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ABSTRACT 

 

In order to get to where we need to go, locomotion often involves walking through 

narrow spaces. Whether an aperture affords passage is thought to be determined by the body 

size/aperture size relationship. For normal, ground-level aperture crossing, spaces 1.3x the 

shoulder width or smaller are considered impassible (requiring a shoulder rotation) and as such, 

1.3x SW is said to be the critical point of aperture crossing. However, daily activities often 

involve navigating through apertures under more challenging circumstances, such as when 

walking through a busy airport while carrying luggage. As such, additional factors other than 

simply the body size and the aperture size may contribute to whether an aperture is deemed 

passable. Therefore, the purpose of this thesis was to investigate how the factors associated with 

challenging environments contribute to the way in which the body-environment relationship 

determines the affordance of aperture crossing.  

 

Through a series of experiments, participants walked through apertures: 1) while carrying 

a wide object, 2) under conditions of increased postural threat, 3) where the narrow spaces were 

created by other individuals, and 4) where there were multiple, misaligned apertures. In general, 

aperture crossing behaviour was monitored through the frequency and magnitude of shoulder 

rotations at time-of-crossing (TOC), the critical point, the amount of space between the 

shoulders and the obstacles at TOC (spatial margin), the position of the body relative to midline 

(M-L COM at TOC) and the walking speed leading up to and crossing through the aperture 

(approach velocity and velocity at TOC).  
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The results from study one reveal that the passability of apertures adapts to objects being 

carried by rescaling the body-environment relationship to consider the new person-plus-object 

width and maintaining a critical point of 1.3x the widest dimension. However, this rescaling 

occurred at different rates across individuals. Studies two and three demonstrate that action 

capabilities (postural threat) and characteristics of the aperture (people instead of poles) alter the 

passability of apertures, as evident by more cautious crossing behaviours. Specifically, 

individuals maintained a larger critical point, a higher frequency and larger magnitude of 

rotation, as well as a slower approach velocity and velocity at TOC. Lastly in study four, rather 

than walk through the center of an aperture and equalize the size of the spatial margin of each 

shoulder (as observed in single aperture crossing), individuals walking through multiple 

misaligned apertures reduce the size of the spatial margin by walking closer to the object nearest 

midline. Furthermore, participants choose to rotate their shoulders at apertures that would not 

normally require a rotation, likely in an attempt to maintain the straightest possible walking path. 

 

Together, these studies suggest that additional factors other than the body size/aperture 

size ratio are considered when determining the affordance of aperture crossing. Specifically, in 

addition to supporting the idea that individual abilities are an important contributing factor to the 

identification of affordances, these results demonstrate that the affordance of aperture crossing is 

influenced by: 1) the level of postural threat, 2) characteristics of the aperture, and 3) the number 

and position of apertures. Understanding the typical behaviour for walking through narrow 

spaces and knowing what and how specific factors influence the passability of apertures provides 

the necessary groundwork for understanding how these behaviours are altered with age or 

disease and can provide insightful suggestions for the future design of cluttered environments. 
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Approach phase   Begins after the third step is taken at the start of a trial and continues until 

the anterior-posterior (A-P) center of mass (COM) is 1.5m from the 

aperture.   

 

Approach velocity   Change in displacement of the A-P COM over time; averaged over the 

approach phase. 

 

Critical point  The largest aperture width that divides passable and impassable apertures: 

where there is a shift from shoulder rotations to no rotations at the time of 

crossing (TOC); individual critical points were determined by finding the 

largest aperture width where the participant rotated his/her shoulders on 

60% of the trials; the average critical point for a group of participants 

represents the aperture width where the rotation magnitude is statistically 

different than the average rotation for straight walking.  

 

Distance from center  Location of the medial-lateral (M-L) COM) relative to the center of the 

aperture when the A-P COM crossing through the aperture. 

 

M-L position at TOC  Absolute position of the M-L COM when the A-P COM crossing through 
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Onset of rotation  Distance of the A-P COM relative to the obstacles when the shoulder 

rotation magnitude falls outside two standard deviations of the average 

rotation during the approach.  

       

Rotation magnitude Angle between the infrared light-emitting diodes (IRED) markers on the 
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**A visual representation of these dependent variables are presented in Appendix A** 
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1.1 The Problem  

The sole purpose of human gait is to transport the body safely and efficiently across the 

ground and toward an end-goal (Winter, 1991). Although locomotion may seem as though it is 

an elementary task, the demands placed on the central nervous system (CNS) when walking 

through cluttered environments are anything but simple. Navigating through the world involves 

placing the foot onto isolated foot holds, stepping over or onto objects, circumventing obstacles 

and passing through narrow spaces. As such, successful navigation requires the ability to 

appropriately adapt the orientation and the movements of the body to clear obstacles and 

maintain stability under a variety of environmental demands. The problem associated with the 

organization of such behaviour was articulated by Warren (2006):  

 

The ability to produce stable and adaptive behaviour raises two constituent issues. On one 

hand, it implicates the coordination of action, such that the many neuromuscloskeletal 

components of the body become temporarily organized into an ordered pattern of 

movement. On the other hand, it implicates perception, such that information about the 

world and the body enables appropriate actions to be selected and adapted to 

environmental conditions. (p. 358).  

 

 

 How humans organize behaviour and generate movement patterns to successfully 

navigate through cluttered environments and avoid obstacles has long been an area of interest in 

disciplines such as motor control, psychology, biomechanics, and neuroscience. The majority of 

this research has attempted to characterize how the CNS controls movements that are strongly 
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coordinated with the environment. Aperture crossing protocols in particular, offer an excellent 

means of studying the relationship between the body and the environment because of the direct 

link between perception and action. To date, research has observed that the manner in which 

individuals control their actions under normal walking conditions is quite robust. Individuals 

pass unaffected through apertures larger than 1.3x their shoulder width (SW), but require a 

modification to their body orientation, such as a shoulder rotation, for spaces smaller than this 

value (Warren & Whang, 1987). The division between passable (no rotation necessary) and 

impassable spaces (rotations required) are consistent across individuals of varying body sizes 

(Geuss, Stefanucci, Creem-Regehr & Thompson, 2010; Lepecq, Bringoux, Pergandi, Coyle & 

Mestre, 2009; Hackney, Vallis & Cinelli, 2013; Wilmut & Barnett, 2010). Although a review of 

the literature (Section 1.3.2) reveals that walking through a single, stationary aperture in normal, 

flat-ground environments is well understood, numerous avenues remain unexplored despite the 

fact that understanding how individuals behave in such situations will provide promising future 

directions for aperture crossing research. Gaining an appreciation of whether aperture crossing 

behaviours are altered under the various challenges faced on a daily basis provide a more 

comprehensive understanding of how the perception-action system controls movements and 

establish the groundwork necessary for future studies examining aperture crossing with special 

populations.  

 

In addition to contributing to the perception-action literature, understanding how 

challenging environments alter the passability of narrow spaces may also provide useful 

information for the architectural design of spaces concerned with human traffic flow. A new 

affordance-based approach to architectural design has emerged in recent years from the 
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perception-action literature, in an attempt to bring functional factors into consideration. Current 

standards of how spaces and objects should be built are based on anthropometric standards or 

personal judgement (Normal, 1999; Panero & Zelnick, 1979). However, this purely anatomical 

approach disregards the functional interactions users have with the world and can be problematic 

when one considers the diverse abilities present across both a young and older population. For 

example, as outlined by Warren (1995), the functional boundary between a stair that is and is not 

climbable for an older adult (OA) may be different than the geometric one simply because of 

limitations in flexibility and strength. As a result, Warren (1995) put forth a recommendation to 

increase the original anthropometric standard for passage widths from 21in (53cm) to 25in 

(64cm) in order to accommodate the functional boundary associated with walking through 

apertures in a larger portion of the population. Establishing how this functional boundary 

changes in challenging aperture crossing environments may provide more detailed 

recommendations when designing spaces for specific uses.  

 

In order to expand on the current understanding of how individuals control their actions 

when successfully walking through small spaces, aperture crossing paradigms were used 

throughout this thesis with the specific aim of determining how crossing behaviour is influenced 

by challenging environmental conditions. The remainder of this chapter will provide readers with 

an understanding of how locomotion is guided to an end-goal while avoiding collisions with 

obstacles through a discussion of the visual control of locomotion, perception and action 

coupling, and a review of the current aperture crossing literature. Each of the subsequent 

experimental chapters (Chapters 2 through 5) will review the relevant literature and hypotheses 



5 

 

necessary for establishing the foundation for the specific research questions being addressed 

within each chapter. 

 

1.2 Visual Control of Locomotion 

Although successful human locomotion requires the integration of visual, vestibular, and 

kinesthetic inputs, visual information is particularly significant for adapting behaviours when 

walking in cluttered environments. The visual system provides three important types of 

information to the observer; 1) information about the layout of surfaces and relative position of 

objects at a distance, 2) the relative position of body segments to one another, and 3) information 

about the relative position of body segments to objects in the environment (Patla, 2007). 

Individuals therefore use visual information to control their actions in a proactive, feed-forward 

manner whereby the observer can identify what actions are necessary and whether modifications 

are required without having to rely purely on reactive control. With this information, vision can 

then play five major roles during adaptive locomotion, including the detection of hazards, 

deciding on an appropriate avoidance maneuver, preparing and initiating the chosen maneuver, 

and making any necessary adjustments (Tresilian, 2012).  

 

How vision is used during locomotion is well documented in the literature. During 

unobstructed locomotion for example, people look in the direction in which they are travelling 

and roughly two steps ahead of the current location (Grasso, Prevost, Ivanenko & Berthoz, 1998; 

Hollands, Vickers & Patla, 2002; Vickers & Patla, 1997). When obstacles clutter the travel path, 

this fixation is directed at the upcoming object to determine in advance what locomotor 
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adjustments may be required (Patla, Prentice, Robinson & Neufeld, 1991). Furthermore, 

although intermittent visual sampling is sufficient to guide unobstructed locomotion, the 

frequency of visual sampling must increase when obstacles are present in order for the object to 

be cleared successfully (Patla, Adkin, Martin, Holden & Prentice, 1996). This is particularly 

important when accurate foot placement is necessary for success. Lee and colleagues (1982) 

demonstrated that vision drives the final four foot placements of a long jumper in order to ensure 

he or she accurately steps on the take-off board. A similar dependence on vision has been 

observed for aperture crossing. When walking towards and passing through a set of moving 

doors, vision guides the final locomotor adjustments and determines the changes in velocity that 

are necessary (if any) to pass through safely (Cinelli, Patla & Allard, 2009; Montagne, Buekers, 

Camachon, De Rugy & Laurent, 2003). Additionally, when individuals complete a similar task 

but with a novel mode of transportation, such as when using a wheelchair, fixations directed at 

the aperture occur more frequently and for longer periods of time (Higuchi, Cinelli & Patla, 

2009). This change in gaze behaviour likely reflects the need to gather more information about 

the environment before making any alterations to actions. The abovementioned studies provide 

evidence for the role of vision in the coordination of movement and highlights its importance for 

successful locomotion in cluttered environments.  

 

The fact that human locomotion relies so heavily on visual information implicates the 

role of perception in the generation and coordination of adaptive behaviour. Exactly how 

perception is linked to action is a topic of much debate, as two contrasting theories currently 

exist in the literature: indirect and direct perception. Proponents of indirect perception describe 

the act of perceiving as the construction of mental representations of objects. In this perspective, 
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sensory input does not provide enough information about objects and events to be rendered 

meaningful and useful to the action system (Michaels & Carello, 1981). Instead, the formation of 

rich and accurate perceptions are thought to involve a complex set of elaborations to make the 

sensory input useable. The theory of indirect perception assumes that the CNS provides these 

additions to its stimulation by adding together stored mental representations associated with the 

sensory stimulus (Rock, 1997). On the contrary, the assumptions that outline the theory of direct 

perception are very different from that of indirect perception. Supporters of direct perception 

describe the act of perception as the direct acquisition of information from the environment 

(Galotti, 2013) and that the basis of perceptual richness is not in the elaborate cognitive 

processes applied to the sensory input, but in the richness of the stimulation itself (Michaels & 

Carello, 1981). The stimulus is believed to provide sufficient information to the perceiver 

without the need for elaboration. Two major components of the theory of direct perception are 

optic flow and the concept of affordances, both of which will be discussed in more detail in the 

section that follows (Section 1.3).   

 

The direct and indirect debate has not been resolved, as there are strong arguments and 

convincing evidence to support both theories. Perhaps the question should not be focused on 

whether the theories are mutually exclusive, but rather which theory best explains perception 

within a given scenario. As suggested by Galotti (2013), indirect perception may be prominent in 

situations that are variable, unpredictable and where the rules are abstract, such as when 

interpreting a dancer’s movements. Meanwhile, direct perception may guide actions that occur 

within a predictable environment, where there is a direct link between perception and action, 

such as locomotion. Therefore, for the purpose of generating the research questions and 
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hypotheses within this thesis, the theoretical framework associated with direct perception, 

specifically the concept of affordances (described in Section 1.3) will be used.  

 

1.3 Perception and Action 

“In order to move throughout the world, one must be able to perceive it” (Gibson, 1979). 

Perception and action are coupled, such that visual perception guides the action required to 

navigate safely through an environment and in turn, the execution of that action will update 

perception. Gibson (1979) argued that light hitting the retina contains highly organized 

information that requires very little interpretation from higher order processes. Certain aspects of 

the visual stimuli remain invariant despite changes over time or changes in our relationship to 

them. It is these invariances that help guide the perception-action relationship. Johansson (1973) 

demonstrated the idea of visual invariance by showing that participants can immediately 

recognize an activity being completed by a model despite only receiving visual information from 

lightbulbs attached to the joints of the body. Similar results have been observed for identifying a 

male versus a female model in motion by simply viewing the lightbulbs moving (Kozlowski & 

Cutting, 1977). In both studies, the motion of the lights relative to one another provided enough 

information to perceive the action being performed. 

 

Gibson (1979) coined the term optic flow to describe the pattern of apparent motion of 

objects, surfaces and edges in a visual scene caused by the relative motion of the observer and 

his or her environment. Changes in the flow of the optic array contains important information 

about the type of movement that is taking place. Specifically, it is thought that individuals can 
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derive essential pieces of information about locomotion from the characteristics of this array 

(Gibson, 1979). For example, flow of the array indicates movement while non-flow suggests the 

observer is stationary. Furthermore, outflow specifies that the individual is approaching the 

object while inflow identifies retreating from it. Additionally, the focus of this outflow indicates 

the direction of locomotion, and the shift of the center of the outflow reveals that this direction 

has changed. 

 

An excellent example of the use of optic flow to control actions was first observed in 

pilots during World War II. Gibson (1958) suggested that pilots use information about the 

apparent movement of the ground, the clouds and objects relative to the plane in order to 

navigate the plane towards the runway. Warren and colleagues (2001) provided further evidence 

of the use of optic flow to control action by demonstrating its importance in the control of 

locomotion. In a virtual environment, participants walked toward an end-goal while the amount 

of optic flow available to them was manipulated. Although participants steered toward the target 

goal in all manipulation conditions, the trajectory of the walking path reflected the increasing 

reliance on optic flow (i.e., the path trajectory became more linear) as it was added to the visual 

display (Warren, Kay, Zosh, Duchon & Sahuc, 2001). A number of studies have confirmed that 

optic flow dominates steering control (Harris, & Carre, 2001; Turano, Yu, Hao & Hicks, 2005; 

Wood, Harvey, Young, Beedie & Wilson, 2000), modulates walking speed (Harris, Jenkin & 

Zikovitz, 2000; Pailhous, Ferrandez, Fluckiger & Baumberger, 1990; Prokop, Schubert, & 

Berger, 1997), and plays a central role in the adaptation of visuo-locomotor mapping 

(Bruggerman, Zosh & Warren, 2007).  
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An important aspect of perception-action coupling is that the visual information available 

to a perceiver exists within a body-environment ecosystem (Michaels & Carello, 1981). This 

body-environment interaction is thought to be responsible for determining what actions are 

available for a particular animal within a given environment (Figure 1.1). Gibson (1979) referred 

to this as the ability to perceive an affordance. By definition, an affordance is the fit between the 

size of the animal and the size of the environment that make a particular action possible 

(Franchak & Adolph, 2014a; Gibson, 1979). In its simplest sense however, an affordance can be 

considered as what the environment means to a perceiver with respect to the actions that can, or 

need to be performed. Undoubtedly, visual information such as optic flow plays a crucial role in 

identifying affordances.  
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Figure 1.1 – Gibson (1979) argued that the affordance of an environment or an environmental object is determined by the fit between 

size of the environment and the size of the body. 
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A large body of literature exists to support the notion that affordances are determined by 

the fit between the environment and the action system. In animal research, it has been 

demonstrated that frogs detect if a narrow opening affords passage based on its own body size 

(Ingle & Cook, 1977), a praying mantis will decide if a particular prey affords being attacked 

depending on its own grasp size (Hollings, 1964) and clams will attack or retreat based on their 

size relative to the size of the prey (Branch, 1979). In humans, Warren (1984) demonstrated that 

the affordance of stair climbing is based on the length of the leg of the perceiver. Specifically, a 

stair is considered climbable if the ratio between riser height and leg length is less than 0.88x the 

leg length. Likewise, the affordance of aperture crossing is based on the size of the shoulders 

where apertures larger than 1.3x SW are considered passable (Warren & Whang, 1987). Similar 

body-scaled affordances in humans have been observed for actions other than locomotion. For 

example, the eye-height of a perceiver determines if a surface affords sitting (Mark, Balliett, 

Craver, Douglas & Fox, 1990) and the size of the hand will determine whether an object affords 

grasping (Hallford, 1983). Together, these studies not only demonstrate that the perception of 

affordances occurs in a body-scaled fashion, but that the part of the body that is used to identify 

an affordance differs based on the task about to be performed.  

 

As noted by Gibson (1979), the visually specified environment offers indefinite 

possibilities for action. An environment or an environmental object can be classified as being 

climb-able, sit-table, pass-able, etc. As evident from the above-mentioned experiments, the body 

is most often used to scale the environment to these action-specifying units. However, no single 

body part can be used to specify all actions. For example, the width of the shoulders is sufficient 

for determining whether a narrow gap can be crossed, but it would be insufficient for specifying 
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if an object can be grasped. Proffitt and colleagues (2013) suggested that affordances are not 

only determined by the fit between the body and the environment, but also by the demand of the 

task (Figure 1.2). As such, the demand will determine the type of actor the individual is to 

become (i.e., a grasper, a walker, a thrower etc.) and the aspect of the body relevant for 

completing such a task. In turn, this body part will be used to specify the environment in the 

appropriate body-scaled units. As a result, different aspects of the body can be thought of as 

perceptual rulers defining the environment in relationship to the task’s relevant ruler (Lessard, 

Linkenauger & Proffitt, 2009). 
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Figure 1.2 – As an extension of Gibson’s (1979) concept of affordances, Proffitt (2013) suggested that affordances are determined 

based on the fit between the body, the environment and the demand of the task. 
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An individual’s action capabilities and their subsequent behavioural repertoire plays a 

crucial role in defining the set of roles that a person can take within an environment. The ability 

to quickly and accurately scale the environment using the appropriate perceptual ruler is thought 

to be made possible through experience and learning (Proffitt & Linkenauger, 2013). In order to 

determine whether an action can be performed within a given environment, actors must scale the 

visual information to the relevant action boundaries, or in other words, to the limits of their 

behavioural repertoire. This requires that individuals learn the visual specification of their action 

boundaries for a great variety of actions (Proffitt, 2013). As stated by Gibson (1979), “infants 

practice looking at their hands for hours, for disturbances of optical structure that specify the 

niceties of prehension have to be distinguished”. Similar extensive practice is observed for 

locomotion, where infants spend countless hours traversing their surroundings and falling down 

(Adolph, 2008). Perhaps the most prominent evidence of this need to explore the relationship 

between visual information and actions comes from the observation of infants as they transfer 

from sitting, to crawling and eventually to walking. A number of experiments have demonstrated 

that experienced crawlers will avoid crossing impossible cliffs, but novice walkers repeatedly 

attempt the gap (Adolph, 1997; Adolph & Tamis-LeMonda, Ishak, Karasik & Lobo, 2008; 

Kretch & Adolph, 2013). It is not until the child has learned how their movements are associated 

with optic flow and the visual information associated with their action boundaries are the 

perceptual rulers formed to specify the environment appropriately. 
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In addition to learning how visual information is related to actions, research has 

demonstrated that the perceptual rulers used to specify an environment in action-specific units 

are specific to the type and demand of the task at hand and are unaffected by the modulation of 

other perceptual rulers. Witt and colleagues (2004) used a treadmill adaptation task to recalibrate 

the perceptual ruler used to specify the extent of a walking path, which was thought to be 

specified in units associated with the energetic cost of traversing the distance (Stefanucci, 

Proffitt, Banton & Epstein, 2003). Upon completion of the treadmill adaptation task, participants 

made judgements about the length of the path with the assumption that they would either have to 

walk the distance blindfolded or throw a ball to the end of it. Those who intended to walk the 

distance judged the path as longer after the perceptual ruler had been recalibrated, while 

individuals who intended to throw the ball were unaffected by the manipulation (Witt et.al, 

2004). The authors suggested that recalibrating walking effort likely had no effect on the action-

specifying units necessary for throwing because the affordance would be specified in units 

related to throwing (i.e., the arm) and not in units related to walking.  

 

 If these so-called perceptual rulers are used to transform the environment into action-

specifying units related to the individual, than one would expect that manipulation of these rulers 

to influence perception. A number of studies have demonstrated such effects on perceptual 

judgements (Bhalla & Proffitt, 1999; Canal-Bruland, Pijpers, & Oudejans, 2010; Linkenauger, 

Ramenzoni & Proffitt, 2010; Proffitt, 2008; Witt, Proffitt & Epstein, 2004). It is important to 

note that the majority of these studies test the effects of changing an individual’s potential for 

action on perceptual judgements, most commonly done by having participants make spatial 

judgements while remaining stationary. These studies only examine the perception side of the 
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perception-action relationship and fail to actually measure the subsequent actions associated with 

these altered affordances. Since research has demonstrated that perceptual judgements about 

actual performance abilities that are made while stationary are not as accurate as those made 

during movement (Hackney & Cinelli, 2013a), it is important to establish an understanding of 

whether performance is also affected by changing one’s potential for action.  

 

Aperture crossing protocols in particular are an excellent way to examine the affordance 

of passageways, whether manipulations to the perception-action relationship (i.e., potentials for 

action) and the subsequent perceptual ruler used to specify the aperture influences the actions an 

individual will choose to pass through a narrow space. Studying the passability of apertures is 

particularly useful in understanding these relationships because: 1) they provide a testing 

environment where manipulation of the space between two obstacles can easily be controlled and 

examined, 2) they present a straightforward relationship between body dimensions and opening 

size thereby allowing affordances to be easily examined, and 3) they are an example of a task 

that humans encounter on a daily basis and should consequently, be well practiced. The 

following section provides a review of the current aperture crossing literature.  

 

1.4 Aperture Crossing 

The most common method of examining aperture crossing behaviours is to manipulate 

the width of a narrow opening and monitor both the timing and magnitude of action changes 

leading up to and crossing through the aperture. In laboratory settings, these narrow spaces are 

often formed from two panels that create a doorway or two pole obstacles placed on each side of 



18 

 

the midline of the path, which together create a gap to pass through (Figure 1.3). In such 

scenarios, participants encounter a variety of aperture sizes that range from being much smaller 

than the width of the shoulders to up to two times its size. The variety of aperture sizes ensures 

that individuals are confronted with spaces that force a modification to their current body 

position while also encountering gaps that can be crossed without needing such a change.  
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Figure 1.3 – A typical experimental setup for aperture crossing protocols. The width between the 

panels or poles vary from being very small (e.g., 0.8x SW) to very large (e.g., 2.0x SW).  
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Studies examining how individuals pass through these narrow openings report that the 

frequency and magnitude of shoulder rotations increase as the size of the space decreases 

(Hackney & Cinelli, 2011; Higuchi, Murai, Kijima, Seya, Wagman & Imanaka, 2011; Fath & 

Fajen, 2012; Keizer, De Bruijn & Smeets; 2013; Franchak, Celano & Adolph, 2012; Warren & 

Whang, 1987; Wilmut & Barnett, 2010). Furthermore, large-bodied individuals must rotate their 

shoulders more frequently and to a greater degree at larger gaps compared to those with smaller 

shoulder widths (Franchak, van der Zalm & Adolph, 2010; Stefanucci & Geuss, 2009; Warren & 

Whang, 1987). To account for the differences in body size, the width of the aperture is often 

scaled to the width of the shoulders (i.e., the largest horizontal width of the body). This creates a 

dimensionless pi value that represents the size of the space relative to the size of the individual 

(Gibson, 1979). When the size of this normalized aperture width reaches a point at which the 

individual must change from straight walking to producing a shoulder rotation at time-of-

crossing (TOC), the pi value corresponding to this change in action is classified as the critical 

point (Warren & Whang, 1987). Although the literature often uses the terms critical point and 

action boundary interchangeably, for consistency purposes this thesis will refer only to the 

critical point to denote to the division between passable and impassable apertures.  

 

Notably, Warren and Whang (1987) first observed that regardless of body size, the 

critical point for aperture crossing was 1.3x SW: participants produced a significant shoulder 

rotation for apertures that were 1.3x SW or smaller, but would walk straight through spaces 

larger than this ratio (Figure 1.4). Since the differences first observed between large- and small-

shouldered individuals disappeared once the aperture width was normalized to body size, the 

authors concluded that aperture crossing must be a body-scaled task (Warren & Whang, 1987). A 
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similar critical point was observed during unconfined aperture crossing tasks where participants 

were permitted to avoid passing through the opening all together if they felt inclined to do so. In 

this case the results were in line with the previous observations from Warren and Whang (1987), 

such that participants walked straight through apertures larger than 1.4x SW and needed to 

change their body orientation for apertures smaller than this ratio (Hackney et al., 2013). 

However, rather than rotating the shoulders, participants elected to deviate away from the 

straight walking path and avoid the aperture all together by walking around it. Together, these 

results demonstrated that a common critical point differentiates passable and impassable 

apertures and that the CNS considers the size of the shoulders when modifying actions to ensure 

safe passage through narrow spaces.      
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Figure 1.4 – Passable versus impassable apertures: when the width of an aperture is scaled to the 

size of the shoulders, spaces smaller than 1.3x SW require a shoulder rotation to pass through 

while apertures larger than this ratio do not.  
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Aside from shoulder rotations, research has also demonstrated that the initiation of a 

shoulder rotation and the initiation of changes in walking speed are also scaled to the size of the 

aperture, such that changes in these behaviours occur earlier for smaller versus larger openings 

(Wilmut & Barnett, 2010). Furthermore, it has been suggested that individuals aim to maintain a 

constant spatial margin (M-L distance between shoulders and obstacles at TOC). The degree of 

shoulder rotation at TOC for small apertures is controlled by the desire to ensure a spatial 

margin of 6-10cm (Higuchi, Seya & Imanaka, 2012). A spatial margin is also observed during 

unconfined aperture crossing when the opening is too small for straight passage. Individuals 

preserve an elliptical-shaped protective zone in the A-P and M-L directions by making earlier 

deviations from the straight walking path and moving farther in the M-L direction as the size of 

the aperture increases (Hackney et al., 2013). These results suggest that the CNS acts to maintain 

a buffer zone around the body large enough for any necessary gait adjustments to be made in the 

case of unexpected perturbations.  

 

The fact that individuals preserve a safety zone around the body during aperture crossing 

is not surprising, as similar behaviours have been observed in obstacle circumvention tasks. 

Cinelli and Patla (2009) showed that when avoiding an approaching obstacle, individuals deviate 

off the straight path trajectory in order to maintain a similar distance between their body and the 

obstacle at the TOC. This behaviour occurs regardless of how fast the object is approaching the 

individual. Gerin-Lajoie and colleagues (2008) also demonstrated a desire to maintain a constant 

M-L clearance when circumventing a single object, even when the object’s movement 

characteristics were uncertain. From their work, the researchers determined that individuals 

maintain an elliptical-shaped protective zone around their body both in the A-P and M-L 
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directions when circumventing obstacles. As with the aperture crossing literature, the researchers 

suggested that the role of this space was to provide a safety zone large enough to ensure 

sufficient time to perceive upcoming hazards and perform adjustments to gait in order to 

successfully avoid colliding with the obstacles (Gerin-Lajoie, Richards, Fung & McFadyen, 

2008; Cinelli & Patla, 2007). 

 

During everyday locomotion the CNS is faced with the challenge of a changing body-

environment relationship, such as when the body size changes naturally as it does with 

pregnancy, or when large and wide objects are being carried. In such situations, the perceptual-

motor system must update the current perceptual ruler in order to adapt movements accordingly. 

In general, individuals adapt to these changes quite well. Franchak and Adolph (2007; 2014a) 

showed that pregnant women are able to re-scale the perceived passability of apertures to reflect 

the changing affordances of their growing belly: judgement thresholds (critical point) correlate 

with the changing body dimensions in the months leading up to birth. Similar effects are 

observed when individuals are asked to judge whether an aperture allows for safe passage while 

holding a horizontal bar (Wagman & Taylor, 2005). Likewise, when walking through the same 

aperture while holding the bar, the magnitude of rotation is regulated in response to the size of 

the bar (Higuchi, Cinelli, Greig & Patla, 2006; Higuchi et al., 2012).  

 

Although evidence suggests that individuals are sensitive to increases in the aperture to 

shoulder width (A/S) ratio, the ability to adapt actions to fit this ratio may become more accurate 

with practice. When individuals are asked to judge the passability of an aperture while using a 

wheelchair, practice is required before judgements surpass a critical point of 1.0 and include a 
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margin sufficient to allow for safe passage (Yu & Stoffregen, 2012; Higuchi et al., 2006). To 

pass through the aperture safely, participants needed to gain experience using the wheelchair in 

order to inform the CNS of the size of the person-plus-object system and adapt perceptual 

judgements and actions accordingly. This adaptation to the changing person-environment system 

appears to occur within one testing session. Non-pregnant participants who wore a pregnancy-

pack to instantly increase the size of their bellies, made judgements and action changes that were 

similar to individuals who experienced the change in body size associated with their pregnancy 

over a longer period of time (Franchak & Adolph, 2014b). Despite the rapid changes in their 

bodies and the constraints that the increased body size put on crossing ability, these results 

highlight the ability of the CNS to quickly adapt movements according to the spatial demands 

created by the size of the body.  

 

 Together the aforementioned studies have contributed three major findings to the 

aperture crossing literature. First, the perception-action system determines the division between 

passable and impassable apertures based on the relationship between the shoulder width and the 

environment. Second, modifications to actions are made at apertures smaller than the critical 

point in order to maintain a spatial margin between their shoulders and the obstacles. Third, the 

CNS adapts perceptual judgements and actions to meet the spatial demands of the changing A/S 

ratio.   
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1.5 Overview of Thesis 

When walking through an aperture on the travel path, individuals determine whether or 

not the aperture is passable by comparing it to the size of their body (Warren & Whang, 1987). A 

passable aperture is considered to be 1.3x SW or larger. Passing through apertures smaller than 

this ratio requires the individual to make adjustments to the current state of the moving body in 

order to pass through safely. Specifically, research shows that the magnitude of rotation 

produced at the TOC increases as the aperture gets smaller (Warren & Whang, 1987; Hackney et 

al., 2013), that adjustments to walking speed also follow this trend (Wilmut & Barnett, 2010) and 

that at the smallest aperture sizes (0.8 – 1.1x SW) individuals act to maintain a spatial margin of 

6-10cm between the shoulders and the obstacles at the TOC (Higuchi et al., 2012).  

 

The literature clearly demonstrates that ground-level walking through a single aperture 

aligned with the end-goal is well understood, however such rudimentary environments are rarely 

encountered in normal day-to-day life. Instead, the perception-action system is often tasked with 

navigating the body through cluttered environments under much more challenging 

circumstances. For example, in our daily lives we pass through narrow spaces while carrying 

objects, during instances when our ability to maintain stability is challenged, when there is more 

than one aperture to consider and even when that aperture is created by different types of 

obstacles. However, research has yet to document aperture crossing behaviour in these 

environments, despite the common, everyday nature of such tasks. The general purpose of this 

thesis was to expand on the current understanding of how individuals pass through narrow spaces 



27 

 

by investigating aperture crossing behaviour in challenging environments and to identify how the 

body-environment relationship contributes to determining the affordance of aperture crossing.  

 

This dissertation is comprised of a series of studies, each designed to target a specific 

aspect of aperture crossing in complex environments. The specific research questions addressed 

are outlined below, however relevant literature and the hypotheses for each research question 

will be presented in the accompanying chapter.  

 

1.5.1 Specific Research Questions 

 Research has revealed that the decision to pass through an aperture is based on the size 

of the shoulder width (Warren & Whang, 1987). In circumstances where the shoulders are not 

the widest dimensions of the body, using the shoulders to judge the passability of an aperture is 

not advantageous and may result in a collision. Such situations occur when the width of the 

moving body is increased because one is carrying a wide object. The question remains as to 

whether individuals adjust their judgements to consider the new width of the moving body and 

whether the division between passable and impassable apertures (i.e., the critical point) is also 

scaled to this new size. Chapter 2 will address this question by examining aperture crossing in a 

person-plus-object environment. Specifically, this study aimed to identify the critical point while 

carrying objects that are wider than the body and determine whether individuals scale their 

actions to the size of the aperture width/shoulder width (A/S) ratio or to the aperture 

width/person-plus-object width (A/O) ratio.  
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In addition to using the shoulder width to determine whether an aperture affords passage, 

research has also demonstrated that individuals act to maintain a spatial margin between the 

body and the obstacle at the TOC. This behaviour has been observed in two ways. First, the fact 

that the critical point is 1.3x SW and not the exact width of the body (i.e., 1.0x SW) suggests that 

individuals maintain a buffer zone to account for natural sway when passing through the aperture 

(Warren & Whang, 1987). Second, research has also shown that rotations are initiated in an 

attempt to maintain a space of 6-10cm between the shoulders and the obstacles at the TOC, 

suggesting that the CNS determines the necessary amplitude of rotations based on a minimal 

spatial margin (Higuchi et al., 2012). Whether this body-scaled critical point of 1.3x SW and 

spatial margin is maintained in challenging environments remains unclear. Chapters 3 and 4 

investigate this question by challenging the movement abilities of the walker (Chapter 3) and by 

changing the characteristics of the obstacles to be crossed (Chapter 4). Specifically, Chapter 3 

investigates whether postural threat influences the size of the critical point and the spatial 

margin by having participants walk through apertures under three possible conditions: 1) normal 

ground-level walking, 2) narrow ground-level walking, or 3) elevated/narrow path walking. In 

Chapter 4, I investigate whether these crossing behaviours are altered when the aperture is 

created by other people rather than the typical cardboard or light-weight wood obstacles.  

 

Lastly, the literature has revealed that individuals aim to walk through the center of an 

aperture in an attempt to equalize the amount of space between the shoulders and the obstacles at 

TOC (Cinelli, Patla & Allard, 2008). Whether this strategy is maintained when more than one 

aperture is presented on the travel path or when an aperture is off-set from the end-goal remains 
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unknown. Chapter 5 examines this scenario by investigating the strategies that are used to walk 

through three separate apertures that vary in aperture size and location relative to the end-goal.  

  

 As stated above, the relevant literature and the hypotheses for each research question will 

be presented the respective chapters that follow.  
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- Chapter 2 - 

 

 
 

IS THE CRITICAL POINT OF APERTURE CROSSING ADAPTED TO THE PERSON-

PLUS OBJECT SYSTEM? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from:  

Hackney, A.L., Cinelli, M.E., and Frank, J.S. (2014). Is the critical point of aperture crossing 

scaled to the person-plus-object system? Journal of Motor Behaviour, 46 (5), 319-327. 
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2.1 Abstract 

 

 The passability of apertures is based on the largest horizontal dimension of the body such 

that individuals will either rotate their shoulders or walk around apertures that are less than 1.3x 

SW (i.e., critical point). Carrying large objects through apertures creates a person-plus-object 

system that constrains action capabilities and requires that the individual adapt to this increase in 

size. The current study aimed to determine whether the critical point is maintained when the 

horizontal dimension of the body is suddenly enlarged by carrying an object wider than the 

shoulders. Participants (N = 22, 𝑥̅age = 22.8 years) walked at a self-selected pace along a 10m 

path and passed between or around two vertical poles placed halfway along the path. Participants 

performed the task without or while holding a serving tray that was either 1.2, 1.4 or 1.6x wider 

than their SW. The distance between the poles was scaled to be 1.0 - 1.6x each participant’s 

widest dimension (shoulder or tray width) in increments of 0.2. Results identified two distinct 

responses to carrying the tray: “the affected” and “the unaffected”. “The unaffected” (n = 12) 

maintained their critical point throughout the experiment and approached the obstacles at the 

same velocity regardless of whether the tray was carried. “The affected” (n = 7) initially 

increased their critical point and reduced their approach velocity when carrying the tray, before 

returning back to their baseline value by the end of the experiment. The results suggest that 

individuals can account for increases in body width by scaling actions to the size of the object 

width but that adaptation may occur at slightly different rates. 
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2.2 Introduction 

 During everyday locomotion it is likely that an individual will encounter a narrow space, 

such as a blocked doorway or two closely parked vehicles, while en route to their goal. In such 

situations, the individual is faced with three options to reach their goal successfully: (a) walk 

straight through the space, (b) pass through the gap and rotate the shoulders, or (c) avoid the 

aperture all together by walking around it. When choosing the appropriate action, one must be 

able to identify whether or not the aperture is passable (i.e., its affordance must be identified). 

Affordances are defined as the opportunities for action for a given organism based on the 

relationship between the dimensions of an object and the dimensions of the observer (Adolph & 

Berger, 2006; Gibson, 1979; Warren, Young, & Lee, 1986). This means that dimensions of 

objects within the environment are determined based on body-scaled information (Fajen, 2013). 

For instance, the ratio between the length of the leg and riser height on stairs specifies whether it 

is or is not climbable (Warren, 1984) and the ratio between the shoulder width and aperture 

width determines whether an aperture can be crossed with or without a change in shoulder 

position (Warren & Whang, 1987). When the difference between the size of the object and the 

size of the individual reaches a point where the observer changes his or her action, the ratio at 

which this change occurs is identified as the critical point (Warren, 1984). 

 

 Since decisions for actions are based on the ratio between the size of an object and the 

size of the body, the perceptual-motor system must continuously update knowledge of this ratio 

in order to adapt movements to the ever-changing environment. This becomes especially 

challenging when the ratio changes, such as when the size of a gap dynamically changes or the 

size of the body is altered. It is well documented that young adults (YA) are sensitive to small 
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changes in the width of an aperture and that their perceptual system can quickly and efficiently 

inform the action system of such changes in order to produce an appropriate response (Higuchi et 

al., 2006). As such, individuals can distinguish between passable and impassable apertures both 

while making perceptual judgements about the passability of an aperture and when actually 

walking through them (Franchak et al., 2010). Additionally, Wilmut and Barnett (2010) 

demonstrated that the magnitude of shoulder rotation at the TOC is inversely proportional to the 

size of the aperture, such that larger shoulder rotations are produced for smaller aperture sizes. 

Similarly, when walking around an aperture (rather than walking through it), the size of the path 

deviation from midline increases as the size of the aperture increases (Hackney et al., 2013). This 

apparent sensitivity to changes in the A/S ratio extends beyond alterations to the size of the 

environment, as previous literature suggests individuals are also capable of updating this 

relationship when the size of the body changes, as is the case when carrying large objects 

(Higuchi et al., 2006; Stefanucci & Geuss, 2009; Wagman & Taylor, 2006).  

 

Carrying objects that are wider than the body creates a person-plus-object system that 

limits an individual’s ability to pass straight through small spaces without rotating the shoulders. 

In order to pass through an aperture safely, the affordance for crossing must relate to the width of 

the person-plus-object and not the width of the individual (Bongers, Michaels, & Smitsman, 

2004; Wagman & Carello, 2003). Previous work has demonstrated that individuals adapt quite 

well to such changes in their body dimensions when asked to pass through narrow spaces. 

Wagman and Taylor (2005) had YA hold either a large horizontal pole or two horizontal objects 

(one in each hand) while making a yes or no perceptual judgement about whether an aperture 

allowed for safe passage. In both scenarios, the boundary between passable and impassable 
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apertures increased to account for the size of the object being carried. If participants were asked 

to hold a large horizontal bar and actually walk through the apertures, the magnitude of shoulder 

rotations was regulated in response to the size of the bar: individuals turned more to account for 

the larger M-L dimension (Higuchi et al., 2006; 2012).  Franchak & Adolph (2007, 2014a) 

provided further evidence for such adaptation by showing that pregnant women were able to 

adapt both their actual threshold and judgement thresholds about the passability of an aperture to 

their increasing body size which suggests not only that both the perceptual system and action 

system can account for changes in the A/S ratio, but that these adaptations occur quite quickly. 

Furthermore, this ability to adapt actions to fit the A/S ratio appears to become more accurate 

with practice (Franchak et al., 2010; Mark et al., 1997; Mark et al., 1990; Stoffregen, Yang, 

Giveans, Flanagan, & Brady, 2009; Yasuda, Wagman, & Higuchi, 2014; Yu & Stoffregen, 

2012). Together, these results suggest that individuals are indeed sensitive to the A/O 

relationship in relation to a person-plus-object system.  

 

Although the literature suggests that YA adapt their aperture crossing behaviour to 

account for changes in body size when carrying wide objects, such as how much they rotate and 

how much they slow down, the critical point has not been explicitly examined to determine 

whether it is scaled to the size of the person-plus-object system. Therefore, the purpose of the 

present study was two-fold: (a) identify whether the critical point is scaled to the A/O ratio and 

(b) determine whether adaptation to the A/O size occurs instantly or whether it evolves with 

repeat exposure. Fajen (2013) postulated that the body-scaled information required to identify 

the passability of apertures stems from the individual’s knowledge of the relation between his or 

her body size and eye height (i.e., the constant ratio between the width of the shoulders and the 
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distance the eyes are from the ground). It is argued that this relationship is learned through active 

exploration, which is then used to form an accurate perception of the size of the environment in 

relation to the size of the body. Fajen (2013) suggested that in the event that either eye height or 

body size is altered, the perceptual-motor system must recalibrate itself to accommodate for 

these changes. By altering the size of the body (but not the eye height), the present study will test 

whether individuals can adapt their actions to accommodate for the change in the relationship 

between body size and eye height and identify how much active exploration is required to make 

this adjustment. Since the literature suggests that individuals can quickly rescale perceptual 

judgements to account for increases in body size (Franchak et al., 2010; Stefanucci & Guess, 

2009; Wagman & Taylor, 2006), that perceptual judgements about the passability of apertures 

matches actions (Franchak & Adolph, 2007; Hackney & Cinelli, 2013a) and that individuals 

strive to maintain a similar-sized critical point across different environmental contexts (Hackney 

& Cinelli, 2013b; Warren & Whang, 1987), it was hypothesized that individuals would quickly 

adapt to carrying the object by maintaining a similar-sized critical point regardless of whether 

the object was carried.  

 

2.3 Methods 

2.3.1  Participants 

 Twenty-two healthy YA (𝑥̅age = 22.8 ± 1.5 years; 13 females, 9 males) ranging SW from 

34 to 54 cm (𝑥̅width = 43.5 ± 4.4cm) volunteered to participate in the experiment (Table 2.1). 

Participants were included in the study if they were free of deficits or disorders that could affect 

postural control, balance and locomotion, if they conveyed no self-reported history of hip, knee, 

or ankle injury; had normal or corrected-to-normal vision; and could understand English 
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instructions. Upon arrival, participants completed a screening questionnaire (Appendix B) to 

ensure qualification for the study. Height and SW were measured by the researcher using a 

measuring tape and recorded to the nearest half centimeter. 

 

The experimental protocol was approved by the Wilfrid Laurier University Research 

Ethics Board and Office of Research Ethics at the University of Waterloo. All participants gave 

their informed consent prior to participating.  
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Table 2.1 – Participant characteristics, including gender, height, SW and critical point for the No 

Tray condition, grouped by adapter type (see Results section 2.4.2). 

 

Adapter Type Participant Initial CP (No Tray) Gender Height (cm) SW (cm) 

Fast 1 1.2 F 170.0 39.0 

2 1.4 F 155.5 34.0 

3 1.2 M 196.0 43.5 

4 1.4 M 179.0 50.0 

5 1.2 F 167.5 42.0 

6 1.2 F 164.5 43.0 

7 1.2 F 162.0 38.5 

8 1.2 M 185.0 47.0 

9 1.3 F 173.5 39.5 

10 1.2 M 173.5 45.0 

11 1.3 M 182.0 48.0 

Average/SD 1.25 ±0.08 -------- 173.5 ±11.5 42.6 ±4.7 

Slow 12 1.2 F 170.0 46.5 

13 1.2 M 186.0 46.5 

14 1.2 F 164.5 41.5 

15 1.4 F 170.5 40.0 

16 1.4 F 170.5 44.0 

17 1.2 F 167.5 40.0 

18 1.2 M 188.5 54.0 

19 1.3 F 158.5 47.0 

Average/SD 1.26 ±0.09 -------- 172 ±10.2 44.9 ±4.6 

Non-adapters 20 1.3 M 176.5 46.0 

21 1.4 M 170.0 44.5 

22 1.4 F 161.0 43.0 

Average/SD 1.35 ±0.06 -------- 169.2 ±7.7 44.5 ±1.5 
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2.3.2 Apparatus 

 Similar to previous work (Hackney & Cinelli, 2013b; Hackney et al., 2013), the 

experiment was conducted in a 10m (L) by 6m (W) path with two vertical pole obstacles (0.23m 

W x 2.4m H) located half way down the path on either side of the midline (Figure 2.1a). The 

position of the obstacles created an aperture between the poles that ranged from 1.0 to 1.6x SW 

in increments of 0.2. The subset of aperture widths in the present study were chosen to present 

the participants with widths that were both smaller and larger than the previously reported 

critical point (1.3) in order to determine whether the value increased or decreased throughout the 

experimental conditions. Furthermore, the range of aperture widths was chosen to ensure that at 

least one condition would elicit a shoulder rotation 100% of the trials and another would result in 

no shoulder rotation 100% of the trials (1.0 and 1.6 respectively). During a subset of the testing 

conditions, participants carried an adjustable serving tray that was made of lightweight plastic. 

The tray was 35cm wide and could be adjusted to range between 40 - 95cm in width (Figure 

2.1b).  

 

Kinematic data was measured using the OptoTrak camera system (Northern Digital Inc., 

Waterloo, Canada) at a sampling frequency of 60Hz. Rigid bodies were placed on the external 

occipital protuberance and left scapula to allow for the left/right ears and the left/right 

posterolateral aspects of the spinous processes of the scapula and T10 to be digitized (Appendix 

C).   
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Figure 2.1 - a) A sagittal view of the experimental set up including an outline of the three paths available to get to the goal, and b) an 

aerial view of the light-weight, adjustable serving tray carried for a subset of the trials.  
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2.3.3 Design  

 The experiment consisted of four blocks of trials. In the first block, the participants were 

asked to complete the trial normally (i.e., walk to the end-goal without colliding with the 

obstacles), without carrying a tray. This block was referred to as the No Tray condition. 

Participants also completed three blocks of trials while carrying the adjustable serving tray. Each 

block included one of three tray lengths which were determined based on each participant’s 

shoulder width: 1.2, 1.4, and 1.6x SW. These tray-carrying blocks of trials were referred to as 

Tray 1.2, Tray 1.4, and Tray 1.6, respectively. The experiment followed a pseudorandomized 

design such that the No Tray block was completed first, followed by a randomized order of the 

three tray blocks of trials.  

 

When participants walked along the path, an aperture was presented half way between the 

starting location and the goal. The aperture ranged in width from 1.0 – 1.6x the SW in 

increments of 0.2.  It is important to note that the aperture widths were determined based on the 

size of the shoulder width or the size of the tray, depending on the current condition. Therefore, 

during the No Tray condition, the four aperture widths were calculated relative to the size of the 

participants shoulder width, while in the three tray conditions the aperture was determined based 

on the size of the tray being carried. 
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2.3.4 Procedure 

On all experimental trials, participants were instructed to walk at their natural pace 

toward the goal located at the end of the path and avoid coming in contact with the two obstacles 

that created the aperture. Direct instructions were not provided as to how to avoid the obstacles 

as we wanted participants to be able to choose behaviours that they would do in a more natural 

setting.  

 

Prior to the start of each trial, the participants turned away from the aperture by facing in 

the opposite direction of travel while the experimenters manually adjusted the position of the 

obstacles to marked locations on the ground. The experimenters confirmed the width of the 

aperture with a measuring tape to the nearest half centimeter. Participants took a mandatory five 

minute break following each block of trials and could voluntarily take a break at any point during 

the experiment.  

 

Each trial began in one of three randomly assigned starting locations, each which were 

separated by 15cm in the direction of travel (i.e., A-P direction). The randomized starting 

position was used to help reduce an individual’s reliance on a consistent number of steps before 

initiating a change in their behaviour (e.g., always taking ten steps before deviating off the 

straight walking path). 
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2.3.5 Data and Statistical Analysis  

 The COM location in the M-L and A-P direction were estimated using the three IRED 

markers placed on the torso (Appendix C). This approach was adapted from Winter and 

colleagues (1998) and reported in previous work (Hackney & Cinelli, 2011; Hackney et al., 

2013). It is worth noting that for the purpose of this study, the term critical point was defined as 

the threshold between passable and impassable apertures. Since participants were instructed to 

avoid contacting the obstacles but were not restricted to walking only through the aperture (i.e., 

they could choose to walk around the aperture), impassable apertures were considered those in 

which an individual voluntarily chose to rotate his or her shoulders while passing through the 

aperture or ones where they avoided passing through the aperture all together by walking around 

it. This study used the calculation of the critical point to determine whether adaptation to 

increases in the width of the body had occurred on an individual basis by comparing the 

individual critical point of every participant during each tray condition to that of their No Tray 

condition critical point.  

 

On an individual basis the proportion of straight walking trials for each participant was 

documented. This was determined by the M-L COM position at TOC. Values close to zero 

represented trials where the individual walked straight through the aperture, while positive or 

negative values represented a path deviation to the right or to the left of the obstacles, 

respectively. Trials where participants walked straight through the aperture were then analyzed 

for significant shoulder rotations. Similar to previous reported analyses (Hackney & Cinelli, 

2013b; Wilmut & Barnett, 2010), shoulder rotation angles were calculated using the two IRED 

markers on the left and right shoulders (Appendix A). A shoulder rotation was identified if the 
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magnitude of rotation fell outside two standard deviations of the average rotation during the 

approach phase. The approach phase began after the third step and continued until the A-P COM 

was 1.5m from the aperture. Trials where no shoulder rotation occurred were scored with a zero 

and trials where the participant rotated the shoulders or where he or she walked around the 

aperture were given a score of one. Therefore each participant was assigned a proportion of 

straight walking trials for each aperture width within a given block of trials. A participant’s 

individual critical point was defined as the largest aperture width where at least 60% of the trials 

resulted in either a shoulder rotation or a change in path trajectory. This process was repeated for 

each of the four testing conditions and allowed the researchers to identify if or when adaptation 

occurred on an individual basis. As a reminder, both a change in shoulder position and a change 

in travel path were considered to be actions associated with an impassable aperture width since 

we set out to determine the size of aperture that elicits a change from straight walking.  

 

The proportion of trials where a change in action occurred across all participants was run 

through a Friedman’s nonparametric analysis of variance (ANOVA) to determine whether the 

proportion of impassable apertures was affected by the size of tray or by the order in which the 

tray sizes were presented. For trials where a shoulder rotation occurred, one-way repeated 

measures ANOVAs were also used to determine whether the magnitude of rotation was affected 

by the tray size or order of presentation. 

 

Other aperture crossing behaviours such as the approach velocity, M-L COM position at 

TOC, spatial margin, and trunk sway were calculated using the COM. Approach velocity was 

defined as the average walking speed, the change in displacement of A-P COM over time, during 
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the approach phase. M-L COM position at TOC was defined as the position of the M-L COM 

when the A-P COM crossed the aperture. M-L trunk sway during the approach phase was 

determined by calculating the absolute angle between the IRED marker at T10 and a calculated 

imaginary point between the two shoulder markers. Lastly, the spatial margin was determined by 

finding the absolute distance between the inner edge of the obstacle and the shoulder at TOC. 

Appendix A provides a visual representation of the dependent variables analyzed in this study. 

 

The abovementioned dependent variables were assessed using a 4 (aperture width) x 4 

(tray size) general linear model (GLM) with repeated measures. P-values less than 0.05 were 

accepted as significant and Tukey’s post-hoc analyses were used when appropriate.  

 

 

2.4 Results 

2.4.1 Avoidance Strategies 

 All participants successfully avoided colliding with the obstacles throughout the entire 

experiment and completed the task in one of three ways: (1) walk through the aperture with no 

shoulder rotation, (2) walk through the aperture while rotating the shoulder, or (3) avoid the 

aperture by walking around the obstacles. The proportion of trials where these three behaviours 

occurred for each condition is displayed in Figure 2.2. During the No Tray condition, the 

predominant strategy was to walk straight through the aperture without producing a shoulder 

rotation and to rotate the shoulders at the smaller aperture sizes. However during the three tray 

conditions, rather than rotate the shoulders for impossible apertures, individuals avoided the 

aperture by walking around it. Since the production of a shoulder rotation was the dominant 
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strategy used to walk through smaller apertures in the No Tray condition, the proportion of 

shoulder rotations was used to calculate the individual critical point for this block of 

experimental trials. However, since shoulder rotations did not occur while carrying the tray 

(likely due to restrictions in the depth of the tray), the proportion of avoidance trials was used 

instead to determine each participant’s critical point for the remaining tray conditions. 
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Figure 2.2 – The proportion of trials where participants walked straight through, rotated the shoulders or walked around the aperture. 

Participants predominantly rotated their shouldres for apertures deemed to small for straight passage when the tray was not carried but 

walked around the aperture when carrying the tray.  
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Friedman’s non-parametric ANOVAs revealed a significant effect of aperture width for 

the No Tray (χ2
 (4, N = 22) = 63.28, p < 0.001); first tray (χ2 

(4, N = 22) = 65.63, p < 0.001); second tray, 

(χ2 
(4, N = 22) = 67.34, p < 0.001); and third tray exposures (χ2 

(4, N = 22) = 66.95, p < 0.001). Post hoc 

analysis for each condition was conducted using Wilcoxon signed rank tests and compared 

aperture widths 1.2, 1.4, and 1.6 to the proportion of straight walking trials at aperture 1.0. The 

aperture width 1.0 (the width that was equal to the size of the shoulders) was used for 

comparison because it represented the condition at which the percentage of straight walking 

trials was zero. As participants never walked straight through this aperture width, it could be 

used to determine the aperture width where a significant proportion of straight walking trials first 

started to occur. Results revealed that the proportion of straight walking trials at apertures 1.2, 

1.4, and 1.6 significantly differed from that at aperture 1.0 in the No Tray condition (p < 0.05 for 

all comparisons). Conversely, in the three tray conditions the proportions only differed 

significantly from 1.0 at apertures 1.4 and 1.6 (p < 0.05 for both). Therefore, there appeared to be 

an effect of tray size, where participants voluntarily walked around larger relative aperture 

widths while carrying the tray compared to when the tray was not carried, however the size of 

the tray did not influence the frequency of avoidances (Figure 2.3a). Additionally, a significant 

effect of presentation order existed (χ2 
(3, N = 22)

 = 10.81, p < 0.05), where the proportion of 

avoidance trials for the first encounter with the tray was significantly higher than all other 

conditions (p < 0.05, Figure 2.3b).  
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Figure 2.3 – a) Critical point for each block of trials based on the size of the tray. Critical point 

increased when the tray was carried (p<0.05), and b) Group critical point for presentation order. 

The critical point was largest the first time the tray was carried (p<0.05). 
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On trials where the participants chose to walk around the aperture, the M-L COM position 

at TOC was affected by the aperture width (F (3, 54) = 29.02, p < 0.001, ŋ2 = 0.63), where 

participants deviated farther from the midline of the path as the aperture increased in size. The 

results also demonstrate that M-L position was significantly affected by tray size (F (3, 54) = 13.78, 

p < 0.001, ŋ2 = 0.43) such that deviations from the midline were larger as the size the tray 

increased. The presentation order did not affect the position of the COM. 

 

 

2.4.2 Adaptation Rates 

To determine whether adaptation occurred, the critical point in the No Tray condition 

was compared to the critical point in the final exposure to the tray for each participant. 

Adaptation was deemed to have occurred if the difference between the two conditions was zero. 

Three participants had a difference greater than zero and were therefore considered the “non-

adapters” while the remaining nineteen participants adapted as hypothesized. The three “non-

adapters” were removed from further analysis, while the adapters were analyzed for speed of 

adaptation. The “non-adapters” were removed from all further analyses because these 

participants each had an initial critical point (in the No Tray condition) that fell well outside the 

norm in previously reported studies (critical points of 1.6 or larger). These participants walked 

around every aperture width presented to them (Table 2.1). Retrospectively, when asked why 

they chose to always walk around the aperture, these participants responded that they thought 

they were supposed to walk around the poles every time.  
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To determine how quickly participants adjusted to the tray, the individual critical point 

for the first, second and third exposures were examined. If the slope of the line across conditions 

was maintained at zero (i.e., the same critical point throughout the entire study), the participant 

adapted to the tray within the first exposure. These participants were grouped together and 

identified as the “unaffected” (n = 11) as their behaviours were not altered by increases in body 

size when holding the tray (Figure 2.4). If the slope was negative, the participant was 

characterized as a “the affected” (n = 7; Table 1). These participants displayed a larger critical 

point during the first block of trials in which they were required to carry the tray (average 

increase from 1.25 to 1.51). A negative slope indicated that the critical point was higher in the 

first and second tray exposures before returning to the original value; warranting the “the 

affected” name (Figure 2.4). It is important to note that “the affected”” were still able to adapt to 

the increase in body size, they just appeared to do so at different rates. 
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Figure 2.4 – The group critical point, split by adapter-type based on presentation order. “The 

affected” increased their critical point the first time they carried the tray while “the unaffected” 

maintained the same critical point. 
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2.4.3 Other Aperture Crossing Behaviour 

Aperture width was shown to have an effect on approach velocity (F (4, 69) = 4.97, p < 

0.05, ŋ2 = 0.26), where participants decreased their walking speed as the aperture size decreased. 

Unlike path trajectory however, block (No Tray vs. tray), tray size, and presentation order did 

not affect approach velocity. Similarly the trunk sway and spatial margin were not affected by 

aperture width, testing condition, and tray size or presentation order. When these variables were 

compared between “the unaffected” and “the affected” with a 4 (aperture width) x 4 (tray size) x 

2 (adapter type) GLM, only approach velocity demonstrated differences between groups (F (1, 17) 

= 4.82, p < 0.05, ŋ2 = 0.29). Tukey’s post-hoc analysis revealed that “the affected” displayed a 

decrease in their walking speed when carrying the tray compared to when the tray was not 

carried (p < 0.05) while the “unaffected” maintained the same speed throughout the study 

regardless of condition (Table 2). M-L COM position at TOC, trunk sway and spatial margin did 

not differ between groups. 
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Figure 2.5 – Average approach velocity for each block of trials based on the size of the tray, 

split by adapter-type. “The affected” walked slower when carrying the tray compared to “the 

unaffected” (p<0.05). 
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2.5  Discussion 

 In the current study we set out to determine whether individuals scale the critical point to 

the person-plus-object system when walking through apertures. We hypothesized that adaptation 

would occur quickly when carrying an object that was wider than the shoulder width by 

maintaining a similar relative critical point when the tray was carried compared to when it was 

not. As hypothesized, the results demonstrate that individuals can indeed adapt to the person-

plus-object system in order to maintain a consistent critical point. This was evident from the 

similarities of the critical points between the No Tray and final tray exposure (Figure 2.3b). 

However unlike the hypothesis, the adaptation did not always occur within the first exposure to 

the tray (Figure 2.3b). Although the results originally revealed that the critical point during each 

of the three tray conditions was larger than that of the No Tray condition (1.4 and 1.2, 

respectively; Figure 2.3a), the effect disappeared when considering the order of exposure. The 

increased critical point only occurred during the first block of tray trials (Figure 2.3b), which 

was marked by considerable variability across participants. However, the group critical point did 

return to the No Tray value by the final tray exposure.  

 

The larger critical point at the first tray exposure is contrary to our hypothesis, as it was 

predicted that individuals would adapt the critical point within the first exposure. This result, 

coupled with the considerable variability within each condition prompted individual analysis of 

adaptation rate to determine whether all participants followed this trend. Since all participants 

adapted their critical point by the final tray exposure to match that of the No Tray condition, the 

slope of the line across the three tray conditions provided insight into the rate of adaptation. A 

subset of the participants (n = 7; “the affected”) increased their critical point the first time they 
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experienced the person-plus-object system (carrying the tray) but returned to their original 

critical point during the second and third exposures while the remaining participants (n = 12) 

maintained the same critical point throughout the entire experiment (“the unaffected”).  

 

The fact that the present study identified two distinct types of adapters to the person-plus-

object system was an unexpected but novel finding. Previous research suggests that individuals 

can correctly perceive affordances of objects by means of dynamic touch (Carello, 2004; Carello 

& Turvey, 2004; Stefanucci & Geuss, 2009; Wagman & Taylor, 2005), by means of vision 

(Hackney & Cinelli, 2011; Higuchi et al., 2006; Warren & Whang, 1987) and the manner in 

which an object constrains affordances for locomotion for a person-plus-object system (Higuchi 

et al., 2006; Higuchi et al., 2012; Wagman & Taylor, 2005). Therefore, it was reasonable to 

hypothesize that the travel path selections in the present study would be scaled to the size of the 

aperture. However, only “the unaffected” in the present study provide support for the evidence 

that these adjustments also occur for actions (Higuchi et al., 2012). The unexpected finding that a 

second group of participants (“the affected”) took time to adapt to the increase in body size 

suggests that not all individuals adjust to changes in body dimensions at the same rate.  

 

Previous work has suggested that perceivers must spend time exploring the perception-

action dynamics of the person-plus-object system in order for the perceived boundaries of 

behaviour to match the action capabilities of the system (Franchak et al., 2010; Hirose & 

Nischio, 2001; Mark, 1987; Mark et al., 1990). Research has demonstrated that novel wheelchair 

users are sensitive to the increased body width that a wheelchair creates; however, practice was 

required before the judgements surpassed the boundary of 1.0 and included a critical point 
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sufficient to allow for safe passage (Higuchi et al., 2006; Yu & Stoffregen, 2012). In order to 

pass through the aperture safely, participants needed to gain experience using the wheelchair in 

order to inform the CNS of the size of the person- plus-object system. Similarly, research has 

shown that perceived boundaries for aperture crossing with large objects are underestimated 

compared to when the object is not held. Perceived boundaries when carrying the object was 

slightly smaller than the A/S ratio of 1.0, suggesting that participants rely on online regulation of 

perceptually guided behaviour to make specific adjustments to actions (Wagman & Carello, 

2003). Although the actions of “the affected” in the current study were indicative of an 

overestimation (rather than an underestimation), as evident through a larger critical point, the 

differences in behaviour between the present and previous work may be a result of differences in 

the task. The overestimation in the present study may have been used to ensure that a collision 

with the aperture did not occur: underestimations of the passability of a space may have resulted 

in injury if the participant collided with the obstacles. The underestimations reported in previous 

work were observed when participants were asked to determine whether they could fit through 

an aperture using a yes or no response. Participants were not asked to walk through the aperture 

and therefore, an underestimation posed no risk of injury or failure to the participant. 

 

As previous work has shown that novel wheelchair users require time to adjust their 

actions to the size of the chair (Higuchi et al., 2006), it is also possible that the “the affected” just 

needed time to gain experience carrying the tray. Although it is possible that these particular 

participants were completely novel tray carriers, experience with tray carrying was likely not a 

factor for differences in behaviour as both groups of participants reported that they were not, and 
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had never been servers. Additionally, there was no evidence that the two groups approached the 

task differently: path trajectory and lateral trunk sway were not different between the groups. 

 

It is interesting that both adapter types displayed similar actions (i.e., path trajectory and 

trunk sway) during the task. When the tray was carried and the aperture was deemed too small 

for straight walking both groups opted to walk around the aperture. Meanwhile, when not 

carrying the tray, both groups chose to rotate their shoulders for impassable apertures. This is 

likely because the tray elicited a restraint on the participant’s action capabilities, making it 

difficult to produce a shoulder rotation. Normally a shoulder rotation is used to decrease the 

horizontal dimension of the body (Warren, 1984); however when the tray is carried and the body 

is turned, the depth of the tray adds to the width of the person and results in less a beneficial 

decrease in the horizontal dimension. The fact that both the “affected” and “unaffected” groups 

acted similarly with respect to the type of avoidance elicited, maintained similar path trajectories 

and had similar trunk sway suggests that the differences in adaptation rate between the two 

groups was likely not the result of the participants approaching the task differently. 

 

The increased critical point of the “affected” suggests a more cautious behaviour, as 

these participants left more space between themselves and the obstacles when passing through 

the aperture during the first tray-carrying condition. It is possible that this increased caution was 

a result of a decrease in confidence in their ability to complete the task successfully. As the 

behaviour of the “affected” was unexpected, measures of confidence levels could be beneficial in 

understanding the differences in adaption rates between the two groups. However, these 

measures were not assessed and therefore a complete understanding of whether confidence 
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played a role in one’s behaviours was beyond the scope of this study. However, analysis of 

walking speed may provide some insight into whether the “the affected” were more affected by 

the tray than “unaffected”. Original analysis revealed that participants approached the aperture at 

a slower velocity for smaller apertures compared to larger ones. This result is not surprising as 

previous research has shown that reductions in walking speed are scaled to the size of the 

aperture (Wilmut & Barnett, 2010). Walking speed did not appear to be affected when carrying 

the tray; however when approach speeds were separated into the two groups; the “affected” 

displayed a decrease in their walking speed when carrying the tray, while the “unaffected” 

maintained the same speed throughout the study. Reducing walking speed has been suggested to 

be a cautious behaviour observed in the older adult population (Nutt, 2001) as either a means of 

increasing the amount of time the visual-motor system has to process information and produce an 

appropriate response (Cinelli et al., 2009) or as a protective mechanism to minimize injury if a 

collision were to occur (Wilmut & Barnett, 2010). If “the affected” were more affected by the 

tray in terms of confidence, they might have opted to slow down in order to take more time to 

process information and make a decision about whether the aperture was passable or to reduce 

the chance of injury. Future researchers should consider analyzing confidence levels in order to 

identify whether confidence could in fact play a role in the rate at which the critical point is 

scaled to the person-plus-object system. 

 

2.6 Conclusion 

 The results of the current study support previous work indicating that individuals adapt 

actions to meet the changing demands of the body dimensions when walking through narrow 
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spaces. However our results identified two distinct responses to carrying the tray: the “affected” 

and “unaffected”. The “unaffected” (n = 12) maintained their critical point throughout the study 

and approached the obstacles at the same velocity regardless of whether the tray was carried. The 

“affected” (n = 7) initially increased their critical point when carrying the tray and reduce their 

approach velocity when carrying the tray. The results suggest that individuals can account for 

increases in body width by scaling actions to the size of the object width but adapt at different 

rates. 

  

  



60 

 

 

 

 

- Chapter 3 - 

 

 

 

THE EFFECTS OF NARROW AND ELEVATED PATH WALKING ON APERTURE 

CROSSING 

 

 

 

 

 

 

 

 

 

 

 

Adapted from:  

Hackney, A. L., Cinelli, M. E., Denomme, L. T., & Frank, J. S. (2015). The effects of narrow 

and elevated path walking on aperture crossing. Human Movement Science, 41, 295-306.  
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3.1  Abstract 

Whether an aperture affords passage depends on the size of the body. Research involving 

older adults (OA) has suggested that the passability of an aperture may also depend on one’s 

action capabilities, such as stability. The current study investigated how manipulations of 

postural threat in YA influences the passability of apertures. Participants walked along a 7m path 

and passed through an aperture located halfway to the end-goal. In the baseline conditions, 

participants walked on a ground-level path and passed through five aperture widths (1.1 - 1.5x 

SW). Performance in this condition determined a participant’s “normal” critical point. Next, 

postural threat was manipulated by walking on a narrow, ground level path (20cm W) or an 

elevated/narrow path (20cm W x 40cm H). Participants completed five trials where the width of 

the aperture was equivalent to their “normal” critical point. The aperture widths to be presented 

in the experimental trials that followed were determined based on the behaviour during the 

previous five trials. This individualized approach was used to determine whether an individual’s 

critical point changed in the experimental trials and to identify the specific value of the new 

critical point. Results revealed that despite a decrease in walking speed and an increase in trunk 

sway in both experimental walking conditions, the passability of apertures was only affected 

when the consequence of instability was the greatest (i.e., on the elevated/narrow path). 

Individuals maintained a larger critical point, by rotating their shoulders for larger apertures, 

compared to normal walking. This effect was not observed for the narrow path walking, 

suggesting that the level of postural threat was not enough to impose changes to the critical 

point. Therefore, it appears that manipulating action capabilities does indeed influence aperture 

crossing behaviour, however the consequence associated with instability must be high before 

both gait characteristics and the affordance of aperture crossing are affected. 
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3.2  Introduction   

When narrow spaces are encountered along the travel path, individuals are able to quickly 

and accurately distinguish whether or not the aperture is passable. If the space is considered 

impassable, modifications to the configuration of the body are made in order to maintain a 

spatial margin between the body and the obstacles at the TOC. When specifically asked to pass 

through a narrow space without making any contact with the obstacles, a shoulder rotation is 

produced for spaces smaller than 1.3x SW but no adjustments are required for spaces larger than 

this value (Warren & Whang, 1987). The threshold between passable and impassable spaces (no 

rotations required vs. rotations required) is referred to as the critical point for aperture crossing 

and suggests that individuals consider the size of their body when passing through apertures 

(Hackney et al., 2013; Warren & Whang, 1987; Wilmut & Barnett, 2010). It is not surprising that 

the critical point is scaled to the size of the widest horizontal dimension of the body since a large 

body of literature has demonstrated that action selection is scaled to body dimensions. For 

example, climbable and non-climbable stairs are scaled to length of the leg (Warren, 1984), 

walking under barriers is scaled to height (Franchak et al., 2012) and reaching ability is related to 

arm length (Mark et al., 1997). However, body dimensions are likely not the only contributing 

factor influencing action selection such as the critical point, especially since individuals leave a 

spatial margin between their body and the obstacle (meaning the critical point is larger than the 

size of the body). 

 

A number of studies have recognized the role that action capabilities and limitations to 

movement play on determining the possibilities for action (Choi & Mark, 2004; Fajen, 2007; 

Fajen, 2013; Fajen, Diaz & Cramer, 2011; Hackney, Cinelli, & Frank, 2014; Higuchi et al., 
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2011; Oudejans, Michaels, Bakker, & Dolne, 1996; Wagman & Malek, 2007; Wagman & 

Taylor, 2005). Such capabilities and limitations may include but are not limited to stability, 

walking speed, range of motion, strength and restrictions on action choices (such as when 

carrying large objects). Research examining the role of action capabilities has demonstrated that 

choosing whether a gap between traffic is passable is partially related to the individual’s walking 

ability (Fajen & Matthis, 2011). Similarly, Higuchi and colleagues (2006) found that when the 

form of locomotion was different from that of normal walking, such as during wheelchair use or 

when movement restrictions are applied (i.e., no shoulder rotations permitted), individuals 

approach the task differently. Specifically, participants move towards the aperture at a much 

slower speed and collide with the obstacles more often under conditions that limit action abilities 

compared to normal walking (Higuchi et al., 2006). Furthermore, research with aging 

populations who demonstrate greater instability and slower walking speeds when approaching an 

aperture shows that OA maintain a larger critical point compared to their younger counterparts 

even when body size was accounted for. Older adults have an average critical point of 1.6, while 

YA maintain a consistent 1.3x SW (Hackney & Cinelli, 2011). This larger spatial margin was 

positively correlated with an increased trunk sway: individuals who had greater trunk sway 

during walking (those who were arguably more unstable, rotated their shoulders for larger 

relative spaces compared to their more stable counterparts) (Hackney & Cinelli, 2011). These 

results suggest that the natural M-L sway of walking is related to the ability to pass through an 

aperture and as the sway increases, as it does with instability, the possibilities for action also 

change. Franchak and colleagues (2012) support this hypothesis by observing that differences in 

the threshold between passable and impassable spaces are apparent when walking between 

obstacles compared to passing under barriers. The authors attribute the larger spatial margin 
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needed for the horizontal openings to the greater spatial requirements created by the natural 

lateral sway compared to the vertical bounce associated with walking (Franchak et al., 2012). If 

this is indeed true, then passing through small spaces in environments where actions capabilities 

are challenged should result in modifications to normal aperture crossing behaviour. These 

studies all suggest that the possibilities for action consider both the size of the body and one’s 

action capabilities or limitations.  

 

The current study set out to further investigate the impact that action capabilities have on 

identifying possibilities for action, particularly with respect to how postural threat influences 

aperture crossing behaviour. To do this, an individual’s ability to maintain balance was 

challenged by manipulating the level of postural threat while walking. This was achieved in two 

ways: (1) by reducing the width of the walking path and thereby reducing the size of the base of 

support (BOS); and (2) by elevating the narrow walking path to increase the risk associated with 

failing to maintain balance.  

 

Manipulation of postural threat was chosen as the method of challenging balance control 

for two reasons. First, a number of studies have demonstrated that increasing postural threat by 

constraining or elevating the walking path is related to increases in anxiety associated with the 

potential consequences of falling, as evident by increased galvanic skin conductance (Ashcroft, 

Guimaraes, Wang, & Deakin, 1991; McKenzie & Brown, 2004; Naveteur & Roy, 1990). Second, 

research has demonstrated that static and dynamic balance control is altered when postural threat 

is increased (Adkin, Frank, Carpenter, & Peysar, 2000, 2002; Carpenter, Frank, & Silcher, 1999; 

Schrager, Kelly, Price, Ferrucci, & Shumway- Cook, 2008). When required to stand on an 



65 

 

elevated platform, YA adopt a more cautious control strategy by leaning away from the edge of 

the platform and stiffening the control of posture (decreasing the amplitude and increasing 

frequency of postural sway) through increased co-activation of the muscles controlling the ankle 

joints (Adkin et al., 2000; Carpenter et al., 1999). During gait, narrow-based walking has been 

associated with increased M-L COM velocity and displacement suggesting that when the BOS is 

reduced, individuals have greater instability (Schrager et al., 2008). Furthermore, when walking 

on elevated surfaces, the increased postural threat results in adaptations to the gait pattern such as 

decreased velocity, shorter stride length and longer duration of time spent in double support, 

which all reflect a more cautious gait (Brown, Gage, Polych, Sleik, & Winder, 2002; McKenzie 

& Brown, 2004). Regardless of whether an individual is standing or walking, the aforementioned 

studies demonstrate that the alterations associated with the potential consequences of instability 

influence the manner in which balance and gait is controlled. Of the walking conditions tested in 

previous studies, walking on the elevated surfaces appear to pose the greatest threat to balance 

and results in the largest changes in gait.  

 

Since aperture crossing research has suggested a correlation between instability and an 

increased critical point (Hackney & Cinelli, 2013a) and the postural threat literature 

demonstrates that increased postural threat (i.e., walking on an elevated surface) decreases 

stability during walking (Brown et al., 2002; McKenzie & Brown, 2004; Schrager et al., 2008), it 

was hypothesized that alterations to aperture crossing behaviour would be scaled according to 

the level of balance control. Specifically, individuals would employ a cautious approach to 

aperture crossing by reducing walking speed and continuing to rotate their shoulders for larger 
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relative apertures when walking on both the narrow path and the elevated/narrow path, but the 

effects would be larger in the elevated/narrow path condition.  

 

 

3.3 Methods 

3.3.1  Participants 

Twenty-nine healthy YA (𝑥̅age = 24.18 ± 3.2 years; 15 females and 14 males) volunteered 

to participate in the study (Table 3.1). Prior to the experiment, all participants completed a 

general screening questionnaire to confirm eligibility (Appendix B). Participants were included 

in the experiment if they were free of deficits or disorders that could affect postural control, 

locomotion and decision making; had no self-reported history of a hip, knee or ankle injury 

within the past six months, had normal or corrected-to-normal vision and could understand 

English instructions. Only participants who were comfortable standing on a chair to reach 

something off of a shelf above their head were included in the study. Participants who would not 

voluntarily stand on the chair or who reported that they would feel uncomfortable doing so, were 

excluded from the experiment. 

 

All participants provided informed, written consent prior to the experiment. Ethical 

approval was obtained from the University of Waterloo’s Office of Research Ethics. 
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Table 3.1 – Participant characteristics by group assignment, including gender, age, SW and CP. 

Group Gender Age (yrs) SW (cm) Normal CP Experimental CP 

Narrow Path M 25 42.0 1.2 1.2 

F 30 46.0 1.3 1.3 

M 23 47.5 1.2 1.3 

M 25 49.0 1.3 1.3 

M 24 49.0 1.4 1.3 

F 21 41.5 1.4 1.4 

F 25 40.5 1.3 1.3 

M 24 47 1.2 1.2 

F 21 41.5 1.3 1.3 

M 26 52.0 1.3 1.3 

F 28 42.5 1.5 1.4 

Average/SD 24.72±2.78 45.32±3.88 1.3±0.09 1.3±0.06 

Elevated/Narrow Path F 22 44.0 1.3 1.4 

M 24 54.0 1.3 1.5 

M 26 45.5 1.2 1.5 

M 24 47.0 1.2 1.5 

M 30 45.0 1.3 1.5 

F 23 45.5 1.5 1.6 

F 22 40.5 1.3 1.5 

F 21 39.5 1.3 1.5 

M 21 51.0 1.3 1.4 

F 21 42.5 1.3 1.6 

F 25 40.0 1.2 1.5 

M 23 46.0 1.4 1.6 

F 22 43.0 1.3 1.2 

M 24 45.0 1.3 1.5 

M 20 47.0 1.2 1.5 

M 21 44.0 1.3 1.6 

F 25 40.5 1.3 1.5 

F 26 41.0 1.3 1.6 

Average/SD 23.33±2.47 44.50±3.80 1.28±0.07 1.49±0.10 
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3.3.2 Apparatus and Procedure 

The experiment was conducted within a 7m (L) by 3m (W) area with two vertical pole 

obstacles (0.23m W by 2.4m H) located on both sides of the midline of the path, 5m from the 

starting position (Figure 3.1). The position of the two obstacles created a space for participants to 

walk through, which could be adjusted to various sizes relative to each participant’s shoulder 

width. For all trials, participants were instructed to walk to the end of the path and pass between 

the poles without colliding with them. Participants were also encouraged to rotate their shoulders 

while passing through the obstacles if they perceived that the opening was too small to walk 

straight through without adjusting their body position. Avoiding the aperture all together by 

walking to the left or the right of the obstacles was not permitted. Between experimental trials, 

participants faced away from the path while the researchers manually adjusted the position of the 

obstacles. 

 

Kinematic data was measured using the OptoTrak camera system (Northern Digital Inc., 

Waterloo, ON, Canada) at a sampling frequency of 60Hz. The IRED marker set-up was the same 

as that outlined in Chapter 2 (Appendix C).  

 

3.3.3 Experimental Design  

Aperture crossing studies often normalize the width of the aperture to the size of the 

participant’s shoulders and report the group behaviours that emerge. Although this approach 

takes into consideration various body sizes, these studies assume that all individuals have similar 

action capabilities and neglect the possibility that abilities can also vary across individuals of the 
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same body size. This is especially important in environments where action capabilities are 

challenged, as a particular challenge may affect individuals differently. By accounting for 

individual differences, an experiment can better identify whether manipulating one’s action 

capabilities effects aperture crossing behaviour. Therefore the current study normalized the set of 

aperture widths to an individual’s shoulder width as well as their performance behaviour in a 

baseline condition.   

 

To normalize the experiment to an individual’s performance, participants first completed 

a block of baseline trials to identify their individual critical point during normal, ground-level 

walking. To do so, participants walked along the path towards an end-goal at a self-selected pace 

and passed through an aperture 5m from the start. The aperture ranged from 1.1 to 1.5x SW in 

increments in 0.1. Each aperture width was presented five times in randomized order, for a total 

of twenty-five trials. On every trial, two experimenters independently recorded whether the 

participants visibly rotated their shoulders to pass through the aperture. Upon completion of the 

baseline trials, the experimenters identified the largest aperture width in which a shoulder 

rotation was produced for at least three of the five trials (i.e., 60% of trials). This value was 

identified as the participant’s ‘‘normal’’ critical point and was used to normalize the subsequent 

experimental trials to each individual. Note that the raters were only used to identify the 

observable shoulder rotations at the experiment was being conducted for the purpose of 

individualizing the experimental trials. These observations were not used during data analysis. 

  

Following the baseline trials, participants were randomly assigned to one of two groups: 

(1) the narrow path group, where participants walked along a 7m (L) by 0.2m (W) path at ground 
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level; or (2) the elevated/narrow path group, where participants walked along a path that was 7m 

(L) by 0.2m (W) and raised 0.4m off the ground (Figure 3.1). All participants received the same 

instructions for the experimental trials as they did for the baseline trials but were also encouraged 

to avoid stepping off and/or falling off the path. Two spotters walked on either side of the path 

during the trials in order to provide support for the participant if a trip, a fall or a loss of balance 

occurred. Trips and falls were not anticipated for the narrow path group since the path was 

located at ground level, however the spotters were used for the purpose of maintaining 

consistency between conditions. For both groups, the aperture width for the first five 

experimental trials was set to each participant’s critical point identified from the baseline trials. 

This was done to directly compare whether the narrow path and/or the elevated/narrow path 

affected the individual’s aperture crossing behaviour at the aperture width corresponding to the 

‘‘normal’’ critical point. The researchers recorded whether the participant rotated his or her 

shoulders when passing through the aperture in order to determine the range of aperture sizes to 

be presented in the final fifteen experimental trials. If the participant rotated their shoulders for at 

least three out of the five trials (i.e., 60% of the trials), the following fifteen trials were randomly 

presented at 0.1, 0.2 and 0.3 increments larger than the critical point value (five trials of each). 

Rotating the shoulders at least three of the five trials suggest that the participant either: (1) 

maintained the same critical point as baseline; or (2) that their critical point value had increased. 

Similarly, if the frequency of shoulder rotations for the first five experimental trials was less than 

three, participants received fifteen randomly presented aperture widths that were 0.1, 0.2 and 0.3 

increments smaller than their baseline critical points. Rotating the shoulders less than three trials 

suggests that the critical point decreased. Therefore, providing apertures smaller than the 
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‘‘normal’’ critical point value would allow for the new critical point to be identified for the 

challenged walking condition. 
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Figure 3.1 – Experimental set-up and methods for the three testing conditions including, a) 

normal, ground-level walking, b) narrow ground-level walking and c) elevated/narrow walking.  
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3.3.4 Data Analysis 

For the purpose of this study, an individual’s critical point was defined as the largest 

aperture width that was considered impassable. Since participants were instructed to walk on a 

narrow or an elevated/narrow path through the aperture, impassable apertures were considered 

those where the participant rotated his or her shoulders. Unlike Chapter 2, participants were not 

permitted to walk around the aperture (because they were restricted to walking on the narrow or 

elevated/narrow path) and therefore, only shoulder rotations were considered changes in action at 

TOC. For group critical points, the largest aperture width at which the magnitude of rotation 

(described in Chapter 2, Section 2.3.5) was significantly different than straight walking was 

considered the critical point. When determining an individual’s critical point, the largest 

aperture width at which a shoulder rotation occurred at least three of the five trials (60%) was 

recorded. Individual data was used to identify the percentage of participants who changed (or did 

not change) their critical point between conditions.  

 

In addition to the critical point, other variables of interest included: approach velocity, 

velocity at TOC, trunk sway, and spatial margin. These calculations are described in Chapter 2 

(Section 2.3.5).  Additionally, the onset of rotations and the onset of changes in velocity were 

also calculated. If the velocity at TOC fell outside three standard deviations of the average 

walking speed during the approach phase, a significant change in velocity was identified and the 

distance from the aperture (using the A–P COM) in which this change was first initiated was 

reported. A similar method was used to determine the onset of rotation for trials where 

participants rotated their shoulders. Appendix A provides a visual representation of the 

dependent variables used in this study.  



74 

 

3.3.5 Statistical Analysis 

The magnitude of rotation at TOC were compared across aperture widths to identify the 

critical point for each condition using a 2 (walking condition) x 2 (group) x 6 (aperture width) 

GLM with repeated measures. The largest aperture at which the magnitude of rotation was 

significantly different than zero was identified as the critical point using a Tukey’s HSD post 

hoc analysis.  

 

In order to determine if manipulation of postural threat influenced other aperture crossing 

behaviours, all other variables were compared between the aperture width that corresponded to 

the individual’s critical point in the baseline trials to the same aperture width in the experimental 

trials (i.e., the first five experimental trials). All variables were analyzed using a 2 (walking 

condition; baseline vs. experimental trials) x 2 (group; narrow vs. elevated/narrow) GLM with 

repeated measures and p-values less than 0.05 were considered significant. 

 

To confirm that any differences in behaviour were due to the manipulation of postural 

threat and not because the two groups differed from one another initially, all dependent variables 

were compared between groups in the baseline condition. A series of 5 (aperture width; 1.1–1.5) 

x 2 (group; narrow vs. elevated/narrow) GLM with repeated measures were run for this analysis 

and p-values less than 0.05 were considered significant. 
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3.4 Results 

A 2 (walking condition) x 2 (gender) x 5 (aperture width) GLM examined whether the 

magnitude of rotation differed across these factors. Results revealed a significant effect of 

aperture width (F (1, 26) = 10.39, p < 0.01, ŋ2 = 0.71), where the magnitude of rotation decreased 

as the size of the aperture increased and a significant effect of walking condition (F (1, 62) = 4.32, 

p < 0.05, ŋ2 = 0.42). For both the baseline walking trials and the narrow path group, post hoc 

analysis identified that aperture width 1.3 was the largest width where the magnitude of rotation 

was significantly different than zero while the elevated/narrow path group’s was 1.5 (p < 0.05 for 

all walking conditions; Figure 3.2a).  

 

After determining the individual critical points for all experimental trials, a 2 (walking 

condition) x 2 (group) GLM was conducted to confirm the value of the critical point for the 

group. Results revealed a significant interaction between walking condition (baseline vs. 

experimental trials) and group (narrow path vs. elevated/narrow path) (F (1, 26) = 28.732, p < 0.05, 

ŋ2 = 0.60), where only participants in the elevated/narrow path group had a larger critical point 

value in the experimental trials compared to the baseline trials. Specifically, in the baseline 

walking trials, both groups had an average critical point of 1.3 (±0.02). In the experimental trials, 

the narrow path group maintained a similar critical point to that of baseline (𝑥̅ = 1.21 ± 0.03) 

whereas the individuals in the elevated/narrow path group had an average critical point of 1.5 

(±0.02). Furthermore, individual analysis revealed that 83% of the participants in the 

elevated/narrow path group increased their critical point in the experimental trials compared to 

the baseline trials, while this increase was only observed for 18% of the participants in the 

narrow path group (Figure 3.2b). Individual critical point values for are reported in Table 3.1.  
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Figure 3.2 – a) The magnitude of rotation for each condition. Rotations decreased as aperture 

size increased (p<0.01) but rotations continued at larger apertures for the elevated/narrow group 

(p<0.05), and b) the percentage of individuals who changed their CP in the experimental trials. 

83% of participants increased their CP when walking on the elevated/narrow path, while only 

18% did so for the narrow path. 
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A 2 (walking condition) x 2 (group) GLM with repeated measures was conducted to 

determine whether all other dependent variables were influenced by postural threat in a similar 

manner as shoulder rotations at the value of the critical point (Table 3.2). Results revealed a 

significant effect of walking condition for magnitude of rotation (F (1, 26) = 37.69, p < 0.001, ŋ2 = 

0.72), approach velocity (F (1,26) = 57.77, p < 0.001, ŋ2 = 0.35), trunk sway (F (1, 26) = 16.29, p < 

0.001, ŋ2 = 0.42), velocity at TOC (F (1, 26) = 16.86, p < 0.001, ŋ2 = 0.41) and spatial margin (F (1, 

26) = 15.26, p<0.01, ŋ2 = 0.30), where the magnitude of rotation, approach velocity and the 

velocity at TOC decreased and spatial margin and trunk sway increased at the critical point 

during the experimental trials (constrained path, increased threat) compared to baseline (normal 

walking). Furthermore, a significant interaction was identified between group and walking 

condition for magnitude of rotation (F (1, 26) = 17.71, p < 0.001, ŋ2 = 0.217), approach velocity (F 

(1, 26) = 11.22, p < 0.01, ŋ2 = 0.26), trunk sway (F (1, 26) = 9.52, p < 0.05, ŋ2 = 0.28), velocity at 

TOC (F (1, 26) = 8.821, p < 0.05, ŋ2 = 0.34) and spatial margin (F (1, 26) = 7.59, p< 0.05, ŋ2 = 0.25), 

where individuals in the elevated/narrow path group significantly decreased their approach 

velocity (Figure 3.3a), velocity at TOC and magnitude of rotation, and increased their trunk sway 

(Figure 3.3b) and spatial margin in the experimental trials compared to the narrow path group (p 

< 0.05 for all comparisons). The two groups did not differ from one another in the baseline trials 

for any of the dependent variables, suggesting that the differences observed during the 

experimental trials were not due to the two groups differing from one another to begin with. 
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Table 3.2 – Mean and standard deviation results for all conditions. Variables included the CP, 

magnitude of rotation, approach velocity, velocity at TOC and trunk sway.  

 

Dependent Variables Narrow group Elevated/Narrow group 

Baseline Experimental Baseline Experimental 

Critical point 1.3 ±0.02 1.3 ±0.5 1.31 ±0.03 1.5 ±0.07 

Magnitude of rotation (deg) 38.98 ± 4.13 35.17 ±8.59 41.03 ±5.43 20.92 ±4.14 

Approach velocity (m/s) 1.42 ±0.07 1.31 ±0.07 1.43 ±0.06 1.18 ±0.09 

Velocity at TOC (m/s) 1.40 ±0.08 1.32 ±0.06 1.41 ±0.07 1.20 ±0.08 

Trunk sway (deg) 3.01 ±0.02 4.09 ±0.03 3.21 ±0.03 6.22 ±0.04 

Spatial margin (cm) 8.21 ±1.39 9.01 ±1.68 8.03 ±2.02 13.15 ±3.19 
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Figure 3.3 – a) Approach velocity and, b) trunk sway for this baseline and experimental trials. Both groups walked slower and 

increased their sway in the experimental trials compared to baseline (p<0.001) but individuals in the elevated/narrow path group 

significantly reduced their walking speed and increased their sway compared to the narrow path group (p<0.01 and p<0.05 

respectively).  
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3.5  Discussion 

The current study set out to further investigate the impact that action capabilities have on 

aperture crossing behaviour, particularly with respect to how postural threat influences the 

division between passable and impassable apertures. When determining the possibility for 

actions, both an individual’s body size and action capabilities are thought to contribute to the 

performance of a desired action (Comalli, Franchak, Char, & Adolph, 2013; Fajen & Matthis, 

2011; Fajen, Riley, & Turvey, 2009; Warren & Whang, 1987). In the current study, action 

capabilities were altered by manipulating postural threat and increasing the consequence 

associated with instability. As with previous research (Hackney et al., 2013; Hackney & Cinelli, 

2013b; Warren & Whang, 1987; Wilmut & Barnett, 2010), the aperture widths in the current 

study were normalized to each individual’s shoulder width in order to account for variations in 

body size. However, the current study also considered an individual’s aperture crossing 

performance to account for differences in action capabilities. In the baseline trials, participants 

completed the aperture crossing task for normal, ground-level walking in order to identify their 

‘‘normal’’ critical point. This relative aperture width was then presented for five consecutive 

trials while walking on either the narrow path or elevated/narrow path, depending on the 

participant’s assigned group. Each individual’s magnitude of rotation in these subsequent trials 

was compared to that of the baseline trials in order to determine the specific aperture widths to 

be presented in the remaining experimental trials. By doing so, this study directly considered 

both the size of the body and the individual’s aperture crossing performance behaviour when 

determining whether the manipulation of such abilities influenced aperture crossing behaviour.  
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Similar to previous studies (Adkin et al., 2000, 2002; Brown et al., 2002; McKenzie & 

Brown, 2004), postural threat was altered by increasing the height of the walking path. Analysis 

of walking speed and trunk sway confirmed that the manipulation of postural threat had the 

desired effect. Participants walked slower (Figure 3.3a) and demonstrated an increased trunk 

sway (Figure 3.3b) when walking on both the narrow path and the elevated/narrow path, however 

the effect was more pronounced in the elevated/narrow path condition. As with previous 

research, these results support the observation that increasing postural threat elicits a more 

cautious walking behaviour (Brown et al., 2002; Carpenter et al., 1999; McKenzie & Brown, 

2004).  

 

The results of the current study provide additional support for the argument that increased 

postural threat leads to cautious behaviour when passing through apertures, as it not only 

affected gait characteristics but also influenced the size of the critical point. Individuals rotated 

their shoulders more often at larger relative apertures (i.e., had a larger critical point) when on an 

elevated/narrow surface compared to both baseline walking and narrow path walking. This larger 

critical point has been argued to be indicative of a cautious approach to aperture crossing 

(Comalli et al., 2013; Hackney & Cinelli, 2011, 2013a), as individuals require larger relative 

aperture widths to pass through before modifying body configuration. In line with these findings, 

Comalli et al. (2013) demonstrated that individuals made more conservative decisions about 

passing through apertures when the penalty for error was falling off a ledge compared to when 

the risk of falling was not present. Additionally, research examining stepping behaviours when 

stepping over obstacles also demonstrates larger spatial margins under conditions of instability 

(McKenzie & Brown, 2004; Pijnappels, Bobbert, & van Dieen, 2001). Furthermore, McKenzie 
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and Brown (2004) examined how individuals negotiate obstacles while walking at four different 

levels of postural threat: an unconstrained/ground-level path, a constrained/ground-level path 

(0.15 m wide), an unconstrained/elevated path (0.6 m high) and a constrained/elevated path (0.15 

m wide and 0.6 m high). In their analysis it was observed that when stepping over an obstacle on 

the walking path, participants altered their toe clearance to the level of postural threat, such that 

the space between the toe and the obstacle was greatest when on the constrained/elevated path. 

Similarly, Pijnappels et al. (2001) demonstrated that when participants receive a warning about a 

potential tripping hazard in advance of a walking trial, individuals increase their minimal toe 

clearance by 51.6% compared to walking without the forewarning. The above-mentioned 

findings in combination with the results from the current study suggest that when stability is 

challenged during walking, individuals employ a cautious behaviour by reducing walking speed, 

increasing toe clearance, or continuing to rotate the shoulders for larger relative apertures widths 

to reduce the chance of collision.  

 

This cautious behaviour observed during the elevated/narrow conditions was further 

demonstrated when assessing magnitude of rotations at TOC. The results demonstrate that for a 

given aperture width that produced shoulder rotations during the flat ground walking produced 

lower magnitudes of rotation during the platform conditions (Figure 3.2). Rotating the shoulders 

changes the rate at which the COM moves towards the BOS. Larger rotations would therefore 

increase the chance of experiencing instability. By rotating the shoulders a smaller amount on the 

elevated surface, individuals reduce the chance of instability and helped maintain the forward 

trajectory of their COM. This strategy has been previously observed in an OA population where 

OA walking on ground level will rotate their shoulders more often (at larger aperture widths) but 
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the magnitude of the rotations was much smaller (Hackney & Cinelli, 2011). Therefore it is 

possible that, YA walking on an elevated/narrow surface attempted to control the direction of 

locomotion and reduce the chance of instability in a similar manner observed at ground level in 

an OA population. 

 

In addition to being more cautious, the larger critical point in the elevated/narrow 

pathways (but not the narrow pathways) may also be attributed to an increased trunk sway. 

Previous work in our lab (Hackney & Cinelli, 2013a) demonstrated a positive relationship 

between trunk sway and the critical point, which we suggested as an explanation for why OA 

maintained a larger critical point compared to their younger counterparts under normal walking 

conditions (Hackney & Cinelli, 2013a). In this study, it was proposed that individuals are aware 

of and will adjust their actions to accommodate for changes in both the physical size of their 

shoulders and the variability of the M-L trunk sway (i.e., they account for differences in their 

action capabilities). Similarly, research has demonstrated that individuals maintain a greater 

spatial margin when walking through horizontal openings than they do for vertical openings 

(Franchak et al., 2012). It was argued that these differences were likely linked to the fact that 

individuals swayed more in the M-L direction (applicable to the walking through narrow 

openings) than that in which they bounced in the vertical direction (applicable to walking under 

barriers) (Franchak et al., 2012). At first glance, the results of the current study appear to support 

such a hypothesis since trunk sway increased as a function of postural threat. However, a 

Pearson’s correlation comparing trunk sway and critical point (collapsed across walking 

conditions) revealed no significant relationship between the two variables. This insignificant 
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result is likely driven by the fact that the narrow path group’s critical point did not change 

relative to baseline. 

 

Although previous research suggests that the magnitude of this effect changes as a 

function of postural threat, the current study only observed a larger critical point when the 

participants were in the situation that posed the greatest consequence to instability (i.e., the 

elevated/narrow path group). On average, the critical point increased from 1.3 for baseline 

walking trials to 1.5 when walking on an elevated path (following the critical point definition 

used in this study). Meanwhile, individuals in the narrow path group maintained the same critical 

point of 1.3 from the baseline trials to the experimental trials. Since gait characteristics were 

significantly altered in the narrow path condition compared to baseline but the critical point was 

not, it is possible that the narrow path did not impose enough postural threat to elicit changes in 

how often an individual rotates his or her shoulders. 

 

An alternative explanation for why a larger critical point was observed for the 

elevated/narrow path but not for the narrow path may be explained by the change in eye height 

associated with the increased elevation. Warren and Whang (1987) suggested that eye height can 

influence perception of action capabilities. When standing on a false floor that was raised 0.26 m 

off the ground, judgements as to whether an individual could pass through an aperture without 

rotating the shoulders differed than when standing at ground level. Furthermore, Mark (1987) 

demonstrated that when individuals walked while wearing 10cm blocks strapped to their feet, the 

judgements about the climbability of stairs and the sitability of chairs was altered. Recently, 

Fajen (2013) postulated that the knowledge of the relation between one’s body size and eye 
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height is a constant ratio that is used in identifying possibilities for action. In the event that either 

eye height or body size is altered, the perceptual-motor system must recalibrate itself to 

accommodate for the change in the relationship. Walking on an elevated surface changes the eye 

height, but not the width of the body which could alter the relationship between the body and the 

environment. In the aperture crossing environment, this change in eye height may explain the 

increase in critical point observed in the elevated path but not the narrow path (since the ratio 

was not affected). However, in order to test this hypothesis future work should assess whether 

critical points change when eye height is altered but stability is not. 

   

3.6 Conclusions 

Gibson (1979) proposed that humans guide behaviours by perceiving what environmental 

objects offer or afford for action. Affordances are defined as the functional utility of an object for 

an individual based on the fit between body size and object size (Warren, 1984). Overall, the 

results of the current study provide evidence for the argument that action capabilities play an 

important role in determining affordances by identifying the contribution that dynamic stability 

has on the passability of apertures. Dynamic stability likely infers action capabilities through 

changes in visual information. If an observer’s level of stability is similar during both static and 

dynamic situations (i.e., they are very stable), the change in visual information (optic flow) when 

the observer begins to move is predictable and consistent with that of the stable environment. 

However, if the observer’s level of stability is different between static and dynamic situations 

(i.e., the observer is unstable during locomotion), there is a mismatch between the predicted 

change and the actual change in visual information which may result in different behaviour. In 
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the current study, the consequences of instability associated with walking on an elevated/narrow 

path influenced the passability of apertures such that individuals required a larger space between 

their shoulders and the obstacles at TOC. The elevated/narrow path likely induced a change in 

behaviour as a result of a mismatch between the predicted and actual changes in visual 

information.  

 

Similar effects have been observed in an OA population, who are more unstable during 

flat ground walking than their younger counterparts and who require a larger critical point when 

passing through apertures (Hackney & Cinelli, 2011). This idea is further emphasized by the fact 

that in the current study, the critical point for the narrow path walking was unchanged. Dynamic 

stability in this condition was likely not different enough from normal ground walking to induce 

large differences in visual information available for determining action capabilities. Therefore 

the results of the current study support the idea that affordances can be guided by an observer’s 

action capabilities and that during locomotion, one’s level of stability influences aperture 

crossing behaviour. 
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- Chapter 4 - 

 

 

 

DOES THE PASSABILITY OF APERTURES CHANGE WHEN WALKING THROUGH 

HUMAN VERSUS POLE OBSTACLES? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from:  

Hackney, A. L., Cinelli, M. E., & Frank, J. S. (2015). Does the passability of apertures change 

when walking through human versus pole obstacles? Acta Psychologica, 162, 62 – 68.   
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4.1 Abstract 

The current study set out to evaluate how individuals walk through apertures created by 

different stationary obstacles. Specifically, we examined whether the passability of apertures 

differed between human and pole obstacles by quantifying aperture crossing behaviours such as 

the critical point. Participants walked a 7m path toward a visible goal located at the end. A 

narrow space was presented 5 m from the starting location and participants were instructed to 

walk through the aperture without colliding with the obstacles. Throughout the experiment the 

aperture was either created by two pole obstacles or two human confederates. On any given trial, 

the distance between the poles or the human obstacles ranged between 1.0 and 1.8x SW. Results 

revealed that, when the obstacles were humans, individuals have an increased frequency and 

magnitude of shoulder rotations, a larger critical point (1.7 vs 1.3 for poles), initiated a rotation 

earlier, maintained a larger spatial margin and had a slower walking speed compared to the pole 

obstacles. Furthermore, correlational analyses revealed that the amount of change between an 

individual's critical point for the poles and the critical point for the human obstacles was related 

to social risk-taking and changes in walking speed. Therefore, it appears that the passability of 

apertures changes when walking between two people versus two objects such that more space 

and greater caution are needed for human obstacles. It is possible that the greater caution 

observed for human obstacles is needed in order to account for the personal space requirements 

of others that does not exist in the same extent for pole obstacles. Furthermore, the degree of 

caution used when walking between two humans may be related to social factors and/or how 

comfortable an individual is in a social situation.   
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4.2 Introduction 

When confronted with a narrow space while walking, many studies have observed that 

the magnitude and frequency of shoulder rotations produced at the TOC increases as the size of 

the aperture decreases (Franchak et al., 2012; Hackney, et al., 2013; Warren & Whang, 1987; 

Wilmut & Barnett, 2010). In situations where the individual aims to avoid making any contact 

with the aperture, Warren and Whang (1987) identified that significant shoulder rotations occur 

for apertures 1.3x SW and smaller but are not required for apertures larger than this value. This 

division between spaces that elicit a shoulder rotation and spaces that do not is referred to as the 

critical point for aperture crossing (Warren & Whang, 1987). More recently, similar behaviours 

have been observed during unconfined aperture crossing tasks, where participants were permitted 

to either walk around the aperture or walk through with or without rotating the shoulders 

(Hackney et al., 2013). When faced with two pole obstacles that create an aperture along the 

travel path, participants also chose to walk through apertures larger than 1.3x SW but avoided 

spaces smaller than this value by walking to the outside of the poles. Furthermore, this consistent 

critical point has been observed when running through apertures (Hackney, Zakoor & Cinelli, 

2015), while carrying wide objects (Hackney et al., 2014) and with a decreased BOS as a result 

of a narrow walking surface (Hackney, Cinelli, Denomme & Frank, 2015). These studies suggest 

that the affordance of aperture crossing is 30% larger than the width of the shoulders, that 

individuals will scale the magnitude of their shoulder rotations to maintain this spatial margin 

and that this value is quite consistent.  

 

The fact that individuals act to maintain a spatial margin between their bodies and the 

aperture is not surprising, since the obstacle circumvention literature also demonstrates a desire 
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to maintain a spatial margin for walking around single obstacles. When avoiding a single 

stationary or a single moving obstacle, individuals maintain a consistent and elliptic-shaped 

protective zone between the body and the obstacle at the TOC (Gerin-Lajoie, Richards & 

McFadyen, 2005). The role of this spatial margin is thought to provide a margin large enough to 

ensure sufficient time to perceive upcoming hazards and perform adjustments to gait in order to 

successfully avoid colliding with the obstacles. Research has also identified specific variables 

that can be used to describe when adjustments to path trajectory will be made when approaching 

an obstacle (i.e., the A-P spatial margin). Cinelli and Patla (2007) described how time-to-contact 

(TTC) is used to determine when a change in the travel path trajectory is required when avoiding 

an oncoming obstacle. Meanwhile, Olivier and colleagues (2012) reported that the minimal 

predicted distance (MPD) can be used to predict when two walkers will make a locomotor 

adjustment to avoid one another. Cinelli and Patla (2007) also identified that individuals will 

deviate further from the straight path trajectory in order to maintain a M-L spatial margin at the 

TOC. The idea of a protective zone for obstacle circumvention can also be used to describe the 

avoidance behaviours used during aperture crossing. Individuals rotate their shoulders for spaces 

that are up to 1.3x SW during aperture crossing, which suggests that they also act to maintain a 

protective zone when passing through without collision. Specifically, the maintenance of an 

elliptic-shape spatial margin of 0.3m in the M-L direction and 2.4m in the A-P direction is 

maintained has been described for aperture crossing (Hackney & Cinelli, 2013b). To date, 

aperture crossing studies examine spaces that are created by objects such as lightweight poles, 

panels, and doorways. Although it is important to understand how individuals navigate through 

apertures of such materials, cluttered environments also consist of small spaces created by other 

people such as when walking in a busy mall or moving through a crowded party. The question 
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remains as to whether individuals pass through spaces created by other people in the same 

manner that they would pass through pole obstacles. In other words, is the passability of 

apertures similar when walking through people as it is with poles? Do individuals maintain a 

similar spatial margin and critical point for other people as they do for pole obstacles?  

 

 Although research has yet to consider the idea of the critical point for human 

environments, studies have examined how individuals circumvent other individuals on the 

locomotor path. Knowles and colleagues (1976) investigated the differences in spatial boundaries 

created by other people and environmental objects by observing how individuals pass by an 

empty bench, on person, a group of two and a group of three people. The results demonstrated 

that individuals walked closer to an empty bench compared to a person, farther from a group 

than a single individual and further from large groups compared to small groups. The authors 

suggested that the larger deviations in path trajectory (i.e., maintaining a larger boundary) may 

have been implemented to account for the intentions of others and their possibilities for future 

movement. This is in line with recent work investigating the ability to judge the affordances of 

others. Creem-Regehr and colleagues (2013) demonstrated that observers are able to account for 

both the physical size of their own body and that of another person when asked to judge whether 

an aperture was passable while walking beside that person. Furthermore, Chang and colleagues 

(2009) measured the minimal passable width for an adult and a child walking side-by-side 

through an aperture, while Davis (2009) examined the passage threshold for two adults walking 

side-by-side. In both cases, the results revealed that the minimal aperture widths that individuals 

could pass through were scaled to include the shoulder width of both walkers, suggesting that 

people perceived the passability of apertures in references to themselves and others. The above-
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mentioned studies suggest that the larger spatial margin maintained when walking around 

another person on the travel path may be related to the fact that individuals account for the 

affordance of others (such as the amount of space the other person requires) when modifying 

their own actions. Therefore, it is hypothesized that individuals will maintain a larger critical 

point when passing through two human obstacles compared to two pole obstacles simply because 

they are accounting for the social factors involved with invading another individual’s personal 

space.  

 

4.3 Methods 

4.3.1 Participants 

Nineteen healthy YA (𝑥̅age = 24.65 ± 4.49 years; 9 females and 10 males) volunteered to 

participate in the study (Table 4.1). Prior to the experiment, all participants completed a health 

screening questionnaire in order to determine eligibility. Similar to previous studies reported in 

this thesis, participants were included in the study if they were free of deficits or disorders 

affecting their balance and locomotion; had no hip, knee or ankle injuries within the last two 

years, and had normal or corrected-to-normal vision.  Ethics approval was obtained from the 

University of Waterloo’s Office of Research Ethics.  
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Table 4.1 – Participant characteristics including gender, age, SW, height and CP for both the 

pole and human obstacles.  

Participant Gender Age SW Height CP (Poles) CP (Human) 

1 F 22 37.5 173 1.4 1.7 

2 F 21 42 164 1.3 1.6 

3 F 23 44 161 1.2 1.5 

4 F 28 43 164 1.3 1.6 

5 F 23 44 179 1.3 1.4 

6 F 19 42 161 1.3 1.6 

7 F 29 45 170 1.4 1.7 

8 F 21 42 164 1.2 1.6 

9 F 26 40 167 1.2 1.5 

10 M 21 50 179 1.1 1.7 

11 M 21 48 188 1.1 1.5 

12 M 26 53 188 1.2 1.5 

13 M 30 49 188 1.2 1.7 

14 M 28 54 185 1.3 1.7 

15 M 25 50 185 1.4 1.8 

16 M 30 51 176 1.3 1.6 

17 M 25 46 182 1.2 1.6 

18 M 20 47 182 1.2 1.6 

19 M 20 45 192 1.3 1.8 

Average/SD --------- 24.6±4.49 45.7±4.39 175.5±10.54 1.26±0.09 1.61±0.11 
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After participants provided their informed, written consent, the experimenters recorded 

the shoulder width and height of each participant using a measuring tape (Table 4.1), and 

participants also completed a risk-taking questionnaire. The domain-specific risk-taking scale for 

adult populations (DOSPERT) is a psychometric scale that assesses risk taking in five domains: 

financial, health, recreational, ethical and social (Blais & Weber, 2006). The questionnaire 

requires participants to rate the likelihood that they would engage in certain risky activities. For 

the purpose of the current study, the social domain component of the scale was considered 

(Appendix D).   

 

4.3.2 Apparatus and Procedure 

The experiment was conducted on an 8m long path with a visible goal located at the end. 

Two obstacles were positioned 5m from the starting location on either side of the midline. On 

half the trials, the obstacles consisted of two vertical poles (0.23m W x 2.4m H) (Figure 4.1a) 

whereas the obstacles for the other half of the trials consisted of two people (i.e., confederates) 

(Figure 4.1b). For consistency purposes, both of the confederates were female and had similar 

shoulder widths. In order to reduce social cues, the confederates wore sunglasses and maintained 

a neutral facial expression throughout the experiment. The same confederates were used 

throughout the entire study. The space between both types of obstacles ranged between 1.0 and 

1.8x SW (in increments of 0.1) on any given trial. For the pole obstacles this width was 

measured from the inner edge of both poles, while the space between the confederates was 

measured between the inner edges of each confederate’s shoulders (i.e., the smallest distance 

between them). To ensure the smallest distance between the confederates remained at the 
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shoulders, the confederates always stood with their hands firmly pressed against their sides and 

wore a tight-fitted shirt to avoid baggy sleeves reducing the distance. 

 

Participants completed two counter-balanced blocks of trials based on obstacle type 

(poles and confederates). It is important to note that although we wanted to reduce the effects of 

social cues such as eye contact and various facial expressions, we also wanted to ensure that 

participants remembered the human obstacles did have human qualities. To do this, we 

incorporated five catch trials randomly throughout the experiment where the human obstacles 

would begin walking forward when the participant reached a mark on the ground (2m from the 

aperture). These catch trials were not analyzed and were included merely to ensure the human 

obstacles portrayed some human-like qualities, such as the ability to move.  
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Figure 4.1 - Experimental set up for a) the pole obstacles and b) the human obstacles. 
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 On all trials, participants were instructed to walk at a natural pace toward the goal and 

avoid colliding with the two obstacles. Participants were instructed to walk between the obstacles 

on every trial and were told that they could rotate their shoulders if they felt it was necessary for 

avoiding a collision with the obstacles. Prior to the start of each trial the participants turned away 

from the aperture while the experimenters manually adjusted the position of the pole obstacles or 

the confederates moved to the appropriate marking on the ground.  

 

 Kinematic data was measured using the OptoTrak camera system (Northern Digital Inc., 

Waterloo ON CA) at a sampling frequency of 60Hz. The marker set-up was the same as reported 

in studies one and two (Appendix C). 

 

4.3.3 Data Analysis  

 Since the purpose of this study was to identify how the action strategies used for walking 

through two people differs from walking through two pole obstacles, general aperture crossing 

behaviours were compared between the two conditions. In line with the analysis described in this 

document, the variables of interest in the current study included the magnitude of rotation, 

critical point, onset of rotation, approach velocity, velocity at TOC and spatial margin. A 

detailed description of how these variables were calculated is included in Chapter 2 and 3 and 

Appendix A provides a visual representation of these variables.  

 

For the purpose of the study, the critical point was defined as the largest aperture width at 

which participants changed their body orientation in order to pass through the narrow space 
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without a collision occurring. The group critical points were determined by statistically 

identifying the largest aperture width where the magnitude of rotation was significantly different 

than normal walking. Individual critical points were identified as the largest aperture width at 

which a shoulder rotation occurred at least 60% of the trials. Similar to Chapter 2, individual data 

was used to identify the percentage of participants who changed (or did not change) their critical 

point between conditions.  

 

4.3.4 Statistical Analysis 

Since catch trials were included in this experiment, a GLM with repeated measures was 

run to determine if there was an order effect. No significant effect of trial order was found and as 

such, the data was collapsed across trials in subsequent analysis. A 2 (obstacle type) x 9 (aperture 

width) x 2 (gender) GLM with repeated measures (obstacle type and aperture width) was 

conducted for the dependent variables described above to identify any main effects of obstacle 

type, aperture width and/or gender.  

 

For all tests, a significant main effect of obstacle type or any interaction with it would 

indicate differences in behaviour when walking between people and poles. All p-values less than 

0.05 were considered significant and Tukey’s post-hoc analyses were conducted for all main 

effects. 
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4.4 Results 

4.4.1 Shoulder Rotations and the Critical point  

When considering the magnitude of rotation, significant main effects of aperture width (F 

(5, 85) = 60.37, p<0.001, η² = 0.55) and obstacle type (F (1, 17) = 59.69, p<0.001, η² = 0.72) were 

identified (Figure 2a). Specifically, the magnitude decreased as the size of the aperture increased 

(p<0.01) and was larger when walking through the human obstacles compared to the poles 

(p<0.01; Table 2). No significant effect of gender and no significant interactions were identified. 

Tukey’s post-hoc analysis revealed that the magnitude of rotation was significantly different 

from zero for aperture widths smaller than 1.3 for the pole obstacles (p<0.05) and for aperture 

widths smaller than 1.6 for human obstacles (p<0.05). This result reveals that the group critical 

point was 1.3 for poles and 1.6 for human obstacles (Figure 2b). Individual analysis revealed that 

68% of the participants followed this trend. Individual critical point values are reported in Table 

1 and a related samples t-test revealed that the individual critical points for the two conditions 

were significantly different from one another (t(18) = -14.57, p<0.001, d = 3.3). Thus, the amount 

of shoulder rotation produced at the TOC and the subsequent critical points were, in general, 

larger when participants crossed through human obstacles than it was for passing through poles.  
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Figure 4.2 - a) Magnitude of rotation for both conditions. Rotations decreased as the aperture size increased (p<0.01) and were larger 

for passing through human obstacles (p<0.05), and b) the average CP for both conditions. The CP was larger for humans obstacles 

(p<0.05).   
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The significant effect of obstacle type for magnitude of rotation may be explained simply 

by the fact that individual’s rotated their shoulders more frequently when passing through the 

confederates compared to the poles (inferred from the larger critical point). Therefore, we 

examined the magnitude of rotation at the critical point (the aperture width that corresponded to 

each participant’s critical point) between the pole and human obstacle conditions. This allowed 

for direct comparison of shoulder rotation angle at the largest aperture width at which 

participants needed to rotate their shoulders. Since there was no significant effect of gender, the 

data was collapsed and a paired samples t-test compared the magnitude of rotation between the 

pole and human obstacle condition. Results revealed a significant difference between the two 

obstacle types (t (19) = -5.15, p<0.05), where the rotation angle was larger at the critical point 

when passing through the human obstacles than it was for the pole obstacles.  

 

The onset of rotation was analyzed in a similar manner and results revealed a significant 

effect of obstacle type (F (1, 17) = 12.06, p<0.01, ŋ2 = 0.56) where individuals rotated their 

shoulders earlier when walking through human obstacles compared to pole obstacles. No effect 

of aperture width or gender (Table 4.2) was detected. Although not significant, males tended to 

initiate a shoulder rotation earlier (farther from the poles or confederates) compared to females (p 

= 0.08).  

 

 

 

4.4.2  Spatial margin 

When considering the spatial margin, analysis revealed a significant effect of aperture 

width (F (5, 85) = 9.87, p<0.01, η² = 0.31) where the spatial margin increased as the aperture size 
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increased (Figure 4.3). Furthermore, a significant effect of obstacle type was also identified (F (1, 

17) = 11.93, p<0.05, η² = 0.65), where the size of the spatial margin was larger when walking 

through the human obstacles compared to the pole obstacles (Table 4.2). Although there was no 

significant effect of gender, there was a trend for males to leave a larger spatial margin than 

females (p = 0.09). In the individual participant’s analysis, a significant effect of obstacle type 

was observed for 79% of participants. Thus, participants appeared to leave more space between 

their shoulders and the obstacles at the TOC through human obstacles compared to the poles.  
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Figure 4.3 – The spatial margin across aperture widths for males and females in both conditions. 

The spatial margin increased as the size of the aperture increase (p<0.01), was larger for human 

obstacles compared to poles (p<0.05) and there was a trend for males to leave more space than 

females (p=0.09).   
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4.4.3  Velocity  

 Results revealed a significant main effect of obstacle type for both the approach velocity 

(F (1, 17) = 15.58, p<0.01, η² = 0.51) and velocity at TOC (F (1, 17) = 26.66, p<0.01, η² = 0.37). 

Specifically, individuals walked slower when approaching and passing through human obstacles 

compared to approaching and passing through the poles (Table 4.2). Significant effects of 

aperture width and gender were not observed for either of the velocity calculations. The results 

from the individual analysis revealed that all participants had a main effect of obstacle type for 

both approach velocity and velocity at TOC. Thus, all participants followed the trend of walking 

slower for human obstacles compared to poles.  

 

In all conditions, the velocity at TOC did not fall outside two standard deviations of the 

approach velocity, indicating that individuals did not significantly alter their walking speed when 

passing through either the poles or the human obstacles. Therefore, further analysis of the onset 

of velocity changes was not pursued.   
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Table 4.2 - Mean, standard deviations and p values of dependent variables for both conditions.  

 

Dependent Variables Pole Obstacles (𝒙̅/SD) Human Obstacles (𝒙̅/SD) p-value 

Rotation magnitude (deg)* 36.27 (±4.61) 49.98 (±2.84) < 0.05 

Critical point 1.3 1.6 < 0.05 

Onset of rotation (m) 0.47 (±0.02) 0.63 (±0.03) <0.01 

Spatial margin (cm) 10.29 (±0.78) 16.20 (±1.07) < 0.05 

Approach velocity (m/s) 1.44 (±0.13) 0.83 (±0.14) < 0.01 

Velocity at TOC 1.38 (±0.17) 0.89 (±0.15) < 0.01 

 

*This average only includes trials where significant shoulder rotations occurred.  
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4.4.4  Explaining Changes in the Critical point 

 Since participants increased the size of their critical point when walking between human 

obstacles, we conducted correlational analyses to help explain why these changes occurred. 

Pearson correlations were run to determine if the changes in the critical point between pole and 

human obstacles was related to changes in walking speed, height and/or social risk taking scores. 

The change in walking speed was included as a variable since research has shown that larger 

critical points (Hackney & Cinelli, 2011; Hackney et al., 2015) and slower walking speeds are 

observed in situations of increased caution (Brown, Gage, Polych, Sleik & Winter, 2002; 

Hackney et.al, 2015; Pijnappels, Bobbert & van Dieen, 2001). Height was also included as a 

variable, as we anticipated that the location of the participant’s shoulders relative to the 

confederate’s head may influence shoulder rotations, such increased caution (i.e., more frequent 

shoulder rotations) would be observed when the shoulders were closer to the head. Lastly, since 

we hypothesized that the confederate’s personal space boundaries may be considered, the scores 

from the social component of the risk-taking questionnaire were included in the analysis as we 

anticipated that the amount of risk an individual is willing to take in a social situation may 

influence how comfortable (or how uncomfortable) he or she is walking near another person’s 

personal space.  

 

The results revealed a significant positive relationship between changes in the critical 

point and changes in approach velocity (r = 0.48, p<0.05) (Figure 4a), and a significant negative 

relationship for the social component of the DOSPERT (r = -0.65, p<0.01) (Figure 4b). 

Specifically, larger reductions in approach velocity were related to larger increases in their 

critical point. Furthermore, those who scored low on the social risk-taking component of the 
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risk-taking questionnaire had larger changes in their critical point. Since these three factors were 

correlated with changes in the critical point, a multiple regression analysis was conducted to 

determine if these variables could predict the amount of change in the critical point. Using the 

stepwise method it was found that social risk taking scores and changes in velocity explained a 

significant amount of the variance in the change of critical point (F (2, 16) = 7.49, p<0.05, R2 = 

0.70, R2 adjusted = 0.42). The analysis showed that both social risk taking scores (Beta = 0.69, t (18) 

= 3.69, p<0.01) and changes in velocity (Beta = 0.40, t (18) = 2.14, p<0.05) significantly predicted 

changes in the critical point. 
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Figure 4.4 - Pearson’s correlations revealed a) a positive relationship between differences in the approach velocity and differences in 

CP between conditions (r = 0.48, p<0.05) and b) a negative relationship between social risk tasking scores and differences the CP (r = 

-0.65, p<0.01). 
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4.5 Discussion 

The current study set out to determine if the passability of apertures changes when 

walking through human obstacles compared to poles, with a specific focus on whether the 

critical point is altered for the two different obstacle types. Since research has demonstrated that 

individuals are good at identifying the affordances of others (Chang, Wade & Stoffregen, 2009; 

Creem-Regehr, Gagnon, Geuss & Stefanucci, 2013, Davis, 2009; Mark, 1997; Ramenzoni, 

Riley, Davis, Shockley, & Armstrong, 2008; Stoffregen, Gorday, Sheng & Flynn, 1999) and 

people choose to walk farther around another person or a group of people compared to an empty 

bench (Knowles, Kreuser, Hass, Hyde & Schuchart, 1976), we hypothesized that individuals 

would maintain a larger critical point when walking through human obstacles than they would 

for the poles. 

 

In line with our hypothesis, the average critical point was significantly larger when 

walking through human obstacles compared to the poles (Figure 2b). Individual analysis 

revealed that all but one participant followed this trend. Similar to previous research (Hackney et 

al., 2013; Hackney et al., 2014; Warren & Whang, 1987), individuals deemed apertures created 

by two pole obstacles as passable (i.e., requiring no shoulder rotation) when the space between 

them was 1.3x SW or larger, but needed to rotate their shoulders for spaces smaller than this 

ratio. The critical point increased to 1.65x SW when the same participants were required to walk 

between human obstacles. Not only does this larger critical point suggest that the passability of 

the apertures differed between the two types of obstacles, and that individuals pass through 

stationary people much more cautiously than poles. In addition to the critical point, all other 
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obstacle avoidance behaviours observed in the current study demonstrated greater caution for 

avoiding the human obstacles. Whenever participants needed to rotate their shoulders to pass 

through the aperture (regardless of its size), they rotated to a larger degree (Figure 2a) and 

maintained a larger spatial margin at the TOC, leaving more space between their shoulders and 

the obstacles (Figure 3). Although we did not observe any significant reductions in walking 

speed from the approach phase to the TOC, individuals decreased their overall walking speed 

when approaching and passing through the human obstacles by 40% compared to the walking 

speed for the poles (Table 2).  

 

Collectively, such findings can be expected if an individual is acting more cautiously. 

Previous obstacle avoidance studies have observed similar effects. For example, when the 

penalty for error is high, individuals make more conservative decisions about whether or not they 

can pass through an aperture. Specifically, if the consequence of failure is falling off a ledge 

versus getting wedged between two obstacles individuals judge the passability of the apertures 

more cautiously for the situations where a potential fall is involved by reporting that they would 

need to rotate their shoulders for larger aperture sizes (Comalli, et al., 2013). When walking on 

an elevated surface (where more trunk sway is involved), individuals enlarge their critical point 

when passing through apertures at elevated heights compared to ground-level pathways, 

essentially increasing the size of the spatial margin (Hackney et al., 2015). Similarly, this 

increased spatial margin can also be observed when stepping over barriers on elevated surfaces 

(McKenzie & Brown, 2004) or when a warning about a tripping hazard has been given 

(Pijnappels et al., 2001). Considering the results of the above-mentioned studies, it is therefore 

plausible that the larger critical point, wider spatial margins, and decreased walking speeds 
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observed in the current study are indicative of a more cautious approach to passing through two 

humans compared to two poles. In support of this notion, correlational analysis in the current 

study revealed a significant positive relationship between changes in walking speed and 

differences in the critical point between obstacle types. Individuals who had greater reductions in 

their walking speed were more likely to have greater increases in the critical point (Figure 4b). 

Since slower walking speeds are related to more cautious gait (Brown et al., 2002; Tersteeg, 

Marple-Horvat & Loram, 2012), it is not surprising that those who displayed more cautious 

walking behaviour when approaching the human obstacles also employed greater caution at the 

TOC.  

 

In addition to caution, it is possible that the behaviours observed for human obstacles 

were related to the fact that the human obstacles simply possessed human qualities (such as 

possesses the ability to think and move independently as well as possessing social boundaries) 

and that participants were accounting for the personal space requirements of others. A large body 

of literature has demonstrated that individuals are good at identifying and accounting for the 

affordances of other people (Chang et al., 2009; Creem-Regehr et al., 2013, Davis, 2009; Mark, 

1997; Ramenzoni et al., 2008; Stoffregen, et al., 1999). Specifically with aperture crossing, when 

judging whether an aperture affords passage for oneself and another walker, individuals account 

for both their own and the other person’s body size when making their decision (Creem – Regehr 

et al., 2013). This consideration also translates to physically walking through the aperture, where 

the body size and abilities of another adult (Davis, 2009) or a child (Chang et al., 2009) are 

accounted for. Although participants in the current study did not walk through the aperture 

alongside another person, it is possible that the ability to identify the affordance of others in a 
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mutual setting (both people passing through) can also be transferred to an oncoming or stationary 

individual. In support of this idea, obstacle circumvention studies have demonstrated that 

individuals leave a larger personal space envelope (deviate further around) obstacles that possess 

movement qualities. In particular it has been observed that walkers will deviate further out of the 

way for a stationary person/group of people compared to an empty bench (Knowles et al., 1976) 

and that individuals will preserve a larger spatial margin around their bodies when avoiding 

oncoming obstacles where the movement characteristics are unknown (Gerin-Lajoie et al., 2005). 

Although we aimed to reduce social cues such as eye contact and facial expression by having the 

confederates wear sunglasses and maintain a neutral expression, participants were aware that the 

human obstacles could start walking (as indicated by the “catch” trials) and our results indicate 

that such human-like factors affected our results in a similar manner as observed by Gerin-Lajoie 

and colleagues (2005). Correlational analysis revealed a significant negative relationship 

between the social risk taking scores and differences in the critical point. Specifically, 

individuals who reported taking more risks in social situations had smaller changes in their 

critical point, meaning that these individuals were more likely to walk through smaller aperture 

sizes when the obstacles were humans compared to their non-risk taking counterparts.  

 

Results such as the spatial margin and the onset of shoulder rotations indicated a trend 

for males to be more cautious than females when walking between the human obstacles. Since 

the confederates used in the study were female, it is possible that the relationship exists simply 

because the male participants treated them differently than the female participants did. Research 

examining gender differences for obstacle avoidance behaviours however, have found 

contradictory results. Gobbi and colleagues (2011) reported that females have a larger toe 
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clearance when stepping over stationary and moving obstacles compared to males. This larger 

toe clearance would indicate a more cautious approach, however this is opposite of what was 

observed in the current study. Males maintained more space between their bodies and the 

obstacles when walking through human obstacles, suggesting their actions were more cautious 

than the females. Ozdemir (2008) found that when walking in a shopping center, males and 

females interacted more closely than female-female or male-male interactions. Following these 

results, one would expect that a male passing by a female confederate may therefore leave less 

space at the TOC. However, our results indicate that the male-female interaction resulted in 

larger interactions than the female-female interaction. The results from the social-risk taking 

scores may help explain the gender differences observed in the current study and why males 

tended to leave more space than females at the TOC. An independent t-test revealed that males 

reported taking less risks in social situations than females. Since the confederates were unknown 

to the participants (i.e., they had never met prior to the experiment), it is possible that the males 

deemed this close encounter with an unknown female as more socially risky than the female 

participants. Future research should consider examining aperture crossing behaviours when the 

aperture is created by two males or a male/female combination to differentiate the role that 

gender may play between people and under a variety of social situations such as when the 

confederates are known to the participants or when the confederates are engaging in a 

conversation. The fact that social risk-taking scores were so highly correlated with changes in the 

critical point suggests that the larger spatial margins needed for walking through human 

obstacles are likely influenced by social factors. Future research should focus on identifying 

what factors contribute to this effect. 
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Lastly, on a random set of trials, the human obstacles unexpectedly began walking 

toward the participant. These catch trials were included to remind participants that the human 

obstacles still had human-like qualities (such as the capability of movement) and to represent a 

more realistic obstacle avoidance environment, since it would be very rare for human obstacles 

to have absolutely no potential for movement. As a consequence however, behaviour may have 

been influenced by these walking trials that may not have existed if movement trials were not 

included. For example, participants may have acted more cautiously if they were aware that the 

obstacles may begin to move. However, the results revealed no significant differences in 

behaviours based on trial order, which would suggest that the catch trials did not immediately 

influence behaviour.  

 

4.6 Conclusions 

The findings of the current study suggest that the passability of apertures is different for 

human and pole obstacles. Specifically, individuals maintain a larger critical point and pass 

through the aperture more cautiously when the space is created by human obstacles. This larger 

critical point likely occurs because the walker is accounting for the human-like qualities (such as 

movement, personal space boundaries and social factors) that the human obstacles retain but 

which do not exist for the poles.  

 

4.7 Additional Notes 

One of the main methodological challenges I faced when I was originally developing 

study three was that experimental manipulations involving human obstacles proved to be much 
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more difficult to maintain than pole obstacles. Ensuring that the various aperture widths for the 

human obstacle condition remained consistent throughout the experiment was especially difficult 

during the “catch” trials, where the confederates walked toward the participant. Originally, I had 

planned on comparing the aperture crossing behaviour of stationary human obstacles to that of 

moving ones but because of inconsistencies with aperture width, the data from these “catch” 

trials were removed from further analyses.  

 

After the completion of the experiment, I had the opportunity to visit Brown University’s 

Virtual Environment Laboratory directed by Dr. William Warren. The VEN lab has a unique 

virtual reality environment, where participants can move freely throughout a 12m x 12m open 

space while wearing a head-mounted display (HMD) that updates the virtual scene as the 

individual moves throughout the space. Perhaps aperture crossing in a virtual environment could 

elicit similar differences between human and pole obstacles (or avatar and virtual poles) as 

observed in the real-world study. If so, virtual reality may provide a solution to the challenges 

associated with using human obstacles which would be especially useful for future studies 

looking to examine complex pedestrian environments where the human-aperture is also moving. 

As such, the small follow-up study that resulted from my visit to the VEN lab is presented at the 

end of this document (see Supplementary Material) and examines aperture crossing behaviour in 

a virtual reality environment.  
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- Chapter 5 - 

 

 

 

ACTION STRATEGIES FOR WALKING THROUGH MULTIPLE, MISALIGNED 

APERTURES 
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Connective Statement 

 In an effort to create a more realistic environment, I originally conducted a “crowded 

room” experiment where participants (N = 52) simply walked to a goal while navigating through 

a crowd of people. In a 7m x 4m space, 14 volunteers acted as “human obstacles” and stood at a 

specific location with their heads down (Appendix E). Human obstacles were used in this 

experiment because the results outlined in Chapter 4 demonstrated that individuals walk through 

narrow spaces created by other people much differently than they walk through pole obstacles. 

Although technical difficulties prevented full data analysis, initial observations revealed that 

participants appeared to utilize one of two strategies. In some instances, individuals seemed to 

treat each aperture separately and would deviate away from the straightest walking path in order 

to pass through the center of an aperture with as little shoulder rotation as possible. In others, 

participants maintained a large rotation throughout the entire trial and appeared to “snake” 

through the apertures, passing much closer to one side of the aperture than the other.  

 

 From these observations I was left wondering; (1) what strategies individuals use when 

walking through multiple, misaligned apertures, (2) how multiple aperture crossing is different 

from single aperture crossing, and (2) which aspects of the path is acting as the attraction point 

when guiding path trajectory: the end-goal or the center of the aperture. Chapter 5 presents the 

results of a multiple and misaligned aperture crossing study designed to address these questions.  
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5.1 Abstract 

Individuals attempt to equalize the amount of space between the shoulders and the 

obstacles, by walking through the center of an aperture (Cinelli, Patla & Allard, 2008) The 

behavioural dynamics model argues that since path selection is determined by the attraction of 

the end-goal, individuals walk through the center of the aperture because the attraction is pulling 

them there (Fajen & Warren, 2003). However for aperture crossing, it is unclear whether the 

attraction originates in the center of the aperture or the end-goal. The purpose of the current 

study was to decipher the possible location of the attraction point, by evaluating crossing 

behaviour for multiple, misaligned apertures. Participants were instructed to walk through three 

apertures towards an end-goal. The first and last apertures were fixed such that they were both 

either 0.9x or 1.7x SW, the second aperture was either 0.9, 1.3 or 1.7x SW and shifted 25, 50 or 

75cm off the midline of the path. Participants were permitted to rotate their shoulders if they felt 

inclined to do so. Findings revealed that the attraction of the end-goal, and not the middle of the 

aperture, guided crossing behaviour evident by the fact that the COM position at the TOC was 

closer to the obstacle nearest midline and the spatial margin decreased as the size of the shift 

increased. Furthermore, the frequency of rotation increased as the shift of the middle aperture 

increased, regardless of the aperture size. Since rotations would not normally occur for all of 

these aperture sizes when they are aligned with the end-goal, these results suggest that rotations 

were produced in an attempt to keep one’s trajectory as close to the midline as possible. 

Therefore, not only does the attraction of the goal guide path trajectory, but individuals will 

choose to reduce the spatial margin and rotate the shoulders when walking through misaligned 

apertures, likely in attempt to maintain the straightest possible path.  
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5.2 Introduction  

 The behavioural strategies involved for successfully walk through an aperture on the 

travel path are well documented. First, individuals initiate a shoulder rotation for apertures 

deemed too small for straight passage and scale the size of the rotation to the size of the aperture 

(Franchak et al., 2010; Hackney & Cinelli, 2013b; Warren & Whang, 1987; Wilmut & Barnett, 

2010). Second, the amount of rotation produced at TOC is controlled by the desire to maintain a 

minimal spatial margin between the shoulders and the obstacles (Higuchi et al., 2009).  Lastly, 

adjustments to both the path trajectory and walking speed are made in order to approach an 

aperture head-on and pass through the center of it, likely in an attempt to equalize the size of the 

spatial margin for both shoulders (Cinelli et al., 2008; Higuchi, Cinelli, Greig & Patla, 2006).  

 

The fact that individuals adjust their actions in order to cross through the center of an 

aperture is in direct line with the visual equalization strategy. Srinivasan and colleagues (1991) 

first introduced the idea of flow equalization by observing that honeybees fly along a corridor in 

a location where the speed of optic flow from each wall reaches the lateral portion of the eyes at 

equal rates. The honeybee therefore aims to fly along the optic flow balance point. Moreover, if 

artificial motion is added to one wall, the bee will adjust its position in order to fly down the path 

in a location that is perceived as having equal flow speeds (Srinivasan, Lehrer, Kirchner & 

Zhang, 1991). The idea of a flow equalization control law has also been implemented as a means 

of guiding robots through cluttered environments. By following such a control law, the mobile 

robots were able to traverse down passageways, through openings and around obstacles with 

considerable success (Coombs, Herman, Hong & Nashman, 1998; Duchon & Warren, 1994; 

Duchon, Warren & Kaelbling, 1998; Weber, Venkatesh & Srinivasan, 1997). More current 
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research has extended these findings by demonstrating that humans also employ a similar 

strategy when walking down corridors (Duchon and Warren, 2002; Dyre & Andersen, 1996) and 

as mentioned previously, through apertures (Cinelli et al., 2008; Higuchi et al., 2006).  

 

In addition to equalizing the speed of optic flow, research has suggested that human 

locomotion is also guided by the attraction pull of goals and the repulsion force of obstacles. 

Fajen and Warren (2003) argue that path trajectory towards a goal and around obstacles is a 

function of the relative angles between the heading and the instantaneous relative positions of the 

goals and obstacles, which act as attractors and repellers. In other words, the travel path is 

determined by the attraction pull of the goal and the repulsion force of the obstacles to be 

avoided. Although obstacles push an individual off the straight walking trajectory, the attraction 

of the goal quickly pulls them back so that a walker can reach his or her goal by walking the 

straightest path possible (Warren, 2006). Therefore, when traversing a corridor or walking 

through narrow passageways, the attraction of the goal and the flow equalization strategy are 

both likely to guide an individual down the center of the passage way. However, since previous 

studies involve experimental set-ups where the aperture is located in direct line with the goal, it 

is unclear the extent to which both strategies guide aperture crossing behaviours. One cannot 

decipher whether individuals are equalizing the spatial margin of the shoulders at TOC because 

the attraction point is first located at the aperture itself or because they are aligning themselves 

with the attraction pull of the end-goal. In other words, do individuals treat aperture crossing as a 

two-step process whereby the center of the aperture is the first goal or is the end-goal is the sole 

attraction point? 
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Although a substantial body of literature exists to explain how individuals adjust their 

actions to walk through single apertures, the examination of multiple aperture crossing is far less 

common despite the fact that navigating through crowds of people encompasses a series of 

various-sized, and potentially misaligned, apertures. Not only is research needed to determine the 

action strategies employed for multiple aperture crossing, but these scenarios can also help 

determine what aspect of the travel path acts as the attraction point. Therefore the current study 

set out to explore how individuals walk through a series of apertures that vary in both their size 

and their position on the walking path. 

 

If the attraction point is first located at the aperture (before moving to the end-goal once 

the individual arrives at the aperture), then individuals will be attracted to the center of the 

aperture and act to equalize the spatial margin between the shoulders and the obstacles at TOC. 

As observed with single aperture crossing, this equalization will be achieved by deviating away 

from the straight walking path and approaching the aperture head-on (Cinelli et al., 2006). If the 

equalization strategy is the dominant control strategy also used for misaligned aperture crossing, 

then one would also anticipate that as the size of the off-set increases, the path deviations will 

move away from midline in order for the position of the COM to always pass through the center 

of the aperture. However, if the final end-goal acts as the only attraction point, then the multiple 

apertures may be treated as a steering task where the individual guides behaviour through a 

winding path while circumventing obstacles. As such, individuals may opt to maintain the 

straightest possible path through the apertures by walking closer to the obstacle nearest the 

midline rather than walking to the center of each aperture. As the size of the off-set increases, 

one would expect that the position of the COM relative to the center of the aperture to increase 
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and the size of the spatial margin to decrease. In some instances, this may result in individuals 

choosing to rotate their shoulders for apertures shifted off midline for spaces where a shoulder 

rotation may not normally be necessary. 

 

The purpose of the current study to decipher whether multiple aperture crossing is 

perceived as having the attraction point be the center of the aperture or the final end-goal. To do 

this, participants were asked to walk through three separate apertures of various sizes and the 

second aperture was shifted away from the midline of the path. It was hypothesized that 

behaviour would be similar to that predicted from a single end-goal attraction point, whereby the 

desire to maintain the straightest possible walking path would override the desire to walk through 

the center of the aperture. Therefore, it was anticipated that the M-L COM position relative to the 

center of the aperture would increase and the spatial margin would decrease as the size of the 

off-set increased. Additionally, we anticipated that participants would rotate their shoulders more 

frequently as the size of the shift increased, even at aperture widths that would not normally 

induce a shoulder rotation. 

 

5.3 Methods 

5.3.1 Participants  

 Nineteen healthy YA (𝑥̅age = 23.31 ± 2.67 years; 9 males and 11 females) volunteered to 

participant in the study (Table 5.1). In order to confirm eligibility, all participants completed a 

health screening questionnaire prior to the experiment (Appendix B). In line with the 

inclusion/exclusion criteria maintained throughout the dissertation, participants were included in 
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the study if they were free of deficits or disorders affecting balance and locomotion; had no hip, 

knee or ankle injuries within the last two years; and had normal or corrected-to-normal vision. 

 

 Once informed and written consent was obtained, the researchers recorded the shoulder 

width of each participant using a measuring tape. Ethics approval was obtained from the 

University of Waterloo’s Office of Research Ethics and the Wilfrid Laurier University Research 

Ethics Board.  
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Table 5.1 – Participant characteristics included age, gender and SW.  

Participant Gender Age (yrs) SW (cm) 

1 F 21 41.5 

2 M 22 46.0 

3 F 25 42.0 

4 F 19 41.5 

5 F 24 43.0 

6 M 25 48.5 

7 M 22 49.5 

8 M 22 50.0 

9 M 19 46.5 

10 M 20 47.5 

11 M 23 45.5 

12 F 24 42.0 

13 F 24 41.0 

14 M 27 47.5 

15 M 28 45.5 

16 F 24 42.5 

17 F 27 40.0 

18 F 21 40.5 

19 M 26 45.0 

Average/SD ----------- 23.3 ±2.66 44.5 ±3.18 



125 

 

5.3.2 Apparatus  

 The experiment was conducted on an 11m long path with three sets of pole obstacles 

(0.23m W x 2.4m H) located 3.5m, 5.5m and 7.5m from the starting location (Figure 5.1). Each 

set of poles created an aperture for the participants to walk through, which could be manually 

adjusted by the researchers. For all trials, participants were instructed to walk to the goal located 

at the end of the path and pass through all three apertures without colliding with the obstacles. 

Furthermore, participants were instructed to rotate their shoulders when passing through spaces 

they felt were too narrow for straight passage. Avoiding the apertures all together by walking 

around them was not permitted. Between experimental trials, participants faced away from the 

path while the researchers manually adjusted the size of the three apertures.  
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Figure 5.1 – A sagittal view of the experimental set-up, including the three apertures which were 

located 3.5, 5.5 and 7.5m from the starting location.  
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 Kinematic data was measured using the OptoTrak camera system (Northern Digital Inc., 

Waterloo, ON. Canada) at a sampling frequency of 60Hz. IRED markers were placed on the 

external occipital protuberance, the left and right posterior-lateral aspects of the spinous process 

of the scapula and tenth thoracic vertebrae (Appendix C). 

 

5.3.3 Experimental Design  

 On all experimental trials, both the first and the last aperture were located directly in line 

with the goal such that the center of the aperture aligned with the midline of the path. 

Throughout the experiment, the size of these two apertures were presented as a pair (i.e., both 

aperture widths were equal) and set at either 0.9x or 1.7x SW. The second (middle) aperture was 

randomly presented as either 0.9, 1.3 or 1.7x SW. Furthermore, the second aperture was also 

randomly shifted such that the center of the aperture was located 25, 50, or 75cm away from the 

midline of the path (Figure 5.2). Therefore, on any given trial, the first and last aperture could be 

0.9 or 1.7x SW, the second aperture could be 0.9, 1.3 or 1.7x SW and shifted 25, 50 or 75cm off 

midline. Half of the participants experienced the second aperture shifting to the left of midline 

while the other half had shifts to the right. Two baseline conditions were also included in the 

experiment, where all three apertures were presented as the same size (0.9 or 1.7) and aligned 

with one another (i.e., the second aperture was not shifted).  
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Figure 5.2 – An example of the experimental set-up, including the three possible shifts of the 

second aperture: 25, 50 or 75cm from the midline of the path. 
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5.3.4 Data Analysis  

The location of each participant’s A-P and M-L COM was estimated using the IRED 

markers on the torso in the same manner outlined in previous chapters (Appendix C). Since the 

experiment was designed to determine how a shift in the aperture’s location from midline affects 

crossing behaviour, the majority of dependent variables were calculated at the TOC the second 

aperture since this was the aperture that was shifted away from midline. Both the position of the 

M-L COM relative to the center of the aperture (distance from center) and the spatial margin 

were analyzed to determine which aspect of the path acted as the attraction point. Spatial margin 

was calculated in the same manner as outlined in Chapter 2 (Section 2.3.5).  Distance from 

center was also determined for the first and third apertures in the baseline walking trials (0.9 and 

1.7x SW only) to confirm that during the aligned aperture crossing, participants aimed to walk 

through the center of the aperture.  

 

Additionally, the magnitude and frequency of rotation, and velocity at TOC were 

analyzed when the participant crossed the second aperture. The frequency of rotation was also 

calculated for the first and third apertures during the baseline trials (0.9 and 1.7x SW only). It 

was important to determine this behaviour, as the purpose of including multiple apertures was to 

set up a condition in which an individual had to rotate their shoulders prior to reaching the 

second aperture and another condition in which no prior rotations were necessary. This was 

conducted to confirm that shoulder rotations were produced for apertures that were 0.9x SW but 

not for 1.7x SW. The methods used to calculate these variables are described in Chapter 2 

(Section 2.3.5) and are visually represented in Appendix A. Additionally, the average walking 

speed throughout the entire trial was calculated by using the change in displacement of the A-P 



130 

 

COM over time. The average velocity from the start to the end of the trial was used instead of the 

approach velocity because the location of the first aperture removed the typical 2m approach 

used in previous chapters.  

   

5.3.5 Statistical Analysis   

Confirming Baseline Behaviour  

 To confirm that shoulder rotations occurred for small apertures (0.9x SW) and not for 

larger apertures (1.7x SW) during the baseline trials, the frequency of rotation data at all three 

apertures was first converted to parametric data using an arcsine transformation and run through 

a 3 (aperture location: first, second or third) x 2 (aperture size: 0.9 or 1.7x SW) GLM with 

repeated measures. Using the same statistical test, the distance from center data was analyzed to 

confirm that the participants aimed to walk through the center of the aperture(s) when they were 

aligned with the end-goal. P-values of 0.05 were considered significant.  

 

  

Does the direction of shift influence aperture crossing behaviours? 

 Half of the participants walked through the second aperture when it was shifted to the 

left, while the other half experienced a rightward shift. To determine whether the direction of the 

shift influenced crossing behaviour, the distance from center and spatial margin at the second 

aperture was run through a 2 (shift direction; left or right) by 3 (aperture size: 0.9, 1.3, or 1.7x 

SW) x 3 (shift size; 25, 50, or 75cm) GLM with repeated measures. A null finding would allow 

data to be collapsed across shift direction in future analyses.  
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Do individuals pass through the center of an aperture when it is not aligned with the end-goal?  

 In order to determine whether the attraction point is the middle of the aperture or the final 

end-goal, the distance from center and spatial margin data collected at the second aperture was 

used for analysis. The two baseline conditions were excluded from this analysis. A 2 (first 

aperture size; 0.9 or 1.7x SW) x 3 (second aperture size; 0.9, 1.3 or 1.7x SW) x 3 (shift size; 25, 

50 or 75cm) GLM with repeated measures was conducted for each variable to determine whether 

individuals walked through the center of the aperture or if they preferred to walk closer to the 

obstacle closest to midline. A null finding would indicate that individuals aimed to walk through 

the center of the aperture and/or maintain a similar-sized spatial margin for all experimental 

manipulations. P-values of 0.05 were considered significant. 

   

How are shoulder rotations influenced by the size of the first aperture and/or the size and shift of 

the second aperture? 

This analysis was conducted to determine whether rotating the shoulders at the first 

aperture influenced the behaviour at the second and whether the location of the second aperture 

altered rotation behaviour. To answer these questions the magnitude of rotation at the second 

aperture was run through a 2 (first aperture size: 0.9 or 1.7x SW) x 3 (second aperture size: 0.9, 

1.3 or 1.7x SW) x 3 (shift size: 25, 50 or. 75cm) GLM with repeated measures. Additionally, the 

frequency of rotation at the second aperture was converted to parametric data through an arcsine 

transformation. It is important to note that for the purpose of analysis of the frequency of 

rotation, data for aperture size 0.9x SW was removed from analysis. This is because at 0.9x SW, 

rotations occurred 100% of the time, regardless of shift or size of the first aperture. As such, 
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including this data in the analysis risked washing out any effects of the experimental 

manipulations as participants had reached a ceiling performance. Therefore, the frequency of 

rotation was run through a 2 (first aperture size: 0.9 or 1.7x SW) x 2 (middle aperture size: 1.3 or 

1.7x SW) x 3 (shift: 25, 50 or 75cm) GLM with repeated measures. P-values of 0.05 were 

considered significant.  

 

Does the size of the first aperture, the size of the second and/or the size of the shift influence 

walking speed?  

 In order to determine whether the experimental manipulations effected the speed at which 

individuals completed the task, 2 (first aperture size; 0.9 vs. 1.7x SW) x 3 (second aperture size; 

0.9, 1.3 vs. 1.7x SW) x 3 (shift size; 25, 50 vs. 75cm) GLM with repeated measures was 

conducted for velocity at TOC and average walking speed. A null finding would indicate that 

individuals walked the path at the same speed regardless of the size of the first or second 

aperture or how much the second aperture was shifted from midline. P-values of 0.05 were 

considered significant. 

  

5.4 Results 

5.4.1 Confirming Baseline Behaviour  

 A 3 (aperture location) x 2 (aperture size) GLM with repeated measures was used to 

confirm that shoulder rotations were produced for small apertures but not large ones. The 

analysis identified a main effect of aperture size (F (1, 18) = 159.09, p<0.001, ŋ2 = 0.89) such that 

shoulder rotations occurred significantly more often when the aperture was 0.9x SW (100% of 
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trials) compared to 1.7x SW (0% of trials). There was no main effect of aperture location (first, 

second or third), suggesting that all apertures were treated the same (Table 5.2). Therefore, 

individuals rotated their shoulders the same number of trials at each aperture on the travel path 

when all three apertures were aligned with the end-goal, but rotated more often at apertures 0.9x 

SW compared to 1.7x SW.  

 

 When considering distance from center, a second 3 (aperture location) x 2 (aperture size) 

GLM with repeated measures revealed no main effect of aperture size or aperture location. On 

average, participants walked 1.72cm (±0.09cm) from the center of the aperture regardless of its 

size or its location (Table 5.2).  
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Table 5.2 – Means and standard deviations for the baseline conditions including distance from 

center and magnitude of rotation.  

 

Baseline Condition Distance from Center (cm) 

𝒙̅ (SD) 

Magnitude of Rotation (cm) 

𝒙̅ (SD) 

First 

Aperture 

Middle 

Aperture 

Last 

Aperture 

First 

Aperture 

Middle 

Aperture 

Last 

Aperture 

All apertures 0.9 

No shift 

1.62 

(0.02) 

1.70 

(0.03) 

1.68 

(0.03) 

44.29 

(13.31) 

43.97 

(16.7) 

48.20 

(11.2) 

All apertures 1.7 

No shift 

1.64 

(0.04) 

1.69 

(0.02) 

1.73 

(0.02) 

2.48 

(0.72) 

1.98 

(0.51) 

2.01 

(0.83) 
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5.4.2 Effects of experimental manipulations 

Does the direction of shift influence aperture crossing behaviours? 

The 2 (shift direction) x 3 (aperture size) x 3 (shift size) GLM with repeated measures 

found no significant effect of shift direction for distance from center (p = 0.61) or spatial margin 

(p = 0.49). Therefore, data was collapsed across shift direction (left or rightward shifts) for the 

remainder of the analysis.  

 

Do individuals pass through the center of an aperture when it is not aligned with the end-goal?  

The results of the 2 (first aperture size) x 3 (second aperture size) x 3 (shift size) GLM 

with repeated measures for distance from center identified a main effect of shift (F (2, 36) = 

362.33, p<0.001, ŋ2 = 0.95), such that participants walked farther away from center of the 

aperture as the size of the shift increased. There was no significant effect of first aperture size 

(p= 0.09) or second aperture size (p= 0.34).  Figure 5.3a displays the average distance from 

center across shift size and for each second aperture size. Data is collapsed across first aperture 

size. Means, standard deviations and p-values are presented in Table 5.3.  

 

 

A 2 x 3 x 3 GLM with repeated measures was also conducted to determine if the spatial 

margin was affected by the first aperture size and/or the size and shift of the second aperture. 

Results revealed main effects of the second aperture size (F (2, 36) = 80.51, p<0.001, ŋ2 = 0.82) 

and shift (F (2, 36) = 52.47, p<0.001, ŋ2 = 0.75) such that the spatial margin decreased as the 

aperture size increased and decreased as the shift increased (Figure 5.3b). First aperture size 

revealed no significant effect on the behaviour at the second aperture (p= 0.35). Means, standard 

deviations and p-values are outlined in Table 5.3.  
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Figure 5.3 – The a) distance from center and b) spatial margin at the second aperture as a function of second aperture size and shift 

size. Data was collapsed across first aperture size.
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  How are shoulder rotations influenced by the size of the first aperture and/or the size and shift 

of the second aperture? 

 

Not surprisingly, the 2 (first aperture size) x 3 (second aperture size) x 3 (shift size) GLM 

with repeated measures revealed a main effect of second aperture size for the magnitude of 

rotation (F (2, 36) = 112.62, p<0.001, ŋ2 = 0.86). Rotations increased as the size of the second 

aperture decreased. Interestingly, rotations at the second aperture were also affected by the size 

of the first aperture (F (1, 18) = 4.57, p<0.05, ŋ2 = 0.21) such that individuals rotated their 

shoulders more at the second aperture if the first aperture required a shoulder rotation (i.e., 0.9x 

SW). Furthermore, a significant effect of shift was found (F (2, 36) = 11.25, p<0.001, ŋ2 = 0.40) 

such that the magnitude of rotation at the second aperture increased as the size of the shift 

increase (Figure 5.4). A three-way interaction was also identified as significant (F (4, 72) = 41.36, 

p<0.001, ŋ2 = 0.69) and post-hoc analysis revealed that the same condition driving the three-way 

interaction for spatial margin was also driving the interaction for magnitude of rotation (first 

aperture 1.7, second aperture 1.3, shift 25cm). Specifically, the magnitude of rotation was larger 

when shifted 25 compared to 50 and 75cm but followed the trend of the other conditions 

(increasing as shift increases) when the first aperture was 0.9x SW. Means, standard deviations 

and p-values are reported in Table 5.3.  
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Figure 5.4 – The magnitude of rotation as a function of second aperture size and shift when a) the first aperture was 0.9x SW, and b) 

the first aperture was 1.7x SW.  
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Supporting the effects observed for the magnitude of rotation, the 2 x 3 x 3 GLM with 

repeated measures for the frequency of rotation revealed a significant effect second aperture size 

(F (2, 36) = 65.24, p<0.001, ŋ2 = 0.86) and shift size (F (2, 36) = 15.21, p<0.01, ŋ2 = 0.53). First 

aperture size did not significantly impact how often an individual rotated his or her shoulders at 

the second aperture (Table 5.3). Post-hoc analysis showed that participants rotated their 

shoulders more often at the second aperture at smaller aperture sizes (both the first and second 

apertures) and when the shift was larger (p<0.05 for all comparisons). Furthermore, a significant 

two-way interaction was revealed for middle aperture size and shift (F (2, 36) = 11.85, p<0.05. ŋ2 = 

0.47), such that the frequency of rotation increased as the shift increased when the aperture size 

was large (1.7x SW) but decreased when the aperture size was small (1.3x SW) (Figure 5.5) 
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Figure 5.5 – The frequency of rotation as a function of second aperture size and shift. Data is 

collapsed across first aperture size since there was no statistical difference between the two 

conditions. Note that aperture 0.9 was not included in the statistical analysis but the data is 

included here for visual comparison purposes.  
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Does the size of the first aperture, the size of the second and/or the size of the shift influence 

walking speed?  

 The velocity at TOC the second aperture and the average walking speed were each run 

through a 2 (first aperture size) x 3 (second aperture size) x 3 (shift size) GLM with repeated 

measures. Results revealed a significant effect of second aperture size for velocity at TOC (F (2, 

36) = 21.26, p<0.05, ŋ2 = 0.45) and average walking speed (F (2, 36) = 15.39, p<0.01, ŋ2 = 0.42). 

Shift size was also significant for both velocity at TOC (F (2, 36) = 14.01, p<0.05, ŋ2 = 0.34) and 

average walking speed (F (2, 36) = 9.38, p< 0.05, ŋ2 = 0.31). Post hoc analysis revealed that 

participants walked slower as the aperture size decreased and as the size of the shift increased for 

both variables. Not surprisingly, first aperture size had no effect on the speed at which 

participants crossed the second aperture (velocity at TOC). However, the first aperture size was 

significant for the average walking speed (F (1, 18) = 8.59, p<0.05, ŋ2 = 0.30), such that the 

average speed was slower when the first aperture was 0.9x SW compared to 1.7x SW (Table 

5.3). 
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Table 5.3 – Means and standard deviations for magnitude of rotation, spatial margin, distance 

from center and average walking speed at the second aperture based on first aperture size, second 

aperture size and shift. 

 

Variable First Aperture 

Size (x SW) 

Second Aperture Size  

(x SW) 

Shift (cm) 

0.9x  1.7x  0.9x  1.3x  1.7x  25 50 75 

Magnitude of 

Rotation (deg) 

31.7 

(7.3) 

25.3 

(5.2) 

60.2 

(4.1) 

32.3 

(4.9) 

30.1 

(3.7) 

27.6 

(6.3) 

30.4 

(3.9) 

33.4 

(4.2) 

Spatial Margin (cm) 3.3 

 (0.8) 

2.7  

(1.1) 

5.7  

(2.1) 

7.1 

(2.9) 

11.3 

(3.2) 

13.1 

(2.2) 

9.7 

(1.7) 

5.3 

(2.8) 

Distance from 

Center (cm) 

5.3  

(1.3) 

4.8  

(2.6) 

5.1  

(2.2) 

6.7 

 (1.7) 

8.3  

(2.8) 

4.0 

(0.7) 

6.2 

(1.4) 

9.1 

(2.0) 

Walking speed (m/s) 1.12 

(0.21) 

1.39 

(0.09) 

1.15 

(0.07) 

1.24 

(0.12) 

1.40 

(0.14) 

1.21 

(0.09) 

1.35 

(0.13) 

1.44 

(0.07) 
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5.5 Discussion  

 The current experiment set out to identify how individuals walk through multiple, 

misaligned apertures. Specifically, this study aimed to decipher whether the aperture acts as the 

attraction point for guiding locomotion or if the end-goal guides the behaviour. To test this, three 

separate apertures of various widths were placed on the travel path to present situations in which 

shoulder rotations were or were not required to pass through the apertures safely. Furthermore, 

the middle aperture was shifted away from the midline of the travel path so as not to be aligned 

with the end-goal (Figure 5.2). This was done to ensure that participants would have to deviate 

off the straight walking path in order to pass through one of the three apertures. If the aperture 

was acting as the attraction point (Cinelli et al., 2008; Higuchi et al., 2006), then individuals 

would likely modify their path trajectory in order to pass through the center of second aperture, 

equalizing the spatial margin between each shoulder regardless of how far it was shifted off the 

midline. However if the end-goal was the attraction point, then the priority may have been to 

maintain a straight path trajectory by walking closer the obstacle nearest midline rather than 

maintain an equal spatial margin. It was hypothesized that individuals would complete the task 

in a similar manner to that predicted by an end-goal attraction point, whereby the desire to 

maintain the straightest possible walking path would override the desire to walk through the 

center of the aperture. Therefore, it was anticipated that the M-L COM position relative to the 

center of the aperture would increase (distance from center) and the distance between the 

shoulder and the obstacle at TOC (spatial margin) would decrease as the shift of the second 

aperture increased. Additionally, we anticipated that participants would rotate their shoulders 
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more frequently as the size of the shift increased, even at aperture widths that would not 

normally induce a shoulder rotation.  

 

All participants completed the task without colliding with the obstacles and as 

hypothesized, the results indicate that individuals are likely guided by the attraction of the end-

goal and not each aperture. This was demonstrated in two ways: 1) the size of the spatial margin 

between the shoulder and the obstacle closest to midline decreased as the aperture was shifted 

away from midline (Figure 5.3b), and 2) the M-L COM at the TOC (distance from center) 

moved farther from the center of the aperture and closer to the midline of the path as the shift 

increased (Figure 5.3a). Additionally, the frequency of rotation increased as the size of the shift 

increased: individuals rotated their shoulders more often the more the second aperture was 

shifted (Figure 5.5). In general, these findings suggest that the attraction of the end-goal guides 

path trajectory during multiple aperture crossing, and that individuals prefer to reduce the size of 

their spatial margin and rotate the shoulders when walking through misaligned apertures, likely 

in an attempt to maintain the straightest possible walking path.  

 

Both the obstacle circumvention and single aperture crossing literature suggest that 

modifications to actions are made in order to maintain a constant spatial margin.  Research has 

demonstrated that for obstacle circumvention, an elliptical-shaped protective zone is maintained 

around the body, regardless of the speed at which the object is approaching (Cinelli & Patla, 

2005) or whether the object’s movement characteristics are known (Gerin-Lajoie et al., 2008). 
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As such, individuals will initiate deviations away from the midline of the path in order to ensure 

a spatial margin in the A-P direction and will walk far enough away from the midline to ensure a 

sufficient M-L spatial margin. Similar behaviours are also observed for aperture crossing such 

that the onset and magnitude of shoulder rotation produced at TOC are controlled by the desire 

to ensure a sufficient spatial margin (Higuchi et al., 2012). If the aperture is of such a size where 

maintenance of this margin is not afforded when walking straight though, then individuals will 

produce a shoulder rotation or choose to avoid the space all together by walking around it. Even 

if individuals opt to walk around an aperture rather than walk through and rotate the shoulders, 

an elliptical-shaped protective zone is still maintained as the individual passes by the aperture 

(Hackney et al., 2013). In this case, adjustments to the current actions are made in a similar 

manner to that of obstacle circumvention. Together, these studies suggest that a prominent 

control strategy for both single aperture crossing and single obstacle circumvention is to 

maintain the spatial margin. However, the results of the current study suggest that when the 

additional component of a misaligned aperture is added to increase the complexity of the task, 

this strategy may become less dominant and the priority of maintaining a spatial margin 

changes. Instead of acting to maintain the margin¸ the priority appears to be to maintain the 

straightest possible walking path, even if that means reducing the size of the protective zone.  

 

The fact that the end-goal appears to act to maintain a straight walking path supports the 

principles of navigation proposed by Fajen and Warren (2003). The authors argued that the 

decision to go to the left or the right when circumventing obstacles is based on minimizing the 
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deviations needed to the path trajectory (Fajen & Warren, 2003; Warren, 2006). Although 

obstacles push an individual off the straight walking trajectory, the attraction of the goal quickly 

pulls them back so that a walker can reach his or her goal by walking the straightest path 

possible. Patla and colleagues (2004) also observed that when participants are free to choose 

their path through a cluttered terrain, they select paths that reduce its total length. With respect to 

the current study, the desire to minimize deviation to the path trajectory likely overpowered the 

need to equalize the spatial margin: individuals were more willing to reduce the size of the 

margin and rotate their shoulders. Producing a shoulder rotation and maintaining a straight path 

was likely a preferred strategy in the current study because shoulder rotations during locomotion 

pose little, if any, threat to stability for a YA population. Future studies should consider 

investigating whether this strategy holds true in an OA population or for individuals who 

experience greater instability.  

 

In general, participants rotated their shoulders more frequently as the second aperture was 

shifted farther from midline. However, it is important to note that post-hoc analyses 

demonstrated different trends across the three aperture sizes. The largest aperture size (1.7x SW) 

appeared to drive this effect, as the frequency of rotation increased from 15% of the trials for 

25cm shifts to 60% for 75cm shifts. This result is much different than the 0% of rotations 

reported for this aperture size during single aperture crossing (Hackney et al., 2013) and 

highlights the role that path redirection (i.e., misaligned apertures) plays on crossing behaviour. 

Not surprisingly (and not included in the statistical analysis) rotations were produced for 100% 
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of the trials when the aperture was 0.9x SW, regardless of the size of the shift. This ceiling effect 

occurred because the aperture width was always smaller than the width of the shoulders and a 

rotation was therefore always necessary to successfully pass through the space. Interestingly 1.3x 

SW did not follow the trend to increase the frequency of rotation as the second aperture moved 

away from midline. Instead, there was a trend for the frequency to decrease as the shift increased 

(58% at 25cm shifts to 40% for 75cm shifts). Since aperture 1.3x SW represents the typical 

threshold between passable and impassable apertures, it is possible that individuals had more 

difficulty perceiving whether the aperture afforded passage because of its shift off of midline and 

the fact that it was not aligned with the body. An exact explanation for such a trend is out of the 

scope of this study: future work should examine perceptual judgements of the passability of 

apertures when they are off-set from midline in an attempt to understand whether the perceived 

critical point (division between passable and impassable apertures) is altered for misaligned 

apertures.  

 

 It is also worth noting that the amount of shoulder rotation produced at the second 

aperture was influenced by whether or not a shoulder rotation was required at the first aperture. 

Specifically, a shoulder rotation at aperture one led to greater rotations at aperture two compared 

to trials where the first aperture did not elicit a rotation. There are two possible explanations for 

why this effect may have occurred: (1) an altered, or different perceptual scaling between the two 

paths, or (2) a carry-over effect from the initial rotation. First, a number of studies have 

demonstrated that perceptual judgements about the size of an environment are influenced by both 
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the perceived bioenergetics cost associated with the task and the individual’s current 

performance (Proffitt & Linkenauger, 2013). For example, the distance of a steep hill is judged 

as greater than the same distance on flat ground (Stefanucci, Proffitt, Banton & Epstein, 2005), 

hills are judged as steeper when wearing a heavy backpack compared to judgements made 

without the bag (Bhala & Proffitt, 1999) and the distance to a target is judged as longer when 

throwing a heavy ball compared to a light one (Witt, Proffitt & Epstein, 2004). Furthermore, a 

bullseye is judged as larger when the archer is shooting well compared to when performance is 

poor (Lee, Lee, Carello & Turvey, 2012) and a passageway is judged as smaller when holding 

wide objects (Stefanucci & Geuss, 2009). In all of these circumstances, the environment was 

perceived differently, despite the fact that nothing was actually physically different about it. 

Therefore, the affordance of the environment likely changed because the perceived challenge or 

the perceived purpose changed. Perhaps something similar occurred in the current study whereby 

the path requiring three rotations was perceived as different from the path requiring only one. It 

has been suggested that based on the purpose of a task, individuals will turn themselves into 

walkers, throwers, graspers and so on, and in doing so, will transform the environment into the 

appropriate action-specifying units (Proffitt & Linkenauger, 2013). In the current study, 

participants may have perceived themselves as “turners” in the scenario where the first aperture 

required a rotation because the path consisted of apertures that all required rotations and as such, 

the environment was specified specifically for turning. On the other hand, when the first aperture 

was wide enough for straight walking, individuals may have become “navigators” and the 

environment may have been slightly modified in order to be specified for navigating.  
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An additional explanation as to why behaviour at aperture one influences behaviour for 

aperture two based on what action modifications are required for the first aperture may be due to 

the rotation itself. In all conditions, the direction of rotation at the second aperture always 

occurred such that the front of the body faced midline: if the aperture was located on the left side 

of midline, participants rotated with the left shoulder leading. On trials where the first aperture 

required a rotation, participants rotated away from midline at the first aperture in order to 

maintain a rotation toward midline for the second aperture. Due to the proximity of the apertures 

relative to one another, this means that participants essentially rotated from one direction to the 

other direction (they moved from a 45o rightward rotation to a 45o leftward rotation, almost 90o 

in total) without settling into a normal walking position in between the two apertures. This was 

not needed for trials that did not require a rotation at the first aperture, as individuals approached 

the second aperture in a neutral state, before producing an appropriate rotation (the moved from 

0o rotation to 45o). Perhaps when individuals must swing the shoulders from one direction to the 

other, the movement becomes less accurate and the momentum of the swing leads to larger 

second rotations. Future studies should examine shoulder rotations from multiple starting 

positions in order to decipher whether the larger second rotations were indeed a result of the first 

rotation.  
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5.6 Conclusion 

 Overall the results of the current study demonstrate that aperture crossing through 

multiple, misaligned apertures appears to be guided by the attraction of the end-goal rather than 

an attraction to the center of the aperture(s). Individuals prefer to reduce the size of their spatial 

margin and rotate the shoulders rather than cross through the center of the aperture and equalize 

the spatial margin of the two shoulders. This strategy is likely used in an attempt to maintain the 

straightest possible walking path to the end-goal.  
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- Chapter 6 - 

 

 

 

GENERAL DISCUSSION 
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6.1 Summary and Future Directions 

As we move from place to place throughout our daily lives, we often encounter obstacles 

along the travel path that need to be avoided in order to reach our destination without injury. One 

such example is having to pass through narrow spaces, such as a partially blocked doorway or 

two closely parked vehicles. The ability to walk through apertures safety requires individuals to 

identify whether or not the aperture affords passage and to adjust their actions accordingly. 

Affordances, as described by Gibson (1979), are the possibilities for action available to an 

observer and reflect the fit between the size of the environment and the size of the individual. 

More recent work suggests that this body-environment relationship should also include the 

demand of the task as a contributing factor to the determination of affordances; as its demand 

will determine the action-specifying units (i.e., the perceptual ruler) an environment should be 

scaled to (Proffitt, 2013).  

 

Previous literature has suggested that the affordance of aperture crossing is specified by 

the perceptual ruler associated with shoulder width. In particular, narrow spaces that are larger 

than 1.3x SW (i.e., the critical point) afford passage, while apertures smaller than this ratio do 

not (Warren & Whang, 1987). Recently, research has revealed that OA have a much larger 

critical point compared to YA despite similarities in shoulder size and that this larger critical 

point may be related to stability (Hackney & Cinelli, 2011). These results elude to the idea that 

body size alone may be insufficient for describing how affordances are determined and suggest 

that additional factors, such as alterations to the characteristics of the individual or the 
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environment, are also considered by the perception-action system when determining the 

affordance of apertures.  

 

Determining the factors that contribute to the identification of affordances is necessary 

for safe travel especially when one considers the variety of daily situations in which individuals 

may encounter a narrow space. Therefore, the general purpose of this thesis was to expand upon 

the current understanding of how the body-environment relationship influences aperture crossing 

behaviours. A series of studies were conducted with the broad focus of determining how 

different manipulations of this relationship influence the strategies used for safely passing 

through apertures. Specifically, this dissertation examined how altering characteristics of the 

individual (person-plus-object and postural threat) and characteristics of the environment (type 

of obstacles being crossed and multiple, misaligned apertures) affects avoidance behaviours.  

 

Studies one through three employed similar methodologies in an attempt to provide the 

most direct comparison of the effects of each of the experimental manipulations. Following 

previous literature (Hackney & Cinelli, 2011; 2013b; Warren & Whang, 1987; Wilmut & 

Barnett, 2010), a narrow space was presented in the middle of the walking path, half way to a 

visible end-goal. The width of the space was randomly presented and varied from sizes that were 

smaller than the participant’s shoulder width to spaces almost double this size.  
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The final experiment in this series of studies expanded beyond the single aperture 

crossing technique to examine the manner in which individuals pass through multiple apertures. 

In this study, participants walked along a path toward an end-goal and passed through three 

separate apertures that varied in size and position relative to the midline of the path. This 

experiment focused on the action strategies employed when passing through the second aperture 

and the effects that shift and prior aperture crossing requirements had on this behaviour.  

 

For all of the experiments, participants were instructed to walk to the end-goal and pass 

through the aperture without colliding with obstacles that created it. Aperture crossing behaviour 

was monitored by examining how often a shoulder rotation occurred (frequency of rotation), how 

large this rotation was at TOC (magnitude of rotation), and the distance from the aperture where 

these rotations were initiated (onset of rotation). In studies one through three, these variables 

were used to identify the aperture width that represented the division between passable and 

impassable spaces (critical point). Furthermore, the average approach velocity and trunk sway 

observed as an individual approached the apertures were also considered. Additionally, the 

amount of space that an individual maintained between the shoulders and the outer-most edge of 

the obstacle at TOC (spatial margin) during the avoidance trials and the speed at which they 

crossed the aperture (velocity at TOC) were analyzed. These four variables were included in the 

analysis because they reflect the overarching architecture of the behaviour leading up and 

passing through the aperture. Lastly, in study four, the position of the M-L COM at the TOC of 

the middle aperture was also examined in order to determine whether participants aimed to 
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maintain the straightest possible path trajectory when passing through apertures that were not 

aligned with the end-goal.  

 

 

6.1.1 Person-Plus-Object System (Study One) 

The first of the series of studies examined the challenges associated with carrying objects 

through narrow spaces. Specifically, study one evaluated how a person-plus-object system 

influences the perception-action relationship and the subsequent passability of apertures. Body 

size was altered by having participants carry a wide serving tray while walking through various-

sized apertures. The aperture sizes were scaled to either the width of the participants’ shoulders 

or the size of the tray, depending on whether the participants were instructed to walk while 

carrying a tray or whether they were completing the baseline condition (i.e., normal aperture 

crossing). Since the literature suggests that individuals can quickly rescale perceptual judgements 

to account for increases in body size (Franchak et al., 2010; Stefanucci & Guess, 2009; Wagman 

& Taylor, 2006) and that perceptual judgements about the passability of apertures match the 

actions made at the TOC (Franchak & Adolph, 2007; Hackney & Cinelli, 2013a), it was believed 

that individuals would quickly adapt to the tray by maintaining a constant critical point 

regardless of whether the tray was carried.  

 

The findings suggest that objects being carried are treated as extensions of the body and 

behaviour is quickly adapted to accommodate for the new person-plus-object width. This was 
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evident by the fact that the critical point remained the same as that of normal walking when the 

environment was scaled to the new person-plus-object width: impassable apertures were 

considered those 1.3x object width or smaller. Even though adaptation to walking with a tray 

varied across participants, all individuals were able to incorporate the size of the tray with their 

body size when selecting an appropriate aperture crossing behaviour by the end of the 

experimental trials. The results from the first study contribute two major findings to the aperture 

crossing literature:  

 

1) The perceptual ruler used to specify the environment for aperture crossing can be 

successfully modified to account for objects that increase the size of the body.  

 

2) Individuals adapt this perceptual ruler at different rates.   

 

Future work should examine why people appear to adapt at these different rates. For 

example, participants who initially increased their critical point when carrying the tray may be 

less confident in their decision about the passability of the aperture and as such, choose to rotate 

their shoulders at larger relative aperture widths to ensure safety. Furthermore, future research 

should examine whether OA are also able to scale the critical point to the person-plus-object 

width as quickly and as accurately as their younger counterparts. Determining whether OA are 

affected by carrying or using objects that extend the width of the body, such as mobility aids, 

could help determine whether the design of spaces frequently navigated by OA should consider 
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any of these altered behaviours when attempting to improve the safety and ease of locomotion 

through such spaces.  

 

 

6.1.2 Postural Threat (Study Two) 

Knowing that the perceptual-motor system can quickly account for changes in body size, 

the second study investigated whether it can also adapt to changing levels of postural threat. 

Postural threat was manipulated by increasing the risk associated with losing balance by having 

participants walk along a narrow path or an elevated/narrow path while passing through an 

aperture. Aperture crossing behaviours were observed under these experimental conditions and 

compared to that of normal, ground-level walking. Since previous research has demonstrated a 

correlation between instability and an increased critical point (Hackney & Cinelli, 2013a) and 

that postural threat decreases stability during walking (Brown et al., 2002; McKenzie & Brown, 

2004; Schrager et al., 2008), it was believed that the passability of apertures would be altered 

under conditions of postural threat. Specifically, it was anticipated that individuals would employ 

a more cautious approach by reducing walking speed and rotating the shoulders for larger 

relative aperture widths for both experimental conditions but that these observed effects would 

be greatest on the elevated/narrow path.  

 

The findings revealed that the passability of apertures is indeed altered during conditions 

of increased postural threat. However, this effect was only observed in the elevated/narrow path 
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condition. Individuals had greater trunk sway, walked slower, rotated their shoulders for larger 

relative aperture widths, and maintained a larger critical point when postural threat was high 

compared to normal walking. All of these outcomes were considered to have a moderate to high 

effect sizes. Despite a decrease in walking speed and an increase in trunk sway in the narrow path 

condition, the critical point remained similar to that of normal, ground walking. Therefore, the 

results from the second study contribute two major findings to the aperture crossing literature: 

 

(1) The affordance of aperture crossing considers postural threat when determining the 

passability of apertures and that the critical point, walking speed, and trunk sway 

are altered under such conditions.  

 

(2) In a YA population, the passability of apertures may only be affected once a certain 

level of postural threat has been reached, despite the presence of altered gait 

characteristics.  

 

Since the passability of apertures was only affected in the elevated/narrow condition, 

future research should investigate whether there is indeed a threshold associated with changes in 

trunk sway and/or walking speed and changes to the critical point and whether this threshold can 

be achieved at ground level in a YA population. Furthermore, the results from this second study 

support the idea that differences in dynamic stability can help explain why OA have a larger 

critical point compared to their younger counterparts (Hackney & Cinelli, 2011). A potential 
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future direction therefore, is to examine whether improving the dynamic stability of an OA can 

reduce the size of the critical point to that of a YA population. 

 

6.1.3 Human Apertures (Study Three) 

The third experiment in the series of studies focused on how changing the characteristic 

of the environmental objects influences the strategies used to walk through them. Specifically, 

the third study examined how the passability of apertures is altered when walking through 

similar sized gaps that were created by either human or pole obstacles. It was anticipated that 

individuals would maintain a larger critical point when passing through two human obstacles 

compared to two pole obstacles in order to account for the social factors involved with avoiding 

the invasion of another individual’s personal space.  

 

The results from this third study revealed that when the obstacles were human, 

individuals rotated their shoulders more frequently at larger apertures, as evident by a larger 

critical point (1.7 vs 1.3 for poles; moderate-high effect size), initiated shoulder rotations earlier, 

rotated to a larger degree, maintained a wider spatial margin, and walked slower when 

approaching and passing through the human obstacles compared to pole obstacles. Furthermore, 

correlational analyses revealed that the amount of change between an individual’s critical point 

for the poles and the critical point for the human obstacles was related to both social risk-taking 

scores and changes in walking speed. Therefore, the third study provides the following major 

finding to the aperture crossing literature:  
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1) The perceptual ruler used to determine the appropriate aperture crossing behaviour 

when crossing human obstacles is influenced by social context associated with human 

obstacles. 

 

Since social factors appear to influence how the affordance of an aperture is identified, 

future research should focus on identifying which social factors and the extent that such factors 

contribute to altering the passability of apertures. For example, since the current study used 

female confederates only, it would be worth examining behaviours for crossing between two 

males or a male/female combination and establishing whether gender differences arise. Lastly, 

future research should examine aperture crossing under a variety of social situations experienced 

on a daily basis such as when the confederates are known to the participants or when the 

confederates are engaging in a conversation. The results from the current study and the 

experiments stemming from it will help provide the necessary ground work for determining the 

role that social context plays with respect to aperture crossing behaviours and how different 

social scenarios may influence how individuals navigate through cluttered environments.   

 

6.1.4 Multiple, Misaligned Apertures (Study Four) 

Lastly, the final experiment expanded the examination of aperture crossing behaviours by 

including multiple apertures in order to begin to understand how individuals navigate scenarios 

similar to stationary crowds. Specifically, the fourth study set out to determine whether 
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individuals choose paths based on an attraction to the end-goal (as suggested by the behavioural 

dynamics model; Fajen & Warren, 2003; Warren, 2006) or an attraction to the center of the 

aperture (as suggested by the equalization theory; Cinelli et al., 2006). In order to test this, 

participants walked through three separate apertures en route to an end-goal. The apertures 

varied in size and the middle aperture was shifted away from the midline of the path. The 

purpose of the shift was to ensure that participants needed to deviate away from the straight 

walking path in order to pass through the aperture and ensure that he/she was not aligned with 

the end-goal throughout the entire trial. This way, if participants were attracted to the center of 

each aperture, he/she would adjust their walking trajectory for the second aperture in order to 

pass through its center by deviating further away from the midline of the path and equalizing the 

size of the spatial margin at TOC. However, if behaviour is guided only by the location of the 

end-goal, participants would likely aim to walk the straightest possible path by deviating less 

from the midline and pass through the aperture closer to the obstacle nearest midline (reducing 

the spatial margin). It was anticipated that behaviour would be similar to that predicted from an 

end-goal attraction point, whereby the desire to maintain the straightest possible walking path 

would override the desire to walk through the center of the aperture.  

 

A comparison of the M-L position of the COM at TOC (distance from center) and the 

spatial margin for the shoulder closest to midline revealed a significant and powerful effect of 

shift. Specifically, individuals walked farther from the center of the aperture and decreased the 

size of the spatial margin as the shift size increased. Furthermore, a significant and moderate 
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effect was observed for frequency of rotations such that individuals rotated their shoulders more 

often at the middle aperture as the shift increased. The results of study four contribute two major 

findings to the aperture crossing literature:  

 

1)  The attraction of the end-goal and a desire to maintain the straightest possible 

walking path guides path trajectory through multiple apertures.  

 

2) Unlike single aperture crossing where individuals act to maintain an equally-sized 

spatial margin on either side of the shoulders, individuals choose to reduce the size of 

the margin for one shoulder and rotate the shoulders during multiple, misaligned 

aperture crossing even if the aperture is such a size where a rotation is not normally 

required.  

Crowded environments such as those encountered when rushing through a busy airport 

often involve navigating through multiple people with (and without) carrying luggage. These 

scenarios are frequently associated with increased anxiety or stress. Using the results of the 

current study as a baseline comparison, future attempts to understand the navigation of multiple 

aperture environments should include conditions of increased anxiety in order to establish a 

detailed understanding of these strategies.   

 

In general, this thesis offers a more comprehensive understanding of how YA walk 

through apertures when alterations to their body size or balance are imposed, as well as during 
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situations where the characteristics of the environment have been altered. Based on the 

knowledge gained from the studies’ results, it is recommended that future research examine 

different populations (e.g., OA fallers) in order to test the robustness of the theories put forward.  

 

 

6.2 Implications  

6.2.1 Theory of Affordances and the Affordance of Aperture Crossing 

As stated many times throughout this dissertation, Gibson (1979) argued that the actions 

that an individual performs within a given environment are the product of the fit between the 

environment and the individual and it is this body-environment relationship that determines the 

possible actions available to an individual. A review of the literature suggests that for aperture 

crossing, the property of the individual most relevant to the determining the actions necessary to 

pass through an aperture is considered to be the widest horizontal dimension of the body (i.e., the 

shoulders; Higuchi et al., 2012; Warren & Whang, 1987; Wilmut & Barnett, 2010). Recent work 

has recognized the role that action capabilities and limitations to movement play on determining 

possibilities for action with specific focus on steering, braking and intercepting (Fajen, 2007 & 

2013; Fajen, Diaz & Cramer, 2011; Fajen, Matthis, 2011). The results of studies one through 

three presented in this thesis support this idea and demonstrate that body size alone is not the 

only factor(s) that is used by the perceptual-motor system when specifically identifying the 

affordance of aperture crossing. This is evident by the fact that the passability of apertures 

changes under challenging conditions despite both the size of the body and the size of the 
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environment remaining unchanged. As outlined in the summary section above (Section 6.1), the 

results of the experimental manipulations in studies one through three demonstrate that: 1) 

although the critical point remains 1.3 for a person-plus-object system, the perceptual-motor 

system adapts to consider the widest dimension of this person-plus-object system (i.e., the tray is 

embodied and considered an extension of the body) and that this adaptation rate varies across 

individuals, (2) when postural threat is high, the critical point increases to 1.5x SW, which is 

likely a strategy to account for the increased M-L trunk sway, and (3) the critical point increases 

to 1.7x SW when walking through apertures created by human obstacles, suggesting that the 

passability of apertures is also influenced by the type of object being crossed and not simply the 

size of the gap.  

 

A secondary outcome of this dissertation was the ability to analyze the robustness of the 

critical point for normal, ground-level walking. With a group of ten male participants, Warren 

and Whang (1987) first reported that individuals will rotate their shoulders for apertures smaller 

than 1.3x SW and will walk straight through gaps larger than this ratio. Each of the studies 

presented in this dissertation included a normal aperture crossing task and as such, a combined 

total of seventy participants (37 females and 33 males) completed a normal aperture crossing 

scenario. This data, combined with data collected from two of my previous experiments 

(Hackney & Cinelli 2013; Hackney et al., 2013b) allowed for a dataset of ninety-two YA 

participants. On average, the group critical point was calculated to be 1.3x SW (±0.07) and there 

was no significant differences between male and female participants (Figure 6.1a). Furthermore, 
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a distribution of the individual critical points (Figure 6.1b) revealed a normal distribution pattern 

and that 76% of the participants (70 of 92 participants) had a critical point of 1.3. Not only does 

this confirm that the critical point of 1.3x SW for normal aperture crossing is reproducible but it 

also suggests that any observed changes to the value of the critical point for future experimental 

manipulations can be attributed to the manipulation itself and not simply to differences in the 

baseline behaviour of the groups being tested. 

  



166 

 

 

 

 

Figure 6.1 – Data collapsed across the baseline conditions (normal, ground-level aperture 

crossing; N = 92) displays a) the group frequency of rotation for each aperture width and b) the 

distribution of individual critical point values.  
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In addition to the distribution of individual critical point values for the normal, ground-

level aperture crossing, a similar distribution for each experimental manipulation examined in 

this dissertation has been plotted in Figure 6.2. When compared to normal aperture crossing, this 

analysis demonstrates that: 1) narrow path walking follows the same distribution pattern, 

confirming that the passability of apertures remains unchanged when YA walk on a 20cm wide 

path; 2) although the average critical point for tray-carrying was similar to baseline, the 

distribution is platykurtic compared to normal aperture crossing (i.e., more variability) which is 

likely driven by the subset of participants whose critical point fluctuated throughout the length of 

the experiment; and 3) the distribution for both the elevated-walking and human obstacles 

condition are skewed rightward, such that the average critical point increases compared to 

baseline. Not only do these two distributions confirm that the passability of apertures is affected 

by postural threat and animate obstacles, but it also confirms that the critical point does not 

simply emerge as the median value of the range of aperture sizes being presented. The fact that 

the passability of apertures appears to be most affected by postural threat and the characteristics 

of the objects not only has implications for the understanding of aperture crossing in OA 

populations who are inherently less stable, but it may also establish the baseline information 

necessary for providing suggestions for the design of spaces (discussed more thoroughly in the 

following section).  
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Figure 6.2 – A distribution of individual critical points for each of the samples collected from 

studies one through three.  
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Lastly, the results of study four support the idea that task demand plays an important role 

in the identification of affordances. Proffitt and Linkenauger (2013) extended the notion of a 

body-environment relationship to include a third factor, the demand of the task, and argued the 

environment is scaled to the appropriate action-specifying units based on the perceived purpose 

of the task. This means that a given environment can be specified in different ways depending on 

how the observer intends to use it. For example, a chair may be specified differently based on 

whether the task demands that it be used it as a chair to sit on or as a stool to stand on. The 

majority of evidence to support this claim is focused on perceptual judgements and does not 

include an analysis of action. However, the results of study four provide action-related evidence 

to support this idea. Since individuals behaved differently at the second aperture based on the 

size of the first, individuals may have perceived the two tasks as having slightly different 

demands. In the scenario where the first aperture required a rotation, participants may have 

perceived themselves as “turners” because the path consisted of apertures that all required 

rotations and as such, the environment was specified for turning. On the other hand, when the 

first aperture was wide enough for straight walking, individuals may have become “navigators” 

and the environment may be slightly modified in order to be specified for navigating. 

 

Overall, the findings from the series of studies presented in this dissertation support and 

extend the idea that affordances are determined based on a body-environment-demand 

relationship. With these results I propose that person-plus-object size be added to the body size 

portion of the conceptual model of affordances (Chapter 2), as individuals are able to account for 
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changes in body width associated with carrying objects. I also propose that aperture 

characteristics be added to the environment-portion of this relationship (Chapter 4 and 5), as the 

affordance of aperture crossing is influenced by social factors associated with walking through 

human-obstacles and the location of the aperture relative to the goal, despite the fact that the 

body size and the aperture size remained unchanged. Furthermore, considering the results of my 

previous work (Hackney & Cinelli, 2011; 2013c; Hackney et al., 2015) and this dissertation, I 

support the idea that abilities are an important contributing factor to the identification of 

affordances (Fajen, 2013) and propose that the conceptual model of affordances should contain 

individual abilities as a fourth factor (Chapter 3), as the passability of an aperture can change 

based on the abilities of the individual. A visual representation of the proposed additions to the 

conceptual model of affordances is presented in Figure 6.3.   
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Figure 6.3 – A visual representation of the proposed additions to the conceptual model of the affordance of aperture crossing, 

as were manipulated in the dissertation.  
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If affordances do indeed emerge from the interaction of factors influencing the body, the 

environment and an individual’s action capabilities, then the proposed affordance model above is 

far from a complete account. The suggested additions outlined in the above figure (Figure 6.3) 

merely incorporate a subset of factors that were directly manipulated within this dissertation, 

however it would be naive to argue that these are the only important considerations. The diagram 

below (Figure 6.4) highlights some additional contributing factors that were not directly 

examined, but that are important to acknowledge, which may affect how individuals choose and 

guide their actions. Although the aperture crossing literature itself has yet to address many of 

these factors, a broader review of the literature can shed light on additional environmental, task 

and personal factors that should be considered.  
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Figure 6.4 – A detailed diagram of the many possible influences to how individuals guide movement through space.  
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 As was addressed previously in this section, physical size and human versus pole 

obstacles were both suggested as “environmental” factors that can influence the actions that are 

and are not deemed possible for an individual. Although not explicitly examined within the 

research studies presented, it is important to acknowledge the impact that other factors may have 

on action choices, such as the visual demand of the environment. Davenport and Potter (2004) 

argued that the details about an object are processed interactively with their background and that 

an object’s size is identified more accurately when presented in isolation or with a constant 

setting rather than within a busy, changing background. Additionally, steering accuracy and 

driving behaviour have been shown to decrease in environments with low luminance compared 

to scenes with high luminance, likely because the visual information obtained from the scene is 

less rich and may require additional time to process (Owens & Tyrell, 1999). Different colouring 

and textural layout of the background, as well as the presence (or absence) of peripheral objects 

in the space may have assisted with (or distracted from) the ability to accurately judge the size of 

the aperture(s). Since half of the studies presented in this dissertation were completed within a 

different laboratory than the others (Studies One and Four at Wilfrid Laurier University and 

Studies Two and Three at the University of Waterloo), it is possible that the visual demands of 

the two environments contributed to some of the differences observed in the results. Perhaps one 

environment provided visual information that would assist an individual in making decisions 

about an aperture size while the other delivered visual information that merely distracted from 

this decision. Studies that stem from the work presented in this dissertation should consider 

evaluating the perceptual judgements and action choices that result from different visually 
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demanding environments to better distinguish how visual demand influences affordance 

perception. 

 

Cognitive demands of the environment in which an individual is traversing also will 

likely have a large impact on how he/she performs. Obstacle clearance for example, is influenced 

by the attentional demand of the task where distractions or the need to divide attention negatively 

impacts performance. Even in a young adult population, obstacle avoidance performance 

decreases with increased level of difficulty (Sui, Catena, Chou, van Donkelaar & Woollacott, 

2008; Weerdesteyn, Schillings, Van Galen, & Duysens, 2003). In addition to being included as 

an “environmental” factor, cognitive demand (with specific focus on cognitive abilities) should 

also be incorporated into the “personal” section. Research has demonstrated that individuals with 

a decreased capacity to attend to increased cognitive demand, such as individuals recovering 

from a traumatic brain injury (McFadyen et al., 2009) and older adults (Alexander, Ashton-

Miller, Giodani, Guire & Schultz, 2005) show residual locomotor deficits during multi-tasking 

compared to their healthy counterparts. With respect to the studies presented in this dissertation, 

one should not discount the influence of a more cognitively challenging environment. This is 

especially true for the elevated path walking, where participants were required to make 

judgments about the passability of an aperture while also ensuring that they did not fall off the 

platform. It is possible that the cognitive demands of maintaining balance influenced affordance 

perception. Future work may consider evaluating whether the increased cognitive demand of a 

task can indeed alter the perceived affordances within a young adult population.  
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 Experience can also influence actions that are chosen within a given environment. 

Research examining the effect of experience on behaviour has revealed that judgments of ability 

are more precise in experienced individuals compared to novices. For example, basketball 

players are more accurate at perceiving their maximum reach-with-jump ability than non-

basketball players (Weast, Shockley & Riley, 2011) and football players leave smaller spatial 

margins when running through narrow spaces with shoulder pads on compared to non-football 

players (Higuchi, et.al., 2011). With respect to driving performance, the visual strategies of 

experienced drivers can be adapted to the complexity of the task, but the strategies of novice’s 

are too inflexible to meet the changing cognitive demands (Crundall & Underwood, 1998). Even 

at a young age, research has observed that infants and toddlers will choose actions that reflect 

their level of experience: experienced crawlers or walkers will refuse to cross gaps that are too 

large but novice movers will attempt them (Adolph, 1997).  

 

 This dissertation demonstrated that the affordance of aperture crossing considers the 

person-plus-object system, postural threat, obstacle type (pole versus human obstacles) and type 

of aperture crossing (single versus multiple). How individuals choose what actions are and are 

not afforded likely depends on an even larger framework that requires further exploration. 
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6.2.2 Affordance Design  

Designers and architects create places and objects that afford walking, sitting, using, 

etcetera. However, the standards that outline how such spaces and artifacts should be built are 

based on anthropometric standards or personal judgement (Panero & Zelnick, 1979; Norman, 

1999). The purely anatomical nature of anthropometric standards indicates that there is a 

complete disregard for the functional interactions users have with the world (Diffrient, Tilley & 

Bardogjy, 1974; Maier, Fadel & Battisto, 2009). Basing architectural standards solely on 

anthropometric data becomes problematic when one considers the diversity of abilities within the 

population. For example as outlined by Warren (1995), the functional critical point associated 

with climbable stairs for an OA population may be different than the geometric one simply 

because of limitations in flexibility and strength. Since many of our daily interactions with the 

environment involve factors other than body size (such as stability, cultural norms of body space, 

strength, etc.), it is not surprising that the affordance literature has sparked discussion about a 

new affordance-based approach to architectural design that focuses on bringing functional 

factors into consideration (Maier & Fadel, 2009). 

 

Similar to stair climbing, Warren (1995) advocated for the necessity of a task-specific 

affordance analysis when architects go about determining the minimum aperture width necessary 

for the design of narrow spaces. Instead of the current architectural standard of 21in/53cm, he 

proposed that the minimum standard following an affordance-based approach should be 

25in/63cm, or roughly 1.3x the average SW in order to account for the natural body sway and 
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spatial margins necessary for single, flat-ground aperture crossing (Warren, 1995). The major 

findings of studies one through three in this dissertation offer a more comprehensive task-

specific analysis for the design of narrow spaces by providing additional recommendations for 

affordance-based standards of passage width. These specific recommendations are presented in 

Table 6.1.  

 

Furthermore, the results of study four suggest that individuals behave differently when 

walking through single and multiple apertures. As such, these results highlight the need for the 

design of these spaces to reflect these differences. Although it is out of the scope of this thesis to 

provide exact recommendations for building spaces that include multiple narrow gaps, future 

work stemming from these findings may be able to provide such suggestions.   

  



179 

 

 

Table 6.1- Recommendations for ecological standards of passage width based on task-specific affordance analysis.  

 

 

Task-specific use of space Affordance-based Standard 

*Ground-level, single aperture, pole obstacles 

 (Warren & Whang, 1987) 

25in / 63.5cm 1.3 

*Ground-level, single aperture, pole obstacles, older adults  

(Hackney & Cinelli, 2011) 

30in / 76cm 1.6 

Ground-level, single aperture, pole obstacles, objects are being carried 

 (Hackney, Cinelli, & Frank, 2014) 

Based on the average size of 

the object being carried 

1.3 

Ground-level, narrow base/path, single aperture, pole obstacles  

(Hackney, Cinelli, Denomme, & Frank, 2015) 

25in / 64cm 1.3 

Elevated base/path or increased risk associated with failure, single 

aperture, pole obstacles  

(Hackney, Cinelli, Denomme, & Frank, 2015) 

28.5in / 73cm 1.5 

Ground-level, single aperture, human obstacles  

(Hackney, Cinelli, & Frank, 2015) 

32.5in / 83cm 1.7 

*Recommendations taken from the results of previous experiments not included in this thesis
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The fact that the critical point changes when different factors of the body-environment 

relationship are altered highlights the importance of knowing the purpose or intended use of the 

space when designing spaces. For example, the spatial layout of a restaurant floor should 

consider the size of the person-plus-object system navigating through that space. Will the servers 

be navigating around inanimate objects such as tables or will animate obstacles, such as 

stationary or moving people also be a concern? How large are the plates and platters being 

delivered to tables? Can servers move from table to table comfortably without risking collisions 

with customers while carrying hot food or cold drinks? 

 

6.3 Final Conclusions 

Walking through narrow spaces requires that individuals identify whether the aperture 

affords safe passage. This thesis has reviewed the existing literature on the affordance of aperture 

crossing and extended the current understanding of how the body-environment relationship and 

alterations to it can modify the passability of these narrow spaces. A series of experiments were 

conducted, each which manipulated different aspects of the body-environment relationship and 

monitored the resulting effect on crossing behaviour. Despite the fact that the size of the body 

and the size of the aperture remains unchanged, the passability of apertures changes under 

conditions of postural threat, if the obstacles have human characteristics and based on the 

position of the aperture relative to the end-goal. These results suggest that the perceptual rulers 

used by the perceptual-motor system to scale the environment into action-specifying units must 

consider more than just the body size when identifying affordances but is able to adapt to 

changes to the body size. An example of this adaptation was observed when individuals carried 
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wide objects, as the passability of an aperture was rescaled to consider the size of the person-

plus-object width. With these results, I proposed that the conceptual model of affordances 

expand to include an individual’s “abilities” as a fourth factor and add both the “person-plus-

object size” in the body-aspect of the relationship and “aperture characteristics” to the 

environment-portion of the model. As a whole, this thesis demonstrates that the affordance of 

aperture crossing is not simply determined by the size of the shoulders but instead is adapted to 

encompass an array of factors experienced on a daily basis. It is my hope that the results of this 

dissertation provide the groundwork for future studies examining older or special populations 

and provide valuable information for the affordance-based design of spaces that contain narrow 

spaces.   
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APPENDIX B – Screening Questionnaire 
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Year of Birth ___________           Gender: Male / Female 

 

1. Do you wear glasses/contacts?              YES / NO 
      

2. Do you have a visual impairment?         YES/NO 

If yes… what type of visual impairment do you have (i.e. macular degeneration, 

cataracts, etc.)? _______________________ 

3. Have you been diagnosed with severe balance impairment?     YES / NO 
 

4. Are you currently taking any medication that may affect your balance?        YES / NO 
 

 

5. Have you had ankle, knee or hip injury within the last year?                YES/NO 
 

 

6. Have you had a shoulder injury/surgery within the last year?     YES/NO 
 

 

7. Are you a varsity athlete or do you train with a competitive sports team?     YES/NO 

If yes… what sport do you play? ___________________ 
 

8. How many hours a week are you physically active? __________ 
 

9. Do you have trouble maintaining balance during everyday activities?      YES/NO 
 

10. Have you experienced or been diagnosed with any of the following? Please check all 

boxes that apply.  

 Multiple Sclerosis 

 Attention Deficit Disorder/Attention Deficit Hyperactive Disorder 

 Autism 

 Vestibular dysfunction/disorder (i.e. vertigo) 

 Sensory processing disorder 

 Hearing impairment 

 Visual impairment 

 Osteoporosis 

 Traumatic brain injury (i.e. concussion) 

 Severe knee, hip, ankle or back pain 
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APPENDIX C – IRED Marker Setup & COM Calculations  
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APPENDIX D – The Social Domain of the DOSPERT 

Questionnaire  

  



207 

 

For each of the following statements, please indicate the likelihood that you would 

engage in the described activity or behaviour if you were to find yourself in that situation.  

Provide a rating from Extremely Unlikely to Extremely Likely, using the following scale: 

 

 
__________________________________________________________________________________________ 

 1  2  3  4  5    6     7 

Extremely          Moderately            Somewhat  Not Sure             Somewhat          Moderately          Extremely 

 Unlikely  Unlikely                 Unlikely      Likely                  Likely                Likely 

 

 

 

 

1. Admitting that your tastes are different from those of a friend.   ___________  

2. Drinking heavily at a social function.      ___________  

3. Disagreeing with an authority figure on a major issue.    ___________  

4. Choosing a career that you truly enjoy over a more secure one.   ___________  

5. Speaking your mind about an unpopular issue in a meeting at work.  ___________  

6. Walking home alone at night in an unsafe area of town.    ___________  

7. Moving to a city far away from your extended family.    ___________  

8. Starting a new career in your mid-thirties.      ___________  

9. Staring a conversation with a group of strangers.     ___________  

10. Approaching a stranger to ask for directions.      ___________  
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APPENDIX E – Crowded Room Experimental Setup  
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ARE POLES AND AVATARS TREATED DIFFERENTLY DURING APERTURE 

CROSSING IN VIRTUAL ENVIRONMENTS? 
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S.1 Abstract 

 

The current study aimed to determine if the critical point when walking through apertures 

created by virtual pole obstacles is similar to that reported for real-world aperture crossing and to 

identify whether participants act differently when crossing apertures created by virtual pole 

obstacles compared to avatars. Eleven healthy YA wore a head-mounted-display (HMD), walked 

along a 10m path and passed through a virtual aperture located 5m from the starting location. 

Participants were instructed to avoid colliding with the obstacles when passing through the 

aperture. The experiment was conducted using a block design, where the aperture was either 

created by two pole obstacles or by two avatars. In both conditions, the width of the aperture 

ranged between 1.0 – 1.8x SW. Results revealed no clear drop in the magnitude of shoulder 

rotations as the aperture size increased for either type of aperture, which prevented a true critical 

point from being identified. Furthermore, individuals treated virtual poles and avatars similarly, 

as evident by the fact that no significant differences in the magnitude or onset of shoulder 

rotations produced at TOC and no differences in walking speed during the approach or at TOC. 

In real-world environments, aperture crossing behaviours are much different when walking 

between pole obstacles compared to human obstacles. The lack of difference between virtual 

poles and avatars in the current study may be due to a lack of social factors expressed by the 

avatars and as such, participants may have treated the avatars as any ordinary obstacles. 

Furthermore, the fact that no true critical point could be obtained for either obstacle type 

suggests that participants may have had difficulty accurately relating the size of their body 

(which they could not see) to the size of the aperture in the virtual environment and as such, 

could not accurately identify the affordance of aperture crossing.   



212 

 

S.2 Introduction 

 

For ground-level walking it is well established that the critical point of aperture crossing 

is 1.3x SW: shoulder rotations occur for spaces 1.3x SW and smaller but not for spaces larger 

than this value (Hackney & Cinelli, 2013; Hackney, Vallis & Cinelli, 2013; Hackney, Cinelli & 

Frank, 2014; Hackney, Cinelli, Denomme & Frank, 2015; Warren & Whang, 1987; Wilmut & 

Barnett, 2010). Recent experiments have moved towards understanding aperture crossing 

behaviour for human interactions, where individuals are required to pass through narrow spaces 

created by other people and suggests that much larger spaces are required before an individual 

will pass through the aperture without producing a shoulder rotation. Specifically, individuals 

maintained a larger critical point (1.7 vs 1.3 for poles), initiated shoulder rotations earlier, 

rotated to a larger degree, left a wider spatial margin, and walked slower when approaching and 

passing through the human obstacles compared to poles (Hackney et al., 2015). Experimentally 

however, studying these human-human interactions is challenging and poses problems for the 

reliability of the experimental manipulations. 

 

Virtual reality has become a popular method for studying human-human interactions 

during obstacle avoidance as it provides greater control over the experimental manipulations 

(Bruneau, Olivier & Pettre, 2015; Tarr & Warren, 2002). A number of studies have demonstrated 

similarities between general obstacle avoidance behaviours employed in real and virtual 

environments. For example, during single obstacle circumvention both the size and shape of the 

personal space envelope (Gerin-Lajoie, Richards, Fung & McFadyen, 2008) as well as the 

curvature of the locomotor path (Fink, Foo & Warren, 2007) are similar when circumventing 

obstacles in real and virtual environments. During aperture crossing tasks, when individuals are 
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asked whether an aperture requires a shoulder rotation, similar-sized apertures are judged as 

passable regardless of whether they are real or virtual (Geuss, Stefanucci, Creem-Regehr & 

Thompson, 2010). Furthermore, when asked to walk through the aperture, individuals rotate their 

shoulders for similar-sized apertures in real and virtual environments (i.e., they have the same 

critical point) (Lepecq, Bringoux, Pergandi, Coyle & Mestre, 2009). In general, the results from 

the above-mentioned studies suggest that obstacle avoidance behaviours in virtual environments 

are comparable to those observed in real-world.  

 

The purpose of the current study was two-fold: (1) to identify whether participants treat 

apertures created by avatars differently than virtual pole obstacles, and (2) determine if the 

critical point when walking in virtual reality is in line with previously reported real-world values 

(Chapter 4; Hackney et al., 2015). It was hypothesized that individuals would maintain a similar 

critical point for virtual pole obstacles as they do for real-world aperture crossing, but that 

avatars would be treated with increased caution compared to the pole obstacles.  

 

 

S.3 Methods 

 

S.3.1 Participants 

 

Eleven YA (𝑥̅age = 20.7 ± 2.4 years) were included in the study and were free of 

deficits/disorders affecting their balance and decision making; had normal vision and did not 

knowingly experience motion sickness. After providing informed consent, the experimenters 

recorded the shoulder width of each participant using a measuring tape. 
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S.3.2 Apparatus and Procedure 

 

The experiment was conducted in a 12m L x 12m W open space and participants wore a 

Rockwell Collins HMD. Head and trunk position was recorded by a hybrid inertial-ultrasonic 

tracking system (Intersense, Billerica, MA) through a sensor placed on posterior aspect of the 

HMD and on the posterior side of the right scapula.  

 

The virtual environment consisted of a greyscale ground plane and black opaque walls. A 

red “home” pole appeared at the starting location and a second, red “target” pole appeared 10m 

away. On half the trials, two green pole obstacles appeared side-by-side, 5m from the starting 

location. In the other half of the trials, two female avatars appeared in place of the pole obstacles 

(Figure S.1). The poles and the avatars were presented in a blocked design which was 

counterbalanced between participants. Within each block, the aperture ranged from 1.0 – 1.8x 

SW in randomized order.  

 

Participants were instructed to walk at their natural pace towards the red “target” pole and 

pass through the aperture without colliding with it. Once the participant reached the target pole, 

he or she stopped and turned around to face another target pole 10m away. At this time, the next 

trial began.  
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Figure S.1 – Experimental set-up including a) top-down view of the path, b) visual display for 

the virtual pole obstacles, and c) visual display for the avatar condition.  
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S.3.3 Data and Statistical Analysis 

 

The magnitude of rotation, critical point, onset of rotation, spatial margin, and approach 

velocity at TOC were calculated in a similar manner as outlined in Chapter 2 and 3. Appendix A 

provides a visual representation of the dependent variables analyzed in this study.  

 

A 2 (obstacle type: pole vs avatar) x 9 (aperture width) GLM with repeated measures was 

conducted for all dependent variables. A significant main effect of obstacle type or an interaction 

would indicate differences in behaviour between the virtual poles and avatars. P-values less than 

0.05 were considered significant. 

 

S.4 Results 

Analysis of the magnitude of rotation revealed a main effect of aperture width (F (8, 72) = 

35.07, p<0.01, η² = 0.49), where rotations decreased as the aperture width increased. Post-hoc 

analysis revealed that rotation angle at apertures 1.0 - 1.4 were significantly greater than 1.5 - 1.8 

(p<0.05 for all comparisons) (Figure S.2). However all aperture widths elicited rotations that 

were significantly greater than that of basic walking, suggesting that participants continued to 

rotate their shoulders at the largest aperture widths. Since there was no clear drop off in rotation 

magnitudes, a true critical point could not be identified. There was no significant effect of 

obstacle type or interaction.  
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Figure S.2 – Rotation magnitude at each of the aperture widths. There was no significant 

difference between pole obstacles and avatars and no clear drop in rotation as the aperture width 

increased.  
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The 2 (obstacle type) x 9 (aperture width) GLM with repeated measures revealed no 

significant main effect of obstacle type or aperture width for the onset of shoulder rotation, 

spatial margin, approach velocity and velocity at TOC. The means and standard deviations of 

each variable for the two obstacle types are presented in Table S.1.  
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Table S.1 - Results for the dependent measures including the average, standard deviation and p 

value for the comparison between conditions. Variables included magnitude of rotation, 

approach velocity, velocity at TOC and spatial margin.  

 

Dependent Measure Virtual Poles (𝒙̅/SD) Avatars (𝒙̅/SD) p-value 

Rotation magnitude (deg) 44.15 ±10.21 46.45 ±13.15 0.27 

Onset of rotation (m) 0.52 ±0.07 0.50 ±0.09 0.42 

Approach velocity (m/s) 0.82 ±0.01 0.83 ±0.02  0.27 

Velocity at TOC (m/s) 0.79 ±0.02 0.85 ±0.02  0.29 

Spatial margin (cm) 12.14 ±4.51 13.71 ±3.18 0.18 
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S.5 Discussion 

The purpose of the current study was two-fold: (1) to identify whether participants treat 

apertures created by avatars differently than virtual pole obstacles, and (2) determine if the 

critical point when walking in virtual reality is in line with previously reported real-world values 

(Chapter 4; Hackney et al., 2015). A number of research studies have reported a consistent 

critical point of 1.3x SW when walking through apertures made of pole obstacles (Hackney & 

Cinelli, 2013; Hackney et al., 2013; Hackney et al., 2014; Hackney et al., 2015; Warren & 

Whang, 1987; Wilmut & Barnett, 2010). Furthermore, recent work has suggested that the critical 

point for crossing apertures made of human obstacles is much larger, at 1.7x SW. Since previous 

work has demonstrated similarities in obstacle avoidance behaviours between real and virtual 

environments (Fink et al., 2007; Gerin-Lajoie et al., 2008; Lepecq et al., 2009), it was 

hypothesized that individuals would maintain a similar critical point for virtual pole obstacles as 

they do for real-world aperture crossing and that avatars would be treated with increased caution, 

following in line with previous real-world results.   

 

Interestingly, the current study was unable to detect a true critical point in either the 

virtual pole or the avatar condition. Analysis of shoulder rotations at TOC revealed no clear drop 

in the magnitude of rotations as the aperture size increased: individuals rotated their shoulders to 

the same degree at the largest aperture as they did for the smallest (Figure S.2). In real-world 

environments, a clear drop in the magnitude of rotation is observed as the aperture size increases 

(Warren & Whang, 1987). Although Lepecq and colleagues (2009) established similar critical 

points between real and virtual environments, our results appear to contribute to the growing 

body of inconsistent findings. Similar to our findings, Stappers and colleagues (1999) also 
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described difficulties distinguishing a critical point, as they too observed no clear drop off in 

rotations as aperture widths increased. The lack of a critical point may be explained by the fact 

that individuals were not able to view their own body in the virtual environment and therefore 

may have had difficulty accurately relating the size of the aperture to the size their body. As 

such, Fink and colleagues (2007) proposed that difficulty establishing eye height within a virtual 

environment, especially when the body cannot be viewed, may yields an ambiguous perceptual 

scales for establishing body-scaled actions. Since aperture crossing is largely body-scaled 

(Hackney et al., 2013; Hackney et al., 2014; Keizer et al., 2013; Warren & Whang, 1987), the 

fact that there was a lack of a critical point suggests that this body-scaled relationship was not 

established or was not established correctly.  

 

Recent work has suggested that the inclusion of a self-avatar may help improve the 

examination of perception and action in a virtual reality environment. Mohler and colleagues 

(2010) found that individuals who explore near space while viewing a representation of their 

own body made more accurate distance judgements than those who had no visual reference. 

Similarly, Lin and colleagues (2012) demonstrated that the presence of a self-avatar improved 

the accuracy of stepping over and ducking under obstacles. Together, these studies suggest that 

providing a self-avatar can increase the similarities between virtual environments and the real 

world. Therefore, future aperture crossing tasks in virtual reality should consider including self-

avatars to help individual’s establish body-scaled metrics and yield more accurate scaling of 

actions.  
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In addition to a lack of a true critical point, the results of the current study demonstrated 

no differences in aperture crossing behaviour between the virtual pole and avatar conditions. 

This result was unexpected, since previous research has observed that individuals act more 

cautiously in a real world environment when walking through human obstacles, by walking 

slower and maintaining a larger critical point and spatial margin. However, unlike human and 

real-pole obstacles, individuals in the current study behaved similarly for virtual poles and 

avatars (Table S.1). A substantial body of research has demonstrated that as long as the avatars 

exhibit behaviour that appropriately responds to the user’s actions, a participant’s interaction 

with the avatar will be similar to the way they interact with real people (Durlach & Slater, 2000; 

Slater et al., 2006; Zhang, Yu & Smith, 2006). Bailenson and colleagues (2002) argued that gaze 

direction is of particular importance for this effect. While the gaze of the avatars in the current 

study moved as the participant approached, it likely did not match what a real person would do in 

a similar scenario. Rather than looking directly at the oncoming pedestrian as would be expected 

in a real-world setting, the avatar’s gaze slowly shifted from side to side. Furthermore, the 

avatars remained in a stationary position before, during and after the interaction with the 

participant even when the aperture was very small. This completely stationary response is not 

likely to be encountered in a real-world setting, as people typically act to keep others outside 

their own personal space boundary (Gerin-Lajoie et al., 2005). Therefore the behaviour of the 

avatars in the current study may have removed important human-like qualities from the 

experience, such as personal space boundaries and social factors, which have been suggested to 

elicit more cautious behaviours in a real-world setting (Hackney et al., 2015; Knowles et al., 

1976). As a result, participants may have acted similarly for virtual poles and avatars simply 

because they projected similar qualities.    
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S.5 Conclusion 

The findings of the current study are two-fold. First, the passability of apertures appears 

to be different in virtual reality than that reported in real-world settings. Aperture crossing in 

virtual reality appears to lack a true critical point which likely results from difficulty relating the 

size of the aperture to the size their body. Second, individuals perform similarly when walking 

through apertures created by virtual pole obstacles compared to avatars. This result is quite 

different than of real-world aperture crossing, where individuals act much more cautiously for 

human obstacles than they do for poles (Hackney et al., 2015). It is likely that individuals 

interacted similarly for the avatars as they did for the virtual poles because the avatars did not 

respond appropriately to the actions of the user. Future research should consider including a self-

avatar to assist participants in establishing an accurate body-scaled metric to identify whether the 

aperture affords passage and avatars that possess more human-like qualities, such as appropriate 

gaze behaviour.     
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