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Abstract

We introduce RealSelfie, a smartphone camera application providing interactive guid-
ance to help people take better self-portrait photos (commonly called “selfies”). The appli-
cation uses empirical models to estimate aesthetic quality built from data gathered by 2,700
Amazon Mechanical Turk (AMT) aesthetic quality assessments of synthetic photographs.
The synthetic photographs are generated from 3D models of realistic human models by
manipulating a virtual camera and virtual lighting to precisely explore the space of three
photographic principle parameters: face size, face position, and light direction. The Re-
alSelfie application calculates the current value for each parameter using computer vision
techniques and then compares those values with each model’s aesthetic estimates to display
directional hints overlaid on the live camera preview. As part of this system, we contribute
an algorithm to estimate lighting direction using the pattern of light and shade near the
nose. We conduct a study to evaluate the RealSelfie application with 20 participants in
a controlled environment to eliminate background and lighting confounds. AMT ratings
of the photos show that RealSelfie provides a 26% increase in aesthetics over providing no
guidance.
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Chapter 1

Introduction

1.1 Motivation

The rapid development of mobile devices has revolutionized people’s daily life especially
in sharing multimedia content. As Kelsey puts it, “we are moving away from photography
as a way of recording to storing the past, and instead turning photography into a social
medium in its own right” [15]. With powerful phone cameras, smartphones have largely
replaced point-and-shoot cameras because of portability, usability, and network connectiv-
ity. The enormous market potential has drawn phone manufacturers’ attention, and it can
be foreseen that in the near future the enhancement on phone cameras will be maintained.

Meanwhile, photo sharing platforms, such as Facebook, Twitter, Instagram, and Flickr
are prevalent which also boosts the increase in photographs. According to statistics quoted
by Flickr, an average of 6.5 million photograph are uploaded daily by its users [3] while
Instagram has over 150 million active monthly users who collectively generate 1.2 billion
likes per day [1]. Self portraits, commonly known as “selfies”, make up a large percentage
of the photos shared on these platforms. According to a poll commissioned by Samsung
in the U.K. 2013, selfies account for 30 percent of pictures taken by people aged 18 to 24
[11].

Bakhshi et al. argue that faces are shown to be a powerful visual tool used in human
non-verbal communication [1]. They also show that photos with faces are 38% more likely
to receive likes and 32% more likely to receive comments. However, due to the lack of
photography skills, many of these self-portrait photographs are unsatisfying images.

This issue has drawn researchers’ attention. A common focus is the development of
algorithms and techniques to measure visual aesthetic quality o✏ine, after the photograph
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Figure 1.1: Grid of Selfies from SelfieCity 2014 [28].

has been taken. One general approach is to model aesthetic measurement as a machine
learning problem with an unconstrained number of features [8, 13, 9, 39]. Specific features
are extracted from a large number of images and analysed to compute a measure of aes-
thetics. Other researchers have proposed methods to assess the aesthetics of photographs
based on the most important principles of photography mentioned in literature or followed
by the professional photographers [26, 27, 34]. However, these investigations are often done
using a large amount of photographs acquired from an online database with images span-
ning many classes, such as landscapes, animals, and portraits. This dramatically increases
the variability of the images and may not provide a good general solution since di↵erent
classes of photos likely have di↵erent aesthetic criteria.

More targeted approaches focusing on single classes of images exist [27, 16, 30, 34].
But these are still aesthetic measurements performed after the photo is taken. Also, when
machine learning is used, suggestions for how to improve the photo are di�cult to make.

Most similar to our work is a system and evaluation by Xu et al. [40]. They created
a system that provided interactive feedback while a portrait photograph is being taken.
However, they require advanced hardware like a three-camera array, they encode principles
like the “rule-of-thirds” and best face size without validation, and they do not include the
important factor of lighting. Not only do we build a system without any special hardware,
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but we investigate photographic principles first rather than accept them as correct, and we
include the additional factor of lighting. We build empirically derived models of all three
photographic principles to provide a perceptual understanding of the their relationship to
aesthetics. Di↵erent than verifying whether real-time guidance can significantly improve
the aesthetics of photos as Xu et al. did, we explore what features can be used while
providing real-time guidance to improve the aesthetics. We believe our methodology can
also be extended and generalized more easily for further study.

1.2 Contributions

This thesis investigates the e↵ects of three features (face size, face position, and lighting
direction) on the aesthetics of a specific subclass - single person self-portrait photographs
like selfies. We use realistic male and female three-dimensional mesh models to generate
synthetic images exploring the range of values for these three features and recruited 2,700
workers including duplicates on Amazon Mechanical Turk (AMT) to assess the aesthetics
across those varying values. Based on the evaluations, we built an empirical model for each
feature using lookup schemes and interpolation. Based on the empirical aesthetic models,
we implemented a system called RealSelfie which provides realtime interactive feedback on
these three features to assist people in taking high-aesthetic self-portraits through single
tapping. RealSelfie uses computer vision techniques to detect the face size, face position,
and we developed a simple but e↵ective algorithm to estimate 3D direction of the dominant
lighting in 2D photographs. Finally, we validated the usability of RealSelfie and show our
app combined with the underlying empirical models produce self-portrait photos with 26%
higher aesthetic scores than an unaided camera application.

In sum, we contribute the following:

• A systematic quantitative assessment of three compositional features of selfie aesthet-
ics (face position, face size, and lighting direction) conducted on AMT. We generate
three sets of synthetic self-portrait photographs using 3D modelling software and
six realistic 3D human models spanning di↵erent ethnicities (three female and three
male).

• Empirically-derived models of three aesthetic features (face position, face size, and
lighting direction) that estimate the aesthetic score and “direction for improvement”
of self-portrait selfie photographs.
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• A simple but e↵ective computer vision algorithm to estimate the dominant lighting
direction in a single person self-portrait photo.

• A smartphone camera application called RealSelfie to assist novice photographers to
take self-portraits of high aesthetic quality by providing real-time guidance using our
lighting direction detection method and empirically derived aesthetic models.

• The results of a controlled lab experiment and AMT experiment validating the us-
ability of RealSelfie and its capability to increase the aesthetic quality of self-portrait
photographs by 26%.

1.3 Organization

The thesis is organized as follows:

• Chapter 2 describes previous work: photography principles, computing aesthetic
measures in photographs, and applications and techniques to improve smartphone
photography.

• Chapter 3 describes the systematic quantitative assessment of selfie compositional
aesthetics: the generation of synthetic photographs and the AMT experiment design
and results.

• Chapter 4 describes the empirical models for each of the three compositional features.

• Chapter 5 describes the implementation of RealSelfie: the methodology to calculate
the face size, face position, and lighting direction (using the algorithm we developed);
and the user interface of the application.

• Chapter 6 describes the controlled lab experiment to evaluated RealSelfie usability
and the AMT experiment to show how our models and RealSelfie increase aesthetic
quality of selfies.

• Chapter 7 summarizes our results and contributions, and considers future work.
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Chapter 2

Related Work

We review common photography principles, computational approaches to analyse and mea-
sure image aesthetics, and previous e↵orts related to improving aesthetics while a photo-
graph is taken.

2.1 Photography Principles

Child [6] emphasizes that composition is important to attract and keep the viewer’s atten-
tion and it complements the communication between the viewer and the photograph. One
of the most common rules formulated over the centuries to help artists create harmonious
images is rule-of-thirds. These grid lines and their intersecting points for “power-points”
used to place significant elements within the image (illustrated in Figure 2.1). The signifi-
cance of light is also discussed by Child – “...without light there is no photography... light
creates texture, shape, and perspective...” [6]

Hurter also emphasizes the importance of both composition and light [12]. He further
explains the application of rule-of-thirds for di↵erent portraits: head-and-shoulders, three-
quarter, full-length, and vertical portraits. Light is the dominant factor to represent a
three-dimensional reality in a two-dimensional space. “Just as a sculptor models clay to
create the illusion of depth, so light models the shape of the face to give it depth and
form.” – Hurther [12].

The photographic principles including composition and lighting are further identified
from a computational perspective using machine learning technique. Based upon these
principles, Datta et al. [8] and Dhar et al. [9] built classifiers and applied linear regression
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(a) Vertical (b) Horizontal

Figure 2.1: The rule-of-thirds principle says that the subject of interest should lie at
“power-points” — the intersection (red dots) of gridlines that divide an image into a three
by three grid.

to infer the aesthetic quality of pictures across all classes. For the class of photos with
faces, the importance of rule-of-thirds and face position on the aesthetic quality is also
recognized by modelling the aesthetic quality based on the principles [41, 18].

2.2 Computing Aesthetic Measures in Photographs

2.2.1 General Image Aesthetics

Most of the present work investigated the influence of a large number of features on the
visual aesthetics of photographs from all classes and modelled it as a machine learning
problem. Datta et al. [8] extracted in total 56 features based on 3 principles: rules of
thumb in photography, common intuition, and observed trends in photography. They
built automated classifiers using a Support Vector Machine (SVM) and classification trees,
then applied linear regression on polynomial terms of the features to infer the aesthetic
quality.

To investigate the features more systematically, Dhar et al. [9] analysed 26 features
from 3 dimensions: image layout or configuration, objects features or scene types, and
sky-illumination attributes. Then they explored the e↵ect of each feature on the aesthetic
quality of general images and developed a simple method which automatically selected
high aesthetic quality images by building high-level image feature predictors and training
classifiers.

Schifanella et al. [35] used a similar approach to design a computational aesthetic
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framework to surface beautiful, but unpopular images. They also studied three regressed
compositional features: colour features, spatial arrangement features, and texture features.
They trained category-specific models using Partial Least Squares Regression (PLSR) and
combined all of them to predict the aesthetic quality of images.

2.2.2 Aesthetics of Portraiture

In these works, researchers show the complexity of evaluating the aesthetic quality of
photographs of all classes due to the high dimensionality of features. To further simplify
the problem of investigating the influences of various features, the space of photography
can be narrowed to human portraiture. Work on the aesthetic assessment of portraiture
has a similar approach.

Males et al. [27] presented a method similar to Datta et al. [8] which is built on eight
features that are most important to professional photographers including sharpness, low
depth of field, composition, contrast, lightness, clipping, blown-out highlights, hue count,
and face size. In addition to SVM, they also used Real Adaboost to assess the aesthetic
quality of head shots.

Redi et al. [34] also probed this problem from the perspective of photography. They
designed a framework which automatically evaluates the beauty of digital portraits with
a classifier built on 5 main photographic dimensions acquired from portrait photograph
literature including compositional rules, scene semantics, portrait-specific features, basic
quality metrics, and fuzzy properties. Di↵erently, Mazza et al. [30] examined the high-level
content features influencing context perception of portraitures such as the dress and the
gender.

Khan and Vogel [16] proposed a strategy to quantify the aesthetic quality of photo-
graphic portraits of individuals by using only a small set of classification features including
spatial composition, the composition of highlights and shadows. Compared to the previ-
ous work using a large set of features, they achieved better predictors of human aesthetic
judgements using a much smaller set.

However, all these works use photograph datasets acquired from an online database.
This means extracting the features was not well controlled which may reduce accuracy
when predicting aesthetics quality. Also, some of the rules used in these work are proved
even to be wrong [40, 3], or are investigated for only one specific dimension such as spatial
composition. Obrador et al. [31] discussed the important composition rules in detail and
pointed out that rule-of-thirds was the best one which was also used in machine learning
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approach [8]. Li and Chen [19] further investigated the influence of face proportion same
as Luo et al. did [25].

Meanwhile, Mazza et al. [30] showed that the background is not an influential factor
for perceived context of portrait pictures. Redi et al. [34] concluded that the aesthetic
quality of a portrait is linked to its artistic value, and independent from its age, gender,
and race. They performed a large-scale regression analysis using LASSO[37]. They trained
the regression parameter vector on demographics and computed the Spearman correla-
tion between the predicted aesthetic score and the original score, and they found that
demographics is largely uncorrelated with photographic beauty.

Manovich’s Selfie City project et al. [28] is a pseudo quantitative study of selfies
harvested from social media sites. The selfies are investigated using a mix of theoretic,
artistic, and quantitative methods. They revealed the demographics (age and gender) of
people taking selfies, their poses and expressions (smile), and discuss selfies in the history
of photography, the functions of images in social media, and methods and dataset. They
do not examine aesthetics.

2.3 Techniques to Improve Smartphone Photography

2.3.1 Guiding Systems

While the features a↵ecting visual aesthetic quality have been studied comprehensively,
researchers have also developed interfaces based on composition rules to guide people to
take better photographs.

Ma et al. [26] proposed a photography suggestion approach to assist people to take high
quality images by drawing an enclosure where the human should be located in the scene.
The suggested enclosures are satisfactory based on the feedback provided by both novice
and professional photographers. They defined parameters based on rule-of-thirds and visual
balance, and built a function with these parameters to predict the score of enclosure. The
system found the candidate enclosures under the condition that the salient objects are
not overlaid, and the enclosure with highest predicted score was selected. Finally, the
enclosure was optimized depending on the statistical results (on size and aspect ratio) of
the enclosures from professional portrait photos containing landscape scenes. However,
their model was built on the professional photos which still involve other features’ e↵ect.
The e↵ect of the parameters on aesthetics cannot be guaranteed as others. Also, their
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system cannot provide real-time guidance but only finding the best enclosure within a
landscape image.

Bhattachrya et al. [3] presented an interactive application that enables users to improve
the visual aesthetics of their digital photographs using spatial re-composition. Based on
the interactive selection of a foreground object, the system presents recommendations
for where it can be moved to optimize the aesthetic quality of image. However, this is
post-photograph guidance. Xu et al. [40] prescribed a fully-automated solution. They
implement a photo-taking interface providing real-time feedback on where to position the
subject-of-interest based on rule-of-thirds with a three-camera array. They focused on the
e↵ect of providing real-time guidance and proved that the aesthetic quality of photographs
was significantly improved by providing guidance compared to only a static rule-of-thirds
grid. They also found that subject proportions close to 1/3 resulted in higher aesthetic
quality. A problem shared by these interfaces is that they can provide real-time feedback
only on composition but not on another important feature, lighting e↵ect.

2.3.2 Accessories

Meanwhile, accessories have been developed to help people take selfies with higher aesthetic
quality. Attaching a smartphone to a long pole and remotely triggering the camera shutter
is a way to get more people or more of a background in a selfie. This idea has resulted
in commercial “selfie sticks” which have become very popular – over 100,000 were sold in
December 2014 alone [36].

Special lighting smartphone hardware are also available. LuMee [22] is a LED light
phone case to take brighten selfies. A similar but more powerful phone case, Ty-Lite [23],
provides cool, warm, and brilliant light settings for various lighting e↵ects and preferences
of di↵erent users.

Some specific cameras have also been commercialized just for people to take better
selfies such as Casio digital cameras (e.g. EX-TR60, EX-TR70, etc.) [7]. The aesthetic
quality of portrait photos is improved by changing the skin tone, smoothness, and tint.
However, these are improvement applied after the photo is taken and they sacrifice the
trueness of the portrait.
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2.4 Summary

An issue with previous work analysing aesthetic quality is that researchers compare ac-
tual photographs (taken in uncontrolled conditions like Xu et al., or gathered from public
datasets like most others). This means there is no control for what feature led to a rat-
ing. It could be an aesthetic di↵erence, but it could also be facial expression, di↵erent
backgrounds, or even culturally influenced features like youthfulness, colour of hair, eyes,
and skin [28]. In addition, previous e↵orts to improve aesthetic quality have relied on
specialized hardware like light attachments.

Xu et al. [40] are the only example of real-time guidance system to improve composition,
but there system required a three camera array mounted on a tablet and they focused
on a limited number of compositional factors without verifying the relationship between
photographic principles and aesthetic quality [40].

Our work addresses each of these issues. In the next chapters we describe how we
created a controlled dataset of portrait photographs, how we used this dataset to investigate
the actual relationship between photographic principles and aesthetic quality, and how we
turned those results into quantitative models to provide real-time composition and lighting
guidance in a camera application on an unmodified smartphone.
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Chapter 3

Aesthetic Ratings for Key
Compositional Features

In this chapter, we describe how we created a synthetic selfie portrait dataset and an
Amazon Mechanical Turk (AMT) experiment to gather aesthetic ratings of selfie portraits
for key compositional features. First we generated synthetic selfie portraits using realistic
3D mesh models of men and women. By rendering the models in a 3D modelling pack-
age, we generate multiple selfies to explore the parameter space of three key features of
composition: face size, face position, and lighting direction.

These sets of synthetic selfies are then used in the AMT experiment where they are
rated for aesthetic quality. Since our selfies are highly controlled, our results from the
experiment provide a measure of the e↵ect of aesthetic quality in terms of only these
compositional features. In the next chapter, we use these results to construct models to
return an estimated aesthetic score given the current state of a compositional feature.

3.1 Synthetic Selfie Dataset

Each 3D human model is imported into Blender, an open-source 3D computer graphics
package, where we precisely manipulate the position of the camera, the human model,
and the lighting direction using a Python API and generate multiple synthetic selfie pho-
tographs. The properties of the camera including the field of view (FOV) and aspect ratio
are manually set to be those of iPhone 6 camera for later application development. To
imitate an outdoor scene, parallel lighting is used to simulate the sun.
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(a) Asian Female (b) Caucasian Female (c) Black Female

Figure 3.1: Female Models of Di↵erent Skin-Colors

(a) Asian Male (b) Caucasian Male (c) Black Male

Figure 3.2: Male Models of Di↵erent Skin-Colors
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Compared to the images collected from an online database or social media site, our
photographs are highly controlled. By generating permutations of the three composition
features on each of the six models, we remove confounds like background, gender, and smile
when these photographs are rated for aesthetic quality.

Although we explain how all three sets of synthetic photographs before presenting the
results, in fact the process was more interleaved. We generated the images for face size and
ran the rating experiment for those sets of photographs first. The results of the face size
ratings established which face sizes to use when generating photographs for face position.
Likewise, we first ran an experiment for aesthetic ratings on the photographs for face
position before selecting face positions when generating the set of lighting photographs.

3.1.1 Realistic 3D Human Models

For 3D models of humans, we use three females (Figure 3.1) and three males (Figure
3.2). These models were purchased from TurboSquid, an online 3D model marketplace
(www.turbosquid.com). The models were chosen to cover Caucasian, Asian, and Black
features with di↵erent skin pigments. Furthermore, the criteria to select models and poses
was that they should be “average” looking, have a neutral facial expression, normal hair
style, no glasses, and similar pose.

To maintain high unity, we imported the models to Blender to make minor modifications
to the mesh so each faces directly to the camera without tilt. We also inserted invisible
guides: transparent spheres at the eye and nose positions and a transparent plane to align
the direction of the model’s face.

3.1.2 Face Size

We define face size as the ratio between the eye distance and the width of one cell in a rule-
of-thirds grid using Equation 3.1.2 as shown in Figure 3.3. The reason to calculate the face
size ratio in this way is to make the ratio relate to a conventional guideline that suggests
a subject (like a face) should be approximately the size of one cell in a rule-of-thirds grid.
This way a face size ratio of 1.0 matches that guideline.

To find the range of face sizes to test, we took real photographs of a closeup of the face
without it becoming cropped and a face from the maximum distance possible with a selfie
stick. For high accuracy, we developed a mini iOS application to detect the eye positions
statically. It uses the same APIs as the ones for detecting face features in Chapter 5. We
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Figure 3.3: Face size is calculated based on eyeDistance: the eye distance and imageWidth:
the width of image; both are in pixels.

imported those two images to the mini iOS application to perform static analysis of face
size and calculated the face size ratio based on the same formula 3.1.2. We found that the
minimal value is approximately 0.2 and the maximal value is approximately 2.0.

face size ratio =
2⇥ eyeDistance

gridWidth
(3.1)

where gridWidth is defined as imageWidth/3.

To explore the influence of face size in isolation, we generate 19 images with face size
ratio ranging from 0.2 to 2.0 changing by 0.1. The face position in all images is fixed
by locating the centroid of the eyes in the centre of the image, and the lighting direction
is also fixed to be straight on the face. The images with varying ratios are produced by
manipulating the relative distance between the face and the camera through the Python
API in Blender. For each model, this is achieved by 2 steps: Calculate the “ratio factor”
and Generation.
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Figure 3.4: Setup in Blender: the window on the left provides the interface to run Python
script to manipulate objects; the window on the right allows users to manipulate the
settings of the scene; the middle one shows the scene (sideview) where the sun shines light
straight on the model’s face and the camera is at the same level as the eyes.

Settings for Other Features

To generate the same photographs, we first set the camera’s properties in Blender to be
same as the front-facing camera in iPhone 6: Lens focal length = 45mm, FOV = 54.2�,
aspect ratio = 3:4. For all synthetic photographs, the background was set to be 18% grey
to exclude the e↵ect on aesthetics of the background.

We also tagged the vertices at the centres of the eyes, found the corresponding coor-
dinates (x, y, z ) of both eyes, and used Equation 3.2 to calculate the centroid’s position
(x, y, z)

centroid

through the Python API. Based on the eye centroid’s coordinates, we set
the coordinates of the camera to be (x, y, z� �)

centroid

where � is the distance. The camera
film plane was rotated to remain parallel to the human model’s face plane. The parallel
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light is generated by a Blender “Sun” light and rotated to be straight on the model’s face
shown as in Figure 3.4.

(x, y, z)
centroid

=
(x, y, z)

left

+ (x, y, z)
right

2
(3.2)

Calculate the Distance to Face Size Ratio

Before generating the synthetic images of face size, it is necessary to find the relation
between d (the distance from the camera to the centroid of eyes) and the r (the face size
ratio) for each model. The value of ratio factor for each model is slightly di↵erent because
the feature detection algorithm in iOS gives a di↵erent result for a di↵erent model, likely
based on the model’s interocular distance and the shape of their head.

For each model, we used a ratio function (Function 3.3 where ↵ is defined as the
ratio factor) to represent the relation because the face size ratio decreases as the distance
increases. The only thing left was to calculate ↵ for each model.

r =
↵

d
(3.3)

For high accuracy and e�cient calculation of ↵, we picked specific distances (d1 =
1.0, d2 = 2.0, d3 = 3.0) and generated the corresponding image for each distance. Then, we
imported the images to the previously-used mini iOS application which detected the eyes’
positions and calculated the correspondinsg rs (r1, r2, r3). Once the distances and ratios
were passed into Equation 3.3, three ratio factors (↵1,↵2,↵3) were calculated. Finally, the
mean of the three ratio factors was assigned to be the ↵ of the specific model (Equation
3.4). The same procedures were performed to calculate the mean ↵ for each model.

↵ = (↵1 + ↵2 + ↵3) / 3 (3.4)

Generate the Images

Based on the ratio factor ↵, we passed in the desired face size ratio values, 0.2 (with a
selfie stick) to 2.0 (close-up) in increments of 0.1, to get the corresponding camera distances.
Then we positioned the camera at the corresponding positions and generated the images
through Python API. The final set of 19 face size images for each model are shown in
Figure 3.5.
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(a) Asian Female

(b) Asian Male

(c) Caucasian Female

(d) Caucasian Male

(e) Black Female

(f) Black Male

Figure 3.5: Synthetic images of face ssize with r ranging from 0.2 to 2.0
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3.1.3 Face Position

We define face position as the relative position of the centroid of the eyes within a normal-
ized 12 ⇥ 12 grid (see Figure 3.6. Dividing the space into 12 cells follows from dividing
the three grid cells in a rule-of-thirds grid by four. For this reason, face position values are
multiples of 1

12 .

Settings for Other Features

In pilot tests, we found that face size a↵ects face position aesthetics. This follows from the
observation that faces of di↵erent sizes become cropped at di↵erent positions. Therefore,
we generated four sets of face position images, each with fixed face size ratio. We chose face
size ratios, 0.3, 0.5, 0.8, and 1.0 because they form key positions in the distribution of face
size aesthetic scores. Recall we interleaved synthetic photo set generation with aesthetic
rating experiments. The distribution of aesthetic scores is provided in Figure 3.15 below).
The lighting direction is the same as face size images, straight on the face.

Calculate Camera Positions

Since the ↵ (distance-to-face-size ratio) is known, we passed in the four desired ratios to
Equation 3.3 for the corresponding distances. In the beginning, the camera is placed at
(x, y, z � �)

centroid

so that the centroid is in the centre of the image (the red dot in Figure
3.6). Based on the distance, the FOV, and the aspect ratio of the camera, we calculated
the width and height of the image in 3D space. Then, we segmented the image using rule-
of-thirds by drawing 2 evenly separated lines both vertically and horizontally. To refine
the space and keep the face from becoming cropped, we chose in total 81 (9 ⇥ 9) positions:
all dots in Figure 3.6 where each rule-of-thirds cell is further subdivided into 4 sub cells.
We calculated the grid width w

g

and height h
g

using Formula 3.5 with image width w
i

and
height h

i

.

w
g

= w
i

/ 12

h
g

= h
i

/ 12
(3.5)

Generate the Images

We procedurally translated the camera according to the grid’s width and height. For
example, to generate the image with the face at the blue spot in Figure 3.6, we need to
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Figure 3.6: 12⇥12 discretized grid space to quantify face position

move the camera in the opposite direction to the green spot. We iterated through all 81
positions to generate all images of di↵erent face positions for each face size ratio.

To assure that the face is always oriented to the camera, we use the transparent plane
on the model’s face to set the model rotation so the film plane is parallel.

3.1.4 Light Direction

Our lighting direction composition feature captures the dominant direction of light on the
face, such as the sun. We parametrize this direction as two angles: ✓ for the light elevation
and � for the light azimuth (see Figure 3.9). Assuming that the model’s face is at the origin
and facing in the direction of the positive x axis, point(r, ✓, �) represents the position of
the light source.

Therefore, when ✓ = 0�, the light is positioned directly above the face. When ✓ = 90�

and � = 0�, the light is straight on the face. When ✓ > 0 and 0 > � > �90�, then the light
is shining on the right side of the face and when ✓ > 0 and 0 < � < 90� it is shining on
the left side. When ✓ < 0, � > 90�, or � < �90�, then the lighting is coming from behind
the face.
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(a) Asian Female (b) Caucasian Female (c) Black Female

Figure 3.7: Example Face Position Synthetic Selfie Sets for Female Models (for face size
0.3)

(a) Asian Male (b) Caucasian Male (c) Black Male

Figure 3.8: Example Face Position Synthetic Selfie Sets for Male Models (for face size 0.3)
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Figure 3.9: Spherical Coordinate System (diagram from [17]): ✓ and � are used to param-
eterize the lighting direction

Settings for Other Features

After collecting assessment scores for face position (explained in the following section), we
found one best position for each ace size ratio. For r = 0.3, the best position (x, y) is
(6/12, 2/12); For r = 0.5, the best position is (6/12, 3/12); For r = 0.8, the best position is
(6/12, 4/12); For r = 1.0, the best position is (6/12, 4/12). As before, the face is always
facing the camera. For each of the best positions and corresponding sizes, we generate a
set of 81 images with di↵erent lighting directions.

Generate the Images

We reduce the space of possible lighting directions to evaluate with the assumption that
the light should primarily be landing on the face from straight on or above. For this reason,
we set ✓ to range from directly in front (90�) to directly above (0�), and � ranges from
slightly behind the right (-120�) to slightly behind the left (120�).

We select a step size of 11.25�for ✓, and 30�for �. Hence, there are 9 values for both
✓ and �, creating a total number of 81 combinations. After the camera is positioned to
achieve the desired combination of face position and face size, our Python rotates the
directional light around the face accordingly. These values are used to set the lighting
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direction in Blender through Python API. Example images are provided in (Figures 3.10
and 3.11).

(a) Asian Female (b) Caucasian Female (c) Black Female

Figure 3.10: Light Direction Images of Female Models

3.2 Aesthetic Assessment Experiment

These sets of synthetic selfies are used in an crowdsourcing aesthetic assessment experiment
run on Amazon Mechanical Turk (AMT). Over 2,700 workers pick the best and worst
images for each model for each set of images generated for the three compositional features.
These empirical results are used to create aesthetic score estimation models in the following
chapter.

3.2.1 Participants

We recruited 2,700 AMT workers without any criteria for their location, experience, or
age. Our objective is to get aesthetic ratings from “average people.” Workers were paid
between $0.10 and $0.30 per task (called a HIT on AMT).
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(a) Asian Male (b) Caucasian Male (c) Black Male

Figure 3.11: Light Direction Images of Male Models

3.2.2 Task and Implementation

The task requires a participant to view images in a set for certain model and pick N best
and N worst. This design was used instead of a forced choice between two images because
that would have required too many comparisons – to assess all pairs of face position photos
with one model alone requires 3240 = (81⇥ 80) / 2 comparisons.

It is important that an interface for crowdsourcing tasks is clear, usable, and e�cient
to make it easier, and therefore more likely, for workers to complete the task correctly and
honestly [33]. Our interface for workers to assess the aesthetic quality of generated photos
consists of four components (see Figures 3.12, 3.13, 3.14):

• Large image view on the left shows the current image being viewed. Once a partic-
ipant arrives on the task, they will see a randomly picked image from all images to
avoid the bias caused by the initial image.

• Thumbnails arranged in a line or grid on right half lets participants see all images and
forms a navigation method to select images to view and rate. The purple boundary
shows the current image displayed on the left. Participants have two ways to quickly
look through the images: one is dragging across multiple thumbnails so the large
image shows the current thumbnail under the cursor; the other one is pressing the
arrow keys to step through each thumbnail and large image one-by-one.
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• Three buttons at the top-right enable participants to classify the current image into
one of three categories: “Bad”, “Undecided”, “Good”. Participants can classify the
current image by clicking any of the buttons. They can also classify the image by
pressing shortcut keys: “1” for “Good”, “2” for “Undecided”, and “3” for “Bad”.

• Submit button on the bottom of the right half enables the participants to submit
their evaluations once the requirements on the amount are satisfied.

To record what photos are viewed by each participant, the image which is displayed in
the large image view more than 2 seconds will be automatically assigned to “Undecided.”

The entire task was developed as a website using AngularJS with all rating results
logged to a MongoDB database. On AMT, we created a Human Intelligence Task(HIT) to
introduce this task and provided the link to our website. Once participants accepted the
HIT, they will be redirected to the website and do the task there. Once the requirements
on the numbers of “Good” and “Bad”, they will get a unique “survey code” by clicking the
submit button. They are asked to copy and paste to the HIT on AMT for di↵erentiating
each participant.

3.2.3 Design

Recall that we generated 1 set of images for face size, 4 sets of images for face position,
and 4 sets of images for lighting direction, making 9 sets in total. Each task rates images
in one set for one human model; with 6 human models there are 9 ⇤ 6 = 54 task variations.
For each task variation we recruited 50 workers, requiring 2,700 workers in total.

The task design for each composition feature are as follows:

• Face Size — In this assessment, each task has only one sub-task in which each
participant is required to pick up at least 3 good and 3 bad among 19 images with
face size ratio ranging from 0.2 to 2.0.

• Face Position — In this assessment, each task consists of 4 sub-tasks — one sub-
task for one face size ratio (4 di↵erent face size ratios are picked from the previous
assessment). In each sub-task, each participant needs to pick at least 8 good and 8
bad among 81 images — one image for one position.

• Light Direction — Similar to the assessment for face position, each task has 4 sub-
tasks — one sub-task for a pair of fixed size and position which are chosen based
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on the results from the previous assessment. In each sub-task, each participant is
also asked to pick at least 8 good and 8 bad among 81 images — one image for one
lighting direction.

Figure 3.12: Assessment task user interface for face size.

3.2.4 Results

We disregarded those task submissions that took dramatically less time (< 1min for face
size, < 2mins for both face position and lighting direction) than the average task time.
This filters out likely bogus ratings from poor quality workers.

For each task, we recorded what images have been classified as “Good”, “Undecided”,
and “Bad”, as well as the number of images that were “Unviewed” (the participant never
looked at them). To calculate the score of each image, we summed all ratings using the
following tally: +1 for each “Good”, -1 for each “Bad”, and 0 otherwise. After summing
this tally for each image, we conditioned the score based on the number of times it was
actually assessed using:
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Figure 3.13: Assessment task user interface for face position.

true average =
score

number of times being viewed
(3.6)

where number of times viewed is the number of ratings that were “Good”, “Undecided”,
or “Bad” for each image. Finally, we calculated the standard error of the mean (SEM),
and the percentage of each image that was viewed to examine the actual sample size and
stability of the score.

Face Size

Figure 3.15 illustrates the results. The standard error of the mean (SEM) is very stable
ranging from 0.04 to 0.05 indicating high consensus for the scores. In addition, all images
were viewed by more than 74.27% of the workers.

The highest score is 0.33 when the face size ratio is 0.8 other near maxima at face size
ratio of 0.5 (score 0.32) and face size ratio of 0.9 (score 0.32). In between these peaks the
score dips to 0.22 at face size ratio of 0.6. This suggests people prefer faces to be 50% of a
rule-of-thirds-grid cell or 80% to 90% of a rule-of-third grid cell. Note that faces very far
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Figure 3.14: Assessment task user interface for lighting direction.

from the camera, approximately less than 30% of a rule-of-thirds grid cell, are rated lower.
But most pronounced are faces very close to the camera, the score dips below 0.08 at face
size ratio of 1.3 (130% of a rule-of-thirds grid cell) down to the lowest score of -0.64 at 2.0
(when the face is the size of two rule-of-thirds grid cells).

Face Position

Figure 3.16 illustrates the results as a line graph. The standard error of the mean (SEM)
is very stable ranging from 0.023 to 0.040 across all tested proportions indicating high
consensus for the scores. In addition, all images across all tested proportions were assessed
by more than 30% of the workers.

Interpreting the trends in scores by position is di�cult in the one dimensional line
charts, so we also plotted score as two-dimensional heat maps (Figure 3.17). The general
trend is higher scores when the face is centred (centre column with position 6

16), with higher
ratings for higher face positions as the face size becomes smaller (Table 3.1 for detailed
results).

Higher aesthetic ratings for a centred faces breaks from the accepted rule-of-thirds
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Figure 3.15: Face size rating scores for the ratio ranging from 0.2 to 2.0.

Face Size Ratio
0.3 0.5 0.8 1.0

Best Positions (eyes centred at */12 of image)
y 2/12 3/12 4/12 4/12
x 6/12 6/12 6/12 6/12

Score 0.82 0.88 0.90 0.88

Table 3.1: The detailed results for Face Position

principle which claims more aesthetically pleasing photos with primary objects of interest
centred at one of the grid’s “power-points.” This is an interesting finding. The ratings
decrease as the face deviates from the centre area and reach the worst once the face is
partially cropped shown as the lighter area.

Light Direction

Same as for face position, Figure 3.18 illustrates the results as a line graph. The standard
error of the mean (SEM) is very stable ranging from 0.028 to 0.044 across all tested
proportions indicating high consensus for the scores. In addition, all images across all
tested proportions were assessed by more than 45% of the workers.
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Figure 3.16: Face position rating scores for 4 face size ratios, 0.3, 0.5, 0.8, and 1.0. Blue
line represents true mean; yellow line represents the percentage of being viewed among all
participants; orange line represents SEM.

We drew similar heatmaps (shown as in Figure 3.20) as for ‘face position. Examining
the heatmaps, we can see that the region of the best lighting direction is in the bottom-
middle. See Table 3.2 for detailed results. With ⇥ approximating 90�and � close to 0�,
the face is lit more evenly. As the light direction deviates, more shadows are formed on
the face. Since the pattern is similar, we aggregated all 4 sets of results when generating
the lighting model (see Figure 3.20).
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Figure 3.17: Face size rating scores: X represents the horizontal position and Y represents
the vertical position. Both X and Y are in the fraction as the image is segmented by refined
grid-lines to a 12 x 12 grids.

Face Size Ratio
0.3 0.5 0.8 1.0

Best Light Direction (degrees)
⇥(elevation) 78.75� 78.75� 90� 67.5�

�(azimuth) 30� -30� 0� -30�

Score 0.44 0.41 0.42 0.43

Table 3.2: The detailed results for Lighting Direction
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Figure 3.18: Light direction rating scores for 4 r’s, 0.3, 0.5, 0.8, and 1.0. Blue line represents
true mean; yellow line represents the percentage of being viewed among all participants;
orange line represents SEM.
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Figure 3.19: The result of assessment on light direction for all four r’s: 0.3, 0.5, 0.8, 1.0.
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Figure 3.20: The aggregated result of assessment on light direction for all four face size
ratios: 0.3, 0.5, 0.8, 1.0.
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Chapter 4

Empirical Models of Aesthetics for
Key Compositional Features

In order to translate our findings from the previous chapter into a system providing real-
time guidance to improve aesthetics, we built models to estimate aesthetic ratings for the
three compositional features: face size, face position, lighting direction. The objective is to
build a system to detect the current state of these three compositional principles, then use
that information with the models to find the current aesthetic rating and provide guidance
to move to higher rating.

The main challenge in creating these models is how to transform the discrete scores
from our rating experiments to continuous functions that each returns a score for any face
size, face position, and lighting direction. In general, each model is a function f given a set
of measured compositional features {!0,!1, ...,!n

} that returns a score s and a vector d
describing the direction in compositional feature space that will improve the score. Each
model is therefore expressed in the form: (s,d) = f(!0,!1, ...,!n

).

The specific models we developed are:

• Face Size Models: (s
s

,ds) = f
s

(r)

The results of the face size experiment ratings provide aesthetic scores for 19 values
in one-dimension covering a range of reasonably plausible sizes. We use linear in-
terpolation (Formula 4.1) to provide an aesthetic score for any reasonable value of
face size that would be detected in a camera application. Given a detected face size
ratio r, we first find the interval that r belongs to and then apply linear interpolation
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based on the distances between r and the two ends of the interval to find the score
s
s

. We use the highest of the interval scores to set the one-dimensional direction of
improvement ds.

s = Itpl(x, a, b, s
a

, s
b

) = s
a

+
x� a

b� a
⇥ (s

b

� s
a

) (4.1)

• Face Position Model: (s
p

,dp) = f
p

(x, y, r)

Recall that our experiment data for face position was sampled at four face size ratios
(0.3, 0.5, 0.8, 1.0). Thus, the face position model requires the current face size
ratio r as well as the current face position (x, y). Given the scores of the 9 ⇥ 9
= 81 two-dimensional positions across the four face sizes, we first perform a linear
interpolation the scores of all 81 positions for the current size, and then apply a
two-dimensional linear interpolation to find the score s

p

. The direction dp is found
by iterating througth the interpolated 8 neighbouring positions and finding the one
with highest score.

• Lighting Direction Model: (s
l

,dl) = f
l

(u,v)

Unlike face position and face size, we cannot directly measure three-dimensional
lighting directions ⇥ and � from a two-dimensional image. Instead, we developed
a computer-vision based lighting analysis algorithm to compute two vectors u and
v representing x- and y-direction and magnitude for the pattern of shading around
the nose (see Section Model for Lighting Direction for a full description). These two
vectors are transformed in the model function f

l

into the best estimate for ⇥ and �
by finding the nearest neighbour to a set of canonical vectors u⇤ and v⇤ computed
using the 3D human models with known ⇥ and �. With ⇥ and �, we can find
the corresponding score in score matrix. The direction dl is found by checking the
neighbouring 8 lighting directions and finding the one with the highest score. Since
there were no systematic di↵erence of lighting direction aesthetic rating across the
four di↵erent face size ratios we tested, we aggregated ratings across face size ratios
into a single matrix of 9 ⇥ 9 = 81 ratings for ⇥ and � lighting directions.

In this chapter we provide the details for how these models work.

4.1 Model for Face Size

The face size model has three steps: look-up to find the interval where the ratio is located
in the table of ratings from the experiment, interpolation to calculate the score based on
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the slope between the scores in that interval, and direction to find the direction to move
to increase the score.

4.1.1 Look-up

Before applying linear interpolation, it is necessary to find the best interval in the table
of ratios r0, r1, ..., rn and corresponding scores s0, s1, ..., sn computed from our experiment
results. Given a face size ratio r, we seek two consecutive ratios in the table, (r

i

, r
i+1),

such that r
i

 r < r
i+1.

For example, the interval for face size ratio equal to r = 0.35 is (0.3, 0.4).

4.1.2 Interpolation

With the interval defined by (r
i

, r
i+1), the score for the face size ratio r can be calculated

based on the slope of the corresponding scores s
i

and s
i+1 using Itpl(r, r

i

, r
i+1, si, si+1).

Continuing the example with r = 0.35 and table ratio interval (0.3, 0.4), substituting
scores s

i+1 = 0.29 and s
i

= 0.24 into Formula 4.1 becomes:

s = 0.24 +
0.29� 0.24

0.4� 0.3
⇥ (0.35� 0.3) (4.2)

= 0.265 (4.3)

In the case when the ratio is out of the range (i.e r < 0.2 or r > 2.0), the model will
return the nearest sample scores respectively.

4.1.3 Direction

The goal of these models is to provide the guidance on the corresponding feature to increase
the score. Since we used linear interpolation to find the locally best face size ratio, we can
check the slope of the line: si+1�si

ri+1�ri
. If the slope is positive, then the ratio should be bigger

indicating that the camera should be closer, so ds = (+1); otherwise, the ratio should be
smaller to get a higher score indicating that the camera should be further so ds = (�1).
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4.2 Model for Face Position

The face position model transforms a face position (x, y) into a score and direction using
an additional parameter of the detected face size ratio r. This occurs in four steps. First,
the ratio r is used to construct an interpolated position score matrix between two of the
four matrices of position scores collected at four di↵erent face size ratios in the experiment.
Then the cell location for the (x, y) position is located in the interpolated position score
matrix. Using that cell location, a bilinear interpolation using the four corners of the cell
is applied to get the score s

l

for exact position (x, y). To find the direction that would
increase the score from (x, y), the scores of 8 neighbour positions are interpolated using the
same methodology, and the one with the highest score is used to create the two-dimensional
direction vector dp.

4.2.1 Interpolated Position Score Matrix

Recall that our experiment only assessed position scores a four face size ratios: r1 = 0.3,
r2 = 0.5, r3 = 0.8, and r4 = 1.0. As the results in previous chapter shows, the best position
is moving downwards as the face size ratio increases. Therefore, these four position score
matrices divide the space into three sections, such that r would satisfy one of these cases:
r  r2; r2 < r  r3; or r > r3. Given the two position score matrices defining the interval
(one of three pairs matrices, defined with ratios (r1, r2), (r2, r3), or (r3, r4)), interpolate
between all 81 corresponding pairs of cell values in the two matrices to compute the new
matrix. Let sij be the score in cell i, j in each matrix, use Formula 4.1 to calculate the
score sij⇤ as follows (using the matrix pair r2, r3 as an example):

sij⇤ = sij2 +
r � r2
r3 � r2

⇥ (sij3 � sij2 ) (4.4)

4.2.2 Grid Position

After calculating the interpolated position score matrix, the next task is locate the cell of
the matrix where (x, y) would fall given the pixel position in the image. As shown previ-
ously in Figure 3.6, the image is divided into 12 x 12 grids of which the size (width

g

, height
g

)
is calculated using Formula 3.5. Given the face position (x, y) in pixels, the grid position
(x

g

, y
g

) can be acquired using the below Formula 4.5. Notice that we subtract 2 from both
x and y because these are the valid positions without the face being cropped.
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x
g

=
x

width
g

y
g

=
y

height
g

(4.5)

4.2.3 Score Interpolation

With the face grid position (x, y) and all position scores known, we can calculate the score
s
x,y

for the current position using bilinear interpolation based on the scores of the sur-
rounding positions (the right figure in Figure 4.1). The following is the detailed procedure
to interpolate the score of position (x, y) where x = 3.6 and y = 5.3:

1. Find the surrounding 4 face positions
�
(x1, y1), (x2, y1), (x1, y2), (x2, y2)

 
by taking

the ceiling and the floor of both x and y. In this example, x1 equals 3; y1 equals 5;
x2 equals 4; y2 equals 6. Therefore, the surrounding 4 face positions are

�
(3, 5),(4,

5),(3, 6),(4, 6)
 
. Then, get the scores based on the interpolated score data from the

previous step.

2. Interpolate the scores s
x,y1 and s

x,y2 of positions (x, y1) and (x, y2) based on Formula
4.1. Here, the scores of positions (3.6, 5) and (3.6, 6) are interpolated.

s
x,y1 =

x� x1

x2 � x1
⇥ (s

x2,y1 � s
x1,y1) + s

x1,y1 (4.6)

s
x,y2 =

x� x1

x2 � x1
⇥ (s

x2,y2 � s
x1,y2) + s

x1,y2 (4.7)

3. After getting the scores of (x, y1) and (x, y2), the same methodology as the previous
step will be applied to interpolate the score of (x, y) (i.e. (3.6, 5.3)) using the Formula
4.1:

s
x,y

=
y � y1
y2 � y1

⇥ (s
x,y2 � s

x,y1) + s
x,y1 (4.8)

4.2.4 Direction

To provide the guidance on face position, it is necessary to find the neighbours’ scores at
interpolated positions. Then, the position with the highest score indicates the direction to
move the person’s head to get a higher score on face position. It has the following process:
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Figure 4.1: Face Position Interpolation

1. Find the 8 neighbours (A - H ) by adding the grid width to x and the grid height to
y shown as in Figure 4.1.

2. After locating the neighbours, we applied the same methodology as in “Score Inter-
polation” to interpolate the score for each neighbour.

3. Then, according to the position with the highest score, dp is returned. For example,
if it is D, then dp equals (-1, 0); if it is E, then dp equals (+1, 0); if it is G, then dp

equals (0, -1); if it is B, then dp equals (0, +1); if it is A, then dp equals (-1, +1); ...

4.3 Model for Lighting Direction

The lighting direction model manipulates the lighting direction (u, v) to a score and the
direction of improvement. This also happens in 4 steps. First, the computer-vision based
lighting analysis algorithm is run on all synthetic images which produces a pair of (u, v)
for each image (1944(images) = 4(face size ratios) x 6(models) x 81(lighting directions)).
For each lighting direction (⇥, �), the corresponding 24 pairs of (u, v) are aggregated to
a single pair to represent the lighting direction. Therefore, 81 pairs of (u, v) are generated
for all 81 lighting directions. Then, for each lighting direction, we compute the mean score
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of all 24 images. In the end, 81 mean scores are calculated, each for one lighting direction.
The score of (u, v) is generated by calculating the squared Euclidean distance between
(u, v) and all 81 aggregated pairs and finding the nearest one. To find the derection of
improvement, 8 neibours of the matched lighting direction are checked, and the one with
the highest score provides the direction.

4.3.1 Score Calculation

Given a light direction (⇥, �), the lighting analysis algorithm will generate a pair of (u, v).
With (u, v) generated, the model iterates through all 81 aggregated pairs and calculates
the squared Euclidean distance between (u, v) and each aggregated pair. The one with
the minimal distance is found by applying Formula 4.9. After getting this match, the mean
score for the corresponding lighting direction is assigned to be the score of (⇥, �).

argmin
x

f(x) := {x | 8y : f(y) � f(x)} (4.9)

Assuming that the vector of the lighting direction in one image is (-3, 0), (0, 2) generated
by the analysis algorithm, after calculating the squared Euclidean distance between all 81
aggregated pairs and the generated pair, one aggregated pair (corresponding to the lighting
direction (⇥ = 22.5, � = 30)) with the minimal distance is found. Then, the score of this
lighting direction (⇥ = 22.5, � = 30) is the score of the current lighting direction.

4.3.2 Direction

As the pair with minimal distance is found, its 8 neighbors are investigated. The one with
highest score provides the direction to move to improve the score. The same methodology
as for face position is applied here to represent the direction. For example, if it is D, then
dl equals (-1, 0); if it is E, then dl equals (+1, 0); if it is G, then dl equals (0, -1); if it is
B, then dl equals (0, +1); if it is A, then dl equals (-1, +1); ...

Continuing the example with u = (�3, 0) and v = (0, 2) (the middle dot in Figure 4.2),
the model finds that H has the highest score among the 8 neighbors. Then, the model
returs dl which equals (-1, +1).
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Figure 4.2: Light Interpolation

4.4 Summary

In this chapter, we explained how our models calculate the score, and the direction to
move to improve the score, for each compositional feature. Linear interpolation is applied
given the detected face size ratio; bilinear interpolation is used to calculate the score of
the detected face position; di↵erent than previous two, the score of the detected lighting
direction is calculated by finding the closest sampled lighting direction and assigning its
score as the current score. To increase the score on each feature, di↵erent methods are used:
slope for face size; checking surrounding ones for both face position and lighting direction.
These methods are implemented in the application RealSelfie to provide real-time guidance
on each feature.
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Chapter 5

Camera Application to Improve
Selfie Aesthetics

We developed a smartphone application (or “app”) called “RealSelfie” to guide people to
take aesthetically pleasing self-portrait selfie photos using the empirical models described in
the previous chapter. The RealSelfie app detects the current state of compositional features
in a portrait photo using computer vision techniques. Based on the detected position of a
human face, eyes, and nose, it directly determines the face size ratio and face position. For
lighting direction, we developed a simple lighting direction analysis algorithm based on the
brightness pattern around the nose. By using the current state of compositional features
and our empirical models, we can guide the user to move their smartphone to improve the
aesthetics of their selfie photo.

The most challenging part of building the RealSelfie app was detecting the lighting
direction and making the app work fast enough for interactive guidance. The detection
of face and eyes can be achieved quickly using a native API provided by iOS. However,
detecting the nose with Haar Cascades [38, 21] is much slower than the others. To improve
the e�ciency, we downsample the region of interest by only focusing on the nose area and
reducing the resolution. Also, we applied the singleton design pattern for importing the all
three empirical models to avoid unnecessary reloading the models. In the end, our system
running on an iPhone 6 running iOS 9.3 performs in near real time.

Compared to Xu et al. [40], our system does not require a three-smartphone-array or
larger tablet for providing guidance – RealSelfie works on an unmodified smartphone. Xu
et al. encode pre-existing compositional rules for guidance while we use our empirically
derived models which represent what compositional qualities people like. We also include
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lighting direction, whereas Xu et al. only consider face position and size.

5.1 Computer Vision for Feature Detection

To provide guidance for each compositional feature, we first need to calculate each feature
value from the preview image. Face size and position are both calculated from the distance
between the eyes and their position respectively. Our lighting direction algorithm requires
the position of the nose. Therefore, the first task is to detect a human face, eyes, and nose.

5.1.1 Head, Eyes, and Nose Detection

The preview image is captured with the AVCaptureVideoDataOutputSampleBufferDelegate
protocol. As each frame is written to the bu↵er, it is first converted to a core image. Then,
to speed up the analysis process, we downsample the image to half size using CIFilter.
Once it is set up, a CIDetector for face detection is created. Since we are only focusing
on self-portrait photos with an aspect ratio of 5:4, the CIDetector is set to work only in
portrait, not landscape. Then, the CIDetector is applied on the downsampled core image
to detect a human face. CIDetector returns a list of features including the eye positions
and the mouth position (which will be used for nose detection later).

After testing on real portrait photos, we found that eye detection is not reliable when
people are wearing glasses. This could be fixed with an additional step using a custom
trained Haar classifier [32], but since this is not the focus of our research, we only recruit
participants who do need to wear glasses to use a smartphone.

iOS does not provide any native API for nose detection. Therefore, we use OpenCV’s
Haar feature-based cascade classifier [32] for nose detection. Instead of searching for the
nose in the scaled image, we first crop the image using the face bound provided by the
CIDetector. To further improve the e�ciency of the detection, we only search the area
bounded by the eye and the mouth positions.

5.1.2 Face Size Feature Calculation

With eye positions detected, the face size ratio is calculated as follows:

face size ratio =
(x

r

� x
l

)⇥ 2

imageWidth / 3
(5.1)
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Figure 5.1: We assume both eyes are on the same vertical level so the face size ratio can
be calculated by dividing the x di↵erence to one third of the image width.

Note that x
r

� x
l

is the interocular distance and recall that we define face size ratio
relative to the width of one cell in a rule-of-thirds grid, thus we divide image width by 3.
Since we assume the face is oriented straight in the photo without any tilt, the eyes are
on the same level as shown in Figure 5.1. Therefore, the only matter to calculate face size
ratio is the coordinates on the x direction (x

l

and x
r

).

The face size ratio is calculated continuously for each frame with face detected. A first
order low-pass filter [4] is applied to stabilize the face size ratio across frames.

The direction of improvement on face size is calculated by passing the stabilized face
size ratio into the empirical model (as described in the previous chapter).

5.1.3 Face Position Feature Calculation

Using the detected two-dimensional eye positions (x, y)
l

and (x, y)
r

, the eye centroid is
calculated and used as the position of the face. The eye centroid (x, y)

c

is calculated in
image resolution as follows:

(x, y)
c

=
(x, y)

l

+ (x, y)
r

2
(5.2)
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Based on the empirical model on face position, the direction of improvement is calcu-
lated for providing the guidance.

Once the pixel position of the centroid is acquired, it is necessary to convert it to the
grid ratio position used as the parameters to the empirical model. The image width w

i

and image height h
i

can be easily obtained by calling iOS native API. Based on w
i

and
h
i

, the grid’s width w
g

and height h
g

are calculated using the Formula 3.5. Then, Formula
4.5 in the previous chapter is applied to get the grid position (x

g

, y
g

).

As previously discussed, x
g

and y
g

should both be in the range 2 to 10. Otherwise, the
face will be cropped, even with a small face size ratio. If the detected face position is out
of the range, the closest position will be used.

Like face size, a first order low-pass filter is applied to filter the noise and stabilize the
feature value. The stabilized face position is passed into the empirical model to calculate
the corresponding direction of improvement.

5.1.4 Lighting Direction Feature Calculation

To calculate the lighting direction, we rely on the pattern of luminance around the nose
area. We found this to be the most resilient place for this analysis since it contains most
lighting information on the face because of nose geometry [10].

Using the detected nose position, a region-of-interest (ROI) around the nose is isolated.
To speed up and normalize analysis, the nose ROI is downsampled to 100 pixels wide with
the height selected to maintain the original aspect ratio. Since we only use luminance, the
nose ROI is converted from BGR to HSV colour space.

After this preprocessing of the nose ROI, we sample the luminance in eight radial 9⇥9
pixel patches (Figure 5.2). A patch direction vector is constructed from the centre of the
nose ROI to the centre of each patch. For each sample patch, we find the median luminance
l
s

and compute the ratio of it over the luminance at the centre of the nose ROI l
s

/l
c

where
l
c

is the luminance of the nose tip): . Each patch direction vector is then scaled by the
corresponding luminance ratio of the patch it points to. Then we sum up the vectors
from all eight patches to produce a single lighting direction vector (the red arrow in Figure
5.2). For robustness, we repeat the steps above for di↵erent patch radii (the distance from
the centre of the region of interest to the centre of each sample patch). We begin with a
radius of 9 pixels and increase the radius by 9 pixels after each round of eight patches is
sampled.
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Figure 5.2: Lighting direction analysis for one distance – the dotted lines indicate the
vectors pointing from the centre to sample regions; based on the ratio, the vectors are
shrunk or expanded shown as the black arrow lines; the red arrow line is the sum of all
black arrow line indicating the lighting direction vector for this iteration.

The final lighting direction vector is the sum of the vectors from all iterations. Pseudo
code for the complete lighting direction estimation process is provided in Algorithm 1 and
Algorithm 2. The final lighting direction vector is filtered by another first order low-pass
filter and passed to the lighting model to compute the current lighting score and direction
for improvement.

5.1.5 Validation and Testing

The APIs for face and eye detection work well even for extremely small and large faces.
However, they are dependent on lighting conditions. If there is not enough ambient light,
the face and eyes cannot be detected. Nose detection is not as reliable as face and eye
detection, likely due to the limited Haar training dataset. Face detection can be achieved
at approximately 12 FPS and nose detection at 8 FPS. Considering how fast people move
their phones when composing a photo, these times are acceptable for real time guidance.

We tested our lighting direction estimation algorithm using the synthetic images used
for the lighting direction aesthetic rating experiment (see Section 3.1.4). To prevent a
confound from imperfect nose detection, we manually insert a transparent plane to each
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Algorithm 1 Calculate the lighting direction vector lightDir for a given nose area image
noseAreaBGR.
Require: noseAreaBGR: a BGR image containing a nose
// Convert the image from BGR to HSV
noseAreaHSV ( cvtColor(noseAreaBGR)

// Resize the image to a smaller size and get the V channel
aspectRatio ( noseAreaBGR.height / noseAreaBGR.width
noseAreaHSV ( resize(noseAreaHSV, Size(100, 100⇥ aspectRatio))
noseAreaV ( split(noseAreaHSV )

// Get the luminance value of the centre
l
c

( luminance of the cetner of noseAreaV

// Initialize the result vector
lightDir ( (0, 0)

// Calculate the lighting direction vector for each distance from innermost to outermost
iteratively
for d

i

such that sample regions are within the image do
lightDir

i

( calLightDir(l
c

, d
i

, noseAreaV ) // Algorithm 2
lightDir ( lightDir + lightDir

i

d
i

( d
i�1 + 5 // Sample size is (10 x 10) pixels

end for

return lightDir
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Algorithm 2 calLightDir: Calculate the lighting direction vector lightDir for l
c

and d
i

in
image noseAreaV .

Require: l
c

: the luminance of the centre; d
i

: distance; noseAreaV : an image containing
the brightness information of nose area
// Initialize the result vector
lightDir ( (0, 0)

// Calculate the vector for each sample region s
i

for s
i

in noseAreaV do
// Get the median lumiance of the sample region
l
si ( median luminance of s

i

// Calculate the ratio between l
si and l

c

r
si ( l

si / l
c

// Calculate lightDir
si for each s

i

lightDir
si ( r

si ⇥ vector from center of noseAreaV to the center of s
i

// Accumulation
lightDir ( lightDir + lightDir

si

end for

return lightDir
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realistic human model in Blender and generate nose area masks. Then, combining the nose
area mask with the synthetic image, we generate a controlled nose region of interest.

Figure 5.3 compares the estimated lighting direction from our algorithm (shown in red)
with a two-dimensional projection of the known actual lighting direction (shown in blue)
on all the tested nose regions of interest. As shown in the figure, the algorithm works well
when the light comes from the front (� 2 [�90�, 90�]), but it deviates when the light comes
from behind (� 2 [�120�,�90�] [ [90�, 120�]) or top (⇥ = 90�). We believe that this will
not be a problem in real life since people typically do not take photos with light coming
from behind.

We also tested the performance of our algorithm on three sets of real photos. This
time, we used the detected nose area. The results are shown in Figure 5.4. We took 3 sets
of photographs of 3 people (2 male, 1 male, all wearing glasses): one set with the sunlight
coming from the top left; one set with the sunlight coming from the top; one set with
the sun light coming from the top right. As the figure shows, the algorithm’s estimate is
consistent for all 3 sets. It also shows that the glasses and moustaches do not a↵ect our
lighting direction estimation.

5.2 UI Design

The phone application consists of 2 modes: Guidance and Debug. In Guidance mode, the
guidance on each feature is provided based upon the direction of improvement calculated;
in Debug mode, all information including the face position, eye position, mouth position,
the analysed lighting direction, and the scores for all 3 features are drawn. For guidance,
di↵erent icons are drawn so that users can easily understand it and the experience is
enhanced. The Guidance mode can be disabled by double-tapping.

The user interface of the RealSelfie app is shown in Figure 5.5. The primary interface
components are the guidance visualizations for the three compositional features.

5.2.1 Face Size Guidance

For face size guidance, a circle surrounds the face and small arrows are drawn to point
outward or inward (e.g. Figure 5.5-b). The arrows indicate whether to move the smart-
phone closer or further. When the arrows point inwards, the system is suggesting that the
smartphone should moved farther away to decrease the size of the face. When the arrows
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Figure 5.3: Lighting direction analysis algorithm test using synthetic images:
blue arrow lines are the actual lighting direction projected on the two-dimensional image;
the red arrow lines are the estimated lighting direction from the algorithm.
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Figure 5.4: Lighting direction analysis algorithm test using photos of real people: red lines
are the estimated lighting direction; left column: the light comes from top-left; middle
column: the light comes from top-middle; right column: the light comes from top-right.
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(a) Perfect face size (b) Perfect face position (c) Good lighting direction

Figure 5.5: The UI provides the guidance on each compositional feature: (a) the optimal
face size is reached with small arrows missing; (b) the optimal face position is reached with
the large arrow missing; (c) a good lighting direction is achieved with translucent arrows
on the sun icon.
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point outward, the system is suggesting that the smartphone should moved closer to in-
crease the size of the face. The transparency of the arrows indicates the di↵erence between
the score of the current face size and the highest possible face size score. The metaphor is
that when the arrows are very dark, guidance is highly suggested. If the arrows disappear,
the current face size ratio is optimal (e.g. Figure 5.5-a). The circle also serves to indicate
that the face is being tracked correctly.

5.2.2 Face Position Guidance

For face position guidance, an arrow with a longer tail is drawn emanating from the tracking
circle (e.g., the long arrow pointing NW emanating from the top-left of the circle in Figure
5.5a). This arrow indicates the direction in which the face should be moved. For example,
if the arrow points NW, then the smartphone can be slighting tilted SE to move the
face up and over. The arrow is drawn based on the direction of improvement returned
by the empirical model, thus it can be drawn in 8 directions. Like face size guidance,
the transparency of the arrow indicates the di↵erence between the current score and the
highest score under the current face size ratio. If the position is optimal, the arrow will
disappear (e.g. Figure 5.5-b).

5.2.3 Lighting Direction Guidance

For lighting direction guidance, an icon resembling a sun with two arrows are shown (top-
left corner in Figure 5.5). The arrows indicate how to rotate the phone to improve the
lighting. For example, arrows pointing up and right indicate that the smartphone should be
rotated to the left and up to improve lighting (e.g. Figure 5.5-b) As before, the transparency
of the arrows indicates how close the current lighting score is to the optimal score.

5.2.4 Debug Mode

The default mode for RealSelfie is guidance, but it also has a debug mode for testing. In
debug mode, the guidance visualization is augmented with tracked positions for the face,
eyes, mouth, and nose, the estimated lighting direction vector, as well as the numeric scores
for all 3 features. The debug mode is activated or deactivated by double-tapping.

In next chapter, we present the results of an experiment to test the usability and
e↵ectiveness of the RealSelfie app.
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Chapter 6

Evaluation

We evaluated RealSelfie from two perspectives: application usability and its e↵ectiveness at
improving selfie photograph aesthetics. We conducted a usability experiment where people
took self-portrait selfie photos with and without RealSelfie in a controlled setting. To
evaluate the aesthetic e↵ectiveness, we conducted a second rating experiment on Amazon
Mechanical Turk to rate the best pair of photos taken by each participant with and without
RealSelfie.

6.1 RealSelfie Usability Experiment

The usability of RealSelfie is investigated through analysis of application logs and ques-
tionnaires when people take self-portrait photos with and without RealSelfie in a controlled
setting. This first experiment also produced a dataset of photos taken with and without
RealSelfie that we use in the second experiment to evaluate the e↵ectiveness of RealSelfie.

6.1.1 Participants

We recruited 20 participants from a university campus (11 female and 9 male, mean age
24.4). Our participants had a high level of visible diversity with di↵erent skin pigments and
facial features. We limited participants to people who could view the smartphone screen
without eye glasses since the eye detection algorithm is less reliable with dark rimmed eye
wear. Our participants had a variety of smartphone selfie taking experience: 7 took selfies
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Figure 6.1: The timer is started once the LaunchCamera button in the middle is tapped
whenever the participant is ready to take a photo.

with their smartphone daily or weekly, 10 took selfies monthly or yearly, and 3 almost
never take selfies. Only 1 participant had taken a course in photography.

6.1.2 Apparatus

We used the RealSelfie described in the previous chapter running on an iPhone 6. The app
can run with or without visual guidance. Regardless whether visual guidance was shown, we
instrumented the app to run the full compositional feature analysis and compute the scores
and direction of improvement. This ensured that the refresh rate of the preview mode was
the same regardless of guidance and most importantly, provided a log of quantitative data
to test whether people actually improved aesthetic ratings (as determined by our models)
using guidance. To record the time for taking one photo, we implemented a LaunchCamera
button (shown as in Figure 6.1) for experiments. As the button is tapped, the starting
time stamp is logged. When the participant captures one photo by either tapping the circle
button or pressing the volume button, a picture taken time stamp is logged as well. With
these two events, we can calculate the time to take a picture.

To avoid the background a↵ecting the participants’ assessments in the second experi-
ment, we set up a room as shown in Figure 6.2b. It is constructed as Figure 6.2a. Inside
a room, we use grey background paper (height: 2.7m) to set up a circle. We fix a chair
at the centre of the circle. Instead of doing the experiment outdoors with the natural
sunlight, we chose to build an indoor studio so that the lighting condition is highly con-
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trolled. The participant can rotate to adjust the lighting direction while sitting in the
chair. The ambient light is generated by using 5 bulbs to shoot straight on the ground.
Two more poweful bulbs are used to mimick the sunlight. This setup enables us to highly
control every features including both lighting and background so that either will not be
the influential factor causing the aesthetic di↵erence between the pair of images.

(a) lamp shoots parallel light mimicking the sun-
light; A – E shoot straight light on the ground
to generate ambient light.

(b) The participant sits in the chair, moves the
camera to manipulate face size, face position or
rotates to adjust lighting direction.

Figure 6.2: The plan view and real scene of the studio we set up for participants taking
photos.

6.1.3 Task and Protocol

The experiment had two parts. Before starting each part, participants were asked to only
focus on the three compositional factors, face size, face position, and lighting direction.
They can move the camera closer or further to adjust the face size, change the face position
by tilting their wrists, and rotate in the chair to change the lighting direction. To avoid
the case of other factors such as hairstyle, clothing, posture, etc. a↵ecting the aesthetics
of photos, we specifically asked them to focus on those 3 features and keep anything else
consistent. For example, if they have one facial expression in one photo, they have to do
the same one in all the other photos. They were also warned that the ultimate goal was
to capture 5 most appealing self-portrait “selfie” photos in each part.

In the first part, they took 5 self-portrait “selfie” photos without guidance. In the
second part, RealSelfie guidance was turned on and they took 5 more self-portrait “selfie”
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photos with guidance. They were told they could follow or ignore the guidance suggestions.
After both parts were completed, the participant selected the best photo among the five
taken without guidance and the five taken with RealSelfie.

Then subjective feedback on RealSelfie was gathered using a post-experiment question-
naire Appendix B. The participants are asked to give a score from 1 to 5 on a continuous
scale for Ease of Learning, Ease of Use, Accuracy of Guidance, Operation Speed, and Hand
Fatigue (with 1 being worst and 5 being best). They were also asked to answer if they
thought the guidance is helpful and would use an app like this.

The experiment took 31.25 mins on average,.

6.1.4 Design

This is a within subjects experiment. The independent variable is guidance with two
levels: baseline, when the camera application has no guidance and realselfie, when
the full RealSelfie camera application is used. Since there would be a very strong carry over
e↵ect if realselfie preceded baseline, each participant took 5 photos with baseline
then took five photos with realselfie as explained in the task above.

Our dependent measures are the photo-taking time and compositional feature scores
for the two types of guidance, as well as subjective feedback for realselfie in the
questionnaire.

6.1.5 Results

Since we are only interested in di↵erences between two levels of guidance, we use a t-
test for 2 related samples with a critical value of .05 for statistical tests. We computed
the dependent measures for photo-taking time and compositional feature scores from the
application event logs using a custom parser written in Python.

Selected Photos

For each level, we calculated the percentage of each photo being selected as the most
appealing one among the 5 photos. As the higstograms in Figure 6.3 show, there is no
preference in baseline or realselfie.
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Figure 6.3: Histograms showing selected photo index percentages: (a) baseline; (b)
realselfie.

Photo-Taking Time

The photo-taking time is the duration between the “launch camera” button press and the
shutter button press. Two box plots (Figure 6.4) are drawn to visualize the time spent for
both baseline and realselfie by all 20 participants. As the plots show, the time for
the first photo-taking in each set is much larger than the others. We believe it is because
participants tried to learn the application and get to know the new circumstance (the
studio).

First, we calculated the average photo-taking time for baseline and realselfie for all
5 photos. Then, we repeated the process but only for 4 photos with the first one excluded
since the average time is independent of the learning process. Both the average and SEM
are shown in Figure 6.5. By comparison, without the time cost for first photo, both the
average and SEM are reduced.

We found a significant di↵erence in photo-taking time when considering all photos;
t(198) = �4.79, p < 0.01 (Figure 6.5a). The average time in baseline was 20.0 sec
(sd 22.0) and 32.9 sec (sd 26.8) for realselfie. A significant di↵erence in photo-taking
time is also found when considering only 4 photos; t(158) = �4.22, p < 0.01 (Figure 6.5b).
The average time in baseline was 16.04 sec (sd 14.66) and 27.61 sec (sd 21.24) for
realselfie. The photo-taking time is much more than the reality. We believe the reason
is that the studio is a new scene for the participants, not the one they find interesting in the
first place and decide to take a photo in as in real life. It takes them time to investigate the
space to find the interesting spots. After spending time on exploration, they take photos
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(a) Photo-taking time in baseline (b) Photo-taking time in realselfie

Figure 6.4: Box plots showing photo-taking time for both (a) baseline and (b)
realselfie.

then.

However, we did not find a significant di↵erence in photo-taking time when consider-
ing the selected photo only; t(38) = �0.81, p = 0.43 (Figure 6.5c). The average time in
baseline was 27.6 sec (sd 27.5) and 35.8 sec (sd 35.7) for realselfie.

Feature Scores

The feature scores of the best photo in each part are also compared. Besides the time
stamp, the scores for all 3 features are also logged when the photo is captured. Therefore,
for each participant, 10 sets of feature scores are recorded. Once the experiment is done,
the participant is asked to pick the most appealing photo from each set. The indices of
the two photos are recorded. In the post-experiment analysis, the parser filters the feature
scores for the best 2 photos based on the indices and grouped into 2 sets: baseline and
realselfie.

The average score, standard deviation, and standard error for each feature in both
baseline and realselfie are calculated shown as in Table 6.1. The average score and
standard error are drawn in Figure 6.6. We also run a T-test for each feature which is also
shown in Table 6.1. There is a significant di↵erence between baseline and realselfie
for face size and lighting direction. However, there is no enough evidence to prove the
existence of the significant di↵erence for face position. From the statistics, we can conclude
that RealSelfie does improve the aesthetics on face size and lighting direction but not face
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(a) Photos from 1 to 5 (b) Photos from 2 to 5

(c) Selected Photos

Figure 6.5: Average and SEM photo-taking time for two sets: (a) all 5 photos, (b) 4 photos
without the first one, (c) selected photos.
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Figure 6.6: The average time for taking one photo without and with guidance.

position. By checking the photos taken by participants, we find that participants normally
just place their faces in the center area of the image even without guidance which is not
very di↵erent than the position provided by the synthetic model. This is why there is no
significant di↵erence between without and with guidance on face position.

User Experience

The user experience of RealSelfie is investigated through a post-experiment questionnaire
shown in Appendix B. The participants are asked to give a score from 1 to 5 on a continuous
scale for Ease of Learning, Ease of Use, Accuracy of Guidance, Operation Speed, and Hand
Fatigue (with 1 being worst and 5 being best). The average is shown in Table 6.2. We can
tell that RealSelfie does provide a good user experience for participants to take self-portrait
photos.

For the relatively lower scores on Ease of Use and Accuracy of Guidance, we found that
it was caused by the flickering of the arrows on lighting direction guidance by investigating
the feedback provided by the participants. Also, in the experiment, we realized we did not
give partitipants enough time to rest. This could be the reason for the lower score on Hand
Fatigue.
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Baseline RealSelfie t value p value

Face Size
Mean = 0.170
STD = 0.122
SEM = 0.027

Mean = 0.245
STD = 0.103
SEM = 0.023

-4.16 0.0001

Face Position
Mean = 0.714
STD = 0.163
SEM = 0.037

Mean = 0.723
STD = 0.100
SEM = 0.022

-0.23 0.82

Lighting Direction
Mean = -0.019
STD = 0.052
SEM = 0.012

Mean = 0.049
STD = 0.108
SEM = 0.024

-2.30 0.033

Table 6.1: The average, standard deviation, standard error, and t-test results for each
feature in baseline and realselfie.

Ease of Learning 4.225
Ease of Use 3.95

Accuracy of Guidance 3.725
Operation Speed 4.25
Hand Fatigue 3.825

Table 6.2: The average scores for evaluating the user experience of RealSelfie.
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6.1.6 Discussion

By recruiting participants to take photos without and with RealSelfie, we found that Real-
Selfie does improve the aesthetic scores on face size and lighting direction. And there is no
enough evidence to make the same statement on face position. By looking at the photos
taken without RealSelfie, we found that most participants centre their faces consciously.
Therefore, there is no significant di↵erence on between the scores with and without Real-
Selfie. In the end, We can conclude that RealSelfie does improve the overall aesthetic score
of selfies but with the sacrifice of time.

There are short term refinements to RealSelfie. Some participants complained about
the sometimes ambiguous guidance on lighting direction and participants with very dark
hair sometimes found it di�cult to notice the arrow for face position. We believe both of
these minor problems can be corrected with improved graphic design.

In next section, we describe an experiment to evaluate selfie photos taken with and
without RealSelfie to evaluate the e↵ectiveness of RealSelfie.

6.2 E↵ectiveness Experiment

The goal of this experiment is to evaluate whether RealSelfie actually improved the overall
aesthetics of a selfie photograph. Through the experiment described in the previous section,
20 pairs of self-portrait photos were acquired: one without guidance and the other one with
guidance. Then we created a task for each pair of photos on AMT and recruited 100 workers
to rate each pair of photos. The photos are graded with a scale from 0 to 100. Then, the
scores of photos are grouped into 2 sets: baseline (without guidance) and realselfie
(with guidance). Finally, we apply statistical methods to find if a significant improvement
is made by using RealSelfie.

6.2.1 Participants

To investigate the aesthetics, we recruit 100 workers for each task (Human Intelligence
Task — HIT). For general assessment, no prerequisite is asked for participants.
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Figure 6.7: The user interface on AMT for workers to grade both photos with a scale of 0
to 100 through a slider bar. The two containers show the photos, and the text boxes below
require the feedback on face size, face position, and lighting direction.

6.2.2 Apparatus and Task

For each pair of photos, we created a HIT using the UI shown in Figure 6.7. In each HIT,
the pair of photos is shown in the two containers. For workers’ convenience, two slider bars
are implemented to allow workers to grade each photo with a score ranging from 0 to 100.
The participants were also asked to provide the feedback regarding the only 3 features:
face size, face position, and lighting direction. Then, they could use the slider bar to grade
each photo.
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6.2.3 Design

To avoid that any participant cheating in all HITs, we randomize the order of the photos
in each HIT (i.e. the photo taken using RealSelfie could be on the left or right).

Only 15 out of the 20 pairs were assessed by the workers on AMT. One pair was
disregarded due to inconsistent facial expression. Two pairs were abandoned because the
participants completely ignored the guidance which results in very similar photos. The
other two pairs were ignored because the participants were distracted by the guidance and
captured much less appealing photos.

From the assessments of the 15 pairs of photos, we group the scores to 2 categories:
baseline and realselfie.

6.2.4 Results

Since we are only interested in di↵erences between two levels of guidance, we use a t-test
for two related samples with a critical value of .05 for statistical tests. We computed the
aesthetic scores for both 2 categories using a custom parser written in Python.

Aesthetic Rating

We found that selfie photographs taken with realselfie are rated as more aesthetic ap-
pealing; t(2998) = 16.33, p < .01 (Figure 6.8). The average rating for realselfie photos
is 68.93 (sem 0.53) compared to 54.82 (sem 0.62) for baseline. This is a 26% improve-
ment in aesthetic rating when using RealSelfie. The average score, standard deviation, and
standard error are provided in Table 6.3.

With furher investigation on each pair, we found the pair with greatest improvement.
A t-test was run over the 100 pairs of scores with t(98) = �12.47, p < .0001. The average
score of the photo without RealSelfie is only 45.43 whereas the average is 77.58. By looking
at the photos, we found that with RealSelfie, both the lighting and face position are dra-
matically improved. Within the 15 pairs, we also investigated the worst pair for which the
average score with RealSelfie (61.08) is lower than that wihout RealSelfie (61.53). Another
t-test was runn and proved that there was no significant di↵erence between realselfie
and baseline (t(98) = 0.12, p = 0.90). The aesthetics of the photo with RealSelfie was
improved on face size but diminished on lighting direction. We believe that it was caused
by the flickering of the arrows on lighting direction.
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Figure 6.8: The average scores and standard errors of the means for Baseline and
RealSelfie are drawn for visualization.

RealSelfie Baseline
Mean 68.93 54.82

Standard Deviation 20.27 23.72
Standard Error 0.61 0.72

Table 6.3: The average, standard deviation, and standard error for each feature score
without and with guidance.
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6.2.5 Worker Comments

Other than the aesthetic scores of all photos, we also took a quick look at the feedback
regarding the three compositional rules: face size, face position, and lighting direction. We
found that RealSelfie improved the aesthetics on face position and lighting direction. It
appeared that people had various opinions on face size. Some workers also critiqued that
the photos taken with RealSelfie were washed out. We think this can be fixed with more
natural light.

6.2.6 Discussion

By recruiting participants on AMT to assess the aesthetics of the photos taken without
and with RealSelfie, we find that RealSelfie does improve the aesthetics of self-portrait
photos with guidance provided while participants are taking photos.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented a multi-phase research methodology to build and validate
RealSelfie, a smartphone camera application assisting people to take more appealing self-
portrait “selfie” photos.

We first generated many sets of synthetic selfies using realistic 3D models of humans
where we tightly control three key compositional features: face size, face position, and
lighting direction. We used these synthetic selfies in a large crowdsourcing experiment
in which we gathered thousands of ratings about their aesthetic quality. These ratings
illuminated some fundamental patterns in preference, some of which diverge from accepted
principles like the rule-of-thirds. But most importantly, we used these ratings to build three
empirical models to estimate an aesthetic score, and direction for aesthetic improvement,
given the current state of each compositional principle. The RealSelfie app uses computer
vision techniques to detect the state of each compositional principle in realtime and by
passing these detected states to the three empirical models, the app provides on-screen
guidance indicating how to move the smartphone to improve the selfie. In the process of
developing this app, we also contribute a simple, but e↵ective algorithm to estimate the
direction of a dominant light source. Finally, we evaluated the usability of RealSelfie with
20 participants and show that our entire approach can increase the aesthetic ranking of
selfies by 26%.

We not only introduced a system which improves the aesthetic quality of selfies, but
we believe our methodology can be extended to enhance other features or other classes of
photographs.
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7.2 Future Work

Our work also suggests avenues for future research.

We only considered the three compositional features. There is a large space of other
features that could be investigated in a similar method. These include other compositional
features, such as head tilt, camera angle, multi-point lighting, focal length, colour bal-
ance, depth of field, background contrast. But also non-compositional features like facial
expression, eye gaze, hair style, clothing.

Our focus was on single person portraits, but related classes of selfies could be explored
directly using our methodology. For example, two person selfies, selfies of a person in front
of a structure, and small group selfies.

We also believe our methodology can be applied for photographs taken of other ob-
jects, like cars, children, pets, buildings, sunsets, sports, etc. A closely related class of
photographs is the “mirror selfie” which would require a redesign to our user interface
since the smartphone display is not the focus of the picture taker.
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Appendix A

Pre-Experiment Questionaire for
In-Lab Study
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PARTICIPANT # ________________ DATE _________________________ 

Pre-experiment Questionnaire 
_________________________________________________________________________ 
 
1. Gender:     Male       Female 

2. Age:          ______ 

3. Have you ever taken a course in photography? 

          Yes       No 

4. How frequently do you take photos using your smartphone? 

Daily 

Weekly 

Monthy 

A Few Times Per Year 

Almost Never 

5. How frequently do you take self portrait photos (selfies) using your smartphone? 

Daily 

Weekly 

Monthy 

A Few Times Per Year 

Almost Never 

  

   

 
  



Appendix B

Post-Experiment Questionaire for
In-Lab Study
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PARTICIPANT # ________________ DATE _________________________ 

Post-experiment Questionnaire and Interview 
Part 1: Taking and Choosing Photos 
 

1. What kinds of things were you considering when you took photos without guidance from the 
app? 

 
 
 
 
 
 
 
 
 
 
 
 

2. What kinds of things were you considering when you chose the best photo ? 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



 
 
 
PARTICIPANT # ________________ DATE _________________________ 

Part 2: Technique Ratings 
 

Please fill out the following questionnaire in the scale from 1 to 5  
(with 1 being worst difficult and 5 being best). 

 

Technique: ______________________________________ 
 

Ease of learning Ease of use 

Score Comments Score Comments 

 

 
 
 
 
 

  
 

Accuracy of guidance Operation speed 

Score Comments Score Comments 

   

 
 
 
 
 

Hand Fatigue  

Score Comments   

 

 
 
 
 

  

 
 
   



 
 
 
PARTICIPANT # ________________ DATE _________________________ 

Part 3: Comments 
 

1. Do you think the guidance is helpful? 

 

 

 

 

 

 

 

 

2. Would you use an app like this? 

 

 

 

 

 
    

 

 

 

3. Additional comments? 
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