lg(2

pi
) − 1

location(Bi) ≤
2

pi
− 1.

A gap’s location can be bounded as follows:

location(Bi−1, Bi) ≤ 2dT ((Bi−1,Bi))+1 − 1.

Because we placed our tree T into memory in BFS order, we can also bound the depth
of a gap’s parent (we assume for the remainder of this proof that the tree is non-trivial,
i.e. n > 0).

location(par(Bi−1, Bi)) ≤ b
location(Bi−1, Bi)

2
c

location(par(Bi−1, Bi)) ≤ b
2dT ((Bi−1,Bi))+1 − 1

2
c

location(par(Bi−1, Bi)) ≤ b2dT ((Bi−1,Bi)) − 1

2
c

Thus, for any gap (Bi−1, Bi),

location(par(Bi−1, Bi)) ≤ b2lg(1
qi

)+2 − 1

2
c using Lemma 4.5.1

location(par(Bi−1, Bi)) ≤ b
4

qi
− 1

2
c for all gaps.

30

Moreover, a similar explanation shows that

location(par(Bi−1, Bi)) ≤ b
2

qi
− 1

2
c for at least m (and the two extremal) gaps.

Lemma 4.5.3. The cost of searching for key Bi or gap (Bi−1, Bi), (C(Bi) and C(Bi−1, Bi)
respectively) can be bounded as follows:

C(Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′ +

(
lg(

1

pi
) + 1− blg(m′k−1 + 1)c

)
· ck

such that

(
k = minj∈{1,...,h} | m′j ≥

2

pi
− 1

)

C(Bi−1, Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′ +

(
lg(

1

qi
) + 2− blg(m′k−1 + 1)c

)
· ck

such that

(
k = minj∈{1,...,h} | m′j ≥ b

4

qi
− 1

2
c
)

for all gaps, and

C(Bi−1, Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′ +

(
lg(

1

qi
) + 1− blg(m′k−1 + 1)c

)
· ck

such that

(
k = minj∈{1,...,h} | m′j ≥ b

2

qi
− 1

2
c
)

for at least m (and the two extremal) gaps.

Proof. Consider accessing each key along the path from the root to key Bi. We will examine
dT (Bi) keys. We access one key at depth 0, one key at depth 1, and so on. Because the
tree is packed into memory in BFS order, a key a depth j will be at memory index at most
2j − 1. Now, consider how many levels of the binary search tree T will fit in m1. In order
for all keys of depth j (and higher) to be in m1 we need:

2j+1 − 1 ≤ m1 =⇒ j ≤ lg(m1 + 1)− 1.

31

Thus, at least blg(m1 + 1)c levels of T (since the root node has depth 0) will completely
fit on m1. We expand this concept for arbitrary memory level mk. The last level of T to
completely fit on mk or higher memories is the maximum s such that:

2s − 1 ≤ m′k =⇒ s ≤ lg(m′k + 1).

Thus, at least blg(m′j + 1)c levels of T fit on mj or higher levels of memory. On our search
for Bi, we make at least blg(m1 + 1)c checks for elements located at memory m1. This
costs a total of

blg(m1 + 1)c · c1.

Let k be the minimum memory level such that m′k ≥ location(Bi). For each memory
level m′k for 0 < k′ < k, we make at least blg(m′k′+1)c checks in m′k′ or higher memories. Of
these checks, at least blg(m′k′−1 +1)c are in memory levels strictly higher up in the memory
hierarchy than k′. Since cα > cβ for α > β, an upper bound on the cost of searching for
all elements in memory level 0 < k′ < k on the path from the root to B(i) is:

(blg(m′k′ + 1)c − blg(m′k′−1 + 1)c) · c′k.

Finally, we can upper bound the cost of search within mk by assuming that all remaining
searches take place at memory level k. The searches at level k will cost at most:

(lg(
1

pi
) + 1− blg(m′k−1 + 1)c) · ck.

Combining the above three equations (and summing over every memory level) gives us
the total cost of searching for a key in the deepest part of the tree:

C(Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(
1

pi
) + 1− blg(m′k−1 + 1)c

)
· ck

such that
(
k = minj∈{1,...,h} | m′j ≥ location(Bi)

)

32

Similarly, to search for a gap (Bi−1, Bi) we must access each of its descendants in turn
(but not the leaf node representing that gap itself). Our search effectively ends at the
parent of (Bi−1, Bi). Thus,

C(Bi−1, Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k−1 + 1)c

)
· ck′+(

lg(
1

qi
) + 2− blg(m′k−1 + 1)c

)
· ck

such that
(
k = minj∈{1,...,h} | m′j ≥ location(par(Bi−1, Bi))

)
For all gaps, and,

C(Bi−1, Bi) ≤
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k−1 + 1)c

)
· ck′+(

lg(
1

qi
) + 1− blg(m′k−1 + 1)c

)
· ck

such that
(
k = minj∈{1,...,h} | m′j ≥ location(par(Bi−1, Bi))

)
for at least m (and the two most extremal) gaps.

Plugging in our upper bounds on location(Bi) and location(par(Bi−1, Bi)) from Lemma 4.5.2
immediately gives us the desired result.

In order to use Lemma 4.5.3, we define a function C ′, which consumes a key Bi as
follows:

C ′(Bi) :=
k−1∑
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(
1

pi
) + 1− blg(m′k−1 + 1)c

)
· ck

such that

(
k = minj∈{1,...,h} | m′j ≥

2

pi
− 1

)

33

We also define a function C ′′, which consumes a gap (Bi−1, Bi). First, we define:

Q = {qi : qi among smallest m gaps excluding the extremal gaps} ∪ {q0, qn}

C ′′((Bi−1, Bi)) :=



∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 2− blg(m′k−1 + 1)c
)
· ck if qi 6∈ Q

such that
(
k = minj∈{1,...,h} | m′j ≥ b 4

qi
− 1

2
c
)

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 1− blg(m′k−1 + 1)c
)
· ck otherwise

such that
(
k = minj∈{1,...,h} | m′j ≥ b 2

qi
− 1

2
c
)

We can now bound the expected cost of search, C, in T explicitly.

Theorem 4.5.4.

C ≤
n∑
i=1

pi · C ′(Bi) +
n+1∑
i=1

qi · C ′′((Bi−1, Bi))

Proof. The total expected cost of search is simply the sum of the weighted cost of search
for all keys and gaps multiplied by their respective probabilities.

C ≤
n∑
i=1

pi · C(Bi) +
n+1∑
j=1

qj · C(Bi−1, Bi)

We note that functions C ′ and C ′′ are exactly equal to the upper bounds of cost of
search for a key or gap respectively as defined in Lemma 4.5.3. Hence, we can simply plug
them into the equation above and get an upper bound on the expected cost of search in T :

C ≤
n∑
i=1

pi · C ′(Bi) +
n+1∑
j=1

qj · C ′′((Bi−1, Bi))

34

In order to get a more cleaner (albeit weaker) bound in terms of the entropy of the
distribution, we now describe W , the cost of searching for a key located at the deepest
node of tree T . As defined in Thite’s work, we let h be the smallest j such that m′j ≥ n.
Let D(T) be the height of T (the depth of the deepest node in the tree).

Lemma 4.5.5.

W ≤
h−1∑
k=1

(
blg(m′k + 1)c − blg(m′i−1 + 1c

)
· ck +

(
D(T)− blg(m′h−1 + 1)c

)
· ch

Proof. We can follow the exact same logic as in Lemma 4.5.3 with the depth of our node
as D(T), and its memory level h. This immediately gives us the desired result.

This leads us to the following upper bound for W .

Lemma 4.5.6. Assuming that l 6= 1:

W < D(T) · ch

Proof. We can rearrange Lemma 4.5.5 as follows:

W ≤ D(T) · ch −
h−1∑
k=1

blg(m′k + 1)c · (ck+1 − ck)

Since we have that ck > ck−1 for all k,
∑h−1

k=1blg(m′k + 1)c · (ck+1 − ck) is strictly positive.
This instantly gives the result desired.

Note that W
D(T)

represents the average cost per memory access when accessing the

deepest (and most costly) element of our tree. Since our costs of access are monotonically
increasing as we move deeper in the tree, we will see that W

D(T)
can be used as an upper

bound for the average cost per memory access when searching for any element of T .

Lemma 4.5.7. The cost of searching for a keys Bi and (Bi−1, Bi) (C(Bi) and C((Bi−1, Bi))
respectively) can be bounded as follows:

C(Bi) ≤ (lg(
1

pi
) + 1) · W

D(T)
< (lg(

1

pi
) + 1) · ch

C((Bi−1, Bi)) ≤ (lg(
1

qi
) + 2) · W

D(T)
< (lg(

1

qi
) + 2) · ch for all gaps, and

C((Bi−1, Bi)) ≤ (lg(
1

qi
) + 1) · W

D(T)
< (lg(

1

qi
) + 1) · ch for at least m (and the two extremal) gaps.

35

Proof. From Lemma 4.5.1 we have a bound on the depth of keys Bi and (Bi−1, Bi). We
must do dT (Bi) + 1 accesses to find a key and dT ((Bi−1, Bi)) accesses to find a gap. Note
that since our tree is stored in BFS order in memory, whenever we examine a key’s child, it
will be at a memory location of at least the same, if not higher cost (by being in the same
or a deeper page). Thus, the cost of accessing the entire path from the root to a specific
key can be upper bounded by multiplying the length of this path by the average cost per
memory access of the most expensive (and deepest) key of the tree (this is exactly W

D(T)
).

Note that when searching for keys, we must search along the entire path from root to the
key in question, while we need only examine the path from the root to the parent of a key
for unsuccessful (Bi−1, Bi) searches. Combining Lemmas 4.5.1, 4.5.5 and 4.5.6 gives

C(Bi) ≤ (lg(
1

pi
) + 1) · W

D(T)

=⇒ C(Bi) < (lg(
1

pi
) + 1) · D(T) · ch

D(T)

=⇒ C(Bi) < (lg(
1

pi
) + 1) · ch

For gaps we have that

C((Bi−1, Bi)) ≤ (lg(
1

qi
) + 2) · W

D(T)

=⇒ C((Bi−1, Bi)) ≤ (lg(
1

qi
) + 2) · D(T) · ch

D(T)

=⇒ C((Bi−1, Bi)) < (lg(
1

qi
) + 2) · ch for all gaps, and

=⇒ C((Bi−1, Bi)) < (lg(
1

qi
) + 1) · ch for at least m (and the two extremal) gaps.

We can now bound the expected cost of search using the bounds for the cost of each
key.

Theorem 4.5.8.

C ≤ W

D(T)
·

(
H + 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

)
and

C <

(
H + 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

)
· ch

36

where qrank[i] is the ith smallest access probability among gaps except q0 and qn.

Proof. As in Lemma 4.5.4, the total expected cost of search is simply the sum of the
weighted cost of search for all keys multiplied by the probability of searching for each key.
Given our last lemma, we have that:

C ≤
n∑
i=1

pi · C(Bi) +
n+1∑
j=1

qj · C((Bi−1, Bi))

=⇒ C ≤
n∑
i=1

pi · (lg(
1

pi
) + 1) · W

D(T)
+

(
n∑
i=0

qi(lg(
1

qi
) + 2)− q0 − qn −

m∑
i=0

qrank[i]

)
· W

D(T)

=⇒ C ≤ W

D(T)

(
n∑
i=1

pi lg(
1

pi
) +

n∑
i=0

qi lg(
1

qi
) +

n∑
i=1

pi + 2
n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

)

=⇒ C ≤ W

D(T)

(
H + 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

)
By Lemma 4.5.6 this gives:

C <

(
H + 1 +

n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]

)
· ch

4.6 Approximate Binary Search Trees of De Prisco

and De Santis with Extensions by Bose and Doüıeb

We provide another approach to building the approximately optimal BST under the HMM
model. This approach uses the approximate BST solution (in the simple RAM model) of
De Prisco and De Santis [18] (modified by Bose and Doüıeb [15]). We explain the method
here.

As in the classic Knuth problem, we are given a set of n probabilities of searching for
keys (p1, p2, ..., pn), as well as n+ 1 probabilities of unsuccessful searches (q0, q1, ..., qn). De
Prisco and De Santos give an algorithm which constructs a binary search tree in O(n) time
with an expected cost of at most [18]

H + 1− q0 − qn + qmax

37

where qmax is the maximum probability of an unsuccessful search. This was later modified
by Bose and Doüıeb (the same paper described in section 4.3) to have an improved bound
of [15]

H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i].

Here, P is the number of increasing or decreasing sequences in a left-to-right read of the
access probabilities of the gaps and m′ = max(2n− 3P, P)− 1 ≥ n

2
− 1. Moreover, pqrank[i]

is the ith smallest access probability among all keys and gaps except q0 and qn.

First, we a high level explanation of the algorithm of De Prisco and De Santis and then
explain the extensions of Bose and Doüıeb. De Prisco and De Santis’ algorithm occurs in
three phases.

Phase 1 An auxiliary probability distribution is created using 2n zero probabilities, along
with the 2n+ 1 successful and unsuccessful search probabilities. Yeung’s linear time
alphabetic search tree algorithm is used with the 2n+ 1 successful and unsuccessful
search probabilities used as gaps of the new tree created [59]. This is referred to as
the starting tree.

Phase 2 What’s known as the redundant tree is created by moving pi keys up the starting tree
to the lowest common ancestor of keys qi−1 and qi. The keys which used to be called
pi are relabelled to old.pi.

Phase 3 The derived tree is constructed from the redundant tree by removing redundant edges.
Edges to and from nodes which represented zero probability keys are deleted. This
derived tree is a binary search tree with the expected search cost described.

In Bose and Doüıeb’s work, they explain how they can substitute their algorithm for
Yeung’s linear time alphabetic search tree algorithm which results in a better bound (as
described above). We use the updated version (by Bose and Doüıeb) of De Prisco and De
Santis’ algorithm as a subroutine in the sections to follow.

Let T1 be the starting tree created after Phase 1 of the algorithm using Bose and
Doüıeb’s method. As explained Section 4 of their work [15], every leaf (both keys and gaps
from the original dataset) with probability α have depth at most:

dT1(α) ≤

{
blg 1

α
c+ 1 for at least max{2n− 3P} − 1 and the extremal gaps of T1

blg 1
α
c+ 2 otherwise

38

Moreover, each key from our original data set has its depth decreased by at least 2
while each leaf from our original data set, except for possibly one, has its depth reduced by
at least 1 in the next two phases of the algorithm. We wish to write this out as an explicit
Lemma for use in section 4.8. First, we define R:

R = {α : α among the m′ smallest access probabilities for keys or gaps excluding the

extremal gaps} ∪ {q0, qn} − {qmax}

Lemma 4.6.1. Let T be a tree made using the approximate binary search tree algorithm
of De Prisco and De Santis with extensions by Bose and Doüıeb. For a key Bi,

dT (Bi) ≤

{
blg(1

pi
)c − 1 if pi ∈ R

blg(1
pi

)c otherwise.

For a gap (Bi−1, Bi),

dT ((Bi−1, Bi)) ≤


blg(1

qi
)c if qi ∈ R

blg(1
qi

)c+ 2 if qi is qmax

blg(1
pi

)c+ 1 otherwise.

Proof. This follows directly from the explanation above.

4.7 Algorithm ApproxBSTPaging

Our second solution to create an approximately optimal BST under the HMM model works
as follows:

1. First, we create a BST T using the algorithm of De Prisco and De Santis [18] (as
updated by Bose and Doüıeb [15]). This takes O(n) time.

2. In a similar fashion to step 4) of section 4.4, we pack keys from T into memory in
a breadth-first search order starting from the root. This relatively simple traversal
also takes O(n) time.

We are left with a binary search tree which is properly packed into memory in total
time O(n).

39

4.8 Expected Cost of ApproxBSTPaging

The explanation here follows in a similar manner to that of section 4.5. First, we use
Lemma 4.6.1 to bound the depth of a node in the memory hierarchy given its probability.
The proof follows in a similar fashion to Lemma 4.5.2. Recall that m′j =

∑
k≤jmj and

m′0 = 0. Moreover, recall R:

R = {α : α among the m′ smallest access probabilities for keys or gaps excluding the

extremal gaps} ∪ {q0, qn} − {qmax}

Lemma 4.8.1. For any key Bi, if

k =minj∈{1,...,h} | m′j ≥ location(Bi) then

k = minj∈{1,...,h} | m′j ≥
1

pi
− 1 if pi ∈ R

k = minj∈{1,...,h} | m′j ≥
2

pi
− 1 otherwise.

Let par(Bi−1, Bi) represent the parent of the node for gap (Bi−1, Bi) in T . If n ≥ 1, then
for any gap (Bi−1, Bi), if

k =minj∈{1,...,h} | m′j ≥ location(par(Bi−1, Bi)) then

k = minj∈{1,...,h} | m′j ≥ b
1

qi
− 1

2
c if qi ∈ R

k = minj∈{1,...,h} | m′j ≥ b
4

qi
− 1

2
c else if qi = qmax

k = minj∈{1,...,h} | m′j ≥ b
2

qi
− 1

2
c otherwise.

Proof. As before, knowing a key’s depth, its location in T can be bounded as follows:

location(Bi) ≤ 2dT (Bi)+1 − 1.

Hence, using Lemma 4.6.1 we get:

40

location(Bi) ≤ 2
blg(1

pi
)c−1+1 − 1

location(Bi) ≤ 2
lg(1

pi
) − 1

location(Bi) ≤
1

pi
− 1 when pi ∈ R and

location(Bi) ≤ 2
blg(1

pi
)c+1 − 1

location(Bi) ≤ 2
lg(2

pi
) − 1

location(Bi) ≤
2

pi
− 1 otherwise.

Recall a gap’s location and its parent’s location can be bounded as follows:

location(Bi−1, Bi) ≤ 2dT ((Bi−1,Bi))+1 − 1

location(par(Bi−1, Bi)) ≤ b2dT ((Bi−1,Bi)) − 1

2
c

Thus, for any gap (Bi−1, Bi),

location(par(Bi−1, Bi)) ≤ b2lg(1
qi

) − 1

2
c

location(par(Bi−1, Bi)) ≤ b
1

qi
− 1

2
c if qi ∈ R

location(par(Bi−1, Bi)) ≤ b2lg(1
qi

)+2 − 1

2
c

location(par(Bi−1, Bi)) ≤ b
4

qi
− 1

2
c if qi = qmax

location(par(Bi−1, Bi)) ≤ b2lg(1
qi

)+1 − 1

2
c

location(par(Bi−1, Bi)) ≤ b
2

qi
− 1

2
c otherwise.

41

As in section 4.5 we can now bound the cost of search for keys and gaps.

Lemma 4.8.2. The cost of searching for key Bi or gap (Bi−1, Bi), (C(Bi) and C(Bi−1, Bi)
respectively) using the ApproxBSTPaging algorithm can be bounded as follows:

C(Bi) ≤



∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
pi

)− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ 1
pi
− 1 if pi ∈ R

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
pi

) + 1− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ 2
pi
− 1 otherwise.

C((Bi−1, Bi)) ≤



∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

)− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 1
qi
− 1

2
c if qi ∈ R

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 2− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 4
qi
− 1

2
c else if qi = qmax

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 1− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 2
qi
− 1

2
c otherwise.

Proof. The proof follows an almost identical set of logic to Lemma 4.5.3 in terms of how
far into the tree we search for each node. We then can simply plug in the maximum depth
of nodes from Lemma 4.6.1, and the maximum location in the memory hierarchy from
Lemma 4.8.1 and arrive at the result.

In order to use Lemma 4.8.2, we define a function C ′, which consumes a key Bi as

42

follows:

C ′(Bi) :=



∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
pi

)− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ 1
pi
− 1 if pi ∈ R

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
pi

) + 1− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ 2
pi
− 1 otherwise.

We also define a function C ′′, which consumes a gap (Bi−1, Bi):

C ′′((Bi−1, Bi)) :=



∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

)− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 1
qi
− 1

2
c if qi ∈ R

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 2− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 4
qi
− 1

2
c else if qi = qmax

∑k−1
k′=1

(
blg(m′k′ + 1)c − blg(m′k′−1 + 1)c

)
· ck′+(

lg(1
qi

) + 1− blg(m′k−1 + 1)c
)
· ck

such that k = minj∈{1,...,h} | m′j ≥ b 2
qi
− 1

2
c otherwise.

We can now bound the expected cost of search, C, in T explicitly.

Theorem 4.8.3.

C ≤
n∑
i=1

pi · C ′(Bi) +
n+1∑
i=1

qi · C ′′((Bi−1, Bi))

43

Proof. The total expected cost of search is simply the sum of the weighted cost of search
for all keys and gaps multiplied by their respective probabilities.

C ≤
n∑
i=1

pi · C(Bi) +
n+1∑
j=1

qj · C(Bi−1, Bi)

As in Theorem 4.5.4, C ′ and C ′′ are exactly equal to the upper bounds of cost of search
for a key or gap respectively as defined in Lemma 4.8.2. We simply plug them into the
equation above and get an upper bound on the expected cost of search in T :

C ≤
n∑
i=1

pi · C ′(Bi) +
n+1∑
j=1

qj · C ′′((Bi−1, Bi))

Like in section 4.5, we wish to make a cleaner albeit weaker bound in terms of the
entropy of the probability distribution. As explained in the Bose and Doüıeb paper, the
average path length search cost of the tree created by their algorithm is at most: [15]

H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i]

We call this value PT (the average search cost of tree T). Similar to the proof in
section 4.5, if we can bound the cost of search for a given path length, then we can form
a bound on the average cost of search in the HMM model. As before, we can describe the
cost of searching for a key located at deepest node of tree T : W . Recall, m′j =

∑
k≤jmk,

m′0 = 0 and let h be the smallest j such that m′j ≥ n.

Lemma 4.8.4. When using the ApproxBSTPaging, the cost of searching for a node deepest
in the tree is at most:

W ≤
h−1∑
k=1

(
blg(m′k + 1)c − blg(m′i−1 + 1)c) · ck + (D(T)− blg(m′h−1 + 1)c

)
· ch

Proof. Since we are simply putting keys into memory in BFS order, and all we use is the
height of the tree and the memory hierarchy, the proof is identical to that of Lemma 4.5.5.

44

Since we have the same result as Lemma 4.5.5, this immediately implies Lemma 4.5.6
is true as well. Assuming that l 6= 1, we have that W < D(T) · ch. As in Theorem 4.5.4,
W
D(T)

represents the average cost per memory access when accessing the deepest (and most

costly) element of our tree. Thus, W
D(T)

upper bounds the average cost per memory access
when searching for any element of T .

Theorem 4.8.5.

C ≤ (
W

D(T)
) · (H + 1− q0 − qn + qmax −

m′∑
i=0

pqrank[i]) and

C < (H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i]) · ch

Proof. Bose and Doüıeb show that after using their algorithm for Phase 1 of De Prisco
and De Santis algorithm algorithm, every leaf of the starting tree (all keys represent-
ing successful searches and gaps representing unsuccessful searhces) are at depth at most
blg(1

p
)c + 1 for at least max(2n − 3P, P) − 1 of p ∈ ({p1, p2, ..., pn} ∪ {q0, q1, ..., qn}) and

blg(1
p
)c + 2 for all others. Recall that P is the number of peaks in the probability distri-

bution q0, p1, q1, ..., pn, qn. After phases 2 and 3 of the algorithm, each key has its depth
decrease by 2, and all gaps (except one) move up the tree by one.

C ≤
n∑
i=1

(
pi ·

depth(pi) + 1

D(T)
·W
)

+
n∑
i=0

(
qi ·

(depth(qi))

D(T)
·W
)

=⇒ C ≤ W

D(T)

(
n∑
i=1

(pi · (depth(pi) + 1)) +
n∑
i=0

(qi · (depth(qi)))

)
=⇒ C ≤ W

D(T)
(WeightedAveragePathLength(T))

=⇒ C ≤
(

W

D(T)

)
·

(
H + 1− q0 − qn + qmax −

m′∑
i=0

pqrank[i]

)
and by Lemma 4.5.6

=⇒ C <

(
H + 1− q0 − qn + qmax −

m′∑
i=0

pqrank[i]

)
· ch

45

4.9 Improvements over Thite in the HMM2 Model

The HMM2 model is the same as the general HMM model with the added constraint
that there are only two types of memory (slow and fast). In Thite’s thesis, he proposed
both an optimal solution to the problem, as well as an approximate solution (Algorithm
Approx-BST) that runs in time O(n lg(n)) [52]. we first show that:

Lemma 4.9.1. The quality of approximation of Thite’s algorithm has a bound of:

c2(H + 1 +
n∑
i=0

qi)

Proof. Specifically, in Lemma 14 in 3.4.2.3 ”Quality of approximation” in Thite’s thesis,
he proves that δ(zk) = l+ 2. Here, δ(zk) represents the depth of a leaf node zk. Note that
Thite considers the depth of the root to be 1 instead of 0 which updates how the cost of
search is calculated accordingly. l represents the depth of recursion of the Approx-BST
algorithm. In Lemma 15, Thite goes on to prove that qk ≤ 2−δ(zk)+2. In this proof, Thite
shows that qk ≤ 2−l+1, but makes a mistake when substituting in l = δ(zk) − 2 and gets
qk ≤ 2−δ(zk)+2 while the correct bound is qk ≤ 2−δ(zk)+3. This updated bound would change
his depth bound in Lemma 16 from δ(zk) ≤ blg(1

qk
)c + 2 to δ(zk) ≤ blg(1

qk
)c + 3. Finally,

substituting into his final equation for the upper bound on the expected cost of search for
the tree would give:

n∑
i=1

(
c2piδ(Bi) +

n∑
i=0

c2qi(δ(qi)− 1)

)

≤
n∑
i=1

(
c2pi(lg(

1

pi
) + 1) +

n∑
i=0

c2qi(lg(
1

qi
) + 3− 1)

)

≤c2 ·

(
H + 1 +

n∑
i=0

qi

)

This is of particular interest because if Thite’s bound on Algorithm Approx-BST had
been correct, then in the case where c2 = c1 (typical RAM model), Thite’s method would
have provided a strict improvement over the work of Bose and Doüıeb [15] which seems

46

unlikely since Thite used the BST approximation algorithm of Mehlhorn from 1984 [47]
(much before the work of Bose and Doüıeb).

By simply substituting in for l = 2 we immediately get that, under this HMM2 model,
both ApproxMWPaging and ApproxBSTPaging provide strict improvements over Thite’s
Algorithm Approx-BST.

Theorem 4.9.2. In the HMM2 model, ApproxMWPaging has an expected cost of at most

CApproxMWPaging < (H + 1 +
n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]) · c2

and ApproxBSTPaging has an expected cost of at most

CApproxBSTPaging < (H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i]) · c2.

ApproxMWPaging and ApproxBSTPaging do so in O(n) time.

Proof. We can directly sub l = 2 into Theorems 4.5.8 and 4.8.5 to get the desired result
(the running times are as explained in sections 4.4 and 4.7).

Since both ApproxMWPaging and ApproxBSTPaging run in time o(n lg(n)) (the time
of Thite’s Approx-BST algorithm) and we can see that:

CApproxMWPaging < (H + 1 +
n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]) · c2

< c2(H + 1 +
n∑
i=0

qi)

CApproxBSTPaging < (H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i]) · c2

< c2(H + 1 +
n∑
i=0

qi)

Both methods provide a strictly better approximation and run faster than the Algorithm
Approx-BST of Thite.

47

Chapter 5

Binary Trees On Unordered
Sequences of Probabilities

In this chapter we examine a problem related to the initial optimal binary search tree
problem of Knuth [43]. The n keys (represented using simply their probabilities) provided
will no longer have an ordering and can be rearranged as we please before constructing
our binary tree. We also do not have any restrictions on which keys can be internal nodes
and which keys can be leaves. This problem is very similar to constructing optimal prefix-
free binary codes which is solved using a Huffman coding. The problem differs however
because we must place the n probabilities at internal and leaf node positions and cannot
add extra nodes. Moreover, when searching, our cost model charges 1 for each internal
node we examine but does not charge for leaf nodes (since we do not need to ’examine’
them). Under this cost model, we show that our O(n lg(n)) time algorithm GREEDY-MS
is within an additive constant of n+1

2n
from optimal.

5.1 The Binary Tree On Unordered Sequences of Prob-

abilities Problem

Consider a multiset (a set with possible duplicate values) of n probabilities: M = {p1, p2, ..., pn}
such that

n∑
i=1

pi = 1. We assume n is odd. Our goal is to create a binary tree T which

minimizes the expected search cost, CS
T , of nodes. We call this cost model the the Standard

48

Model since it is standard among other optimal BST problems.

CS
T =

n∑
i=1

pi(bi + 1)−
∑
pi∈LT

pi (5.1)

Here, bi is the depth of the i’th key of M and LT is the set of leaves of T . We subtract
the weight of the leaves of the tree since we need one less comparison to return a pointer
a leaf node (as in the original optimal BST problem). Note that this is analogous to our
previous cost model (equation 1.1) but with a simple modification of how we describe the
set of leaves (LT instead of {qi} for appropriate i).

5.2 The GREEDY-MS Algorithm is Within n+1
2n of Op-

timal

First, we consider a new cost model for this problem, the Expected Path Length Model,
which has cost CE

T defined as follows:

CE
T =

n∑
i=1

pi(bi + 1) (5.2)

The model treats leaves and internal nodes the same, charging 1 for each node that
must be examined when searching through the tree from the root for a specific node.
This model corresponds to a problem instance under the Standard Model, but with the
addition of n+ 1 probabilities with value 0 (which should obviously be placed at the n+ 1
leaf locations).

As described by Golin et al. [28] there is a simple greedy O(n lg n) time algorithm
which solves the problem optimally. We call this algorithm GREEDY-MS:

1. First, we create a vector R which is equal to the sorted (from largest to smallest)
multiset M .

2. We create a BST T as follows. The root of our tree will be R[0], its two children will
be R[1] and R[2], and so on. Formally, R[i] will be placed at location i + 1 in the
BFS order of T .

49

For completeness we formally prove its optimality under the Expected Path Length
Model.

Lemma 5.2.1. The tree T created by GREEDY-MS for the multiset of probabilities M
solves the problem under the Expected Path Length Model optimally.

Proof. Let T ′ be an optimal tree under the Expected Path Length Model.

Claim 1. For a given depth d, the probabilities of all nodes on level d+ 1 are greater than
or equal to the probabilities of all nodes on level d.

Proof. If Claim 1 were not true, suppose pi and pj were the two probabilities which contra-
dicted the statement. Swap their positions. The cost of the resulting tree is strictly less,
which contradicts the optimality of T ′.

Claim 2. For a given depth d strictly less than the height of T ′, T ′ must be full.

Proof. If Claim 2 were not true consider d′; the smallest depth where it is not true. Take
a leaf node with depth strictly greater than d′ and place it at depth d in T ′. The resulting
tree costs strictly less than T ′, another contradiction.

Taking claims 1 and 2 together means that all optimal trees are full (except at the
greatest depth) and always have higher probabilities above lower probabilities. All such
trees are identical to T created by GREEDY-MS up to permutations among probabilities
at a given depth d, and amongst identical probabilities, but still have the same cost. This
completes the proof.

In order to prove that GREEDY-MS is within n+1
2n

of optimal under the Standard Model
we first we must prove a lemma for optimal trees under the Standard Model. We show that
for an optimal tree where, for each parent child relationship, the parent has probability
at least as large as the child, each leaf node (except one, the minimum) has a unique
corresponding internal node with probability at least as big.

We say a leaf pi (we are using pi to represent a probability and a node) is covered by a
unique internal node p′i if p′i is an internal node, pi is a leaf node and p′i ≥ pi.

50

Lemma 5.2.2. Let T be a tree such that, for all child parent pairs, the probability of the
parent is greater than or equal to that of the child. Let lmin be the smallest leaf node by
probability. Then

∀pi∈LT−{lmin}∃ unique p′i /∈ {LT ∪ {lmin}} such that p′i covers pi

Proof. The proof follows by induction on the height of T . When T has height 1, it trivially
holds since we only have a single leaf, which does not need a an internal node to cover it
since it is lmin.

Suppose for all T (as in the lemma description) with heights strictly less than l, the
claim holds. Consider any T (as in the lemma description) with height equal to l. One of
two cases arise:

1. If our tree root has two leaf children, then the probability of the root must be at least
1
3

(since it must be bigger than its children) and n = 3. The root node is an internal
node which we choose to cover its larger child. The remaining leaf is minimum so we
get the desired result.

2. If our tree root has at least one non-leaf child, the by our induction hypothesis, our
non-leaf subtrees have internal nodes to cover all but their smallest leaves. Since our
root node must have greater probability than any other node in the tree (otherwise
our parent child relationship assumption will be contradicted), the root node can
cover the larger of these two smallest leaves. We maintain all other covers from
solution to the subtrees with heights at most l − 1 (solutions must exist from our
induction hypothesis). We get a covering as required.

Combining the above two cases, we get that there exists a covering of all leaf nodes (except
the smallest leaf node) by internal nodes by induction. This gives the desired result,
completing the proof.

Lemma 5.2.3. Let T be a tree such that, for all child parent pairs, the probability of the
parent is greater than or equal to that of the child. Then:∑

pi∈LT

pi ≤
n+ 1

2n

51

Proof. By Lemma 5.2.2 we know that the sum of the probabilities of all internal nodes is
at least as large as the sum of the probabilities of all leaf nodes minus the probability of
the smallest leaf node. We also know the sum of all probabilities except the smallest leaf
node is 1− lmin. Thus, ∑

pi∈LT

pi ≤
1

2
· (1− lmin) + lmin

Note that this is maximized when lmin is maximized. The maximum value for lmin is
exactly 1

n
, otherwise we contradict our parent-child relationship assumption. Thus,∑

pi∈LT

pi ≤
1

2
· (1− 1

n
) +

1

n∑
pi∈LT

pi ≤
n+ 1

2n
as required.

We are now ready to prove our main theorem.

Theorem 5.2.4. The GREEDY-MS Algorithm is within n+1
2n

of optimal under the Standard
Model for cost.

Proof. Let T be our tree created by GREEDY-MS. Let R be any tree such that, for all
child parent pairs, the probability of the parent is greater than or equal to that of the child.
Note that given any tree we can performs a series of parent-child swaps to get such a tree
with this property. Moreover this new tree will have cost less than or equal to the cost of
the original tree in both the Standard and Expected Path Length models. We can show:

CS
T ≤ CE

T ≤ CE
R = CS

R +
∑
pi∈LR

pi ≤ CS
R +

n+ 1

2n
.

The first inequality comes from the definition of the two models, the second from the
optimality of GREEDY-MS under the Expected Path Length model, the equality comes
from the definitions of the two models, and the final inequality comes from Lemma 5.2.3.
As we noted above, any tree which does not follow the child parent property described is
at least as bad, if not worse, under the Standard Model. Thus, T is within n+1

2n
of the cost

of any tree under the Standard model, completing the proof.

52

Chapter 6

Conclusion and Open Problems

6.1 Conclusion

In this work, we examined several problems related to the optimum BST problem originally
proposed (and solved) by Knuth in 1971 [43]. In Chapter 3 we showed that the Modified
Entropy Rule first proposed by Güttler, Mehlhorn and Schneider in 1980 had a worst case
expected cost of H + 4. This improved upon the previous best bound of c ·H + 2 where
c ≈ 1.08 [32].

In Chapter 4 we examined the problem under a model for external memory. We showed
that under the Hierarchical Memory Model (HMM) by Aggarwal et al. our two algorithms
ApproxMWPaging and ApproxBSTPaging solved the problem approximately in time O(n)
[2]. Moreover in sections 4.5 and 4.8, we showed the two solutions had worst case expected
costs strictly less than

(H + 1 +
n∑
i=0

qi − q0 − qn −
m∑
i=0

qrank[i]) · ch

and

(H + 1− q0 − qn + qmax −
m′∑
i=0

pqrank[i]) · ch

respectively (Theorems 4.5.8 and 4.8.5).

53

We concluded by showing a mistake in the Master’s thesis of Thite, and subsequently
proving our solutions provided an improvement over Thite’s in the related HMM2 model.

In Chapter 5, we considered the optimum BST problem without explicit ordering on
the keys. This essentially left us with a multiset of probabilities over which we attempted
to build an optimum BST. In section 5.2, we described an algorithm, GREEDY-MS and
proved that it was within n+1

2n
of optimal under the Standard Model of cost for a multiset

with n keys.

We have tabulated these results with novel contributions in bold.

Algorithm Model Running Time Worst case expected cost
Modified Minimum Entropy RAM O(n2) C ≤ H + 4

ApproxMWPaging HMM O(n) C < (H + 1 +
∑n

i=0 qi − q0 − qn −
∑m

i=0 qrank[i]) · ch
ApproxBSTPaging HMM O(n) C < (H + 1− q0 − qn + qmax −

∑m′

i=0 pqrank[i]) · ch
GREEDY-MS RAM O(n · lg(n)) OPTIMAL + 1

Table 6.1: Models, running rimes, and worst case expected costs for algorithms discussed
in this thesis.

Several interesting and related problems still remain open. Firstly, is H + 4 a tight
bound for the Modified Entropy Rule? We conjecture that this is not the case, and we
believe the bound could be lowered to H + 2. Moreover, while the metric used to search
for the root in this heuristic is good, it is definitely not perfect. The root chosen (up to
the modifications of the rule) has the maximum 3-way entropy split. However, this is not
necessarily the best root, as selecting larger probability keys as the root can decrease the
cost of the tree. It would be interesting to consider what the correct metric would be for
correctly selecting the root, possibly in a greedy manner.

The work in Chapter 4 can likely be extended to more recent models for external
memory. We made attempts at extending these results to the Hierarchical Memory with
Block Transfer Model of Aggarwal, Chandra, and Snir [3] which allows blocks of memory
to be transferred from one location to another for a fixed cost. It would also be interesting
to examine the problem under parallel memory models like those described in [56] or the
Uniform Memory Hierarchy [5].

Chapter 5 introduces an interesting problem and a relatively simple greedy algorithm
which solves the problem within n+1

2n
of optimal under the Standard Model. We have

discussed several ideas for improvements to this GREEDY-MS algorithm. For example,
when should a large probability be chosen as a leaf in our greedy top down algorithm?

54

Would this significantly effect our expected search cost? It would also be very interesting
to find any polynomial time optimal solution under the Standard Model.

55

References

[1] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for the organization
of information. Technical report, DTIC Document, 1963.

[2] Alok Aggarwal, Bowen Alpern, Ashok Chandra, and Marc Snir. A model for hierar-
chical memory. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 305–314. ACM, 1987.

[3] Alok Aggarwal, Ashok K Chandra, and Marc Snir. Hierarchical memory with block
transfer. In 28th Annual Symposium on Foundations of Computer Science, pages
204–216. IEEE, 1987.

[4] Brian Allen and Ian Munro. Self-organizing binary search trees. Journal of the ACM
(JACM), 25(4):526–535, 1978.

[5] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memory
hierarchy model of computation. Algorithmica, 12(2-3):72–109, 1994.

[6] ARM. ARM7TDMI (Rev 3) Technical Reference Manual, 2001.

[7] Paul Joseph Bayer. Improved bounds on the costs of optimal and balanced binary
search trees. Massachusetts Institute of Technology, Project MAC, 1975. Master’s
Thesis.

[8] Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta informatica, 1(4):290–306, 1972.

[9] Rudolf Bayer and Edward McCreight. Organization and maintenance of large ordered
indices. In Proceedings of the 1970 ACM SIGFIDET (now SIGMOD) Workshop on
Data Description, Access and Control, pages 107–141. ACM, 1970.

56

[10] Peter Becker. A new algorithm for the construction of optimal B-trees. Algorithm
Theory—SWAT’94, pages 49–60, 1994.

[11] Peter Becker. Construction of nearly optimal multiway trees. In Proceedings of the
Third Annual International Conference on Computing and Combinatorics, COCOON
’97, pages 294–303, London, UK, UK, 1997. Springer-Verlag.

[12] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-oblivious B-
trees. In 41st Annual Symposium on Foundations of Computer Science, pages 399–409.
IEEE, 2000.

[13] Michael A Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-preserving
cache-oblivious dynamic dictionary. In Proceedings of the thirteenth annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 29–38. Society for Industrial
and Applied Mathematics, 2002.

[14] Andrew Donald Booth and Andrew JT Colin. On the efficiency of a new method of
dictionary construction. Information and Control, 3(4):327–334, 1960.

[15] Prosenjit Bose and Karim Doüıeb. Efficient construction of near-optimal binary and
multiway search trees. In Proceedings of the 11th International Symposium on Algo-
rithms and Data Structures, pages 230–241. Springer-Verlag, 2009.

[16] Gerth Stølting Brodal and Rolf Fagerberg. Funnel heap—a cache oblivious prior-
ity queue. In Proceedings of the 13th International Symposium on Algorithms and
Computation, pages 219–228. Springer-Verlag, 2002.

[17] cppreference.com. std::map. http://en.cppreference.com/w/cpp/container/map.
Accessed: 2016-02-02.

[18] Roberto De Prisco and Alfredo De Santis. On binary search trees. Information
Processing Letters, 45(5):249–253, 1993.

[19] Erik D Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic
optimality—almost. SIAM Journal on Computing, 37(1):240–251, 2007.

[20] V Thomas Dock. FORTRAN IV programming. Reston, VA, 1972.

[21] E Knuth Donald. The art of computer programming. Sorting and searching, 3:426–
458, 1999.

57

http://en.cppreference.com/w/cpp/container/map

[22] Michael L Fredman. Two applications of a probabilistic search technique: Sorting
x+ y and building balanced search trees. In Proceedings of seventh annual ACM
symposium on Theory of computing, pages 240–244. ACM, 1975.

[23] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium Foundations of Computer
Science., pages 285–297. IEEE, 1999.

[24] Robert G Gallager. Information theory and reliable communication, volume 2.
Springer, 1968.

[25] Adriano M Garsia and Michelle L Wachs. A new algorithm for minimum cost binary
trees. SIAM Journal on Computing, 6(4):622–642, 1977.

[26] Edgar N Gilbert and Edward F Moore. Variable-length binary encodings. Bell System
Technical Journal, 38(4):933–967, 1959.

[27] Mordecai J Golin. personal communication, 2016-04.

[28] Mordecai J Golin, Claire Mathieu, and Neal E Young. Huffman coding with letter
costs: A linear-time approximation scheme. SIAM journal on computing, 41(3):684–
713, 2012.

[29] Leo Gotlieb. Optimal multi-way search trees. SIAM Journal on Computing, 10(3):422–
433, 1981.

[30] David Graves and Chris Hogue. Fortran 77 Language Reference Manual. Silicon
Graphics, Inc.

[31] Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In 19th Annual Symposium on Foundations of Computer Science, pages 8–21. IEEE,
1978.

[32] Reiner Güttler, Kurt Mehlhorn, and Wolfgang Schneider. Binary search trees: Aver-
age and worst case behavior. Elektronische Informationsverarbeitung und Kybernetik,
16:41–61, 1980.

[33] Jan Helbich. Direct selection of keywords for the kwic index. Information Storage and
Retrieval, 5(3):123–128, 1969.

[34] Thomas N Hibbard. Some combinatorial properties of certain trees with applications
to searching and sorting. Journal of the ACM (JACM), 9(1):13–28, 1962.

58

[35] Yasuichi Horibe. An improved bound for weight-balanced tree. Information and
Control, 34(2):148–151, 1977.

[36] TC Hu. A new proof of the tc algorithm. SIAM Journal on Applied Mathematics,
25(1):83–94, 1973.

[37] T.C. Hu. Combinatorial Algorithms. Addison-Wesley, MA, 1982.

[38] TC Hu, Daniel J Kleitman, and Jeanne K Tamaki. Binary trees optimum under
various criteria. SIAM Journal on Applied Mathematics, 37(2):246–256, 1979.

[39] Te C Hu and Alan C Tucker. Optimal computer search trees and variable-length
alphabetical codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

[40] David A Huffman et al. A method for the construction of minimum redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[41] Feffrey H Kingston. A new proof of the garsia-wachs algorithm. Journal of Algorithms,
9(1):129–136, 1988.

[42] DE Knuth. Sorting and searching.(the art of computer programming, vol. 3) addison-
wesley. Reading, MA, pages 551–575, 1973.

[43] Donald E. Knuth. Optimum binary search trees. Acta informatica, 1(1):14–25, 1971.

[44] James F Korsh. Greedy binary search trees are nearly optimal. Information Processing
Letters, 13(1):16–19, 1981.

[45] James F Korsh. Growing nearly optimal binary search trees. Information Processing
Letters, 14(3):139–143, 1982.

[46] Kenneth C Louden. Compiler construction. Cengage Learning, 1997.

[47] Kurt Mehlhorn. Sorting and searching, volume 1 of data structures and algorithms,
1984.

[48] Michael S Paterson and F Frances Yao. Optimal binary space partitions for orthogonal
objects. Journal of Algorithms, 13(1):99–113, 1992.

[49] Robert A Schumacker, Brigitta Brand, Maurice G Gilliland, and Werner H Sharp.
Study for applying computer-generated images to visual simulation. Technical report,
DTIC Document, 1969.

59

[50] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

[51] Haoyu Song, Murali Kodialam, Fang Hao, and TV Lakshman. Building scalable
virtual routers with trie braiding. In INFOCOM, 2010 Proceedings IEEE, pages 1–9.
IEEE, 2010.

[52] Shripad Thite. Optimum binary search trees on the hierarchical memory model. arXiv
preprint arXiv:0804.0940, 2008.

[53] Vijay K. Vaishnavi, Hans-Peter Kriegel, and Derick Wood. Optimum multiway search
trees. Acta Informatica, 14(2):119–133, 1980.

[54] Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with
massive data. ACM Computing surveys (CsUR), 33(2):209–271, 2001.

[55] Jeffrey Scott Vitter and Mark H Nodine. Large-scale sorting in uniform memory
hierarchies. Journal of Parallel and Distributed Computing, 17(1):107–114, 1993.

[56] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory, ii:
Hierarchical multilevel memories. Algorithmica, 12(2-3):148–169, 1994.

[57] WA Walker and CC Gotlieb. A Top Down Algorithm for Constructing Nearly-optimal
Lexicographic Trees. University of Toronto, Department of Computer Science, 1971.

[58] Peter F Windley. Trees, forests and rearranging. The Computer Journal, 3(2):84–88,
1960.

[59] Raymond W Yeung. Alphabetic codes revisited. Information Theory, IEEE Transac-
tions on, 37(3):564–572, 1991.

60

	List of Tables
	List of Figures
	Introduction
	Binary Search Trees
	The Optimum Binary Search Tree Problem
	Three-Way Branching
	Why Study Binary Search Trees
	Overview

	Background and Related Work
	Binary Search Trees
	Alphabetic Codes
	Multiway Trees
	Memory Models

	An Improved Bound for the Modified Minimum Entropy Heuristic
	Preliminaries
	The Modified Entropy Rule
	Modified Entropy is Within 4 of Entropy

	Approximate Binary Search in the Hierarchical Memory Model
	The Hierarchical Memory Model
	Thite's Optimum Binary Search Trees on the HMM Model
	Efficient Near-Optimal Multiway Trees of Bose and Douïeb
	Algorithm ApproxMWPaging
	Expected Cost of ApproxMWPaging
	Approximate Binary Search Trees of De Prisco and De Santis with Extensions by Bose and Douïeb
	Algorithm ApproxBSTPaging
	Expected Cost of ApproxBSTPaging
	Improvements over Thite in the HMM2 Model

	Binary Trees On Unordered Sequences of Probabilities
	The Binary Tree On Unordered Sequences of Probabilities Problem
	The GREEDY-MS Algorithm is Within n+12n of Optimal

	Conclusion and Open Problems
	Conclusion

	References

