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Thesis Abstract
In this PHD dissertation, the nature of technological shocks and their effect on economic activity are

examined. The first chapter is dedicated to the analysis of general purpose technologies (GPTs) and their
identification in the patent data. I argue that the previous literature has been identifying sub-technologies
of a given GPT rather than the technology itself. Moreover, I argue that the quantity of active GPTs
identified using the old methodology is substantially greater than theoretically possible. The first chapter
of my thesis presents an alternative approach to the identification of a general purpose technology than
the one used in the previous literature and provides an example of such a technology identified in the
patent data. This technology is the microcomputer. The chapter examines its evolution, diffusion, and the
effect it has on other patented technologies. The findings are in line with the theoretical GPT literature.

In the second chapter of my dissertation, I examine the effect of a positive technology shock on ag-
gregate hours worked. Compared to the previous literature, the novelty of the approach proposed in the
current study comes from two directions: the choice of variables and the technique used to identify the
technological shock. A patent-based measure is the main measure used to approximate the unobserved
aggregate technological process. The second important novelty of the study is the use of the sign restric-
tion Vector Autoregression (VAR) shock identification technique that is believed to be more robust than
the alternative identification techniques used in the literature. The sign restrictions are determined using
a general equilibrium model with skilled and unskilled labour featuring skill-specific and general tech-
nology shocks. The analysis shows that aggregate hours increase following both kinds of technological
shocks. The results obtained in the study are robust to the technology measure used. When a patent-based
measure is replaced with a production function residual measure the effect of the shock still improves the
aggregate hours. Moreover, the results are robust to the way aggregate hours themselves are specified.
Finally the results are supported when more conventional long run restrictions are applied on the VAR.
However, with the long run restrictions it does matter how the aggregate hours are specified the same way
it mattered in the previous studies.

In the third chapter, I continue the analysis of the effect of a technological improvement on the labour
market. In this study, I attempt to address the general criticism of the VAR methodology about the fact
that only a limited number of variables can be processed. This limitation requires a researcher to make a
choice in favour of certain variables and to justify this choice. Moreover, no matter which variables are
chosen for the final modeling form, some information would still be excluded from the study. I overcome
this limitation by incorporating factor analysis techniques into the VAR framework. I introduce Factor-to-
factor VAR (F-FAVAR) that is an extension of the FAVAR approach that has already been succesfully used
in the past.The F-FAVAR methodology allows an inclusion of a latent factor "impulse variable" besides
the latent factor "response variables". As a result a large number of macroeconomic variables is examined
and there is no necessity to exclude any of the variables. Moreover, there is no necessity to make a choice
in favour of a particular measure of technology. All the relevant technological measures can be included
into the model. As a result it is possible to examine the reaction of various economic and business
variables to a technological shock. The reaction of the key economic variables to a technology shock is
in accordance with the theory. The reaction of various labour measures to the shock was also examined.
The results of the third chapter mainly support the findings of the second chapter about the positive effect
of a technology shock on aggregate hours. In order to check the robustness of the results, instead of
the F-FAVAR methodology, a simple FAVAR methodology was also used. For that methodology it was
necessary to select a particular measure of technology to be included into the VAR model as well as
to impose restrictions on the VAR. Several different technology measures with two alternative sets of
restrictions were used. The results of the robustness analysis mainly support the findings of the F-Favar
methodology.
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Thesis Introduction

0.1 General Introduction
Technological progress is one of the major driving forces of an economy. The role of new tech-

nologies in economic development since the first industrial revolution is very significant. According to
[Mokyr, 1990] out of three possible engines of economic growth: market expansion, capital accumula-
tion, and technological innovation, only the latter is not subject to diminishing returns. Economic growth
over the last two centuries has mainly been the product of technological innovations.

Technology in some form, either endogenous or exogenous, is present in many modern macroeco-
nomic models of growth and business cycles. In such models, especially in those explaining business
cycles, technology typically enters the production function in a form of a shock. This shock is a sudden
change that improves factors’ productivity. Understanding the nature of technology, how it evolves and
how its evolution affects the economy is the key to our comprehension of how technology shocks influ-
ence economic activity in the short and long run. Although economists agree that technological shocks
are very important for explaining economic fluctuations in the short run and long run, these shocks are
difficult to identify. There is a large amount of literature on understanding the nature of technology shocks
and the effects of technology shocks on aggregate economic activity. Despite this literature, economists
disagree on the effects of technology on the economy, especially in the short run, and on how to identify
these shocks.

The two most fundamental questions that apply to technological shocks are: "What is the nature of
a technological shock?" and "What are the effects of a technological shock on economic variables such
as productivity, output, or employment?" The goal of this dissertation is to increase our understanding of
these questions.

0.2 Chapter 1: Evidence of General Purpose Technologies in the
Patent Citation Data

In the first chapter of my dissertation, a permanent improvement of the aggregate technological pro-
cess caused by a specific kind of technology called a "general purpose technology (GPT)" is identified
using US patent data. The chapter includes a discussion of how to identify a GPT using the patent data.
I argue that the previous literature has been identifying sub-technologies of a given GPT rather than the
technology itself. Moreover, I argue that the quantity of active GPTs identified using the old methodology
is substantially greater than theoretically possible. The first chapter of my thesis presents an alternative
approach to the identification of a General Purpose Technology than the one used in the previous litera-
ture. It also provides an example of such a technology identified in the patent data.

The example of a general purpose technology examined in the first chapter is a microcomputer tech-
nology. In the previous studies that attempted to identify general purpose technologies in the patent data,
the following approach was taken: certain patents’ characteristics were examined. These studies then
proceeded by trying to identify some outlying characteristics of a given patent and arguing that a certain
combination of such outlying characteristics makes given patented technology a general purpose technol-
ogy. The approach taken in the first chapter of my thesis is the opposite. Instead of looking at the patents
first and trying to find the patents that look like general purpose technology patents, I look at the tech-
nology first and then allocate the patents associated with this technology. A technology that is commonly
accepted as a general purpose technology is selected first. The main selection criterion is that the active
development phase of the technology must coincide with the available time range of the patent citation
data. Only after that the initial patents associated with the technology are allocated and examined.
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In order to observe the subsequent evolution and diffusion of a general purpose technology starting
with the identified initial patents, a structure linking patents by their citations called an evolutionary path
is introduced. An evolutionary path is obtained by transforming the initial dataset into a tree looking
structure with the initial patents at the root and assigning each patent within the evolutionary path a
position level that identifies the largest quantity of citation links necessary to connect the patent with the
root. The evolutionary paths can be constructed for any kind of technology, not just for a general purpose
technology.

After obtaining the evolutionary path for the microcomputer technology we then analyze its evolution
and diffusion across the technological fields. The following exercises were conducted over the micropro-
cessor evolutionary path. First, it was noted that the patents contained in the evolutionary path are crucial
in order to observe the patent growth spurt of the 1980s - early 1990s. If we subtract the patents con-
nected by citation links to the initial microcomputer patents from the population of patents granted in the
United States between 1976 and 2006, we do not observe the patent growth spurt in the aforementioned
time period. One of the explanation of the patent growth spurt observed in the given time period is the
presence of a fertile technology.1

The analysis of the microcomputer evolutionary path confirms that the computer technology boom
experienced over the time period is at least partially responsible for the aforementioned increase in the
patenting activity. Moreover, the technological history literature recorded similar and even stronger out-
breaks in patenting activity.2 Such outbreaks could be associated with the development of other important
general purpose technologies such as electricity and internal combustion engines.

In order to link my work to the previous studies dedicated to GPT identification in the patent data, I
conduct the following analytical exercise. I examine whether the patents with certain outlying character-
istics have any relationships with active GPTs and thus acquired certain GPT features. Recall that the past
studies would search for outliers in the patent data in order to identify GPTs. This analytical analysis is
conducted the following way. First, a sample of one thousand patents was extracted from the population
of patents granted in the United States in 1976 (the beginning of the dataset). Each of those patents was
assigned to be an initial root patent from which an evolutionary path was constructed. As a result a sam-
ple of a thousand evolutionary paths was derived. Each of those paths was linked to the microcomputer
evolutionary path by the number of coincident observations on each position level. A coincident observa-
tion is a patent that belongs to both an examined evolutionary path and the microcomputer evolutionary
path. Subsequent regression analysis revealed that a closer connection to the general purpose technology
evolutionary path makes any other evolutionary path bigger in terms of the number of patents it contains.

This observation confirms that a fertile general purpose technology is beneficial for other technologies
and stimulates aggregate technological knowledge in general. Moreover, a diffusion of technologies
across technological fields in an evolutionary path also benefits from a closer relation to the general
purpose technology. Evolutionary paths that have more coincident observations with the microcomputer
technology were found to have greater numbers of various technological fields and sub-fields covered.

Another set of regression equations was presented in order to analyze how a relation with the general
purpose technology affects certain characteristics of an initial basement or root patent from the sample
of one thousand patents. It was found that certain patent characteristics that were used by the previous
literature to attribute a patent to a GPT actually depended on how close the given patent is to a GPT. In the
general purpose technology theory dissertation appendix essay3, I argue that general purpose technologies
are too complex to be represented by a single patent. However a closer relation of a patent to an actively
developed GPT is one of the key factors that make this patent look like an outlier by certain characteristics.

1See [Kortum & Lerner, 1999].
2See [Marco et al., 2015].
3In order to be able to identify general purpose technologies I conducted a detailed literature review on the nature and features

of historically observed general purpose technologies. The results of this research instead of being included into the first chapter of
my thesis are combined in a standalone essay located in the Appendix of the dissertation.
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Therefore, many of the patents identified by the previous methodologies as GPT candidates are indeed
related to GPT but each one of them does not represent a separate GPT.

As a result, in the first chapter I introduce a way of identifying, describing and, analyzing general
purpose technologies using patent citation data. I argue that the previous literature has been identify-
ing sub-technologies of a given general purpose technology rather than the technology itself. On the
other hand, the approach introduced in the first chapter allows us to capture all the patented effects of a
given general purpose technology and analyze it at a full scope. The identified patented microcomputer
technology evolves and diffuses in agreement with the GPT literature.

0.3 Chapter 2: Effect of Technological Innovations on Hours
Worked

In the second chapter of my dissertation, I examine the effect of a positive technology shock on aggre-
gate hours worked. Neither theoretical not empirical studies give a determinate answer about the effect
of technology on aggregate hours in the short run. On the theoretical side the debate is whether the in-
come or the substitution effect dominates following a technology shock that improves aggregate factors’
productivity. According to real business cycles models that feature flexible prices and wages, an im-
provement of productivity will cause an increase in aggregate hours due to the fact labour becomes more
productive. According to the Neo-Keynesian literature, the effect is the opposite. In models with sticky
prices, a positive technology shock causes a decrease in aggregate hours worked.

Empirical studies do not resolve the controversy. Empirical literature examining the effect of produc-
tivity on hours worked using time-series econometric analysis came to contradictory conclusions about
the effect. The conclusions crucially depend on the method used to identify the technology shock and on
the specification used.

Compared to the previous literature, the novelty of the approach proposed in the current study comes
from two directions: the choice of variables and the technique used to identify the technological shock. I
make two contributions to the literature. First, I choose a measure of technology shocks that is different
from the one used in the literature. I use my results from chapter 1 to guide me in this task. A patent-based
measure is the main measure used to approximate the unobserved aggregate technological process. In the
comparative study based on literary sources I investigate the advantages and short-coming of this measure.
The main advantage is that unlike a production function residual, the patent-based measure is a direct
measure of innovations. Moreover, unlike the R&D expenditure accounts, every patent implies at least a
minimum improvement of the pre-existing technological state. Nevertheless, I check the robustness of my
results using a secondary measure of technology, the capacity utilization adjusted total factor productivity
described in [Fernald, 2012].

The second novelty of the study is the use of the sign restriction technology shock identification
technique that is believed to be more robust than the alternative identification techniques used in the liter-
ature.4 Zero short and long run restriction methodologies used in the earlier studies require a researcher
to have strong beliefs about effects that innovations to certain variables have on other variables. For ex-
ample, a researcher may have to assume that innovations to certain variables have no immediate or no
long-term effect on other variables. Sign restrictions are less demanding in terms of the assumptions.
Instead of a no-effect assumption, an assumption about the sign of the effect is imposed.

In order to estimate the effect of a technology shock on aggregate hours worked a five-variate Vec-
tor Autoregressive (VAR) model with sign restrictions is used. Besides the aforementioned technology
measure and the measure of the aggregate hours worked itself another three macroeconomic variables
are included in order to identify the shock. Given that the sign of the response of aggregate hours to the

4See [Peersman & Straub, 2004] for the discussion of robustness of sign restriction identification technique.
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shock is the main subject of the analysis, no sign restrictions are imposed on the aggregate hours worked
measure itself. In order to uniquely identify a technology shock and to distinguish it from other common
macroeconomic shocks, sign restrictions are imposed on the measure of technology as well as on the three
other macroeconomic variables whose reaction to a technology shock is not subject of the investigation.

A model with skilled and unskilled labour is used to determine the sign restrictions that are imposed
on the data. The model features two types of technology shocks: skill-specific shock that improves
productivity of skilled workers only and skill-neutral shock that improves productivity of all workers
in the economy. The model is constructed so that a technology shock can produce an increase or a
decrease in aggregate hours worked. This flexibility allows us to examine the way aggregate hours react
to a technology shock based purely on the data. The model allows for the aggregate hours to increase
when the technology shock is of a general nature and to increase or decrease after a skill-specific shock
depending on the model calibration and on the assumption regarding the ratio of skilled to unskilled
workers.

The model, while providing flexibility about the reaction of aggregate hours to the technology pro-
vides a way of distinguishing a technology shock from other common economic shocks such as demand
shock, or monetary shock. Therefore, when the sign restrictions are imposed on the data it is possible to
argue that the shock being examined is a technology shock and not some other shock that could hypo-
thetically affect aggregate hours worked. The model also allows us to distinguish a general technology
shock from a skill-specific technology shock by imposing alternative sign restrictions on the variable that
represents the difference between skilled and unskilled workers employment in the VAR.

From the empirical distributions of the impulse responses constructed in the study, it is apparent that
aggregate hours increase following both kinds of technological shocks. Based on the model intuition it
appears that the amount of skilled workers in the current economy is big enough to offset any negative
effect of technology on unskilled labor and to drive up aggregate hours worked. The results received
in the study are robust to the technology measure used. When a patent-based measure is replaced with
a production function residual measure the effect of the shock on the aggregate hours is still positive.
Moreover, the results are robust to the way aggregate hours themselves are specified. According to
the previous studies, the way aggregate hours react to a technology shock empirically would depend
on whether the aggregate hours are specified in levels or in first differences. In the current study the
specification of the aggregate hours does not affect the conclusion. Finally the results are supported when
more conventional long run restrictions are applied on the VAR. However, with the long run restrictions
it does matter how the aggregate hours are specified the same way it mattered in the previous studies.

0.4 Chapter 3: Analysis of Aggregate Technology Shock with
Factor-to-Factor VAR

In the third chapter, I continue the analysis of the effect of a technological improvement on the labour
market. In this study I attempt to address the general criticism of the VAR methodology on the fact that
only a limited number of variables can be processed. By including only a limited number of variables into
the model a researcher has to make choices on which variables to keep. These choices are associated with
the following problems. First, no matter which variables are chosen in the VAR, some potentially useful
and relevant information will be omitted. Second, there often exist multiple alternative measures of a
particular phenomenon. By limiting the number of variables a researcher has to decide and justify which
of the available measures to use. Often each of the measures has its own advantages and disadvantages
and there is no universally accepted "best" measure. Therefore, the results of the research immediately
become a subject of criticism.

[Bernanke et al., 2004] introduced a Factor Augmented VAR (FAVAR) methodology to examine the
effects of a monetary policy shock on macroeconomic data. The model presented in that study featured a

4



monetary policy measure along with other few latent factor variables derived from a large macroeconomic
dataset. It is necessary to note that in the case of the monetary policy, the choice of the shock variable is
easy and uncontroversial. For the last decades, the Federal Funds Rate has been the main monetary policy
instrument in the United States. If a researcher wanted to examine the effects of a technology shock using
the FAVAR methodology, the researcher would still have to argue about the technological measure to be
used as it is argued in the second chapter on my dissertation.

In the third chapter of the dissertation, I extended the FAVAR methodology to allow an inclusion of a
latent factor "impulse variable" besides the latent factor "response variables". The methodology is called
Factor-to-factor VAR (F-FAVAR) As a result a large number of macroeconomic variables is examined
and there is no necessity to exclude any of the variables. Moreover, there is no necessity to make a choice
in favour of a particular measure of technology. All the relevant technological measures can be included
into the model.

The methodology works the following way. First, a large number of variables that include economic,
technological, and business measures are combined into one dataset. The variables are sorted in terms of
the category they represent. For example all the measures of output are grouped together and located at
the beginning of the dataset, next all the labour market measures are located and so on. A small group
of miscellaneous variables that could not be attributed to any of the groups is located at the bottom. The
number of principal factors equal to the number of variable groups is extracted from the data. The matrix
of loadings is rotated so that each of the factors has its maximum loadings in each of the particular groups
and the loadings for all the other groups are close to zero. It is important to mention that only orthogonal
rotations are used and therefore the independence of the latent factors is preserved.5

The rotated factors are combined into a VAR system. A VAR model is then solved. No restrictions to
the VAR system is necessary since that the orthogonality of the factors is ensured. The responses of all the
factors to the impulse of the technological factor were examined.6 The impulse-response functions of the
latent variables were projected to the initial variables. As a result, it was possible to examine the reaction
of various economic and business variables to a technological shock. The reaction of the key economic
variables to a technology shock is in accordance with the theory. The reaction of various labour measures
to the shock was also examined. The results of the third chapter mainly support the findings of the second
chapter about the positive effect of a technology shock on aggregate hours.

In order to check the robustness of the results, instead of the F-FAVAR methodology, a simple FAVAR
methodology that was described in [Bernanke et al., 2004] was used. For that methodology it was neces-
sary to select a particular measure of technology to be included into the VAR model as well as to impose
restrictions on the VAR. Several different technology measures with two alternative sets of restrictions
were used. The results of the robustness analysis mainly support the findings of the F-Favar methodology.

In general, the second and the third chapters of the dissertation explore different methodological
approaches to examine the short run effects of technological innovations on macroeconomic variables.
The effects on these variables are in accordance with the previous theory whenever there is a theoretical
consensus on such effects. When such consensus does not exist, as it is in the case with hours worked,
the findings of the both chapters indicate overall positive effect of technological innovations on aggregate
hours worked.

5The rotation exercise allows to achieve two objectives. First of all each of the resulting factors has a certain economic meaning.
Therefore, it is possible to allocate the factor that has high loadings for the numerous technological measures included in the data
and low loadings for all the other variables. This latent factor is a latent technological factor that is later used in the VAR as a
technological shock variable. The second objective of the rotation exercise is that, according to the factor analysis literature (See
[Bai & Ng, 2012] for example). the rotation towards a block-diagonal matrix described above is sufficient to uniquely identify the
factors and the loadings.

6Note that it is possible to examine the responses to the other meaningful factors in the system, for example of a factor with high
loadings for the monetary variables’ group, or with a fiscal variables’ group. However, this was beyond the scope of the current
study.
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Chapter 1

Evidence of General Purpose
Technologies in the Patent Citation
Data

1.1 Introduction
In the last twenty years more and more economists have turned their attention to General Purpose

Technologies (GPTs). Unlike a single purpose technology (SPT), a GPT is applied in many sectors and
can serve various purposes. When a GPT arrives, it rejuvenates the economy by making production of
existing commodities more efficient, and by introducing new commodities. Society has observed many
GPTs. Examples of GPTs are "Electricity", "Computers", or "the Wheel".

The study of fundamental innovations is a relatively young topic in economics. The term GPT was
first introduced in [Bresnahan & Trajtenberg, 1995]. However, one can find discussions about the phe-
nomenon of fundamental innovations earlier in technological literature, for example in [David, 1990].
GPTs are sometimes contrasted in the literature with the Single Purpose Technologies or SPTs. One can
also find several other terms that have meanings similar to those of the concepts of GPT and SPT. For
example, [Mokyr, 1990] distinguishes between micro and macro-inventions, while [van Zon et al., 2003]
use the terms core and periphery innovations, and [Aghion & Howitt, 1998] call GPTs fundamental inno-
vations.1 Throughout my dissertation, I will use the term GPT to mean a technology that can drastically
affect the whole economy, improve production in existing industries, and give rise to new industries.

The main objective of the first chapter is to uncover GPTs using the US Patent Citation dataset. The
"NBER US Patent Citation Data" was collected by Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg
and presented in [Hall et al., 2001b]. This dataset includes all the patents granted in the United States
between 1976 and 2006. There are 3210179 patents in total for that period. Besides listing the patents,
the dataset provides information about the relationship between them. Patents in the data include citations
to the "prior art", that is to the earlier inventions the current invention is based on. Thus the patent citation
data provides a good way to examine links between various inventions, how these inventions diffuse over
time and how they constitute a technology shock.

The first attempt to uncover GPTs in the patent data belongs to Bronwyn Hall and Manuel Trajten-
berg. Their identification technique, described in [Hall & Trajtenberg, 2004], requires finding a patent
that differs from the rest of the patents in the data by certain criteria and claiming that this patent may be

1Here and after I use the terms GPT and fundamental innovation interchangeably. Even though the term fundamental innovation
describes the phenomenon much better, I will have to use the term GPT in order to be on the same page with the rest of the literature.
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a potential GPT-carrier, that is a patent that would represent a GPT in the data. Their approach provided
a list of 20 GPT candidate patents. In my research, I examine these candidate patents as well as other
similar patents that I identify using the [Hall & Trajtenberg, 2004] methodology.

Based on the previous and new measures that I develop, as well as in accordance with the theoretical
discussion, I argue that using the patent data, one cannot firmly establish or pre-identify a GPT in its early
stages. Instead, I find that a particular GPT, that is well-established and universally agreed to be a GPT,
can be described by a collection of patents. Growth of such a technology and its diffusion throughout the
technological sectors can be examined using the patent citation data. I provide a technique of creating a
subsample from the patent citation dataset that includes patents related to a particular GPT.

In order to describe GPTs in the data I introduce a tool that I call an evolutionary path. Evolutionary
paths resemble tree-structures, they start with one node - the originating or level-zero patent, the first level
includes patents that cite the original patents, the second level includes the patents that cite the first level
patents and so on until the end of the observations in the patent citation dataset. These evolutionary paths
allow one to observe how a particular patent affects the overall patent data, and in which technological
fields the applications derived from this patent are found. In other words, evolutionary paths describe the
contribution of a particular technology to the overall technological knowledge described by the patent
data. Evolutionary paths serve as a useful tool for examining the GPT-candidate technologies given that
these technologies naturally would involve patents from a greater variety of technological fields than the
regular single purpose technologies. Note that evolutionary paths can be applied to describe any kind of
technology within the data, not only a GPT. An evolutionary path is based on the citation feature of the
patent data. Hence, evolutionary paths can be constructed with other types of data that have reference
links between from one datum to another.2

Based on the theoretical GPT discussion and the empirical analysis involving the construction of
the evolutionary paths for the GPT-candidate patents, I establish that very general knowledge usually
arises from academic and non-profitable research and therefore does not get patented at its earliest stages.
Moreover, according to the GPT literature, a GPT at its early stages has a very narrow spectrum of
applications. Thus, when the first applications based on the new general knowledge get patented, they are
indistinguishable from the regular single purpose technological innovations.

I conclude that, first, it is impossible to identify a GPT in the data when this GPT is at the early
phases of the life-cycle.3 Second, one should not expect the whole GPT to be contained in a single
patent.4 However, one can observe the effects of the GPT in the patent data. The way to trace a GPT in
the patent data is to wait until a technology reveals itself as a general purpose technology. Only after it
has revealed itself as a GPT, it is possible to examine its evolution and diffusion using the data.

This approach does not allow one to predict upcoming major technological transformations, however
it allows the examination of the effects of such a transformation after the transformation took place. A
theoretical discovery or a set of discoveries that initiates a GPT usually does not get patented. In the
patent data we can observe the earliest applications of these discoveries. These applications will serve as
a starting point or points5 for the construction of an evolutionary path. The evolutionary path would then
represent all the patented applications of a given general purpose technology.6

2One particular type of data that would be interesting to examine using the evolutionary paths is the "scientific publication data".
3[Carlaw & Lipsey, 2006] have a discussion about the level of uncertainty associated with a GPT, when it arrives. Given that a

GPT reveals all its applications and technological improvements throughout a long period of time, sometimes a century, one would
not be able to identify with a 100% certainty a GPT when it just arrived, moreover, one would not be able to predict the way this
GPT will evolve and diffuse at its early stages of development.

4For example, several types of dynamo machines got patented in the late XIX century (Siemens’ patent, Zipeenowsky and Deri’s
patent, Brush’s patent), while the earlier predecessors of these machines ( Faraday’s disk and Jedlik’s dynamo) did not get patented
at all.

5It is possible for an evolutionary path to start from several nodes and therefore it is possible to describe a technology that
originates from a series of patents in the data.

6It is necessary to note that some researchers may violate their legal responsibility to quote some relevant previous art, and thus
their patents would not to be included in an evolutionary path. On the other hand, some of the researchers may cite an irrelevant
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My approach in uncovering GPTs in the patent data is more intuitive than the "search for outliers"
approach in [Hall & Trajtenberg, 2004]. My approach allows us to describe and examine a GPT, to estab-
lishe its features, and to trace its diffusion. Unlike previous research, I conclude that, given the time frame
of my dataset, it is unlikely that we can find 20 developing or active7 GPTs as [Hall & Trajtenberg, 2004]
have suggested in their article. Based on previous analysis and history, at most 3 active GPTs are likely
to be observed during that time frame.8

As an example, I describe the "Microprocessor Based Computers" general purpose technology that
I call "microprocessor" for short. The choice of this technology was dictated by the time range of the
data set. The latest edition of the NBER US Patent Citation Data is in the range from 1976 to 2006. I,
naturally, wanted to find a GPT that exists and is "active", that is evolves and diffuses within this time
range. Luckily there was such a GPT - microprocessor-based computers.

I construct the evolutionary path based on the earliest microprocessor-relevant patents. Then I ex-
amine the effects of a "microprocessor" technology on the aggregate technological process expressed
using number of patents granted. The observed effect of a technology on the aggregate knowl-
edge process resembles a positive permanent technological shock since the mean of the process is
shifted to a permanently higher level.9 Previous researchers, for example [Kortum & Lerner, 1999] and
[Rafiquzzaman & Whewell, 1998], at least partially attribute this surge in the innovative and patent ac-
tivity to the fertile computer technology effect rather than the effect from some particular patent policy.
I also find that the acceleration of the patenting activity in 1980s should be at least partially attributed to
the presence of an active and very fertile GPT that I denote "microprocessor".

The effect of the microcomputer GPT on the aggregate technological knowledge can be observed
when one subtracts the patents that belong to the microcomputer evolutionary path from the total number
of patents in the dataset. The upward trend segment of the process in the 1980s-1990s is not observed
when we exclude the patents derived from the microprocessor technology. The process becomes mean-
stationary throughout the time range of the data. Therefore, the effect of the arrival of the microprocessor
GPT is the growth in the patenting activity that can be considered a positive permanent technological
shock. This effect is in accordance with the theoretical GPT literature, where it is stated that GPT opens
the door for the new stream of innovations that are applied in various sectors of the economy.10

The paper is structured the following way: Section 1.2 will present the current trends in the GPT
literature concentrating on the identification of GPTs in the patent data. Section 1.3 is dedicated to the
description of the NBER patent citation dataset and the data processing methodology used in this study.
The authors of the dataset supplied it with the accompanying paper ([Hall et al., 2001b]) where they sup-
ply a detailed analysis of the data features and provide multiple descriptive statistics. The presence of
this accompanying paper allows me not to go in detail discussing the dataset itself and spend more time
on presenting the construction of the evolutionary path from the data. The first natural candidates for
construction of evolutionary paths are the GPT-candidate patents selected in [Hall & Trajtenberg, 2004].
Section 1.4 provides the analysis of the single patent GPT candidates along with the discussion about
why it is unlikely for those patents to represent multiple co-existing GPTs. In Section 1.5 I present an
alternative approach to identifying GPTs in the patent data. Instead of looking at a patent and speculating

patent in order "to be safe" or guided by some other motivation, especially given that some of the citations are added by the patent
bureau examiners.

7In [Oystrakh, 2014] readers can find a discussion of the phases of a typical modern GPT based on the GPT theory. The phase
of a GPT life-cycle that is associated with the active development of the applications for a given GPT the "active phase of the
life-cycle".

8According to [Lipsey et al., 2005] for the given time period there are "Computers", "Internet", and "Biotechnological" GPTs
that are active.[Lipsey et al., 2005] separate "Computer" and "Internet" GPTs while one can claim that this is the same technology
that allows us to process information electronically.

9Two types of unit root tests: Dickey-Fuller and Phillips-Perron were applied to the time series aggregate technology measure.
Both tests indicated absence of the unit root in the data prior to the beginning of the active phase of the microprocessor technology
and the presence of the unit root afterwards.

10See [Lipsey et al., 2005] for example
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whether this particular patent can or cannot be a GPT based on certain characteristics of the patent, I take
a well-known general purpose technology that is commonly and unarguably believed to be of general pur-
pose (the microcomputer or microprocessor computer technology) and then trace it within the patent data.
In section 1.6, I examine the microprocessor GPT identified within the patent data and observe its affect
on aggregate patenting activity over time. I find that presence of this GPT stimulated research activity and
gave birth to multiple applications in various sectors thus increasing patenting activity. In Section 1.7, I
return to the discussion of the old GPT identifying methodology presented in [Hall & Trajtenberg, 2004]
and numerous other studies. So why are certain patents outliers by some of their characteristics? I find
out that a close relation of a given technology to an active GPT makes this technology different from
an "average technology" of the time. By studying a sample of 1000 random patented technologies and
introducing a measure of the connection for these technologies to a GPT, I find that the connection to the
GPT plays an important role in the subsequent life-cycle of a given technology. Section 3.5 concludes the
study.

1.2 Literature Review
The term GPT was introduced for the first time in [Bresnahan & Trajtenberg, 1995] where these

technologies were described as "pervasive technologies with inherent potential for technical im-
provements and innovational complementarities that give rise to increasing returns to scale". Since
[Bresnahan & Trajtenberg, 1995] various authors have studied the role GPTs have played in the econ-
omy.

The GPT literature can be roughly divided into three groups according to the types of research ques-
tions. The first type of publications describe the nature of GPTs and thus contribute to the GPT theory.
The second group of researchers conduct empirical analyses in order to identify GPTs in the data. To
accomplish this goal they exploit the GPT features described by the first group of publications. Finally,
the third group works on constructing economic models that incorporate GPT into the economic analy-
sis. A detailed discussion of publications from each of the groups can be found in [Oystrakh, 2014]. In
this section I will list and review some past contributions to the identification of GPTs in the patent data
since this branch of the GPT literature is the most relevant to the current study. However, it necessary
to note that many GPT-identifying empirical studies contain a theoretical part about GPTs, therefore the
distinction between the two types of articles is sometimes vague.

First it is necessary to give credit to the creators of the US patent citation dataset for the detailed
analysis of the data in [Hall et al., 2001b]. In their article some important statistics as well as techniques
that are useful in detecting GPTs are established. [Hall et al., 2001b] include a very detailed description
of the dataset along with the characteristics of the variables and statistics that are in the data as well as
some general observations about the dataset.

In [Hall et al., 2001b] among other issues related to the patent citation dataset, the authors discuss
the arrangement of patents into technological categories and subcategories. They propose measures of
"generality" and "originality" for the patent.11 These are the measures indicating whether this patent is
cited or cites a greater variety of technological fields relative to the other patents. Measures of generality
and originality become useful in the GPT identifying analysis presented in [Hall & Trajtenberg, 2004].
[Hall et al., 2001b] also propose ways of dealing with the citation inflation12 in the patent data.

The second paper produced by the authors of the dataset, [Hall & Trajtenberg, 2004], describes re-
search methodologies useful in detecting GPTs. The article presents a list of 20 patents that best fit the
predetermined criteria of a general purpose technology. In order to identify a GPT the authors assume

11See Appendix 1.9.1where these variables are re-defined and slightly improved.
12An increase of the average number of citations per patent in the recent decades is sometimes called "citation inflation" int he

literature.
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that a GPT-patent would be more general (cited by patents from a wider spectrum of technological fields)
than an average patent, the followers of the GPT-candidate patents would also be more general. Moreover,
the technological field of the GPT-candidate, after the introduction of that patent, is expected to grow in
size (contain more patents) than an average technological field. Thus, a GPT-candidate patent would be a
"black sheep" by certain criteria.

The article "Was Electricity a General Purpose Technology? Evidence from Historical Patent Cita-
tions" by [Moser & Nicholas, 2004] is also based on patent citation data. The authors use two sets of
the data, the first set includes patents from the 1920s. The second set used in [Moser & Nicholas, 2004]
contains modern patents i. e. the patents granted after the year 1976. However, the authors use only those
modern patents that directly cite the patents from their 1920s patent set. [Moser & Nicholas, 2004], like
[Hall & Trajtenberg, 2004] also apply the measures of generality and originality13 as well as other patent
describing variables to compare the patents from the "Electrical" technological fields to the patents in the
other fields. The goal of their analysis is to establish whether the technological breakthroughs of the early
XX century are all due to the "Electrical" GPT.

Nanotechnology is often considered to be a potential GPT in the literature. For example,
[Lipsey et al., 2005] and [Nikulainen & Kulvik, 2009] list it as a potential GPT of the 21st century, while
[Menz & Ott, 2011] take the fact that nanotechnology is a GPT for granted in their study of its effect on
regional development.

[Youtie et al., 2008] attempt to identify whether nanotechnology is an emerging GPT using the patent
citation data and the analytical tools presented in [Hall et al., 2001b]. The approach taken by the au-
thors is simple. They assume that Information-Communication Technology (ICT) patents are definitely
patents representing a GPT, while drug and medical patents are definitely not representing a GPT. Based
on this assumption they compare the nanotechnological patents to both computer and drug patents of
the same time cohort. The criterion for the comparative analysis is the generality index presented in
[Hall et al., 2001b] and [Hall & Trajtenberg, 2004]. The authors find that the nanotechnological patents
are closer to the computer patents according to their generality measure and therefore it looks like nan-
otechnology is indeed an emerging GPT.

[Nikulainen & Kulvik, 2009] examine three technologies: ICT as the established GPT, and also nano
and biotechnologies as potential GPTs. Among other sources, the authors use Finnish patent data to
examine the links between these technologies and the industries. The authors look at the companies
assigning the patents in the technological fields of interest, if, for example, a company listed in the forest
industry filed an ICT patent, the authors would observe the link between the forest industry and the ICT
technology that indicates the diffusion of the technology into that industry. Applying this methodology to
the patent data from various sources, the authors establish that ICT and nanotechnology diffuse to much
larger extent and find a much broader set of applications than biotechnology did.

Another article that uses the US patent Citation Dataset is [Gress, 2010]. The article includes a dis-
cussion of backward and forward citations in the dataset and provides a good description of the analytical
tools that will help in drawing conclusions about generality, originality of a technology. The author also
provides an illustrative discussion about how patents are related to each other using graph theory. Un-
fortunately, the graph theory analysis presented in the article does not allow the examination of some
particular technology, rather it shows a segment extracted from the data with no beginning and no ending.
These chunks of data are used for illustrative purposes, to show how the data looks in general, what are
the main features and general observations about the structure of the US patent citation dataset.

It is also necessary to mention the discussion paper "Knowledge Flow and Sequential Innovation:
Implications for Technology Diffusion, R&D and Market Value" by [Belenzon, 2006] in which the author
constructs tree-looking structures, similar14 to the "evolutionary paths" proposed in my research, using

13The authors in [Moser & Nicholas, 2004] define their originality measure in a slightly different way from the way used in
[Hall et al., 2001b] and [Hall & Trajtenberg, 2004]

14Unfortunately I was not able to establish the exact way the tree structures are constructed in [Belenzon, 2006] in order to be
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patent citation data. The research question in[Belenzon, 2006], however, differs from the question in
this study. [Belenzon, 2006] uses his structures to trace whether the original inventor participated in the
subsequent rounds of research.

1.3 Data and Methodology

1.3.1 Data
In this section, I briefly describe the dataset. For more details and descriptive statistics a reader

should review [Hall et al., 2001b]. I also present a way of processing data into tree-structures that I called
evolutionary paths in order to observe evolution and diffusion of a technology. I use the 2006 vintage of
the US patent citation data. The dataset spans from 1976 to 2006. It contains various information about
all patents issued in the US during that time period. This information includes patent characterizing
variables, information about patent assignees, and patent citation links.

The following two tables from the dataset are used: the general patent information table that includes
the list of all the patents in the dataset along with relevant variables and statistics and the citation table
that includes pairwise cited-citing related patents. In order to generate the evolutionary paths these tables
were combined into one table that has pairwise cited-citing related patents and the variables and statistics
relevant to the citing patent. Table 1.1 schematically represents the dataset.

Table 1.1: Initial Dataset Structure

Citing patent ID Cited patent ID Grant year of the cit-
ing patent

Other variables de-
scribing the citing
patent

2 1 1976 · · ·
3 1 1977 · · ·
3 2 1977 · · ·
4 2 1978 · · ·
5 1 1979 · · ·
5 3 1979 · · ·
5 4 1979 · · ·

Description: Assume there are five patents in the data. Patent 1 is the oldest one and it is cited by patents 2, 3, and 5. Patent 2, is
the second oldest and is cited by patents 3 and 4. Patents 3 and 4 are cited only by patent 5, while patent 5 is the latest and it is not
cited by any patent.

The variables that are used in my research can be divided into three groups: the original information
derived from the patent citation data, the variables and statistics created by the authors of the dataset and
the new statistics I created. I provide a description of the variables in Appendix 1.9.1.

1.3.2 Methodology
In their identification of a GPT, [Hall & Trajtenberg, 2004] select some criteria that a GPT-candidate

patent as well as its direct followers have to meet in order to qualify for a GPT. In my research, I go beyond
just considering the initial GPT-candidate patent and its direct followers. I construct the evolutionary path
for a given technology15. Thus, when I am looking at a particular technology, I first identify the patent

more precise on how much they resemble evolutionary paths. The attempt to contact the author on that matter did not provide any
additional insights.

15I need to thank Guillermo Fuentes from University of Waterloo Arts Computing Office for helping in coding a program that
extracts the patents relevant to a given technology from the data
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itself, I call it "the basement patent", then I identify the patents that quote this patent directly "the level 1
patents", then the patents that quote level 1 get extracted and so on until the end of the dataset.

Due to the size of the data and in order to save the computing time as well as not to observe the same
patents multiple times, I do not keep the duplicate observations of the same patent in the resulting dataset.
The following important assumption allows me to eliminate the duplicate observations in a rational and
justifiable manner:16:

Assumption 1 All the prior art17 is necessary in order for a given technology to exist.

This assumption allows one to structure the resulting data in the following way: If the same patent
appears on both levels n and n− 1, only the observation on the level n will be kept since there was some
research activity on the level n− 1 necessary for this patent to exist, therefore this patent must be placed
after the level n− 1. Besides the variables that existed in the original data two new variables are added to
the output data: the variable "Level" indicates the position level of the current observation relatively to the
basement patent, the variable "Group" is just the basement patent’s seven digit ID and it is the same for
all the observations belonging to the evolutionary path of the same technology. Table 1.2 schematically
describes the resulting evolutionary path datasets.

Table 1.2: Resulting Evolutionary Path Dataset Structure

Citing patent ID Cited patent ID Grant year of the cit-
ing patent

Other variables Level Group

2 1 1976 · · · 1 1
3 2 1977 · · · 2 1
4 2 1978 · · · 2 1
5 4 1979 · · · 3 1

Table 1.2 is derived from the example in Table 1.1. The variable "Group" denotes that all the patents
in Table 1.2 are the followers of patent number 1. The level variable represents stages of research activity.
For example, there is a patent with the identification number "1" that, besides representing some practical
application of knowledge of its own, also provides grounds for further research. According to the above
assumption, this patent opens the door for the whole group of technologies represented by the patents
with the identification numbers "2", "3", "4", and "5".

Unfortunately there is no perfect choice of data and ways of dealing with it when conducting empir-
ical research. All methods and choices have some caveats. Foreseeing possible directions of criticism
of the choices made, I list certain problems and disadvantages associated with the choice of data and
methodology in [Oystrakh, 2014]. The problems can be split into three groups: genuine patent data prob-
lems, technical problems, and methodology problems. Some of the problems can be dealt with, others
will have to be ignored.

16However one should remember that as with all assumptions, there are caveats, in our case inventors sometimes cite "previous
art" only because of the legal motivation and not because the previous art played an important role in their research. Other times
citations are added by an examiner and there is a possibility of an inventor being unaware of certain prior art included to the patent.
However, a study by [Duguet & MacGarvie, 2007] finds that "patent citations are indeed related to firms’ statements about their
acquisition and dispersion of new technology, but that the strength and statistical significance of this relationship varies across
geographical regions and across mechanisms for technology diffusion."

17In most of the systems of patent law, prior art is all the information that was available before a certain date and is con-
sidered to be relevant to the given patent’s claims and originality, and therefore must be cited in the patent documentation.
[United State Patent Act, 1836, ]
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1.4 Analysis of Single Patent GPT Candidates
[Hall & Trajtenberg, 2004] provided a methodology for identifying a GPT in the patent citation data

as well as listing 20 patents that best fit all the criteria for the GPT.18 When I began constructing evolu-
tionary paths of technologies, the obvious decision was to look at these patents first.

When the evolutionary paths were constructed, it appeared that only 9 out of the 20 patents selected by
Hall and Trajtenberg (2004) were independent i. e. did not belong to another evolutionary path originating
from one of the patents in the group of 20 GPt-candidate patents. The other 11 patents belonged to at least
one of the evolutionary paths derived from the nine independent patents. Moreover, when the remaining
9 GPT-candidate patents’ paths are analyzed, it appears that more than 95% of observations in these
paths are also the observations of some other path within the group of 9. For example 99.8 % of the
followers of the patent 4528643 are also the followers of the patent 3956615. Therefore these paths are
not independent at all.

Table 1.3 lists the GPT-candidate patents from [Hall & Trajtenberg, 2004]. We observe that some of
the patents are not independent and belong to an evolutionary path(s) of another patent (other patents)
within the same group of the 20 GPT-candidate patents. The patents that are called independent in Table
1.3 do not belong to any of the evolutionary paths within the same group of 20 patents. However, the
subsequent observations in their evolutionary paths are mainly coincident within the observations of the
other evolutionary paths in the group of 20.

Table 1.3: [Hall & Trajtenberg, 2004] Selected Technologies†

PID HJT
cat.*

HJT Sub-
cat.**

Grant Year Subsample
of‡

on the
Level

Subsample
of‡

on the
Level

Inde -
pendent?

3624019 1 15 1971
√

3636956 3 32 1972
√

3842194 2 24 1974
√

3956615 2 21 1976
√

4575621 5 59 1986 3956615 5
4528643 2 22 1985

√

4558413 2 24 1985
√

4672658 2 21 1987
√

4783695 4 46 1988
√

4821220 2 22 1989 3956615 5
4885717 2 22 1989 4558413 1 3956615 5
4916441 2 21 1990 3956615 8
4953080 2 22 1990 4558413 1 3956615 8
5133075 2 22 1992 4558413 3 3956615 9
5155847 2 22 1992 4558413 3 3956615 6
5093914 2 22 1992 4558413 2 3956615 6
5347632 2 22 1994 4528643 4 3956615 8
5119475 2 23 1992

√

5132992 2 21 1992 4528643 4 3956615 9
5307456 2 23 1994 3956615 10

† "Highly Cited Patents with High Generality, Class Growth, and Citing Patent Generality" From Table 8 in [Hall & Trajtenberg, 2004]
* Technological category, see Appendix 1 in [Hall et al., 2001b]
** Technological Subcategory, see Appendix 1 in [Hall et al., 2001b]
‡ The patent belongs to the evolutionary path(s) of another patent within the table
? The patent does not belong to any evolutionary path of another patent within the table

In Table 1.4 I demonstrate the degree of coincidence within the evolutionary paths of the independent
patents. I show the percentage of coincident observations within the patents that are themselves the

18See Hall and Trajtenberg, 2004 , Table 8; also re-listed in Table 1.3.
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basement patents for the 11 non-independent patents.19 Thus, most of the 20 GPT-candidate patents
share a common history in terms of subsequent research.

Table 1.4: Coincident observations in historical paths

PID 3956615 4528643 4558413
Number of coin-
ciding

% Number of coin-
ciding

% Number of coin-
ciding

%

3956615 638375 100 224633 99.8 273452 98.4
4528643 224633 35.2 225023 100 183946 66.2
4558413 273452 42.8 183946 81.7 277806 100

I collected a sample of 1000 evolutionary paths originating in the year 1976, so that the information
from the whole dataset could be represented by the sample. The sample was used for various purposes
among which was the calculation of pairwise coincident observations of every path in the sample with
every other path (999000 observations in total). It appears that the average percentage of coincident
observations between two paths originating in the year 1976 is 10.4%, which is very far from 99.8% or
98.4% coincidence between the GPT-candidate paths.

There are four possible explanations of the interdependence of these patents:

1. All the GPT candidate patents are closely related to the same GPT. None of them stands for a GPT
of its own. Each of the patents in Table 1.3 is an important SPT derived from the GPT.

2. Only one of the patents in the group stands for a GPT (the earliest patent), the rest are important
derived SPTs

3. Some of the patents in the group stand for independent GPTs and some are important SPTs

4. All the patents represent independent GPTs. And the followers, the secondary inventions are just
some technologies that use combinations of these GPTs.

It seems that the fourth explanation is the least realistic. The degree of interdependence of these
patents makes them too close to be independent GPTs. Moreover, observing 20 active and evolving GPTs
at the same time would be an unprecedented case for the history of human kind. [Lipsey et al., 2005]
using historical analysis have identified 24 GPTs from the ancient times up until now: 8 ancient GPTs
that were active between 10000BC and 1450AD, 6 New Age GPTs that were active between 1450 - 1850,
9 modern GPTs, and 1 potential 21st century GPT (Nanotechnology). Even this list of 24 GPTs observed
throught history of human kind is criticised as too extensive in [David & Wright, 1999]. The presence of
20 or more GPTs in the time range of 30 years seems too unrealistic from the GPT theory perspective.
In [Oystrakh, 2014] I provide a historical analysis of GPTs and discuss how often we should expect to
observe a new GPT. Many other authors agree that new GPTs emerge once in a while and take some time
to develop. Observing multiple emerging GPTs is highly unlikely.

If the third explanation was true then we could conclude that the three patents listed in Table 1.4 could
be GPTs20. However, the patents 4528643 and 4558413 have most of their subsequent history coinciding
with the history of the patent 3956615. Thus, if the patents 4528643 and 4558413 are independent GPTs,

19Note that patents with earlier grant years will have a smaller percentage of coincident observations with later patents for obvious
reasons.

20the remaining 6 of the nine independent patents while are closely connected to the three patents in in Table 1.4, do not contain
any other evolutionary path derived from the group of 20.
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then the rest of the patents in Table 1.3 could also be independent GPTs. Therefore, case 3 is a special
case of case 4 that itself is very unlikely.

Now we need to compare the explanations 1 and 2. If there is a GPT patent in Tables 1.3 and 1.4 , this
would be the patent 3956615 since most of the observations in the evolutionary paths of the other patents
also belong to the path of this particular patent. Alternatively, if the first explanation was true, this patent
could be one of the important SPTs derived from an active GPT but not a GPT of its own. In that case,
the rest of the patents are closely related to this particular patent because this patent was granted earlier
and had a higher chance to be cited.

Patent 3956615 requires closer attention. The technology this patent stands for is "transaction execu-
tion system with secure data storage and communications". Without diminishing the importance of this
technology, one can hardly claim that this technology is of general purpose given that from its name it is
designed for transaction processing. The patent was filed in 1974. Since then it would be acknowledged
as an active or at least a potential GPT by many researchers and transaction execution systems would
make it to the list along with computers, Internet, biotechnology, and nanotechnology as a subject of
modern GPT research which clearly never happened.

A more formal argument in favour of patent 3956615 not standing for a GPT on its own is that
most of the observations in the evolutionary path of that patent coincide with the observations of the
microcomputer GPT identified in the next section. Thus, we exclude patent 3956615 from the list of
potential GPTs for the same reasons we excluded the rest of the 20 patents. The subsequent history of
that particular technology is a subset of another technology.

Finally, the list of 20 patents in Table 1.3 is not exclusive. By replicating [Hall & Trajtenberg, 2004]
GPT-identifying technique, one can come out with more patents that could qualify for a GPT within the
same data. Thus, the argument that we observe that many active GPTs simultaneously becomes even less
valid.

As it was discussed earlier, the [Hall & Trajtenberg, 2004] GPT-identifying method requires looking
for patents that are outliers by certain attributes. One of such attributes in the subsequent growth of the
patent class. This is one of the key attributes and if it is switched off when we search for the outliers,
most of the 20 GPT-candidates would not make it to the short list. Instead of them various patents from
"mechanical" and "miscellaneous" categories rather than "computer" category would turn out as outliers.
Those patents would hardly qualify for GPTs that emerged in 1970s-1990s.

Preserving the "subsequent class growth" selection criterion makes the task of predicting an upcoming
GPT by looking at a fresh patent irrelevant. Since you would have to observe the subsequent class growth
for some time. One of the reasons for looking at the outlying patents - is the early identification of a
GPT at its embryonic-stage, before the GPT establishes itself as such. At this stage the GPT has some
limited amount of applications. By specifying the subsequent class growth criterion, we deliberately
eliminate the patents that could have been GPTs in their early stages, and thus have limited quantity of
applications. We, basically, pre-assign that the patents will be from the fastest-growing ICT technological
field. Therefore, the very early GPT-identification motivation of the analysis can be abandoned anyways,
no matter whether one uses the [Hall & Trajtenberg, 2004] identification techniques or "first have a GPT,
then describe it" scheme that I propose in the next section.21

The methodology of identifying GPTs in the patent data based on outlying patents has several weak-
nesses. The only advantage of this methodology over the methodology proposed in this research is that
it could identify an upcoming GPT at the early stages of its life-cycle. Unfortunately, as we had seen, in
practice this does not work. A researcher still needs to wait for some time to pass and observe subsequent
growth of the class of an outlying patent. Moreover, given there are millions of patents in the data, there
are hundreds or thousands of patents that can be considered "the outliers". While we do not expect that

21The early prediction task would not be feasible with the [Hall & Trajtenberg, 2004] methodology even when we exclude the
"subsequent class growth" criterion. Another criterion in the methodology is the "citations’ generality" which implies that a re-
searcher has to wait for a patent to acquire some citations.

15



many active GPTs at the same time period. Thus, even if there was a GPT that originated from a single
patent, it would be difficult to identify it among hundreds of other outlying patents in the data. However,
it possible to speculate that most of the outlying patents and evolutionary paths are somehow related to
the active GPT. This topic will be discussed in Section 1.7.22

1.5 Identifying a Known GPT in Patent Citation Data

1.5.1 Choosing the GPT
I introduce an alternative way of describing a GPT using the patent data. The objective is to find some
GPT that, preferably, is in its active phase from the 1970s.23 The so called ICT revolution that began in the
1970s has definitely reshaped the whole economy. It is questionable whether the ICT revolution consists
of more than one GPT. For example[Lipsey et al., 2005] list computers and the Internet to be independent
GPTs. Nevertheless it is widely accepted in the GPT literature that the information technology based
on microprocessor-computers is of general purpose. Therefore, the GPT that is analyzed using patent
citation data is the one that had an enormous influence on economic activities is the GPT that I denote the
"microprocessor" and imply the computer-technology based on a microprocessors.

Microprocessors perform all the basic functions of a computer [Summer, 1985] and, in general, mod-
ern computers (PCs, Servers, or automobile computers for example) run on microprocessors. Jumping a
little bit ahead, it is necessary to mention that the two most famous of the four microprocessor patents,
discussed below, are also called "Computer" patents. It is questionable whether the "Microprocessor"
should represent a GPT by itself or it is one of the major-amendments of the "Computer" GPT, or it is
the invention that opened the door for PC-GPT. The question is more philosophical, than practical since
we are talking about the same technology. Nonetheless, I am more inclined towards the microprocessor
being the improvement that had moved the "Computer" GPT from its embryo-phase to the active phase.
[Summer, 1985] describes the microprocessor: "With so many circuits located on a chip, it was only a
matter of time before someone got the idea that one chip could contain all the circuits necessary to per-
form basic functions of a computer... The microprocessor was a general-purpose computer that could be
programmed to do any number of tasks, from running a watch to guiding a missile." Therefore, a micro-
processor is a computer, that is more compact and general, but basically it has all the functions formerly
performed by various "big computers".

Nevertheless, it is necessary to formally show that the microprocessor-computer technology is indeed
of general purpose. For this task I use our theoretical knowledge of GPTs described in Appendix 1.9.3
and the definition of GPT by [Lipsey et al., 2005] that argue that "a GPT is a single generic technology,
recognizable as such over its whole lifetime, that initially has much scope for improvement and eventually
comes to be widely used, to have many uses, and to have many spillover effects."24

Whether microprocessors are a separate GPT or one of the major core improvements of the "Com-
puter" GPT, it should be obvious that there is a GPT in the active phase that is associated with micropro-

22This research is not the only one that concludes that outlying patents do not necessarily represent very important or fun-
damental technologies by themselves. And therefore, there is not enough evidence to claim that certain outliers are GPTs.
[Strumsky et al., 2012] use technology codes to investigate novelties of particular patented inventions. By looking at the patent
#4723129, which is an outlier by citations received and therefore by it generality the authors conclude that the patent is not novel,
all the technologies combined within the patent existed before the invention. The patent just assembles them together. This conclu-
sion demonstrates, first, that patents are applications of some technological knowledge, thus we should not expect a GPT originate
from some patented invention. Second, outlying patents are not necessarily the most innovative. [Bresnahan, 2010], in his discus-
sion of the HJT methodology of identifying outlying patents concludes that the methodology "is good for identification of items
with GPT features in the list of items, rather than for identification of GPTs themselves".

23Since the range of the dataset starts in 1970s.
24A reader can find a more detailed description of the microprocessor GPT, how it resembles other historically observed GPTs,

and how well it fits the GPT definition and stylized facts by reading [Oystrakh, 2014].
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cessors because a microprocessor (or a microcomputer) corresponds to the following GPT features:

• It provides one of the fundamental GPT services25: Processing, Storage, and Exchange of Infor-
mation.

• There were first academic discoveries that led to the development of the technology. It is also true,
that first prototype microprocessors were developed for the military sector and therefore were a
product of publicly funded research. This feature is shared by most of the modern GPTs. They are
discovered by formal scientists and only later some marketable applications were introduced.26

• While being improved, microprocessors and computers still preserve their main features and the
associated names. Thus, it is a single generic technology, recognizable as such over its whole
lifetime.

• It is difficult to find an industry where microprocessors are not used. All modern computers, appli-
ances, means of transportation, and communication technologies rely on microprocessors. Thus,
the microprocessor that initially had much scope for improvement eventually became widely used,
having many uses and many spillover effects. It also becomes very pervasive and is used in many
sectors of the economy; a typical behaviour of a GPT.

• Microprocessor-computers created new industries and sectors of the economy, for example a video
game industry.

• Besides simplifying all existing research, 27 microprocessor-computers created or stimulated sig-
nificant amount of further research that includes both software and hardware engineering. Thus,
this technology enhanced the productivity of R&D in downstream sectors.

• A microprocessor on its own has very limited use. It should be applied along with complementary
hardware and software, therefore effective use of this technology requires complementary invest-
ment in the using sectors.

• Microprocessors double their capacity approximately every two years in accordance with Moore’s
Law [Schaller, 1997]. Thus, this technology initially had much scope for improvement and it is
still being improved on a regular basis.

The microprocessor technology is the most obvious choice for a GPT to analyze given the time frame.
However, it is possible to use two alternative technologies for demonstrative purposes: biotechnology and
nanotechnology. Nevertheless, microprocessor technology has several advantages over the two aforemen-
tioned candidates. First of all, early microprocessor patents are at the very beginning of the dataset, while
the earliest patents for the other two technologies are in the 1980s. Therefore more observations are avail-
able for the Microprocessor technology. Second, there is almost no doubt about the microprocessor tech-
nology being a GPT, while the general status of the other two technologies is questionable. For example,
[Youtie et al., 2008] treats nanotechnology as a future potential GPT while [Nikulainen & Kulvik, 2009]
find biotechnology to be a less general relative to both computers and nanotechnology.

25See [Oystrakh, 2014] for the discussion of the fundamental GPT services
26There are still debates about the fact that the Central Air Data Computer(CADC) was the very first microprocessor. Nonetheless,

being a military technology it was not patented and was kept in secrecy until 1998. Also, while having many microprocessor features
it misses the important feature of having more than one chip. Nonetheless, the existence of CADC only supports the importance of
not for profit research in the development of GPTs.

27For example, it is much easier to run a regression today, than it was before, when people had to invert big matrices manually.
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1.5.2 Taking the GPT to the data
Now, having the GPT it is possible to identify it within the data. The first microprocessors existed in the
early 60s. There are two patents issued by Intel that describe the Intel 4004 microprocessor which is be-
lieved to be the very first commercial microprocessor. There are also two patents from Texas Instruments
Incorporated, one describing the first calculator operated by a microprocessor and the other has the unof-
ficial name "The Microcomputer Patent". All these patents were applied and granted at approximately the
same time, the "Microcomputer" patent appearing a little bit later than the others (See Table 1.5). These
patents represent the starting point of the GPT in the patent data.

Using these patents as the original nodes28 I construct an evolutionary path that describes the evolution
and diffusion of the GPT. Each position level in the path indicates the next round of research activity. By
arranging the resulting evolutionary paths by position levels and also by grant dates one can observe how
the quantity of patents related to the GPT grows and the penetration of the GPT-derived applications into
various technological fields occurs.

Table 1.5: Initial "Microprocessor" GPT Patents

PID Grant
year

Name HJT class Citations Re-
ceived*

Assignee

3753011 1973 Power Supply Settable Bi-
Stable Circuit

Electrical De-
vices

11** Intel

3757306 1973 Computing Systems CPU Computer Hard-
ware & Software

78** Texas Instru-
ments Inc.

3821715 1974 Memory System for a
Multichip Digital Com-
puter

Information Stor-
age

83** Intel

4074351 1978 Variable function pro-
grammed calculator

Computer Hard-
ware & Software

33***, 46 Texas Instru-
ments Inc.

* None of the patents in the table has made a citation to some previous art, therefore the statistics "citations made" and "originality" are equal to zero.
** The parameters were taken from 1999 data edition since these patents are out of scope of the 1976 - 2006 data; the generality is also taken from

the 1999 data edition where it was computed by the authors of the data [Hall et al., 2001b].
*** The first statistic was taken from the 1999 data edition for consistence; the second statistic is from the 2006 data edition where generality was

computed by the amended formula.

1.6 Results: GPT in the Patent Data
In this section, I describe the resulting evolutionary paths of the Microprocessor GPT and demonstrate

the effect the technology has made on the overall level of technological knowledge. Recall that we are
looking at the "microprocessor" patent collection that originated from the four patents listed in Table 1.5.
The evolutionary path obtained from the four original patents includes 901,968 observations (patents) and
28 position levels (rounds of research activity) by year 2006. The quantity of observations increases both
over time and over rounds of innovations (Figure 1.1). When we arrange patents by grant years (left)29

, we observe an exponential growth of observations over time. When we arrange patents by position
levels (right), we observe a bell-shaped curve. Thus, first there is an exponential increase in the number
of patents, that eventually reaches its peak and then we observe a decrease. The decrease mainly comes

28Note that none of the four patents makes any citations to any prior art!
29We could also arrange patents by application years, and we would observe almost the same picture as in the case with grant

years. It appears that application and grant years are highly correlated, and therefore we would not achieve much by presenting
patents by application years except a shift by the average processing lag.

18



from the data truncation. As we would expect many of the technologies today have some IT component
in them. The evolutionary paths support this notion by exhibiting exponential growth of technologies
related to the microprocessor computer.

Figure 1.1: Observations in Microprocessor-Computer Evolutionary Path

(a) By Grant Year (b) By Position Level

All the HJT technological fields and subfields are represented in the evolutionary path of the micro-
processor GPT. Figure 1.2 (left) demonstrates the distribution of the observations by HJT categories. We
observe that the "home" category that is called "computing" stands for almost 50% of all the patents in the
past.30 However, the technology has diffused a lot to other sectors. The diffusion of the technology can
be observed better from the right panel. The right panel shows the percent of observations (patents) that
belong to the "home" subcategory ("Computer Hardware & Software") arranged by the position levels.
We observe at the beginning of the technological life-cycle most of the observations belonging to the the
initial subcategory, however, the technology as it is being developed diffuses to the other fields having
roughly 20% of its observations remaining in the "home" subcategory.

The "microprocessor" patent collection represents a proxy for the microprocessor-computer GPT’s
applications. By studying the collection and comparing it to the rest of the patents we can observe its
effect on technological knowledge. Moreover, given that Assumption 1 holds, we will be able not just to
establish the effects of the GPT, but also take a look at what the world would look like if this GPT did not
exist. Figure 1.3 demonstrates the total quantity of US patents issued between 1976 and 2006 and how
many patents there would be if there were no GPT.

[Kortum & Lerner, 1999] identified that there is a relatively stable quantity of patents from one pe-
riod to another up until the early 1980s. After that there is sharp increase in patenting activity. They
use cross-sectional analysis to investigate whether the growth in the quantity of patents in the US
should be attributed to the changes in US-patent policy or to the widespread introduction of informa-
tion technology. They conclude that information technology, which facilitates research as well as opens
all new directions for the innovative activity, is the main cause of the boost in the patenting activity.

30Intel decided to break its invention of microprocessor into two patents ( see Table 1.5). Moreover, these patents belong to
different patent classes first taking the “computer technology" part of the invention and second dealing with the electrical part.
It is also worth noting that the first patent received a much greater citing activity, than the second. Most likely, the first patent
carried a greater part of the innovativeness while the second was just an adaptation of an earlier existing technology for the current
needs. Thus, I consider the computer category to be home category for the Microprocessor technology even though one of the four
basement patents belongs to the electrical category.
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Figure 1.2: Diffusion of the Microprocessor-Computer GPT

(a) Distribution over HJT Categories (b) Percent in "Home" Subcategory

[Rafiquzzaman & Whewell, 1998] derive a conclusion similar to that from [Kortum & Lerner, 1999] but
using Canadian data.

In accordance with the aforementioned studies, the current study suggests that it is very likely that
we observe the effect of the long run positive technological shock, as seen on Figure 1.3. It is believed
that GPTs rejuvenate the economy, and are the only possible engine of economic growth not subject to
diminishing returns.31 This belief appeared out of historical observations, however, now we can support
it with the data.

31See the discussion on the role of macroinventions in the history of human civilization in [Mokyr, 1990].
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Figure 1.3: All Patents Granted in US between 1976 and 2006

Patents contain claims for technological improvements. The US-patent data can be transformed into a
proxy of the aggregate technological process. We observe the "stable" and "growing" periods of techno-
logical innovation activity. Growing periods, at least the last one32, can be attributed to the active phase
of the "microprocessor" general purpose technology.33

1.7 What about the outlying patents?
In this section, I answer the question about the relationship between the outlying patents and the GPT. We
have established that the patents identified by [Hall & Trajtenberg, 2004] methodology do not represent
the GPT but have some GPT features. We have also established great degree of interdependence of the
evolutionary paths constructed from the patents identified by [Hall & Trajtenberg, 2004] methodology.
Moreover, these evolutionary paths are also highly related to the "microprocessor" GPT evolutionary
path. Therefore, it is necessary to establish whether the relationship of a technology to a currently active
GPT makes certain technologies "outliers" and distinguishes them from other technologies.

The premise of the analysis is that any technology that gets related at some point of its lifecycle to
a GPT gains from the relationship. The gain is realized the following way, the relative importance of a
technology that is closely connected to a GPT increases and it is more likely to become an outlier in com-
parison to other technologies. Thus, patents identified using the [Hall & Trajtenberg, 2004] methodology
are not GPTs by themselves but have GPT features due to their relation to the GPT. The argument can be
summarized the following way, if some technology at some point is cited by a patent in a GPT’s path, its
subsequent citation history changes.

It is necessary to clarify how a technology becomes related to a GPT. A GPTs consist of core and
peripheral improvements. Distinction between core and periphery innovations can be found in other lit-
erary sources, see [Carlaw & Lipsey, 2011] or [van Zon et al., 2003] for example. Any pre-existing or

32Even though it is possible to attribute the preceding 1910-1930 periods to the "Electricity" based on anecdotal evidence.
33The importance of the computers in the economic growth in 1980s 1990s is established in other studies, see

[Oliner & Sichel, 2000] for example.
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co-existing with a GPT technology can become related to the GPT by merging with one of its periph-
ery branches. For example, automobiles existed before computers, however, modern automobiles are
now highly computerized. Therefore, there are certain patents that belong to mechanical category since
they mainly describe some mechanical processes in automobiles, however, these patents integrate certain
computer technologies and therefore cite certain computer prior art.

Figure 1.4 depicts (over-simplistically) an evolutionary path for some GPT and two additional evo-
lutionary paths. The first evolutionary (EP1) merges the GPT at the second level, the second path (EP2)
does not merge the GPT at any point of its history. Note it is not necessarily that the second level of
EP1 must coincide with the second level of the GPT, it could be the case that the second level of EP2
merges with the fourth level of the GPT, for example. Figure 1.4 has level 2 merging level 2 only for
illustrative purposes, in order to save space on the diagram. Also, 1.4 represents two extremes: one of
the technologies gets connected to the GPT very early, the other never gets connected. Technologies that
connect to the GPT earlier would have an advantage in terms of being closely related and having a greater
share of "common history" with a GTP. Also, it is possible for a technology to get connected to the GPT
at several nodes independently.

The following examination should show that the evolutionary path EP1 is more likely to have more
observations, and therefore be more technologically fertile than the evolutionary path EP2.34 Another
measure of technological fertility is how many rounds of research given technology had generated given
that all the basement patents are granted in the same year 1976. Rounds of research are represented
by the "position level" variable. We will examine the dependence of the number of position levels in
an evolutionary path on the relation of this path to a GPT. It should also explain how a relation of a
technology to a GPT affects parameters of the initial level 0 patent. This way, we can show that outlying
patents are outlying due to their relation to an active GPT. Finally, we want to show an implication of
the relation with a GPT on the diffusion of a technology over a technological fields. The premise is that
technologies that become related to a GPT are more general themselves and diffuse to more technological
fields.

34Most researchers agree that every patent has at least some technological novelty even though the technological value of patents
may vary from one patent to another. See [Beaudry & Schiffauerova, 2011], [Strumsky et al., 2012], or [Rothwell et al., 2013] for
example.
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Figure 1.4: Schematic Representation of the Initial Levels of an Active GPT and 2 Evolutionary Paths

In order to analyze the effects of the GPT on other technologies, a sample of 1000 patents granted
in 1976 that received at least one citation was collected. Evolutionary paths for each of the patents were
constructed. As a result we obtained a sample of 1000 evolutionary paths.

The first objective of the analysis is to take a look at the quantity of observations in the constructed
evolutionary paths and see if this quantity is affected by the relation to the microprocessor GPT. Similarly
the number of rounds of research (position levels) is analyzed. Table 1.6 summarizes the quantity of
observations (patents) and number of levels in the evolutionary paths. Figure 1.5 plots the sample densi-
ties. As we can see, the number of observations is not evenly distributed but rather leaned towards a few.
Most of the randomly selected technologies have few observations. This fact also explains the difference
between the mean and the median for the number of observations. The number of levels is more evenly
distributed across the sample.

Table 1.6: Observations† in The Sample of 1000 Paths

Characteristic Mean Median Minimum Maximum
Observations 56771 6462 1 730485
Position Levels 14.625 6.270223 1 30
†Observations, in this context, are patents in a path and not paths in the sample
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Figure 1.5: Sample Density of Observations and Number of Levels in Evolutionary Paths

(a) Observations (b) Levels

We may expect that the quantity of the observations in an evolutionary path would depend on the
technological field of the initial level 0 patent. Table 1.7 provides the descriptive statistics about the
distribution of the observations and levels by HJT technological categories. We observe that the IT
patents (HJT Category 2) have much greater quantities of observations and reach higher levels than the
rest of the technological fields. The path derived from the IT patents on average have twice as many
observations as the next significant field "Electrical" (HJT Category 4). It is also notable that the IT paths
have their median closer to the mean implying less skewness of the distribution relatively to the rest of
the groups of paths.

The next significant group are the paths derived from the "Electrical" patents. Even though the electri-
cal GPT had passed its active phase long ago, unlike steam and water power technologies, electricity has
preserved its wide universal use in most of the sectors of the economy. This GPT remains significantly
important as all computers run on electricity. Recall that 1 out of 4 initial "Microprocessor" patents was
an electrical patent. Moreover, this category also includes Electronic patents that are closely related to
the Computer and Communication technological field.

The next significant field is "Drugs and Medical" (HJT category 3). Even though this field includes the
"Biotechnological" sub-field that, according to [Lipsey et al., 2005], would be the "home" for the other
modern GPT. We do not observe any biotechnological patents in the year 1976 (the year from which the
level 0 patents were drawn) and we observe just 7 biotechnological patents between 1977 and 1981. Thus
we would not observe a full life-cycle of a biotechnological path.

The other three categories, are so called "traditional" technological fields [Hall et al., 2001b]. As it is
expected, these fields have much lower citing activity than the "modern" fields.

In order to estimate the effect of the GPT on the technological diffusion we use two diffusion variables
introduced in Appendix 1.9.1. The percentage of observations in the home category and the simple
Technological Diffusion Index (TDI) that are derived in equations 1.10 and 1.12 respectively.35 We expect
that the relation of a technology to an active GPT benefits the technology by making it more general itself.
Therefore, the relation to the GPT should stimulate the diffusion across categories and sub-categories.

Table 1.8 presents the results of regressions of the four variables described above. For each of the de-
pendent variables of interest, four log-log regression models were estimated. The log-log approach was

35Instead of the percentage in home category the percentage in home sub-category could have been used without affecting the
conclusions.
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Table 1.7: Observations† and the Number of Levels in The Sample of 1000 Paths By HJT Categories of
the Origin Patent

Initial Category* Observations Levels Quantity of Paths
Mean Median Mean Median

Chemical 26329 3902 13.3 14 250
Computer & Communications 198201 186957 18.9 22 62
Drugs & Medical 72204 12495 14.8 16 50
Electrical & Electronic 108405 49035 16.9 18 169
Mechanical 37865 4977 14.4 15 245
Others 29882 3580 13.4 14 224

† Observations, in this context, are patents in a path and not paths in the sample
* The category of the initial Level 0 path originating patent

chosen for the following reasons: the histograms of some variables are skewed and logarithmic transfor-
mation makes the data more "normal looking". Also, it is easier to interpret log-log regression coeffi-
cients. Certain variables, for example "percent of observations coinciding with the Microprocessor GPT"
or "percent of observations in home category" have meaningful zero values, in order to transform these
variables into a log form without losing the values the following approach was taken: x′t = ln (xt + 1)
where xt is the original variable and x′t is the transformed variable.

The following are the four log-log regression models were estimated and presented in Table 1.8

• In the first model we regress the dependent variables on the main variable of our interest the fraction
of observations in an evolutionary path that coincide with the observations in the "Microprocessor"
GPT. This variable indicates how closely related a given evolutionary path is to the GPT.

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i + ui (1.1)

• Relation to the GPT is not the only variable that may affect the significance and diffusion of a
given evolutionary path. In the second model we add two other variables that according to the liter-
ature are important indicators of the patent quality. What if certain characteristics of the basement
patent affect the resulting evolutionary paths? According to [Lanjouw & Schankerman, 1999],
[van Zeebroeck & van Pottelsberghe de la Potterie, 2011b] and many others, the number of claims
and citations received are important patent quality indicators. These variables are included into the
regression model 2.

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i+ (1.2)
+β2 ∗ ln(# of claims)i + β3 ∗ ln(# of citations received)i + ui

• We add two more explanatory variables to the third model. These are the patent quality in-
dicator variables that, according to [Hall & Trajtenberg, 2004] serve as GPT indicators. In
[Hall & Trajtenberg, 2004], [Moser & Nicholas, 2004] and other studies generality indices are used
to determine the importance of a patent and even to claim that a patent is a GPT candidate. Inclusion
of the generality variables is necessary for consistency of the analysis eith the other studies since
these could be the main determinants of the patents’ significance and diffusion of the patented tech-
nology. The two variables we introduce to the third model are the generality index for the basement
patent (the improved version of it calculated by Equation 1.8 of Appendix 1.9.1 and the average

25



generality index of the direct followers of the basement patents.36

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i+

+β2 ∗ ln(# of claims)i + β3 ∗ ln(# of citations received)i + β4 ∗ ln(generality)i+ (1.3)
+β5 ∗ ln(direct citations’ generality)i + ui

• Finally, according to [Hall et al., 2001b] there is strong "field effect" on the citation activity of the
patent. Therefore, the fourth model includes HJT technological field dummies. For that purpose 5
dummy variables were created. The variables take value "1" if the initial patent if from one of the
six HJT categories and "0" otherwise. The dummy for the HJT category 6 "Miscellaneous" was not
used, the intercept value was left in the linear regression model instead.

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i+

+β2 ∗ ln(# of claims)i + β3 ∗ ln(# of citations received)i + +

β4 ∗ ln(generality)i + β5 ∗ ln(direct citations’ generality)i+ (1.4)
+γ1 ∗D1 + γ2 ∗D2 + γ3 ∗D3 + γ4 ∗D4 + γ5 ∗D5 + ui

The results of the regression of all four models are presented in Table 1.8 of Appendix 1.9.2. The
top panel contains the regressions of the number of observations in a path and the number of position
levels on the independent variables. According to all four models, a strong influence of the GPT on the
evolution of technology can be traced. The GPT coefficients are always statistically significant and of
significant size in comparison to other coefficients. Connection to the GPT is the main factor explaining
why some evolutionary paths are greater than others both, in terms of number of patents and quantity of
rounds of research.

From looking at the other explanatory variables we observe a positive effect of the number of citations
and claims of the basement patent on the resulting size of the path. Naturally, more citations received by
the basement patent increase the probability of a bigger evolutionary path both in terms of observations
and position levels. The number of patent claims of the basement patent, however, does not produce
statistically significant result. Surprisingly, the generality index, which is one of the main criteria in at-
tributing a patent to a GPT in previous studies is not found to be statistically significant, while the average
generality of the direct followers plays a more important role. From these observations we receive a reaf-
firmation that the initial patent itself is not as important as the subsequent history of the technology. The
generality of the basement patent plays a less important role in determining the subsequent evolutionary
path than the generality of the direct followers. Also, the average number of claims of the direct follow-
ers if included into the regression model (not reported) produces statistically significant results while the
number of claims of the basement patent itself does not.

The field effects, not surprisingly, are of different significance. Naturally, a patent from the "Computer
& Communications" technological field is more likely to get connected to the "Microprocessor" GPT. It
also appears that paths derived from chemical patents differ from the other paths. Effects of other fields
on the resulting paths are uncertain.

The lower panel of Table 1.8 shows the effect of the connection to the GPT and some basement patent
attributes on the diffusion measures of evolutionary paths. As with the significance measures, we note
that the most important role still belongs to the relation to the GPT variable. It appears that the number
of claims in the basement patent has a statistically insignificant effect on the future diffusion of the tech-
nology, while the generality of the patent, unlike the top panel, produces significant results.37 It is also

36Recall that direct followers are not only the level 1 patents in the evolutionary path. These are all the patents that cite the
basement patent, some of them could appear on the higher levels

37It would be surprising if it was otherwise since the generality index is a measure of diffusion itself.
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necessary to note that field effects do not play an important role in the diffusion of technology. Surpris-
ingly, most of the fields, including the "Computers & Communication" actually reduce the diffusion.

Thus we have established from the first regression results that a connection to a GPT stimulates the
research process for other GPT merging technologies. The evolutionary paths that are closer to the GPT
have more patents (applications), more rounds of research activity and diffuse to a greater quantity of
technological sectors.

The remaining question is whether a closer connection to the GPT affects certain attributes of the
basement patent, makes it look more like outliers and therefore causes them to be identified as GPTs
that the methodology of [Hall & Trajtenberg, 2004] helps uncover. Recall, that certain patent attributes
(forward citation, generality, centrality) evolve over time38 and therefore it is possible that a connection
to a GPT in year t+ k would affect attributes of a patent issued in year t. In order to establish the effects
of the connection to a GPT on the basement patent attributes, we run additional regressions on the sample
of 1000 paths.

The following regressions will show that a connection with an active GPT does indeed affect certain
patent attributes. [Hall & Trajtenberg, 2004] in their GPT identification scheme used patents’ generality
indices and the average generality of the direct citations as GPT-indicators. Therefore we use these two
variables as dependent variables in a regression on the number of coincident observations in a GPT in the
derived evolutionary path. We also use the degree centrality index introduced in Appendix 1.9.1 Equation
1.9 as an additional measure of patent generality. Since the 2006 vintage dataset does not include any
backward citations for the patents granted in 1976, I extract the citations from the 1999 vintage NBER
patent citation data. This version of data includes the backward citations back to 1963.

Table 1.9 provides the regression results of three aforementioned dependent variables that make cer-
tain patents look like GPT-candidates on the fraction of coincident observations with a GPT in the derived
evolutionary path (model1).

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i + ui (1.5)

Besides that I add HJT technological field dummies (model 2) as extra explanatory variables to capture
the possible field effects discussed in [Hall et al., 2001b].

ln (depvari) = α+ β1 ∗ ln(% of observations in GPT)i+ (1.6)
+γ1 ∗D1 + γ2 ∗D2 + γ3 ∗D3 + γ4 ∗D4 + γ5 ∗D5 + ui

A strong effect on the patents’ generality measures from the connection to the GPT is observed in
Table 1.9. On the other hand, the technology field effects are insignificant and sometimes counter-factual.
For example we would expect a patent belonging to the "Computer" technological field to have higher
citation generality and degree centrality. Thus, the fact that the subsequent technological history of a
patent is closely connected GPT plays an important role in determining the forward looking attributes of
the patent such as the generality index. We can conclude that patents identified as GPT-candidates by
the [Hall & Trajtenberg, 2004] methodology do have a connection to the GPT even though they do not
represent the GPT by themselves.

1.8 Conclusion
I have the following conclusions and suggestions for future research:

1. General purpose technologies are so big and significant that they cannot be encompassed in one
patent. Therefore, the previous methodology of looking for outlying patents allows us to retrieve

38See the discussion in [Gress, 2010]
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patents that are likely to be closely related to a GPT, but do not represent a GPT of their own. One
can find hundreds of outlying patents which does not lead to a conclusion that there are hundreds
of co-existing GPTs. Instead of looking for an outlying patent and checking whether it stands for
a GPT, one could first find a certain general purpose technology and then trace it within the patent
data.

2. An active general purpose technology reshapes and rejuvenates the economy, stimulates aggregate
research activity and finds multiple applications in the various sectors of the economy. This study
supports the historical GPT literature in providing empirical evidence of a GPT stimulating the
research and patenting activity on the aggregate level, leading to a research and patenting boom.
We also observe how after a slow start and a narrow set of applications, a GPT evolves into a
technology that is widely used in multiple technological fields.

3. We also observe how a GPT affects, transforms, and stimulates other technologies. These technolo-
gies in return benefit from being closely related to a GPT. We found that the relation to an active
GPT is the key factor thatcan make a patent outlier in terms of certain characteristics. The relation
to the GPT would also affect significantly the future evolution and diffusion of a given technology.

4. Finally, this study introduces a useful tool that allows us to examine the evolution and diffusion
of a given technology over time and over rounds of research activity. This tool is the evolutionary
path.

This study is a small step on the long way of better understanding the nature of GPTs and the nature of
technologies in general and their role in economics. There are plenty of issues that have to be addressed
by future researchers. One possible extension of the current study is to apply evolutionary paths to ex-
amine other historically identified GPTs. Especially if the time range of the patent citation data expands.
Another question is to prove that the patent burst of the 1980s is at least partially attributed to the arrival
of a very fertile GPT and not to the changes in the US patent policies as some studies suggest.39

39The debate about the reason(s) for the surge in patenting activity in the United States is still open. There are multiple pub-
lications in favour of the patent surge being caused by a change in the US patent policy in 1982 ([Hall & Ziedonis, 2001] or
[Turner, 2004] for example) as well as publications that doubt this hypothesis and believe that a fertile technology was mainly or
partially responsible for the patent surge ([Kim & Marschke, 2004] [Kortum & Lerner, 1999], or [Rafiquzzaman & Whewell, 1998]
for example).
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1.9 Chapter 1 Appendices

1.9.1 Variables and Statistics
The variables that are used in my research can be divided into three groups: The original information

derived from the patent citation data, the variables and statistics suggested by the authors of the dataset
([Hall et al., 2001b]), and the statistics that I created. In the following section, I present all of the variables
used in the research but give more attention to the variables I created or modified. Variables that are
introduced in the current study can further be sub-divided in their own turn into patent describing variables
and evolutionary path describing variables.

1. Original Variables

• A seven digit patent identification number (PID)

• Patent application year

• Patent grant year

• Number of citations received by the patent

• Number of citations made by the patent. Unlike the previous editions, in the 2006 version of
the data the "citations made" statistic was not provided. I derived this statistic for each patent
from the cited-citing relationship data. Therefore, citations made to the patents issued before
1976 are not counted.

• Number of citations made by patents granted prior to the year 2000. This is a supplementary
measure of backwards citations taken from an earlier vintage NBER Patent Citations Data
that has observations up to the year 1999. Even though this dataset starts from 1976, it has
backward citations going back to the year 1963, therefore, when we analyze patents granted
in the 1970s, this measure of the backward citation activity is preferred to the previous one.

• Number of claims. Patent claims are the technological novelties contained in the patent that
are subject to legal protection. Thus, the claims represent the technological improvements
(secondary innovations) a particular patent presents.40

2. Variables introduced by HJT

• 1 digit technological category that splits patents between six technological fields: Chemical,
Computing, Medical, Electrical, Mechanical, and Others.

• 2 digit technological subcategory41 The HJT classification system introduced in
[Hall et al., 2001b] is found to be the most convenient and comprehensive, therefore the tech-
nological fields in this paper will correspond to this system unless mentioned otherwise.

• Generality and Originality Indices Generality measures are the measures of the wideness of
the spectrum of technological fields represented by the followers of the given patent. In other
words, if the patents that cite the patent of our interest come from the same technological field,
the patent is not general at all, while if they come from various fields the patent is general.42

40Obviously not all the claims are always secondary innovations, however, usually claims that may include some prior art get
rejected by patent bureaus. At the same time not all the secondary innovations get claimed since patents’ authors sometimes do
not include everything they could just to make sure they do not claim something previous patents had already claimed. For more
detailed discussion of the patent claims see [Tong & Frame, 1994] and [Hall et al., 2001b].

41See [Hall et al., 2001b], Appendix 1, pp. 41 - 42 for the list of subcategories with their description and their relations to the US
patent classification system.

42Note that the generality is used to describe the knowledge diffusion generality rather than application industry diffusion gener-
ality.
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In [Hall et al., 2001b] authors present the following kind of generality and originality indices
that are variations of the Herfindahl Concentration Index computed the following way:

Generalityi = 1−
nj∑
j

s2ij (1.7)

Where sij denotes percentage of citations received by patent i that belong to patent class
j.[Hall et al., 2001b]. For the originality index the formula is the same except that sij de-
notes percentage of citations made by patent i that belong to patent class j. The indices
presented above are higher when more citations received (made) from (to) the patents in dif-
ferent technological fields (different HJT subcategories in out case). However, as it was stated
in [Hall & Trajtenberg, 2004] the indices are biased and give more weight to the patents with
a greater total amount of citations received (made). Following Hall and Trajtenberg we are
making the following adjustment to the indices: G̃i = Ni

Ni−1Gi, where Ni is the number of
citations received (made).

• Citation truncation weight as of 2006. Allows to adjust the "citations received" measure for
data truncation.

3. Variables Introduced in this Paper

• Patent Characterizing Variables

– Improved Generality and Originality Indices.
In the conclusion of [Hall & Trajtenberg, 2004], the authors state that: "All of the gener-
ality measures suffer from the fact that they treat technologies that are closely related but
not in the same class in the same way that they treat very distant technologies." There-
fore, traditional generality indices would give the same values to a patent with a follower
in a close field and to a patent with a follower in a completely distinct technological field.
In reality, the second should be more general than the first. Below I present the original
way of computing generality and originality indices. Then I propose a simple improve-
ment that will treat contiguous technologies differently from the distant ones and thus
fix the problem mentioned by the authors of [Hall & Trajtenberg, 2004]. The Herfind-
ahl indices introduced above take into account the sub-categorical variety of the citing
(cited) patents relatively to the patent i. A simple amendment will still catch the moves
of the citing (cited) patents into different subcategories but will give more weight when
the categories of the citing (cited) patents also differ.43

Generalityi = 1−
nj∑
j

mk∑
k

s2ijs
2
ik (1.8)

Where sij denotes percentage of citations received by patent i that belong to the sub-
category j out of nj subcategories, while sik denotes percentage of citations received by
patent i that belong to the category k out of mk categories. Obviously, the adjustment for
unbiasedness discussed above applies to the improved generality and originality indices.

– Degree Centrality is a simple statistic borrowed from the graphing theory, it is calculated
the following way:

CD(v) =
deg(v)

n− 1
(1.9)

43I introduce indices for the HJT patent classification system since it is mainly used in this study. However, the measures can be
easily adopted for other patent classification system that have classes, sub-classes and even sub-sub-classes.
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Where deg(v) is a number of nodes connecting to the vertex, in our case it is the sum of
citations made and received by the patent i; n is the quantity of vertices (patents) in the
data. This variable indicates whether the relative importance of agiven patent in terms of
both backwards and forward citations.

– Adjusted number of citations received variable that is calculated by multiplying the
citation received variable by the citation truncation weight variable introduced in
[Hall et al., 2001b].

• Evolutionary Path Characterizing Variables

– Observations. Number of patents in an evolutionary path.
– Position Level (Level). Location of a particular patent in an evolutionary path relatively

to the initial basement level zero patent. Following assumption 1, each patent appears on
the highest level possible relative to the basement.

– Group. Common indicator for all patents of the same evolutionary path. Becomes useful
when comparing different evolutionary paths or looking for coincident observations. For
the evolutionary paths with single basement patent the value of the group variable equals
the PID of that patent. For the multi-patent path can take any meaningful value.

– Percent of Observations in Home Category/Subcategory. After obtaining an evolutionary
path one question we can ask is how far or by how much the technology diffuses. That
is how far it spreads into other technological fields out of the initial "home" field. One
of the ways to measure this diffusion is to compute the percentage of the patents in
the evolutionary path that belongs to the home category or subcategory44. The variable
indicating the percentage of the observations in the "Home" category (subcategory) is
constructed the following way:

∀t = (1976 : 2006) Xt =

∑
OBSt,i∑
OBSt

(1.10)

Where OBSt,i is the observation in year t that belongs to HJT category/subcategory i.

– General Technology Diffusion Index (TDI), the way of measuring technological diffu-
sion using percentages in home categories/subcategories presented above has a signifi-
cant disadvantage since it measures the diffusion from the initial category to "somewhere
else". On the other hand, we would like to find out by how much a technology disperses
over all the categories. For that purpose we introduce the Technological Diffusion Index.
TDI is a time series variable from the family of Herfindahl Indices that is defined the
following way:

TDIti = 1−
nj∑
j

mk∑
k

s2tijs
2
tik (1.11)

Where TDIti denotes technological diffusion index for the collection of patents i in the
time period t.45 Also sij denotes percentage of patents in the evolutionary path i granted
at the period t that belong to the subcategory j out of nj subcategories, while sik denotes
percentage of patents in the evolutionary path i granted at the period tthat belong to the
category k out of mk categories.46 TDI is helpful in our analysis in two ways: first it

44The category/subcategory of the original "basement" patent or the group of patents, from which the path was derived.
45Instead of a time period tmay represent any patent grouping variable, for example it is possible to calculate TDI for the patents

arranged by the position levels.
46The TDI equation is written specifically for the HJT technological classification, however, it can be easily adjusted for another

classification scheme.
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allows us to examine how a particular technology diffuses over technological categories
and subcategories as time passes or by a position level. Second, it allows us to compare
the diffusion in one evolutionary path to the diffusion in another both by time and by
position levels.

– Simple Single Value TDI. This simplified formula produces a single value for the whole
evolutionary path and is computed the following way:

TDIi = 1−
nj∑
j

mk∑
k

s2ijs
2
ik (1.12)

1.9.2 Tables
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1.9.3 What is a GPT?
There is no well-established universal GPT theory up to this day. Therefore, I combine information

from various sources about GPTs in order to come up with a well-defined picture of the phenomenon. As
a result, I provide a list of historically observed GPT-related stylized facts.

When we are looking at a GPT, we are looking for some invention or innovation that started with
some narrow set of applications. After that, while being instantly improved, it gave rise to numerous "side
effects". Those "side effects" are some particular applications in some particular sectors and sub-sectors
of the economy (SPTs) that make the technology a GPT. We have historical examples of technologies with
GPT potentials remaining SPTs. Nuclear power is the case that is sometimes used in the GPT literature
to show that a technology that could have been a GPT for various reasons did not become one (or has not
developed into a GPT yet).

When one tries to identify a GPT, one is looking for some technology that first started with a narrow
set of applications, which makes it look similar to an SPT at the early stages. Moreover, its potential may
not be recognized even within its original industry.47 This feature of a GPT makes it difficult to identify
this technology at the immature stage of its life-cycle.

A technology that acquires numerous applications and becomes a GPT, completely changes the way
of doing things. It may establish new industries, or destroy old ones. It may introduce new capital and
consumer commodities and make certain old commodities obsolete. The whole economy after the devel-
opment of such an invention or innovation changes its shape. Also, as it is stressed in [Lipsey et al., 2005],
GPTs unlike regular innovations, not only decrease the amount of inputs necessary to produce the same
amount of output but also open the door for the types of output that would not be possible to produce
otherwise.

Figure 1.6(b) illustrates the difference between the effects of a applied innovation or a single purpose
technology (SPT) and a fundamental innovation or a general purpose technology (GPT) on production
possibilities in a simple two-sector economy.

47In [Bresnahan, 2007] the reader can find how computers developed into a GPT after they were applied to complete the tasks
they were not initially designed for.
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Figure 1.6: Effects of SPT and GPT on two-sector economy

Having all this information lets attempt to select an appropriate definition for the phenomenon. The
term "General Purpose Technology" or a GPT was first introduced in [Bresnahan & Trajtenberg, 1995].
There are a few definitions for a GPT in the literature. [Lipsey et al., 2005]define GPT the following way:

A GPT is a single generic technology, recognizable as such over its whole lifetime, that initially has
much scope for improvement and eventually comes to be widely used, to have many uses, and to have
many spillover effects.

This definition while being very close to the phenomenon still "creates a web too wide so it would
miss some of the fundamental innovations and at the same time too narrow so it may catch some
non GPTs". For example, many transportation technologies considered to be GPTs by the authors of
[Lipsey et al., 2005] themselves have one particular use: move people and cargo from point A to point
B. However, the appearance of these technologies had significant effects on every sector of the economy
facilitating labour mobility and product delivery, making profitable something that otherwise would be
unprofitable.

The term GPT, most often used in the literature, can be misleading due of the word "Technology" in it.
According to the [Webster’s Dictionary, 1997]: Technology is the Application of scientific knowledge to
serve man in industry, commerce, medicine, and other fields. However, by technology we can imply rela-
tive broad applications of scientific knowledge, for example: Information Technology or Nanotechnology
as well as more particular applications that serve one very specific purpose. One can call a particular
device or group of devices technology.

A broader definitions of "technology" with multiple meanings are extracted from the following dic-
tionaries: According to [The BBC English Dictionary, 1992]

Technology is:

1. The activity or study of using scientific knowledge for practical purposes

2. Scientific equipment and methods used in particular area of activity
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While according to [The Oxford English Dictionary, 1989]:
Technology is:

1. A discourse or treatise on an art or arts; the scientific study of the practical or industrial arts

2. Practical arts collectively

3. A particular practical or industrial art

It is important to separate a technology in its "application of scientific knowledge to serve man in in-
dustry, commerce, medicine, and other fields" meaning from science on the one hand and from a capital
tool (a particular practical or industrial art) on the other. GPTs are sometimes also called "core inno-
vations" and "macro-inventions" and are the applications of new knowledge for multiple purposes that
eventually reshape the economy.

Let steam power be an example to describe how the term "technology" can be misused and confused
in the literature. [Lipsey et al., 2005] have a detailed discussion about classification of technological
knowledge. They specifically mention in one part of their book that a steam engine and a car are pieces
of capital rather than technologies. Nevertheless, in their list of GPTs, later in the book, they claim the
"steam engine" to be one of the GPTs. It is important to understand that it is the "method of transforming
thermal energy into mechanical energy via steam" rather then the steam engine was one of the major
GPTs of the 19th century. Thus, a more appropriate name for that GPT would be the "steam power"
instead of the "steam engine". Moreover, there are many kinds of steam engines that all work on steam
power.

Nevertheless, it is often a convention to give the same name to a technology and the capital commodity
the technology is mainly associated with. For example the technology called "the wheel" caused the
creation of various capital commodities called "wheels" from tiny ones used in mechanical watches to
huge ones used for haul trucks.

It is also often a source of confusion in the technological literature whether "electricity" is a tech-
nology and, therefore, a general purpose technology. Alternatively one may claim that electricity is a
scientific field, while a dynamo machine is a GPT. The answer to that debate is that there is a section of
physics that is called "electricity" as well as there is a technology of transforming mechanical and elec-
trical energy one into another for various practical purposes that is also called "electricity". Even though
it would be more consistent to call the GPT "electrical technology" and leave the term "electricity" to
science. However, historically we call the electrical GPT "electricity".

The importance of the above discussion arises when one tries to look for a GPT in the data. It is
important to remember that we are actually looking for the fundamental innovations that give a rise to a
whole new group of applied innovations in various sectors of the economy. And not for some particular
technology as a tool or capital commodity that was designed for a specific purpose.

For that purpose I am providing the following definition of a GPT: A general purpose technology is
an application of knowledge that had raised in some particular sector of economy and initially had much
scope for improvement but eventually came to be widely used for multiple purposes, had many scientific
and economic spillover effects.

1.9.4 Stylized Facts About GPTs
After studying various sources in GPT literature as well as historical literature on the technologies I
provide a list of historical stylized facts about GPTs. Note that there have not been two GPTs that would
be alike in every aspect. Also note that most of the facts are based on historical observations rather than
data analysis and therefore these facts should not be considered as universal. Nevertheless, the facts
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present common features observed in general purpose technologies and therefore are useful in describing
the phenomenon.48

Stylized Facts of GPTs

• GPTs’ have been observed through out the history of human civilization.

• GPTs’ arrival may be exogenous or endogenous. 49

• GPTs reshape the economy and the society.

• A potential GPT, in order to succeed requires additional research and investment into the microin-
ventions derived from it.

• A potential GPT, in order to succeed requires a "fertilized soil" i. e. technology and innovation
favouring social institutions.

• A potential GPT, in order to succeed needs to be technologically feasible. That is, the industries
should be physically ready for switching to the new technology.

• A potential GPT, in order to succeed needs to be economically feasible. In simple words, it should
outperform the existing technologies.

• Several GPTs may coexist at the same time and be widely applied.

• GPTs may complement or substitute each other. If a newer superior GPT provides the same ser-
vice to the society as an old one it is likely that the newer GPT will eventually replace the old
one like steam power and later electricity replaced water power. If the services are different, the
technologies may complement each other.

• An active phase of research and secondary innovation for a modern GPT50 is around 30 years.

• Some GPTs may play an important role in the production process after their active phase ends
for literally thousands of years (for example, the wheel); while others may quickly loose their
economic and technological significance, (for example steam power).

• Up to the twentieth century, GPTs would be discovered first inside the industry that would become
their first and primary user, and only afterwards described by the formal science. Modern GPTs,
on the other hand, usually get discovered in the labs and then find their applications.

• A typical GPT through its lifetime would be adopted in most of the existing industries and also
would create new industries. It is also possible for a GPT to eliminate old industries that are not fit
for its adoption and whose products would lose their demands due to the new substitutes created
by the GPT.

48The facts were extracted from various literature sources, the most important ones are the following: [Rogers, 1983],
[Lipsey et al., 2005], [Mokyr, 1990], [David, 1990], [Freeman & Soete, 1997], [Lipsey et al., 1998].

49There is no consensus in the literature about whether GPTs arrive because there is economic and/or technological demand
for them or they are discovered by accident or out of scientific curiosity and then find their applications. Probably, both ways are
possible.

50There is no strict convention in the literature about how to distinct modern GPTs from the older ones. At the same time there is
a universal agreement that modern GPTs differ from their older counterparts in several ways. In my research I am mainly concern
with the contemporaneous GPTs starting with electricity. Therefore, by modern GPTs I would imply GPTs that developed in the
late 19th - 20th centuries.
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• GPTs increase factors’ productivity and stimulate economic growth in the long run. 51

• The effect of GPTs on the economy in the short run is ambiguous. 52

• GPTs diffuse (get adopted by various sectors of the economy) following an S-shaped logistic
curve.53

• Early adopters of a new GPTs benefit more from it.

• The discovery of the microinventions for a particular GPT is subject to diminishing returns, while
the arrival of new GPTs is not.

• There are no two identical GPTs that would have all features alike.

The task of characterizing GPTs is not easy due to uniqueness of each of the historically observed
GPTs. However, in this section we provided a working definition of a GPT and a list of common features
most of the historically observed GPTs share. In the next section we are going to dig deeper into the GPT
theory and will attempt to classify all the historically observed GPTs.

51[Mokyr, 1990] clarifies that GPTs themselves have little effect on productivity and economy, the microinventions that follow
the GPT and the increase in the research activity of these microinventions affect the economy.

52Some authors believe that a GPT in its early stage has little effect and microinventions arrive gradually reshaping the economy,
therefore, no effect of a GPT is observed in the data. Others believe that there is a "productivity puzzle" that implies a negative
initial effect on the productivity and output because the economy goes through a re-shaping process.

53This stylized fact is supposed to be relevant to all kinds of technologies, not only the general purpose ones. [Rogers, 1983].
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Chapter 2

Effect of Technological Innovations on
Hours Worked

2.1 Introduction
While there is more or less an established agreement about the effect of a permanent positive tech-

nological change on some economic measures, for example, on long run economic growth, the effect of
such a change on the labour market in the short run is controversial. Theoretically, an improvement in
technology allows production of more output with the same quantity of inputs. From that perspective, a
technological improvement has two effects on labour. First, when labour productivity improves following
a positive technology shock, it causes an increase in the demand for labour (the income effect). Second,
since the technological change increases the relative cost of labour to capital, the demand for labour falls
(the substitution effect).

Which of the two aforementioned effects is predominant in the aggregate macroeconomic data is the
subject of disagreement. From the economic modeling perspective, the two major competing macroeco-
nomic models, the Real Business Cycles (RBC) model and the New Keynesian Model (NKM) provide
different results at least for the short run reaction of the labour market to a positive technological im-
provement.

The RBC model features perfect competition and the ability of producers to adjust prices and wages
immediately in response to exogenous changes. The ability to adjust wages allows employers to com-
pensate the increase in the relative price of labour. Therefore, in this model the substitution effect is
dominated by the positive income effect. As a result, a positive technology shock leads to a rise in em-
ployment. On the other hand, if the employer was not able to adjust the wage immediately, a feature in
the NKM, the relative cost of labour remains high, causing the substitution effect to dominate the income
effect. In this case a positive technology shock actually leads to a fall in employment. Thus, while the
RBC model predicts that working hours should increase after a positive technological shock, the NKM
featuring staggered prices and wages implies a fall in hours worked following a technology shock.1

The objective of this chapter is to empirically identify the short term effects of a positive technology
shock on aggregate hours worked. A vector autoregression model (VAR) with theoretically identified sign
restrictions is used for that purpose. A feature that makes this study different from the previous attempts
is the patent-based measure of aggregate technological process incorporated into the VAR model. The
combination of the methodology and technological metric allows to identify a positive short run effect of
a technology shock on aggregate hours worked in the recent US macroeconomic data.

1See [Gali, 1999] and [Rebelo, 2005] for a discussion.
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Several researchers have attempted to resolve the issue empirically rather than theoretically. The
typical empirical framework used by researchers in this literature is the VAR model. VARs are less
theoretical but it is believed that they fit the data better. As a result, they can better identify the effects
of technological shocks on the economy. Various specifications of VAR have been used to establish the
effect of a technological shock on employment. The results from the VAR literature are also mixed. For
example, [Gali, 1999] and [Francis & Ramey, 2002] identify the negative effect in accordance with the
NKM. On the other hand, [Peersman & Straub, 2004] and [Debola & Neri, 2007] find that working hours
respond positively to a technological improvement.

In this study, a DSGE model that features two types of workers (skilled and unskilled) and two types
of technological improvements (skill-specific and general) is introduced. The model may imply both
an increase and a decrease in aggregate hours depending on the type of technology improvement and
assumptions made regarding the proportion of skilled workers in the economy. However, the effect of
both types of shocks on some of the other variables presented in the model is identical. Such a model
provides the necessary restrictions and identification to be imposed on the data in order to uniquely
identify a skill-specific and a skill-neutral technology shocks and observe their effects on aggregate hours
worked.

In general, the problem with the ambiguity of the responses of the employment variables to the tech-
nological innovations arises because it is difficult not only to identify a technology shock but also to
select an appropriate measure of technology. Identifying correctly a technological shock and being able
to select a measure of technology is the key to understanding the response of the economy to this type of
shock.

It is important to know how technological innovations affect hours worked. First of all this knowledge
would be helpful to policy makers for making appropriate decisions regarding the labour market.. Second,
this knowledge provides insights on the importance of technological innovations of economic cycles.
Third, it would allow economists to select models that explain more correctly the interaction of variables
and their effects on each other.

2.1.1 The Novelties of This Study: How Technology Is Measured
Most of the controversies in the VAR literature on technology shocks occur when one is choosing or

identifying the measure of technology. The technological measures that are most commonly used in the
VAR literature are the total factor productivity (TFP) and labour productivity. Both of these variables are
often identified from the Solow residuals and are usually computed as a natural logarithm of output per
hour, as in [Gali, 1999] and [Debola & Neri, 2007]. However, many researchers have argued that TFP as
measured by the Solow residuals is not a good measure of technology shocks.

[Rebelo, 2005] indicates that TFP measured using Solow Residuals can be predicted by military
spending and monetary policy. Both of the predictors have little relevance to technology. According
to [Alexopoulos & Cohen, 2010], both TFP and output per hour are affected by various factors other than
technological change, while the elimination of the non-technological effects from the TFP measure data
is costly and not always successful. Finally, [Lipsey & Carlaw, 2004] have a detailed study of various
measures of TFP and conclude that "changes in TFP do not represent technological changes but rather
measure the externalities associated with the technological change". By the externalities, the authors
mean the unpaid effects of technological change, for example when an invention in industry A improves
productivity in industry B.2

One of the novelties I introduce in this paper is the measure of technology used in the VAR model.
I use the quantity of patent claims as the measure for technological innovations. Patent claims represent
novelties of a particular patent that are subject to legal protection. In general, a patent is comprised of
"previous art" - the pre-existing technological knowledge and the novelties that are claimed. Therefore,

2The alternative TFP-based measure of technology will be used for the robustness check. See section 3.4.
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in theory, each of the claims represents some technological improvement that previously did not exist. In
practice, there is an incentive to claim more in order to receive more payments, however, a claim that,
when examined, appears to encompass some previous art may be rejected causing no revenue and thus
providing the incentive to not over-claim.

There are some drawbacks associated with using patent variables as indicators of technological knowl-
edge. [Griliches, 1990] discusses that changes in patenting activity may not only be supply-driven (caused
by technological improvements) but also demand-driven (profit motivated and caused by economic con-
ditions). Patent-related measures of technology find both critiques and supporters in the literature. In
section 2.3 of the chapter I will take a more detailed look at the literature that discusses patent measures
of technology in general and patent claims in particular in order to justify my selection.

2.1.2 The Novelties of This Study: How Technology is Identified in VARs
Even if we can actually choose a variable to measure technology shocks, identifying the effects of

this variable on the other variables is another issue that has to be addressed. The difficulty of identifying
technology shocks comes from the fact that these shocks are identical to each other. Moreover, the
economy experience many other shocks besides the technology shocks and it is difficult to distinguish the
effects of technology shocks from the effects of the other shocks [Bocola et al., 2011].

The literature employing VAR has used various techniques to identify a technology shock. Some of
the authors identify technological shocks in the data by using short run restrictions on their VAR. Short
run restrictions require a researcher to assume that a certain shock will have no immediate effect on a
certain variable. For example [Alexopoulos & Cohen, 2010] assume that technological improvements
affect output and TFP with a one year lag.

Other authors implement long run restrictions. The long run restrictions require a researcher to assume
that a certain shock will have only transitory (non-permanent) effect on a certain variable and therefore, in
the long run this variable will return to its original value. For example, [Gali, 1999] distinguishes between
technological shocks that have permanent long run effects on both working hours and productivity, and
non-technological shocks that have permanent long run effects on working hours only.

Finally, there is a so called "agnostic" method based on sign restrictions. This method implies making
the least assumptions possible and letting the data speak for itself. When imposing a sign restriction, a
researcher makes an assumption only about a direction a certain shock would cause a certain variable to
move. The sign restriction method was introduced and successfully implemented in the monetary policy
literature to identify a monetary shock in [Canova & De Nicolo, 2002] and [Uhlig, 2005]. It was then
adopted to identify technological shock in [Peersman & Straub, 2004] and [Debola & Neri, 2007]. In
terms of the structural VAR identification techniques, I will follow the so called "agnostic" method based
on sign restrictions.3

Sign restrictions have several appeals. It requires less controversial and arguable assumptions and
it produces robust results. Different theoretical assumptions on the VAR system may cause different
results. In terms of robustness, long run restrictions may not always be robust to the specification of the
variables in levels or in differences [Rebelo, 2005]. At the same time, the sign restrictions implemented
for identification of a technological shock in [Peersman & Straub, 2004] produce robust results no matter
whether the variables are specified in levels or in the first differences.

The agnostic sign restriction method requires specifying whether there is a positive or a negative
response to a shock from certain variables rather than specifying whether or not there is an effect to a
shock. Thus, it implies some set of assumptions of the following type: a shock i causes variable j not
to increase/decrease for a length of time k. Obviously, since the objective is to retrieve the direction of
the response of the labour market variable to the technological shock, I will avoid imposing any sign

3In order to check the robustness of the results received using the sign restriction method, I will also implement the short and
long run restrictions to the data. The results will be presented in Section 3.4.
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restrictions on the labour market variable. More details on the VAR model with sign restrictions and its
application to technology shock identification are presented in Section 2.5.

2.1.3 Structure
The paper will be structured as follows: Section 2.2 will present some important past contributions

to the debate about the effect of technological innovation on hours worked. Section 2.3 will include a
discussion about the choice of variables selected for this research. Most of the attention in section 2.3
will be devoted to the choice of the patent variables over the alternative measures of technology since
the choice of the correct technological measure is of importance when one tries to observe the effect of
technology on other variables.

Section 2.4 is devoted to the choice of sign restriction and therefore to the technology shock identifi-
cation.In order to do that, a macroeconomic model with skill heterogeneity will be introduced. The model
will feature two types of technology shocks causing different effects on aggregate hours worked and will
provide a framework for the restrictions that uniquely identify these shocks.

In Section 2.5, I will present the results of the model while in Section 3.4, I provide the robustness
checks of the results derived in Section 2.5. I perform several robustness checks. I change the technology
measures, the specifications of the VAR (levels versus first differences) and I use a more conventional
short run and long run identification strategy instead of the sign restriction. Section 3.5 concludes the
chapter.

2.2 Literature Review
The two competing theoretical explanations of the effect of technology shock on hours worked

are found in the RBC and NKM models. One of the conclusions of the RBC macroeconomic model
is that a positive technology shock raises hours worked (See RBC models in [King et al., 1988] and
[King & Rebelo, 2000] for an example). An alternative class of macroeconomic models, the New-
Keynesian models that feature price and/or wage stickiness predict a different outcome from a tech-
nological shock: a positive technology shock has a negative short-run effect on hours worked according
to these models (See the model in [Gali, 1999] or the model [Gali et al., 2011], that features the effect of
an investment-neutral productivity shock).

Empirically, many authors starting with [Gali, 1999] claim that the results produced by the RBC
models are inconsistent with the data. Gali uses a structural VAR with long run restrictions4 to show that
the estimated conditional correlations of hours and productivity are negative and the impulse responses
show a persistent decline of hours in response to a positive technology shock. These results, while being
in contradiction to the RBC model, are in accordance with the Neo-Keynesian staggered prices/wages
models where price rigidities imply that aggregate demand cannot change immediately, which makes
firms contract employment after an exogenous increase in productivity [Peersman & Straub, 2004].

Empirical findings in [Gali, 1999] found both supporters and critics. There are researchers who
also find negative effects of technology shocks on working hours using long run VAR restrictions (see
[Francis & Ramey, 2002] for example). There are also researchers who question the validity of the em-
pirical results found in [Gali, 1999]. [Rebelo, 2005] discusses the literature that finds Gali’s results to
be a product of misspecification and not to be robust to the choice of the variables in the VAR system
being in levels or in first difference. Also, the long run restriction VAR identification scheme that was
used in [Gali, 1999] was criticized in [Chari et al., 2007]. [Chari et al., 2007] generate artificial data by
running an RBC model. Then they apply the long run VAR restrictions introduced in [Gali, 1999] on this

4Structural VAR methodology with long run restrictions implies that a researcher can predetermine a shock to one of the en-
dogenous variables in the VAR to have no permanent effect on another endogenous variable(s).
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data. They use Gali’s identification scheme and show that a positive technology shock negatively affects
working hours in the short run, while the true data generating process from the underlying RBC model
implied the opposite.

The results of [Chari et al., 2007] are crucial in the discussion since they show that an imposition
of long run restrictions on the data does not necessarily lead to the uncovering true effects of shocks
on various variables. The effect uncovered with these restrictions in [Chari et al., 2007] contradicts the
known in advance data generating process. Therefore, when one implements long run restrictions on the
actual data, the results may also contradict the unknown or unobserved true data generating process. At
the same time it is necessary to mention that the methodology of the [Chari et al., 2007] paper is not free
from criticism itself. The authors use a structural VAR with a finite number of lags to analyze the data
derived from the RBC model with an infinite number of lags.

Empirical results, different to those obtained in [Gali, 1999] are derived when sign restrictions in-
stead of long run restrictions are applied to the VAR system. For example, [Peersman & Straub, 2004]
and [Debola & Neri, 2007] find evidence of a positive response of working hours and employment to the
positive technology shock. What is necessary to note, is that [Peersman & Straub, 2004] works with Euro-
pean data, while the vast majority of the literature considers US data. For example, [Debola & Neri, 2007]
working with the US data finds that hours worked are likely to increase. However, according to
[Debola & Neri, 2007], technology shocks leave unexplained most of the variation in hours worked.
Thus, the empirical effects of the technology shocks on working hours are still open to discussion.

[Peersman & Straub, 2004] and [Debola & Neri, 2007] select sign restrictions in a similar way.
[Peersman & Straub, 2004] introduce an RBC model and a New Keynesian model and investigate on
which variables the effect of a technology shock is common in both models. These common effects
(positive or negative) determine the sign restrictions on the variables in their VAR. The approach in
[Debola & Neri, 2007] is to introduce a DSGE model that is New Keynesian in nature, but could repro-
duce the RBC results when you switch off certain model parameters (assign certain constants to be equal
to zero). The rest of the approach is to identify the effects of a technology shock on certain variable
that would be common no matter whether the switching parameters are "on" or "off" and therefore to
determine the sign restrictions.

One of the ways the literature is trying to deal with the nondeterminacy of the effect of technology
shock on employment and working hours is to distinguish between two types of the technology shocks:
investment specific shocks, and investment neutral shocks. [Rebelo, 2005] calls an investment specific
technological change to be a natural alternative to the "regular" RBC-model type technological change.
The classical RBC-type technological shock, the investment-neutral shock, improves both labour and
existing capital productivity. Therefore, this shock increases quantity of hours worked. On the other hand,
the investment-specific shock makes new capital less expensive while leaving labour and old capital’s
productivity unchanged, therefore it causes a substitution towards capital augmenting technologies and
therefore makes some labour services obsolete.

Although the investment-specific shock was called an alternative to the "regular" technology
shock, most of the modern macroeconomic New-Keynesian DSGE models use both shocks (see
[Fernandez-Villaverde, 2009]). Some of the empirical studies have also found that investment-
specific and investment-neutral technological shocks produce different effects on working hours.
[Michelacci & Lopez-Salido, 2007] provide a simple, Solow-type model according to which they de-
scribe the theoretical effects of the investment-neutral and specific shocks on the working hours. Then,
the authors construct a VAR system with a long-run restriction identification scheme that supports their
theoretical conclusions, which are that the results of the two types of technological shocks are different.

[Gali et al., 2011] use a more sophisticated DSGE model than the model in
[Michelacci & Lopez-Salido, 2007]. The authors estimate the model on US data. Along with the
other findings, the authors also derive the effects of the investment specific and neutral shocks to be
different, however, the effect of the investment-neutral shock on working hours is found to be weak.
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The question is how to measure investment specific and investment neutral shocks? The literature
deals with this question the following way: The investment specific technological shock can be measured
using the relative price of investment goods in terms of consumption goods ([Rebelo, 2005]). For in-
stance, [Michelacci & Lopez-Salido, 2007] use the price of a quality-adjusted unit of new equipment in
terms of the price of a consumption unit in their analysis.

For the "regular" or investment-neutral technological shocks, the literature often uses
productivity measures based on [Solow, 1957] growth accounting approach. For example,
[Michelacci & Lopez-Salido, 2007] and [Debola & Neri, 2007] use output per working hour, while
[Gali, 1999] uses the log of GDP minus the log of non-farm labour hours. These measures are criticized
because they contain non-technological effects [Rebelo, 2005]. Also, [Lipsey & Carlaw, 2004] claim that
these measures capture only the externality effect of the technological shock. Moreover, while labour
and total factor productivity increases are associated with technological progress, that is positive techno-
logical shocks, the decreases in factor productivity are more difficult to explain by technological regress
([Rebelo, 2005]) since historically we do not observe technological regress very often.

It is also necessary to mention studies that use patent application based technological indicators to
study the effect of technological shocks on labour productivity. One of the pioneers in establishing
the importance of the relation between patent counts to productivity on industry level is [Lach, 1995].
[Shea, 1998] uses annual patent application and R&D spendings as technological indicators. He con-
structs tri-variate VARs with quantity of inputs, total factor productivity and one of technological mea-
sures (patents or R&D). [Shea, 1998] uses a short run identification scheme,5 he puts technological mea-
sures last into the VAR to reflect the notion that patent applications and R&D spendings may be demand
driven6. The author also uses time-dummies to reflect patent policy changes. [Shea, 1998] finds that
technology shocks tend to increase inputs, especially labour in the short run, but decrease inputs in the
long run.

[Christiansen, 2008] follows [Shea, 1998] in using annual patent applications as a measure of techno-
logical innovation. Also, like [Shea, 1998], [Christiansen, 2008] imposes short run Cholesky restrictions
on the bi-variate VAR that includes patent applications as the technological measure and output per hour
as the productivity measure. However, unlike [Shea, 1998], [Christiansen, 2008] places the technology
measure first thus, restricting patents to react to changes in productivity with a lag. [Christiansen, 2008]
shows that productivity may decrease in the short run due to a technology shock. Thus, the patent data
technology measure with short run restriction VAR produces results that are not robust and depends on
the order of variables.

Finally, most of the aforementioned studies treat employment uniformly using aggregate measures
of working hours or aggregate employment rates. However, in theory a technological improvement af-
fects skilled and unskilled labour differently. A technological improvement raises the demand for the
skilled labour and reduces the amount of unskilled workers needed in the production at the same time.
[Allen, 1996] finds that technology variables account for the 30% increase in the wage gap between high
school and college graduate in the 1980s. When a technological change is of general nature, rather than
an industry or task specific, the wage inequality between skilled and unskilled workers is expected to be
even wider [Aghion et al., 2002]. Thus, there will always be "winners" and "losers" from the introduction
of a technological improvement within the labour market. The goal of an aggregate study is to observe

5The short run identification scheme requires a researcher, after estimating reduced form VAR, perform Cholesky decomposition
of the estimate variance-covariance matrix Σ̂. The resulting matrix P is lower triangular. This matrix is used to uncover structural
shocks given the reduced form shocks. The reduced form VAR is transformed into the moving average form. In order to identify
structural shocks ut, reduced form shocks et are multiplied by P−1. Note that the order of the variables in VAR matters. The very
first variable’s shock will have its corresponding row in the Cholesky matrix P with the first coefficient and the rest of zeros that
would imply that the first variable in the system is immediately affected only by its own shock and nothing else. The last variable
in the VAR system, on the other hand, will have its corresponding row in the Cholesky matrix P full of coefficients implying that
this variable is immediately affected by all the shocks from all the endogenous variables.

6See [Griliches, 1990] for a discussion.
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whether there are more of the former or latter and therefore to establish the overall effect of the innovation
on the labour market.

The current research adds to the literature by using a unique combination of the patent-based measure
with the sign restriction VAR methodology and distinguishes between general and skill specific technol-
ogy shocks. Each of these components requires some attention and justification of its use. Therefore in
the next two sections, I present the measure and the methodology respectively along with the reasoning
for my choices.

2.3 The Data: Choice of the Variables
One of the widespread approaches to measure technological innovation is to construct a so-called

Solow residual. This method implies that all the empirical fluctuations in output that cannot be associated
with the fluctuations in labour and capital are counted as changes driven by the improvement in factors’
productivity. Thus technological innovations, in this case, would be recorded indirectly from observing
the changes in economic variables. This technique has a certain amount of criticism.

[Rebelo, 2005] indicates that total factor productivity (TFP) measured using Solow Residuals can
be predicted by military spending and monetary policy. Both of the predictors have little relevance
to technology. According to [Alexopoulos & Cohen, 2010], both TFP and output per hour variables
are affected by various factors other than the technological change. The elimination of the non-
technological effects (as it was done in [Basu et al., 2006]) is costly and not always successful.7 Finally,
[Lipsey & Carlaw, 2004] have a detailed study of various measures of TFP and conclude that "changes
in TFP do not represent technological changes but rather measure the externalities associated with the
technological change".

An alternative approach to using the Solow Residual measures of technological improvements would
be to use one of the direct measures of technology. Instead of waiting for technology to affect certain
economic variables and then record these effects, numerous researchers look at the variables that directly
react to technological innovations. Two main kinds of data that directly reacts to technological innova-
tions are patent and R&D data.8

Both R&D and patent based measures are approximations for some true uncovered measure of the
quantity of technological improvements. Both of these measures have advantages and disadvantages. The
advantage of R&D measures is the dollar value assigned to the innovation. On the other hand, patent data
has important advantages over R&D measures. As summarized in [Lanjouw et al., 1998], patent data
contains more information and covers a wider scope of inventions and innovations. While trustworthy
R&D data is available mostly for large corporations , it is not available for small firms and individual
inventors.9

In my research, I am using a patent-derived measure rather than R&D measure for the following
reasons. Patents represent successful outputs of the research and development process while R&D ex-
penditures measure the inputs. Moreover, patent data is more aggregate and covers a wider scope of
inventions [Lanjouw et al., 1998]. [Lin & Chen, 2005] note that scientists and researchers often use the
number of patents as an R&D performance indicator since R&D inputs do not always lead to successful
technological improvements. Therefore, a patent data measure is a more appropriate measure of technol-
ogy for an aggregate study.

One big disadvantage of the patent data in comparison to the R&D data is the unavailability of a
certain economic value attached to every patent. There are different ways to weigh and measure the

7However, we use the utilization adjusted TFP as an alternative measure of technology in the Robustness section.
8It is possible to find other variables that react directly to technological innovations. For example, [Alexopoulos & Cohen, 2010]

looks at the new book titles, while [Archibugi & Pianta, 1996] use innovation surveys.
9Patent and R&D measures are not necessarily always substitutes for one another. They can also be used as complements.

[Lanjouw & Schankerman, 2004] use ratio of patents to R&D as a measure of research productivity.
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economic and/or technological significance of a given patent. In the next section, I discuss the "number
of patent claims" indicator of technological improvement that will be used in my research as a way of
improving the significance of the patent data. Using patent claims instead of patent counts is one of the
common ways to reduce patent counts’ skewness and improve the accuracy [Archibugi & Pianta, 1996].

Since the true measure of technological innovation is unknown, there is no perfect approximation for
it. Number of patent claims is also an imperfect measure of innovation. In order to justify the "number of
patent claims" measure, it is first necessary to justify the overall use of the patent data rather than other
types of data or a Solow residual in general. After that, it is possible to proceed with justifying the use of
the "claims" parameter instead of some other patent derived parameter.

2.3.1 Advantages and Disadvantages of Patent Data
Below is a brief comparison of patent data measure of technology to alternative possible measures of
technology:

1. Patent data is a superior measure of technology than the indirect Solow residual type measures
because it does not capture the effects of technology-unrelated events. Even though it is still dif-
ficult and sometimes impossible to establish whether patents are mainly supply or demand drive
i.e. whether quantity of patents reflects the economic situation (demand) or technological opportu-
nities (supply), [Griliches, 1990] argues that the "news" component in the patent statistics reflects
technological opportunities. Therefore bursts and declines in the patent application activity reflect
changes in the technological opportunities rather than current economic situation.10

2. Patent data outperforms R&D expenditure (the main alternative direct technology measure) in sev-
eral ways. It accounts for a greater scope of technological improvements. [Griliches, 1990] notes
that the importance of R&D rises with the size of the firm, while not all the patents reflect the
R&D activity. Also R&D data represents input into the innovative process rather than a suc-
cessful output. For that reason patents are sometimes used to evaluate R&D performance (see
[Lin & Chen, 2005]). A disadvantage of the patent data is that patents differ in economic and tech-
nological value.11 In order to improve the measured value of the inventions and reduce skewness
of raw patent count data, the number of patent claims measure is used.

3. Patent data may be preferred to other more "exotic" direct measures of technological activity such
as scientific citations databases, number of publications, or innovation surveys due to the limited
availability of the latter [Lanjouw et al., 1998].

4. Even though patents are of different economic and technological significance every patent contains
at least a "minimum quantum of invention" [Griliches, 1990]. Moreover, since patent protection is
costly, those invention that are of some economic significance, the inventions that promise certain
economic return are more likely to be patented [Archibugi & Pianta, 1996]. It has been noted that
the vast majority of significant inventions since the first industrial revolution were patented at some
point [Rothwell et al., 2013].

2.3.2 Justification for the Use of the Number of Claims
In the following segment, we present a brief comparison of the number of patent claims variable to the
raw patent count and alternative patent-derived measures of technology.

10[Kortum & Lerner, 1999] and [Rafiquzzaman & Whewell, 1998] test whether the jumps in the patent activity in the USA and
Canada respectively are due to "fertile patent policy" or "fertile technology" both studies come to the conclusion that the patent
activity jumps are due to "fertile technology".

11Another disadvantage is that not all the inventions are patented. However, not all inventions are results of organized R&D thus
the same critique applies to the R&D data.
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1. It is commonly known that not all patents are of the same value. The value of a particular patent
is difficult to measure. Patents differ in economic value as well as technological value. Also the
private value of a patent may be different from the social value of the invention. The use of patent
claims as a measure of technological innovation was first proposed by [Tong & Frame, 1994]. The
authors found that the number of patent claims is a superior measure of technology than raw patent
counts. Each claim, according to [Tong & Frame, 1994], represents a distinct inventive contribu-
tion, while patents are bundles of inventions. It was found that patent claims count performed well
as an indicator of national technology capacity. Higher correlation of patent claims rather than
patent counts with other technological variables was found.

2. Claims in a patent define the scope of legal protection. Any patented technology can be roughly
split into two parts: "prior art" and the novel part. The novel part is the subject of claims. Claims
themselves are also split into principal and subordinate. Principal claims define essential novel fea-
tures, subordinate describe detailed features of the innovation [Lanjouw & Schankerman, 2004].
Unfortunately, there is no data available that would count principle and subordinate claims dif-
ferently.12 Nevertheless, secondary or subordinate claims are not completely useless. They may
be less valuable technologically but still determine the economic value of a patent. According to
[Beaudry & Schiffauerova, 2011], higher number of claims indicates a broader scope of application
and thus of greater profitability of a patent. Also, according to [Rothwell et al., 2013], claims de-
fine patents invention and what is legally enforceable, thus, patents with multiple inventions would
have multiple claims.

3. An important issue is the difference in the number of claims across technological fields. A solution
to this problem was suggested in [van Zeebroeck & van Pottelsberghe de la Potterie, 2011a]. The
authors suggest dividing the number of claims in each patent document by the median number of
claims in the technological field and the year of application in order to capture the time and field
effects.

4. [van Zeebroeck & van Pottelsberghe de la Potterie, 2011b] compare 50 different patent value indi-
cators. The indicators are roughly grouped into four different groups: patent characteristics, own-
ership, insider information, and filing strategy. Each of the groups is also split into sub-groups. It is
necessary to note that not all the indicators are easily available for each patent. The indicators from
the "insider information" group come from surveys and thus would not be available for an aggregate
study. Other indicators, for example "firm’s technological strength" and "patenting motives" is also
subjective and not freely available on the aggregate level. According to the comparative study of
[van Zeebroeck & van Pottelsberghe de la Potterie, 2011b], the indicators from the "filling strategy
group" that include the number of claims indicator, demonstrated the best results as a group. The
number of patent claims was the second best indicator after the number of forward citations from
the "patent characteristic" group.

5. There are two important problems associated with forward citations but irrelevant to the number
of claims or backward citations. The first problem is that unlike the number of claims for a given
patent that is established once and for all, the number of forward citations increases over time as
new patents are granted that may refer to a given patent. The second problem is derived from the
first one. The number of forward citations is subject to truncation of the data. Patents that are
closer to the end of the data set (in terms of time) have less chance to receive a citation than the
early patents.13

12If there were such data, number of principal claims could be a better measure of technological value.
13See [Hall et al., 2001b] and [Gress, 2010] for a discussion of the citation inflation and truncation problems associated with

forward citations.
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6. Another study by [Lanjouw & Schankerman, 2004] considered various patent measures that would
indicate the technological quality of a given patent and found that, in six out of seven technological
fields, number of claims is the most important patent quality indicator.14

Based on a detailed literature review summarized above, we establish that the number of patent claims
measure is expected to suit its purpose well and adequately approximate the unobserved technological
process. Nevertheless, as a robustness exercise, an alternative direct indirect measure of technology
will also be used in the VAR model. Besides that, the third chapter of the dissertation will present a
methodology that allows to overcome the choice of the "best" measure of technology and incorporate all
the information available.

2.3.3 The other variables
The choice of "regular" economic variables examined in this study is less controversial and therefore
does not require as much attention as the choice of the technology measure. Aggregate weekly hours
of production and non-supervisory employees was taken from the U.S. Bureau of Labor Statistics as the
main response variable of interest. OECD data on real GDP and prices in the U.S. is used.

In order to distinguish between employment and wages of skilled and unskilled workers, U.S. Census
Bureau’s historical time series data on the education level of the labour force was used.

Figure 2.1 plots skilled workers’ wage premiums and the share of skilled workers in the labour force
in the United States. One may wonder who do we consider a "skilled" worker. Historically, the definition
of a skilled worker has changed over time so that higher and higher standards are expected of the skilled
employee. At the beginning of the 20th century, a person with a high school diploma could be considered
skilled. Today we may consider a Bachelor’s degree a prerequisite to be a skilled worker.15 Thus, I adopt
two schemes to identify a skilled worker. According to scheme A (top panel on Figure 2.1) workers with
a Bachelor’s degree and up are considered skilled.16 In the middle panel, a more conventional way that
counts workers with a college diploma as skilled workers is presented. Both panels demonstrate a similar
pattern of an increase in the wage premium of skilled workers over time as well as an increase in the share
of skilled workers in the production process. The lower panel of Figure 2.1 represents scheme C according
to which a high school diploma determines whether a worker is skilled or unskilled. The wage premium
according to this scheme is even more drastic. However, due to the extremely low proportion of scheme
C unskilled workers in the economy, this scheme will not be further used or discussed. However, one
can speculate that the conclusions of this chapter would be even stronger if scheme C was implemented.
Overall, the data features depicted in Figure 2.1 will be important in identifying technology shocks and
explaining their effects on aggregate hours worked.

2.4 Theoretical Shock Identification
In my analysis, I identify two types of technology shocks: a general productivity shock and a skilled

labour specific productivity technology shock. [Katz & Margo, 2013] note that the at the time of the
industrial revolution technological improvements were mostly de-skilling the labour force. Very skilled
artisans were replaced by unskilled labourers doing simple mechanical tasks in the production chain.
Modern technological innovations, on the other hand are skilling, and tend to increase the share of skilled
workers in the workforce as well as leading to wage premiums for skilled workers.17 Further, several

14Only in the "Drugs and Medical" field the number of citation received technological measure, that was presented in
[Hall et al., 2001a], outperformed the number of claims measure.

15[Goldin & Katz, 2007] note that high school graduate of 1910’s were more of an elite class than college graduates today.
16It would be more correct to call skilled workers "high-skilled" and unskilled workers "low-skilled" since both high school and

college graduates have some of their own sets of skills.
17See [Aghion et al., 2002] for the discussion.
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studies indicate a skill-biased technological improvements in the last decades that lead to an increase of
the wage premium and in the participation rate of skilled workers.18 We also observe these trends in
Figure 2.1. Thus, the objective is to identify and compare a skill-biased technology shock with a general
technology shock, and then examine the effects of these shocks in the data.

It is possible that the literature that looks for the effects of a technology shock on hours worked often
finds contradictory results since it does not distinguish these different kinds of technology shocks. In
order to identify skill-specific and skill-neutral (aggregate) technology shocks, I use a DSGE model with
skill heterogeneity that is similar to the model presented in [Prasad, 1996] with certain additional features
such as a preference shock and money in utility. The changes are introduced in order to accommodate the
model for the tasks of deriving theoretical sign restrictions on economic variables that identify technology
shocks. The objective of the model is to uniquely identify two types of technology shocks: a general
productivity improving shock and a skilled worker productivity improving shock. The model provides
sets of sign restrictions that let us distinguish technology shocks of one kind from the other, as well as
technology shocks from monetary and preference shocks.

2.4.1 The Model
The household sector consists of a continuum of identical, infinitely lived two-person households, skilled
and unskilled. Households in the model derive utility from consumption and two types of leisure: skilled
labour leisure and unskilled labour leisure as in [Prasad, 1996]. However, unlike [Prasad, 1996], in this
model households also derive utility from holding real balances and are subject to a stochastic preference
shock.19

U(ct, lst, lut) = ln (ct − zt) +D ln
mt

Pt
+ θ(η ln lst + (1− η) ln lut) (2.1)

Where the preference shock20 follows an AR1 process: zt = ρzzt−1 + εzt; lst and lut are skilled and
unskilled workers’ leisures respectively.

To reflect the notion that fluctuations in the aggregate hours worked are caused by fluctuations in
employment rather than in the number of hours of those who are employed, the model restricts the labour
day to be 0 < h < 1 hours long. Therefore agents either work h hours or 0 hours each periods. In order
to convexify the space, we let agents optimize over lotteries that assign certain probability of working h
hours next period.21 The assumption of the fixed labour day provides full insurance for the households
over their consumption as it was shown in [Rogerson, 1988]. Therefore it significantly simplifies the
aggregation procedure since all the households consume the same quantity of the consumer good ct in
the period t. Assigning the fixed labour day, lets us convert 2.1 into:

U(ct, Nst, Nut) = ln (ct − zt) +D ln
mt

Pt
− ηaNst − (1− η)aNut (2.2)

Where a = −θ ln 1−h
h ; Nst is the number of hours worked by skilled workers, and Nut is the number of

hours worked by unskilled workers.

18See the studies by [Goldin & Katz, 2007], and [Marquis et al., 2011] for example.
19The demand shock is taken from the [Wen, 2006] model, while the money in the utility technique is described in details in

[McCandless, 2008].
20Besides skill-biased and general technology shocks the model features a preference shock and a monetary shock. Due to the

fact that number of patents can be both demand and supply driven, when we examine a technological improvement using the patent
data, we need to exclude the demand driven case. Therefore, I introduce the demand shock to be able to assign unique restrictions
that identify a technology shock, but not a demand shock. The monetary shock in the flexible price model is more redundant
than other shocks due to money neutrality. However, the price level is one of the key empirical variables used for the shocks’
identification. Money is introduced in order to be able to define the aggregate price level in a simple manner.

21See the models in [Hansen, 1985], [Rogerson, 1988], or [Prasad, 1996] for more details.
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Firms use skilled and unskilled labour along with capital to produce consumption goods:

Yt = AtK
1−α
t Nα

t (2.3)

Where the labour component is of the CES form:

Nt = (Btω(Nst −
d

2
(Nst −Nst−1)2)1−υ +N1−υ

ut )
1

1−υ (2.4)

The above production function has the following features:

1. Two technological processes: lnAt+1 = ρA lnAt + εAt+1 and lnBt+1 = ρB lnBt + εBt+1 rep-
resent total factor productivity improving technology and skilled labour productivity improving
technology respectively.

2. Term ω > 1 makes skill labour more productive under any circumstances (with or without skilled
labour productivity technological innovation).

3. Term d
2 (Nst − Nst−1)2 incorporates skilled labour adjustment (training) cost. Without this term

the ratio of skilled to unskilled workers would remain constant.

The output in the model is either consumed or invested:

Yt = Ct + It (2.5)

The capital stock evolves according to the following equation:

Kt+1 = (1− δ)Kt + It (2.6)

The household maximization problem is the following:
The utility function determined in 2.2 is maximized by infinitely lived households subject to a resource
constraint.
maxEt

∑∞
t=0[Ct,mt,Nst,Nut,Kt+1] Ut = Et

∑∞
t=0 β

t[ln (ct − zt) +D ln mt
Pt
− ηaNst − (1− η)aNut]

Subject to:

Ct +Kt+1 + mt
Pt

= (1− δ)Kt + wsthNst + wuthNut + rtKt + mt−1

Pt
+ (gt − 1)Mt−1

Pt
+ χt.

Where rt is the interest rate household receives from renting firms capital, wst and wut are skilled and

unskilled wages, and χt is the firms’ profit, (gt − 1)Mt−1

Pt
is a lump sum transfer from the monetary

authority.
By solving the household problem we derive the following equilibrium conditions (in aggregate

terms):

1

Ct − zt
= βEt[

1

Ct+1 − zt+1
[1− δ + rt]] (2.7)

wst =
ηa

h
(Ct − zt) (2.8)

wut =
(1− η)a

h
(Ct − zt) (2.9)

1

Ct − zt
= D

Pt
mt

+ βEt[
1

Ct+1 − zt+1

Pt
Pt+1

] (2.10)
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Equation 2.7 represents the inter-temporal Euler consumption equation. The equation shows how
households value goods received in the future in terms of goods received in the current period. Equations
2.8 and 2.9 represent the optimal labour-leisure choice for the skilled and unskilled workers respectively.
The equations allow to determine equilibrium consumption, labour, leisure, and wages for the both types
of workers. The equilibrium wage rates are evaluated in terms of consumption they can afford. Equation
2.10 represents the optimal allocation of real balances. The real balances are determined by the current
and inflation-adjusted future consumption. Note that the households will always hold positive balances
by construction given that positive utility is derived from holding the monetary asset.

By combining 2.8 and 2.9 we can find the wage ratio of this economy:

wst =
η

1− η
wut (2.11)

Firms in the economy maximize profits that equal to the output produce by skilled and unskilled
labour and capital less the cost needed to be paid for these inputs. The firms problem looks the following
way:
max[Nst,Nut,Kt]

∑∞
t=0 χt =

=
∑∞
t=0[AtK

1−α
t [(Btω(Nst − d

2 (Nst −Nst−1)2)1−υ +N1−υ
ut )

1
1−υ ]α − rtKt − wsthNst − wuthNut]

leads to the following equilibrium conditions:

rt = At(1− α)K−αt Nα
t (2.12)

wst = AtαK
1−α
t Nα−1−υ

t ωBt(Nst −
d

2
(Nst −Nst−1)2)−υ(1− d(Nst −Nst−1)) (2.13)

wut = AtαK
1−α
t Nα−1−υ

t N−υut (2.14)

Where Nt is given in 2.4.
Equation 2.12 equates the rate of return on capital to its marginal product. Equations 2.13 and 2.14

equate the skilled and unskilled wages to the respective marginal products of labour.
After solving for the steady-state of the model, we linearize the model by applying a Taylor approx-

imation around the steady-state. We obtain a system of linear equations where the endogenous variables
are a function of past variables and current shocks. These equations can be converted into forward looking
equations. This allows us to trigger the shocks one by one in period 1 and construct the impulse-response
functions (IRFs). The IRFs will allow us to observe how the variables react following a given shock.

Before constructing the IRFs, it is necessary to calibrate the model. Within the class of models that
we employ, calibration is often used to obtain the response of the model to policy shocks, for exam-
ple in [King & Rebelo, 2000]. For the benchmark case, the parameters η, d, ω, υ were calibrated using
similar values as in [Prasad, 1996]. However, there is more uncertainty on the values of the parameters
υ, η, and ω. By altering the values of these parameters, I present the alternative calibration scheme that
produces a different response of aggregate hours to a skill-specific technology shock while not violating
the sign restrictions (keeping the responses of all the other variables to the skill-specific technology shock
the same as under the benchmark calibration) as shown in Figures 2.3, 2.4, and 2.5. This allows my model
to feature any kind of responses of the aggregate hours to a technology shock, while imposing sign re-
strictions on the other variables. The calibrated parameters under the baseline and alternative calibration
schemes are summarized in Table 2.1.

The shock to skilled labour was calibrated identically to the total factor productivity shock. The
demand shock was calibrated according to [Wen, 2006]. To obtain the IRF to a one unit positive shock to
total factor productivity and skilled labour productivity, we employ the Blanchard-Khan methodology.
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2.4.2 Shock identification
The VAR system vt introduced in Equation 2.15 consists of the following endogenous variables:

Impulse Variable Measure of technological knowledge

Response Variable Measure of aggregate hours worked

Support Variables Measures of GDP, prices, difference in employment between skilled and unskilled
workers

Where the reaction of the response variable to the impulse is the subject of examination. The reaction
of the support variables to the impulse is predetermined and helps to identify the shock of interest. The
model provides us with the sign restrictions that uniquely identify the aggregate technology shock, the
skill-specific technology shock, and the preference shock.

Figure 2.2 depicts the impulse responses of the variables to the aggregate, skill-specific, and prefer-
ence shocks derived from the model.
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Table 2.1: Model Calibration

Parameter Symbol Baseline Alternative Sources
Proportion of skilled to un-
skilled workers

η 0.59 0.5 [Prasad, 1996] points to empirical stud-
ies that identify 0.59 but speculates on
possibility of using 50/50 depending on
how "skilled" is defined

Labour share of output α 2/3 2/3 The range of the values of that parame-
ter in RBC Literature goes from 0.7 to
0.58

Capital depreciation rate δ 0.025 0.025 [Prasad, 1996]

Elasticity of substitution be-
tween skilled and unskilled
labour

υ 0.4 0.6 [Prasad, 1996] quotes the range in the
US manufacturing being equal to [0,
0.65], and uses 0.4

Skilled labour productivity pre-
mium

ω 1.67 1.4 Determined by the values of η and υ
in the steady state condition: Ns =

(
ω∗(1−η)

η
)

1
υ

Discount factor β 0.985 0.985 Common in RBC literature, implies
long run returns of about 6% per annum

Skilled labour adjustment cost
parameter

d 100 100 [Prasad, 1996] picks the value equal to
100 to yield a ratio of standard deviation
of skilled to unskilled employment of
between one third and one fourth. These
values are marginally higher than the
variability of college-educated workers
relative to workers without a college de-
gree.

Fixed number of hours worked
by an agent

h 0.53 0.53 [Hansen, 1985], [Prasad, 1996]

Wage elasticity θ 3.42 3.42 Determined using the steady state con-
dition for total employment (̄N) =
α∗ ȳ

c̄

θ+α∗ ȳ
c̄

Demand shock parameters ρz and σz 0.98 and
0.04

0.98 and
0.04

[Wen, 2006]

Technology shock parameters ρa, ρb, σa
and σb

0.979 and
0.0072

0.979 and
0.0072

[King & Rebelo, 2000]

Output From Figure 2.2 Panel (a) we find that output increases following all the three types of shocks.
Therefore, just by assuming that output increases, we would not be able to distinguish any of the
shocks of interest from the rest of the shocks. At the same time, it would be very strange not to
impose the positive reaction of output to a technology shock. It is difficult to think of a techno-
logical improvement that would reduce output in the economy. Therefore, the positive reaction of
the output to both types of the technology shock will be one of the identifying restrictions we will
adopt.

Prices Figure 2.2 Panel (b) presents the response of the aggregate prices to the three shocks. We ob-
serve that both types of technology shock lead to a decrease of the aggregate price level, while
the preference shockleads to an increase in the price level. This reaction of the price level allows
us to distinguish the supply side (technology) shocks from the demand side (preference) shocks.
The reaction of prices to the different types of shock explains why we placed money in the utility
function. It is well known that money in the RBC class of models is neutral and does not affect real
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variables, therefore besides the reaction of the aggregate prices to the three shocks money plays no
role in the model and is redundant.

Employment Difference Figure 2.2 Panel (c) demonstrates the difference in the employment of skilled
and unskilled workers in the model. As aggregate prices allowed us to distinguish the technol-
ogy shocks from the preference shock, the employment difference allows us to distinguish the
skill-specific and skill-neutral technology shocks from each other. We observe an increase in the
employment difference following a skill-specific technology shock that makes skilled workers rel-
atively more productive. The aggregate technology shock, on the other hand, reduces the employ-
ment difference since all the workers become more productive, while there is a "training cost" to
increase the number of skilled workers.

Aggregate Technology Figure 2.2 Panel (d) depicts the reaction of aggregate technological knowledge
to the shocks. In the model the aggregate technological knowledge is assumed to be a sum of
two technological processes At and Bt. Therefore both types of the technology shocks will bring
a positive reaction of the aggregate technological knowledge.22 At the same time the aggregate
technological knowledge, as it is modeled, shows no reaction to the preference shock. If this was
the case with the data, we would not need to put money in the utility function and impose any
restrictions on the aggregate price level. We would be able to distinguish supply side (technology)
shocks from the demand side (preference) shocks by imposing a zero reaction of the measure of
the technology to the preference shock and positive reaction to the technology shocks. However in
reality we do not have a perfect measure of the aggregate technological process. The number of
patent claims measure with all its advantages still reacts to the changes in the aggregate demand as
it was discussed in [Griliches, 1990]. Thus we will not be able to use our empirical measure of the
technological knowledge to distinguish technology shocks from the preference shocks.

Aggregate Hours Worked The responses of the aggregate hours worked are presented on Figure 2.2
Panel(e) and Figures 2.3, 2.4, and 2.5 Panels (d). Figure 2.2 Panel (e) demonstrates that the ag-
gregate hours increase following the aggregate technology shock as well as the preference shock
and decrease following the skill-specific technology shock. Therefore, the model allows aggregate
hours to react in both directions and thus allows us to uniquely identify all three shocks without
imposing any restriction on hours. As a result, we will let the data decide which way hours worked
react following different types of shocks. Moreover, the model leaves room for hours worked to
react differently to the skill-specific technology shock (Figures 2.3, 2.4, and 2.5 Panels (d)).

The calibration of the elasticity of substitution between skilled and unskilled labour in the pro-
duction function υ, the skilled productivity premium ω, and the adjustment cost parameter d were
taken from [Prasad, 1996]. The baseline calibration results show a decrease of the aggregate hours
worked following a skill-specific shock. [Prasad, 1996] discusses the possibility for the calibrated
parameters to be altered. The available range for the υ is between [0, 0.65]. The choice of υ pins
down the value of ω. Altering the value of the adjustment cost d, as it is shown in [Prasad, 1996],
affects the cyclical variability of the skilled labour and subsequently aggregate hours worked. Al-
tering the values of υ, ω, and d within the acceptable range leads to an increase in the aggregate
hours following the skill specific technology shock. Therefore, we are not restrictive about the way

22Studies of General Purpose Technologies ( see [Lipsey et al., 2005] or [Helpman & Trajtenberg, 1998b] for example) indicate
that important innovations that affect aggregate productivity for the whole economy open the door for multiple further improvements
at the same time. Thus one important invention will lead to a further increase in innovative activity and will result in multiple
applications in different sectors of the economy. Therefore it is reasonable to assume that a technological improvement will generate
further innovative activity and therefore the aggregate technological knowledge will be above its steady state value for a period of
time.

55



the aggregate hours will react to "some technology"23 in any way.

Overall the model implies an increase in aggregate hours worked following an aggregate technology
shock and either a decrease or an increase in hours worked following the skill-specific shock as
shown on Figures 2.3, 2.4, and 2.5 Panels (d). Note that alternative calibration does not affect
the responses of other examined variables to any of the examined shocks qualitatively as it is
shown on Figures 2.3, 2.4, and 2.5 Panels (a), (b), and (c).24 Therefore, the model provides a
robust identification of aggregate and skilled technology shocks without imposing strong qualitative
restrictions on the reaction of aggregate hours worked.

Based on the above discussion, I apply sign restrictions to the data. Table 2.2 summarizes the re-
strictions for three shocks analyzed earlier. Note that each shock can be uniquely identified using these
restrictions.

It would also be possible to include the wage difference between skilled and unskilled workers as
a support variable in order to distinguish between skill-specific and aggregate technology shocks. The
wage premium is not supported by the current model, but supported by multiple studies ( [Allen, 1996],
[Aghion et al., 2002] ,[Goldin & Katz, 2007], [Marquis et al., 2011], [Katz & Margo, 2013]) and by the
data (Figure 2.1).

Table 2.2: Summary of Sign Restrictions

Restriction Hours worked Output Prices Employment Dif-
ference

Patent claims

Aggregate Shock None + - - +
Skill-specific
Shock

None + - + +

Preference Shock None + + - None

2.5 Empirical Results
According to the theoretical model, a technology shock of either kind increases output, reduces prices,

has a positive effect on the aggregate technology process and has an ambiguous effect on total hours
worked. The response of the latter depends on the type of shocks and the calibration of certain parameters.
The combination of the theoretical restrictions with the data through the VAR methodology will reveal
the effects of the three aforementioned shocks on aggregate hours worked.

Empirically we proceed with the sign restriction VAR described in details in [Fry & Pagan, 2010].
Such a methodology was successfully implemented in [Faust, 1998], [Canova & De Nicolo, 2002], and
others. Moreover, sign restrictions are now popular in the modern VAR literature and are used to answer
other questions, including the effects of a technology shock on economic variables.25

Suppose we have a VAR of the following structural form:26

vt = ΓpL
pvt + εt (2.15)

23Recall that the patent data reports both skill specific and skill neutral innovations. When we use an aggregate patent measure
of technology we are not able to distinguish one type of technological improvement from another.

24Figures 2.3, 2.4, and 2.5 do not present the responses of the aggregate technology to the shocks since those are not affected by
the alternative calibration.

25See aforementioned [Debola & Neri, 2007] or [Peersman & Straub, 2004] for example.
26I am omitting a constant term and a deterministic time trend for notation simplicity.
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Where vt is the vector of n endogenous variables: vt =

[
v1,t
v2,t

]
, v1,t representing economic indicator vari-

able(s) and v2,t standing for a technological indicator. L is a lag operator, p is the number of endogenous

lags: p = 0 . . . P . εt =

[
ε1,t
ε2,t

]
∼ IID

[ [0
0

]
,

[
σ2
1 0

0 σ2
2

] ]
and Γp are the matrices of coefficients.

The system in 2.15 cannot be estimated due to endogeneity. However it can be transformed into a
reduced form the following way:

[In − Γ0]vt = Bvt = (Γ1L+ Γ2L+ . . .+ ΓpL)vt + εt

vt = (B−1Γ1L+B−1Γ2L+ . . .+B−1ΓpL)vt +B−1εt (2.16)
vt = (C1L+ C2L+ . . .+ CpL)vt + et

Where V ar(et) = V ar(B−1εt) = E(B−1εtε
′
t(B
−1)′) = Σ.

The system in 2.16 can be estimated using OLS, GLS, or MLE. The OLS approach was used in this
study. After estimating the reduced form VAR, we can orthogonalize the estimated Σ̂ = P̃ P̃ ′ using a
Choleski decomposition.27 Then for any orthonormal matrix Q such that Q−1 = Q′ and Q′Q = QQ′ =
In, we can check if the new orthogonal decomposition

Σ̂ = P̃QQ′P̃ ′ = P̂ P̂ (2.17)

provides IRFs satisfy the sign restrictions that we imposed in Table 2.2 for a predetermined period. If the
draws do not satisfy the sign restrictions, we discard them and repeat the procedure (i. e. repeat placing
different orthonormal Qs) until the sufficient number of draws satisfying the restrictions is obtained28.
From the draws that survived the elimination process, we extract the median, the 16th and the 84th
percentile so that we have approximately one standard deviation bound around the median.29

There are two common ways of obtaining the orthonormal matrix Q. One could use Givens matrices
or QR decomposition. In [Fry & Pagan, 2007] it was shown and proven for the bi-variate VAR case that
the methods are equivalent. The latter method is believed to be more efficient for larger VAR systems30

and therefore is adopted here. The QR decomposition method implies drawing random variables W ∼
N(0, In), and decomposing W = QR where Q is an orthogonal matrix and R is a triangular matrix.
Many draws of W generate many matrices Q that can be plugged in equation 2.17.

Figures 2.6, 2.7, and 2.8 depict the resulting empirical IRFs for the logarithmized and differenced
data with the restrictions held for two periods after the shock.31

Figure 2.6 shows the IRFs for the aggregate technology shock with one standard deviation bounds.
We observe an increase in aggregate hours following the shock. The rest of the variables also react in
accordance with the theory. Moreover, we also observe an increase in aggregate hours following the
skill-specific technology shock (Figure 2.7) which lets us to conclude that there is a strong pro-cyclical
effect in aggregate hours generated by technological innovations. Both shocks lead to an increase in
output, hours, and an initial increase in the innovative activities. Prices fall after both shocks. As we
expected, aggregate hours worked increase following the aggregate technology shock. The increase in
aggregate hours worked following a skill specific technology shock is explained by growing number of
skilled workers (as shown in Figure 2.1) that benefit from this shock.32

27Note that eigenvalue-eigenvector decomposition would also work.
28The baseline results of this study are obtained by accumulating 5000 successful draws for each shock. However, the results are

confirmed with 10000 successful draws experiments.
29This is a common way to analyze sign restriction IRFs in the literature. See [Uhlig, 2005] or [Canova, 2007] for examples.
30See [Rubio-Ramirez et al., 2005] or [Fry & Pagan, 2010] for the discussion.
31All the IRFs in this study were constructed using Ambrogio Cesa-Bianchi, 2014; "VAR Toolbox for Matlab", sites.

google.com/site/ambropo/.
32Recall that the model presented earlier was flexible enough to imply both an increase and a decrease of the aggregate hours

following the skill-specific shock.
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Finally, Figure 2.8 depicts the empirical IRFs for the demand shock. We observe an increase in
output and hours worked as predicted by the model. We also observe an increase in prices, a fall in
the difference between skilled and unskilled employment and a very weak reaction of the aggregate
technological process represented by the patent data. All of these responses are consistent with the theory
and the model.

The increase in hours worked following the aggregate technology shock is an expected result and
is consistent with real business cycle theory. As it is discussed in [King & Rebelo, 2000], in the RBC
framework planned investment increases in response to a positive productivity shock. It is optimal for
the representative household to save some fraction of the higher current output and it is efficient to lower
consumption and raise work effort.

The increase in aggregate hours worked following a skill-specific technology shock can be explained
by the growing proportion of skilled workers in the economy, as well as by the elasticity of substitution
between skilled and unskilled workers and the skilled labour productivity premium. All of these factors
determine the level of employment of skilled and unskilled workers and therefore the impact of skilled
technology shock on both groups and on aggregate hours in general. The theoretical model used two
alternative sets of parameters to retrieve both positive and negative theoretical responses of aggregate
hours worked to a skill-specific technology shock. The ranges of values for these parameters were ob-
tained from [Prasad, 1996] who mentions lack of direct evidence available to restrict the skilled-unskilled
labour elasticities of substitution and productivity premium and determines the potential range based on
1979 empirical study conducted by Halvorsen and Ford.33 In general, a more recent empirical study of
skilled and unskilled workers’ employment and contribution to production would be beneficial.

Besides examining IRFs, a common tool used in the VAR analysis is forecast error variance decompo-
sition (FEVD). When sign restriction methodology is used, similarly to the IRFs, we obtain and empirical
distribution of FEVDs instead of a single observation. Figure 2.12 depicts median, 16th, and 84th per-
centiles of FEVDs for the skilled technology shock when the data is specified in first differences. We
observe the technology shock explaining a relatively substantial part of the aggregate hours variation,
approximately 30%. The FEVDs for the aggregate technology shock are similar to those reported for the
skilled shock. It is necessary to note, however, that when the level data is used, the amount of information
contributed by the technology shocks is much more modest.

2.6 Robustness
In this section we provide more supporting evidence for the positive reaction of the aggregate hours

worked to a technology shock. To show the robustness of the aforementioned results we will conduct the
following analysis:

1. Use level instead of first difference data to observe whether data specification matters for our re-
sults.

2. Use more common identification techniques. Instead of using the sign restriction approach, we will
first impose short run restrictions and then long run restrictions on the data.

3. Finally, we will try out an alternative measure of technological knowledge to see the resulting effect
of aggregate hours a technological innovation.

There were other types of robustness checks attempted but not reported, besides the three listed.
Different VAR specifications with and without trends and constant terms were examined for the data in
log-levels and first differences. The resulting IRFs support the conclusion that aggregate hours increase

33Unfortunately I was not able to obtain a copy of this study.
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following both types of technology shocks. Different number of lags in the underlying VAR were also
tested. The default of two endogenous lags were reported since this number was supported by the majority
of information criteria and is in accordance with the literature. However, for some data specification
certain information criteria suggested to use an alternative quantity of endogenous lags. All the suggested
cases were examined with no impact on the conclusions.

We also impose different assumptions regarding how long the sign restriction had to hold. Besides
the default case of two periods, four and six periods cases were examined. Increasing the number of
periods for the restrictions to hold, lead to a significant increase of the computing time and very low rate
of survival especially for the data in first differences. The IRFs that survived the sign restrictions had the
same positive effect of a technology shock on aggregate hours worked.

2.6.1 Levels or Differences?
One of the weaknesses of the long run restriction approach that is commonly used to esti-

mate the effects of technology shocks on economic variables is that the data specification matters.
[Christiano et al., 2003b] find that if hours worked are specified as a difference, they fall after a tech-
nology shock in the long run VAR specification. On the other hand, when hours worked are represented
in levels, they obtain the reverse, that is hours worked increase following a technology shock.section,
we investigate if the results discussed in section 2.5 are robust to specifying our variables in levels and
including a trend in the VAR.

Figures 2.9, 2.10, and 2.11 depict the IRFs resulting from the data specified in levels with a trend
included in the VAR. The sign restrictions imposed on the data are the same as the ones used for the
first difference specification. As we observe from the diagrams, the level specification does not affect the
conclusions we make about the behaviour of the aggregate hours or other variables after the technology
or preference shocks. The aggregate hours worked increase after both kinds of technology shock whether
hours are presented in levels or in first differences.

2.6.2 Structural VAR with Short Run Restrictions
In this section, we conduct an analysis of the effect of technology shock on aggregate hours worked

and the other variables in Equation 2.15 using more conventional short run restrictions instead of sign
restrictions. Short run restrictions imply that some of the components in the matrixB from Equation 2.16
must be assigned zero values. To be more precise, the system with 5 variables requires 5∗(5−1)

2 = 10
restrictions. Each of the restrictions implies that we assume no immediate effect from a shock to variable
j on variable k.

Unlike the sign restrictions, when we conduct the traditional SVAR analysis, we cannot analyze each
of the shocks separately. Given the five variables in the system we need to examine five structural shocks
simultaneously. We have already examined two types of technology shocks, a preference shock and a
monetary shock in the model.

The short run SVAR framework will not allow us to distinguish between skill-specific and skill-
neutral technology shocks. Both of these shocks affect the employment difference variable according to
the model. Therefore we will analyze "a technology shock" that is a structural innovation to the patent
variable that combines both skill-specific and skill-neutral technology shocks.

Unfortunately, we can find limited information about the short run restrictions from the model.34 Both
types of technological innovations in the model are completely exogenous and unaffected by other vari-
ables. We assume that none of the shocks should have any immediate effect on technological knowledge

34[Kilian, 2012] notes that often there are not enough zero short run restrictions to achieve VAR identification. The weakness of
the short run SVAR is that the economic theory often does not provide enough restrictions or the restrictions imposed based on one
model may contradict numerous alternative models.
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except the technology shock itself. Given that technological knowledge is approximated by the patent
data and if we take into account the fact that it takes time to file a patent and get it granted, it is safe to
assume that there is no short-run immediate effect of any other shock on the technology. One can also
think that it would still require some time to invent something even if there is a strong market demand for
that invention. We also know that the monetary shock will not influence any real variables in the model
and only the price level will be affected.

When we orthogonalize the VAR coefficients’ variance covariance matrix using a Cholesky decompo-
sition, and selecting the variables’ order, the patent claims variable will be placed first and the aggregate
measure of prices will be placed last. Since we are only interested in the identification of the technology
shock, the order of the other variables does not matter for us. What matters is that patent claims do not
contemporaneously respond to any shocks except their own.

Table 2.3: Short Run restrictions

Variable/Innovation Technology Preference Labour Supply Training Cost Monetary
Patent Claims . 0 0 0 0
Output . . 0 0 0
Hours Worked . . . 0 0
Empl-t Diff-ce . . . . 0
Prices . . . . .

Table 2.3 presents the short run zero restrictions on the effects of structural innovations on the endoge-
nous variables. Figure 2.13 represents the structural impulse responses of the endogenous variables to the
technology shock. We find that the response of the technology variable to a positive technology shock is
volatile. This volatility is observed when we look at the responses of the other variables to the technology
shock. Therefore, the short run identification methodology does not provide any conclusive results about
the effect of technology on aggregate hours or any other variable. Note that the earlier studies that used
short runs restriction SVAR models to examine the impact of technology on inputs into production also
lead to mixed conclusions.35

We also observe a similar result when different ordering of the variables were implemented (we do
not report the results here). The short run identification scheme in table 2.3 was chosen because most of
the restrictions are justifiable and also because all the other structural innovations, except the technology,
behave as they are expected. The resulting IRFs are compatible with the theoretical IRFs from the model.

We conclude that the combination of data and methodology presented in this subsection does not allow
us to identify a technology shock. It could be possible to explain the volatile reaction of aggregate hours to
a technological innovation on figure 2.13. However, it is difficult to explain such a reaction for the output
and the technological variable itself. The reason for this incompatibility may be hidden in the patent data
that is volatile or in the short run identification methodology. Use of non-patent technological measures
(not reported) produced less volatile impulse-responses. However, the reaction of output to a positive
technology shock derived from a SVAR model with short run restrictions was still not intuitive. No
matter the reason for the incompatibility, the fact remains that the sign restriction approach outperforms
the short run zero restrictions when the same data is used to identify technology shocks.

2.6.3 Structural VAR with Long Run Restrictions
An alternative approach to imposing the short run restrictions is to impose long run restrictions that

imply an assumption of the following kind: a permanent shock to variable j has no long run effect on
variable k. This approach was first introduced in [Blanchard & Quah, 1989] and since then has become

35See [Shea, 1998] for example.
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one of the most popular ways to identify shocks in SVAR models. This is the most common approach in
the literature when the effects of a permanent technology shock on economic variables are analyzed.

Table 2.4: Long Run restrictions

Variable/Innovation Technology Training Cost Labour Supply Preference Monetary
Patent Claims . 0 0 0 0
Eml-t Diff-ce . . 0 0 0
Hours Worked . . . 0 0
Output . . . . 0
Prices . . . . .

Table 2.4 presents the proposed long run identifying restrictions. The zero long run restriction on
the technological measure from the preference shock is the one that requires our special attention. First
we assume that no shock besides the technology shock will have a permanent effect on technological
knowledge. Thus, even demand side shocks that are believed to affect the patent data are assumed to
have only transitory effects. We also assume that the labour supply and consumption preference shocks
have a symmetric effect on skilled and unskilled workers. Thus the long run effect of these shocks on the
employment difference is zero. Note that a general technology shock will also have only transitory effect
on the employment difference. The alternative restriction with zero long run effect of technology shock
on the employment difference was attempted. The results are similar to the results reported below.

Figures 2.14 and 2.15 present the resulting IRFs form the long run restrictions that we imposed on
the data. Figure 2.14 presents the IRFs when the level data is used. Figure 2.15 shows the IRFs when
aggregate hours worked are first-differenced in order to observe whether the variable specification matters
as it did in some previous studies.36 In both cases hours worked increase following a positive technology
shock when long run restrictions are imposed.

2.6.4 Alternative Measure of Technological Process
To answer the debates about how well patents represent the aggregate technological process, in this

section we introduce an alternative measure of technology. Using this alternative measure of technology,
we again run our SVAR using sign restrictions. The alternative measure is the utilization adjusted to-
tal factor productivity introduced in [Basu et al., 2006] and re-introduced and described using quarterly
values in [Fernald, 2012].

In response to the critique of the indirect Solow residual based, measures of technology,
[Basu et al., 2006] construct a series for technology by controlling for non-technological effects in ag-
gregate TFP. The authors take into account varying capital and labour utilization, nonconstant returns and
imperfect competition.

Y,ti = F i(Ai,tKi,t, Ei,tHi,tNi,t,Mi,t, Zi,t) (2.18)

[Basu et al., 2006] estimate equation 2.18 for industry i, where Yi stands for gross output, Ki for the
capital stock, Ni for the number of workers, Mi for the other inputs into production such as intermediate
goods, energy, and raw materials, and the residuals Zi for the technology. Equation 2.18 also takes into
account hours worked per employeeHi, the effort of each employeeEi, and the capital utilization rateAi.
After estimating equation 2.18 for each industry, the authors define the aggregate technological process
as the weighted sum of the resulting residuals Zi.

36See [Christiano et al., 2003b] for the discussion.
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[Basu et al., 2006] constructed their utilization adjusted measure of technology for yearly frequency.
[Fernald, 2012] notes that certain industry-level detailed parameters on the input/output flows and indus-
try investment are unavailable for the quarterly and higher frequencies. Therefore the quarterly measure of
utilization adjusted TFP, introduced in [Fernald, 2012], does not control for all non-technological sources
of fluctuations. However, according to the authors, it is still superior to the alternative "naive" simple
Solow residual measures since it takes into account the heterogeneity of labour and capital inputs and
labour and capital utilization at the quarterly frequencies.

Yt = F (AtK(Kt,1 . . .Kt,J), EtL(Ht,1 . . . Ht,N ), Zt) (2.19)

Unlike [Basu et al., 2006], [Fernald, 2012] starts with the aggregate production right away (equation
2.19). He then distinguishes between J types of capital inputs: Kt,1 . . .Kt,J and N types of labour
inputs Ht,1 . . . Ht,N , where Ht,n stands for the aggregate hours worked by the workers of type n.

[Fernald, 2012] assumes a Cobb-Douglas functional form for the production function represented by
Equation 2.20 without time subscripts for simplicity.

Y = ((AK())α ∗ (EL())1−α)µ ∗ Zt) (2.20)

In equation 2.20, α is share of capital in production such that α =
∑
j γj and γj is the share of capital

of type j. (1 − α) is the labour share in the production such that 1 − α =
∑
n βn and βn is the share

of labour of type n. µ is the markup over the marginal cost such that ( δYKj )(
Kj
Y = µ(

RjKj
PY ) = µγj and

( δYHn )(HnY = µ(WnHn
PY ) = µβn where P , W , and R are the prices.

By taking natural logarithms and differentiating the production in Equation 2.20, we obtain equation
2.21.

∆ lnY = µ(α∆ lnK + (1− α)∆ lnL) + ∆ lnU + ∆ lnZ (2.21)

In equation2.21, ∆ lnK =
∑
j
γj
α ∆ lnKj . Similarly, ∆ lnL =

∑
n

βn
(1−α)∆ lnHn ≡ ∆ lnQ +

∆ lnH , where ∆ lnH = ∆ ln (
∑
nHn) and ∆ lnQ = ∆ lnL − ∆ lnH . The utilization effect in

equation 2.21 is: ∆ lnU = µ[α∆ lnA+ (1− α)∆ lnE].
We can re-arrange equation 2.21 to solve for the conventional TFP:

∆ lnTFP = ∆ lnY − (α∆ lnK + (1− α)∆ lnL) = ∆ lnU + ∆ lnZ (2.22)

We can also extract the utilization adjusted TFP that we will use in our VARs later.

∆ lnZ = ∆ lnTFP −∆ lnU (2.23)

The utilization adjusted TFP data has already been used for uncovering the effects of technology
on labour hours in the VAR context. The authors of the original annual dataset, [Basu et al., 2006],
apply the data to estimate the effects of the technology on total hours worked. They, first estimate the
effect using the Solow residual equation itself. Next, they use the utilization adjusted TFP in a series of
unrestricted VARs37 and SVARs with long run restrictions. Using all three approaches, the authors find
that technology shocks have a negative effect on aggregate hours.

[Christiano et al., 2003a] also use the utilization adjusted TFP as their measure of technology and
long-run restrictions to examine the effects of technology on aggregate hours. They find, as it is common
when long-run restrictions are employed, that the response of hours worked depend on whether or not the
VAR is specified in level or first difference. [Christiano et al., 2003a] insist that aggregate hours must be
specified in log-levels and conclude that hours worked increase following a technology shock.

37The authors claim that the technology process uncovered at the annual frequency is completely exogenous and therefore pure
technology shocks can be revealed without any further restrictions.
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When we use utilization adjusted TFP as our measure of technology in the VAR with sign restriction,
we examine both level and difference specification for the aggregate hours. Figures 2.16 and 2.17 show
the empirical IRFs drawn for the skill-specific technology shock identified in Table 2.2. In figure 2.16
aggregate hours worked as well as prices, output, and employment difference are in log-levels. The
utilization adjusted TFP variable is in first difference as it is specified in equation 2.23. Figure 2.17,
on the other hand, has the aggregate hours in first difference of the log-levels while prices, output, and
employment difference are in log-levels and the utilization adjusted TFP variable is as it is specified in
equation 2.23. These two approaches were taken to address the debate about the correct way of including
the labour variable in the VAR. Using sign restrictions and this alternative measure of technology we
observe that aggregate hours worked increase following a skill specific technology shock. This result is
robust to whether or not we specify hours worked in levels or in first differences.

A similar conclusion can be stated about the general technology shock (figures2.18 and 2.19). We
observe a positive impact of technology on aggregate hours whether the VAR is specified in levels or first
differences.

2.7 Conclusion
In this paper, we examined the effect of a technological innovation on aggregate hours. We used

a direct patent data based measure of technological process and implemented the sign restriction VAR
identification technique on the data. The identifying restrictions were determined by a simple RBC class
macroeconomic model that features heterogeneous labour and two types of technology shocks. We found
that both technology shocks lead to an improvement in aggregate hours worked. The conclusion is based
on the observation that we have a larger and growing proportion of skilled workers who mainly benefit
from a technology shock that improves their productivity.

Implementation of more conventional SVAR methodologies led to inconclusive results. The short run
restrictions did not allow us to conclude anything about the effect of technological innovation on aggre-
gate hours since the effects of technological innovations on all variables, when the short run restrictions
are used, are volatile. The long run restrictions were found to be sensitive to the variable specification.
This effect is in accordance with numerous studies that attempt to use long run identification methodol-
ogy to examine the effect of a technology shock on aggregate hours. We believe that the sign restriction
methodology we employ in this paper produces more robust results compared to the other identification
methods used in the literature. The resulting effect of a technology shock on aggregate hours coincides
with the conclusion of other studies that used sign restrictions but different identification mechanisms to
examine how technological innovation affect economic variables empirically.

2.8 Chapter 2 Appendix
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Figure 2.1

(a) Scheme A†

(b) Scheme B‡

(c) Scheme C?

† Employees with a bachelor’s degree or higher are considered to be skilled.
‡ Employees with a college diploma or higher are considered to be skilled.

? Employees with a high school diploma or higher are considered to be skilled.
Source: United States Census Bureau, CPS Historical Time Series Tables, Table A3.
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Figure 2.2: Theoretical Impulse Responses

(a) Responses of Output (b) Responses of Prices

(c) Responses of the Employment Difference (d) Responses of Aggregate Technology

(e) Responses of Aggregate Hours Worked
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Figure 2.3: Theoretical Impulse Responses to the Aggregate Technology Shock: Alternative Specifica-
tions

(a) Responses of the Output (b) Responses of the Prices

(c) Responses of the Employment Difference (d) Responses of the Aggregate Hours Worked
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Figure 2.4: Theoretical Impulse Responses to the Skilled Technology Shock: Alternative Specifications

(a) Responses of the Output (b) Responses of the Prices

(c) Responses of the Employment Difference (d) Responses of the Aggregate Hours Worked

67



Figure 2.5: Theoretical Impulse Responses to the Preference Shock: Alternative Specifications

(a) Responses of the Output (b) Responses of the Prices

(c) Responses of the Employment Difference (d) Responses of the Aggregate Hours Worked

68



Figure 2.6: Empirical IRFs: Aggregate Technology Shock (First Differences)
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Figure 2.7: Empirical IRFs: Skilled-Specific Technology Shock (First Differences)
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Figure 2.8: Empirical IRFs: Preference Shock (First Differences)
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Figure 2.9: Empirical IRFs: Aggregate Technology Shock (Levels)
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Figure 2.10: Empirical IRFs: Skilled-Specific Technology Shock (Levels)
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Figure 2.11: Empirical IRFs: Preference Shock (Levels)
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Figure 2.12: FEVD: Skilled Technology Shock (First Differences)
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Figure 2.13: Short Run SVAR Impulse Responses to a Technology Shock

Figure 2.14: Long Run SVAR Impulse Responses to a Technology Shock (Levels)
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Figure 2.15: Long Run SVAR Impulse Responses to a Technology Shock (First Differenced Hours)

Figure 2.16: Empirical IRFs: Skilled-Specific Technology Shock, TFP Data (Levels)
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Figure 2.17: Empirical IRFs: Skilled-Specific Technology Shock, TFP Data (First Differenced Hours)

Figure 2.18: Empirical IRFs: Aggregate Technology Shock, TFP Data (Levels)
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Figure 2.19: Empirical IRFs: Aggregate Technology Shock, TFP Data (First Differenced Hours)
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Chapter 3

Effect of an Aggregate Technology
Shock in a Factor to Factor VAR

3.1 Introduction
Examining the effects of an aggregate technology shock on economic variables is a very important

question. Technological innovations have a tremendous influence on aggregate economic activities. How-
ever, there are certain problems associated with estimating the effects of such innovations on the economy
especially in the short-run. In this paper, we introduce a novel approach to evaluate the short run effects
of technology shocks on the economy. We implement a factor-to-factor augmented vector autoregressive
technique (F-FAVAR).We mainly focus on the effects of such a shock on labour market measures given
the debate in both the theoretical and empirical macroeconomic literature on the effects of technological
innovations on aggregate hours worked.1

The factor augmented VAR technique (FAVAR) introduced in [Bernanke et al., 2004] and used to
estimate the effects of monetary policy has certain advantage over more traditional VAR methodologies.
FAVAR allows us to pick up the effects of the shock of interest on large set of economic variables and
does not force a researcher to select only the few "most relevant" economic measures to be included
in the VAR. By including factors obtained from a theoretically unbound dataset of economic measures
into VAR instead of picking a few measures, a researcher does not have to rigorously justify the choice
of variables. As a result, a researcher is able to analyze the effects of the same identified shock on
theoretically unbound set of variables.

Following [Bernanke et al., 2004], [Park, 2012] applied a FAVAR to examine the effects of a technol-
ogy shock. However, unlike a monetary shock that can be represented by the Federal Funds Rate serving
as the "impulse variable" in the VAR, the choice of the measure of an aggregate technology shock is more
problematic. [Bernanke et al., 2004] includes the Federal Funds rate as the only observable factor along
with the latent factors in their VAR. It is, however, much more difficult to come up with an observable
factor indicating the changes in aggregate technology.

[Park, 2012] uses the aggregate multifactor productivity as the technological measure in the FAVAR.
This measure, as well as any other possible measure, does not perfectly represent the unobserved aggre-
gate technological process as discussed in Chapter 2. TFP are, at most, indirect measures of technological
processes that capture their effects on the economy rather than measuring the technology explicitly. None
of the TFP measures is safe from non-technological effects being captured. [Rebelo, 2005] indicates that

1A curious reader can find the information on the theoretical aspects of the debate in [Rebelo, 2005], while the empirical aspects
are discussed in sufficient details in [Chari et al., 2007] and [Oystrakh, 2013].
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TFP measured using Solow Residuals can be predicted by military spending and monetary policy. Ac-
cording to [Alexopoulos & Cohen, 2010], both TFP and output per hour variables are affected by various
factors other than technological change, while the elimination of the non-technological effects from the
TFP measure data is costly and not always successful.

The direct measures of technological process, such as patent and R&D variables, aren’t immune to
potential criticisms either. The debate found in[Griliches, 1990] about whether the rise in the number of
patents is driven by demand, supply or policy factors is still very relevant. While R&D measures have an
obvious advantage that a dollar value is attached, they have also several weaknesses. The fact that not ev-
ery dollar invested in R&D turns out as an invention or an improvement of the current technological state
is an obvious limitation of such measure of technology. Moreover, there are certain practical difficulties
with measuring the value of R&D especially at frequencies higher than annual.

To circumvent the problem of selecting a variable to represent technological progress in a FAVAR,
we propose to augment the FAVAR methodology. When we use FAVAR, we include multiple variables
on the response side of the problem and extract factors that can be interpreted as unobserved aggregate
economic activity measures, the next step is to repeat the procedure with the variables on the impulse side
of the problem. The F-FAVAR methodology, introduced in this study, is a natural extension of the FAVAR
methodology. It takes the next step by using factors instead of variables to represent the shock-generating
variables besides using the factors to represent the shock-reacting variables.

The advantage of the methodology is that we won’t need to select and justify the measure of technol-
ogy being used. This advantage is especially useful when considering an aggregate technology shock that
comes from an unobserved process. Instead of selecting one technological indicator, we include multiple
technological indicators both of direct and indirect nature and extract the common factors that represent
an unobserved aggregate technological process. Later, these factors are used in a VAR along with the
economic activity factors to examine the effects of aggregate technology shocks on the economy.

Hence, the novelty of this study is not just in the implementation of the FAVAR methodology of
[Bernanke et al., 2004] to examine the effect of technology shocks on multiple macroeconomic variables.
The study goes one step further to extend the FAVAR methodology into a F-FAVAR methodology where
the shock variable is also represented by a latent factor. The advantage of this step is that allows avoiding
a debate on which of technological measures is the most appropriate to be used in the model. A secondary
advantage is the fact that when using the F-FAVAR approach, one does not have to worry about identifying
the structural technology shock. All the latent factors used in the model are orthogonal by design and
therefore, it is possible to utilize an unrestricted VAR model to determine the responses of the economic
variables to a technology shock.

A possible alternative to using a technological latent factor or one of the available measures of tech-
nology, is to create a technology index. However, this path would require a researcher to introduce and
justify weights assigned to various observed measures of technology.2 The F-FAVAR on the other hand,
would not require such strong assumptions. Another advantage of the F-FAVAR approach is that there is
no need to introduce and justify any restrictions in the VAR model in order to identify a technology shock.
The technology factor is orthogonal to the macroeconomic factors by construction and hence a shock to
such factor is truly a structural technology shock. On the other hand, a technology index does not have to
be and most likely is not orthogonal to the latent macroeconomic factors and therefore requires additional
assumptions made by a researcher.

There exists an alternative approach to build a technology index by assigning weights empirically
instead of using an ad-hoc way. Hence this approach fixes the first problem associated with constructing
an index but does not eliminate the fact that a researcher still needs to impose restrictions on the VAR
which is not a trivial issue. This approach, described in [Stock & Watson, 1989] and implemented in the
context of technology shocks in [Hobijn & Stiroh & Antoniades, 2003] is based on the use of state-space

2An example of such index is cross-sectional Bloomberg Innovation Quotient. See http://www.bloomberg.com/
slideshow/2013-02-01/50-most-innovative-countries.html for more details.
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models to determine a common trend growth rate from a group of processes.
There are already indices of technology that are constructed using the state-space model approach.

One of them is San Francisco Tech Pulse Index that is constructed using investment into IT sector, con-
sumption of computer hardware and software, employment, and industrial production in the IT sector.3.
We use this index of technology as a direct measure of technological shocks in a traditional FAVAR model
as a robustness check.

The chapter is organized as follows: Section 3.2 briefly summarizes the FAVAR methodology by
following [Bernanke et al., 2004] and extends the methodology for F-FAVAR. Section 3.3 introduces the
data while leaving a more detailed discussion to the Appendix. We then discuss the results of the F-
FAVAR approach. Section 3.4 describes the robustness. Section 3.5 concludes the study.

3.2 Methodology

3.2.1 Two-step FAVAR
We start with a brief introduction of the two-step FAVAR procedure implemented by

[Bernanke et al., 2004]. Let Xt denote the set of N endogenous variables with Xit denoting an ob-
servation of variable Xi, i = 1 . . . N at time t, t = 1 . . . T . Note that N can be arbitrary large with no
restriction on N being smaller than T .

Let Yt denote the set of M observable variables, Yt ⊂ Xt,M ;N . Assume that any additional infor-
mation not captured by Yt can be represented by unobserved K factors Ft, where K � N . The joint
dynamics are given by: [

Ft
Yt

]
= Φ(L)

[
Ft−1
Yt−1

]
+ υt (3.1)

Where Φ(L) is a lag polynomial of order d and υt is the error term with mean 0 and covariance matrix Q.
The unobserved factors Ft can be inferred from the informational dataset Xt. Xt is assumed to be

related to unobserved and observed factors Ft and Yt respectively by:

X ′t = ΛfF ′t + ΛY Y ′t + e′t (3.2)

Where Λf is a N × K matrix of loadings and et has zero mean but is allowed to have some degree of
cross correlation.

The objective is to estimate the system of 3.1 and 3.2. Denote the space spanned by the common
components in 3.2 by Ct = (F ′t , Y

′
t )′. In the first step of the two step approach, Ct is estimated by

extracting the principal components from the information set Xt. The principal components at this point
recover the space spanned by both Ft and Yt. Therefore, it is necessary to uncover F̂t from the space Ĉt
not covered by Yt.

Depending on the research question and the VAR identification methodology, the way to retrieve
F̂t may be different.4 To identify a monetary policy shock, [Bernanke et al., 2004] divide the dataset
Xt into three groups: the "slow" variables that are assumed to be observed by the monetary authorities
when making a decision and that do not react to the shock within the next period. The monetary policy
instrument (the federal funds rate) that is the only variable in the set of observed variables Yt. Finally the
remaining part of the dataset Xt consists of the "fast" variables that are assumed to react to the shocks of
the slow variables, the monetary policy instruments and to their own shocks within the same period.

Inclusion of more variables into the observed set Yt is unnecessary and may lead to some compli-
cations. Economic variables are often a subject to measurement errors and revisions that may cause

3See http://www.frbsf.org/economic-research/indicators-data/tech-pulse/ for more information.
4The description of the [Bernanke et al., 2004] FAVAR identification is introduced due to the fact that a similar approach will be

taken in the robustness section 3.4 of this study. However, a different methodology is implemented in the main analysis section.
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idiosyncratic disturbance. As it was pointed out in [Park, 2012], all the other relevant variables are ob-
served in the set Xt of "noisy macroeconomic indicators". Moreover, inclusion of more variables into
the set Yt would require unnecessary and most of the time arguable justifications about the choice of one
particular variable over another.

After grouping the variables, the following regression equation is estimated:

Ĉt = bF s F̂
s
t + bY Yt + et (3.3)

Where F̂ st stands for the slow moving factors estimated by principal components using the slow subset
of Xt. The estimated factors are given by F̂t = Ĉt − bY Yt. This exercise allows to control the part of
Ĉt that corresponds to the federal funds rate while still having F̂t and Yt correlated since F̂ st is correlated
with Yt.

In the second step, Equation 3.1 is formed and estimated recursively which basically implies imposing
a Cholesky short run restrictions of the following kind: an innovation to any variable in the VAR has no
contemporaneous effect on any other variable preceding it in the VAR ordering. The shock variable
treated as the monetary policy innovation is placed last into the VAR system which implies that the latent
factors F̂t do not react to the shock within the same period.

3.2.2 F-FAVAR Approach
Now let’s think about the available measures of aggregate technological process. Unfortunately, un-

like the federal funds rate, many of them are not safe from measurement errors and are subject to revisions.
This is especially true for TFP and R&D variables. Patent variables, on the other hand, suffer from data
truncation problems and from the fact that not all the patents are equivalent in terms of their technological
significance and need to be weighted according to certain criteria.These facts combined with the observa-
tion that there is no perfect or even "best of available" measures of technology motivates the replacement
of an observed data Yt with a latent F ′tech,t in 3.2 so that:

X ′t = ΛfeconF ′econ,t + ΛftechF ′tech,t + e′t (3.4)

Where Λfecon is aN×(K−1) matrix of loadings on "economic latent variables", Λftech is aN×1 matrix
of loadings on the "technological latent variable". et has zero mean but allowed to have some degree of
cross correlation. F ′tech,t is an identified technological factor while F ′econ,t are non-technological factors
that affect economic variables.

One of the purposes of factor analysis is to reduce the dimension and represent a large dataset in
terms of fewer latent factor variables that, presumably, stand for some unobserved process common to
the dataset. The idea of the F-FAVAR approach is simple: the unobserved technological process is one
of the important forces affecting the economic activity and therefore it is expected to be represented by
one of the latent factors affecting the dataset. Thus, instead of adding an observed factor to the K latent
factors and then analyzing the effects of a shock to the observed factor on the latent factors and then
interpolating the effects on the observables, we take a different route. We identify and compute the factor
of interest from the K latent factors and then analyze the effects of a shock to the identified latent factor
on other factors and after interpolate them on the economic variables.

Another practical advantage of the F-FAVAR approach is the fact that the latent factors are orthogonal
by definition. Given that no other variables besides the K factors are added to the regression, structural
shocks can be revealed just from the estimation of equation 3.4 with no further restrictions imposed.

3.2.3 Identification of the Technological Latent Factor
A practical question that arises from the previous discussion is how can we tell which of the K

factors stands for the unobserved technological process. As described in [Yong & Pearse, 2013], large
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datasets that consist of several variables can be reduced by observing groups of variables (i.e. factors).
Therefore, factor analysis assembles common variables into descriptive categories. Furthermore, factor
loadings provide us with an idea of how much each variable contributes to the given factor. Factors are
rotated for better interpretation since unrotated factors are often ambiguous. As a result, a researcher
attempts to obtain a structure where each of the observed variables loads "high" on as few factors as
possible. Each factor in sch a structure defines a distinct cluster of interrelated variables which facilitates
the interpretation of the factors.

This important part of factor analysis seems to be completely missing from the previous FAVAR
studies. The researchers would extract a number of factors from economic variables that would define
some "economic processes" without attempting to interpret them. The notion of rotating factors towards
the interpretable simple structure that is very common to the factor literature seems to be missing in
the FAVAR studies. [Bernanke et al., 2004] extract K principal component factors F and imposes a
restriction F ′F/T = IK , as a result restricting factors against any rotations. This method, as discussed
in [Bai & Ng, 2012], identifies space spanned by the columns of F and Λ, where individual columns are
not necessarily identified. Therefore, while the total factor space is restricted against rotation, i. e. carries
the same set of information, the interpretation of each individual factor may vary with the rotations.

In this study we implement a more economically meaningful technique to identify factors that also
satisfy the first set of restrictions introduced in [Bai & Ng, 2012]. This also leads to an exact identifi-
cation of factors and factor loadings. We start by dividing the observed variables into K groups π. We
attempt to make the division as economically meaningful as possible and categorize the variables by what
they measure. For example, all the variables that measure output and income will belong to one group,
variables that measure the aggregate price level would belong to another. The full list of groups can be
found in table 3.2 of appendix 3.6.1. It is important to stress that one of the groups represents the vari-
ables that somehow measure unobserved aggregate technological process. It is also important to note that
while grouping all the variables into meaningful categories, in the current study, we concentrate on one
particular group of variables that measure aggregate technology.

The next step is to transform theN×K matrix of loadings Λ into a block diagonal matrix that satisfies
the first set of [Bai & Ng, 2012] exact identification restrictions.

Λ =


π1 0 · · · 0
0 π2 · · · 0
...

...
...

0 0 · · · πK

 (3.5)

Moreover, the first set of exact identification restrictions determined in [Bai & Ng, 2012] holds under

arbitrary permutation of the variable groups. Therefore, matrix Λ̆ =


π3 0 · · · 0
0 πK · · · 0
...

...
...

0 0 · · · π1

 is as good as

the matrix Λ in 3.5.
In practice, the restrictions-imposing procedure goes as follows, first we estimate the unrotated matrix

of loadings Λu by the method of principal component. This implies bringing the total communality as
close as possible to the total observed variance of the variables [Tryfos, 1998].5 After estimating the
unrotated N × K matrix of loadings Λu, we derive the rotated matrix Λr by rotating Λu towards the

5We define the communality as the part of the observed variance that is explained by the factors, while the variable-specific
variance is the part of the observed variance that is not explained by the factors. See [Tryfos, 1998] for more details.
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N ×K target matrix Tg, where:

Tg =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 (3.6)

For any given solution of two or more factors there exists an infinite number of alternative orientations
of the factors in multidimensional space (rotations) that explain data equally well [Fabrigar et al., 1999].
Thus, instead of sticking to the initial matrix of loading we search the rotation most suitable for our
purposes.

We apply orthogonal rotations only in order to preserve the latent variables independence. The trans-
formation of Λu into Λr is achieved by minimizing the rotation criterion function c(Λu(R′)−1) over all
feasible matrices R where R is an orthonormal matrix such that RR′ = R′R = I so that Λu(R′)−1

simplifies to ΛuR. The criterion function is the following:

c(ΛuR) =
1

2
|Λu − Tg|2 (3.7)

After the rotated matrix is achieved, the technological factor is identified as the factor with "high"
loadings6 on the technological variables and "low" loadings on all other variable groups. The remaining
K − 1 rotated factors can also be economically interpreted for most of the variable groups even though
this is not the objective of this study.

The theoretically infinite number of rotations property of the factor analysis is sometimes considered
a disadvantage of the method. However, in this study, instead of restricting against the rotations a priori,
we make use of them. We search for a rotation that satisfies our research priors and makes most economic
sense.

3.3 Results
The study uses 128 variables and indicators that are distributed into 12 groups by the phenomena

they measure. A detailed discussion of the variables and the groups can be found in appendix 3.6.1.
The variables were stationarized and standardized in order to make factor analysis and VAR analysis
meaningful. The observed variables sample size includes 120 quarterly observations.

An important task of factor analysis is to determine the factors’ extraction method and the number of
factors to be kept. Both of those tasks are subject to debate in the literature.

[Fabrigar et al., 1999] suggests that the maximum likelihood method of factors extraction is superior
to the alternative ways unless the multivariate normality is "severely violated". Unfortunately this is the
case in this study. The hypothesis of multivariate normal distribution is strongly rejected by multiple
tests. Therefore, the maximum likelihood method is inaccessible for this analysis.

The principal component factor extraction method used in this study and the third most popular prin-
cipal factor (also called principal axis) method often produce very similar results [Fabrigar et al., 1999].
In our case the resulting factors obtained by both cases look very similar in terms of the values of their
loadings and variables’ communalities.

Now we turn to the next question: how many factors to hold. [Tryfos, 1998] asserts that there is a con-
siderable subjectivity on this matter and in some instances, the number of factors could be hypothesized
in advance depending on the research question. For the maximum likelihood factor extraction method
there exist several tests that could be used to confirm the optimum number of factors to be kept. However,
these tests are unaccessible for the aforementioned reasons.

6Given the dimensions of the dataset loadings of 0.32 and higher are considered to be high. [Yong & Pearse, 2013]
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The two common ways of determining the number of factors such as a scree plot and a Kaiser cri-
terion, when applied to our data, both suggested 23 factors to be kept. However, both of these methods
are imperfect and are subject to criticism.7 [Bernanke et al., 2004] included 3 factors in their FAVAR
analysis and used a 5 factors model for a robustness check. Inclusion of more than 5 factors, according to
[Bernanke et al., 2004], did not affect the qualitative nature of the results. [Stock & Watson, 2005] sug-
gest 7 factors to be included for the US postwar macro data. This number exceeds the number of factors
that is typically kept in other studies. The remaining factors, even if they are statistically meaningful,
may lack any economic meaning.

In this study, given the identification scheme presented in section 3.2 and the presence of 12 vari-
able groups, 12 factors are retained and included in the VAR. Keeping exactly 12 factors significantly
simplifies the construction of the target matrix in equation 3.6 and conducting a rotation towards that
target. Moreover, 12 factors retained exceed the typical number of factors kept in similar studies, while
[Fabrigar et al., 1999] suggest that keeping too few factors is worse than keeping too many.

Retaining 12 factors is preferable to retaining less than 12 factors, given each of the 11 out of the 12
factors have a meaningful economic interpretation.8 Now we need to justify why we won’t keep more
than 12 factors as it is suggested by certain criteria. First of all we would need to divide some of 12
variable groups into subgroups in order to identify the technological factors. Moreover, an inclusion of
more than 12 factors brings high computational costs at the VAR stage of the analysis and requires a
restriction of the number of endogenous lags to one lag. This is due to the high dimensionality it would
otherwise create and to software limitations. A model with 12 factors retained explains about 78% of the
data variation which is an acceptable amount.

After the 12 latent factors are extracted from the data, the loading matrix is rotated as closely as
possible to the block diagonal structure in equation 3.5 while preserving the factors orthogonality. Table
3.6 presents estimated technological measures’ loadings used to assemble the latent technology factor.
Each of the loadings presents relative importance of a given measure. Slightly higher loadings for the
R&D variables can be explained by the fact that these variables dominate the technological group of
observed measures.

After the rotated factors are estimated, they are used in an unrestricted VAR. Impulse response-
functions to the technological factor are computed for the latent factors first and interpolated to the ob-
servable variables using the factors scoring coefficient matrix. 95% confidence intervals are constructed
using standard errors from bootstrapped residuals. The resulting impulse-responses to some selected
variables are depicted on Figure 3.1.

The results of an aggregate technology shock obtained using the F-FAVAR methodology are similar
with the results of other studies including the study of [Park, 2012] that uses a FAVAR methodology.
The results are also similar to studies that use long-run restrictions and multi-factor productivity as a
technological indicator. Moreover, the results of this chapter complement the results of chapter 2.

The effects of a technology shock on macroeconomic variables obtained using the F-FAVAR approach
depicted in Figure 3.1 can be summarized the following way:

1. A positive technology shock increases both potential and real GDP. This result is widely supported
by macroeconomic literature and is associated with the rightward shift of the long run aggregate
supply curve. Multiple studies starting with [Solow, 1957] examined the effect of improvement in
aggregate productivity on output.

2. The unemployment rate first increases marginally and then permanently drops following the im-
provement in potential GDP.

7See [Fabrigar et al., 1999] and [Costello & Osborne, 2005] for details.
8One of the variable categories discusses in appendix 3.6.1 includes miscellaneous variables that do not fit any other category.

Interpreting the factor, that after rotation towards a target, maximizes loadings of the variables of this particular group is a bad idea.
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3. While aggregate wages in the economy rise, average wages react to a technological innovation with
an initial drop followed by a gradual increase. As it was discussed in Chapter 2, not all workers
equally benefit from a technological innovation, especially if the innovation is skill-specific. In
accordance with macroeconomic theory, an increase in the marginal productivity of workers should
increase equilibrium wages. After the short run adjustment triggered by structural unemployment,
the wage rate of an average worker should start increasing given the increase in the average worker’s
productivity.

4. The fall in prices after a positive technology shock is in accordance with the theoretical and empir-
ical macroeconomic literature.

5. Figure 3.1 includes three technology and productivity related measures. All of these measures
increase following the technology shock.

6. In accordance with the discussion in Chapter 2, the difference in employment of skilled and un-
skilled workers increase after a positive technology shock.

7. Aggregate hours worked increase initially after a technology shock followed by a decrease in the
later periods. Average hours worked, on the other hand, increase steadily throughout the 15-quarter
horizon.

3.4 Robustness
We analyze the robustness of the earlier results by conducting the following exercises: First we impose

additional restrictions at the VAR stage of our analysis. We also conduct more conventional FAVAR
exercises similar to those conducted in [Park, 2012]. We add an observable Yt variable to the latent
factors. This variable will be the technological indicator in the VAR setting. We try various candidates to
represent the technological process.

3.4.1 Including an Observable Measure of Technology
In order to apply a conventional FAVAR methodology to examine the effects of a technology shock

on economic data we need to select a measure of aggregate technological process and establish a techno-
logical shock identification procedure.

There is no consensus about the best observable measure of technology in the literature. In this study
we separately use three measures of technology that are common to the literature. The most common
way of including technology in the VAR study is to use one of the available measures of factor pro-
ductivity. In the first FAVAR exercise we use the multifactor productivity variable as the measure of
technology. Such a measure was implemented in the study of [Park, 2012]. In the second exercise, we
replace the multi-factor productivity with the utilization adjusted total factor productivity introduced in
[Fernald, 2012]. The motivation for including of the utilization adjusted total factor productivity mea-
sure is simple. Various studies show that unadjusted factor productivity is affected by non-technological
process. [Basu et al., 2006] suggest a way of controlling for non technological effects by adjusting the
measure for capacity utilization. In the third FAVAR exercise, we include a direct rather than an indirect
measure of technology: number of patents granted adjusted by the number of patent claims. This measure
was introduced in [Tong & Frame, 1994] and was suggested to be a better way of measuring technology
than a raw patent count since not all the patents are equally technologically valuable and the quantity of
patent claims is one of the ways of weighting patents by their technological input.9 Finally, we also use

9An alternative way of assigning weights to patents that would indicate their technological significance is to adjust the patent
count by the number of citations received. However, the citations received, unlike claims, are subject to the data truncation.
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a San Francisco Tech Pulse Index as an aggregate measure of technology. As it was discussed earlier, a
technological index is the most obvious alternative to a technological latent factor. Hence, it is necessary
to explore its potential in the FAVAR environment.

In order to identify a technological shock we take the following steps. We extract twelve unrotated fac-
tors from the dataset Xt. This time we will not apply a rotation towards a target matrix in 3.6. If we were
to rotate the latent factors towards that target and add an observable measure of technology as a thirteenth
variable in the VAR, we would end up with two collinear measures of technology in the data. Instead we
apply first a more conventional Quartimax rotation of the factors. The Quartimax criterion, unlike the
other most common Varimax criterion, seeks to maximize the variance of the squared loadings for each
variable, and tends to produce factors with high loadings for all variables, while the Varimax criterion en-
courages the detection of factors each of which is related to few variables. [Tryfos, 1998]. The Quartimax
minimizes the number of factors needed to explain the variation of each variable [Yong & Pearse, 2013].
It is more difficult to interpret such factors given that the procedure seeks for high loadings for all the
variables and therefore under different circumstances a Varimax criterion that maximizes some of the
loadings and minimizes the others, would be preferable.10 Nevertheless, given the objective of explaining
as much of the data variation as possible with twelve factors without a necessity of interpreting each factor
separately, the Quartimax rotation criterion fits our purposes11. It is necessary to mention that Quarti-
max rotation belongs to a class of orthogonal rotation and therefore the independence of the factors is
preserved.

When we add an observed factor to the latent factors, constructing impulse-responses from the unre-
stricted VAR as it was done in section 3.3, is not an option. There is no reason for the observed factor
to be independent from the latent factors and therefore it is necessary to impose additional identifying
assumptions.

After obtaining the rotated factors we follow the methodology introduced in [Gali, 1999] and im-
plemented for FAVAR analysis in [Park, 2012]. According to this long run identification scheme, the
observed technological factor variable is placed first into the VAR and a lower triangular long run restric-
tion matrix is assumed. Therefore, we assume that the technological variable responds only to its own
shock in the long run. This assumption is consistent with multiple SVAR studies that examine the effect
of a technology shock on economic variables. The SVAR with long run restrictions is estimated using
[Blanchard & Quah, 1989] methodology, impulse responses to structural shocks are constructed for the
latent factor variables and extrapolated to the observed variables.

It is also possible to apply an identification scheme similar to the one used in [Bernanke et al., 2004]
to identify a monetary shock. For that purpose we would need to distinguish between slow and fast vari-
ables with respect to our technological indicator, run a regression described in equation 3.3, and then
estimate equation 3.1 recursively. Recall that [Bernanke et al., 2004] placed the monetary policy innova-
tion last into the VAR system which implied that the latent factors F̂t do not react to the shock within
the same period. Given that technological innovation requires some degree of economic restructuring,
this assumption would apply to a technology shock with even greater certainty than to a monetary policy
shock.

Figures 3.2, 3.3, 3.4, and 3.5 depict the impulse responses of some of the observed variables following
a technology shock identified using [Gali, 1999] and [Park, 2012] long run restrictions while using multi-
factor productivity, utilization-adjusted total factor productivity, total number of patent claims, and the
San Francisco Tech Pulse index as the observed measure of technology respectively. Figures 3.6, 3.7,
3.8, and 3.9 show the IRF results while applying [Bernanke et al., 2004] short run restrictions instead.
The observed measures of technology in the above exercise are the two commonly used productivity

10[Fabrigar et al., 1999] claims that Varimax rotation criterion has been generally regarded as the best orthogonal rotation criterion
and has been most widely applied.

11In the case of the San Francisco Tech Pulse Index, convergence was not achieved with Quartimax and therefore Varimax was
used instead.
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measures in the economic literature, the measure that was used in Chapter 2, and the Tech Pulse Index
as a potential alternative to the technological factor. Figures 3.10 to 3.13 compare IRFs derived using the
simple FAVAR methodology with long run restrictions with the F-FAVAR approach results. Figures 3.14
to 3.17 compare IRFs derived using the simple FAVAR methodology with short run restrictions with the
IRFs derived using F-FAVAR methodology.

When we examine conventional FAVAR results with different observable measures of technology
we sometimes find the responses that contradict well-established facts on technological shocks. For ex-
ample, when FAVAR with [Gali, 1999] and [Park, 2012] long run restrictions are used, potential GDP
decreases following a technology shock with all the four technological measures. Real GDP also de-
creases in three out of four cases (Figures 3.2, 3.3, 3.4, and 3.5). When a conventional FAVAR with
[Bernanke et al., 2004] short run restrictions is implemented, potential and real GDP also decrease after
a technology shock in most of the cases. The only observable measure of technology that, when used in
FAVAR with short-run restrictions, causes the potential and real GDP to increase is the patent measure
(Figure 3.8). However, the behaviour of prices in that case contradicts the prior expectations.

We conclude the F-FAVAR results appear more consistent then the results of both FAVARs with short
run and FAVAR with long run restrictions and an observed measure of technology. The consistency of
the responses is judged by the behaviour of macroeconomic variables for which we have strong beliefs
on how they should react to a technology shock. For example, we expect both real and potential GDP
to increase and we expect aggregate prices to fall. Furthermore, we expect the observed technology
and productivity metrics to react positively to a technology shock. It appears that the technology shock
introduced into the system through a technology factor leads to the most consistent results. It is necessary
to mention that one should not expect the responses of all the variables in the VAR to correspond perfectly
with theory given its reliance on the data. However, the results from all these robustness tests seem to
suggest that the F-FAVAR methodology are credible and reliable in spite of all the caveats associated with
the VAR methodology.

3.5 Conclusion
In the this study we introduced the F-FAVAR approach to analyze the effects of an aggregate tech-

nology shock on macroeconomic variables. The approach allows a researcher to use multiple measures
of the impulse process and even a greater quantity of measures of a response process simultaneously to
extract robust and theoretically consistent impulse-responses.

The advantage of this approach over the regular SVAR model is the ability to include into the model
and to examine a much greater and theoretically unlimited information set and hence to avoid omitted
variable bias in the model. The advantage of the F-FAVAR approach over simple FAVAR approach
especially when technology shocks are concerned, is the absence of a necessity to select and justify one
single observed measure of the impulse process. An additional advantage is the fact that there is no need
to impose VAR restrictions that often require very strong and sometimes are arguable assumptions from
a researcher. The results of the F-FAVAR methodology also look more plausible than the results of a
FAVAR approach that used the San Francisco Tech Pulse Index. Nonetheless it is necessary to mention
that the index itself is mainly based on factors affecting only one industry (the IT sector) of the economy
and does not encompass all the aspects of aggregate technological growth.
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3.6 Chapter 3 Appendices

3.6.1 The Data
Table 3.3 lists all the variables and indicators used in the study. Variables are collected from various

sources including NBER, FRED, BLS, R&D Satellite Account, US Census Bureau, Yahoo Finance, and
utilization-adjusted quarterly-TFP series for the U.S. Business Sector, produced by John Fernald. The
time span of the variables is from 1976 to 2006. Whenever it was possible, quarterly data was used.
Variables with higher frequencies were averaged by quarters. Variables with lower frequencies were
assigned identical values for each quarter within the time period divided by the number of quarters in the
period.

Before presenting the list of variables and economic indicators let us examine the legend of Table 3.3.
The first two columns of table 3.3 are the following: variable name and the source of the data. Table 3.1
lists the sources from which the data was retrieved along with their short notations.

Table 3.1: Data Source

Source Short No-
tation

Comment

Federal Reserve Economic Data FRED The data retrieved from FRED originates from
various sources including U.S. Department of
Commerce: Bureau of Economic Analysis, Fed-
eral Reserve Bank of St. Louis Economic Re-
search Division, U.S. Department of Labor: Bu-
reau of Labor Statistics, U.S. Congress: Con-
gressional Budget Office, U.S. Department of the
Treasury: Bureau of the Fiscal Service, Federal
Reserve Bank of Chicago, Board of Governors of
the Federal Reserve System and others

OECD statistics OECD
U. S. Bureau of Labor Statistics BLS Retrieved directly from BLS rather than from

FRED
A Quarterly, Utilization-Adjusted
Series on Total Factor Productivity

Fernald Various quarterly TFP measures assembled by
John Fernald. See [Fernald, 2012] for data de-
scription.

Yahoo Finance Yahoo
2010 R&D Satellite Account R&D
Source: U.S. Census Bureau, Cur-
rent Population Survey

CB

NBER Patent Citation Data NBER The latest edition of the data was downloaded
directly from Bronwyn Hall web page. See
[Hall et al., 2001b] for data description

Column 3 of table 3.3 shows the original data frequency (a - annual, q - quarterly, m - monthly),
column 4 indicates whether the original data series were seasonally adjusted (yes/no). Column 5 of table
3.3 represents the variable’s type (v - value , i - index, % - percent rate). Column 6 contains a natural
log indicator ( y - natural log was taken from the original value in levels, n - natural log was not taken).
Column 7 indicates other transformation applied in order to make data stationary (fd - first difference of
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the level/log-level was extracted, tr - time trend from the level/log-level was removed, fdtr - first difference
of the level/log-level value was extracted and time trend was removed). Note that each of the variables
in table 3.3, after passing the manipulations described in the table was standardized by subtracting its
mean and dividing by its standard deviation in order to eliminate the scale effect due to the fact that the
variables are measured in different units and make the principal components analysis meaningful.12

Column 8 of table 3.3 introduces the category that each variable belongs to depending on what the
variable measures. Refer to table 3.2 for the groups’ description. Finally, column 9 indicates whether a
variable is slow fast or coincident with respect to the unobserved technological process (f - fast, s - slow,
c - coincident).

Table 3.2: Variables’ Categories

Short Notation Category Description
i GDP and Income measures
p Measures of the prices level
b Economic and business environment measures
r Interest rates
m Monetary aggregates
t Technological measures
e Employment/unemployment rates, levels, indices, duration; aggregate

and average hours worked
w Salaries, wages, and compensation
d Employment and wage premia for defined skilled workers †
f Factors of production measures (costs, profits, shares, capacity utiliza-

tion)
g Fiscal policy and government activity measures (federal,

state/municipal, and combined levels)
o Other (Variables not attributed to any of the above groups)

† Refer to table 3.5 for the category "d" measures’ definitions.

Table 3.3: Variables and Indicators

Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow
Gross Domestic Product per Capita FRED q v a y fd i s
Real Gross Domestic Product per
Capita

FRED q v a y fd i s

Gross Domestic Product FRED q v a y fd i s
Real Gross Domestic Product FRED q v a y fd i s
Real Potential Gross Domestic
Product

FRED q v a y fd i s

Gross National Factor Income FRED q v a y fd i s
Net National Factor Income FRED q v a y fd i s

Continued on next page

12Given that principal components factor procedure implies making the communality as close as possible to the observed vari-
ances, if variables had different variables, then those with higher variances would pre-dominate those with the smaller ones. See
[Tryfos, 1998] for more details.
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Table 3.3 – continued from previous page
Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow

Business Sector: Real Output Per
Hour of All Persons

FRED q i a y fd i s

Business Sector: Real Output FRED q i a y fd i s
Business Sector: Real Output Per
Person

FRED q i a y fd i s

Non-financial Corporations Sector:
Real Output

FRED q i a y fd i s

Non-financial Corporations Sector:
Real Output Per Hour

FRED q i a y fd i s

Non-financial Corporations Sector:
Real Output Per Person

FRED q i a y fd i s

Industrial Production Index FRED m i a y fd i s
Industrial Production: Manufactur-
ing (NAICS)

FRED m i a y fd i s

Real Personal Income FRED m v a y fd i s
Business Sector: Implicit Price De-
flator

FRED q i a y fdtr p s

Non-financial Corporations Sector:
Implicit Price Deflator

FRED q i a y fdtr p s

Consumer Prices Index: All Items OECD q i a y fd p s
Consumer Price Index for All Ur-
ban Consumers: All Items

FRED m i a y fd p s

Producer Price Index: Finished
Goods

FRED m i a y fd p s

GDP Deflator (Nominal GDP/Real
GDP)

FRED q v a y fdtr p s

Non-financial Corporate Business
Profits Before Tax

FRED q v a y fd b s

Change in Real Private Inventories FRED q v a n l b f
Business Sector: Unit Labor Cost FRED q i a y fd f s
Non-financial Corporations Sector:
Profits

FRED q i a y fd b s

Manufacturing Employment: Fu-
ture Tendency

OECD q i a n l b f

Manufacturing Capacity Utilization
(Survei)

OECD q % a y l f s

Manufacturing Confidence Indica-
tor

OECD q i a n l b f

Real Investment FRED q v a y fd b s
Commercial and Industrial Loans,
All Commercial Banks

FRED m v a y fd b f

ISM Manufacturing: PMI Compos-
ite Index

FRED m i a y l b f

ISM Manufacturing: New Orders
Index

FRED m i a y l b f

Continued on next page
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Table 3.3 – continued from previous page
Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow

Chicago Fed National Activity In-
dex

FRED m i n n l b f

Chicago Fed National Financial
Conditions Index

FRED m i n n tr b f

Chicago Fed National Activity In-
dex: Production and Income

FRED m i n n l b f

Chicago Fed Nat. Activity Index:
Sales, Orders & Inventories

FRED m i n n l b f

Long-Term Interest Rates OECD q % n y fd r f
Short-Term Interest Rates OECD q % n y fd r f
Effective Federal Funds Rate FRED m % n y fd r f
1-Year Treasury Constant Maturity
Rate

FRED m % n y fd r f

10-Year Treasury Constant Matu-
rity Rate

FRED m % n y fd r f

5-Year Treasury Constant Maturity
Rate

FRED m % n y fd r f

3-Month Treasury Bill: Secondary
Market Rate

FRED m % n y fd r f

M1 Money Stock FRED m v a y fd m f
Real M2 Money Stock FRED m v a y fd m f
Monetary Base; Total FRED m v n y fd m f
Real M1 Money Stock FRED m v a y fd m f
Business Sector: Hours of All Per-
sons

FRED q i a y fd e s

Business Sector: Employment FRED q i a y fd e s
Business Sector: Average Weekly
Hours

FRED q i a y fd e s

Non-financial Corporations Sector:
Employment

FRED q i a y fd e s

Non-financial Corporations Sector:
Average Weekly Hours

FRED q i a y fd e s

Non-financial Corporations Sector:
Hours Worked

FRED q i a y fd e s

Average Weekly Hours Manufac-
turing*

FRED m v a y fd e s

Civilian Employment FRED m v a y fd e s
Civilian Labor Force FRED m v a y fd e s
All Employees: Manufacturing FRED m v a y fd e s
All Employees: Total Non-Farm FRED m v a y fd e s
Average (Mean) Duration of Unem-
ployment

FRED m v a y l e s

Civilian Unemployment Rate FRED m % a y tr e s
All Employees: Government FRED m v a y fd e s
All Employees: Private BLS m v a y fd e s

Continued on next page
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Table 3.3 – continued from previous page
Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow

Average Weekly Hours* BLS m v a y tr e s
Aggregate Weekly Hours* BLS m v a y fd e s
Unemployment Level: Job Losers FRED m v a y l e s
Unemployment Rate: Job Losers FRED m % a y tr e s
Median Duration of Unemployment FRED m v a y l e s
(Seas) Employment-Population Ra-
tio

BLS m % a y fd e s

Business Sector: Compensation Per
Hour

FRED q i a y fd w s

Business Sector: Compensation FRED q i a y fd w s
Business Sector: Real Compensa-
tion Per Hour

FRED q i a y fd w s

Non-financial Corporations Sector:
Hourly Compensation

FRED q i a y fd w s

Non-financial Corporations Sector:
Real Hourly Compensation

FRED q i a y fd w s

Total Private Average Hourly Earn-
ings*

BLS m v a y fdtr w s

Total Private Real Average Weekly
Earnings*

BLS m v a y fd w s

Total Private Average Weekly Earn-
ings*

BLS m v a y fd w s

Total Private Real Average Hourly
Earnings*

BLS m v a y fd w s

Total Private Aggregate Weekly
Payrolls*

BLS m v a y fd w s

Business Sector: Labor Share FRED q i a y fd f s
Non-financial Corporations Sector:
Labor Share

FRED q i a y fd f s

Non-financial Corporations Sector:
Unit Profits

FRED q i a y fd f s

Non-financial Corporations Sector:
Total Unit Costs

FRED q i a y fd f s

Non-financial Corporations Sector:
Unit Labor Costs

FRED q i a y fd f s

Utilization of capital and labor Fernald q d % n n tr f s
Business Sector: Capital input Fernald q d % n n tr f s
Business Sector: Capital’s Share of
Income

Fernald q % n n n f s

Capacity Utilization: Total Industry FRED m % a y tr f s
Real Gov-t Consumption Expendi-
tures & Gross Investment

FRED q v a y fd g s

Federal Government Budget Sur-
plus or Deficit

FRED q v a n tr g s

Government Total Expenditures FRED q v a y fdtr g s
Continued on next page
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Table 3.3 – continued from previous page
Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow

Federal Government Total Public
Debt

FRED q v a y fdtr g s

Government Current Receipts FRED q v a y fd g s
Federal Government Non-defense
Gross Investment

FRED q v a y fd g s

Business Sector: TFP Fernald q d % n n l t c
Utilization-Adjusted TFP Fernald q d % n n l t c
Business Sector: Labor Productiv-
ity

Fernald q d % n n l t c

Output Per Hour OECD q d % n n l t c
Real National Defense Consump-
tion Expenditures: R&D

FRED q v a y fd t c

San Francisco Tech Pulse FRED m i a y fdtr t c
Real Total R&D Investment R&D a v n y fd t c
Real Private R&D Investment R&D a v n y fd t c
Real IT R&D Investment R&D a v n y fd t c
Real Public R&D Investment R&D a v n y fd t c
Real Academia R&D Investment† R&D a v n y fd t c
Real Total R&D Performance R&D a v n y fd t c
Real Private R&D Performance R&D a v n y fd t c
Real Public R&D Performance R&D a v n y fd t c
Real Academia R&D Performance† R&D a v n y fd t c
Total Number of Patents Granted NBER d v n y fd t c
Total Number of Claims in the
Patents Granted

NBER d v n y fd t c

Claims to Granted Patents Ratio NBER d v n y fd t c
Private Non-Farm Net Multifactor
Productivity

BLS a v n y fd t c

Skilled to Unskilled Employment
Ratio, Scheme C‡

BLS m v a y fd d s

Skilled to Unskilled Employment
Difference, Scheme C‡

BLS m v a n fd d s

Skilled to Unskilled Employment
Ratio, Scheme A‡

CB a v n y fd d s

Skilled to Unskilled Employment
Difference, Scheme A‡

CB a v n n fd d s

Skilled to Unskilled Employment
Ratio, Scheme B‡

CB a v n y fd d s

Skilled to Unskilled Employment
Difference, Scheme B‡

CB a v n n fd d s

Skilled to Unskilled Wage Ratio,
Scheme A‡

CB a v n y fd d s

Skilled to Unskilled Wage Differ-
ence, Scheme A‡

CB a v n y fd d s

Continued on next page
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Table 3.3 – continued from previous page
Variable Name Source Freq. Type Seas. Ln Tr-n Cat. Slow

Skilled to Unskilled Wage Ratio,
Scheme B‡

CB a v n y fd d s

Skilled to Unskilled Wage Differ-
ence, Scheme B‡

CB a v n y fd d s

Real National Defense Consump-
tion Expenditures

FRED q i a y fd o s

Housing Starts: Total: New, Pri-
vately Owned

FRED m v a y fd o f

Spot Oil Price: West Texas Interme-
diate

FRED m v n y fd o f

New Private Housing Units Autho-
rized by Building Permits

FRED m v a y fd o f

S&P 500 Dividend Adjusted Close
Price (GSPC)

Yahoo m v n y fd b f

* Production, Nonsupervisory Employees
† Refer to table 3.4 for variables’ definitions
‡ Refer to table 3.5 for variables’ definitions

Some variables in table 3.3 require special attention. The following two tables will define the
academia R&D variables and the employment/wage premia variables respectively. Table 3.4 will show
how the academic R&D investment and performance variables were generated. Table 3.5 explains three
different approaches taken in order to distinguish skilled from unskilled workers when constructing
skilled employment and skilled wage premia variables.

Table 3.4: Definition of Academia R&D Variables

Variable Description
Real Academia R&D Investment The variable combines real private investment in R&D of universities

and colleges with real public investment in R&D of universities and
colleges. Source: US 2010 R&D Satellite Account, Table 2.2

Real Academia R&D Performance The variable combines real private output of R&D of universities and
colleges with the real private output of federally funded R&D centers’
in universities and colleges with real public output of R&D of universi-
ties and colleges and with real public output of federally funded R&D
centers’ in universities and colleges. Source: US 2010 R&D Satellite
Account, Table 3.2
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Table 3.5: Definition of Skilled and Unskilled Workers

Scheme Skilled Unskilled
A Workers with a bachelour’s degree

or higher
All other non-institutional workers
of age 18+

B Workers with a college diploma or
higher

All other non-institutional workers
of age 18+

C Workers with the following occupa-
tions: information, financial activi-
ties, business services, professional,
health, education

Total non-farm employment minus
skilled as defined in scheme C

Table 3.6: Rotated Technology Factor Loadings

Measure of Technology Loading
Business Sector: TFP 0.3209

Utilization-Adjusted TFP 0.3875
Business Sector: Labour Productivity 0.3890

Output per Hour 0.3178
Real National Defense Consumption Expenditures: R& D 0.2944

San Francisco Tech Pulse 0.1901
Total Number of Patents Granted 0.3327

Total Number of Claims in Patents Granted 0.3441
Claims to Granted Patents Ratio 0.1499

Real Total R&D Investment 0.8237
Real Private R&D Investment 0.6403

Real IT R&D Investment 0.3907
Real Public R&D Investment 0.5241

Real Academia R&D Investment 0.4484
Real Total R&D Performance 0.8203

Real Private R&D Performance 0.7630
Real Public R&D Performance 0.5634

Real Academia R&D Performance 0.4211
Private Non-Farm Net Multifactor Productivity 0.3212
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3.6.2 Figures

Figure 3.1: F-FAVAR Impulse-Responses to Technological Shock, Bootstrapped 95% CI
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Figure 3.2: FAVAR Impulse-Responses to Technological Shock Using Multifactor Productivity Measure
and Long Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.3: FAVAR Impulse-Responses to Technological Shock Using Utilization Adjusted Total Factor
Productivity Measure and Long Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.4: FAVAR Impulse-Responses to Technological Shock Using Claim Adjusted Patent Measure
and Long Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.5: FAVAR Impulse-Responses to Technological Shock Using San-Francisco Tech Pulse and
Long Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.6: FAVAR Impulse-Responses to Technological Shock Using Multifactor Productivity Measure
and Short Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.7: FAVAR Impulse-Responses to Technological Shock Using Utilization Adjusted Total Factor
Productivity Measure and Short Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.8: FAVAR Impulse-Responses to Technological Shock Using Claim adjusted Patent Measure
and Short Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.9: FAVAR Impulse-Responses to Technological Shock Using San Francisco Tech Pulse and
Short Run SVAR Restrictons, Bootstrapped 95% CI
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Figure 3.10: F-FAVAR - MFP Measure FAVAR with Long Runs Restrictions Comparison
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Figure 3.11: F-FAVAR - Utilization-Adjusted TFP Measure FAVAR with Long Runs Restrictions Com-
parison
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Figure 3.12: F-FAVAR - Claim-Adjusted Patent Measure FAVAR with Long Runs Restrictions Compari-
son
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Figure 3.13: F-FAVAR - San Francisco Tech Pulse Measure FAVAR with Long Runs Restrictions Com-
parison
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Figure 3.14: F-FAVAR - MFP Measure FAVAR with Short Run Restrictions Comparison
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Figure 3.15: F-FAVAR - Utilization-Adjusted TFP Measure FAVAR with Short Run Restrictions Com-
parison
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Figure 3.16: F-FAVAR - Claim-Adjusted Patent Measure FAVAR with Short Run Restrictions Compari-
son
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Figure 3.17: F-FAVAR - San Francisco Tech Pulse Measure FAVAR with Short Run Restrictions Com-
parison
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3.7 Thesis Conclusion
In my PHD dissertation, I examined the effect of technological innovations on the economy. The first
chapter was dedicated to uncovering and analyzing general purpose technologies in the patent data. I
develop a way to identify and trace the full life cycle of general purpose technologies. I show that
previous studies were able to identify only a particular segment of a GPT. Moreover, the methodology
introduced in the previous studies over-identified the number of co-existing active GPTs in any historical
period. On the other hand, developed in my first chapter identifies only a technology that is commonly
accepted as a GPT and trace its evolution and diffusion across technological fields. The microcomputer
general purpose technology identified in the study is found to behave in line with the GPT theory. This
chapter also introduces a useful tool that allows us to examine the evolution and diffusion of a given
technology over time and over rounds of research activity.

In the second and third chapters, I analyze how a technological innovation affects economic variables
in the short run. The second chapter investigates the response of hours worked following a technology
shock. A unique combination of a technology measure and an empirical identification methodology
is used. The measure of technology comes from patent claims. Instead of using short-run or long-run
restrictions in the VAR, we use sign restrictions. The identification for the SVAR comes from a theoretical
model that distinguishes between skilled and unskilled workers. We find that a technology shock leads
to an increase in aggregate hours worked. Unlike previous studies where the results depended on the
specification of the variables, our results are robust to these changes.

In the third chapter, I extend the FAVAR methodology to analyse of the effects of technological shocks
on a large set of economic variables. Unlike some shocks for which there exists an impulse variable that
can be included into FAVAR, there is no such variable for the aggregate technological process. Multiple
measures of technology exist and each have their own advantages and disadvantages. As a result, the se-
lection of a given technological measure requires a justification. The F-FAVAR methodology introduced
in the third chapter allows us to derive a latent factor technological variable from multiple technology
measures. We examine the effects of a shock to this variable on numerous economic and business vari-
ables. In general the F-FAVAR methodology could be applied to any VAR analysis in order to include
a larger set of data than the one that can be processed by regular VARs. The results of the F-FAVAR
study generally support the results of the second chapter. A positive technology shock leads to an in-
crease of hours worked. Moreover, the responses of other economic variables to a positive technology
shock are largely in accordance with the theory which is not always achievable when a VAR framework is
used. The F-FAVAR approach is found to out-perform more conventional FAVAR approach with different
observable measures of technology and structural restrictions in terms of the intuitiveness of the results.
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