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Abstract

Unlocking the full potential of residential-sector energy efficiency gains will require the
efforts of external agents (whether in the public, private, or not-for profit sectors) engaging
with individual homeowners in order to encourage the adoption of energy-saving measures.
To achieve this result efficiently and effectively, such agents require an easily-obtained
understanding of the “energy context” governing a household’s energy use and efficiency
investment decisions: factors from the number, characteristics, attitudes, and values of
occupants to the physical state of a dwelling to broader geographic, financial, and legal
considerations. Continuously-emerging sources of contextual and household-specific data
have the potential, if integrated appropriately, to provide this understanding – but to what
extent can this be achieved with current methodological tools, and can the state-of-the-art
be improved?

This research has attempted to address this question, with an emphasis on the physical
characteristics of homes and the behavioural patterns of their occupants. A review of
existing characterization techniques in the literature yielded a set of methodological best
practises and theoretical shortfalls, which were integrated with physical first principles and
empirically-observed statistical trends to develop new modelling approaches to make use of
hourly whole-house electricity consumption data, aiming to improve upon the state-of-the-
art. A subset of these models (chosen for their speed and stability of parameter estimation)
were compared to existing techniques: while one of the novel approaches yielded improved
behavioural disaggregation performance and a simpler formulation compared to existing
alternatives, there would seem to remain considerable opportunity for improvement, with
results suggesting several potentially-promising areas for further research.
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Chapter 1

Introduction

1.1 Energy in society

Access to a stable supply of useful energy has been a key factor in the development of human
society throughout history – from the discovery of fire to the agricultural revolution, the
coal-fired industrial revolution, the nuclear age, and beyond. The increasing availability of
energy to perform work has stimulated growth in material production and consumption,
further increasing demand and incentivizing newer and increasingly ecologically-intensive
ways of extracting energy from the biophysical systems in which humanity exists.

The role of energy in society and the ecological implications of harnessing it extend across
scales and systems, profoundly impacting both local socio-ecological systems and global
networks, from the basic provisioning of material sufficiency and employment to the ef-
fects of resource extraction activities on health and biodiversity and international conflict
stemming from the depletion and scarcity of global sources and sinks.

These impacts are not independent: actions at one scale are linked through a complex
system panarchy (Walker et al., 2012) to coupled socioeconomic and biophysical systems
at levels both above and below. Human prosperity (as well as that of all other life on Earth)
is critically dependent on the state of these interdependent systems. Anthropogenic energy
extraction and use is at present a major driving force in moving global system states away
from the “safe operating space” defined by its finite biophysical limits (Rockstrom et al.,
2009). Indicators such as the Human Appropriation of Net Primary Productivity (Bishop
et al., 2010) explicitly demonstrate the increasing impact of human development on global
biophysical energy flows.

The single-greatest sustainability challenge posed by energy use may be its contributions
to climate change: sixty-nine percent of global anthropogenic greenhouse gas emissions are
attributable to extracting and harnessing energy (International Energy Agency, 2014a).
However, local energy-related air and water pollution also place significant stresses on the
health of individuals in diverse socioecological systems and lead to biodiversity loss, while
political instability and global socioeconomic inequalities often relate to energy security
and a lack of affordable energy access for economic development (International Institute
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for Applied Systems Analysis, 2012).

Fundamental shifts in the nature and scale of societal energy use are necessary to bring
material (and thus energy) consumption into balance with the planet’s biophysical limits
(Jackson, 2009) in the face of increasing world population and individual levels of affluence.
Unfortunately, navigating the transition to a sustainable global energy system is by no
means a trivial exercise. Addressing the depth and breadth of energy issues and the far-
reaching implications of radical change in a system so fundamentally linked to society’s
socioeconomic prosperity requires conscientious and systems-aware innovation that spans
domains of knowledge (Wickson et al., 2006) and scales of governance (Leach et al., 2012).
As with almost any global system, the diverse priorities and often-entrenched interests of
the stakeholders involved have historically prevented quick and decisive action.

While the specifics of energy transition strategies vary widely and are frequently contro-
versial, all can be fundamentally reduced to two core components: reducing the negative
impacts of harnessing energy (moving to sustainable energy production) and reduc-
ing the amount of energy required to deliver value to end-users (increasing conservation
and energy efficiency). While both will be vital and complementary elements of ongo-
ing energy system transitions (International Energy Agency, 2014b), this thesis will focus
on the latter: demand-side efforts into reducing the raw inputs required to deliver sat-
isfactory energy services represent high-impact, immediate, and economically-attractive
contributions to addressing energy sustainability challenges. However, the means by which
efficiency gains can be made are highly variable across energy end-use contexts, and require
case-specific considerations. Such considerations are discussed in the next section.

1.2 End-use energy efficiency

1.2.1 Energy use across sectors

Societal energy use is spread across numerous sectors, most notably transport, industry,
commercial/institutional, and residential. Figure 1.1 presents total energy end-use across
these sectors at three scales: within Canada, across OECD (wealthly, developed) countries,
and globally. Differing social, economic, geographic, and technical factors drive widely
varying energy consumption patterns across and within each of these sectors: for example,
energy delivery in the transport sector is dominated by portable, high-energy-density oil
products, while large, stationary industrial processes draw on a more diverse supply mix
including lower-cost coal. Households in developing countries obtain more energy services
from simpler biofuels such as wood, while residential and commercial consumers in devel-
oped countries draw on a more convenient supply mix dominated by high-quality electricity
and natural gas (International Energy Agency, 2013a).

This heterogeneity across nations and sectors results in highly variable requirements and
motivations for achieving energy efficiencies: there is no “one-size-fits-all” approach to
reducing energy use while maintaining energy services. Perhaps the most important “non-
panacea” to recognize is the free market: while highly-energy-intensive industries may be

2
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Figure 1.1: Share of energy use by sector in Canada, OECD countries, and globally for the
year 2013. Total consumption for each jurisdiction is reported in exajoules. (Data from
International Energy Agency (2013a))

strongly motivated by economic incentives for efficiency gains, other profit-driven com-
mercial energy users may be less sensitive to reduced energy costs relative to non-energy
expenses. Energy markets that fail to fully price the environmental and social externalities
of consumption further weaken economic incentives for efficiency. While the invisible hand
has driven significant innovation historically, it may not be a reliable or sufficiently expe-
dient tool for achieving the widespread efficiency gains required to mitigate and adapt to
ongoing and potentially irreversible environmental degradation. This market failure may
be most pronounced in the residential sector, where individual actors are rarely rational
profit-maximizers (Wilson and Dowlatabadi, 2007).

1.2.2 Challenges and opportunities in the residential sector

Challenges to residential efficiency

The residential sector constitutes a significant share of society-wide energy use (over 19%
in Canada and 25% globally - see Figure 1.1), with correspondingly significant opportu-
nities for efficiency gains, it has historically proven more resistant to the implementation
of effective conservation initiatives. Figure 1.2 illustrates one Ontario electricity savings
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estimate that identifies roughly equal technical (theoretical) potential for future energy sav-
ings across the industrial, commercial, and residential sectors. In spite of this theoretical
parity, estimated achievable residential potential is considered to make up a much smaller
proportion of total achievable savings in both the short- and long-term (ICF Marbek, 2014).

Figure 1.2: Technical vs achievable potential projections across Ontario sectors (ICF Mar-
bek, 2014).

While the purely financial case for energy efficiency and conservation investments in com-
mercial and industrial settings has been made (demonstrated by the existence of energy
service companies, virtual energy audit services, etc), a significant “efficiency gap” (Hirst
and Brown, 1990) exists between economically attractive efficiency investments in the res-
idential sector and demonstrated adoption. Many homeowners may weigh social norms
or environmental considerations much more heavily than favourable economic arguments
when considering energy efficiency investments - if such investments are even considered in
the first place.

A lack of energy education, access to capital, time, and trust on the part of homeowners
may present barriers to adopting energy efficiency investments (Parker et al., 2003). From
the perspective of private sector entrepreneurs, higher customer acquisition costs, increased
variability in property and occupant characteristics (and thus ability to deliver savings) and
lower quality of readily available data can present a more challenging business environment
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relative to serving the commercial and industrial sectors (Wesoff, 2014).

Co-benefits to improved residential efficiency

While economic arguments alone may be insufficiently effective in incentivising widespread
adoption of residential energy efficiency measures, such measures can provide numerous co-
benefits beyond the direct benefits of reduced energy demand in homes. Financial savings
are leveraged into social benefits for economically vulnerable households who may struggle
to pay energy bills while providing for other basic necessities. Energy retrofitting represents
both a long term community investment and stimulates inherently local economic activity
and job creation. Reducing consumption allows homes and communities to obtain a greater
proportion of their energy needs from locally-generated sources, increasing resilience to
exogenous supply influences and keeping funds in the community.

1.3 Understanding “energy contexts”

Residential households represent a highly heterogeneous population with diverse priorities
and varying potential, willingness, and ability to make and benefit from energy efficiency
investments. Successfully engaging with residents in conservation programs requires an
understanding of individual situations and values – the “energy context” in which a house-
hold operates. Understanding this context can be a significant asset when working to drive
efficiency gains, but obtaining such knowledge is not necessarily a trivial undertaking.
Thankfully, new tools are emerging to assist in this process.

Here the term “energy context” is defined as a shorthand for the broad set of drivers
that influence a household’s energy consumption and energy-related decisions, in terms of
energy services procured, the commodity energy required to deliver those services, and the
willingness and ability of the household to change energy use patterns through technical
or behavioural means. These factors can include the number of occupants in a home and
the nature of their occupancy, individual occupant characteristics, attitudes, and values,
the physical state of a dwelling and the nature of its subsystems and broader geographic
context, and financial and legal factors that may constrain or motivate occupant decision-
making.

An understanding of a household’s energy context can provide insights into the incentives
most likely to motivate the household and can help guide occupants to take the most
effective actions possible to reduce energy consumption in their specific situation (Wilson
and Dowlatabadi, 2007).

These benefits can be operationalized through better targeted household engagement and
outreach in residential energy efficiency programs, and tailored suggestions and feedback in
behavioural programs, while an understanding of household-level behavioural patterns or
physical characteristics can help create more representative control groups in intervention
studies. Households can use elements of their own energy contextualizations to better

5



understand their energy use and be better informed about costs and benefits of energy-
related investments or participation in future transactive energy markets based on their
specific situations.

Society’s energy generation and delivery systems are presently undergoing technical trans-
formations from relatively static, centralized distribution channels to integrated, inter-
communicating networks of distributed energy resources, producing and consuming energy
dynamically in response to shifts in demand and supply – the “smart grid” (Farhangi,
2010) and “smart energy networks” (Belanger and Rowlands, 2013) more generally. These
technical innovations are widely expected to result in increased delivery network resilience,
allowing deeper integration of renewable generation and energy storage technologies, and
enabling energy efficiency gains through a deeper understanding of end-user consumption
trends and issues, increasing the overall sustainability of energy systems.

In particular, the increasing availability of household hourly electricity demand data in
smart-meter-transitioned jurisdictions (including Ontario) is beginning to provide rich data
sources for examining both physical and social household characteristics (Depuru et al.,
2011). Taken with other forms of increasingly available data, including weather history,
municipal mapping resources, census demographic information, and real-estate or prop-
erty assessment records, there is unprecedented potential to contextualize and break down
a particular household’s energy use through rapid, inexpensive, indirect inferential tech-
niques.

1.4 Research question

Limiting the effects of anthropogenic climate change to a 2 ◦C temperature rise, as targeted
in the 2015 Paris Climate Agreement, will require significant gains in worldwide energy
efficiency over the next decades (International Energy Agency, 2013b). Given global so-
ciety’s current social, economic, and technological context, it is unlikely that traditional,
consumer-driven market forces alone will be sufficient to unlock the full potential of resi-
dential sector efficiency gains at the rapid pace required: a broader portfolio of approaches
would involve external agents (whether in the public, private, or not-for profit sectors) en-
gaging with individual homeowners in order to actively encourage the adoption of efficiency
measures. To achieve this result efficiently and effectively, such agents require an easily-
obtained understanding of the context governing a household’s energy use and efficiency
investment decisions. Continuously-emerging sources of contextual and household-specific
data may have the potential, if integrated appropriately, to provide this understanding or
“energy context” – but to what extent can this be achieved with current methodological
tools? Is the state-of-the-art sufficient, or can it be significantly improved?

This manuscript will attempt to address these questions, with a particular focus on the
scalable inference of physical characteristics and occupant behavioural trends in residential
homes. Chapter 2 will review existing means of household characterization and provide
more detailed comparisons and critiques of approaches judged to be the most promising in
the context of real-world social, economic, and technical constraints. Chapter 3 will com-
bine the insights from this theoretical assessment with empirical results from the analysis
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of a representative dataset to inform the development of a novel technique for household
characterization. Chapter 4 will provide an empirical assessment of the performance of
this characterization approach relative to the existing literature. Chapter 5 will discuss
the implications of these results with reference to possible applications, and Chapter 6 will
summarize insights from the completed work and outline areas for future research.
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Chapter 2

Literature Review

There are a wide range of possible approaches to gaining information about a household’s
energy context (as defined previously in Section 1.3). This chapter will review historical and
current techniques and best practises as established by the existing literature, beginning
with general characterization approaches and gradually focusing in on specific techniques
in energy data analysis.

2.1 General methods for household characterization

2.1.1 Traditional direct characterization methods

Traditional techniques for characterizing the energy-use context of individual households
are the simplest and most direct, measuring exact characteristics of interest. Unfortunately,
the price for such clarity is the expense and time commitment required to collect the
relevant data, limiting the scalability of such approaches. While the indirect approaches
identified in the next section are likely to have much lower marginal costs of data acquisition
and be more applicable at larger scales, at their best they will generally serve to reconstruct
information that could have been acquired directly through traditional means. As such,
it remains important to understand the value and potential of these traditional direct,
high-marginal-cost approaches, including novel extensions that may serve to leverage their
results for greater impact moving forward.

Audits

An energy audit is a process in which a trained professional physically inspects a dwelling
to determine how various subsystems, including heating and cooling, contribute to the
building’s energy consumption, and identifies opportunities for improvement. Performing
an on-site audit is clearly the most direct and accurate means of assessing a dwelling’s
physical energy use characteristics. Unfortunately, the process is somewhat slow and ex-
pensive (a typical audit duration is on the order of hours and costs several hundred dollars),
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while also intruding on the homeowner’s schedule and privacy. As a result, uptake among
homeowners tends to be low, even when cost barriers are reduced through subsidized pro-
grams. For example, an early review of US utility-sponsored audit initiatives by Hirst et al.
(1981) found that most programs had less than 5% participation rates, and regional studies
suggest uptake has not increased considerably in the intervening 30 years (Song, 2008).

Rather than treating audit insights as a desired final output of deductive inference (the
general premise of approaches in subsequent sections), some studies have used physical
characteristics of specific households inductively to better understand average impacts on
energy consumption. For example, Ndiaye and Gabriel (2011) used a sample of audit
results in combination with surveys (see below) to infer the independent average impact of
individual household characteristics on overall consumption.

One potentially promising opportunity that has generally not been investigated in the liter-
ature to date is the concept of using a relatively small sample of household audits to predict
the physical characteristics of specific dwellings in a wider population, based on trends in
more readily-accessible indicators such as the data sources for the low-marginal-cost char-
acterization techniques outlined in the next section. This would enable a smaller quantity
of costly-to-acquire audit data to be leveraged into specific yet widely-applicable insights
on the characteristics of many more dwellings, in much the same way that automated
property valuations are performed currently: Municipal Property Assessment Corpora-
tion (2015) provides one such example. While such a concept is beyond the scope of this
research, it merits further investigation.

Surveys and Interviews

Ultimately, energy consumption is only a means to the specific end of provisioning desired
energy services. While audits are effective tools for collecting precise data about physical
building characteristics, taken alone they do not provide explicit information about the
requirements, motivations and behavioural tendencies of household members and the de-
sired outcomes of their energy use, key factors in developing a complete understanding of
a household’s energy context. Household surveys, or their sophisticated-but-costly coun-
terparts, occupant interviews, can provide more formal, direct insights into the social and
behavioural dynamics influencing a household’s energy use.

A large body of work has developed relating a household’s social characteristics (determined
via surveys) with energy-use and conservation uptake behaviours. Guerin et al. (2000)
provides a meta-analysis of 45 such studies and identifies multiple consistently-significant
social factors influencing energy behaviours, including income, age, education, and home
ownership. Shi (2011) and Sanquist et al. (2012) both investigate US Residential Energy
Consumption Survey data to establish links between lifestyle factors, economic conditions
(income, commodity prices, etc) and total energy consumption.

As referenced previously, Ndiaye and Gabriel (2011) combined survey data about social
characteristics of households with audit data describing physical characteristics to under-
stand the relative impact of various factors on total energy consumption. While the goal of
that research was to identify the most significant contributors to aggregate household con-
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sumption at a population average level, such findings could also inform characterizations
of households given sociodemographic survey results.

While surveys and interviews excel at collecting social data, they are perfectly capable of
collecting physical data as well: Gaasch et al. (2014) investigate a physical characterization
approach whereby physical properties of a building are collected through a survey or inter-
view, then input into a building model to evaluate estimated energy performance. Natural
Resources Canada’s HOT2XP software is designed with similar principles, producing a
sophisticated HOT2000 building energy model based on “only a small amount of critical
information” (Natural Resources Canada, 2015) that can be provided by a homeowner
directly.

While not usually as expensive or time-consuming to perform as physical audits, interviews
are still a costly means of data collection. Surveys essentially automate the role of the
interviewer (at the expense of some flexibility and interactivity), but remain intrusive for
the interviewee. Since both rely on household self-reporting, they can also suffer from
reduced accuracy or precision compared to other characterization methods, particularly in
relation to specific quantitative or technical data. However, no other technique assessed
here can provide the same accuracy and depth of social data at the individual household
level, an important consideration given the highly heterogeneous nature of the residential
energy sector.

2.1.2 Emerging indirect characterization methods

The availability of increasingly rich datasets and the ability to combine these in novel ways
has created the potential for inferring household energy characteristics via highly-scalable,
low-marginal-cost indirect analysis techniques. While the quality of resulting estimates
will never be as reliable as a direct measurement, the ability to apply the resulting insights
to deliver the kinds of benefits discussed in section 1.3 across large populations may often
outweigh inferential uncertainties.

Furthermore, new kinds of data coupled with novel analytical techniques have the poten-
tial to enable richer characterizations then have previously been possible via traditional
direct measurement methods. For example, Hutchinson et al. (2006) studied integrating
known dwelling (physical) and household (social) characteristics with the goal of detecting
potential underheated homes, but concluded that the approach lacked sufficient predictive
power to provide meaningful targeting capabilities. It is reasonable to suspect that the
availability of high-resolution consumption and temperature data would significantly en-
hance the ability to identify specific thermal situations - what’s more, a smart thermostat
could report this information directly, eliminating the need for probabilistic inference alto-
gether. Four categories of indirect, data-driven characterization approaches are discussed
here.
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Household-level public data sources

While physical or social household data can be costly to collect directly, some character-
istics are already collected by various institutions and may be publicly accessible. For ex-
ample, Ontario’s Municipal Property Assessment Corporation (MPAC) maintains detailed
information on physical characteristics of residential dwellings (size, age, number of floors,
dates of renovations, heating and cooling equipment, etc), which can be accessed by any
member of the public, for a fee. Similarly, Hogör and Fischbeck (2015) used Florida voter
registration and property tax records to determine significant household-level social and
physical predictors of potential for energy-efficiency gains, allowing for the identification of
specific homes with high savings potential.

Aggregate social and geographic profiling

As previously established, socioeconomic factors play an important role in understanding
a household’s energy context, but surveys (traditionally the primary vessel for learning
about such factors) are not a particularly scalable means of information acquisition. While
explicit, household-level information is clearly optimal for forming a household energy
profile, it is not always available: in such cases, population averages of geographic areas
(such as neighbourhoods) can often serve as reasonable approximations to the individual
values.

Such a claim is not meant to dispute the ecological fallacy, which describes the perils of
assuming that the characteristics of individuals in a population are uniformly identical to
population averages. It only serves to note that, at sufficiently-small geographic scales, the
effects of homophily (the tendency for similar individuals to be more closely linked) can
cause relevant household-level social characteristics (occupant count, age, income, educa-
tion, etc) to correlate with the characteristics of other nearby households. The same will
also tend to be true for physical dwelling properties (age, size, heating systems, etc), al-
though for more practical reasons (historical subdivision development, building codes and
available technologies at the time of construction, etc).

Such local homogeneity makes it possible to perform useful analyses based on publicly-
available aggregate social data (such as census records or polling station voting records)
rather than information on individual households. For example, Morrison and Shortt (2008)
combined census-derived aggregate sociodemographic data with sampled household-level
physical characteristics to develop a fuel poverty risk indicator based on dwelling location
in a community. Similarly, Song (2008) and Zhao (2013) both studied the influence of
social factors (based on neighbourhood-level census statistics) on participation rates in
local energy audit programs.

Remote sensing

Certain physical household characteristics can be observed remotely: for example, the
integrity of a building’s thermal envelope can be assessed according to the rate of heat loss
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through a dwelling’s exterior surface area. Hay et al. (2011) combine aerial photography
with thermal imaging to generate roof heat loss estimates for individual buildings on a
city-wide scale. Similarly, several startup companies currently offer vehicle-based drive-by
thermal imaging services in the same vein as Google StreetView (LaMonica, 2013). Coupled
with appropriate image recognition software, such services have the potential to provide
audit-style building envelope assessments without the need for an auditor to physically
enter the premises.

Household-level private data sources

The rise of the “smart” or “connected” home has begun to result in an increase in volume
and availability of data collected by various household systems. While it remains to be
seen how specifically the smart home will develop, it is clear that the information measured
and collected by such services has the potential to be incredibly valuable in the automated
deduction of a household’s behavioural and physical energy context.

At this early stage, one of the most commonly-adopted connected home technologies is
the smart thermostat, an internet-connected device with the capability to perform more
sophisticated temperature and energy use optimizations on behalf of the homeowner. Of
particular interest in the context of developing a household’s energy profile is the ability
for units to log interior temperature, heating and cooling system states, and even occupant
activity levels - indeed, it is through analysis of these data that such devices are able to
gain a nuanced understanding of a household’s energy needs and optimize heating and
cooling loads accordingly.

Analysis of data from smart home appliances is unique relative to the other low-marginal-
cost characterization approaches described above in that it requires the customer to pur-
chase and install specific hardware in the household (“behind the meter”, as described from
an energy utility perspective). As such, unlike previously-considered approaches, such data
are not readily available to an external analyst, nor are they even collected uniformly (not
all households will be willing or able to adopt such technology, for instance). As such,
while the study of information-rich “private” household-level data sources is no doubt a
fertile approach to household characterization, it is particularly difficult to achieve uniform
scaling and equitable distribution of the resulting benefits across all households.

Energy consumption analysis

While the previous characterization approaches have focused on observing upstream causes
contributing to a household’s energy context (building characteristics, behavioural pat-
terns, geographic and socioeconomic contexts, etc), another obvious option is to study its
downstream effect: that is, energy consumption itself. Unsurprisingly, studying energy
use data can provide significant insights into a household’s overall energy context. The
introduction of advanced metering infrastructure quantifying household electricity use at
hour, minute, or second timescales has made highly information-dense data on this topic
readily and uniformly accessible, both to utilities and household occupants. As such, the
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vast majority of current energy characterization work focuses on the analysis of interval
electricity data, and it is seen as a key to unlocking significant physical and behavioural
energy savings in the future (Armel et al., 2013).

Companies like OPower, Bidgely, and PlotWatt leverage massive whole-house electricity
datasets and advanced analysis techniques to provide deeper and more scalable engage-
ment with households through the identification of directly-actionable opportunities for
improved energy efficiencies (Wesoff, 2014). While this business model has been largely
proven in the commercial and industrial sector, its viability in the diffuse and heteroge-
neous residential sector has yet to be established. The growth focus of venture-backed
companies also tends to favour scalability and consistency of service across jurisdictions
over a grassroots community-specific approach, which may result in optimizing economic
returns at the expense of program customization, effectiveness, and integration with the
local initiatives acting on characterization insights (energy efficiency programs, community
social marketing initiatives, etc).

While the private sector has important contributions to make to the household characteri-
zation challenge, it should not be the sole solution provider. A significant body of academic
literature also exists in this area, which will be reviewed in the following section.

2.2 Approaches to energy data analysis for household char-
acterization

This section will outline multiple approaches to energy data analysis for household char-
acterization as outlined in existing literature. In particular, intrusive monitoring, intrusive
training with non-intrusive monitoring, and non-instrusive training and monitoring tech-
niques will be compared.

2.2.1 Descriptive appliance-level analysis (intrusive monitoring)

Direct load monitoring of individual (labelled) electrical circuits provides a significantly
richer description of behavioural and physical characteristics that constitute a household’s
overall energy use and context. Of course, such information is what is described above as
a private data source: it requires specific hardware to be installed in individual dwellings
(at significant cost) and so is not collected universally across all dwellings.

Nevertheless, the data extractable through such “intrusive” observation techniques can
provide significant and often-generalizable insights into consumption trends, occupant be-
haviours, and resulting policy implications (Koksal et al., 2015), or allow for the automation
of strategic shifts or reductions in consumption (Bozchalui et al., 2012). As such, while
the analysis of intrusively collected data is generally not a scalable direct characterization
technique, from a research perspective it has attracted significant attention, including for
the purposes of validating many of the more scalable characterization processes described
in subsequent sections. For example, Kolter and Johnson (2011) collected high-resolution
appliance-level load data from multiple households for the purposes of training and testing
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non-intrusive load monitoring techniques - the dataset has subsequently been applied as a
standard benchmark for evaluating high-resolution disaggregation techniques.

Disaggregated household load data can contribute more to characterization efforts than
just a ground-truth reference for evaluating disaggregation algorithms, however. Rowlands
et al. (2015) provide an overview of 13 different intrusive load studies with key findings
including physical and social predictors of specific load uses (applying many of the pre-
viously described household characterization techniques at the disaggregated appliance
level), seasonal and geographic trends in appliance use patterns, relative magnitude of
various household loads, and variations in appliances’ load cycle efficiencies.

2.2.2 Induction and inferential load analysis (intrusive training, non-
intrusive monitoring)

One approach to striking a balance between the data-richness of intrusive load monitoring
and its inherent lack of scalability is to intrusively collect data from a representative sample
group of households or over a limited period of time, and then inductively generalize
any observed trends to a broader population or observation period (the sample household
approach is in fact the implicit aim of much of the intrusive load monitoring research
reviewed by Rowlands et al. (2015) and described above).

Non-instrusive load monitoring

The field of “non-intrusive load monitoring” (NILM) provides the most actively-researched
example of such a characterization approach. Traditionally, NILM has involved the collec-
tion of appliance power load profiles at high temporal resolutions (on the order of fractions
of seconds or smaller intervals, and thus requiring specialized monitoring hardware), and
the subsequent training of statistical models to disaggregate matching load signatures from
whole-house aggregate consumption data (measured at equally high resolutions). Berges
et al. (2010) and Zeifman and Roth (2011) provide reviews of specific statistical techniques
for achieving this.

More recently, however, the rise of smart metering, making interval data widely available
but at much coarser timescales than traditionally studied, has motivated the development
of NILM techniques that can be applied at much lower sampling rates. Unforunately, while
smart meters provide a widely-distributed non-intrusive aggregate monitoring platform, the
process of collecting the required disaggregate training data remains costly and not easily
scaled across households, for reasons identical to those discussed in the previous section.
Multiple approaches have been proposed to address this challenge. Basu et al. (2015) are
among those who propose a temporary intrusive approach whereby a household’s disag-
gregate loads would be explicitly monitored via submetering for an initial training period,
with the collected data informing future statistical disaggregations. However, given that
the costs of disaggregated data collection are typically dominated by equipment installa-
tion, this approach does little to enhance scalability. Others, such as Rodŕıguez Fernández
et al. (2015) make use of a centralized repository of submetered appliance data that can
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then be used to classify aggregate loads in other households. In this situation, however,
variability in appliance profiles across households may reduce disaggregation performance.
Finally, as a compromise between training data cost and quality, some approaches involve
direct occupant participation in an initial training exercise, where known appliances are
activated at specific times and the resulting profiles are extracted from the household’s
aggregate consumption data (Griffiths, 2015).

While recent advances in NILM have provided reasonable disaggregation performance at
comparatively low sample rates, the fundamental fact remains that significant information
losses occur when electricity consumption is aggregated to hourly intervals (compared to
minute or second intervals), imposing fundamental limits on the ability of NILM techniques
to perform reliably at the temporal resolution typical of currently deployed smart meter
systems. While it has been suggested that existing systems could be adapted through
remote software updates to record consumption at more frequent intervals (Armel et al.,
2013), it not clear that utilities would be sufficiently motivated to do so, given the the effort
required to both perform the transition and manage the significantly larger volume of data
that would result. As such, harnessing NILM techniques for reliable characterization may
ultimately require household technology investments (such as in-home display products to
collect smart meter data at more frequent intervals) that would prevent scalability and
accessiblity objectives from being achieved.

Instrusive training on non-energy characteristics while classifying on aggregate
energy data

The idea of collecting some “training” dataset via intrusive means in order to calibrate a
non-intrusive energy-use characterization model is by no means limited to electrical dis-
aggregation work and the collection of specific appliance signatures. For example, after
“instrusive” collection of the likelihood of households participating in an energy efficiency
program (by offering the program to a subpopulation and recording household uptake),
Zeifman (2014) developed a model to predict participation likelihood given a household’s
energy consumption profile. Generally speaking, in situations where costly-to-obtain but
representative sample data already exists (survey or audit results, for example) and can
be linked at a household level to more readily-available data with sufficient discriminatory
power (such as hourly electrical loads), an “intrusive training, non-intrusive monitoring”
approach presents a valuable potential tool for household characterization. In practise,
however, these data availability conditions are not always easily satisfied.

2.2.3 Correlationary load analysis (non-intrusive training and monitor-
ing)

Useful insights can often be gained from comparing or cross-referencing a household’s
electricity consumption with other accessible data sets, avoiding the need for intrusive
information collection. Such analyses may use electricity data from other households to
identify likely similarities in energy profiles (clustering) without necessarily needing to
understand what sociotechnical characteristics a specific represents. Alternatively, physical
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domain knowledge of causal influences on energy use may be used to leverage non-energy
observations to generate a contextualized characterization of a household.

Load Profile Clustering

Socially- and technically-similar households tend to reflect their likeness in their electricity
use patterns. For example, dwellings that are vacant during the day (while occupants are at
work or school, for example) will often have repeatedly lower consumption around midday
and higher consumption in the mornings and evenings, while homes that are occupied all
day will have a different daily load “shape”. Similarly, heavily air-conditioned homes in the
same region will experience contemporaneous demand spikes during summer afternoons,
while electrically-heated homes will increase their loads in concert on winter nights. Other
statistical metrics besides direct consumption levels can be used for grouping as well: for
example, electricity users better able to take advantage of demand response programs may
reveal more variability in their loads over the course of the day (Jang et al., 2016).

Given electricity consumption history for a group of households, these patterns can be
exploited to estimate which houses have the most similar overall energy contexts - using
similarities in load profiles as a proxies for similarities in deeper, harder to measure so-
ciotechnical characteristics. A number of statistical techniques exist for performing this
analysis: specific methods for extracting representative features from consumption history
and grouping (clustering) the results are reviewed and compared by Chicco (2012). In
each case, the focus remains on grouping likely-similar households, not necessarily under-
standing the nature of the defining characteristics of a group (although that may have
been performed implicitly as part of the feature extraction process, or could still occur as
a subsequent characterization step). In some situations, such as creating control groups
for electricity intervention studies, such “context-free” clustering may be the only charac-
terization required.

Domain-knowledge-derived load characterization

In many situations, the characterization question of interest concerns the sociotechnical
context of an individual house, rather than which households are most likely to be similar
to one another. Several means of achieving this task have been proposed that involve
leveraging contemporaneous external factors known to exert a causal influence on household
electricity consumption. In the most basic case, these involve a regression analysis of
electricity consumption as a function of exterior temperature (Fels, 1986; Birt et al., 2012).
More sophisticated approaches have also acknowledged and accounted for the sequential
nature of electricity use readings, either through autoregressive time series approaches
(Espinoza et al., 2005; Ardakanian et al., 2014) or probabilistic Markov methods (Huang
et al., 2013; Albert and Rajagopal, 2015).

These approaches can compensate for a lack of detailed, intrusively-obtained information
about a household’s energy use by pairing easily accessible information (such as weather
or the time of day) with electricity data through well-established relationships (such as the
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effects of exterior temperature on energy use or the cyclical nature of daily, weekly, and
annual consumption patterns). The details of these methods are outlined in the following
section.

2.3 Domain-knowledge-based approaches to electrical load
characterization

This section outlines several methods for applying domain knowledge of the properties
of household electricity consumption to analyze load data in combination with exogenous
data sources. In particular, thermal regression models, time-series patterns, and conditional
Markov model approaches are presented.

2.3.1 Thermal regression models

PRISM

The Princeton Scorekeeping Method, or PRISM, was introduced by Fels (1986) as a means
for developing weather-normalized energy use profiles of buildings, in order to more accu-
rately quantify fuel savings resulting from efficiency retrofits. The classic PRISM approach
models monthly energy use as a linear relationship between heating fuel consumption and
heating-degree-day temperature records, with the fuel consumption intercept α represent-
ing temperature-independent (e.g behavioural) consumption (such as use of gas appliances)
and the slope βh representing the sensitivity of the building’s energy use to changes in ex-
ternal temperature (reflecting factors such as heat loss rates and furnace efficiency). Both
parameters are determined by an ordinary-least-squares fit to the data. The heating-degree-
day reference temperature τh is also determined from the data via iterative square-error
minimization. Stram and Fels (1986) extend the basic model to electric heating and cooling
by introducing a second regression parameter βc and cooling-degree-day reference temper-
ature τc to be estimated.

While developed primarily as a feature extraction tool for intervention analyses, PRISM
involves the development of behavioural and physical household characterizations (α, β,
τ) as intermediate products. Researchers including Hogör and Fischbeck (2015) have since
applied the PRISM characterization methodology independently of any intervention study
context.

Three-lines smart meter model

While the PRISM approach to household characterization is grounded in physical con-
siderations, the precision of possible estimates is inherently limited by the low temporal
resolution of its input data. The introduction of advanced metering infrastructure recording
hourly (if not more frequent) electricity use provides a significant opportunity to enhance
the analytic potential of PRISM in the age of the smart meter. Birt et al. (2012) developed
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Figure 2.1: Classic PRISM approach to parametrizing a household’s base fuel consumption,
heating system temperature gradient, and internal reference temperature (Fels, 1986)

a three-regime (heating, passive, cooling) linear model regressing hourly household smart
meter data on outdoor temperature as a means to characterize a household’s key thermal
properties with higher-resolution data.

In addition, rather than fitting a single trend line to hourly observations, this “three lines”
approach further characterizes a household’s energy profile by providing linear fits to the
first, fifth (median) and ninth deciles of a household’s electrical load after binning to
uniform temperature increments. This approach also allows for a temperature gradient in
the “passive” temperature regime (between heating and cooling).

2.3.2 Hybrid time series / regression models

PRISM and the three-lines model provide straightforward, direct insight into a dwelling’s
key physical characteristics (the state of its building envelope and heating systems), but the
explicit behavioural insights offered are minimal - only thermal system activation thresh-
olds and baseload or average temperature-independent consumption values are estimated.
While more detailed behavioural patterns could be assessed by performing dummy variable
regressions on times of day, week, or year, similar in method - although not in motivation
- to the regression approach to intervention analysis taken by Newsham et al. (2011), a
direct regression implicitly assumes independent consumption observations, thus ignoring
the serially-correlated nature of the time series data, and fails to acknowledge the sequential
behavioural patterns observable in hourly smart meter data. Accounting for the autocor-
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Figure 2.2: Three-regime, three-decile regression approach for parametrizing a household’s
heating, cooling, and base load characteristics (Birt et al., 2012)

related nature of such data becomes increasingly important at higher temporal resolutions.

Time series statistical techniques provide means for modelling this serial correlation. Such
methods have historically been applied to aggregate electricity data for purposes of statis-
tical load forecasting – Livera et al. (2011) provide one example – with less attention given
to estimating model parameters that correspond to meaningful physical or behavioural
indicators on a household scale. To date, those approaches that do pursue this goal of
characterization (if only as one result among others) do so through a combination of au-
toregression (AR, where consumption values are regressed on other consumption values
preceding them in a sequence) and standard regression techniques involving covariate time
series (such as exterior temperature) and dummy variables (such as time of day or week)
capturing cyclical or other sequentially-derived trends. Two such approaches, those of
Espinoza et al. (2005) and Ardakanian et al. (2014), are elaborated here.

Periodic autoregressive time-series characterization

Espinoza et al. (2005) were one of the first to apply time series techniques to an explicit
thermo-behavioural characterization effort (albeit at the electrical substation, not house-
hold, level) by estimating electrical heating load via a fixed-threshold four-regime (cooling,
passive, and two levels of heating) regression on external temperatures while simultaneously
modelling behavioural contributions via day-of-week and month-of-year regression dummy
variables and an autoregression on the first through forty-eighth preceding observations -
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what is known as an AR(48) model. As such, in addition to the effects of exogenous factors,
each hourly observation is formulated as a linear combination of the hourly activity over
the past two days.

Furthermore, a unique set of the 48 autoregression coefficients is fit for each of the 24
hours of the day, creating what is known as a periodic autoregressive model, or PAR(48).
As such, the autoregressive component of the behaviour model results in 48 × 24 = 1152
autoregressive coefficients alone - while such numerous parameters can provide a good sta-
tistical fit to data, they contain little human-parseable insight into behavioural patterns or
broader energy contexts. The implications of the estimated best-fit weight for electricity
readings 35 hours previous to all readings taken at noon, for example, are at best unclear.
Of course, the interpretability of model parameters is not a concern in the context of de-
mand forecasting, the model’s primary intended application, and the approach is frequently
referenced in that literature (Kyriakides and Polycarpou (2007) provide one such example).

Hybrid seasonal-periodic autoregressive time-series characterization

Ardakanian et al. (2014) present several modifications to Espinoza’s work. Most notably,
the periodic autoregressive model is combined with a seasonal autoregressive model in
which consumption in a given hour is defined not as a linear combination of values in
preceding hours, but instead as a linear combination of values at the same hour in the
preceding days of the same “type” (weekday or weekend/holiday). In addition, coeffi-
cient periodicity is extended from the autoregression to include the thermal regression
coefficients, allowing for varying correlations between external temperature and household
power consumption at different times of day (in PRISM’s notation, 24 seperate β-values
for each thermal regime). Two new “occupancy” exogenous indicator variables are also in-
troduced to indicate when a household’s consumption is in the highest or lowest population
decile for a given hour of day and temperature (in theory suggesting that the household is
abnormally full or empty). The regression coefficients for these variables are also allowed
to vary according to time of day.

The choice to eschew autoregression on previous hours in favour of autoregression on pre-
vious days is interesting in that it implicitly suggests that electrical loads 24, 48, 72, etc
hours ago have a direct influence on present demand, while loads one, two, or three hours
ago have no influence whatsoever - a seemingly counterintuitive premise.

Finally, at first glance, the decision to allow for variable thermal regression coefficients ac-
cording to time-of-day would seem to provide interesting opportunities to capture behavioural-
driven influences on household heating requirements. However, from a physical perspective
(as elaborated by PRISM), these coefficients correspond to the dwelling’s building enve-
lope properties and thermal system efficiency, characteristics unlikely to fluctuate over the
course of a day (one exception could be the opening and closing of windows). Thermal
factors likely to be both more significant and more variable, such as changes to thermostat
setpoints, the influence of resistive heat dissipation from internal loads (cooking appliances,
etc), or the number of occupants in the household and the nature of their activity would
be reflected not in the heating or cooling gradient of a particular regime, but rather in
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the regime’s temperature threshold (the point at which heating or cooling systems would
activate) - PRISM’s τ parameters.

In both of the time series models discussed above, these τ threshold parameters are not only
fixed over the course of the day, but are in fact taken as predetermined and fixed across
all households. While this assumption provides significant simplifications to parameter
estimation procedures, it may not be justified given the dynamic influence of the factors
outlined above. Inaccurate assumptions concerning these values can introduce significant
bias into the models, as elaborated by Fels (1986). It seems reasonable to suggest that
estimating these threshold values from available data rather than predetermining them
according to “standard techniques within the energy industry” (Espinoza et al., 2005) could
provide greater explanatory power and thermo-behavioural insight than is provided by the
choice of Ardakanian et al. (2014) to allow for variable thermal regression coefficients.

It may also be the case that rigid temperature thresholds (predetermined or otherwise) may
not sufficiently model the inherent variability in thermal system activation conditions. The
next section outlines a more flexible probabilistic approach.

2.3.3 Conditional hidden Markov models

The regression and time-series approaches above all assume a primarily deterministic model
of household energy use and thermal regime changes – heating and cooling systems acti-
vate predictably at specific temperatures with subsequent loads precisely related to external
factors – with some residual statistical error to be minimized through the parameter esti-
mation process. An alternate viewpoint is to consider a household’s electricity consumption
as fundamentally probabilistic, with the likelihood of behavioural, heating and cooling con-
sumption values conditioned (rather than correlated) on the system state in the previous
time period as well as on exogenous factors such as temperature. The conditional hidden
Markov model provides an analytical framework for modelling from this perspective, and
has emerged as an increasingly popular tool for electrical end-use disaggregation. The
works of Albert and Rajagopal (2015) and Huang et al. (2013) are of particular relevance
and are examined in more detail here.

Dynamic-regime thermal regression disaggregation

Albert and Rajagopal (2015) combine the multi-regime linear regression technique taken
by the previous approaches in Sections 2.3.1 and 2.3.2 with a Markov model governing
switches between thermal regimes probabilistically. At any point in time, a household in
some unobserved (”hidden”) thermal regime (such as heating state) has some probability
of remaining in that state, and some other probability of switching to another regime (such
as a passive or “thermally insensitive” state). These Markov transition probabilities are
conditional on external temperature, so in cold weather a household may be very likely to
enter a heating state and stay there, but as temperature rises the odds of switching to a
passive or cooling state will increase as well. The combination of current state and tem-
perature together specify a probabilistic distribution the household’s immediate heating or
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cooling load. The parameters governing the conditional switching probabilities, somewhat
analogous to the τ parameters of previous models, are fit according to the observed data.
Additionally, rather than predetermining the number of regimes of each type (for example,
two heating, one cooling, and one passive), an arbitrary number of total regimes can be cre-
ated, with types subsequently specified according to what would best model the observed
trends in a given household. This corresponds to allowing the β parameters of previous
models to take on positive or negative values, with the sign of the coefficient indicating
whether the regime is a heating, cooling or passive state - where passive states correspond
to near-zero β values.

This approach provides a richer, less prescriptive means of describing a household’s ther-
mal characteristics that may better account for non-deterministic behavioural influences
on otherwise-mechanistic thermal system operations, as suggested by the results of the au-
thors’ favourable performance assessment compared to Birt et al. (2012) using the REDD
dataset of Kolter and Johnson (2011). However, it does so at the expense of parametric
structure, reducing the direct interpretability of individual physical parameters. In addi-
tion, temperature-independent loads are described only by state-specific constant values,
still ignoring cyclical behavioural factors of interest (such as weather-independent daily,
weekly, or seasonal load profiles). While implicit insights could likely be derived from the
nature of specific regimes and patterns in their temporal occurrences, no explicit consider-
ation is given to these key behavioural (non-thermal) factors.

Thermodynamically-derived thermal load disaggregation

The models considered up to this point have all made the implicit assumption that heat loss
(and thus heat delivery required of a thermal system) is directly proportional to external
temperature. This is, of course, an oversimplification: conductive heat transfer theory
stipulates that heat flow in or out of a building is proportional to the difference between
internal and external temperatures. No models yet considered have acknowledged the fact
that internal household temperatures also vary over time, and can have significant effects
on energy requirements. A well-insulated household in the depths of winter may only
require a small amount of supplementary active heating if it is already warmed to room
temperature, while a drafty disused building next door may require enormous amounts of
energy to restore and maintain habitable temperature levels.

Interior temperature is an unobserved system variable that, like a household’s thermal
state, is well suited to representation via a hidden Markov model framework. Huang et al.
(2013) build on previous NILM work and apply a simplified thermodynamic model to
govern interior temperature evolution and thermal regime transition probabilities. Unlike
the previous dynamic-regime Markov approach, heating and cooling states are prespecified.
In addition, and in contrast to all other models reviewed here, a given thermal state is
assumed to deliver a fixed amount of heating or cooling power when active, irrespective of
external temperature. While such an assumption is likely a more accurate representation
of HVAC system dynamics at very high temporal resolutions (on the order of minutes
or seconds), it may be less justifiable in the context of hourly readings. Finally, as in
the previous case, no explicit consideration is made for the influence of cyclical occupant
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behavioural patterns.

One shortcoming of Markov modelling techniques (relative to regression or state-space
time series approaches) is the lack of a direct means of dealing with missing sequential
observations. This lack of robustness can prevent the application of these techniques when
working with datasets involving significant data gaps, where imputation or other filling
techniques may not be a reliable means of reconstructing missing values.

2.4 Summary

This chapter has reviewed existing methods for observing or inferring elements of a house-
hold’s energy context, with a specific focus on scalable, non-intrusive methods. In par-
ticular, several specific energy data analysis techniques have been reviewed, providing an
assessment of their relative strengths and shortcomings. In almost all cases studied, regres-
sion of thermal-related loads on exterior temperatures has figured prominently in disag-
gregation models. In the next chapter, insights from studying these models will be applied
in combination with fundamental physical relationships and empirical observations in an
attempt to formulate a modelling approach that improves on the status-quo.
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Chapter 3

Model Development

The preceding review of existing characterization techniques in the literature identified
specific strengths and weaknesses of current approaches, in particular for the case of the
analysis of smart meter electricity data. This assessment of the state of the art suggests
that there remains an opportunity to improve household energy characterization efforts by
better integrating thermal models grounded in a physical understanding of building heat
flow with behavioural models informed by established domain knowledge and statistical
analyses of occupant patterns.

This chapter will seek to develop a residential electricity end-use model espousing this
integrative approach by explicitly outlining the key elements of such a model. A set of
foundational assumptions regarding the nature of household energy use will be posited
and justified both theoretically and through the application of empirical data. Finally,
thermal, behavioural, and joint thermo-behavioural models will be developed by applying
thermodynamic theory and these established axioms as first principles. The following sec-
tions will develop these models from a qualitative and graphical viewpoint: the underlying
mathematical derivations are provided separately in Appendices A and D.

3.1 Elements of a desirable, theoretically-grounded model

A residential energy use model making effective use of whole-house smart meter data should
be able to parsimoniously contextualize the relevant physical and behavioural character-
istics of a household. From a physical (thermal) perspective, this would include acknowl-
edging the following general determinants of energy use:

• relationships between the size of heating and/or cooling loads (as appropriate to
local climate) and both internal and external temperatures, reflecting the heat flow
dynamics observable at the temporal resolution of the observation data

• thresholds past which heating and cooling loads activate and possible changes in
those thresholds throughout the day

• endogenous and exogenous factors influencing interior temperatures
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Behavioural factors are equally important in establishing a household’s overall energy con-
text. Specifically, a useful characterization would seek to determine the effects of:

• cyclical behavioural patterns and trends across daily, weekly, and annual time scales

• non-cyclical behavioural patterns depending on recent consumption values

• interactions between occupant activities and heating or cooling requirements

Finally, from a practical implementation and application standpoint, a strong statistical
model should provide:

• tractable, interpretable, and information-rich model parameters that can be readily
associated with specific household characteristics of interest so as to inform policy
decisions and enable ad-hoc analysis independent of the model development process

• an efficient and stable mechanism for parameter fitting in order to support the rapid
and reliable automatic characterization of large numbers of households

3.2 Empirical data as informing factors in model develop-
ment

While it is important that domain knowledge and theoretical considerations inform any
model development process, it can also be useful to draw insights directly from data repre-
sentative of the systems being described. In the context of the residential energy modelling
process described above, knowledge of independent heating, cooling, and behavioural loads
in a household can be used to validate theoretical assumptions or determine unexpected
trends that should be accounted for.

The Energy Hub Management System (EHMS) project is a data collection initiative that
provides precisely such information. From 2011 through 2015, 25 households in Milton,
Ontario provided circuit-level electricity use information to the project at five-minute inter-
vals through intrusive load monitoring hardware. The resulting data set provides valuable
disaggregated consumption information for electrical fans on natural gas furnaces, air con-
ditioning units, and several other household appliances and plugs that can be applied in
a wide variety of contexts: the research of both Bozchalui et al. (2012) and Koksal et al.
(2015) referenced in the previous chapter made use of this dataset, for example. In the
following sections, such disaggregated information from one participating household will
be taken as a sample of residential heating, cooling, and behavioural (i.e. an aggregation
of all non-HVAC) electrical loads.
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3.3 Thermodynamic physical modelling

3.3.1 Empirically-informed considerations

A cursory examination of heating and cooling load time series (Figure 3.1) confirms a basic
intuition concerning seasonal dependencies: the furnace tends to be most frequently active
in winter months, while the air conditioner only runs in the peak of the summer (the furnace
fan also runs in the summer, raising concerns about the validity of that time series as an
indicator of heating load: this will be discussed further in later sections). Unfortunately,
this simple explanation fails to account for significant intra-seasonal variations in electricity
use. Is there a more sophisticated causal driver of thermal loads?
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Figure 3.1: Heating and cooling electricity loads in a residential household with a forced-air
natural gas furnace (with electric fan) and air conditioner.

The preceding chapter would suggest there is: every thermal model reviewed assumed some
form of linear causality between external temperature and electrical heating or cooling
loads. While such a claim would seem intuitively sound, it is nevertheless prudent to
validate the assumption against available empirical data. A simple scatter plot visualization
(Figure 3.2) suggests threshold-linear relationships - while furnace fan load during hot hours
of summer months suggests that the circuit provides an imperfect measure of energy used
for heating purposes, as discussed previously, air conditioner loads and furnace fan loads
at cooler temperatures appear to confirm the linear relationship between heating energy
use and exterior temperature.
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Furnace Load Temperature Sensitivity
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Figure 3.2: Heating and cooling electricity loads versus external temperature

3.3.2 Foundational assumptions

While encouraging, such correlationary analysis should not be taken as evidence of a causal
link. Justifying such a link requires moving beyond a statistical characterization to a
consideration of the underlying thermo-behavioural system. In particular, it would seem
highly reasonable to adopt two core axioms:

1. Heat transfers (and thus energy flows) in and out of a dwelling conform to the physical
laws of thermodynamics

2. At any given time, building occupants desire interior temperatures to remain constant
or within some limited range, and apply heating and cooling systems to achieve this
end

The first axiom hardly needs stating, while the second – although significantly less univer-
sal – is nonetheless highly defensible by referencing established modern behavioural norms
and practises (ASHRAE (2013) define specific temperature ranges suitable for human oc-
cupancy, for example). It is worth noting that the actual value of the second axiom’s
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desired interior temperature range is not prescribed, nor is it constrained to remain fixed
throughout time - it may vary according to occupant behaviour and preferences.

3.3.3 Thermal models

The adoption of these axioms and their logical corollaries provides the basis for developing
causal models of energy use in household heating and cooling. Two such models are
derived from physical first principles in the Appendices, each adopting certain additional
assumptions.

The first (Section A.1.2) assumes that heating and cooling systems maintain a strictly con-
stant interior temperature, and can be shown to be a special two-regime (single-threshold)
case of the threshold linear models common in the existing literature. In this model, a
household heating system is assumed to be active at temperatures below some threshold
point, with electrical load increasing linearly past that point, while cooling systems are
assumed to be active at values above that same point and follow the same linear load in-
crease pattern. The threshold value itself is fit to the observed data. Such a model satisfies
most of the first two desirable physical model properties outlined in Section 3.1, and can
be fit efficiently using modified linear regression techniques.

The second model developed (Section D.2.1) relaxes interior condition tolerances to al-
low temperatures to vary within some bounded range. Heating and cooling systems be-
come active when internal temperature passes below or above the two defined temperature
bounds, with internal temperature inferred according to previously-estimated heating or
cooling system activity and observed outside temperatures. As in the previous case, the
temperature threshold values are not predetermined but instead fit to observed data. This
more sophisticated approach satisfies most elements of all three of the desirable physical
model properties outlined in Section 3.1, but requires a state space modelling framework
(see Section D.1) and the application of general nonlinear optimization techniques, signifi-
cantly increasing computational requirements for parameter fitting and presenting a much
higher risk of convergence issues (compromising the desirable parameter fitting properties
also outlined in Section 3.1).

An alternate means to relax the constant-interior-temperature assumption is to adapt the
first model described here to three heating regimes by arbitrarily imposing the existence
of upper and lower temperature thresholds (much like the second model) in spite of a lack
of theoretical physical justification. This relaxation results in a model that is essentially
identical to that of Birt et al. (2012) as outlined in the previous chapter, which again
satisfies most of the first two desirable physical model properties of Section 3.1 and can be
fit by modified linear regression techniques.

3.3.4 Implicit secondary assumptions

Both theoretically-grounded models developed here make additional assumptions in mod-
elling the automated control mechanisms governing heating and cooling systems (the third
model discussed has already deviated from a theoretical grounding, so there is little point
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in elaborating its formal assumptions). In particular, the temporal resolution of input data
(temperature and observed smart meter load) is taken to be sufficiently coarse-grained that
a thermal system may only be active for some fraction of the time step, and it is assumed
the relation between this duty cycle (fraction of time active) and heating or cooling output
are linear. For example, in moderately warm weather, the air conditioner may be required
to be active for 25% of the duration of the time step and provide an average of 250 watts of
cooling in that time, while in hot weather, it may be active for 85% or 90% of the duration
in order to provide an average of 850 or 900 watts over the course of the time step. Implicit
in this assumption is the additional premise that heating and cooling systems never reach
a saturation point where their required heat output would exceed that which is possible
while operating at a 100% duty cycle.

This approach is motivated by the assumption of hourly observation data and is consistent
with Albert and Rajagopal (2015), but contrasts with the assumptions made by Huang
et al. (2013) who worked with 15-minute interval data and took observation timesteps to
be shorter than HVAC system activity cycles. In that alternate formulation, heating or
cooling loads are either consistently on (e.g. 1000 watt average output) or consistently off (0
watt average output) over the course of a single time period. While this alternate approach
better represents the actual control dynamics of a typical heating or cooling system and
would allow for an estimate of furnace or air conditioner sizing given sufficiently high-
resolution data, in the context of the data available it is unreasonable to assume that
an HVAC system would operate for a full hour at a time before reassessing its effects on
interior temperature, thus necessitating the linear duty cycle approximation used here.

In the case of the bounded interior temperature model, it is also assumed (based on hour
interval readings) that the temporal resolution of input data is sufficiently fine-grained to
allow physical characteristics such as the dwelling’s thermal mass to influence fluctuations
in internal temperature, and that such fluctuations would be of sufficient magnitude to
have an effect on energy consumption during the time period in question.

3.4 Statistical behavioural modelling

Unlike the case of exterior temperature in heating and cooling loads, there are no obvious
and readily-available exogenous indicators of a household’s behavioural (non-thermal) load
at a given time. Instead, households tend to have individual endogenous cyclical patterns
or short-term behavioural trends that characterize their non-thermal energy use habits.

Such trends are much less well-suited to causal, deterministic explanations and instead
require a more rigorous statistical focus to capture. While behavioural load data can
be visualized as a time series (Figure 3.3), this perspective may not readily illustrate
underlying trends of interest. Instead, alternate visualizations of key statistical metrics
can serve to identify characteristics explaining observed variance in known behavioural
time series data. Three such metrics commonly employed in time series analyses (Hipel
and McLeod, 1994) are:

1. Distributions of load values indicating the range of observed values and the relative
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Figure 3.3: Behavioural (non-heating or cooling) loads in a residential household

frequency with which those values occur, as illustrated by histograms

2. Spectral frequency content indicating the occurrence and relative strength of vari-
ous periodic cycles in behavioural data, visualised via periodograms with the x-axis
adjusted to give output in the topically-relevant time domain (as opposed to the
traditional frequency domain)

3. Autocorrelations describing the average correlation of an observation with the various
observations preceding it, represented graphically with correlograms

The following sections will combine domain knowledge of typical behavioural load drivers
with visualizations of these three statistical time series metrics to iteratively develop a
model of behavioural household loads.

3.4.1 Model development

Figure 3.4 provides visualizations of the statistical metrics outlined above as applied to the
sample behavioural data, adjusted to set the average value to zero. This adjustment can
be interpreted as a trivial baseline model, where behavioural load is simply estimated as
the average behavioural load across the entire observation period.

Each metric provides new insights into the statistical characteristics of the data: the his-
togram, subplot (a), indicates a log-normal distribution of values, the periodogram, subplot
(b), shows several significant cyclical (periodic) trends, and the correlogram and partial cor-
relogram, subplots (c) and (d), suggest relationships between sequentially-observed values.
Applications of these various insights are discussed in the following sections.
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Figure 3.4: Statistical summary of sample behavioural electricity data residuals after mean
adjustment

Distribution of values: log-normal behaviour

Given that electrical load values are constrained to always be positive, there is reason to
believe that variations from a mean value may not be symmetric (for example, an average
household load may be 1 kW, but 3 kW may be used occasionally to run a clothes dryer
- clearly their is no counter-situation in which -2 kW may be occasionally used). Visu-
alizing the distribution of sample behavioural data (Figure 3.4a) confirms this suspicion.
One remedy to this situation would be to let error terms be drawn from an asymmetric
probability distribution (for example, some form of gamma distribution). Alternatively, the
behavioural load itself can be transformed: in this case, a log transform roughly centres the
observations around a mean while also eliminating the possibility of negative values. (In
the case where error terms are not just symmetric, but normally distributed, this becomes
a log-normal distribution).

While the log transform improves the distribution of the data, the model overall remains
based on poor implicit assumptions – behavioural energy use in one hour is clearly related
to use in previous hours, and does not maintain some constant mean (as modelled here)
throughout the day, week, or year. These assumptions will be revisited in the next sections.

Frequency content: periodic trends and low-frequency noise

The log-transformed constant-load behavioural model centres overall average load in a
symmetric distribution, but ignores any repeating patterns or periodicity in behavioural
loads. Examining the periodogram of the data shows multiple instances of well-defined
higher-frequency periodicity as well as less-distinct low-frequency noise (noted here but
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Figure 3.5: Statistical summary of sample behavioural electricity data residuals after log
transformation and mean adjustment

addressed in the next section).

Domain knowledge of household behavioural loads suggests that occupant behaviour fol-
lows repeating daily and weekly consumption patterns. The periodogram strongly confirms
this intuition, with distinct spectral density spikes visible for frequency components corre-
sponding to daily and weekly periodic behaviour. There are multiple ways to model these
patterns, including introducing seasonal autoregressive (SAR) terms (i.e. lag-24 and/or
lag-168), or allowing such SAR terms to also vary according to the current hour or day of
week (a periodic autoregressive model, or PAR).

A simpler approach that provides additional flexibility in adapting to aperiodicities in
behavioural patterns (resulting from daylight savings time shifts, for example) is to in-
troduce seasonal (cyclical) mean adjustment according to hour-of-day and/or day-of-week
(as observed by a wall clock). This approach has the added benefit of providing easily
interpretable model parameters (representing average behavioural consumption at a given
time of day or week). Such a model follows directly from the basic mean-adjusted case,
where now the average value simply takes on different values according to the ”season”
(i.e. time of day or week).

The exact definition of a season in relation to hour-of-day and day-of-week is still to be
determined here. An ideal definition would reduce variance and fully remove seasonality
from observation residuals while minimizing the number of model parameters required to do
so. The highest degree-of-freedom case would be to simply define each hour-of-week as its
own season, resulting in 24×7 = 168 unique mean adjustment terms. A more parsimonious
option commonly seen in the literature would be to differentiate only between weekday and
weekend days-of-week, resulting in 24×2 = 48 parameters. Additional parsimony could be
achieved by adjusting for hour-of-day and day-of-week independently, leading to 24+7 = 31
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or 24+2 = 26 parameters according to whether or not the weekday/weekend simplification
described above is applied.

The properties of the model residuals for hour of weekday vs weekend deseasonalization are
given in Figure 3.6. Mean deseasonalization effectively accounts for the weekly periodicities
of the data (incorporating one of the desired elements of a behavioural model described
in Section 3.1) while reducing the daily frequency content and overall variance of the
residuals. In the sample behavioural data the 48-parameter deseasonalization approach
was more effective than the 26- or 31 parameter alternatives at reducing cyclical trends in
the model residuals, while giving similar results to the 168-parameter alternative, and so
is preferred here as an expressive yet parsimonious option.
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Figure 3.6: Statistical summary of sample behavioural electricity data residuals after hour-
of-weekday/weekend mean adjustment

Autocorrelation: random walk behaviour

The periodograms visualized in the previous sections reveal significant low-frequency noise
(deviations from the mean that play out over long time-scales) not attributable to be-
havioural seasonality. These disturbances can be better visualized in the time domain
by applying a medium-term (such as one month) rolling average filter to original sample
data, as shown in Figure 3.7 and revealing low-frequency, non-stationary fluctuations in
behavioural load levels.

These findings suggest that modelling behavioural loads as independent deviations from
stable means is generally insufficient to describe all behavioural trends, and highlight the
danger of ignoring the sequential nature of such loads, as has been done up until this
point of the analysis. Indeed, these results are consistent with an intuitive understanding
that building occupant behaviour and resulting energy consumption depends heavily on a
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Figure 3.7: 1-month rolling average plot of sample behavioural electricity data

broader temporal context as well as past behaviour in recent hours. Autocorrelation and
partial-autocorrelation functions can be used to examine this dependency more formally:
doing so with sample behavioural data reveals slowly-decaying autocorrelations (Figure
3.4c) and a strong lag-1 partial-autocorrelation (Figure 3.4d). As elaborated in Hipel and
McLeod (1994), this behaviour is evidence indicating that behavioural loads tend to depend
strongly on their immediately preceding value.

The nature of the autocorrelations of the data suggests that an autoregressive (AR) time
series model would be useful to model behavioural dynamics. However, AR models require
that the process under consideration be stationary around some constant mean, and 3.7
suggests that this is not the case here. The traditional ARIMA approach to accommodating
such non-stationarity is to apply differencing to the data. Indeed, differencing the sample
behavioural data is highly effective at eliminating this noise: however, it also discards
potentially useful information about a household’s long-term consumption trends. Instead,
it would be preferable to model this non-stationarity explicitly.

An intuitive approach to modelling the behavioural trends described above is to treat
behavioural energy use as some form of random walk, with consumption in each hour
deviating from the previous randomly, with the added possibility of ephemeral deviations
that do not contribute to shaping long-term trends. Adding this random walk component
to the previously developed seasonal-average model yields a structural time series model
with seasonal and random walk components, incorporating the non-cyclical effects of recent
behavioural values as suggested in Section 3.1.

Fitting sample data to a random walk model and checking the residual periodogram (Figure
3.8) confirms that low-frequency behavioural trends are fully captured by the random
walk, eliminating low-frequency components from the series’ spectral density while also
significantly reducing residual variance and hence model fit error.
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Figure 3.8: Statistical summary of sample behavioural electricity data residuals after ran-
dom walk adjustment

Combining the elements

The model components developed independently in the preceding sections can of course
be applied together as well. Figure 3.9 demonstrates that this combination provides a
model that fits the sample behavioural data significantly better than any of the above
models taken alone. Residual variance and spectral frequency content are near-zero while
the autocorrelation structure of the data has been eliminated with the exception of auto-
correlation and partial autocorrelations at daily lag intervals (24, 48, etc).

3.4.2 Model linearization

While the previously-developed model more closely represents established domain knowl-
edge and observed statistical trends, its random walk component depends on computa-
tionally expensive nonlinear optimization and requires recursive regression techniques for
estimating hourly-mean deseasonalization parameters. This additional complexity can re-
duce model fitting performance in the presence of large amounts of missing data - in such
situations, a simpler approach may be desirable and more in line with the computational
goals laid out previously in Section 3.1. Substituting the model’s local-level component
with a simple autoregression on the previous hour’s value provides an (admittedly imper-
fect) approximation of the effects of correlated consumption data while reducing model
fitting requirements to linear regression via ordinary-least-squares.

A second challenge arises in fitting log-transformed behavioural data simultaneously with
untransformed thermal load data. While this is possible via a nonlinear state-space mod-
elling approach and unscented Kalman filtering (Haykin, 2004), these techniques also sig-
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Figure 3.9: Statistical summary of sample behavioural electricity data after log transfor-
mation with hour-of-weekday/weekend mean and random walk adjustment

nificantly increase computational requirements and introduce nontrivial stability concerns
into both the parameter fitting and state estimation processes. Reverting to fitting un-
transformed behavioural data simplifies the joint thermo-behavioural estimation process
described in the following section, again advancing the computational goals outlined in
Section 3.1, without sacrificing any of the behavioural considerations noted in that section
and achieved by the random walk approach.

3 2 1 0 1 2 3 4

Load Residual (kWh/h)

0

2000

4000

6000

8000

10000

12000
(a) Observation Value Distribution

6 hrs12 hrs1 day 3 days1 week 1 month 4 months 1 year
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(b) Periodogram

0 10 20 30 40 50

Lag

0.10

0.05

0.00

0.05

0.10

0.15
(c) Sample ACF

0 10 20 30 40 50

Lag

0.10

0.05

0.00

0.05

0.10

0.15
(d) Sample PACF

Figure 3.10: Statistical summary of sample behavioural electricity data after hour-of-
weekday/weekend mean and hour-lag autoregression adjustment
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Figure 3.10 visualizes the results of applying this simplified model to the sample data,
and a simple comparison of goodness-of-fit between various possible combinations of the
models considered here, as determined by the root-mean-squared values of the fit residuals,
are provided in Table 3.1. As is to be expected, the ability to fit the data with the fully
linearized model is significantly diminished relative to the combined model results shown in
Figure 3.9. However, this linearized model does still outperform all of the non-random-walk
models considered here.

Log DS RW AR RMSE

0.643 66

• 0.496 87

• 0.567 33

• • 0.439 35

• 0.097 09

• • 0.022 60

• • 0.004 18

• • • 0.000 05

• • • 0.244 95

• • 0.378 56

Table 3.1: Model fit root mean square errors for combinations of log-tranformation (Log),
hour-of-weekday/weekend mean adjustment/deseasonalization (DS), random walk adjust-
ment (RW), and 1-hour lag autoregression (AR)

3.5 Combining physical and behavioural models

While electrical loads associated with heating or cooling and those related to occupant
behaviour are clearly interconnected (a house left vacant may have different thermostat
settings, for example), a reductionist approach that considers each component individually
can serve as a useful starting point for eventually building a more complete residential
energy model. Given the additive and independent nature of the thermal and behavioural
models described above, creating a composite model is straightforward. In general, esti-
mated heating and cooling load values can simply be added to behavioural load values
to obtain whole-house aggregate load (smart meter) estimates. A more sophisticated ap-
proach allowing for influences between thermal and behavioural loads (incorporating the
final behavioural element suggested in Section 3.1) is proposed in Appendix D.3, but is not
considered further here for reasons of computational complexity.

In this chapter, insights from a review of the literature have been applied to develop a
series of suggested or desirable elements of physical and behavioural models, as well as the
process for fitting those models. Observed heating, cooling, and behavioural data have
been applied in concert with domain knowledge concerning residential electricity use to
develop several different separate thermal and behavioural modelling approaches.

When both the thermal and behavioural models to be combined can be represented as linear
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regression problems, the combined model can be fit reliably and efficiently with standard
regression techniques as well. The next chapter will use such techniques to apply the linear
models developed here to characterizing a set of validation households, and compare model
performance to other approaches from the literature.
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Chapter 4

Model Characterization
Performance Comparison

In Section 3.2, disaggregated electrical end-use history from a single household in the
Energy Hub Management System (EHMS) dataset was used to validate and motivate the
development of novel household energy consumption models. In this chapter, homeowner-
reported physical dwelling characteristics and the remainder of the disaggregated dataset
are applied to assess the ability of a subset of those models to infer household energy-
use characteristics given aggregate, whole-house electrical meter readings, and compare
performance to existing techniques identified in Section 2.3.

An overview of the evaluation data is provided, followed by an outline of each of the models
to be assessed. Finally, a comparison of the characterization performance of the various
models according to multiple metrics is presented.

4.1 Energy Hub Management System data

The EHMS dataset consists of 25 homes, of which one was arbitrarily selected for use as a
sample household in the disaggregated model development process (Chapter 3), and so was
not included in the model disaggregation assessment process. Of the remaining 24 homes,
three more were rejected as inappropriate for disaggregation assessment purposes as they
did not include both labelled furnace fan (heating) and air conditioner (cooling) circuits.

4.1.1 Data preparation

Raw, circuit-level EHMS data were reported in five-minute intervals. From this starting
point, any observation period was dropped when all circuits reported zero load, the sum of
circuit loads differed from a separately-measured whole-house load reading by more than
80%, or any single circuit reported a load greater than the whole-house aggregate reading.
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The remaining five-minute consumption totals within a given hour were aggregated and
downsampled to hourly consumption values in order to better simulate typical smart meter
readings. All circuit loads for a given hour that did not correspond to an air conditioner
or furnace fan were then summed to generate a non-thermal (behavioural) load category.
Finally, all of the thermal and non-thermal loads (air conditioner, furnace fan, and be-
havioural) were summed for each hour to generate household totals. To maintain consis-
tency between the disaggregated and aggregated readings, this derived hourly household
total was used in the place of the separately-measured whole-house data readings.

The external temperature data used in the assessment were obtained from the Univer-
sity of Toronto’s Mississauga Campus weather station (https://www.utm.utoronto.ca/
geography/resources/meteorological-station/weather-data). 0.92% of readings were
missing and so were replaced with contemporaneous Environment Canada readings taken at
the Guelph Turfgrass Institute (http://climate.weather.gc.ca/climateData/hourlydata_
e.html?StationID=45407) where possible. The remaining 0.02% of values that were miss-
ing from both datasets were imputed by linear interpolation from the closest preceding and
subsequent observed values.

4.1.2 Aggregate consumption data

Summary statistics for whole-house aggregate electrical load are reported in Table 4.1. Of
particular note is the commonly large fraction of hours for which no household observation
data are available, in some cases more than 30%. While most household observations span
multiple years (and hence multiple heating and cooling seasons), others such as households
P and U cover much more limited time periods.

Table 4.2 provides a breakdown of the total heating, cooling, and behavioural consumption
observed for each household: while the proportion of electricity used by each category
varies widely across the sample, the values are roughly consistent with estimated Ontario
averages – 24% of residential electricity use for heating and ventilation, and 7% for air
conditioning according to the Ontario Power Authority (2014). The following sections
study the nature of heating and cooling use in more detail.

4.1.3 Heating load data

Summary statistics for the household furnace fan load readings are provided in Table
4.3. As in the aggregate consumption case, non-negligible fractions of data are commonly
missing. Relative to the total number of observed hours, for most households there are
a significant number of hours in which the heating system was active (drawing non-zero
load): in many cases, the system is nearly always active, suggesting that furnace fan load
may serve as a very poor proxy of heating system energy use.

Figures 3.2 and 3.1 demonstrated that it was common for the sample household’s furnace
fan to be running simultaneously with its air conditioner. In those cases, it would seem
reasonable to assume that the heating system was not in fact active, but that the fan was
simply distributing cooled air through the central heating system. Under that assumption,
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ID Start End
Total
Hours

Missing
Hours

%
Missing

Hourly
Mean
(kWh)

Hourly
StDev
(kWh)

Daily
Mean
(kWh)

Daily
StDev
(kWh)

A 2011-10-18 2014-05-19 22652 2777 12.3 0.8 0.6 19.8 8.4
B 2011-06-14 2014-07-08 26897 1857 6.9 1.5 0.7 34.9 8.1
C 2011-12-09 2014-07-08 22625 3531 15.6 1.2 0.7 29.5 8.9
D 2011-12-29 2014-03-23 19581 870 4.4 1.1 0.6 24.9 9.0
E 2011-12-09 2014-05-22 21499 386 1.8 0.9 0.6 21.5 7.4
F 2011-12-17 2014-07-08 22433 2478 11.0 0.8 0.6 19.5 7.6
G 2011-12-29 2014-07-08 22145 1383 6.2 0.6 0.5 13.3 5.3
H 2011-12-17 2013-12-29 17842 654 3.7 2.5 0.8 59.0 11.1
I 2011-12-17 2013-08-20 14701 2813 19.1 0.6 0.5 14.0 6.5
J 2011-12-09 2013-10-01 15904 314 2.0 1.3 0.7 31.0 12.8
K 2012-01-07 2013-04-18 11227 2291 20.4 1.1 0.7 26.1 9.4
L 2012-01-07 2014-02-19 18586 6498 35.0 0.7 0.5 16.1 5.7
M 2012-03-20 2014-07-08 20174 2023 10.0 0.3 0.3 8.2 3.5
N 2012-03-20 2014-01-29 16319 4149 25.4 0.9 1.0 21.5 14.3
O 2012-01-07 2013-12-28 17319 3182 18.4 0.8 0.6 18.5 7.5
P 2012-03-20 2013-01-09 7089 338 4.8 0.7 0.8 16.9 10.2
Q 2012-03-22 2014-07-08 20128 979 4.9 0.8 0.9 19.7 10.3
R 2012-04-18 2014-04-20 17580 5468 31.1 0.6 0.5 13.4 6.2
S 2012-03-22 2014-07-08 20129 5987 29.7 0.9 1.0 19.5 11.3
T 2012-04-17 2014-05-30 18549 4389 23.7 0.4 0.3 10.4 3.3
U 2012-03-22 2012-11-09 5577 277 5.0 0.7 0.5 16.3 4.9

Table 4.1: Total aggregate consumption profile summary of each validation household.
Missing hours correspond to both time periods in which no data was reported as well as
where data was reported but removed in the pre-processing steps of Section 4.1.1.

when the air conditioner is known to be active the furnace fan’s consumption should in
fact be attributed as a cooling load, not a heating load. Modifying the ground truth
observations to account for this fact essentially eliminates supposed warm-weather heating
system activity from the sample household observations, as seen in Figure 4.1.

Re-evaluating the heating system data after this adjustment indicates a more probable
representation of hours in which the heating system was active (i.e. not 100%). Table 4.4
reflects this adjusted summary.

4.1.4 Cooling load data

Summary statistics for the household air conditioner load (after the adjustment described
in the previous section) are provided in Table 4.5. As noted previously, a significant
number of hourly observations are missing. Unlike the furnace fan circuit readings, home air
conditioner circuits tend not to be constantly active, and those that are (such as households
R, T, and U) have much smaller average active loads compared to homes with much rarer
circuit activity, suggesting that while there may be a load on such circuits throughout the
year, it is generally not significant.
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ID

Total
Heating
(kWh)

Total
Cooling
(kWh)

Total
Behavioural
(kWh)

%
Heating

%
Cooling

%
Behavioural

A 1 587.7 490.0 14 516.6 9.6 3.0 87.5
B 7 963.4 3 088.2 26 042.9 21.5 8.3 70.2
C 3 285.4 1 623.7 18 868.6 13.8 6.8 79.4
D 6 897.5 2 026.2 10 749.7 35.1 10.3 54.6
E 4 011.3 562.0 14 440.6 21.1 3.0 75.9
F 4 104.4 1 320.3 11 444.2 24.3 7.8 67.8
G 4 114.5 1 091.4 6 801.0 34.3 9.1 56.6
H 8 068.9 2 027.5 32 444.6 19.0 4.8 76.3
I 1 562.1 1 222.3 4 688.4 20.9 16.4 62.7
J 2 155.2 453.1 17 643.1 10.6 2.2 87.1
K 1 896.9 695.2 7 199.1 19.4 7.1 73.5
L 836.1 237.6 7 223.1 10.1 2.9 87.1
M 974.3 150.7 5 176.4 15.5 2.4 82.1
N 2 750.5 3 017.9 5 393.5 24.6 27.0 48.3
O 1 448.2 781.8 8 748.9 13.2 7.1 79.7
P 1 879.1 1 027.5 2 095.3 37.6 20.5 41.9
Q 2 706.2 3 389.3 9 992.7 16.8 21.1 62.1
R 1 841.9 894.5 4 423.3 25.7 12.5 61.8
S 2 999.2 2 927.7 6 249.0 24.6 24.0 51.3
T 1 477.9 14.0 4 824.1 23.4 0.2 76.4
U 2 156.6 449.1 1 192.8 56.8 11.8 31.4

Table 4.2: Total and proportion of heating, cooling, and behavioural electricity consump-
tion over the entire observation period for each household

4.2 Models to be evaluated

To ensure parameter stability during the model fitting process, evaluation was limited to
only the regression-compatible model components outlined in Chapter 3, specifically:

• the constant-interior-temperature model derived in Section A.1.2, consisting of two
thermal regimes (active heating and active cooling) with a temperature threshold
point fit according to the data, hereafter referred to as Fit2

• The three-regime (active heating, passive, active cooling) model outlined in Birt et al.
(2012) or alternatively obtained by relaxing the physical constraints of the Fit2 model
(as discussed in Section 3.3.3), hereafter referred to as Fit3.

• the linearized behavioural model outlined in Section 3.4.2, consisting of deseasonaliz-
ing loads with weekday or weekend hour-of-day consumption averages in combination
with an autoregression on total consumption in the previous hour, hereafter labelled
as DAR.

The joint thermo-behavioural models resulting from adding these thermal and behavioural
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ID
Total
Hours

Missing
Hours

% Missing
Active
Hours

% Active

Active
Hourly
Mean
(kWh)

Active
Hourly
StDev
(kWh)

A 22652 2777 12.3 9813 49.4 0.2 0.1
B 26897 1857 6.9 24977 99.7 0.3 0.1
C 22625 3531 15.6 10055 52.7 0.3 0.2
D 19581 870 4.4 17125 91.5 0.4 0.3
E 21499 386 1.8 18607 88.1 0.2 0.2
F 22433 2478 11.0 13078 65.5 0.3 0.1
G 22145 1383 6.2 13356 64.3 0.3 0.2
H 17842 654 3.7 16937 98.5 0.5 0.2
I 14701 2822 19.2 5429 45.7 0.3 0.2
J 15904 314 2.0 13758 88.2 0.2 0.1
K 11227 2291 20.4 8931 99.9 0.2 0.2
L 18586 6498 35.0 5743 47.5 0.1 0.1
M 20174 2023 10.0 16164 89.1 0.1 0.1
N 16319 4150 25.4 11916 97.9 0.2 0.3
O 17319 3182 18.4 5214 36.9 0.3 0.2
P 7089 338 4.8 6751 100.0 0.3 0.1
Q 20128 979 4.9 19149 100.0 0.1 0.2
R 17580 5470 31.1 12042 99.4 0.2 0.2
S 20129 5987 29.7 14137 10 0.0 0.2 0.2
T 18549 4389 23.7 14158 10 0.0 0.1 0.1
U 5577 278 5.0 5299 100.0 0.4 0.0

Table 4.3: Heating consumption profile summary for each validation household. % active
hours are reported relative to all non-missing hours. Missing hours correspond to both time
periods in which no data were reported as well as where data were reported but removed
in the pre-processing steps of Section 4.1.1.

model components together were ultimately used in the assessment and are referred to here
as DAR-Fit2 and DAR-Fit3. Julia code implementing the model and fitting procedure
for each are provided in Sections B.4 and B.5, respectively.

Several model components presented in the literature were also evaluated, namely:

• The three-regime model (Fit3) exactly as outlined by Birt et al. (2012), without any
behavioural component

• The periodic autoregressive behavioural model (including outlier detection) outlined
by Ardakanian et al. (2014), referred to here as PARX.

• The four-regime model with fixed temperature thresholds employed by both Espinoza
et al. (2005) and Ardakanian et al. (2014), and referred to here as Fixed4

The Fit3 (as used by Birt, and implemented as given in Section B.1) and joint PARX-
Fixed4 model (as used by Ardakanian et al., and implemented as given in Section B.2)
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Figure 4.1: Temperature sensitivity of heating and cooling loads in the sample household,
after reclassifying furnace fan loads while the home’s air conditioner is active as cooling
consumption

were evaluated. In addition, to better compare the relative contributions of the PARX and
Fixed4 model components, a DAR-Fixed4 model combining the novel behavioural DAR
model with the established Fixed4 model was also tested (an implementation is provided
in Section B.3).

As noted in Section 2.3.3, Markov-modelling approaches such as that of Albert and Ra-
jagopal (2015) have no direct means of handling data gaps that cannot be filled artificially
by imputation. Given the significant number and size of gaps in the validation dataset, a
Markov-modelling approach was not assessed here.

4.3 Disaggregation performance assessment

The whole-house hourly electricity data for each of the 21 validation homes (obtained by
summing the observed heating, cooling, and behavioural loads in each hour, and corre-
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ID
Total
Hours

Missing
Hours

% Missing
Active
Hours

% Active

Active
Hourly
Mean
(kWh)

Active
Hourly
StDev
(kWh)

A 22652 2777 12.3 8799 44.3 0.1 0.1
B 26897 1857 6.9 17937 71.6 0.3 0.1
C 22625 3531 15.6 7647 40.0 0.3 0.2
D 19581 870 4.4 14352 76.7 0.4 0.3
E 21499 386 1.8 17021 80.6 0.2 0.2
F 22433 2478 11.0 10274 51.5 0.3 0.1
G 22145 1383 6.2 11074 53.3 0.3 0.2
H 17842 654 3.7 13107 76.3 0.5 0.2
I 14701 2822 19.2 3798 32.0 0.2 0.1
J 15904 314 2.0 12393 79.5 0.1 0.1
K 11227 2291 20.4 7993 89.4 0.2 0.1
L 18586 6498 35.0 5317 44.0 0.1 0.1
M 20174 2023 10.0 15986 88.1 0.1 0.1
N 16319 4150 25.4 9905 81.4 0.2 0.2
O 17319 3182 18.4 2601 18.4 0.2 0.2
P 7089 338 4.8 6146 91.0 0.3 0.1
Q 20128 979 4.9 16861 88.1 0.1 0.1
R 17580 5470 31.1 1140 9.4 0.1 0.1
S 20129 5987 29.7 3230 22.8 0.2 0.2
T 18549 4389 23.7 207 1.5 0.3 0.2
U 5577 278 5.0 115 2.2 0.4 0.0

Table 4.4: Heating consumption profile summary for each validation household, after reclas-
sifying furnace fan loads while the home’s air conditioner is active as cooling consumption

sponding to smart meter readings that would be available to a utility or homeowner) were
taken with matching hourly exterior temperature values and provided as inputs to each
of the five models outlined above. The resulting heating, cooling, and behavioural load
estimates produced by each model were then compared with the original observed load
components (with the furnace fan adjustment described in Section 4.1.3).

Figures 4.2 to 4.7 visualize the disaggregation performance results across all households
and models for a number of evaluation metrics (accuracy, performance, recall, and F1
statistic for thermal system activity detection, and root mean square error and mean
absolute percent error for component load estimation), with full numeric results available
in Appendix C. In each case, the range of values of each metric of interest are reported in
standard box-and-whisker plots (Tukey, 1977), where the centre line denotes the metric’s
value for the median (50th percentile) household, the upper and lower limits of the box
denote the values of the 25th and 75th percentile households, and the outer bars (whiskers)
represent the values for the furthest outlying households still within 1.5 interquartile ranges
(the distance between the 25th and 75th percentiles) of the box limits. Outlying household
values beyond the whiskers are plotted directly.
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ID
Total
Hours

Missing
Hours

% Missing
Active
Hours

% Active

Active
Hourly
Mean
(kWh)

Active
Hourly
StDev
(kWh)

A 22652 2777 12.3 1014 5.1 0.8 0.5
B 26897 1858 6.9 7064 28.2 0.8 0.4
C 22625 3531 15.6 2410 12.6 1.2 0.6
D 19581 870 4.4 2774 14.8 1.2 0.7
E 21499 386 1.8 1586 7.5 0.6 0.3
F 22433 2478 11.0 2808 14.1 0.7 0.5
G 22145 1383 6.2 2342 11.3 0.7 0.5
H 17842 654 3.7 3865 22.5 1.0 0.5
I 14701 2816 19.2 1636 13.8 1.1 0.5
J 15904 314 2.0 1365 8.8 0.7 0.3
K 11227 2291 20.4 938 10.5 1.2 0.6
L 18586 6498 35.0 426 3.5 0.9 0.4
M 20174 2023 10.0 178 1.0 1.2 0.6
N 16319 4150 25.4 2011 16.5 2.0 1.3
O 17319 3182 18.4 2638 18.7 0.6 0.4
P 7089 338 4.8 605 9.0 2.1 1.0
Q 20128 979 4.9 2288 11.9 1.9 0.9
R 17580 5471 31.1 10913 90.1 0.2 0.4
S 20129 5987 29.7 10907 77.1 0.5 0.8
T 18549 4389 23.7 13951 98.5 0.1 0.1
U 5577 278 5.0 5184 97.8 0.5 0.3

Table 4.5: Cooling consumption profile summary for each validation household, after reclas-
sifying furnace fan loads while the home’s air conditioner is active as cooling consumption.

4.3.1 Heating and cooling activity detection: Accuracy

While the magnitude of heating or cooling loads throughout the year provides clear in-
sight into a home’s energy context, in many situations simply knowing when a thermal
system was active or not can be equally enlightening. A rudimentary metric for assessing
the relative ability of the various models to infer heating or cooling system activity is the
accuracy with which the model can predict an ”On” or ”Off” state, where ”On” corre-
sponds to a nonzero system load (estimated or observed), and ”Off” indicates the circuit
is not currently drawing any electrical power. With this definition, accuracy indicates
the ratio of the number of hours the system state was estimated correctly, according to
ground-truth disaggregation data, relative to the total number of hours sampled. Figure
4.2 provides a box-plot representation of the accuracy results for each model across all
validation households.

For heating activity detection, the DAR-Fixed4 model provided the best accuracy on aver-
age out of all of the models studied (approximately 68%), with most other models following
behind closely, and DAR-Fit3 lagging furthest behind with an average accuracy of 51%.
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Figure 4.2: Accuracy distribution for heating and cooling system activity detection across
the 21 validation homes for each of the compared models.

However, no model consistently outperformed any other across all households. Cooling
activity detection had similar results, with DAR-Fixed4 again performing best at a 76%
average, and all other models trailing closely (the lowest, Fit3, still averaged 72%). These
averages are somewhat lower than the medians shown in Figure 4.2 due to the effects
of outliers: in particular, the top-scoring models (DAR-Fixed4 and PARX-Fixed4) also
demonstrated the worst results overall in outlying cases.

While accuracy serves as an intuitive measure of model performance, it can be flawed,
as hinted at by the somewhat contradictory results above. Specifically, cases where one
state (i.e. ”On” or ”Off”) dominates the observations can mask a poor-performing model.
(For example, consider a fundamentally flawed model that assumes no households have
air conditioners: a validation household using its air conditioning system two weeks a
year would still result in the model being considered at least 96% accurate!) Precision and
recall provide more robust (but less intuitive) alternate metrics for assessing state detection
performance and are discussed below.

4.3.2 Heating and cooling activity detection: Precision, recall, and F1
statistic

In a system activity detection context, precision (Van Rijsbergen, 1979) is defined as the
ratio of number of hours in which a system was correctly estimated to be active out of the
total number of hours in which the system was estimated to be active (whether correctly
or not). Conversely, recall (Van Rijsbergen, 1979) is the ratio of number of hours in which
a system was correctly guessed to be active of of the total number of hours the system
was actually active. These metrics can provide a much more nuanced assessment of model

47



performance: for example, the hypothetical fundamentally flawed model discussed in the
preceding section would be assessed with a recall of 0% and an undefined precision (since
there were zero hours in which it guessed that the system was active).

There are still limitations to these metrics taken individually: for example, a model es-
timating that an air conditioner was continuously active year-round would likely score a
very low precision but still have recall of 100%. Alternately, a model only inferring AC
activity on the hottest, most humid of days may have a precision of 100% but a very low
recall. The F1 statistic balances these tradeoffs by taking the geometric mean of the two
metrics to generate a single value. Precision, recall, and F1 values for heating and cooling
activity detection are visualized in Figures 4.3 and 4.4.
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Figure 4.3: Precision, recall, and F1 statistic distribution for heating system activity de-
tection across the 21 validation homes for each of the compared models.

The models scored mostly similarly on heating activity detection precision, with DAR-Fit3
again scoring the lowest. That same model scored by far the highest on recall, however, re-
sulting in generally similar average F1 statistics across all models, with DAR-Fit2 providing
slightly best performance compared to the rest.

The Fixed4 thermal models (PARX-Fixed4 and DAR-Fixed4) yielded the highest cooling
activity precision but the lowest recall, again resulting in roughly equivalent, near-50%
average F1 statistics across the board.

4.3.3 Heating, cooling, and behavioural load inference: Disaggregation
error

The root mean square error (RMSE) of disaggregation estimates relative to observed circuit
loads provides a richer understanding of the ability of the various models to infer load
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Figure 4.4: Precision, recall, and F1 statistic distribution for cooling system activity de-
tection across the 21 validation homes for each of the compared models.

types from whole-house aggregate smart meter data. RMSE ranges as determined from
the various validation homes are visualized in Figure 4.5.
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Figure 4.5: Root mean square error distribution for disaggregated heating, cooling, and
behavioural loads across the 21 validation homes for each of the compared models.

All of the assessed models achieved very similar average heating RMSE performance at
around 0.17 kWh/h error. Cooling loads were also similar, with Fit3 demonstrating a
slight advantage, averaging at 0.34 kWh/h error compared to the 0.35-0.4 kWh/h range
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for the other models. Behavioural loads were also similar, with DAR-Fit3 demonstrating
slightly better average performance at 0.49 kWh/h, while the other models gave errors
closer to 0.55 kWh/h.

While these results provide a good overview of average model performance, they are derived
from data that may include trivial thermal load estimates (for example, it would not require
a particularly sophisticated model to correctly estimate that a given air conditioner load
remains zero throughout all of December and January). Repeating the RMSE calculations
including only samples where either the estimated or true circuit loads were nonzero (i.e.
an active system) can better discriminate between model abilities and provide a clearer
performance comparison. Results for this metric are visualized in Figure 4.6.
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Figure 4.6: Root mean square error distribution for active (either estimated or true) disag-
gregated heating and cooling loads across the 21 validation homes for each of the compared
models.

Relative results for heating disaggregation under metric remained similarly close, while
cooling load errors increased by different amounts, with Fit3 retaining the best performance
(averaging under 0.6 kWh/h error) and PARX-Fit4 having the worst (averaging almost 0.8
kWh/h error).

Finally, while RMSE provides an indication of the absolute magnitude of average error
in model estimates, its values need to be considered in context: an RMSE of 0.2 kWh/h
is much more impressive when considered with a true load at 20 kWh/h than with 0.3
kWh/h. To consider the relative size of error, the mean absolute percent error (MAPE)
can be used instead. Results for this metric are given in Figure 4.7.

Assessing the relative disaggregation estimate error indicates that errors are large relative
to ground truth across all models, with some households as outliers that are even more
severe. For heating estimates, DAR-Fixed4 performed the best (averaging at approximately
111% error), while DAR-Fit3 performed the worst (averaging 230% error). Relative cooling
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Figure 4.7: Mean absolute percent error distribution for disaggregated heating, cooling,
and behavioural loads across the 21 validation homes for each of the compared models.

estimate errors were similarly large with average values ranging from 97% error for PARX-
Fixed4 to almost 172% error for Fit3.

MAPE values when disaggregating other behavioural loads were larger than either of the
the heating or cooling case: DAR-Fit3 performed the best (averaging approximately 210%
error) while the remainder were higher but similar (up to 243% for DAR-Fixed4).

4.3.4 Disaggregation performance summary

Table 4.6 provides an overview of performance metric values for each model, averaged over
all households in the dataset. Table 4.7 provides rankings for each of these performance
averages on each metric. In general, the DAR-Fit models (particularily DAR-Fit3) provided
the best behavioural disaggregation while the best thermal disaggregation was split between
Fit3 in the absolute (RMSE) case and the Fixed4 models in the relative (MAPE) case.
These results are discussed further in Section 5.1.

4.4 Physical characterization performance assessment

While the ability to infer disaggregated electrical loads from whole-house smart meter data
provides useful insight into a household’s energy use patterns, it does not in itself provide a
description of a household’s physical characteristics. Knowledge of factors such as the age
and size of a home and the nature of its mechanical and electrical systems can be highly
desirable in particular contexts. It is therefore useful to assess the ability of the various
models under study to distinguish between homes with different such characteristics.
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Fit3
PARX
Fixed4

DAR
Fixed4

DAR
Fit2

DAR
Fit3

Heating Activity Accuracy 0.65 0.65 0.68 0.63 0.51
Heating Activity Precision 0.66 0.66 0.66 0.64 0.54
Heating Activity Recall 0.71 0.72 0.70 0.74 0.89
Heating Activity F1 0.65 0.63 0.63 0.69 0.64
Cooling Activity Accuracy 0.72 0.76 0.76 0.74 0.74
Cooling Activity Precision 0.52 0.61 0.61 0.53 0.53
Cooling Activity Recall 0.77 0.56 0.61 0.75 0.74
Cooling Activity F1 0.46 0.49 0.51 0.51 0.52
Heating Load RMSE (overall) 0.16 0.17 0.17 0.17 0.17
Cooling Load RMSE (overall) 0.34 0.40 0.39 0.38 0.37
Other Load RMSE (overall) 0.54 0.56 0.55 0.52 0.49
Heating Load RMSE (activity-only) 0.19 0.20 0.20 0.20 0.18
Cooling Load RMSE (activity-only) 0.56 0.79 0.76 0.67 0.68
Heating Load MAPE 1.47 1.51 1.11 1.17 2.30
Cooling Load MAPE 1.72 0.97 1.07 1.19 1.20
Other Load MAPE 2.30 2.20 2.43 2.15 2.10

Table 4.6: Average metric values for each model over all households

Fit3
PARX
Fixed4

DAR
Fixed4

DAR
Fit2

DAR
Fit3

Heating Activity Accuracy 2 3 1 4 5
Heating Activity Precision 1 2 3 4 5
Heating Activity Recall 4 3 5 2 1
Heating Activity F1 2 5 4 1 3
Cooling Activity Accuracy 5 2 1 4 3
Cooling Activity Precision 5 2 1 3 4
Cooling Activity Recall 1 5 4 2 3
Cooling Activity F1 5 4 3 2 1
Heating Load RMSE (overall) 1 5 4 2 3
Cooling Load RMSE (overall) 1 5 4 3 2
Other Load RMSE (overall) 3 5 4 2 1
Heating Load RMSE (activity-only) 2 3 4 5 1
Cooling Load RMSE (activity-only) 1 5 4 2 3
Heating Load MAPE 3 4 1 2 5
Cooling Load MAPE 5 1 2 3 4
Other Load MAPE 4 3 5 2 1

Table 4.7: Ranking of average metric values (according to whether higher or lower values
are more desirable) for each model over all households

The EHMS dataset provides some limited insights into the physical characteristics of the
participant houses. In particular, it provides approximate age and square footage for each
home. Plotting this data (Figure 4.8) reveals two distinct “reference” groups of houses:
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one older, generally smaller set of homes, and a second set with a wider range of sizes.
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Figure 4.8: Ground-truth cluster assignment of EHMS homes. Two distinct groups
(coloured blue and yellow for reference) are apparent in the dataset.

In theory, a well-performing model capable of discriminating between different “kinds” of
physical houses would fit model parameters that reflected the differences in home types.
To test the ability of the various models under study to perform this task, estimated model
parameters corresponding to physical traits (e.g. heating and cooling temperature sensi-
tivities) for each household were used as input features in a k-means clustering operation
to split the validation household set into two groups. The resulting clusters (as determined
by the parameters from a particular model) were then compared to the aforementioned
reference grouping generated from the known household characteristics, with similarity
assessed by the Adjusted Rand Index (ARI).

An ARI score of 1.0 corresponds to perfectly identical grouping, while a score of 0.0 denotes
that any similarities in cluster assignments are no more than would be expected to happen
by chance. Clustering for each model was repeated and ARI scores generated 100 times
per model to account for fluctuations introduced by random initialization of the k-means
clustering process. The distribution of results of this assessment are plotted in Figure
4.9. For each model, the cluster assignment resulting in the highest ARI value achieved is
visualized in Appendix C.

Of the models studied, only DAR-Fixed4 was able to frequently score above zero (averaging
at approximately 0.04): the remaining models all averaged below zero, or worse than
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Figure 4.9: Adjusted Rand Index value ranges resulting from 100 independent k-means
clustering operations on each model’s fit physical parameters

random guessing could be expected to score.

4.5 Summary

The relative strengths and weaknesses of five residential electricity consumption models in
characterizing a set of households have been compared according to multiple measures of
accuracy in heating and cooling system load detection and estimation, behavioural load
estimation, and dwelling characterization and grouping. The following chapter will discuss
the implications of the relative and absolute performances of the various models, the dataset
used to derive the results, and explore possible extensions and applications of these models
moving forward.
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Chapter 5

Discussion

The assessment results presented in the previous chapter should be understood and inter-
preted in context relative to the validation dataset and practical requirements of potential
application scenarios: this chapter will provide that contextualization and interpretation.
The resulting insights will then be used to inform a discussion concerning the required
next steps in model development and considerations of how such models could contribute
to sustainable energy transitions moving forward.

5.1 Performance assessment analysis

5.1.1 Heating loads

Heating activity detection was generally consistent across all models, with the fixed-
temperature-threshold thermal models suffering no notable performance penalty relative to
the fit-threshold alternatives. All models outperformed random guessing, but the approxi-
mate 65% reliability level consistently achieved leaves considerable room for improvement.

The models were equally evenly matched when considering absolute disaggregation error,
with the Fit3 and DAR-Fit3 models showing slight advantages, perhaps due to their higher
parameter count yielding a greater ability to adapt to provided data. Counterintuitively,
those same models were among the worst performers when considering relative disaggre-
gation error, in part due to extreme outliers, although with average errors consistently
exceeding 100%, no model can claim particularly impressive performance in that area. Of
course, this may not matter for gas-heated homes, where fan load is at best a rough proxy
for a furnace’s fuel consumption rate. In this context, knowledge of when and for how long
the furnace is active (activity detection) may in fact be the more useful metric in assessing
a home’s heating requirements.

There is no clear best-performing model for heating disaggregation. Of the seven heating
metrics evaluated, almost every model (with the exception of PARX-Fixed4) placed first
in some category: Fit3, DAR-Fixed4, and DAR-Fit3 each placed first in two. This is not
unsurprising given the similar nature of the various thermal models (Fit2, Fit3, Fixed4)
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applied here: future research developing and studying a broader range of thermal modelling
approaches would be well-warranted.

5.1.2 Cooling loads

As in the heating case, no model was able to establish itself as dominant in cooling load
detection or disaggregation. While the adaptability of the fit-threshold models (Fit3, DAR-
Fit2, DAR-Fit3) provided slightly better RMSE performance, as in heating it came at the
cost of decreased resilience to the effects of outlying data, as illustrated by the extreme
MAPE values resulting from fit-threshold models in certain households. The fit-threshold
models tended to more readily infer air conditioner activity, resulting in strong performance
in detecting cooling action when it was happening, but also leading to numerous false
positives. Conversely, the fixed-threshold models (PARX-Fixed4 and DAR-Fixed4, with
cooling thresholds set to 20 ◦C) were more conservative in their estimates, somewhat
reducing false positives but also increasing true negatives as a result: at some points in
time the predetermined cooling threshold was too low, while in others it was too high.

The seeming inability for any model to excel at precision and recall simultaneously (yielding
low F1 statistics) could indicate a fundamental information deficit in predicting cooling
activity based solely on some external temperature threshold (whether fit from the data
or predetermined). This may best be illustrated by the performance of the Fit3 model,
which generated estimates based exclusively on outside temperature, and yielded the overall
highest recall but lowest precision and F1 statistics, and the most extreme MAPE values.
The DAR-Fit2 and DAR-Fit3 models’ cooling estimates were generated from a similar
process but were moderated by time-of-day and -week considerations, resulting in less
extreme metrics and slightly improved overall detection performance. New exogenous
information sources may be required to generate more accurate estimates of cooling activity
(see Section 5.4.1 below).

5.1.3 Behavioural loads

Each of the models demonstrates a roughly similar aptitude for estimating the non-thermal
component of whole-house electricity use. DAR-Fit3 provides the best performance, aver-
aging slightly under 0.5 kWh/h RMSE, while the other models have average RMSE values
slightly greater above 0.5 kWh/h. DAR-Fit3 also provides the best MAPE performance
(relatively speaking), despite averaging 210%. While that model provides marginally better
performance across both metrics, it should still be noted that no single model consistently
outperforms any other.

5.1.4 Physical characteristics

In general, all of the models assessed are essentially ineffective in providing better-than
chance household grouping based on fit parameters corresponding to physical properties
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of a dwelling. Perhaps unsurprisingly, the best performance is achieved by the PARX-
Fixed4 and DAR-Fixed4 models, those with three parameters corresponding to physical
characteristics as opposed to two (temperature thresholds are taken here as behavioural
parameters relating to thermostat setpoints, eliminating any potential advantages of the
more adaptable fit-threshold models).

This poor performance may be in part due to fundamental differences between criteria
for the ground-truth grouping and the groupings inferred from parameters: while the base
groups were assigned based on home age (primarily) and size, the clustering features related
to the home’s building envelope. While it may be reasonable to assume some correlation
between these different characteristics, they by no means represent a direct mapping: older
homes can easily have differing levels of weatherproofing, just as newer homes can as well.
Data permitting, a fairer assessment would have provided a ground-truth grouping of the
homes according to some measure of their insulation levels or draftproofing, rather than
age or size.

Of course, there still remains much potential to improve the discriminatory power of the
models themselves. A more sophisticated physically-derived model has the potential to
much better capture specific technical properties of a home: for example, a model built on
thermodynamic principles could capture the effects of potentially-distinguishing building
properties such as thermal mass and the relative rates of internal and external temperature
changes. Such a possibility is explored more fully in Section 5.4.2 below. Incorporating
new exogenous sources of environmental data may provide another opportunity to capture
novel physical building characteristics - some possibilities are outlined further in Section
5.4.1.

5.1.5 Overall performance

DAR-Fit3 emerged as the best choice for disaggregating non-thermal loads and a strong
choice (among a generally equivalent field) for both heating and cooling disaggregation.
While DAR-Fixed4 provided the best performance for clustering homes according to phys-
ical characteristics, no model consistently performed better than random chance at group-
ing, indicating that none should be relied upon for that purpose. Overall, DAR-Fit3 would
appear to be the best performer, although not by a particularily notable margin.

The significantly higher complexity and parameter count of the behavioural component of
the PARX-Fixed4 model did not appear to provide it with any performance benefit over
the simpler and more interpretable DAR approach to non-thermal modelling (it is plausible
that the PARX approach would perform better in a load forecasting context, however such
an application is beyond the scope of household characterization tasks studied here). In
fact, in many cases the PARX approach performed no better than the non-behavioural
Fit3 model, illustrating the power of a well-designed parsimonious modelling method.

57



5.2 Validation data limitations

5.2.1 Sample size and homogeneity

The performance assessment results reported here are derived from averaging household-
level metrics across all of the homes in a validation dataset. That dataset was comprised
of only 21 homes located in a single town, each with similar thermal system characteristics
(an air conditioning unit and a natural gas furnace). As such, the resulting evaluation
fails to assess model performance in other situations, such as jurisdictions with different
sociodemographic contexts, climates, and housing bylaws and building codes, or dwellings
with different thermal systems such as electric resistive heating or ground-source heat
pumps. A more authoritative assessment of the relative merits of these models would
include validation data from households representing a wider, more representative range of
possible configurations.

5.2.2 Missing observations

The validation dataset contained extended blocks of missing or invalid electrical load read-
ings – totalling up to more than 30% of the study period in some cases – possibly due to
intermittent failures in the energy management system’s monitoring hardware or logging
software. Such observation gaps have clear negative consequences when fitting statisti-
cal models, which stand to be exacerbated by the serially-correlated nature of the data
in question. For example, some information describing features of interest, such as the
sensitivity of a home’s electrical demand to hot weather, will be inherently unevenly dis-
tributed across time: a block of missing data occurring in July or August has the potential
to disproportionately and severely impair accurate cooling gradient parameter fitting, for
example, or unfairly disadvantage certain models over others (an otherwise strong cooling
disaggregator may yield similar performance to a weaker model if the necessary cooling
season observations are disproportionately missing).

Missing data also prevented the assessment of specific model types - while Markov modelling
approaches are growing in popularity in the electrical load disaggregation literature, they
were purposefully excluded from this analysis given their inability to explicitly handle
missing values. As a result of this issue, only regression-based approaches were able to be
studied in detail here.

5.2.3 Possible unlabelled or mislabelled heating and cooling loads

Observed furnace fan data was corrected in this analysis to represent a cooling load when
an air conditioning unit was also active, while remaining a heating load in all other cases.
It is reasonable to expect, however, that in some cases a furnace fan was running in spite
of neither the furnace nor the air conditioner being active (simply circulating unheated
air through the home). This would still result in erroneously-observed activity in ground-
truth heating load data, skewing analysis results in favour of more liberal activity detection
methods.

58



Additionally, while the validation dataset provided labelled circuit-level electrical load data
for major appliances in each household, it was in general not able to account for particular
uses of wall outlets, which may have contributed to additional thermal electrical loads (for
example, floor fans for effective cooling purposes or space heaters for auxiliary heating).
As a result, the supposed ground truth loads used to evaluate model disaggregation per-
formance may not have accurately reflected the full thermal load of a home at any given
time.

Conversely, there is no guarantee that the labelled air conditioner and furnace fan circuits in
each home were used exclusively for their eponymous purpose: it is possible that additional
loads could have been present in some cases, again reducing the accuracy of the reported
“true” thermal loads. One instance of this issue observed in the data was the case of air
conditioner circuits reporting low levels of activity through winter months.

5.3 Possible analysis extensions

As noted above in Section 5.2.1, the overall model performances reported here are based
on aggregating results from a relatively small set of households. Several metrics, however,
yield extreme outlier values that could distort reported averages. The numeric averages
reported in Chapter 4.3 are supported by box-plot visualizations, providing sample median
and distribution data in order to increase resilience under the effects of outliers. However,
the possibility remains that certain homes in the validation dataset may be particularly
well- or poorly-suited to fitting to a given model, whether due to inherent characteristics
of the home or data quality issues such as those outlined in the previous section. Such
outlying households may disproportionately punish or favour specific approaches when
compared to a “typical” household of interest. What’s more, as previously discussed, some
characteristics of the overall group of validation households may not be representative of
actual homes in a particular region of interest for model application.

To address these potential challenges, the metric aggregation process could be performed
differently, weighting houses differently according to some criteria. For example, the issue
of outlier households could be addressed by determining which homes are most similar to
each other and giving less weight to the assessment results of those that do not conform
to overall trends. The group-level misrepresentation issue could be addressed by weighting
individual results by the degree to which validation households are representative of some
known “ideal” or “typical” household or match a set of auxiliary variables with known
population distributions, much like the practise of survey response weighting (Biemer and
Christ, 2008).
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5.4 Possible model extensions

5.4.1 Additional covariates

Disaggregation models to date have tended to focus exclusively on the relationship be-
tween thermal system electrical load and exterior temperature. However, there are likely
other environmental factors that contribute to electrical demand. Given that air condition-
ers provide both thermal regulation and dehumidification, it would stand to reason that
ambient humidity could contribute to cooling system loads. Passive heat gains due to inci-
dent solar irradiation could affect not only cooling season electrical use, but cold-weather
heating requirements as well, and possibly also behavioural loads (through artificial light-
ing requirements). Poorly-sealed and draft-prone building envelopes could also introduce
relations between external wind speeds and heating or cooling requirements.

5.4.2 Deeper physical modelling approaches

The Fit2 physical model is predicated on a somewhat unrealistic assumption that a dwelling’s
interior temperature is strictly maintained at a fixed value throughout the entire year. As
noted previously, it is more likely that ambient internal temperatures would be maintained
between some range of comfortable values: this relaxed assumption was the driver behind
the adoption of the Fit3 physical model. The generally superior performance of the Fit3
model over Fit2 in the model assessment would seem to support this line of reasoning.

Unfortunately, the Fit3 model represents a regression from the more rigourous, physically
derived nature of the Fit2 model. A more physically-informed approach would model
interior temperature changes as a function of both thermal system activity and heat flows
through conduction (as considered in the Fit2 model) or other mechanisms (such as the
exfiltration and passive solar effects discussed in the previous section). Changes in this
interior temperature above or below particular thresholds could be assumed to activate
the relevant heating systems - more closely modelling the actions of a thermostat. As
noted in previous sections, this approach would also result in fitting a larger number of
physically-oriented model parameters, potentially improving the discriminatory power of
a model to distinguish between various kinds of dwellings. A preliminary approach to
developing such a model is provided in Appendix D.2.1.

5.5 Possible applications

The parameters estimated by current models - and any improved characterizations that
future extended models might provide - can be operationalized to improve residential en-
ergy efficiency goals in a number of different ways. The most obvious application may be
targeted engagement and outreach for utility and government energy efficiency programs
- characterizations could be used to identify homes with the highest sensitivity of heating
or cooling loads to changes in external temperatures, and efforts to improving the weath-
erproofing of the dwelling’s building envelope or the efficiency of the home’s heating or
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cooling systems could be prioritized through offers to participate in energy audit programs
or retrofit incentives and subsidies.

Characterization data may also suggest opportunities for customized behavioural inter-
ventions or feedback: abnormally high heating thresholds or low cooling thresholds may
indicate a household that activates thermal systems in mild weather instead of opening
or closing windows - the occupants may be able to achieve their desired temperature reg-
ulation goals in a more energy-efficient manner, and may be promising targets for an
educational outreach campaign run by a utility or environmental organization. Similarly,
average hourly consumption trends could be studied to identify opportunities for shifting
heavy discretionary electrical loads away from peak consumption hours, reducing total grid
demand and saving energy costs if the household is in a jurisdiction using time-of-use elec-
tricity pricing - personalized savings estimates could even be generated based on historical
consumption patterns and provided to a homeowner as part of a utility’s demand response
initiative.

Rather than providing actionable insights to specific households, the behavioural and ther-
mal trends derived from characterization models could also be used to group a large sample
of households into smaller subgroups according to similarities in a feature of interest. For
example, homes with a very strong relationship between low external temperatures and
high electrical loads may be clustered together as likely resistive-electrically-heated, while
a more moderately sensitive group may be considered as likely users of heat pumps, and a
homes with a weak cold-weather vs electrical load relation may be inferred to use natural
gas furnaces.

These separate groups could then be employed as enhanced control groups in intervention
analyses. As an example, such clustering might be desirable when assessing the impact of
an informational weatherproofing campaign - the campaign may in fact be highly successful
in inspiring building envelope enhancements among gas furnace users, but the more subtle
ex-post electricity effects on the intervention group may be missed if the study’s control
group (who did not receive the informational campaign) was dominated by electrically-
heated homes with much higher and more variable load profiles - ideally an intervention
household would be compared to a control group with similar household characteristics.
Likewise, an intervention study adopting a synthetic control approach (Abadie et al., 2010)
would be much better served by comparing a participating household to a large group of
homes with very similar inferred energy contexts than a control group chosen at random.
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Chapter 6

Conclusions and Recommendations

This research has attempted to determine the extent to which existing methodological tools
and techniques may be used to infer the “energy context” of a given household based on its
energy consumption data and other readily-available information sources, and the degree to
which the state-of-the art in this area could be improved. To this end, a review of existing
techniques in the literature was performed and applied in combination with physical first
principles and empirically-observed statistical trends to develop new residential electricity
modelling approaches aiming to improve upon existing efforts.

The performance of a subset of these models (chosen for their speed and stability of param-
eter estimation) were then compared to existing techniques described in the literature. The
results of the analysis are summarized in Section 6.1. While one of the novel approaches
yielded overall improved behavioural disaggregation performance and a simpler formulation
compared to alternatives in the literature, there would seem to remain considerable oppor-
tunity for further improvement. Several potentially-promising areas for continued research
are outlined in Section 6.2. Finally, several recommendations for energy practitioners and
policy-makers arising from this work are outlined in Sections 6.3 and 6.4.

6.1 Research results

6.1.1 Model performance assessment

Currently available tools seem best-equipped to detect heating loads, with the existing
and novel techniques studied yielding roughly comparable performance, detecting heating
system activity in an average of 65% of cases, and estimating the corresponding load with
a root mean square error of less than 0.2 kWh/h. Cooling system load detection and
estimation was also approximately equivalent across the various models studied, but with
poorer average performance (averaging just under 0.5 kWh/h for the best-case model).
Introducing new external inputs to models may help to improve estimate accuracy.

Absolute error in behavioural (non-thermal) load detection was generally larger than that
for heating or cooling load components. A novel technique combining deseasonalized au-
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toregression and three-regime threshold regression (referred to in this document as DAR-
Fit3) performed the best relative to the alternatives studied, in terms of minimizing both
absolute and relative error.

Attempts to partition the test dataset households according to age and size based on
physical model parameters yielded results no better than could be expected from random
assignment. This may be a result of a combination of a lack of discriminatory power of
the models studied and the inability of home size and age to correlate to the character-
istics represented by the model parameters (representing the sensitivity of home energy
requirements to external temperature).

Overall, the DAR-Fit3 model introduced here provided the best overall performance for
the given test data, although it did not significantly surpass any other model studied.
Based on these results, there remains significant room for improvement in the state-of-the-
art of published strategies for thermal load disaggregation and dwelling characterization
when working with datasets with significant numbers of missing observations (techniques
requiring complete datasets were not able to be assessed - see Section 6.2.1 below).

6.1.2 Emergent insights

In many cases over the course of the assessment, simpler models were able to outperform or
at least match the performance of more complicated approaches, while also providing more
tractable, interpretable parameter fits. In particular, the PARX behavioural modelling
approach involved fitting several hundred model variables, but was often bested by the
simpler DAR method which fit an order of magnitude fewer parameters, resulting in quicker
computations and easier interpretation into policy insights.

6.2 Open research questions

6.2.1 Performance of less resilient models

Certain notable thermal disaggregation approaches were excluded from the assessment
given their lack of robustness in situations with large amounts of sequential missing ob-
servations (as was the case in the validation dataset available for this study). It is also
plausible that the relative performance of the models studied here may also change under
more favourable data conditions. Further consideration and testing of model performance
using a higher-quality dataset is warranted.

6.2.2 Novel model inputs

The lack of benefit of fitting temperature thresholds in predicting air conditioner use and
the failure of any model to provide improved inference of known dwelling characteristics
highlights the fact that hourly electrical loads and external temperatures alone do not
provide the information content required for a complete contextualization of a household’s
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energy use. There are other variables that are widely available but not being used in an
integrated manner: additional weather times series including external sunlight, humidity,
and wind speed provide basic examples. While smart metering of natural gas services has
lagged behind electricity, such data are becoming more commonly available and would seem
to have to potential to provide significant simplifications and performance improvements
to modelling household heating use. Further study is warranted into the performance
impacts of expanding models to incorporate these different inputs, and the magnitude of
their relative contributions to improving estimation accuracy.

6.2.3 Deeper physical-statistical model integration

Many of the models considered here eschew physically-derived foundations in favour of
statistical expedience and standard modelling techniques. While this approach simplifies
parameter fitting and improves model parsimony, there may be additional insights to be
gleaned from a more rigorous model construction process informed by the underlying ther-
modynamic processes driving household heating and cooling requirements, and less strict
assumptions about the nature of occupant behaviour and preferences. Additional work ex-
ploring the trade-offs and performance limits of more detailed modelling techniques given
the non-deterministic nature and inherent variability of household energy use would be
justified.

6.3 Recommendations for practitioners

While there is no doubt more work to be done in improving the quality of residential
energy model estimates and characterizations, existing approaches already provide a usable
starting point for practitioners (such as utility analysts, policy researchers, or individual
homeowners) seeking to make better use of available energy data. None of the models
studied are likely to be the best possible option for all applications: when selecting a
model to apply, one should consider the nature of the problem at hand and which kinds of
characterization are most important, striving to balance model intricacy with parsimony
and interpretability. The most intricate or complicated model available may not be the
best option.

Different models have been shown here to excel in different areas: for grouping homes
according to physical characteristics, a model with more physical parameters may be of
use. Heating load estimations may benefit more from allowing for flexibility in temperature
threshold points. Behavioural characterizations may be easier to interpret when dealing
with a limited number of highly relevant parameters instead of spreading potential insights
across a large number of parameters, even if they may help to fit the data better in some
situations.
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6.4 Recommendations for policy-makers

The capabilities of models are fundamentally limited by the information available to them:
richer, higher-quality data yield richer, higher-quality insights, and possibilities for com-
binatoric innovation increase exponentially relative to the number of different types of
datasets available. With that in mind, policy-makers should continue to support initia-
tives that provide and incentivize the simplified exchange of datasets, striving for (or better
yet, mandating) high data quality and completeness in order to broaden the range of avail-
able analysis techniques and make full use of any capital investment that was required to
obtain the information.

In the case of residential energy use specifically, that could involve making it simpler for
authorized agents to access timely and precise information about a household that the
the homeowner or occupants wish to share. The Green Button standard is an example of
an emerging means of facilitating this data access, and its continued adoption by utilities
should be encouraged. Real estate records are another example of rich datasets with
important implications for residential efficiency initiatives that have historically been closed
and costly to access: more open access mechanisms could yield tremendous benefits for
dwelling energy modelling, for example. (Of course, such dwelling records provide no
guarantee that their contents are fully up-to-date: energy data would remain a valuable
resource for assessing the current state of a household.)

Navigating the transition to a sustainable energy future will require a deep reassessment
of the efficiency with which society procures energy services to achieve its desired ends.
This reassessment involves both widespread and substantial behavioural shifts as well as
physical enhancements to existing infrastructure, including residential dwellings. These
are non-trivial undertakings: achieving them will require society to make full use of all of
the social- and knowledge-based resources at its disposal. The digitization of key infor-
mational and technical systems presents a massive opportunity to leverage data to reduce
the socioeconomic costs of such a transition, and the models studied here provide means
to carry that data towards urgently-required operationalization. None of the modelling
options assessed here are perfect, or even close to it: there is much work yet to be done.
But there is no doubt that it is work worth doing.
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Appendix A

Thermal Model Derivations

A.1 Thermodynamic modelling

A.1.1 Passive thermal model

Interior heating and cooling loads are fundamentally related to interior temperature: as
such, obtaining a better understanding of the dynamics influencing interior temperature
is important. A simple model for understanding changes in indoor temperature as they
relate to heat flow (i.e. power) is given as:

Cth
δTint(t)

δt
= qnet(t)

where qnet is the overall net heat flow in or out of the building (whether due to heat-
ing/cooling systems, outdoor temperatures, solar gains, etc) as a function of time, and Cth
is the aggregate heat capacity or thermal mass of the building.

At a minimum, qnet(t) is influenced passively by ambient environmental conditions, pri-
marily conduction of heat across exterior walls. Conductive heat transfer is modelled as:

qconductive(t) = Ũ
(
Text(t)− Tint(t)

)
That is, magnitude and direction of heat flow is proportional to the difference between cur-
rent indoor and outdoor temperatures with some proportionality constant Ũ (proportional
to the surface area of exterior walls and inversely proportional to their thermal resistiv-
ity). Other means of passive heat loss and gain can include air exfiltration (drafts) and
gains from absorbed solar radiation. For now, however, we represent the passive thermal
dynamic case as simply:

Cth
δTint(t)

δt
= qnet(t) = qpassive(t) = qconductive(t) = Ũ

(
Text(t)− Tint(t)

)
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A.1.2 Active constant-interior-temperature model

A dwelling’s interior temperature is clearly not just affected by passive thermal heat transfer
- if it were, it would be of little interest from the perspective of human energy consumption.
Instead, active mechanical heating and cooling systems are usually in place to control indoor
temperatures and maintain occupant comfort. The effect of such systems can be quantified
as:

Cth
δTint(t)

δt
= qnet(t) = qpassive(t) + qactive(t) = qpassive(t) + qh(t) + qc(t)

where we treat active heating and cooling systems as separate entities. The thermal heat
output of the systems can be related to their electrical power load via effective electrical
efficiencies ec, eh:

qh(t) = ehPh(t), qc(t) = −ecPc(t)

A question that now arises is how best to model the means and ends of active heating and
cooling systems. A simple approach is to assume that such systems work to maintain a con-
stant interior temperature at all times, such that δTint

δt = 0 (Tint has no time-dependence).
In this case our model simplifies to:

Cth
δTint
δt

= 0 = qnet(t) = qpassive(t) + qh(t) + qc(t)

qpassive + qh + qc = 0

Applying our conductive-only model of passive heat flow, we can expand this as:

Ũ
(
Text(t)− Tint

)
+ qh(t) + qc(t) = 0

From this representation it becomes clear that when Text(t) = Tint, no active intervention
is required to achieve the system’s objective. When Text(t) < Tint, qh(t) > 0 is required to
maintain balance, and conversely, qc(t) < 0 is required when Text(t) > Tint. More precisely,
the following is necessary:

qh(t) =

{
−Ũ
(
Text(t)− Tint

)
, Text(t) < Tint

0, Text(t) ≥ Tint

qc(t) =

{
0, Text(t) ≤ Tint
−Ũ
(
Text(t)− Tint

)
, Text(t) > Tint

In terms of electrical power, the relations are

Ph(t) =

{
− Ũ
eh

(
Text(t)− Tint

)
, Text(t) < Tint

0, Text(t) ≥ Tint
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Pc(t) =

{
0, Text(t) ≤ Tint
Ũ
ec

(
Text(t)− Tint

)
, Text(t) > Tint

These relations relate very closely to the piecewise linear regression approaches taken by
most existing residential energy models in the literature, although in most cases the con-
stant Tint is assigned different values in the heating and cooling power equations to respre-
sent the fact that HVAC systems generally do not attempt to maintain a single temperature
year-round, but instead keep interior temperatures within an acceptable range of values. A
more rigorous (thermodyamically-derived) approach to this constraint relaxation is given
in Section D.2.1.

A.2 Statistical behavioural modelling

A.2.1 Log-transformed average model

ln(Pot) = µ+ εt, εt ∼ (0, σ2ε )

Pot = eµ+εt , εt ∼ (0, σ2ε )

A.2.2 Seasonal-average model

Pot = µst + εt, εt ∼ (0, σ2ε )

A.2.3 Random walk model

Pot = µwt + εt, εt ∼ (0, σ2ε )

µwt = µwt−1 + ξt, ξt ∼ (0, σ2ξ )

A.2.4 Log-transformed random walk model with seasonal average

ln(Pot) = µwt + µst + εt, εt ∼ (0, σ2ε )

µwt = µwt−1 + ξt, ξt ∼ (0, σ2ξ )

A.2.5 Linearized (autoregression with seasonal average, DAR) model

Pot = φ1Pot−1 + µst + εt, εt ∼ (0, σ2ε )

73



Appendix B

Model Implementation Julia Code

The following code blocks provide the Julia code used to implement the various models
assessed in this analysis. All assume the existence in scope of readings and temperature

data structures of type TimeArray, which contain relevant whole-house electrical load and
exterior temperature observations.

B.1 Three-Regime Thermal Regression Model (Fit3)

Implements Birt et al. (2012):

using TimeSeries

using DataFrames

using MultivariateStats

immutable ThreeLinesModelSingleLine

g_h::Float64

T_ch::Float64

P_ch::Float64

T_cc::Float64

P_cc::Float64

g_c::Float64

function ThreeLinesModelSingleLine(g_h, T_ch, P_ch, T_cc, P_cc, g_c)

@assert T_ch < T_cc

new(g_h, T_ch, P_ch, T_cc, P_cc, g_c)

end #ThreeLinesModelSingleLine

end #ThreeLinesModelSingleLine

immutable ThreeLinesModel

average::ThreeLinesModelSingleLine
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low::ThreeLinesModelSingleLine

median::ThreeLinesModelSingleLine

high::ThreeLinesModelSingleLine

function ThreeLinesModel(average::ThreeLinesModelSingleLine, low::ThreeLinesModelSingleLine,

median::ThreeLinesModelSingleLine, high::ThreeLinesModelSingleLine)

new(average, low, median, high)

end #ThreeLinesModel

end #ThreeLinesModel

function threelines_prep_data{S,T}(P_sm::TimeArray{S,1}, T_ext::TimeArray{T,1})

data = merge(T_ext, P_sm)

data.colnames[:] = ["T_ext", "P_sm"]

data = data[find(!any(isnan(data.values), 2))]

T_ext = data["T_ext"].values

P_sm = data["P_sm"].values

# Bin data to nearest degree celsius

obs = DataFrame(T_ext=T_ext, P_sm=P_sm)

obs[:T_ext] = round(obs[:T_ext])

# Calculate low, median, and high values

bins = DataFrames.by(obs, :T_ext) do df

DataFrame(

count=size(df,1),

low=percentile(df[:P_sm],10),

median=median(df[:P_sm]),

high=percentile(df[:P_sm], 90)

)

end #do

# Eliminate bins with < 20 data points

bins[bins[:count] .>= 20, [:T_ext,:low,:median,:high]]

return T_ext, P_sm, collect(bins[:T_ext]),

collect(bins[:low]), collect(bins[:median]), collect(bins[:high])

end #function

function fit_threelines_singleline(T_ext::Vector, P_sm::Vector; min_T_ch = 10, min_regime_size=5)

to_matrix{T<:Any}(v::AbstractArray{T,1}) = reshape(collect(v),(size(v,1),1))

gridrange(eps::Float64) = -4eps:eps:4eps

predict{T<:Float64}(a::Tuple{T,T}, b::Tuple{T,T}, values::AbstractArray{T}) =

(b[2]-a[2])/(b[1]-a[1]).*(values .- a[1]) .+ a[2]

min_srmse = Inf

best_breakpoints = fill(NaN, 6)
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T_ext_max = maximum(T_ext)

for T_ch in min_T_ch:T_ext_max-2min_regime_size

for T_cc in T_ch+min_regime_size:T_ext_max-min_regime_size

heating_regime = T_ext .<= T_ch

passive_regime = T_ch .<= T_ext .<= T_cc

cooling_regime = T_cc .<= T_ext

regimes = (heating_regime, passive_regime, cooling_regime)

m = fill(NaN, 3)

b = fill(NaN, 3)

srmse = 0

for r in 1:size(regimes,1)

regime_T = T_ext[regimes[r]]

regime_P = P_sm[regimes[r]]

fit = llsq(to_matrix(regime_T), to_matrix(regime_P))

m[r] = fit[1]

b[r] = fit[2]

srmse += rmse(regime_P .- (regime_T*m[r] .+ b[r]))

end #for

if srmse < min_srmse

min_srmse = srmse

best_breakpoints = [T_ch, m[1]*T_ch + b[1], m[2]*T_ch + b[2],

T_cc, m[2]*T_cc + b[2], m[3]*T_cc + b[3]]

end #if

end #for

end #for

# 4 - Generate 9x9 grids around optimal T_ch, T_cc and pick best breakpoints to minimize SRMSE

final_parameters = fill(NaN, 6)

min_srmse = Inf

T_chs = best_breakpoints[1] + gridrange(.5)

P_chs = mean(best_breakpoints[2:3]) +

gridrange((best_breakpoints[3]-best_breakpoints[2])/4)

T_ccs = best_breakpoints[4] + gridrange(.5)

P_ccs = mean(best_breakpoints[5:6]) +

gridrange((best_breakpoints[6]-best_breakpoints[5])/4)

for T_ch in T_chs

heating_T = T_ext[T_ext .<= T_ch] - T_ch

for P_ch in P_chs

heating_P = P_sm[T_ext .<= T_ch] - P_ch
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heating_fit = llsq(to_matrix(heating_T), to_matrix(heating_P), bias=false)

residuals_heating = heating_P - heating_fit[1]*heating_T

for T_cc in T_ccs

cooling_T = T_ext[T_cc .<= T_ext] - T_cc

for P_cc in P_ccs

cooling_P = P_sm[T_cc .<= T_ext] - P_cc

cooling_fit = llsq(to_matrix(cooling_T), to_matrix(cooling_P), bias=false)

residuals_cooling = cooling_P - cooling_fit[1]*cooling_T

passive_T = T_ext[T_ch .<= T_ext .<= T_cc]

passive_P = P_sm[T_ch .<= T_ext .<= T_cc]

residuals_passive = passive_P - predict((T_ch,P_ch),(T_cc,P_cc), passive_T)

srmse = rmse(residuals_heating) + rmse(residuals_passive) + rmse(residuals_cooling)

if srmse < min_srmse

min_srmse = srmse

final_parameters = [heating_fit[1], T_ch, P_ch, T_cc, P_cc, cooling_fit[1]]

end #if

end #for

end #for

end #for

end #for

return ThreeLinesModelSingleLine(final_parameters...)

end #fit_threelines_singleline

function fit_threelines{S,T}(P_sm::TimeArray{S,1}, T_ext::TimeArray{T,1};

min_T_ch = 10, min_regime_size=5)

T_ext, P_sm, T_binned, low_vals, med_vals, high_vals = threelines_prep_data(P_sm, T_ext)

averagefit = fit_threelines_singleline(T_ext, P_sm,

min_T_ch=min_T_ch, min_regime_size=min_regime_size)

lowfit = fit_threelines_singleline(T_binned, low_vals,

min_T_ch=min_T_ch, min_regime_size=min_regime_size)

medianfit = fit_threelines_singleline(T_binned, med_vals,

min_T_ch=min_T_ch, min_regime_size=min_regime_size)

highfit = fit_threelines_singleline(T_binned, high_vals,

min_T_ch=min_T_ch, min_regime_size=min_regime_size)

return ThreeLinesModel(averagefit, lowfit, medianfit, highfit)

end #fit_threelines
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function disaggregate{S,T}(P_sm::TimeArray{S,1}, m::ThreeLinesModel, T_ext::TimeArray{T,1})

g_h, T_ch, T_cc, g_c = min(0, m.average.g_h), m.average.T_ch,

m.average.T_cc, max(0, m.average.g_c)

is_heating = T_ext .< T_ch

is_cooling = T_ext .> T_cc

P_h = is_heating*g_h .* (T_ext.-T_ch)

P_c = is_cooling*g_c .* (T_ext.-T_cc)

P_r = 0P_sm + (m.average.P_ch + m.average.P_cc)/2

# P_r = P_sm .- P_h .- P_c

# P_r = (P_r .> 0) .* 1. .* P_r

estimates = merge(P_h, merge(P_c, P_r))

estimates.colnames[:] = ["P_h", "P_c", "P_r"]

return estimates

end #disaggregate ThreeLinesModel

function assess{S,T}(m::ThreeLinesModel, P_sm::TimeArray{S,1},

T_ext::TimeArray{T,1}, groundtruth::TimeArray)

data = data[find(!any(isnan(merge(P_sm, merge(T_ext, groundtruth)).values), 2))]

estimates = disaggregate(P_sm, m, T_ext)

return assess(estimates, groundtruth)

end #assess_threelines

function plot_threelines(fp::Matrix, data::TimeArray)

_, _, T_binned, low_vals, med_vals, high_vals = threelines_prep_data(data)

function pale(cname::String, op::Float64=0.3)

col = parse(Colorant, cname)

RGBA(red(col), green(col), blue(col), op)

end #pale

heating_line(i::Int, col::String) =

layer(x -> fp[1,i]*x + (fp[3,i] - fp[1,i]*fp[2,i]), -25, fp[2,i],

Theme(default_color=parse(Colorant, col)))

passive_line(i::Int, col::String) =

layer(x -> fp[3,i] + (fp[5,i]-fp[3,i])/(fp[4,i]-fp[2,i])*(x-fp[2,i]), fp[2,i], fp[4,i],

Theme(default_color=parse(Colorant, col)))

cooling_line(i::Int, col::String) =

layer(x -> fp[6,i]*x + (fp[5,i] - fp[6,i]*fp[4,i]), fp[4,i], 35,

Theme(default_color=parse(Colorant, col)))

plot(heating_line(1, "black"),passive_line(1, "black"),cooling_line(1, "black"),

layer(x=T_binned, y=low_vals, Geom.point, Theme(default_color=pale("blue"))),

heating_line(2, "blue"), passive_line(2, "blue"), cooling_line(2, "blue"),

78



layer(x=T_binned, y=med_vals, Geom.point, Theme(default_color=pale("orange"))),

heating_line(3, "orange"), passive_line(3, "orange"), cooling_line(3, "orange"),

layer(x=T_binned, y=high_vals, Geom.point, Theme(default_color=pale("red"))),

heating_line(4, "red"), passive_line(4, "red"), cooling_line(4, "red"))

threelinesfit = fit_threelines(readings, temperatures)

estimates = disaggregate(readings, threelinesfit, temperatures)

estimates.colnames[:] = ["Heating", "Cooling", "Other"]

physicalparams = [threelinesfit.high.g_h, threelinesfit.high.g_c]

baseload = min(threelinesfit.low.P_ch, threelinesfit.low.P_cc)

activity = min(threelinesfit.high.P_ch, threelinesfit.high.P_cc) - baseload

behaviouralparams = [threelinesfit.high.T_ch, threelinesfit.high.T_cc, baseload, activity]

B.2 Periodic Autoregressive Fixed Four-Regime Model (PARX-
Fixed4)

Implements Ardakanian et al. (2014):

using TimeZones

using TimeSeries

using MultivariateStats

# Generate exogenous factors

m = 5

T_h1 = (Tch1 - temperatures) .* (temperatures .< Tch1)

T_h1.colnames[:] = ["T_h1"]

T_h2 = (Tch2 - temperatures) .* (temperatures .< Tch2)

T_h2.colnames[:] = ["T_h2"]

T_c = (temperatures - Tcc) .* (temperatures .> Tcc)

T_c.colnames[:] = ["T_c"]

OL = readings .< quantile(readings.values[!isnan(readings.values)], 0.1)

OL.colnames[:] = ["OL"]

OH = readings .> quantile(readings.values[!isnan(readings.values)], 0.9)

OH.colnames[:] = ["OH"]

regressors = merge(merge(merge(merge(T_h1, T_h2), T_c), 1.0*OL), 1.0*OH)

regressors.colnames[:] = ["T_h1", "T_h2", "T_c", "OL", "OH"]

# Split data into periods

readingseasons = TimeArray(readings.timestamp,

map(season_hourofdaytype,

readings.timestamp), ["Season"])

79



S = length(unique(readingseasons.values))

readingsperiods = map(s -> readings[readingseasons .== s], 1:S)

regressorsperiods = map(s -> regressors[readingseasons .== s], 1:S)

# Add in lag-3 AR terms

p = 3

readingsperiods = map(ta -> merge(merge(merge(ta, lag(ta, 1, padding=true)),

lag(ta, 2, padding=true)), lag(ta, 3, padding=true),

colnames=["P_t", "P_t-1", "P_t-2", "P_t-3"]),

readingsperiods)

dataperiods = map((readings,regressors) -> merge(readings, regressors),

readingsperiods,

regressorsperiods)

# Fit parameters via OLS

cleandataperiods = map(dropnan, dataperiods)

params = Array{Float64}(m+p+1, S)

cleandataperiods = map(ta -> dropnan(ta, :any), dataperiods)

for s in eachindex(cleandataperiods)

timestamp = cleandataperiods[s].timestamp

y, X = cleandataperiods[s].values[:,1], cleandataperiods[s].values[:,2:end]

nodata = sum(abs(X), 1) .== 0

nodata_idx, data_idx = find(nodata), find(!nodata)

params[nodata_idx, s] = 0

params[[data_idx; 9], s] = llsq(X[:, data_idx], y)

end #for

physicalparams = vec(params[5:7, :])

behaviouralparams = vec(params[[1:4;8:9], :])

# Disaggregate readings

disaggs = TimeArray(ZonedDateTime[], Array{Float64}(0,3), ["Heating", "Cooling", "Other"])

for s in eachindex(dataperiods)

timestamp = dataperiods[s].timestamp

heating = max(0, params[4, s]) * dataperiods[s]["T_h1"] .+

max(0, params[5, s]) * dataperiods[s]["T_h2"]

cooling = max(0, params[6, s]) * dataperiods[s]["T_c"]

other = TimeArray(timestamp, dataperiods[s].values[:, 2:end] * params[1:end-1, s] +

params[end, s], ["Other"])

other = other .* (other .> 0)

disaggs = vcat(disaggs, merge(merge(heating, cooling), other,

colnames=["Heating", "Cooling", "Other"]))

end #for

B.3 Deseasonalized Autoregressive Fixed Four-Regime Model
(DAR-Fixed4)

using TimeZones
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using TimeSeries

using MultivariateStats

readings = dropnan(merge(readings, lag(readings, padding=true),

colnames=["P_sm", "P_sm_t-1"]), :any)

temperatures = temperatures[readings.timestamp]

Tch1, Tch2, Tcc = 16, 5, 20

T_h1 = (Tch1 - temperatures) .* (temperatures .< Tch1)

T_h1.colnames[:] = ["T_h1"]

T_h2 = (Tch2 - temperatures) .* (temperatures .< Tch2)

T_h2.colnames[:] = ["T_h2"]

T_c = (temperatures - Tcc) .* (temperatures .> Tcc)

T_c.colnames[:] = ["T_c"]

seasonalfactors = hoursofdaytype(readings)

regressors = [T_h1.values T_h2.values T_c.values

readings["P_sm_t-1"].values seasonalfactors.values]

params = llsq(regressors, readings["P_sm"].values, bias=false)

physicalparams = params[1:3]

behaviouralparams = params[4:end]

heating = max(0, physicalparams[1]) * T_h1 .+ max(0, physicalparams[2]) * T_h2

cooling = max(0, physicalparams[3]) * T_c

# other = readings["P_sm"] .- heating .- cooling

other = TimeArray(readings.timestamp,

behaviouralparams[end] +

seasonalfactors.values * behaviouralparams[1:end-1], ["Other"])

other = other .* (other .> 0)

disaggs = merge(merge(heating, cooling), other, colnames=["Heating", "Cooling", "Other"])

B.4 Deseasonalized Autoregressive Two-Regime Model (DAR-
Fit2)

using TimeZones

using TimeSeries

using MultivariateStats

function fit_thresholdregression{T}(y::Vector{T}, z::Vector{T},

::Vector{T}, X::Matrix=Array{T}(length(y), 0);

bias::Bool=true, niter::Int=100, tol::Float64=1e-9, verbose::Bool=false)

@assert length(y) == length(z)

@assert length(y) == size(X, 1)
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K = length()

done, timeout = false, false

, , , , _prev = [], [], [], [], Inf*ones()

i = 0

while !done

i += 1

verbose && println("\nIteration $i:")

verbose && println(" = $")

V = (z .> ’)

U = (z .- ’) .* V

V *= -1

rank([z U V X]) < size([z U V X], 2) && warn("Rank deficient...")

params = llsq([z U V X], y, bias=bias)

, = params[1], params[2:K+1]

, = params[K+2:2K+1], params[2K+2:end]

= ./ .+

verbose && println("Max = $(maximum(abs()))")

converged = all(abs() .< tol)

timeout = i >= niter || any(abs() .> abs(_prev))

done = converged || timeout

_prev =

end #while

timeout && warn("Fitting timed out after $i iterations: may have failed to converge.

Convergence threshold was $tol; largest absolute value at final iteration

was $(maximum(abs()))")

return , , ,

end #fit_thresholdregression

readings = dropnan(merge(readings, lag(readings, padding=true),

colnames=["P_sm", "P_sm_t-1"]), :any)

temperatures = temperatures[readings.timestamp]

seasons = hoursofdaytype(readings)

partial_regressors = [readings["P_sm_t-1"].values seasons.values]

y = readings["P_sm"].values

, , , = fit_thresholdregression(y, temperatures.values, [20.],

partial_regressors, bias=false)
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Ts, g_h, g_c = [1], , + [1]

T_h = (Ts .- temperatures) .* (temperatures .< Ts)

T_c = (temperatures .- Ts) .* (temperatures .> Ts)

physicalparameters = [g_h, g_c]

behaviouralparameters = [Ts; ]

heating = T_h .* max(0, -g_h)

cooling = T_c .* max(0, g_c)

# other = readings["P_sm"] .- heating .- cooling

other = TimeArray(readings.timestamp, partial_regressors * , ["Other"])

other = other .* (other .> 0)

disaggs = merge(merge(heating, cooling), other, colnames=["Heating", "Cooling", "Other"])

B.5 Deseasonalized Autoregressive Three-Regime Model (DAR-
Fit3)

using TimeZones

using TimeSeries

using MultivariateStats

using Optim

readings = dropnan(merge(readings, lag(readings, padding=true),

colnames=["P_sm", "P_sm_t-1"]), :any)

temperatures = temperatures[readings.timestamp]

seasons = hoursofdaytype(readings)

partial_regressors = [readings["P_sm_t-1"].values seasons.values]

y = readings["P_sm"].values

function rmse(p::Vector{Float64})

Tch, Tcc = p[1], p[2]

T_h = (Tch .- temperatures) .* (temperatures .< Tch)

T_c = (temperatures .- Tcc) .* (temperatures .> Tcc)

regressors = [T_h.values T_c.values partial_regressors]

params = llsq(regressors, y, bias=false)

return sqrt(mean(abs2(y - regressors * params)))

end #rmse

p = optimize(rmse, [Tch, Tcc]).minimum

Tch, Tcc = p[1], p[2]

T_h = (Tch .- temperatures) .* (temperatures .< Tch)

T_c = (temperatures .- Tcc) .* (temperatures .> Tcc)

regressors = [T_h.values T_c.values partial_regressors]

params = llsq(regressors, y, bias=false)

physicalparameters = params[1:2]
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behaviouralparameters = [Tch; Tcc; params[3:end]]

heating = T_h .* max(0, params[1])

cooling = T_c .* max(0, params[2])

# other = readings["P_sm"] .- heating .- cooling

other = TimeArray(readings.timestamp, partial_regressors * params[3:end], ["Other"])

other = other .* (other .> 0)

disaggs = merge(merge(heating, cooling), other, colnames=["Heating", "Cooling", "Other"])
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Appendix C

Model Comparison and Validation
Results

C.1 Three-Regime Thermal Regression Model (Fit3)

ID
Heating
Activity
Accuracy

Heating
Activity
Precision

Heating
Activity
Recall

Heating
Activity
F1

Heating
Load
RMSE
(overall)

Heating
Load
RMSE
(active)

Heating
Load
MAPE

A 0.64 0.56 1.00 0.72 0.23 0.26 4.12
B 0.88 0.96 0.87 0.91 0.20 0.23 0.65
C 0.77 0.66 0.96 0.78 0.13 0.16 1.27
D 0.76 0.91 0.75 0.83 0.32 0.35 1.15
E 0.68 0.86 0.72 0.79 0.18 0.19 1.00
F 0.75 0.67 0.96 0.79 0.19 0.22 1.07
G 0.81 0.75 0.94 0.84 0.17 0.21 0.87
H 0.81 0.95 0.79 0.86 0.37 0.41 0.89
I 0.69 0.51 0.98 0.67 0.13 0.17 1.18
J 0.66 0.99 0.59 0.74 0.14 0.16 0.84
K 0.88 1.00 0.86 0.93 0.12 0.13 0.85
L 0.70 0.61 0.84 0.71 0.08 0.10 1.18
M 0.13 NA 0.00 NA 0.09 0.09 1.00
N 0.67 1.00 0.60 0.75 0.21 0.23 1.41
O 0.69 0.37 0.95 0.53 0.11 0.16 2.80
P 0.55 1.00 0.51 0.67 0.28 0.30 0.97
Q 0.64 1.00 0.59 0.74 0.10 0.11 1.24
R 0.36 0.09 0.62 0.15 0.09 0.11 1.41
S 0.60 0.35 0.82 0.49 0.14 0.18 2.18
T 0.34 0.00 0.13 0.01 0.07 0.09 3.75
U 0.67 0.03 0.52 0.06 0.06 0.10 0.99

Table C.1: Heating characterization assessment metrics for each household under the Fit3
model
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ID
Cooling
Activity
Accuracy

Cooling
Activity
Precision

Cooling
Activity
Recall

Cooling
Activity
F1

Cooling
Load
RMSE
(overall)

Cooling
Load
RMSE
(active)

Cooling
Load
MAPE

Behavioural
Load
RMSE

Behavioural
Load
MAPE

A 0.88 0.29 0.95 0.45 0.17 0.41 1.15 0.64 1.00
B 0.74 0.99 0.02 0.04 0.43 0.84 1.00 1.03 2.06
C 0.78 0.34 0.98 0.50 0.32 0.56 0.92 0.64 0.48
D 0.82 0.45 0.96 0.61 0.38 0.67 0.70 0.48 1.46
E 0.83 0.30 0.98 0.46 0.16 0.31 0.64 0.52 0.83
F 0.85 0.48 0.95 0.64 0.24 0.46 1.83 0.47 1.25
G 0.78 0.31 0.94 0.47 0.22 0.39 1.93 0.47 3.24
H 0.84 0.59 0.86 0.70 0.45 0.75 0.80 0.87 0.50
I 0.78 0.38 0.99 0.55 0.30 0.51 1.69 0.37 2.13
J 0.92 0.95 0.06 0.11 0.22 0.74 0.99 0.81 1.15
K 0.91 0.55 0.98 0.70 0.24 0.55 0.51 0.60 0.93
L 0.72 0.11 0.99 0.20 0.17 0.31 0.92 0.45 0.74
M 0.70 0.03 1.00 0.07 0.14 0.25 0.79 0.21 0.74
N 0.76 0.40 0.97 0.57 0.68 1.07 1.02 0.33 0.47
O 0.76 0.43 0.91 0.58 0.28 0.44 0.89 0.54 1.40
P 0.62 0.19 0.99 0.32 0.60 0.88 0.67 0.56 21.71
Q 0.74 0.31 0.97 0.47 0.59 0.98 1.21 0.59 1.26
R 0.32 0.91 0.27 0.42 0.34 0.36 7.19 0.38 1.36
S 0.52 0.94 0.39 0.56 0.59 0.67 7.89 0.63 2.07
T 0.31 0.96 0.32 0.48 0.14 0.14 2.63 0.27 0.69
U 0.61 0.98 0.61 0.75 0.48 0.48 0.74 0.47 2.88

Table C.2: Cooling and behavioural characterization assessment metrics for each household
under the Fit3 model
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Figure C.1: Best clustering assignment of EHMS homes using physical parameters from
the Fit3 model
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C.2 Periodic Autoregressive Fixed Four-Regime Model (PARX-
Fixed4)

ID
Heating
Activity
Accuracy

Heating
Activity
Precision

Heating
Activity
Recall

Heating
Activity
F1

Heating
Load
RMSE
(overall)

Heating
Load
RMSE
(active)

Heating
Load
MAPE

A 0.67 0.58 0.93 0.71 0.12 0.13 1.32
B 0.79 0.97 0.74 0.84 0.24 0.28 0.80
C 0.70 0.59 0.97 0.73 0.15 0.17 1.42
D 0.73 0.91 0.72 0.80 0.36 0.40 0.96
E 0.72 0.86 0.78 0.82 0.19 0.20 1.03
F 0.73 0.67 0.86 0.76 0.20 0.24 1.13
G 0.75 0.69 0.94 0.80 0.20 0.23 0.87
H 0.78 0.93 0.77 0.84 0.37 0.41 0.97
I 0.72 0.54 0.87 0.67 0.13 0.17 1.30
J 0.59 1.00 0.49 0.66 0.15 0.16 0.93
K 0.84 1.00 0.82 0.90 0.17 0.18 0.89
L 0.67 0.59 0.84 0.69 0.09 0.11 1.19
M 0.56 0.83 0.63 0.71 0.07 0.07 1.01
N 0.74 0.99 0.68 0.81 0.21 0.23 1.90
O 0.67 0.35 0.90 0.50 0.13 0.18 3.37
P 0.42 1.00 0.36 0.53 0.27 0.29 1.96
Q 0.66 1.00 0.61 0.76 0.12 0.13 1.37
R 0.30 0.10 0.79 0.18 0.12 0.14 1.97
S 0.56 0.32 0.82 0.46 0.18 0.22 3.14
T 0.37 0.00 0.13 0.01 0.08 0.10 3.13
U 0.62 0.02 0.38 0.04 0.09 0.15 0.98

Table C.3: Heating characterization assessment metrics for each household under the
PARX-Fixed4 model

ID
Cooling
Activity
Accuracy

Cooling
Activity
Precision

Cooling
Activity
Recall

Cooling
Activity
F1

Cooling
Load
RMSE
(overall)

Cooling
Load
RMSE
(active)

Cooling
Load
MAPE

Behavioural
Load
RMSE

Behavioural
Load
MAPE

A 0.92 0.38 0.82 0.52 0.19 0.53 0.96 0.44 0.88
B 0.85 0.88 0.51 0.65 0.40 0.74 0.92 0.65 0.89
C 0.91 0.57 0.72 0.64 0.39 0.94 0.90 0.61 0.54
D 0.90 0.67 0.66 0.67 0.51 1.15 0.91 0.71 2.05
E 0.91 0.43 0.68 0.53 0.17 0.46 0.86 0.41 0.66
F 0.91 0.73 0.55 0.63 0.27 0.67 0.89 0.48 1.25
G 0.89 0.48 0.59 0.53 0.25 0.62 0.96 0.44 3.73
H 0.85 0.73 0.50 0.59 0.50 0.97 0.93 0.86 0.45
I 0.91 0.65 0.79 0.71 0.40 0.91 0.93 0.51 2.40
J 0.88 0.41 0.80 0.55 0.20 0.45 0.85 0.45 0.36
K 0.94 0.80 0.62 0.69 0.38 1.08 0.88 0.59 0.79
L 0.88 0.18 0.68 0.29 0.17 0.46 0.90 0.35 0.53
M 0.87 0.06 0.76 0.11 0.13 0.35 0.91 0.19 0.56
N 0.88 0.63 0.72 0.67 0.85 1.76 0.87 0.96 1.27
O 0.80 0.47 0.41 0.44 0.30 0.58 0.96 0.45 0.91
P 0.82 0.29 0.69 0.41 0.66 1.36 0.93 0.77 20.10
Q 0.87 0.46 0.56 0.51 0.67 1.50 0.96 0.79 1.42
R 0.20 0.98 0.12 0.21 0.39 0.41 1.47 0.49 1.77
S 0.36 0.98 0.17 0.29 0.73 0.83 1.44 0.80 2.07
T 0.12 0.92 0.12 0.22 0.15 0.15 1.07 0.25 0.67
U 0.26 0.99 0.25 0.40 0.56 0.57 0.96 0.55 2.83

Table C.4: Cooling and behavioural characterization assessment metrics for each household
under the PARX-Fixed4 model
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Figure C.2: Best clustering assignment of EHMS homes using physical parameters from
the PARX-Fixed4 model
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C.3 Deseasonalized Autoregressive Fixed Four-Regime Model
(DAR-Fixed4)

ID
Heating
Activity
Accuracy

Heating
Activity
Precision

Heating
Activity
Recall

Heating
Activity
F1

Heating
Load
RMSE
(overall)

Heating
Load
RMSE
(active)

Heating
Load
MAPE

A 0.64 0.56 1.00 0.72 0.08 0.09 0.94
B 0.89 0.93 0.92 0.93 0.27 0.31 0.96
C 0.67 0.56 0.98 0.72 0.13 0.15 1.05
D 0.81 0.89 0.86 0.87 0.38 0.41 0.92
E 0.74 0.86 0.81 0.83 0.20 0.21 0.93
F 0.67 0.60 0.99 0.75 0.22 0.25 0.95
G 0.74 0.67 0.98 0.80 0.22 0.25 0.85
H 0.84 0.92 0.87 0.89 0.40 0.44 0.89
I 0.80 0.63 0.88 0.74 0.14 0.20 1.09
J 0.59 1.00 0.49 0.66 0.13 0.15 0.81
K 0.94 0.99 0.94 0.97 0.19 0.20 0.81
L 0.62 0.54 0.92 0.68 0.10 0.11 0.80
M 0.64 0.84 0.72 0.78 0.08 0.08 0.83
N 0.60 1.00 0.51 0.67 0.22 0.24 1.10
O 0.76 0.42 0.89 0.58 0.11 0.17 1.78
P 0.35 1.00 0.28 0.44 0.28 0.30 1.13
Q 0.54 1.00 0.48 0.65 0.12 0.13 1.42
R 0.40 0.05 0.28 0.08 0.07 0.08 1.07
S 0.63 0.36 0.71 0.47 0.15 0.21 1.99
T 0.52 0.00 0.11 0.01 0.05 0.08 2.11
U 0.87 0.03 0.16 0.05 0.06 0.17 0.99

Table C.5: Heating characterization assessment metrics for each household under the DAR-
Fixed4 model

ID
Cooling
Activity
Accuracy

Cooling
Activity
Precision

Cooling
Activity
Recall

Cooling
Activity
F1

Cooling
Load
RMSE
(overall)

Cooling
Load
RMSE
(active)

Cooling
Load
MAPE

Behavioural
Load
RMSE

Behavioural
Load
MAPE

A 0.92 0.37 0.84 0.51 0.19 0.53 0.98 0.72 0.58
B 0.86 0.89 0.55 0.68 0.40 0.76 0.94 0.60 0.73
C 0.91 0.57 0.80 0.67 0.37 0.88 0.85 0.66 0.35
D 0.90 0.66 0.67 0.66 0.49 1.11 0.88 0.43 0.79
E 0.90 0.42 0.80 0.55 0.18 0.45 0.90 0.53 0.40
F 0.91 0.74 0.58 0.65 0.26 0.63 0.90 0.45 0.70
G 0.90 0.51 0.68 0.58 0.24 0.59 1.13 0.45 3.54
H 0.85 0.73 0.54 0.62 0.52 1.00 0.96 0.73 0.27
I 0.91 0.65 0.81 0.72 0.39 0.86 0.90 0.33 1.78
J 0.88 0.42 0.87 0.57 0.19 0.43 0.83 0.74 0.48
K 0.95 0.80 0.72 0.76 0.38 1.07 0.89 0.62 0.55
L 0.88 0.20 0.81 0.32 0.17 0.45 0.90 0.42 0.87
M 0.85 0.06 0.90 0.12 0.13 0.33 0.92 0.21 0.72
N 0.89 0.63 0.73 0.68 0.84 1.74 0.86 0.33 0.32
O 0.80 0.47 0.45 0.46 0.32 0.60 0.99 0.53 0.75
P 0.81 0.29 0.74 0.42 0.65 1.29 0.89 0.60 24.06
Q 0.85 0.42 0.59 0.49 0.67 1.44 1.00 0.99 3.48
R 0.21 0.98 0.13 0.23 0.36 0.38 2.45 0.52 2.97
S 0.36 0.98 0.17 0.29 0.71 0.81 2.17 0.67 2.54
T 0.13 0.92 0.13 0.23 0.15 0.15 1.14 0.29 0.98
U 0.29 0.99 0.28 0.43 0.54 0.54 0.94 0.66 4.24

Table C.6: Cooling and behavioural characterization assessment metrics for each household
under the DAR-Fixed4 model
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Figure C.3: Best clustering assignment of EHMS homes using physical parameters from
the DAR-Fixed4 model
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C.4 Deseasonalized Autoregressive Two-Regime Model (DAR-
Fit2)

ID
Heating
Activity
Accuracy

Heating
Activity
Precision

Heating
Activity
Recall

Heating
Activity
F1

Heating
Load
RMSE
(overall)

Heating
Load
RMSE
(active)

Heating
Load
MAPE

A 0.63 0.55 1.00 0.71 0.08 0.09 1.06
B 0.89 0.95 0.89 0.92 0.25 0.29 0.89
C 0.61 0.52 0.99 0.68 0.14 0.15 1.04
D 0.82 0.88 0.88 0.88 0.36 0.39 0.92
E 0.80 0.85 0.91 0.88 0.21 0.21 0.87
F 0.62 0.57 1.00 0.72 0.21 0.22 0.99
G 0.72 0.66 0.98 0.79 0.20 0.22 0.84
H 0.84 0.87 0.93 0.90 0.41 0.44 0.89
I 0.58 0.44 0.99 0.61 0.15 0.17 1.04
J 0.68 0.98 0.61 0.75 0.15 0.17 0.93
K 0.94 0.99 0.93 0.96 0.16 0.17 0.66
L 0.64 0.55 0.91 0.69 0.09 0.10 0.80
M 0.13 NA 0.00 NA 0.09 0.09 1.00
N 0.87 0.96 0.89 0.92 0.23 0.25 1.04
O 0.65 0.34 0.97 0.50 0.12 0.16 1.31
P 0.09 NA 0.00 NA 0.29 0.31 1.00
Q 0.71 1.00 0.67 0.80 0.12 0.13 1.02
R 0.24 0.11 0.97 0.19 0.09 0.09 2.57
S 0.48 0.30 0.94 0.46 0.14 0.16 1.82
T 0.22 0.00 0.16 0.01 0.06 0.06 2.91
U 0.98 NA 0.00 NA 0.06 0.41 1.00

Table C.7: Heating characterization assessment metrics for each household under the DAR-
Fit2 model

ID
Cooling
Activity
Accuracy

Cooling
Activity
Precision

Cooling
Activity
Recall

Cooling
Activity
F1

Cooling
Load
RMSE
(overall)

Cooling
Load
RMSE
(active)

Cooling
Load
MAPE

Behavioural
Load
RMSE

Behavioural
Load
MAPE

A 0.86 0.27 0.97 0.42 0.18 0.43 1.00 0.45 0.88
B 0.89 0.74 0.88 0.80 0.39 0.66 0.87 0.64 0.94
C 0.89 0.50 0.88 0.64 0.37 0.80 0.83 0.58 0.58
D 0.87 0.54 0.88 0.67 0.47 0.94 0.82 0.66 1.95
E 0.90 0.42 0.76 0.54 0.18 0.46 0.90 0.43 0.70
F 0.92 0.70 0.69 0.69 0.25 0.59 0.90 0.44 1.19
G 0.86 0.41 0.85 0.55 0.23 0.49 1.29 0.46 4.02
H 0.85 0.72 0.58 0.64 0.52 0.99 0.95 0.84 0.47
I 0.86 0.50 0.94 0.65 0.36 0.70 1.04 0.42 2.41
J 0.58 0.17 0.99 0.29 0.18 0.25 0.63 0.38 0.32
K 0.93 0.63 0.94 0.75 0.36 0.89 0.81 0.54 0.84
L 0.76 0.13 0.98 0.22 0.17 0.33 0.88 0.33 0.55
M 0.90 0.08 0.80 0.15 0.13 0.41 0.94 0.20 0.62
N 0.86 0.56 0.83 0.66 0.82 1.57 0.83 0.81 1.09
O 0.70 0.38 0.97 0.55 0.32 0.46 0.96 0.47 1.02
P 0.83 0.31 0.66 0.42 0.66 1.37 0.90 0.68 18.47
Q 0.71 0.29 0.99 0.45 0.62 0.96 1.07 0.67 1.28
R 0.24 0.98 0.16 0.28 0.35 0.37 3.24 0.40 1.85
S 0.48 0.95 0.34 0.50 0.66 0.75 3.82 0.75 2.16
T 0.22 0.95 0.22 0.36 0.14 0.14 1.41 0.26 0.77
U 0.38 0.99 0.37 0.54 0.53 0.53 0.92 0.52 3.07

Table C.8: Cooling and behavioural characterization assessment metrics for each household
under the DAR-Fit2 model
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Figure C.4: Best cluster assignment of EHMS homes using physical parameters from the
DAR-Fit2 model
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C.5 Deseasonalized Autoregressive Three-Regime Model (DAR-
Fit3)

ID
Heating
Activity
Accuracy

Heating
Activity
Precision

Heating
Activity
Recall

Heating
Activity
F1

Heating
Load
RMSE
(overall)

Heating
Load
RMSE
(active)

Heating
Load
MAPE

A 0.70 0.60 0.99 0.75 0.08 0.09 0.94
B 0.89 0.94 0.90 0.92 0.25 0.29 0.88
C 0.52 0.47 1.00 0.64 0.13 0.14 1.16
D 0.83 0.85 0.94 0.89 0.35 0.37 0.96
E 0.81 0.82 0.97 0.89 0.20 0.20 0.89
F 0.51 0.50 1.00 0.67 0.20 0.20 1.05
G 0.57 0.55 1.00 0.71 0.17 0.18 0.94
H 0.82 0.82 0.97 0.89 0.39 0.40 0.86
I 0.54 0.41 0.99 0.58 0.14 0.16 1.07
J 0.80 0.80 1.00 0.89 0.12 0.12 0.83
K 0.89 0.89 1.00 0.94 0.12 0.12 0.95
L 0.44 0.44 1.00 0.61 0.10 0.10 1.79
M 0.13 NA 0.00 NA 0.09 0.09 1.00
N 0.81 0.81 1.00 0.90 0.21 0.21 2.18
O 0.18 0.18 1.00 0.31 0.14 0.14 4.42
P 0.09 NA 0.00 NA 0.29 0.31 1.00
Q 0.88 0.88 1.00 0.94 0.13 0.13 5.63
R 0.09 0.09 1.00 0.17 0.16 0.16 9.17
S 0.23 0.23 1.00 0.38 0.16 0.16 5.20
T 0.01 0.01 1.00 0.03 0.09 0.09 6.56
U 0.02 0.02 1.00 0.04 0.06 0.06 0.91

Table C.9: Heating characterization assessment metrics for each household under the DAR-
Fit3 model

ID
Cooling
Activity
Accuracy

Cooling
Activity
Precision

Cooling
Activity
Recall

Cooling
Activity
F1

Cooling
Load
RMSE
(overall)

Cooling
Load
RMSE
(active)

Cooling
Load
MAPE

Behavioural
Load
RMSE

Behavioural
Load
MAPE

A 0.88 0.30 0.95 0.45 0.19 0.46 0.98 0.44 0.68
B 0.88 0.73 0.89 0.80 0.39 0.65 0.87 0.61 0.87
C 0.89 0.49 0.89 0.63 0.36 0.78 0.83 0.53 0.45
D 0.86 0.52 0.90 0.66 0.47 0.90 0.81 0.58 1.63
E 0.90 0.42 0.77 0.54 0.18 0.45 0.89 0.40 0.59
F 0.92 0.70 0.69 0.69 0.25 0.58 0.91 0.41 0.98
G 0.85 0.39 0.86 0.54 0.23 0.46 1.43 0.39 2.50
H 0.85 0.65 0.74 0.70 0.51 0.91 0.93 0.78 0.43
I 0.85 0.49 0.94 0.65 0.36 0.69 1.06 0.40 2.18
J 0.57 0.17 0.99 0.29 0.18 0.25 0.60 0.37 0.27
K 0.94 0.65 0.93 0.76 0.35 0.88 0.78 0.46 0.53
L 0.76 0.13 0.98 0.22 0.17 0.32 0.87 0.32 0.40
M 0.98 0.17 0.33 0.23 0.13 0.78 0.94 0.21 0.72
N 0.86 0.56 0.83 0.66 0.82 1.57 0.83 0.78 0.95
O 0.68 0.37 0.97 0.53 0.29 0.41 0.84 0.43 0.70
P 0.84 0.31 0.65 0.42 0.66 1.39 0.91 0.74 23.21
Q 0.71 0.29 0.99 0.45 0.61 0.95 1.11 0.63 0.92
R 0.24 0.98 0.16 0.28 0.35 0.37 3.36 0.35 1.14
S 0.47 0.95 0.32 0.48 0.66 0.75 3.87 0.70 1.58
T 0.22 0.95 0.22 0.36 0.14 0.14 1.50 0.23 0.46
U 0.45 0.99 0.45 0.61 0.52 0.52 0.89 0.49 2.82

Table C.10: Cooling and behavioural characterization assessment metrics for each house-
hold under the DAR-Fit3 model
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Figure C.5: Best cluster assignment of EHMS homes using physical model parameters from
the DAR-Fit3 model
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Appendix D

Model Extensions

D.1 State space modelling framework

A model fully addressing the specifications of Section 3.1 must be able to track a vari-
ety of both known and unknown values system variables. Some influential factors, such
as external temperature or time of day, are clearly measurable and can be incorporated
straightforwardly into a model. Other factors, such as a household’s internal temperature
or the current output of a heating or cooling system, are not widely observable but may
be defined in terms of other known quantities or their own previous values. Finally, the
system’s overall electricity use may be defined in terms of the values of these other known
or unknown quantities.

State space modelling provides an established mathematical framework for defining re-
lationships between time-dependent system input, output, and unobserved internal state
variables. This general framework has been applied to study, parametrize, and predict the
evolution dynamical systems across a range of disciplines, from general chaos theory and
econometric time series to ecological population dynamics and engineering control theory.
In a state space model, unknown continuous-valued system states evolve interdependently
over discrete time steps, with close parallels to a system of first-order differential equations
(continuous state variables in continuous time) as well as hidden Markov models (discrete
state variables in discrete time). An interpretation of the general state space framework
for the context of residential energy use is depicted in Figure D.1.

If the relations governing interactions between system states and known inputs and outputs
are linear, state estimates can be obtained through computationally-efficient classic Kalman
filtering and smoothing, while in the more general nonlinear case, extensions such as the
unscented Kalman filter and smoother must be applied (Durbin and Koopman, 2012).

In addition to unknown time-varying state variables, a system may also be characterized by
unknown static parameters (for example, a building’s level of insulation or average energy
use at a specific time of day). Depending on the nature of their interactions with other
variables, these parameters may be treated as special system states that are constrained
to remain fixed throughout time. For example, exogenous regression coefficients can be
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Observed Inputs
(weather, time of day/week)

Observed Output
(smart meter readings)

Household parameters
(weatherproofing,

heating/cooling system efficiency,
thermal mass,

behavioural patterns, etc)

Internal System State
(interior temperature,

heating/cooling/other loads,
short-term load trends)

Figure D.1: Qualitative state space representation of household energy use

efficiently estimated by formulation as constant states in a linear system (Durbin and
Koopman, 2012), or parameters may more generally be expressed as states in a parallel
nonlinear system to be estimated through joint or dual estimation processes (Haykin, 2004).
Alternatively, such fixed parameters may be fit to the data through an iterative process such
as EM estimation, or maximum likelihood estimation via general nonlinear optimization
methods (Durbin and Koopman, 2012).

Another benefit of a state space approach to system modelling is its modularity. Models
may be developed and tested for independent subcomponents of a system and then com-
bined into a single overall system representation while still maintaining the ability to later
introduce interactions between these components. The following sections take advantage
of this property by developing and validating heating, cooling, and behavioural models
independently in advance of their eventual integration.
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D.2 Thermal extensions

D.2.1 Bounded variable internal temperature model

A more realistic assumption regarding the objectives of a building’s heating and cooling
systems is that interior temperature is allowed to vary in time, but is constrained to fall
within some comfortable range of values, Tmin ≤ Tint(t) ≤ Tmax. In this context, no active
intervention is required when the building’s internal temperature is within the comfort
range. Outside of this range, active intervention is required to both stabilize interior
temperature from deviating further and restore it to a minimum / maximum acceptable
value. Recall the general heat flow model:

Cth
δTint(t)

δt
= Ũ

(
Text(t)− Tint(t)

)
+ qh(t) + qc(t)

Decomposing heat requirements into stabilizing and restorative elements gives:

qh(t) =

{
qhstabilize(t) + qhrestore(t), Tint(t) < Tmin
0, Tint(t) ≥ Tmin

qc(t) =

{
0, Tint(t) ≤ Tmax
qcstabilize(t) + qcrestore(t), Tint(t) > Tmax

Stabilizing interior temperature such that qnet = 0 (before the effects of other active heat-
ing components) is a similar exercise as the constant-interior-temperature case described
previously, only now Tint(t) is allowed to vary in time and not guaranteed to a desirable
value (hence the need for a second restorative term):

qhstabilize(t) = −Ũ
(
Text(t)− Tint(t)

)
qcstabilize(t) = −Ũ

(
Text(t)− Tint(t)

)
Restoring interior temperature to some desirable value is accomplished by additional active
heat transfer beyond that required to simply maintain interior temperature at a constant
value. There are many possibilities for the design of such a system, but for simplicity a
simple proportional controller will be assumed:

qhrestore(t) = −kh
(
Text(t)− Tmin(t)

)
qcrestore(t) = −kc

(
Text(t)− Tmax(t)

)
In the long-timestep discrete time case, one possible interpretation of such a controller
design is that the resulting system output is the product of the fixed output of the heating
system (proportional to k) and the proportion of the time period that the system is required
to be active (proportional to Text(t)− Tmax).
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Combining these components, we get:

qh(t) =

{
−Ũ
(
Text(t)− Tint(t)

)
− kh

(
Text(t)− Tmin

)
, Tint(t) < Tmin

0, Tint(t) ≥ Tmin

qc(t) =

{
0, Tint(t) ≤ Tmax
−Ũ
(
Text(t)− Tint(t)

)
− kc

(
Text(t)− Tmax

)
, Tint(t) > Tmax

or, in terms of electrical load,

Ph(t) =

{
− Ũ
eh

(
Text(t)− Tint(t)

)
− kh

eh

(
Text(t)− Tmin

)
, Tint(t) < Tmin

0, Tint(t) ≥ Tmin

Pc(t) =

{
0, Tint(t) ≤ Tmax
Ũ
ec

(
Text(t)− Tint(t)

)
+ kc

ec

(
Text(t)− Tmax

)
, Tint(t) > Tmax

In this case, Tint(t) is time-varying and requires an explicit representation. This can be
obtained by solving the differential equation given by the original thermal model:

Cth
δTint(t)

δt
= Ũ

(
Text(t)− Tint(t)

)
+ qh(t) + qc(t)

Alternatively, and as is more relevant in this context, the equation can be discretized via
forward differencing and represented as a recursion relation:

Cth
Tintt+1 − Tintt

τ
= Ũ

(
Textt − Tintt

)
+ qht + qct

The discrete-time thermodynamic system can then be expressed as:

Tintt+1 = Tintt +
τ

Cth
Ũ
(
Textt − Tintt

)
+
τeh
Cth

Pht +
τec
Cth

Pct

Pht+1 =

{
− Ũ
eh

(
Textt+1 − Tintt+1

)
− kh

eh

(
Textt+1 − Tmin

)
, Tintt+1 < Tmin

0, Tintt+1 ≥ Tmin

Pct+1 =

{
0, Tintt+1 ≤ Tmax
Ũ
ec

(
Textt+1 − Tintt+1

)
+ kc

ec

(
Textt+1 − Tmax

)
, Tintt+1 > Tmax

D.3 Coupled thermo-behavioural models

The previous section considered thermal and behavioural electrical loads in isolation, but
in reality, the two components are interdependent. Heating and cooling performance af-
fects occupant behaviours (for example, an individual’s decision whether to stay at home
or go elsewhere on a hot summer afternoon), and occupant behaviours affect heating and
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cooling requirements as well (the number of occupants in a building and the nature of their
activities influences interior temperature and thus heating requirements). In general, such
interactions are highly variable and difficult to model both precisely and in a generaliz-
able manner. However, some interactions can be modelled according to general physical
and statistical relationships: interplays in which occupant behaviour influences heating
requirements (but not vis-versa) are considered in this section.

While thermal electrical loads are applied explicitly towards creating heat transfer, be-
havioural loads also influence internal temperatures. The power consumed by all be-
havioural loads is eventually dissipated as heat, whether it be in a stove, an electronic
device, lighting, or friction in some mechanical process. In many cases, this dissipated heat
is released inside the building envelope, contributing to raising internal temperatures (there
are of course notable exceptions to this general principle, including electrically-heated water
that is disposed into sewer systems without heat recovery, outdoor appliances, and stored
energy that is used outside the home (electric vehicles, etc). Increased behavioural loads
may also indicate higher or more active building occupancy, correlating with increased heat
dissipation from non-electrical occupant activity.

A simple model of incidental heat released by occupant activity can be expressed as:

qbehavioural = αPo

where α is some proportionality constant relating electrical behavioural loads to indirect
heat production. Augmenting the basic passive heating model with this term gives:

qpassive(t) = qconductive(t) + qbehavioural(t) = Ũ
(
Text(t)− Tint(t)

)
+ αPo(t)

The constant and extrema-bound thermal models can now be re-derived to incorporate
this coupling with behavioural loads.

D.3.1 Behaviour-dependent constant interior temperature model

The constant-interior-temperature relation can be restated with an updated qpassive incor-
porating behavioural considerations:

Cth
δTint
δt

= 0 = qnet(t) = qpassive(t) + qh(t) + qc(t)

qpassive + qh + qc = 0

Ũ
(
Text(t)− Tint

)
+ αPo(t) + qh(t) + qc(t) = 0

The new behavioural term shifts the equilibrium point at which qpassive = 0 and no active
intervention is required. Solving for the new value:

Ũ
(
Text(t)− Tint

)
+ αPo(t) = 0
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Text(t) +
α

Ũ
Po(t) = Tint

Now, qh(t) > 0 becomes necessary when Text(t) + α
Ũ
Po(t) < Tint, and qc(t) < 0 is required

when Text(t) + α
Ũ
Po(t) > Tint. Formalizing this:

qh(t) =

{
−Ũ
(
Text(t)− Tint

)
− αPo(t), Text(t) + α

Ũ
Po(t) < Tint

0, Text(t) + α
Ũ
Po(t) ≥ Tint

qc(t) =

{
0, Text(t) + α

Ũ
Po(t) ≤ Tint

−Ũ
(
Text(t)− Tint

)
− αPo(t), Text(t) + α

Ũ
Po(t) > Tint

In terms of electrical power, the relations are

Ph(t) =

{
− Ũ
eh

(
Text(t)− Tint

)
− α

eh
Po(t), Text(t) + α

Ũ
Po(t) < Tint

0, Text(t) + α
Ũ
Po(t) ≥ Tint

Pc(t) =

{
0, Text(t) + α

Ũ
Po(t) ≤ Tint

Ũ
ec

(
Text(t)− Tint

)
+ α

ec
Po(t), Text(t) + α

Ũ
Po(t) > Tint

D.3.2 Behaviour-dependent extrema-bound interior temperature model

As in the constant-temperature case, the extrema-bound interior temperature model can
be updated to include behavioural coupling as:

Cth
δTint(t)

δt
= Ũ

(
Text(t)− Tint(t)

)
+ αPo + qh(t) + qc(t)

The decomposed heat requirements remain identical:

qh(t) =

{
qhstabilize(t) + qhrestore(t), Tint(t) < Tmin
0, Tint(t) ≥ Tmin

qc(t) =

{
0, Tint(t) ≤ Tmax
qcstabilize(t) + qcrestore(t), Tint(t) > Tmax

Restorative heat also remains the same, however the heat flow required for stabilizing inte-
rior temperature (such that qnet = 0 before the effects of other active heating components)
has now shifted as in the constant temperature case:

qhstabilize(t) = −Ũ
(
Text(t)− Tint(t)

)
− αPo(t)

qcstabilize(t) = −Ũ
(
Text(t)− Tint(t)

)
− αPo(t)

Combining these components, we get:
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qh(t) =

{
−Ũ
(
Text(t)− Tint(t)

)
− αPo(t)− kh

(
Text(t)− Tmin

)
, Tint(t) < Tmin

0, Tint(t) ≥ Tmin

qc(t) =

{
0, Tint(t) ≤ Tmax
−Ũ
(
Text(t)− Tint(t)

)
− αPo(t)− kc

(
Text(t)− Tmax

)
, Tint(t) > Tmax

or, in terms of electrical load,

Ph(t) =

{
− Ũ
eh

(
Text(t)− Tint(t)

)
− α

eh
Po(t)− kh

eh

(
Text(t)− Tmin

)
, Tint(t) < Tmin

0, Tint(t) ≥ Tmin

Pc(t) =

{
0, Tint(t) ≤ Tmax
Ũ
ec

(
Text(t)− Tint(t)

)
+ α

ec
Po(t) + kc

ec

(
Text(t)− Tmax

)
, Tint(t) > Tmax

The definition of Tint(t) has also changed. The relevant behaviour-coupled differential
equation is now:

Cth
δTint(t)

δt
= Ũ

(
Text(t)− Tint(t)

)
+ αPo(t) + qh(t) + qc(t)

Once again, the equation can be discretized via forward differencing and represented as a
recursion relation:

Cth
Tintt+1 − Tintt

τ
= Ũ

(
Textt − Tintt

)
+ αPot + qht + qct

Finally, the discrete-time thermodynamic system of equations can be expressed as:

Tintt+1 = Tintt +
τ

Cth
Ũ
(
Textt − Tintt

)
+
τα

Cth
Pot +

τeh
Cth

Pht +
τec
Cth

Pct

Pht+1 =

{
− Ũ
eh

(
Textt+1 − Tintt+1

)
− α

eh
Pot+1 −

kh
eh

(
Textt+1 − Tmin

)
, Tintt+1 < Tmin

0, Tintt+1 ≥ Tmin

Pct+1 =

{
0, Tintt+1 ≤ Tmax
Ũ
ec

(
Textt+1 − Tintt+1

)
+ α

ec
Pot+1 + kc

ec

(
Textt+1 − Tmax

)
, Tintt+1 > Tmax
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