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Abstract

Network densification through heterogeneous networks (HetNets) is considered as a promis-
ing paradigm to address the ever increasing mobile users’ data demands in 5G networks.
A HetNet consists of macro cells (each with a macro base station) overlaid with a number
of small cells (each with a low-power base station) and has been shown to significantly
improve the network capacity when supported by carefully designed radio resource man-
agement (RRM) techniques. RRM is typically studied via a joint optimisation problem
over three network processes, namely, resource allocation (RA), user association (UA) and
user scheduling (US), and is the focus of this thesis. Our first objective is to characterise
the optimal HetNet performance by jointly optimising these three processes through a uni-
fied framework under different channel deployment scenarios. Towards this, we focus on
two RA schemes, namely, partially shared deployment (PSD) and co-channel deployment
with almost blank subframes (ABS), proposed by 3GPP for future HetNets.

In the first part of the thesis, we revisit a unified optimisation framework under PSD
that allows us to configure the network parameters (e.g., number of channels per-cell and
power per-channel) and allocate optimal throughputs to users in a fair manner. The
framework under consideration is based on a snapshot model where, in each snapshot,
the number of users and channel gains are assumed to be fixed and known. Although
the previous study on this framework provides many interesting engineering insights, it is
primarily based on two wrong assumptions in terms of channel modelling and US which
we correct in our work. We also revisit a similar framework but under ABS and conduct
a thorough comparative study between ABS and PSD. We first show that the α−fair
scheduling problem under ABS is generally much more involved than that under PSD for
α 6= 1. To verify whether the US complexities involved from deploying ABS are justifiable,
we compare the throughput performance of the two schemes under a static setting, where
the number of users in each snapshot is assumed to be fixed. Our results indicate that
PSD outperforms ABS for different choices of α and under different HetNet configurations.

In the second part of the thesis, we further study our frameworks under a dynamic
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setting and continue our comparisons between the two RA schemes under different service-
time models. The dynamic setting, as well as reaffirming the upper-hand of PSD, provides
a number of new insights, most importantly the fact that the conventional physical-layer
based UA schemes do not always work well. Motivated by this observation, we further
explore the problem of UA under PSD with the objective of improving an existing online
UA scheme. We show that when users are periodically triggered to re-associate (on an
individual basis), the online UA scheme can significantly improve the system performance.
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Chapter 1

Introduction

1.1 Overview

With the introduction of smart phones in the late 2000’s and the broad range of IP-based
applications that they offer, there has been an unprecedented surge in data demands from
mobile customers. Being able to support these applications with, more or less, the same
quality of service as fixed broadband connection coined the term mobile broadband and
was a main driver for 4G systems [12]. With this in mind, operators started transitioning
to an all-IP network to support rates from a few kbps per user, for voice calls, to 10’s of
Mbps per user for HD video streaming today and up to a target rate of 1 Gbps per user
for future applications such as immersive multimedia [23]. In view of this massive surge
in traffic demand, the industry is now aiming to increase today’s network capacity by a
factor of 100× within the next 20 years [32]. The fifth generation (5G) of wireless systems,
currently under development, is expected to fulfill these objectives. 5G will offer a wide
range of enabling technologies most of which revolve around three main paradigms [23, 9,
5, 3, 17, 27]:

1. Network densification through heterogeneous networks,

2. Exploiting higher spectrum frequencies (e.g., mm-Wave, tera-hertz bands),

3. Multi-antenna transmission and cooperative communications techniques (e.g., MIMO
and CoMP).

Each of these three paradigms comes with potential gains and limitations. For exam-
ple, network densification increases the spatial reuse and typically relies on topological
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optimisation rather than complex signal processing enhancements. However, it compli-
cates resource, backhaul and mobility management [16, 24]. High frequency bands offer
an abundance of unused spectrum but this comes at the cost of increased path-loss and
often requires expensive equipments. Lastly, while most multi-antenna techniques enhance
spectral efficiency through multiplexing, diversity, and antenna gain, they require tight
synchronisation, complex signal processing capabilities and may fail due to inaccuracies in
channel state information [23, 27].

Given these three paradigms with their potential gains and limitations, it is important
to study the impact of each paradigm on network capacity over the years and identify
the one(s) that has the most potential to help realise the 100-fold capacity target. The
papers [38, 23] summarise the impact that each of these paradigms has had on network
capacity from 1950 to 2000. According to their studies, there has been a million fold
increase in wireless capacity over the 50 years. The breakdown of the capacity increase is
as follows: 5× gain from designing better coding techniques, 5× gain from improved MAC
and modulation schemes, 15× improvement from using wider spectrum and 2700× gain
from network densification. According to this breakdown network densification seems to be
the more promising technique and is the focus of this thesis. Although network densification
will likely be incorporated along with one or a combination of the other techniques, we
believe it will be the primary choice for capacity enhancement by researchers and operators.

Mobile operators have already started densifying their wide-area homogeneous networks
into heterogeneous networks (HetNets) by deploying low-power base stations (BSs) within
their existing macro cellular coverage. These low-power BSs are known as small cells (SCs)
and come in different forms depending on their use. Home SCs (a.k.a, femto cells) are one
form of SCs and are usually self-installed and maintained by the end user. Pico cells are
another form of SCs and are installed and maintained by the operator, usually outdoors,
to enhance the macro cell coverage. As of 2012, according to [18], the number of SCs was
already greater than that of macro cells and this trend is expected to continue in years to
come with 5G networks.

In the following, we will give a quick primer on HetNets and outline the issues limiting
their performance.

1.2 Heterogeneous networks

A HetNet consists of a number of SCs with a small coverage area overlaying the existing
homogeneous macro cellular network. Deploying these SCs within the existing networks
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brings a number of advantages. For example, it helps macro cells offload a portion of
their users to SCs allowing more resources to be reused. In addition, it helps reduce the
distance between users and access points which can mitigate the effect of path-loss and
fading and improve the users’ channel quality. This is particularly important for the cell-
edge users who receive poor signals from the macro BSs (MBSs) and also suffer from the
inter-cell interference from the neighbouring cells. Last but not least, because of the low
installation and maintenance costs, SCs are an attractive solution for operators to increase
their network capacity and fill the coverage holes of the MBSs.

HetNet deployment creates a number of challenges most of which impact the complexity
of network operation. In particular, the disparity in power budget and load between
the MBS and SCs makes the radio resource management1 considerably more complicated
than that in homogeneous networks where all cells typically have similar characteristics.
Examples of other issues include increased number of handovers due to smaller cell coverage
or bad quality of service for the SC users due to backhaul2 limitations which call for new
solutions in terms of mobility and backhaul management, respectively. Therefore, it is
important to study the complexities involved in deploying HetNets in parallel with their
potential gains. In this work, our focus will be only on the radio resource management
aspect of HetNets and we will discuss its complexities in detail next. For more information
on backhaul and mobility management, the reader may refer to [30, 25, 16].

1.2.1 Radio resource management: Network processes and their
complex interplay

Operators design radio access networks with the objective of optimising a performance met-
ric such as average delay or throughput per user, using a limited amount of radio resources.
In other words, given a set of radio resources an operator wants to know how to assign
these resources to different BSs and users so as to optimise a performance metric? Radio
resource management (RRM) addresses this question, typically, via a joint optimisation
problem over three network processes, namely, resource allocation (RA), user association
(UA) and user scheduling (US), all of which are intricately coupled and, if designed care-
fully, can significantly improve the network performance [14]. Here, we only focus on the

1Radio resource management is the process of assigning radio resources, i.e., time, frequency and power,
to different users and BSs in a network.

2Backhauls are the links between the MBS and SCs and between the MBS and the core network. Note
that in this thesis, we assume that all the SCs overlaying a macro cell are connected to the MBS (in the
macro cell) via these backhaul links.
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problem of RRM for the downlink transmissions of OFDM-based systems. With this in
mind, we define the three network processes as follows.

1. Resource allocation (RA) is the typically global (to the system) and slow-varying
process of assigning channels3 to the MBSs and SCs. RA is always a network-centric
process which is often carried out centrally by the operator. In this thesis, we only
deal with three RA schemes proposed by 3GPP [10] in which each MBS is allocated,
say, M channels and these channels are further shared between the MBS and SCs
via the following channel deployment schemes.

(a) Orthogonal Deployment (OD): The MBS is assigned a subset of the dedi-
cated channels among the M channels and the remaining channels are exclu-
sively allocated to the SCs. This deployment relies on a simple frequency-domain
interference avoidance mechanism between the MBS and its SCs.

(b) Partially Shared Deployment (PSD): The MBS is assigned a set of dedicated
channels similar to OD. The remaining channels are used by both the MBS and
SCs. The reason for using the shared channels at the MBS is to help offload
some of the users on the dedicated channels when necessary. The MBS would
typically allocate a large portion of its power budget on its dedicated channels
to provide a coverage umbrella for the macro cell and allocate the rest of it
on its shared channels. Note that OD is a special case of PSD since if all the
macro power budget is allocated to the dedicated channels, then PSD will reduce
to OD. Therefore, PSD is always expected to provide an upper-bound to the
performance of OD.

(c) Co-channel Deployment with Almost Blank Subframes (CCD with ABS):
All the BSs within a macro cell share all the available channels. However, since
the MBS transmits at a much higher power level than the SCs it is only allowed
to transmit data signals during some of the subframes. During the rest of the
subframes, the MBS is only allowed to transmit reference signals at a very low
power, hence the name Almost Blank Subframes (ABS). This way, the MBS will
only cause negligible interference to its neighbouring co-channel cells during the
ABS. This deployment relies on a simple time-domain interference avoidance
mechanism between BSs of different tiers. We refer to the fraction of the time
that the MBS is transmitting on the ABS as the ABS duty cycle. Also, we use
the terms CCD with ABS and ABS, interchangeably, throughout this thesis.

3We use the terms channel and sub-channel interchangeably throughout this thesis.
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2. User association (UA) refers to the process that selects a BS (or more) to be used
by a user. It is also referred to as cell selection in the literature. UA rules typically
require a user to measure the reference signals sent by each candidate BS and to
associate with a BS based on those measurements. A commonly used UA rule in
homogeneous networks is to associate a user upon arrival with the BS that offers the
highest signal-to-interference-plus-noise-ratio (SINR). Such a UA rule, however, does
not work quite well in the context of HetNets. This is because the MBS transmits
at a much higher power level than the SCs and users, even at a close proximity
of a SC, may still associate with the MBS resulting in an underutilisation of SCs.
Therefore, HetNet deployment calls for new UA rules to incorporate fair and efficient
load distribution among BSs. Considering the large variations in the number of users
in a cell where users constantly enter and leave, clearly UA needs to be done rather
more often than RA.

3. User scheduling (US) is the typically local (to a BS) quasi real-time process of
allocating resource blocks4 (RBs) at each BS to the users associated with it according
to some fairness criteria. US is always a network-centric process, carried out at each
BS (possibly with the help of other BSs) for all the users associated with it. A
well-known example of a scheduling policy is Round Robin according to which a BS
dedicates the entire network bandwidth for an equal amount of time to transmit
to each associated user. Often, measures of fairness are introduced in scheduling
policies by an operator to ensure a minimum quality of service for users with poor
channel quality. The most widely-used measure of fairness in the context of cellular
networks is α−fairness first introduced in [28] where by changing the parameter
α ∈[0,∞), one can achieve different levels of trade-off between maximum aggregate
throughput and fairness. We will explain the notion of α−fairness in more detail
in Chapters 2 and 3. Note that an operator should ideally provide fairness among
all of its users and not only among the set of users associated with a particular
cell. Therefore, fairness should be a global criteria encompassing all users across an
entire HetNet. Furthermore, it is noteworthy that although RA and US are always
network-centric processes, UA can be both network-centric or user-centric, i.e., the
association decision can be made for the user by the network and reported to her or
it can be made by the user herself and reported to the network.

The three aforementioned processes impact one another and optimising each process
independent of the other processes results in a sub-optimal HetNet performance. For ex-
ample, consider a HetNet under the CCD with ABS scheme where an operator wants to

4A RB corresponds to one channel for one time slot.
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decide on the value of the ABS duty cycle. This will depend on UA and US rules. If the
operator decides to use a simple Max-SINR association rule and Round Robin scheduler,
then it will be best to choose a small ABS duty cycle since most users in the system will
tend to associate with the MBS because of its significantly higher transmit power. Con-
versely, if the UA rule is chosen such that more users are made to associate with the SCs,
then it will be best to choose a large ABS duty cycle so that the SC users will experience
less interference from the MBS. Studying the interplay of such intricately coupled pro-
cesses entails a unified framework that parametrises all three processes and allows us to
characterise the performance of the HetNet by configuring the network parameters. The
ability to model these processes using a unified framework would enable us to conduct a
comparative study of different deployment choices and heuristics which is one of the main
objectives of this thesis.

1.2.2 Modelling HetNets

Apart from their complex interdependence, the network processes also highly depend on
the HetNet configuration such as the number of BSs and their locations. For example,
consider a HetNet based on ABS scheme. The larger the number of deployed SCs, the
larger the ABS duty cycle is expected to be because of the increased SC coverage area
(and, hence, the number of the SC users). Even more so, the performance of the network
processes depends on the dynamics of the HetNet under consideration such as the number
of users in the system, arrival rates, variations in users’ channel gains, load per BS, traffic
scenario, etc.. Therefore, formulating a HetNet model that encompasses all or some of
these aspects is key in order to get realistic insights from the unified framework.

We start off with a snapshot model where we assume that the location of BSs, number
of users, their locations and channel gains are fixed and known for a given snapshot or
realisation. The snapshot model is a simple, yet insightful, tool that enables us to formulate
many network utility maximisation problems and study the mean performance of the system
by averaging the network utilities over a large number of realisations [29, 36]. We study
the snapshot model under two settings: static and dynamic. In the static setting, each
realisation corresponds to a random distribution of a fixed number of static users with
fixed channel gains in each cell of the HetNet5. This setting is a good candidate for offline-
static study to compare the performance of different deployment choices and configure the
network parameters (e.g., shared channels in the case of PSD). Such a setting, however,
does not quite reflect the behaviour of a real cellular network where there could be high

5Note that the channel gains and the location of the users in different realisations may be different.

6



variations in the number of users in different realisations depending on users’ arrival or
departure times. The dynamic setting will allow us to capture (some of) these effects. In
this thesis, we focus on the service dynamics, i.e., we assume that users typically arrive in
the system according to a predefined process, e.g., Poisson point process, and leave after
a service-time where the service-time of a user will depend on the traffic scenario used for
the system. We will consider two traffic scenarios: 1) a fixed-delay scenario where users
stay for a fixed amount of time and 2) a file-download scenario where users download a file
of a fixed size and, then, leave.

In the following, we summarise our objectives and contributions in this thesis.

1.3 Contributions

We study a HetNet comprising a number of macro cells, each overlaid with a number of
SCs, by focusing on the downlink only. We revisit two unified optimisation frameworks, one
under PSD and one under ABS, based on the snapshot model in both static and dynamic
settings. We provide analytical and numerical results to make insightful remarks in each
chapter about each of the two RA schemes. Our contributions are summarised below.

1. In Chapter 3, we revisit a joint optimisation framework under PSD based on the
snapshot model. The framework was first discussed in [14] where the authors make
a wrong assumption on the shared channels model at the MBS. We improve upon
this work by deploying the right model for the shared channels at the MBS. The
corrected model raises two questions regarding the 1) joint scheduling of the macro
users and 2) power apportioning on the shared and dedicated channels at the MBS.
First, we show that the gain obtained from the scheduling of macro users on both
sets of the macro channels is negligible. This property, as we will show, can be
exploited to decompose the local MBS joint scheduling problem into two independent
scheduling problems; one for the users on the dedicated channels and one for the
users on the shared channels. We, then, show that by using a simple formula-based
scheduler on each set of the MBS channels, we can achieve near-optimal throughput
performance. Finally, we address the importance of power apportioning between the
shared and dedicated channels at the MBS and show that the right choice of power
apportioning can significantly impact the system’s α−mean throughput. Lastly, we
compare the performance of PSD and OD and show that, by performing the right
power apportioning at the MBS, PSD significantly outperforms OD.
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2. In Chapter 4, we revisit a joint optimisation framework under ABS based on the
snapshot model. The framework was first discussed in [6], where the authors show
that the optimal PF scheduling problem under ABS is a simple linear-in-time algo-
rithm. Interested in characterising the optimal scheduler for α 6= 1, we prove that
the optimal α−fair scheduling under ABS can be NP-hard and, hence, much more
involved than that under PSD (which is formula-based for all values of α). To verify
whether the scheduling complexities involved from deploying ABS are justifiable, we
further conduct a thorough comparative study between ABS and PSD in a static set-
ting and show that the throughput gains achieved by deploying PSD are higher than
ABS for different values of α and under different HetNet configurations and heuris-
tics. Therefore, based on its simpler optimal α−fair scheduler and higher throughput
gains, we assert that PSD outperforms ABS in the static setting.

3. In Chapter 5, we further extend the optimisation framework to a dynamic setting
to compare the performance of PSD and ABS under different traffic models. The
motivation behind this is that the snapshot model under a static setting does not
capture all the dynamics of a real cellular network. We consider two traffic scenarios
as the bases of our comparisons, namely, fixed-delay and file-download, with a re-
spective performance metric of average α−mean throughput and per-user delay. We
obtain tight upper-bounds and lower-bounds for the system performance in terms
of the two performance metrics, respectively, and show the dominance of PSD over
ABS for different values of α. Furthermore, we show that while re-association in the
fixed-delay scenario (under both PSD and ABS) does not result in much gain in per-
formance metric, it significantly improves the metric in the file-download scenario.
Lastly, we show the inefficiency of a very good physical-layer based UA scheme in
the file-download scenario, suggesting that a better-designed scheme is required for
online systems.

4. Lastly, we consider the problem of user association under PSD in a dynamic set-
ting in Chapter 6. Building up on the previous work in [15], we propose a simple
device-centric association scheme where users are periodically and individually given
a chance to re-associate to another BS in a greedy manner. Using simulation results,
we show that our proposed scheme results in a very good performance compared
to the optimal. Our proposed scheme is device-centric, eliminating the need for a
network-centric global re-association of users, and only requires a small amount of
information exchange from the network to each user.
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1.4 Outline

The rest of the thesis is organised as follows. In Chapter 2, we present a summary of the
related work. In Chapter 3, we present the optimisation framework under PSD for a given
snapshot. In Chapter 4, we use the framework under PSD along with a similar framework
under ABS to conduct a thorough comparative study between the two RA schemes in a
static setting. In Chapter 5, we continue the comparisons between the two schemes under
a dynamic setting. In Chapter 6, we focus on the UA problem in the dynamic setting
under PSD. We present the UA scheme in [15] and propose a new re-association technique
to further improve the scheme. In Chapter 7, we present a summary of the work done in
this thesis and future research directions.
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Chapter 2

Literature Review

In this chapter, we provide an overview of the literature work related to RA, UA and US
under OD, PSD and ABS schemes in the context of OFDM-based HetNets. We will outline
the novelties and limitations of the existing work and comment on how it is related to and
improved upon in our work.

2.1 User scheduling

US in HetNets is a well-studied problem and various scheduling policies, often based on
some throughput-based objective, have been proposed. The most widely-used objective
is the sum of the α−fair utility of user throughputs. These US problems are also known
as α−fair scheduling problems in the literature and fall in a more general category of
problems known as network utility maximisation (NUM). The notion of α−fairness was
proposed in [28] and is widely used as a measure of fairness in throughput assignment
in the context of cellular networks today. By changing the parameter α ∈[0,∞), one
can achieve different levels of trade-off between aggregate throughput of the system and
fairness in terms of throughput allocation to users. The following values of α and their
corresponding objectives are often used in the literature for throughput assignment to
users. For α → ∞, the α−fair scheduling problem yields max-min throughput allocation,
i.e., the scheduler tries to maximise the worst users’ throughput. [37] shows that max-min
scheduling sacrifices the efficiency (in terms of aggregate throughput) of the system for
maximum fairness in throughput allocation. For α = 1, the α−fair scheduling problem,
also known as proportional fairness (PF) scheduling, corresponds to sum of the logarithm
of user throughputs and provides a good trade-off between fairness and efficiency [20]. For
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α = 0, the scheduling problem corresponds to the sum throughput maximisation. However,
it makes no attempt to ensure fairness in throughput assignments.

Recall that fairness should be a global criteria encompassing all users across an entire
HetNet. For a given RA and UA, we refer to this joint scheduling problem within the
system as the global scheduling problem. Solving this global problem will require a high
level of coordination and signalling among BSs which may be infeasible in today’s HetNets.
Hence, to decouple the global problem into local (per-BS) scheduling sub-problems, a lot
of the work in the literature make the following assumptions [15, 14, 16]:

1. A BS transmits on all the channels allotted to it at a given time. With this assump-
tion, the interference and, hence, the SINR and link rates, of all user locations in
a HetNet will become fixed, making the local scheduling at each BS independent of
scheduling at other BSs1. However, note that this assumption simplifies a time and
frequency domain scheduling to a pure time-domain scheduling problem (where a BS
allocates all of its sub-channels to one user at a given time) which implies that the
channel-dependent scheduling aspect of the system can no longer be exploited.

2. Each SC is connected to the MBS via a high capacity wired backhaul. This is partic-
ularly an important assumption in terms of decoupling the global scheduling problem
since if the MBS is of limited backhaul capacity, allowing each BS to independently
schedule its users can lead to the violation of the MBS backhaul constraint.

3. Users are only allowed to associate with one BS; otherwise, joint scheduling of a
user by two or multiple serving BSs will naturally require some level of coordination
between conflicting radio resources (e.g., co-channel interference between the serving
BSs). This assumption allows the network to schedule users locally (on a per-BS
basis), if the two above-mentioned assumptions hold.

Note that if any of the aforementioned assumptions does not hold, then local scheduling
may be sub-optimal. [16] shows that with the above-mentioned assumptions the global
α−fair scheduling problem can decouple into local scheduling sub-problems and derives
closed-form solutions for each of the sub-problems. Furthermore, the authors show that for
the scenario where the MBS backhaul is sufficiently provisioned but where the SC backhaul
links have limited capacities, the global scheduling problem can still be decomposed into
independent local sub-problems. However, the local α-fair schedules are different from

1Note that, here, we assume that users can report their channel gains to their associated BSs through
perfect feedback channels. Therefore, each BS can compute the interference, SINR and link rates seen by
its users using the channel gain reports and, then, schedule them accordingly.
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those of the scenario of very large backhaul capacities. For the more general scenario
where the MBS backhaul is also of limited capacity, the user schedule at a BS is affected
by the channel gains of users in other BSs and, hence, the global problem in general does
not decompose into local problems. The authors, however, propose two local US heuristics
and show that, under some mild assumptions, they work well.

2.1.1 User scheduling with link adaptation

Due to the high variations in instantaneous channels, scheduling is usually performed along
with an underlying mechanism that dynamically adjusts the transmission power or rate
according to the channel state. Power adaptation mechanism adjusts the transmit power
based on the channel state to maintain a near-constant data rate at the receiver which
is, in particular, a desirable affect for voice services. Rate adaptation mechanism, on the
other hand, maintains the transmit power at a constant level and adjusts the rate (by
varying modulation and channel coding schemes) to compensate for channel variations.
Scheduling with rate adaptation is suitable for packet-data traffic where a constant rate is
not required as long as the (long-term) average rate is above a certain threshold [12]. Rate
adaptation is also known as Adaptive Modulation and Coding. In this work, we assume
that the HetNets under consideration use Adaptive Modulation and Coding with discrete
rates as proposed in [26].

2.2 Resource allocation

RA is the typically global (to the system) and slow-varying process of assigning channels
to the MBS and SCs. In OFDM-based homogeneous networks, RA is often simple as
all BSs have similar power budget and load. A common way of allocating resources in
homogeneous networks is to assign equal number of channels to each BS with some spatial
reuse factor, r, greater than one to mitigate co-channel inter-cell interference. Another
similar approach is outlined in [7], where a fraction of the available channels is used by
all BSs and the rest of the channels is divided between BSs with a reuse pattern. The
shared channels are used for cell-interior users who do not experience severe co-channel
inter-cell interference, whereas the rest of the channels are used for cell-edge users who are
more prone to such interference. This RA scheme is known as Fractional Frequency Reuse
(FFR). In HetNets, the problem of RA is more complex due to the disparity in power
budget, load and coverage of the MBSs and SCs. Currently, three RA schemes have been
proposed by 3GPP [10] for future HetNets: Orthogonal Deployment (OD), Partially Shared
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Deployment (PSD) and Co-Channel Deployment with Almost Blank Subframes (ABS). We
will focus on these three RA schemes with an emphasis on the latter two.

Under a given RA scheme, the HetNet as a whole uses M ′ OFDM sub-channels and
each macro cell (i.e., the MBS and its SCs) is allocated M = M ′

r
sub-channels, where r > 1

is the reuse factor. Hence, a total of M OFDM sub-channels are available for each macro
cell. In OD, the macro cell is assigned a fraction of the M available channels while the SCs
jointly use the rest of the channels. Such a deployment protects SC users from the high-
power MBSs interference and offers a simple inter-tier interference avoidance mechanism in
the frequency domain. A closely similar RA scheme is PSD where a set of dedicated sub-
channels are reserved for use only by the MBS and the remaining sub-channels are jointly
used by the SCs and also MBS which uses a much lower power budget than the one used
on the dedicated sub-channels. In ABS, the SCs and MBS transmit on the same channels.
However, the MBS only transmits for a fraction of the subframes and is mute during the
rest of the subframes. This RA scheme allows those SC users, who are rate-stifled by the
high macro-interference when the MBS is on, to get prioritised service during the ABS
duty cycle. See [33] for more details on the ABS scheme.

Each of the above-mentioned RA schemes involves tuning parameters, e.g., the number
of MBS channels, the number of shared channels for PSD and OD and the ABS duty cycle
for ABS. Therefore, to operate optimally, each scheme requires fine-tuning. In the case
of PSD, for example, consider a snapshot of a cell in a HetNet with a fixed UA rule, US
policy, channel gains and number of users. Finding the optimal RA scheme will involve
searching through the set of all available channels and determining which channel(s) to be
shared among the SCs and which one(s) to be exclusively assigned to MBS so that the
objective function selected by the operator is maximised. This will be an arduous problem
since channels would normally have different gains at different times for the same user-BS
pair and determining the optimal channel allocation even for a small-sized set of available
channels will be computationally difficult. Hence for the sake of simplicity, a lot of the
work in the literature make the following assumptions [15, 14, 16]:

1. The channels assigned to each BS are flat, i.e., the channel gains across different
sub-channels between a BS-user pair are equal at a given time.

2. The transmission power at each BS is equally distributed among its allotted channels.

3. The same RA parameters are used globally across the HetNet. This assumption will
eliminate the need for finding the optimal RA parameter for each macro cell and,
hence, significantly simplifying the process of channel allocation in the HetNet.
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With these assumptions, the optimal RA problem will reduce to searching for the optimal
number of shared channels for OD, the number of shared channels and the power budget
for the shared channels for PSD and the ABS duty cycle for ABS so as to maximise the
objective function.

2.3 User association

For a given user, UA occurs at least once at the arrival time and could occur at other
instants, e.g, other users’ arrivals or departures or triggered events. To distinguish between
UA upon arrival and UA at the instants other than the arrival time of a given user2, we refer
to the latter as simply user association (or UA) and to the former as user re-association.
Furthermore, from now on, we assume that a user retains her association with the same
BS (that she associated with upon her arrival) until her departure from the system unless
otherwise specified.

In homogeneous networks, UA is typically based on Max-SINR rule where a user upon
arrival associates with the BS who offers the highest downlink pilot SINR. In HetNets,
however, the problem of UA is more complicated due to the disparity of transmit power
between the MBS and SCs. As a result, Max-SINR performs poorly in HetNet deployment
since due to the much higher transmit power of the MBS most users will tend to associate
with the MBS. This will, in turn, cause an underutilisation of the SCs. Hence, new UA
rules have been envisaged to split the users between the MBS and SCs more efficiently and
fairly. These rules generally fall into two categories: single-BS user association (SUA) and
multiple-BS user association (MUA) rules. Under SUA rules, a user can only associate
with one BS while, under MUA, a user can associate with multiple BSs.

SUA problems are generally formulated as integer optimisation problems with the objec-
tive of maximising the network’s criteria (e.g., α−fairness criteria). A number of iterative
algorithms are proposed in the literature to solve such SUA problems under the global
proportional fairness objective, for a fixed number of users and BSs in the system, e.g.,
[8, 22] to cite a few. However, such iterative algorithms usually involve high computa-
tional complexity and may not be suitable for real-time dynamic systems. For this reason,
simpler UA rules have been proposed in the literature. Although these rules might result
in sub-optimal performance, they have gained a lot of interest and are widely-used under
different HetNet optimisation frameworks mainly due to their simplicity and ease of im-
plementation. An example of such UA rules is Cell Range Expansion (CRE) introduced

2For simplicity, throughout this thesis we assume that all users in the system are static.

14



in [1]. Under CRE, a user at the time of association adds a positive biasing parameter
to the SINR from her neighbouring SC and, so long as this sum value is greater than the
SINR from the MBS, she associates with the SC. With CRE, the SCs coverage areas are
virtually expanded and hence more users are off-loaded from the MBS to the SCs. The
SC users who receive a stronger MBS SINR are called CRE users and the region where
CRE users are located is called CRE region in the literature. CRE is often used along
with CCD with ABS, since CRE users who experience severe downlink interference from
the nearby MBS can get a chance to be served during the ABS duty cycle. Note that the
biasing parameter for such UA rules may need to be fine-tuned and this can increase the
complexity of the UA problem. Another similar UA rule introduced in [14] is Small-cell
First (SCF). Under SCF, a user associates with a SC as long as the SINR received from
the SC is greater than a pre-determined threshold. The authors in the paper show that,
under PSD in a static setting, SCF performs near-optimally if the SCF threshold value and
number of dedicated channels are fine-tuned. Another simple UA rule, proposed in [21],
is Range Extension (RE) where a user associates with the BS with the lowest path-loss.
The authors in [13] show that in a static setting, RE can perform better than Max-SINR
under OD and PSD. All of the aforementioned UA rules (i.e., CRE, SCF and RE) rely on
physical-layer measurements by the user and can be easily implemented without any com-
putational complexity. However, these rules might result in sub-optimal performance in a
dynamic system since they do not consider fairness in throughput assignment or network-
level parameters such as BSs loads. Hence, new UA rules incorporating fairness and BSs
load are needed to perform well in a dynamic system. In this thesis, we only focus on SUA
rules. However, since MUA has recently gained a lot of interest, we will provide a brief
introduction to it in the following.

The second category of UA rules in HetNets is MUA and, as another capacity-enabling
technique, has recently gained a lot of interest. MUA allows data transmission from mul-
tiple BSs to a user and can potentially enhance the user’s throughput. Although not
implemented yet, it is anticipated that MUA can become a reality in near future via C-
RAN making it a potential contender among capacity-enabling technologies. An example
of MUA is Dual Connectivity (DC), currently being developed in LTE framework, where a
user is allowed to associate with two BSs at the same time [4]. A typical use case of DC is
splitting the voice and data flow between MBS and SCs, respectively. Moreover, DC can
enhance mobility management since users are now being served by two access points and
if the link to one of them is disconnected, the second one will continue to serve the user. A
number of iterative (but complex) MUA rules have also been proposed to find optimal or
near-optimal UA solutions for the PF problem in multi-cell HetNets. The authors in [40]
have proposed a fractional user association (FUA) rule to allow users to associate with
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multiple BSs. They further extend FUA rule to a single-BS association by deploying a gra-
dient projection method where users and BSs cooperatively find near-optimal association
via iteratively exchanging a number of parameters.

An equally important problem to UA is deciding when to re-associate users. [35] studies
the problem of designing an optimal UA under the PF objective metric. They propose an
online algorithm where users report their information to a central node and based on an
average throughput metric, the central node decides who should re-associate. They show
via simulation that the proposed algorithm performs significantly better than Max-SINR.
However, a major drawback of this scheme is that it is based on a network-centric paradigm
and may not be a feasible option in terms of computational speed for systems with fast-
varying channel gains and number of users.

2.4 Joint RA, UA and US under PSD

The problem of joint optimisation of RA, UA and US under PSD with PF objective metric,
in a static setup, is well studied in [14, 13]. They show that, for a fixed UA rule and RA
parameters (i.e., channels and power budget per BS), the optimal US rule under PSD
is equivalent to local (per-BS) equal-time sharing under some mild assumptions. They
compare a number of SUA rules and show that SCF outperforms Max-SINR and RE.
Moreover, The authors derive tight upper-bounds for the joint optimisation problem with
SUA and show that, if both the number of shared channel and the SCF (biasing) parameter
are fine-tuned, SCF with equal-time sharing scheduler achieves near-optimal performance.
It is noteworthy that they also show that CCD without ABS does very poorly compared to
PSD. Although [14] provides valuable insights into the interplay of the network processes,
it uses a wrong propagation model for the shared channels at the MBS since the authors
assume that all channels at the MBS are flat and, yet, use a different SC channel model
for the shared channels at MBS. [15] generalises the joint RA, US and UA optimisation
framework under PSD with PF objective to the general-case α-fair objective and derives
closed-form solution for the optimal schedules. The authors also study the problem of UA
under PSD and OD in a dynamic setup where they propose a simple and user-centric α−fair
UA scheme under a global α−fair throughput allocation framework and show that, if the
backhaul is not a bottleneck, the proposed scheme yields optimal results. The proposed
algorithm requires only a small amount of information exchange from the network to the
users. This study is, however, limited to the case where re-association is not allowed.

16



2.5 Joint RA, UA and US under ABS

The authors in [6] show that with a fixed UA and ABS duty cycle, the optimal PF (i.e.,
α = 1) scheduling can be done locally (at each BS) based on a simple threshold-based
algorithm under some mild assumptions. The analysis is extended to the case where all
users are allowed to have multiple associations. In [39], the authors allow users to associate
with multiple BSs and show that the majority of users associate with a single BS during
both ABS and non-ABS duty cycles, although only a small number of users retain their
association during each cycle. [19] show that, for PF, the optimal ABS duty cycle is the
ratio of the number of ABS users and total number of users, assuming users can be served
either in ABS or non-ABS but not both. Based on this relationship, they reduce their joint
UA and US problem to a pure UA problem and propose a near-optimal and iterative online
algorithm. The authors in [34] propose a local RA scheme with PF objective, wherein the
spectral efficiencies of SC users are assumed to be different during ABS and non-ABS duty
cycles. Each MBS and SC maximises its local PF metric for all users associated with it,
using CRE with a fixed biasing parameter. The results indicate that if the number of ABS
is large, then the users outside of CRE region and closer to SC should be scheduled during
ABS.

Although the above-mentioned works provide good insights into the interplay of differ-
ent network proesses under ABS, they do not consider the case of α 6= 1. In [11, 31], the
authors consider ‘approximate’ versions of the joint RA, UA and US problem for α 6= 1
and propose some solution techniques. However, they do not characterise the NP-hardness
of the exact α 6= 1-fair US problem.
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Chapter 3

A Revisit of Joint Resource
Allocation, User Association and
User Scheduling Optimisation
Framework under PSD: A Snapshot
Model

Summary: In this chapter, we

• revisit the joint RA, UA and US optimisation framework under PSD based on
the snapshot model in a static setting,

• using numerical results, show that there is not much gain obtained from schedul-
ing the MBS users on both shared and dedicated channels,

• address the importance of power apportioning between shared and dedicated sub-
channels at the MBS and

• compare the performance of PSD with that of OD.
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In Chapter 1, we discussed a number of network processes, namely, RA, US and UA which
jointly impact the performance of a HetNet. We also discussed how these processes have a
complex interplay which entails a unified framework that encompasses all three processes
and allows us to characterise the network performance. In this chapter, we revisit a unified
optimisation framework, proposed by [14], which studies the joint optimisation of RA, UA
and US under PSD and a global proportional fairness (PF) objective. The framework is
based on the snapshot model where the number of users and their channel gains are fixed
and known. The authors in [14] show that, under some mild assumptions, the global PF
scheduling problem decomposes into a set of independent local (per-BS) PF scheduling
sub-problems each of which is equivalent to equal-time sharing. Later, the author in [15]
generalises these results for all α ∈ [0,∞)−fairness criteria and derives closed-form solution
for the optimal schedules.

Although [14] provides valuable insights into the interplay of the network processes, it
is primarily based on a number of wrong assumptions in terms of channel modelling and
user scheduling at the MBS. Firstly, the authors deploy an asymmetric channel modelling
approach at the MBS where they use a SC model for the shared channels and a MBS
model for the dedicated channels. Such a disparity in channel modelling implies that a
user experiences different channel gains from the same MBS (e.g., a low channel gain from
the shared and a high channel gain from the dedicated channels), while in reality a user
should see fairly similar gains across different channels of a BS, particularly, if the channels
are assumed to be flat (which is the case in the paper). Apart from creating possible
inaccuracies in the numerical results, this modelling approach undermines the importance
of power apportioning on the two types of macro channels. For example, in the same work
the authors consider a SC power budget on the shared channels and show that such a
power allocation scheme works well with their modelling approach. However, this scheme
will possibly no longer work if the same channel model was used on all channels. This
is because MBSs typically have a much lower path loss and a much higher antenna gain
compared to SCs and allocating the same amount of power budget as SCs’ on the MBS
shared channels may result in excessive interference on the neighbouring SCs. Therefore,
we believe that the previous optimisation framework needs to be revisited with the right
channel model along with its possible implications and that the performance gains of PSD
over other RA schemes (as discussed in [14]) should be re-examined. Another restrictive
assumption in [14] is that the authors confine the macro users to being scheduled on either
shared or dedicated channels but not both. Such a restriction on user scheduling eliminates
the potential gains, if any, obtained from joint scheduling of macro users on both types of
macro channels.

In this chapter, our fist objective is to improve upon the work in [14] by deploying the
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Figure 3.1: A multi-cell HetNet with a reuse factor of 3

right channel model at the MBS, i.e., by using the MBS channel model for all channels (both
shared and dedicated) at the MBS. As we will see shortly, deploying the new channel model
entails a detailed study of optimal apportioning of the MBS power budget on shared and
dedicated channels which is missing from the previous work in [14]. Our second objective is
to address the impact of joint scheduling of macro users on both types of the MBS channels
and quantify the possible gains obtained from it.

In the following, we provide the details of the unified optimisation framework under
PSD and address the required changes that need to be made.

3.1 System overview

We consider a cellular network comprising a set of macro cells as shown in Fig. 3.1. Each
macro cell, in addition to a centrally placed MBS, has B low-power BSs making B SCs1.
These SCs are connected to the MBS and the MBS is connected to the network core, all
via wired backhaul links of infinite capacity.

3.2 Scope

We consider each macro cellular area, with its MBS, B SCs, and U users as a standalone
HetNet system, and we optimise a number of network processes (RA, UA, US) within

1Note that the SCs are not always contained within a macro cell. For example, they can be placed at
the coverage intersection of two macro cells. However, in this thesis, we only deal with the SCs contained
within a macro cell.
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the scope of such a single macro cellular area only. However, as we will show shortly
our physical-layer SINR formulation allows us to take into account the inter and intra-cell
interference coming from neighbouring macro and small cells. This way of decoupling a
multi-cell HetNet at a macro cell level will eliminate the need for inter-macro cell coor-
dination and, hence, greatly simplify the task of RRM. However, it may come with some
penalty regarding system performance.

3.3 Main features of the model

Below, we outline the features that are incorporated in our optimisation framework.

1. Different RA schemes: The RA schemes involve channel assignment to different
BSs and are considered as a natural mechanism for interference co-ordination between
neighbouring BSs. Our framework is able to incorporate two RA schemes, i.e., OD
and PSD, and characterise the network performance based on each of these schemes.

2. Different UA schemes: Various UA schemes have been proposed in the literature
each with the objective of improving the network performance in terms of different
criteria (e.g., best SINR, load-balancing, fairness criteria). Our optimisation frame-
work is able to incorporate many UA schemes, e.g., Max-SINR, SCF and CRE, and
can characterise the network performance based on each of these schemes.

3. User scheduling: US is typically a local and quasi real-time process of allocating
RBs to the users associated with a BS according to some fairness criteria. Our
optimisation framework is not only able to incorporate various US heuristics, but
also provide globally (to the cell under consideration) optimal schedules for a given
RA and UA scheme.

4. Power apportioning: Since power apportioning on the MBS is one of the main
objectives of this study, our model is able to flexibly incorporate power apportioning
between different channels and capture its affect on the network performance.

In the following, we describe our system model which encompasses all the above-mentioned
features as well as their complex interplay into a unified framework and allows us to
characterise the performance of the system.
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3.4 System model

Our optimisation framework is based on a snapshot model. Under a given snapshot (or
realisation), the cardinality and locations of BSs and users are assumed to be fixed and
known. Each realisation corresponds to the random distribution of a fixed number of
users in each cell in the HetNet according to a specific distribution. Note that because
of the random distribution of the users, the channel gains change from one realisation to
another. We assume all users in the network are active and greedy in the sense that there
is an infinite backlog of packets for each user and that the users want to maximise their
individual throughputs. We consider one cell in an OFDM-based multi-cell HetNet. The
cell consists of a MBS, indexed by 0, overlaid by a set of B SCs, B = {1, 2, ..., B}, indexed
by j. Each SC is connected to the MBS via a wired backhaul link of infinite capacity. There
are M sub-channels of bandwidth b available in the cell to serve a set of U users, indexed
by i, on the downlink. We denote the set of users in realisation ω by U(ω) = {1, 2, ..., U}.
The per-channel-use transmit power of the MBS and each SC is denoted by PM and PS,
respectively, both of which are fixed and known. Throughout this thesis, we make the
following assumptions to simplify our problem formulations.

1. Each BS transmits on all the channels allotted to it at a given time.

2. Users are only allowed to associate with one BS (SUA).

3. The BSs as well as the users are each equipped with one omni-directional antenna.

The HetNet as a whole uses M ′ OFDM sub-channels and each macro cell is allocated
M = M ′

r
sub-channels, where r > 1 is the reuse factor. Hence, a total of M OFDM sub-

channels are available for the macro cell under consideration (i.e., to be used by the MBS
in the middle of Fig. 3.1 and its B SCs).

3.4.1 Physical-layer characterisation

Under PSD, we assume that k ∈ {1, 2, ...,M} sub-channels are jointly used between the
MBS and SCs and M − k sub-channels are dedicated to the MBS. We denote the MBS
by 0M , 0S respectively when transmitting on the dedicated and shared channels. The
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respective per sub-channel transmit powers used by 0M and 0S are PM−P̂S

M−k
and P̂S

k
where

P̂S is the power budget of the shared channels at the MBS. The SCs transmit with a power
budget of PS

k
per sub-channel. We assume that every BS in the HetNet transmits on all

the channels allotted to it at all times.

Let gji, γji represent the downlink channel gain and SINR from BS j to user i. The
channel gain accounts for the antenna gain, path loss and slow fading. The slow fading
at each location is modelled as a shadowing affect, with a log-normal pdf using a stan-
dard deviation recommended in [2]. We assume that the channel gains are time-invariant.
Furthermore, we assume that the channels are flat and known to each BS through inde-
pendent and perfect uplink feedback channels, allowing computation of SINRs at the BS.
Every BS uses a prescribed function, f(.), which maps SINR to efficiency in bits/symbol
(see Table 3.2). For a given k and realisation ω,

γji =
Pjgji

N0 + 1{j∈B∪{0S}}

∑

l∈B∪{0S},l 6=j Plgli + Iji
, ∀(i ∈ U(ω), j ∈ B{0M , 0S}), (3.1)

where g0Si = g0M i, ∀i ∈ U(ω), Iji is the interference from the neighbouring BSs transmitting
on the same sub-channels as BS j and N0 is the additive white Gaussian noise (AWGN)
power. For simplicity we assume that the RA and power allocation patterns are repeated
with some reuse factor in every macro cell in the HetNet and all cells are fully synchronised
both in time and frequency domains. With this, the interference terms in (3.1) can be
written as

I0M i =
∑

q∈M

(

PM − P̂S

M − k

)

gqi, ∀i ∈ U(ω),

Iji =
∑

r∈P

Prgri, ∀(i ∈ U(ω), j ∈ B ∪ {0S}),

where M is the set of the MBSs in the HetNet that use the same set of channels as 0M
and P is the set of the MBSs and SCs in the HetNet that use the same set of channels as
0S. Let rji be the user i’s (maximum achievable) link rate from BS j ∈ B ∪ {0S, 0M} (in
bits per second). Then,

r0M i = (M − k)b× f(γ0M i), ∀i ∈ U(ω),
rji = kb× f(γji), ∀(i ∈ U(ω), j ∈ B ∪ {0S}).

Note that rji is available only if user i is the only user associated with BS j ∈ B∪{0M , 0S}.
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3.4.2 Utility functions and fairness criterion

Our goal is to perform joint RA, UA and US under PSD such that a global fairness in
throughput assignment to users is guaranteed across a multi-cell HetNet. However, with
our assumption that all BSs constantly transmit and assign equal power to each of their sub-
channels, the interference terms and, hence, SINR and link rates become fixed. Therefore,
the global problem can be decoupled into a set of independent per macro cell problems.
We will henceforth refer to the joint RA, UA and US problem associated with one macro
cell (i.e., the macro cell under consideration) in a multi-cell HetNet as the global (to the
macro cell) problem.

A common global fairness objective which has been extensively used in the literature
for throughput assignment to users is the sum of the α−fair utility functions. If Ti is the
throughput offered to user i, the utility corresponding to this allocation is given by

Uα(Ti) =

{

Ti
1−α

1−α
if α ≥ 0 and α 6= 1

log(Ti) if α = 1

The global fairness objective function is, then,
∑

i∈U(ω) Uα(Ti). Problems that maximise
functions of utilities are typically known as network utility maximisation problems. Note
that as α → 0, the objective function is efficient but not fair; as α → ∞, poorer users are
favoured and at α = 1, it is PF. Hence, higher values of α imply better user throughput-
fairness at the cost of users’ aggregate throughput.

Furthermore, for different values of α, we need to have different comparison metrics.
Towards this, we can show that maximising the sum of the α-fair utility is equivalent to
maximising the following throughput-based metric (see [15, Chapter 6]).

T̄α({Ti}i∈U(ω)) =

{

( 1
|U(ω)|

∑

i∈U(ω) T
1−α
i )

1
1−α , α ≥ 0, α 6= 1,

(
∏

i∈U(ω) Ti)
1

|U(ω)| , α = 1.
(3.3)

We will refer to T̄α(.) simply as the α-mean throughput. Note that for PF, this metric T̄1(.)
represents the geometric mean (GM) of user throughputs.

Now, we are ready to define the unified optimisation framework under PSD with the
objective of maximising the global α−mean throughput of the users within the cell under
consideration.
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3.5 Joint RA, UA and US problem under PSD: A

unified optimisation framework

Let βji be the fraction of the time that user i is scheduled on BS j and xji be the binary
UA variable, i.e., xji is 1 if user i is associated with BS j and is 0 otherwise. Given a

network realisation ω, link rates rji and RA parameters (k, P̂S), the α−mean throughput
maximisation problem under PSD can be written as follows.

[PSD-0(k, P̂S)]: max
{βji,xji}

∑

i∈U(ω)

Uα





∑

j∈B∪{0M ,0S}

rjiβji





s.t.
∑

i∈U(ω)

βji ≤ 1, ∀j ∈ B ∪ {0M , 0S}, (3.4a)

∑

j∈B∪{0M}

xji = 1, ∀i ∈ U(ω), (3.4b)

0 ≤ βji ≤ xji, ∀(i ∈ U(ω), j ∈ B ∪ {0M , 0S}), (3.4c)

x0M i = x0Si, ∀i ∈ U(ω), (3.4d)

xji ∈ {0, 1}, ∀(i ∈ U(ω), j ∈ B ∪ {0M , 0S}). (3.4e)

Note that the variables P̂S and k are implicitly included in the link rates rji in the for-
mulation. (3.4a) represents the scheduling constraints at each BS. (3.4b) represents the
SUA constraint. (3.4c) restricts the scheduling to the associated BS-user pairs. (3.4d)
implies that a macro user can be scheduled on both shared and dedicated channels. (3.4e)
represents the integrality constraint of UA variables.

Remark 1. The problem in (3.4) is parametrised with (k, P̂S). In order to solve the
problem, the parameters have to be chosen and fixed. Therefore, a joint optimal RA, UA,
and US can be obtained by solving a set of parametrised problems2 to find the optimal model
parameters:

arg max
{P̂S ,k}

PSD-0(k, P̂S).

2Note that, we use the symbol A to represent the optimal value (i.e., the value of the objective function
when the variables are chosen optimally) of problem [A].
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3.5.1 Problem approximation and analysis

The problem [PSD-0(k, P̂S)] allows the MBS to schedule a user on both shared and dedi-
cated channels which can complicate the scheduling at the MBS. To simplify the scheduling,
we only allow the MBS to schedule a given user on either shared or dedicated channels but
not both. As we will verify in section 3.6, such a restriction will only result in a negligible
loss in the objective function. Hence, we approximate [PSD-0(k, P̂S)] by

[PSD-1(k, P̂S)]: max
{βji,xji}

∑

i∈U(ω)

Uα





∑

j∈B∪{0M ,0S}

rjiβji





s.t. (3.4a), (3.4c), (3.4e),
∑

j∈B∪{0M ,0S}

xji = 1, ∀i ∈ U(ω).

(3.5)

The problem above is an integer (and non-linear if α 6= 0) program and solves for optimal
UA and US when channel and power allocation parameters, (k, P̂S), are fixed.

Remark 2. [15, Theorem 2] If all xji’s (the UA rule) are given, a) Decomposition: The
global problem (3.5) can be decoupled into a set of |B ∪ {0M , 0S}| independent local α-fair
problems, one for each BS, where the local problem for BS j is

[P j
Local] : max

{βji≥0}i∈Uj(ω)

∑

i∈Uj(ω)

Uα(rjiβji)

s.t.
∑

i∈Uj(ω)

βji ≤ 1.

b) Closed-form solution: The following schedule is optimal for the local problem [P j
Local].

βji =
r

1−α
α

ji

∑

i′∈Uj(ω)
r

1−α
α

ji′

,

where Uj(ω) is the set of users associated with BS j at realisation ω.

Remark 2 suggests that by fine-tuning the parameters (k, P̂S) and choosing a good UA
scheme, we can achieve a good α−mean throughput performance using an optimal formula-
based scheduler under PSD. It is noteworthy that the scheduler is extremely simple for
α = 1, as the optimal scheduling reduces to equal-time sharing (i.e., Round Robin).
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3.5.2 User association

Solving [PSD-1(k, P̂S)] for optimal xji’s yields optimal user association for a fixed (k, P̂S)
which can be used as a benchmark to evaluate the performance of simple UA schemes.
We study three different simple but sub-optimal UA schemes which are based on simple
rules that a user can use to perform its association decision. We will consider Max-SINR,
Small-cell First (SCF) [14] and Cell Range Expansion (CRE) [1] as representatives of such
schemes. Formally, under PSD we define these UA schemes as follows.

1. Max-SINR: A user i associates with BS j∗ if j∗ = argmaxj∈B∪{0M ,0S} γji.

2. SCF: A user i associates with BS j∗ if j∗ = argmaxj∈B∪{0S} γji and γj∗i > δ; other-
wise, j∗ = 0M .

3. CRE: A user i associates with SC j∗ if j∗ = argmaxj∈B∪{0S} γji and γj∗i + ǫ > γ0M i;
otherwise, j∗ = 0M .

δ (in dB) and ǫ (in dB) are two configurable parameters, also called the biasing parameters,
associated with SCF and CRE, respectively, and allow us to configure an association bias
in favour of SCs. We assume that these values are fixed and known to all users and BSs a
priori when using SCF or CRE. Furthermore, we assume that the biasing parameter δ (ǫ)
is equal for all SCs when using SCF (CRE).

All of the above-mentioned rules are simple in the sense that they do not involve any
real-time load-balancing and are easy to implement (since each user can do it individually).
They also provide feasible SUA solutions and, hence, provide lower-bounds for the optimal
SUA solution (which can be obtained by solving the problem in (3.4) for optimal xji’s).
Studying these UA schemes helps us understand how simple association schemes perform
compared to the optimal UA. In the absence of power apportioning at the MBS, [14]
already shows that SCF works well. Our study allows us to see whether this observation
extends to the case of PSD with power apportioning.

3.6 Numerical results

3.6.1 Parameter settings

We consider the middle cell in a 19-cell HetNet with a reuse factor of r = 3 as shown
in Fig. 3.2. All lengths unless specified are in meters (m). Each cell, with a radius
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Macro BS Small Cell

500
√

3
m

Figure 3.2: The HetNet configuration with 4 SCs per macro cell

Table 3.1: Physical-layer parameters
Noise power -174 dBm

Hz
Tsubframe 1 ms

PS 30 dBm PM 46 dBm
MBS ant. gain 15 dBi SC ant. gain 5 dBi
User ant. gain 0 dBi Sub-channel Bandwidth 180 KHz
Shadowing s.d. 8 dB Penetration loss 20 dB

SCOFDM 12 SYOFDM 14

SC-user path loss
140.7 + 36.7 log10(d/1000), d ≥ 10 m
140.7 + 36.7 log10(10/1000), d < 10 m

MBS-user path loss
128 + 37.6 log10(d/1000), d ≥ 35 m
128 + 37.6 log10(35/1000), d < 35 m

of 500/
√
3 m, consists of one MBS, located in the centre, and four SCs located ∆ =

230 m away from the MBS. Each cell has M = 33 sub-channels available for downlink
transmission. The set of user locations are restricted to a grid composed of 1387 uniformly
distanced points within each cell of the HetNet. We assume that each user receives a non-
zero link rate from at least one BS, i.e., there are no uncovered locations in the system.

The physical-layer parameters are based on the 3GPP evaluation methodology doc-
ument [2] used for HetNets in LTE. These parameters are reproduced here for ease of

28



Table 3.2: Modulation and coding schemes - LTE

SINR thresholds (in dB) -6.5 -4 -2.6 -1 1 3 6.6 10 11.4 11.8 13 13.8 15.6 16.8 17.6
Efficiency (in bits/symbol) 0.15 0.23 0.38 0.60 0.88 1.18 1.48 1.91 2.41 2.73 3.32 3.90 4.52 5.12 5.55

reading. The SINR model is given in equation (3.1). The channel gain gji accounts for
antenna gain, path loss and slow fading. Following [14], users experience log-normal shad-
owing with standard deviation of 8 dB. The path loss for the SC and macro users at a
distance of d from the corresponding BS are given in the last two lines of Table 3.1.

We assume that the system uses adaptive modulation and coding with discrete rates.
Table 3.2 taken from [26] gives us the mapping between the SINR and efficiency (in bit-
s/symbol) per sub-carrier for the modulation and coding schemes under the LTE frame-
work. The bit rate obtained by a user that has an SINR between level ℓ and level ℓ + 1
is r = SCofdm×SYofdm

Tsubframe
eℓ where eℓ is the efficiency (bits/symbol) of the corresponding level ℓ,

SCofdm is the number of data sub-carriers per sub-channel bandwidth, SYofdm is the number
of OFDM symbols per subframe, and Tsubframe is the subframe duration in time units. The
value of these parameters are shown in Table 3.1.

3.6.2 Relaxation and optimality gap

The optimisation problems in (3.4) and (3.5) are integer (and non-linear if α 6= 0) pro-
grams which are typically hard to solve quickly with the existing integer program solvers
(e.g., Bonmin) even for a relatively small set of variables. For this reason, we convert
the two integer programs into continuous convex optimisation problems by allowing frac-
tional user association (FUA), i.e., relaxing the integrality constraints (i.e., xji ∈ [0, 1]).
These relaxed problems, termed as PSD-FUAWithJointSched and PSD-FUA, clearly pro-
vide upper-bounds to their corresponding integer problems specified in (3.4) and (3.5).
We obtain these upper-bounds by solving the relaxed convex optimisation problems for
each realisation using the commercial solver, Minos 5.51. To see that the relaxations are
tight, we obtain a feasible set of solution, {xji ∈ {0, 1}}j,i, from the PSD-FUA problem
as follows. For user i, choose the BS j∗i = argmaxj∈B∪{0S ,0M} rjiβji and break the ties in
favour of the SCs. We refer to the PSD-FUA problem with this feasible SUA solution as
PSD-SUA, since it provides a lower-bound for the optimal solution to the SUA problem in
(3.5). Similarly, we define OD-FUA and OD-SUA under OD. Recall that OD is a special
case of PSD where P̂S = 0.
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3.6.3 The static setting

As stated in Section 3.4, we consider a snapshot model for our optimisation framework. We
assume a set of U = 20 users are distributed i.i.d. uniformly on the grid locations in the cell.
We generate a set of 100 realisations Ω (i.e., |Ω| = 100) and, for each realisation ω ∈ Ω, com-
pute a solution to the PSD-FUAWithJointSched, PSD-FUA and PSD-SUA (as discussed in
Section 3.6.2) for each value of k ∈ {1, 2, ..., 32} and P̂S ∈ {20, 15, 10, 5, 3, 0,−1,−10} dBm.
For each problem, we compute the (average) α−mean throughput corresponding to that
problem over the 100 realisations and plot it as a function of k for α ∈ {1, 2}.

3.6.4 Validation of the upper-bounds

Fig. 3.3 shows the average α−mean throughput of the users versus k corresponding to the
PSD-FUAWithJointSched, PSD-FUA and PSD-SUA problems. The P̂S is set to 3 dBm
for all the curves in the figure, since our numerical experiments suggested that this value
performs near-optimally for all values of k for all three problems (and, hence, we only
include the results corresponding to P̂S = 3 dBm in the figure). A close examination of
the curves reveals that the PSD-FUAWithJointSched, PSD-FUA and PSD-SUA perform
very closely for all values of k. Therefore, we conclude that the problem in (3.4) can be
with high accuracy approximated by (3.5). Indeed, the exact solution of (3.4) is somewhere
in between PSD-FUAWithJointSched and PSD-SUA. However, since the performance gap
between the two is reasonably negligible and US using the model in (3.5) is simpler,

...from now on we will only consider the joint optimisation model in (3.5) whenever
dealing with PSD.

Furthermore, the figure shows that, by deploying the right power apportioning at the
MBS, PSD-FUA outperforms OD-FUA by 11.94% and 8.83% for α = 1 and 2, respectively.

3.6.5 The impact of power apportioning at the MBS

Fig. 3.4 shows the average α−mean throughput corresponding to PSD-FUA for different
values of P̂S as a function of k. The figure suggests that the right choice of P̂S does
significantly impact the α−mean throughput of the system. As can be seen, a much
lower amount of power compared to the SCs power budget on the MBS shared channel
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Figure 3.3: α−mean throughput as a function of k. Settings: U = 20 and M = 33.
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Figure 3.4: α−mean throughput as a function of k. Settings: U = 20 and M = 33.

32



is preferable. This can be justified by the fact that the much higher antenna gain and
lower path loss of the MBS compensate for the low value of P̂S without causing excessive
interference on the neighbouring SCs. It is noteworthy that our numerical experiments
suggested that the optimal value of P̂S (i.e., 3 dBm) is almost invariant for different values
of α, U, M, ∆ and P considered in this thesis. Therefore,

...from now on, we set P̂S to 3 dBm in all figures related to PSD unless otherwise
specified.

3.6.6 Comparison between different simple UA schemes

Fig. 3.5 shows the average α−mean throughput corresponding to simple UA rules (i.e.,
Max-SINR, SCF, CRE) as a function of k. SCF and CRE have a biasing parameter δ
and ǫ, respectively. We assume that δ can take any one of the SINR threshold values
shown in Table 3.2 and that ǫ can take any of the SINR threshold values from the set
{2i|i ∈ Z, 0 ≤ i ≤ 10} dB. For PSD-SCF, the value of δ in each realisation is selected so
that the α−mean throughput of users is maximised in the given realisation. The curves
suggest that by fine-tuning the parameters (k, P̂S, δ) for each realisation, PSD-SCF can
perform very closely to the upper-bound, i.e., PSD-FUA.

Since it may not be a feasible option to vary δ too frequently in a dynamic system,
we also plot the average α−mean throughput per k for the best value of δ. To do so, for
each k, we compute the average α−mean throughput over the 100 realisations for each
value of δ and select the δ that yields the best average α−mean throughput. We refer
to this as PSD-SCF (Best δ per k) in the figures. Similarly, we define PSD-CRE and
PSD-CRE (Best ǫ per k). The results show that fine-tuning the UA parameters δ per k
for SCF results in roughly the same α−mean throughput as when selecting the optimal δ
per realisation (which otherwise can be a bottleneck in a dynamic network). Lastly, the
results suggest that PSD-SCF generally performs better than PSD-CRE for both values of
α and significantly better than Max-SINR.

3.7 Conclusions

In conclusion, we revisited the problem of joint RA, UA and US under PSD in a static
setting, first discussed in [14] where the authors make a wrong assumption on the shared
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Figure 3.5: α−mean throughput as a function of k and θ. Settings: U = 20 , M = 33.
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channels model at the MBS. We improved upon this work by deploying the right model
for the shared channels at the MBS, i.e., by using the MBS channel model for the shared
channels. The correct modelling of the channels raised two questions regarding the 1)
joint scheduling of the macro users and 2) power apportioning on the shared and dedi-
cated channels at the MBS. First, we showed that there was not much gain obtained from
scheduling macro users on both types of the channels which consequently allowed us to
decompose the local MBS joint scheduling problem into two independent problems; one
for the users on the dedicated channels and one for the users on the shared channels. We
showed that deploying a simple formula-based scheduler for each of the two sets of macro
users (independent of the other set of macro users) results in a near-optimal throughput
performance, while significantly simplifying the scheduling. Finally, we addressed the im-
portance of power apportioning between the shared and dedicated channels at the MBS
and showed that the right choice of P̂S could significantly impact the system’s α−mean
throughput performance. Luckily, our numerical results indicated that the optimal P̂S was
robust to different HetNet configurations and choices of α for all values of k. Lastly, our
results showed that PSD could significantly outperform OD by fine-tuning P̂S.
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Chapter 4

A Thorough Comparison Between
PSD and ABS: A Static Setting

Summary: In this chapter, we

• revisit the joint RA, UA and US optimisation framework under ABS based on
the snapshot model in a static setting,

• show that the scheduling problem for ABS can be NP-hard for α 6= 1, and

• using numerical results, compare the best PSD scheme to the best ABS scheme
and show that PSD outperforms ABS, under various network configurations and
heuristics.

4.1 Introduction

In Chapter 3, we studied a unified optimisation framework, encompassing the three network
processes, based on a snapshot model under PSD. We obtained tight upper-bounds for
α−mean throughput of a cell in a multi-cell HetNet for different values of α and saw that
SCF association scheme along with an optimal formula-based α−fair scheduler can perform
very well if the RA and biasing parameters are fine-tuned. Furthermore, we saw that PSD
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can outperform OD if the MBS power budget is carefully apportioned between the shared
and dedicated channels. Based on our offline studies so far, PSD seems to be a strong
contender among the 3GPP’s proposed RA schemes both in terms of ease of implementation
and throughput gains. In this chapter, we compare PSD with another 3GPP proposed RA
scheme, i.e., (CCD with) ABS. Our objective is to conduct a comparative study between
the two RA schemes both in terms of ease of implementation and performance gains.
Towards this, we revisit a unified framework similar to that in Chapter 3 but under ABS.
The framework under consideration, first discussed in [6], studies the joint optimisation of
RA, UA and US under ABS and a global PF criteria based on a static model. The authors
show that, under some mild assumptions, the global PF scheduling problem decomposes
into a set of independent local (per-BS) scheduling problems each of which can be solved
to optimality based on a simple threshold-based algorithm. Building upon their work,
our first objective in this chapter is to consider the unified framework under a global α-
fairness criteria and comment on the tractability of the global scheduler for α 6= 1. Our
second objective is to conduct a thorough comparison between ABS and PSD in terms of
throughput performance under different HetNet configurations and heuristics.

4.2 System model

We consider a snapshot model similar to the one described in Section. 3.4 and use the same
notations and assumptions unless otherwise specified.

4.2.1 Physical-layer characterisation

Under ABS, we assume that all of the M sub-channels are shared between the MBS and
SCs. We denote the MBS by 0. The respective per sub-channel transmit power used by
the MBS is PM

M
and 0 during the non-ABS and ABS duty cycles1. The per sub-channel

transmit power used by the SCs is PS

M
during both cycles. We assume that the SCs transmit

at all times while the MBSs transmit for only 0 ≤ θ ≤ 1 fraction of the time. We refer to
θ as the RA parameter under ABS. Given the parameter θ and a network realisation ω,
the per sub-channel SINR from BS j to user i can be written as

γji =

{ Pjgji
N0 +

∑
l∈B∪{0},l 6=j Plgli+IMi+ISi

non-ABS cycle,
Pjgji

N0+
∑

l∈B,l 6=j Plgli+ISi
ABS cycle,

(4.1)

1Note that we assume the MBS is completely mute during the ABS duty cycle.
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where IMi =
∑

m∈M

(

PM

M

)

gmi is the co-channel interference from the neighbouring MBSs

and ISi =
∑

q∈P

(

PS

M

)

gqi is the co-channel interference from the neighbouring SCs. Note
that γji is a function of θ and takes two values depending on whether the BS j is transmit-
ting during ABS or non-ABS to user i. Clearly, the value of γji for the SCs during ABS is
at least as good as that during non-ABS because of the reduced interference as a result of
muting the MBSs in the system. We denote the (maximum achievable) link rates seen by
user i from BS j with rji, r̃ji (in bits per second), during non-ABS and ABS respectively,
which can be computed by M × b× f (γji) .

4.3 Joint RA, UA and US problem under ABS: A

unified framework

As before, we use the sum of the α−fair utility functions as our global fairness criteria. Let
βji and β̃ji be the fraction of time that user i is scheduled on BS j during non-ABS and ABS
duty cycles, respectively, and xji be the binary UA variable. Given a network realisation
ω, rates rji(ω), and the RA parameter θ, the global α−mean throughput maximisation
problem under ABS can be written as follows [6].

[ABS(θ)]: max
{β̃ji,βji,xji}

∑

i∈U(ω)

Uα





∑

j∈B∪{0}

(βjirji + β̃jir̃ji)





s.t.
∑

i∈U(ω)

βji ≤ θ, ∀j ∈ B ∪ {0},

∑

i∈U(ω)

β̃ji ≤ 1− θ, ∀j ∈ B,

∑

j∈B∪{0}

xji = 1, ∀i ∈ U(ω),

0 ≤ βji, β̃ji ≤ xji, ∀(i ∈ U(ω), j ∈ B ∪ {0}),
xji ∈ {0, 1}, ∀(i ∈ U(ω), j ∈ B ∪ {0}).

(4.2)

Note that β̃0i = 0 (since the MBS is off during the ABS duty cycle). The first two
constraints apportion the time that each BS transmits to its associated users when the
MBS is on and off, respectively. The last three constraints are identical to their PSD
counterparts.
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The problem above is an integer (and non-linear if α 6= 0) program and solves for
optimal UA and US when the RA parameter, θ, is given.

Remark 3. The problem in (4.2) is parametrised with θ. In order to solve the problem,
the parameter has to be chosen and fixed. A joint optimal RA, UA, and US can, then, be
obtained by solving a set of parametrised problems to find the optimal parameter:

argmax
θ

ABS(θ).

Remark 4. [6] For α = 1, if all xji’s (the UA rule) are given: a) Decomposition: The
global problem (4.2) can be decoupled into a set of |B ∪ {0}| independent local (per-BS) PF
problems, and b) Near-optimal algorithm: The following algorithm yields a near-optimal
schedule for any of the local problems. Each BS will arrange its users in a descending order
based on the ratios ri/r̃i and split the users into two groups. The group containing the users
with higher ri/r̃i ratios will be scheduled during non-ABS and the rest of the users during
ABS. The users in each group will receive equal service time.

Remark 4 suggests that by fine-tuning the parameter θ and choosing a good UA rule,
we can achieve a good α−mean throughput performance using a simple scheduler that
scales linearly with the number of users for α = 1. In the following, we will extend this
result and comment on the tractability of optimal scheduling for the case of α 6= 1.

Remark 5. For α 6= 1, if all xji’s (the UA rule) are given, obtaining the optimal schedules
can be a difficult problem. Consider the following. User i is defined to have higher
priority over user u if user u is scheduled in MBS off implies user i is scheduled in MBS
off. Then,

1. If {([r̃k/rk] > [r̃k+1/rk+1]) ∩ (r̃k > r̃k+1)}, then it is easy to show that user k gets
higher priority than user k+1 independent of the other user associations and ordering
produces the optimal schedule.

2. If {([r̃k/rk] > [r̃k+1/rk+1]) ∩ (rk < rk+1) ∩ (r̃k < r̃k+1)}, the priority decision between
users k, k + 1 depends on the other users’ associations and rates.

Proof. The proof follows by applying the KKT conditions to the local (per-BS) α−fair
scheduling problems.

Consider the worst case, with all users having rates obeying the second condition above.
Finding the optimal ordering for such users is identical to poset ordering which is known
to be NP-hard, indicating that
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... the α 6= 1−fair scheduling problem under ABS can be NP-hard.

This is while an optimal formula-based solution exists for the general-case α−fair
scheduling problem under PSD as we showed n Chapter 3.

4.3.1 User association

As in Section 3.5.2, we use a number of simple UA schemes that can be used along with
the optimal scheduler under ABS (by solving (4.2) for βji and β̃ji) to allocate throughputs
to users. Studying these UA schemes helps us understand how simple association rules
perform compared to the optimal UA (which can be obtained by solving the problem in
(4.2) for the optimal xji’s). As before, we use Max-SINR, SCF and CRE as representative
of such schemes to also provide a fair basis of comparison to PSD. The definition of the
UA schemes in Section 3.5.2 follows similarly for ABS by replacing (the set of BSs under
PSD) B ∪ {0M , 0S} by B ∪ {0}. Note that under ABS since a given user i sees two SINRs
from a SC j, all the schemes above can be performed based on either of the two SINRs. We
denote the respective UA schemes under ABS by Max-SINR, SCF, CRE when γji during
ABS is used, and by Max-SINR′, SCF′, CRE′ when γji during non-ABS is used in the
corresponding UA scheme.

4.4 Numerical results

4.4.1 Parameter settings

We consider the middle cell in a 19-cell HetNet with a reuse factor of r = 3 (see Fig. 3.2) and
use the same notations and parameter settings as in Section 3.6 unless otherwise specified.

4.4.2 Relaxation and optimality gap

The optimisation problem in (4.2) is an integer (and non-linear if α 6= 0) program and
hard to solve quickly with the existing integer program solvers. For the ease of compu-
tation, we convert the integer program into a continuous convex optimisation problem by
allowing fractional user association (FUA), i.e., relaxing the integrality constraints (i.e.,
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Figure 4.1: The HetNet configuration with 6 SCs per macro cell

xji ∈ [0, 1]). This relaxed problem, termed as ABS-FUA, provides an upper-bound to its
corresponding integer program specified in (4.2). We obtain this upper-bound by solv-
ing the relaxed convex optimisation problem for each realisation using the commercial
solver Minos 5.51. To see that the relaxation is tight, we obtain a feasible set of solu-
tions, {xji ∈ {0, 1}}j,i, from the ABS-FUA problem as follows. For user i, choose the BS
j∗i = argmaxj∈B∪{0} rjiβji + r̃jiβ̃ji and break the ties in favour of the SCs. We refer to
the ABS-FUA problem with this SUA feasible solution as ABS-SUA, since it provides a
lower-bound for the optimal solution to the SUA problem in (4.2).

4.4.3 The static setting

We consider a snapshot model for our optimisation framework similar to the one in Sec-
tion 3.6. All the parameters and notations used in our static setting are as described before
unless otherwise specified. We generate a set of 100 realisations Ω (i.e., |Ω| = 100) and,
for each realisation ω ∈ Ω, compute a solution to the ABS-FUA and ABS-SUA prob-
lems for each value of θ ∈ {0.1, 0.2, ..., 0.9}. For each problem, we compute the (average)
α−mean throughput corresponding to that problem over the 100 realisations and plot it
as a function of θ for α ∈ {1, 2}.
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Figure 4.2: α−mean throughput as a function of k and θ. Settings: U = 20 , M = 33,
∆ = 230 m (MBS-to-SC distance).

42



4.4.4 Comparison between PSD and ABS: The upper-bounds

Fig. 4.2 shows the α−mean throughput as a function of k and θ for FUA and SUA problems
corresponding to PSD and ABS. The curves corresponding to ABS in Fig. 4.2(b) show
that ABS-FUA and ABS-SUA perform very closely for all values of θ, indicating that the
problem in (4.2) can be with high accuracy approximated by ABS-FUA.

The optimum α−mean throughputs (with α = 1) for PSD and ABS are 2.247 Mbps
and 2.017 Mbps, obtained at k = 20 and θ = 0.5 respectively, indicating a 11.40% higher
performance for PSD-FUA compared to ABS-FUA.

4.4.5 Comparison between different UA schemes under ABS

Fig. 4.3 shows the α−mean throughput as a function of k and θ under different simple UA
schemes (i.e., Max-SINR, SCF, CRE). For ABS-CRE, the value of ǫ in each realisation is
selected so that the α−mean throughput of users is maximised in the given realisation.
The curves suggest that by fine-tuning the parameters (θ, ǫ), ABS-CRE can perform very
closely to the upper-bound, i.e., ABS-FUA.

Since it may not be a feasible option to vary ǫ too frequently in a dynamic system,
we also plot the average α−mean throughput per θ for the best value of ǫ. To do so, for
each θ, we compute the average α−mean throughput over the 100 realisations for each
value of ǫ and select the ǫ that yields the best average α−mean throughput. We refer
to this as ABS-CRE (Best ǫ per θ) in the figures. Similarly, we define ABS-SCF and
ABS-SCF (Best δ per θ). The results show that fine-tuning the UA parameter ǫ per θ for
CRE results in roughly the same α−mean throughput as when selecting the optimal ǫ per
realisation. This indicates that fine-tuning the parameter ǫ for each realisation, which can
be a bottleneck in a dynamic network, does not incur much gain in performance. Lastly, the
results suggest that ABS-CRE generally performs better than CRE-SCF for both values
of α and significantly better than Max-SINR.

4.4.6 Comparison between PSD and ABS under different UA
schemes

Fig. 4.3 shows that PSD-SCF (Best δ per k) and ABS-CRE (Best ǫ per θ) result in the
highest α−mean throughput under PSD and ABS respectively, among the UA schemes
under study, and both perform close to their corresponding (FUA) upper-bounds. By
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Figure 4.3: α−mean throughput as a function of k and θ. Settings: U = 20 , M = 33,
∆ = 230 m.
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Figure 4.4: Comparison between PSD and ABS under different settings
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comparing the resulting α−mean throughputs of the two schemes for α = 1, we see a
10.52% gain from deploying PSD over ABS. For α = 2 the figure indicates that the PSD-
SCF has a marginally better performance (of about 4.20%) than the ABS-CRE. However,
recall that scheduling under ABS for α = 2 can be much more involved (see Remark 5)
than under PSD.

Fig. 4.3 and 4.4 reconfirm the upper hand of PSD over ABS for α = 2 and other values
of U and M in the static setup.

We also conducted a number of experiments to compare the performance of ABS and
PSD under the three UA schemes (i.e., Max-SINR, SCF, CRE) for different U, M, ∆ and
B. Our objective was to see which UA scheme performs better with which RA scheme.
We summarise our observations below.

Our numerical experiments suggested that, for different HetNet configurations,

1. the UA schemes under ABS perform better if based on γji during the ABS duty
cycle and

2. SCF performs better under PSD while CRE performs better under ABS.

Hence, from now on, we will only include PSD-SCF and ABS-CRE in our figures
unless necessary.

4.4.7 Extended results

1. Impact of SC placement on α−mean throughput: Fig. 4.5 shows the α−mean through-
put as a function of k and θ for α = 1 for a shorter MBS-to-SC distance (than in the
previous figures), i.e., ∆ = 145 m. The results indicate a 4.76% higher performance
for PSD-FUA compared to ABS-FUA. It is noteworthy that for smaller values of
∆, the optimal k for PSD (θ for ABS) increases (decreases) since more users will
tend to associate with the SCs. In particular, the users in the middle of the cell will
likely associate with the SCs and the cell-edge users will likely associate with the
MBS. This is because, as the SCs are placed closer to the MBS, the distance between
the SCs and the (uniformly distributed) users reduces and their channel quality im-
proves. This also implies that it is best to locate SCs near the cell edges to achieve
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Figure 4.5: α−mean throughput as a function of k and θ. Settings: U = 20, M = 33,
∆ = 145 m.
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a higher mean throughput, since otherwise cell-edge users who are already suffer-
ing from inter/intra-cell interference from the neighbouring co-channel cells, will be
served by the MBS far apart with poor channel quality.

2. Impact of SC placement on k and θ: Figs. 4.6(a)-4.6(d) show the impact of SCs
locations on k and θ. The optimal values of k and θ over the 100 realisations for
each U are shown by the blue circles on the y-axis and the average of these optimal
values are shown by the red circles on the y-axis. The results suggest that k is more
robust to the SCs placement than θ (under the assumption that users are uniformly
distributed).

3. Impact of number of SCs on α−mean throughput: Fig. 4.7 shows the impact of
deploying a higher number SCs on the α−mean throughput of PSD and ABS. The
results indicate that by deploying 6 SCs in each cell of the HetNet (see Fig 4.1),
we observe a 10.47% better performance for PSD-FUA over ABS-FUA. The optimal
value of k (and θ) increases (decreases) compared to 4-SC case since now more users
will associate with the SCs and, hence, the increase (increase) in the number of shared
channel resources (ABS duty cycle).

4. Impact of fixing k and θ on α−mean throughput: So far, we have looked at the
performance of the HetNet, under the assumption that the RA parameters k and
θ can be optimise for each realisation. However, such an assumption might not
be feasible in a fast-changing dynamic network and, hence, it is interesting to see if
fixing the RA parameters will result in significant loss in the throughput performance
or not. To do this, we compute the per-realisation relative gain for PSD-SUA by
T̄α(k∗ω ,ω)−T̄α(k̄,ω)

T̄α(k̄,ω)
where T̄α(k, ω) is the α−mean throughput of all users in the cell as a

function of k and ω, k∗
ω is the optimal k at realisation ω and k̄ is a fixed value for all

ω’s from the set {1, ...,M−1}. We compute the relative gain for ABS-SUA similarly.
We set k̄ and θ̄ to the average of k∗

ω’s and θ∗ω’s over the 100 realisations, respectively
and plot the relative gain in α−mean throughput as a function of ω. Fig. 4.8 shows
that fine-tuning k̄ and θ̄ will result in less than 5% (PSD) and 8% (ABS) loss in
α−mean throughput performance, indicating the robustness of the two RA schemes
to their respective RA parameters.
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Figure 4.7: α−mean throughput as a function of k. Settings: U = 20, M = 33 and |B| = 6.
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4.5 Conclusions

In conclusion, we revisited the problem of joint RA, UA and US under ABS scheme, first
discussed in [6], where the authors show that the optimal PF (i.e., α = 1) scheduling
problem under ABS is a simple linear-in-time algorithm. Interested in characterising the
optimal scheduler for α 6= 1, we proved that the optimal α−fair scheduling under ABS can
be NP-hard and, hence, much more involved than that under PSD (which, as we discussed
in Chapter 3, is formula-based for all values of α). To verify whether the scheduling
complexities involved from deploying ABS were justifiable, we further made a thorough
numerical comparison between ABS and PSD in a static setting and showed that the
throughput gains achieved by deploying PSD were higher than ABS for different values of
α and under different HetNet configurations and heuristics. Therefore, based on its simpler
optimal α−fair scheduler and higher throughput gains, we assert that PSD outperforms
ABS in a static setting.
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Chapter 5

A Thorough Comparison Between
PSD and ABS: A Dynamic Setting

Summary: In this chapter, we

• consider the optimisation frameworks under PSD and ABS in a dynamic setting,

• through simulations, provide upper-bounds to the performance of the system for
the two RA schemes,

• show that the best PSD scheme outperforms the best ABS scheme, under various
network configurations, and

• show that the physical-layer based UA schemes, i.e., SCF and CRE, could perform
quite poorly in a dynamic network and that new UA schemes are required to
compensate for the performance loss.

In Chapter 4, we studied the joint optimisation of RA, UA and US under ABS and made a
thorough comparison with its PSD counterpart under a snapshot model in a static setting.
Most notably, we observed the following remarks: 1) For a given UA rule (xji’s) and RA
parameter (k or θ), while optimal α−fair scheduling under PSD is formula-based for all
values of α, it can be NP-hard under ABS for α 6= 1 and 2) using numerical results, we
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showed that PSD performs better than ABS in terms of average1 α−mean throughput
for different values of α and under different HetNet configurations and UA heuristics.
Although these remarks clearly indicate the upper-hand of PSD both in terms of ease of
implementation and average throughput performance, they are only valid under the static
setting. As mentioned before, a static setting is only limited to an offline study and does
not necessarily reflect the behaviour of an online system including all of its dynamics.
Therefore, in order to confirm whether our conclusions from the static setting still hold in
an online system, in this chapter we further extend our framework to a dynamic setting.

5.1 System model

Our optimisation framework is based on the dynamic setting in which users come, according
to a predefined random process, and depart after being served. For simplicity, we do not
consider mobility so users only depart when they have been fully served. We consider only
the active users in the network and assume that the users are greedy in the sense that they
want to maximise their individual throughputs. We study one cell in an OFDM-based
multi-cell HetNet under PSD. Note that, we only show the steps to develop the dynamic
framework under PSD. The framework under ABS can be developed following similar steps.
The physical-layer characteristics including the SINR and link rate models are all identical
to the ones described in Section 3.4.1.

Let U(t) represent the set of users in the cell under consideration at time t. We define the
network realisation ω(t) = {gji(t)}j∈B∪{0M ,0S},i∈U(t) to be the set of channel gains between
all user-BS pairs in the cell. We assume time-invariant channels for all users in the system
and, therefore, the network realisation ω(t) would change only when a user arrives or
departs. For simplicity, we assume that no users arrive in the system at the same time.
Let au and du respectively be the arrival and departure times of user u. Then,

U(au) = U(a−u ) ∪ {u},
U(du) = U(d−u )\{u},

(5.1)

where a−u and d−u represent the time just before the arrival and the departure of the n−th
user, respectively. We assume that an association decision for user u will be taken at the
time of her arrival and denote the binary UA variable at time t by xji(t). The values of
xji(t) may vary depending on whether a user is triggered to re-associate or not, i.e., the

1Note that although we have shown that PSD performs better than ABS on average over a large number
of snapshots, this does not imply that PSD performs better in all snapshots.
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UA variable xji(t) at instant t is determined by the decision carried out at the most recent
association or re-association event. Furthermore, we denote the proportion of the time
allotted to user i by BS j at time t in the next available frame2 by βji(t).

5.1.1 Modelling the network processes

In an online system, network processes (i.e., RA, UA, and US) are often computed at
different time-scales, some more frequently and some less, either by the network or the
users. For example, the RA parameter k under PSD is typically computed offline by the
operator and changes at a very slow time-scale. US, on the other hand, is carried out by the
BSs and is a quasi real-time process over equally partitioned transmission time intervals
(e.g., sub-frames). UA decisions, however, can be carried out by either the user or the
network (or possibly jointly) whenever an association or re-association event is triggered.
Therefore, the frequency of UA will depend on the deployed UA scheme, although it is
always faster than RA and slower than US. In the following, we describe the assumptions
made to model the network processes for our dynamic system and the time-scales at which
each process is carried out.

1. Resource allocation: For a given RA scheme, i.e., PSD or ABS, we assume that
the RA parameters k or θ are fixed and known (to both users and BSs) a priori.
Clearly, to obtain upper-bounds to the performance of our system under different
deployment choices these parameters need to be carefully fine-tuned. We describe
the process of fine-tuning the RA parameters in Section 5.3.

2. User association: For a given user i, we assume that the UA variables {xji}j are
computed at least once at the user’s arrival instant but they can also be recomputed
at other times. Most of the existing UA schemes (e.g., SCF) trigger an association
at the arrival time of a user without allowing further re-associations of that user.
Depending on whether re-association is allowed or not, different upper-bounds can
be obtained for the performance of the system. We consider two of such upper-
bounds described as follows. 1) If the network jointly recomputes user associations
of all users in the system every time there is a change in ω(t) so as to maximise the
global sum of user utilities, we can obtain an upper-bound on the performance of
all UA schemes that allow re-association. We refer to this as the joint global PSD-
SUAWithReassociation problem and formulate it in Section 5.2. 2) If the network
computes the user association of only a newly arriving user in the system while

2We assume scheduling is performed on a per-frame basis.
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retaining the old users’ association so as to maximise the global sum of user utilities,
we can obtain an upper-bound on the performance of all UA schemes that allow
association at the time of arrival only without further re-association of any of the
users. We refer to this as the joint global PSD-SUAWithoutReassociation problem
and formulate it in Section 5.2. Clearly, PSD-SUAWithReassociation provides an
upper-bound to PSD-SUAWithoutReassociation.

3. User scheduling: For a given user i, we assume that the US variables {βji}j are
computed on a per-frame basis. Under our dynamic framework, we only need to
recompute the scheduling variables βji(t) at BS j if there is a change in the realisation
ω(t) that affects the set of users associated with j3, i.e., if there is an arrival or
departure occurring at BS j. Upon a change in the realisation ω(t) and given the
latest UA decisions, the optimal US scheme would (re-)compute βji(t)’s so that the
global sum of user utilities is maximised in the next frame.

In the following section, we formulate and analyse the joint global α−fair SUA with re-
association problems under PSD and ABS.

5.2 The global α−fair SUA with re-association prob-

lem

Let τ be the set of all events that cause the realisation ω(t) to change, i.e., either a new ar-
rival or departure. Then, for a fixed k and P̂S, the global α−fair PSD-SUAWithReassociation
problem can be formulated as follows for ∀t ∈ τ ,

[PSD-SUAWithReassociation(t, k, P̂S)]:

max
{βji(t),xji(t)}

∑

i∈U(t)

Uα





∑

j∈B∪{0M ,0S}

rjiβji(t)





s.t.
∑

i∈U(t)

βji(t) ≤ 1, ∀j ∈ B ∪ {0M , 0S}, (5.2a)

∑

j∈B∪{0M}

xji(t) = 1, ∀i ∈ U(t), (5.2b)

3Since otherwise the schedules will take the same values as the previous frame and, so, no re-computation
is required.
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0 ≤ βji(t) ≤ xji(t), ∀(i ∈ U(t), j ∈ B ∪ {0M , 0S}), (5.2c)

xji(t) ∈ {0, 1}, ∀(i ∈ U(t), j ∈ B ∪ {0M , 0S}). (5.2d)

Note that even though βji(t)’s will be computed at each time instant t ∈ τ , a user i
associated with BS j will not be scheduled until the next available frame. Furthermore,
note that the problem in (5.2) is a function of time and is called by the system every time
the realisation ω(t) changes.

Similarly, for a fixed θ, we define the global α−fair ABS-SUAWithReassociation problem
as follows.

[ABS-SUAWithReassociation(t, θ)]:

max
{β̃ji(t),βji(t),xji(t)}

∑

i∈U(t)

Uα





∑

j∈B∪{0}

rjiβji(t) + r̃jiβ̃ji(t)





s.t.
∑

i∈U(t)

βji(t) ≤ θ, ∀j ∈ B ∪ {0}, (5.3a)

∑

i∈U(t)

β̃ji(t) ≤ 1− θ, ∀j ∈ B, (5.3b)

∑

j∈B∪{0}

xji(t) = 1, ∀i ∈ U(t), (5.3c)

0 ≤ βji(t), β̃ji(t) ≤ xji(t), ∀(i ∈ U(t), j ∈ B ∪ {0}), (5.3d)

xji(t) ∈ {0, 1}, ∀(i ∈ U(t), j ∈ B ∪ {0}), (5.3e)

where β̃ji = 0.

The problems in (5.2) and (5.3) provide the absolute best upper-bounds for the α−mean
throughput of the system as they trigger the re-computation of all UA and US variables by
the network upon every change in the realisation ω(t), i.e., this is the best that can be done
among all classes of US and UA schemes. However, one should note that although these
problems provide upper-bounds for performance, they are only useful as benchmarks for
comparison with other (simple) schemes; otherwise, they would be prohibitively complex to
solve to optimality as a network-centric4 online scheme. This is because finding an optimal

4In a network-centric UA scheme, the UA decisions are made by the network (e.g., the serving BS, or
a network controller in C-RAN) and are communicated to the users. The decisions are made with the
help of link-level measurement feedback provided by the users (e.g., channel conditions of a user from all
candidate BSs).
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solution would involve an exhaustive search over the set of all possible binary variables xji’s
and, consequently, take too long under strict end-to-end latency constraints. Therefore,
these problems are only useful as a way to find upper-bounds for the performance of the
system which is the main objective of this chapter. We will delay the achievability of these
upper-bounds using heuristic schemes to Chapter 6.

Similar to SUAWithReassociation problems, we can define two respective problems for
PSD and ABS to provide upper-bounds for all classes of US and UA schemes that only allow
association of users upon their arrival without allowing further re-association. We refer
to these problems as PSD-SUAWithoutReassociation and ABS-SUAWithoutReassociation
each of which can be obtained by adding a set of constraints to the problems in (5.2) and
(5.3), respectively, to enforce old users’ association. Formally, let U ′(t) ⊂ U(t) be the set
of old users in the system (who have not departed from the system yet) at time t and let
{xji(ai)}j denote the user i’s association parameters upon her arrival. Then, for ∀t ∈ τ ,
we have

[PSD-SUAWithoutReassociation(t, k, P̂S)]:

max
{βji(t),xji(t)}

∑

i∈U(t)

Uα





∑

j∈B∪{0M ,0S}

rjiβji(t)





s.t. (5.2a)− (5.2d),

xji(t) = xji(ai), ∀(i ∈ U ′(t), j ∈ B ∪ {0M , 0S}),

(5.4)

and
[ABS-SUAWithoutReassociation(t, θ)]:

max
{β̃ji(t),βji(t),xji(t)}

∑

i∈U(t)

Uα





∑

j∈B∪{0}

rjiβji(t) + r̃jiβ̃ji(t)





s.t. (5.3a)− (5.3e),

xji(t) = xji(ai), ∀(i ∈ U ′(t), j ∈ B ∪ {0}),

(5.5)

where xji(ai)’s are fixed and known to the network. Note that the problems in (5.4) and
(5.5) are only useful as benchmarks for comparison with other schemes; otherwise, they
would be too complex to implement as a network-centric online scheme (because of the
integrality constraints). Next, we compare the performance of PSD and ABS in a dynamic
setting using our developed frameworks.
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5.3 Numerical results

5.3.1 Parameter settings and integrality relaxation

We consider the middle cell in a 19-cell HetNet with a reuse factor of r = 3 (see Fig. 3.2) and
use the same notations and parameter settings as in Section 3.6 unless otherwise specified.
To obtain a good and fast approximation to the optimisation problems in (5.2)-(5.5), we
relax the integrality constraints in the problems and obtain a feasible solution from their
corresponding relaxed versions as explained in Sections 3.6.2 and 4.4.2.

5.3.2 The dynamic setting

In the dynamic setting, the users arrive in the system according to a homogeneous Poisson
point process of rate λ and choose their locations i.i.d. uniformly. Recall that the users
channels are time-invariant, i.e., each user observes the same channel gain as upon arrival
for her complete stay in the system. We consider each frame duration to be 10−2 sec.
Every arriving user is scheduled in the next available frame.

5.3.3 Service-time models

We consider two service-time scenarios.

1. File-download scenario: In this scenario, each user leaves the system when she down-
loads a file of a fixed size. The service-time of a user depends on the old and new
arrivals and departures.

2. Fixed-delay scenario: In this scenario, the life-time of all users in the system is
fixed. This service-time model is suitable for modelling users watching media streams
of fixed length where the quality of a stream (i.e., its coding rate) is adjusted to
match the available end-to-end throughput. In this scenario, higher throughput to a
particular user translates into a better quality of service, but the amount of time a
user spends in the system is independent of the allocated throughput.

We choose the average per-user delay and the average α-mean throughput as the per-
formance metrics for the file-download and fixed-delay scenarios, respectively.
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For a given arrival rate λ, we run 5 simulations each with a different random seed.
Each simulation runs for a period of at least 1000 seconds. For convergence, the period of
simulation is increased at a step of 1000 seconds until the performance metric is within 5%
of the performance metric before the increase.

For each simulation with file-download scenario, we compute the average per-user delay
as follows. For each user i, we record the total time that the user spends in the system, i.e.,
until she completes downloading a file of size F . We compute the average per-user delay
per-simulation by taking the arithmetic mean of the delays of all users who have departed
from the system over the simulation period. We, then, take the arithmetic mean of these
quantities over the set of 5 simulations to obtain average per-user delay.

For each simulation with fixed-delay scenario, we compute the average α-mean through-
put as follows. For each user i, we compute her throughput at her departure instant as
Ti =

m̄i

t̂
where m̄i is the total bits transmitted to user i during her life-time of t̂ seconds.

We calculate the α−mean throughput per-simulation of all recorded user throughputs Ti

in the simulation period and, then, take the arithmetic mean of these quantities over the
set of 5 simulations to obtain the average α-mean throughput.

5.3.4 Fine-tuning the RA parameters in the dynamic setting

In order not to bias the results in favour of one scheme, we obtain the performance metric
for each scheme when the RA parameter k is optimised for that scheme for each value of λ.
More precisely, for each value of λ, we run a simulation per scheme for all possible values of
k and keep the best results over all k for that λ. Furthermore, for SCF, we jointly optimise
the pair of parameters δ and k for each λ.

5.3.5 Comparison between PSD and ABS: The upper-bounds

As before, we show the results for α ∈ {1, 2}−fairness for ABS and PSD by approximating
their corresponding problems as described in Section 5.3.1. Figs. 5.1 show the variation
of the performance metrics with the arrival rate λ. We have only included arrival rates
that result in an average number of users between 1 and 30. For both α = {1, 2}−fairness,
it is evident that the optimal ABS with (without) re-association has higher average delay
and lower α-mean throughput than PSD with (without) re-association. We summarise the
performance gap between the two service-time scenarios as follows.
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(a) file-download model: α = 1
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(b) file-download model: α = 2
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(c) Fixed-delay model: α = 1
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(d) Fixed-delay model: α = 2

Figure 5.1: Performance metric as a function of arrival rate (λ). Settings: t̂ = 20 sec and
F = 10 Mbit for all users and M = 33.
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• File-download: We can achieve up to 1) 11.91% and 8.30% better performance by
deploying PSD-SUAWithoutReassociation over ABS-SUAWithoutReassociation for
α = 1 and 2, respectively, and 2) 14.81% and 15.67% better performance by de-
ploying PSD-SUAWithReassociation over ABS-SUAWithReassociation for α = 1 and
2, respectively.

• Fixed-delay: We can achieve up to 1) 5.83% and 8.66% better performance by deploy-
ing PSD-SUAWithoutReassociation over ABS-SUAWithoutReassociation for α = 1
and 2, respectively, and 2) 5.60% and 5.59% better performance by deploying PSD-
SUAWithReassociation over ABS-SUAWithReassociation for α = 1 and 2, respec-
tively.

5.3.6 Efficiency of SCF under different service-time models

Figs. 5.1 indicate that while PSD with SCF performs quite well in the fixed-delay scenario,
it performs quite poorly in the other scenario indicating the inefficiency of the physical-
layer based UA rule for the latter scenario. Furthermore, note that while re-association
in the fixed-delay scenario (under both PSD and ABS) does not result in much gain in
performance metric, it significantly improves the metric in the file-download scenario. This
suggests that incorporating re-association along with a network-aware UA scheme (e.g.,
PSD-SUAWithoutReassociation) can help improve the performance.

5.4 Conclusions

In this chapter, we further extended the static optimisation framework to a dynamic frame-
work to compare the performance of PSD and ABS under different traffic models. We
considered two traffic models as the bases of our comparisons, i.e., fixed-delay and file-
download, with a respective performance metric of average α−mean throughput and per-
user delay. We obtained tight upper-bounds and lower-bounds for the system performance
in terms of the two performance metrics, respectively, and showed the dominance of PSD
over ABS for different values of α. Furthermore, we showed that while re-association in
the fixed-delay scenario (under both PSD and ABS) does not result in much gain in per-
formance metric, it significantly improves the metric in the file-download scenario. Lastly,
we showed the inefficiency of SCF in the file-download scenario.
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Chapter 6

Device-centric α-fair User
Association under PSD

Summary: In this chapter, we

• revisit the problem of user association under PSD in a dynamic setup,

• propose a simple device-centric re-association rule where users are periodically
and individually given a chance to re-associate to another BS in a greedy manner,

• show that the proposed scheme outperforms a very good physical-layer based UA
scheme, i.e., SCF, and can reduce the loss in performance with respect to the
global network-centric approach.

6.1 Introduction

In the previous chapters, we focused on the joint optimisation of the three network processes
under PSD and ABS. Using extensive numerical and simulation results, we obtained the
respective upper and lower-bounds for the average α−mean throughput and delay under
static and dynamic settings for both of the RA schemes. We showed the upper hand of
PSD over ABS both in terms of 1) ease of optimal α-fair scheduling and 2) achievable
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bounds for the system performance. To verify whether the PSD bounds are achievable
using simple UA schemes (along with the optimal US), we also studied the performance of
a very good physical-layer based UA scheme, i.e., SCF. In Chapter 5, we saw that although
SCF performs quite well for the fixed-delay traffic model, it performs quite poorly for the
file-download model. The reason for this is as follows. As we showed in Chapter 3, if k
is fine-tuned, the average α−fair throughputs of a fixed number of users (per snapshot)
over a large number of snapshots performs close to optimality with SCF. Likewise, we
should expect a similar behaviour in a dynamic setting with a fixed number of users (per
scheduling interval) over a large number of scheduling intervals as is the case in the fixed-
delay scenario since the number of users in any scheduling interval is approximately equal
to λ × t̂ in the long run. However, for the file-download model, the situation is quite
different since the number of users in different scheduling intervals may significantly vary1

as the users’ departure time will depend on the other users’ service-time. Therefore, the
expected behaviour of the system under the file-download model is quite different from
that of the static setting or fixed-delay model under the dynamic setting. Hence, new
UA schemes are required to enhance the performance of the system with such a traffic
model. A good UA under this traffic model should ideally consider 1) the per-BS load (as
well as the physical-layer measurements), and 2) the network’s criteria (e.g., the fairness
criteria) [15, 13]. In Chapter 5, we studied a network-centric (joint RA, US and) UA
scheme, namely, PSD-SUAWithoutReassociation that encompassed both of these elements
and provided a lower-bound in terms of the per-user average delay among the class of all
physical-layer based UA schemes (e.g., SCF). Moreover, we saw that re-association along
with this UA scheme can significantly help improve the performance metric. Motivated
by these two observations, in this chapter, we focus on the problem of UA in dynamic
systems, first discussed in [15], along with re-association of users under PSD.

In view of the poor performance of physical-layer based UA schemes, the authors in [15]
consider the problem of PSD-SUAWithoutReassociation (presented in Chapter 5). As we
discussed before, solving such a problem to optimality would be prohibitively complex
as a network-centric online system because of the integrality constraints. Therefore, as a
departure from this network-centric approach, the authors propose a simple device-centric2

UA scheme where an association decision is taken individually for each user only at its own
arrival instant. The proposed scheme is guaranteed to maximise the α−fair throughput of

1Note that the (long-term) average number of users in the system will still be about λ × t̂. However,
the number of users may significantly vary in different scheduling intervals.

2In a device-centric UA scheme, a user makes the UA decision itself with the help of its own physical-
layer measurements and possibly some extra information about the state of the network broadcast by the
BSs.
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the network upon a user’s arrival (assuming the rest of the users retain their association)
and achieves the upper (and/or lower) bounds provided by PSD-SUAWithoutReassociation.
As well as being a simple device-centric approach, the proposed UA scheme is scalable in the
sense that it only requires a constant and small amount of network-information irrespective
of the number of active users in the system. However, it is limited to the case where re-
association of users is not allowed and, hence, still retains a large gap from the benchmark
provided by PSD-SUAWithReassociation. In this chapter, our objective is to incorporate
the idea of re-association in the UA scheme proposed by [15] and to characterise the system
performance under the new scheme.

Next, we will outline a framework for all device-centric UA schemes and, then, introduce
the UA scheme proposed by [15]. Throughout this chapter, we use the same notations and
assumptions as in Chapter 5 unless otherwise specified.

6.2 Device-centric user association rules

UA schemes are generally divided into two paradigms: Network-centric or device-centric.
In network-centric UA schemes, the association decisions are made by the network based
on the channel state information provided by the users, and are reported to the users.
The association decisions can be made locally at each BS or jointly among multiple BSs
through cooperation, or a central controller in C-RAN. An example of a network-centric
UA scheme is PSD-SUAWithReassociation described in Chapter 5 where the UA variables
are jointly computed by all BSs. In device-centric UA schemes, the association decisions
are made by the users themselves (usually individually and independently of other users)
using their channel state measurements and possibly some extra information about the
network broadcast by the BSs. Most of the existing UA schemes are device-centric, e.g.,
Max-SINR, SCF, and typically require a user to take periodic physical-layer measurements
(e.g., SINR) from the nearby BSs and associate with one of them according to a rule.

The benefit of a device-centric approach is that it is often very simple and scalable (in
the sense that the complexity of the UA scheme does not change with the number of users).
However, most of the existing device-centric UA rules are purely based on physical-layer
measurements and can lead to poor network performance (e.g., under file-download model
in Chapter 5). If we want to improve a user’s association decision, it is necessary that
some additional information about the state of the network, e.g., per-BS load or network’s
fairness criterion, is available. However, providing this network-dependent information
will potentially create higher signalling cost and complexity in network design. Therefore,
ideally, we would want a device-centric UA to require very little information from the
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network and perform as well as PSD-SUAWithReassociation. If this is not possible, finding
the right trade-off between performance and complexity is important.

6.2.1 A general framework

In order to study the trade-off between performance and complexity, we outline a common
framework for all device-centric UA schemes [15]: User u, at an association event u (e.g,
an arrival instant au or a departure instant du), performs the association decision based on
1) its own link measurements (e.g., SINR), 2) network-provided information (e.g., per-BS
load), and 3) a given rule. The node-specific roles in this framework are outlined below.

BS j broadcasts a set of BS-specific information Infoj periodically to assist the
users to make their UA decisions. Deciding on which information should be rebroadcast
(and how often) is part of the system design.

User u

1. measures channel-related information periodically, e.g., {γju}j∈B∪{0M ,0S},

2. uses the available BS-specific information and the channel-related measurements
to decide on the best BS juau , based on some predefined rule ζua(.), e.g.,

juau = ζua({Infoj}j∈B∪{0M ,0S}, {γju}j∈B∪{0M ,0S}),

3. sends the association request to BS juau .

We identify the following three aspects as the most important features while designing
online UA schemes.

1. Scalability, i.e., constant amount of information per-BS irrespective of the number
of active users. If the amount of the information that each BS has to broadcast
increases with the number of users, the scheme is not scalable.

2. Simplicity in terms of computation and constant complexity of association decision
with respect to the number of users in the system.
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3. Performance with respect to the chosen network objective function, i.e., the global
α−fairness objective.

Next, we will outline how such a UA scheme with the above-mentioned features can be
carried out in the device-centric framework.

6.3 System model

We use the same system model as in Section 5.1 with the same notations and assump-
tions unless otherwise specified. Consider the PSD-SUAWithoutReassociation problem
(presented in Chapter 5). Let the system utility be Γ(u, au, j) =

∑

i∈U(a−u )∪{u} Uα(Ti(au))

if user u selects BS j at her arrival time au, where the Ti(au)’s (user i’s throughput at
her arrival time) are easily computed using the α−fair schedules given in Remark 2 of
Chapter 3 since all the associations are known. The best that the user can do at time au
is to select the BS j∗(u, au) = argmaxj∈B∪{0S ,0M} Γ(u, au, j). By selecting j∗(i, ai) upon
every user i’s arrival time, the system can achieve the performance bound provided by
PSD-SUAWithoutReassociation.

With this objective to maximise the sum of the utilities at each new arrival instant, the
authors in [15] propose an optimal individual3 UA scheme. We refer to this UA scheme as
OptIndividualUA and summarise it in the following theorem.

Theorem 1. [15, Chapter 7] For α = 1, user u at her association event au, i.e., her
arrival time, chooses the BS based on the following simple formula to maximise the global
sum of user utilities.

j∗(u, au) = arg max
j∈B∪{0S ,0M}

log(rju) + log(
Uj(a

−
u )

Uj(a
−
u )

(Uj(a−u ) + 1)Uj(a
−
u )+1

), (6.1)

where Uj(a
−
u ) is the number of users associated with BS j just before the association event

at time au. For α 6= 1, let

Oj(α, t) =
1

1− α





∑

i∈Aj(t)

r
1−α
α

ji





α

(6.2)

3Since it is ‘optimal’ with respect to PSD-SUAWithoutReassociation and UA decisions are carried out
for users ‘individually’.
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represent the local utility at BS j where Aj(t) is the set of users associated with BS j at
time t. Then, the optimal decision for u at association time au is to select j∗(n, au) such
that

j∗(u, au) = arg max
j′∈B∪{0S ,0M}

∑

j∈B∪{0S ,0M}

Ou→j′

j (α, au),

where Ou→j′

j (α, au) represents the new value of local utility at BS j when user u decides to
associate with BS j′ at time au.

Theorem 1 shows that, OptIndividualUA scheme can be carried out if users have the

following information: 1) One scaler quantity
∑

i∈Aj(t)
r

1−α
α

ji per BS, 2) the RA parameter

k, and 3) parameter α and rate-function f(.), indicating that the device-centric OptIndi-
vidualUA scheme satisfies all the three desirable features listed before.

Although OptIndividualUA is a simple and device-centric UA scheme which yields the
best system performance with respect to PSD-SUAWithoutReassociation, it still retains a
large gap with respect to PSD-SUAWithReassociation as we showed in Chapter 5. In the
following, we propose a simple scheme based on Theorem 1 where we allow each user to
periodically change her association independent of other users in the system.

6.4 Proposed UA scheme

Let τu represent the set of periodic association instants for user u, i.e., τu = {au, au +
tu, au + 2tu, ...}, where tu is the periodicity of user u’s associations. Then, assuming
that tu is known to the user and BSs a priori, if each user u at each t̃ ∈ τu selects
j∗(u, t̃) = argmaxj∈B∪{0S ,0M} Γ(u, t̃, j), we expect that the system performance will improve
since periodic re-association can improve on the myopic decisions as the network evolves.
Based on this, we propose the following UA scheme, a.k.a. OptIndividualUA(reassoc).

Each user u at her association event t̃ ∈ τu chooses the BS j∗(u, t̃) based on the
following simple formula

j∗(u, t̃) =







argmaxj∈B∪{0S ,0M} log(rju) + log(
Uj(a

−
u )Uj(a

−
u )

(Uj(a
−
u )+1)Uj(a

−
u )+1

), if α = 1

argmaxj′∈B∪{0S ,0M}

∑

j∈B∪{0S ,0M} O
u→j′

j (α, au), if α 6= 1.
(6.4)
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Note that our proposed algorithm still allows each user to individually change her
association as subsequent association events are still independent from other users (unlike
in the network-centric approach where user association for a number of users are computed
jointly).

Although the above-mentioned UA scheme might not achieve the benchmark provided
by PSD-SUAWithReassociation, we expect that it will help improve the performance with
respect to the benchmark at the cost of a (slight) increase in the handover signalling
depending on the frequency of the users’ re-associations.

Next, we present the average delay performance of OptIndividualUA(reassoc) for the
file-download scenario introduced in Section 5.3.3.

6.5 Numerical results

In this section, we compare the average delay performance of OptIndividualUA(reassoc) to
that of PSD-SUAWithReassociation (the benchmark) for the file-download scenario (pre-
sented in Section 5.3.4). The parameter settings are assumed to be the same as the ones in
Section 5.3 unless otherwise specified. We set tu to a fixed value from the set {0.5, 2, 7} sec
for all users.

Fig. 6.1 shows the average delay performance of OptIndividualUA(reassoc) (labelled as
OptIndividualUA (reassoc every tu s) in the figures) with respect to the benchmark. As
we increase the periodicity, the performance metric significantly improves, achieving the
smallest gap with respect to the benchmark with periodicity of 500 ms. This shows that
with some increase in the re-association frequency the proposed OptIndividualUA in [15]
can perform very well. Similar observations can be seen for OD as shown in Fig. 6.2.

6.6 Conclusions

In conclusion, we studied the problem of association under PSD in a dynamic setting and
proposed a simple device-centric re-association rule where users are periodically given a
chance to re-associate to another BS. We showed that the proposed scheme outperforms
a very good physical-layer based scheme and helps reduce the loss in performance with
respect to the network-centric approach.
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Figure 6.1: Mean delay as a function of λ. Settings: M = 33, F = 10 Mbit.
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Figure 6.2: Mean delay as a function of λ. Settings: M = 33, F = 10 Mbit.
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Chapter 7

Conclusions

7.1 Summary

In summary, we studied the performance of an OFDM-based HetNet on the downlink. We
saw that the network performance depends on three coupled network processes, namely,
RA, UA and US. Studying these processes under a unified framework was one of the main
objectives of this thesis and gave us a platform to compare the system performance under
different deployment schemes and HetNet configurations. In the first part of the thesis
(Chapters 3-4), we revisited a snapshot-based unified framework (which jointly optimised
the three network processes under PSD) in a static setting and made two amendments
to it in terms of channel modelling and user scheduling. We, then, revisited a similar
framework but under ABS and showed that α 6= 1−fair scheduling under ABS can be
much harder than that under PSD. We, then, proceeded to obtain upper-bounds for the
throughput performance of the HetNet under the two RA schemes and showed the upper-
hand of PSD over ABS under different HetNet configurations. Furthermore, we showed
that SCF, a simple physical-layer based UA scheme, performs very well if the RA and
biasing parameters are fine-tuned.

Although our static framework gave us some valuable insights in terms of the perfor-
mance of the two RA schemes and different UA heuristics, it was limited to an offline-static
study and did not necessarily reflect the behaviour of an online system including all of its
dynamics, e.g., users arrival and departure. This was the motivation behind developing
the second part of this thesis.

In the second part of our thesis (Chapters 5-6), we further extended our static frame-
work to a dynamic one where we studied the performance of the two RA schemes under
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two service-time scenarios: 1) fixed-file and 2) file-download. Using extensive simulation
results, we showed that under both of the service-time scenarios PSD outperforms ABS,
reverifying our observations from the static framework. Furthermore, the dynamic setting
provided a number of important insights, most notably, the fact that SCF does not work
well under the file-download scenario and that re-association can potentially help improve
the system performance. Motivated by these two observations, we further investigated the
problem of UA for PSD under the dynamic framework. Building upon a previous work
in the literature, we proposed a computationally simple and scalable device-centric UA
schemes where users were periodically given a chance to re-associate to another BS and,
so, significantly improved the system performance.

7.2 Future research work

In our study, we made a number of restrictive assumptions, most importantly, in terms
of users association (SUA) and transmission link (downlink). As we saw in Chapter 6,
periodic re-association of users can lead to significant performance gains. However, such
periodic re-associations can potentially cause excessive handover signalling and possible
create complexities in the system design. Recently, with an increased interest in the de-
velopment of C-RAN in future HetNets, a potential future research path to performance
enhancement would be to allow multi-BS user association (MUA) where a given user can
associate to multiple BSs simultaneously. Such an association deployment can potentially
lift the need for periodic re-association as a user now, served by multiple BSs at the same
time, would likely leave the system before a re-association is deemed necessary. Hence, the
need for unnecessary handover signalling may be eliminated.

In this study, we also restricted ourselves to the downlink transmissions only. An
equally important problem would be to consider uplink and investigate the performance
gains of different RA schemes and UA heuristics. However, unlike the downlink model
where we managed to decouple the global α−fair objective into independent local (per-
BS) problems, decoupling the global problem for the uplink may be very difficult as, on one
hand, because of the limited power budget of user equipments pure time-domain scheduling
(i.e., allowing users to transmit on all available channels) may not be a feasible option and,
so, sub-channels should be assigned to users from a global perspective. On the other hand,
even with a fixed sub-channel assignment, the interference (and, hence, SINR) at one BS
will depend on the schedulers at the other BSs and vice versa. Hence, decoupling the global
scheduling problem on the uplink may not be as easy as the one on the downlink.
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