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Abstract

Real time topic detection in Twitter streams is an important task that helps discovering natural
disasters in a real time from users’ posts and helps political parties and companies understand
users’ opinions and needs. In 2014 the number of active users on Twitter is reported to be more
than 288 million users who are posting around 500 million tweets daily. Therefore, detecting
topics from Twitter streams in a real time becomes a challenging task that needs scalable and
efficient techniques to handle this large amount of data. In this work, we scale an Exemplar-
based technique that detects topics from Twitter streams, where each of the detected topics is
represented by one tweet (i.e, exemplar). Using exemplar tweets to represent the detected topics,
makes these topics easier to interpret as opposed to representing them by uncorrelated terms as in
other topic detection algorithms. The approach is implemented using Apache Giraph and is being
extended here to efficiently support sliding windows. Experimental results on four datasets show
that the optimized Giraph implementation achieves a speedup of up to nineteen times over the
native implementation, while maintaining good quality of the detected topics. In addition, Giraph
Exemplar-based approach achieves the best topic recall and term precision against K-means, La-
tent Dirichlet Allocation (LDA), Non-negative matrix factorization (NMF) and Latent Semantic
Analysis (LSA), while maintaining a good term recall and running time. The approach is also
deployed for detecting topics from real-time Twitter streams and its scalability is demonstrated.

Moreover, another clustering technique called Local Variance-based Clustering (LVC) is pro-
posed in this thesis for detecting topics from Twitter streams. Local Variance-based Clustering
(LVC) defines the data points densities based on their similarities. The proposed local variance
measure is calculated based on the variance of the data points similarity histogram and is shown
to well distinguish between core, border, connecting and outliers points. Experimental results
show that LVC outperforms spectral clustering and affinity propagation in clustering quality us-
ing control charts, Ecoli and images datasets, while maintaining a good running time. In addition,
results show that LVC can detect topics from Twitter with higher topic recall by 15% and higher
term precision by 3% over DBSCAN.
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Chapter 1

Introduction

1.1 Motivation

Recently Twitter has become one of the most popular social networks, where users can express
themselves by tweeting their thoughts in a post of 140 characters at most. The increasing number
of users - that reached more than 288 million users in 2014 - who are producing more than 500
million tweets daily1, motivates a lot of celebrities and organizations to post their updates on
Twitter. This large number of users and organizations who are producing large amount of data
motivates researchers from different areas like machine learning, data mining and database to
develop scalable techniques that can analyse these data and infer useful information. One of the
most important tasks is real time topic detection, which is the task of discovering the underlying
topics that are discussed by a set of tweets in a real time manner. This can be useful in discovering
natural disasters as early as possible, market analysis, political events like elections or revolutions
and understanding users’ sentiments towards some products. Although many other techniques
have been developed for detecting topics in Twitter, they represent each topic by a set of terms
which could be uncorrelated and may result in topics that cannot be easily understood. This
motivated the development of an Exemplar-based topic detection approach [8], where each topic
is represented by one tweet instead of using keywords from different tweets that can be unrelated
to each other.

Although it was shown that the Exemplar-based topic detection approach is superior to other
approaches (like K-means and non-negative matrix factorization), its scalability needs to be en-
hanced to handle the large number of daily generated tweets. One factor that affects both the

1http://www.statisticbrain.com/twitter-statistics/ [Last visit 18/2/2016]
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quality of the detected topics and the response time is the size of the time window. On one hand,
small time windows will have small number of tweets and hence a lower response time, however,
there will not be enough time for topics to be shaped; on the other hand, using large time windows
will be enough for topics to be formed but the number of tweets to be processed will be large
and the system will have a large delay. It was shown in [32] that 10 minutes is a suitable time
window size for topics to be formed and in the same time to be able to detect topics as soon as
they occur. However, Exemplar-based topic detection doesn’t scale to work with the number of
tweets that arrive at 10 minutes time window. So, the objective of this work is to propose a scal-
able Exemplar-based approach in order to handle large-size windows efficiently while preserving
a high quality of the detected topics. This can be achieved by scaling out the computations to
be executed on multiple machines instead of one machine. One way to scale out the computa-
tions is using MapReduce. However, MapReduce is not suitable for real time applications as it
needs to perform multiple read and write operations from and to Hadoop Distributed File System
(HDFS). To alleviate this problem, we propose a distributed version of the Exemplar-based topic
detection approach using Apache Giraph- which is an open source graph processing system. Ex-
perimental results on four different datasets show that efficient Giraph-based implementation of
the algorithm achieves a speedup up to a factor of 19X while preserving good quality of the
discovered topics. There are two versions of time windows which are non-overlapping windows
and sliding windows. In sliding windows, the window shifts with a step smaller than the window
size. As non-overlapping windows cannot detect topics that span multiple windows, we use a
sliding windows model and extend Giraph to handle it efficiently by keeping the same Giraph
instance running and modifying the graph structure to delete the old tweets and incorporate the
new tweets in each time slot.

Additionally, this thesis addresses another important task which is clustering and utilizes
clustering to identify important topics in Twitter streams. Clustering is an unsupervised learning
process to group similar data points of unknown classes into one group without any prior knowl-
edge of the data. In the last decades, clustering approaches had proved their importance by being
used in many diverse fields like Bioinformatics [39], computer vision [28] and text analysis [20].
As the importance of clustering problem increased, many clustering techniques with different
objective functions had been proposed in the literature to conquer this problem.

Many of the traditional objective functions used in K-means, average and complete linkage,
Partitioning Around Medoids (PAM) [22] and Clustering Large Applications based on RAN-
domized Search (CLARANS) [35] are restricted to detecting clusters with specific shapes like
spherical shapes clusters detected by K-means. To alleviate this problem, several clustering tech-
niques proposed different clustering criteria which is the clusters’ densities, as in Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [12] and Shared Nearest Neighbors
(SNN) [11] and thus they were able to detect arbitrary shaped clusters. However, a new prob-
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lem emerged with density-based clustering techniques which is their inability to detect clusters
with different densities. Hence, there is an important need to develop clustering techniques that
can detect both arbitrary shape and arbitrary density clusters as real datasets don’t have uniform
shapes and densities.

To be able to detect arbitrary density clusters, we need to define another clustering criteria
that takes into account that clusters of one dataset can vary in their densities. The problem with
density-based clustering techniques like DBSCAN is that it defines two thresholds (ε and min
point) that globally define the density of the data points and therefore blocks the fact that clusters
can have different densities. In this work, a local variance metric is proposed to calculate the
density of each data point locally instead of depending on global thresholds. The metric achieves
that by calculating the density of data points with respect to their similarity histogram, which
captures the data points neighborhood characteristics and helps distinguishing points density in
a local manner. By using this new local variance metric, we propose a new clustering technique
called LVC that is able to detect arbitrary shape and arbitrary density clusters.

Several techniques like [21] were proposed to detect arbitrary shape and density clusters by
defining objective functions that minimize the variance between data points within the same
cluster. However, these approaches only focused on grouping data points with less variations in
their values and didn’t consider the data points neighborhood relations and similarities. In this
thesis, we develop a new model that greedily group data points that are similar to each others in
values along with data points that are similar to each others in their relations and neighborhood
similarities. Finally, we apply this model in clustering Twitter streams.

1.2 Summary of Contributions

The contributions of the thesis can be summarized as follows:

• Proposing a scalable version of Exemplar-based topic detection approach [8] using Apache
Giraph and extending it to handle sliding windows efficiently.

• Empirically evaluating the proposed distributed Giraph approach and comparing it against
the centralized implementation and related work techniques (K-means, Latent Dirichlet
Allocation (LDA), Non-negative Matrix Factorization (NMF) and Latent Semantic Analy-
sis (LSA)) using four datasets.

• Deploying the system to detect topics from real-time Twitter streams and showing its scal-
ability.
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• Proposing LVC and evaluating it in detecting arbitrary shape and arbitrary density clusters
compared to DBSCAN, spectral clustering, affinity propagation and mean shift. In addi-
tion, LVC technique is evaluated in different fields like control charts, Ecoli, pen digits and
topic detection.

1.3 Thesis Organization

The rest of this chapter describes the notations used throughout the thesis. The first part of
Chapter 2 discusses topic detection related work, while the second part gives the neccerarry
background used to scale out Exemplar-based topic detection. The proposed scalable Exemplar-
based topic detection approach is explained in Chapter 3, along with experimental results that
show empirically the efficiently of the proposed technique. Furthermore, Chapter 4 shows the
proposed Local Variance-based technique (LVC) and its evaluation in clustering different data
types including Twitter data. Finally, Chapter 5 concludes the thesis and discusses a set of
possible future extensions.

1.4 Notations

In this section, we define the notations that are used in the thesis. First, small letters like m,n are
used to denote scalars, script letters are used for defining sets likeH, vectors are expressed using
small bold italic letters like f , and finally capital letters like X are used for denoting matrices.
Additionally, the following notations are used:

|H| size of the setH.

fi i-th element of f .

Xi,j (i, j)-th entry of X .

Xi,: i-th row of X .

X:,j j-th column of X .

XT transpose of X .
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1.5 Summary

In this chapter, we have explained the motivations of our work, the contributions of this thesis
and the thesis organization and notations. In the next chapter, we will discuss the necessary
background and the related work for detecting topics from Twitter streams.
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Chapter 2

Background and Related Work

2.1 Topic Detection Related Work

This section explains the various types of topic detection techniques that are used in the literature.
These types can be classified into four different categories which are:

• Matrix Factorization like LSA, NMF and Rank-One Downdate (R1D).

• Probabilistic Topic Detection like LDA.

• Clustering Approaches, which include:

– Traditional Clustering Approaches like K-means and online Kmeans.

– Distributed Clustering Approaches.

– Clustering over Dynamic Graphs.

• Sketch-based Topic Detection.

2.1.1 Topic Detection using Matrix Factorization

Several techniques were proposed in the literature for matrix factorization. The problem of
matrix factorization is defined in the context of topic detection as factorizing a data matrix X ,
where rows of X represent documents and columns of X represent terms. Each entry (i, j)
of X corresponds to how related document i to term j. Matrix factorization techniques like

6



Latent Semantic Indexing (LSI) factorizes the matrix X into the multiplication of three matrices
UΣV T , which are the Singular Value Decomposition (SVD) of matrixX . This can be interpreted
as matrix U representing the relations between the documents and the topics, Σ representing the
relations between the topics and V T representing the relations between the topics and the terms.
Therefore, documents can be assigned to topics based on matrix U and topics can be visualized
according to their terms relations using matrix V T . However, LSI has two problems, which are:
(1) U and V T can have negative values and thus interpreting them is difficult and (2) The detected
topics are latent and don’t correspond to real documents or have clear meaning.

To overcome the aforementioned problem, another category of matrix factorization tech-
niques were proposed like non-negative matrix factorization (NMF), where it factorizes the ma-
trixX into the multiplication of two matricesW andH . Additionally, NMF enforces a restriction
on the values of W and H to ensure that the values are non-negative and thus H and W can be
easily interpreted. Still, NMF didn’t solve the problem of using latent topics.

2.1.2 Probabilistic Topic Modeling

Probabilistic topic models are generative models that consider each document as a weighted mix-
ture of a set of topics, where each of these topics has a distribution over terms [4]. Each document
di has a distribution over the set of topics, and each word in the document di is generated from
one of the topics, based on the document over topics and topic over words hidden distributions.
LDA proposed in [4] is one of the well known probabilistic topic modeling approaches that infers
the hidden distributions by observing the terms in each document. However, it was reported in
[33, 31] that LDA has a problem with the data sparsity in short text.

2.1.3 Topic Detection using Clustering

Several proposed solutions handle scalable topic detection in Twitter using clustering where the
assumption is that the tweets that fall in one cluster talk about the same topic. [47] belongs to this
category, where its objective is to develop a system that performs distributed online clustering in
cloud settings. The system starts by routing the new arriving tweets to a free processing unit, then
the processing unit clusters the new tweets either by creating new clusters or by assigning them
to existing clusters. Finally, an aggregator adjusts the results of the processing units, for example
in K-means adjusting the results is done by re-computing the centroids of the clusters. The
system measures the deviation in the clustering quality between two consecutive time slots, and
if there is much deviation in the quality, the system re-clusters all the tweets. The deviation in the
clustering quality is estimated by comparing the tweets from the two time slots using Hungarian

7



algorithm to solve a bipartite matching problem. If the tweets from the two consecutive time slots
are matched with a high score then there is no much deviation in the clustering quality and there
is no need to re-cluster the tweets. Other techniques model the topic detection task in Twitter
as a clustering problem over a dynamic graph as in [1], [24] and [46]. [1] models the system as
a graph where each node represents a keyword. Two keywords are connected if they co-occur
together in at least k tweets. The goal of the system is to find dense clusters in this dynamic graph
where each cluster represents the keywords of a topic. To reduce the computation, the system
works over a subset of the graph called active graph. Active graph contains only the nodes
from the original graph that represent the terms appeared in at least γ tweets. To identify dense
clusters, the system identifies 0.5 cliques. In 0.5 clique, each node is connected to at least half
of the nodes in this clique. Finally, the paper proposes a ranking algorithm to rank the detected
clusters based on their density and correlations between the cluster’s edges. The objective of [24]
is to build a system that detects events in a dynamic streaming data and keeps track of the events’
changes. The system constructs a network where each node represents a user’s tweet, and two
tweets are connected with an edge weighted with their similarity if this similarity value is above a
certain threshold. The system uses a time-based Jaccard similarity in order to take the difference
in the posting time of the two tweets into account, where each tweet is represented by the nouns
in it which are extracted using a part of speech tagger. In addition, the paper keeps a node priority
value to eliminate the noisy nodes’ effect and categorizes the nodes into three categories: core,
border or noise. The approach uses a DBSCAN like clustering technique to cluster the graph
where the events are identified as clusters of tweets. Moreover, the paper keeps track of the
changes in the network/cluster, which could be: adding or deleting a node, creating or deleting a
cluster, a post that joins or leaves a cluster, splitting a cluster or merging clusters. These operators
help in tracking the events’ changes. However, as it uses DBSCAN like clustering approach, it
cannot detect arbitrary density clusters. [46] proposes a clustering technique for streaming graphs
that can track cluster’s evolution. The system architecture has two main components, which are
a window manager and a graph manager. The window manager receives graph updates and
generates insertion/deletion operations that are sent to the graph manager. After that, the graph
manager updates the graph based on the send operations and also replies to the users’ queries
about the graph. The graph manager maintains for each time t, two hash tables, one that contains
the cluster ID for each vertex ID and another one that contains for each cluster ID, its size and its
edges. To capture the clustering evolution, the two tables in two different time slots are compared
to find out which clusters have grown, shrunk, created or removed.

Traditional techniques like K-means, K-medoids [18] and PAM [22] restrict the shapes of
their detected clusters into spherical shapes. Putting restrictions on the shape of the detected
clusters tend to either divide a cluster into smaller spherical shape clusters or tend to produce
clusters containing inhomogeneous data points. Therefore, several techniques were proposed to
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eliminate the shapes restrictions like DBSCAN [12] and SNN [11]. DBSCAN and SNN both
use global thresholds to define the data points density. By doing that, density-based clustering
techniques had added another restriction which is limiting their detection to specific clustering
densities. Our proposed LVC approach mitigates this problem and is able to detect arbitrary
shape and arbitrary density clusters by developing a local measure for the data points density.

Another class of clustering technique is based on mode finding like mean shift [6]. Mean
shift [6] represents a general nonparametric mode finding and clustering technique. It doesn’t
have any assumption on the shape of the clusters nor the number of modes/clusters. The main
disadvantages of the mean shift approach is that it needs high data density with clear gradient to
locate the cluster centers, which is not true in most of the datasets.

Several clustering techniques had highlighted the importance of taking the similarities be-
tween data points into account like spectral clustering [34] and affinity propagation [13]. Spec-
tral clustering first constructs the similarity matrix between the data points and then performs a
dimensionality reduction of the similarity matrix using its eigenvalues and eigenvectors. Finally,
spectral clustering uses K-means to cluster the new lower dimension representation of the data
points. Additionally, affinity propagation is an exemplar-based clustering technique where it tries
to identify a small set of data points that best represents the dataset clusters. It achieves that by
taking into consideration the points similarities and by exchanging messages between data points
such that data points nominate which points they think are the best representative of the clusters.
LVC also exploits the data points similarities by measuring the points density in terms of their
similarities and relations with their neighborhood region.

Other clustering techniques were proposed that consider the variance as an objective function
to be minimized as in [21] and [27]. The work in [21] tries to group data points such that the
variance between the data points in one cluster and its centroid is minimized. However, this
technique didn’t take into account the data points relations and similarities and has measured
the variance relative to a virtual data point (centroid) which may mislead the clustering results.
Moreover, the work in [27] also tries to minimize the variance of each cluster by first dividing the
data points into clusters such that the variance of each cluster is greater than a certain threshold
and then by building dendrogram using an agglomerative approach. Finally, the appropriate level
of dendrogram is selected so that the variance of each clusters satisfies the selected variance
threshold. The main disadvantage of the approach is that it identifies a global variance threshold
and thus produces clusters with the same variance level, which is not true in the real datasets.
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2.1.4 Sketch-based Topic Detection

Other scalable topic detection techniques for Twitter are based on maintaining a sketch of the
streaming data and utilizing this sketch to detect topics in Twitter like [42], [5], [26] and [25].
[42] detects bursty topics in a real time manner. The approach starts by maintaining a sketch
of the data, which contains the total number of tweets, the number of occurrence of words and
the number of co-occurrence of words pairs. The paper adapts exponential moving average to
measure these quantities and uses the change in these quantities to capture the topics’ burst. Each
tweet is modeled as a mixture of multiple latent topics, where each topic has a fixed distribution
over words. Using the maintained values, the paper infers these distributions. Also the paper pro-
poses a dimensionality reduction technique by hashing distinct values into buckets and drawing
the topic distribution over buckets instead of words. In addition, [5] adds the geographic con-
straint, as it wants to detect trending topics related to geographic locations. It starts by describing
the characteristics of geographical trending topics (geo-trends) it wants to detect, which are: 1)
geo-trend’s location has to be a popular location in the current sliding window, 2) probability of
topic x occurring in location y needs to be above a threshold θ and 3) probability of location y
containing topic x needs to be above a threshold σ. To do this efficiently, the paper constructs
a Location-StreamSummary-Table which keeps track of popular locations’ counts, where each
location cell has StreamSummaryyi list which contains topics that occur in location yi with a
probability above θ. Also, to keep track of the probability mentioned in point (3), the system
keeps another table Topic-StreamSummary-Table, which keeps track of each topic’s count, and
the locations associated with the topic that have probabilities above σ. The paper also drives
memory and time requirements, where the memory requirement is shown to be sublinear and
the time requirement is shown to have an amortized running time. Moreover, [26] monitors a
certain topic by finding the keywords related to it. The used sketch in this paper is the topic’s
keywords. The paper assumes that topics’ classifiers exist, and we need to construct a sampling
tweets technique and then run the topic’s classifier on the sampled tweets. The sampling process
is composed of two steps either using the streaming API, or sampling keywords from tweets and
using the filtering API (Twitter API that retrieves tweets containing the provided keywords) with
the sampled keywords. After that, the paper extracts the significant keywords of the tweets that
belong to this topic and uses these keywords to monitor the topic. The previous steps are done in
an iterative manner to detect new keywords that are related to the topic. Finally, [25] also uses
keywords as a sketch of the topic. The paper starts by crawling tweets that have crime keywords.
It identifies the crime keywords iteratively by first selecting a small set of keywords manually
and then automatically observing the coming tweets to find more related terms. After that, the
tweets are passed to a crime classifier, which decides if the tweet is about crime or not using
its features. If the tweet contains hashtag, url, time or location, then the approach extracts the
events related features from it like time and location. The approach also performs user location
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prediction from the tweet’s location, the tweet’s text or the user’s profile location. Finally, the
paper ranks the tweets using content and user features.

2.2 MapReduce

MapReduce [7] is a programming framework which eases the development of parallel applica-
tions that process large volume of data. Usually, these applications run on a cluster of commodity
machines, where MapReduce handles data partitioning, task scheduling and fault tolerance. In
MapReduce framework, the computations are expressed using two methods, which are called
map and reduce. First, the input data are divided into chunks, then the same map function is
executed on each chunk in parallel by a mapper task, which outputs key-value pairs. These pairs
are shuffled and the pairs with the same key are sent to the same reducer task, which in parallel
executes the same reduce function on the pairs it has and produces the final output.

2.3 Apache Giraph

Giraph1 is an open source implementation of Google’s Pregel system which employs ”Think
like a vertex” model, where the computations are defined in terms of what each vertex has to do
using a user defined compute function. Each vertex is associated with a user defined state, and
can be connected to other vertices through directed edges which are associated with a modifiable
user defined state too. Computations are executed in a sequence of iterations called supersteps,
which are separated by a global synchronization barrier that is known as Bulk Synchronous
Programming (BSP). Each vertex can modify the state associated with it or with its edges, receive
messages sent to it in the previous superstep S − 1, send messages to other vertices which will
be received at superstep S + 1 and mutate the topology of the graph. Messages are typically
sent from one vertex to its neighbors through outgoing edges, however, a message can be sent
to any vertex if its ID is known. Each vertex can vote to halt after finishing its work, and it is
reactivated after receiving a message. A program terminates if all vertices are inactive and there
are no transit messages. The output of a program is the set of values reported by the vertices.
To reduce the overhead, user defined combiners can be used to fuse multiple messages into one
value. Global computations can be performed using aggregators, where a vertex can provide
a value to the aggregator at superstep S and the final result will be available to all vertices at
superstep S + 1. Local and global topology mutations are supported, where in local mutations

1http://giraph.apache.org/
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a vertex can add or remove its outgoing edges or remove itself, which introduces no conflicts.
On the other hand global mutations let each vertex change the graph topology and may introduce
conflicts. Conflicts are resolved by partial ordering, where the removal of edges is performed first
then the removal of vertices, adding vertices and finally adding edges. The remaining conflicts
are resolved using user defined handlers.

2.4 Other Graph Processing Systems

There are many other graph processing systems like Spark GraphX [16], Cassovary [17] and
GraphLab [29]. In this section, we shed the light on these systems and discuss the reasons
behind choosing Giraph for scaling the Exemplar-based topic detection.

Spark is an open source framework for processing big data. It provides a unified frame-
work that manages big data with variety of representations (text or graph) and variety of sources
(batch and real time). Spark GraphX is a Spark API for graph processing. However, it is still
an alpha version and it doesn’t support graph mutations, which are needed to support sliding
windows efficiently as will be shown. Another graph processing system is Cassovary, which
is a graph processing framework for processing large graphs that is implemented in Scala. It
is developed by Twitter and contains common graph representations and graph traversal algo-
rithms. However, it doesn’t work in a distributed manner. Another remarkable graph processing
system is GraphLab, which is a distributed graph processing system that is implemented in C++.
GraphLab uses asynchronous model, where there is no global synchronization barrier and ver-
tices can access the latest values of the other vertices and edges. However, the open source
GraphLab version doesn’t support graph mutations, which is needed for the sliding windows
part. Therefore, our choice of Giraph is based on two factors. First, it supports graph mutations
which are needed by the Exemplar-based approach as will be shown. Second, it is an open source
project that is supported by an active community.

2.5 Exemplar-based Topic Detection

The idea of this approach [8] is to represent each of the detected topics using one tweet which is
the most descriptive one for this topic. Using a tweet (exemplar) to represent the topic makes the
topics easier to be understandable by the user as the structure of the sentence is preserved and
thus the user can make sense of the tweet text instead of providing the user with keywords that
are unrelated and not connected in a sentence as produced by other approaches.
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The intuition behind the approach is that a tweet which is similar to a set of tweets and
dissimilar to the rest of the tweets is a good representative for the topic it discusses. To capture
this intuition, the approach constructs the similarity matrix between the tweets and classifies the
behavior of the similarity distribution of each tweet into two categories, which are:

• The similarity distribution of tweet i has a low sample variance and thus tweet i is similar
to many tweets, or tweet i is not similar to the most of the other tweets.

• The similarity distribution of tweet i has a high sample variance and thus tweet i is similar
to a set of tweets and less similar to the others, which will be a good representative for the
topic it discusses.

Therefore, the sample variance of the similarity distribution can be a good metric to capture how
likely this tweet can be a good representative. The sample variance of the similarity matrix is
defined as follows:

var(S:i) =
1

n− 1

n∑
j=1

(Sij − µi)2 ,

where µi is the mean of the similarities of tweet ti: µi = 1
n

∑n
j=1 Sij .

To select the tweets using the sample variance metric, the approach starts by sorting the
tweets according to their variances and then selects the tweet with the highest variance as the
representative of the first topic. After that, the approach removes the tweets that are ε similar to
the selected tweet to guarantee the diversity in the selected topics and then the approach selects
the next remaining tweet with a high variance as the representative of the second topic and so on
until retrieving k topics where k is a parameter for the approach.

2.6 Summary

In this chapter, we have discussed the necessary background and the related work for detecting
topics from Twitter streams. In the next chapter, we will propose a new method to scale out the
Exemplar-based topic detection approach.
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Chapter 3

Scalable Exemplar-based Topic Detection
Approach

This chapter shows the details of the scalable Exemplar-based topic detection approach. We start
by discussing different options and justify our choice of Apache Giraph, then we explain our
Giraph implementation in detail and finally, we show the experimental results of comparing the
scalable Exemplar-based topic detection against other scalable topic detection techniques using
four datasets. In addition, the scalable Exemplar-based topic detection is deployed to detect
topics from Twitter streams in real time and its response time is shown while changing the size
of the cluster.

3.1 MapReduce Approach

MapReduce is a programming framework which eases the development of parallel applications
that process large volume of data. Usually, these applications run on a cluster of commodity
machines, where MapReduce handles data partitioning, task scheduling and fault tolerance. The
Exemplar-based approach can be modeled as a MapReduce workflow that consists of four jobs.
First job1 reads the tweets text from HDFS as an input and it outputs two files. The first one
contains key-value pairs, where each key represents tweet id and the value contains the tf-idf
weight of each term in this tweet and the ids of the tweets that share this term with this tweet.
The second file contains key-value pairs too, where each key consists of the ids of two tweets
that share at least one term, and the value is the similarity between these two tweets based on
one shared term only (as both tweets have this term only). Then job2 reads the first output of
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Figure 3.1: MapReduce Workflow

job1 and outputs the norm of each tweet and the list of tweets that share at least one term with
this tweet. After that, job3 reads the second output of job1 and the output of job2 and outputs the
cosine similarity between all pairs of tweets that share at least one term. Job4 reads the output of
job3 as its input and computes the variance of the similarities of each tweet as its output. Finally
a java component that runs on one machine, reads the outputs of job3 and job4 and selects the
exemplar tweets. Figure 3.1 shows the workflow of MapReduce jobs that compute the variance
of the similarities for two tweets t1, that contains terms v1, v2 and v3, and tweet t2 that contains
terms v1, v2 and v4. The figure also shows the inputs and the outputs of each job.

Although this modeling is similar to the modeling in [10]. However, the approach in [10]
computes the similarity using term frequency weighting scheme only without the document fre-
quency which was shown to be inefficient for down-weighting the less important terms that occur
in many documents [38]. In addition, we don’t only provide a model that calculates the similarity
but that also calculates the variance of the similarities.

3.1.1 MapReduce Limitations

Although MapReduce approach is simple, it has some limitations. First, there are four jobs in
the workflow, where each job reads its input from the HDFS then writes its output to the HDFS
so that it can be read by subsequent jobs. Reading and writing from and to HDFS are costly
operations, which result in slowing down the computations. Second, MapReduce jobs suffer
from the stragglers problem, where the whole job has to wait for one straggler machine to finish
that is shown in [32] to slow down the computations. Due to these limitations, it is obvious that
MapReduce approach will not be able to detect topics from a large number of tweets in a real
time. That is why we decided to use a graph-based system that keeps everything in memory.
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3.2 Giraph Approach

This section shows the details of using Giraph system to scale out the Exemplar-based topic
detection approach. We first show how to model the problem as a general graph problem and we
show how to solve it using Giraph.

The Exemplar-based topic detection approach is built based on calculating the variance of
the similarities of each tweet ti with the rest of the tweets, which is calculated as:

var(S:i) =
1

n− 1

n∑
j=1

(Sij − µi)2 (3.1)

Let Ni be the set of tweets that have non-zero similarities with tweet ti and Ni be the set of
tweets that have zero similarities with tweet ti, then:

var(S:i) =
1

n− 1
(
∑
j∈Ni

(Sij − µi)2 +
∑
j∈Ni

(Sij − µi)2)

As Sij = 0,∀j ∈ N i and |Ni|+ |Ni| = n. Therefore,

var(S:i) =
1

n− 1
(
∑
j∈Ni

(Sij − µi)2 + (n− |Ni|)µ2
i ) (3.2)

Where, µi = 1
n

∑
j∈Ni

(Sij). Based on equation 3.2, to calculate the variance of similarities of
each tweet ti, it is only needed to calculate the similarities with the tweets in the set Ni. To
calculate the setNi, letWi be the set of terms that occur in tweet ti. As S is the cosine similarity
measure, we note that:

Sij 6= 0↔Wi ∩Wj 6= ∅

And by definition: j ∈ Ni ↔ Sij 6= 0.

Then: j ∈ Ni ↔ Wi ∩Wj 6= ∅. Based on the previous definition, for each tweet ti, the set
Ni is the set of tweets that share at least one term with ti, and can be computed as follows:

Ni = ∪vj∈Wi
δ(vj) (3.3)

where δ(vj) is the set of all tweets that contain the term vj .

Based on equations 3.2 and 3.3, computing the variance of the similarities of each tweet can
be mapped to a graph that contains two types of vertices. The first type represents tweets and the
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second represents terms, and there is a weighted edge between a tweet vertex ti and a term vertex
vj , ∀vj ∈ Wi, where the weight is initially set to the frequency of occurrence of the term vj in
the tweet ti. Figure 3.2 shows the graph representation of three tweets, t1 that contains the terms
v1, v2 and v3, tweet t2 that contains the terms v1 and v4 and tweet t3 that contains the term v4,
we will use this example through the rest of the paper to illustrate the steps of the computations.
Based on this representation, each term vertex vj can compute the set δ(vj) locally by using its
edges, then it can compute its inverse document frequency idfvj and update the weights on the
edges between it and all the tweets in the set δ(vj) with the tf-idf values. After that, each term
vertex vj broadcasts the set δ(vj) to each tweet vertex that belongs to the set δ(vj), so that each
tweet vertex can know the rest of the tweets that share the term vj with it. As each tweet ti
knows δ(vj), ∀vj ∈ Wi, it can compute the set Ni and calculate its similarity values with tweets
tj , ∀j ∈ Ni. Finally, after computing the similarities, each tweet ti can calculate the variance of
these similarities var(S:i). Next subsections show the details of implementing this model using
Giraph and further optimizations. In the rest of the paper, we will refer to the tweet vertex and
the term vertex as tweet and term respectively when it is not ambiguous to do so.

Figure 3.2: Graph Modeling

3.2.1 Giraph Modeling

To implement the aforementioned graph modeling in Giraph, we first need to have two types of
vertices while Giraph has only one Vertex class. So, to distinguish between tweet vertices and
term vertices, positive ids are assigned to tweets, while terms are assigned non-positive ids. The
computation of the similarities and the variance of tweets are performed in three supersteps.

• Superstep 0:
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– Term vertices compute the set δ(vj) which contains all the tweets vertices that are
connected to the vertex vj , then it broadcasts this list to each member in this list
(all the tweets vertices it is connected to). This list is customized before being sent
to each tweet ti by removing the vertex ti from it in order to reduce the size of the
message. Figure 3.3 illustrates superstep 0 on the example shown in figure 3.2, where
term v1 computes the list δ(v1) = {t1, t2}, then it broadcasts it to each member.

• Superstep 1:

– Based on messages sent in superstep 0, each tweet vertex ti calculates inverse doc-
ument frequency idfvj = n

|δ(vj)| , where n is the number of tweets. Then it updates
the edge’s weight between it and each term vertex vj to be the tf-idfij = tfij × idfvj .
Each tweet vertex ti can determine the set of its neighboring tweetsNi, and sends its
tf-idf feature vector (xixixi) to all elements in the set Ni. As shown in figure 3.4, tweet
t1 sends a message to tweet t2 containing term id and tf-idf weight of each term that
appears in t1.

• Superstep 2:

– Each tweet node ti receives the tf-idf vector xjxjxj , ∀j ∈ Ni, then it calculates the cosine
similarity Sij , ∀j ∈ Ni. Finally it calculates the variance of its similarities using
equation 3.2 and writes it to HDFS. In addition, for each tweet ti the ids of all tweets
that have similarity values with ti above certain ε are written in the HDFS as conflict
tweets to this tweet. Conflict tweets are tweets that are similar to this tweet, which
means they cannot both be detected as two different topics.

Finally, a centralized component sorts the tweets based on the variance of their similarities
and selects the top tweets with the highest variances that don’t conflict with each other as the
topics.

3.2.2 Giraph Optimizations

Running this implementation on one time slot containing 20, 000 tweets results in 282 seconds
which is a large delay, therefore, one optimization is applied in superstep 1. In order to calculate
the cosine similarity between a pair of tweets, each tweet needs to know from the other tweet only
its tf-idf weights of the terms shared between them and its norm. Therefore, each pair of tweets
doesn’t need to share the tf-idf weights of non-shared terms. After applying this optimization,
the running time of Giraph approach on 20, 000 tweets is reduced to 163 seconds.

18



Figure 3.3: Giraph Superstep 0

Figure 3.4: Giraph Superstep 1

Another optimization is to let each term vertex vj send its tf-idf weights with all the tweets
in the set δ(vj) along with the set itself in superstep 0 instead of sending the set alone. By doing
this there is no need to send the tf-idf weights in superstep 1 which saves 4 bytes integer of term
id during the communication between pairs of tweets. Applying this optimization, the running
time on 20, 000 tweets is reduced from 163 seconds to 84 seconds.

The final optimization is to complete all the computation within Giraph without the need
to write an intermediate output to the HDFS, read this output and process it in a centralized
component. We use Giraph aggregator for this purpose, where Giraph has a two-level hierarchy
of aggregators. The first level is on each worker where the values are partially aggregated on
each machine then the partially aggregated value is forwarded to the second level on the master
machine to obtain the final aggregated value. The aggregator approach is described as follows:

• When a worker aggregator receives a new tweet’s variance message, it scans its sorted list
of candidate tweets, if the new tweet conflicts with a tweet with higher variance, then it will
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Table 3.1: Running Time, Storage and Communication Bounds of Girpah Algorithm
Running Time Communication Cost Memory Usage

Superstep 0 O(dv) O(d2v) O(d2v)
Superstep 1 O(dtt) O(dtt) O(dtt)
Superstep 2 O(dtt) O(1) O(dtt)

neglect the new tweet and keep the list unchanged. However, if it doesn’t, the aggregator
will add the new tweet to the list in the right position that maintains the list sorted then it
will remove the tweets that have a lower variance and conflict with the new tweet, if there
are any. If the size of the list exceeds m, it will only keep the top m tweets.

• When the master aggregator receives worker aggregators’ lists, it will combine and sort
them. Finally it will choose the top variance tweets that don’t conflict with each other as
topics.

The worker aggregator runs in O( n
w
m) and the master aggregator runs in O(wmlog(wm))

wherew is the number of workers. Therefore, the total aggregator runs inO( n
w
m+wmlog(wm)).

The parameterm should be chosen carefully, because a small value ofm could decrease the topic
quality, as each worker aggregator makes a local decision by reporting its m tweets as candidate
exemplars. However, its m tweets could conflict with other worker aggregators’ tweets and
therefore redundant topics will be detected as different topics, which harms the quality of the
detected topics. On the other side, large values of m increases the message size that worker
aggregators send to the master aggregator. Therefore, the parameter m has a great impact on the
results and needs to be tuned carefully.

Giving that dv is the average degree of each term vertex, dtt is the average degree of each
tweet vertex with the other tweets and dtv is the average degree of each tweet vertex with term
vertices. Due to the tweet length limitation (140 characters) dtv is a small constant number.
Table 3.1 shows the running time, storage and communication bounds on Giraph algorithm per
vertex, where the memory usage is calculated as the messages size generated by the vertex plus
the memory used by the vertex compute method. As shown in the table, the running time is
linear. However, the communication cost and the memory usage are quadratic.

3.2.3 Memory Optimized Giraph Approach

The memory requirement of the previous approach is quadratic in the average term degree O(d2v)
which does not scale for a large number of tweets. Thus, in this section, another Giraph approach
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is proposed to reduce the memory requirement to be linear so that the approach can handle large
volume of tweets. The quadratic order of memory requirements appeared due to sharing the
set of neighboring tweets by each term vertex among the neighboring tweets. This step can be
avoided by reformulating equation 3.1 to be:

var(S:i) =
1

n− 1
(
∑
tj∈Ni

S2
ij − 2µi

∑
tj∈Ni

Sij + nµ2
i ) (3.4)

Where µi = 1
n

∑
vj∈Ni

Sij . As the set Ni can be expressed as ∪vk∈Wi
δ(vk). Then, the term∑

tj∈Ni
Sij in equation 3.4 can be computed as the sum of

∑
tj∈δ(vk) Sij,∀vk ∈ Wi and with

considering that if two tweets ti and tj share more than one term, then only the term vertex
with highest id, vk, calculates the

∑
tj∈δ(vk) Sij . The terms

∑
tj∈Ni

S2
ij and µi can be computed

in a similar manner. Thus, to compute equation 3.4, some term vertices can compute parts of
it (

∑
tj∈δ(vk) Sij) and then the tweet vertex adds these parts together without the need to send

messages of quadratic order. To achieve this every term vertex vk needs the feature vector of the
tweets ti ∈ δ(vk) and this information is obtained as follows:

• Each term vertex broadcasts its degree to its neighboring tweets.

• Using the term vertex degree, the tweet vertex calculates each term tf-idf weight, constructs
its tf-idf vector and sends it to all its neighboring term vertices.

• Each term vertex vk calculates the similarity between each pair of tweets tf-idf vectors,
and then it sends for each tweet the values

∑
j∈δ(k) Sij and

∑
j∈δ(k) S

2
ij . Also, term vertex

sends to each tweet its C top conflicting tweets (the ones with ε close similarity to it). If
two tweets share more than one term, then only the term vertex with highest id calculates
their pairwise similarity.

• Each tweet vertex adds the sum of similarities and the sum of square of similarities it
receives from its term vertices and using these two values, it can compute its variance of
similarities using equation 3.4. In addition, each tweet vertex unions the conflict lists it
receives from its term verticies. Finally, the tweet sends its variance and conflict list to the
worker aggregator.

• Each worker aggregator accumulates the tweets it receives and then sends them to the
master aggregator. Finally, the master aggregator performs the same logic explained in the
previous section.
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Table 3.2: Running Time, Storage and Communication Bounds of Memory Optimized Girpah
Algorithm

Running Time Communication Cost Memory Usage
Superstep 0 O(dv) O(1) O(dv)
Superstep 1 O(1) O(1) O(1)
Superstep 2 O(d2v) O(Cdv) O(Cdv)
Superstep 3 O(1) O(1) O(Cdtt)

Table 3.2 shows the bounds on running time, communicate cost and memory usage of the
memory optimized Giraph approach. As shown in the table, the communication cost and the
memory usage are linear, however the running time is quadratic. As Giraph is paralleling the
running time of the vertices across the distributed machines, the overall running time is reduced
to O( n

w
d2v).

3.2.4 Sliding Windows

Time windows that shift with a step smaller than the window size are called sliding windows. By
using sliding windows, topics that span multiple windows and are not frequent in any of them
can still be detected. In the aforementioned Giraph model, the sliding windows are handled by
running different instance of Giraph for each time slot. However, one drawback of handling
sliding windows in such a way is the overhead of initializing multiple Giraph instances and also
the tweets that exist in two consecutive time slots are loaded twice. This section describes how
to extend the Giraph model to handle the sliding windows without the need to run different
instances for each time slot.

The basic idea to handle sliding windows is to keep the Giraph instance running and only load
the part of the graph that changes between time slots. Given a time window of size l and a shifting
of sliding window of size s. At each time slot, s tweets are removed and s tweets are inserted.
Instead of removing vertices from Giraph and adding new ones, the identities of s vertices that
are supposed to be removed will be changed so that they can represent the new tweets instead
of the old ones. Changing the identity of a tweet vertex means updating its connections with
the term vertices such that it becomes connected only to the terms that are contained in the new
tweet. This can be done by removing the connections between the tweet vertex and the term
vertices and adding connections to the terms that are in the new tweet. Applying this model will
save the cost of initializing Giraph multiple times and the cost of deleting and inserting vertices.

In order to maintain load balancing between worker machines, the file containing the new s
tweets is divided into w parts, where w is the number of worker machines, and then each worker
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arbitrary selects one vertex from the vertices it has to read the worker corresponding part of the
input file, then this vertex will update the topology of the graph.
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Figure 3.5: US Election Running Time Comparison

3.3 Experimental Results

3.3.1 Experimental Setup

Experiments are conducted using Giraph 1.0.0, Hadoop 1.0.4 and GraphLab v2.2. Four datasets
are used which are:

• US Election Dataset: which contains 578, 837 tweets. It is divided into 26 time slots,
where each time slot has around 20, 000 tweets.

• Super Tuesday Dataset: which contains 353, 650 tweets. It is divided into 8 time slots,
where some time slots contain around 20, 000 tweets and others contain around 60, 000
tweets. However, there is one time slot that contains around 80, 000 tweets, we have re-
moved this time slot from our evaluation as the native implementation’s memory footprint
for it is 25GB.

• 120M Tweets Dataset: which contains around 120 million tweets covering more than 500
events and collected by [30]. As we were able to retrieve only portion of the tweets, we
were unable to use the ground truth and therefore only the running time is reported.
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Figure 3.6: US Election Topic Recall Comparison

• 2M Streaming API Tweets: which contains 2 million English tweets collected using the
streaming API.

Four types of experiments are conducted, which are:

• Validating Topic Quality Experiments: The purpose of this experiment is measuring the
quality of the topics detected by the centralized native implementation and Giraph dis-
tributed implementations. This experiment is performed on a cluster of three machines,
each contains 16GB RAM and i7 3.6GHz CPU using US Election and Super Tuesday
datasets. Sliding window is not used in this experiments as these datasets have non-
overlapping time slots. In addition, the effect of changing m of the aggregator is measured
on the quality of the topics. The quality of the detected topics is measured using:

– Topic recall: Percentage of topics successfully retrieved.

– Term precision: Number of correct keywords in the detected topics over the total
number of keywords.

– Term recall: Number of correct keywords over the total number of keywords in the
ground truth topics.

– Running Time: Total time needed to detect the topics.

Topic precision is not used as not all the topics covered by Twitter appear in news sources
and the ground truth for these datasets are constructed from news sources. Paper [2] that
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Figure 3.7: US Election Term Precision Comparison

constructed these datasets and their ground truth have also neglected the Topic precision
for the same reason.

• Related Work Comparison Experiments: The purpose of this experiment is to compare
the running time and the topic quality of proposed approach to other topic detection ap-
proaches like SVD, LDA, LSA and K-means. This experiment is performed on the same
settings as in validating topic quality experiment.

• Sliding Window Experiment: The purpose of this experiment is to compare the running
time of sliding window Giraph implementation to the Giraph implementation, while in-
creasing the number of tweets. This experiment is performed on the same settings as in
validating topic quality experiment.

• Scalability Experiment: To measure the scalability of the proposed approach, it is eval-
uated on clusters of 8, 16 and 32 machines. Each machine contains 30.5GB RAM and 4
cores.

3.3.2 US Election and Super Tuesday Results

Four variations of the distributed implementation are compared to the centralized native Java
implementation, which are:

• Giraph Initial: Giraph implementation with no optimization.
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Figure 3.8: US Election Term Recall Comparison

• Giraph Term-based: Giraph implementation with the optimizations that let each term
vertex vj send its tf-idf weight in superstep 0 along with the set δ(vj).

• Giraph Aggregator: Giraph Term-based implementation which uses an aggregator to
compute the topics instead of the centralized component, where m = 5000.

• Memory Optimized Giraph Aggregator: Memory optimized Giraph Algorithm, C is
chosen to equal 1000 empirically as it achieves the best topic quality.

All runs are repeated three times and 95% confidence interval is reported in the figures.
Figures 3.5, 3.6, 3.7 and 3.8 show the results of running time, topic recall, term precision and
term recall respectively on US election dataset. Results show that our proposed Giraph approach
is able to speedup the native implementation by a factor of∼ 2X, while maintaining or increasing
the topics quality. Also, results show that changing the number of detected topics has a small
effect on the running time as the dominating time in the Exemplar-based approach is the time to
calculate the similarity matrix between the tweets. Moreover, Figures 3.9, 3.10, 3.11 and 3.12
show the results of running time, topic recall, term precision and term recall respectively on
Super Tuesday dataset. Results also show that Giraph approach is able to speedup the native
implementation by a factor of ∼ 3X with good topic quality.

Table 3.3 shows the average CPU idle time, memory usage and the number of the transmit-
ted bytes for the Native implementation and different variations of Giraph implementation. As
shown in the table, memory optimized Giraph Aggregator has the lowest memory footprint in
both US election and Super Tuesday datasets. It also achieves the lowest CPU utilization in
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Figure 3.9: Super Tuesday Running Time Comparison

both US election and Super Tuesday. However, the number of transmitted is the largest due to
the aggregators usage and that the worker aggregators send all tweets to the master aggregator.
For both Giraph Initial and Giraph Term-based, the variance of each tweet is stored by Giraph
in the HDFS and then a centralized Java component collects these variances from the HDFS to
select the representative exemplars. Thus, the number of transmitted bytes in this case is the
sum of the bytes transmitted within Giraph and the bytes sent between all the machines and the
machine that runs the centralized component. In the case of US Election dataset the number of
bytes transmitted in the Giraph Term-based approach is dominated by the bytes transmitted by
Giraph, that is why using the aggregator in the Giraph Aggregator did not reduce the number of
transmitted bytes. On the other hand; for the Super Tuesday dataset, the bytes sent between ma-
chines by the centralized Java component are the dominating, as a result the cost introduced due
to using the aggregator in the Giraph Aggregator approach is out-weighted by eliminating the
significant part of the network overhead (moving the data between machines to the centralized
Java component). This appeared in Super Tuesday dataset only as Super Tuesday time slots have
more tweets than US election, therefore HDFS cost increases while worker aggregators sent data
is fixed (m = 5000).

For measuring the effect of changing the parameter m on the aggregators, we varied the
parameterm from 100 to 5000 and measured the change in the running time and the quality of the
detected topics on the US election dataset. As shown in figure 3.14, increasing m increases the
running time of Giraph as the aggregator runs in O( n

w
m+wmlog(wm)). In addition, figure 3.13

shows that increasingm increases the topic recall and as the detected topics increased, the topic’s
quality (term precision and term recall) decreased.
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Figure 3.10: Super Tuesday Topic Recall Comparison

3.3.3 Related Work Comparison

We compared our approach to the Graphlab implementations as Giraph has no existing imple-
mentation of the related work. It is known in the literature that Graphlab implementations are
faster than Giraph, therefore showing that our Giraph approach is faster than Graphlab related
work implementations, means that if our approach was implemented in Graphlab it will be even
faster. Our approach is compared against LSA, NMF using alternating least squares, Kmeans
and LDA. As Graphlab implementation of LDA takes the running time as a parameter, we chose
to set the running time of LDA to be equal to the maximum time needed by our approach to
finish one time slot which is 75 and 275 seconds for US election and Super Tuesday datasets
respectively. Each run is repeated three times and 95% confidence interval is reported. For US
election dataset we achieved the second lower running time after Kmeans, while algorithms like
NMF and LSA don’t scale with increasing the number of topics as shown in figure 3.15. Note
that LSA and NMF took more than 6500 seconds. However, we didn’t show the complete bar in
figure 3.15, so that the figure can be clear. Our approach obtains the highest topic recall except
for 10 topics, where LDA was higher with around 6% while our approach was higher than LDA
with around 15% and 27% for 50 and 100 topics respectively as shown in figure 3.16. For term
precision, our approach achieves the highest value for all number of topics as in figure 3.17,
while maintaining good term recall as shown in figure 3.18.

The running time on the Super Tuesday dataset follows the same pattern, where Kmeans
achieves the best running time, while LSA does not scale as shown in figure 3.19. Our algorithm
achieves the best topic recall and term precision while maintaining a good term recall as shown
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Figure 3.11: Super Tuesday Term Precision Comparison

in figures 3.20, 3.21 and 3.22. It worth noting that LSA achieves the highest term recall as it
detects a few number of correct topics which is reflected in its low topic recall.

3.3.4 Giraph Sliding Window

In this section, Giraph sliding windows technique is compared against the Giraph Aggregator.
Both systems run using three workers on 10 time slots, which are a subset of 120M tweets dataset.
Table 3.4 shows the running time of both systems by varying the window size l and fixing the
shifting size s to 10, 000, the number of topics to be detected to 10 and the number of tweets to
keep at each aggregatorm to 5000. Results show that Giraph Sliding Windows technique is faster
than Giraph Aggregator and achieves a speedup of factor 19X over the native implementation.
However this gap gets reduced as the window size increases, as the computation time dominates
the total running time instead of Giraph setup and vertices’ loading time.

3.3.5 Scalability Results

To demonstrate the efficiency of our proposed system in a real-world scenario, we have collected
2 million English tweets using the streaming API, which is the amount of collected English
tweets in 10 minutes according to Twitter statistics. In this experiment, we have varied the
number of machines from 8 to 16 and 32 machines and measured the running time. Each run is
replicated three times and the 95% confidence interval is reported. As shown in figure 3.23 using
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Figure 3.12: Super Tuesday Term Recall Comparison

only 16 machines, the topic detection task is finished in around 7 minutes, which is less than the
10 minute window and therefore using a small cluster of 16 machines is enough for our approach
to run in a real settings and to detect topics from real Twitter streams.

3.4 Summary

In this chapter, we have proposed the scalable Exemplar-based topic detection approach and we
have shown its efficiency compared to the centralized implementation and compared to other
related work like K-means, LDA, NMF and LSA. In the next chapter, we will propose another
method for detecting topics from Twitter which is the Local Variance-based Clustering.
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Dataset Approach Avg CPU
Idle Time

(%)

Avg
Memory
Size (GB)

Number of
Transmitted

Bytes

US Election

Native Implementation 86.91% 9.35 —

Giraph Initial 86.01% 10.07 3.69× 1012

Giraph Term-based 84.75% 7.77 2.13× 1012

Giraph Aggregator 84.56% 7.62 1.18× 1013

Memory Optimized
Giraph Aggregator

93.12% 5.30 2.19× 1013

Super Tuesday

Native Implementation 86.71% 7.74 —

Giraph Initial 86.54% 9.84 1.23× 1013

Giraph Term-based 83.46% 9.61 1.25× 1013

Giraph Aggregator 81.46% 9.03 5.13× 1012

Memory Optimized
Giraph Aggregator

92.57% 4.63 2.19× 1013

Table 3.3: CPU, Memory and Network Analysis of Native Implementation and Giraph Dis-
tributed Implementations (Number of topics = 100)

Table 3.4: Running Time Comparison (in Seconds) for Giraph Sliding Windows using 120M
Tweets Dataset

Approaches
n

20000 50000 100000

Native Implementation 75.0 518.0 1975.0
Giraph Aggregator 33.1 43.5 107.7
Giraph Sliding Window 24.0 31.9 102.6
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Figure 3.14: Aggregator Parameter m Effect on Running Time (Number of detected topics = 10)
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Figure 3.15: US Election Running Time Related Work Comparison
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Figure 3.16: US Election Topic Recall Related Work Comparison
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Figure 3.17: US Election Term Precision Related Work Comparison
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Figure 3.18: US Election Term Recall Related Work Comparison
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Figure 3.19: Super Tuesday Running Time Related Work Comparison
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Figure 3.20: Super Tuesday Topic Recall Related Work Comparison
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Figure 3.21: Super Tuesday Term Precision Related Work Comparison
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Figure 3.22: Super Tuesday Term Recall Related Work Comparison
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Chapter 4

Local Variance-based Clustering

In this chapter, we address the problem of topic detection from a different perspective by propos-
ing Local Variance-based Clustering. Local Variance-based Clustering first defines the data
points densities based on their similarities. The proposed local variance measure is calculated
based on the variance of the data points similarity histogram and is shown to well distinguish
between core, border, connecting and outliers points. We demonstrate the effectiveness of the
clustering approach in different domains like control charts, protein and images datasets as well
as in the topic detection task.

4.1 Problem Definition

Given X ∈ Rn×d n data points in d dimensional space, our objective is to group them into
arbitrary shape and arbitrary density clusters C, such that:

minC
∑
Ci∈C

variance(Ci)

Where variance(Ci) = 1
|Ci|−1

∑
xj∈Ci(xj −µCi)

2 and µCi = 1
|Ci|

∑
xj∈Ci xj . The previous objective

function is NP-hard and in the next subsection we propose a greedily solution for it.

4.2 Local Variance Measure

While other approaches like DBSCAN use density to distinguish outlier points from the rest
of the points. Using the DBSCAN density measure reflects only the number of points within
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the neighborhood regardless of their distribution within this neighborhood, therefore DBSCAN
is unable to differentiate between points within sparse clusters, points within dense clusters and
points connecting two clusters. Figure 4.1 shows a blue point that connects two separated clusters
colored by red and green. In DBSCAN, as the density measure only cares about the number of
points in the neighborhood, it will consider the blue point as a core point and hence mistakenly
merge the two clusters. One way to alleviate this problem is by exploiting the distribution of
similarities between the data points within a certain neighborhood region. For example, by noting
that the blue neighborhood circle has green points and red points near its end and not within its
center, we can understand that the blue point is a connecting point.

Figure 4.2 shows four different types of points taken from one of the Chameleon 2D dataset
(10,000 data points), where red region represents the local neighborhood of a core point in a
dense cluster, yellow region represents the local neighborhood of a core point in a sparse cluster,
green region represents the local neighborhood of a connecting point that connects two different
clusters and finally the pink region represents the local region of an outlier. Our objective is to
develop a metric that can distinguish between these different types of points. The shown neigh-
borhood region is constructed using ε = 0.9. Figure 4.3 shows the local similarity histogram of
these points. As shown in the figure, the neighborhood region of the dense cluster point con-
tains all ranges of similarities and thus its similarity histogram is almost uniform. However, the
neighborhood region of the core point within a sparse cluster has missing similarity ranges and
therefore its similarity histogram tends to be more centered in smaller similarity buckets. Finally,
an outlier point has a lot of missing similarity ranges and its histogram tends to be much more
centered in smaller similarity buckets.

As we can see the similarity histogram of the data points encodes essential information about
the neighborhood points distribution and helps in discriminating between different points types
like core points, connecting points and outliers. This leads to the local variance measure, which
is a measure associated with each data point x and is calculated as the variance of the similarity
histogram of x. The similarity histogram contains only the local similarities; the similarities
between point x and its neighboring points (points with similarities≤ ε to x). The local variance
of each data point i is given by the following equation:

V (i) =
1

|NB(i)| − 1

∑
j∈NB(i)

(Sim(i, j)− µi)2

where µi = 1
|NB(i)|

∑
j∈NB(i) Sim(i, j), NB(i) is the set of ε neighbors (points with similar-

ities ≤ ε to i) of point i and Sim(i, j) is the similarity value between point i and point j. The
variance of the dense cluster core point is 0.5150, the variance of the sparse cluster core point
is 0.3960, the variance of the connecting point is 0.3251 and the variance of the outlier point
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is 0.0885. Thus, the variance values confirm our intuition that using variance can accurately
differentiate between the different types of points.

Figure 4.1: Syntactic Data for Illustrating the Difference between DBSCAN and LVC

Figure 4.2: Chameleon 2D Dataset Different Points Analysis

To further confirm our analysis that the local variance measure alone can accurately discrim-
inate the outliers, we have used the previous 2D dataset and only kept the points with local
variance greater than or equal 0.3. Figure 4.4 shows the original 2D dataset and the 2D dataset
after removing the outliers by just thresholding over the local variance measure. As shown in the
figure, local variance measure can well distinguish outlier points from other points.
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(a) Dense Cluster Point (b) Sparse Cluster Point (c) Connecting Point (d) Outlier Point
Figure 4.3: Similarity Histogram of Different Data Points

(a) Original Chameleon 2D Dataset (b) Dataset after Removing Outliers
Figure 4.4: Local Variance Measure Effect on Removing Outliers
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4.3 Variance Model of Flow

By using local variance measure, we can identify core points, connecting points and outliers.
Still an important question is how to group these points together? To answer this question, we
employ a DBSCAN like algorithm where some points share their cluster labels with some of
their neighbors. In order to illustrate how to choose the points that can share their cluster labels
and with which points these labels can be shared, we have divided the range of local variance
into buckets and assign a unique color to each bucket. Then, the color of each bucket is used
to draw the points within this bucket as shown in figure 4.5. Note that outliers using local
variance thresholding are removed from the figure. As we can conclude from the figure, interior
cluster points have higher local variance than border points in most of the cases. Therefore,
interior clustering points can share their labels with their neighbors while border points should
have limited sharing privileges to avoid merging two independent clusters. This motivates the
usage of a flow model, where interior points propagate their labels to their neighborhood and
border points only allowed to share their labels with other border points. This model is called the
variance model of flow.

Although discriminating the interior points from the border point is a challenging task, we use
a simple local variance thresholding mechanism to achieve that, where points with local variance
higher than or equal to t is marked as interior points and other points are labeled as border ones
after neglecting outlier points.

Figure 4.5: Local Variance Distribution
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4.4 Local Variance-based Clustering

The previous subsections suggest the usage of the local variance measure with the clustering
technique to assist in distinguishing between different types of points. Therefore, LVC technique
starts by getting the ε neighbors of each data point and then based on these local neighbors, LVC
calculates the local variance measure for each data point. Based on the local variance measure,
LVC neglects the outlier points, which are defined as points with local variance ≤ 0.1. After
that, LVC classifies the remaining points into two types, which are:

• Core Points: points with local variance ≥ t.

• Border Points: points with local variance < t.

After classifying the points, LVC sorts the points according to their local variance score from the
points with high local variance to the points with low local variance, so that it starts expanding the
clusters from the most core points to the border ones. LVC utilizes the DBSCAN expand concept.
It tries to expand the cluster of each data point i by retrieving its εexpand neighborhood points that
have the same or lower variance label to i as stated in the variance flow model explained in the
previous section. Then, data point i propagates its clustering label to its εexpand neighborhood
points and then LVC tries to further expand the cluster from the neighborhood points themselves,
until no new points are added to the cluster. After that, LVC selects a new unlabeled data point,
assigns a new clustering label to it and starts expanding the new cluster from this point. LVC
repeats the previous steps until all data points are labeled.

The difference between DBSCAN and LVC is that LVC uses a variance model of flow where
points in LVC are examined according to their variance values and interior points propagate their
labels to other interior points or border points and border points can only propagate their labels
to other border points. To differentiate core points from border points, a threshold t on the value
of the local variance is used. Furthermore, LVC uses the local variance measure to determine the
points densities, while DBSCAN just identifies the points densities by the number of points in
their neighborhood. Algorithm 1 shows the Local Variance-based Clustering pseudo-code. Note
that getPointNeighbors returns εexpand neighbors of point iwith V labels less than or equal
to point i.

Using LVC technique allows us to greedily minimize the within cluster variance objective
function, as each cluster is expanded by adding points similar to the points already within the
cluster and hence minimizing the within cluster variance. Additionally, each cluster expands
until it reaches border points and thus no other core points clusters are merged together in one
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cluster which also limits the deviation in the clusters variance.

Algorithm 1: Local Variance-based Clustering Pseudocode
Input: Data Matrix X ∈ Rn×d, ε, εexpand and t
Output: Plabels ∈ Rn, which represents clustering labels of each data point
NB ← getNeighbors(X , ε)
V ← getVariance(NB)
V ← removeOutliers(V) //mark outliers as −1
V labels← V
for i = 1 : Size(V) do

if V (i) ≥ t then
V lables← 2

end if
if V (i) 6= −1 then
V lables← 1

end if
end for
Points← sort(X , V ) // sort X descending based on V
P labels← zeros(n, 1)
V isited← zeros(n, 1)
for i = 1 : n do

if V isited(i) or V (i) == −1 then
continue

end if
PNB ← getPointNeighbors(X , i, εexpand, V labels(i))
Cnew ← initNewCluster()
Plabels(i)← Cnew
V isited(i)← 1
for j = 1 : Size(PNB) do

if V isited(PNB(j)) or V (PNB(j)) == −1 then
continue

end if
Plabels(PNB(j))← Cnew
Plabels(PNB(j))← 1
PNB ← PNB∪ getPointNeighbors(X , PNB(j), εexpand, V labels(PNB(j)))

end for
end for
Plabels← removeSmallClusters() //remove clusters with less than 1% of the data points as they
represent outlier clusters;
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4.4.1 Time and Memory Analysis

In this subsection, we discuss the running time and the memory complexities of the Local
Variance-based Clustering technique. For the running time, we can get the neighbors of all the
data points in O(dnlogn) using an indexing data structure that can retrieve the neighbors of each
data point in O(logn). Thus, the time complexity of LVC approach is O(dnlogn). In addition, the
memory complexity of LVC is O(kn), where k is the average number of ε neighbors of the data
points. Table 4.1 shows time and memory complexities of LVC compared to other clustering
techniques, where c is the number of K-means centroids, i is the number of iterations and t is the
number of neighbors used in spectral clustering (we use an optimal version of spectral clustering
that just stores the similarity between each data point and its t closest neighbors).

4.5 Experimental Results

This section discusses the experimental results of LVC 1 in different domains. In the first subsec-
tion, LVC is compared against DBSCAN, spectral clustering and mean shift using Chameleon
2D datasets and in the second subsection, we compare LVC technique to several other tech-
niques, which are K-means, DBSCAN, spectral clustering and affinity propagation using control
charts, ecoli and images datasets. In the last subsection, we compare LVC technique to K-means,
incremental batch K-means and DBSCAN in the task of topic detection from Twitter streams 2.
Note that, spectral clustering and affinity propagation are not used in the topic detection task as
they don’t scale with the number of the data points as will be shown in the second subsection and
the topic detection task needs scalable techniques.

4.5.1 Chameleon 2D Datasets Clustering

Four 2D Chameleon datasets 3 are used to compare LVC technique with DBSCAN, spectral clus-
tering and mean shift. To evaluate the clustering quality, we draw the 2D datasets and we discuss
the images segmentation in this subsection. In addition, euclidean distance is used to measure

1You can download LVC Matlab version from https://sourceforge.net/projects/
local-variance-clustering/files/LVC/

2K-means Matlab implementation was used, spectral clustering implementation was used from http://
alumni.cs.ucsb.edu/˜wychen/sc.html and affinity propagation implementation was used from http:
//www.psi.toronto.edu/index.php?q=affinity%20propagation

3You can download Chameleon datasets from http://glaros.dtc.umn.edu/gkhome/cluto/
cluto/download
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the distance between the points. To convert the euclidean distances into similarity values, we
normalize the euclidean distances and then let the similarities equal to 1 - euclidean distances.

Clustering parameters were adjusted based on the best data visualization quality for LVC and
DBSCAN. For spectral clustering, k was set to the number of clusters. For the first image row
(10,000 data points) in figure 4.6, only LVC (using ε = 0.9, t = 0.37 and εexpand = 0.981) were
able to detect the correct clusters, DBSCAN (using ε = 10 andMinPts = 3) has merged the two
upper clusters together and the two lower clusters together as they had connecting points between
them and DBSCAN was unable to distinguish connecting points from core and border points. For
the second (8,000 data points), third (8,000 data points) and fourth (8,000 data points) rows, both
LVC and DBSCAN were able to detect the correct clusters. In the second row, LVC parameters
were ε = 0.9, t = 0.4 and εexpand = 0.988, while DBSCAN parameters were ε = 5.9 and
MinPts = 4 and for the third row, LVC parameters were ε = 0.9, t = 0.4 and εexpand = 0.982,
while DBSCAN parameters were ε = 5 and MinPts = 4. Finally, for the fourth row, LVC
parameters were ε = 0.9, t = 0.4 and εexpand = 0.99, while DBSCAN parameters were ε = 3
and MinPts = 4.

Spectral clustering and mean shift were unable to detect appropriate clusters except for the
last row image where spectral clustering was able to detect the correct clusters. Spectral clus-
tering problem is raised from using K-means as the clustering algorithm after performing the
dimensionality reduction and thus the clusters tend to have spherical shapes.
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4.5.2 High Dimensional Datasets Clustering

Four high dimensional datasets are used to assist the performance of LVC, which are Synthetic
Control Charts (SCC), ecoli, COIL20 and pen digits datasets 4. The characteristics of these
datasets are shown in table 4.2. In this subsection, LVC technique is compared against K-means,
DBSCAN, spectral clustering (SC) and affinity propagation. Two versions of affinity propaga-
tion are used, which are affinity propagation median (APM) that sets the preference vector of
the affinity propagation to the median vector of the similarity matrix and affinity propagation
K (APK) which adjusts the preference vector given the number of clusters. In addition, three
measures are used for the comparisons, which are:

• F-measure: which is the weighted average of each cluster i F-measure F (i), where F (i) =
2P (i)R(i)
P (i)+R(i)

, P (i) is the precision of cluster i and R(i) is the recall of cluster i.

• Jaccard coefficient: which is the distribution of the Jaccard coefficient for every cluster
produced by the selected technique compared to the most similar cluster in the ground
truth results, as defined in [19].

• Running time: which is the total time required to detect the clusters.

Clustering parameters were adjusted based on the best F-measure and Jaccard coefficient for
LVC and DBSCAN. For spectral clustering and affinity propagation K (APK), k was set to the
number of classes. In addition, euclidean distance is used to measure the distance between points
for ecoli, COIL20 and pen digits datasets. To convert the euclidean distances into similarity
values, we normalize the euclidean distances and then let the similarities equal to 1 - euclidean
distances. For Synthetic Control Charts, we use Pearson correlation as our similarity measure as
it was reported to perform better in the control charts datasets.

Table 4.3 shows that LVC (using ε = 0.75, t = 0.5 and εexpand = 0.5) has achieved the best
clustering quality in SCC dataset by 10% higher than DBSCAN (using ε = 0.5 andMinPts = 1)

4You can download the used datasets from the following links:

• SCC: https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+
Time+Series

• Ecoli: https://archive.ics.uci.edu/ml/datasets/Ecoli

• COIL20: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

• Pen Digits: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+
of+Handwritten+Digits
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in the Jaccard coefficient and is the third fastest approach with gap of around 0.2 seconds to
spectral clustering. In SCC dataset, LVC was able to obtain 3 correct clusters out of the 5 clusters
as it was merging the ”Up-trend” cluster with the ”Up-shift” clusters and was merging ”Down-
trend” cluster with the ”Down-shift” cluster, because of the persistence of strong connecting
points. Additionally, DBSCAN was also merging the two ”Up” clusters and the two ”Down”
clusters. DBSCAN was also unable to discover the ”Normal” cluster as it has relatively low
density as mentioned in [45]. LVC (using ε = 0.44, t = 0.2 and εexpand = 0.8) is also the
best in the Ecoli dataset as shown in table 4.4; it had achieved higher Jaccard coefficient over
DBSCAN (using ε = 0.16 and MinPts = 9) by 14% and is the second fastest approach in the
running time after spectral clustering with a gap of only 0.02 seconds. Moreover, in COIL20
dataset, LVC (using ε = 0.78, t = 0.9 and εexpand = 0.7) has exceeded spectral clustering and
affinity propagation by around 20% in the F-measure and has accomplished the best running
time as shown in table 4.5. It is worth noting that DBSCAN (using ε = 5 and MinPts = 1)
has a comparable clustering quality with LVC in COIL20 dataset but LVC is much faster than
DBSCAN by around 38 seconds. Finally, for pen digits dataset, affinity propagation was unable
to run as it needed more memory than our machine (8 GB RAM). As shown in table 4.6, the best
clustering quality is achieved by spectral clustering, while LVC (using ε = 0.51, t = 0.42 and
εexpand = 0.889) is the second best with a gap of 2% in the F-measure and 1% in the Jaccard
coefficient. However, LVC was able to accomplish that in time much less than spectral clustering
with a speedup of around 20X. Furthermore, LVC was better than DBSCAN (using ε = 28 and
MinPts = 3) by 7% in the F-measure and 6% in the Jaccard coefficient.

4.5.3 Twitter Topic Detection Task

In this subsection, we use LVC technique (using ε = 0.3, t = 0.1 and εexpand = 0.7) to detect
topics from Twitter streams by reporting the centroids of the clusters detected by LVC. Twitter FA
cup dataset [2] is used to evaluate this task which contains around 20,000 tweets about football
cup event and the number of topics k to be detected is set to 2, 4, 6, 8 and 10. Moreover, the
dataset was represented using TF-IDF scheme and cosine similarity was used. Four measures 5

are used to compare the techniques, which are:

• Topic recall: Percentage of topics successfully retrieved.

• Term precision: Number of correct keywords in the detected topics over the total number
of keywords in these detected topics.

5The evaluation code was used from http://www.socialsensor.eu/results/datasets/
72-twitter-tdt-dataset
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• Term recall: Number of correct keywords over the total number of keywords in the ground
truth topics.

• Running time: Time required to detect the topics.

In this task, LVC is compared to other clustering techniques that are used for topic detection
and scale well with the Twitter data like K-means, DBSCAN (using ε = 0.5 and MinPts = 10)
and incremental batch K-means (IBK). Parameters were chosen empirically based on the ones
that yield the best topic detection quality. Table 4.7, 4.8, 4.9 and 4.10 show the topic detection
quality and the running time. As shown in the tables, LVC achieves the best topic recall in all the
time slots except when the number of detected topics is 2 and achieves the best term recall and
term precision except when the number of topics is 4. For the running time, the worst running
time was for DBSCAN, then LVC, then K-means variations. LVC running time was more than
K-means variations by only around 3 seconds, which is still a reasonable time for topic detection.

4.6 Summary

In this chapter, we have proposed the Local Variance-based Clustering (LVC) and we have evalu-
ated LVC using different datasets from different domains. Additionally, we have evaluated LVC
in the topic detection task. In the next chapter, we will conclude the thesis and discuss several
future work extensions.
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Table 4.1: Time and Memory Complexity of Different Clustering Techniques
Approach Time

Complexity
Memory

Complexity
LVC O(dnlogn) O(kn+ dn)
DBSCAN O(dnlogn) O(dn)
K-means O(ncdi) O(dn)
Affinity Propagation O(in2) O(n2)
Spectral Clustering O(dn2) O(nt)

Table 4.2: Datasets used for Experiments
Approach Data Points

Number
Dimensions

Number
SCC 600 60
Ecoli 336 7
COIL20 1440 1024
Pen Digit 10992 16

Table 4.3: Synthetic Control Charts (SCC) Dataset Results
Approach Fmeasure Jaccard Running

Time
(Seconds)

LVC 0.78 0.60 0.3
DBSCAN 0.61 0.50 0.54
K-means 0.66 0.43 0.28
APM 0.43 0.26 2.73
APK 0.53 0.33 48.54
SC 0.59 0.34 0.06

Table 4.4: Ecoli Dataset Results
Approach Fmeasure Jaccard Running

Time
(Seconds)

LVC 0.78 0.64 0.04
DBSCAN 0.8 0.50 0.08
K-means 0.63 0.35 0.02
APM 0.29 0.11 0.74
APK 0.67 0.41 9.47
SC 0.62 0.34 0.13
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Table 4.5: COIL20 Dataset Results
Approach Fmeasure Jaccard Running

Time
(Seconds)

LVC 0.87 0.64 0.25
DBSCAN 0.82 0.68 38.44
K-means 0.66 0.39 2.46
APM 0.26 0.14 12.17
APK 0.64 0.37 99.50
SC 0.60 0.34 0.27

Table 4.6: Pen Digits Dataset Results
Approach Fmeasure Jaccard Running

Time
(Seconds)

LVC 0.76 0.47 12.69
DBSCAN 0.69 0.41 27.03
K-means 0.64 0.33 8.76
SC 0.78 0.48 260.32

Table 4.7: FA cup Topic Recall
Approach k=2 k=4 k=6 k=8 k=10
LVC 0.769 0.923 0.923 0.923 0.923
DBSCAN 0.769 0.769 0.769 0.769 0.769
K-means 0.769 0.846 0.769 0.923 0.923
IBK 0.846 0.769 0.846 0.846 0.692

Table 4.8: FA cup Term Precision
Approach k=2 k=4 k=6 k=8 k=10
LVC 0.187 0.178 0.178 0.178 0.178
DBSCAN 0.167 0.167 0.167 0.167 0.167
K-means 0.167 0.182 0.167 0.161 0.156
IBK 0.176 0.173 0.152 0.139 0.156
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(m) (n) (o) (p)
Figure 4.6: Clustering results on Chameleon 2D datasets. Column one, two, three and four
represent the results for LVC, spectral clustering, DBSCAN and mean shift respectively

52



Table 4.9: FA cup Term Recall
Approach k=2 k=4 k=6 k=8 k=10
LVC 0.622 0.582 0.582 0.582 0.582
DBSCAN 0.556 0.556 0.556 0.556 0.556
K-means 0.556 0.600 0.556 0.537 0.509
IBK 0.580 0.578 0.500 0.460 0.512

Table 4.10: FA cup Running Time
Approach k=2 k=4 k=6 k=8 k=10
LVC 3.186 3.186 3.186 3.186 3.186
DBSCAN 5.150 5.150 5.150 5.150 5.150
K-means 0.096 0.129 0.147 0.161 0.189
IBK 0.096 0.129 0.164 0.159 0.206
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have proposed two different scalable techniques for detecting topics from Twit-
ter streams. The first technique is a scalable Exemplar-based topic detection approach, which
is implemented using Apache Giraph. Results show that Giraph sliding windows implemen-
tation speeds up the native implementation up to a factor of 19X using 100, 000 tweets, while
achieving topic quality similar to or higher than the native implementation topic quality. Giraph
approach is compared to other distributed approaches like distributed K-means, LSA, LDA and
NMF and is shown to achieve the highest topic quality with good running time. Additionally,
Giraph approach is deployed to detect topics from real-time Twitter streams and its scalability is
shown.

The second proposed technique for topic detection is a LVC, which uses a local variance
measure to calculate the density of the points based on the variance of their similarity histogram.
It was shown that using the local variance measure distinguishes well between core points, border
points, connecting points and outliers. Experimental results show that LVC outperformed K-
means, DBSCAN, spectral clustering and affinity propagation in clustering quality using control
charts, ecoli and images datasets, while maintaining a good running time. Moreover, results
show that LVC was able to detect topics from twitter with higher topic recall by around 15% and
higher term precision by around 3% over DBSCAN.
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5.2 Future Work

5.2.1 Extend Exemplar-based Topic Detection to ”Think-like Graph” Model

A new ”Think like a Graph” Model is proposed in [40]. The basic idea behind the new model
is that the communication between the vertices within the same partition can be performed with-
out exchanging messages, as all the information about these vertices are located on the same
partition. The new model uses the information that each partition has, so that the information
can flow freely inside one partition. In this paradigm, the computations are expressed in terms
of what each partition has to do as opposed to what each vertex has to do in the vertex-centric
paradigm. Employing this model will reduce the running time. However, to reduce the running
time the system assumes that the vertices are partitioned such that there are no crossing edges
between partitions, while this process is very costly. Thus, an efficient partitioning heuristic is
needed to make use of the ”Think like a graph model”.

5.2.2 Exemplar-based Topic Detection Partitioning Strategies

Using a partitioning strategy that reduces the number of edges between different partitions will
reduce the communication overhead. Although graph partition problems fall under the category
of NP-hard problem, the following heuristic partitioning strategy can be used to place the tweet
vertex and the term vertices that are connected to it on one partition. However, this may introduce
imbalanced partitions. To alleviate the imbalanced partitions problem, one of the dynamic load
balancing techniques as in [15] or graph Voronoi diagram based partitioner used by Blogel [43]
can be used.

5.2.3 Exemplar-based Topic Detection Parameters Tuning

As the parameters k, ε and the window size are important parameters that have great effect on
the running time and the detected topic quality of the Exemplar-based topic detection approach.
It is essential to select these parameters carefully. Therefore, several approaches are needed
to be developed to automatically tune the values of these three parameters and to adjust them
dynamically in different time slots as the tweets keep coming.
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5.2.4 Distributed Local Variance-based Clustering

As shown in this thesis, Local Variance-based Clustering is scalable as it runs in O(nlogn) where
n is the number of data points. However, it assumes that the data matrix fits in the memory of
one machine, which is not a valid assumption in case of big data. Therefore, extending the com-
putations of Local Variance-based Clustering to work on a distributed machines is an important
task that will enhance the scalability of the approach.

5.2.5 Local Variance-based Clustering Parameters Tuning

Local Variance-based Clustering uses three parameters which are ε, t and εexpand, which have
a large effect on the quality of the detected clusters. Thus, developing an automatic parameter
tuning techniques to adjust these parameters is essential.
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